id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
12,963
def test_query_products_query_with_filter_ids( staff_api_client, product, query_products_with_filter ): product_global_id = graphene.Node.to_global_id("Product", product.id) variables = {"filter": {"ids": [product_global_id]}} response = staff_api_client.post_graphql( query_products_with_filter, variables, check_no_permissions=False ) content = get_graphql_content(response) products_data = content["data"]["products"]["edges"] assert len(products_data) == 1 assert products_data[0]["node"]["id"] == product_global_id
def test_query_products_query_with_filter_ids( staff_api_client, product, query_products_with_filter ): product_global_id = graphene.Node.to_global_id("Product", product.id) variables = {"filter": {"ids": [product_global_id]}} response = staff_api_client.post_graphql( query_products_with_filter, variables ) content = get_graphql_content(response) products_data = content["data"]["products"]["edges"] assert len(products_data) == 1 assert products_data[0]["node"]["id"] == product_global_id
3,608
def run_static(): """Runs the static tests. Returns a statuscode of 0 if everything ran correctly. Otherwise, it will return statuscode 1 """ success = True success &= do_process( [ sys.executable, path.join(current_directory, "tools", "static_word_checks.py"), "--replace", ] ) success &= do_process( [ sys.executable, path.join(current_directory, "tools", "check_documentation.py"), ] ) success &= do_process(["black", "."], shell=True) success &= do_process(["flake8", "--exclude=.eggs,build,docs"]) success &= do_process(["pydocstyle", "praw"]) # success &= do_process(["pylint", "--rcfile=.pylintrc", "praw"]) tmp_dir = mkdtemp() try: success &= do_process(["sphinx-build", "-W", "--keep-going", "docs", tmp_dir]) finally: rmtree(tmp_dir) return success
def run_static(): """Runs the static tests. Returns a statuscode of 0 if everything ran correctly. Otherwise, it will return statuscode 1 """ success = True success &= do_process( [ sys.executable, path.join(current_directory, "tools", "static_word_checks.py"), "--replace", ] ) success &= do_process( [ sys.executable, path.join(current_directory, "tools", "check_documentation.py"), ] ) success &= do_process(["black", "."]) success &= do_process(["flake8", "--exclude=.eggs,build,docs"]) success &= do_process(["pydocstyle", "praw"]) # success &= do_process(["pylint", "--rcfile=.pylintrc", "praw"]) tmp_dir = mkdtemp() try: success &= do_process(["sphinx-build", "-W", "--keep-going", "docs", tmp_dir]) finally: rmtree(tmp_dir) return success
47,203
def get_checkpoint_from_architecture(architecture): try: module = importlib.import_module(architecture.__module__) except Exception: logger.error(f"Ignoring architecture {architecture}") return if hasattr(module, "_CHECKPOINT_FOR_DOC"): return module._CHECKPOINT_FOR_DOC else: logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")
def get_checkpoint_from_architecture(architecture): try: module = importlib.import_module(architecture.__module__) except ImportError: logger.error(f"Ignoring architecture {architecture}") return if hasattr(module, "_CHECKPOINT_FOR_DOC"): return module._CHECKPOINT_FOR_DOC else: logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")
47,980
def build_argparser(): parser = ArgumentParser() general = parser.add_argument_group('General') general.add_argument('-i', '--input', required=True, help='Required. An input to process. The input must be a single image, ' 'a folder of images, video file or camera id.') general.add_argument('--loop', default=False, action='store_true', help='Optional. Enable reading the input in a loop.') general.add_argument('-o', '--output', help='Optional. Name of output to save.') general.add_argument('-limit', '--output_limit', default=1000, type=int, help='Optional. Number of frames to store in output. ' 'If 0 is set, all frames are stored.') general.add_argument('--output_resolution', default=None, type=resolution, help='Optional. Specify the maximum output window resolution ' 'in (width x height) format. Example: 1280x720. ' 'Input frame size used by default.') general.add_argument('--no_show', action='store_true', help="Optional. Don't show output.") general.add_argument('-cw', '--crop_width', default=0, type=int, help='Optional. Crop the input stream to this width. ' 'Both -cw and -ch parameters should be specified ' 'to use crop.') general.add_argument('-ch', '--crop_height', default=0, type=int, help='Optional. Crop the input stream to this height. ' 'Both -cw and -ch parameters should be specified ' 'to use crop.') general.add_argument('--match_algo', default='HUNGARIAN', choices=('HUNGARIAN', 'MIN_DIST'), help='Optional. Algorithm for face matching. Default: HUNGARIAN.') general.add_argument('-u', '--utilization_monitors', default='', type=str, help='Optional. List of monitors to show initially.') gallery = parser.add_argument_group('Faces database') gallery.add_argument('-fg', type=Path, required=True, help='Required. Path to the face images directory.') gallery.add_argument('--run_detector', action='store_true', help='Optional. Use Face Detection model to find faces ' 'on the face images, otherwise use full images.') gallery.add_argument('--allow_grow', action='store_true', help='Optional. Allow to grow faces gallery and to dump on disk. ' 'Available only if --no_show option is off.') models = parser.add_argument_group('Models') models.add_argument('-m_fd', type=Path, required=True, help='Required. Path to an .xml file with Face Detection model.') models.add_argument('-m_lm', type=Path, required=True, help='Required. Path to an .xml file with Facial Landmarks Detection model.') models.add_argument('-m_reid', type=Path, required=True, help='Required. Path to an .xml file with Face Reidentification model.') models.add_argument('-fd_iw', '--fd_input_width', default=0, type=int, help='Optional. Specify the input width of detection model. ' 'Both -fd_iw and -fd_ih parameters should be specified ' 'for reshape.') models.add_argument('-fd_ih', '--fd_input_height', default=0, type=int, help='Optional. Specify the input height of detection model. ' 'Both -fd_iw and -fd_ih parameters should be specified ' 'for reshape.') infer = parser.add_argument_group('Inference options') infer.add_argument('-d_fd', default='CPU', choices=DEVICE_KINDS, help='Optional. Target device for Face Detection model. ' 'Default value is CPU.') infer.add_argument('-d_lm', default='CPU', choices=DEVICE_KINDS, help='Optional. Target device for Facial Landmarks Detection ' 'model. Default value is CPU.') infer.add_argument('-d_reid', default='CPU', choices=DEVICE_KINDS, help='Optional. Target device for Face Reidentification ' 'model. Default value is CPU.') infer.add_argument('-l', '--cpu_lib', metavar="PATH", default='', help='Optional. For MKLDNN (CPU)-targeted custom layers, ' 'if any. Path to a shared library with custom ' 'layers implementations.') infer.add_argument('-c', '--gpu_lib', metavar="PATH", default='', help='Optional. For clDNN (GPU)-targeted custom layers, ' 'if any. Path to the XML file with descriptions ' 'of the kernels.') infer.add_argument('-v', '--verbose', action='store_true', help='Optional. Be more verbose.') infer.add_argument('-pc', '--perf_stats', action='store_true', help='Optional. Output detailed per-layer performance stats.') infer.add_argument('-t_fd', metavar='[0..1]', type=float, default=0.6, help='Optional. Probability threshold for face detections.') infer.add_argument('-t_id', metavar='[0..1]', type=float, default=0.3, help='Optional. Cosine distance threshold between two vectors ' 'for face identification.') infer.add_argument('-exp_r_fd', metavar='NUMBER', type=float, default=1.15, help='Optional. Scaling ratio for bboxes passed to face recognition.') return parser
def build_argparser(): parser = ArgumentParser() general = parser.add_argument_group('General') general.add_argument('-i', '--input', required=True, help='Required. An input to process. The input must be a single image, ' 'a folder of images, video file or camera id.') general.add_argument('--loop', default=False, action='store_true', help='Optional. Enable reading the input in a loop.') general.add_argument('-o', '--output', help='Optional. Name of output to save.') general.add_argument('-limit', '--output_limit', default=1000, type=int, help='Optional. Number of frames to store in output. ' 'If 0 is set, all frames are stored.') general.add_argument('--output_resolution', default=None, type=resolution, help='Optional. Specify the maximum output window resolution ' 'in (width x height) format. Example: 1280x720. ' 'Input frame size used by default.') general.add_argument('--no_show', action='store_true', help="Optional. Don't show output.") general.add_argument('-cw', '--crop_width', default=0, type=int, help='Optional. Crop the input stream to this width. ' 'Both -cw and -ch parameters should be specified ' 'to use crop.') general.add_argument('-ch', '--crop_height', default=0, type=int, help='Optional. Crop the input stream to this height. ' 'Both -cw and -ch parameters should be specified ' 'to use crop.') general.add_argument('--match_algo', default='HUNGARIAN', choices=('HUNGARIAN', 'MIN_DIST'), help='Optional. Algorithm for face matching. Default: HUNGARIAN.') general.add_argument('-u', '--utilization_monitors', default='', type=str, help='Optional. List of monitors to show initially.') gallery = parser.add_argument_group('Faces database') gallery.add_argument('-fg', type=Path, required=True, help='Required. Path to the face images directory.') gallery.add_argument('--run_detector', action='store_true', help='Optional. Use Face Detection model to find faces ' 'on the face images, otherwise use full images.') gallery.add_argument('--allow_grow', action='store_true', help='Optional. Allow to grow faces gallery and to dump on disk. ' 'Available only if --no_show option is off.') models = parser.add_argument_group('Models') models.add_argument('-m_fd', type=Path, required=True, help='Required. Path to an .xml file with Face Detection model.') models.add_argument('-m_lm', type=Path, required=True, help='Required. Path to an .xml file with Facial Landmarks Detection model.') models.add_argument('-m_reid', type=Path, required=True, help='Required. Path to an .xml file with Face Reidentification model.') models.add_argument('-fd_iw', '--fd_input_width', default=0, type=int, help='Optional. Specify the input width of detection model. ' 'Both -fd_iw and -fd_ih parameters should be specified ' 'for reshape.') models.add_argument('-fd_ih', '--fd_input_height', default=0, type=int, help='Optional. Specify the input height of detection model. ' 'Both -fd_iw and -fd_ih parameters should be specified ' 'for reshape.') infer = parser.add_argument_group('Inference options') infer.add_argument('-d_fd', default='CPU', choices=DEVICE_KINDS, help='Optional. Target device for Face Detection model. ' 'Default value is CPU.') infer.add_argument('-d_lm', default='CPU', choices=DEVICE_KINDS, help='Optional. Target device for Facial Landmarks Detection ' 'model. Default value is CPU.') infer.add_argument('-d_reid', default='CPU', choices=DEVICE_KINDS, help='Optional. Target device for Face Reidentification ' 'model. Default value is CPU.') infer.add_argument('-l', '--cpu_lib', metavar="PATH", default='', help='Optional. For MKLDNN (CPU)-targeted custom layers, ' 'if any. Path to a shared library with custom ' 'layers implementations.') infer.add_argument('-c', '--gpu_lib', metavar="PATH", default='', help='Optional. For clDNN (GPU)-targeted custom layers, ' 'if any. Path to the XML file with descriptions ' 'of the kernels.') infer.add_argument('-v', '--verbose', action='store_true', help='Optional. Be more verbose.') infer.add_argument('-pc', '--perf_stats', action='store_true', help='Optional. Output detailed per-layer performance stats.') infer.add_argument('-t_fd', metavar='[0..1]', type=float, default=0.6, help='Optional. Probability threshold for face detections.') infer.add_argument('-t_id', metavar='[0..1]', type=float, default=0.3, help='Optional. Cosine distance threshold between two vectors ' 'for face identification.') infer.add_argument('-exp_r_fd', metavar='NUMBER', type=float, default=1.15, help='Optional. Scaling ratio for bboxes passed to face recognition.') return parser
23,568
def initialize_scheduler(): """ Start the scheduled background tasks. Re-schedule if interval settings changed. """ with SCHED_LOCK: # Check if scheduler should be started start_jobs = not len(SCHED.get_jobs()) # Update check github_minutes = CONFIG.CHECK_GITHUB_INTERVAL if CONFIG.CHECK_GITHUB_INTERVAL and CONFIG.CHECK_GITHUB else 0 pms_update_notify_hours = CONFIG.PMS_UPDATE_NOTIFY_INTERVAL if 1 <= CONFIG.PMS_UPDATE_NOTIFY_INTERVAL <= 999 else 24 schedule_job(versioncheck.check_update, 'Check GitHub for updates', hours=0, minutes=github_minutes, seconds=0, args=(bool(CONFIG.PLEXPY_AUTO_UPDATE), True)) backup_hours = CONFIG.BACKUP_INTERVAL if 1 <= CONFIG.BACKUP_INTERVAL <= 24 else 6 schedule_job(database.make_backup, 'Backup Tautulli database', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) schedule_job(config.make_backup, 'Backup Tautulli config', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) if WS_CONNECTED and CONFIG.PMS_IP and CONFIG.PMS_TOKEN: schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=12 * (not bool(CONFIG.PMS_URL_MANUAL)), minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=60 * bool(CONFIG.MONITOR_REMOTE_ACCESS)) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=pms_update_notify_hours * bool(CONFIG.MONITOR_PMS_UPDATES), minutes=0, seconds=0) # Refresh the users list and libraries list user_hours = CONFIG.REFRESH_USERS_INTERVAL if 1 <= CONFIG.REFRESH_USERS_INTERVAL <= 24 else 12 library_hours = CONFIG.REFRESH_LIBRARIES_INTERVAL if 1 <= CONFIG.REFRESH_LIBRARIES_INTERVAL <= 24 else 12 schedule_job(users.refresh_users, 'Refresh users list', hours=user_hours, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=library_hours, minutes=0, seconds=0) schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=0) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=10 * bool(CONFIG.WEBSOCKET_MONITOR_PING_PONG)) else: # Cancel all jobs schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=0, minutes=0, seconds=0) schedule_job(users.refresh_users, 'Refresh users list', hours=0, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=0, minutes=0, seconds=0) # Schedule job to reconnect server schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=60, args=(False,)) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=0) # Start scheduler if start_jobs and len(SCHED.get_jobs()): try: SCHED.start() except Exception as e: logger.error(e)
def initialize_scheduler(): """ Start the scheduled background tasks. Re-schedule if interval settings changed. """ with SCHED_LOCK: # Check if scheduler should be started start_jobs = not len(SCHED.get_jobs()) # Update check github_minutes = CONFIG.CHECK_GITHUB_INTERVAL if CONFIG.CHECK_GITHUB_INTERVAL and CONFIG.CHECK_GITHUB else 0 pms_update_notify_hours = CONFIG.PMS_UPDATE_NOTIFY_INTERVAL if 1 <= CONFIG.PMS_UPDATE_NOTIFY_INTERVAL <= 999 else 24 schedule_job(versioncheck.check_update, 'Check GitHub for updates', hours=0, minutes=github_minutes, seconds=0, args=(bool(CONFIG.PLEXPY_AUTO_UPDATE), True)) backup_hours = CONFIG.BACKUP_INTERVAL if 1 <= CONFIG.BACKUP_INTERVAL <= 24 else 6 schedule_job(database.make_backup, 'Backup Tautulli database', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) schedule_job(config.make_backup, 'Backup Tautulli config', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) if WS_CONNECTED and CONFIG.PMS_IP and CONFIG.PMS_TOKEN: schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=12 * (not bool(CONFIG.PMS_URL_MANUAL)), minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=60 * bool(CONFIG.MONITOR_REMOTE_ACCESS)) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=pms_update_check_hours * bool(CONFIG.MONITOR_PMS_UPDATES), minutes=0, seconds=0) # Refresh the users list and libraries list user_hours = CONFIG.REFRESH_USERS_INTERVAL if 1 <= CONFIG.REFRESH_USERS_INTERVAL <= 24 else 12 library_hours = CONFIG.REFRESH_LIBRARIES_INTERVAL if 1 <= CONFIG.REFRESH_LIBRARIES_INTERVAL <= 24 else 12 schedule_job(users.refresh_users, 'Refresh users list', hours=user_hours, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=library_hours, minutes=0, seconds=0) schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=0) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=10 * bool(CONFIG.WEBSOCKET_MONITOR_PING_PONG)) else: # Cancel all jobs schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=0, minutes=0, seconds=0) schedule_job(users.refresh_users, 'Refresh users list', hours=0, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=0, minutes=0, seconds=0) # Schedule job to reconnect server schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=60, args=(False,)) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=0) # Start scheduler if start_jobs and len(SCHED.get_jobs()): try: SCHED.start() except Exception as e: logger.error(e)
39,458
def make_r2d(argv=None): if argv is None: argv = sys.argv[1:] # version must be checked before parse, as repo/cmd are required and # will spit out an error if allowed to be parsed first. if '--version' in argv: print(__version__) sys.exit(0) args = get_argparser().parse_args(argv) r2d = Repo2Docker() if args.debug: r2d.log_level = logging.DEBUG r2d.load_config_file(args.config) if args.appendix: r2d.appendix = args.appendix r2d.repo = args.repo r2d.ref = args.ref # user wants to mount a local directory into the container for # editing if args.editable: # the user has to point at a directory, not just a path for us # to be able to mount it. We might have content providers that can # provide content from a local `something.zip` file, which we # couldn't mount in editable mode if os.path.isdir(args.repo): r2d.volumes[os.path.abspath(args.repo)] = '.' else: r2d.log.error('Cannot mount "{}" in editable mode ' 'as it is not a directory'.format(args.repo), extra=dict(phase='failed')) sys.exit(1) if args.image_name: r2d.output_image_spec = args.image_name else: # we will pick a name after fetching the repository r2d.output_image_spec = "" r2d.json_logs = args.json_logs r2d.dry_run = not args.build if r2d.dry_run: # Can't push nor run if we aren't building args.run = False args.push = False r2d.run = args.run r2d.push = args.push # check against r2d.run and not args.run as r2d.run is false on # --no-build. Also r2d.volumes and not args.volumes since --editable # modified r2d.volumes if r2d.volumes and not r2d.run: # Can't mount if we aren't running print('To Mount volumes with -v, you also need to run the ' 'container') sys.exit(1) for v in args.volumes: src, dest = v.split(':') r2d.volumes[src] = dest r2d.run_cmd = args.cmd if args.all_ports and not r2d.run: print('To publish user defined port mappings, the container must ' 'also be run') sys.exit(1) if args.ports and not r2d.run: print('To publish user defined port mappings, the container must ' 'also be run') sys.exit(1) if args.ports and not r2d.run_cmd: print('To publish user defined port mapping, user must specify ' 'the command to run in the container') sys.exit(1) r2d.ports = validate_and_generate_port_mapping(args.ports) r2d.all_ports = args.all_ports if args.user_id: r2d.user_id = args.user_id if args.user_name: r2d.user_name = args.user_name if args.build_memory_limit: # if the string only contains numerals we assume it should be an int # and specifies a size inn bytes if args.build_memory_limit.isnumeric(): r2d.build_memory_limit = int(args.build_memory_limit) else: r2d.build_memory_limit = args.build_memory_limit if args.environment and not r2d.run: print('To specify environment variables, you also need to run ' 'the container') sys.exit(1) if args.subdir: r2d.subdir = args.subdir if args.cache_from: r2d.cache_from = args.cache_from r2d.environment = args.environment # if the source exists locally we don't want to delete it at the end # FIXME: Find a better way to figure out if repo is 'local'. Push this into ContentProvider? if os.path.exists(args.repo): r2d.cleanup_checkout = False else: r2d.cleanup_checkout = args.clean if args.target_repo_dir: r2d.target_repo_dir = args.target_repo_dir return r2d
def make_r2d(argv=None): if argv is None: argv = sys.argv[1:] # version must be checked before parse, as repo/cmd are required and # will spit out an error if allowed to be parsed first. if '--version' in argv: print(__version__) sys.exit(0) args = get_argparser().parse_args(argv) r2d = Repo2Docker() if args.debug: r2d.log_level = logging.DEBUG r2d.load_config_file(args.config) if args.appendix: r2d.appendix = args.appendix r2d.repo = args.repo r2d.ref = args.ref # user wants to mount a local directory into the container for # editing if args.editable: # the user has to point at a directory, not just a path for us # to be able to mount it. We might have content providers that can # provide content from a local `something.zip` file, which we # couldn't mount in editable mode if os.path.isdir(args.repo): r2d.volumes[os.path.abspath(args.repo)] = '.' else: r2d.log.error('Cannot mount "{}" in editable mode ' 'as it is not a directory'.format(args.repo), extra=dict(phase='failed')) sys.exit(1) if args.image_name: r2d.output_image_spec = args.image_name else: # we will pick a name after fetching the repository r2d.output_image_spec = "" r2d.json_logs = args.json_logs r2d.dry_run = not args.build if r2d.dry_run: # Can't push nor run if we aren't building args.run = False args.push = False r2d.run = args.run r2d.push = args.push # check against r2d.run and not args.run as r2d.run is false on # --no-build. Also r2d.volumes and not args.volumes since --editable # modified r2d.volumes if r2d.volumes and not r2d.run: # Can't mount if we aren't running print('To Mount volumes with -v, you also need to run the ' 'container') sys.exit(1) for v in args.volumes: src, dest = v.split(':') r2d.volumes[src] = dest r2d.run_cmd = args.cmd if args.all_ports and not r2d.run: print('To publish user defined port mappings, the container must ' 'also be run') sys.exit(1) if args.ports and not r2d.run: print('To publish user defined port mappings, the container must ' 'also be run') sys.exit(1) if args.ports and not r2d.run_cmd: print('To publish user defined port mapping, user must specify ' 'the command to run in the container') sys.exit(1) r2d.ports = validate_and_generate_port_mapping(args.ports) r2d.all_ports = args.all_ports if args.user_id: r2d.user_id = args.user_id if args.user_name: r2d.user_name = args.user_name if args.build_memory_limit: # if the string only contains numerals we assume it should be an int # and specifies a size in bytes if args.build_memory_limit.isnumeric(): r2d.build_memory_limit = int(args.build_memory_limit) else: r2d.build_memory_limit = args.build_memory_limit if args.environment and not r2d.run: print('To specify environment variables, you also need to run ' 'the container') sys.exit(1) if args.subdir: r2d.subdir = args.subdir if args.cache_from: r2d.cache_from = args.cache_from r2d.environment = args.environment # if the source exists locally we don't want to delete it at the end # FIXME: Find a better way to figure out if repo is 'local'. Push this into ContentProvider? if os.path.exists(args.repo): r2d.cleanup_checkout = False else: r2d.cleanup_checkout = args.clean if args.target_repo_dir: r2d.target_repo_dir = args.target_repo_dir return r2d
48,911
def main(): print(version.BANNER) args = parse_args() init_logger(args) if args.target.upper() == "LOCAL" : if args.xmlfile is not None: # Only given decrypt XML file if os.path.exists(args.xmlfile): g = GetGPPasswords(None, None) logging.debug("Opening %s XML file for reading ..." % args.xmlfile) f = open(args.xmlfile,'r') rawdata = ''.join(f.readlines()) f.close() results = g.parse_xmlfile_content(args.xmlfile, rawdata) g.show(results) else: print('[!] File does not exists or is not readable.') else: domain, username, password, address, lmhash, nthash = parse_target(args) try: smbClient= init_smb_session(args, domain, username, password, address, lmhash, nthash) g = GetGPPasswords(smbClient, args.share) g.list_shares() g.find_cpasswords(args.base_dir) except Exception as e: if logging.getLogger().level == logging.DEBUG: traceback.print_exc() logging.error(str(e))
def main(): print(version.BANNER) args = parse_args() init_logger(args) if args.target.upper() == "LOCAL" : if args.xmlfile is not None: # Only given decrypt XML file if os.path.exists(args.xmlfile): g = GetGPPasswords(None, None) logging.debug("Opening %s XML file for reading ..." % args.xmlfile) f = open(args.xmlfile,'r') rawdata = ''.join(f.readlines()) f.close() results = g.parse_xmlfile_content(args.xmlfile, rawdata) g.show(results) else: print('[!] File does not exists or is not readable.') else: domain, username, password, address, lmhash, nthash = parse_target(args) try: smbClient= init_smb_session(args, domain, username, password, address, lmhash, nthash) g = GetGPPasswords(smbClient, args.share) g.list_shares() g.find_cpasswords(args.base_dir) except Exception as e: if logging.getLogger().level == logging.DEBUG: traceback.print_exc() logging.error(str(e))
56,342
def cross_chan_correlation( st1, streams, shift_len=0.0, allow_individual_trace_shifts=True, xcorr_func='fftw', concurrency="concurrent", cores=1, **kwargs): """ Calculate cross-channel correlation. Determine the cross-channel correlation between two streams of multichannel seismic data. :type st1: obspy.core.stream.Stream :param st1: Stream one :type streams: list :param streams: Streams to compare to. :type shift_len: float :param shift_len: Seconds to shift the streams by (total value for negative and positive direction together) :type allow_individual_trace_shifts: bool :param allow_individual_trace_shifts: Controls whether templates are shifted by shift_len in relation to the picks as a whole, or whether each trace can be shifted individually. Defaults to True. :type xcorr_func: str, callable :param xcorr_func: The method for performing correlations. Accepts either a string or callable. See :func:`eqcorrscan.utils.correlate.register_array_xcorr` for more details :type concurrency: str :param concurrency: Concurrency for xcorr-func. :type cores: int :param cores: Number of threads to parallel over :returns: cross channel correlation, float - normalized by number of channels. locations of maximums :rtype: numpy.ndarray, numpy.ndarray .. Note:: If no matching channels were found then the coherance and index for that stream will be nan. """ # Cut all channels in stream-list to be the correct length (shorter than # st1 if stack = False by shift_len). allow_individual_trace_shifts =\ allow_individual_trace_shifts and shift_len > 0 n_streams = len(streams) df = st1[0].stats.sampling_rate end_trim = int((shift_len * df) / 2) _streams = [] if end_trim > 0: for stream in streams: _stream = stream.copy() # Do not work on the users data for tr in _stream: tr.data = tr.data[end_trim: -end_trim] if tr.stats.sampling_rate != df: raise NotImplementedError("Sampling rates differ") _streams.append(_stream) streams = _streams else: # _prep_data_for_correlation works in place on data. # We need to copy it first. streams = [stream.copy() for stream in streams] # Check which channels are in st1 and match those in the stream_list st1, prep_streams, stream_indexes = _prep_data_for_correlation( stream=st1.copy(), templates=streams, template_names=list(range(len(streams))), force_stream_epoch=False) # Run the correlations multichannel_normxcorr = get_stream_xcorr(xcorr_func, concurrency) [cccsums, no_chans, _] = multichannel_normxcorr( templates=prep_streams, stream=st1, cores=cores, stack=False, **kwargs) # Find maximas, sum and divide by no_chans if allow_individual_trace_shifts: coherances = cccsums.max(axis=-1).sum(axis=-1) / no_chans else: cccsums = cccsums.sum(axis=1) coherances = cccsums.max(axis=-1) / no_chans # Subtract half length of correlogram and convert positions to seconds positions = (cccsums.argmax(axis=-1) - end_trim) / df # This section re-orders the coherences to correspond to the order of the # input streams _coherances = np.empty(n_streams) if allow_individual_trace_shifts: n_max_traces = max([len(st) for st in streams]) n_shifts_per_stream = positions.shape[1] _positions = np.empty([positions.shape[0], n_max_traces]) else: # _positions = np.empty_like(positions) _positions = np.empty([positions.shape[0], 1]) n_shifts_per_stream = 1 _coherances.fill(np.nan) _positions.fill(np.nan) for coh_ind, stream_ind in enumerate(stream_indexes): _coherances[stream_ind] = coherances[coh_ind] _positions[stream_ind, :n_shifts_per_stream] = positions[coh_ind] if not allow_individual_trace_shifts: # remove empty third axis from array _positions = _positions[:, ] return _coherances, _positions
def cross_chan_correlation( st1, streams, shift_len=0.0, allow_individual_trace_shifts=True, xcorr_func='fftw', concurrency="concurrent", cores=1, **kwargs): """ Calculate cross-channel correlation. Determine the cross-channel correlation between two streams of multichannel seismic data. :type st1: obspy.core.stream.Stream :param st1: Stream one :type streams: list :param streams: Streams to compare to. :type shift_len: float :param shift_len: Seconds to shift the streams by (total value for negative and positive direction together) :type allow_individual_trace_shifts: bool :param allow_individual_trace_shifts: Controls whether templates are shifted by shift_len in relation to the picks as a whole, or whether each trace can be shifted individually. Defaults to True. :type xcorr_func: str, callable :param xcorr_func: The method for performing correlations. Accepts either a string or callable. See :func:`eqcorrscan.utils.correlate.register_array_xcorr` for more details :type concurrency: str :param concurrency: Concurrency for xcorr-func. :type cores: int :param cores: Number of threads to parallel over :returns: cross channel correlation, float - normalized by number of channels. locations of maximums :rtype: numpy.ndarray, numpy.ndarray .. Note:: If no matching channels were found then the coherance and index for that stream will be nan. """ # Cut all channels in stream-list to be the correct length (shorter than # st1 if stack = False by shift_len). allow_individual_trace_shifts =\ allow_individual_trace_shifts and shift_len > 0 n_streams = len(streams) df = st1[0].stats.sampling_rate end_trim = int((shift_len * df) / 2) _streams = [] if end_trim > 0: for stream in streams: _stream = stream.copy() # Do not work on the users data for tr in _stream: tr.data = tr.data[end_trim: -end_trim] if tr.stats.sampling_rate != df: raise NotImplementedError("Sampling rates differ") _streams.append(_stream) streams = _streams else: # _prep_data_for_correlation works in place on data. # We need to copy it first. streams = [stream.copy() for stream in streams] # Check which channels are in st1 and match those in the stream_list st1, prep_streams, stream_indexes = _prep_data_for_correlation( stream=st1.copy(), templates=streams, template_names=list(range(len(streams))), force_stream_epoch=False) # Run the correlations multichannel_normxcorr = get_stream_xcorr(xcorr_func, concurrency) [cccsums, no_chans, _] = multichannel_normxcorr( templates=prep_streams, stream=st_preped, cores=cores, stack=False, **kwargs) # Find maximas, sum and divide by no_chans if allow_individual_trace_shifts: coherances = cccsums.max(axis=-1).sum(axis=-1) / no_chans else: cccsums = cccsums.sum(axis=1) coherances = cccsums.max(axis=-1) / no_chans # Subtract half length of correlogram and convert positions to seconds positions = (cccsums.argmax(axis=-1) - end_trim) / df # This section re-orders the coherences to correspond to the order of the # input streams _coherances = np.empty(n_streams) if allow_individual_trace_shifts: n_max_traces = max([len(st) for st in streams]) n_shifts_per_stream = positions.shape[1] _positions = np.empty([positions.shape[0], n_max_traces]) else: # _positions = np.empty_like(positions) _positions = np.empty([positions.shape[0], 1]) n_shifts_per_stream = 1 _coherances.fill(np.nan) _positions.fill(np.nan) for coh_ind, stream_ind in enumerate(stream_indexes): _coherances[stream_ind] = coherances[coh_ind] _positions[stream_ind, :n_shifts_per_stream] = positions[coh_ind] if not allow_individual_trace_shifts: # remove empty third axis from array _positions = _positions[:, ] return _coherances, _positions
45,770
def try_get_seed(seed=None, device='cuda'): """Try to get the seed. If the seed is not set, the seed will be automatically randomized, and then broadcast to all processes. Args: seed (int, Optional): The seed. Default to None. device (str): The device where the seed will be put on. Default to 'cuda'. Returns: int: Seed to be used. """ if seed is not None: return seed # When the seed is not set, unknown behavior may occur. # Please refer to https://github.com/open-mmlab/mmdetection/issues/6339 rank, world_size = get_dist_info() seed = np.random.randint(2**31) if world_size == 1: return seed if rank == 0: random_num = torch.tensor(seed, dtype=torch.int32, device=device) else: random_num = torch.tensor(0, dtype=torch.int32, device=device) dist.broadcast(random_num, src=0) return random_num.item()
def try_get_seed(seed=None, device='cuda'): """Try to get the seed. If the seed is not set, the seed will be automatically randomized, and then broadcast to all processes. Args: seed (int, Optional): The seed. Default to None. device (str): The device where the seed will be put on. Default to 'cuda'. Returns: int: Seed to be used. """ if seed is not None: return seed # Make sure all ranks share the same random seed to prevent some potential bugs. # Please refer to https://github.com/open-mmlab/mmdetection/issues/6339 rank, world_size = get_dist_info() seed = np.random.randint(2**31) if world_size == 1: return seed if rank == 0: random_num = torch.tensor(seed, dtype=torch.int32, device=device) else: random_num = torch.tensor(0, dtype=torch.int32, device=device) dist.broadcast(random_num, src=0) return random_num.item()
45,268
def train( params: Dict, dtrain: ModinDMatrix, *args, evals=(), nthread: Optional[int] = cpu_count(), evenly_data_distribution: Optional[bool] = True, **kwargs, ): """ Train XGBoost model. Parameters ---------- params : dict Booster params. dtrain : ModinDMatrix Data to be trained. nthread: int Number of threads for using in each node. By default it is equal to number of threads on master node. evenly_data_distribution: boolean, default True Whether make evenly distribution of partitions between nodes or not. In case `False` minimal datatransfer between nodes will be provided but the data may not be evenly distributed. \\*\\*kwargs: Other parameters are the same as `xgboost.train` except for `evals_result`, which is returned as part of function return value instead of argument. Returns ------- dict A dictionary containing trained booster and evaluation history. `history` field is the same as `eval_result` from `xgboost.train`. .. code-block:: python {'booster': xgboost.Booster, 'history': {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}}} """ LOGGER.info("Training started") s = time.time() X, y = dtrain assert len(X) == len(y) X_row_parts = unwrap_row_partitions(X, bind_ip=not evenly_data_distribution) y_row_parts = unwrap_row_partitions(y, bind_ip=not evenly_data_distribution) assert len(X_row_parts) == len(y_row_parts), "Unaligned train data" # Create remote actors actors = create_actors(nthread=nthread) add_as_eval_method = None if len(evals): for (eval_data, method) in evals: if id(eval_data) == id(dtrain): add_as_eval_method = method evals.remove((eval_data, method)) evals_unwrapped = [ ( ( unwrap_row_partitions(eval_X, bind_ip=not evenly_data_distribution), unwrap_row_partitions(eval_y, bind_ip=not evenly_data_distribution), eval_method, ) ) for ((eval_X, eval_y), eval_method) in evals ] for ( eval_X_row_parts, eval_y_row_parts, eval_method, ) in evals_unwrapped: # Split data across workers _split_data_across_actors( actors, lambda actor, *Xy: actor.add_eval_data.remote( *Xy, eval_method=eval_method ), eval_X_row_parts, eval_y_row_parts, evenly_data_distribution=evenly_data_distribution, ) # Split data across workers _split_data_across_actors( actors, lambda actor, *Xy: actor.set_train_data.remote( *Xy, add_as_eval_method=add_as_eval_method ), X_row_parts, y_row_parts, evenly_data_distribution=evenly_data_distribution, ) LOGGER.info(f"Data preparation time: {time.time() - s} s") s = time.time() # Start Rabit tracker env = _start_rabit_tracker(len(actors)) rabit_args = [("%s=%s" % item).encode() for item in env.items()] # Train fut = [actor.train.remote(rabit_args, params, *args, **kwargs) for actor in actors] # All results should be the same because of Rabit tracking. So we just # return the first one. result = ray.get(fut[0]) LOGGER.info(f"Training time: {time.time() - s} s") LOGGER.info("Training finished") return result
def train( params: Dict, dtrain: ModinDMatrix, *args, evals=(), nthread: Optional[int] = cpu_count(), evenly_data_distribution: Optional[bool] = True, **kwargs, ): """ Train XGBoost model. Parameters ---------- params : dict Booster params. dtrain : ModinDMatrix Data to be trained. nthread: int Number of threads for using in each node. By default it is equal to number of threads on master node. evenly_data_distribution: boolean, default True Whether make evenly distribution of partitions between nodes or not. In case `False` minimal datatransfer between nodes will be provided but the data may not be evenly distributed. \\*\\*kwargs: Other parameters are the same as `xgboost.train` except for `evals_result`, which is returned as part of function return value instead of argument. Returns ------- dict A dictionary containing trained booster and evaluation history. `history` field is the same as `eval_result` from `xgboost.train`. .. code-block:: python {'booster': xgboost.Booster, 'history': {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}}} """ LOGGER.info("Training started") s = time.time() X, y = dtrain assert len(X) == len(y) X_row_parts = unwrap_row_partitions(X, bind_ip=not evenly_data_distribution) y_row_parts = unwrap_row_partitions(y, bind_ip=not evenly_data_distribution) assert len(X_row_parts) == len(y_row_parts), "Unaligned train data" # Create remote actors actors = create_actors(nthread=nthread) add_as_eval_method = None if len(evals): for (eval_data, method) in evals: if eval_data is dtrain: add_as_eval_method = method evals.remove((eval_data, method)) evals_unwrapped = [ ( ( unwrap_row_partitions(eval_X, bind_ip=not evenly_data_distribution), unwrap_row_partitions(eval_y, bind_ip=not evenly_data_distribution), eval_method, ) ) for ((eval_X, eval_y), eval_method) in evals ] for ( eval_X_row_parts, eval_y_row_parts, eval_method, ) in evals_unwrapped: # Split data across workers _split_data_across_actors( actors, lambda actor, *Xy: actor.add_eval_data.remote( *Xy, eval_method=eval_method ), eval_X_row_parts, eval_y_row_parts, evenly_data_distribution=evenly_data_distribution, ) # Split data across workers _split_data_across_actors( actors, lambda actor, *Xy: actor.set_train_data.remote( *Xy, add_as_eval_method=add_as_eval_method ), X_row_parts, y_row_parts, evenly_data_distribution=evenly_data_distribution, ) LOGGER.info(f"Data preparation time: {time.time() - s} s") s = time.time() # Start Rabit tracker env = _start_rabit_tracker(len(actors)) rabit_args = [("%s=%s" % item).encode() for item in env.items()] # Train fut = [actor.train.remote(rabit_args, params, *args, **kwargs) for actor in actors] # All results should be the same because of Rabit tracking. So we just # return the first one. result = ray.get(fut[0]) LOGGER.info(f"Training time: {time.time() - s} s") LOGGER.info("Training finished") return result
41,396
def make_labels(dest_folder, zoom, country, classes, ml_type, bounding_box, sparse, **kwargs): """Create label data from OSM QA tiles for specified classes Perform the following operations: - If necessary, re-tile OSM QA Tiles to the specified zoom level - Iterate over all tiles within the bounding box and produce a label for each - Save the label file as labels.npz - Create an output for previewing the labels (GeoJSON or PNG depending upon ml_type) Parameters ------------ dest_folder: str Folder to save labels and example tiles into zoom: int The zoom level to create tiles at country: str The OSM QA Tile extract to download. The value should be a country string matching a value found in `label_maker/countries.txt` classes: list A list of classes for machine learning training. Each class is defined as a dict with two required properties: - name: class name - filter: A Mapbox GL Filter. See the README for more details ml_type: str Defines the type of machine learning. One of "classification", "object-detection", or "segmentation" bounding_box: list The bounding box to create images from. This should be given in the form: `[xmin, ymin, xmax, ymax]` as longitude and latitude values between `[-180, 180]` and `[-90, 90]` respectively sparse: boolean Limit the total background tiles to write based on `background_ratio` kwarg. geojson: str File name for optional geojson label input **kwargs: dict Other properties from CLI config passed as keywords to other utility functions """ mbtiles_file = op.join(dest_folder, '{}.mbtiles'.format(country)) mbtiles_file_zoomed = op.join(dest_folder, '{}-z{!s}.mbtiles'.format(country, zoom)) if not op.exists(mbtiles_file_zoomed): filtered_geo = kwargs.get('geojson') or op.join(dest_folder, '{}.geojson'.format(country)) fast_parse = [] if not op.exists(filtered_geo): fast_parse = ['-P'] print('Retiling QA Tiles to zoom level {} (takes a bit)'.format(zoom)) ps = Popen(['tippecanoe-decode', '-c', '-f', mbtiles_file], stdout=PIPE) stream_filter_fpath = op.join(op.dirname(label_maker.__file__), 'stream_filter.py') run(['python', stream_filter_fpath, json.dumps(bounding_box)], stdin=ps.stdout, stdout=open(filtered_geo, 'w')) ps.wait() run(['tippecanoe', '--no-feature-limit', '--no-tile-size-limit'] + fast_parse + ['-l', 'osm', '-f', '-z', str(zoom), '-Z', str(zoom), '-o', mbtiles_file_zoomed, filtered_geo]) # Call tilereduce print('Determining labels for each tile') mbtiles_to_reduce = mbtiles_file_zoomed tilereduce(dict(zoom=zoom, source=mbtiles_to_reduce, bbox=bounding_box, args=dict(ml_type=ml_type, classes=classes)), _mapper, _callback, _done) # Add empty labels to any tiles which didn't have data empty_label = _create_empty_label(ml_type, classes) for tile in tiles(*bounding_box, [zoom]): index = '-'.join([str(i) for i in tile]) global tile_results if tile_results.get(index) is None: tile_results[index] = empty_label # Print a summary of the labels _tile_results_summary(ml_type, classes) # If the --sparse flag is provided, limit the total background tiles to write if sparse: pos_examples, neg_examples = [], [] for k in tile_results.keys(): # if we don't match any class, this is a negative example if not sum([class_match(ml_type, tile_results[k], i + 1) for i, c in enumerate(classes)]): neg_examples.append(k) else: pos_examples.append(k) # Choose random subset of negative examples n_neg_ex = int(kwargs['background_ratio'] * len(pos_examples)) neg_examples = np.random.choice(neg_examples, n_neg_ex, replace=False).tolist() tile_results = {k: tile_results.get(k) for k in pos_examples + neg_examples} print('Using sparse mode; subselected {} background tiles'.format(n_neg_ex)) # write out labels as numpy arrays labels_file = op.join(dest_folder, 'labels.npz') print('Writing out labels to {}'.format(labels_file)) np.savez(labels_file, **tile_results) # write out labels as GeoJSON or PNG if ml_type == 'classification': features = [] for tile, label in tile_results.items(): feat = feature(Tile(*[int(t) for t in tile.split('-')])) features.append(Feature(geometry=feat['geometry'], properties=dict(label=label.tolist()))) json.dump(fc(features), open(op.join(dest_folder, 'classification.geojson'), 'w')) elif ml_type == 'object-detection': label_folder = op.join(dest_folder, 'labels') if not op.isdir(label_folder): makedirs(label_folder) for tile, label in tile_results.items(): # if we have at least one bounding box label if bool(label.shape[0]): label_file = '{}.png'.format(tile) img = Image.new('RGB', (256, 256)) draw = ImageDraw.Draw(img) for box in label: draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=class_color(box[4])) print('Writing {}'.format(label_file)) img.save(op.join(label_folder, label_file)) elif ml_type == 'segmentation': label_folder = op.join(dest_folder, 'labels') if not op.isdir(label_folder): makedirs(label_folder) for tile, label in tile_results.items(): # if we have any class pixels if np.sum(label): label_file = '{}.png'.format(tile) visible_label = np.array([class_color(l) for l in np.nditer(label)]).reshape(256, 256, 3) img = Image.fromarray(visible_label.astype(np.uint8)) print('Writing {}'.format(label_file)) img.save(op.join(label_folder, label_file))
def make_labels(dest_folder, zoom, country, classes, ml_type, bounding_box, sparse, **kwargs): """Create label data from OSM QA tiles for specified classes Perform the following operations: - If necessary, re-tile OSM QA Tiles to the specified zoom level - Iterate over all tiles within the bounding box and produce a label for each - Save the label file as labels.npz - Create an output for previewing the labels (GeoJSON or PNG depending upon ml_type) Parameters ------------ dest_folder: str Folder to save labels and example tiles into zoom: int The zoom level to create tiles at country: str The OSM QA Tile extract to download. The value should be a country string matching a value found in `label_maker/countries.txt` classes: list A list of classes for machine learning training. Each class is defined as a dict with two required properties: - name: class name - filter: A Mapbox GL Filter. See the README for more details ml_type: str Defines the type of machine learning. One of "classification", "object-detection", or "segmentation" bounding_box: list The bounding box to create images from. This should be given in the form: `[xmin, ymin, xmax, ymax]` as longitude and latitude values between `[-180, 180]` and `[-90, 90]` respectively sparse: boolean Limit the total background tiles to write based on `background_ratio` kwarg. geojson: str Filepath to optional geojson label input **kwargs: dict Other properties from CLI config passed as keywords to other utility functions """ mbtiles_file = op.join(dest_folder, '{}.mbtiles'.format(country)) mbtiles_file_zoomed = op.join(dest_folder, '{}-z{!s}.mbtiles'.format(country, zoom)) if not op.exists(mbtiles_file_zoomed): filtered_geo = kwargs.get('geojson') or op.join(dest_folder, '{}.geojson'.format(country)) fast_parse = [] if not op.exists(filtered_geo): fast_parse = ['-P'] print('Retiling QA Tiles to zoom level {} (takes a bit)'.format(zoom)) ps = Popen(['tippecanoe-decode', '-c', '-f', mbtiles_file], stdout=PIPE) stream_filter_fpath = op.join(op.dirname(label_maker.__file__), 'stream_filter.py') run(['python', stream_filter_fpath, json.dumps(bounding_box)], stdin=ps.stdout, stdout=open(filtered_geo, 'w')) ps.wait() run(['tippecanoe', '--no-feature-limit', '--no-tile-size-limit'] + fast_parse + ['-l', 'osm', '-f', '-z', str(zoom), '-Z', str(zoom), '-o', mbtiles_file_zoomed, filtered_geo]) # Call tilereduce print('Determining labels for each tile') mbtiles_to_reduce = mbtiles_file_zoomed tilereduce(dict(zoom=zoom, source=mbtiles_to_reduce, bbox=bounding_box, args=dict(ml_type=ml_type, classes=classes)), _mapper, _callback, _done) # Add empty labels to any tiles which didn't have data empty_label = _create_empty_label(ml_type, classes) for tile in tiles(*bounding_box, [zoom]): index = '-'.join([str(i) for i in tile]) global tile_results if tile_results.get(index) is None: tile_results[index] = empty_label # Print a summary of the labels _tile_results_summary(ml_type, classes) # If the --sparse flag is provided, limit the total background tiles to write if sparse: pos_examples, neg_examples = [], [] for k in tile_results.keys(): # if we don't match any class, this is a negative example if not sum([class_match(ml_type, tile_results[k], i + 1) for i, c in enumerate(classes)]): neg_examples.append(k) else: pos_examples.append(k) # Choose random subset of negative examples n_neg_ex = int(kwargs['background_ratio'] * len(pos_examples)) neg_examples = np.random.choice(neg_examples, n_neg_ex, replace=False).tolist() tile_results = {k: tile_results.get(k) for k in pos_examples + neg_examples} print('Using sparse mode; subselected {} background tiles'.format(n_neg_ex)) # write out labels as numpy arrays labels_file = op.join(dest_folder, 'labels.npz') print('Writing out labels to {}'.format(labels_file)) np.savez(labels_file, **tile_results) # write out labels as GeoJSON or PNG if ml_type == 'classification': features = [] for tile, label in tile_results.items(): feat = feature(Tile(*[int(t) for t in tile.split('-')])) features.append(Feature(geometry=feat['geometry'], properties=dict(label=label.tolist()))) json.dump(fc(features), open(op.join(dest_folder, 'classification.geojson'), 'w')) elif ml_type == 'object-detection': label_folder = op.join(dest_folder, 'labels') if not op.isdir(label_folder): makedirs(label_folder) for tile, label in tile_results.items(): # if we have at least one bounding box label if bool(label.shape[0]): label_file = '{}.png'.format(tile) img = Image.new('RGB', (256, 256)) draw = ImageDraw.Draw(img) for box in label: draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=class_color(box[4])) print('Writing {}'.format(label_file)) img.save(op.join(label_folder, label_file)) elif ml_type == 'segmentation': label_folder = op.join(dest_folder, 'labels') if not op.isdir(label_folder): makedirs(label_folder) for tile, label in tile_results.items(): # if we have any class pixels if np.sum(label): label_file = '{}.png'.format(tile) visible_label = np.array([class_color(l) for l in np.nditer(label)]).reshape(256, 256, 3) img = Image.fromarray(visible_label.astype(np.uint8)) print('Writing {}'.format(label_file)) img.save(op.join(label_folder, label_file))
42,633
def test_market_request(): """Test that we can query bisq for market prices""" price = get_bisq_market_price(A_BSQ) assert price != Price(ZERO) # Test that error is correctly rised when there is no market with pytest.raises(RemoteError): get_bisq_market_price(A_3CRV)
def test_market_request(): """Test that we can query bisq for market prices""" price = get_bisq_market_price(A_BSQ) assert price != Price(ZERO) # Test that error is correctly raised when there is no market with pytest.raises(RemoteError): get_bisq_market_price(A_3CRV)
6,350
def containerlike_class_generator(): methods = set([ "__contains__", "__getitem__", "__iter__", "__len__", "__reversed__", "count", "get", "index", "items", "keys", "values", ]) # Deliberately starting from 0 for r in range(0, len(methods) + 1): for selected_methods in sorted( map(sorted, itertools.combinations(methods, r))): class ContainerlikeClass(object): def __init__(self, iterable): self.__internal_dict__ = dict(iterable) @classmethod def name(cls): return "ContainerlikeClass:{}".format( ":".join(selected_methods)) # for method in always_define.union(selected_methods): for method in selected_methods: func = method_factory(method) setattr(ContainerlikeClass, method, func) yield ContainerlikeClass
def generate_containerlike_class(): methods = set([ "__contains__", "__getitem__", "__iter__", "__len__", "__reversed__", "count", "get", "index", "items", "keys", "values", ]) # Deliberately starting from 0 for r in range(0, len(methods) + 1): for selected_methods in sorted( map(sorted, itertools.combinations(methods, r))): class ContainerlikeClass(object): def __init__(self, iterable): self.__internal_dict__ = dict(iterable) @classmethod def name(cls): return "ContainerlikeClass:{}".format( ":".join(selected_methods)) # for method in always_define.union(selected_methods): for method in selected_methods: func = method_factory(method) setattr(ContainerlikeClass, method, func) yield ContainerlikeClass
15,135
def test_deprecated_with_no_optionals(caplog, schema): """ Test deprecation behaves correctly when optional params are None. Expected behavior: - Outputs the appropriate deprecation warning if key is detected - Processes schema without changing any values - No warning or difference in output if key is not provided """ deprecated_schema = vol.All(cv.deprecated("mars"), schema) test_data = {"mars": True} output = deprecated_schema(test_data.copy()) assert len(caplog.records) == 1 assert caplog.records[0].name in [ __name__, "homeassistant.helpers.config_validation", ] assert ( "The 'mars' option is deprecated, " "please remove it from your configuration" ) in caplog.text assert test_data == output caplog.clear() assert len(caplog.records) == 0 test_data = {"venus": True} output = deprecated_schema(test_data.copy()) assert len(caplog.records) == 0 assert test_data == output
def test_deprecated_with_no_optionals(caplog, schema): """ Test deprecation behaves correctly when optional params are None. Expected behavior: - Outputs the appropriate deprecation warning if key is detected - Processes schema without changing any values - No warning or difference in output if key is not provided """ deprecated_schema = vol.All(cv.deprecated("mars"), schema) test_data = {"mars": True} output = deprecated_schema(test_data.copy()) assert len(caplog.records) == 1 assert caplog.records[0].name in [ __name__, "homeassistant.helpers.config_validation", ] assert ( "The 'mars' option is deprecated, please remove it from your configuration" ) in caplog.text assert test_data == output caplog.clear() assert len(caplog.records) == 0 test_data = {"venus": True} output = deprecated_schema(test_data.copy()) assert len(caplog.records) == 0 assert test_data == output
28,979
def verify_proof(proof, rootHash, name): previous_computed_hash = None reverse_computed_name = '' verified_value = False for i, node in enumerate(proof['nodes'][::-1]): found_child_in_chain = False to_hash = b'' previous_child_character = None for child in node['children']: if child['character'] < 0 or child['character'] > 255: raise InvalidProofError("child character not int between 0 and 255") if previous_child_character: if previous_child_character >= child['character']: raise InvalidProofError("children not in increasing order") previous_child_character = child['character'] to_hash += six.int2byte(child['character']) if 'nodeHash' in child: if len(child['nodeHash']) != 64: raise InvalidProofError("invalid child nodeHash") to_hash += binascii.unhexlify(child['nodeHash'])[::-1] else: if previous_computed_hash is None: raise InvalidProofError("previous computed hash is None") if found_child_in_chain is True: raise InvalidProofError("already found the next child in the chain") found_child_in_chain = True reverse_computed_name += chr(child['character']) to_hash += previous_computed_hash if not found_child_in_chain: if i != 0: raise InvalidProofError("did not find the alleged child") if i == 0 and 'txhash' in proof and 'nOut' in proof and 'last takeover height' in proof: if len(proof['txhash']) != 64: raise InvalidProofError("txhash was invalid: {}".format(proof['txhash'])) if not isinstance(proof['nOut'], (int,)): raise InvalidProofError("nOut was invalid: {}".format(proof['nOut'])) if not isinstance(proof['last takeover height'], (int,)): raise InvalidProofError( 'last takeover height was invalid: {}'.format(proof['last takeover height'])) to_hash += get_hash_for_outpoint( binascii.unhexlify(proof['txhash'])[::-1], proof['nOut'], proof['last takeover height'] ) verified_value = True elif 'valueHash' in node: if len(node['valueHash']) != 64: raise InvalidProofError("valueHash was invalid") to_hash += binascii.unhexlify(node['valueHash'])[::-1] previous_computed_hash = double_sha256(to_hash) if previous_computed_hash != binascii.unhexlify(rootHash)[::-1]: raise InvalidProofError("computed hash does not match roothash") if 'txhash' in proof and 'nOut' in proof: if not verified_value: raise InvalidProofError("mismatch between proof claim and outcome") if 'txhash' in proof and 'nOut' in proof: if name != reverse_computed_name[::-1]: raise InvalidProofError("name did not match proof") if not name.startswith(reverse_computed_name[::-1]): raise InvalidProofError("name fragment does not match proof") return True
