id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
2,519
def d2_pinball_loss_score( y_true, y_pred, *, sample_weight=None, alpha=0.5, multioutput="uniform_average" ): """ :math:`D^2` regression score function, \ fraction of pinball loss deviance explained. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A model that always uses the empirical median of `y_true` as constant prediction, disregarding the input features, gets a :math:`D^2` score of 0.0. Read more in the :ref:`User Guide <d2_score>`. .. versionadded:: 1.1 Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape (n_samples,), optional Sample weights. alpha : float, default=0.5 Pinball loss quantile parameter, determines the slope of the pinball_loss. Equivalent to `d2_absolute_error_score` when `alpha=0.5`. multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ (n_outputs,), default='uniform_average' Defines aggregating of multiple output values. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. Returns ------- score : float or ndarray of floats The :math:`D^2` score with a pinball loss deviance or ndarray of scores if `multioutput='raw_values'`. Notes ----- This is not a symmetric function. Like :math:`R^2`, :math:`D^2` score may be negative (it need not actually be the square of a quantity D). This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two. References ---------- .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J. Wainwright. "Statistical Learning with Sparsity: The Lasso and Generalizations." (2015). https://trevorhastie.github.io Examples -------- >>> from sklearn.metrics import d2_pinball_loss_score >>> y_true = [1, 2, 3] >>> y_pred = [1, 3, 3] >>> d2_pinball_loss_score(y_true, y_pred) 0.5 >>> d2_pinball_loss_score(y_true, y_pred, alpha=0.9) 0.772... >>> d2_pinball_loss_score(y_true, y_pred, alpha=0.1) -1.045... >>> d2_pinball_loss_score(y_true, y_true, alpha=0.1) 1.0 """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput ) check_consistent_length(y_true, y_pred, sample_weight) if _num_samples(y_pred) < 2: msg = "D^2 score is not well-defined with less than two samples." warnings.warn(msg, UndefinedMetricWarning) return float("nan") numerator = mean_pinball_loss( y_true, y_pred, sample_weight=sample_weight, alpha=alpha, multioutput="raw_values", ) if sample_weight is None: y_quantile = [np.percentile(y_true, q=alpha * 100, axis=0)] * len(y_true) else: sample_weight = _check_sample_weight(sample_weight, y_true) y_quantile = [ _weighted_percentile( y_true, sample_weight=sample_weight, percentile=alpha * 100 ) ] * len(y_true) denominator = mean_pinball_loss( y_true, y_quantile, sample_weight=sample_weight, alpha=alpha, multioutput="raw_values", ) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0 if isinstance(multioutput, str): if multioutput == "raw_values": # return scores individually return output_scores elif multioutput == "uniform_average": # passing None as weights to np.average results in uniform mean avg_weights = None else: raise ValueError( "multioutput is expected to be 'raw_values' " "or 'uniform_average' but we got %r" " instead." % multioutput ) else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
def d2_pinball_loss_score( y_true, y_pred, *, sample_weight=None, alpha=0.5, multioutput="uniform_average" ): """ :math:`D^2` regression score function, \ fraction of pinball loss deviance explained. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A model that always uses the empirical alpha-quantile of `y_true` as constant prediction, disregarding the input features, gets a :math:`D^2` score of 0.0. Read more in the :ref:`User Guide <d2_score>`. .. versionadded:: 1.1 Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape (n_samples,), optional Sample weights. alpha : float, default=0.5 Pinball loss quantile parameter, determines the slope of the pinball_loss. Equivalent to `d2_absolute_error_score` when `alpha=0.5`. multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ (n_outputs,), default='uniform_average' Defines aggregating of multiple output values. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. Returns ------- score : float or ndarray of floats The :math:`D^2` score with a pinball loss deviance or ndarray of scores if `multioutput='raw_values'`. Notes ----- This is not a symmetric function. Like :math:`R^2`, :math:`D^2` score may be negative (it need not actually be the square of a quantity D). This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two. References ---------- .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J. Wainwright. "Statistical Learning with Sparsity: The Lasso and Generalizations." (2015). https://trevorhastie.github.io Examples -------- >>> from sklearn.metrics import d2_pinball_loss_score >>> y_true = [1, 2, 3] >>> y_pred = [1, 3, 3] >>> d2_pinball_loss_score(y_true, y_pred) 0.5 >>> d2_pinball_loss_score(y_true, y_pred, alpha=0.9) 0.772... >>> d2_pinball_loss_score(y_true, y_pred, alpha=0.1) -1.045... >>> d2_pinball_loss_score(y_true, y_true, alpha=0.1) 1.0 """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput ) check_consistent_length(y_true, y_pred, sample_weight) if _num_samples(y_pred) < 2: msg = "D^2 score is not well-defined with less than two samples." warnings.warn(msg, UndefinedMetricWarning) return float("nan") numerator = mean_pinball_loss( y_true, y_pred, sample_weight=sample_weight, alpha=alpha, multioutput="raw_values", ) if sample_weight is None: y_quantile = [np.percentile(y_true, q=alpha * 100, axis=0)] * len(y_true) else: sample_weight = _check_sample_weight(sample_weight, y_true) y_quantile = [ _weighted_percentile( y_true, sample_weight=sample_weight, percentile=alpha * 100 ) ] * len(y_true) denominator = mean_pinball_loss( y_true, y_quantile, sample_weight=sample_weight, alpha=alpha, multioutput="raw_values", ) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0 if isinstance(multioutput, str): if multioutput == "raw_values": # return scores individually return output_scores elif multioutput == "uniform_average": # passing None as weights to np.average results in uniform mean avg_weights = None else: raise ValueError( "multioutput is expected to be 'raw_values' " "or 'uniform_average' but we got %r" " instead." % multioutput ) else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
50,255
def generate_attributes_search_document_value( assigned_attributes: "QuerySet", ): """Prepare `search_document` value for assigned attributes. Method should received assigned attributes with prefetched `values` and `assignment__attribute`. """ attribute_data = "" for assigned_attribute in assigned_attributes: attribute = assigned_attribute.assignment.attribute input_type = attribute.input_type values = assigned_attribute.values.all() values_list = [] if input_type in [AttributeInputType.DROPDOWN, AttributeInputType.MULTISELECT]: values_list = [value.name for value in values] elif input_type == AttributeInputType.RICH_TEXT: values_list = [ clean_editor_js(value.rich_text, to_string=True) for value in values ] elif input_type == AttributeInputType.NUMERIC: unit = attribute.unit if unit: values_list = [value.name + unit for value in values] else: values_list = [value.name for value in values] elif input_type in [AttributeInputType.DATE, AttributeInputType.DATE_TIME]: values_list = [value.date_time.isoformat() for value in values] if values_list: values_data = "\n".join(values_list) attribute_data += values_data + "\n" return attribute_data.lower()
def generate_attributes_search_document_value( assigned_attributes: "QuerySet", ): """Prepare `search_document` value for assigned attributes. Method should received assigned attributes with prefetched `values` and `assignment__attribute`. """ attribute_data = "" for assigned_attribute in assigned_attributes: attribute = assigned_attribute.assignment.attribute input_type = attribute.input_type values = assigned_attribute.values.all() values_list = [] if input_type in [AttributeInputType.DROPDOWN, AttributeInputType.MULTISELECT]: values_list = [value.name for value in values] elif input_type == AttributeInputType.RICH_TEXT: values_list = [ clean_editor_js(value.rich_text, to_string=True) for value in values ] elif input_type == AttributeInputType.NUMERIC: unit = attribute.unit or "" values_list = [value.name + unit for value in values] elif input_type in [AttributeInputType.DATE, AttributeInputType.DATE_TIME]: values_list = [value.date_time.isoformat() for value in values] if values_list: values_data = "\n".join(values_list) attribute_data += values_data + "\n" return attribute_data.lower()
39,704
def main(): module = ForemanOperatingsystemModule( foreman_spec=dict( name=dict(required=True), release_name=dict(), description=dict(), os_family=dict(choices=OS_LIST, flat_name='family', aliases=['family']), major=dict(), minor=dict(), architectures=dict(type='entity_list'), media=dict(type='entity_list', flat_name='medium_ids', resource_type='media'), ptables=dict(type='entity_list'), provisioning_templates=dict(type='entity_list'), password_hash=dict(choices=['MD5', 'SHA256', 'SHA512', 'Base64', 'Base64-Windows']), # parameters is already in the HostMixin, but the flat_name detection does not work for operatingsystems parameters=dict(type='list', elements='dict', options=parameter_ansible_spec, flat_name='os_parameters_attributes'), ), argument_spec=dict( state=dict(default='present', choices=['present', 'present_with_defaults', 'absent']), updated_name=dict(), ), required_if=[ ['state', 'present', ['name', 'major', 'os_family']], ['state', 'present_with_defaults', ['name', 'major', 'os_family']], ], required_one_of=[ ['description', 'name'], ['description', 'major'], ], ) module_params = module.foreman_params with module.api_connection(): # Try to find the Operating System to work on # name is however not unique, but description is, as well as "<name> <major>[.<minor>]" entity = None # If we have a description, search for it if 'description' in module_params and module_params['description'] != '': search_string = 'description="{0}"'.format(module_params['description']) entity = module.find_resource('operatingsystems', search_string, failsafe=True) # If we did not yet find a unique OS, search by name & version # In case of state == absent, those information might be missing, we assume that we did not find an operatingsytem to delete then if entity is None and 'name' in module_params and 'major' in module_params: search_string = ','.join('{0}="{1}"'.format(key, module_params[key]) for key in ('name', 'major', 'minor') if key in module_params) entity = module.find_resource('operatingsystems', search_string, failsafe=True) if not entity and (module.state == 'present' or module.state == 'present_with_defaults'): # we actually attempt to create a new one... for param_name in ['major', 'os_family', 'password_hash']: if param_name not in module_params.keys(): module.fail_json(msg='{0} is a required parameter to create a new operating system.'.format(param_name)) module.set_entity('entity', entity) module.run()
def main(): module = ForemanOperatingsystemModule( foreman_spec=dict( name=dict(required=True), release_name=dict(), description=dict(), os_family=dict(choices=OS_LIST, flat_name='family', aliases=['family']), major=dict(), minor=dict(), architectures=dict(type='entity_list'), media=dict(type='entity_list', flat_name='medium_ids', resource_type='media'), ptables=dict(type='entity_list'), provisioning_templates=dict(type='entity_list'), password_hash=dict(choices=['MD5', 'SHA256', 'SHA512', 'Base64', 'Base64-Windows']), # parameters is already in the ParametersMixin, but the flat_name detection does not work for operatingsystems parameters=dict(type='list', elements='dict', options=parameter_ansible_spec, flat_name='os_parameters_attributes'), ), argument_spec=dict( state=dict(default='present', choices=['present', 'present_with_defaults', 'absent']), updated_name=dict(), ), required_if=[ ['state', 'present', ['name', 'major', 'os_family']], ['state', 'present_with_defaults', ['name', 'major', 'os_family']], ], required_one_of=[ ['description', 'name'], ['description', 'major'], ], ) module_params = module.foreman_params with module.api_connection(): # Try to find the Operating System to work on # name is however not unique, but description is, as well as "<name> <major>[.<minor>]" entity = None # If we have a description, search for it if 'description' in module_params and module_params['description'] != '': search_string = 'description="{0}"'.format(module_params['description']) entity = module.find_resource('operatingsystems', search_string, failsafe=True) # If we did not yet find a unique OS, search by name & version # In case of state == absent, those information might be missing, we assume that we did not find an operatingsytem to delete then if entity is None and 'name' in module_params and 'major' in module_params: search_string = ','.join('{0}="{1}"'.format(key, module_params[key]) for key in ('name', 'major', 'minor') if key in module_params) entity = module.find_resource('operatingsystems', search_string, failsafe=True) if not entity and (module.state == 'present' or module.state == 'present_with_defaults'): # we actually attempt to create a new one... for param_name in ['major', 'os_family', 'password_hash']: if param_name not in module_params.keys(): module.fail_json(msg='{0} is a required parameter to create a new operating system.'.format(param_name)) module.set_entity('entity', entity) module.run()
32,440
def compare_two_dicts(left: dict, right: dict): """Compares two dictionaries and returns the differences in values.""" differences: list[tuple] = [] for left_k, left_v in left.items(): right_v = right.get(left_k) if right.get(left_k) != left_v: differences.append((f"{left_k} - {left_v}", right_v)) return differences
def compare_two_dicts(left: dict, right: dict): """Compares two dictionaries and returns the differences in values.""" differences: list[tuple] = [] for left_k, left_v in left.items(): right_v = right.get(left_k) if right_v != left_v: differences.append((f"{left_k} - {left_v}", right_v)) return differences
38,517
def test_half_space_interior_point_star_shaped_2d(): # Find interior point in star-shaped, but not convex domain n = np.array( [[0, 0, 1, 0, -1, 0, 1], [1, 1, 0, 1, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0]] ) x0 = np.array( [ [0, 0, 2.0 / 3.0, 0, 1, 0, 0], [1.0 / 3.0, 1.0 / 3.0, 0, 0, 0, 2.0 / 3.0, 0], [0, 0, 0, 0, 0, 0, 0], ] ) pts = np.array([[0, 1], [0, 2.0 / 3.0], [0, 0]]) pt = half_space.half_space_interior_point(n, x0, pts).reshape((-1, 1)) # Verify that the computed point is on the same side of the all normal # vectors as a point known to be in the interior. known_pt = np.array([5.0 / 6.0, 1.0 / 2.0, 0.0]).reshape((-1, 1)) assert np.all( np.sign(np.sum(n * (pt - x0), axis=0)) == np.sign(np.sum(n * (known_pt - x0), axis=0)) )