def verify_proof(proof, rootHash, name): previous_computed_hash = None reverse_computed_name = '' verified_value = False for i, node in enumerate(proof['nodes'][::-1]): found_child_in_chain = False to_hash = b'' previous_child_character = None for child in node['children']: if child['character'] < 0 or child['character'] > 255: raise InvalidProofError("child character not int between 0 and 255") if previous_child_character: if previous_child_character >= child['character']: raise InvalidProofError("children not in increasing order") previous_child_character = child['character'] to_hash += six.int2byte(child['character']) if 'nodeHash' in child: if len(child['nodeHash']) != 64: raise InvalidProofError("invalid child nodeHash") to_hash += binascii.unhexlify(child['nodeHash'])[::-1] else: if previous_computed_hash is None: raise InvalidProofError("previous computed hash is None") if found_child_in_chain is True: raise InvalidProofError("already found the next child in the chain") found_child_in_chain = True reverse_computed_name += chr(child['character']) to_hash += previous_computed_hash if not found_child_in_chain: if i != 0: raise InvalidProofError("did not find the alleged child") if i == 0 and 'txhash' in proof and 'nOut' in proof and 'last takeover height' in proof: if len(proof['txhash']) != 64: raise InvalidProofError("txhash was invalid: {}".format(proof['txhash'])) if not isinstance(proof['nOut'], int): raise InvalidProofError("nOut was invalid: {}".format(proof['nOut'])) if not isinstance(proof['last takeover height'], (int,)): raise InvalidProofError( 'last takeover height was invalid: {}'.format(proof['last takeover height'])) to_hash += get_hash_for_outpoint( binascii.unhexlify(proof['txhash'])[::-1], proof['nOut'], proof['last takeover height'] ) verified_value = True elif 'valueHash' in node: if len(node['valueHash']) != 64: raise InvalidProofError("valueHash was invalid") to_hash += binascii.unhexlify(node['valueHash'])[::-1] previous_computed_hash = double_sha256(to_hash) if previous_computed_hash != binascii.unhexlify(rootHash)[::-1]: raise InvalidProofError("computed hash does not match roothash") if 'txhash' in proof and 'nOut' in proof: if not verified_value: raise InvalidProofError("mismatch between proof claim and outcome") if 'txhash' in proof and 'nOut' in proof: if name != reverse_computed_name[::-1]: raise InvalidProofError("name did not match proof") if not name.startswith(reverse_computed_name[::-1]): raise InvalidProofError("name fragment does not match proof") return True
3,411
def _get_metrics_filter_ids(metric_names: Sequence[str]) -> Set[int]: """ Returns a set of metric_ids that map to input metric names and raises an exception if metric cannot be resolved in the indexer """ if not metric_names: return set() metric_ids = set() metric_names_deque = deque(metric_names) while metric_names_deque: name = metric_names_deque.popleft() if name not in DERIVED_METRICS: metric_ids.add(indexer.resolve(name)) else: derived_metric_obj = DERIVED_METRICS[name] try: metric_ids |= derived_metric_obj.generate_metric_ids() except NotSupportedOverCompositeEntityException: single_entity_constituents = set( list( derived_metric_obj.naively_generate_singular_entity_constituents().values() ).pop() ) metric_names_deque.extend(single_entity_constituents) if None in metric_ids: # We are looking for tags that appear in all given metrics. # A tag cannot appear in a metric if the metric is not even indexed. raise MetricDoesNotExistInIndexer() return metric_ids
def _get_metrics_filter_ids(metric_names: Sequence[str]) -> Set[int]: """ Returns a set of metric_ids that map to input metric names and raises an exception if metric cannot be resolved in the indexer """ if not metric_names: return set() metric_ids = set() metric_names_deque = deque(metric_names) while metric_names_deque: name = metric_names_deque.popleft() if name not in DERIVED_METRICS: metric_ids.add(indexer.resolve(name)) else: derived_metric_obj = DERIVED_METRICS[name] try: metric_ids |= derived_metric_obj.generate_metric_ids() except NotSupportedOverCompositeEntityException: single_entity_constituents = derived_metric_obj.naively_generate_singular_entity_constituents() metric_names_deque.extend(single_entity_constituents) if None in metric_ids: # We are looking for tags that appear in all given metrics. # A tag cannot appear in a metric if the metric is not even indexed. raise MetricDoesNotExistInIndexer() return metric_ids
12,387
def _mount_source(instance): container_path = '/usr/lib/python3/dist-packages/cloudinit' format_variables = { 'name': instance.name, 'cloudinit_path': cloudinit.__path__[0], 'container_path': container_path, } log.info( 'Mounting source {cloudinit_path} directly onto LXD container/vm ' 'named {name} at {container_path}'.format(**format_variables)) command = ( 'lxc config device add {name} host-cloud-init disk ' 'source={cloudinit_path} ' 'path={container_path}' ).format(**format_variables) subp(command.split())
def _mount_source(pycloudlib_instance): container_path = '/usr/lib/python3/dist-packages/cloudinit' format_variables = { 'name': instance.name, 'cloudinit_path': cloudinit.__path__[0], 'container_path': container_path, } log.info( 'Mounting source {cloudinit_path} directly onto LXD container/vm ' 'named {name} at {container_path}'.format(**format_variables)) command = ( 'lxc config device add {name} host-cloud-init disk ' 'source={cloudinit_path} ' 'path={container_path}' ).format(**format_variables) subp(command.split())
5,840
def linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='highs', callback=None, options=None, x0=None, integrality=None): r""" Linear programming: minimize a linear objective function subject to linear equality and inequality constraints. Linear programming solves problems of the following form: .. math:: \min_x \ & c^T x \\ \mbox{such that} \ & A_{ub} x \leq b_{ub},\\ & A_{eq} x = b_{eq},\\ & l \leq x \leq u , where :math:`x` is a vector of decision variables; :math:`c`, :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and :math:`A_{ub}` and :math:`A_{eq}` are matrices. Alternatively, that's: minimize:: c @ x such that:: A_ub @ x <= b_ub A_eq @ x == b_eq lb <= x <= ub Note that by default ``lb = 0`` and ``ub = None`` unless specified with ``bounds``. Parameters ---------- c : 1-D array The coefficients of the linear objective function to be minimized. A_ub : 2-D array, optional The inequality constraint matrix. Each row of ``A_ub`` specifies the coefficients of a linear inequality constraint on ``x``. b_ub : 1-D array, optional The inequality constraint vector. Each element represents an upper bound on the corresponding value of ``A_ub @ x``. A_eq : 2-D array, optional The equality constraint matrix. Each row of ``A_eq`` specifies the coefficients of a linear equality constraint on ``x``. b_eq : 1-D array, optional The equality constraint vector. Each element of ``A_eq @ x`` must equal the corresponding element of ``b_eq``. bounds : sequence, optional A sequence of ``(min, max)`` pairs for each element in ``x``, defining the minimum and maximum values of that decision variable. Use ``None`` to indicate that there is no bound. By default, bounds are ``(0, None)`` (all decision variables are non-negative). If a single tuple ``(min, max)`` is provided, then ``min`` and ``max`` will serve as bounds for all decision variables. method : str, optional The algorithm used to solve the standard form problem. :ref:`'highs' <optimize.linprog-highs>` (default), :ref:`'highs-ds' <optimize.linprog-highs-ds>`, :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`, :ref:`'interior-point' <optimize.linprog-interior-point>` (legacy), :ref:`'revised simplex' <optimize.linprog-revised_simplex>` (legacy), and :ref:`'simplex' <optimize.linprog-simplex>` (legacy) are supported. The legacy methods are depreciated and will be removed in SciPy 1.11.0. callback : callable, optional If a callback function is provided, it will be called at least once per iteration of the algorithm. The callback function must accept a single `scipy.optimize.OptimizeResult` consisting of the following fields: x : 1-D array The current solution vector. fun : float The current value of the objective function ``c @ x``. success : bool ``True`` when the algorithm has completed successfully. slack : 1-D array The (nominally positive) values of the slack, ``b_ub - A_ub @ x``. con : 1-D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. phase : int The phase of the algorithm being executed. status : int An integer representing the status of the algorithm. ``0`` : Optimization proceeding nominally. ``1`` : Iteration limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : Numerical difficulties encountered. nit : int The current iteration number. message : str A string descriptor of the algorithm status. Callback functions are not currently supported by the HiGHS methods. options : dict, optional A dictionary of solver options. All methods accept the following options: maxiter : int Maximum number of iterations to perform. Default: see method-specific documentation. disp : bool Set to ``True`` to print convergence messages. Default: ``False``. presolve : bool Set to ``False`` to disable automatic presolve. Default: ``True``. All methods except the HiGHS solvers also accept: tol : float A tolerance which determines when a residual is "close enough" to zero to be considered exactly zero. autoscale : bool Set to ``True`` to automatically perform equilibration. Consider using this option if the numerical values in the constraints are separated by several orders of magnitude. Default: ``False``. rr : bool Set to ``False`` to disable automatic redundancy removal. Default: ``True``. rr_method : string Method used to identify and remove redundant rows from the equality constraint matrix after presolve. For problems with dense input, the available methods for redundancy removal are: "SVD": Repeatedly performs singular value decomposition on the matrix, detecting redundant rows based on nonzeros in the left singular vectors that correspond with zero singular values. May be fast when the matrix is nearly full rank. "pivot": Uses the algorithm presented in [5]_ to identify redundant rows. "ID": Uses a randomized interpolative decomposition. Identifies columns of the matrix transpose not used in a full-rank interpolative decomposition of the matrix. None: Uses "svd" if the matrix is nearly full rank, that is, the difference between the matrix rank and the number of rows is less than five. If not, uses "pivot". The behavior of this default is subject to change without prior notice. Default: None. For problems with sparse input, this option is ignored, and the pivot-based algorithm presented in [5]_ is used. For method-specific options, see :func:`show_options('linprog') <show_options>`. x0 : 1-D array, optional Guess values of the decision variables, which will be refined by the optimization algorithm. This argument is currently used only by the 'revised simplex' method, and can only be used if `x0` represents a basic feasible solution. integrality : 1-D array, optional Indicates the type of integrality constraint on each decision variable. ``0`` : Continuous variable; no integrality constraint. ``1`` : Integer variable; decision variable must be an integer within `bounds`. ``2`` : Semi-continuous variable; decision variable must be within `bounds` or take value ``0``. ``3`` : Semi-integer variable; decision variable must be an integer within `bounds` or take value ``0``. By default, all variables are continuous. This argument is currently used only by the ``'highs'`` method and ignored otherwise. Returns ------- res : OptimizeResult A :class:`scipy.optimize.OptimizeResult` consisting of the fields: x : 1-D array The values of the decision variables that minimizes the objective function while satisfying the constraints. fun : float The optimal value of the objective function ``c @ x``. slack : 1-D array The (nominally positive) values of the slack variables, ``b_ub - A_ub @ x``. con : 1-D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. success : bool ``True`` when the algorithm succeeds in finding an optimal solution. status : int An integer representing the exit status of the algorithm. ``0`` : Optimization terminated successfully. ``1`` : Iteration limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : Numerical difficulties encountered. nit : int The total number of iterations performed in all phases. message : str A string descriptor of the exit status of the algorithm. See Also -------- show_options : Additional options accepted by the solvers. Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. `'highs-ds'` and `'highs-ipm'` are interfaces to the HiGHS simplex and interior-point method solvers [13]_, respectively. `'highs'` (default) chooses between the two automatically. These are the fastest linear programming solvers in SciPy, especially for large, sparse problems; which of these two is faster is problem-dependent. The other solvers (`'interior-point'`, `'revised simplex'`, and `'simplex'`) are legacy methods and will be removed in SciPy 1.11.0. Method *highs-ds* is a wrapper of the C++ high performance dual revised simplex implementation (HSOL) [13]_, [14]_. Method *highs-ipm* is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint **m**\ ethod [13]_; it features a crossover routine, so it is as accurate as a simplex solver. Method *highs* chooses between the two automatically. For new code involving `linprog`, we recommend explicitly choosing one of these three method values. .. versionadded:: 1.6.0 Method *interior-point* uses the primal-dual path following algorithm as outlined in [4]_. This algorithm supports sparse constraint matrices and is typically faster than the simplex methods, especially for large, sparse problems. Note, however, that the solution returned may be slightly less accurate than those of the simplex methods and will not, in general, correspond with a vertex of the polytope defined by the constraints. .. versionadded:: 1.0.0 Method *revised simplex* uses the revised simplex method as described in [9]_, except that a factorization [11]_ of the basis matrix, rather than its inverse, is efficiently maintained and used to solve the linear systems at each iteration of the algorithm. .. versionadded:: 1.3.0 Method *simplex* uses a traditional, full-tableau implementation of Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex). This algorithm is included for backwards compatibility and educational purposes. .. versionadded:: 0.15.0 Before applying *interior-point*, *revised simplex*, or *simplex*, a presolve procedure based on [8]_ attempts to identify trivial infeasibilities, trivial unboundedness, and potential problem simplifications. Specifically, it checks for: - rows of zeros in ``A_eq`` or ``A_ub``, representing trivial constraints; - columns of zeros in ``A_eq`` `and` ``A_ub``, representing unconstrained variables; - column singletons in ``A_eq``, representing fixed variables; and - column singletons in ``A_ub``, representing simple bounds. If presolve reveals that the problem is unbounded (e.g. an unconstrained and unbounded variable has negative cost) or infeasible (e.g., a row of zeros in ``A_eq`` corresponds with a nonzero in ``b_eq``), the solver terminates with the appropriate status code. Note that presolve terminates as soon as any sign of unboundedness is detected; consequently, a problem may be reported as unbounded when in reality the problem is infeasible (but infeasibility has not been detected yet). Therefore, if it is important to know whether the problem is actually infeasible, solve the problem again with option ``presolve=False``. If neither infeasibility nor unboundedness are detected in a single pass of the presolve, bounds are tightened where possible and fixed variables are removed from the problem. Then, linearly dependent rows of the ``A_eq`` matrix are removed, (unless they represent an infeasibility) to avoid numerical difficulties in the primary solve routine. Note that rows that are nearly linearly dependent (within a prescribed tolerance) may also be removed, which can change the optimal solution in rare cases. If this is a concern, eliminate redundancy from your problem formulation and run with option ``rr=False`` or ``presolve=False``. Several potential improvements can be made here: additional presolve checks outlined in [8]_ should be implemented, the presolve routine should be run multiple times (until no further simplifications can be made), and more of the efficiency improvements from [5]_ should be implemented in the redundancy removal routines. After presolve, the problem is transformed to standard form by converting the (tightened) simple bounds to upper bound constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables as the difference between two non-negative variables. Optionally, the problem is automatically scaled via equilibration [12]_. The selected algorithm solves the standard form problem, and a postprocessing routine converts the result to a solution to the original problem. References ---------- .. [1] Dantzig, George B., Linear programming and extensions. Rand Corporation Research Study Princeton Univ. Press, Princeton, NJ, 1963 .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to Mathematical Programming", McGraw-Hill, Chapter 4. .. [3] Bland, Robert G. New finite pivoting rules for the simplex method. Mathematics of Operations Research (2), 1977: pp. 103-107. .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm." High performance optimization. Springer US, 2000. 197-232. .. [5] Andersen, Erling D. "Finding all linearly dependent rows in large-scale linear programming." Optimization Methods and Software 6.3 (1995): 219-227. .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear Programming based on Newton's Method." Unpublished Course Notes, March 2004. Available 2/25/2017 at https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf .. [7] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods." Unpublished Course Notes, August 26, 2005. Available 2/25/2017 at http://www.4er.org/CourseNotes/Book%20B/B-III.pdf .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear programming." Mathematical Programming 71.2 (1995): 221-245. .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear programming." Athena Scientific 1 (1997): 997. .. [10] Andersen, Erling D., et al. Implementation of interior point methods for large scale linear programming. HEC/Universite de Geneve, 1996. .. [11] Bartels, Richard H. "A stabilization of the simplex method." Journal in Numerische Mathematik 16.5 (1971): 414-434. .. [12] Tomlin, J. A. "On scaling linear programming problems." Mathematical Programming Study 4 (1975): 146-166. .. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J. "HiGHS - high performance software for linear optimization." Accessed 4/16/2020 at https://www.maths.ed.ac.uk/hall/HiGHS/#guide .. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised simplex method." Mathematical Programming Computation, 10 (1), 119-142, 2018. DOI: 10.1007/s12532-017-0130-5 Examples -------- Consider the following problem: .. math:: \min_{x_0, x_1} \ -x_0 + 4x_1 & \\ \mbox{such that} \ -3x_0 + x_1 & \leq 6,\\ -x_0 - 2x_1 & \geq -4,\\ x_1 & \geq -3. The problem is not presented in the form accepted by `linprog`. This is easily remedied by converting the "greater than" inequality constraint to a "less than" inequality constraint by multiplying both sides by a factor of :math:`-1`. Note also that the last constraint is really the simple bound :math:`-3 \leq x_1 \leq \infty`. Finally, since there are no bounds on :math:`x_0`, we must explicitly specify the bounds :math:`-\infty \leq x_0 \leq \infty`, as the default is for variables to be non-negative. After collecting coeffecients into arrays and tuples, the input for this problem is: >>> from scipy.optimize import linprog >>> c = [-1, 4] >>> A = [[-3, 1], [1, 2]] >>> b = [6, 4] >>> x0_bounds = (None, None) >>> x1_bounds = (-3, None) >>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds]) >>> res.fun -22.0 >>> res.x array([10., -3.]) >>> res.message 'Optimization terminated successfully. (HiGHS Status 7: Optimal)' """ meth = method.lower() methods = {"highs", "highs-ds", "highs-ipm", "simplex", "revised simplex", "interior-point"} if meth not in methods: raise ValueError(f"Unknown solver '{method}'") if x0 is not None and meth != "revised simplex": warning_message = "x0 is used only when method is 'revised simplex'. " warn(warning_message, OptimizeWarning) if integrality and not meth == "highs": integrality = None warning_message = ("Only `method='highs'` supports integer " "constraints. Ignoring `integrality`.") warn(warning_message, OptimizeWarning) lp = _LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality) lp, solver_options = _parse_linprog(lp, options, meth) tol = solver_options.get('tol', 1e-9) # Give unmodified problem to HiGHS if meth.startswith('highs'): if callback is not None: raise NotImplementedError("HiGHS solvers do not support the " "callback interface.") highs_solvers = {'highs-ipm': 'ipm', 'highs-ds': 'simplex', 'highs': None} sol = _linprog_highs(lp, solver=highs_solvers[meth], **solver_options) sol['status'], sol['message'] = ( _check_result(sol['x'], sol['fun'], sol['status'], sol['slack'], sol['con'], lp.bounds, tol, sol['message'])) sol['success'] = sol['status'] == 0 return OptimizeResult(sol) warn(f"`method='{meth}'` is deprecated and will be removed in SciPy " "1.11.0. Please use one of the HiGHS solvers (e.g. " "`method='highs'`) in new code.", DeprecationWarning, stacklevel=2) iteration = 0 complete = False # will become True if solved in presolve undo = [] # Keep the original arrays to calculate slack/residuals for original # problem. lp_o = deepcopy(lp) # Solve trivial problem, eliminate variables, tighten bounds, etc. rr_method = solver_options.pop('rr_method', None) # need to pop these; rr = solver_options.pop('rr', True) # they're not passed to methods c0 = 0 # we might get a constant term in the objective if solver_options.pop('presolve', True): (lp, c0, x, undo, complete, status, message) = _presolve(lp, rr, rr_method, tol) C, b_scale = 1, 1 # for trivial unscaling if autoscale is not used postsolve_args = (lp_o._replace(bounds=lp.bounds), undo, C, b_scale) if not complete: A, b, c, c0, x0 = _get_Abc(lp, c0) if solver_options.pop('autoscale', False): A, b, c, x0, C, b_scale = _autoscale(A, b, c, x0) postsolve_args = postsolve_args[:-2] + (C, b_scale) if meth == 'simplex': x, status, message, iteration = _linprog_simplex( c, c0=c0, A=A, b=b, callback=callback, postsolve_args=postsolve_args, **solver_options) elif meth == 'interior-point': x, status, message, iteration = _linprog_ip( c, c0=c0, A=A, b=b, callback=callback, postsolve_args=postsolve_args, **solver_options) elif meth == 'revised simplex': x, status, message, iteration = _linprog_rs( c, c0=c0, A=A, b=b, x0=x0, callback=callback, postsolve_args=postsolve_args, **solver_options) # Eliminate artificial variables, re-introduce presolved variables, etc. disp = solver_options.get('disp', False) x, fun, slack, con = _postsolve(x, postsolve_args, complete) status, message = _check_result(x, fun, status, slack, con, lp_o.bounds, tol, message) if disp: _display_summary(message, status, fun, iteration) sol = { 'x': x, 'fun': fun, 'slack': slack, 'con': con, 'status': status, 'message': message, 'nit': iteration, 'success': status == 0} return OptimizeResult(sol)
def linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='highs', callback=None, options=None, x0=None, integrality=None): r""" Linear programming: minimize a linear objective function subject to linear equality and inequality constraints. Linear programming solves problems of the following form: .. math:: \min_x \ & c^T x \\ \mbox{such that} \ & A_{ub} x \leq b_{ub},\\ & A_{eq} x = b_{eq},\\ & l \leq x \leq u , where :math:`x` is a vector of decision variables; :math:`c`, :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and :math:`A_{ub}` and :math:`A_{eq}` are matrices. Alternatively, that's: minimize:: c @ x such that:: A_ub @ x <= b_ub A_eq @ x == b_eq lb <= x <= ub Note that by default ``lb = 0`` and ``ub = None`` unless specified with ``bounds``. Parameters ---------- c : 1-D array The coefficients of the linear objective function to be minimized. A_ub : 2-D array, optional The inequality constraint matrix. Each row of ``A_ub`` specifies the coefficients of a linear inequality constraint on ``x``. b_ub : 1-D array, optional The inequality constraint vector. Each element represents an upper bound on the corresponding value of ``A_ub @ x``. A_eq : 2-D array, optional The equality constraint matrix. Each row of ``A_eq`` specifies the coefficients of a linear equality constraint on ``x``. b_eq : 1-D array, optional The equality constraint vector. Each element of ``A_eq @ x`` must equal the corresponding element of ``b_eq``. bounds : sequence, optional A sequence of ``(min, max)`` pairs for each element in ``x``, defining the minimum and maximum values of that decision variable. Use ``None`` to indicate that there is no bound. By default, bounds are ``(0, None)`` (all decision variables are non-negative). If a single tuple ``(min, max)`` is provided, then ``min`` and ``max`` will serve as bounds for all decision variables. method : str, optional The algorithm used to solve the standard form problem. :ref:`'highs' <optimize.linprog-highs>` (default), :ref:`'highs-ds' <optimize.linprog-highs-ds>`, :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`, :ref:`'interior-point' <optimize.linprog-interior-point>` (legacy), :ref:`'revised simplex' <optimize.linprog-revised_simplex>` (legacy), and :ref:`'simplex' <optimize.linprog-simplex>` (legacy) are supported. The legacy methods are deprecated and will be removed in SciPy 1.11.0. callback : callable, optional If a callback function is provided, it will be called at least once per iteration of the algorithm. The callback function must accept a single `scipy.optimize.OptimizeResult` consisting of the following fields: x : 1-D array The current solution vector. fun : float The current value of the objective function ``c @ x``. success : bool ``True`` when the algorithm has completed successfully. slack : 1-D array The (nominally positive) values of the slack, ``b_ub - A_ub @ x``. con : 1-D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. phase : int The phase of the algorithm being executed. status : int An integer representing the status of the algorithm. ``0`` : Optimization proceeding nominally. ``1`` : Iteration limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : Numerical difficulties encountered. nit : int The current iteration number. message : str A string descriptor of the algorithm status. Callback functions are not currently supported by the HiGHS methods. options : dict, optional A dictionary of solver options. All methods accept the following options: maxiter : int Maximum number of iterations to perform. Default: see method-specific documentation. disp : bool Set to ``True`` to print convergence messages. Default: ``False``. presolve : bool Set to ``False`` to disable automatic presolve. Default: ``True``. All methods except the HiGHS solvers also accept: tol : float A tolerance which determines when a residual is "close enough" to zero to be considered exactly zero. autoscale : bool Set to ``True`` to automatically perform equilibration. Consider using this option if the numerical values in the constraints are separated by several orders of magnitude. Default: ``False``. rr : bool Set to ``False`` to disable automatic redundancy removal. Default: ``True``. rr_method : string Method used to identify and remove redundant rows from the equality constraint matrix after presolve. For problems with dense input, the available methods for redundancy removal are: "SVD": Repeatedly performs singular value decomposition on the matrix, detecting redundant rows based on nonzeros in the left singular vectors that correspond with zero singular values. May be fast when the matrix is nearly full rank. "pivot": Uses the algorithm presented in [5]_ to identify redundant rows. "ID": Uses a randomized interpolative decomposition. Identifies columns of the matrix transpose not used in a full-rank interpolative decomposition of the matrix. None: Uses "svd" if the matrix is nearly full rank, that is, the difference between the matrix rank and the number of rows is less than five. If not, uses "pivot". The behavior of this default is subject to change without prior notice. Default: None. For problems with sparse input, this option is ignored, and the pivot-based algorithm presented in [5]_ is used. For method-specific options, see :func:`show_options('linprog') <show_options>`. x0 : 1-D array, optional Guess values of the decision variables, which will be refined by the optimization algorithm. This argument is currently used only by the 'revised simplex' method, and can only be used if `x0` represents a basic feasible solution. integrality : 1-D array, optional Indicates the type of integrality constraint on each decision variable. ``0`` : Continuous variable; no integrality constraint. ``1`` : Integer variable; decision variable must be an integer within `bounds`. ``2`` : Semi-continuous variable; decision variable must be within `bounds` or take value ``0``. ``3`` : Semi-integer variable; decision variable must be an integer within `bounds` or take value ``0``. By default, all variables are continuous. This argument is currently used only by the ``'highs'`` method and ignored otherwise. Returns ------- res : OptimizeResult A :class:`scipy.optimize.OptimizeResult` consisting of the fields: x : 1-D array The values of the decision variables that minimizes the objective function while satisfying the constraints. fun : float The optimal value of the objective function ``c @ x``. slack : 1-D array The (nominally positive) values of the slack variables, ``b_ub - A_ub @ x``. con : 1-D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. success : bool ``True`` when the algorithm succeeds in finding an optimal solution. status : int An integer representing the exit status of the algorithm. ``0`` : Optimization terminated successfully. ``1`` : Iteration limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : Numerical difficulties encountered. nit : int The total number of iterations performed in all phases. message : str A string descriptor of the exit status of the algorithm. See Also -------- show_options : Additional options accepted by the solvers. Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. `'highs-ds'` and `'highs-ipm'` are interfaces to the HiGHS simplex and interior-point method solvers [13]_, respectively. `'highs'` (default) chooses between the two automatically. These are the fastest linear programming solvers in SciPy, especially for large, sparse problems; which of these two is faster is problem-dependent. The other solvers (`'interior-point'`, `'revised simplex'`, and `'simplex'`) are legacy methods and will be removed in SciPy 1.11.0. Method *highs-ds* is a wrapper of the C++ high performance dual revised simplex implementation (HSOL) [13]_, [14]_. Method *highs-ipm* is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint **m**\ ethod [13]_; it features a crossover routine, so it is as accurate as a simplex solver. Method *highs* chooses between the two automatically. For new code involving `linprog`, we recommend explicitly choosing one of these three method values. .. versionadded:: 1.6.0 Method *interior-point* uses the primal-dual path following algorithm as outlined in [4]_. This algorithm supports sparse constraint matrices and is typically faster than the simplex methods, especially for large, sparse problems. Note, however, that the solution returned may be slightly less accurate than those of the simplex methods and will not, in general, correspond with a vertex of the polytope defined by the constraints. .. versionadded:: 1.0.0 Method *revised simplex* uses the revised simplex method as described in [9]_, except that a factorization [11]_ of the basis matrix, rather than its inverse, is efficiently maintained and used to solve the linear systems at each iteration of the algorithm. .. versionadded:: 1.3.0 Method *simplex* uses a traditional, full-tableau implementation of Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex). This algorithm is included for backwards compatibility and educational purposes. .. versionadded:: 0.15.0 Before applying *interior-point*, *revised simplex*, or *simplex*, a presolve procedure based on [8]_ attempts to identify trivial infeasibilities, trivial unboundedness, and potential problem simplifications. Specifically, it checks for: - rows of zeros in ``A_eq`` or ``A_ub``, representing trivial constraints; - columns of zeros in ``A_eq`` `and` ``A_ub``, representing unconstrained variables; - column singletons in ``A_eq``, representing fixed variables; and - column singletons in ``A_ub``, representing simple bounds. If presolve reveals that the problem is unbounded (e.g. an unconstrained and unbounded variable has negative cost) or infeasible (e.g., a row of zeros in ``A_eq`` corresponds with a nonzero in ``b_eq``), the solver terminates with the appropriate status code. Note that presolve terminates as soon as any sign of unboundedness is detected; consequently, a problem may be reported as unbounded when in reality the problem is infeasible (but infeasibility has not been detected yet). Therefore, if it is important to know whether the problem is actually infeasible, solve the problem again with option ``presolve=False``. If neither infeasibility nor unboundedness are detected in a single pass of the presolve, bounds are tightened where possible and fixed variables are removed from the problem. Then, linearly dependent rows of the ``A_eq`` matrix are removed, (unless they represent an infeasibility) to avoid numerical difficulties in the primary solve routine. Note that rows that are nearly linearly dependent (within a prescribed tolerance) may also be removed, which can change the optimal solution in rare cases. If this is a concern, eliminate redundancy from your problem formulation and run with option ``rr=False`` or ``presolve=False``. Several potential improvements can be made here: additional presolve checks outlined in [8]_ should be implemented, the presolve routine should be run multiple times (until no further simplifications can be made), and more of the efficiency improvements from [5]_ should be implemented in the redundancy removal routines. After presolve, the problem is transformed to standard form by converting the (tightened) simple bounds to upper bound constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables as the difference between two non-negative variables. Optionally, the problem is automatically scaled via equilibration [12]_. The selected algorithm solves the standard form problem, and a postprocessing routine converts the result to a solution to the original problem. References ---------- .. [1] Dantzig, George B., Linear programming and extensions. Rand Corporation Research Study Princeton Univ. Press, Princeton, NJ, 1963 .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to Mathematical Programming", McGraw-Hill, Chapter 4. .. [3] Bland, Robert G. New finite pivoting rules for the simplex method. Mathematics of Operations Research (2), 1977: pp. 103-107. .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm." High performance optimization. Springer US, 2000. 197-232. .. [5] Andersen, Erling D. "Finding all linearly dependent rows in large-scale linear programming." Optimization Methods and Software 6.3 (1995): 219-227. .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear Programming based on Newton's Method." Unpublished Course Notes, March 2004. Available 2/25/2017 at https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf .. [7] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods." Unpublished Course Notes, August 26, 2005. Available 2/25/2017 at http://www.4er.org/CourseNotes/Book%20B/B-III.pdf .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear programming." Mathematical Programming 71.2 (1995): 221-245. .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear programming." Athena Scientific 1 (1997): 997. .. [10] Andersen, Erling D., et al. Implementation of interior point methods for large scale linear programming. HEC/Universite de Geneve, 1996. .. [11] Bartels, Richard H. "A stabilization of the simplex method." Journal in Numerische Mathematik 16.5 (1971): 414-434. .. [12] Tomlin, J. A. "On scaling linear programming problems." Mathematical Programming Study 4 (1975): 146-166. .. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J. "HiGHS - high performance software for linear optimization." Accessed 4/16/2020 at https://www.maths.ed.ac.uk/hall/HiGHS/#guide .. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised simplex method." Mathematical Programming Computation, 10 (1), 119-142, 2018. DOI: 10.1007/s12532-017-0130-5 Examples -------- Consider the following problem: .. math:: \min_{x_0, x_1} \ -x_0 + 4x_1 & \\ \mbox{such that} \ -3x_0 + x_1 & \leq 6,\\ -x_0 - 2x_1 & \geq -4,\\ x_1 & \geq -3. The problem is not presented in the form accepted by `linprog`. This is easily remedied by converting the "greater than" inequality constraint to a "less than" inequality constraint by multiplying both sides by a factor of :math:`-1`. Note also that the last constraint is really the simple bound :math:`-3 \leq x_1 \leq \infty`. Finally, since there are no bounds on :math:`x_0`, we must explicitly specify the bounds :math:`-\infty \leq x_0 \leq \infty`, as the default is for variables to be non-negative. After collecting coeffecients into arrays and tuples, the input for this problem is: >>> from scipy.optimize import linprog >>> c = [-1, 4] >>> A = [[-3, 1], [1, 2]] >>> b = [6, 4] >>> x0_bounds = (None, None) >>> x1_bounds = (-3, None) >>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds]) >>> res.fun -22.0 >>> res.x array([10., -3.]) >>> res.message 'Optimization terminated successfully. (HiGHS Status 7: Optimal)' """ meth = method.lower() methods = {"highs", "highs-ds", "highs-ipm", "simplex", "revised simplex", "interior-point"} if meth not in methods: raise ValueError(f"Unknown solver '{method}'") if x0 is not None and meth != "revised simplex": warning_message = "x0 is used only when method is 'revised simplex'. " warn(warning_message, OptimizeWarning) if integrality and not meth == "highs": integrality = None warning_message = ("Only `method='highs'` supports integer " "constraints. Ignoring `integrality`.") warn(warning_message, OptimizeWarning) lp = _LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality) lp, solver_options = _parse_linprog(lp, options, meth) tol = solver_options.get('tol', 1e-9) # Give unmodified problem to HiGHS if meth.startswith('highs'): if callback is not None: raise NotImplementedError("HiGHS solvers do not support the " "callback interface.") highs_solvers = {'highs-ipm': 'ipm', 'highs-ds': 'simplex', 'highs': None} sol = _linprog_highs(lp, solver=highs_solvers[meth], **solver_options) sol['status'], sol['message'] = ( _check_result(sol['x'], sol['fun'], sol['status'], sol['slack'], sol['con'], lp.bounds, tol, sol['message'])) sol['success'] = sol['status'] == 0 return OptimizeResult(sol) warn(f"`method='{meth}'` is deprecated and will be removed in SciPy " "1.11.0. Please use one of the HiGHS solvers (e.g. " "`method='highs'`) in new code.", DeprecationWarning, stacklevel=2) iteration = 0 complete = False # will become True if solved in presolve undo = [] # Keep the original arrays to calculate slack/residuals for original # problem. lp_o = deepcopy(lp) # Solve trivial problem, eliminate variables, tighten bounds, etc. rr_method = solver_options.pop('rr_method', None) # need to pop these; rr = solver_options.pop('rr', True) # they're not passed to methods c0 = 0 # we might get a constant term in the objective if solver_options.pop('presolve', True): (lp, c0, x, undo, complete, status, message) = _presolve(lp, rr, rr_method, tol) C, b_scale = 1, 1 # for trivial unscaling if autoscale is not used postsolve_args = (lp_o._replace(bounds=lp.bounds), undo, C, b_scale) if not complete: A, b, c, c0, x0 = _get_Abc(lp, c0) if solver_options.pop('autoscale', False): A, b, c, x0, C, b_scale = _autoscale(A, b, c, x0) postsolve_args = postsolve_args[:-2] + (C, b_scale) if meth == 'simplex': x, status, message, iteration = _linprog_simplex( c, c0=c0, A=A, b=b, callback=callback, postsolve_args=postsolve_args, **solver_options) elif meth == 'interior-point': x, status, message, iteration = _linprog_ip( c, c0=c0, A=A, b=b, callback=callback, postsolve_args=postsolve_args, **solver_options) elif meth == 'revised simplex': x, status, message, iteration = _linprog_rs( c, c0=c0, A=A, b=b, x0=x0, callback=callback, postsolve_args=postsolve_args, **solver_options) # Eliminate artificial variables, re-introduce presolved variables, etc. disp = solver_options.get('disp', False) x, fun, slack, con = _postsolve(x, postsolve_args, complete) status, message = _check_result(x, fun, status, slack, con, lp_o.bounds, tol, message) if disp: _display_summary(message, status, fun, iteration) sol = { 'x': x, 'fun': fun, 'slack': slack, 'con': con, 'status': status, 'message': message, 'nit': iteration, 'success': status == 0} return OptimizeResult(sol)
1,801
def _encode_categories(data, categorical_indices, bin_categories, missing_values_bin_idx, binned): """Encode categories. Missing values and unknown values are mapped to the missing bin. Parameters ---------- data : ndarray of shape (n_samples, n_features) data to encoded. categorical_indices : list of int columns in ``data`` that are categorical. bin_categories : list of arrays categories learned during training that corresponds to ``categorical_indices``. missing_values_bin_idx : uint8 The index of the bin where missing values are mapped. binned : ndarray, shape (n_samples, n_features) Output array """ # TODO: This whole function can most likely be made faster with cython # and prange for i, f_idx in enumerate(categorical_indices): col_data = data[:, f_idx] col_bin_cats = bin_categories[i] binned[:, f_idx] = np.searchsorted(col_bin_cats, col_data) # missing values missing = np.isnan(col_data) if missing.any(): binned[missing, f_idx] = missing_values_bin_idx # unknown categories # TODO: calling unique alot of time, maybe this can be improved. unique_col_data = np.unique(col_data) diff = np.setdiff1d(unique_col_data, col_bin_cats, assume_unique=True) if diff.size: invalid_mask = ~np.in1d(col_data, col_bin_cats) binned[invalid_mask, f_idx] = missing_values_bin_idx
def _encode_categories(data, categorical_indices, bin_categories, missing_values_bin_idx, binned): """Encode categories. Missing values and unknown values are mapped to the missing bin. Parameters ---------- data : ndarray of shape (n_samples, n_features) data to encoded. categorical_indices : list of int columns in ``data`` that are categorical. bin_categories : list of arrays categories learned during training that corresponds to ``categorical_indices``. The arrays should be sorted and are of size n_categories. missing_values_bin_idx : uint8 The index of the bin where missing values are mapped. binned : ndarray, shape (n_samples, n_features) Output array """ # TODO: This whole function can most likely be made faster with cython # and prange for i, f_idx in enumerate(categorical_indices): col_data = data[:, f_idx] col_bin_cats = bin_categories[i] binned[:, f_idx] = np.searchsorted(col_bin_cats, col_data) # missing values missing = np.isnan(col_data) if missing.any(): binned[missing, f_idx] = missing_values_bin_idx # unknown categories # TODO: calling unique alot of time, maybe this can be improved. unique_col_data = np.unique(col_data) diff = np.setdiff1d(unique_col_data, col_bin_cats, assume_unique=True) if diff.size: invalid_mask = ~np.in1d(col_data, col_bin_cats) binned[invalid_mask, f_idx] = missing_values_bin_idx
45,662
def layout(): return html.Div(id='oncoprint-body', children=[ dash_bio.OncoPrint( id='oncoprint-chart', height=550, data=[] ), html.Div(id='oncoprint-control-tabs', children=[ dcc.Tabs( id='oncoprint-tabs', children=[ dcc.Tab( label='About', value='what-is', children=html.Div(className='oncoprint-tab', children=[ html.H4( "What is OncoPrint?" ), html.P( """ The OncoPrint component is used to view multiple genetic alteration events through an interactive and zoomable heatmap. It is a React/Dash port of the popular oncoPrint() function from the BioConductor R package. Under the hood, the rendering is done using Plotly.js built upon D3. Plotly's interactivity allows the user to bind clicks and hovers to genetic events, allowing the user to create complex bioinformatic apps or workflows that rely on crossfiltering. """ ), html.P( """ Read more about the component here: https://github.com/plotly/react-oncoprint """ ) ]) ), dcc.Tab( label='Data', value='data', children=html.Div(className='oncoprint-tab', children=[ html.Div([ html.Div( className='oncoprint-option-name', children='Select dataset' ), dcc.Dropdown( id='oncoprint-dropdown', className='oncoprint-select', options=[ { 'label': '{}.json'.format(ds), 'value': ds } for ds in DATASETS ], value='cBioPortalData', ), ]), html.Hr( className='oncoprint-separator' ), html.Div([ html.H4('Hover, click, or event data'), html.Div( id='oncoprint-events' ), ]) ]) ), dcc.Tab( label='View', value='view', children=html.Div(className='oncoprint-tab', children=[ html.H4('Layout'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Overview' ), daq.ToggleSwitch( id='oncoprint-show-overview', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Legend' ), daq.ToggleSwitch( id='oncoprint-show-legend', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Padding' ), dcc.Slider( className='oncoprint-slider', id='oncoprint-padding-input', value=0.05, min=0, max=0.1, step=0.01, marks={ '0': '0', '0.02': '0.02', '0.04': '0.04', '0.06': '0.06', '0.08': '0.08', '0.1': '0.1', }, ), html.Br(), html.Div( 'Adjust the padding (as percentage) ' 'between two tracks.' ), ], ), html.Hr(className='oncoprint-separator'), html.Div([ html.H4('Colors'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Track color' ), html.P( 'Change the default background ' 'color for the tracks.' ), daq.ColorPicker( id='oncoprint-tracks-color', value={'hex': '#AAAAAA'} ), ], ), html.Hr(className='oncoprint-separator'), html.H6("Mutation colors"), html.P( "Select a mutation type and a color " "to customize its look." ), html.Div(children=[ html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation type' ), dcc.Dropdown( id='oncoprint-colorscale-mutation-dropdown', options=[ {'label': mut_type, 'value': mut_type} for mut_type in COLORSCALE_MUTATIONS_OPT ], value=COLORSCALE_MUTATIONS_OPT[0], ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation color' ), daq.ColorPicker( id='oncoprint-mutation-color', value={'hex': COLORSCALE_COLORS_OPT[0]} ) ], ), ]) ]) ]) ) ] ) ]), dcc.Store(id='oncoprint-store'), ]),
def layout(): return html.Div(id='oncoprint-body', children=[ dash_bio.OncoPrint( id='oncoprint-chart', height=550, data=[] ), html.Div(id='oncoprint-control-tabs', children=[ dcc.Tabs( id='oncoprint-tabs', children=[ dcc.Tab( label='About', value='what-is', children=html.Div(className='oncoprint-tab', children=[ html.H4( "What is OncoPrint?" ), html.P( """ The OncoPrint component is used to view multiple genetic alteration events through an interactive and zoomable heatmap. It is a React/Dash port of the popular oncoPrint() function from the BioConductor R package. Under the hood, the rendering is done using Plotly.js built upon D3. Plotly's interactivity allows the user to bind clicks and hovers to genetic events, allowing the user to create complex bioinformatic apps or workflows that rely on crossfiltering. """ ), html.P( """ Read more about the component here: https://github.com/plotly/react-oncoprint """ ) ]) ), dcc.Tab( label='Data', value='data', children=html.Div(className='oncoprint-tab', children=[ html.Div([ html.Div( className='oncoprint-option-name', children='Select dataset' ), dcc.Dropdown( id='oncoprint-dropdown', className='oncoprint-select', options=[ { 'label': '{}.json'.format(ds), 'value': ds } for ds in DATASETS ], value='cBioPortalData', ), ]), html.Hr( className='oncoprint-separator' ), html.Div([ html.H4('Hover, click, or event data'), html.Div( id='oncoprint-events' ), ]) ]) ), dcc.Tab( label='View', value='view', children=html.Div(className='oncoprint-tab', children=[ html.H4('Layout'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Overview' ), daq.ToggleSwitch( id='oncoprint-show-overview', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Legend' ), daq.ToggleSwitch( id='oncoprint-show-legend', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Padding' ), dcc.Slider( className='oncoprint-slider', id='oncoprint-padding-input', value=0.05, min=0, max=0.1, step=0.01, marks={ '0': '0', '0.02': '0.02', '0.04': '0.04', '0.06': '0.06', '0.08': '0.08', '0.1': '0.1', }, ), html.Br(), html.Div( 'Adjust the padding (as percentage) ' 'between two tracks.' ), ], ), html.Hr(className='oncoprint-separator'), html.Div([ html.H4('Colors'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Track color' ), html.P( 'Change default background ' 'color for the tracks.' ), daq.ColorPicker( id='oncoprint-tracks-color', value={'hex': '#AAAAAA'} ), ], ), html.Hr(className='oncoprint-separator'), html.H6("Mutation colors"), html.P( "Select a mutation type and a color " "to customize its look." ), html.Div(children=[ html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation type' ), dcc.Dropdown( id='oncoprint-colorscale-mutation-dropdown', options=[ {'label': mut_type, 'value': mut_type} for mut_type in COLORSCALE_MUTATIONS_OPT ], value=COLORSCALE_MUTATIONS_OPT[0], ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation color' ), daq.ColorPicker( id='oncoprint-mutation-color', value={'hex': COLORSCALE_COLORS_OPT[0]} ) ], ), ]) ]) ]) ) ] ) ]), dcc.Store(id='oncoprint-store'), ]),
39,377
def merge( datasets, merge_points=True, main_has_priority=True, progress_bar=False ): """Merge several datasets. .. note:: The behavior of this filter varies from the :func:`PolyDataFilters.boolean_union` filter. This filter does not attempt to create a manifold mesh and will include internal surfaces when two meshes overlap. datasets : sequence of :class:`pyvista.Dataset` Sequence of datasets. Can be of any :class:`pyvista.Dataset` merge_points : bool, optional Merge equivalent points when ``True``. Defaults to ``True``. main_has_priority : bool, optional When this parameter is ``True`` and ``merge_points=True``, the arrays of the merging grids will be overwritten by the original main mesh. main_has_priority : bool, optional When this parameter is ``True`` and ``merge_points=True``, the arrays of the merging grids will be overwritten by the original main mesh. progress_bar : bool, optional Display a progress bar to indicate progress. Returns ------- pyvista.DataSet :class:`pyvista.PolyData` if all items in datasets are :class:`pyvista.PolyData`, otherwise returns a :class:`pyvista.UnstructuredGrid`. Examples -------- Merge two polydata datasets. >>> import pyvista >>> sphere = pyvista.Sphere(center=(0, 0, 1)) >>> cube = pyvista.Cube() >>> mesh = pyvista.merge([cube, sphere]) >>> mesh.plot() """ if not isinstance(datasets, collections.Sequence): raise TypeError(f"Expected a sequence, got {type(datasets)}") if len(datasets) < 1: raise ValueError("Expected at least one dataset.") first = datasets[0] if not isinstance(first, pyvista.DataSet): raise TypeError(f"Expected pyvista.DataSet, not {type(first)}") return datasets[0].merge( datasets[1:], merge_points=merge_points, main_has_priority=main_has_priority, progress_bar=progress_bar, )
def merge( datasets, merge_points=True, main_has_priority=True, progress_bar=False ): """Merge several datasets. .. note:: The behavior of this filter varies from the :func:`PolyDataFilters.boolean_union` filter. This filter does not attempt to create a manifold mesh and will include internal surfaces when two meshes overlap. datasets : sequence of :class:`pyvista.Dataset` Sequence of datasets. Can be of any :class:`pyvista.Dataset` merge_points : bool, optional Merge equivalent points when ``True``. Defaults to ``True``. main_has_priority : bool, optional When this parameter is ``True`` and ``merge_points=True``, the arrays of the merging grids will be overwritten by the original main mesh. main_has_priority : bool, optional When this parameter is ``True`` and ``merge_points=True``, the arrays of the merging grids will be overwritten by the original main mesh. progress_bar : bool, optional Display a progress bar to indicate progress. Returns ------- pyvista.DataSet :class:`pyvista.PolyData` if all items in datasets are :class:`pyvista.PolyData`, otherwise returns a :class:`pyvista.UnstructuredGrid`. Examples -------- Merge two polydata datasets. >>> import pyvista >>> sphere = pyvista.Sphere(center=(0, 0, 1)) >>> cube = pyvista.Cube() >>> mesh = pyvista.merge([cube, sphere]) >>> mesh.plot() """ if not isinstance(datasets, collections.Sequence): raise TypeError(f"Expected a sequence, got {type(datasets)}") if len(datasets) < 1: raise ValueError("Expected at least one dataset.") first = datasets[0] if not isinstance(first, pyvista.DataSet): raise TypeError(f"Expected pyvista.DataSet, not {type(first).__name__}") return datasets[0].merge( datasets[1:], merge_points=merge_points, main_has_priority=main_has_priority, progress_bar=progress_bar, )
34,465
def pytest_runtest_setup(item): supported_platforms = PLATFORMS.intersection( mark.name for mark in item.iter_markers() ) if supported_platforms and sys.platform not in supported_platforms: pytest.skip("cannot run on platform {}".format(sys.platform))
def pytest_runtest_setup(item): supported_platforms = PLATFORMS.intersection( mark.name for mark in item.iter_markers() ) if supported_platforms and sys.platform not in supported_platforms: pytest.skip(f"cannot run on platform {sys.platform}")
12,044
def main(): fname = iris.sample_data_path("air_temp.pp") temperature = iris.load_cube(fname) collapsed_temp = temperature.collapsed("longitude", MEAN) # Set y axes with -90 and 90 limits and spacing of 15 per tick. yticks = np.arange(-90, 105, 15) ylim = [-90, 90] fig = plt.figure(figsize=[12, 4]) ax1 = fig.add_subplot(111, projection=ccrs.PlateCarree()) plt.sca(ax1) im = iplt.contourf(temperature, cmap="RdYlBu_r") ax1.coastlines() ax1.gridlines() ax1.set_xticks([-180, -90, 0, 90, 180], crs=ccrs.PlateCarree()) ax1.set_yticks(yticks, crs=ccrs.PlateCarree()) ax1.set_title("Air Temperature") ax1.set_ylabel("latitude") ax1.set_xlabel("longitude") ax1.set_ylim(*ylim) divider = make_axes_locatable(ax1) # Gives the air temperature bar size, colour and a title. ax2 = divider.new_vertical( size="5%", pad=0.5, axes_class=plt.Axes, pack_start=True ) fig.add_axes(ax2) plt.sca(ax2) cbar = plt.colorbar(im, cax=ax2, orientation="horizontal") cbar.ax.set_xlabel("Air Temperature [k]") # Round each tick for the third ax to the nearest 20 (ready for use). data_max = collapsed_temp.data.max() x_max = data_max - data_max % -20 data_min = collapsed_temp.data.min() x_min = data_min - data_min % 20 # Plot "collapsed_temp" on the mean graph and set the ticks and titles on the axes. ax3 = divider.new_horizontal(size="30%", pad=0.4, axes_class=plt.Axes) fig.add_axes(ax3) plt.sca(ax3) iplt.plot(collapsed_temp, collapsed_temp.coord("latitude")) ax3.axvline(0, color="k", linewidth=0.5) ax3.set_ylim(*ylim) ax3.set_title("Zonal mean") ax3.set_ylabel("latitude") ax3.set_xlabel("Air Temperature [k]") ax3.yaxis.set_label_position("right") ax3.yaxis.tick_right() ax3.set_yticks(yticks) ax3.set_xlim(x_min, x_max) plt.show()
def main(): fname = iris.sample_data_path("air_temp.pp") temperature = iris.load_cube(fname) collapsed_temp = temperature.collapsed("longitude", MEAN) # Set y axes with -90 and 90 limits and spacing of 15 per tick. yticks = np.arange(-90, 105, 15) ylim = [-90, 90] fig = plt.figure(figsize=[12, 4]) ax1 = fig.add_subplot(111, projection=ccrs.PlateCarree()) plt.sca(ax1) im = iplt.contourf(temperature, cmap="RdYlBu_r") ax1.coastlines() ax1.gridlines() ax1.set_xticks([-180, -90, 0, 90, 180], crs=ccrs.PlateCarree()) ax1.set_yticks(yticks, crs=ccrs.PlateCarree()) ax1.set_title("Air Temperature") ax1.set_ylabel("latitude") ax1.set_xlabel("longitude") ax1.set_ylim(*ylim) divider = make_axes_locatable(ax1) # Gives the air temperature bar size, colour and a title. ax2 = divider.new_vertical( size="5%", pad=0.5, axes_class=plt.Axes, pack_start=True ) fig.add_axes(ax2) plt.sca(ax2) cbar = plt.colorbar(im, cax=ax2, orientation="horizontal") cbar.ax.set_xlabel("Air Temperature [K]") # Round each tick for the third ax to the nearest 20 (ready for use). data_max = collapsed_temp.data.max() x_max = data_max - data_max % -20 data_min = collapsed_temp.data.min() x_min = data_min - data_min % 20 # Plot "collapsed_temp" on the mean graph and set the ticks and titles on the axes. ax3 = divider.new_horizontal(size="30%", pad=0.4, axes_class=plt.Axes) fig.add_axes(ax3) plt.sca(ax3) iplt.plot(collapsed_temp, collapsed_temp.coord("latitude")) ax3.axvline(0, color="k", linewidth=0.5) ax3.set_ylim(*ylim) ax3.set_title("Zonal mean") ax3.set_ylabel("latitude") ax3.set_xlabel("Air Temperature [k]") ax3.yaxis.set_label_position("right") ax3.yaxis.tick_right() ax3.set_yticks(yticks) ax3.set_xlim(x_min, x_max) plt.show()
8,592
def dumps(ob, trim=False, **kw): """ Dump a WKT representation of a geometry to a string. Parameters ---------- ob : A geometry object of any type to be dumped to WKT. trim : Remove excess decimals from the WKT. rounding_precision (GEOS 3.3+): Round output to the specified number of digits output_dimension (GEOS 3.3+): Force removal of dimensions above the one specified. Defaults to 3. Returns ------- input geometry as WKT string """ return geos.WKTWriter(geos.lgeos, trim=trim, **kw).write(ob)
def dumps(ob, trim=False, **kw): """ Dump a WKT representation of a geometry to a string. Parameters ---------- ob : A geometry object of any type to be dumped to WKT. trim : bool, default False Remove excess decimals from the WKT. rounding_precision (GEOS 3.3+): Round output to the specified number of digits output_dimension (GEOS 3.3+): Force removal of dimensions above the one specified. Defaults to 3. Returns ------- input geometry as WKT string """ return geos.WKTWriter(geos.lgeos, trim=trim, **kw).write(ob)
2,701
def test_nan_manhattan_distances_equal_to_manhattan_distances(): rng = np.random.RandomState(714) X = rng.randn(3, 4) Y = rng.randn(4, 4) normal_distance = manhattan_distances(X, Y=Y) nan_distance = nan_manhattan_distances(X, Y=Y) assert_allclose(normal_distance, nan_distance)
def test_nan_manhattan_distances_equal_to_manhattan_distances(): rng = np.random.RandomState(714) X = rng.randn(3, 4) Y = rng.randn(4, 4) normal_distance = manhattan_distances(X, Y=Y) nan_distance = nan_manhattan_distances(X, Y=Y) assert_array_equal(normal_distance, nan_distance)
27,393
def auxreader(auxdata: str, format: Optional = None, **kwargs) -> AuxReader: """ Return an auxiliary reader instance for *auxdata*. An appropriate reader class is first obtained using :func:`get_auxreader_for`, and an auxiliary reader instance for *auxdata* then created and returned. Parameters ---------- auxdata Auxiliary data (e.g. filename of file containing auxiliary data). format (Optional). The format of *auxdata*, if known. **kwargs Additional AuxReader options. Returns ------- :class:`~MDAnalysis.auxiliary.base.AuxReader` instance Appropriate auxiliary reader instance for *auxdata*. """ reader = get_auxreader_for(auxdata, format=format) return reader(auxdata, **kwargs)
def auxreader(auxdata: str, format: Optional[str] = None, **kwargs) -> AuxReader: """ Return an auxiliary reader instance for *auxdata*. An appropriate reader class is first obtained using :func:`get_auxreader_for`, and an auxiliary reader instance for *auxdata* then created and returned. Parameters ---------- auxdata Auxiliary data (e.g. filename of file containing auxiliary data). format (Optional). The format of *auxdata*, if known. **kwargs Additional AuxReader options. Returns ------- :class:`~MDAnalysis.auxiliary.base.AuxReader` instance Appropriate auxiliary reader instance for *auxdata*. """ reader = get_auxreader_for(auxdata, format=format) return reader(auxdata, **kwargs)
57,740
def upload_index_to_storage(index_folder_path: str, extract_destination_path: str, index_blob: Any, build_number: str, private_packs: list, current_commit_hash: str, index_generation: int, is_private: bool = False, force_upload: bool = False, previous_commit_hash: str = None): """ Upload updated index zip to cloud storage. :param index_folder_path: index folder full path. :param extract_destination_path: extract folder full path. :param index_blob: google cloud storage object that represents index.zip blob. :param build_number: circleCI build number, used as an index revision. :param private_packs: List of private packs and their price. :param current_commit_hash: last commit hash of head. :param index_generation: downloaded index generation. :param is_private: Indicates if upload is private. :param force_upload: Indicates if force upload or not. :param previous_commit_hash: The previous commit hash to diff with. :returns None. """ if force_upload: # If we force upload we don't want to update the commit in the index.json file, # this is to be able to identify all changed packs in the next upload commit = previous_commit_hash else: # Otherwise, update the index with the current commit hash (the commit of the upload) commit = current_commit_hash with open(os.path.join(index_folder_path, f"{GCPConfig.INDEX_NAME}.json"), "w+") as index_file: index = { 'revision': build_number, 'modified': datetime.utcnow().strftime(Metadata.DATE_FORMAT), 'packs': private_packs, 'commit': commit } json.dump(index, index_file, indent=4) index_zip_name = os.path.basename(index_folder_path) index_zip_path = shutil.make_archive(base_name=index_folder_path, format="zip", root_dir=extract_destination_path, base_dir=index_zip_name) try: index_blob.reload() current_index_generation = index_blob.generation index_blob.cache_control = "no-cache,max-age=0" # disabling caching for index blob if is_private or current_index_generation == index_generation: index_blob.upload_from_filename(index_zip_path) logging.success(f"Finished uploading {GCPConfig.INDEX_NAME}.zip to storage.") else: logging.critical(f"Failed in uploading {GCPConfig.INDEX_NAME}, mismatch in index file generation") logging.critical(f"Downloaded index generation: {index_generation}") logging.critical(f"Current index generation: {current_index_generation}") sys.exit(0) except Exception: logging.exception(f"Failed in uploading {GCPConfig.INDEX_NAME}.") sys.exit(1) finally: shutil.rmtree(index_folder_path)
def upload_index_to_storage(index_folder_path: str, extract_destination_path: str, index_blob: Any, build_number: str, private_packs: list, current_commit_hash: str, index_generation: int, is_private: bool = False, force_upload: bool = False, previous_commit_hash: str = None): """ Upload updated index zip to cloud storage. :param index_folder_path: index folder full path. :param extract_destination_path: extract folder full path. :param index_blob: google cloud storage object that represents index.zip blob. :param build_number: circleCI build number, used as an index revision. :param private_packs: List of private packs and their price. :param current_commit_hash: last commit hash of head. :param index_generation: downloaded index generation. :param is_private: Indicates if upload is private. :param force_upload: Indicates if force upload or not. :param previous_commit_hash: The previous commit hash to diff with. :returns None. """ if force_upload: # If we force upload we don't want to overwrite the last commit hash in the index.json file, # such that in the next upload run we could still be able to compare the current commit to the last upload commit # hash and identify all changed packs. commit = previous_commit_hash else: # Otherwise, update the index with the current commit hash (the commit of the upload) commit = current_commit_hash with open(os.path.join(index_folder_path, f"{GCPConfig.INDEX_NAME}.json"), "w+") as index_file: index = { 'revision': build_number, 'modified': datetime.utcnow().strftime(Metadata.DATE_FORMAT), 'packs': private_packs, 'commit': commit } json.dump(index, index_file, indent=4) index_zip_name = os.path.basename(index_folder_path) index_zip_path = shutil.make_archive(base_name=index_folder_path, format="zip", root_dir=extract_destination_path, base_dir=index_zip_name) try: index_blob.reload() current_index_generation = index_blob.generation index_blob.cache_control = "no-cache,max-age=0" # disabling caching for index blob if is_private or current_index_generation == index_generation: index_blob.upload_from_filename(index_zip_path) logging.success(f"Finished uploading {GCPConfig.INDEX_NAME}.zip to storage.") else: logging.critical(f"Failed in uploading {GCPConfig.INDEX_NAME}, mismatch in index file generation") logging.critical(f"Downloaded index generation: {index_generation}") logging.critical(f"Current index generation: {current_index_generation}") sys.exit(0) except Exception: logging.exception(f"Failed in uploading {GCPConfig.INDEX_NAME}.") sys.exit(1) finally: shutil.rmtree(index_folder_path)
37,045
def plot_histogram(data, figsize=(7, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None): """Plot a histogram of data. Args: data (list or dict): This is either a list of dictionaries or a single dict containing the values to represent (ex {'001': 130}) figsize (tuple): Figure size in inches. color (list or str): String or list of strings for histogram bar colors. number_to_keep (int): The number of terms to plot and rest is made into a single bar called 'rest'. sort (string): Could be 'asc', 'desc', or 'hamming'. target_string (str): Target string if 'sort' is a distance measure. legend(list): A list of strings to use for labels of the data. The number of entries must match the length of data (if data is a list or 1 if it's a dict) bar_labels (bool): Label each bar in histogram with probability value. title (str): A string to use for the plot title Returns: matplotlib.Figure: A figure for the rendered histogram. Raises: ImportError: Matplotlib not available. VisualizationError: When legend is provided and the length doesn't match the input data. """ if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed.') if sort not in VALID_SORTS: raise VisualizationError("Value of sort option, %s, isn't a " "valid choice. Must be 'asc', " "'desc', or 'hamming'") elif sort in DIST_MEAS.keys() and target_string is None: err_msg = 'Must define target_state when using distance measure.' raise VisualizationError(err_msg) if isinstance(data, dict): data = [data] if legend and len(legend) != len(data): raise VisualizationError("Length of legendL (%s) doesn't match " "number of input executions: %s" % (len(legend), len(data))) fig, ax = plt.subplots(figsize=figsize) labels = list(sorted( functools.reduce(lambda x, y: x.union(y.keys()), data, set()))) if number_to_keep is not None: labels.append('rest') if sort in DIST_MEAS.keys(): dist = [] for item in labels: dist.append(DIST_MEAS[sort](item, target_string)) labels = [list(x) for x in zip(*sorted(zip(dist, labels), key=lambda pair: pair[0]))][1] labels_dict = OrderedDict() # Set bar colors if color is None: color = ['#648fff', '#dc267f', '#785ef0', '#ffb000', '#fe6100'] elif isinstance(color, str): color = [color] all_pvalues = [] length = len(data) for item, execution in enumerate(data): if number_to_keep is not None: data_temp = dict(Counter(execution).most_common(number_to_keep)) data_temp["rest"] = sum(execution.values()) - sum(data_temp.values()) execution = data_temp values = [] for key in labels: if key not in execution: if number_to_keep is None: labels_dict[key] = 1 values.append(0) else: values.append(-1) else: labels_dict[key] = 1 values.append(execution[key]) values = np.array(values, dtype=float) where_idx = np.where(values >= 0)[0] pvalues = values[where_idx] / sum(values[where_idx]) for value in pvalues: all_pvalues.append(value) numelem = len(values[where_idx]) ind = np.arange(numelem) # the x locations for the groups width = 1/(len(data)+1) # the width of the bars rects = [] for idx, val in enumerate(pvalues): label = None if not idx and legend: label = legend[item] if val >= 0: rects.append(ax.bar(idx+item*width, val, width, label=label, color=color[item % len(color)], zorder=2)) bar_center = (width / 2) * (length - 1) ax.set_xticks(ind + bar_center) ax.set_xticklabels(labels_dict.keys(), fontsize=14, rotation=70) # attach some text labels if bar_labels: for rect in rects: for rec in rect: height = rec.get_height() if height >= 1e-3: ax.text(rec.get_x() + rec.get_width() / 2., 1.05 * height, '%.3f' % float(height), ha='center', va='bottom', zorder=3) else: ax.text(rec.get_x() + rec.get_width() / 2., 1.05 * height, '0', ha='center', va='bottom', zorder=3) # add some text for labels, title, and axes ticks ax.set_ylabel('Probabilities', fontsize=14) ax.set_ylim([0., min([1.2, max([1.2 * val for val in all_pvalues])])]) if sort == 'desc': ax.invert_xaxis() ax.yaxis.set_major_locator(MaxNLocator(5)) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ax.set_facecolor('#eeeeee') plt.grid(which='major', axis='y', zorder=0, linestyle='--') if title: plt.title(title) if legend: ax.legend(loc='upper left', bbox_to_anchor=(1.01, 1.0), ncol=1, borderaxespad=0, frameon=True, fontsize=12) if fig: plt.close(fig) return fig
def plot_histogram(data, figsize=(7, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None): """Plot a histogram of data. Args: data (list or dict): This is either a list of dictionaries or a single dict containing the values to represent (ex {'001': 130}) figsize (tuple): Figure size in inches. color (list or str): String or list of strings for histogram bar colors. number_to_keep (int): The number of terms to plot and rest is made into a single bar called 'rest'. sort (string): Could be 'asc', 'desc', or 'hamming'. target_string (str): Target string if 'sort' is a distance measure. legend(list): A list of strings to use for labels of the data. The number of entries must match the length of data (if data is a list or 1 if it's a dict) bar_labels (bool): Label each bar in histogram with probability value. title (str): A string to use for the plot title Returns: matplotlib.Figure: A figure for the rendered histogram. Raises: ImportError: Matplotlib not available. VisualizationError: When legend is provided and the length doesn't match the input data. """ if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed.') if sort not in VALID_SORTS: raise VisualizationError("Value of sort option, %s, isn't a " "valid choice. Must be 'asc', " "'desc', or 'hamming'") elif sort in DIST_MEAS.keys() and target_string is None: err_msg = 'Must define target_string when using distance measure.' raise VisualizationError(err_msg) if isinstance(data, dict): data = [data] if legend and len(legend) != len(data): raise VisualizationError("Length of legendL (%s) doesn't match " "number of input executions: %s" % (len(legend), len(data))) fig, ax = plt.subplots(figsize=figsize) labels = list(sorted( functools.reduce(lambda x, y: x.union(y.keys()), data, set()))) if number_to_keep is not None: labels.append('rest') if sort in DIST_MEAS.keys(): dist = [] for item in labels: dist.append(DIST_MEAS[sort](item, target_string)) labels = [list(x) for x in zip(*sorted(zip(dist, labels), key=lambda pair: pair[0]))][1] labels_dict = OrderedDict() # Set bar colors if color is None: color = ['#648fff', '#dc267f', '#785ef0', '#ffb000', '#fe6100'] elif isinstance(color, str): color = [color] all_pvalues = [] length = len(data) for item, execution in enumerate(data): if number_to_keep is not None: data_temp = dict(Counter(execution).most_common(number_to_keep)) data_temp["rest"] = sum(execution.values()) - sum(data_temp.values()) execution = data_temp values = [] for key in labels: if key not in execution: if number_to_keep is None: labels_dict[key] = 1 values.append(0) else: values.append(-1) else: labels_dict[key] = 1 values.append(execution[key]) values = np.array(values, dtype=float) where_idx = np.where(values >= 0)[0] pvalues = values[where_idx] / sum(values[where_idx]) for value in pvalues: all_pvalues.append(value) numelem = len(values[where_idx]) ind = np.arange(numelem) # the x locations for the groups width = 1/(len(data)+1) # the width of the bars rects = [] for idx, val in enumerate(pvalues): label = None if not idx and legend: label = legend[item] if val >= 0: rects.append(ax.bar(idx+item*width, val, width, label=label, color=color[item % len(color)], zorder=2)) bar_center = (width / 2) * (length - 1) ax.set_xticks(ind + bar_center) ax.set_xticklabels(labels_dict.keys(), fontsize=14, rotation=70) # attach some text labels if bar_labels: for rect in rects: for rec in rect: height = rec.get_height() if height >= 1e-3: ax.text(rec.get_x() + rec.get_width() / 2., 1.05 * height, '%.3f' % float(height), ha='center', va='bottom', zorder=3) else: ax.text(rec.get_x() + rec.get_width() / 2., 1.05 * height, '0', ha='center', va='bottom', zorder=3) # add some text for labels, title, and axes ticks ax.set_ylabel('Probabilities', fontsize=14) ax.set_ylim([0., min([1.2, max([1.2 * val for val in all_pvalues])])]) if sort == 'desc': ax.invert_xaxis() ax.yaxis.set_major_locator(MaxNLocator(5)) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ax.set_facecolor('#eeeeee') plt.grid(which='major', axis='y', zorder=0, linestyle='--') if title: plt.title(title) if legend: ax.legend(loc='upper left', bbox_to_anchor=(1.01, 1.0), ncol=1, borderaxespad=0, frameon=True, fontsize=12) if fig: plt.close(fig) return fig
24,983
def get_pylint_home() -> str: """Return the pylint home.""" if "PYLINTHOME" in os.environ: return os.environ["PYLINTHOME"] pylint_home = DEFAULT_PYLINT_HOME # The spam prevention is due to pylint being used in parallel by # pre-commit, and the message being spammy in this context # Also if you work with old version of pylint that recreate the # old pylint home, you can get the old message for a long time. prefix_spam_prevention = "pylint_warned_about_old_cache_already" spam_prevention_file = os.path.join( pylint_home, datetime.now().strftime(prefix_spam_prevention + "_%Y-%m-%d.temp"), ) old_home = os.path.join(USER_HOME, OLD_DEFAULT_PYLINT_HOME) if os.path.exists(old_home) and not os.path.exists(spam_prevention_file): print( f"PYLINTHOME is now '{pylint_home}' but obsolescent '{old_home}' is found; " "you can safely remove the latter", file=sys.stderr, ) # Remove old spam prevention file if os.path.exists(pylint_home): for filename in os.listdir(pylint_home): if prefix_spam_prevention in filename: try: os.remove(os.path.join(pylint_home, filename)) except OSError: pass # Create spam prevention file for today try: Path(pylint_home).mkdir(parents=True, exist_ok=True) with open(spam_prevention_file, "w", encoding="utf8") as f: f.write("") except Exception as exc: # pylint: disable=broad-except print( "Can't write the file that was supposed to " f"prevent 'pylint.d' deprecation spam in {pylint_home} because of {exc}." ) return pylint_home
def _get_pylint_home() -> str: """Return the pylint home.""" if "PYLINTHOME" in os.environ: return os.environ["PYLINTHOME"] pylint_home = DEFAULT_PYLINT_HOME # The spam prevention is due to pylint being used in parallel by # pre-commit, and the message being spammy in this context # Also if you work with old version of pylint that recreate the # old pylint home, you can get the old message for a long time. prefix_spam_prevention = "pylint_warned_about_old_cache_already" spam_prevention_file = os.path.join( pylint_home, datetime.now().strftime(prefix_spam_prevention + "_%Y-%m-%d.temp"), ) old_home = os.path.join(USER_HOME, OLD_DEFAULT_PYLINT_HOME) if os.path.exists(old_home) and not os.path.exists(spam_prevention_file): print( f"PYLINTHOME is now '{pylint_home}' but obsolescent '{old_home}' is found; " "you can safely remove the latter", file=sys.stderr, ) # Remove old spam prevention file if os.path.exists(pylint_home): for filename in os.listdir(pylint_home): if prefix_spam_prevention in filename: try: os.remove(os.path.join(pylint_home, filename)) except OSError: pass # Create spam prevention file for today try: Path(pylint_home).mkdir(parents=True, exist_ok=True) with open(spam_prevention_file, "w", encoding="utf8") as f: f.write("") except Exception as exc: # pylint: disable=broad-except print( "Can't write the file that was supposed to " f"prevent 'pylint.d' deprecation spam in {pylint_home} because of {exc}." ) return pylint_home
34,033
def merge_runtime_envs(parent_env: Dict, child_env: Dict) -> Dict: """Creates a runtime_env dict by merging a parent and child environment. This method is not destructive. It leaves the parent and child envs the same. The merge is a shallow update where the child environment inherits the parent environment's settings. If the child environment specifies any env settings, those settings take precdence over the parent. - Note: env_vars are a special case. The child's env_vars are combined with the parent. Args: parent_env: The environment to inherit settings from. child_env: The environment with override settings. Returns: A dictionary containing the merged runtime_env settings. Raises: TypeError: If a dictionary is not passed in for parent_env or child_env. """ if not isinstance(parent_env, Dict): raise TypeError( f'Got unexpected type "{type(parent_env)}" for parent_env. ' "parent_env must be a dictionary." ) if not isinstance(child_env, Dict): raise TypeError( f'Got unexpected type "{type(child_env)}" for child_env. ' "child_env must be a dictionary." ) defaults = copy.deepcopy(parent_env) overrides = copy.deepcopy(child_env) default_env_vars = defaults.get("env_vars", {}) override_env_vars = overrides.get("env_vars", {}) defaults.update(overrides) default_env_vars.update(override_env_vars) defaults["env_vars"] = default_env_vars return defaults
def merge_runtime_envs(parent_env: Dict, child_env: Dict) -> Dict: """Creates a runtime_env dict by merging a parent and child environment. This method is not destructive. It leaves the parent and child envs the same. The merge is a shallow update where the child environment inherits the parent environment's settings. If the child environment specifies any env settings, those settings take precdence over the parent. - Note: env_vars are a special case. The child's env_vars are combined with the parent. Args: parent_env: The environment to inherit settings from. child_env: The environment with override settings. Returns: A new dictionary containing the merged runtime_env settings. Raises: TypeError: If a dictionary is not passed in for parent_env or child_env. """ if not isinstance(parent_env, Dict): raise TypeError( f'Got unexpected type "{type(parent_env)}" for parent_env. ' "parent_env must be a dictionary." ) if not isinstance(child_env, Dict): raise TypeError( f'Got unexpected type "{type(child_env)}" for child_env. ' "child_env must be a dictionary." ) defaults = copy.deepcopy(parent_env) overrides = copy.deepcopy(child_env) default_env_vars = defaults.get("env_vars", {}) override_env_vars = overrides.get("env_vars", {}) defaults.update(overrides) default_env_vars.update(override_env_vars) defaults["env_vars"] = default_env_vars return defaults
56,758
def sample_smc( draws=2000, kernel=IMH, *, start=None, model=None, random_seed=None, chains=None, cores=None, compute_convergence_checks=True, return_inferencedata=True, idata_kwargs=None, progressbar=True, **kernel_kwargs, ): r""" Sequential Monte Carlo based sampling. Parameters ---------- draws : int, default 2000 The number of samples to draw from the posterior (i.e. last stage). And also the number of independent chains. Defaults to 2000. kernel : class, default `pymc.smc.smc.IMH` SMC_Kernel used. Defaults to :class:`pymc.smc.smc.IMH` (Independent Metropolis Hastings) start : dict, or array of dict, default None Starting point in parameter space. It should be a list of dict with length `chains`. When None (default) the starting point is sampled from the prior distribution. model : Model (optional if in ``with`` context). random_seed : int, array_like of int, RandomState or Generator, optional Random seed(s) used by the sampling steps. If a list, tuple or array of ints is passed, each entry will be used to seed each chain. A ValueError will be raised if the length does not match the number of chains. chains : int, default None The number of chains to sample. Running independent chains is important for some convergence statistics. If ``None`` (default), then set to either ``cores`` or 2, whichever is larger. cores : int, default None The number of chains to run in parallel. If ``None``, set to the number of CPUs in the system. compute_convergence_checks : bool, default True Whether to compute sampler statistics like ``R hat`` and ``effective_n``. Defaults to ``True``. return_inferencedata : bool, default True Whether to return the trace as an InferenceData (True) object or a MultiTrace (False). Defaults to ``True``. idata_kwargs : dict, optional Keyword arguments for :func:`pymc.to_inference_data`. progressbar : bool, optional, default True Whether or not to display a progress bar in the command line. **kernel_kwargs : dict, optional Keyword arguments passed to the SMC_kernel. The default IMH kernel takes the following keywords: threshold : float, default 0.5 Determines the change of beta from stage to stage, i.e. indirectly the number of stages, the higher the value of `threshold` the higher the number of stages. Defaults to 0.5. It should be between 0 and 1. correlation_threshold : float, default 0.01 The lower the value the higher the number of MCMC steps computed automatically. Defaults to 0.01. It should be between 0 and 1. Keyword arguments for other kernels should be checked in the respective docstrings. Notes ----- SMC works by moving through successive stages. At each stage the inverse temperature :math:`\beta` is increased a little bit (starting from 0 up to 1). When :math:`\beta` = 0 we have the prior distribution and when :math:`\beta` = 1 we have the posterior distribution. So in more general terms, we are always computing samples from a tempered posterior that we can write as: .. math:: p(\theta \mid y)_{\beta} = p(y \mid \theta)^{\beta} p(\theta) A summary of the algorithm is: 1. Initialize :math:`\beta` at zero and stage at zero. 2. Generate N samples :math:`S_{\beta}` from the prior (because when :math `\beta = 0` the tempered posterior is the prior). 3. Increase :math:`\beta` in order to make the effective sample size equal some predefined value (we use :math:`Nt`, where :math:`t` is 0.5 by default). 4. Compute a set of N importance weights W. The weights are computed as the ratio of the likelihoods of a sample at stage i+1 and stage i. 5. Obtain :math:`S_{w}` by re-sampling according to W. 6. Use W to compute the mean and covariance for the proposal distribution, a MvNormal. 7. Run N independent MCMC chains, starting each one from a different sample in :math:`S_{w}`. For the IMH kernel, the mean of the proposal distribution is the mean of the previous posterior stage and not the current point in parameter space. 8. The N chains are run until the autocorrelation with the samples from the previous stage stops decreasing given a certain threshold. 9. Repeat from step 3 until :math:`\beta \ge 1`. 10. The final result is a collection of N samples from the posterior. References ---------- .. [Minson2013] Minson, S. E., Simons, M., and Beck, J. L. (2013). "Bayesian inversion for finite fault earthquake source models I- Theory and algorithm." Geophysical Journal International, 2013, 194(3), pp.1701-1726. `link <https://gji.oxfordjournals.org/content/194/3/1701.full>`__ .. [Ching2007] Ching, J., and Chen, Y. (2007). "Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging." J. Eng. Mech., 2007, 133(7), pp. 816-832. doi:10.1061/(ASCE)0733-9399(2007)133:7(816). `link <http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399 %282007%29133:7%28816%29>`__ """ if isinstance(kernel, str) and kernel.lower() in ("abc", "metropolis"): warnings.warn( f'The kernel string argument "{kernel}" in sample_smc has been deprecated. ' f"It is no longer needed to distinguish between `abc` and `metropolis`", FutureWarning, stacklevel=2, ) kernel = IMH if kernel_kwargs.pop("save_sim_data", None) is not None: warnings.warn( "save_sim_data has been deprecated. Use pm.sample_posterior_predictive " "to obtain the same type of samples.", FutureWarning, stacklevel=2, ) if kernel_kwargs.pop("save_log_pseudolikelihood", None) is not None: warnings.warn( "save_log_pseudolikelihood has been deprecated. This information is " "now saved as log_likelihood in models with Simulator distributions.", FutureWarning, stacklevel=2, ) parallel = kernel_kwargs.pop("parallel", None) if parallel is not None: warnings.warn( "The argument parallel is deprecated, use the argument cores instead.", FutureWarning, stacklevel=2, ) if parallel is False: cores = 1 if cores is None: cores = _cpu_count() if chains is None: chains = max(2, cores) else: cores = min(chains, cores) if random_seed == -1: raise FutureWarning( f"random_seed should be a non-negative integer or None, got: {random_seed}" "This will raise a ValueError in the Future" ) random_seed = None if isinstance(random_seed, int) or random_seed is None: rng = np.random.default_rng(seed=random_seed) random_seed = list(rng.integers(2**30, size=chains)) elif isinstance(random_seed, Iterable): if len(random_seed) != chains: raise ValueError(f"Length of seeds ({len(seeds)}) must match number of chains {chains}") else: raise TypeError("Invalid value for `random_seed`. Must be tuple, list, int or None") model = modelcontext(model) _log = logging.getLogger("pymc") _log.info("Initializing SMC sampler...") _log.info( f"Sampling {chains} chain{'s' if chains > 1 else ''} " f"in {cores} job{'s' if cores > 1 else ''}" ) params = ( draws, kernel, start, model, ) t1 = time.time() if cores > 1: results = run_chains_parallel( chains, progressbar, _sample_smc_int, params, random_seed, kernel_kwargs, cores ) else: results = run_chains_sequential( chains, progressbar, _sample_smc_int, params, random_seed, kernel_kwargs ) ( traces, sample_stats, sample_settings, ) = zip(*results) trace = MultiTrace(traces) _t_sampling = time.time() - t1 sample_stats, idata = _save_sample_stats( sample_settings, sample_stats, chains, trace, return_inferencedata, _t_sampling, idata_kwargs, model, ) if compute_convergence_checks: _compute_convergence_checks(idata, draws, model, trace) return idata if return_inferencedata else trace
def sample_smc( draws=2000, kernel=IMH, *, start=None, model=None, random_seed=None, chains=None, cores=None, compute_convergence_checks=True, return_inferencedata=True, idata_kwargs=None, progressbar=True, **kernel_kwargs, ): r""" Sequential Monte Carlo based sampling. Parameters ---------- draws : int, default 2000 The number of samples to draw from the posterior (i.e. last stage). And also the number of independent chains. Defaults to 2000. kernel : SMC_kernel, optional SMC kernel used. Defaults to :class:`pymc.smc.smc.IMH` (Independent Metropolis Hastings) start : dict, or array of dict, default None Starting point in parameter space. It should be a list of dict with length `chains`. When None (default) the starting point is sampled from the prior distribution. model : Model (optional if in ``with`` context). random_seed : int, array_like of int, RandomState or Generator, optional Random seed(s) used by the sampling steps. If a list, tuple or array of ints is passed, each entry will be used to seed each chain. A ValueError will be raised if the length does not match the number of chains. chains : int, default None The number of chains to sample. Running independent chains is important for some convergence statistics. If ``None`` (default), then set to either ``cores`` or 2, whichever is larger. cores : int, default None The number of chains to run in parallel. If ``None``, set to the number of CPUs in the system. compute_convergence_checks : bool, default True Whether to compute sampler statistics like ``R hat`` and ``effective_n``. Defaults to ``True``. return_inferencedata : bool, default True Whether to return the trace as an InferenceData (True) object or a MultiTrace (False). Defaults to ``True``. idata_kwargs : dict, optional Keyword arguments for :func:`pymc.to_inference_data`. progressbar : bool, optional, default True Whether or not to display a progress bar in the command line. **kernel_kwargs : dict, optional Keyword arguments passed to the SMC_kernel. The default IMH kernel takes the following keywords: threshold : float, default 0.5 Determines the change of beta from stage to stage, i.e. indirectly the number of stages, the higher the value of `threshold` the higher the number of stages. Defaults to 0.5. It should be between 0 and 1. correlation_threshold : float, default 0.01 The lower the value the higher the number of MCMC steps computed automatically. Defaults to 0.01. It should be between 0 and 1. Keyword arguments for other kernels should be checked in the respective docstrings. Notes ----- SMC works by moving through successive stages. At each stage the inverse temperature :math:`\beta` is increased a little bit (starting from 0 up to 1). When :math:`\beta` = 0 we have the prior distribution and when :math:`\beta` = 1 we have the posterior distribution. So in more general terms, we are always computing samples from a tempered posterior that we can write as: .. math:: p(\theta \mid y)_{\beta} = p(y \mid \theta)^{\beta} p(\theta) A summary of the algorithm is: 1. Initialize :math:`\beta` at zero and stage at zero. 2. Generate N samples :math:`S_{\beta}` from the prior (because when :math `\beta = 0` the tempered posterior is the prior). 3. Increase :math:`\beta` in order to make the effective sample size equal some predefined value (we use :math:`Nt`, where :math:`t` is 0.5 by default). 4. Compute a set of N importance weights W. The weights are computed as the ratio of the likelihoods of a sample at stage i+1 and stage i. 5. Obtain :math:`S_{w}` by re-sampling according to W. 6. Use W to compute the mean and covariance for the proposal distribution, a MvNormal. 7. Run N independent MCMC chains, starting each one from a different sample in :math:`S_{w}`. For the IMH kernel, the mean of the proposal distribution is the mean of the previous posterior stage and not the current point in parameter space. 8. The N chains are run until the autocorrelation with the samples from the previous stage stops decreasing given a certain threshold. 9. Repeat from step 3 until :math:`\beta \ge 1`. 10. The final result is a collection of N samples from the posterior. References ---------- .. [Minson2013] Minson, S. E., Simons, M., and Beck, J. L. (2013). "Bayesian inversion for finite fault earthquake source models I- Theory and algorithm." Geophysical Journal International, 2013, 194(3), pp.1701-1726. `link <https://gji.oxfordjournals.org/content/194/3/1701.full>`__ .. [Ching2007] Ching, J., and Chen, Y. (2007). "Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging." J. Eng. Mech., 2007, 133(7), pp. 816-832. doi:10.1061/(ASCE)0733-9399(2007)133:7(816). `link <http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399 %282007%29133:7%28816%29>`__ """ if isinstance(kernel, str) and kernel.lower() in ("abc", "metropolis"): warnings.warn( f'The kernel string argument "{kernel}" in sample_smc has been deprecated. ' f"It is no longer needed to distinguish between `abc` and `metropolis`", FutureWarning, stacklevel=2, ) kernel = IMH if kernel_kwargs.pop("save_sim_data", None) is not None: warnings.warn( "save_sim_data has been deprecated. Use pm.sample_posterior_predictive " "to obtain the same type of samples.", FutureWarning, stacklevel=2, ) if kernel_kwargs.pop("save_log_pseudolikelihood", None) is not None: warnings.warn( "save_log_pseudolikelihood has been deprecated. This information is " "now saved as log_likelihood in models with Simulator distributions.", FutureWarning, stacklevel=2, ) parallel = kernel_kwargs.pop("parallel", None) if parallel is not None: warnings.warn( "The argument parallel is deprecated, use the argument cores instead.", FutureWarning, stacklevel=2, ) if parallel is False: cores = 1 if cores is None: cores = _cpu_count() if chains is None: chains = max(2, cores) else: cores = min(chains, cores) if random_seed == -1: raise FutureWarning( f"random_seed should be a non-negative integer or None, got: {random_seed}" "This will raise a ValueError in the Future" ) random_seed = None if isinstance(random_seed, int) or random_seed is None: rng = np.random.default_rng(seed=random_seed) random_seed = list(rng.integers(2**30, size=chains)) elif isinstance(random_seed, Iterable): if len(random_seed) != chains: raise ValueError(f"Length of seeds ({len(seeds)}) must match number of chains {chains}") else: raise TypeError("Invalid value for `random_seed`. Must be tuple, list, int or None") model = modelcontext(model) _log = logging.getLogger("pymc") _log.info("Initializing SMC sampler...") _log.info( f"Sampling {chains} chain{'s' if chains > 1 else ''} " f"in {cores} job{'s' if cores > 1 else ''}" ) params = ( draws, kernel, start, model, ) t1 = time.time() if cores > 1: results = run_chains_parallel( chains, progressbar, _sample_smc_int, params, random_seed, kernel_kwargs, cores ) else: results = run_chains_sequential( chains, progressbar, _sample_smc_int, params, random_seed, kernel_kwargs ) ( traces, sample_stats, sample_settings, ) = zip(*results) trace = MultiTrace(traces) _t_sampling = time.time() - t1 sample_stats, idata = _save_sample_stats( sample_settings, sample_stats, chains, trace, return_inferencedata, _t_sampling, idata_kwargs, model, ) if compute_convergence_checks: _compute_convergence_checks(idata, draws, model, trace) return idata if return_inferencedata else trace
12,290
def hinton(rho, xlabels=None, ylabels=None, title=None, ax=None, cmap=None, label_top=True, color_style="threshold"): """Draws a Hinton diagram for visualizing a density matrix or superoperator. Parameters ---------- rho : qobj Input density matrix or superoperator. xlabels : list of strings or False list of x labels ylabels : list of strings or False list of y labels title : string title of the plot (optional) ax : a matplotlib axes instance The axes context in which the plot will be drawn. cmap : a matplotlib colormap instance Color map to use when plotting. label_top : bool If True, x-axis labels will be placed on top, otherwise they will appear below the plot. color_style : string Determines how colors are assigned to each square. If set to `"threshold"` (default), each square is plotted as the maximum of `cmap` for positive numbers and as the minimum for minimum. If set to `"scaled"`, each color is chosen by passing the magnitude of the corresponding matrix element into `cmap`. If set to `"phase"`, each color is chosen according to the argument of the corresponding matrix element; note that this generalizes `"threshold"` to complex numbers. Returns ------- fig, ax : tuple A tuple of the matplotlib figure and axes instances used to produce the figure. Raises ------ ValueError Input argument is not a quantum object. """ # Apply default colormaps. # TODO: abstract this away into something that makes default # colormaps. cmap = ( (cm.Greys_r if settings.colorblind_safe else cm.RdBu) if cmap is None else cmap ) # Extract plotting data W from the input. if isinstance(rho, Qobj): if rho.isoper: W = rho.full() # Create default labels if none are given. if xlabels is None or ylabels is None: labels = _cb_labels(rho.dims[0]) xlabels = xlabels if xlabels is not None else list(labels[0]) ylabels = ylabels if ylabels is not None else list(labels[1]) elif rho.isoperket: W = vector_to_operator(rho).full() elif rho.isoperbra: W = vector_to_operator(rho.dag()).full() elif rho.issuper: if not _isqubitdims(rho.dims): raise ValueError("Hinton plots of superoperators are " "currently only supported for qubits.") # Convert to a superoperator in the Pauli basis, # so that all the elements are real. sqobj = _super_to_superpauli(rho) nq = int(log2(sqobj.shape[0]) / 2) W = sqobj.full().T # Create default labels, too. if (xlabels is None) or (ylabels is None): labels = list(map("".join, it.product("IXYZ", repeat=nq))) xlabels = xlabels if xlabels is not None else labels ylabels = ylabels if ylabels is not None else labels else: raise ValueError( "Input quantum object must be an operator or superoperator." ) else: W = rho if ax is None: fig, ax = plt.subplots(1, 1, figsize=(8, 6)) else: fig = None if not (xlabels or ylabels): ax.axis('off') ax.axis('equal') ax.set_frame_on(False) height, width = W.shape w_max = 1.25 * max(abs(np.diag(np.array(W)))) if w_max <= 0.0: w_max = 1.0 # Set color_fn here. if color_style == "scaled": def color_fn(w): return cmap(int((w + w_max) * 256 / (2 * w_max))) elif color_style == "threshold": def color_fn(w): return cmap(255 if w > 0 else 0) elif color_style == "phase": def color_fn(w): return cmap(int(255 * np.mod(1 - np.angle(w) / np.pi, 2))) else: raise ValueError( "Unknown color style {} for Hinton diagrams.".format(color_style) ) ax.fill(array([0, width, width, 0]), array([0, 0, height, height]), color=cmap(128)) for x in range(width): for y in range(height): _x = x + 1 _y = y + 1 if np.real(W[x, y]) > 0.0: _blob(_x - 0.5, height - _y + 0.5, abs(W[x, y]), w_max, min(1, abs(W[x, y]) / w_max), color_fn=color_fn, ax=ax) else: _blob( _x - 0.5, height - _y + 0.5, -abs(W[x, y]), w_max, min(1, abs(W[x, y]) / w_max), color_fn=color_fn, ax=ax ) # color axis norm = mpl.colors.Normalize(-abs(W).max(), abs(W).max()) cax, kw = mpl.colorbar.make_axes(ax, shrink=0.75, pad=.1) mpl.colorbar.ColorbarBase(cax, norm=norm, cmap=cmap) xtics = 0.5 + np.arange(width) # x axis ax.xaxis.set_major_locator(plt.FixedLocator(xtics)) if xlabels: nxlabels = len(xlabels) if nxlabels != len(xtics): raise ValueError(f"got {nxlabels} xlabels but needed {len(xtics)}") ax.set_xticklabels(xlabels) if label_top: ax.xaxis.tick_top() ax.tick_params(axis='x', labelsize=14) # y axis ytics = 0.5 + np.arange(height) ax.yaxis.set_major_locator(plt.FixedLocator(ytics)) if ylabels: nylabels = len(ylabels) if nylabels != len(ytics): raise ValueError(f"got {nylabels} ylabels but needed {len(ytics)}") ax.set_yticklabels(list(reversed(ylabels))) ax.tick_params(axis='y', labelsize=14) return fig, ax
def hinton(rho, xlabels=None, ylabels=None, title=None, ax=None, cmap=None, label_top=True, color_style="threshold"): """Draws a Hinton diagram for visualizing a density matrix or superoperator. Parameters ---------- rho : qobj Input density matrix or superoperator. xlabels : list of strings or False list of x labels ylabels : list of strings or False list of y labels title : string title of the plot (optional) ax : a matplotlib axes instance The axes context in which the plot will be drawn. cmap : a matplotlib colormap instance Color map to use when plotting. label_top : bool If True, x-axis labels will be placed on top, otherwise they will appear below the plot. color_style : string Determines how colors are assigned to each square. If set to `"threshold"` (default), each square is plotted as the maximum of `cmap` for positive numbers and as the minimum for negative numbers. If set to `"scaled"`, each color is chosen by passing the magnitude of the corresponding matrix element into `cmap`. If set to `"phase"`, each color is chosen according to the argument of the corresponding matrix element; note that this generalizes `"threshold"` to complex numbers. Returns ------- fig, ax : tuple A tuple of the matplotlib figure and axes instances used to produce the figure. Raises ------ ValueError Input argument is not a quantum object. """ # Apply default colormaps. # TODO: abstract this away into something that makes default # colormaps. cmap = ( (cm.Greys_r if settings.colorblind_safe else cm.RdBu) if cmap is None else cmap ) # Extract plotting data W from the input. if isinstance(rho, Qobj): if rho.isoper: W = rho.full() # Create default labels if none are given. if xlabels is None or ylabels is None: labels = _cb_labels(rho.dims[0]) xlabels = xlabels if xlabels is not None else list(labels[0]) ylabels = ylabels if ylabels is not None else list(labels[1]) elif rho.isoperket: W = vector_to_operator(rho).full() elif rho.isoperbra: W = vector_to_operator(rho.dag()).full() elif rho.issuper: if not _isqubitdims(rho.dims): raise ValueError("Hinton plots of superoperators are " "currently only supported for qubits.") # Convert to a superoperator in the Pauli basis, # so that all the elements are real. sqobj = _super_to_superpauli(rho) nq = int(log2(sqobj.shape[0]) / 2) W = sqobj.full().T # Create default labels, too. if (xlabels is None) or (ylabels is None): labels = list(map("".join, it.product("IXYZ", repeat=nq))) xlabels = xlabels if xlabels is not None else labels ylabels = ylabels if ylabels is not None else labels else: raise ValueError( "Input quantum object must be an operator or superoperator." ) else: W = rho if ax is None: fig, ax = plt.subplots(1, 1, figsize=(8, 6)) else: fig = None if not (xlabels or ylabels): ax.axis('off') ax.axis('equal') ax.set_frame_on(False) height, width = W.shape w_max = 1.25 * max(abs(np.diag(np.array(W)))) if w_max <= 0.0: w_max = 1.0 # Set color_fn here. if color_style == "scaled": def color_fn(w): return cmap(int((w + w_max) * 256 / (2 * w_max))) elif color_style == "threshold": def color_fn(w): return cmap(255 if w > 0 else 0) elif color_style == "phase": def color_fn(w): return cmap(int(255 * np.mod(1 - np.angle(w) / np.pi, 2))) else: raise ValueError( "Unknown color style {} for Hinton diagrams.".format(color_style) ) ax.fill(array([0, width, width, 0]), array([0, 0, height, height]), color=cmap(128)) for x in range(width): for y in range(height): _x = x + 1 _y = y + 1 if np.real(W[x, y]) > 0.0: _blob(_x - 0.5, height - _y + 0.5, abs(W[x, y]), w_max, min(1, abs(W[x, y]) / w_max), color_fn=color_fn, ax=ax) else: _blob( _x - 0.5, height - _y + 0.5, -abs(W[x, y]), w_max, min(1, abs(W[x, y]) / w_max), color_fn=color_fn, ax=ax ) # color axis norm = mpl.colors.Normalize(-abs(W).max(), abs(W).max()) cax, kw = mpl.colorbar.make_axes(ax, shrink=0.75, pad=.1) mpl.colorbar.ColorbarBase(cax, norm=norm, cmap=cmap) xtics = 0.5 + np.arange(width) # x axis ax.xaxis.set_major_locator(plt.FixedLocator(xtics)) if xlabels: nxlabels = len(xlabels) if nxlabels != len(xtics): raise ValueError(f"got {nxlabels} xlabels but needed {len(xtics)}") ax.set_xticklabels(xlabels) if label_top: ax.xaxis.tick_top() ax.tick_params(axis='x', labelsize=14) # y axis ytics = 0.5 + np.arange(height) ax.yaxis.set_major_locator(plt.FixedLocator(ytics)) if ylabels: nylabels = len(ylabels) if nylabels != len(ytics): raise ValueError(f"got {nylabels} ylabels but needed {len(ytics)}") ax.set_yticklabels(list(reversed(ylabels))) ax.tick_params(axis='y', labelsize=14) return fig, ax
31,191
def get_incident_data_command(client, args): incident_obj_id = args.get('incident_obj_id') incident_id = args.get('incident_id') date = args.get('date') result = client.get_incident_data(incident_obj_id, incident_id, date) if not result.get('success'): raise DemistoException(result['message']) incident_data = result.get('rows') table_header = [] if len(incident_data) > 0: table_header = list(incident_data[0].keys()) markdown = tableToMarkdown('Incident Data', incident_data, headers=table_header) return CommandResults( readable_output=markdown, outputs_prefix='LogPoint.Incidents.data', outputs_key_field='', outputs=incident_data )
def get_incident_data_command(client, args): incident_obj_id = args.get('incident_obj_id') incident_id = args.get('incident_id') date = args.get('date') result = client.get_incident_data(incident_obj_id, incident_id, date) if not result.get('success'): raise DemistoException(result['message']) incident_data = result.get('rows',{}) table_header = [] if len(incident_data) > 0: table_header = list(incident_data[0].keys()) markdown = tableToMarkdown('Incident Data', incident_data, headers=table_header) return CommandResults( readable_output=markdown, outputs_prefix='LogPoint.Incidents.data', outputs_key_field='', outputs=incident_data )
23,156
def read_parquet( path, columns=None, filters=None, categories=None, index=None, storage_options=None, engine="auto", calculate_divisions=None, ignore_metadata_file=False, metadata_task_size=None, split_row_groups=False, chunksize=None, aggregate_files=None, parquet_file_extension=(".parq", ".parquet", ".pq"), **kwargs, ): """ Read a Parquet file into a Dask DataFrame This reads a directory of Parquet data into a Dask.dataframe, one file per partition. It selects the index among the sorted columns if any exist. Parameters ---------- path : str or list Source directory for data, or path(s) to individual parquet files. Prefix with a protocol like ``s3://`` to read from alternative filesystems. To read from multiple files you can pass a globstring or a list of paths, with the caveat that they must all have the same protocol. columns : str or list, default None Field name(s) to read in as columns in the output. By default all non-index fields will be read (as determined by the pandas parquet metadata, if present). Provide a single field name instead of a list to read in the data as a Series. filters : Union[List[Tuple[str, str, Any]], List[List[Tuple[str, str, Any]]]], default None List of filters to apply, like ``[[('col1', '==', 0), ...], ...]``. Using this argument will NOT result in row-wise filtering of the final partitions unless ``engine="pyarrow"`` is also specified. For other engines, filtering is only performed at the partition level, that is, to prevent the loading of some row-groups and/or files. For the "pyarrow" engine, predicates can be expressed in disjunctive normal form (DNF). This means that the inner-most tuple describes a single column predicate. These inner predicates are combined with an AND conjunction into a larger predicate. The outer-most list then combines all of the combined filters with an OR disjunction. Predicates can also be expressed as a ``List[Tuple]``. These are evaluated as an AND conjunction. To express OR in predictates, one must use the (preferred for "pyarrow") ``List[List[Tuple]]`` notation. Note that the "fastparquet" engine does not currently support DNF for the filtering of partitioned columns (``List[Tuple]`` is required). index : str, list or False, default None Field name(s) to use as the output frame index. By default will be inferred from the pandas parquet file metadata, if present. Use ``False`` to read all fields as columns. categories : list or dict, default None For any fields listed here, if the parquet encoding is Dictionary, the column will be created with dtype category. Use only if it is guaranteed that the column is encoded as dictionary in all row-groups. If a list, assumes up to 2**16-1 labels; if a dict, specify the number of labels expected; if None, will load categories automatically for data written by dask/fastparquet, not otherwise. storage_options : dict, default None Key/value pairs to be passed on to the file-system backend, if any. open_file_options : dict, default None Key/value arguments to be passed along to ``AbstractFileSystem.open`` when each parquet data file is open for reading. Experimental (optimized) "precaching" for remote file systems (e.g. S3, GCS) can be enabled by adding ``{"method": "parquet"}`` under the ``"precache_options"`` key. Also, a custom file-open function can be used (instead of ``AbstractFileSystem.open``), by specifying the desired function under the ``"open_file_func"`` key. engine : {'auto', 'fastparquet', 'pyarrow'}, default 'auto' Parquet library to use. Options include: 'auto', 'fastparquet', and 'pyarrow'. Defaults to 'auto', which uses ``fastparquet`` if it is installed, and falls back to ``pyarrow`` otherwise. Note that in the future this default ordering for 'auto' will switch, with ``pyarrow`` being used if it is installed, and falling back to ``fastparquet``. calculate_divisions : bool, default False Whether to use Parquet metadata statistics (when available) to calculate divisions for the output DataFrame collection. This option will be ignored if ``index`` is not specified and there is no physical index column specified in the custom "pandas" Parquet metadata. Note that ``calculate_divisions=True`` may be extremely slow on some systems, and should be avoided when reading from remote storage. ignore_metadata_file : bool, default False Whether to ignore the global ``_metadata`` file (when one is present). If ``True``, or if the global ``_metadata`` file is missing, the parquet metadata may be gathered and processed in parallel. Parallel metadata processing is currently supported for ``ArrowDatasetEngine`` only. metadata_task_size : int, default configurable If parquet metadata is processed in parallel (see ``ignore_metadata_file`` description above), this argument can be used to specify the number of dataset files to be processed by each task in the Dask graph. If this argument is set to ``0``, parallel metadata processing will be disabled. The default values for local and remote filesystems can be specified with the "metadata-task-size-local" and "metadata-task-size-remote" config fields, respectively (see "dataframe.parquet"). split_row_groups : bool or int, default False If True, then each output dataframe partition will correspond to a single parquet-file row-group. If False, each partition will correspond to a complete file. If a positive integer value is given, each dataframe partition will correspond to that number of parquet row-groups (or fewer). chunksize : int or str, default None The desired size of each output ``DataFrame`` partition in terms of total (uncompressed) parquet storage space. If specified, adjacent row-groups and/or files will be aggregated into the same output partition until the cumulative ``total_byte_size`` parquet-metadata statistic reaches this value. Use `aggregate_files` to enable/disable inter-file aggregation. aggregate_files : bool or str, default None Whether distinct file paths may be aggregated into the same output partition. This parameter is only used when `chunksize` is specified or when `split_row_groups` is an integer >1. A setting of True means that any two file paths may be aggregated into the same output partition, while False means that inter-file aggregation is prohibited. For "hive-partitioned" datasets, a "partition"-column name can also be specified. In this case, we allow the aggregation of any two files sharing a file path up to, and including, the corresponding directory name. For example, if ``aggregate_files`` is set to ``"section"`` for the directory structure below, ``03.parquet`` and ``04.parquet`` may be aggregated together, but ``01.parquet`` and ``02.parquet`` cannot be. If, however, ``aggregate_files`` is set to ``"region"``, ``01.parquet`` may be aggregated with ``02.parquet``, and ``03.parquet`` may be aggregated with ``04.parquet``:: dataset-path/ ├── region=1/ │ ├── section=a/ │ │ └── 01.parquet │ ├── section=b/ │ └── └── 02.parquet └── region=2/ ├── section=a/ │ ├── 03.parquet └── └── 04.parquet Note that the default behavior of ``aggregate_files`` is ``False``. parquet_file_extension: str, tuple[str], or None, default (".parq", ".parquet", ".pq") A file extension or an iterable of extensions to use when discovering parquet files in a directory. Files that don't match these extensions will be ignored. This argument only applies when ``paths`` corresponds to a directory and no ``_metadata`` file is present (or ``ignore_metadata_file=True``). Passing in ``parquet_file_extension=None`` will treat all files in the directory as parquet files. The purpose of this argument is to ensure that the engine will ignore unsupported metadata files (like Spark's '_SUCCESS' and 'crc' files). It may be necessary to change this argument if the data files in your parquet dataset do not end in ".parq", ".parquet", or ".pq". **kwargs: dict (of dicts) Passthrough key-word arguments for read backend. The top-level keys correspond to the appropriate operation type, and the second level corresponds to the kwargs that will be passed on to the underlying ``pyarrow`` or ``fastparquet`` function. Supported top-level keys: 'dataset' (for opening a ``pyarrow`` dataset), 'file' or 'dataset' (for opening a ``fastparquet.ParquetFile``), 'read' (for the backend read function), 'arrow_to_pandas' (for controlling the arguments passed to convert from a ``pyarrow.Table.to_pandas()``). Any element of kwargs that is not defined under these top-level keys will be passed through to the `engine.read_partitions` classmethod as a stand-alone argument (and will be ignored by the engine implementations defined in ``dask.dataframe``). Examples -------- >>> df = dd.read_parquet('s3://bucket/my-parquet-data') # doctest: +SKIP See Also -------- to_parquet pyarrow.parquet.ParquetDataset """ if "read_from_paths" in kwargs: kwargs.pop("read_from_paths") warnings.warn( "`read_from_paths` is no longer supported and will be ignored.", FutureWarning, ) # Handle gather_statistics deprecation if "gather_statistics" in kwargs: if calculate_divisions is None: calculate_divisions = kwargs.pop("gather_statistics") warnings.warn( "``gather_statistics`` is deprecated and will be removed in a " "future release. Please use ``calculate_divisions`` instead.", FutureWarning, ) else: warnings.warn( f"``gather_statistics`` is deprecated. Ignoring this option " f"in favor of ``calculate_divisions={calculate_divisions}``", FutureWarning, ) calculate_divisions = calculate_divisions or False # We support a top-level `parquet_file_extension` kwarg, but # must check if the deprecated `require_extension` option is # being passed to the engine. If `parquet_file_extension` is # set to the default value, and `require_extension` was also # specified, we will use `require_extension` but warn the user. if ( "dataset" in kwargs and "require_extension" in kwargs["dataset"] and parquet_file_extension == (".parq", ".parquet", ".pq") ): parquet_file_extension = kwargs["dataset"].pop("require_extension") warnings.warn( "require_extension is deprecated, and will be removed from " "read_parquet in a future release. Please use the top-level " "parquet_file_extension argument instead.", FutureWarning, ) # Store initial function arguments input_kwargs = { "columns": columns, "filters": filters, "categories": categories, "index": index, "storage_options": storage_options, "engine": engine, "calculate_divisions": calculate_divisions, "ignore_metadata_file": ignore_metadata_file, "metadata_task_size": metadata_task_size, "split_row_groups": split_row_groups, "chunksize=": chunksize, "aggregate_files": aggregate_files, "parquet_file_extension": parquet_file_extension, **kwargs, } if isinstance(columns, str): input_kwargs["columns"] = [columns] df = read_parquet(path, **input_kwargs) return df[columns] if columns is not None: columns = list(columns) if isinstance(engine, str): engine = get_engine(engine, bool(kwargs)) if hasattr(path, "name"): path = stringify_path(path) # Update input_kwargs and tokenize inputs label = "read-parquet-" input_kwargs.update({"columns": columns, "engine": engine}) output_name = label + tokenize(path, **input_kwargs) fs, _, paths = get_fs_token_paths(path, mode="rb", storage_options=storage_options) paths = sorted(paths, key=natural_sort_key) # numeric rather than glob ordering auto_index_allowed = False if index is None: # User is allowing auto-detected index auto_index_allowed = True if index and isinstance(index, str): index = [index] read_metadata_result = engine.read_metadata( fs, paths, categories=categories, index=index, gather_statistics=calculate_divisions, filters=filters, split_row_groups=split_row_groups, chunksize=chunksize, aggregate_files=aggregate_files, ignore_metadata_file=ignore_metadata_file, metadata_task_size=metadata_task_size, parquet_file_extension=parquet_file_extension, **kwargs, ) # In the future, we may want to give the engine the # option to return a dedicated element for `common_kwargs`. # However, to avoid breaking the API, we just embed this # data in the first element of `parts` for now. # The logic below is inteded to handle backward and forward # compatibility with a user-defined engine. meta, statistics, parts, index = read_metadata_result[:4] common_kwargs = {} aggregation_depth = False if len(parts): # For now, `common_kwargs` and `aggregation_depth` # may be stored in the first element of `parts` common_kwargs = parts[0].pop("common_kwargs", {}) aggregation_depth = parts[0].pop("aggregation_depth", aggregation_depth) # Parse dataset statistics from metadata (if available) parts, divisions, index, index_in_columns = process_statistics( parts, statistics, filters, index, chunksize, split_row_groups, fs, aggregation_depth, ) # Account for index and columns arguments. # Modify `meta` dataframe accordingly meta, index, columns = set_index_columns( meta, index, columns, index_in_columns, auto_index_allowed ) if meta.index.name == NONE_LABEL: meta.index.name = None # Set the index that was previously treated as a column if index_in_columns: meta = meta.set_index(index) if meta.index.name == NONE_LABEL: meta.index.name = None if len(divisions) < 2: # empty dataframe - just use meta graph = {(output_name, 0): meta} divisions = (None, None) else: # Create Blockwise layer layer = DataFrameIOLayer( output_name, columns, parts, ParquetFunctionWrapper( engine, fs, meta, columns, index, {}, # All kwargs should now be in `common_kwargs` common_kwargs, ), label=label, creation_info={ "func": read_parquet, "args": (path,), "kwargs": input_kwargs, }, ) graph = HighLevelGraph({output_name: layer}, {output_name: set()}) return new_dd_object(graph, output_name, meta, divisions)