def test_half_space_interior_point_star_shaped_2d(): # Find interior point in star-shaped, but not convex domain n = np.array( [[0, 0, 1, 0, -1, 0, 1], [1, 1, 0, 1, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0]] ) x0 = np.array( [ [0, 0, 2.0 / 3.0, 0, 1, 0, 0], [1.0 / 3.0, 1.0 / 3.0, 0, 0, 0, 2.0 / 3.0, 0], [0, 0, 0, 0, 0, 0, 0], ] ) pts = np.array([[0, 1], [0, 2.0 / 3.0], [0, 0]]) pt = half_space.half_space_interior_point(n, x0, pts).reshape((-1, 1)) # Verify that the computed point is on the same side of all the normal # vectors as a point known to be in the interior. known_pt = np.array([5.0 / 6.0, 1.0 / 2.0, 0.0]).reshape((-1, 1)) assert np.all( np.sign(np.sum(n * (pt - x0), axis=0)) == np.sign(np.sum(n * (known_pt - x0), axis=0)) )
26,294
def _get_core_msg_lines(installed, latest) -> Tuple[List[List[str]], str]: installed_s = installed.to_version_string(skip_matcher=True) installed_line = ["installed", installed_s, ""] update_info = "" if latest is None: update_info = ( "The latest version of dbt could not be determined!\n" "Make sure that the following URL is accessible:\n" f"{PYPI_VERSION_URL}" ) return [installed_line], update_info latest_s = latest.to_version_string(skip_matcher=True) latest_line = ["latest", latest_s, green("Up to date!")] if installed > latest: latest_line[2] = green("Ahead of latest version!") elif installed < latest: latest_line[2] = yellow("Update available!") update_info = ( "Your version of dbt is out of date! " "You can find instructions for upgrading here:\n" "https://docs.getdbt.com/docs/installation" ) return [ installed_line, latest_line, ], update_info
def _get_core_msg_lines(installed, latest) -> Tuple[List[List[str]], str]: installed_s = installed.to_version_string(skip_matcher=True) installed_line = ["installed", installed_s, ""] update_info = "" if latest is None: update_info = ( "The latest version of dbt could not be determined!\n" "Make sure that the following URL is accessible:\n" f"{PYPI_VERSION_URL}" ) return [installed_line], update_info latest_s = latest.to_version_string(skip_matcher=True) latest_line = ["latest", latest_s, green("Up to date!")] if installed > latest: latest_line[2] = green("Ahead of latest version!") elif installed < latest: latest_line[2] = yellow("Update available!") update_info = ( "Your version of dbt-core is out of date! " "You can find instructions for upgrading here:\n" "https://docs.getdbt.com/docs/installation" ) return [ installed_line, latest_line, ], update_info
12,216
def find_index_cache() -> Tuple[str]: files = [] for pkgs_dir in find_pkgs_dirs(): # caches are directories in pkgs_dir path = join(pkgs_dir, "cache") if isdir(path): files.append(path) return files
def find_index_cache() -> List[str]: files = [] for pkgs_dir in find_pkgs_dirs(): # caches are directories in pkgs_dir path = join(pkgs_dir, "cache") if isdir(path): files.append(path) return files
48,495
def get_toolbar_el(driver: WebDriver, model: Plot) -> WebElement: script = FIND_VIEW_SCRIPT + """ const id = arguments[0] const {ToolbarPanelView} = Bokeh.require("models/annotations/toolbar_panel") function* fn(view) { for (const rv of view.renderer_views.values()) { if (rv instanceof ToolbarPanelView) { yield rv._toolbar_view.el break } } } return head(find(views(), id, fn)) ?? null """ el = driver.execute_script(script, model.id) if el is not None: return el else: raise RuntimeError(f"can't resolve a view for {model}")
def get_toolbar_el(driver: WebDriver, model: Plot) -> WebElement: script = FIND_VIEW_SCRIPT + """ const id = arguments[0] const {ToolbarPanelView} = Bokeh.require("models/annotations/toolbar_panel") function* fn(view) { for (const rv of view.renderer_views.values()) { if (rv instanceof ToolbarPanelView) { yield rv._toolbar_view.el break } } } return head(find(views(), id, fn)) ?? null """ el = driver.execute_script(script, model.id) if el is None: raise RuntimeError(f"can't resolve a view for {model}") return el
2,387
def test_y_std_with_multitarget_normalized(): """ Regression test for issues #17394 and #18065. Check if GPR can compute y_std in predict() method when normalize_y==True in multi-target regression. """ X_train = np.random.rand((11, 10)) # 6 target features -> multi-target y_train = np.random.rand((11, 6)) X_test = np.random.rand((4, 10)) # Generic kernel kernel = kernels.ConstantKernel(1.0, (1e-1, 1e3)) kernel *= kernels.RBF(10.0, (1e-3, 1e3)) # normalize_y == True model = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10, alpha=0.1, normalize_y=True) model.fit(X_train, y_train) y_pred, std = model.predict(X_test, return_std=True)
def test_y_std_with_multitarget_normalized(): """ Regression test for issues #17394 and #18065. Check if GPR can compute y_std in predict() method when normalize_y==True in multi-target regression. """ X_train = np.random.rand((11, 10)) # 6 target features -> multi-target y_train = np.random.rand((11, 6)) X_test = np.random.rand((4, 10)) # Generic kernel kernel = kernels.ConstantKernel(1.0, (1e-1, 1e3)) kernel *= kernels.RBF(10.0, (1e-3, 1e3)) # normalize_y == True model = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10, alpha=0.1, normalize_y=True) model.fit(X_train, y_train) y_pred, y_std = model.predict(X_test, return_std=True)
20,838
def BrowserManager( command_queue, status_queue, browser_params, manager_params, crash_recovery ): """ The BrowserManager function runs in each new browser process. It is responsible for listening to command instructions from the Task Manager and passing them to the command module to execute and interface with Selenium. Command execution status is sent back to the TaskManager. """ logger = logging.getLogger("openwpm") try: # Start Xvfb (if necessary), webdriver, and browser driver, prof_folder, browser_settings = deploy_browser.deploy_browser( status_queue, browser_params, manager_params, crash_recovery ) if prof_folder[-1] != "/": prof_folder += "/" # Read the extension port -- if extension is enabled # TODO: Initial communication from extension to TM should use sockets if ( browser_params["browser"] == "firefox" and browser_params["extension_enabled"] ): logger.debug( "BROWSER %i: Looking for extension port information " "in %s" % (browser_params["browser_id"], prof_folder) ) elapsed = 0 port = None ep_filename = os.path.join(prof_folder, "extension_port.txt") while elapsed < 5: try: with open(ep_filename, "rt") as f: port = int(f.read().strip()) break except IOError as e: if e.errno != errno.ENOENT: raise time.sleep(0.1) elapsed += 0.1 if port is None: # try one last time, allowing all exceptions to propagate with open(ep_filename, "rt") as f: port = int(f.read().strip()) logger.debug( "BROWSER %i: Connecting to extension on port %i" % (browser_params["browser_id"], port) ) extension_socket = clientsocket(serialization="json") extension_socket.connect("127.0.0.1", int(port)) else: extension_socket = None logger.debug("BROWSER %i: BrowserManager ready." % browser_params["browser_id"]) # passes the profile folder back to the # TaskManager to signal a successful startup status_queue.put(("STATUS", "Browser Ready", (prof_folder, "READY"))) browser_params["profile_path"] = prof_folder # starts accepting arguments until told to die while True: # no command for now -> sleep to avoid pegging CPU on blocking get if command_queue.empty(): time.sleep(0.001) continue command = command_queue.get() if type(command) is ShutdownCommand: # Geckodriver creates a copy of the profile (and the original # temp file created by FirefoxProfile() is deleted). # We clear the profile attribute here to prevent prints from: # https://github.com/SeleniumHQ/selenium/blob/4e4160dd3d2f93757cafb87e2a1c20d6266f5554/py/selenium/webdriver/firefox/webdriver.py#L193-L199 if driver.profile and not os.path.isdir(driver.profile.path): driver.profile = None driver.quit() status_queue.put("OK") return logger.info( "BROWSER %i: EXECUTING COMMAND: %s" % (browser_params["browser_id"], str(command)) ) # attempts to perform an action and return an OK signal # if command fails for whatever reason, tell the TaskManager to # kill and restart its worker processes try: command_executor.execute_command( command, driver, browser_settings, browser_params, manager_params, extension_socket, ) status_queue.put("OK") except WebDriverException: status_obj = Status() # We handle WebDriverExceptions separately here because they # are quite common, and we often still have a handle to the # browser, allowing us to run the SHUTDOWN command. string_tb = traceback.format_exception(*sys.exc_info()) if "about:neterror" in string_tb[-1]: status_obj.set_name("NETERROR") status_queue.put(pickle.dumps(status_obj)) continue extra = parse_traceback_for_sentry(string_tb) extra["exception"] = string_tb[-1] logger.error( "BROWSER %i: WebDriverException while executing command" % browser_params["browser_id"], exc_info=True, extra=extra, ) status_obj.set_name("FAILED") status_obj.tb = sys.exc_info() status_queue.put(pickle.dumps(status_obj)) except (ProfileLoadError, BrowserConfigError, AssertionError) as e: status_obj = Status() logger.error( "BROWSER %i: %s thrown, informing parent and raising" % (browser_params["browser_id"], e.__class__.__name__) ) status_obj.set_name("CRITICAL") status_obj.tb = sys.exc_info() status_queue.put(pickle.dumps(status_obj)) return except Exception: status_obj = Status() string_tb = traceback.format_exception(*sys.exc_info()) extra = parse_traceback_for_sentry(string_tb) extra["exception"] = tb[-1] logger.error( "BROWSER %i: Crash in driver, restarting browser manager" % browser_params["browser_id"], exc_info=True, extra=extra, ) status_obj.set_name("FAILED") status_obj.tb = sys.exc_info() status_queue.put(pickle.dumps(status_obj)) return
def BrowserManager( command_queue, status_queue, browser_params, manager_params, crash_recovery ): """ The BrowserManager function runs in each new browser process. It is responsible for listening to command instructions from the Task Manager and passing them to the command module to execute and interface with Selenium. Command execution status is sent back to the TaskManager. """ logger = logging.getLogger("openwpm") try: # Start Xvfb (if necessary), webdriver, and browser driver, prof_folder, browser_settings = deploy_browser.deploy_browser( status_queue, browser_params, manager_params, crash_recovery ) if prof_folder[-1] != "/": prof_folder += "/" # Read the extension port -- if extension is enabled # TODO: Initial communication from extension to TM should use sockets if ( browser_params["browser"] == "firefox" and browser_params["extension_enabled"] ): logger.debug( "BROWSER %i: Looking for extension port information " "in %s" % (browser_params["browser_id"], prof_folder) ) elapsed = 0 port = None ep_filename = os.path.join(prof_folder, "extension_port.txt") while elapsed < 5: try: with open(ep_filename, "rt") as f: port = int(f.read().strip()) break except IOError as e: if e.errno != errno.ENOENT: raise time.sleep(0.1) elapsed += 0.1 if port is None: # try one last time, allowing all exceptions to propagate with open(ep_filename, "rt") as f: port = int(f.read().strip()) logger.debug( "BROWSER %i: Connecting to extension on port %i" % (browser_params["browser_id"], port) ) extension_socket = clientsocket(serialization="json") extension_socket.connect("127.0.0.1", int(port)) else: extension_socket = None logger.debug("BROWSER %i: BrowserManager ready." % browser_params["browser_id"]) # passes the profile folder back to the # TaskManager to signal a successful startup status_queue.put(("STATUS", "Browser Ready", (prof_folder, "READY"))) browser_params["profile_path"] = prof_folder # starts accepting arguments until told to die while True: # no command for now -> sleep to avoid pegging CPU on blocking get if command_queue.empty(): time.sleep(0.001) continue command = command_queue.get() if type(command) is ShutdownCommand: # Geckodriver creates a copy of the profile (and the original # temp file created by FirefoxProfile() is deleted). # We clear the profile attribute here to prevent prints from: # https://github.com/SeleniumHQ/selenium/blob/4e4160dd3d2f93757cafb87e2a1c20d6266f5554/py/selenium/webdriver/firefox/webdriver.py#L193-L199 if driver.profile and not os.path.isdir(driver.profile.path): driver.profile = None driver.quit() status_queue.put("OK") return logger.info( "BROWSER %i: EXECUTING COMMAND: %s" % (browser_params["browser_id"], str(command)) ) # attempts to perform an action and return an OK signal # if command fails for whatever reason, tell the TaskManager to # kill and restart its worker processes try: command_executor.execute_command( command, driver, browser_settings, browser_params, manager_params, extension_socket, ) status_queue.put("OK") except WebDriverException: status_obj = Status() # We handle WebDriverExceptions separately here because they # are quite common, and we often still have a handle to the # browser, allowing us to run the SHUTDOWN command. string_tb = traceback.format_exception(*sys.exc_info()) if "about:neterror" in string_tb[-1]: status_obj.set_name("NETERROR") status_queue.put(pickle.dumps(status_obj)) continue extra = parse_traceback_for_sentry(string_tb) extra["exception"] = string_tb[-1] logger.error( "BROWSER %i: WebDriverException while executing command" % browser_params["browser_id"], exc_info=True, extra=extra, ) status_obj.set_name("FAILED") status_obj.tb = sys.exc_info() status_queue.put(pickle.dumps(status_obj)) except (ProfileLoadError, BrowserConfigError, AssertionError) as e: status_obj = Status() logger.error( "BROWSER %i: %s thrown, informing parent and raising" % (browser_params["browser_id"], e.__class__.__name__) ) status_obj.set_name("CRITICAL") status_obj.tb = sys.exc_info() status_queue.put(pickle.dumps(status_obj)) return except Exception: status_obj = Status() string_tb = traceback.format_exception(*sys.exc_info()) extra = parse_traceback_for_sentry(string_tb) extra["exception"] = tb[-1] logger.error( "BROWSER %i: Crash in driver, restarting browser manager" % browser_params["browser_id"], exc_info=True, extra=extra, ) status_obj.set_name("FAILED") (status_obj.error_class,status_obj.error_value, status_obj.tb) = sys.exc_info() status_queue.put(pickle.dumps(status_obj)) return
55,613
def bool_converter(s): """Convert variable to boolean :param s: a variable :return: the return of the builtin bool() function except if the variable is equal to a str representation of the boolean value """ answer = bool(s) if isinstance(s, str): if s in ('False', 'false', '0'): answer = False return answer
def bool_converter(s): """Return the same as built-in function bool() except for arguments which are string representations of a boolean value. :param s: a variable :return: the return of the builtin bool() function except if the variable is equal to a str representation of the boolean value """ answer = bool(s) if isinstance(s, str): if s in ('False', 'false', '0'): answer = False return answer
25,935
def validate_key_import_type(ns): # Default value of kty is: RSA kty = getattr(ns, 'kty', None) crv = getattr(ns, 'curve', None) if (kty == 'EC' and crv is None) or (kty != 'EC' and crv): from azure.cli.core.azclierror import ValidationError raise ValidationError('parameter --curve should be specified when key type is EC.')
def validate_key_import_type(ns): # Default value of kty is: RSA kty = getattr(ns, 'kty', None) crv = getattr(ns, 'curve', None) if (kty == 'EC' and crv is None) or (kty != 'EC' and crv): from azure.cli.core.azclierror import ValidationError raise ValidationError('parameter --curve should be specified when key type --kty is EC.')