def read_parquet( path, columns=None, filters=None, categories=None, index=None, storage_options=None, engine="auto", calculate_divisions=None, ignore_metadata_file=False, metadata_task_size=None, split_row_groups=False, chunksize=None, aggregate_files=None, parquet_file_extension=(".parq", ".parquet", ".pq"), **kwargs, ): """ Read a Parquet file into a Dask DataFrame This reads a directory of Parquet data into a Dask.dataframe, one file per partition. It selects the index among the sorted columns if any exist. Parameters ---------- path : str or list Source directory for data, or path(s) to individual parquet files. Prefix with a protocol like ``s3://`` to read from alternative filesystems. To read from multiple files you can pass a globstring or a list of paths, with the caveat that they must all have the same protocol. columns : str or list, default None Field name(s) to read in as columns in the output. By default all non-index fields will be read (as determined by the pandas parquet metadata, if present). Provide a single field name instead of a list to read in the data as a Series. filters : Union[List[Tuple[str, str, Any]], List[List[Tuple[str, str, Any]]]], default None List of filters to apply, like ``[[('col1', '==', 0), ...], ...]``. Using this argument will NOT result in row-wise filtering of the final partitions unless ``engine="pyarrow"`` is also specified. For other engines, filtering is only performed at the partition level, that is, to prevent the loading of some row-groups and/or files. For the "pyarrow" engine, predicates can be expressed in disjunctive normal form (DNF). This means that the inner-most tuple describes a single column predicate. These inner predicates are combined with an AND conjunction into a larger predicate. The outer-most list then combines all of the combined filters with an OR disjunction. Predicates can also be expressed as a ``List[Tuple]``. These are evaluated as an AND conjunction. To express OR in predictates, one must use the (preferred for "pyarrow") ``List[List[Tuple]]`` notation. Note that the "fastparquet" engine does not currently support DNF for the filtering of partitioned columns (``List[Tuple]`` is required). index : str, list or False, default None Field name(s) to use as the output frame index. By default will be inferred from the pandas parquet file metadata, if present. Use ``False`` to read all fields as columns. categories : list or dict, default None For any fields listed here, if the parquet encoding is Dictionary, the column will be created with dtype category. Use only if it is guaranteed that the column is encoded as dictionary in all row-groups. If a list, assumes up to 2**16-1 labels; if a dict, specify the number of labels expected; if None, will load categories automatically for data written by dask/fastparquet, not otherwise. storage_options : dict, default None Key/value pairs to be passed on to the file-system backend, if any. open_file_options : dict, default None Key/value arguments to be passed along to ``AbstractFileSystem.open`` when each parquet data file is open for reading. Experimental (optimized) "precaching" for remote file systems (e.g. S3, GCS) can be enabled by adding ``{"method": "parquet"}`` under the ``"precache_options"`` key. Also, a custom file-open function can be used (instead of ``AbstractFileSystem.open``), by specifying the desired function under the ``"open_file_func"`` key. engine : {'auto', 'fastparquet', 'pyarrow'}, default 'auto' Parquet library to use. Options include: 'auto', 'fastparquet', and 'pyarrow'. Defaults to 'auto', which uses ``fastparquet`` if it is installed, and falls back to ``pyarrow`` otherwise. Note that in the future this default ordering for 'auto' will switch, with ``pyarrow`` being used if it is installed, and falling back to ``fastparquet``. calculate_divisions : bool, default False Whether to use Parquet metadata statistics (when available) to calculate divisions for the output DataFrame collection. This option will be ignored if ``index`` is not specified and there is no physical index column specified in the custom "pandas" Parquet metadata. Note that ``calculate_divisions=True`` may be extremely slow on some systems, and should be avoided when reading from remote storage. ignore_metadata_file : bool, default False Whether to ignore the global ``_metadata`` file (when one is present). If ``True``, or if the global ``_metadata`` file is missing, the parquet metadata may be gathered and processed in parallel. Parallel metadata processing is currently supported for ``ArrowDatasetEngine`` only. metadata_task_size : int, default configurable If parquet metadata is processed in parallel (see ``ignore_metadata_file`` description above), this argument can be used to specify the number of dataset files to be processed by each task in the Dask graph. If this argument is set to ``0``, parallel metadata processing will be disabled. The default values for local and remote filesystems can be specified with the "metadata-task-size-local" and "metadata-task-size-remote" config fields, respectively (see "dataframe.parquet"). split_row_groups : bool or int, default False If True, then each output dataframe partition will correspond to a single parquet-file row-group. If False, each partition will correspond to a complete file. If a positive integer value is given, each dataframe partition will correspond to that number of parquet row-groups (or fewer). chunksize : int or str, default None The desired size of each output ``DataFrame`` partition in terms of total (uncompressed) parquet storage space. If specified, adjacent row-groups and/or files will be aggregated into the same output partition until the cumulative ``total_byte_size`` parquet-metadata statistic reaches this value. Use `aggregate_files` to enable/disable inter-file aggregation. aggregate_files : bool or str, default None Whether distinct file paths may be aggregated into the same output partition. This parameter is only used when `chunksize` is specified or when `split_row_groups` is an integer >1. A setting of True means that any two file paths may be aggregated into the same output partition, while False means that inter-file aggregation is prohibited. For "hive-partitioned" datasets, a "partition"-column name can also be specified. In this case, we allow the aggregation of any two files sharing a file path up to, and including, the corresponding directory name. For example, if ``aggregate_files`` is set to ``"section"`` for the directory structure below, ``03.parquet`` and ``04.parquet`` may be aggregated together, but ``01.parquet`` and ``02.parquet`` cannot be. If, however, ``aggregate_files`` is set to ``"region"``, ``01.parquet`` may be aggregated with ``02.parquet``, and ``03.parquet`` may be aggregated with ``04.parquet``:: dataset-path/ ├── region=1/ │ ├── section=a/ │ │ └── 01.parquet │ ├── section=b/ │ └── └── 02.parquet └── region=2/ ├── section=a/ │ ├── 03.parquet └── └── 04.parquet Note that the default behavior of ``aggregate_files`` is ``False``. parquet_file_extension: str, tuple[str], or None, default (".parq", ".parquet", ".pq") A file extension or an iterable of extensions to use when discovering parquet files in a directory. Files that don't match these extensions will be ignored. This argument only applies when ``paths`` corresponds to a directory and no ``_metadata`` file is present (or ``ignore_metadata_file=True``). Passing in ``parquet_file_extension=None`` will treat all files in the directory as parquet files. The purpose of this argument is to ensure that the engine will ignore unsupported metadata files (like Spark's '_SUCCESS' and 'crc' files). It may be necessary to change this argument if the data files in your parquet dataset do not end in ".parq", ".parquet", or ".pq". **kwargs: dict (of dicts) Passthrough key-word arguments for read backend. The top-level keys correspond to the appropriate operation type, and the second level corresponds to the kwargs that will be passed on to the underlying ``pyarrow`` or ``fastparquet`` function. Supported top-level keys: 'dataset' (for opening a ``pyarrow`` dataset), 'file' or 'dataset' (for opening a ``fastparquet.ParquetFile``), 'read' (for the backend read function), 'arrow_to_pandas' (for controlling the arguments passed to convert from a ``pyarrow.Table.to_pandas()``). Any element of kwargs that is not defined under these top-level keys will be passed through to the `engine.read_partitions` classmethod as a stand-alone argument (and will be ignored by the engine implementations defined in ``dask.dataframe``). Examples -------- >>> df = dd.read_parquet('s3://bucket/my-parquet-data') # doctest: +SKIP See Also -------- to_parquet pyarrow.parquet.ParquetDataset """ if "read_from_paths" in kwargs: kwargs.pop("read_from_paths") warnings.warn( "`read_from_paths` is no longer supported and will be ignored.", FutureWarning, ) # Handle gather_statistics deprecation if "gather_statistics" in kwargs: if calculate_divisions is None: calculate_divisions = kwargs.pop("gather_statistics") warnings.warn( "``gather_statistics`` is deprecated and will be removed in a " "future release. Please use ``calculate_divisions`` instead.", FutureWarning, ) else: warnings.warn( f"``gather_statistics`` is deprecated. Ignoring this option " f"in favor of ``calculate_divisions={calculate_divisions}``", FutureWarning, ) calculate_divisions = bool(calculate_divisions) # We support a top-level `parquet_file_extension` kwarg, but # must check if the deprecated `require_extension` option is # being passed to the engine. If `parquet_file_extension` is # set to the default value, and `require_extension` was also # specified, we will use `require_extension` but warn the user. if ( "dataset" in kwargs and "require_extension" in kwargs["dataset"] and parquet_file_extension == (".parq", ".parquet", ".pq") ): parquet_file_extension = kwargs["dataset"].pop("require_extension") warnings.warn( "require_extension is deprecated, and will be removed from " "read_parquet in a future release. Please use the top-level " "parquet_file_extension argument instead.", FutureWarning, ) # Store initial function arguments input_kwargs = { "columns": columns, "filters": filters, "categories": categories, "index": index, "storage_options": storage_options, "engine": engine, "calculate_divisions": calculate_divisions, "ignore_metadata_file": ignore_metadata_file, "metadata_task_size": metadata_task_size, "split_row_groups": split_row_groups, "chunksize=": chunksize, "aggregate_files": aggregate_files, "parquet_file_extension": parquet_file_extension, **kwargs, } if isinstance(columns, str): input_kwargs["columns"] = [columns] df = read_parquet(path, **input_kwargs) return df[columns] if columns is not None: columns = list(columns) if isinstance(engine, str): engine = get_engine(engine, bool(kwargs)) if hasattr(path, "name"): path = stringify_path(path) # Update input_kwargs and tokenize inputs label = "read-parquet-" input_kwargs.update({"columns": columns, "engine": engine}) output_name = label + tokenize(path, **input_kwargs) fs, _, paths = get_fs_token_paths(path, mode="rb", storage_options=storage_options) paths = sorted(paths, key=natural_sort_key) # numeric rather than glob ordering auto_index_allowed = False if index is None: # User is allowing auto-detected index auto_index_allowed = True if index and isinstance(index, str): index = [index] read_metadata_result = engine.read_metadata( fs, paths, categories=categories, index=index, gather_statistics=calculate_divisions, filters=filters, split_row_groups=split_row_groups, chunksize=chunksize, aggregate_files=aggregate_files, ignore_metadata_file=ignore_metadata_file, metadata_task_size=metadata_task_size, parquet_file_extension=parquet_file_extension, **kwargs, ) # In the future, we may want to give the engine the # option to return a dedicated element for `common_kwargs`. # However, to avoid breaking the API, we just embed this # data in the first element of `parts` for now. # The logic below is inteded to handle backward and forward # compatibility with a user-defined engine. meta, statistics, parts, index = read_metadata_result[:4] common_kwargs = {} aggregation_depth = False if len(parts): # For now, `common_kwargs` and `aggregation_depth` # may be stored in the first element of `parts` common_kwargs = parts[0].pop("common_kwargs", {}) aggregation_depth = parts[0].pop("aggregation_depth", aggregation_depth) # Parse dataset statistics from metadata (if available) parts, divisions, index, index_in_columns = process_statistics( parts, statistics, filters, index, chunksize, split_row_groups, fs, aggregation_depth, ) # Account for index and columns arguments. # Modify `meta` dataframe accordingly meta, index, columns = set_index_columns( meta, index, columns, index_in_columns, auto_index_allowed ) if meta.index.name == NONE_LABEL: meta.index.name = None # Set the index that was previously treated as a column if index_in_columns: meta = meta.set_index(index) if meta.index.name == NONE_LABEL: meta.index.name = None if len(divisions) < 2: # empty dataframe - just use meta graph = {(output_name, 0): meta} divisions = (None, None) else: # Create Blockwise layer layer = DataFrameIOLayer( output_name, columns, parts, ParquetFunctionWrapper( engine, fs, meta, columns, index, {}, # All kwargs should now be in `common_kwargs` common_kwargs, ), label=label, creation_info={ "func": read_parquet, "args": (path,), "kwargs": input_kwargs, }, ) graph = HighLevelGraph({output_name: layer}, {output_name: set()}) return new_dd_object(graph, output_name, meta, divisions)
22,298
def looks_like_xml(path, regex=TOOL_REGEX): full_path = os.path.abspath(path) if not full_path.endswith(".xml"): return False if not os.path.getsize(full_path): return False if(checkers.check_binary(full_path) or checkers.check_image(full_path) or checkers.is_gzip(full_path) or checkers.is_bz2(full_path) or checkers.is_zip(full_path)): return False with open(path, "r") as f: try: start_contents = f.read(5 * 1024) except UnicodeDecodeError: return False if regex.search(start_contents): return True return False
def looks_like_xml(path, regex=TOOL_REGEX): full_path = os.path.abspath(path) if not full_path.endswith(".xml"): return False if not os.path.getsize(full_path): return False if(checkers.check_binary(full_path) or checkers.check_image(full_path) or checkers.is_gzip(full_path) or checkers.is_bz2(full_path) or checkers.is_zip(full_path)): return False with io.open(path, "r", encoding='utf-8') as f: try: start_contents = f.read(5 * 1024) except UnicodeDecodeError: return False if regex.search(start_contents): return True return False
7,363
def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float("inf") return abs(float(np.ceil(np.log(nom) / np.log(denom))))
def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / n_samples nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float("inf") return abs(float(np.ceil(np.log(nom) / np.log(denom))))
55,196
def qrom_cost(constants): r"""Return the number of Toffoli gates and the expansion factor needed to implement a QROM. The complexity of a QROM computation in the most general form is given by [`arXiv:2011.03494 <https://arxiv.org/abs/2011.03494>`_] .. math:: \text{cost} = \left \lceil \frac{a + b}{k} \right \rceil + \left \lceil \frac{c}{k} \right \rceil + d \left ( k + e \right ), where :math:`a, b, c, d, e` are constants that depend on the nature of the QROM implementation and the expansion factor :math:`k` is an integer power of two, :math:`k = 2^n`, that minimizes the cost. This function computes the optimum :math:`k` and the minimum cost for a QROM specification. To obtain the optimum values of :math:`k`, we first assume that the cost function is continues and use differentiation to obtain the value of :math:`k` that minimizes the cost. This value of :math:`k` is not necessarily an integer power of 2. We then obtain the value of :math:`n` as :math:`n = \log_2(k)` and compute the cost for :math:`n_{int}= \left \{\left \lceil n \right \rceil, \left \lfloor n \right \rfloor \right \}`. The value of :math:`n_{int}` that gives the smaller cost is used to compute the optimim :math:`k`. Args: constants (tuple[float]): constants determining a QROM Returns: tuple(int, int): the cost and the expansion factor for the QROM **Example** >>> constants = (151.0, 7.0, 151.0, 30.0, -1.0) >>> cost_qrom(constants) 168, 4 """ a, b, c, d, e = constants n = np.log2(((a + b + c) / d) ** 0.5) k = np.array([2 ** np.floor(n), 2 ** np.ceil(n)]) cost = np.ceil((a + b) / k) + np.ceil(c / k) + d * (k + e) return int(cost[np.argmin(cost)]), int(k[np.argmin(cost)])
def qrom_cost(constants): r"""Return the number of Toffoli gates and the expansion factor needed to implement a QROM. The complexity of a QROM computation in the most general form is given by [`arXiv:2011.03494 <https://arxiv.org/abs/2011.03494>`_] .. math:: \text{cost} = \left \lceil \frac{a + b}{k} \right \rceil + \left \lceil \frac{c}{k} \right \rceil + d \left ( k + e \right ), where :math:`a, b, c, d, e` are constants that depend on the nature of the QROM implementation and :math:`k=2^n` is an expansion factor that minimizes the cost. This function computes the optimum :math:`k` and the minimum cost for a QROM specification. To obtain the optimum values of :math:`k`, we first assume that the cost function is continues and use differentiation to obtain the value of :math:`k` that minimizes the cost. This value of :math:`k` is not necessarily an integer power of 2. We then obtain the value of :math:`n` as :math:`n = \log_2(k)` and compute the cost for :math:`n_{int}= \left \{\left \lceil n \right \rceil, \left \lfloor n \right \rfloor \right \}`. The value of :math:`n_{int}` that gives the smaller cost is used to compute the optimim :math:`k`. Args: constants (tuple[float]): constants determining a QROM Returns: tuple(int, int): the cost and the expansion factor for the QROM **Example** >>> constants = (151.0, 7.0, 151.0, 30.0, -1.0) >>> cost_qrom(constants) 168, 4 """ a, b, c, d, e = constants n = np.log2(((a + b + c) / d) ** 0.5) k = np.array([2 ** np.floor(n), 2 ** np.ceil(n)]) cost = np.ceil((a + b) / k) + np.ceil(c / k) + d * (k + e) return int(cost[np.argmin(cost)]), int(k[np.argmin(cost)])
31,555
def build_member_data(result: dict, readable_output: str, printable_result: dict): """helper function. Builds the member data for group endpoints.""" members = result.get('members') members_printable_result = [] if members: for member in members: current_object_data = {'member-name': member.get('name'), 'member-uid': member.get('uid'), 'member-type': member.get('type') } if member.get('ipv4-address'): current_object_data['member-ipv4-address'] = member.get('ipv4-address') if member.get('ipv6-address'): current_object_data['member-ipv6-address'] = member.get('ipv6-address') member_domain = member.get('domain') if member_domain: current_object_data.update({'member-domain-name': member_domain.get('name'), 'member-domain-uid': member_domain.get('uid'), 'member-domain-type': member_domain.get('type'), }) members_printable_result.append(current_object_data) printable_result['members'] = members_printable_result member_readable_output = tableToMarkdown('CheckPoint member data:', members_printable_result, ['member-name', 'member-uid', 'member-type''member-ipv4-address', 'member-ipv6-address', 'member-domain-name', 'member-domain-uid'], removeNull=True) readable_output = readable_output + member_readable_output return readable_output, printable_result
def build_member_data(result: dict, readable_output: str, printable_result: dict): """helper function. Builds the member data for group endpoints.""" members = result.get('members') members_printable_result = [] if members: for member in members: current_object_data = {'member-name': member.get('name'), 'member-uid': member.get('uid'), 'member-type': member.get('type') } if member.get('ipv4-address'): current_object_data['member-ipv4-address'] = member.get('ipv4-address') if member.get('ipv6-address'): current_object_data['member-ipv6-address'] = member.get('ipv6-address') member_domain = member.get('domain') if member_domain: current_object_data.update({'member-domain-name': member_domain.get('name'), 'member-domain-uid': member_domain.get('uid'), 'member-domain-type': member_domain.get('type'), }) members_printable_result.append(current_object_data) printable_result['members'] = members_printable_result member_readable_output = tableToMarkdown('CheckPoint member data:', members_printable_result, ['member-name', 'member-uid', 'member-type', 'member-ipv4-address', 'member-ipv6-address', 'member-domain-name', 'member-domain-uid'], removeNull=True) readable_output = readable_output + member_readable_output return readable_output, printable_result
29,742
def _ffmpeg_call(infile, output, fmt='f32le', sample_rate=None, num_channels=1, skip=None, max_len=None, cmd='ffmpeg', rg_mode=None, rg_preamp_db=0.0): """ Create a sequence of strings indicating ffmpeg how to be called as well as the parameters necessary to decode the given input (file) to the given format, at the given offset and for the given length to the given output. Parameters ---------- infile : str Name of the audio sound file to decode. output : str Where to decode to. fmt : {'f32le', 's16le'}, optional Format of the samples: - 'f32le' for float32, little-endian, - 's16le' for signed 16-bit int, little-endian. sample_rate : int, optional Sample rate to re-sample the signal to (if set) [Hz]. num_channels : int, optional Number of channels to reduce the signal to. skip : float, optional Number of seconds to skip at beginning of file. max_len : float, optional Maximum length in seconds to decode. cmd : {'ffmpeg','avconv'}, optional Decoding command (defaults to ffmpeg, alternatively supports avconv). rg_mode : {'track','album', None}, optional Specify the ReplayGain volume-levelling mode (None to disable). rg_preamp_db : float, optional Increase the volume by this many dB after applying ReplayGain tags. Returns ------- list ffmpeg call. Notes ----- 'avconv' rounds decoding positions and decodes in blocks of 4096 length resulting in incorrect start and stop positions. Thus it should only be used to decode complete files. """ # Note: avconv rounds decoding positions and decodes in blocks of 4096 # length resulting in incorrect start and stop positions if cmd == 'avconv' and skip is not None and max_len is not None: raise RuntimeError('avconv has a bug, which results in wrong audio ' 'slices! Decode the audio files to .wav first or ' 'use ffmpeg.') # input type handling if isinstance(infile, Signal): in_fmt = _ffmpeg_fmt(infile.dtype) in_ac = str(int(infile.num_channels)) in_ar = str(int(infile.sample_rate)) infile = str("pipe:0") else: infile = str(infile) # general options call = [cmd, "-v", "quiet", "-y"] # input options if skip: # use "%f" to avoid scientific float notation call.extend(["-ss", "%f" % float(skip)]) # if we decode from STDIN, the format must be specified if infile == "pipe:0": call.extend(["-f", in_fmt, "-ac", in_ac, "-ar", in_ar]) call.extend(["-i", infile]) if rg_mode: audio_filter = ("volume=replaygain=%s:replaygain_preamp=%.1f" % (rg_mode, rg_preamp_db)) call.extend(["-af", audio_filter]) # output options call.extend(["-f", str(fmt)]) if max_len: # use "%f" to avoid scientific float notation call.extend(["-t", "%f" % float(max_len)]) # output options if num_channels: call.extend(["-ac", str(int(num_channels))]) if sample_rate: call.extend(["-ar", str(int(sample_rate))]) call.append(output) return call
def _ffmpeg_call(infile, output, fmt='f32le', sample_rate=None, num_channels=1, skip=None, max_len=None, cmd='ffmpeg', rg_mode=None, rg_preamp_db=0.0): """ Create a sequence of strings indicating ffmpeg how to be called as well as the parameters necessary to decode the given input (file) to the given format, at the given offset and for the given length to the given output. Parameters ---------- infile : str Name of the audio sound file to decode. output : str Where to decode to. fmt : {'f32le', 's16le'}, optional Format of the samples: - 'f32le' for float32, little-endian, - 's16le' for signed 16-bit int, little-endian. sample_rate : int, optional Sample rate to re-sample the signal to (if set) [Hz]. num_channels : int, optional Number of channels to reduce the signal to. skip : float, optional Number of seconds to skip at beginning of file. max_len : float, optional Maximum length in seconds to decode. cmd : {'ffmpeg','avconv'}, optional Decoding command (defaults to ffmpeg, alternatively supports avconv). replaygain_mode : {'None', 'track','album'}, optional Specify the ReplayGain volume-levelling mode (None to disable). rg_preamp_db : float, optional Increase the volume by this many dB after applying ReplayGain tags. Returns ------- list ffmpeg call. Notes ----- 'avconv' rounds decoding positions and decodes in blocks of 4096 length resulting in incorrect start and stop positions. Thus it should only be used to decode complete files. """ # Note: avconv rounds decoding positions and decodes in blocks of 4096 # length resulting in incorrect start and stop positions if cmd == 'avconv' and skip is not None and max_len is not None: raise RuntimeError('avconv has a bug, which results in wrong audio ' 'slices! Decode the audio files to .wav first or ' 'use ffmpeg.') # input type handling if isinstance(infile, Signal): in_fmt = _ffmpeg_fmt(infile.dtype) in_ac = str(int(infile.num_channels)) in_ar = str(int(infile.sample_rate)) infile = str("pipe:0") else: infile = str(infile) # general options call = [cmd, "-v", "quiet", "-y"] # input options if skip: # use "%f" to avoid scientific float notation call.extend(["-ss", "%f" % float(skip)]) # if we decode from STDIN, the format must be specified if infile == "pipe:0": call.extend(["-f", in_fmt, "-ac", in_ac, "-ar", in_ar]) call.extend(["-i", infile]) if rg_mode: audio_filter = ("volume=replaygain=%s:replaygain_preamp=%.1f" % (rg_mode, rg_preamp_db)) call.extend(["-af", audio_filter]) # output options call.extend(["-f", str(fmt)]) if max_len: # use "%f" to avoid scientific float notation call.extend(["-t", "%f" % float(max_len)]) # output options if num_channels: call.extend(["-ac", str(int(num_channels))]) if sample_rate: call.extend(["-ar", str(int(sample_rate))]) call.append(output) return call
13,186
def parse_cli_args(): """ Parse the command line arguments """ # get config paths home_path = Path.home() xdg_home_path = Path(os.environ.get("XDG_CONFIG_HOME", home_path / ".config")) xdg_dirs_path = Path(os.environ.get("XDG_CONFIG_DIRS", "/etc/xdg")) # get window manager with Path(os.devnull).open("w") as devnull: if subprocess.call(["pgrep", "i3"], stdout=devnull) == 0: wm = "i3" else: wm = "sway" # i3status config file default detection # respect i3status' file detection order wrt issue #43 i3status_config_file_candidates = [ xdg_home_path / "py3status/config", xdg_home_path / "i3status/config", xdg_home_path / "i3/i3status.conf", # custom home_path / ".i3status.conf", home_path / ".i3/i3status.conf", # custom xdg_dirs_path / "i3status/config", Path("/etc/i3status.conf"), ] for path in i3status_config_file_candidates: if path.exists(): i3status_config_file_default = path break else: # if files does not exists, defaults to ~/.i3/i3status.conf i3status_config_file_default = i3status_config_file_candidates[3] class Parser(argparse.ArgumentParser): # print usages and exit on errors def error(self, message): print(f"\x1b[1;31merror: \x1b[0m{message}") self.print_help() self.exit(1) # hide choices on errors def _check_value(self, action, value): if action.choices is not None and value not in action.choices: raise argparse.ArgumentError(action, f"invalid choice: '{value}'") class HelpFormatter(argparse.ArgumentDefaultsHelpFormatter): def _format_action_invocation(self, action): metavar = self._format_args(action, action.dest.upper()) return "{} {}".format(", ".join(action.option_strings), metavar) # command line options parser = Parser( description="The agile, python-powered, i3status wrapper", formatter_class=HelpFormatter, ) parser.add_argument( "-b", "--dbus-notify", action="store_true", dest="dbus_notify", help="send notifications via dbus instead of i3-nagbar", ) parser.add_argument( "-c", "--config", action="store", default=i3status_config_file_default, dest="i3status_config_path", help="load config", metavar="FILE", type=Path, ) parser.add_argument( "-d", "--debug", action="store_true", help="enable debug logging in syslog or log file if --log-file option is passed", ) parser.add_argument( "-g", "--gevent", action="store_true", dest="gevent", help="enable gevent monkey patching", ) parser.add_argument( "-i", "--include", action="append", dest="include_paths", help="append additional user-defined module paths", metavar="PATH", type=Path, ) parser.add_argument( "-l", "--log-file", action="store", dest="log_file", help="enable logging to FILE, this option is not set", metavar="FILE", type=Path, ) parser.add_argument( "-s", "--standalone", action="store_true", dest="standalone", help="run py3status without i3status", ) parser.add_argument( "-t", "--timeout", action="store", default=60, dest="cache_timeout", help="default module cache timeout in seconds", metavar="INT", type=int, ) parser.add_argument( "-m", "--disable-click-events", action="store_true", dest="disable_click_events", help="disable all click events", ) parser.add_argument( "-u", "--i3status", action="store", default=which("i3status") or "i3status", dest="i3status_path", help="specify i3status path", metavar="PATH", type=Path, ) parser.add_argument( "-v", "--version", action="store_true", dest="print_version", help="show py3status version and exit", ) parser.add_argument( "--wm", action="store", # add comment to preserve formatting dest="wm", metavar="WINDOW_MANAGER", default=wm, choices=["i3", "sway"], help="specify window manager i3 or sway", ) # deprecations parser.add_argument("-n", "--interval", help=argparse.SUPPRESS) # parse options, command, etc options = parser.parse_args() # make versions options.python_version = python_version() options.version = version if options.print_version: msg = "py3status version {version} (python {python_version}) on {wm}" print(msg.format(**vars(options))) parser.exit() # get wm options.wm_name = options.wm options.wm = { "i3": {"msg": "i3-msg", "nag": "i3-nagbar"}, "sway": {"msg": "swaymsg", "nag": "swaynag"}, }[options.wm] # make include path to search for user modules if None if not options.include_paths: options.include_paths = [ xdg_home_path / "py3status/modules", xdg_home_path / "i3status/py3status", xdg_home_path / "i3/py3status", home_path / ".i3/py3status", ] include_paths = [] for path in options.include_paths: path = path.resolve() if path.is_dir() and any(path.iterdir()): include_paths.append(path) options.include_paths = include_paths # defaults del options.interval del options.print_version options.minimum_interval = 0.1 # minimum module update interval options.click_events = not options.__dict__.pop("disable_click_events") # all done return options
def parse_cli_args(): """ Parse the command line arguments """ # get config paths home_path = Path.home() xdg_home_path = Path(os.environ.get("XDG_CONFIG_HOME", home_path / ".config")) xdg_dirs_path = Path(os.environ.get("XDG_CONFIG_DIRS", "/etc/xdg")) # get window manager with Path(os.devnull).open("w") as devnull: if subprocess.call(["pgrep", "i3"], stdout=devnull) == 0: wm = "i3" else: wm = "sway" # i3status config file default detection # respect i3status' file detection order wrt issue #43 i3status_config_file_candidates = [ xdg_home_path / "py3status/config", xdg_home_path / "i3status/config", xdg_home_path / "i3/i3status.conf", # custom home_path / ".i3status.conf", home_path / ".i3/i3status.conf", # custom xdg_dirs_path / "i3status/config", Path("/etc/i3status.conf"), ] for path in i3status_config_file_candidates: if path.exists(): i3status_config_file_default = path break else: # if files does not exists, defaults to ~/.i3/i3status.conf i3status_config_file_default = i3status_config_file_candidates[3] class Parser(argparse.ArgumentParser): # print usages and exit on errors def error(self, message): print(f"\x1b[1;31merror: \x1b[0m{message}") self.print_help() self.exit(1) # hide choices on errors def _check_value(self, action, value): if action.choices is not None and value not in action.choices: raise argparse.ArgumentError(action, f"invalid choice: '{value}'") class HelpFormatter(argparse.ArgumentDefaultsHelpFormatter): def _format_action_invocation(self, action): metavar = self._format_args(action, action.dest.upper()) return "{} {}".format(", ".join(action.option_strings), metavar) # command line options parser = Parser( description="The agile, python-powered, i3status wrapper", formatter_class=HelpFormatter, ) parser.add_argument( "-b", "--dbus-notify", action="store_true", dest="dbus_notify", help="send notifications via dbus instead of i3-nagbar", ) parser.add_argument( "-c", "--config", action="store", default=i3status_config_file_default, dest="i3status_config_path", help="load config", metavar="FILE", type=Path, ) parser.add_argument( "-d", "--debug", action="store_true", help="enable debug logging in syslog or log file if --log-file option is passed", ) parser.add_argument( "-g", "--gevent", action="store_true", dest="gevent", help="enable gevent monkey patching", ) parser.add_argument( "-i", "--include", action="append", dest="include_paths", help="append additional user-defined module paths", metavar="PATH", type=Path, ) parser.add_argument( "-l", "--log-file", action="store", dest="log_file", help="enable logging to FILE (this option is not set by default)", metavar="FILE", type=Path, ) parser.add_argument( "-s", "--standalone", action="store_true", dest="standalone", help="run py3status without i3status", ) parser.add_argument( "-t", "--timeout", action="store", default=60, dest="cache_timeout", help="default module cache timeout in seconds", metavar="INT", type=int, ) parser.add_argument( "-m", "--disable-click-events", action="store_true", dest="disable_click_events", help="disable all click events", ) parser.add_argument( "-u", "--i3status", action="store", default=which("i3status") or "i3status", dest="i3status_path", help="specify i3status path", metavar="PATH", type=Path, ) parser.add_argument( "-v", "--version", action="store_true", dest="print_version", help="show py3status version and exit", ) parser.add_argument( "--wm", action="store", # add comment to preserve formatting dest="wm", metavar="WINDOW_MANAGER", default=wm, choices=["i3", "sway"], help="specify window manager i3 or sway", ) # deprecations parser.add_argument("-n", "--interval", help=argparse.SUPPRESS) # parse options, command, etc options = parser.parse_args() # make versions options.python_version = python_version() options.version = version if options.print_version: msg = "py3status version {version} (python {python_version}) on {wm}" print(msg.format(**vars(options))) parser.exit() # get wm options.wm_name = options.wm options.wm = { "i3": {"msg": "i3-msg", "nag": "i3-nagbar"}, "sway": {"msg": "swaymsg", "nag": "swaynag"}, }[options.wm] # make include path to search for user modules if None if not options.include_paths: options.include_paths = [ xdg_home_path / "py3status/modules", xdg_home_path / "i3status/py3status", xdg_home_path / "i3/py3status", home_path / ".i3/py3status", ] include_paths = [] for path in options.include_paths: path = path.resolve() if path.is_dir() and any(path.iterdir()): include_paths.append(path) options.include_paths = include_paths # defaults del options.interval del options.print_version options.minimum_interval = 0.1 # minimum module update interval options.click_events = not options.__dict__.pop("disable_click_events") # all done return options
34,065
def _ndarray_to_column(arr: np.ndarray) -> Union[pd.Series, List[np.ndarray]]: """Convert a NumPy ndarray into an appropriate column format for insertion into a pandas DataFrame. If conversion to a pandas Series fails (e.g. if the ndarray is multi-dimensional), fall back to a list of NumPy ndarrays. """ try: # Try to convert to Series, falling back to a list conversion if this fails # (e.g. if the ndarray is multi-dimensional. return pd.Series(arr) except ValueError: return list(arr)
def _ndarray_to_column(arr: np.ndarray) -> Union[pd.Series, List[np.ndarray]]: """Convert a NumPy ndarray into an appropriate column format for insertion into a pandas DataFrame. If conversion to a pandas Series fails (e.g. if the ndarray is multi-dimensional), fall back to a list of NumPy ndarrays. """ try: # Try to convert to Series, falling back to a list conversion if this fails # (e.g. if the ndarray is multi-dimensional). return pd.Series(arr) except ValueError: return list(arr)
58,945
def thermald_thread() -> NoReturn: pm = messaging.PubMaster(['deviceState']) pandaState_timeout = int(1000 * 2.5 * DT_TRML) # 2.5x the expected pandaState frequency pandaState_sock = messaging.sub_sock('pandaStates', timeout=pandaState_timeout) sm = messaging.SubMaster(["peripheralState", "gpsLocationExternal", "managerState"]) fan_speed = 0 count = 0 onroad_conditions = { "ignition": False, } startup_conditions: Dict[str, Any]= {} startup_conditions_prev: Dict[str, Any] = {} off_ts = None started_ts = None started_seen = False thermal_status = ThermalStatus.green usb_power = True network_type = NetworkType.none network_strength = NetworkStrength.unknown network_info = None modem_version = None registered_count = 0 nvme_temps = None modem_temps = None current_filter = FirstOrderFilter(0., CURRENT_TAU, DT_TRML) temp_filter = FirstOrderFilter(0., TEMP_TAU, DT_TRML) pandaState_prev = None should_start_prev = False in_car = False handle_fan = None is_uno = False ui_running_prev = False params = Params() power_monitor = PowerMonitoring() no_panda_cnt = 0 HARDWARE.initialize_hardware() thermal_config = HARDWARE.get_thermal_config() # TODO: use PI controller for UNO controller = PIController(k_p=0, k_i=2e-3, neg_limit=-80, pos_limit=0, rate=(1 / DT_TRML)) # Leave flag for loggerd to indicate device was left onroad if params.get_bool("IsOnroad"): params.put_bool("BootedOnroad", True) while True: pandaStates = messaging.recv_sock(pandaState_sock, wait=True) sm.update(0) peripheralState = sm['peripheralState'] msg = read_thermal(thermal_config) if pandaStates is not None and len(pandaStates.pandaStates) > 0: pandaState = pandaStates.pandaStates[0] # If we lose connection to the panda, wait 5 seconds before going offroad if pandaState.pandaType == log.PandaState.PandaType.unknown: no_panda_cnt += 1 if no_panda_cnt > DISCONNECT_TIMEOUT / DT_TRML: if onroad_conditions["ignition"]: cloudlog.error("Lost panda connection while onroad") onroad_conditions["ignition"] = False else: no_panda_cnt = 0 onroad_conditions["ignition"] = pandaState.ignitionLine or pandaState.ignitionCan in_car = pandaState.harnessStatus != log.PandaState.HarnessStatus.notConnected usb_power = peripheralState.usbPowerMode != log.PeripheralState.UsbPowerMode.client # Setup fan handler on first connect to panda if handle_fan is None and peripheralState.pandaType != log.PandaState.PandaType.unknown: is_uno = peripheralState.pandaType == log.PandaState.PandaType.uno if TICI: cloudlog.info("Setting up TICI fan handler") handle_fan = handle_fan_tici elif is_uno or PC: cloudlog.info("Setting up UNO fan handler") handle_fan = handle_fan_uno else: cloudlog.info("Setting up EON fan handler") setup_eon_fan() handle_fan = handle_fan_eon # Handle disconnect if pandaState_prev is not None: if pandaState.pandaType == log.PandaState.PandaType.unknown and \ pandaState_prev.pandaType != log.PandaState.PandaType.unknown: params.clear_all(ParamKeyType.CLEAR_ON_PANDA_DISCONNECT) pandaState_prev = pandaState # these are expensive calls. update every 10s if (count % int(10. / DT_TRML)) == 0: try: network_type = HARDWARE.get_network_type() network_strength = HARDWARE.get_network_strength(network_type) network_info = HARDWARE.get_network_info() # pylint: disable=assignment-from-none nvme_temps = HARDWARE.get_nvme_temperatures() modem_temps = HARDWARE.get_modem_temperatures() # Log modem version once if modem_version is None: modem_version = HARDWARE.get_modem_version() # pylint: disable=assignment-from-none if modem_version is not None: cloudlog.warning(f"Modem version: {modem_version}") if TICI and (network_info.get('state', None) == "REGISTERED"): registered_count += 1 else: registered_count = 0 if registered_count > 10: cloudlog.warning(f"Modem stuck in registered state {network_info}. nmcli conn up lte") os.system("nmcli conn up lte") registered_count = 0 except Exception: cloudlog.exception("Error getting network status") msg.deviceState.freeSpacePercent = get_available_percent(default=100.0) msg.deviceState.memoryUsagePercent = int(round(psutil.virtual_memory().percent)) msg.deviceState.cpuUsagePercent = [int(round(n)) for n in psutil.cpu_percent(percpu=True)] msg.deviceState.gpuUsagePercent = int(round(HARDWARE.get_gpu_usage_percent())) msg.deviceState.networkType = network_type msg.deviceState.networkStrength = network_strength if network_info is not None: msg.deviceState.networkInfo = network_info if nvme_temps is not None: msg.deviceState.nvmeTempC = nvme_temps if modem_temps is not None: msg.deviceState.modemTempC = modem_temps msg.deviceState.screenBrightnessPercent = HARDWARE.get_screen_brightness() msg.deviceState.batteryPercent = HARDWARE.get_battery_capacity() msg.deviceState.batteryCurrent = HARDWARE.get_battery_current() msg.deviceState.usbOnline = HARDWARE.get_usb_present() current_filter.update(msg.deviceState.batteryCurrent / 1e6) max_comp_temp = temp_filter.update( max(max(msg.deviceState.cpuTempC), msg.deviceState.memoryTempC, max(msg.deviceState.gpuTempC)) ) if handle_fan is not None: fan_speed = handle_fan(controller, max_comp_temp, fan_speed, onroad_conditions["ignition"]) msg.deviceState.fanSpeedPercentDesired = fan_speed is_offroad_for_5_min = (started_ts is None) and ((not started_seen) or (off_ts is None) or (sec_since_boot() - off_ts > 60 * 5)) if is_offroad_for_5_min and max_comp_temp > OFFROAD_DANGER_TEMP: # If device is offroad we want to cool down before going onroad # since going onroad increases load and can make temps go over 107 thermal_status = ThermalStatus.danger else: current_band = THERMAL_BANDS[thermal_status] band_idx = list(THERMAL_BANDS.keys()).index(thermal_status) if current_band.min_temp is not None and max_comp_temp < current_band.min_temp: thermal_status = list(THERMAL_BANDS.keys())[band_idx - 1] elif current_band.max_temp is not None and max_comp_temp > current_band.max_temp: thermal_status = list(THERMAL_BANDS.keys())[band_idx + 1] # **** starting logic **** # Ensure date/time are valid now = datetime.datetime.utcnow() startup_conditions["time_valid"] = (now.year > 2020) or (now.year == 2020 and now.month >= 10) set_offroad_alert_if_changed("Offroad_InvalidTime", (not startup_conditions["time_valid"])) startup_conditions["up_to_date"] = params.get("Offroad_ConnectivityNeeded") is None or params.get_bool("DisableUpdates") or params.get_bool("SnoozeUpdate") startup_conditions["not_uninstalling"] = not params.get_bool("DoUninstall") startup_conditions["accepted_terms"] = params.get("HasAcceptedTerms") == terms_version # with 2% left, we killall, otherwise the phone will take a long time to boot startup_conditions["free_space"] = msg.deviceState.freeSpacePercent > 2 startup_conditions["completed_training"] = params.get("CompletedTrainingVersion") == training_version or \ params.get_bool("Passive") startup_conditions["not_driver_view"] = not params.get_bool("IsDriverViewEnabled") startup_conditions["not_taking_snapshot"] = not params.get_bool("IsTakingSnapshot") # if any CPU gets above 107 or the battery gets above 63, kill all processes # controls will warn with CPU above 95 or battery above 60 onroad_conditions["device_temp_good"] = thermal_status < ThermalStatus.danger set_offroad_alert_if_changed("Offroad_TemperatureTooHigh", (not onroad_conditions["device_temp_good"])) if TICI: set_offroad_alert_if_changed("Offroad_StorageMissing", (not Path("/data/media").is_mount())) # Handle offroad/onroad transition should_start = all(onroad_conditions.values()) if started_ts is None: should_start = should_start and all(startup_conditions.values()) if should_start != should_start_prev or (count == 0): params.put_bool("IsOnroad", should_start) params.put_bool("IsOffroad", not should_start) HARDWARE.set_power_save(not should_start) if should_start: off_ts = None if started_ts is None: started_ts = sec_since_boot() started_seen = True else: if onroad_conditions["ignition"] and (startup_conditions != startup_conditions_prev): cloudlog.event("Startup blocked", startup_conditions=startup_conditions, onroad_conditions=onroad_conditions) started_ts = None if off_ts is None: off_ts = sec_since_boot() # Offroad power monitoring power_monitor.calculate(peripheralState, onroad_conditions["ignition"]) msg.deviceState.offroadPowerUsageUwh = power_monitor.get_power_used() msg.deviceState.carBatteryCapacityUwh = max(0, power_monitor.get_car_battery_capacity()) current_power_draw = HARDWARE.get_current_power_draw() # pylint: disable=assignment-from-none msg.deviceState.powerDrawW = current_power_draw if current_power_draw is not None else 0 # Check if we need to disable charging (handled by boardd) msg.deviceState.chargingDisabled = power_monitor.should_disable_charging(onroad_conditions["ignition"], in_car, off_ts) # Check if we need to shut down if power_monitor.should_shutdown(peripheralState, onroad_conditions["ignition"], in_car, off_ts, started_seen): cloudlog.info(f"shutting device down, offroad since {off_ts}") # TODO: add function for blocking cloudlog instead of sleep time.sleep(10) HARDWARE.shutdown() # If UI has crashed, set the brightness to reasonable non-zero value ui_running = "ui" in (p.name for p in sm["managerState"].processes if p.running) if ui_running_prev and not ui_running: HARDWARE.set_screen_brightness(20) ui_running_prev = ui_running msg.deviceState.chargingError = current_filter.x > 0. and msg.deviceState.batteryPercent < 90 # if current is positive, then battery is being discharged msg.deviceState.started = started_ts is not None msg.deviceState.startedMonoTime = int(1e9*(started_ts or 0)) last_ping = params.get("LastAthenaPingTime") if last_ping is not None: msg.deviceState.lastAthenaPingTime = int(last_ping) msg.deviceState.thermalStatus = thermal_status pm.send("deviceState", msg) if EON and not is_uno: set_offroad_alert_if_changed("Offroad_ChargeDisabled", (not usb_power)) should_start_prev = should_start startup_conditions_prev = startup_conditions.copy() # report to server once every 10 minutes if (count % int(600. / DT_TRML)) == 0: if EON and started_ts is None and msg.deviceState.memoryUsagePercent > 40: cloudlog.event("High offroad memory usage", mem=msg.deviceState.memoryUsagePercent) cloudlog.event("STATUS_PACKET", count=count, pandaStates=(strip_deprecated_keys(pandaStates.to_dict()) if pandaStates else None), peripheralState=strip_deprecated_keys(peripheralState.to_dict()), location=(strip_deprecated_keys(sm["gpsLocationExternal"].to_dict()) if sm.alive["gpsLocationExternal"] else None), deviceState=strip_deprecated_keys(msg.to_dict())) count += 1
def thermald_thread() -> NoReturn: pm = messaging.PubMaster(['deviceState']) pandaState_timeout = int(1000 * 2.5 * DT_TRML) # 2.5x the expected pandaState frequency pandaState_sock = messaging.sub_sock('pandaStates', timeout=pandaState_timeout) sm = messaging.SubMaster(["peripheralState", "gpsLocationExternal", "managerState"]) fan_speed = 0 count = 0 onroad_conditions = { "ignition": False, } startup_conditions: Dict[str, bool] = {} startup_conditions_prev: Dict[str, bool] = {} off_ts = None started_ts = None started_seen = False thermal_status = ThermalStatus.green usb_power = True network_type = NetworkType.none network_strength = NetworkStrength.unknown network_info = None modem_version = None registered_count = 0 nvme_temps = None modem_temps = None current_filter = FirstOrderFilter(0., CURRENT_TAU, DT_TRML) temp_filter = FirstOrderFilter(0., TEMP_TAU, DT_TRML) pandaState_prev = None should_start_prev = False in_car = False handle_fan = None is_uno = False ui_running_prev = False params = Params() power_monitor = PowerMonitoring() no_panda_cnt = 0 HARDWARE.initialize_hardware() thermal_config = HARDWARE.get_thermal_config() # TODO: use PI controller for UNO controller = PIController(k_p=0, k_i=2e-3, neg_limit=-80, pos_limit=0, rate=(1 / DT_TRML)) # Leave flag for loggerd to indicate device was left onroad if params.get_bool("IsOnroad"): params.put_bool("BootedOnroad", True) while True: pandaStates = messaging.recv_sock(pandaState_sock, wait=True) sm.update(0) peripheralState = sm['peripheralState'] msg = read_thermal(thermal_config) if pandaStates is not None and len(pandaStates.pandaStates) > 0: pandaState = pandaStates.pandaStates[0] # If we lose connection to the panda, wait 5 seconds before going offroad if pandaState.pandaType == log.PandaState.PandaType.unknown: no_panda_cnt += 1 if no_panda_cnt > DISCONNECT_TIMEOUT / DT_TRML: if onroad_conditions["ignition"]: cloudlog.error("Lost panda connection while onroad") onroad_conditions["ignition"] = False else: no_panda_cnt = 0 onroad_conditions["ignition"] = pandaState.ignitionLine or pandaState.ignitionCan in_car = pandaState.harnessStatus != log.PandaState.HarnessStatus.notConnected usb_power = peripheralState.usbPowerMode != log.PeripheralState.UsbPowerMode.client # Setup fan handler on first connect to panda if handle_fan is None and peripheralState.pandaType != log.PandaState.PandaType.unknown: is_uno = peripheralState.pandaType == log.PandaState.PandaType.uno if TICI: cloudlog.info("Setting up TICI fan handler") handle_fan = handle_fan_tici elif is_uno or PC: cloudlog.info("Setting up UNO fan handler") handle_fan = handle_fan_uno else: cloudlog.info("Setting up EON fan handler") setup_eon_fan() handle_fan = handle_fan_eon # Handle disconnect if pandaState_prev is not None: if pandaState.pandaType == log.PandaState.PandaType.unknown and \ pandaState_prev.pandaType != log.PandaState.PandaType.unknown: params.clear_all(ParamKeyType.CLEAR_ON_PANDA_DISCONNECT) pandaState_prev = pandaState # these are expensive calls. update every 10s if (count % int(10. / DT_TRML)) == 0: try: network_type = HARDWARE.get_network_type() network_strength = HARDWARE.get_network_strength(network_type) network_info = HARDWARE.get_network_info() # pylint: disable=assignment-from-none nvme_temps = HARDWARE.get_nvme_temperatures() modem_temps = HARDWARE.get_modem_temperatures() # Log modem version once if modem_version is None: modem_version = HARDWARE.get_modem_version() # pylint: disable=assignment-from-none if modem_version is not None: cloudlog.warning(f"Modem version: {modem_version}") if TICI and (network_info.get('state', None) == "REGISTERED"): registered_count += 1 else: registered_count = 0 if registered_count > 10: cloudlog.warning(f"Modem stuck in registered state {network_info}. nmcli conn up lte") os.system("nmcli conn up lte") registered_count = 0 except Exception: cloudlog.exception("Error getting network status") msg.deviceState.freeSpacePercent = get_available_percent(default=100.0) msg.deviceState.memoryUsagePercent = int(round(psutil.virtual_memory().percent)) msg.deviceState.cpuUsagePercent = [int(round(n)) for n in psutil.cpu_percent(percpu=True)] msg.deviceState.gpuUsagePercent = int(round(HARDWARE.get_gpu_usage_percent())) msg.deviceState.networkType = network_type msg.deviceState.networkStrength = network_strength if network_info is not None: msg.deviceState.networkInfo = network_info if nvme_temps is not None: msg.deviceState.nvmeTempC = nvme_temps if modem_temps is not None: msg.deviceState.modemTempC = modem_temps msg.deviceState.screenBrightnessPercent = HARDWARE.get_screen_brightness() msg.deviceState.batteryPercent = HARDWARE.get_battery_capacity() msg.deviceState.batteryCurrent = HARDWARE.get_battery_current() msg.deviceState.usbOnline = HARDWARE.get_usb_present() current_filter.update(msg.deviceState.batteryCurrent / 1e6) max_comp_temp = temp_filter.update( max(max(msg.deviceState.cpuTempC), msg.deviceState.memoryTempC, max(msg.deviceState.gpuTempC)) ) if handle_fan is not None: fan_speed = handle_fan(controller, max_comp_temp, fan_speed, onroad_conditions["ignition"]) msg.deviceState.fanSpeedPercentDesired = fan_speed is_offroad_for_5_min = (started_ts is None) and ((not started_seen) or (off_ts is None) or (sec_since_boot() - off_ts > 60 * 5)) if is_offroad_for_5_min and max_comp_temp > OFFROAD_DANGER_TEMP: # If device is offroad we want to cool down before going onroad # since going onroad increases load and can make temps go over 107 thermal_status = ThermalStatus.danger else: current_band = THERMAL_BANDS[thermal_status] band_idx = list(THERMAL_BANDS.keys()).index(thermal_status) if current_band.min_temp is not None and max_comp_temp < current_band.min_temp: thermal_status = list(THERMAL_BANDS.keys())[band_idx - 1] elif current_band.max_temp is not None and max_comp_temp > current_band.max_temp: thermal_status = list(THERMAL_BANDS.keys())[band_idx + 1] # **** starting logic **** # Ensure date/time are valid now = datetime.datetime.utcnow() startup_conditions["time_valid"] = (now.year > 2020) or (now.year == 2020 and now.month >= 10) set_offroad_alert_if_changed("Offroad_InvalidTime", (not startup_conditions["time_valid"])) startup_conditions["up_to_date"] = params.get("Offroad_ConnectivityNeeded") is None or params.get_bool("DisableUpdates") or params.get_bool("SnoozeUpdate") startup_conditions["not_uninstalling"] = not params.get_bool("DoUninstall") startup_conditions["accepted_terms"] = params.get("HasAcceptedTerms") == terms_version # with 2% left, we killall, otherwise the phone will take a long time to boot startup_conditions["free_space"] = msg.deviceState.freeSpacePercent > 2 startup_conditions["completed_training"] = params.get("CompletedTrainingVersion") == training_version or \ params.get_bool("Passive") startup_conditions["not_driver_view"] = not params.get_bool("IsDriverViewEnabled") startup_conditions["not_taking_snapshot"] = not params.get_bool("IsTakingSnapshot") # if any CPU gets above 107 or the battery gets above 63, kill all processes # controls will warn with CPU above 95 or battery above 60 onroad_conditions["device_temp_good"] = thermal_status < ThermalStatus.danger set_offroad_alert_if_changed("Offroad_TemperatureTooHigh", (not onroad_conditions["device_temp_good"])) if TICI: set_offroad_alert_if_changed("Offroad_StorageMissing", (not Path("/data/media").is_mount())) # Handle offroad/onroad transition should_start = all(onroad_conditions.values()) if started_ts is None: should_start = should_start and all(startup_conditions.values()) if should_start != should_start_prev or (count == 0): params.put_bool("IsOnroad", should_start) params.put_bool("IsOffroad", not should_start) HARDWARE.set_power_save(not should_start) if should_start: off_ts = None if started_ts is None: started_ts = sec_since_boot() started_seen = True else: if onroad_conditions["ignition"] and (startup_conditions != startup_conditions_prev): cloudlog.event("Startup blocked", startup_conditions=startup_conditions, onroad_conditions=onroad_conditions) started_ts = None if off_ts is None: off_ts = sec_since_boot() # Offroad power monitoring power_monitor.calculate(peripheralState, onroad_conditions["ignition"]) msg.deviceState.offroadPowerUsageUwh = power_monitor.get_power_used() msg.deviceState.carBatteryCapacityUwh = max(0, power_monitor.get_car_battery_capacity()) current_power_draw = HARDWARE.get_current_power_draw() # pylint: disable=assignment-from-none msg.deviceState.powerDrawW = current_power_draw if current_power_draw is not None else 0 # Check if we need to disable charging (handled by boardd) msg.deviceState.chargingDisabled = power_monitor.should_disable_charging(onroad_conditions["ignition"], in_car, off_ts) # Check if we need to shut down if power_monitor.should_shutdown(peripheralState, onroad_conditions["ignition"], in_car, off_ts, started_seen): cloudlog.info(f"shutting device down, offroad since {off_ts}") # TODO: add function for blocking cloudlog instead of sleep time.sleep(10) HARDWARE.shutdown() # If UI has crashed, set the brightness to reasonable non-zero value ui_running = "ui" in (p.name for p in sm["managerState"].processes if p.running) if ui_running_prev and not ui_running: HARDWARE.set_screen_brightness(20) ui_running_prev = ui_running msg.deviceState.chargingError = current_filter.x > 0. and msg.deviceState.batteryPercent < 90 # if current is positive, then battery is being discharged msg.deviceState.started = started_ts is not None msg.deviceState.startedMonoTime = int(1e9*(started_ts or 0)) last_ping = params.get("LastAthenaPingTime") if last_ping is not None: msg.deviceState.lastAthenaPingTime = int(last_ping) msg.deviceState.thermalStatus = thermal_status pm.send("deviceState", msg) if EON and not is_uno: set_offroad_alert_if_changed("Offroad_ChargeDisabled", (not usb_power)) should_start_prev = should_start startup_conditions_prev = startup_conditions.copy() # report to server once every 10 minutes if (count % int(600. / DT_TRML)) == 0: if EON and started_ts is None and msg.deviceState.memoryUsagePercent > 40: cloudlog.event("High offroad memory usage", mem=msg.deviceState.memoryUsagePercent) cloudlog.event("STATUS_PACKET", count=count, pandaStates=(strip_deprecated_keys(pandaStates.to_dict()) if pandaStates else None), peripheralState=strip_deprecated_keys(peripheralState.to_dict()), location=(strip_deprecated_keys(sm["gpsLocationExternal"].to_dict()) if sm.alive["gpsLocationExternal"] else None), deviceState=strip_deprecated_keys(msg.to_dict())) count += 1
8,668
def add_config_arguments(parser): """Add configuration related argument to a ``parser``. :param parser: Argument parser (or subparser) :type parser: argparse.ArgumentParser This function adds the proper argument to the ``parser`` given in order to have a standard way to define a configuration filename in all of Sopel's command line interfaces. This can be used on an argument parser, or an argument subparser, to handle these cases:: [sopel-command] -c [filename] [sopel-command] [action] -c [filename] Then, when the parser parses the command line arguments, it will expose a ``config`` option to be used to find and load Sopel's settings. """ parser.add_argument( '-c', '--config', default=None, metavar='filename', dest='config', help='Use a specific configuration file')
def add_config_arguments(parser): """Add configuration-related argument to a ``parser``. :param parser: Argument parser (or subparser) :type parser: argparse.ArgumentParser This function adds the proper argument to the ``parser`` given in order to have a standard way to define a configuration filename in all of Sopel's command line interfaces. This can be used on an argument parser, or an argument subparser, to handle these cases:: [sopel-command] -c [filename] [sopel-command] [action] -c [filename] Then, when the parser parses the command line arguments, it will expose a ``config`` option to be used to find and load Sopel's settings. """ parser.add_argument( '-c', '--config', default=None, metavar='filename', dest='config', help='Use a specific configuration file')
2,111
def test_array_function_not_called(): X = np.array([[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]) X = _NotAnArray(X) y = _NotAnArray([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2]) estimator = LogisticRegression() grid = GridSearchCV(estimator, param_grid={'C': [1, 10]}) cross_validate(grid, X, y, n_jobs=2)
def test_array_function_not_called(): X = np.array([[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]) X = _NotAnArray(X) y = _NotAnArray([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2]) estimator = LogisticRegression() cross_validate(estimator, X, y, cv=2)
48,519
def test_texture(): """Test adding texture coordinates""" # create a rectangle vertices vertices = np.array([[0, 0, 0], [1, 0, 0], [1, 0.5, 0], [0, 0.5, 0],]) # mesh faces faces = np.hstack([[3, 0, 1, 2], [3, 0, 3, 2]]).astype(np.int8) # Create simple texture coordinates t_coords = np.array([[0, 0], [1, 0], [1, 1], [0, 1]]) # Create the poly data mesh = pyvista.PolyData(vertices, faces) # Attempt setting the texture coordinates mesh.t_coords = t_coords # now grab the texture coordinates foo = mesh.t_coords assert np.allclose(foo, t_coords) texture = pyvista.read_texture(examples.mapfile) mesh.textures['map'] = texture assert mesh.textures['map'] is not None mesh.clear_textures() assert len(mesh.textures) == 0 mesh = examples.load_airplane() mesh.texture_map_to_plane(inplace=True, name="tex_a", use_bounds=False) mesh.texture_map_to_plane(inplace=True, name="tex_b", use_bounds=True) assert not np.allclose(mesh["tex_a"], mesh["tex_b"]) mesh.textures["tex_a"] = texture.copy() mesh.textures["tex_b"] = texture.copy() mesh._activate_texture("tex_a") assert np.allclose(mesh.t_coords, mesh["tex_a"]) mesh._activate_texture("tex_b") assert np.allclose(mesh.t_coords, mesh["tex_b"]) # Now test copying cmesh = mesh.copy() assert len(cmesh.textures) == 2 assert "tex_a" in cmesh.textures assert "tex_b" in cmesh.textures
def test_texture_airplane(): mesh = examples.load_airplane() mesh.texture_map_to_plane(inplace=True, name="tex_a", use_bounds=False) mesh.texture_map_to_plane(inplace=True, name="tex_b", use_bounds=True) assert not np.allclose(mesh["tex_a"], mesh["tex_b"]) mesh.textures["tex_a"] = texture.copy() mesh.textures["tex_b"] = texture.copy() mesh._activate_texture("tex_a") assert np.allclose(mesh.t_coords, mesh["tex_a"]) mesh._activate_texture("tex_b") assert np.allclose(mesh.t_coords, mesh["tex_b"]) # Now test copying cmesh = mesh.copy() assert len(cmesh.textures) == 2 assert "tex_a" in cmesh.textures assert "tex_b" in cmesh.textures
36,402
def get_layout(ns): def in_build(f, dest="", new_name=None): n, _, x = f.rpartition(".") n = new_name or n src = ns.build / f if ns.debug and src not in REQUIRED_DLLS: if not src.stem.endswith("_d"): src = src.parent / (src.stem + "_d" + src.suffix) if not n.endswith("_d"): n += "_d" f = n + "." + x yield dest + n + "." + x, src if ns.include_symbols: pdb = src.with_suffix(".pdb") if pdb.is_file(): yield dest + n + ".pdb", pdb if ns.include_dev: lib = src.with_suffix(".lib") if lib.is_file(): yield "libs/" + n + ".lib", lib if ns.include_appxmanifest: yield from in_build("python_uwp.exe", new_name="python{}".format(VER_DOT)) yield from in_build("pythonw_uwp.exe", new_name="pythonw{}".format(VER_DOT)) # For backwards compatibility, but we don't reference these ourselves yield from in_build("python_uwp.exe", new_name="python") yield from in_build("pythonw_uwp.exe", new_name="pythonw") else: yield from in_build("python.exe", new_name="python{}".format(VER_DOT)) yield from in_build("pythonw.exe", new_name="pythonw{}".format(VER_DOT)) # For backwards compatibility, but we don't reference these ourselves yield from in_build("python.exe", new_name="python") yield from in_build("pythonw.exe", new_name="pythonw") yield from in_build(PYTHON_DLL_NAME) if ns.include_launchers and ns.include_appxmanifest: if ns.include_pip: yield from in_build("python_uwp.exe", new_name="pip{}".format(VER_DOT)) if ns.include_idle: yield from in_build("pythonw_uwp.exe", new_name="idle{}".format(VER_DOT)) if ns.include_stable: yield from in_build(PYTHON_STABLE_DLL_NAME) for dest, src in rglob(ns.build, "vcruntime*.dll"): yield dest, src yield "LICENSE.txt", ns.build / "LICENSE.txt" for dest, src in rglob(ns.build, ("*.pyd", "*.dll")): if src.stem.endswith("_d") != bool(ns.debug) and src not in REQUIRED_DLLS: continue if src in EXCLUDE_FROM_PYDS: continue if src in TEST_PYDS_ONLY and not ns.include_tests: continue if src in TCLTK_PYDS_ONLY and not ns.include_tcltk: continue yield from in_build(src.name, dest="" if ns.flat_dlls else "DLLs/") if ns.zip_lib: zip_name = PYTHON_ZIP_NAME yield zip_name, ns.temp / zip_name else: for dest, src in get_lib_layout(ns): yield "Lib/{}".format(dest), src if ns.include_venv: yield from in_build("venvlauncher.exe", "Lib/venv/scripts/nt/", "python") yield from in_build("venvwlauncher.exe", "Lib/venv/scripts/nt/", "pythonw") if ns.include_tools: def _c(d): if d.is_dir(): return d in TOOLS_DIRS return d in TOOLS_FILES for dest, src in rglob(ns.source / "Tools", "**/*", _c): yield "Tools/{}".format(dest), src if ns.include_underpth: yield PYTHON_PTH_NAME, ns.temp / PYTHON_PTH_NAME if ns.include_dev: def _c(d): if d.is_dir(): return d.name != "internal" return True for dest, src in rglob(ns.source / "Include", "**/*.h", _c): yield "include/{}".format(dest), src src = ns.source / "PC" / "pyconfig.h" yield "include/pyconfig.h", src for dest, src in get_tcltk_lib(ns): yield dest, src if ns.include_pip: for dest, src in get_pip_layout(ns): if not isinstance(src, tuple) and ( src in EXCLUDE_FROM_LIB or src in EXCLUDE_FROM_PACKAGED_LIB ): continue yield dest, src if ns.include_chm: for dest, src in rglob(ns.doc_build / "htmlhelp", PYTHON_CHM_NAME): yield "Doc/{}".format(dest), src if ns.include_html_doc: for dest, src in rglob(ns.doc_build / "html", "**/*"): yield "Doc/html/{}".format(dest), src if ns.include_props: for dest, src in get_props_layout(ns): yield dest, src if ns.include_nuspec: for dest, src in get_nuspec_layout(ns): yield dest, src for dest, src in get_appx_layout(ns): yield dest, src if ns.include_cat: if ns.flat_dlls: yield ns.include_cat.name, ns.include_cat else: yield "DLLs/{}".format(ns.include_cat.name), ns.include_cat
def get_layout(ns): def in_build(f, dest="", new_name=None): n, _, x = f.rpartition(".") n = new_name or n src = ns.build / f if ns.debug and src not in REQUIRED_DLLS: if not src.stem.endswith("_d"): src = src.parent / (src.stem + "_d" + src.suffix) if not n.endswith("_d"): n += "_d" f = n + "." + x yield dest + n + "." + x, src if ns.include_symbols: pdb = src.with_suffix(".pdb") if pdb.is_file(): yield dest + n + ".pdb", pdb if ns.include_dev: lib = src.with_suffix(".lib") if lib.is_file(): yield "libs/" + n + ".lib", lib if ns.include_appxmanifest: yield from in_build("python_uwp.exe", new_name="python{}".format(VER_DOT)) yield from in_build("pythonw_uwp.exe", new_name="pythonw{}".format(VER_DOT)) # For backwards compatibility, but we don't reference these ourselves yield from in_build("python_uwp.exe", new_name="python") yield from in_build("pythonw_uwp.exe", new_name="pythonw") else: yield from in_build("python.exe", new_name="python{}".format(VER_DOT)) yield from in_build("pythonw.exe", new_name="pythonw{}".format(VER_DOT)) # For backwards compatibility, but we don't reference these ourselves. yield from in_build("python.exe", new_name="python") yield from in_build("pythonw.exe", new_name="pythonw") yield from in_build(PYTHON_DLL_NAME) if ns.include_launchers and ns.include_appxmanifest: if ns.include_pip: yield from in_build("python_uwp.exe", new_name="pip{}".format(VER_DOT)) if ns.include_idle: yield from in_build("pythonw_uwp.exe", new_name="idle{}".format(VER_DOT)) if ns.include_stable: yield from in_build(PYTHON_STABLE_DLL_NAME) for dest, src in rglob(ns.build, "vcruntime*.dll"): yield dest, src yield "LICENSE.txt", ns.build / "LICENSE.txt" for dest, src in rglob(ns.build, ("*.pyd", "*.dll")): if src.stem.endswith("_d") != bool(ns.debug) and src not in REQUIRED_DLLS: continue if src in EXCLUDE_FROM_PYDS: continue if src in TEST_PYDS_ONLY and not ns.include_tests: continue if src in TCLTK_PYDS_ONLY and not ns.include_tcltk: continue yield from in_build(src.name, dest="" if ns.flat_dlls else "DLLs/") if ns.zip_lib: zip_name = PYTHON_ZIP_NAME yield zip_name, ns.temp / zip_name else: for dest, src in get_lib_layout(ns): yield "Lib/{}".format(dest), src if ns.include_venv: yield from in_build("venvlauncher.exe", "Lib/venv/scripts/nt/", "python") yield from in_build("venvwlauncher.exe", "Lib/venv/scripts/nt/", "pythonw") if ns.include_tools: def _c(d): if d.is_dir(): return d in TOOLS_DIRS return d in TOOLS_FILES for dest, src in rglob(ns.source / "Tools", "**/*", _c): yield "Tools/{}".format(dest), src if ns.include_underpth: yield PYTHON_PTH_NAME, ns.temp / PYTHON_PTH_NAME if ns.include_dev: def _c(d): if d.is_dir(): return d.name != "internal" return True for dest, src in rglob(ns.source / "Include", "**/*.h", _c): yield "include/{}".format(dest), src src = ns.source / "PC" / "pyconfig.h" yield "include/pyconfig.h", src for dest, src in get_tcltk_lib(ns): yield dest, src if ns.include_pip: for dest, src in get_pip_layout(ns): if not isinstance(src, tuple) and ( src in EXCLUDE_FROM_LIB or src in EXCLUDE_FROM_PACKAGED_LIB ): continue yield dest, src if ns.include_chm: for dest, src in rglob(ns.doc_build / "htmlhelp", PYTHON_CHM_NAME): yield "Doc/{}".format(dest), src if ns.include_html_doc: for dest, src in rglob(ns.doc_build / "html", "**/*"): yield "Doc/html/{}".format(dest), src if ns.include_props: for dest, src in get_props_layout(ns): yield dest, src if ns.include_nuspec: for dest, src in get_nuspec_layout(ns): yield dest, src for dest, src in get_appx_layout(ns): yield dest, src if ns.include_cat: if ns.flat_dlls: yield ns.include_cat.name, ns.include_cat else: yield "DLLs/{}".format(ns.include_cat.name), ns.include_cat
54,785
def apply_twomode_gate(mat, state, pure, modes, n, trunc, gate="BSgate"): """Applies a two-mode gate to a state Applies the two-mode gate to the state using custom tensor contractions and the numba compiler for faster application. Args: mat (ndarray): The BS operator to be applied to the state state (ndarray): The state that the BS is applied to pure (bool): If the state is pure or mixed modes (list[int]): A list of modes to which the BS is applied n (int): The total number of modes trunc (int): The Hilbert space truncation/cutoff gate (str): the gate which should be called (BSgate, S2gate) Returns: ndarray: State where the two-mode operation has been applied """ if pure: t1 = modes[0] t2 = modes[1] # put the ket-values in front to be operated on in the apply function switch_list_1 = np.arange(n) switch_list_2 = np.arange(n) switch_list_1[[0, t1]] = switch_list_1[[t1, 0]] switch_list_2[[1, t2]] = switch_list_2[[t2, 1]] state = state.transpose(switch_list_1) state = state.transpose(switch_list_2) if gate == "BSgate": state = _apply_BS(mat, state, trunc) elif gate == "S2gate": state = _apply_S2(mat, state, trunc) else: raise NotImplementedError state = state.transpose(switch_list_2) ret = state.transpose(switch_list_1) else: t1 = 2 * modes[0] t2 = 2 * modes[1] # put the ket-values in front to be operated on in the apply function switch_list_1 = np.arange(2 * n) switch_list_2 = np.arange(2 * n) switch_list_1[[0, 1, t1, t1+1]] = switch_list_1[[t1, t1+1, 0, 1]] switch_list_2[[0, 1, t2, t2+1]] = switch_list_2[[t2, t2+1, 0, 1]] # put bra-values to the left, and ket-values to the right (ignoring values not operated on) transpose_list = np.arange(2 * n) transpose_list[[t1+1, t2]] = transpose_list[[t2, t1+1]] state = state.transpose(transpose_list) state = state.transpose(switch_list_1) if gate == "BSgate": state = _apply_BS(mat, state, trunc) state = state.transpose(switch_list_1) state = state.transpose(switch_list_2) state = _apply_BS(mat.conj(), state, trunc) elif gate == "S2gate": state = _apply_S2(mat, state, trunc) state = state.transpose(switch_list_1) state = state.transpose(switch_list_2) state = _apply_S2(mat.conj(), state, trunc) else: raise NotImplementedError state = state.transpose(switch_list_2) ret = state.transpose(transpose_list) return ret
def apply_twomode_gate(mat, state, pure, modes, n, trunc, gate="BSgate"): """Applies a two-mode gate to a state Applies the two-mode gate to the state using custom tensor contractions and the numba compiler for faster application. Args: mat (ndarray): The BS operator to be applied to the state state (ndarray): The state that the BS is applied to pure (bool): If the state is pure or mixed modes (list[int]): A list of modes to which the BS is applied n (int): The total number of modes trunc (int): The Hilbert space truncation/cutoff gate (str): The gate that is being applied. This argument determines the selection rules that are used. Options are ``"BSgate"`` and ``"S2gate"``. Returns: ndarray: State where the two-mode operation has been applied """ if pure: t1 = modes[0] t2 = modes[1] # put the ket-values in front to be operated on in the apply function switch_list_1 = np.arange(n) switch_list_2 = np.arange(n) switch_list_1[[0, t1]] = switch_list_1[[t1, 0]] switch_list_2[[1, t2]] = switch_list_2[[t2, 1]] state = state.transpose(switch_list_1) state = state.transpose(switch_list_2) if gate == "BSgate": state = _apply_BS(mat, state, trunc) elif gate == "S2gate": state = _apply_S2(mat, state, trunc) else: raise NotImplementedError state = state.transpose(switch_list_2) ret = state.transpose(switch_list_1) else: t1 = 2 * modes[0] t2 = 2 * modes[1] # put the ket-values in front to be operated on in the apply function switch_list_1 = np.arange(2 * n) switch_list_2 = np.arange(2 * n) switch_list_1[[0, 1, t1, t1+1]] = switch_list_1[[t1, t1+1, 0, 1]] switch_list_2[[0, 1, t2, t2+1]] = switch_list_2[[t2, t2+1, 0, 1]] # put bra-values to the left, and ket-values to the right (ignoring values not operated on) transpose_list = np.arange(2 * n) transpose_list[[t1+1, t2]] = transpose_list[[t2, t1+1]] state = state.transpose(transpose_list) state = state.transpose(switch_list_1) if gate == "BSgate": state = _apply_BS(mat, state, trunc) state = state.transpose(switch_list_1) state = state.transpose(switch_list_2) state = _apply_BS(mat.conj(), state, trunc) elif gate == "S2gate": state = _apply_S2(mat, state, trunc) state = state.transpose(switch_list_1) state = state.transpose(switch_list_2) state = _apply_S2(mat.conj(), state, trunc) else: raise NotImplementedError state = state.transpose(switch_list_2) ret = state.transpose(transpose_list) return ret
31,730
def get_employee_identity_analysis_genome_data_command(client, args): email_address = str(args.get('email_address', '')) response = client.get_employee_identity_analysis_genome_data_request(email_address) headers = [ 'description', 'key', 'name', 'values', ] markdown = tableToMarkdown( f"Analysis of {email_address}", response.get('histograms', []), headers=headers) command_results = CommandResults( readable_output=markdown, outputs_prefix='AbnormalSecurity.EmployeeIdentityDetails', outputs_key_field='', outputs=response, raw_response=response ) return command_results
def get_employee_identity_analysis_genome_data_command(client, args): email_address = str(args.get('email_address', '')) response = client.get_employee_identity_analysis_genome_data_request(email_address) headers = ['description', 'key', 'name', 'values'] markdown = tableToMarkdown( f"Analysis of {email_address}", response.get('histograms', []), headers=headers) command_results = CommandResults( readable_output=markdown, outputs_prefix='AbnormalSecurity.EmployeeIdentityDetails', outputs_key_field='', outputs=response, raw_response=response ) return command_results
22,076
def change_smb_enum_shares(table): """Adapt structured data from script smb-enum-shares so that it is easy to query when inserted in DB. """ if not table: return table result = {} for field in ["account_used", "note"]: if field in table: result[field] = table.pop(field) result["shares"] = [ dict(value, Share=key) for key, value in viewitems(table) ] result["Shares"] = xmlnmap.change_smb_enum_shares_migrate(table) return result
def change_smb_enum_shares(table): """Adapt structured data from script smb-enum-shares so that it is easy to query when inserted in DB. """ if not table: return table result = {} for field in ["account_used", "note"]: if field in table: result[field] = table.pop(field) result["shares"] = [ dict(value, Share=key) for key, value in viewitems(table) ] result["Shares"] = change_smb_enum_shares_migrate(table) return result
18,050
def get_attempts_str(wait_time, nattempts): attempts = 'attempt' if nattempts == 1 else 'attempts' if nattempts > 1: attempts_part = ' after {0:0.2f}s and {1:d} {2}'.format( wait_time, nattempts, attempts) else: # Dont print anything if we succeeded immediately attempts_part = '' return attempts_part
def get_attempts_str(wait_time, nattempts): attempts = 'attempt' if nattempts == 1 else 'attempts' if nattempts >= 1: attempts_part = ' after {0:0.2f}s and {1:d} {2}'.format( wait_time, nattempts, attempts) else: # Dont print anything if we succeeded immediately attempts_part = '' return attempts_part
5,754
def basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5, minimizer_kwargs=None, take_step=None, accept_test=None, callback=None, interval=50, disp=False, niter_success=None, seed=None, accept_rate=0.5, factor=0.9): """Find the global minimum of a function using the basin-hopping algorithm. Basin-hopping is a two-phase method that combines a global stepping algorithm with local minimization at each step. Designed to mimic the natural process of energy minimization of clusters of atoms, it works well for similar problems with "funnel-like, but rugged" energy landscapes [5]_. As the step-taking, step acceptance, and minimization methods are all customizable, this function can also be used to implement other two-phase methods. Parameters ---------- func : callable ``f(x, *args)`` Function to be optimized. ``args`` can be passed as an optional item in the dict ``minimizer_kwargs`` x0 : array_like Initial guess. niter : integer, optional The number of basin-hopping iterations. There will be a total of ``niter + 1`` runs of the local minimizer. T : float, optional The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results ``T`` should be comparable to the separation (in function value) between local minima. stepsize : float, optional Maximum step size for use in the random displacement. minimizer_kwargs : dict, optional Extra keyword arguments to be passed to the local minimizer ``scipy.optimize.minimize()`` Some important options could be: method : str The minimization method (e.g. ``"L-BFGS-B"``) args : tuple Extra arguments passed to the objective function (``func``) and its derivatives (Jacobian, Hessian). take_step : callable ``take_step(x)``, optional Replace the default step-taking routine with this routine. The default step-taking routine is a random displacement of the coordinates, but other step-taking algorithms may be better for some systems. ``take_step`` can optionally have the attribute ``take_step.stepsize``. If this attribute exists, then ``basinhopping`` will adjust ``take_step.stepsize`` in order to try to optimize the global minimum search. accept_test : callable, ``accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old)``, optional Define a test which will be used to judge whether or not to accept the step. This will be used in addition to the Metropolis test based on "temperature" ``T``. The acceptable return values are True, False, or ``"force accept"``. If any of the tests return False then the step is rejected. If the latter, then this will override any other tests in order to accept the step. This can be used, for example, to forcefully escape from a local minimum that ``basinhopping`` is trapped in. callback : callable, ``callback(x, f, accept)``, optional A callback function which will be called for all minima found. ``x`` and ``f`` are the coordinates and function value of the trial minimum, and ``accept`` is whether or not that minimum was accepted. This can be used, for example, to save the lowest N minima found. Also, ``callback`` can be used to specify a user defined stop criterion by optionally returning True to stop the ``basinhopping`` routine. interval : integer, optional interval for how often to update the ``stepsize`` disp : bool, optional Set to True to print status messages niter_success : integer, optional Stop the run if the global minimum candidate remains the same for this number of iterations. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Specify `seed` for repeatable minimizations. The random numbers generated with this seed only affect the default Metropolis `accept_test` and the default `take_step`. If you supply your own `take_step` and `accept_test`, and these functions use random number generation, then those functions are responsible for the state of their random number generator. accept_rate : float, optional The target acceptance rate that is used to adjust the ``stepsize``. If the current acceptance rate is greater than the target, then the ``stepsize`` is increased. Otherwise, it is decreased. Default is 0.5. factor : float, optional The ``stepsize`` is multiplied or divided by this factor upon each update. Default is 0.9. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``fun`` the value of the function at the solution, and ``message`` which describes the cause of the termination. The ``OptimizeResult`` object returned by the selected minimizer at the lowest minimum is also contained within this object and can be accessed through the ``lowest_optimization_result`` attribute. See `OptimizeResult` for a description of other attributes. See Also -------- minimize : The local minimization function called once for each basinhopping step. ``minimizer_kwargs`` is passed to this routine. Notes ----- Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a smooth scalar function of one or more variables [1]_ [2]_ [3]_ [4]_. The algorithm in its current form was described by David Wales and Jonathan Doye [2]_ http://www-wales.ch.cam.ac.uk/. The algorithm is iterative with each cycle composed of the following features 1) random perturbation of the coordinates 2) local minimization 3) accept or reject the new coordinates based on the minimized function value The acceptance test used here is the Metropolis criterion of standard Monte Carlo algorithms, although there are many other possibilities [3]_. This global minimization method has been shown to be extremely efficient for a wide variety of problems in physics and chemistry. It is particularly useful when the function has many minima separated by large barriers. See the Cambridge Cluster Database http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular systems that have been optimized primarily using basin-hopping. This database includes minimization problems exceeding 300 degrees of freedom. See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for a Fortran implementation of basin-hopping. This implementation has many different variations of the procedure described above, including more advanced step taking algorithms and alternate acceptance criterion. For stochastic global optimization there is no way to determine if the true global minimum has actually been found. Instead, as a consistency check, the algorithm can be run from a number of different random starting points to ensure the lowest minimum found in each example has converged to the global minimum. For this reason, ``basinhopping`` will by default simply run for the number of iterations ``niter`` and return the lowest minimum found. It is left to the user to ensure that this is in fact the global minimum. Choosing ``stepsize``: This is a crucial parameter in ``basinhopping`` and depends on the problem being solved. The step is chosen uniformly in the region from x0-stepsize to x0+stepsize, in each dimension. Ideally, it should be comparable to the typical separation (in argument values) between local minima of the function being optimized. ``basinhopping`` will, by default, adjust ``stepsize`` to find an optimal value, but this may take many iterations. You will get quicker results if you set a sensible initial value for ``stepsize``. Choosing ``T``: The parameter ``T`` is the "temperature" used in the Metropolis criterion. Basinhopping steps are always accepted if ``func(xnew) < func(xold)``. Otherwise, they are accepted with probability:: exp( -(func(xnew) - func(xold)) / T ) So, for best results, ``T`` should to be comparable to the typical difference (in function values) between local minima. (The height of "walls" between local minima is irrelevant.) If ``T`` is 0, the algorithm becomes Monotonic Basin-Hopping, in which all steps that increase energy are rejected. .. versionadded:: 0.12.0 References ---------- .. [1] Wales, David J. 2003, Energy Landscapes, Cambridge University Press, Cambridge, UK. .. [2] Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111. .. [3] Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA, 1987, 84, 6611. .. [4] Wales, D. J. and Scheraga, H. A., Global optimization of clusters, crystals, and biomolecules, Science, 1999, 285, 1368. .. [5] Olson, B., Hashmi, I., Molloy, K., and Shehu1, A., Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules, Advances in Artificial Intelligence, Volume 2012 (2012), Article ID 674832, :doi:`10.1155/2012/674832` Examples -------- The following example is a 1-D minimization problem, with many local minima superimposed on a parabola. >>> from scipy.optimize import basinhopping >>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x >>> x0=[1.] Basinhopping, internally, uses a local minimization algorithm. We will use the parameter ``minimizer_kwargs`` to tell basinhopping which algorithm to use and how to set up that minimizer. This parameter will be passed to ``scipy.optimize.minimize()``. >>> minimizer_kwargs = {"method": "BFGS"} >>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs, ... niter=200) >>> print("global minimum: x = %.4f, f(x0) = %.4f" % (ret.x, ret.fun)) global minimum: x = -0.1951, f(x0) = -1.0009 Next consider a 2-D minimization problem. Also, this time, we will use gradient information to significantly speed up the search. >>> def func2d(x): ... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + ... 0.2) * x[0] ... df = np.zeros(2) ... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2 ... df[1] = 2. * x[1] + 0.2 ... return f, df We'll also use a different local minimization algorithm. Also, we must tell the minimizer that our function returns both energy and gradient (Jacobian). >>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True} >>> x0 = [1.0, 1.0] >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=200) >>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0], ... ret.x[1], ... ret.fun)) global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109 Here is an example using a custom step-taking routine. Imagine you want the first coordinate to take larger steps than the rest of the coordinates. This can be implemented like so: >>> class MyTakeStep: ... def __init__(self, stepsize=0.5): ... self.stepsize = stepsize ... self.rng = np.random.default_rng() ... def __call__(self, x): ... s = self.stepsize ... x[0] += self.rng.uniform(-2.*s, 2.*s) ... x[1:] += self.rng.uniform(-s, s, x[1:].shape) ... return x Since ``MyTakeStep.stepsize`` exists basinhopping will adjust the magnitude of ``stepsize`` to optimize the search. We'll use the same 2-D function as before >>> mytakestep = MyTakeStep() >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=200, take_step=mytakestep) >>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0], ... ret.x[1], ... ret.fun)) global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109 Now, let's do an example using a custom callback function which prints the value of every minimum found >>> def print_fun(x, f, accepted): ... print("at minimum %.4f accepted %d" % (f, int(accepted))) We'll run it for only 10 basinhopping steps this time. >>> rng = np.random.default_rng() >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=10, callback=print_fun, seed=rng) at minimum 0.4159 accepted 1 at minimum -0.4317 accepted 1 at minimum -1.0109 accepted 1 at minimum -0.9073 accepted 1 at minimum -0.4317 accepted 0 at minimum -0.1021 accepted 1 at minimum -0.7425 accepted 1 at minimum -0.9073 accepted 1 at minimum -0.4317 accepted 0 at minimum -0.7425 accepted 1 at minimum -0.9073 accepted 1 The minimum at -1.0109 is actually the global minimum, found already on the 8th iteration. Now let's implement bounds on the problem using a custom ``accept_test``: >>> class MyBounds: ... def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1] ): ... self.xmax = np.array(xmax) ... self.xmin = np.array(xmin) ... def __call__(self, **kwargs): ... x = kwargs["x_new"] ... tmax = bool(np.all(x <= self.xmax)) ... tmin = bool(np.all(x >= self.xmin)) ... return tmax and tmin >>> mybounds = MyBounds() >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=10, accept_test=mybounds) """ x0 = np.array(x0) # set up the np.random generator rng = check_random_state(seed) # set up minimizer if minimizer_kwargs is None: minimizer_kwargs = dict() wrapped_minimizer = MinimizerWrapper(scipy.optimize.minimize, func, **minimizer_kwargs) # set up step-taking algorithm if take_step is not None: if not callable(take_step): raise TypeError("take_step must be callable") # if take_step.stepsize exists then use AdaptiveStepsize to control # take_step.stepsize if hasattr(take_step, "stepsize"): take_step_wrapped = AdaptiveStepsize(take_step, interval=interval, accept_rate=accept_rate, factor=factor, verbose=disp) else: take_step_wrapped = take_step else: # use default displace = RandomDisplacement(stepsize=stepsize, random_gen=rng) take_step_wrapped = AdaptiveStepsize(displace, interval=interval, accept_rate=accept_rate, factor=factor, verbose=disp) # set up accept tests accept_tests = [] if accept_test is not None: if not callable(accept_test): raise TypeError("accept_test must be callable") accept_tests = [accept_test] # use default metropolis = Metropolis(T, random_gen=rng) accept_tests.append(metropolis) if niter_success is None: niter_success = niter + 2 bh = BasinHoppingRunner(x0, wrapped_minimizer, take_step_wrapped, accept_tests, disp=disp) # The wrapped minimizer is called once during construction of # BasinHoppingRunner, so run the callback if callable(callback): callback(bh.storage.minres.x, bh.storage.minres.fun, True) # start main iteration loop count, i = 0, 0 message = ["requested number of basinhopping iterations completed" " successfully"] for i in range(niter): new_global_min = bh.one_cycle() if callable(callback): # should we pass a copy of x? val = callback(bh.xtrial, bh.energy_trial, bh.accept) if val is not None: if val: message = ["callback function requested stop early by" "returning True"] break count += 1 if new_global_min: count = 0 elif count > niter_success: message = ["success condition satisfied"] break # prepare return object res = bh.res res.lowest_optimization_result = bh.storage.get_lowest() res.x = np.copy(res.lowest_optimization_result.x) res.fun = res.lowest_optimization_result.fun res.message = message res.nit = i + 1 res.success = res.lowest_optimization_result.success return res
def basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5, minimizer_kwargs=None, take_step=None, accept_test=None, callback=None, interval=50, disp=False, niter_success=None, seed=None, *, accept_rate=0.5, factor=0.9): """Find the global minimum of a function using the basin-hopping algorithm. Basin-hopping is a two-phase method that combines a global stepping algorithm with local minimization at each step. Designed to mimic the natural process of energy minimization of clusters of atoms, it works well for similar problems with "funnel-like, but rugged" energy landscapes [5]_. As the step-taking, step acceptance, and minimization methods are all customizable, this function can also be used to implement other two-phase methods. Parameters ---------- func : callable ``f(x, *args)`` Function to be optimized. ``args`` can be passed as an optional item in the dict ``minimizer_kwargs`` x0 : array_like Initial guess. niter : integer, optional The number of basin-hopping iterations. There will be a total of ``niter + 1`` runs of the local minimizer. T : float, optional The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results ``T`` should be comparable to the separation (in function value) between local minima. stepsize : float, optional Maximum step size for use in the random displacement. minimizer_kwargs : dict, optional Extra keyword arguments to be passed to the local minimizer ``scipy.optimize.minimize()`` Some important options could be: method : str The minimization method (e.g. ``"L-BFGS-B"``) args : tuple Extra arguments passed to the objective function (``func``) and its derivatives (Jacobian, Hessian). take_step : callable ``take_step(x)``, optional Replace the default step-taking routine with this routine. The default step-taking routine is a random displacement of the coordinates, but other step-taking algorithms may be better for some systems. ``take_step`` can optionally have the attribute ``take_step.stepsize``. If this attribute exists, then ``basinhopping`` will adjust ``take_step.stepsize`` in order to try to optimize the global minimum search. accept_test : callable, ``accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old)``, optional Define a test which will be used to judge whether or not to accept the step. This will be used in addition to the Metropolis test based on "temperature" ``T``. The acceptable return values are True, False, or ``"force accept"``. If any of the tests return False then the step is rejected. If the latter, then this will override any other tests in order to accept the step. This can be used, for example, to forcefully escape from a local minimum that ``basinhopping`` is trapped in. callback : callable, ``callback(x, f, accept)``, optional A callback function which will be called for all minima found. ``x`` and ``f`` are the coordinates and function value of the trial minimum, and ``accept`` is whether or not that minimum was accepted. This can be used, for example, to save the lowest N minima found. Also, ``callback`` can be used to specify a user defined stop criterion by optionally returning True to stop the ``basinhopping`` routine. interval : integer, optional interval for how often to update the ``stepsize`` disp : bool, optional Set to True to print status messages niter_success : integer, optional Stop the run if the global minimum candidate remains the same for this number of iterations. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Specify `seed` for repeatable minimizations. The random numbers generated with this seed only affect the default Metropolis `accept_test` and the default `take_step`. If you supply your own `take_step` and `accept_test`, and these functions use random number generation, then those functions are responsible for the state of their random number generator. accept_rate : float, optional The target acceptance rate that is used to adjust the ``stepsize``. If the current acceptance rate is greater than the target, then the ``stepsize`` is increased. Otherwise, it is decreased. Default is 0.5. factor : float, optional The ``stepsize`` is multiplied or divided by this factor upon each update. Default is 0.9. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``fun`` the value of the function at the solution, and ``message`` which describes the cause of the termination. The ``OptimizeResult`` object returned by the selected minimizer at the lowest minimum is also contained within this object and can be accessed through the ``lowest_optimization_result`` attribute. See `OptimizeResult` for a description of other attributes. See Also -------- minimize : The local minimization function called once for each basinhopping step. ``minimizer_kwargs`` is passed to this routine. Notes ----- Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a smooth scalar function of one or more variables [1]_ [2]_ [3]_ [4]_. The algorithm in its current form was described by David Wales and Jonathan Doye [2]_ http://www-wales.ch.cam.ac.uk/. The algorithm is iterative with each cycle composed of the following features 1) random perturbation of the coordinates 2) local minimization 3) accept or reject the new coordinates based on the minimized function value The acceptance test used here is the Metropolis criterion of standard Monte Carlo algorithms, although there are many other possibilities [3]_. This global minimization method has been shown to be extremely efficient for a wide variety of problems in physics and chemistry. It is particularly useful when the function has many minima separated by large barriers. See the Cambridge Cluster Database http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular systems that have been optimized primarily using basin-hopping. This database includes minimization problems exceeding 300 degrees of freedom. See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for a Fortran implementation of basin-hopping. This implementation has many different variations of the procedure described above, including more advanced step taking algorithms and alternate acceptance criterion. For stochastic global optimization there is no way to determine if the true global minimum has actually been found. Instead, as a consistency check, the algorithm can be run from a number of different random starting points to ensure the lowest minimum found in each example has converged to the global minimum. For this reason, ``basinhopping`` will by default simply run for the number of iterations ``niter`` and return the lowest minimum found. It is left to the user to ensure that this is in fact the global minimum. Choosing ``stepsize``: This is a crucial parameter in ``basinhopping`` and depends on the problem being solved. The step is chosen uniformly in the region from x0-stepsize to x0+stepsize, in each dimension. Ideally, it should be comparable to the typical separation (in argument values) between local minima of the function being optimized. ``basinhopping`` will, by default, adjust ``stepsize`` to find an optimal value, but this may take many iterations. You will get quicker results if you set a sensible initial value for ``stepsize``. Choosing ``T``: The parameter ``T`` is the "temperature" used in the Metropolis criterion. Basinhopping steps are always accepted if ``func(xnew) < func(xold)``. Otherwise, they are accepted with probability:: exp( -(func(xnew) - func(xold)) / T ) So, for best results, ``T`` should to be comparable to the typical difference (in function values) between local minima. (The height of "walls" between local minima is irrelevant.) If ``T`` is 0, the algorithm becomes Monotonic Basin-Hopping, in which all steps that increase energy are rejected. .. versionadded:: 0.12.0 References ---------- .. [1] Wales, David J. 2003, Energy Landscapes, Cambridge University Press, Cambridge, UK. .. [2] Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111. .. [3] Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA, 1987, 84, 6611. .. [4] Wales, D. J. and Scheraga, H. A., Global optimization of clusters, crystals, and biomolecules, Science, 1999, 285, 1368. .. [5] Olson, B., Hashmi, I., Molloy, K., and Shehu1, A., Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules, Advances in Artificial Intelligence, Volume 2012 (2012), Article ID 674832, :doi:`10.1155/2012/674832` Examples -------- The following example is a 1-D minimization problem, with many local minima superimposed on a parabola. >>> from scipy.optimize import basinhopping >>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x >>> x0=[1.] Basinhopping, internally, uses a local minimization algorithm. We will use the parameter ``minimizer_kwargs`` to tell basinhopping which algorithm to use and how to set up that minimizer. This parameter will be passed to ``scipy.optimize.minimize()``. >>> minimizer_kwargs = {"method": "BFGS"} >>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs, ... niter=200) >>> print("global minimum: x = %.4f, f(x0) = %.4f" % (ret.x, ret.fun)) global minimum: x = -0.1951, f(x0) = -1.0009 Next consider a 2-D minimization problem. Also, this time, we will use gradient information to significantly speed up the search. >>> def func2d(x): ... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + ... 0.2) * x[0] ... df = np.zeros(2) ... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2 ... df[1] = 2. * x[1] + 0.2 ... return f, df We'll also use a different local minimization algorithm. Also, we must tell the minimizer that our function returns both energy and gradient (Jacobian). >>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True} >>> x0 = [1.0, 1.0] >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=200) >>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0], ... ret.x[1], ... ret.fun)) global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109 Here is an example using a custom step-taking routine. Imagine you want the first coordinate to take larger steps than the rest of the coordinates. This can be implemented like so: >>> class MyTakeStep: ... def __init__(self, stepsize=0.5): ... self.stepsize = stepsize ... self.rng = np.random.default_rng() ... def __call__(self, x): ... s = self.stepsize ... x[0] += self.rng.uniform(-2.*s, 2.*s) ... x[1:] += self.rng.uniform(-s, s, x[1:].shape) ... return x Since ``MyTakeStep.stepsize`` exists basinhopping will adjust the magnitude of ``stepsize`` to optimize the search. We'll use the same 2-D function as before >>> mytakestep = MyTakeStep() >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=200, take_step=mytakestep) >>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0], ... ret.x[1], ... ret.fun)) global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109 Now, let's do an example using a custom callback function which prints the value of every minimum found >>> def print_fun(x, f, accepted): ... print("at minimum %.4f accepted %d" % (f, int(accepted))) We'll run it for only 10 basinhopping steps this time. >>> rng = np.random.default_rng() >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=10, callback=print_fun, seed=rng) at minimum 0.4159 accepted 1 at minimum -0.4317 accepted 1 at minimum -1.0109 accepted 1 at minimum -0.9073 accepted 1 at minimum -0.4317 accepted 0 at minimum -0.1021 accepted 1 at minimum -0.7425 accepted 1 at minimum -0.9073 accepted 1 at minimum -0.4317 accepted 0 at minimum -0.7425 accepted 1 at minimum -0.9073 accepted 1 The minimum at -1.0109 is actually the global minimum, found already on the 8th iteration. Now let's implement bounds on the problem using a custom ``accept_test``: >>> class MyBounds: ... def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1] ): ... self.xmax = np.array(xmax) ... self.xmin = np.array(xmin) ... def __call__(self, **kwargs): ... x = kwargs["x_new"] ... tmax = bool(np.all(x <= self.xmax)) ... tmin = bool(np.all(x >= self.xmin)) ... return tmax and tmin >>> mybounds = MyBounds() >>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, ... niter=10, accept_test=mybounds) """ x0 = np.array(x0) # set up the np.random generator rng = check_random_state(seed) # set up minimizer if minimizer_kwargs is None: minimizer_kwargs = dict() wrapped_minimizer = MinimizerWrapper(scipy.optimize.minimize, func, **minimizer_kwargs) # set up step-taking algorithm if take_step is not None: if not callable(take_step): raise TypeError("take_step must be callable") # if take_step.stepsize exists then use AdaptiveStepsize to control # take_step.stepsize if hasattr(take_step, "stepsize"): take_step_wrapped = AdaptiveStepsize(take_step, interval=interval, accept_rate=accept_rate, factor=factor, verbose=disp) else: take_step_wrapped = take_step else: # use default displace = RandomDisplacement(stepsize=stepsize, random_gen=rng) take_step_wrapped = AdaptiveStepsize(displace, interval=interval, accept_rate=accept_rate, factor=factor, verbose=disp) # set up accept tests accept_tests = [] if accept_test is not None: if not callable(accept_test): raise TypeError("accept_test must be callable") accept_tests = [accept_test] # use default metropolis = Metropolis(T, random_gen=rng) accept_tests.append(metropolis) if niter_success is None: niter_success = niter + 2 bh = BasinHoppingRunner(x0, wrapped_minimizer, take_step_wrapped, accept_tests, disp=disp) # The wrapped minimizer is called once during construction of # BasinHoppingRunner, so run the callback if callable(callback): callback(bh.storage.minres.x, bh.storage.minres.fun, True) # start main iteration loop count, i = 0, 0 message = ["requested number of basinhopping iterations completed" " successfully"] for i in range(niter): new_global_min = bh.one_cycle() if callable(callback): # should we pass a copy of x? val = callback(bh.xtrial, bh.energy_trial, bh.accept) if val is not None: if val: message = ["callback function requested stop early by" "returning True"] break count += 1 if new_global_min: count = 0 elif count > niter_success: message = ["success condition satisfied"] break # prepare return object res = bh.res res.lowest_optimization_result = bh.storage.get_lowest() res.x = np.copy(res.lowest_optimization_result.x) res.fun = res.lowest_optimization_result.fun res.message = message res.nit = i + 1 res.success = res.lowest_optimization_result.success return res
30,145
def fetch_production(zone_key='AR', session=None, target_datetime=None, logger=logging.getLogger(__name__)): """ Requests the last known production mix (in MW) of a given country Arguments: zone_key (optional) -- used in case a parser is able to fetch multiple countries target_datetime: if we want to parser for a specific time and not latest logger: where to log useful information Return: A dictionary in the form: { 'zoneKey': 'FR', 'datetime': '2017-01-01T00:00:00Z', 'production': { 'biomass': 0.0, 'coal': 0.0, 'gas': 0.0, 'hydro': 0.0, 'nuclear': null, 'oil': 0.0, 'solar': 0.0, 'wind': 0.0, 'geothermal': 0.0, 'unknown': 0.0 }, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } """ if target_datetime is not None: raise NotImplementedError('This parser is not yet able to parse past dates') gdt = get_datetime(session=None) thermal = get_thermal(session, logger) hydro = get_hydro_and_renewables(session, logger) # discharging is given positive value in data, opposite to EM hydro_storage = hydro.pop('hydro_storage') if hydro_storage == 0.0: em_hydro_storage = hydro_storage else: em_hydro_storage = hydro_storage*-1 unknown = thermal.pop('unknown') + hydro.pop('unknown') production = {**hydro, **thermal} production['unknown'] = unknown production_mix = { 'zoneKey': zone_key, 'datetime': gdt['datetime'], 'production': production, 'storage': { 'hydro': em_hydro_storage, }, 'source': 'portalweb.cammesa.com' } return production_mix
def fetch_production(zone_key='AR', session=None, target_datetime=None, logger=logging.getLogger(__name__)): """ Requests the last known production mix (in MW) of a given country Arguments: zone_key (optional) -- used in case a parser is able to fetch multiple countries target_datetime: if we want to parser for a specific time and not latest logger: where to log useful information Return: A dictionary in the form: { 'zoneKey': 'FR', 'datetime': '2017-01-01T00:00:00Z', 'production': { 'biomass': 0.0, 'coal': 0.0, 'gas': 0.0, 'hydro': 0.0, 'nuclear': null, 'oil': 0.0, 'solar': 0.0, 'wind': 0.0, 'geothermal': 0.0, 'unknown': 0.0 }, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } """ if target_datetime is not None: raise NotImplementedError('This parser is not yet able to parse past dates') gdt = get_datetime(session=None) thermal = get_thermal(session, logger) hydro = get_hydro_and_renewables(session, logger) # discharging is given positive value in data, opposite to EM em_hydro_storage = -1 * hydro.pop('hydro_storage') if hydro_storage == 0.0: em_hydro_storage = hydro_storage else: em_hydro_storage = hydro_storage*-1 unknown = thermal.pop('unknown') + hydro.pop('unknown') production = {**hydro, **thermal} production['unknown'] = unknown production_mix = { 'zoneKey': zone_key, 'datetime': gdt['datetime'], 'production': production, 'storage': { 'hydro': em_hydro_storage, }, 'source': 'portalweb.cammesa.com' } return production_mix
28,048
def __get_report_hashes(f: TextIOWrapper) -> List[str]: """ Get report hashes from the given file. """ return [h for h in f.read().split('\n') if h]
def __get_report_hashes(f: TextIOWrapper) -> List[str]: """ Get report hashes from the given file. """ return [h for h in f.readlines() if h]
30,535
def find_indicators_with_limit(indicator_query: str, limit: int, offset: int) -> list: """ Finds indicators using demisto.searchIndicators """ # calculate the starting page (each page holds 200 entries) if offset: next_page = int(offset / 200) # set the offset from the starting page parsed_offset = offset - (200 * next_page) else: next_page = 0 parsed_offset = 0 iocs, _ = find_indicators_with_limit_loop(indicator_query, limit, next_page=next_page) return iocs[parsed_offset:limit + parsed_offset]