27,287
def memoize(fn): """ Cache function calls and keep results until all of the arguments are alive. """ memo = WeakCache() @functools.wraps(fn) def helper(*args): try: result = memo[args] except KeyError: result = fn(*args) memo[args] = result return result return helper
def memoize(fn): """ Cache function calls and keep results until all of the arguments are no longer alive. """ memo = WeakCache() @functools.wraps(fn) def helper(*args): try: result = memo[args] except KeyError: result = fn(*args) memo[args] = result return result return helper
34,305
def add_confused_intents_to_report( report: Dict, target_intents: Iterable[Any], predicted_intents: Iterable[Any] ) -> Dict: from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels cnf_matrix = confusion_matrix(target_intents, predicted_intents) indices = np.argsort(cnf_matrix, axis=1) labels = unique_labels(target_intents, predicted_intents) n_candidates = min(3, len(labels)) for label in labels: if report.get(label): report[label]["confused_with"] = {} for i, label in enumerate(labels): for j in range(n_candidates): label_idx = indices[i, -j] _label = labels[label_idx] num_hits = int(cnf_matrix[i, label_idx]) if _label != label and num_hits > 0: report[label]["confused_with"][_label] = num_hits return report
def add_confused_intents_to_report( report: Dict, target_intents: Iterable[Any], predicted_intents: Iterable[Any] ) -> Dict: from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels cnf_matrix = confusion_matrix(target_intents, predicted_intents) indices = np.argsort(cnf_matrix, axis=1) labels = unique_labels(target_intents, predicted_intents) n_candidates = min(3, len(labels)) for label in labels: if report.get(label): report[label]["confused_with"] = {} for i, label in enumerate(labels): for j in range(n_candidates): label_idx = indices[i, -j] label_of_confused_with = labels[label_idx] num_hits = int(cnf_matrix[i, label_idx]) if _label != label and num_hits > 0: report[label]["confused_with"][_label] = num_hits return report
46,411
def multi_ts_support(func): """ This decorator further adapts the metrics that took as input two univariate/multivariate `TimeSeries` instances, adding support for equally-sized array of `TimeSeries` instances. The decorator computes the pairwise metric for `TimeSeries` with the same indices, and returns a float value that is computed as a function of all the pairwise metrics using a `inter_reduction` subroutine passed as argument to the metric function. If a 'Sequence[TimeSeries]' is passed as input, this decorator provides also parallelisation of the metric evaluation regarding different `TimeSeries` (if the `n_jobs` parameter is not set 1). """ @wraps(func) def wrapper_multi_ts_support(*args, **kwargs): actual_series = kwargs['actual_series'] if 'actual_series' in kwargs else args[0] pred_series = kwargs['pred_series'] if 'pred_series' in kwargs else args[0] if 'actual_series' in kwargs \ else args[1] n_jobs = kwargs.pop('n_jobs', 1) verbose = kwargs.pop('verbose', False) raise_if_not(isinstance(n_jobs, int), "n_jobs must be an integer") raise_if_not(isinstance(verbose, bool), "verbose must be a bool") actual_series = [actual_series] if not isinstance(actual_series, Sequence) else actual_series pred_series = [pred_series] if not isinstance(pred_series, Sequence) else pred_series raise_if_not(len(actual_series) == len(pred_series), "The two TimeSeries arrays must have the same length.", logger) num_series_in_args = int('actual_series' not in kwargs) + int('pred_series' not in kwargs) kwargs.pop('actual_series', 0) kwargs.pop('pred_series', 0) iterator = _build_tqdm_iterator(iterable=zip(actual_series, pred_series), verbose=verbose, total=len(actual_series)) value_list = _parallel_apply(iterator=iterator, fn=func, n_jobs=n_jobs, fn_args=args[num_series_in_args:], fn_kwargs=kwargs) if 'inter_reduction' in kwargs: return kwargs['inter_reduction'](value_list) else: return signature(func).parameters['inter_reduction'].default(value_list) return wrapper_multi_ts_support
def multi_ts_support(func): """ This decorator further adapts the metrics that took as input two univariate/multivariate `TimeSeries` instances, adding support for equally-sized sequence of `TimeSeries` instances. The decorator computes the pairwise metric for `TimeSeries` with the same indices, and returns a float value that is computed as a function of all the pairwise metrics using a `inter_reduction` subroutine passed as argument to the metric function. If a 'Sequence[TimeSeries]' is passed as input, this decorator provides also parallelisation of the metric evaluation regarding different `TimeSeries` (if the `n_jobs` parameter is not set 1). """ @wraps(func) def wrapper_multi_ts_support(*args, **kwargs): actual_series = kwargs['actual_series'] if 'actual_series' in kwargs else args[0] pred_series = kwargs['pred_series'] if 'pred_series' in kwargs else args[0] if 'actual_series' in kwargs \ else args[1] n_jobs = kwargs.pop('n_jobs', 1) verbose = kwargs.pop('verbose', False) raise_if_not(isinstance(n_jobs, int), "n_jobs must be an integer") raise_if_not(isinstance(verbose, bool), "verbose must be a bool") actual_series = [actual_series] if not isinstance(actual_series, Sequence) else actual_series pred_series = [pred_series] if not isinstance(pred_series, Sequence) else pred_series raise_if_not(len(actual_series) == len(pred_series), "The two TimeSeries arrays must have the same length.", logger) num_series_in_args = int('actual_series' not in kwargs) + int('pred_series' not in kwargs) kwargs.pop('actual_series', 0) kwargs.pop('pred_series', 0) iterator = _build_tqdm_iterator(iterable=zip(actual_series, pred_series), verbose=verbose, total=len(actual_series)) value_list = _parallel_apply(iterator=iterator, fn=func, n_jobs=n_jobs, fn_args=args[num_series_in_args:], fn_kwargs=kwargs) if 'inter_reduction' in kwargs: return kwargs['inter_reduction'](value_list) else: return signature(func).parameters['inter_reduction'].default(value_list) return wrapper_multi_ts_support
31,945
def extract_using_tarfile(file_path: str, dir_path: str, file_name: str): file_list = [] tar_type = 'r:' if '.tar.gz' in file_name: tar_type = 'r:gz' tar = tarfile.open(file_path, tar_type) tar.extractall(dir_path) for root, _, files in os.walk(dir_path): for file_ in files: file_path = os.path.join(root, file_) file_list.append(file_path) return file_list
def extract_using_tarfile(file_path: str, dir_path: str, file_name: str) -> str: file_list = [] tar_type = 'r:' if '.tar.gz' in file_name: tar_type = 'r:gz' tar = tarfile.open(file_path, tar_type) tar.extractall(dir_path) for root, _, files in os.walk(dir_path): for file_ in files: file_path = os.path.join(root, file_) file_list.append(file_path) return file_list
54,964
def tensor_wrapper(obj): """Decorator that wraps existing NumPy functions so that they return a PennyLane :class:`~.tensor`. Only if the decorated function returns an ``ndarray`` is the output converted to a :class:`~.tensor`; this avoids superfluous conversion of scalars and other native-Python types. """ @functools.wraps(obj) def _wrapped(*args, **kwargs): """Wrapped NumPy function""" tensor_kwargs = {} if "requires_grad" in kwargs: tensor_kwargs["requires_grad"] = kwargs.pop("requires_grad") else: tensor_args = list(extract_tensors(args)) if tensor_args: # Unless the user specifies otherwise, if all tensors in the argument # list are non-trainable, the output is also non-trainable. # NOTE: Use of Python's ``all`` results in an infinite recursion, # and I'm not sure why. Using ``np.all`` works fine. tensor_kwargs["requires_grad"] = not _np.all( [not i.requires_grad for i in tensor_args] ) # evaluate the original object res = obj(*args, **kwargs) if isinstance(res, _np.ndarray): # only if the output of the object is a ndarray, # then convert to a PennyLane tensor res = tensor(res, **tensor_kwargs) return res return _wrapped
def tensor_wrapper(obj): """Loop through an object's symbol table, a PennyLane :class:`~.tensor`. Only if the decorated function returns an ``ndarray`` is the output converted to a :class:`~.tensor`; this avoids superfluous conversion of scalars and other native-Python types. """ @functools.wraps(obj) def _wrapped(*args, **kwargs): """Wrapped NumPy function""" tensor_kwargs = {} if "requires_grad" in kwargs: tensor_kwargs["requires_grad"] = kwargs.pop("requires_grad") else: tensor_args = list(extract_tensors(args)) if tensor_args: # Unless the user specifies otherwise, if all tensors in the argument # list are non-trainable, the output is also non-trainable. # NOTE: Use of Python's ``all`` results in an infinite recursion, # and I'm not sure why. Using ``np.all`` works fine. tensor_kwargs["requires_grad"] = not _np.all( [not i.requires_grad for i in tensor_args] ) # evaluate the original object res = obj(*args, **kwargs) if isinstance(res, _np.ndarray): # only if the output of the object is a ndarray, # then convert to a PennyLane tensor res = tensor(res, **tensor_kwargs) return res return _wrapped
19,990
def find_color_card(img, threshold='adaptgauss', threshvalue=125, blurry=False, background='dark'): """Automatically detects a color card and output info to use in create_color_card_mask function Inputs: img = Input RGB image data containing a color card. threshold = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss) thresh_value = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param img: numpy.ndarray :param threshold: str :param threshvalue: int :param blurry: bool :param background: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = img.shape totalpx = float(height * width) # Minimum and maximum square size based upon 12 MP image minarea = 1000. / 12000000. * totalpx maxarea = 8000000. / 12000000. * totalpx # Create gray image for further processing gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold == "otsu": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold == "normal": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold == "adaptgauss": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Threshold ' + str(threshold) + ' is not "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median edges = skimage.feature.canny(threshold) edges.dtype = 'uint8' # Compute contours to find the squares of the card _, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and minarea < marea[index] < maxarea: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.15 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) mwhratio.append(wh[0] / wh[1]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or 5: msquarecoords.append(approx) else: # It's not square msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk locarea = {'index': mindex, 'X': mx, 'Y': my, 'width': mwidth, 'height': mheight, 'WHratio': mwhratio, 'Area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(locarea) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['Area'] > minarea) & (df['Area'] < maxarea) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['WHratio'] < 1.2) & (df['WHratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card # isolate area measurements filtered_area = df['Area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix = pd.DataFrame(sizecomp).apply(lambda sim: sim[sim >= 90].count() - 1, axis=1) # Append sizeprox summary to dataframe df = df.assign(sizeprox=sizematrix.values) # Reorder dataframe for better printing df = df[['index', 'X', 'Y', 'width', 'height', 'WHratio', 'Area', 'square', 'child', 'blurriness', 'distprox', 'sizeprox']] # Loosely filter for size and distance (relative size to median) minsqwidth = median_sq_width_px * 0.80 maxsqwidth = median_sq_width_px * 1.2 df = df[(df['distprox'] >= 5) & (df['sizeprox'] >= 5) & (df['width'] > minsqwidth) & (df['width'] < maxsqwidth)] # Filter for proximity again to root out stragglers # Find and count up squares that are within given radius, # more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 5 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Filter results for distance proximity to other squares df = df[(df['distprox'] >= 4)] # Extract the starting coordinate start_coord = (int(df['X'].min()), int(df['Y'].min())) # Calculate the range spacingx_short = (df['X'].max() - df['X'].min()) / 3 spacingy_short = (df['Y'].max() - df['Y'].min()) / 3 spacingx_long = (df['X'].max() - df['X'].min()) / 5 spacingy_long = (df['Y'].max() - df['Y'].min()) / 5 # Chip spacing since 4x6 card assumed spacing_short = min(spacingx_short, spacingy_short) spacing_long = max(spacingx_long, spacingy_long) # Smaller spacing measurement might have a chip missing spacing = int(max(spacing_short, spacing_long)) spacing = (spacing, spacing) return df, start_coord, spacing
def find_color_card(img, threshold='adaptgauss', threshvalue=125, blurry=False, background='dark'): """Automatically detects a color card and output info to use in create_color_card_mask function Inputs: rgb_img = Input RGB image data containing a color card. threshold = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss) thresh_value = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param img: numpy.ndarray :param threshold: str :param threshvalue: int :param blurry: bool :param background: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = img.shape totalpx = float(height * width) # Minimum and maximum square size based upon 12 MP image minarea = 1000. / 12000000. * totalpx maxarea = 8000000. / 12000000. * totalpx # Create gray image for further processing gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold == "otsu": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold == "normal": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold == "adaptgauss": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Threshold ' + str(threshold) + ' is not "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median edges = skimage.feature.canny(threshold) edges.dtype = 'uint8' # Compute contours to find the squares of the card _, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and minarea < marea[index] < maxarea: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.15 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) mwhratio.append(wh[0] / wh[1]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or 5: msquarecoords.append(approx) else: # It's not square msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk locarea = {'index': mindex, 'X': mx, 'Y': my, 'width': mwidth, 'height': mheight, 'WHratio': mwhratio, 'Area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(locarea) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['Area'] > minarea) & (df['Area'] < maxarea) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['WHratio'] < 1.2) & (df['WHratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card # isolate area measurements filtered_area = df['Area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix = pd.DataFrame(sizecomp).apply(lambda sim: sim[sim >= 90].count() - 1, axis=1) # Append sizeprox summary to dataframe df = df.assign(sizeprox=sizematrix.values) # Reorder dataframe for better printing df = df[['index', 'X', 'Y', 'width', 'height', 'WHratio', 'Area', 'square', 'child', 'blurriness', 'distprox', 'sizeprox']] # Loosely filter for size and distance (relative size to median) minsqwidth = median_sq_width_px * 0.80 maxsqwidth = median_sq_width_px * 1.2 df = df[(df['distprox'] >= 5) & (df['sizeprox'] >= 5) & (df['width'] > minsqwidth) & (df['width'] < maxsqwidth)] # Filter for proximity again to root out stragglers # Find and count up squares that are within given radius, # more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 5 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Filter results for distance proximity to other squares df = df[(df['distprox'] >= 4)] # Extract the starting coordinate start_coord = (int(df['X'].min()), int(df['Y'].min())) # Calculate the range spacingx_short = (df['X'].max() - df['X'].min()) / 3 spacingy_short = (df['Y'].max() - df['Y'].min()) / 3 spacingx_long = (df['X'].max() - df['X'].min()) / 5 spacingy_long = (df['Y'].max() - df['Y'].min()) / 5 # Chip spacing since 4x6 card assumed spacing_short = min(spacingx_short, spacingy_short) spacing_long = max(spacingx_long, spacingy_long) # Smaller spacing measurement might have a chip missing spacing = int(max(spacing_short, spacing_long)) spacing = (spacing, spacing) return df, start_coord, spacing
5,401
def path_exists(path, saltenv="base"): """ Return ``True`` if a path exists in the state tree, ``False`` otherwise. The path could refer to a file or directory. :param str path: The fully qualified path to a file or directory in the state tree. :param str saltenv: The fileserver environment to search. Default: ``base`` CLI Example: .. code-block:: bash salt '*' slsutil.file_exists nginx/defaults.yaml """ return file_exists(path, saltenv) or dir_exists(path, saltenv)
def path_exists(path, saltenv="base"): """ Return ``True`` if a path exists in the state tree, ``False`` otherwise. The path could refer to a file or directory. :param str path: The fully qualified path to a file or directory in the state tree. :param str saltenv: The fileserver environment to search. Default: ``base`` CLI Example: .. code-block:: bash salt '*' slsutil.path_exists nginx/defaults.yaml """ return file_exists(path, saltenv) or dir_exists(path, saltenv)
30,298
def send_email(to, subject, body="", bcc=None, cc=None, replyTo=None, htmlBody=None, attachIDs="", attachCIDs="", attachNames="", from_mailbox=None, manualAttachObj=None): account = get_account(from_mailbox or ACCOUNT_EMAIL) bcc = bcc.split(",") if bcc else None cc = cc.split(",") if cc else None to = to.split(",") if to else None manualAttachObj = manualAttachObj if manualAttachObj is not None else [] subject = subject[:252] + '...' if len(subject) > 255 else subject file_entries_for_attachments = [] # type: list file_entries_for_attachments_inline = [] attachments_names = [] # type: list attachments_names_inline = [] if attachIDs: file_entries_for_attachments = attachIDs.split(",") if attachNames: attachments_names = attachNames.split(",") else: for att_id in file_entries_for_attachments: att_name = demisto.getFilePath(att_id)['name'] if isinstance(att_name, list): att_name = att_name[0] attachments_names.append(att_name) if len(file_entries_for_attachments) != len(attachments_names): raise Exception("attachIDs and attachNames lists should be the same length") if attachCIDs: file_entries_for_attachments_inline = attachCIDs.split(",") for att_id_inline in file_entries_for_attachments_inline: att_name_inline = demisto.getFilePath(att_id_inline)['name'] if isinstance(att_name_inline, list): att_name_inline = att_name_inline[0] attachments_names_inline.append(att_name_inline) attachments = collect_manual_attachments(manualAttachObj) for i in range(0, len(file_entries_for_attachments)): entry_id = file_entries_for_attachments[i] attachment_name = attachments_names[i] try: res = demisto.getFilePath(entry_id) except Exception as ex: raise Exception("entry {} does not contain a file: {}".format(entry_id, str(ex))) file_path = res["path"] with open(file_path, 'rb') as f: attachments.append(FileAttachment(content=f.read(), name=attachment_name)) for i in range(0, len(file_entries_for_attachments_inline)): entry_id = file_entries_for_attachments_inline[i] attachment_name_inline = attachments_names_inline[i] try: res = demisto.getFilePath(entry_id) except Exception as ex: raise Exception("entry %s does not contain a file" % entry_id) file_path = res["path"] with open(file_path, 'rb') as f: attachments.append(FileAttachment(content=f.read(), name=attachment_name_inline, is_inline=True, content_id=attachment_name_inline)) send_email_to_mailbox(account, to, subject, body, bcc, cc, replyTo, htmlBody, attachments) result_object = { 'from': account.primary_smtp_address, 'to': to, 'subject': subject, 'attachments': attachments_names } return { 'Type': entryTypes['note'], 'Contents': result_object, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Sent email', result_object), }
def send_email(to, subject, body="", bcc=None, cc=None, replyTo=None, htmlBody=None, attachIDs="", attachCIDs="", attachNames="", from_mailbox=None, manualAttachObj=None): account = get_account(from_mailbox or ACCOUNT_EMAIL) bcc = bcc.split(",") if bcc else None cc = cc.split(",") if cc else None to = to.split(",") if to else None manualAttachObj = manualAttachObj if manualAttachObj is not None else [] subject = subject[:252] + '...' if len(subject) > 255 else subject file_entries_for_attachments = [] # type: list file_entries_for_attachments_inline = [] attachments_names = [] # type: list attachments_names_inline = [] if attachIDs: file_entries_for_attachments = attachIDs.split(",") if attachNames: attachments_names = attachNames.split(",") else: for att_id in file_entries_for_attachments: att_name = demisto.getFilePath(att_id)['name'] if isinstance(att_name, list): att_name = att_name[0] attachments_names.append(att_name) if len(file_entries_for_attachments) != len(attachments_names): raise Exception("attachIDs and attachNames lists should be the same length") if attachCIDs: file_entries_for_attachments_inline = attachCIDs.split(",") for att_id_inline in file_entries_for_attachments_inline: att_name_inline = demisto.getFilePath(att_id_inline)['name'] if isinstance(att_name_inline, list): att_name_inline = att_name_inline[0] attachments_names_inline.append(att_name_inline) attachments = collect_manual_attachments(manualAttachObj) for i in range(0, len(file_entries_for_attachments)): entry_id = file_entries_for_attachments[i] attachment_name = attachments_names[i] try: res = demisto.getFilePath(entry_id) except Exception as ex: raise Exception("entry {} does not contain a file: {}".format(entry_id, str(ex))) file_path = res["path"] with open(file_path, 'rb') as f: attachments.append(FileAttachment(content=f.read(), name=attachment_name)) for entry_id, attachment_name_inline in file_entries_for_attachments_inline: entry_id = file_entries_for_attachments_inline[i] attachment_name_inline = attachments_names_inline[i] try: res = demisto.getFilePath(entry_id) except Exception as ex: raise Exception("entry %s does not contain a file" % entry_id) file_path = res["path"] with open(file_path, 'rb') as f: attachments.append(FileAttachment(content=f.read(), name=attachment_name_inline, is_inline=True, content_id=attachment_name_inline)) send_email_to_mailbox(account, to, subject, body, bcc, cc, replyTo, htmlBody, attachments) result_object = { 'from': account.primary_smtp_address, 'to': to, 'subject': subject, 'attachments': attachments_names } return { 'Type': entryTypes['note'], 'Contents': result_object, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Sent email', result_object), }
32,224
def target_filter(rule, target): """ Args: rule (dict): A rule from the panorama instance. target (num): A serial number to filter the rule on Returns: if the rule contains the target return True else False. """ target_entry = rule.get('target', {}).get('devices', {}).get('entry') if not isinstance(target_entry, list): target_entry = [target_entry] for entry in target_entry: if entry.get('@name') == target: return True return False
def target_filter(rule, target): """ Args: rule (dict): A rule from the panorama instance. target (int/string): A serial number to filter the rule on Returns: if the rule contains the target return True else False. """ target_entry = rule.get('target', {}).get('devices', {}).get('entry') if not isinstance(target_entry, list): target_entry = [target_entry] for entry in target_entry: if entry.get('@name') == target: return True return False
39,024
def test_str_limited_good(): max_length = 5 class Model(BaseModel): v: StrLimited[max_length] m = Model(v='abcde') assert m.v == 'abcde'
def test_str_limited_good(): max_length = 5 class Model(BaseModel): v: StrLimited[max_length] m = Model(v='abcde ') assert m.v == 'abcde'
42,107
def upgrade(): bind = op.get_bind() sa.Enum(IntermediateValueModel.TrialIntermediateValueType).create(bind, checkfirst=True) # MySQL and PostgreSQL supports DEFAULT clause like 'ALTER TABLE <tbl_name> # ADD COLUMN <col_name> ... DEFAULT "FINITE_OR_NAN"', but seemingly Alembic # does not support such a SQL statement. So first add a column with schema-level # default value setting, then remove it by `batch_op.alter_column()`. with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.add_column( sa.Column( "intermediate_value_type", sa.Enum("FINITE", "INF_POS", "INF_NEG", "NAN", name="floattypeenum"), nullable=False, server_default="FINITE", ), ) with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.alter_column("intermediate_value_type", server_default=None) session = orm.Session(bind=bind) try: records = session.query(IntermediateValueModel).all() mapping = [] for r in records: value: float if np.isclose(r.intermediate_value, RDB_MAX_FLOAT) or np.isposinf( r.intermediate_value ): value = np.inf elif np.isclose(r.intermediate_value, RDB_MIN_FLOAT) or np.isneginf( r.intermediate_value ): value = -np.inf elif np.isnan(r.intermediate_value): value = np.nan else: value = r.intermediate_value ( sanitized_value, float_type, ) = IntermediateValueModel._intermediate_value_to_stored_repr(value) mapping.append( { "trial_intermediate_value_id": r.trial_intermediate_value_id, "intermediate_value_type": float_type, "intermediate_value": sanitized_value, } ) session.bulk_update_mappings(IntermediateValueModel, mapping) session.commit() except SQLAlchemyError as e: session.rollback() raise e finally: session.close()
def upgrade(): bind = op.get_bind() sa.Enum(IntermediateValueModel.TrialIntermediateValueType).create(bind, checkfirst=True) # MySQL and PostgreSQL supports DEFAULT clause like 'ALTER TABLE <tbl_name> # ADD COLUMN <col_name> ... DEFAULT "FINITE_OR_NAN"', but seemingly Alembic # does not support such a SQL statement. So first add a column with schema-level # default value setting, then remove it by `batch_op.alter_column()`. with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.add_column( sa.Column( "intermediate_value_type", sa.Enum("FINITE", "INF_POS", "INF_NEG", "NAN", name="floattypeenum"), nullable=False, server_default="FINITE", ), ) with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.alter_column("intermediate_value_type", server_default=None) session = orm.Session(bind=bind) try: records = session.query(IntermediateValueModel).all() mapping = [] for r in records: value: float if np.isclose(r.intermediate_value, RDB_MAX_FLOAT) or np.isposinf( r.intermediate_value ): value = np.inf elif np.isclose(r.intermediate_value, RDB_MIN_FLOAT) or np.isneginf( r.intermediate_value ): value = -np.inf elif np.isnan(r.intermediate_value): value = float("nan") else: value = r.intermediate_value ( sanitized_value, float_type, ) = IntermediateValueModel._intermediate_value_to_stored_repr(value) mapping.append( { "trial_intermediate_value_id": r.trial_intermediate_value_id, "intermediate_value_type": float_type, "intermediate_value": sanitized_value, } ) session.bulk_update_mappings(IntermediateValueModel, mapping) session.commit() except SQLAlchemyError as e: session.rollback() raise e finally: session.close()
33,036
def remove_duplicates(items: List[T]) -> List[T]: "Return list with any repeats removed" # We use a dictionary to simulate an ordered set return list({x: None for x in items})
def remove_duplicates(items: List[T]) -> List[T]: "Return list with any repetitions removed" # We use a dictionary to simulate an ordered set return list({x: None for x in items})
1,200
def read(csa_str): ''' Read CSA header from string `csa_str` Parameters ---------- csa_str : str byte string containing CSA header information Returns ------- header : dict header information as dict, where `header` has fields (at least) ``type, n_tags, tags``. ``header['tags']`` is also a dictionary with one key, value pair for each tag in the header. ''' csa_len = len(csa_str) csa_dict = {'tags': {}} hdr_id = csa_str[:4] up_str = Unpacker(csa_str, endian='<') if hdr_id == b'SV10': # CSA2 hdr_type = 2 up_str.ptr = 4 # omit the SV10 csa_dict['unused0'] = up_str.read(4) else: # CSA1 hdr_type = 1 csa_dict['type'] = hdr_type csa_dict['n_tags'], csa_dict['check'] = up_str.unpack('2I') if not 0 < csa_dict['n_tags'] <= MAX_CSA_ITEMS: raise CSAReadError('Number of tags `t` should be ' '0 < t <= %s' % MAX_CSA_ITEMS) for tag_no in range(csa_dict['n_tags']): name, vm, vr, syngodt, n_items, last3 = \ up_str.unpack('64si4s3i') vr = nt_str(vr) name = nt_str(name) tag = {'n_items': n_items, 'vm': vm, # value multiplicity 'vr': vr, # value representation 'syngodt': syngodt, 'last3': last3, 'tag_no': tag_no} if vm == 0: n_values = n_items else: n_values = vm # data converter converter = _CONVERTERS.get(vr) # CSA1 specific length modifier if tag_no == 1: tag0_n_items = n_items if n_items > MAX_CSA_ITEMS: raise CSAReadError('Expected <= {0} tags, got {1}'.format( MAX_CSA_ITEMS, n_items)) items = [] for item_no in range(n_items): x0, x1, x2, x3 = up_str.unpack('4i') ptr = up_str.ptr if hdr_type == 1: # CSA1 - odd length calculation item_len = x0 - tag0_n_items if item_len < 0 or (ptr + item_len) > csa_len: if item_no < vm: items.append('') break else: # CSA2 item_len = x1 if (ptr + item_len) > csa_len: raise CSAReadError('Item is too long, ' 'aborting read') if item_no >= n_values: assert item_len == 0 continue item = nt_str(up_str.read(item_len)) if converter: # we may have fewer real items than are given in # n_items, but we don't know how many - assume that # we've reached the end when we hit an empty item if item_len == 0: n_values = item_no continue item = converter(item) items.append(item) # go to 4 byte boundary plus4 = item_len % 4 if plus4 != 0: up_str.ptr += (4 - plus4) tag['items'] = items csa_dict['tags'][name] = tag return csa_dict