def find_indicators_with_limit(indicator_query: str, limit: int, offset: int) -> list: """ Finds indicators using demisto.searchIndicators """ # calculate the starting page (each page holds 200 entries) if offset: next_page = int(offset / PAGE_SIZE) # set the offset from the starting page parsed_offset = offset - (200 * next_page) else: next_page = 0 parsed_offset = 0 iocs, _ = find_indicators_with_limit_loop(indicator_query, limit, next_page=next_page) return iocs[parsed_offset:limit + parsed_offset]
30,354
def get_branch_command(): args = demisto.args() branch_name = args.get('branch_name') response = get_branch(branch_name) commit = response.get('commit', {}) author = commit.get('author', {}) parents = commit.get('parents', []) ec_object = { 'Name': response.get('name'), 'CommitSHA': commit.get('sha'), 'CommitNodeID': commit.get('node_id'), 'CommitAuthorID': author.get('id'), 'CommitAuthorLogin': author.get('login'), 'CommitParentSHA': [parent.get('sha') for parent in parents], 'Protected': response.get('protected') } ec = { 'GitHub.Branch(val.Name === obj.name && val.CommitSHA === obj.CommitSHA)': ec_object } human_readable = tableToMarkdown('Branch', ec_object, removeNull=True) return_outputs(readable_output=human_readable, outputs=ec, raw_response=response)
def get_branch_command(): args = demisto.args() branch_name = args.get('branch_name') response = get_branch(branch_name) commit = response.get('commit', {}) author = commit.get('author', {}) parents = commit.get('parents', []) ec_object = { 'Name': response.get('name'), 'CommitSHA': commit.get('sha'), 'CommitNodeID': commit.get('node_id'), 'CommitAuthorID': author.get('id'), 'CommitAuthorLogin': author.get('login'), 'CommitParentSHA': [parent.get('sha') for parent in parents], 'Protected': response.get('protected') } ec = { 'GitHub.Branch(val.Name === obj.Name && val.CommitSHA === obj.CommitSHA)': ec_object } human_readable = tableToMarkdown('Branch', ec_object, removeNull=True) return_outputs(readable_output=human_readable, outputs=ec, raw_response=response)
56,694
def update_author( akey, a=None, handle_redirects=True ) -> Optional[list[SolrUpdateRequest]]: """ Get the Solr requests necessary to insert/update/delete an Author in Solr. :param akey: The author key, e.g. /authors/OL23A :param dict a: Optional Author :param bool handle_redirects: If true, remove from Solr all authors that redirect to this one """ if akey == '/authors/': return None m = re_author_key.match(akey) if not m: logger.error('bad key: %s', akey) assert m author_id = m.group(1) if not a: a = data_provider.get_document(akey) if a['type']['key'] in ('/type/redirect', '/type/delete') or not a.get( 'name', None ): return [DeleteRequest([akey])] try: assert a['type']['key'] == '/type/author' except AssertionError: logger.error("AssertionError: %s", a['type']['key']) raise facet_fields = ['subject', 'time', 'person', 'place'] base_url = get_solr_base_url() + '/select' reply = requests.get( base_url, params=[ ('wt', 'json'), ('json.nl', 'arrarr'), ('q', 'author_key:%s' % author_id), ('sort', 'edition_count desc'), ('row', 1), ('fl', 'title,subtitle'), ('facet', 'true'), ('facet.mincount', 1), ] + [('facet.field', '%s_facet' % field) for field in facet_fields], ).json() # type: ignore work_count = reply['response']['numFound'] docs = reply['response'].get('docs', []) top_work = None if docs and docs[0].get('title', None): top_work = docs[0]['title'] if docs[0].get('subtitle', None): top_work += ': ' + docs[0]['subtitle'] all_subjects = [] for f in facet_fields: for s, num in reply['facet_counts']['facet_fields'][f + '_facet']: all_subjects.append((num, s)) all_subjects.sort(reverse=True) top_subjects = [s for num, s in all_subjects[:10]] d = cast( SolrDocument, { 'key': f'/authors/{author_id}', 'type': 'author', }, ) if a.get('name', None): d['name'] = a['name'] alternate_names = a.get('alternate_names', []) if alternate_names: d['alternate_names'] = alternate_names if a.get('birth_date', None): d['birth_date'] = a['birth_date'] if a.get('death_date', None): d['death_date'] = a['death_date'] if a.get('date', None): d['date'] = a['date'] if top_work: d['top_work'] = top_work d['work_count'] = work_count d['top_subjects'] = top_subjects solr_requests: list[SolrUpdateRequest] = [] if handle_redirects: redirect_keys = data_provider.find_redirects(akey) # redirects = ''.join('<id>{}</id>'.format(k) for k in redirect_keys) # q = {'type': '/type/redirect', 'location': akey} # try: # redirects = ''.join('<id>%s</id>' % re_author_key.match(r['key']).group(1) for r in query_iter(q)) # except AttributeError: # logger.error('AssertionError: redirects: %r', [r['key'] for r in query_iter(q)]) # raise # if redirects: # solr_requests.append('<delete>' + redirects + '</delete>') if redirect_keys: solr_requests.append(DeleteRequest(redirect_keys)) solr_requests.append(AddRequest(d)) return solr_requests
def update_author( akey, a=None, handle_redirects=True ) -> Optional[list[SolrUpdateRequest]]: """ Get the Solr requests necessary to insert/update/delete an Author in Solr. :param akey: The author key, e.g. /authors/OL23A :param dict a: Optional Author :param bool handle_redirects: If true, remove from Solr all authors that redirect to this one """ if akey == '/authors/': return None m = re_author_key.match(akey) if not m: logger.error('bad key: %s', akey) assert m author_id = m.group(1) if not a: a = data_provider.get_document(akey) if a['type']['key'] in ('/type/redirect', '/type/delete') or not a.get( 'name', None ): return [DeleteRequest([akey])] try: assert a['type']['key'] == '/type/author' except AssertionError: logger.error("AssertionError: %s", a['type']['key']) raise facet_fields = ['subject', 'time', 'person', 'place'] base_url = get_solr_base_url() + '/select' reply = requests.get( base_url, params={ 'wt': 'json', 'json.nl': 'arrarr', 'q': 'author_key:%s' % author_id, 'sort': 'edition_count desc', 'row': 1, 'fl': 'title,subtitle', 'facet': 'true', 'facet.mincount': 1, } + [('facet.field', '%s_facet' % field) for field in facet_fields], ).json() # type: ignore work_count = reply['response']['numFound'] docs = reply['response'].get('docs', []) top_work = None if docs and docs[0].get('title', None): top_work = docs[0]['title'] if docs[0].get('subtitle', None): top_work += ': ' + docs[0]['subtitle'] all_subjects = [] for f in facet_fields: for s, num in reply['facet_counts']['facet_fields'][f + '_facet']: all_subjects.append((num, s)) all_subjects.sort(reverse=True) top_subjects = [s for num, s in all_subjects[:10]] d = cast( SolrDocument, { 'key': f'/authors/{author_id}', 'type': 'author', }, ) if a.get('name', None): d['name'] = a['name'] alternate_names = a.get('alternate_names', []) if alternate_names: d['alternate_names'] = alternate_names if a.get('birth_date', None): d['birth_date'] = a['birth_date'] if a.get('death_date', None): d['death_date'] = a['death_date'] if a.get('date', None): d['date'] = a['date'] if top_work: d['top_work'] = top_work d['work_count'] = work_count d['top_subjects'] = top_subjects solr_requests: list[SolrUpdateRequest] = [] if handle_redirects: redirect_keys = data_provider.find_redirects(akey) # redirects = ''.join('<id>{}</id>'.format(k) for k in redirect_keys) # q = {'type': '/type/redirect', 'location': akey} # try: # redirects = ''.join('<id>%s</id>' % re_author_key.match(r['key']).group(1) for r in query_iter(q)) # except AttributeError: # logger.error('AssertionError: redirects: %r', [r['key'] for r in query_iter(q)]) # raise # if redirects: # solr_requests.append('<delete>' + redirects + '</delete>') if redirect_keys: solr_requests.append(DeleteRequest(redirect_keys)) solr_requests.append(AddRequest(d)) return solr_requests
51,058
def list_statistic_ids( hass: HomeAssistant, statistic_type: str | None = None ) -> list[StatisticMetaData | None]: """Return statistic_ids and meta data.""" units = hass.config.units statistic_ids = {} with session_scope(hass=hass) as session: metadata = _get_metadata(hass, session, None, statistic_type) for meta in metadata.values(): unit = meta["unit_of_measurement"] if unit is not None: unit = _configured_unit(unit, units) meta["unit_of_measurement"] = unit statistic_ids = { meta["statistic_id"]: meta["unit_of_measurement"] for meta in metadata.values() } for platform in hass.data[DOMAIN].values(): if not hasattr(platform, "list_statistic_ids"): continue platform_statistic_ids = platform.list_statistic_ids(hass, statistic_type) for statistic_id, unit in platform_statistic_ids.items(): if unit is not None: unit = _configured_unit(unit, units) platform_statistic_ids[statistic_id] = unit statistic_ids = {**platform_statistic_ids, **statistic_ids} return [ {"statistic_id": _id, "unit_of_measurement": unit} for _id, unit in statistic_ids.items() ]
def list_statistic_ids( hass: HomeAssistant, statistic_type: str | None = None ) -> list[StatisticMetaData | None]: """Return statistic_ids and meta data.""" units = hass.config.units statistic_ids = {} with session_scope(hass=hass) as session: metadata = _get_metadata(hass, session, None, statistic_type) for meta in metadata.values(): unit = meta["unit_of_measurement"] if unit is not None: unit = _configured_unit(unit, units) meta["unit_of_measurement"] = unit statistic_ids = { meta["statistic_id"]: meta["unit_of_measurement"] for meta in metadata.values() } for platform in hass.data[DOMAIN].values(): if not hasattr(platform, "list_statistic_ids"): continue platform_statistic_ids = platform.list_statistic_ids(hass, statistic_type) for statistic_id, unit in platform_statistic_ids.items(): if unit is not None: unit = _configured_unit(unit, units) platform_statistic_ids[statistic_id] = unit for key, value in platform_statistic_ids.items(): statistic_ids.setdefault(key, value) return [ {"statistic_id": _id, "unit_of_measurement": unit} for _id, unit in statistic_ids.items() ]
8,396
def test_template_match_minimal_overlap(): """ Test template_match when both observed and template spectra have minimal overlap on the wavelength axis """ print("minimal overlap test") # Seed np.random so that results are consistent np.random.seed(42) # Create test spectra spec_axis = np.linspace(0, 50, 50) * u.AA spec_axis_no_overlap = np.linspace(45, 95, 50) * u.AA spec = Spectrum1D(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) spec1 = Spectrum1D(spectral_axis=spec_axis_no_overlap, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) # Get result from template_match tm_result = template_comparison.template_match(spec, spec1) # Create new spectrum for comparison spec_result = Spectrum1D(spectral_axis=spec_axis, flux=spec1.flux * template_comparison._normalize_for_template_matching(spec, spec1)) # assert quantity_allclose(tm_result[0].flux, spec_result.flux, atol=0.01*u.Jy) assert np.isnan(tm_result[1])
def test_template_match_minimal_overlap(): """ Test template_match when both observed and template spectra have minimal overlap on the wavelength axis """ print("minimal overlap test") # Seed np.random so that results are consistent np.random.seed(42) # Create test spectra spec_axis = np.linspace(0, 50, 50) * u.AA spec_axis_no_overlap = np.linspace(45, 95, 50) * u.AA spec = Spectrum1D(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) spec1 = Spectrum1D(spectral_axis=spec_axis_min_overlap, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) # Get result from template_match tm_result = template_comparison.template_match(spec, spec1) # Create new spectrum for comparison spec_result = Spectrum1D(spectral_axis=spec_axis, flux=spec1.flux * template_comparison._normalize_for_template_matching(spec, spec1)) # assert quantity_allclose(tm_result[0].flux, spec_result.flux, atol=0.01*u.Jy) assert np.isnan(tm_result[1])
36,357
def make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, module=None, qualname=None): """Return a new dynamically created dataclass. The dataclass name will be 'cls_name'. 'fields' is an iterable of either (name), (name, type) or (name, type, Field) objects. If type is omitted, use the string 'typing.Any'. Field objects are created by the equivalent of calling 'field(name, type [, Field-info])'. C = make_dataclass('C', ['x', ('y', int), ('z', int, field(init=False))], bases=(Base,)) is equivalent to: @dataclass class C(Base): x: 'typing.Any' y: int z: int = field(init=False) For the bases and namespace parameters, see the builtin type() function. 'module' should be set to the module this class is being created in; if it is not set, an attempt to find that module will be made, but if it fails the class will not be picklable. 'qualname' should be set to the actual location this call can be found in its module; by default it is set to the global scope. If this is not correct, pickle will fail in some circumstances. The parameters init, repr, eq, order, unsafe_hash, and frozen are passed to dataclass(). """ if namespace is None: namespace = {} else: # Copy namespace since we're going to mutate it. namespace = namespace.copy() # While we're looking through the field names, validate that they # are identifiers, are not keywords, and not duplicates. seen = set() anns = {} for item in fields: if isinstance(item, str): name = item tp = 'typing.Any' elif len(item) == 2: name, tp, = item elif len(item) == 3: name, tp, spec = item namespace[name] = spec else: raise TypeError(f'Invalid field: {item!r}') if not isinstance(name, str) or not name.isidentifier(): raise TypeError(f'Field names must be valid identifers: {name!r}') if keyword.iskeyword(name): raise TypeError(f'Field names must not be keywords: {name!r}') if name in seen: raise TypeError(f'Field name duplicated: {name!r}') seen.add(name) anns[name] = tp namespace['__annotations__'] = anns # We use `types.new_class()` instead of simply `type()` to allow dynamic creation # of generic dataclassses. cls = types.new_class(cls_name, bases, {}, lambda ns: ns.update(namespace)) # TODO: this hack is the same that can be found in enum.py and should be # removed if there ever is a way to get the caller module. if module is None: try: module = sys._getframe(1).f_globals['__name__'] except (AttributeError, ValueError): pass if module is None: _make_class_unpicklable(cls) else: cls.__module__ = module if qualname is not None: cls.__qualname__ = qualname return dataclass(cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen)
def make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, module=None, qualname=None): """Return a new dynamically created dataclass. The dataclass name will be 'cls_name'. 'fields' is an iterable of either (name), (name, type) or (name, type, Field) objects. If type is omitted, use the string 'typing.Any'. Field objects are created by the equivalent of calling 'field(name, type [, Field-info])'. C = make_dataclass('C', ['x', ('y', int), ('z', int, field(init=False))], bases=(Base,)) is equivalent to: @dataclass class C(Base): x: 'typing.Any' y: int z: int = field(init=False) For the bases and namespace parameters, see the builtin type() function. 'module' should be set to the module this class is being created in; if it is not set, an attempt to find that module will be made, but if it fails the class will not be picklable. 'qualname' should be set to the actual location this call can be found in its module; by default it is set to the global scope. If this is not correct, pickle will fail in some circumstances. The parameters init, repr, eq, order, unsafe_hash, and frozen are passed to dataclass(). """ if namespace is None: namespace = {} else: # Copy namespace since we're going to mutate it. namespace = namespace.copy() # While we're looking through the field names, validate that they # are identifiers, are not keywords, and not duplicates. seen = set() anns = {} for item in fields: if isinstance(item, str): name = item tp = 'typing.Any' elif len(item) == 2: name, tp, = item elif len(item) == 3: name, tp, spec = item namespace[name] = spec else: raise TypeError(f'Invalid field: {item!r}') if not isinstance(name, str) or not name.isidentifier(): raise TypeError(f'Field names must be valid identifers: {name!r}') if keyword.iskeyword(name): raise TypeError(f'Field names must not be keywords: {name!r}') if name in seen: raise TypeError(f'Field name duplicated: {name!r}') seen.add(name) anns[name] = tp namespace['__annotations__'] = anns # We use `types.new_class()` instead of simply `type()` to allow dynamic creation # of generic dataclassses. cls = types.new_class(cls_name, bases, {}, lambda ns: ns.update(namespace)) # TODO: this hack is the same that can be found in enum.py and should be # removed if there ever is a way to get the caller module. if module is None: try: module = sys._getframe(1).f_globals['__name__'] except (AttributeError, ValueError): pass if module is None: _make_class_unpicklable(cls) else: cls.__module__ = module if qualname is not None: cls.__qualname__ = qualname return dataclass(cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen)
7,044
def process_plugins(fpath): # Load Rose Vars, if a ``rose-workflow.conf`` file is present. extra_vars = { 'env': {}, 'template_variables': {}, 'templating_detected': None } for entry_point in pkg_resources.iter_entry_points( 'cylc.pre_configure' ): try: plugin_result = entry_point.resolve()(srcdir=fpath) except Exception as exc: # NOTE: except Exception (purposefully vague) # this is to separate plugin from core Cylc errors raise PluginError( 'cylc.pre_configure', entry_point.name, exc ) from None for section in ['env', 'template_variables']: if section in plugin_result and plugin_result[section] is not None: # Raise error if multiple plugins try to update the same keys. section_update = plugin_result.get(section, {}) keys_collision = ( extra_vars[section].keys() & section_update.keys() ) if keys_collision: raise ParsecError( f"{entry_point.name} is trying to alter " f"[{section}]{', '.join(sorted(keys_collision))}." ) extra_vars[section].update(section_update) if ( 'templating_detected' in plugin_result and plugin_result['templating_detected'] is not None and extra_vars['templating_detected'] is not None and extra_vars['templating_detected'] != plugin_result['templating_detected'] ): # Don't allow subsequent plugins with different templating_detected raise ParsecError( "Can't merge templating languages " f"{extra_vars['templating_detected']} and " f"{plugin_result['templating_detected']}" ) elif( 'templating_detected' in plugin_result and plugin_result['templating_detected'] is not None ): extra_vars['templating_detected'] = plugin_result[ 'templating_detected' ] return extra_vars
def process_plugins(fpath): # Load Rose Vars, if a ``rose-suite.conf`` file is present. extra_vars = { 'env': {}, 'template_variables': {}, 'templating_detected': None } for entry_point in pkg_resources.iter_entry_points( 'cylc.pre_configure' ): try: plugin_result = entry_point.resolve()(srcdir=fpath) except Exception as exc: # NOTE: except Exception (purposefully vague) # this is to separate plugin from core Cylc errors raise PluginError( 'cylc.pre_configure', entry_point.name, exc ) from None for section in ['env', 'template_variables']: if section in plugin_result and plugin_result[section] is not None: # Raise error if multiple plugins try to update the same keys. section_update = plugin_result.get(section, {}) keys_collision = ( extra_vars[section].keys() & section_update.keys() ) if keys_collision: raise ParsecError( f"{entry_point.name} is trying to alter " f"[{section}]{', '.join(sorted(keys_collision))}." ) extra_vars[section].update(section_update) if ( 'templating_detected' in plugin_result and plugin_result['templating_detected'] is not None and extra_vars['templating_detected'] is not None and extra_vars['templating_detected'] != plugin_result['templating_detected'] ): # Don't allow subsequent plugins with different templating_detected raise ParsecError( "Can't merge templating languages " f"{extra_vars['templating_detected']} and " f"{plugin_result['templating_detected']}" ) elif( 'templating_detected' in plugin_result and plugin_result['templating_detected'] is not None ): extra_vars['templating_detected'] = plugin_result[ 'templating_detected' ] return extra_vars
42,822
def move_git_repo(source_path, new_path): """ Moves git folder and .gitignore to the new backup directory. """ if os.path.exists(os.path.join(new_path, '.git')) or os.path.exists(os.path.join(new_path, '.gitignore')): print_red_bold("Git repository already exists new path ({})".format(new_path)) print_red_bold("Please choose a different directory") sys.exit() git_dir = os.path.join(source_path, '.git') git_ignore_file = os.path.join(source_path, '.gitignore') try: move(git_dir, new_path) move(git_ignore_file, new_path) print_blue_bold("Moving git repo to new location.") except FileNotFoundError: pass
def move_git_repo(source_path, new_path): """ Moves git folder and .gitignore to the new backup directory. """ if os.path.exists(os.path.join(new_path, '.git')) or os.path.exists(os.path.join(new_path, '.gitignore')): print_red_bold("Git repository already exists new path ({})".format(new_path)) print_red_bold("Please choose a different backup path.") sys.exit() git_dir = os.path.join(source_path, '.git') git_ignore_file = os.path.join(source_path, '.gitignore') try: move(git_dir, new_path) move(git_ignore_file, new_path) print_blue_bold("Moving git repo to new location.") except FileNotFoundError: pass
1,573
def load_wine(return_X_y=False, as_frame=False): """Load and return the wine dataset (classification). .. versionadded:: 0.18 The wine dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class [59,71,48] Samples total 178 Dimensionality 13 Features real, positive ================= ============== Read more in the :ref:`User Guide <wine_dataset>`. Parameters ---------- return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. as_frame : boolean, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target_columns. .. versionadded:: 0.23 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. (data, target) : tuple if ``return_X_y`` is True frame : pandas DataFrame Only present when `as_frame=True`. DataFrame with ``data`` and ``target``. .. versionadded:: 0.23 The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit standard format from: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data Examples -------- Let's say you are interested in the samples 10, 80, and 140, and want to know their class name. >>> from sklearn.datasets import load_wine >>> data = load_wine() >>> data.target[[10, 80, 140]] array([0, 1, 2]) >>> list(data.target_names) ['class_0', 'class_1', 'class_2'] """ module_path = dirname(__file__) data, target, target_names = load_data(module_path, 'wine_data.csv') with open(join(module_path, 'descr', 'wine_data.rst')) as rst_file: fdescr = rst_file.read() feature_names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline'] frame = None target_columns = ['target', ] if as_frame: frame, data, target = _convert_data_dataframe("load_wine", data, target, feature_names, target_columns) if return_X_y: return data, target return Bunch(data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names)
def load_wine(return_X_y=False, as_frame=False): """Load and return the wine dataset (classification). .. versionadded:: 0.18 The wine dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class [59,71,48] Samples total 178 Dimensionality 13 Features real, positive ================= ============== Read more in the :ref:`User Guide <wine_dataset>`. Parameters ---------- return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target_columns. .. versionadded:: 0.23 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. (data, target) : tuple if ``return_X_y`` is True frame : pandas DataFrame Only present when `as_frame=True`. DataFrame with ``data`` and ``target``. .. versionadded:: 0.23 The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit standard format from: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data Examples -------- Let's say you are interested in the samples 10, 80, and 140, and want to know their class name. >>> from sklearn.datasets import load_wine >>> data = load_wine() >>> data.target[[10, 80, 140]] array([0, 1, 2]) >>> list(data.target_names) ['class_0', 'class_1', 'class_2'] """ module_path = dirname(__file__) data, target, target_names = load_data(module_path, 'wine_data.csv') with open(join(module_path, 'descr', 'wine_data.rst')) as rst_file: fdescr = rst_file.read() feature_names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline'] frame = None target_columns = ['target', ] if as_frame: frame, data, target = _convert_data_dataframe("load_wine", data, target, feature_names, target_columns) if return_X_y: return data, target return Bunch(data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names)
41,908
def _get_contour_plot(study: Study, params: Optional[List[str]] = None) -> "go.Figure": layout = go.Layout(title="Contour Plot") trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") return go.Figure(data=[], layout=layout) all_params = {p_name for t in trials for p_name in t.params.keys()} if params is None: sorted_params = sorted(list(all_params)) elif len(params) <= 1: _logger.warning("The length of params must be greater than 1.") return go.Figure(data=[], layout=layout) else: for input_p_name in params: if input_p_name not in all_params: raise ValueError("Parameter {} does not exist in your study.".format(input_p_name)) sorted_params = sorted(list(set(params))) padding_ratio = 0.05 param_values_range = {} update_category_axes = {} for p_name in sorted_params: values = [t.params[p_name] for t in trials if p_name in t.params] min_value = min(values) max_value = max(values) if _is_log_scale(trials, p_name): padding = (math.log10(max_value) - math.log10(min_value)) * padding_ratio min_value = math.pow(10, math.log10(min_value) - padding) max_value = math.pow(10, math.log10(max_value) + padding) elif _is_categorical(trials, p_name): update_category_axes[p_name] = any([str(v).isnumeric() for v in set(values)]) else: padding = (max_value - min_value) * padding_ratio min_value = min_value - padding max_value = max_value + padding param_values_range[p_name] = (min_value, max_value) if len(sorted_params) == 2: x_param = sorted_params[0] y_param = sorted_params[1] sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) figure = go.Figure(data=sub_plots, layout=layout) figure.update_xaxes(title_text=x_param, range=param_values_range[x_param]) figure.update_yaxes(title_text=y_param, range=param_values_range[y_param]) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category") if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category") if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log") if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log") else: figure = make_subplots( rows=len(sorted_params), cols=len(sorted_params), shared_xaxes=True, shared_yaxes=True ) figure.update_layout(layout) showscale = True # showscale option only needs to be specified once for x_i, x_param in enumerate(sorted_params): for y_i, y_param in enumerate(sorted_params): if x_param == y_param: figure.add_trace(go.Scatter(), row=y_i + 1, col=x_i + 1) else: sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) contour = sub_plots[0] scatter = sub_plots[1] contour.update(showscale=showscale) # showscale's default is True if showscale: showscale = False figure.add_trace(contour, row=y_i + 1, col=x_i + 1) figure.add_trace(scatter, row=y_i + 1, col=x_i + 1) figure.update_xaxes(range=param_values_range[x_param], row=y_i + 1, col=x_i + 1) figure.update_yaxes(range=param_values_range[y_param], row=y_i + 1, col=x_i + 1) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if x_i == 0: figure.update_yaxes(title_text=y_param, row=y_i + 1, col=x_i + 1) if y_i == len(sorted_params) - 1: figure.update_xaxes(title_text=x_param, row=y_i + 1, col=x_i + 1) return figure
def _get_contour_plot(study: Study, params: Optional[List[str]] = None) -> "go.Figure": layout = go.Layout(title="Contour Plot") trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") return go.Figure(data=[], layout=layout) all_params = {p_name for t in trials for p_name in t.params.keys()} if params is None: sorted_params = sorted(list(all_params)) elif len(params) <= 1: _logger.warning("The length of params must be greater than 1.") return go.Figure(data=[], layout=layout) else: for input_p_name in params: if input_p_name not in all_params: raise ValueError("Parameter {} does not exist in your study.".format(input_p_name)) sorted_params = sorted(list(set(params))) padding_ratio = 0.05 param_values_range = {} update_category_axes = {} for p_name in sorted_params: values = [t.params[p_name] for t in trials if p_name in t.params] min_value = min(values) max_value = max(values) if _is_log_scale(trials, p_name): padding = (math.log10(max_value) - math.log10(min_value)) * padding_ratio min_value = math.pow(10, math.log10(min_value) - padding) max_value = math.pow(10, math.log10(max_value) + padding) elif _is_categorical(trials, p_name): update_category_axes[p_name] = any([str(v).isnumeric() for v in set(values)]) else: padding = (max_value - min_value) * padding_ratio min_value = min_value - padding max_value = max_value + padding param_values_range[p_name] = (min_value, max_value) if len(sorted_params) == 2: x_param = sorted_params[0] y_param = sorted_params[1] sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) figure = go.Figure(data=sub_plots, layout=layout) figure.update_xaxes(title_text=x_param, range=param_values_range[x_param]) figure.update_yaxes(title_text=y_param, range=param_values_range[y_param]) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category") if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category") if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log") if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log") else: figure = make_subplots( rows=len(sorted_params), cols=len(sorted_params), shared_xaxes=True, shared_yaxes=True ) figure.update_layout(layout) showscale = True # showscale option only needs to be specified once for x_i, x_param in enumerate(sorted_params): for y_i, y_param in enumerate(sorted_params): if x_param == y_param: figure.add_trace(go.Scatter(), row=y_i + 1, col=x_i + 1) else: sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) contour = sub_plots[0] scatter = sub_plots[1] contour.update(showscale=showscale) # showscale's default is True if showscale: showscale = False figure.add_trace(contour, row=y_i + 1, col=x_i + 1) figure.add_trace(scatter, row=y_i + 1, col=x_i + 1) figure.update_xaxes(range=param_values_range[x_param], row=y_i + 1, col=x_i + 1) figure.update_yaxes(range=param_values_range[y_param], row=y_i + 1, col=x_i + 1) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category", row=y_i + 1, col=x_i + 1) if update_category_axes.get(y_param, False): figure.update_yaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if x_i == 0: figure.update_yaxes(title_text=y_param, row=y_i + 1, col=x_i + 1) if y_i == len(sorted_params) - 1: figure.update_xaxes(title_text=x_param, row=y_i + 1, col=x_i + 1) return figure
34,369
def _get_available_endpoints(endpoints_path: Optional[Text]) -> AvailableEndpoints: """Get `AvailableEndpoints` object from specified path. Args: endpoints_path: Path of the endpoints file to be read. If `None` the default path for that file is used ('endpoints.yml'). Returns: `AvailableEndpoints` object read from endpoints file. """ endpoints_config_path = cli_utils.get_validated_path( endpoints_path, "endpoints", DEFAULT_ENDPOINTS_PATH, True ) return AvailableEndpoints.read_endpoints(endpoints_config_path)
def _get_available_endpoints(endpoints_path: Optional[Text]) -> AvailableEndpoints: """Get `AvailableEndpoints` object from specified path. Args: endpoints_path: Path of the endpoints file to be read. If `None` the default path for that file is used (`endpoints.yml`). Returns: `AvailableEndpoints` object read from endpoints file. """ endpoints_config_path = cli_utils.get_validated_path( endpoints_path, "endpoints", DEFAULT_ENDPOINTS_PATH, True ) return AvailableEndpoints.read_endpoints(endpoints_config_path)
46,549
def get_valid_custody_chunk_response(spec, state, chunk_challenge, challenge_index, block_length_or_custody_data, invalid_chunk_data=False): if isinstance(block_length_or_custody_data, int): custody_data = get_custody_test_vector(block_length_or_custody_data) else: custody_data = block_length_or_custody_data custody_data_block = ByteList[spec.MAX_SHARD_BLOCK_SIZE](custody_data) chunks = custody_chunkify(spec, custody_data_block) chunk_index = chunk_challenge.chunk_index leaf_index = chunk_index + 2**spec.CUSTODY_RESPONSE_DEPTH serialized_length = (len(custody_data_block)).to_bytes(32, 'little') data_branch = build_proof(custody_data_block.get_backing().get_left(), leaf_index) + [serialized_length] return spec.CustodyChunkResponse( challenge_index=challenge_index, chunk_index=chunk_index, chunk=chunks[chunk_index], branch=data_branch, )
def get_valid_custody_chunk_response(spec, state, chunk_challenge, challenge_index, block_length_or_custody_data, invalid_chunk_data=False): if isinstance(block_length_or_custody_data, int): custody_data = get_custody_test_vector(block_length_or_custody_data) else: custody_data = block_length_or_custody_data custody_data_block = ByteList[spec.MAX_SHARD_BLOCK_SIZE](custody_data) chunks = custody_chunkify(spec, custody_data_block) chunk_index = chunk_challenge.chunk_index leaf_index = chunk_index + 2**spec.CUSTODY_RESPONSE_DEPTH serialized_length = len(custody_data_block).to_bytes(32, 'little') data_branch = build_proof(custody_data_block.get_backing().get_left(), leaf_index) + [serialized_length] return spec.CustodyChunkResponse( challenge_index=challenge_index, chunk_index=chunk_index, chunk=chunks[chunk_index], branch=data_branch, )
6,070
def getQueuesResolved(siteDict): """ Get the list of queue descriptions merging site/ce/queue parameters and adding some derived parameters. :param dict siteDict: dictionary with configuration data as returned by Resources.getQueues() method :return: S_OK/S_ERROR, Value dictionary per queue with configuration data updated, e.g. for SiteDirector """ queueDict = {} for site in siteDict: for ce in siteDict[site]: ceDict = siteDict[site][ce] qDict = ceDict.pop('Queues') for queue in qDict: queueName = '%s_%s' % (ce, queue) queueDict[queueName] = qDict[queue] queueDict[queueName] = qDict[queue] queueDict[queueName]['Queue'] = queue queueDict[queueName]['Site'] = site # Evaluate the CPU limit of the queue according to the Glue convention # To Do: should be a utility if "maxCPUTime" in queueDict[queueName] and \ "SI00" in queueDict[queueName]: maxCPUTime = float(queueDict[queueName]['maxCPUTime']) # For some sites there are crazy values in the CS maxCPUTime = max(maxCPUTime, 0) maxCPUTime = min(maxCPUTime, 86400 * 12.5) si00 = float(queueDict[queueName]['SI00']) queueCPUTime = 60. / 250. * maxCPUTime * si00 queueDict[queueName]['CPUTime'] = int(queueCPUTime) # Tags & RequiredTags defined on the Queue level and on the CE level are concatenated # This also converts them from a string to a list if required. for tagFieldName in ('Tag', 'RequiredTag'): ceTags = ceDict.get(tagFieldName, []) if isinstance(ceTags, basestring): ceTags = fromChar(ceTags) queueTags = queueDict[queueName].get(tagFieldName) if queueTags and isinstance(queueTags, basestring): queueTags = fromChar(queueTags) queueDict[queueName][tagFieldName] = queueTags if ceTags: if queueTags: allTags = list(set(ceTags + queueTags)) queueDict[queueName][tagFieldName] = allTags else: queueDict[queueName][tagFieldName] = ceTags # Some parameters can be defined on the CE level and are inherited by all Queues for parameter in ['MaxRAM', 'NumberOfProcessors', 'WholeNode']: queueParameter = queueDict[queueName].get(parameter) ceParameter = ceDict.get(parameter) if ceParameter or queueParameter: queueDict[queueName][parameter] = ceParameter if not queueParameter \ else queueParameter # If we have a multi-core queue add MultiProcessor tag if queueDict[queueName].get('NumberOfProcessors', 1) > 1: queueDict[queueName].setdefault('Tag', []).append('MultiProcessor') queueDict[queueName]['CEName'] = ce queueDict[queueName]['GridCE'] = ce queueDict[queueName]['CEType'] = ceDict['CEType'] queueDict[queueName]['GridMiddleware'] = ceDict['CEType'] queueDict[queueName]['QueueName'] = queue platform = '' if "Platform" in queueDict[queueName]: platform = queueDict[queueName]['Platform'] elif "Platform" in ceDict: platform = ceDict['Platform'] elif "OS" in ceDict: architecture = ceDict.get('architecture', 'x86_64') platform = '_'.join([architecture, ceDict['OS']]) queueDict[queueName]['Platform'] = platform if "Platform" not in queueDict[queueName] and platform: result = getDIRACPlatform(platform) if result['OK']: queueDict[queueName]['Platform'] = result['Value'][0] return S_OK(queueDict)
def getQueuesResolved(siteDict): """ Get the list of queue descriptions merging site/ce/queue parameters and adding some derived parameters. :param dict siteDict: dictionary with configuration data as returned by Resources.getQueues() method :return: S_OK/S_ERROR, Value dictionary per queue with configuration data updated, e.g. for SiteDirector """ queueDict = {} for site in siteDict: for ce in siteDict[site]: ceDict = siteDict[site][ce] qDict = ceDict.pop('Queues') for queue in qDict: queueName = '%s_%s' % (ce, queue) queueDict[queueName] = qDict[queue] queueDict[queueName] = qDict[queue] queueDict[queueName]['Queue'] = queue queueDict[queueName]['Site'] = site # Evaluate the CPU limit of the queue according to the Glue convention # To Do: should be a utility if "maxCPUTime" in queueDict[queueName] and \ "SI00" in queueDict[queueName]: maxCPUTime = float(queueDict[queueName]['maxCPUTime']) # For some sites there are crazy values in the CS maxCPUTime = max(maxCPUTime, 0) maxCPUTime = min(maxCPUTime, 86400 * 12.5) si00 = float(queueDict[queueName]['SI00']) queueCPUTime = 60 / 250 * maxCPUTime * si00 queueDict[queueName]['CPUTime'] = int(queueCPUTime) # Tags & RequiredTags defined on the Queue level and on the CE level are concatenated # This also converts them from a string to a list if required. for tagFieldName in ('Tag', 'RequiredTag'): ceTags = ceDict.get(tagFieldName, []) if isinstance(ceTags, basestring): ceTags = fromChar(ceTags) queueTags = queueDict[queueName].get(tagFieldName) if queueTags and isinstance(queueTags, basestring): queueTags = fromChar(queueTags) queueDict[queueName][tagFieldName] = queueTags if ceTags: if queueTags: allTags = list(set(ceTags + queueTags)) queueDict[queueName][tagFieldName] = allTags else: queueDict[queueName][tagFieldName] = ceTags # Some parameters can be defined on the CE level and are inherited by all Queues for parameter in ['MaxRAM', 'NumberOfProcessors', 'WholeNode']: queueParameter = queueDict[queueName].get(parameter) ceParameter = ceDict.get(parameter) if ceParameter or queueParameter: queueDict[queueName][parameter] = ceParameter if not queueParameter \ else queueParameter # If we have a multi-core queue add MultiProcessor tag if queueDict[queueName].get('NumberOfProcessors', 1) > 1: queueDict[queueName].setdefault('Tag', []).append('MultiProcessor') queueDict[queueName]['CEName'] = ce queueDict[queueName]['GridCE'] = ce queueDict[queueName]['CEType'] = ceDict['CEType'] queueDict[queueName]['GridMiddleware'] = ceDict['CEType'] queueDict[queueName]['QueueName'] = queue platform = '' if "Platform" in queueDict[queueName]: platform = queueDict[queueName]['Platform'] elif "Platform" in ceDict: platform = ceDict['Platform'] elif "OS" in ceDict: architecture = ceDict.get('architecture', 'x86_64') platform = '_'.join([architecture, ceDict['OS']]) queueDict[queueName]['Platform'] = platform if "Platform" not in queueDict[queueName] and platform: result = getDIRACPlatform(platform) if result['OK']: queueDict[queueName]['Platform'] = result['Value'][0] return S_OK(queueDict)
50,370
def switch_map( mapper: Optional[Mapper[_T1, Observable[_T2]]] = None ) -> Callable[[Observable[_T1]], Observable[_T2]]: """ The switch_map operator. Project each element of an observable sequence into a new observable. .. marble:: :alt: switch_map ---1---2---3---> [ switch_map(i: of(i, i ** 2, i ** 3)) ] ---1---1---1---2---4---8---3---9---27---> Example: >>> switch_map(lambda value: of(value, value // 2)) Args: mapper: A transform function to apply to each source element. Returns: A partially applied operator function that takes an observable source and returns an observable sequence whose elements are each element of the result of invoking the transform function on each element of the source. """ from ._switch_map import switch_map_ return switch_map_(mapper)
def switch_map( mapper: Optional[Mapper[_T1, Observable[_T2]]] = None ) -> Callable[[Observable[_T1]], Observable[_T2]]: """ The switch_map operator. Project each element of an observable sequence into a new observable. .. marble:: :alt: switch_map ---1---2---3---> [ switch_map(i: of(i, i ** 2, i ** 3)) ] ---1---1---1---2---4---8---3---9---27---> Example: >>> switch_map(lambda value: of(value, value // 2)) Args: mapper: A transform function to apply to each source element. Returns: A partially applied operator function that takes an observable source and returns an observable sequence whose elements are each element of the result of invoking the transform function on each element of the source. """ mapper_: typing.Mapper[_T1, Union[Future[_T2], Observable[_T2]]] = mapper or cast( Callable[[_T1], Observable[_T2]], of ) return compose( map(mapper_), switch_latest(), )
28,621
def from_beanmachine( sampler=None, *, coords=None, dims=None, ): """Convert Bean Machine MonteCarloSamples object into an InferenceData object. For a usage example read the :ref:`Creating InferenceData section on from_beanmachine <creating_InferenceData>` Parameters ---------- sampler : bm.MonteCarloSamples Fitted MonteCarloSamples object from Bean Machine coords : dict[str] -> list[str] Map of dimensions to coordinates dims : dict[str] -> list[str] Map variable names to their coordinates """ return BMConverter( sampler=sampler, coords=coords, dims=dims, ).to_inference_data()
def from_beanmachine( sampler=None, *, coords=None, dims=None, ): """Convert Bean Machine MonteCarloSamples object into an InferenceData object. For a usage example read the :ref:`Creating InferenceData section on from_beanmachine <creating_InferenceData>` Parameters ---------- sampler : bm.MonteCarloSamples Fitted MonteCarloSamples object from Bean Machine coords : dict[str] -> list[str] Map of dimensions to coordinates dims : dict of {str : list of str} Map variable names to their coordinates """ return BMConverter( sampler=sampler, coords=coords, dims=dims, ).to_inference_data()
6,961
def fetch_details_from_tag(_tag: str) -> Tuple[str, str, str]: app_tag = _tag.split("@") org_repo = app_tag[0].split("/") try: repo, tag = app_tag except ValueError: repo, tag = app_tag + [None] try: org, repo = org_repo except Exception: org, repo = find_org(org_repo) return org, repo, tag
def fetch_details_from_tag(_tag: str) -> Tuple[str, str, str]: app_tag = _tag.split("@") org_repo = app_tag[0].split("/") try: repo, tag = app_tag except ValueError: repo, tag = app_tag + [None] try: org, repo = org_repo except Exception: org, repo = find_org(org_repo[0]) return org, repo, tag
17,753
def imshow( img, zmin=None, zmax=None, origin=None, labels={}, x=None, y=None, animation_frame=None, facet_col=None, facet_col_wrap=None, color_continuous_scale=None, color_continuous_midpoint=None, range_color=None, title=None, template=None, width=None, height=None, aspect=None, contrast_rescaling=None, binary_string=None, binary_backend="auto", binary_compression_level=4, binary_format="png", ): """ Display an image, i.e. data on a 2D regular raster. Parameters ---------- img: array-like image, or xarray The image data. Supported array shapes are - (M, N): an image with scalar data. The data is visualized using a colormap. - (M, N, 3): an image with RGB values. - (M, N, 4): an image with RGBA values, i.e. including transparency. zmin, zmax : scalar or iterable, optional zmin and zmax define the scalar range that the colormap covers. By default, zmin and zmax correspond to the min and max values of the datatype for integer datatypes (ie [0-255] for uint8 images, [0, 65535] for uint16 images, etc.). For a multichannel image of floats, the max of the image is computed and zmax is the smallest power of 256 (1, 255, 65535) greater than this max value, with a 5% tolerance. For a single-channel image, the max of the image is used. Overridden by range_color. origin : str, 'upper' or 'lower' (default 'upper') position of the [0, 0] pixel of the image array, in the upper left or lower left corner. The convention 'upper' is typically used for matrices and images. labels : dict with str keys and str values (default `{}`) Sets names used in the figure for axis titles (keys ``x`` and ``y``), colorbar title and hoverlabel (key ``color``). The values should correspond to the desired label to be displayed. If ``img`` is an xarray, dimension names are used for axis titles, and long name for the colorbar title (unless overridden in ``labels``). Possible keys are: x, y, and color. x, y: list-like, optional x and y are used to label the axes of single-channel heatmap visualizations and their lengths must match the lengths of the second and first dimensions of the img argument. They are auto-populated if the input is an xarray. facet_col: int, optional (default None) axis number along which the image array is slices to create a facetted plot. facet_col_wrap: int Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if `facet_col` is None. color_continuous_scale : str or list of str colormap used to map scalar data to colors (for a 2D image). This parameter is not used for RGB or RGBA images. If a string is provided, it should be the name of a known color scale, and if a list is provided, it should be a list of CSS- compatible colors. color_continuous_midpoint : number If set, computes the bounds of the continuous color scale to have the desired midpoint. Overridden by range_color or zmin and zmax. range_color : list of two numbers If provided, overrides auto-scaling on the continuous color scale, including overriding `color_continuous_midpoint`. Also overrides zmin and zmax. Used only for single-channel images. title : str The figure title. template : str or dict or plotly.graph_objects.layout.Template instance The figure template name or definition. width : number The figure width in pixels. height: number The figure height in pixels. aspect: 'equal', 'auto', or None - 'equal': Ensures an aspect ratio of 1 or pixels (square pixels) - 'auto': The axes is kept fixed and the aspect ratio of pixels is adjusted so that the data fit in the axes. In general, this will result in non-square pixels. - if None, 'equal' is used for numpy arrays and 'auto' for xarrays (which have typically heterogeneous coordinates) contrast_rescaling: 'minmax', 'infer', or None how to determine data values corresponding to the bounds of the color range, when zmin or zmax are not passed. If `minmax`, the min and max values of the image are used. If `infer`, a heuristic based on the image data type is used. binary_string: bool, default None if True, the image data are first rescaled and encoded as uint8 and then passed to plotly.js as a b64 PNG string. If False, data are passed unchanged as a numerical array. Setting to True may lead to performance gains, at the cost of a loss of precision depending on the original data type. If None, use_binary_string is set to True for multichannel (eg) RGB arrays, and to False for single-channel (2D) arrays. 2D arrays are represented as grayscale and with no colorbar if use_binary_string is True. binary_backend: str, 'auto' (default), 'pil' or 'pypng' Third-party package for the transformation of numpy arrays to png b64 strings. If 'auto', Pillow is used if installed, otherwise pypng. binary_compression_level: int, between 0 and 9 (default 4) png compression level to be passed to the backend when transforming an array to a png b64 string. Increasing `binary_compression` decreases the size of the png string, but the compression step takes more time. For most images it is not worth using levels greater than 5, but it's possible to test `len(fig.data[0].source)` and to time the execution of `imshow` to tune the level of compression. 0 means no compression (not recommended). binary_format: str, 'png' (default) or 'jpg' compression format used to generate b64 string. 'png' is recommended since it uses lossless compression, but 'jpg' (lossy) compression can result if smaller binary strings for natural images. Returns ------- fig : graph_objects.Figure containing the displayed image See also -------- plotly.graph_objects.Image : image trace plotly.graph_objects.Heatmap : heatmap trace Notes ----- In order to update and customize the returned figure, use `go.Figure.update_traces` or `go.Figure.update_layout`. If an xarray is passed, dimensions names and coordinates are used for axes labels and ticks. """ args = locals() apply_default_cascade(args) labels = labels.copy() nslices = 1 if facet_col is not None: if isinstance(facet_col, str): facet_col = img.dims.index(facet_col) nslices = img.shape[facet_col] ncols = int(facet_col_wrap) if facet_col_wrap is not None else nslices nrows = nslices // ncols + 1 if nslices % ncols else nslices // ncols else: nrows = 1 ncols = 1 if animation_frame is not None: if isinstance(animation_frame, str): animation_frame = img.dims.index(animation_frame) nslices = img.shape[animation_frame] slice_through = (facet_col is not None) or (animation_frame is not None) slice_label = None slices = range(nslices) # ----- Define x and y, set labels if img is an xarray ------------------- if xarray_imported and isinstance(img, xarray.DataArray): # if binary_string: # raise ValueError( # "It is not possible to use binary image strings for xarrays." # "Please pass your data as a numpy array instead using" # "`img.values`" # ) dims = list(img.dims) if slice_through: slice_index = facet_col if facet_col is not None else animation_frame slices = img.coords[img.dims[slice_index]].values _ = dims.pop(slice_index) slice_label = img.dims[slice_index] y_label, x_label = dims[0], dims[1] # np.datetime64 is not handled correctly by go.Heatmap for ax in [x_label, y_label]: if np.issubdtype(img.coords[ax].dtype, np.datetime64): img.coords[ax] = img.coords[ax].astype(str) if x is None: x = img.coords[x_label] if y is None: y = img.coords[y_label] if aspect is None: aspect = "auto" if labels.get("x", None) is None: labels["x"] = x_label if labels.get("y", None) is None: labels["y"] = y_label if labels.get("slice", None) is None: labels["slice"] = slice_label if labels.get("color", None) is None: labels["color"] = xarray.plot.utils.label_from_attrs(img) labels["color"] = labels["color"].replace("\n", "<br>") else: if hasattr(img, "columns") and hasattr(img.columns, "__len__"): if x is None: x = img.columns if labels.get("x", None) is None and hasattr(img.columns, "name"): labels["x"] = img.columns.name or "" if hasattr(img, "index") and hasattr(img.index, "__len__"): if y is None: y = img.index if labels.get("y", None) is None and hasattr(img.index, "name"): labels["y"] = img.index.name or "" if labels.get("x", None) is None: labels["x"] = "" if labels.get("y", None) is None: labels["y"] = "" if labels.get("color", None) is None: labels["color"] = "" if aspect is None: aspect = "equal" # --- Set the value of binary_string (forbidden for pandas) if isinstance(img, pd.DataFrame): if binary_string: raise ValueError("Binary strings cannot be used with pandas arrays") is_dataframe = True else: is_dataframe = False # --------------- Starting from here img is always a numpy array -------- img = np.asanyarray(img) if facet_col is not None: img = np.moveaxis(img, facet_col, 0) facet_col = True if animation_frame is not None: img = np.moveaxis(img, animation_frame, 0) animation_frame = True args["animation_frame"] = ( "slice" if labels.get("slice") is None else labels["slice"] ) # Default behaviour of binary_string: True for RGB images, False for 2D if binary_string is None: if slice_through: binary_string = img.ndim >= 4 and not is_dataframe else: binary_string = img.ndim >= 3 and not is_dataframe # Cast bools to uint8 (also one byte) if img.dtype == np.bool: img = 255 * img.astype(np.uint8) if range_color is not None: zmin = range_color[0] zmax = range_color[1] # -------- Contrast rescaling: either minmax or infer ------------------ if contrast_rescaling is None: contrast_rescaling = ( "minmax" if (img.ndim == 2 or (img.ndim == 3 and slice_through)) else "infer" ) # We try to set zmin and zmax only if necessary, because traces have good defaults if contrast_rescaling == "minmax": # When using binary_string and minmax we need to set zmin and zmax to rescale the image if (zmin is not None or binary_string) and zmax is None: zmax = img.max() if (zmax is not None or binary_string) and zmin is None: zmin = img.min() else: # For uint8 data and infer we let zmin and zmax to be None if passed as None if zmax is None and img.dtype != np.uint8: zmax = _infer_zmax_from_type(img) if zmin is None and zmax is not None: zmin = 0 # For 2d data, use Heatmap trace, unless binary_string is True if (img.ndim == 2 or (img.ndim == 3 and slice_through)) and not binary_string: y_index = 1 if slice_through else 0 if y is not None and img.shape[y_index] != len(y): raise ValueError( "The length of the y vector must match the length of the first " + "dimension of the img matrix." ) x_index = 2 if slice_through else 1 if x is not None and img.shape[x_index] != len(x): raise ValueError( "The length of the x vector must match the length of the second " + "dimension of the img matrix." ) if slice_through: traces = [ go.Heatmap(x=x, y=y, z=img_slice, coloraxis="coloraxis1", name=str(i)) for i, img_slice in enumerate(img) ] else: traces = [go.Heatmap(x=x, y=y, z=img, coloraxis="coloraxis1")] autorange = True if origin == "lower" else "reversed" layout = dict(yaxis=dict(autorange=autorange)) if aspect == "equal": layout["xaxis"] = dict(scaleanchor="y", constrain="domain") layout["yaxis"]["constrain"] = "domain" colorscale_validator = ColorscaleValidator("colorscale", "imshow") layout["coloraxis1"] = dict( colorscale=colorscale_validator.validate_coerce( args["color_continuous_scale"] ), cmid=color_continuous_midpoint, cmin=zmin, cmax=zmax, ) if labels["color"]: layout["coloraxis1"]["colorbar"] = dict(title_text=labels["color"]) # For 2D+RGB data, use Image trace elif ( img.ndim >= 3 and (img.shape[-1] in [3, 4] or slice_through and binary_string) ) or (img.ndim == 2 and binary_string): rescale_image = True # to check whether image has been modified if zmin is not None and zmax is not None: zmin, zmax = ( _vectorize_zvalue(zmin, mode="min"), _vectorize_zvalue(zmax, mode="max"), ) if binary_string: if zmin is None and zmax is None: # no rescaling, faster img_rescaled = img rescale_image = False elif img.ndim == 2 or (img.ndim == 3 and slice_through): img_rescaled = rescale_intensity( img, in_range=(zmin[0], zmax[0]), out_range=np.uint8 ) else: img_rescaled = np.stack( [ rescale_intensity( img[..., ch], in_range=(zmin[ch], zmax[ch]), out_range=np.uint8, ) for ch in range(img.shape[-1]) ], axis=-1, ) if slice_through: img_str = [ _array_to_b64str( img_rescaled_slice, backend=binary_backend, compression=binary_compression_level, ext=binary_format, ) for img_rescaled_slice in img_rescaled ] else: img_str = [ _array_to_b64str( img_rescaled, backend=binary_backend, compression=binary_compression_level, ext=binary_format, ) ] traces = [ go.Image(source=img_str_slice, name=str(i)) for i, img_str_slice in enumerate(img_str) ] else: colormodel = "rgb" if img.shape[-1] == 3 else "rgba256" if slice_through: traces = [ go.Image(z=img_slice, zmin=zmin, zmax=zmax, colormodel=colormodel) for img_slice in img ] else: traces = [go.Image(z=img, zmin=zmin, zmax=zmax, colormodel=colormodel)] layout = {} if origin == "lower": layout["yaxis"] = dict(autorange=True) else: raise ValueError( "px.imshow only accepts 2D single-channel, RGB or RGBA images. " "An image of shape %s was provided" "Alternatively, 3-D single or multichannel datasets can be" "visualized using the `facet_col` or `animation_frame` arguments." % str(img.shape) ) # Now build figure col_labels = [] if facet_col is not None: slice_label = "slice" if labels.get("slice") is None else labels["slice"] if slices is None: slices = range(nslices) col_labels = ["%s = %d" % (slice_label, i) for i in slices] fig = init_figure(args, "xy", [], nrows, ncols, col_labels, []) layout_patch = dict() for attr_name in ["height", "width"]: if args[attr_name]: layout_patch[attr_name] = args[attr_name] if args["title"]: layout_patch["title_text"] = args["title"] elif args["template"].layout.margin.t is None: layout_patch["margin"] = {"t": 60} frame_list = [] for index, (slice_index, trace) in enumerate(zip(slices, traces)): if facet_col or index == 0: fig.add_trace(trace, row=nrows - index // ncols, col=index % ncols + 1) if animation_frame: frame_list.append(dict(data=trace, layout=layout, name=str(slice_index))) if animation_frame: fig.frames = frame_list fig.update_layout(layout) fig.update_layout(layout_patch) # Hover name, z or color if binary_string and rescale_image and not np.all(img == img_rescaled): # we rescaled the image, hence z is not displayed in hover since it does # not correspond to img values hovertemplate = "%s: %%{x}<br>%s: %%{y}<extra></extra>" % ( labels["x"] or "x", labels["y"] or "y", ) else: if trace["type"] == "heatmap": hover_name = "%{z}" elif img.ndim == 2: hover_name = "%{z[0]}" elif img.ndim == 3 and img.shape[-1] == 3: hover_name = "[%{z[0]}, %{z[1]}, %{z[2]}]" else: hover_name = "%{z}" hovertemplate = "%s: %%{x}<br>%s: %%{y}<br>%s: %s<extra></extra>" % ( labels["x"] or "x", labels["y"] or "y", labels["color"] or "color", hover_name, ) fig.update_traces(hovertemplate=hovertemplate) if labels["x"]: fig.update_xaxes(title_text=labels["x"]) if labels["y"]: fig.update_yaxes(title_text=labels["y"]) configure_animation_controls(args, go.Image, fig) # fig.update_layout(template=args["template"], overwrite=True) return fig