def read(csa_str): ''' Read CSA header from string `csa_str` Parameters ---------- csa_str : str byte string containing CSA header information Returns ------- header : dict header information as dict, where `header` has fields (at least) ``type, n_tags, tags``. ``header['tags']`` is also a dictionary with one key, value pair for each tag in the header. ''' csa_len = len(csa_str) csa_dict = {'tags': {}} hdr_id = csa_str[:4] up_str = Unpacker(csa_str, endian='<') if hdr_id == b'SV10': # CSA2 hdr_type = 2 up_str.ptr = 4 # omit the SV10 csa_dict['unused0'] = up_str.read(4) else: # CSA1 hdr_type = 1 csa_dict['type'] = hdr_type csa_dict['n_tags'], csa_dict['check'] = up_str.unpack('2I') if not 0 < csa_dict['n_tags'] <= MAX_CSA_ITEMS: raise CSAReadError('Number of tags `t` should be ' '0 < t <= %d' % MAX_CSA_ITEMS) for tag_no in range(csa_dict['n_tags']): name, vm, vr, syngodt, n_items, last3 = \ up_str.unpack('64si4s3i') vr = nt_str(vr) name = nt_str(name) tag = {'n_items': n_items, 'vm': vm, # value multiplicity 'vr': vr, # value representation 'syngodt': syngodt, 'last3': last3, 'tag_no': tag_no} if vm == 0: n_values = n_items else: n_values = vm # data converter converter = _CONVERTERS.get(vr) # CSA1 specific length modifier if tag_no == 1: tag0_n_items = n_items if n_items > MAX_CSA_ITEMS: raise CSAReadError('Expected <= {0} tags, got {1}'.format( MAX_CSA_ITEMS, n_items)) items = [] for item_no in range(n_items): x0, x1, x2, x3 = up_str.unpack('4i') ptr = up_str.ptr if hdr_type == 1: # CSA1 - odd length calculation item_len = x0 - tag0_n_items if item_len < 0 or (ptr + item_len) > csa_len: if item_no < vm: items.append('') break else: # CSA2 item_len = x1 if (ptr + item_len) > csa_len: raise CSAReadError('Item is too long, ' 'aborting read') if item_no >= n_values: assert item_len == 0 continue item = nt_str(up_str.read(item_len)) if converter: # we may have fewer real items than are given in # n_items, but we don't know how many - assume that # we've reached the end when we hit an empty item if item_len == 0: n_values = item_no continue item = converter(item) items.append(item) # go to 4 byte boundary plus4 = item_len % 4 if plus4 != 0: up_str.ptr += (4 - plus4) tag['items'] = items csa_dict['tags'][name] = tag return csa_dict
58,318
def draw( G: nx.Graph, pos: Dict[Hashable, np.ndarray], lines_func: Callable, color_by: Hashable = None, node_color_by: Hashable = None, lw_by: Hashable = None, alpha_by: Hashable = None, ax=None, encodings_kwargs: Dict = {}, **linefunc_kwargs, ): """Draw edges to matplotlib axes. ## Parameters - `G`: A NetworkX graph. - `pos`: A dictionary mapping for x,y coordinates of a node. - `lines_func`: One of the line drawing functions from `nxviz.lines` - `color_by`: Categorical or quantitative edge attribute key to color edges by. There are two special value for this parameter when using directed graphs: "source_node_color" and "target_node_color". It should be noted that if these values are set, `node_color_by` also needs to be set. - `node_color_by`: Node metadata attribute key that has been used to color nodes. - `lw_by`: Quantitative edge attribute key to determine line width. - `alpha_by`: Quantitative edge attribute key to determine transparency. - `ax`: Matplotlib axes object to plot onto. - `encodings_kwargs`: A dictionary of kwargs to determine the visual properties of the edge. - `linefunc_kwargs`: All other keyword arguments passed in will be passed onto the appropriate linefunc. Special keyword arguments for `encodings_kwargs` include: - `lw_scale`: A scaling factor for all edges' line widths. Equivalent to multiplying all line widths by this number. - `alpha_scale`: A scaling factor for all edges' line transparencies. Equivalent to multiplying all alphas by this number. The default transparency is 0.1, so an alpha_scale of any number greater than or equal to 10 will result in 100% opaque lines. Everything else passed in here will be passed to the matplotlib Patch constructor; see `nxviz.lines` for more information. """ nt = node_table(G) et = edge_table(G) if ax is None: ax = plt.gca() if color_by in ("source_node_color", "target_node_color"): if not isinstance(G, nx.DiGraph): raise ValueError( "Special values of `color_by`," " can only be set for directed graphs" ) elif not node_color_by: raise ValueError( "When setting `color_by` to special values," "`node_color_by` also needs to be set." ) edge_color = edge_colors(et, nt, color_by, node_color_by) encodings_kwargs = deepcopy(encodings_kwargs) lw = line_width(et, lw_by) * encodings_kwargs.pop("lw_scale", 1.0) alpha = transparency(et, alpha_by) * encodings_kwargs.pop("alpha_scale", 1.0) aes_kw = {"facecolor": "none"} aes_kw.update(encodings_kwargs) patches = lines_func( et, pos, edge_color=edge_color, alpha=alpha, lw=lw, aes_kw=aes_kw, **linefunc_kwargs, ) for patch in patches: ax.add_patch(patch)
def draw( G: nx.Graph, pos: Dict[Hashable, np.ndarray], lines_func: Callable, color_by: Hashable = None, node_color_by: Hashable = None, lw_by: Hashable = None, alpha_by: Hashable = None, ax=None, encodings_kwargs: Dict = {}, **linefunc_kwargs, ): """Draw edges to matplotlib axes. ## Parameters - `G`: A NetworkX graph. - `pos`: A dictionary mapping for x,y coordinates of a node. - `lines_func`: One of the line drawing functions from `nxviz.lines` - `color_by`: Categorical or quantitative edge attribute key to color edges by. There are two special value for this parameter when using directed graphs: "source_node_color" and "target_node_color". If these values are set, then `node_color_by` also needs to be set. - `node_color_by`: Node metadata attribute key that has been used to color nodes. - `lw_by`: Quantitative edge attribute key to determine line width. - `alpha_by`: Quantitative edge attribute key to determine transparency. - `ax`: Matplotlib axes object to plot onto. - `encodings_kwargs`: A dictionary of kwargs to determine the visual properties of the edge. - `linefunc_kwargs`: All other keyword arguments passed in will be passed onto the appropriate linefunc. Special keyword arguments for `encodings_kwargs` include: - `lw_scale`: A scaling factor for all edges' line widths. Equivalent to multiplying all line widths by this number. - `alpha_scale`: A scaling factor for all edges' line transparencies. Equivalent to multiplying all alphas by this number. The default transparency is 0.1, so an alpha_scale of any number greater than or equal to 10 will result in 100% opaque lines. Everything else passed in here will be passed to the matplotlib Patch constructor; see `nxviz.lines` for more information. """ nt = node_table(G) et = edge_table(G) if ax is None: ax = plt.gca() if color_by in ("source_node_color", "target_node_color"): if not isinstance(G, nx.DiGraph): raise ValueError( "Special values of `color_by`," " can only be set for directed graphs" ) elif not node_color_by: raise ValueError( "When setting `color_by` to special values," "`node_color_by` also needs to be set." ) edge_color = edge_colors(et, nt, color_by, node_color_by) encodings_kwargs = deepcopy(encodings_kwargs) lw = line_width(et, lw_by) * encodings_kwargs.pop("lw_scale", 1.0) alpha = transparency(et, alpha_by) * encodings_kwargs.pop("alpha_scale", 1.0) aes_kw = {"facecolor": "none"} aes_kw.update(encodings_kwargs) patches = lines_func( et, pos, edge_color=edge_color, alpha=alpha, lw=lw, aes_kw=aes_kw, **linefunc_kwargs, ) for patch in patches: ax.add_patch(patch)
28,026
def __register_export(parser): """ Add argparser subcommand for the "export run by run name action" """ parser.add_argument('-n', '--name', type=str, dest="name", metavar='RUN_NAME', default=argparse.SUPPRESS, required=True, help="Name of the run where findings are to " "be exporter")
def __register_export(parser): """ Add argparser subcommand for the "export run by run name action" """ parser.add_argument('-n', '--name', type=str, dest="name", metavar='RUN_NAME', default=argparse.SUPPRESS, required=True, help="Name of the analysis run.") # __add_filtering_arguments(group, DEFAULT_FILTER_VALUES)
57,601
def fetch_production(zone_key='AM', session=None, target_datetime=None, logger=None): r = session or requests.session() url = 'http://epso.am/poweren.htm' response = r.get(url) response.encoding = 'utf-8' html_doc = response.text soup = BeautifulSoup(html_doc, 'html.parser') data_string = soup.find(text=re.compile('var')) data_split = data_string.split('\r\n') gas_tes = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[10]) gas_total = float(gas_tes[0]) hydro_ges = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[11]) hydro_altern = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[8]) hydro_total = float(hydro_ges[0])+float(hydro_altern[0]) nuclear_atom = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[9]) nuclear_total = float(nuclear_atom[0]) time_string = dparser.parse(data_split[14].split()[3],fuzzy=True) date_time = time_string.replace(tzinfo=tz.gettz('Asia/Yerevan')) #Operating solar, wind and biomass plants exist in small numbers, but are not reported yet data = { 'zoneKey': zone_key, 'datetime': date_time, 'production': { 'gas': gas_total, 'hydro': hydro_total, 'nuclear': nuclear_total, 'coal': 0, 'geothermal': 0, 'oil': 0 }, 'storage': { 'hydro storage': 0, 'battery storage': 0 }, 'source': 'http://epso.am/poweren.htm' } return data
def fetch_production(zone_key='AM', session=None, target_datetime=None, logger=None): r = session or requests.session() url = 'http://epso.am/poweren.htm' response = r.get(url) response.encoding = 'utf-8' html_doc = response.text soup = BeautifulSoup(html_doc, 'html.parser') data_string = soup.find(text=re.compile('var')) data_split = data_string.split('\r\n') gas_tes = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[10]) gas_total = float(gas_tes[0]) hydro_ges = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[11]) hydro_altern = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[8]) hydro_total = float(hydro_ges[0])+float(hydro_altern[0]) nuclear_atom = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", data_split[9]) nuclear_total = float(nuclear_atom[0]) yerevan = tz.gettz('Asia/Yerevan') date_time = dparser.parse(data_split[14].split()[3], default=datetime.now(yerevan), fuzzy=True) date_time = time_string.replace(tzinfo=tz.gettz('Asia/Yerevan')) #Operating solar, wind and biomass plants exist in small numbers, but are not reported yet data = { 'zoneKey': zone_key, 'datetime': date_time, 'production': { 'gas': gas_total, 'hydro': hydro_total, 'nuclear': nuclear_total, 'coal': 0, 'geothermal': 0, 'oil': 0 }, 'storage': { 'hydro storage': 0, 'battery storage': 0 }, 'source': 'http://epso.am/poweren.htm' } return data
44,860
def test_spark_udf(spark, model_path): mlflow.pyfunc.save_model( path=model_path, loader_module=__name__, code_path=[os.path.dirname(tests.__file__)], ) with mock.patch("mlflow.pyfunc._warn_dependency_requirement_mismatches") as mock_check_fn: reloaded_pyfunc_model = mlflow.pyfunc.load_model(model_path) mock_check_fn.assert_called_once() pandas_df = pd.DataFrame(data=np.ones((10, 10)), columns=[str(i) for i in range(10)]) spark_df = spark.createDataFrame(pandas_df) # Test all supported return types type_map = { "float": (FloatType(), np.number), "int": (IntegerType(), np.int32), "double": (DoubleType(), np.number), "long": (LongType(), int), "string": (StringType(), None), "bool": (BooleanType(), bool), } for tname, tdef in type_map.items(): spark_type, np_type = tdef prediction_df = reloaded_pyfunc_model.predict(pandas_df) for is_array in [True, False]: t = ArrayType(spark_type) if is_array else spark_type if tname == "string": expected = prediction_df.applymap(str) else: expected = prediction_df.select_dtypes(np_type) if tname == "float": expected = expected.astype(np.float32) if tname == "bool": expected = expected.astype(bool) expected = [list(row[1]) if is_array else row[1][0] for row in expected.iterrows()] pyfunc_udf = spark_udf(spark, model_path, result_type=t) new_df = spark_df.withColumn("prediction", pyfunc_udf(*pandas_df.columns)) actual = list(new_df.select("prediction").toPandas()["prediction"]) assert expected == actual if not is_array: pyfunc_udf = spark_udf(spark, model_path, result_type=tname) new_df = spark_df.withColumn("prediction", pyfunc_udf(*pandas_df.columns)) actual = list(new_df.select("prediction").toPandas()["prediction"]) assert expected == actual
def test_spark_udf(spark, model_path): mlflow.pyfunc.save_model( path=model_path, loader_module=__name__, code_path=[os.path.dirname(tests.__file__)], ) with mock.patch("mlflow.pyfunc._warn_dependency_requirement_mismatches") as mock_check_fn: reloaded_pyfunc_model = mlflow.pyfunc.load_model(model_path) mock_check_fn.assert_called_once() pandas_df = pd.DataFrame(data=np.ones((10, 10)), columns=[str(i) for i in range(10)]) spark_df = spark.createDataFrame(pandas_df) # Test all supported return types type_map = { "float": (FloatType(), np.number), "int": (IntegerType(), np.int32), "double": (DoubleType(), np.number), "long": (LongType(), int), "string": (StringType(), None), "boolean": (BooleanType(), bool), } for tname, tdef in type_map.items(): spark_type, np_type = tdef prediction_df = reloaded_pyfunc_model.predict(pandas_df) for is_array in [True, False]: t = ArrayType(spark_type) if is_array else spark_type if tname == "string": expected = prediction_df.applymap(str) else: expected = prediction_df.select_dtypes(np_type) if tname == "float": expected = expected.astype(np.float32) if tname == "bool": expected = expected.astype(bool) expected = [list(row[1]) if is_array else row[1][0] for row in expected.iterrows()] pyfunc_udf = spark_udf(spark, model_path, result_type=t) new_df = spark_df.withColumn("prediction", pyfunc_udf(*pandas_df.columns)) actual = list(new_df.select("prediction").toPandas()["prediction"]) assert expected == actual if not is_array: pyfunc_udf = spark_udf(spark, model_path, result_type=tname) new_df = spark_df.withColumn("prediction", pyfunc_udf(*pandas_df.columns)) actual = list(new_df.select("prediction").toPandas()["prediction"]) assert expected == actual
30,682
def validate_response(client, url, method='GET'): """ Get response from Chronicle Search API and validate it. :param client: object of client class :type client: object of client class :param url: url :type url: str :param method: HTTP request method :type method: str :return: response """ for _ in range(3): raw_response = client.http_client.request(url, method) if not raw_response: raise ValueError('Technical Error while making API call to Chronicle. Empty response received') if raw_response[0].status == 500: raise ValueError('Internal server error occurred, please try again later') if raw_response[0].status == 429: demisto.debug('API Rate limit exceeded. Retrying in {} seconds...'.format(1)) time.sleep(1) continue if raw_response[0].status != 200: return_error( 'Status code: {}\nError: {}'.format(raw_response[0].status, parse_error_message(raw_response[1]))) try: response = json.loads(raw_response[1]) return response except json.decoder.JSONDecodeError: raise ValueError('Invalid response format while making API call to Chronicle. Response not in JSON format') else: raise ValueError('API rate limit exceeded. Try after sometime.')
def validate_response(client, url, method='GET'): """ Get response from Chronicle Search API and validate it. :param client: object of client class :type client: object of client class :param url: url :type url: str :param method: HTTP request method :type method: str :return: response """ for _ in range(3): raw_response = client.http_client.request(url, method) if not raw_response: raise ValueError('Technical Error while making API call to Chronicle. Empty response received') if raw_response[0].status == 500: raise ValueError('Internal server error occurred, please try again later') if raw_response[0].status == 429: demisto.debug('API Rate limit exceeded. Retrying in {} seconds...'.format(1)) time.sleep(1) continue if raw_response[0].status != 200: return_error( 'Status code: {}\nError: {}'.format(raw_response[0].status, parse_error_message(raw_response[1]))) try: response = json.loads(raw_response[1]) return response except json.decoder.JSONDecodeError: raise ValueError('Invalid response format while making API call to Chronicle. Response not in JSON format') else: raise ValueError('API rate limit exceeded. Try again later.')
32,259
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ params = demisto.params() LOG(f'Command being called is {demisto.command()}') try: self_deployed = params.get('self_deployed', False) client_credentials = params.get('client_credentials', False) auth_and_token_url = params.get('auth_id') or params.get('credentials', {}).get('identifier') # client_id enc_key = params.get('enc_key') or (params.get('credentials') or {}).get('password') # client_secret certificate_thumbprint = params.get('certificate_thumbprint') private_key = params.get('private_key') self_deployed = True if client_credentials else self_deployed if client_credentials and not enc_key: raise DemistoException("Client Secret must be provided for client credentials flow.") elif not self_deployed and not enc_key: raise DemistoException('Key must be provided. For further information see ' 'https://xsoar.pan.dev/docs/reference/articles/microsoft-integrations---authentication') # noqa: E501 elif not enc_key and not (certificate_thumbprint and private_key): raise DemistoException('Key or Certificate Thumbprint and Private Key must be provided.') client = Client( self_deployed=self_deployed, auth_and_token_url=auth_and_token_url, # client_id or auth_id refresh_token=params.get('refresh_token'), # tenant_id or token enc_key=enc_key, # client_secret or enc_key redirect_uri=params.get('redirect_uri', ''), auth_code=params.get('auth_code') if not client_credentials else '', subscription_id=params.get('subscriptionID'), resource_group_name=params.get('resourceGroupName'), workspace_name=params.get('workspaceName'), verify=not params.get('insecure', False), proxy=params.get('proxy', False), certificate_thumbprint=certificate_thumbprint, private_key=private_key, client_credentials=client_credentials ) commands = { 'azure-log-analytics-execute-query': execute_query_command, 'azure-log-analytics-list-saved-searches': list_saved_searches_command, 'azure-log-analytics-get-saved-search-by-id': get_saved_search_by_id_command, 'azure-log-analytics-create-or-update-saved-search': create_or_update_saved_search_command, 'azure-log-analytics-delete-saved-search': delete_saved_search_command } if demisto.command() == 'test-module': # cannot use test module due to the lack of ability to set refresh token to integration context raise Exception("Please use !azure-log-analytics-test instead") elif demisto.command() == 'azure-log-analytics-test': test_connection(client, params) elif demisto.command() in commands: return_results(commands[demisto.command()](client, demisto.args())) # type: ignore except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)}')
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ params = demisto.params() LOG(f'Command being called is {demisto.command()}') try: self_deployed = params.get('self_deployed', False) client_credentials = params.get('client_credentials', False) auth_and_token_url = params.get('auth_id') or params.get('credentials', {}).get('identifier') # client_id enc_key = params.get('enc_key') or (params.get('credentials') or {}).get('password') # client_secret certificate_thumbprint = params.get('certificate_thumbprint') private_key = params.get('private_key') self_deployed = self_deployed or client_credentials if client_credentials and not enc_key: raise DemistoException("Client Secret must be provided for client credentials flow.") elif not self_deployed and not enc_key: raise DemistoException('Key must be provided. For further information see ' 'https://xsoar.pan.dev/docs/reference/articles/microsoft-integrations---authentication') # noqa: E501 elif not enc_key and not (certificate_thumbprint and private_key): raise DemistoException('Key or Certificate Thumbprint and Private Key must be provided.') client = Client( self_deployed=self_deployed, auth_and_token_url=auth_and_token_url, # client_id or auth_id refresh_token=params.get('refresh_token'), # tenant_id or token enc_key=enc_key, # client_secret or enc_key redirect_uri=params.get('redirect_uri', ''), auth_code=params.get('auth_code') if not client_credentials else '', subscription_id=params.get('subscriptionID'), resource_group_name=params.get('resourceGroupName'), workspace_name=params.get('workspaceName'), verify=not params.get('insecure', False), proxy=params.get('proxy', False), certificate_thumbprint=certificate_thumbprint, private_key=private_key, client_credentials=client_credentials ) commands = { 'azure-log-analytics-execute-query': execute_query_command, 'azure-log-analytics-list-saved-searches': list_saved_searches_command, 'azure-log-analytics-get-saved-search-by-id': get_saved_search_by_id_command, 'azure-log-analytics-create-or-update-saved-search': create_or_update_saved_search_command, 'azure-log-analytics-delete-saved-search': delete_saved_search_command } if demisto.command() == 'test-module': # cannot use test module due to the lack of ability to set refresh token to integration context raise Exception("Please use !azure-log-analytics-test instead") elif demisto.command() == 'azure-log-analytics-test': test_connection(client, params) elif demisto.command() in commands: return_results(commands[demisto.command()](client, demisto.args())) # type: ignore except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)}')
1,234
def is_fancy(sliceobj): """ Returns True if sliceobj is attempting fancy indexing Parameters ---------- sliceobj : object something that can be used to slice an array as in ``arr[sliceobj]`` Returns ------- tf: bool True if sliceobj represents fancy indexing, False for basic indexing """ if not isinstance(sliceobj, tuple): sliceobj = (sliceobj,) for slicer in sliceobj: if hasattr(slicer, 'dtype') and slicer.ndim > 0: # ndarray always fancy return True # slice or Ellipsis or None OK for basic if isinstance(slicer, slice) or slicer in (None, Ellipsis): continue try: int(slicer) except TypeError: return True return False
def is_fancy(sliceobj): """ Returns True if sliceobj is attempting fancy indexing Parameters ---------- sliceobj : object something that can be used to slice an array as in ``arr[sliceobj]`` Returns ------- tf: bool True if sliceobj represents fancy indexing, False for basic indexing """ if not isinstance(sliceobj, tuple): sliceobj = (sliceobj,) for slicer in sliceobj: if getattr(slicer, 'ndim', 0) > 0: # ndarray always fancy, but scalars are safe return True # slice or Ellipsis or None OK for basic if isinstance(slicer, slice) or slicer in (None, Ellipsis): continue try: int(slicer) except TypeError: return True return False
52,288
def main(argv=None): parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_loglevel(verbose=verbose) # Default params param = Param() # Get parser info fname_data = arguments.i fname_mask = arguments.m fname_mask_noise = arguments.m_noise method = arguments.method file_name = arguments.o # Check parameters if method in ['diff', 'single']: if not fname_mask: raise SCTArgumentParser.error(parser, f"You need to provide a mask with -method {method}.") # Load data im_data = Image(fname_data) data = im_data.data dim = len(data.shape) if fname_mask: mask = Image(fname_mask).data # Check dimensionality if method in ['diff', 'mult']: if dim != 4: raise ValueError(f"Input data dimension: {dim}. Input dimension for this method should be 4.") if method in ['single']: if dim not in [3, 4]: raise ValueError(f"Input data dimension: {dim}. Input dimension for this method should be 3 or 4.") # Check dimensionality of mask if fname_mask: if len(mask.shape) != 3: raise ValueError(f"Input mask dimension: {dim}. Input dimension for the mask should be 3.") # Retrieve selected volumes index_vol = parse_num_list(arguments.vol) if not index_vol: if method in ['diff', 'mult']: index_vol = range(data.shape[3]) elif method in ['single']: index_vol = [0] # Compute SNR # NB: "time" is assumed to be the 4th dimension of the variable "data" if method == 'mult': # Compute mean and STD across time data_mean = np.mean(data[:, :, :, index_vol], axis=3) data_std = np.std(data[:, :, :, index_vol], axis=3, ddof=1) # Generate mask where std is different from 0 mask_std_nonzero = np.where(data_std > param.almost_zero) snr_map = np.zeros_like(data_mean) snr_map[mask_std_nonzero] = data_mean[mask_std_nonzero] / data_std[mask_std_nonzero] # Output SNR map fname_snr = add_suffix(fname_data, '_SNR-' + method) im_snr = empty_like(im_data) im_snr.data = snr_map im_snr.save(fname_snr, dtype=np.float32) # Output non-zero mask fname_stdnonzero = add_suffix(fname_data, '_mask-STD-nonzero' + method) im_stdnonzero = empty_like(im_data) data_stdnonzero = np.zeros_like(data_mean) data_stdnonzero[mask_std_nonzero] = 1 im_stdnonzero.data = data_stdnonzero im_stdnonzero.save(fname_stdnonzero, dtype=np.float32) # Compute SNR in ROI if fname_mask: snr_roi = np.average(snr_map[mask_std_nonzero], weights=mask[mask_std_nonzero]) elif method == 'diff': # Check user selected exactly 2 volumes for this method. if not len(index_vol) == 2: raise ValueError(f"Number of selected volumes: {len(index_vol)}. The method 'diff' should be used with " f"exactly 2 volumes. You can specify the number of volumes with the flag '-vol'.") data_2vol = np.take(data, index_vol, axis=3) # Compute mean in ROI data_mean = np.mean(data_2vol, axis=3) mean_in_roi = np.average(data_mean, weights=mask) data_sub = np.subtract(data_2vol[:, :, :, 1], data_2vol[:, :, :, 0]) _, std_in_roi = weighted_avg_and_std(data_sub, mask) # Compute SNR, correcting for Rayleigh noise (see eq. 7 in Dietrich et al.) snr_roi = (2 / np.sqrt(2)) * mean_in_roi / std_in_roi elif method == 'single': # Check that the input volume is 3D, or if it is 4D, that the user selected exactly 1 volume for this method. if dim == 3: data3d = data elif dim == 4: if not len(index_vol) == 1: raise ValueError(f"Selected volumes: {index_vol}. The method 'single' should be used with " f"exactly 1 volume. You can specify the number of volumes with the flag '-vol'.") data3d = np.squeeze(data[..., index_vol]) # Check that input noise mask is provided if fname_mask_noise: mask_noise = Image(fname_mask_noise).data else: raise RuntimeError("A noise mask is mandatory with '-method single'.") # Compute mean in ROI mean_in_roi = np.average(data3d, weights=mask) # Compute standard deviation in background std_in_roi = np.std(data3d[mask_noise]) # Compute SNR, correcting for Rayleigh noise (see eq. A12 in Dietrich et al.) snr_roi = np.sqrt((4 - np.pi) / 2) * mean_in_roi / std_in_roi # Display result if fname_mask: printv('\nSNR_' + method + ' = ' + str(snr_roi) + '\n', type='info') # Added function for text file if file_name is not None: with open(file_name, "w") as f: f.write(str(snr_roi)) printv('\nFile saved to ' + file_name)
def main(argv=None): parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_loglevel(verbose=verbose) # Default params param = Param() # Get parser info fname_data = arguments.i fname_mask = arguments.m fname_mask_noise = arguments.m_noise method = arguments.method file_name = arguments.o # Check parameters if method in ['diff', 'single']: if not fname_mask: raise SCTArgumentParser.error(parser, f"You need to provide a mask with -method {method}.") # Load data im_data = Image(fname_data) data = im_data.data dim = len(data.shape) if fname_mask: mask = Image(fname_mask).data # Check dimensionality if method in ['diff', 'mult']: if dim != 4: raise ValueError(f"Input data dimension: {dim}. Input dimension for this method should be 4.") if method in ['single']: if dim not in [3, 4]: raise ValueError(f"Input data dimension: {dim}. Input dimension for this method should be 3 or 4.") # Check dimensionality of mask if fname_mask: if len(mask.shape) != 3: raise ValueError(f"Input mask dimension: {dim}. Input dimension for the mask should be 3.") # Retrieve selected volumes index_vol = parse_num_list(arguments.vol) if not index_vol: if method in ['diff', 'mult']: index_vol = range(data.shape[3]) elif method in ['single']: index_vol = [0] # Compute SNR # NB: "time" is assumed to be the 4th dimension of the variable "data" if method == 'mult': # Compute mean and STD across time data_mean = np.mean(data[:, :, :, index_vol], axis=3) data_std = np.std(data[:, :, :, index_vol], axis=3, ddof=1) # Generate mask where std is different from 0 mask_std_nonzero = np.where(data_std > param.almost_zero) snr_map = np.zeros_like(data_mean) snr_map[mask_std_nonzero] = data_mean[mask_std_nonzero] / data_std[mask_std_nonzero] # Output SNR map fname_snr = add_suffix(fname_data, '_SNR-' + method) im_snr = empty_like(im_data) im_snr.data = snr_map im_snr.save(fname_snr, dtype=np.float32) # Output non-zero mask fname_stdnonzero = add_suffix(fname_data, '_mask-STD-nonzero' + method) im_stdnonzero = empty_like(im_data) data_stdnonzero = np.zeros_like(data_mean) data_stdnonzero[mask_std_nonzero] = 1 im_stdnonzero.data = data_stdnonzero im_stdnonzero.save(fname_stdnonzero, dtype=np.float32) # Compute SNR in ROI if fname_mask: snr_roi = np.average(snr_map[mask_std_nonzero], weights=mask[mask_std_nonzero]) elif method == 'diff': # Check user selected exactly 2 volumes for this method. if not len(index_vol) == 2: raise ValueError(f"Number of selected volumes: {len(index_vol)}. The method 'diff' should be used with " f"exactly 2 volumes. You can specify the number of volumes with the flag '-vol'.") data_2vol = np.take(data, index_vol, axis=3) # Compute mean in ROI data_mean = np.mean(data_2vol, axis=3) mean_in_roi = np.average(data_mean, weights=mask) data_sub = np.subtract(data_2vol[:, :, :, 1], data_2vol[:, :, :, 0]) _, std_in_roi = weighted_avg_and_std(data_sub, mask) # Compute SNR, correcting for Rayleigh noise (see eq. 7 in Dietrich et al.) snr_roi = (2 / np.sqrt(2)) * mean_in_roi / std_in_roi elif method == 'single': # Check that the input volume is 3D, or if it is 4D, that the user selected exactly 1 volume for this method. if dim == 3: data3d = data elif dim == 4: if not len(index_vol) == 1: raise ValueError(f"Selected volumes: {index_vol}. The method 'single' should be used with " f"exactly 1 volume. You can specify the index of the volume with the flag '-vol'.") data3d = np.squeeze(data[..., index_vol]) # Check that input noise mask is provided if fname_mask_noise: mask_noise = Image(fname_mask_noise).data else: raise RuntimeError("A noise mask is mandatory with '-method single'.") # Compute mean in ROI mean_in_roi = np.average(data3d, weights=mask) # Compute standard deviation in background std_in_roi = np.std(data3d[mask_noise]) # Compute SNR, correcting for Rayleigh noise (see eq. A12 in Dietrich et al.) snr_roi = np.sqrt((4 - np.pi) / 2) * mean_in_roi / std_in_roi # Display result if fname_mask: printv('\nSNR_' + method + ' = ' + str(snr_roi) + '\n', type='info') # Added function for text file if file_name is not None: with open(file_name, "w") as f: f.write(str(snr_roi)) printv('\nFile saved to ' + file_name)