def imshow( img, zmin=None, zmax=None, origin=None, labels={}, x=None, y=None, animation_frame=None, facet_col=None, facet_col_wrap=None, color_continuous_scale=None, color_continuous_midpoint=None, range_color=None, title=None, template=None, width=None, height=None, aspect=None, contrast_rescaling=None, binary_string=None, binary_backend="auto", binary_compression_level=4, binary_format="png", ): """ Display an image, i.e. data on a 2D regular raster. Parameters ---------- img: array-like image, or xarray The image data. Supported array shapes are - (M, N): an image with scalar data. The data is visualized using a colormap. - (M, N, 3): an image with RGB values. - (M, N, 4): an image with RGBA values, i.e. including transparency. zmin, zmax : scalar or iterable, optional zmin and zmax define the scalar range that the colormap covers. By default, zmin and zmax correspond to the min and max values of the datatype for integer datatypes (ie [0-255] for uint8 images, [0, 65535] for uint16 images, etc.). For a multichannel image of floats, the max of the image is computed and zmax is the smallest power of 256 (1, 255, 65535) greater than this max value, with a 5% tolerance. For a single-channel image, the max of the image is used. Overridden by range_color. origin : str, 'upper' or 'lower' (default 'upper') position of the [0, 0] pixel of the image array, in the upper left or lower left corner. The convention 'upper' is typically used for matrices and images. labels : dict with str keys and str values (default `{}`) Sets names used in the figure for axis titles (keys ``x`` and ``y``), colorbar title and hoverlabel (key ``color``). The values should correspond to the desired label to be displayed. If ``img`` is an xarray, dimension names are used for axis titles, and long name for the colorbar title (unless overridden in ``labels``). Possible keys are: x, y, and color. x, y: list-like, optional x and y are used to label the axes of single-channel heatmap visualizations and their lengths must match the lengths of the second and first dimensions of the img argument. They are auto-populated if the input is an xarray. facet_col: int, optional (default None) axis number along which the image array is slices to create a facetted plot. facet_col_wrap: int Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if `facet_col` is None. color_continuous_scale : str or list of str colormap used to map scalar data to colors (for a 2D image). This parameter is not used for RGB or RGBA images. If a string is provided, it should be the name of a known color scale, and if a list is provided, it should be a list of CSS- compatible colors. color_continuous_midpoint : number If set, computes the bounds of the continuous color scale to have the desired midpoint. Overridden by range_color or zmin and zmax. range_color : list of two numbers If provided, overrides auto-scaling on the continuous color scale, including overriding `color_continuous_midpoint`. Also overrides zmin and zmax. Used only for single-channel images. title : str The figure title. template : str or dict or plotly.graph_objects.layout.Template instance The figure template name or definition. width : number The figure width in pixels. height: number The figure height in pixels. aspect: 'equal', 'auto', or None - 'equal': Ensures an aspect ratio of 1 or pixels (square pixels) - 'auto': The axes is kept fixed and the aspect ratio of pixels is adjusted so that the data fit in the axes. In general, this will result in non-square pixels. - if None, 'equal' is used for numpy arrays and 'auto' for xarrays (which have typically heterogeneous coordinates) contrast_rescaling: 'minmax', 'infer', or None how to determine data values corresponding to the bounds of the color range, when zmin or zmax are not passed. If `minmax`, the min and max values of the image are used. If `infer`, a heuristic based on the image data type is used. binary_string: bool, default None if True, the image data are first rescaled and encoded as uint8 and then passed to plotly.js as a b64 PNG string. If False, data are passed unchanged as a numerical array. Setting to True may lead to performance gains, at the cost of a loss of precision depending on the original data type. If None, use_binary_string is set to True for multichannel (eg) RGB arrays, and to False for single-channel (2D) arrays. 2D arrays are represented as grayscale and with no colorbar if use_binary_string is True. binary_backend: str, 'auto' (default), 'pil' or 'pypng' Third-party package for the transformation of numpy arrays to png b64 strings. If 'auto', Pillow is used if installed, otherwise pypng. binary_compression_level: int, between 0 and 9 (default 4) png compression level to be passed to the backend when transforming an array to a png b64 string. Increasing `binary_compression` decreases the size of the png string, but the compression step takes more time. For most images it is not worth using levels greater than 5, but it's possible to test `len(fig.data[0].source)` and to time the execution of `imshow` to tune the level of compression. 0 means no compression (not recommended). binary_format: str, 'png' (default) or 'jpg' compression format used to generate b64 string. 'png' is recommended since it uses lossless compression, but 'jpg' (lossy) compression can result if smaller binary strings for natural images. Returns ------- fig : graph_objects.Figure containing the displayed image See also -------- plotly.graph_objects.Image : image trace plotly.graph_objects.Heatmap : heatmap trace Notes ----- In order to update and customize the returned figure, use `go.Figure.update_traces` or `go.Figure.update_layout`. If an xarray is passed, dimensions names and coordinates are used for axes labels and ticks. """ args = locals() apply_default_cascade(args) labels = labels.copy() nslices = 1 if facet_col is not None: if isinstance(facet_col, str): facet_col = img.dims.index(facet_col) nslices = img.shape[facet_col] ncols = int(facet_col_wrap) if facet_col_wrap is not None else nslices nrows = nslices // ncols + 1 if nslices % ncols else nslices // ncols else: nrows = 1 ncols = 1 if animation_frame is not None: if isinstance(animation_frame, str): animation_frame = img.dims.index(animation_frame) nslices = img.shape[animation_frame] slice_through = (facet_col is not None) or (animation_frame is not None) slice_label = None slices = range(nslices) # ----- Define x and y, set labels if img is an xarray ------------------- if xarray_imported and isinstance(img, xarray.DataArray): # if binary_string: # raise ValueError( # "It is not possible to use binary image strings for xarrays." # "Please pass your data as a numpy array instead using" # "`img.values`" # ) dims = list(img.dims) if slice_through: slice_index = facet_col if facet_col is not None else animation_frame slices = img.coords[img.dims[slice_index]].values _ = dims.pop(slice_index) slice_label = img.dims[slice_index] y_label, x_label = dims[0], dims[1] # np.datetime64 is not handled correctly by go.Heatmap for ax in [x_label, y_label]: if np.issubdtype(img.coords[ax].dtype, np.datetime64): img.coords[ax] = img.coords[ax].astype(str) if x is None: x = img.coords[x_label] if y is None: y = img.coords[y_label] if aspect is None: aspect = "auto" if labels.get("x", None) is None: labels["x"] = x_label if labels.get("y", None) is None: labels["y"] = y_label if labels.get("slice", None) is None: labels["slice"] = slice_label if labels.get("color", None) is None: labels["color"] = xarray.plot.utils.label_from_attrs(img) labels["color"] = labels["color"].replace("\n", "<br>") else: if hasattr(img, "columns") and hasattr(img.columns, "__len__"): if x is None: x = img.columns if labels.get("x", None) is None and hasattr(img.columns, "name"): labels["x"] = img.columns.name or "" if hasattr(img, "index") and hasattr(img.index, "__len__"): if y is None: y = img.index if labels.get("y", None) is None and hasattr(img.index, "name"): labels["y"] = img.index.name or "" if labels.get("x", None) is None: labels["x"] = "" if labels.get("y", None) is None: labels["y"] = "" if labels.get("color", None) is None: labels["color"] = "" if aspect is None: aspect = "equal" # --- Set the value of binary_string (forbidden for pandas) if isinstance(img, pd.DataFrame): if binary_string: raise ValueError("Binary strings cannot be used with pandas arrays") is_dataframe = True else: is_dataframe = False # --------------- Starting from here img is always a numpy array -------- img = np.asanyarray(img) if facet_col is not None: img = np.moveaxis(img, facet_col, 0) facet_col = True if animation_frame is not None: img = np.moveaxis(img, animation_frame, 0) animation_frame = True args["animation_frame"] = ( "slice" if labels.get("slice") is None else labels["slice"] ) # Default behaviour of binary_string: True for RGB images, False for 2D if binary_string is None: if slice_through: binary_string = img.ndim >= 4 and not is_dataframe else: binary_string = img.ndim >= 3 and not is_dataframe # Cast bools to uint8 (also one byte) if img.dtype == np.bool: img = 255 * img.astype(np.uint8) if range_color is not None: zmin = range_color[0] zmax = range_color[1] # -------- Contrast rescaling: either minmax or infer ------------------ if contrast_rescaling is None: contrast_rescaling = ( "minmax" if (img.ndim == 2 or (img.ndim == 3 and slice_through)) else "infer" ) # We try to set zmin and zmax only if necessary, because traces have good defaults if contrast_rescaling == "minmax": # When using binary_string and minmax we need to set zmin and zmax to rescale the image if (zmin is not None or binary_string) and zmax is None: zmax = img.max() if (zmax is not None or binary_string) and zmin is None: zmin = img.min() else: # For uint8 data and infer we let zmin and zmax to be None if passed as None if zmax is None and img.dtype != np.uint8: zmax = _infer_zmax_from_type(img) if zmin is None and zmax is not None: zmin = 0 # For 2d data, use Heatmap trace, unless binary_string is True if (img.ndim == 2 or (img.ndim == 3 and slice_through)) and not binary_string: y_index = 1 if slice_through else 0 if y is not None and img.shape[y_index] != len(y): raise ValueError( "The length of the y vector must match the length of the first " + "dimension of the img matrix." ) x_index = 2 if slice_through else 1 if x is not None and img.shape[x_index] != len(x): raise ValueError( "The length of the x vector must match the length of the second " + "dimension of the img matrix." ) if slice_through: traces = [ go.Heatmap(x=x, y=y, z=img_slice, coloraxis="coloraxis1", name=str(i)) for i, img_slice in enumerate(img) ] else: traces = [go.Heatmap(x=x, y=y, z=img, coloraxis="coloraxis1")] autorange = True if origin == "lower" else "reversed" layout = dict(yaxis=dict(autorange=autorange)) if aspect == "equal": layout["xaxis"] = dict(scaleanchor="y", constrain="domain") layout["yaxis"]["constrain"] = "domain" colorscale_validator = ColorscaleValidator("colorscale", "imshow") layout["coloraxis1"] = dict( colorscale=colorscale_validator.validate_coerce( args["color_continuous_scale"] ), cmid=color_continuous_midpoint, cmin=zmin, cmax=zmax, ) if labels["color"]: layout["coloraxis1"]["colorbar"] = dict(title_text=labels["color"]) # For 2D+RGB data, use Image trace elif ( img.ndim >= 3 and (img.shape[-1] in [3, 4] or slice_through and binary_string) ) or (img.ndim == 2 and binary_string): rescale_image = True # to check whether image has been modified if zmin is not None and zmax is not None: zmin, zmax = ( _vectorize_zvalue(zmin, mode="min"), _vectorize_zvalue(zmax, mode="max"), ) if binary_string: if zmin is None and zmax is None: # no rescaling, faster img_rescaled = img rescale_image = False elif img.ndim == 2 or (img.ndim == 3 and slice_through): img_rescaled = rescale_intensity( img, in_range=(zmin[0], zmax[0]), out_range=np.uint8 ) else: img_rescaled = np.stack( [ rescale_intensity( img[..., ch], in_range=(zmin[ch], zmax[ch]), out_range=np.uint8, ) for ch in range(img.shape[-1]) ], axis=-1, ) if slice_through: img_str = [ _array_to_b64str( img_rescaled_slice, backend=binary_backend, compression=binary_compression_level, ext=binary_format, ) for img_rescaled_slice in img_rescaled ] else: img_str = [ _array_to_b64str( img_rescaled, backend=binary_backend, compression=binary_compression_level, ext=binary_format, ) ] traces = [ go.Image(source=img_str_slice, name=str(i)) for i, img_str_slice in enumerate(img_str) ] else: colormodel = "rgb" if img.shape[-1] == 3 else "rgba256" if slice_through: traces = [ go.Image(z=img_slice, zmin=zmin, zmax=zmax, colormodel=colormodel) for img_slice in img ] else: traces = [go.Image(z=img, zmin=zmin, zmax=zmax, colormodel=colormodel)] layout = {} if origin == "lower": layout["yaxis"] = dict(autorange=True) else: raise ValueError( "px.imshow only accepts 2D single-channel, RGB or RGBA images. " "An image of shape %s was provided." "Alternatively, 3-D single or multichannel datasets can be" "visualized using the `facet_col` or `animation_frame` arguments." % str(img.shape) ) # Now build figure col_labels = [] if facet_col is not None: slice_label = "slice" if labels.get("slice") is None else labels["slice"] if slices is None: slices = range(nslices) col_labels = ["%s = %d" % (slice_label, i) for i in slices] fig = init_figure(args, "xy", [], nrows, ncols, col_labels, []) layout_patch = dict() for attr_name in ["height", "width"]: if args[attr_name]: layout_patch[attr_name] = args[attr_name] if args["title"]: layout_patch["title_text"] = args["title"] elif args["template"].layout.margin.t is None: layout_patch["margin"] = {"t": 60} frame_list = [] for index, (slice_index, trace) in enumerate(zip(slices, traces)): if facet_col or index == 0: fig.add_trace(trace, row=nrows - index // ncols, col=index % ncols + 1) if animation_frame: frame_list.append(dict(data=trace, layout=layout, name=str(slice_index))) if animation_frame: fig.frames = frame_list fig.update_layout(layout) fig.update_layout(layout_patch) # Hover name, z or color if binary_string and rescale_image and not np.all(img == img_rescaled): # we rescaled the image, hence z is not displayed in hover since it does # not correspond to img values hovertemplate = "%s: %%{x}<br>%s: %%{y}<extra></extra>" % ( labels["x"] or "x", labels["y"] or "y", ) else: if trace["type"] == "heatmap": hover_name = "%{z}" elif img.ndim == 2: hover_name = "%{z[0]}" elif img.ndim == 3 and img.shape[-1] == 3: hover_name = "[%{z[0]}, %{z[1]}, %{z[2]}]" else: hover_name = "%{z}" hovertemplate = "%s: %%{x}<br>%s: %%{y}<br>%s: %s<extra></extra>" % ( labels["x"] or "x", labels["y"] or "y", labels["color"] or "color", hover_name, ) fig.update_traces(hovertemplate=hovertemplate) if labels["x"]: fig.update_xaxes(title_text=labels["x"]) if labels["y"]: fig.update_yaxes(title_text=labels["y"]) configure_animation_controls(args, go.Image, fig) # fig.update_layout(template=args["template"], overwrite=True) return fig
33,726
def trial_progress_str(trials, metric_columns, parameter_columns=None, total_samples=0, fmt="psql", max_rows=None): """Returns a human readable message for printing to the console. This contains a table where each row represents a trial, its parameters and the current values of its metrics. Args: trials (list[Trial]): List of trials to get progress string for. metric_columns (dict[str, str]|list[str]): Names of metrics to include. If this is a dict, the keys are metric names and the values are the names to use in the message. If this is a list, the metric name is used in the message directly. parameter_columns (dict[str, str]|list[str]): Names of parameters to include. If this is a dict, the keys are parameter names and the values are the names to use in the message. If this is a list, the parameter name is used in the message directly. If this is empty, all parameters are used in the message. total_samples (int): Total number of trials that will be generated. fmt (str): Output format (see tablefmt in tabulate API). max_rows (int): Maximum number of rows in the trial table. Defaults to unlimited. """ messages = [] delim = "<br>" if fmt == "html" else "\n" if len(trials) < 1: return delim.join(messages) num_trials = len(trials) trials_by_state = collections.defaultdict(list) for t in trials: trials_by_state[t.status].append(t) for local_dir in sorted({t.local_dir for t in trials}): messages.append("Result logdir: {}".format(local_dir)) num_trials_strs = [ "{} {}".format(len(trials_by_state[state]), state) for state in sorted(trials_by_state) ] state_tbl_oder = [ Trial.RUNNING, Trial.PAUSED, Trial.PENDING, Trial.TERMINATED, Trial.ERROR ] max_rows = max_rows or float("inf") if num_trials > max_rows: # TODO(ujvl): suggestion for users to view more rows. trials_by_state_trunc = _fair_filter_trials(trials_by_state, max_rows) trials = [] overflow_strs = [] for state in state_tbl_oder: if state not in trials_by_state: continue trials += trials_by_state_trunc[state] num = len(trials_by_state[state]) - len( trials_by_state_trunc[state]) if num > 0: overflow_strs.append("{} {}".format(num, state)) # Build overflow string. overflow = num_trials - max_rows overflow_str = ", ".join(overflow_strs) else: overflow = False trials = [] for state in state_tbl_oder: if state not in trials_by_state: continue trials += trials_by_state[state] if total_samples and total_samples >= sys.maxsize: total_samples = "infinite" messages.append("Number of trials: {}{} ({})".format( num_trials, f"/{total_samples}" if total_samples else "", ", ".join(num_trials_strs))) # Pre-process trials to figure out what columns to show. if isinstance(metric_columns, Mapping): metric_keys = list(metric_columns.keys()) else: metric_keys = metric_columns metric_keys = [ k for k in metric_keys if any( t.last_result.get(k) is not None for t in trials) ] if not parameter_columns: parameter_keys = sorted( set().union(*[t.evaluated_params for t in trials])) elif isinstance(parameter_columns, Mapping): parameter_keys = list(parameter_columns.keys()) else: parameter_keys = parameter_columns # Build trial rows. trial_table = [ _get_trial_info(trial, parameter_keys, metric_keys) for trial in trials ] # Format column headings if isinstance(metric_columns, Mapping): formatted_metric_columns = [metric_columns[k] for k in metric_keys] else: formatted_metric_columns = metric_keys if isinstance(parameter_columns, Mapping): formatted_parameter_columns = [ parameter_columns[k] for k in parameter_keys ] else: formatted_parameter_columns = parameter_keys columns = (["Trial name", "status", "loc"] + formatted_parameter_columns + formatted_metric_columns) # Tabulate. messages.append( tabulate(trial_table, headers=columns, tablefmt=fmt, showindex=False)) if overflow: messages.append("... {} more trials not shown ({})".format( overflow, overflow_str)) return delim.join(messages)
def trial_progress_str(trials, metric_columns, parameter_columns=None, total_samples=0, fmt="psql", max_rows=None): """Returns a human readable message for printing to the console. This contains a table where each row represents a trial, its parameters and the current values of its metrics. Args: trials (list[Trial]): List of trials to get progress string for. metric_columns (dict[str, str]|list[str]): Names of metrics to include. If this is a dict, the keys are metric names and the values are the names to use in the message. If this is a list, the metric name is used in the message directly. parameter_columns (dict[str, str]|list[str]): Names of parameters to include. If this is a dict, the keys are parameter names and the values are the names to use in the message. If this is a list, the parameter name is used in the message directly. If this is empty, all parameters are used in the message. total_samples (int): Total number of trials that will be generated. fmt (str): Output format (see tablefmt in tabulate API). max_rows (int): Maximum number of rows in the trial table. Defaults to unlimited. """ messages = [] delim = "<br>" if fmt == "html" else "\n" if len(trials) < 1: return delim.join(messages) num_trials = len(trials) trials_by_state = collections.defaultdict(list) for t in trials: trials_by_state[t.status].append(t) for local_dir in sorted({t.local_dir for t in trials}): messages.append("Result logdir: {}".format(local_dir)) num_trials_strs = [ "{} {}".format(len(trials_by_state[state]), state) for state in sorted(trials_by_state) ] state_tbl_order = [ Trial.RUNNING, Trial.PAUSED, Trial.PENDING, Trial.TERMINATED, Trial.ERROR ] max_rows = max_rows or float("inf") if num_trials > max_rows: # TODO(ujvl): suggestion for users to view more rows. trials_by_state_trunc = _fair_filter_trials(trials_by_state, max_rows) trials = [] overflow_strs = [] for state in state_tbl_oder: if state not in trials_by_state: continue trials += trials_by_state_trunc[state] num = len(trials_by_state[state]) - len( trials_by_state_trunc[state]) if num > 0: overflow_strs.append("{} {}".format(num, state)) # Build overflow string. overflow = num_trials - max_rows overflow_str = ", ".join(overflow_strs) else: overflow = False trials = [] for state in state_tbl_oder: if state not in trials_by_state: continue trials += trials_by_state[state] if total_samples and total_samples >= sys.maxsize: total_samples = "infinite" messages.append("Number of trials: {}{} ({})".format( num_trials, f"/{total_samples}" if total_samples else "", ", ".join(num_trials_strs))) # Pre-process trials to figure out what columns to show. if isinstance(metric_columns, Mapping): metric_keys = list(metric_columns.keys()) else: metric_keys = metric_columns metric_keys = [ k for k in metric_keys if any( t.last_result.get(k) is not None for t in trials) ] if not parameter_columns: parameter_keys = sorted( set().union(*[t.evaluated_params for t in trials])) elif isinstance(parameter_columns, Mapping): parameter_keys = list(parameter_columns.keys()) else: parameter_keys = parameter_columns # Build trial rows. trial_table = [ _get_trial_info(trial, parameter_keys, metric_keys) for trial in trials ] # Format column headings if isinstance(metric_columns, Mapping): formatted_metric_columns = [metric_columns[k] for k in metric_keys] else: formatted_metric_columns = metric_keys if isinstance(parameter_columns, Mapping): formatted_parameter_columns = [ parameter_columns[k] for k in parameter_keys ] else: formatted_parameter_columns = parameter_keys columns = (["Trial name", "status", "loc"] + formatted_parameter_columns + formatted_metric_columns) # Tabulate. messages.append( tabulate(trial_table, headers=columns, tablefmt=fmt, showindex=False)) if overflow: messages.append("... {} more trials not shown ({})".format( overflow, overflow_str)) return delim.join(messages)
3,201
def __get_range_chunked(issue_ids, start, stop, rollup): combined = {} for chunk in chunked(issue_ids, GET_RANGE_BATCH_SIZE): combined.update(tsdb.get_range(tsdb.models.group, list(chunk), start, stop, rollup=rollup)) return combined
def _get_range_chunked(issue_ids, start, stop, rollup): combined = {} for chunk in chunked(issue_ids, GET_RANGE_BATCH_SIZE): combined.update(tsdb.get_range(tsdb.models.group, list(chunk), start, stop, rollup=rollup)) return combined
39,753
def numpy_img2d_color_std(img, seg, means=None): """ compute color STD by numpy :param ndarray img: input RGB image :param ndarray seg: segmentation og the image :param ndarray means: precomputed feature means :return: np.array<nb_lbs, 3> matrix features per segment .. seealso:: :func:`imsegm.descriptors.cython_img2d_color_std` >>> image = np.zeros((2, 10, 3)) >>> image[:, 2:6, 0] = 1 >>> image[:, 3:8, 1] = 3 >>> image[:, 4:9, 2] = 2 >>> segm = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], ... [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]) >>> numpy_img2d_color_std(image, segm) array([[ 0.48989795, 1.46969385, 0.8 ], [ 0.4 , 1.46969385, 0.8 ]]) """ logging.debug('computing Colour STD for image %r & segm %r with' ' %i segments', img.shape, seg.shape, np.max(seg)) _check_color_image_segm(img, seg) if means is None: means = numpy_img2d_color_mean(img, seg) nb_labels = np.max(seg) + 1 if len(means) < nb_labels: raise ValueError('number of means (%i) should be equal to number of labels (%i)' % (len(means), nb_labels)) variations = np.zeros((nb_labels, 3)) counts = np.zeros(nb_labels) for i in range(seg.shape[0]): for j in range(seg.shape[1]): lb = seg[i, j] variations[lb, :] += (img[i, j, :] - means[lb, :])**2 counts[lb] += 1 # prevent dividing by 0 counts[counts == 0] = -1 variations = (variations / np.tile(counts, (3, 1)).T.astype(float)) # preventing negative zeros variations[variations == 0] = 0 stds = np.sqrt(variations) return stds
def numpy_img2d_color_std(img, seg, means=None): """ compute color STD by numpy :param ndarray img: input RGB image :param ndarray seg: segmentation og the image :param ndarray means: precomputed feature means :return: np.array<nb_lbs, 3> matrix features per segment .. seealso:: :func:`imsegm.descriptors.cython_img2d_color_std` >>> image = np.zeros((2, 10, 3)) >>> image[:, 2:6, 0] = 1 >>> image[:, 3:8, 1] = 3 >>> image[:, 4:9, 2] = 2 >>> segm = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], ... [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]) >>> numpy_img2d_color_std(image, segm) array([[ 0.48989795, 1.46969385, 0.8 ], [ 0.4 , 1.46969385, 0.8 ]]) """ logging.debug('computing Colour STD for image %r & segm %r with %i segments', img.shape, seg.shape, np.max(seg)) _check_color_image_segm(img, seg) if means is None: means = numpy_img2d_color_mean(img, seg) nb_labels = np.max(seg) + 1 if len(means) < nb_labels: raise ValueError('number of means (%i) should be equal to number of labels (%i)' % (len(means), nb_labels)) variations = np.zeros((nb_labels, 3)) counts = np.zeros(nb_labels) for i in range(seg.shape[0]): for j in range(seg.shape[1]): lb = seg[i, j] variations[lb, :] += (img[i, j, :] - means[lb, :])**2 counts[lb] += 1 # prevent dividing by 0 counts[counts == 0] = -1 variations = (variations / np.tile(counts, (3, 1)).T.astype(float)) # preventing negative zeros variations[variations == 0] = 0 stds = np.sqrt(variations) return stds
2,972
def load(fh, encoding=None, is_verbose: bool = False): """ Load a pickle, with a provided encoding, Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise
def load(fh, encoding: Optional[str] = None, is_verbose: bool = False): """ Load a pickle, with a provided encoding, Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise
55,675
def adjust_hue(img: np.ndarray, hue_factor: float) -> np.ndarray: """Adjust hue of an image. The image hue is adjusted by converting the image to HSV and cyclically shifting the intensities in the hue channel (H). The image is then converted back to original image mode. `hue_factor` is the amount of shift in H channel and must be in the interval `[-0.5, 0.5]`. Args: img (ndarray): Image to be adjusted. hue_factor (float): How much to shift the hue channel. Should be in [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -0.5 and 0.5 will give an image with complementary colors while 0 gives the original image. Returns: ndarray: Hue adjusted image. """ if not (-0.5 <= hue_factor <= 0.5): raise ValueError(f'hue_factor:{hue_factor} is not in [-0.5, 0.5].') if not (isinstance(img, np.ndarray) and (img.ndim in {2, 3})): raise TypeError('img should be ndarray with dim=[2 or 3].') dtype = img.dtype img = img.astype(np.uint8) hsv_img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV_FULL) h, s, v = cv2.split(hsv_img) h = h.astype(np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over='ignore'): h += np.uint8(hue_factor * 255) hsv_img = cv2.merge([h, s, v]) return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB_FULL).astype(dtype)
def adjust_hue(img: np.ndarray, hue_factor: float) -> np.ndarray: """Adjust hue of an image. The image hue is adjusted by converting the image to HSV and cyclically shifting the intensities in the hue channel (H). The image is then converted back to original image mode. `hue_factor` is the amount of shift in H channel and must be in the interval `[-0.5, 0.5]`. Args: img (ndarray): Image to be adjusted. hue_factor (float): How much to shift the hue channel. Should be in [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -0.5 and 0.5 will give an image with complementary colors while 0 gives the original image. Returns: ndarray: Hue adjusted image. """ if not (-0.5 <= hue_factor <= 0.5): raise ValueError(f'hue_factor:{hue_factor} is not in [-0.5, 0.5].') if not (isinstance(img, np.ndarray) and (img.ndim in {2, 3})): raise TypeError('img should be ndarray with dim=[2 or 3].') dtype = img.dtype img = img.astype(np.uint8) hsv_img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV_FULL) h, s, v = cv2.split(hsv_img) h = h.astype(np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over='ignore'): h += np.uint8(hue_factor * 255) hsv_img = cv2.merge([h, s, v]) return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB_FULL).astype(dtype)
18,497
def make_argument_parser(**kwargs): """Create an basic argument parser without any subcommands added.""" parser = SpackArgumentParser( formatter_class=SpackHelpFormatter, add_help=False, description=( "A flexible package manager that supports multiple versions,\n" "configurations, platforms, and compilers."), **kwargs) # stat names in groups of 7, for nice wrapping. stat_lines = list(zip(*(iter(stat_names),) * 7)) parser.add_argument( '-h', '--help', dest='help', action='store_const', const='short', default=None, help="show this help message and exit") parser.add_argument( '-H', '--all-help', dest='help', action='store_const', const='long', default=None, help="show help for all commands (same as spack help --all)") parser.add_argument( '--color', action='store', default='auto', choices=('always', 'never', 'auto'), help="when to colorize output (default: auto)") parser.add_argument( '-C', '--config-scope', dest='config_scopes', action='append', metavar='DIR', help="add a custom configuration scope") parser.add_argument( '-d', '--debug', action='store_true', help="write out basic debug messages") parser.add_argument( '-dd', action='store_true', help="write out basic and standard debug messages") parser.add_argument( '-ddd', action='store_true', help="write out basic, standard and detailed debug messages") parser.add_argument( '-dddd', action='store_true', help="write out all debug messages") parser.add_argument( '--timestamp', action='store_true', help="Add a timestamp to tty output") parser.add_argument( '--pdb', action='store_true', help="run spack under the pdb debugger") env_group = parser.add_mutually_exclusive_group() env_group.add_argument( '-e', '--env', dest='env', metavar='ENV', action='store', help="run with a specific environment (see spack env)") env_group.add_argument( '-D', '--env-dir', dest='env_dir', metavar='DIR', action='store', help="run with an environment directory (ignore named environments)") env_group.add_argument( '-E', '--no-env', dest='no_env', action='store_true', help="run without any environments activated (see spack env)") parser.add_argument( '--use-env-repo', action='store_true', help="when running in an environment, use its package repository") parser.add_argument( '-k', '--insecure', action='store_true', help="do not check ssl certificates when downloading") parser.add_argument( '-l', '--enable-locks', action='store_true', dest='locks', default=None, help="use filesystem locking (default)") parser.add_argument( '-L', '--disable-locks', action='store_false', dest='locks', help="do not use filesystem locking (unsafe)") parser.add_argument( '-m', '--mock', action='store_true', help="use mock packages instead of real ones") parser.add_argument( '-p', '--profile', action='store_true', dest='spack_profile', help="profile execution using cProfile") parser.add_argument( '--sorted-profile', default=None, metavar="STAT", help="profile and sort by one or more of:\n[%s]" % ',\n '.join([', '.join(line) for line in stat_lines])) parser.add_argument( '--lines', default=20, action='store', help="lines of profile output or 'all' (default: 20)") parser.add_argument( '-v', '--verbose', action='store_true', help="print additional, verbose output") parser.add_argument( '--stacktrace', action='store_true', help="add stacktraces to all printed statements") parser.add_argument( '-V', '--version', action='store_true', help='show version number and exit') parser.add_argument( '--print-shell-vars', action='store', help="print info needed by setup-env.[c]sh") return parser
def make_argument_parser(**kwargs): """Create an basic argument parser without any subcommands added.""" parser = SpackArgumentParser( formatter_class=SpackHelpFormatter, add_help=False, description=( "A flexible package manager that supports multiple versions,\n" "configurations, platforms, and compilers."), **kwargs) # stat names in groups of 7, for nice wrapping. stat_lines = list(zip(*(iter(stat_names),) * 7)) parser.add_argument( '-h', '--help', dest='help', action='store_const', const='short', default=None, help="show this help message and exit") parser.add_argument( '-H', '--all-help', dest='help', action='store_const', const='long', default=None, help="show help for all commands (same as spack help --all)") parser.add_argument( '--color', action='store', default='auto', choices=('always', 'never', 'auto'), help="when to colorize output (default: auto)") parser.add_argument( '-C', '--config-scope', dest='config_scopes', action='append', metavar='DIR', help="add a custom configuration scope") parser.add_argument( '-d', '--debug', action='store_true', help="write out basic debug messages") parser.add_argument( '-dd', action='store_true', help="write out basic and standard debug messages") parser.add_argument( '-ddd', action='store_true', help="write out basic, standard and detailed debug messages") parser.add_argument( '-dddd', action='store_true', help="write out all debug messages") parser.add_argument( '--timestamp', action='store_true', help="Add a timestamp to tty output") parser.add_argument( '--pdb', action='store_true', help="run spack under the pdb debugger") env_group = parser.add_mutually_exclusive_group() env_group.add_argument( '-e', '--env', dest='env', metavar='ENV', action='store', help="run with a specific environment (see spack env)") env_group.add_argument( '-D', '--env-dir', dest='env_dir', metavar='DIR', action='store', help="run with an environment directory (ignore named environments)") env_group.add_argument( '-E', '--no-env', dest='no_env', action='store_true', help="run without any environments activated (see spack env)") parser.add_argument( '--use-env-repo', action='store_true', help="when running in an environment, use its package repository") parser.add_argument( '-k', '--insecure', action='store_true', help="do not check ssl certificates when downloading") parser.add_argument( '-l', '--enable-locks', action='store_true', dest='locks', default=None, help="use filesystem locking (default)") parser.add_argument( '-L', '--disable-locks', action='store_false', dest='locks', help="do not use filesystem locking (unsafe)") parser.add_argument( '-m', '--mock', action='store_true', help="use mock packages instead of real ones") parser.add_argument( '-p', '--profile', action='store_true', dest='spack_profile', help="profile execution using cProfile") parser.add_argument( '--sorted-profile', default=None, metavar="STAT", help="profile and sort by one or more of:\n[%s]" % ',\n '.join([', '.join(line) for line in stat_lines])) parser.add_argument( '--lines', default=20, action='store', help="lines of profile output or 'all' (default: 20)") parser.add_argument( '-v', '--verbose', action='store_true', help="tee build system output to stdout") parser.add_argument( '--stacktrace', action='store_true', help="add stacktraces to all printed statements") parser.add_argument( '-V', '--version', action='store_true', help='show version number and exit') parser.add_argument( '--print-shell-vars', action='store', help="print info needed by setup-env.[c]sh") return parser
44,322
def validate_algorithm_spec(algorithm_settings: list[api_pb2.AlgorithmSetting]) -> (bool, str): for s in algorithm_settings: try: if s.name == "num_epochs": if not int(s.value) > 0: return False, "{} should be greate than zero".format(s.name) # Validate learning rate if s.name in ["w_lr", "w_lr_min", "alpha_lr"]: if not float(s.value) >= 0.0: return False, "{} should be greate or equal than zero".format(s.name) # Validate weight decay if s.name in ["w_weight_decay", "alpha_weight_decay"]: if not float(s.value) >= 0.0: return False, "{} should be greate or equal than zero".format(s.name) # Validate w_momentum and w_grad_clip if s.name in ["w_momentum", "w_grad_clip"]: if not float(s.value) >= 0.0: return False, "{} should be greate or equal than zero".format(s.name) if s.name == "batch_size": if s.value is not "None": if not int(s.value) >= 1: return False, "batch_size should be greate or equal than one" if s.name == "num_workers": if not int(s.value) >= 0: return False, "num_workers should be greate or equal than zero" # Validate "init_channels", "print_step", "num_nodes" and "stem_multiplier" if s.name in ["init_channels", "print_step", "num_nodes", "stem_multiplier"]: if not int(s.value) >= 1: return False, "{} should be greate or equal than one".format(s.name) except Exception as e: return False, "failed to validate {name}({value}): {exception}".format(name=s.name, value=s.value, exception=e) return True, ""
def validate_algorithm_spec(algorithm_settings: list[api_pb2.AlgorithmSetting]) -> (bool, str): for s in algorithm_settings: try: if s.name == "num_epochs": if not int(s.value) > 0: return False, "{} should be greater than zero".format(s.name) # Validate learning rate if s.name in ["w_lr", "w_lr_min", "alpha_lr"]: if not float(s.value) >= 0.0: return False, "{} should be greate or equal than zero".format(s.name) # Validate weight decay if s.name in ["w_weight_decay", "alpha_weight_decay"]: if not float(s.value) >= 0.0: return False, "{} should be greate or equal than zero".format(s.name) # Validate w_momentum and w_grad_clip if s.name in ["w_momentum", "w_grad_clip"]: if not float(s.value) >= 0.0: return False, "{} should be greate or equal than zero".format(s.name) if s.name == "batch_size": if s.value is not "None": if not int(s.value) >= 1: return False, "batch_size should be greate or equal than one" if s.name == "num_workers": if not int(s.value) >= 0: return False, "num_workers should be greate or equal than zero" # Validate "init_channels", "print_step", "num_nodes" and "stem_multiplier" if s.name in ["init_channels", "print_step", "num_nodes", "stem_multiplier"]: if not int(s.value) >= 1: return False, "{} should be greate or equal than one".format(s.name) except Exception as e: return False, "failed to validate {name}({value}): {exception}".format(name=s.name, value=s.value, exception=e) return True, ""
9,627
def main(): """ This section is for arguments parsing """ state_map = dict( present='vrouter-interface-ip-add', absent='vrouter-interface-ip-remove' ) module = AnsibleModule( argument_spec=dict( pn_cliswitch=dict(required=False, type='str'), state=dict(required=True, type='str', choices=state_map.keys()), pn_bd=dict(required=False, type='str'), pn_netmask=dict(required=False, type='str'), pn_vnet=dict(required=False, type='str'), pn_ip=dict(required=False, type='str'), pn_nic=dict(required=False, type='str'), pn_vrouter_name=dict(required=False, type='str'), ), required_if=( ["state", "present", ["pn_vrouter_name", "pn_nic", "pn_ip", "pn_netmask"]], ["state", "absent", ["pn_vrouter_name", "pn_nic", "pn_ip"]] ), ) # Accessing the arguments cliswitch = module.params['pn_cliswitch'] state = module.params['state'] bd = module.params['pn_bd'] netmask = module.params['pn_netmask'] vnet = module.params['pn_vnet'] ip = module.params['pn_ip'] nic = module.params['pn_nic'] vrouter_name = module.params['pn_vrouter_name'] command = state_map[state] # Building the CLI command string cli = pn_cli(module, cliswitch) VROUTER_EXISTS, INTERFACE_EXISTS, NIC_EXISTS = check_cli(module, cli) cli += ' %s vrouter-name %s ' % (command, vrouter_name) if command == 'vrouter-interface-ip-add': if VROUTER_EXISTS is False: module.fail_json( failed=True, msg='vRouter %s does not exist' % vrouter_name ) if NIC_EXISTS is False: module.fail_json( failed=True, msg='vRouter with nic %s does not exist' % nic ) if INTERFACE_EXISTS is True: module.exit_json( skipped=True, msg='vrouter with interface %s exist' % ip ) cli += ' nic %s ip %s ' % (nic, ip) if bd: cli += ' bd ' + bd if netmask: cli += ' netmask ' + netmask if vnet: cli += ' vnet ' + vnet if command == 'vrouter-interface-ip-remove': if VROUTER_EXISTS is False: module.fail_json( failed=True, msg='vRouter %s does not exist' % vrouter_name ) if NIC_EXISTS is False: module.fail_json( failed=True, msg='vRouter with nic %s does not exist' % nic ) if INTERFACE_EXISTS is False: module.exit_json( skipped=True, msg='vrouter with interface %s doesnt exist' % ip ) if nic: cli += ' nic %s ' % nic if ip: cli += ' ip %s ' % ip.split('/')[0] run_cli(module, cli, state_map)
def main(): """ This section is for arguments parsing """ state_map = dict( present='vrouter-interface-ip-add', absent='vrouter-interface-ip-remove' ) module = AnsibleModule( argument_spec=dict( pn_cliswitch=dict(required=False, type='str'), state=dict(required=True, type='str', choices=state_map.keys()), pn_bd=dict(required=False, type='str'), pn_netmask=dict(required=False, type='str'), pn_vnet=dict(required=False, type='str'), pn_ip=dict(required=False, type='str'), pn_nic=dict(required=False, type='str'), pn_vrouter_name=dict(required=False, type='str'), ), required_if=( ["state", "present", ["pn_vrouter_name", "pn_nic", "pn_ip", "pn_netmask"]], ["state", "absent", ["pn_vrouter_name", "pn_nic", "pn_ip"]] ), ) # Accessing the arguments cliswitch = module.params['pn_cliswitch'] state = module.params['state'] bd = module.params['pn_bd'] netmask = module.params['pn_netmask'] vnet = module.params['pn_vnet'] ip = module.params['pn_ip'] nic = module.params['pn_nic'] vrouter_name = module.params['pn_vrouter_name'] command = state_map[state] # Building the CLI command string cli = pn_cli(module, cliswitch) VROUTER_EXISTS, INTERFACE_EXISTS, NIC_EXISTS = check_cli(module, cli) cli += ' %s vrouter-name %s ' % (command, vrouter_name) if command == 'vrouter-interface-ip-add': if VROUTER_EXISTS is False: module.fail_json( failed=True, msg='vRouter %s does not exist' % vrouter_name ) if NIC_EXISTS is False: module.fail_json( failed=True, msg='vRouter with nic %s does not exist' % nic ) if INTERFACE_EXISTS is True: module.exit_json( skipped=True, msg='vrouter with interface %s exist' % ip ) cli += ' nic %s ip %s ' % (nic, ip) if bd: cli += ' bd ' + bd if netmask: cli += ' netmask ' + netmask if vnet: cli += ' vnet ' + vnet if command == 'vrouter-interface-ip-remove': if VROUTER_EXISTS is False: module.fail_json( failed=True, msg='vRouter %s does not exist' % vrouter_name ) if NIC_EXISTS is False: module.fail_json( failed=True, msg='vRouter with nic %s does not exist' % nic ) if INTERFACE_EXISTS is False: module.exit_json( skipped=True, msg='vRouter with interface %s does not exist' % ip ) if nic: cli += ' nic %s ' % nic if ip: cli += ' ip %s ' % ip.split('/')[0] run_cli(module, cli, state_map)
48,564
def test_init_as_points_from_list(): points = [[0.0, 0.0, 0.0], [0, 1, 0], [0, 0, 1]] mesh = pyvista.PolyData(points) assert np.allclose(mesh.points, points)
def test_init_as_points_from_list(): points = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] mesh = pyvista.PolyData(points) assert np.allclose(mesh.points, points)
27,391
def generate_streamlines( topology_file_path: str, trajectory_file_path: str, grid_spacing: float, MDA_selection: str, start_frame: int, end_frame: int, xmin: float, xmax: float, ymin: float, ymax: float, maximum_delta_magnitude: float, num_cores: int = 'maximum' ) -> Tuple[np.ndarray, np.ndarray, float, float]: r"""Produce the x and y components of a 2D streamplot data set. Parameters ---------- topology_file_path : str Absolute path to the topology file trajectory_file_path : str Absolute path to the trajectory file. It will normally be desirable to filter the trajectory with a tool such as GROMACS :program:`g_filter` (see :cite:p:`a-Chavent2014`) grid_spacing : float The spacing between grid lines (angstroms) MDA_selection : str MDAnalysis selection string start_frame : int First frame number to parse end_frame : int Last frame number to parse xmin : float Minimum coordinate boundary for x-axis (angstroms) xmax : float Maximum coordinate boundary for x-axis (angstroms) ymin : float Minimum coordinate boundary for y-axis (angstroms) ymax : float Maximum coordinate boundary for y-axis (angstroms) maximum_delta_magnitude : float Absolute value of the largest displacement tolerated for the centroid of a group of particles ( angstroms). Values above this displacement will not count in the streamplot (treated as excessively large displacements crossing the periodic boundary) num_cores : int or 'maximum' (optional) The number of cores to use. (Default 'maximum' uses all available cores) Returns ------- dx_array : array of floats An array object containing the displacements in the x direction dy_array : array of floats An array object containing the displacements in the y direction average_displacement : float :math:`\frac{\sum\sqrt[]{dx^2 + dy^2}}{N}` standard_deviation_of_displacement : float standard deviation of :math:`\sqrt[]{dx^2 + dy^2}` Examples -------- Generate 2D streamlines and plot:: import matplotlib, matplotlib.pyplot, np import MDAnalysis, MDAnalysis.visualization.streamlines u1, v1, average_displacement, standard_deviation_of_displacement = MDAnalysis.visualization.streamlines.generate_streamlines('testing.gro', 'testing_filtered.xtc', grid_spacing=20, MDA_selection='name PO4', start_frame=2, end_frame=3, xmin=-8.73000049591, xmax= 1225.96008301, ymin= -12.5799999237, ymax=1224.34008789, maximum_delta_magnitude=1.0, num_cores=16) x = np.linspace(0, 1200, 61) y = np.linspace(0, 1200, 61) speed = np.sqrt(u1*u1 + v1*v1) fig = matplotlib.pyplot.figure() ax = fig.add_subplot(111, aspect='equal') ax.set_xlabel('x ($\AA$)') ax.set_ylabel('y ($\AA$)') ax.streamplot(x, y, u1, v1, density=(10,10), color=speed, linewidth=3*speed/speed.max()) fig.savefig('testing_streamline.png',dpi=300) .. image:: testing_streamline.png References .. bibliography:: :filter: False :style: MDA :keyprefix: a- :labelprefix: ᵃ Chavent2014 See Also -------- MDAnalysis.visualization.streamlines_3D.generate_streamlines_3d """ # work out the number of cores to use: if num_cores == 'maximum': num_cores = multiprocessing.cpu_count() # use all available cores else: num_cores = num_cores # use the value specified by the user #assert isinstance(num_cores,(int,long)), "The number of specified cores must (of course) be an integer." np.seterr(all='warn', over='raise') parent_list_deltas = [] # collect all data from child processes here def log_result_to_parent(delta_array): parent_list_deltas.extend(delta_array) tuple_of_limits = (xmin, xmax, ymin, ymax) grid = produce_grid(tuple_of_limits=tuple_of_limits, grid_spacing=grid_spacing) list_square_vertex_arrays_per_core, list_parent_index_values, total_rows, total_columns = \ split_grid(grid=grid, num_cores=num_cores) pool = multiprocessing.Pool(num_cores) for vertex_sublist, index_sublist in zip(list_square_vertex_arrays_per_core, list_parent_index_values): pool.apply_async(per_core_work, args=( topology_file_path, trajectory_file_path, vertex_sublist, MDA_selection, start_frame, end_frame, index_sublist, maximum_delta_magnitude), callback=log_result_to_parent) pool.close() pool.join() dx_array = np.zeros((total_rows, total_columns)) dy_array = np.zeros((total_rows, total_columns)) #the parent_list_deltas is shaped like this: [ ([row_index,column_index],[dx,dy]), ... (...),...,] for index_array, delta_array in parent_list_deltas: # go through the list in the parent process and assign to the # appropriate positions in the dx and dy matrices: #build in a filter to replace all values at the cap (currently between -8,8) with 0 to match Matthieu's code # (I think eventually we'll reduce the cap to a narrower boundary though) index_1 = index_array.tolist()[0] index_2 = index_array.tolist()[1] if abs(delta_array[0]) == maximum_delta_magnitude: dx_array[index_1, index_2] = 0 else: dx_array[index_1, index_2] = delta_array[0] if abs(delta_array[1]) == maximum_delta_magnitude: dy_array[index_1, index_2] = 0 else: dy_array[index_1, index_2] = delta_array[1] #at Matthieu's request, we now want to calculate the average and standard deviation of the displacement values: displacement_array = np.sqrt(dx_array ** 2 + dy_array ** 2) average_displacement = np.average(displacement_array) standard_deviation_of_displacement = np.std(displacement_array) return (dx_array, dy_array, average_displacement, standard_deviation_of_displacement)
def generate_streamlines( topology_file_path: str, trajectory_file_path: str, grid_spacing: float, MDA_selection: str, start_frame: int, end_frame: int, xmin: float, xmax: float, ymin: float, ymax: float, maximum_delta_magnitude: float, num_cores: Union[int, str] = 'maximum' ) -> Tuple[np.ndarray, np.ndarray, float, float]: r"""Produce the x and y components of a 2D streamplot data set. Parameters ---------- topology_file_path : str Absolute path to the topology file trajectory_file_path : str Absolute path to the trajectory file. It will normally be desirable to filter the trajectory with a tool such as GROMACS :program:`g_filter` (see :cite:p:`a-Chavent2014`) grid_spacing : float The spacing between grid lines (angstroms) MDA_selection : str MDAnalysis selection string start_frame : int First frame number to parse end_frame : int Last frame number to parse xmin : float Minimum coordinate boundary for x-axis (angstroms) xmax : float Maximum coordinate boundary for x-axis (angstroms) ymin : float Minimum coordinate boundary for y-axis (angstroms) ymax : float Maximum coordinate boundary for y-axis (angstroms) maximum_delta_magnitude : float Absolute value of the largest displacement tolerated for the centroid of a group of particles ( angstroms). Values above this displacement will not count in the streamplot (treated as excessively large displacements crossing the periodic boundary) num_cores : int or 'maximum' (optional) The number of cores to use. (Default 'maximum' uses all available cores) Returns ------- dx_array : array of floats An array object containing the displacements in the x direction dy_array : array of floats An array object containing the displacements in the y direction average_displacement : float :math:`\frac{\sum\sqrt[]{dx^2 + dy^2}}{N}` standard_deviation_of_displacement : float standard deviation of :math:`\sqrt[]{dx^2 + dy^2}` Examples -------- Generate 2D streamlines and plot:: import matplotlib, matplotlib.pyplot, np import MDAnalysis, MDAnalysis.visualization.streamlines u1, v1, average_displacement, standard_deviation_of_displacement = MDAnalysis.visualization.streamlines.generate_streamlines('testing.gro', 'testing_filtered.xtc', grid_spacing=20, MDA_selection='name PO4', start_frame=2, end_frame=3, xmin=-8.73000049591, xmax= 1225.96008301, ymin= -12.5799999237, ymax=1224.34008789, maximum_delta_magnitude=1.0, num_cores=16) x = np.linspace(0, 1200, 61) y = np.linspace(0, 1200, 61) speed = np.sqrt(u1*u1 + v1*v1) fig = matplotlib.pyplot.figure() ax = fig.add_subplot(111, aspect='equal') ax.set_xlabel('x ($\AA$)') ax.set_ylabel('y ($\AA$)') ax.streamplot(x, y, u1, v1, density=(10,10), color=speed, linewidth=3*speed/speed.max()) fig.savefig('testing_streamline.png',dpi=300) .. image:: testing_streamline.png References .. bibliography:: :filter: False :style: MDA :keyprefix: a- :labelprefix: ᵃ Chavent2014 See Also -------- MDAnalysis.visualization.streamlines_3D.generate_streamlines_3d """ # work out the number of cores to use: if num_cores == 'maximum': num_cores = multiprocessing.cpu_count() # use all available cores else: num_cores = num_cores # use the value specified by the user #assert isinstance(num_cores,(int,long)), "The number of specified cores must (of course) be an integer." np.seterr(all='warn', over='raise') parent_list_deltas = [] # collect all data from child processes here def log_result_to_parent(delta_array): parent_list_deltas.extend(delta_array) tuple_of_limits = (xmin, xmax, ymin, ymax) grid = produce_grid(tuple_of_limits=tuple_of_limits, grid_spacing=grid_spacing) list_square_vertex_arrays_per_core, list_parent_index_values, total_rows, total_columns = \ split_grid(grid=grid, num_cores=num_cores) pool = multiprocessing.Pool(num_cores) for vertex_sublist, index_sublist in zip(list_square_vertex_arrays_per_core, list_parent_index_values): pool.apply_async(per_core_work, args=( topology_file_path, trajectory_file_path, vertex_sublist, MDA_selection, start_frame, end_frame, index_sublist, maximum_delta_magnitude), callback=log_result_to_parent) pool.close() pool.join() dx_array = np.zeros((total_rows, total_columns)) dy_array = np.zeros((total_rows, total_columns)) #the parent_list_deltas is shaped like this: [ ([row_index,column_index],[dx,dy]), ... (...),...,] for index_array, delta_array in parent_list_deltas: # go through the list in the parent process and assign to the # appropriate positions in the dx and dy matrices: #build in a filter to replace all values at the cap (currently between -8,8) with 0 to match Matthieu's code # (I think eventually we'll reduce the cap to a narrower boundary though) index_1 = index_array.tolist()[0] index_2 = index_array.tolist()[1] if abs(delta_array[0]) == maximum_delta_magnitude: dx_array[index_1, index_2] = 0 else: dx_array[index_1, index_2] = delta_array[0] if abs(delta_array[1]) == maximum_delta_magnitude: dy_array[index_1, index_2] = 0 else: dy_array[index_1, index_2] = delta_array[1] #at Matthieu's request, we now want to calculate the average and standard deviation of the displacement values: displacement_array = np.sqrt(dx_array ** 2 + dy_array ** 2) average_displacement = np.average(displacement_array) standard_deviation_of_displacement = np.std(displacement_array) return (dx_array, dy_array, average_displacement, standard_deviation_of_displacement)
30,966
def main(): credentials_json = json.loads(demisto.params().get('credentials_json', {})) project = demisto.params().get('project_id', '') region = demisto.params().get('region') region = set_default_region(region) proxy = demisto.params().get('proxy', False) insecure = demisto.params().get('insecure', False) scopes = ['https://www.googleapis.com/auth/cloud-platform'] client = GoogleClient('cloudfunctions', 'v1', credentials_json, scopes, proxy, insecure, project=project, region=region) commands = { 'google-cloud-functions-list': functions_list_command, 'google-cloud-function-regions-list': region_list_command, 'google-cloud-function-get-by-name': get_function_by_name_command, 'google-cloud-function-execute': execute_function_command, } '''EXECUTION CODE''' cmd_func = demisto.command() LOG(f'Command being called is {cmd_func}') try: if cmd_func == 'test-module': functions_list_command(client, {}) demisto.results('ok') else: hr, outputs, raw = commands[cmd_func](client, demisto.args()) return_outputs(hr, outputs, raw) except Exception as e: return_error(f"Failed to execute {cmd_func} command. Error: {e}") raise