13,567
def eigs(A, E=None, k=3, which='LM', b=None, l=None, maxiter=1000, tol=1e-13): """Approximate a few eigenvalues of an |Operator|. Computes `k` eigenvalues `w[i]` with corresponding eigenvectors `v[i]` which solve the eigenvalue problem .. math:: A v[i] = w[i] v[i] or the generalized eigenvalue problem .. math:: A v[i] = w[i] E v[i] if `E` is not `None`. The implementation is based on Algorithm 4.2 in [RL95]_. Parameters ---------- A The real |Operator| for which the eigenvalues are to be computed. E The |Operator| which defines the generalized eigenvalue problem. k The number of eigenvalues and eigenvectors which are to be computed. which A string specifying which `k` eigenvalues and eigenvectors to compute: - `'LM'`: select eigenvalues with largest |v[i]| - `'SM'`: select eigenvalues with smallest |v[i]| - `'LR'`: select eigenvalues with largest Re(v[i]) - `'SR'`: select eigenvalues with smallest Re(v[i]) - `'LI'`: select eigenvalues with largest Im(v[i]) - `'SI'`: select eigenvalues with smallest Im(v[i]) b Initial vector for Arnoldi iteration. Default is a random vector. l The size of the Arnoldi factorization. Default is `min(n - 1, max(2*k + 1, 20))`. maxiter The maximum number of iterations. tol The relative error tolerance for the ritz estimates. Returns ------- w A |NumPy array| which contains the computed eigenvalues. v A |VectorArray| which contains the computed eigenvectors. """ n = A.source.dim if l is None: l = np.min((n - 1, np.max((2 * k + 1, 20)))) if E is None: E = IdentityOperator(A.source) assert A.source == A.range assert E.source == A.source assert E.range == A.source assert k < n assert l > k if b is None: b = A.source.random() V, H, f = arnoldi(A, E, k, b) k0 = k i = 0 while True: i = i + 1 V, H, f = extend_arnoldi(A, E, V, H, f, l - k) ew, ev = spla.eig(H) # truncate small imaginary parts ew.imag[np.abs(ew.imag) / np.abs(ew) < 1e-12] = 0 if which == 'LM': idx = np.argsort(-np.abs(ew)) elif which == 'SM': idx = np.argsort(np.abs(ew)) elif which == 'LR': idx = np.argsort(-np.real(ew)) elif which == 'SR': idx = np.argsort(np.real(ew)) elif which == 'LI': idx = np.argsort(-np.abs(np.imag(ew))) elif which == 'SI': idx = np.argsort(np.abs(np.imag(ew))) k = k0 ews = ew[idx] evs = ev[:, idx] rres = f.l2_norm()[0] * np.abs(evs[l - 1]) / np.abs(ews) # increase k by one in order to keep complex conjugate pairs together if ews[k - 1].imag != 0 and ews[k - 1].imag + ews[k].imag < 1e-12: k = k + 1 if np.all(rres[:k] <= tol) or i >= maxiter: break # increase k in order to prevent stagnation k = np.min((l - 1, k + np.min((np.count_nonzero(rres[:k] <= tol), (l - k) // 2)))) # sort shifts for QR iteration based on their residual shifts = ews[k:l] srres = rres[k:l] idx = np.argsort(-srres) srres = srres[idx] shifts = shifts[idx] # don't use converged unwanted ritzvalues as shifts shifts = np.delete(shifts, np.where(srres == 0)) k = k + np.count_nonzero(srres == 0) if shifts[0].imag != 0 and shifts[0].imag + ews[1].imag >= 1e-12: shifts = shifts[1:] k = k + 1 H, Qs = QR_iteration(H, shifts) V = V.lincomb(Qs.T) f = V[k] * H[k, k - 1] + f * Qs[l - 1, k - 1] V = V[:k] H = H[:k, :k] return ews[:k0], V.lincomb(evs[:, :k0].T)
def eigs(A, E=None, k=3, which='LM', b=None, l=None, maxiter=1000, tol=1e-13): """Approximate a few eigenvalues of an |Operator|. Computes `k` eigenvalues `w[i]` with corresponding eigenvectors `v[i]` which solve the eigenvalue problem .. math:: A v[i] = w[i] v[i] or the generalized eigenvalue problem .. math:: A v[i] = w[i] E v[i] if `E` is not `None`. The implementation is based on Algorithm 4.2 in [RL95]_. Parameters ---------- A The real |Operator| for which the eigenvalues are to be computed. E The |Operator| which defines the generalized eigenvalue problem. k The number of eigenvalues and eigenvectors which are to be computed. which A string specifying which `k` eigenvalues and eigenvectors to compute: - `'LM'`: select eigenvalues with largest |v[i]| - `'SM'`: select eigenvalues with smallest |v[i]| - `'LR'`: select eigenvalues with largest Re(v[i]) - `'SR'`: select eigenvalues with smallest Re(v[i]) - `'LI'`: select eigenvalues with largest Im(v[i]) - `'SI'`: select eigenvalues with smallest Im(v[i]) b Initial vector for Arnoldi iteration. Default is a random vector. l The size of the Arnoldi factorization. Default is `min(n - 1, max(2*k + 1, 20))`. maxiter The maximum number of iterations. tol The relative error tolerance for the ritz estimates. Returns ------- w A |NumPy array| which contains the computed eigenvalues. v A |VectorArray| which contains the computed eigenvectors. """ n = A.source.dim if l is None: l = np.min((n - 1, np.max((2 * k + 1, 20)))) if E is None: E = IdentityOperator(A.source) assert A.source == A.range assert E.source == A.source assert E.range == A.source assert k < n assert l > k if b is None: b = A.source.random() V, H, f = arnoldi(A, E, k, b) k0 = k i = 0 while True: i = i + 1 V, H, f = extend_arnoldi(A, E, V, H, f, l - k) ew, ev = spla.eig(H) # truncate small imaginary parts ew.imag[np.abs(ew.imag) / np.abs(ew) < 1e-12] = 0 if which == 'LM': idx = np.argsort(-np.abs(ew)) elif which == 'SM': idx = np.argsort(np.abs(ew)) elif which == 'LR': idx = np.argsort(-np.real(ew)) elif which == 'SR': idx = np.argsort(np.real(ew)) elif which == 'LI': idx = np.argsort(-np.abs(np.imag(ew))) elif which == 'SI': idx = np.argsort(np.abs(np.imag(ew))) k = k0 ews = ew[idx] evs = ev[:, idx] rres = f.l2_norm()[0] * np.abs(evs[l - 1]) / np.abs(ews) # increase k by one in order to keep complex conjugate pairs together if ews[k - 1].imag != 0 and ews[k - 1].imag + ews[k].imag < 1e-12: k = k + 1 if np.all(rres[:k] <= tol) or i >= maxiter: break # increase k in order to prevent stagnation k = np.min((l - 1, k + np.min((np.count_nonzero(rres[:k] <= tol), (l - k) // 2)))) # sort shifts for QR iteration based on their residual shifts = ews[k:l] srres = rres[k:l] idx = np.argsort(-srres) srres = srres[idx] shifts = shifts[idx] # don't use converged unwanted Ritz values as shifts shifts = np.delete(shifts, np.where(srres == 0)) k = k + np.count_nonzero(srres == 0) if shifts[0].imag != 0 and shifts[0].imag + ews[1].imag >= 1e-12: shifts = shifts[1:] k = k + 1 H, Qs = QR_iteration(H, shifts) V = V.lincomb(Qs.T) f = V[k] * H[k, k - 1] + f * Qs[l - 1, k - 1] V = V[:k] H = H[:k, :k] return ews[:k0], V.lincomb(evs[:, :k0].T)
19,433
def get_versions(args, name): """Returns a list of versions and hashes for a package. Also returns a BuildSystemGuesser object. Returns default values if no URL is provided. Args: args (argparse.Namespace): The arguments given to ``spack create`` name (str): The name of the package Returns: tuple: versions and hashes, and a BuildSystemGuesser object """ # Default version with hash hashed_versions = """\ # FIXME: Add proper versions and checksums here. # version('1.2.3', '0123456789abcdef0123456789abcdef')""" # Default version without hash unhashed_versions = """\ # FIXME: Add proper versions here. # version('1.2.4')""" # Default git-based version git_versions = """\ # FIXME: Add proper versions referencing branch/tag/commit here # version('main', branch='main)""" # Default guesser guesser = BuildSystemGuesser() valid_url = True url, git = get_url_and_git(args) has_git_option = args.commit is not None or \ args.tag is not None or \ args.branch is not None git_single_version = (len(args.branch or []) + len(args.commit or []) + len(args.tag or [])) == 1 git_single_version = git_single_version and (args.version is not None) if git: if has_git_option: versions = [] version_tpl = " version('{0}', {1}='{2}')" if args.branch is not None: for br in args.branch: versions.append(version_tpl.format(args.version if git_single_version else br, 'branch', br)) if args.tag is not None: for tag in args.tag: versions.append(version_tpl.format(args.version if git_single_version else tag, 'tag', tag)) if args.commit is not None: if not git_single_version: versions.append(' # FIXME: add proper version(s) here') for commit in args.commit: # Use short commit id if version not specified versions.append(version_tpl.format(args.version if git_single_version else commit[:7], 'commit', commit)) else: versions = [git_versions] return "\n".join(versions), guesser try: spack.util.url.require_url_format(args.url) if args.url.startswith('file://'): valid_url = False # No point in spidering these except (ValueError, TypeError): valid_url = False if args.url is not None and args.template != 'bundle' and valid_url: # Find available versions try: url_dict = spack.util.web.find_versions_of_archive(args.url) except UndetectableVersionError: # Use fake versions tty.warn("Couldn't detect version in: {0}".format(args.url)) return hashed_versions, guesser if not url_dict: # If no versions were found, revert to what the user provided version = parse_version(args.url) url_dict = {version: args.url} else: if args.version is not None: # Replace autodetected version with user-provided one for ver, url in url_dict.items(): if url == args.url: del url_dict[ver] url_dict[args.version] = args.url break versions = spack.stage.get_checksums_for_versions( url_dict, name, first_stage_function=guesser, keep_stage=args.keep_stage, batch=(args.batch or len(url_dict) == 1)) else: versions = unhashed_versions return versions, guesser
def get_versions(args, name): """Returns a list of versions and hashes for a package. Also returns a BuildSystemGuesser object. Returns default values if no URL is provided. Args: args (argparse.Namespace): The arguments given to ``spack create`` name (str): The name of the package Returns: tuple: versions and hashes, and a BuildSystemGuesser object """ # Default version with hash hashed_versions = """\ # FIXME: Add proper versions and checksums here. # version('1.2.3', '0123456789abcdef0123456789abcdef')""" # Default version without hash unhashed_versions = """\ # FIXME: Add proper versions here. # version('1.2.4')""" # Default git-based version git_versions = """\ # FIXME: Add proper versions referencing branch/tag/commit here # version('main', branch='main)""" # Default guesser guesser = BuildSystemGuesser() valid_url = True url, git = get_url_and_git(args) has_git_option = args.commit or args.tag or args.branch git_single_version = (len(args.branch or []) + len(args.commit or []) + len(args.tag or [])) == 1 git_single_version = git_single_version and (args.version is not None) if git: if has_git_option: versions = [] version_tpl = " version('{0}', {1}='{2}')" if args.branch is not None: for br in args.branch: versions.append(version_tpl.format(args.version if git_single_version else br, 'branch', br)) if args.tag is not None: for tag in args.tag: versions.append(version_tpl.format(args.version if git_single_version else tag, 'tag', tag)) if args.commit is not None: if not git_single_version: versions.append(' # FIXME: add proper version(s) here') for commit in args.commit: # Use short commit id if version not specified versions.append(version_tpl.format(args.version if git_single_version else commit[:7], 'commit', commit)) else: versions = [git_versions] return "\n".join(versions), guesser try: spack.util.url.require_url_format(args.url) if args.url.startswith('file://'): valid_url = False # No point in spidering these except (ValueError, TypeError): valid_url = False if args.url is not None and args.template != 'bundle' and valid_url: # Find available versions try: url_dict = spack.util.web.find_versions_of_archive(args.url) except UndetectableVersionError: # Use fake versions tty.warn("Couldn't detect version in: {0}".format(args.url)) return hashed_versions, guesser if not url_dict: # If no versions were found, revert to what the user provided version = parse_version(args.url) url_dict = {version: args.url} else: if args.version is not None: # Replace autodetected version with user-provided one for ver, url in url_dict.items(): if url == args.url: del url_dict[ver] url_dict[args.version] = args.url break versions = spack.stage.get_checksums_for_versions( url_dict, name, first_stage_function=guesser, keep_stage=args.keep_stage, batch=(args.batch or len(url_dict) == 1)) else: versions = unhashed_versions return versions, guesser
25,569
def channel_open_with_the_same_node( channels_to_open: List[ChannelNew], target_to_depositqueue: Dict[Tuple[str, str], JoinableQueue], ) -> None: """As of 0.100.5 channels cannot be open in parallel, starting multiple opens at the same time can lead to the HTTP request timing out. Therefore here channels are open one after the other. (Issue #5446). """ for channel_open in channels_to_open: channel = channel_details( channel_open.endpoint1, channel_open.token_address, channel_open.participant2 ) if channel is None: channel_open_request = { "token_address": channel_open.token_address, "partner_address": channel_open.participant2, "total_deposit": channel_open.minimum_capacity1, } log.info(f"Opening {channel_open}") url_channel_open = f"{channel_open.endpoint1}/api/{API_VERSION}/channels" response = requests.put(url_channel_open, json=channel_open_request) if not is_successful_reponse(response): raise RuntimeError(f"An error ocurrent while opening channel {channel_open}") else: deposit = ChannelDeposit( channel_open.token_address, channel_open.participant2, channel_open.endpoint1, channel_open.minimum_capacity1, ) channel_deposit_if_necessary(channel, deposit) # A deposit only makes sense after the channel is opened. deposit = ChannelDeposit( channel_open.token_address, channel_open.participant1, channel_open.endpoint2, channel_open.minimum_capacity2, ) log.info(f"Queueing {deposit}") target_to_depositqueue[(channel_open.token_address, channel_open.participant2)].put( deposit )