def main(): credentials_json = json.loads(demisto.params().get('credentials_json', {})) project = demisto.params().get('project_id', '') region = demisto.params().get('region', '-') proxy = demisto.params().get('proxy', False) insecure = demisto.params().get('insecure', False) scopes = ['https://www.googleapis.com/auth/cloud-platform'] client = GoogleClient('cloudfunctions', 'v1', credentials_json, scopes, proxy, insecure, project=project, region=region) commands = { 'google-cloud-functions-list': functions_list_command, 'google-cloud-function-regions-list': region_list_command, 'google-cloud-function-get-by-name': get_function_by_name_command, 'google-cloud-function-execute': execute_function_command, } '''EXECUTION CODE''' cmd_func = demisto.command() LOG(f'Command being called is {cmd_func}') try: if cmd_func == 'test-module': functions_list_command(client, {}) demisto.results('ok') else: hr, outputs, raw = commands[cmd_func](client, demisto.args()) return_outputs(hr, outputs, raw) except Exception as e: return_error(f"Failed to execute {cmd_func} command. Error: {e}") raise
31,758
def update_group_command(client, args): scim = verify_and_load_scim_data(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not group_id: return_error("You must supply 'id' in the scim data") member_ids_to_add = args.get('memberIdsToAdd') member_ids_to_delete = args.get('memberIdsToDelete') if member_ids_to_add: if type(member_ids_to_add) != list: member_ids_to_add = json.loads(member_ids_to_add) for member_id in member_ids_to_add: operation = { "op": "add", "path": "members", "value": [{"value": member_id}] } group_input = {'schemas': [patchSchema], 'Operations': [operation]} res = client.update_group(group_id, group_input) if res.status_code != 204: res_json = res.json() generic_iam_context = OutputContext(success=False, displayName=group_name, iden=member_id, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('AWS Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output ) if member_ids_to_delete: if type(member_ids_to_delete) is not list: member_ids_to_delete = json.loads(member_ids_to_delete) for member_id in member_ids_to_delete: operation = { "op": "remove", "path": "members", "value": [{"value": member_id}] } group_input = {'schemas': [patchSchema], 'Operations': [operation]} res = client.update_group(group_id, group_input) if res.status_code != 204: res_json = res.json() generic_iam_context = OutputContext(success=False, displayName=group_name, iden=member_id, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('AWS Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output ) if res.status_code == 204: res_json = res.headers generic_iam_context = OutputContext(success=True, iden=group_id, displayName=group_name, details=str(res_json)) elif res.status_code == 404: res_json = res.json() generic_iam_context = OutputContext(success=False, iden=group_id, displayName=group_name, errorCode=404, errorMessage="Group/User Not Found or User not a member of group", details=res_json) else: res_json = res.json() generic_iam_context = OutputContext(success=False, iden=group_id, displayName=group_name, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('AWS Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output )
def update_group_command(client, args): scim = verify_and_load_scim_data(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not group_id: return_error("You must supply 'id' in the scim data") member_ids_to_add = args.get('memberIdsToAdd') member_ids_to_delete = args.get('memberIdsToDelete') if member_ids_to_add: if type(member_ids_to_add) != list: member_ids_to_add = json.loads(member_ids_to_add) for member_id in member_ids_to_add: operation = { "op": "add", "path": "members", "value": [{"value": member_id}] } group_input = {'schemas': [patchSchema], 'Operations': [operation]} res = client.update_group(group_id, group_input) if res.status_code != 204: res_json = res.json() generic_iam_context = OutputContext(success=False, displayName=group_name, iden=member_id, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('AWS Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output ) if member_ids_to_delete: if not isinstance(member_ids_to_delete, list): member_ids_to_delete = json.loads(member_ids_to_delete) for member_id in member_ids_to_delete: operation = { "op": "remove", "path": "members", "value": [{"value": member_id}] } group_input = {'schemas': [patchSchema], 'Operations': [operation]} res = client.update_group(group_id, group_input) if res.status_code != 204: res_json = res.json() generic_iam_context = OutputContext(success=False, displayName=group_name, iden=member_id, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('AWS Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output ) if res.status_code == 204: res_json = res.headers generic_iam_context = OutputContext(success=True, iden=group_id, displayName=group_name, details=str(res_json)) elif res.status_code == 404: res_json = res.json() generic_iam_context = OutputContext(success=False, iden=group_id, displayName=group_name, errorCode=404, errorMessage="Group/User Not Found or User not a member of group", details=res_json) else: res_json = res.json() generic_iam_context = OutputContext(success=False, iden=group_id, displayName=group_name, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('AWS Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output )
34,456
def _collect_action_executed_predictions( processor: "MessageProcessor", partial_tracker: DialogueStateTracker, event: ActionExecuted, fail_on_prediction_errors: bool, circuit_breaker_tripped: bool, ) -> Tuple[EvaluationStore, Optional[Text], Optional[float]]: from rasa.core.policies.form_policy import FormPolicy from rasa.core.policies.rule_policy import RulePolicy action_executed_eval_store = EvaluationStore() gold = event.action_name if circuit_breaker_tripped: predicted = "circuit breaker tripped" policy = None confidence = None else: action, policy, confidence = processor.predict_next_action(partial_tracker) predicted = action.name() if ( policy and predicted != gold and _form_might_have_been_rejected( processor.domain, partial_tracker, predicted ) ): # Wrong policy was predicted, # but it might be Ok if form action is rejected. _emulate_form_rejection(partial_tracker) # try again action, policy, confidence = processor.predict_next_action(partial_tracker) if action.name() == gold: predicted = action.name() else: _undo_emulating_form_rejection(partial_tracker) action_executed_eval_store.add_to_store( action_predictions=predicted, action_targets=gold ) if action_executed_eval_store.has_prediction_target_mismatch(): partial_tracker.update( WronglyPredictedAction( gold, predicted, event.policy, event.confidence, event.timestamp ) ) if fail_on_prediction_errors: error_msg = ( "Model predicted a wrong action. Failed Story: " "\n\n{}".format(partial_tracker.export_stories()) ) if FormPolicy.__name__ in policy: error_msg += ( "FormAction is not run during " "evaluation therefore it is impossible to know " "if validation failed or this story is wrong. " "If the story is correct, add it to the " "training stories and retrain." ) raise ValueError(error_msg) else: partial_tracker.update(event) return action_executed_eval_store, policy, confidence
def _collect_action_executed_predictions( processor: "MessageProcessor", partial_tracker: DialogueStateTracker, event: ActionExecuted, fail_on_prediction_errors: bool, circuit_breaker_tripped: bool, ) -> Tuple[EvaluationStore, Optional[Text], Optional[float]]: from rasa.core.policies.form_policy import FormPolicy from rasa.core.policies.rule_policy import RulePolicy action_executed_eval_store = EvaluationStore() gold = event.action_name if circuit_breaker_tripped: predicted = "circuit breaker tripped" policy = None confidence = None else: action, policy, confidence = processor.predict_next_action(partial_tracker) predicted = action.name() if ( policy and predicted != gold and _form_might_have_been_rejected( processor.domain, partial_tracker, predicted ) ): # Wrong action was predicted, # but it might be Ok if form action is rejected. _emulate_form_rejection(partial_tracker) # try again action, policy, confidence = processor.predict_next_action(partial_tracker) if action.name() == gold: predicted = action.name() else: _undo_emulating_form_rejection(partial_tracker) action_executed_eval_store.add_to_store( action_predictions=predicted, action_targets=gold ) if action_executed_eval_store.has_prediction_target_mismatch(): partial_tracker.update( WronglyPredictedAction( gold, predicted, event.policy, event.confidence, event.timestamp ) ) if fail_on_prediction_errors: error_msg = ( "Model predicted a wrong action. Failed Story: " "\n\n{}".format(partial_tracker.export_stories()) ) if FormPolicy.__name__ in policy: error_msg += ( "FormAction is not run during " "evaluation therefore it is impossible to know " "if validation failed or this story is wrong. " "If the story is correct, add it to the " "training stories and retrain." ) raise ValueError(error_msg) else: partial_tracker.update(event) return action_executed_eval_store, policy, confidence
1,577
def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None (default) Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ # Validation of the arguments if n_classes == 0 and not allow_unlabeled: raise ValueError( "Invalid set of arguments passed: " + "n_classes = 0 and allow_unlabeled = False" ) if length == 0: raise ValueError("Invalid argument passed: length = 0") generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y
def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None (default) Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ # Validation of the arguments if n_classes < 1: raise ValueError( "Invalid set of arguments passed: " + "n_classes = 0 and allow_unlabeled = False" ) if length == 0: raise ValueError("Invalid argument passed: length = 0") generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y
36,548
def _parse_tz_delta(tz_delta): match = re.match( r"(?P<sign>[+-])?(?P<h>\d{1,2})(:(?P<m>\d{2})(:(?P<s>\d{2}))?)?", tz_delta, ) # Anything passed to this function should already have hit an equivalent # regular expression to find the section to parse. assert match is not None, tz_delta h, m, s = ( int(v) if v is not None else 0 for v in map(match.group, ("h", "m", "s")) ) total = h * 3600 + m * 60 + s if not -86400 < total < 86400: raise ValueError( f"Offset must be strictly between -24h and +24h:{tz_delta}" ) # Yes, +5 maps to an offset of -5h if match.group("sign") != "-": total *= -1 return total
def _parse_tz_delta(tz_delta): match = re.match( r"(?P<sign>[+-])?(?P<h>\d{1,2})(:(?P<m>\d{2})(:(?P<s>\d{2}))?)?", tz_delta, ) # Anything passed to this function should already have hit an equivalent # regular expression to find the section to parse. assert match is not None, tz_delta h, m, s = ( int(v) if v is not None else 0 for v in map(match.group, ("h", "m", "s")) ) total = h * 3600 + m * 60 + s if not -86400 < total < 86400: raise ValueError( f"Offset must be strictly between -24h and +24h: {tz_delta}" ) # Yes, +5 maps to an offset of -5h if match.group("sign") != "-": total *= -1 return total
44,168
def cov_matrix(prob, obs, wires=None, diag_approx=False): """Calculate the covariance matrix of a list of commuting observables, given the joint probability distribution of the system in the shared eigenbasis. .. note:: This method only works for **commuting observables.** If the probability distribution is the result of a quantum circuit, the quantum state must be rotated into the shared eigenbasis of the list of observables before measurement. Args: prob (tensor_like): probability distribution obs (list[.Observable]): a list of observables for which to compute the covariance matrix diag_approx (bool): if True, return the diagonal approximation wires (.Wires): The wire register of the system. If not provided, it is assumed that the wires are labelled with consecutive integers. Returns: tensor_like: the covariance matrix of size ``(len(obs), len(obs))`` **Example** Consider the following ansatz and observable list: >>> obs_list = [qml.PauliX(0) @ qml.PauliZ(1), qml.PauliY(2)] >>> ansatz = qml.templates.StronglyEntanglingLayers We can construct a QNode to output the probability distribution in the shared eigenbasis of the observables: .. code-block:: python dev = qml.device("default.qubit", wires=3) @qml.qnode(dev, interface="autograd") def circuit(weights): ansatz(weights, wires=[0, 1, 2]) # rotate into the basis of the observables for o in obs_list: o.diagonalizing_gates() return qml.probs(wires=[0, 1, 2]) We can now compute the covariance matrix: >>> shape = qml.templates.StronglyEntanglingLayers.shape(n_layers=2, n_wires=3) >>> weights = np.random.random(shape, requires_grad=True) >>> cov = qml.math.cov_matrix(circuit(weights), obs_list) >>> cov array([[0.98707611, 0.03665537], [0.03665537, 0.99998377]]) Autodifferentiation is fully supported using all interfaces. Here we use autograd: >>> cost_fn = lambda weights: qml.math.cov_matrix(circuit(weights), obs_list)[0, 1] >>> qml.grad(cost_fn)(weights)[0] array([[[ 4.94240914e-17, -2.33786398e-01, -1.54193959e-01], [-3.05414996e-17, 8.40072236e-04, 5.57884080e-04], [ 3.01859411e-17, 8.60411436e-03, 6.15745204e-04]], [[ 6.80309533e-04, -1.23162742e-03, 1.08729813e-03], [-1.53863193e-01, -1.38700657e-02, -1.36243323e-01], [-1.54665054e-01, -1.89018172e-02, -1.56415558e-01]]]) """ variances = [] # diagonal variances for i, o in enumerate(obs): eigvals = cast(o.eigvals(), dtype=float64) w = o.wires.labels if wires is None else wires.indices(o.wires) p = marginal_prob(prob, w) res = dot(eigvals**2, p) - (dot(eigvals, p)) ** 2 variances.append(res) cov = diag(variances) if diag_approx: return cov for i, j in itertools.combinations(range(len(obs)), r=2): o1 = obs[i] o2 = obs[j] o1wires = o1.wires.labels if wires is None else wires.indices(o1.wires) o2wires = o2.wires.labels if wires is None else wires.indices(o2.wires) shared_wires = set(o1wires + o2wires) l1 = cast(o1.eigvals(), dtype=float64) l2 = cast(o2.eigvals(), dtype=float64) l12 = cast(np.kron(l1, l2), dtype=float64) p1 = marginal_prob(prob, o1wires) p2 = marginal_prob(prob, o2wires) p12 = marginal_prob(prob, shared_wires) res = dot(l12, p12) - dot(l1, p1) * dot(l2, p2) cov = scatter_element_add(cov, [i, j], res) cov = scatter_element_add(cov, [j, i], res) return cov
def cov_matrix(prob, obs, wires=None, diag_approx=False): """Calculate the covariance matrix of a list of commuting observables, given the joint probability distribution of the system in the shared eigenbasis. .. note:: This method only works for **commuting observables.** If the probability distribution is the result of a quantum circuit, the quantum state must be rotated into the shared eigenbasis of the list of observables before measurement. Args: prob (tensor_like): probability distribution obs (list[.Observable]): a list of observables for which to compute the covariance matrix diag_approx (bool): if True, return the diagonal approximation wires (.Wires): The wire register of the system. If not provided, it is assumed that the wires are labelled with consecutive integers. Returns: tensor_like: the covariance matrix of size ``(len(obs), len(obs))`` **Example** Consider the following ansatz and observable list: >>> obs_list = [qml.PauliX(0) @ qml.PauliZ(1), qml.PauliY(2)] >>> ansatz = qml.templates.StronglyEntanglingLayers We can construct a QNode to output the probability distribution in the shared eigenbasis of the observables: .. code-block:: python dev = qml.device("default.qubit", wires=3) @qml.qnode(dev, interface="autograd") def circuit(weights): ansatz(weights, wires=[0, 1, 2]) # rotate into the basis of the observables for o in obs_list: o.diagonalizing_gates() return qml.probs(wires=[0, 1, 2]) We can now compute the covariance matrix: >>> shape = qml.templates.StronglyEntanglingLayers.shape(n_layers=2, n_wires=3) >>> weights = np.random.random(shape, requires_grad=True) >>> cov = qml.math.cov_matrix(circuit(weights), obs_list) >>> cov array([[0.98707611, 0.03665537], [0.03665537, 0.99998377]]) Autodifferentiation is fully supported using all interfaces. Here we use autograd: >>> cost_fn = lambda weights: qml.math.cov_matrix(circuit(weights), obs_list)[0, 1] >>> qml.grad(cost_fn)(weights)[0] def _density_matrix_from_matrix(density_matrix, wires, check_state=False): array([[[ 4.94240914e-17, -2.33786398e-01, -1.54193959e-01], [-3.05414996e-17, 8.40072236e-04, 5.57884080e-04], [ 3.01859411e-17, 8.60411436e-03, 6.15745204e-04]], [[ 6.80309533e-04, -1.23162742e-03, 1.08729813e-03], [-1.53863193e-01, -1.38700657e-02, -1.36243323e-01], [-1.54665054e-01, -1.89018172e-02, -1.56415558e-01]]]) """ variances = [] # diagonal variances for i, o in enumerate(obs): eigvals = cast(o.eigvals(), dtype=float64) w = o.wires.labels if wires is None else wires.indices(o.wires) p = marginal_prob(prob, w) res = dot(eigvals**2, p) - (dot(eigvals, p)) ** 2 variances.append(res) cov = diag(variances) if diag_approx: return cov for i, j in itertools.combinations(range(len(obs)), r=2): o1 = obs[i] o2 = obs[j] o1wires = o1.wires.labels if wires is None else wires.indices(o1.wires) o2wires = o2.wires.labels if wires is None else wires.indices(o2.wires) shared_wires = set(o1wires + o2wires) l1 = cast(o1.eigvals(), dtype=float64) l2 = cast(o2.eigvals(), dtype=float64) l12 = cast(np.kron(l1, l2), dtype=float64) p1 = marginal_prob(prob, o1wires) p2 = marginal_prob(prob, o2wires) p12 = marginal_prob(prob, shared_wires) res = dot(l12, p12) - dot(l1, p1) * dot(l2, p2) cov = scatter_element_add(cov, [i, j], res) cov = scatter_element_add(cov, [j, i], res) return cov
30,809
def process_update_command(client, args, old_scim, new_scim, format_pre_text): parsed_old_scim = map_scim(old_scim) user_id = parsed_old_scim.get('id') if not (user_id): raise Exception('You must provide id of the user') res = client.get_user('id', user_id) try: existing_user = res.json() except Exception: existing_user = res if res.status_code == 200: map_changes_to_existing_user(existing_user, new_scim) # custom mapping envoy_user = client.build_envoy_user(args, existing_user, new_scim, 'update') # Removing Elements from envoy_user dictionary which was not sent as part of scim envoy_user = {key: value for key, value in envoy_user.items() if value is not None} res_update = client.update_user(user_term=user_id, data=envoy_user) if res_update.status_code == 200: res_json = res_update.json() active = res_json.get('active', False) generic_iam_context = OutputContext(success=True, iden=user_id, details=res_json, active=active) elif res_update.status_code == 404: generic_iam_context = OutputContext(success=False, iden=user_id, errorCode=res_update.status_code, errorMessage=USER_NOT_FOUND, details=res_update.headers.get('status')) else: generic_iam_context = OutputContext(success=False, iden=user_id, errorCode=res_update.status_code, errorMessage=res_update.headers.get('status'), details=res_update.headers.get('status')) else: # api returns 404, not found for user not found case. generic_iam_context = OutputContext(success=False, iden=user_id, errorCode=res.status_code, errorMessage=res.headers.get('status'), details=str(existing_user)) generic_iam_context_dt = f'{generic_iam_context.command}(val.id == obj.id && val.instanceName == obj.instanceName)' outputs = { generic_iam_context_dt: generic_iam_context.data } readable_output = tableToMarkdown(name=f'{format_pre_text} Envoy User:', t=generic_iam_context.data, headers=["brand", "instanceName", "success", "active", "id", "username", "email", "errorCode", "errorMessage", "details"], removeNull=True) return ( readable_output, outputs, generic_iam_context.data )
def process_update_command(client, args, old_scim, new_scim, command_name): parsed_old_scim = map_scim(old_scim) user_id = parsed_old_scim.get('id') if not (user_id): raise Exception('You must provide id of the user') res = client.get_user('id', user_id) try: existing_user = res.json() except Exception: existing_user = res if res.status_code == 200: map_changes_to_existing_user(existing_user, new_scim) # custom mapping envoy_user = client.build_envoy_user(args, existing_user, new_scim, 'update') # Removing Elements from envoy_user dictionary which was not sent as part of scim envoy_user = {key: value for key, value in envoy_user.items() if value is not None} res_update = client.update_user(user_term=user_id, data=envoy_user) if res_update.status_code == 200: res_json = res_update.json() active = res_json.get('active', False) generic_iam_context = OutputContext(success=True, iden=user_id, details=res_json, active=active) elif res_update.status_code == 404: generic_iam_context = OutputContext(success=False, iden=user_id, errorCode=res_update.status_code, errorMessage=USER_NOT_FOUND, details=res_update.headers.get('status')) else: generic_iam_context = OutputContext(success=False, iden=user_id, errorCode=res_update.status_code, errorMessage=res_update.headers.get('status'), details=res_update.headers.get('status')) else: # api returns 404, not found for user not found case. generic_iam_context = OutputContext(success=False, iden=user_id, errorCode=res.status_code, errorMessage=res.headers.get('status'), details=str(existing_user)) generic_iam_context_dt = f'{generic_iam_context.command}(val.id == obj.id && val.instanceName == obj.instanceName)' outputs = { generic_iam_context_dt: generic_iam_context.data } readable_output = tableToMarkdown(name=f'{format_pre_text} Envoy User:', t=generic_iam_context.data, headers=["brand", "instanceName", "success", "active", "id", "username", "email", "errorCode", "errorMessage", "details"], removeNull=True) return ( readable_output, outputs, generic_iam_context.data )
58,065
def main(): # pragma: no cover try: demisto_params = demisto.params() | demisto.args() last_run = demisto.getLastRun() last_object_ids = last_run.get('ids') if 'after' not in last_run: after = dateparser.parse(demisto_params['after'].strip()) last_run = after.timestamp() last_run = {LogType[LogType.AUTHENTICATION]: last_run, LogType[LogType.ADMINISTRATION]: last_run, LogType[LogType.TELEPHONY]: last_run} else: last_run = last_run['after'] request_order = last_run.get('request_order', [LogType.AUTHENTICATION, LogType.ADMINISTRATION, LogType.TELEPHONY]) demisto_params['params'] = Params(**demisto_params, mintime=last_run) client = Client(demisto_params) get_events = GetEvents(client, request_order) command = demisto.command() if command == 'test-module': get_events.aggregated_results() demisto.results('ok') elif command == 'duo-get-events' or command == 'fetch-events': events = get_events.aggregated_results(last_object_ids=last_object_ids) demisto.setLastRun(get_events.get_last_run(events)) send_events_to_xsiam(events, 'duo', 'duo') if command == 'duo-get-events': command_results = CommandResults( readable_output=tableToMarkdown('Duo Logs', events, headerTransform=pascalToSpace), raw_response=events, ) return_results(command_results) except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)}')
def main(): # pragma: no cover try: demisto_params = demisto.params() | demisto.args() last_run = demisto.getLastRun() last_object_ids = last_run.get('ids') if 'after' not in last_run: after = dateparser.parse(demisto_params['after'].strip()) last_run = after.timestamp() last_run = {LogType.AUTHENTICATION.value: last_run, LogType.ADMINISTRATION.value: last_run, LogType.TELEPHONY.value: last_run} else: last_run = last_run['after'] request_order = last_run.get('request_order', [LogType.AUTHENTICATION, LogType.ADMINISTRATION, LogType.TELEPHONY]) demisto_params['params'] = Params(**demisto_params, mintime=last_run) client = Client(demisto_params) get_events = GetEvents(client, request_order) command = demisto.command() if command == 'test-module': get_events.aggregated_results() demisto.results('ok') elif command == 'duo-get-events' or command == 'fetch-events': events = get_events.aggregated_results(last_object_ids=last_object_ids) demisto.setLastRun(get_events.get_last_run(events)) send_events_to_xsiam(events, 'duo', 'duo') if command == 'duo-get-events': command_results = CommandResults( readable_output=tableToMarkdown('Duo Logs', events, headerTransform=pascalToSpace), raw_response=events, ) return_results(command_results) except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)}')
17,713
def load_cif(file_or_path=None): """Load a CifFile object into memory, return an mbuild.Lattice. """ assert isinstance(file_or_path, str) or isinstance(file_or_path, pathlib.Path) cif_location = pathlib.Path(file_or_path) reader = garnett.ciffilereader.CifFileReader() with open(cif_location.absolute(), 'r') as fp: my_cif = reader.read(fp) # only need the first frame, not used as a trajectory frame = my_cif[0] # convert angstroms to nanometers lattice_spacing = [frame.Lx, frame.Ly, frame.Lz] / 10 # create lattice_points dictionary position_dict = defaultdict(list) for elem_id, coords in zip(frane.typeid, frame.cif_coordinates): position_dict[frame.types[elem_id]].append(list(coords)) box_vectors = frame.box.get_box_matrix() return Lattice(lattice_spacing=lattice_spacing, lattice_vectors=box_vectors, lattice_points=lattice_points)
def load_cif(file_or_path=None): """Load a CifFile object into memory, return an mbuild.Lattice. """ assert isinstance(file_or_path, str) or isinstance(file_or_path, pathlib.Path) cif_location = pathlib.Path(file_or_path) reader = garnett.ciffilereader.CifFileReader() with open(cif_location.absolute(), 'r') as fp: my_cif = reader.read(fp) # only need the first frame, not used as a trajectory frame = my_cif[0] # convert angstroms to nanometers lattice_spacing = [frame.Lx, frame.Ly, frame.Lz] / 10 # create lattice_points dictionary position_dict = defaultdict(list) for elem_id, coords in zip(frame.typeid, frame.cif_coordinates): position_dict[frame.types[elem_id]].append(list(coords)) box_vectors = frame.box.get_box_matrix() return Lattice(lattice_spacing=lattice_spacing, lattice_vectors=box_vectors, lattice_points=lattice_points)
19,092
def clean_environment(): # Stuff in here sanitizes the build environment to eliminate # anything the user has set that may interfere. We apply it immediately # unlike the other functions so it doesn't overwrite what the modules load. env = EnvironmentModifications() # Remove these vars from the environment during build because they # can affect how some packages find libraries. We want to make # sure that builds never pull in unintended external dependencies. env.unset('LD_LIBRARY_PATH') env.unset('LD_RUN_PATH') env.unset('DYLD_LIBRARY_PATH') env.unset('DYLD_FALLBACK_LIBRARY_PATH') # These vars affect how the compiler finds libraries and include dirs. env.unset('LIBRARY_PATH') env.unset('CPATH') env.unset('C_INCLUDE_PATH') env.unset('CPLUS_INCLUDE_PATH') env.unset('OBJC_INCLUDE_PATH') env.unset('CMAKE_PREFIX_PATH') # Affects GNU make, can e.g. indirectly inhibit enabling parallel build env.unset('MAKEFLAGS') # Avoid that libraries of build dependencies get hijacked. env.unset('LD_PRELOAD') env.unset('DYLD_INSERT_LIBRARIES') # Avoid <packagename>_ROOT user variables overriding spack dependencies # https://cmake.org/cmake/help/latest/variable/PackageName_ROOT.html for varname in os.environ.keys(): if '_ROOT' in varname: env.unset(varname) # On Cray "cluster" systems, unset CRAY_LD_LIBRARY_PATH to avoid # interference with Spack dependencies. # CNL requires these variables to be set (or at least some of them, # depending on the CNL version). on_cray, using_cnl = _on_cray() if on_cray and not using_cnl: env.unset('CRAY_LD_LIBRARY_PATH') for varname in os.environ.keys(): if 'PKGCONF' in varname: env.unset(varname) # Unset the following variables because they can affect installation of # Autotools and CMake packages. build_system_vars = [ 'CC', 'CFLAGS', 'CPP', 'CPPFLAGS', # C variables 'CXX', 'CCC', 'CXXFLAGS', 'CXXCPP', # C++ variables 'F77', 'FFLAGS', 'FLIBS', # Fortran77 variables 'FC', 'FCFLAGS', 'FCLIBS', # Fortran variables 'LDFLAGS', 'LIBS' # linker variables ] for v in build_system_vars: env.unset(v) # Unset mpi environment vars. These flags should only be set by # mpi providers for packages with mpi dependencies mpi_vars = [ 'MPICC', 'MPICXX', 'MPIFC', 'MPIF77', 'MPIF90' ] for v in mpi_vars: env.unset(v) build_lang = spack.config.get('config:build_language') if build_lang: # Override language-related variables. This can be used to force # English compiler messages etc., which allows parse_log_events to # show useful matches. env.set('LC_ALL', build_lang) # Remove any macports installs from the PATH. The macports ld can # cause conflicts with the built-in linker on el capitan. Solves # assembler issues, e.g.: # suffix or operands invalid for `movq'" path = get_path('PATH') for p in path: if '/macports/' in p: env.remove_path('PATH', p) env.apply_modifications()
def clean_environment(): # Stuff in here sanitizes the build environment to eliminate # anything the user has set that may interfere. We apply it immediately # unlike the other functions so it doesn't overwrite what the modules load. env = EnvironmentModifications() # Remove these vars from the environment during build because they # can affect how some packages find libraries. We want to make # sure that builds never pull in unintended external dependencies. env.unset('LD_LIBRARY_PATH') env.unset('LD_RUN_PATH') env.unset('DYLD_LIBRARY_PATH') env.unset('DYLD_FALLBACK_LIBRARY_PATH') # These vars affect how the compiler finds libraries and include dirs. env.unset('LIBRARY_PATH') env.unset('CPATH') env.unset('C_INCLUDE_PATH') env.unset('CPLUS_INCLUDE_PATH') env.unset('OBJC_INCLUDE_PATH') env.unset('CMAKE_PREFIX_PATH') # Affects GNU make, can e.g. indirectly inhibit enabling parallel build env.unset('MAKEFLAGS') # Avoid that libraries of build dependencies get hijacked. env.unset('LD_PRELOAD') env.unset('DYLD_INSERT_LIBRARIES') # Avoid <packagename>_ROOT user variables overriding spack dependencies # https://cmake.org/cmake/help/latest/variable/PackageName_ROOT.html for varname in os.environ.keys(): if varname.endswith('_ROOT'): env.unset(varname) # On Cray "cluster" systems, unset CRAY_LD_LIBRARY_PATH to avoid # interference with Spack dependencies. # CNL requires these variables to be set (or at least some of them, # depending on the CNL version). on_cray, using_cnl = _on_cray() if on_cray and not using_cnl: env.unset('CRAY_LD_LIBRARY_PATH') for varname in os.environ.keys(): if 'PKGCONF' in varname: env.unset(varname) # Unset the following variables because they can affect installation of # Autotools and CMake packages. build_system_vars = [ 'CC', 'CFLAGS', 'CPP', 'CPPFLAGS', # C variables 'CXX', 'CCC', 'CXXFLAGS', 'CXXCPP', # C++ variables 'F77', 'FFLAGS', 'FLIBS', # Fortran77 variables 'FC', 'FCFLAGS', 'FCLIBS', # Fortran variables 'LDFLAGS', 'LIBS' # linker variables ] for v in build_system_vars: env.unset(v) # Unset mpi environment vars. These flags should only be set by # mpi providers for packages with mpi dependencies mpi_vars = [ 'MPICC', 'MPICXX', 'MPIFC', 'MPIF77', 'MPIF90' ] for v in mpi_vars: env.unset(v) build_lang = spack.config.get('config:build_language') if build_lang: # Override language-related variables. This can be used to force # English compiler messages etc., which allows parse_log_events to # show useful matches. env.set('LC_ALL', build_lang) # Remove any macports installs from the PATH. The macports ld can # cause conflicts with the built-in linker on el capitan. Solves # assembler issues, e.g.: # suffix or operands invalid for `movq'" path = get_path('PATH') for p in path: if '/macports/' in p: env.remove_path('PATH', p) env.apply_modifications()
34,228
def get_component_class(component_name: Text) -> Type["Component"]: """Resolve component name to a registered components class.""" if component_name not in registered_components: if component_name not in old_style_names: try: return class_from_module_path(component_name) except ModuleNotFoundError as e: # when component_name is a path to a class but that path is invalid raise Exception( "Failed to find component class for '{}'.Unknown component name.\n{}".format( component_name, e.msg ) ) except AttributeError: # when component_name is a path to a class but the path does not contain that class module_name, _, class_name = component_name.rpartition(".") raise Exception( "Failed to find component class for '{}'.Unknown component name.\n" "Cannot find class '{}' in module {}.".format( component_name, class_name, module_name ) ) except ImportError: # when component_name is a class name and not part of old_style_names raise Exception( "Failed to find component class for '{0}'.Unknown component name.\n" "Cannot import class '{0}' from global namespace.".format( component_name ) ) else: # DEPRECATED ensures compatibility, remove in future versions logger.warning( "DEPRECATION warning: your nlu config file " "contains old style component name `{}`, " "you should change it to its class name: `{}`." "".format(component_name, old_style_names[component_name]) ) component_name = old_style_names[component_name] return registered_components[component_name]
def get_component_class(component_name: Text) -> Type["Component"]: """Resolve component name to a registered components class.""" if component_name not in registered_components: if component_name not in old_style_names: try: return class_from_module_path(component_name) except ModuleNotFoundError as e: # when component_name is a path to a class but that path is invalid raise Exception( "Failed to find module '{}'. \n{}".format( component_name, e.msg ) ) except AttributeError: # when component_name is a path to a class but the path does not contain that class module_name, _, class_name = component_name.rpartition(".") raise Exception( "Failed to find component class for '{}'.Unknown component name.\n" "Cannot find class '{}' in module {}.".format( component_name, class_name, module_name ) ) except ImportError: # when component_name is a class name and not part of old_style_names raise Exception( "Failed to find component class for '{0}'.Unknown component name.\n" "Cannot import class '{0}' from global namespace.".format( component_name ) ) else: # DEPRECATED ensures compatibility, remove in future versions logger.warning( "DEPRECATION warning: your nlu config file " "contains old style component name `{}`, " "you should change it to its class name: `{}`." "".format(component_name, old_style_names[component_name]) ) component_name = old_style_names[component_name] return registered_components[component_name]
36,025
def test_ambiguous_label_uuid(setup_codes): """Situation: LABEL of entity_03 is exactly equal to UUID of entity_01. Verify that using an ambiguous identifier gives precedence to the UUID interpretation Appending the special ambiguity breaker character will force the identifier to be treated as a LABEL """ entity_01, entity_02, entity_03 = setup_codes param = CodeParamType() identifier = '{}'.format(entity_03.label) result = param.convert(identifier, None, None) assert result.uuid == entity_01.uuid identifier = '{}{}'.format(entity_03.label, OrmEntityLoader.label_ambiguity_breaker) result = param.convert(identifier, None, None) assert result.uuid == entity_03.uuid
def test_ambiguous_label_uuid(setup_codes): """Situation: LABEL of entity_03 is exactly equal to UUID of entity_01. Verify that using an ambiguous identifier gives precedence to the UUID interpretation Appending the special ambiguity breaker character will force the identifier to be treated as a LABEL """ entity_01, entity_02, entity_03 = setup_codes entity_01, _, entity_03 = setup_codes identifier = '{}'.format(entity_03.label) result = param.convert(identifier, None, None) assert result.uuid == entity_01.uuid identifier = '{}{}'.format(entity_03.label, OrmEntityLoader.label_ambiguity_breaker) result = param.convert(identifier, None, None) assert result.uuid == entity_03.uuid
3,856
def floyd_warshall_numpy(G, nodelist=None, weight="weight"): """Find all-pairs shortest path lengths using Floyd's algorithm. This algorithm for finding shortest paths takes advantage of matrix representations of a graph and works well for dense graphs where all-pairs shortest path is desired. The results are returns in a numpy array with each column and row representing a node and entries providing the distance along the shortest path between that row's node and column's node. If no path exists the distance is Inf. Parameters ---------- G : NetworkX graph nodelist : list, optional (default= the order of G.nodes) The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes. Nodelist should include all nodes in G. weight: string, optional (default= 'weight') Edge data key corresponding to the edge weight. Returns ------- distance : NumPy matrix A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf. Notes ----- Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. Raises ------ NetworkXError If nodelist does not contain all nodes in G. """ import numpy as np if nodelist is not None: if not (len(nodelist) == len(G) == len(set(nodelist))): msg = ("nodelist must contain every node in G with no repeats." "If you wanted a subgraph of G use G.subgraph(nodelist)") raise nx.NetworkXError(msg) # To handle cases when an edge has weight=0, we must make sure that # nonedges are not given the value 0 as well. A = nx.to_numpy_array( G, nodelist=nodelist, multigraph_weight=min, weight=weight, nonedge=np.inf ) n, m = A.shape np.fill_diagonal(A, 0) # diagonal elements should be zero for i in range(n): # The second term has the same shape as A due to broadcasting A = np.minimum(A, A[i, :][np.newaxis, :] + A[:, i][:, np.newaxis]) return A
def floyd_warshall_numpy(G, nodelist=None, weight="weight"): """Find all-pairs shortest path lengths using Floyd's algorithm. This algorithm for finding shortest paths takes advantage of matrix representations of a graph and works well for dense graphs where all-pairs shortest path is desired. The results are returned as a NumPy array with each column and row representing a node and entries providing the distance along the shortest path between that row's node and column's node. If no path exists the distance is Inf. Parameters ---------- G : NetworkX graph nodelist : list, optional (default= the order of G.nodes) The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes. Nodelist should include all nodes in G. weight: string, optional (default= 'weight') Edge data key corresponding to the edge weight. Returns ------- distance : NumPy matrix A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf. Notes ----- Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. Raises ------ NetworkXError If nodelist does not contain all nodes in G. """ import numpy as np if nodelist is not None: if not (len(nodelist) == len(G) == len(set(nodelist))): msg = ("nodelist must contain every node in G with no repeats." "If you wanted a subgraph of G use G.subgraph(nodelist)") raise nx.NetworkXError(msg) # To handle cases when an edge has weight=0, we must make sure that # nonedges are not given the value 0 as well. A = nx.to_numpy_array( G, nodelist=nodelist, multigraph_weight=min, weight=weight, nonedge=np.inf ) n, m = A.shape np.fill_diagonal(A, 0) # diagonal elements should be zero for i in range(n): # The second term has the same shape as A due to broadcasting A = np.minimum(A, A[i, :][np.newaxis, :] + A[:, i][:, np.newaxis]) return A
6,770
def get_google_drive_status(): return True if frappe.db.exists("Google Drive", {"enable": 1}) else False
def get_google_drive_status(): return frappe.db.exists("Google Drive", {"enable": 1})
31,605
def create_computer_command(client: Client, expand: List[str], overrides: bool, host_name: str, display_name: Optional[str], description: Optional[str], group_id: Optional[int], policy_id: Optional[int], asset_importance_id: Optional[int], relay_list_id: Optional[int]) -> CommandResults: """ Create a new computer inside Trend Micro. Args: client (client): The Trend Micro API client. expand (List[str]): The desired information about the computers. overrides (bool): Whether to get the overridden properties or not. host_name (str): The hostname of the computer. display_name (Optional[str]): The display name of the computer. description (Optional[str]): The description about the new computer. group_id (Optional[int]): The computer group ID of the new computer. policy_id (Optional[int]): The ID of the desired policy to apply to new computer. asset_importance_id (Optional[int]): The asset importance ID to assign to the new computer. relay_list_id (Optional[int]): The ID of the relay list to assign to the new computer. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ response = client.create_computer(expand=expand, overrides=overrides, host_name=host_name, display_name=display_name, description=description, group_id=group_id, policy_id=policy_id, asset_importance_id=asset_importance_id, relay_list_id=relay_list_id) markdown = tableToMarkdown(f"Details for the new computer {response['hostName']}", response, removeNull=True, headers=COMPUTER_TABLE_HEADERS, headerTransform=pascalToSpace) return CommandResults(outputs_prefix="TrendMicro.Computers", outputs_key_field="ID", outputs=response, readable_output=markdown, raw_response=response)
def create_computer_command(client: Client, expand: List[str], overrides: bool, host_name: str, display_name: Optional[str], description: Optional[str], group_id: Optional[int], policy_id: Optional[int], asset_importance_id: Optional[int], relay_list_id: Optional[int]) -> CommandResults: """ Create a new computer inside Trend Micro. Args: client (client): The Trend Micro API client. expand (List[str]): The desired information about the computers. overrides (bool): Whether to get the overridden properties or not. host_name (str): The hostname of the computer. display_name (Optional[str]): The display name of the computer. description (Optional[str]): The description about the new computer. group_id (Optional[int]): The computer group ID of the new computer. policy_id (Optional[int]): The ID of the desired policy to apply to new computer. asset_importance_id (Optional[int]): The asset importance ID to assign to the new computer. relay_list_id (Optional[int]): The ID of the relay list to assign to the new computer. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ response = client.create_computer(expand=expand, overrides=overrides, host_name=host_name, display_name=display_name, description=description, group_id=group_id, policy_id=policy_id, asset_importance_id=asset_importance_id, relay_list_id=relay_list_id) markdown = tableToMarkdown(f"Details for the new computer {response.get('hostName')}", response, removeNull=True, headers=COMPUTER_TABLE_HEADERS, headerTransform=pascalToSpace) return CommandResults(outputs_prefix="TrendMicro.Computers", outputs_key_field="ID", outputs=response, readable_output=markdown, raw_response=response)
14,702
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the access to Netatmo binary sensor.""" home = config.get(CONF_HOME) timeout = config.get(CONF_TIMEOUT) if timeout is None: timeout = DEFAULT_TIMEOUT module_name = None import pyatmo conf = hass.data.get(DATA_NETATMO_CONFIG, {}) try: data = CameraData(hass, conf, home) if not data.get_camera_names(): return None except pyatmo.NoDevice: return None welcome_sensors = config.get( CONF_WELCOME_SENSORS, WELCOME_SENSOR_TYPES) presence_sensors = config.get( CONF_PRESENCE_SENSORS, PRESENCE_SENSOR_TYPES) tag_sensors = config.get(CONF_TAG_SENSORS, TAG_SENSOR_TYPES) for camera_name in data.get_camera_names(): camera_type = data.get_camera_type(camera=camera_name, home=home) if camera_type == 'NACamera': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in welcome_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) if camera_type == 'NOC': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in presence_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) for module_name in data.get_module_names(camera_name): for variable in tag_sensors: camera_type = None add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True)
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the access to Netatmo binary sensor.""" home = config.get(CONF_HOME) timeout = config.get(CONF_TIMEOUT) if timeout is None: timeout = DEFAULT_TIMEOUT module_name = None import pyatmo conf = hass.data.get(DATA_NETATMO_CONFIG, {}) try: data = CameraData(hass, auth, home) if not data.get_camera_names(): return None except pyatmo.NoDevice: return None welcome_sensors = config.get( CONF_WELCOME_SENSORS, WELCOME_SENSOR_TYPES) presence_sensors = config.get( CONF_PRESENCE_SENSORS, PRESENCE_SENSOR_TYPES) tag_sensors = config.get(CONF_TAG_SENSORS, TAG_SENSOR_TYPES) for camera_name in data.get_camera_names(): camera_type = data.get_camera_type(camera=camera_name, home=home) if camera_type == 'NACamera': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in welcome_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) if camera_type == 'NOC': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in presence_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) for module_name in data.get_module_names(camera_name): for variable in tag_sensors: camera_type = None add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True)
58,321
def load(path, filename, **kwargs): """Load network from file. Parameters ---------- path: str Path to directory where to load model from. filename: str Name of file to load model from. Returns ------- : dict[str, Union[keras.models.Sequential, function]] A dictionary of objects that constitute the input model. It must contain the following two keys: - 'model': keras.models.Sequential Keras model instance of the network. - 'val_fn': function Function that allows evaluating the original model. """ import os from keras import models, metrics filepath = str(os.path.join(path, filename)) if os.path.exists(filepath + '.json'): model = models.model_from_json(open(filepath + '.json').read()) try: model.load_weights(filepath + '.h5') except Exception: # Allows h5 files without a .h5 extension to be loaded model.load_weights(filepath) # With this loading method, optimizer and loss cannot be recovered. # Could be specified by user, but since they are not really needed # at inference time, set them to the most common choice. # TODO: Proper reinstantiation should be doable since Keras2 model.compile('sgd', 'categorical_crossentropy', ['accuracy', metrics.top_k_categorical_accuracy]) else: from snntoolbox.parsing.utils import get_custom_activations_dict, \ assemble_custom_dict, get_custom_layers_dict filepath_custom_objects = kwargs.get('filepath_custom_objects', None) if filepath_custom_objects is not None: filepath_custom_objects = str(filepath_custom_objects) # python 2 custom_dicts = assemble_custom_dict( get_custom_activations_dict(filepath_custom_objects), get_custom_layers_dict()) if "config" in kwargs.keys(): custom_dicts_path = kwargs['config'].get( 'paths', 'filepath_custom_objects') custom_dicts = assemble_custom_dict( custom_dicts, get_custom_activations_dict(custom_dicts_path)) try: model = models.load_model( filepath + '.h5', custom_dicts) except OSError as e: print(e) model = models.load_model( filepath, custom_dicts) model.compile(model.optimizer, model.loss, ['accuracy', metrics.top_k_categorical_accuracy]) model.summary() return {'model': model, 'val_fn': model.evaluate}
def load(path, filename, **kwargs): """Load network from file. Parameters ---------- path: str Path to directory where to load model from. filename: str Name of file to load model from. Returns ------- : dict[str, Union[keras.models.Sequential, function]] A dictionary of objects that constitute the input model. It must contain the following two keys: - 'model': keras.models.Sequential Keras model instance of the network. - 'val_fn': function Function that allows evaluating the original model. """ import os from keras import models, metrics filepath = str(os.path.join(path, filename)) if os.path.exists(filepath + '.json'): model = models.model_from_json(open(filepath + '.json').read()) try: model.load_weights(filepath + '.h5') # Allows h5 files without a .h5 extension to be loaded. except OSError: model.load_weights(filepath) # With this loading method, optimizer and loss cannot be recovered. # Could be specified by user, but since they are not really needed # at inference time, set them to the most common choice. # TODO: Proper reinstantiation should be doable since Keras2 model.compile('sgd', 'categorical_crossentropy', ['accuracy', metrics.top_k_categorical_accuracy]) else: from snntoolbox.parsing.utils import get_custom_activations_dict, \ assemble_custom_dict, get_custom_layers_dict filepath_custom_objects = kwargs.get('filepath_custom_objects', None) if filepath_custom_objects is not None: filepath_custom_objects = str(filepath_custom_objects) # python 2 custom_dicts = assemble_custom_dict( get_custom_activations_dict(filepath_custom_objects), get_custom_layers_dict()) if "config" in kwargs.keys(): custom_dicts_path = kwargs['config'].get( 'paths', 'filepath_custom_objects') custom_dicts = assemble_custom_dict( custom_dicts, get_custom_activations_dict(custom_dicts_path)) try: model = models.load_model( filepath + '.h5', custom_dicts) except OSError as e: print(e) model = models.load_model( filepath, custom_dicts) model.compile(model.optimizer, model.loss, ['accuracy', metrics.top_k_categorical_accuracy]) model.summary() return {'model': model, 'val_fn': model.evaluate}
4,351
def test_fnirs_channel_naming_and_order_custom_chroma(): """Ensure fNIRS channel checking on manually created data.""" data = np.random.normal(size=(6, 10)) # Start with a correctly named raw intensity dataset # These are the steps required to build an fNIRS Raw object from scratch ch_names = ['S1_D1 hbo', 'S1_D1 hbr', 'S2_D1 hbo', 'S2_D1 hbr', 'S3_D1 hbo', 'S3_D1 hbr'] ch_types = np.tile(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) chroma = np.unique(_channel_chromophore(raw)) picks = _check_channels_ordered(raw, chroma) assert len(picks) == len(raw.ch_names) assert len(picks) == 6 # Test block creation fails ch_names = ['S1_D1 hbo', 'S2_D1 hbo', 'S3_D1 hbo', 'S1_D1 hbr', 'S2_D1 hbr', 'S3_D1 hbr'] ch_types = np.repeat(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) with pytest.raises(ValueError, match='not ordered .* chromophore'): _check_channels_ordered(raw, ["hbo", "hbr"]) # Reordering should fix raw.pick(picks=[0, 3, 1, 4, 2, 5]) _check_channels_ordered(raw, ["hbo", "hbr"]) # Wrong names should fail with pytest.raises(ValueError, match='not ordered .* chromophore'): _check_channels_ordered(raw, ["hbb", "hbr"]) # Test weird naming ch_names = ['S1_D1 hbb', 'S1_D1 hbr', 'S2_D1 hbb', 'S2_D1 hbr', 'S3_D1 hbb', 'S3_D1 hbr'] ch_types = np.tile(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) with pytest.raises(ValueError, match='naming conventions'): _check_channels_ordered(raw, ["hbb", "hbr"]) # Check more weird naming ch_names = ['S1_DX hbo', 'S1_DX hbr', 'S2_D1 hbo', 'S2_D1 hbr', 'S3_D1 hbo', 'S3_D1 hbr'] ch_types = np.tile(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) with pytest.raises(ValueError, match='can not be parsed'): _check_channels_ordered(raw, ["hbo", "hbr"])
def test_fnirs_channel_naming_and_order_custom_chroma(): """Ensure fNIRS channel checking on manually created data.""" data = np.random.RandomState(0).randn(6, 10) # Start with a correctly named raw intensity dataset # These are the steps required to build an fNIRS Raw object from scratch ch_names = ['S1_D1 hbo', 'S1_D1 hbr', 'S2_D1 hbo', 'S2_D1 hbr', 'S3_D1 hbo', 'S3_D1 hbr'] ch_types = np.tile(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) chroma = np.unique(_channel_chromophore(raw)) picks = _check_channels_ordered(raw, chroma) assert len(picks) == len(raw.ch_names) assert len(picks) == 6 # Test block creation fails ch_names = ['S1_D1 hbo', 'S2_D1 hbo', 'S3_D1 hbo', 'S1_D1 hbr', 'S2_D1 hbr', 'S3_D1 hbr'] ch_types = np.repeat(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) with pytest.raises(ValueError, match='not ordered .* chromophore'): _check_channels_ordered(raw, ["hbo", "hbr"]) # Reordering should fix raw.pick(picks=[0, 3, 1, 4, 2, 5]) _check_channels_ordered(raw, ["hbo", "hbr"]) # Wrong names should fail with pytest.raises(ValueError, match='not ordered .* chromophore'): _check_channels_ordered(raw, ["hbb", "hbr"]) # Test weird naming ch_names = ['S1_D1 hbb', 'S1_D1 hbr', 'S2_D1 hbb', 'S2_D1 hbr', 'S3_D1 hbb', 'S3_D1 hbr'] ch_types = np.tile(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) with pytest.raises(ValueError, match='naming conventions'): _check_channels_ordered(raw, ["hbb", "hbr"]) # Check more weird naming ch_names = ['S1_DX hbo', 'S1_DX hbr', 'S2_D1 hbo', 'S2_D1 hbr', 'S3_D1 hbo', 'S3_D1 hbr'] ch_types = np.tile(["hbo", "hbr"], 3) info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0) raw = RawArray(data, info, verbose=True) with pytest.raises(ValueError, match='can not be parsed'): _check_channels_ordered(raw, ["hbo", "hbr"])
38,527
def rlencode(A: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Compress matrix by looking for identical columns. Example usage: Convert the a full set of (row or column) indices of a sparse matrix into compressed storage. Acknowledgement: The code is heavily inspired by MRST's function with the same name, however, requirements on the shape of functions are probably somewhat different. Parameters: A (np.ndarray): Matrix to be compressed. Should be 2d. Compression will be along the second axis. Returns: np.ndarray: The compressed array, size n x m. np.ndarray: Number of times each row in the first output array should be repeated to restore the original array. See also: rlencode """ comp = A[::, 0:-1] != A[::, 1::] i = np.any(comp, axis=0) i = np.hstack((np.argwhere(i).ravel(), (A.shape[1] - 1))) num = np.diff(np.hstack((np.array([-1]), i))) return A[::, i], num
def rlencode(A: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Compress matrix by looking for identical columns. Example usage: Convert the a full set of (row or column) indices of a sparse matrix into compressed storage. Acknowledgement: The code is heavily inspired by MRST's function with the same name, however, requirements on the shape of functions are probably somewhat different. Parameters: A (np.ndarray): Matrix to be compressed. Should be 2d. Compression will be along the second axis. Returns: np.ndarray: The compressed array, size n x m. np.ndarray: Number of times each row in the first output array should be repeated to restore the original array. See also: rldecode """ comp = A[::, 0:-1] != A[::, 1::] i = np.any(comp, axis=0) i = np.hstack((np.argwhere(i).ravel(), (A.shape[1] - 1))) num = np.diff(np.hstack((np.array([-1]), i))) return A[::, i], num
45,016
def trigger_job_run( account_id: int, job_id: int, token: str, cause: str, domain: str, additional_args: dict, ) -> dict: """ Trigger a dbt Cloud job run Args: - account_id (int): dbt Cloud account ID - job_id (int): dbt Cloud job ID - token (str): dbt Cloud token - cause (str): the reason describing why the job run is being triggered - domain (str): the domain the function should call, default cloud.getdbt.com - additional_args (dict): additional information to pass to the Trigger Job Run API Returns: - The trigger run result, namely the "data" key in the API response Raises: - TriggerDbtCloudRunFailed: when the response code is != 200 """ data = additional_args if additional_args else {} data["cause"] = cause trigger_request = requests.post( url=__DBT_CLOUD_TRIGGER_JOB_API_ENDPOINT_V2.format( accountId=account_id, jobId=job_id, apiDomain=domain ), headers={"Authorization": f"Bearer {token}"}, data=data, ) if trigger_request.status_code != 200: raise TriggerDbtCloudRunFailed(trigger_request.reason) return trigger_request.json()["data"]
def trigger_job_run( account_id: int, job_id: int, token: str, cause: str, domain: str, additional_args: dict, ) -> dict: """ Trigger a dbt Cloud job run Args: - account_id (int): dbt Cloud account ID - job_id (int): dbt Cloud job ID - token (str): dbt Cloud token - cause (str): the reason describing why the job run is being triggered - domain (str): The domain the function should call (e.g. `cloud.getdbt.com`). - additional_args (dict): additional information to pass to the Trigger Job Run API Returns: - The trigger run result, namely the "data" key in the API response Raises: - TriggerDbtCloudRunFailed: when the response code is != 200 """ data = additional_args if additional_args else {} data["cause"] = cause trigger_request = requests.post( url=__DBT_CLOUD_TRIGGER_JOB_API_ENDPOINT_V2.format( accountId=account_id, jobId=job_id, apiDomain=domain ), headers={"Authorization": f"Bearer {token}"}, data=data, ) if trigger_request.status_code != 200: raise TriggerDbtCloudRunFailed(trigger_request.reason) return trigger_request.json()["data"]