def channel_open_with_the_same_node( channels_to_open: List[ChannelNew], target_to_depositqueue: Dict[Tuple[str, str], JoinableQueue], ) -> None: """As of 0.100.5 channels cannot be open in parallel, starting multiple opens at the same time can lead to the HTTP request timing out. Therefore here channels are opened one after the other. (Issue #5446). """ for channel_open in channels_to_open: channel = channel_details( channel_open.endpoint1, channel_open.token_address, channel_open.participant2 ) if channel is None: channel_open_request = { "token_address": channel_open.token_address, "partner_address": channel_open.participant2, "total_deposit": channel_open.minimum_capacity1, } log.info(f"Opening {channel_open}") url_channel_open = f"{channel_open.endpoint1}/api/{API_VERSION}/channels" response = requests.put(url_channel_open, json=channel_open_request) if not is_successful_reponse(response): raise RuntimeError(f"An error ocurrent while opening channel {channel_open}") else: deposit = ChannelDeposit( channel_open.token_address, channel_open.participant2, channel_open.endpoint1, channel_open.minimum_capacity1, ) channel_deposit_if_necessary(channel, deposit) # A deposit only makes sense after the channel is opened. deposit = ChannelDeposit( channel_open.token_address, channel_open.participant1, channel_open.endpoint2, channel_open.minimum_capacity2, ) log.info(f"Queueing {deposit}") target_to_depositqueue[(channel_open.token_address, channel_open.participant2)].put( deposit )
8,865
def subreddit_sorting(bot, trigger, s, sorting): if sorting == 'new': submissions = list(s.new()) elif sorting == 'top': submissions = list(s.top()) elif sorting == 'hot': submissions = list(s.hot()) elif sorting == 'controversial': submissions = list(s.controversial()) elif sorting == 'gilded': submissions = list(s.gilded()) elif sorting == 'rising': submissions = list(s.rising()) elif sorting == 'sticky': try: submissions = [s.sticky()] except prawcore.exceptions.NotFound: bot.say("r/" + s.display_name + " appears to not have a stickied post!") return elif sorting == 'random': submissions = [s.random()] or [] else: return if not len(submissions): bot.say("r/" + s.display_name + ' ' + sorting + " appears to have no items!") return NOLIMIT if sorting != 'sticky': submissions_filter = [] for submission in submissions: if not submission.stickied: submissions_filter.append(submission) submissions = submissions_filter submission = submissions[0] link = "https://reddit.com/r/" + s.display_name + "/comments/" + str(submission) say_post_info( bot, trigger, re.match(post_url, link).group(1), False, True)
def subreddit_sorting(bot, trigger, s, sorting): if sorting == 'new': submissions = list(s.new()) elif sorting == 'top': submissions = list(s.top()) elif sorting == 'hot': submissions = list(s.hot(limit=10)) elif sorting == 'controversial': submissions = list(s.controversial()) elif sorting == 'gilded': submissions = list(s.gilded()) elif sorting == 'rising': submissions = list(s.rising()) elif sorting == 'sticky': try: submissions = [s.sticky()] except prawcore.exceptions.NotFound: bot.say("r/" + s.display_name + " appears to not have a stickied post!") return elif sorting == 'random': submissions = [s.random()] or [] else: return if not len(submissions): bot.say("r/" + s.display_name + ' ' + sorting + " appears to have no items!") return NOLIMIT if sorting != 'sticky': submissions_filter = [] for submission in submissions: if not submission.stickied: submissions_filter.append(submission) submissions = submissions_filter submission = submissions[0] link = "https://reddit.com/r/" + s.display_name + "/comments/" + str(submission) say_post_info( bot, trigger, re.match(post_url, link).group(1), False, True)
49,569
def test_set_index_nan_partition(): d[d.a > 3].set_index("a") # Set index with 1 null partition d[d.a > 1].set_index("a", sorted=True) # Set sorted index with 0 null partitions d[d.a > 3].set_index("a", sorted=True) # Set sorted index with 1 null partition
def test_set_index_nan_partition(): d[d.a > 3].set_index("a") # Set index with 1 null partition d[d.a > 1].set_index("a", sorted=True) # Set sorted index with 0 null partitions a = d[d.a > 3].set_index("a", sorted=True) # Set sorted index with 1 null partition assert_eq(a, a)
17,852
def find_nonfinite_values_prj(projection, slc_idx): """Allows the user to easily obtain the Z, x, y coordinates of nonfinite values for a given 2D projection in a 3D array. Parameters ---------- projection : 2D nd.array The 2D projection for a given 3D data array. slc_idx : int The projection index inside the main 3D array. Returns ------- The indices for the current projection used, the x coordinates, and y coordinates of all non-finite values. """ # Determining where the nonfinite values are boolean_of_nonfinite = ~np.isfinite(projection) # Obtaining there x, y locations idx_of_nonfinite_prj = np.nonzero(boolean_of_nonfinite) # Creating an identical shaped array for the z position in the 3D array the prj comes from idx_of_nonfinite_data = np.asarray( [slc_idx] * len(idx_of_nonfinite_prj[0])) return idx_of_nonfinite_data, idx_of_nonfinite_prj[0], idx_of_nonfinite_prj[1]
def _find_nonfinite_values_prj(projection, slc_idx): """Allows the user to easily obtain the Z, x, y coordinates of nonfinite values for a given 2D projection in a 3D array. Parameters ---------- projection : 2D nd.array The 2D projection for a given 3D data array. slc_idx : int The projection index inside the main 3D array. Returns ------- The indices for the current projection used, the x coordinates, and y coordinates of all non-finite values. """ # Determining where the nonfinite values are boolean_of_nonfinite = ~np.isfinite(projection) # Obtaining there x, y locations idx_of_nonfinite_prj = np.nonzero(boolean_of_nonfinite) # Creating an identical shaped array for the z position in the 3D array the prj comes from idx_of_nonfinite_data = np.asarray( [slc_idx] * len(idx_of_nonfinite_prj[0])) return idx_of_nonfinite_data, idx_of_nonfinite_prj[0], idx_of_nonfinite_prj[1]
31,800
def list_blobs_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ List Blobs under the specified container. Args: client (Client): Azure Blob Storage API client. args (dict): Command arguments from XSOAR. Returns: CommandResults: outputs, readable outputs and raw response for XSOAR. """ container_name = args.get('container_name') limit = args.get('limit', '50') prefix = args.get('prefix') page = arg_to_number(args.get('page', '1')) marker = '' readable_message = f'Blobs List:\n Current page size: {limit}\n Showing page {page} out others that may exist' if page > 1: offset = int(limit) * (page - 1) response = client.list_blobs_request(container_name, str(offset), prefix, marker) tree = ET.ElementTree(ET.fromstring(response)) root = tree.getroot() marker = root.findtext('NextMarker') if not marker: return CommandResults( readable_output=readable_message, outputs_prefix='AzureStorageBlob.Blob', outputs=[], raw_response=[] ) response = client.list_blobs_request(container_name, limit, prefix, marker) tree = ET.ElementTree(ET.fromstring(response)) root = tree.getroot() raw_response = [] outputs = [] for element in root.iter('Blob'): outputs.append({'container_name': container_name, 'blob_name': element.findtext('Name')}) data = {'Name': element.findtext('Name')} properties = {} for blob_property in element.findall('Properties'): for attribute in blob_property: properties[attribute.tag] = attribute.text data['Properties'] = properties raw_response.append(data) readable_output = tableToMarkdown( readable_message, outputs, headers=['blob_name'], headerTransform=string_to_table_header ) command_results = CommandResults( readable_output=readable_output, outputs_prefix='AzureStorageBlob.Blob', outputs_key_field=['container_name', 'blob_name'], outputs=outputs, raw_response=raw_response ) return command_results
def list_blobs_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ List Blobs under the specified container. Args: client (Client): Azure Blob Storage API client. args (dict): Command arguments from XSOAR. Returns: CommandResults: outputs, readable outputs and raw response for XSOAR. """ container_name = args.get('container_name') limit = args.get('limit') or '50' prefix = args.get('prefix') page = arg_to_number(args.get('page', '1')) marker = '' readable_message = f'Blobs List:\n Current page size: {limit}\n Showing page {page} out others that may exist' if page > 1: offset = int(limit) * (page - 1) response = client.list_blobs_request(container_name, str(offset), prefix, marker) tree = ET.ElementTree(ET.fromstring(response)) root = tree.getroot() marker = root.findtext('NextMarker') if not marker: return CommandResults( readable_output=readable_message, outputs_prefix='AzureStorageBlob.Blob', outputs=[], raw_response=[] ) response = client.list_blobs_request(container_name, limit, prefix, marker) tree = ET.ElementTree(ET.fromstring(response)) root = tree.getroot() raw_response = [] outputs = [] for element in root.iter('Blob'): outputs.append({'container_name': container_name, 'blob_name': element.findtext('Name')}) data = {'Name': element.findtext('Name')} properties = {} for blob_property in element.findall('Properties'): for attribute in blob_property: properties[attribute.tag] = attribute.text data['Properties'] = properties raw_response.append(data) readable_output = tableToMarkdown( readable_message, outputs, headers=['blob_name'], headerTransform=string_to_table_header ) command_results = CommandResults( readable_output=readable_output, outputs_prefix='AzureStorageBlob.Blob', outputs_key_field=['container_name', 'blob_name'], outputs=outputs, raw_response=raw_response ) return command_results
6,358
def parse(): import os import sys import argparse from pudb import VERSION version_info = "pudb:%(prog)s v" + VERSION if sys.argv[1:] == ["-v"]: print(version_info % {"prog": os.path.basename(__file__)}) sys.exit(os.EX_OK) parser = argparse.ArgumentParser( usage="%(prog)s [options] [-m] SCRIPT-OR-MODULE-TO-RUN [SCRIPT_ARGS]", epilog=version_info ) parser.add_argument("-s", "--steal-output", action="store_true"), # note: we're implementing -m as a boolean flag, mimicking pdb's behavior, # and makes it possible without much fuss to support cases like: # python -m pudb -m http.server -h # where the -h will be passed to the http.server module parser.add_argument("-m", "--module", action="store_true", help="Debug as module or package instead of as a script") parser.add_argument("-le", "--log-errors", nargs=1, metavar="FILE", help="Log internal errors to the given file") parser.add_argument("--pre-run", metavar="COMMAND", help="Run command before each program run", default="") parser.add_argument("--version", action="version", version=version_info) parser.add_argument("script_args", nargs=argparse.REMAINDER, help="Arguments to pass to script or module") return parser
def get_argparse_parser(): import os import sys import argparse from pudb import VERSION version_info = "pudb:%(prog)s v" + VERSION if sys.argv[1:] == ["-v"]: print(version_info % {"prog": os.path.basename(__file__)}) sys.exit(os.EX_OK) parser = argparse.ArgumentParser( usage="%(prog)s [options] [-m] SCRIPT-OR-MODULE-TO-RUN [SCRIPT_ARGS]", epilog=version_info ) parser.add_argument("-s", "--steal-output", action="store_true"), # note: we're implementing -m as a boolean flag, mimicking pdb's behavior, # and makes it possible without much fuss to support cases like: # python -m pudb -m http.server -h # where the -h will be passed to the http.server module parser.add_argument("-m", "--module", action="store_true", help="Debug as module or package instead of as a script") parser.add_argument("-le", "--log-errors", nargs=1, metavar="FILE", help="Log internal errors to the given file") parser.add_argument("--pre-run", metavar="COMMAND", help="Run command before each program run", default="") parser.add_argument("--version", action="version", version=version_info) parser.add_argument("script_args", nargs=argparse.REMAINDER, help="Arguments to pass to script or module") return parser
53,749
def test_changepoint_with_X1_X2(): X = np.linspace(0, 100, 100).reshape(100, 1) base_k1 = gpflow.kernels.Matern32(lengthscales=0.2) base_k2 = gpflow.kernels.Matern32(lengthscales=2.0) k = gpflow.kernels.ChangePoints([base_k1, base_k2], [0.0], steepness=5.0) K = k(X) assert K.shape == [100, 100] N = 25 X2 = np.linspace(0, 50, N).reshape(N, 1) K = k(X, X2) assert K.shape == [100, 25]
def test_changepoint_with_X1_X2(): N = 100 X = np.linspace(0, 100, N).reshape(N, 1) base_k1 = gpflow.kernels.Matern32(lengthscales=0.2) base_k2 = gpflow.kernels.Matern32(lengthscales=2.0) k = gpflow.kernels.ChangePoints([base_k1, base_k2], [0.0], steepness=5.0) K = k(X) assert K.shape == [N, N] N2 = 25 X2 = np.linspace(0, 50, N2).reshape(N2, 1) K = k(X, X2) assert K.shape == [N, N2]
4,317
def _check_surface_size(surf): """Check that the coordinate limits are reasonable.""" sizes = surf['rr'].max(axis=0) - surf['rr'].min(axis=0) if (sizes < 0.05).any(): raise RuntimeError( f'Dimensions of the surface {_bem_surf_name[surf["id"]]} seem too ' f'small ({1000 * sizes.min():9.5f}). Maybe the the unit of measure' ' is meters instead of mm')
def _check_surface_size(surf): """Check that the coordinate limits are reasonable.""" sizes = surf['rr'].max(axis=0) - surf['rr'].min(axis=0) if (sizes < 0.05).any(): raise RuntimeError( f'Dimensions of the surface {_bem_surf_name[surf["id"]]} seem too ' f'small ({1000 * sizes.min():9.5f}). Maybe the unit of measure' ' is meters instead of mm')
43,444
def RandomLayer(weights, wires, ratio_imprim=0.3, imprimitive=CNOT, rotations=None, seed=42): r"""A layer of randomly chosen single qubit rotations and 2-qubit entangling gates, acting on randomly chosen qubits. The number :math:`k` of single qubit rotations is inferred from the first dimension of ``weights``. This is an example of two 4-qubit random layers with four Pauli-y/Pauli-z rotations :math:`R_y, R_z`, controlled-Z gates as imprimitives, as well as ``ratio_imprim=0.3``: .. figure:: ../../_static/layer_rnd.png :align: center :width: 60% :target: javascript:void(0); .. note:: Using the default seed (or any other fixed integer seed) generates one and the same circuit in every quantum node. To generate different circuit architectures, either use a random seed, or use ``seed=None`` together with the ``cache=False`` option when creating a quantum node. .. warning:: If you use a random number generator anywhere inside the quantum function without the ``cache=False`` option, a new random circuit architecture will be created every time the quantum node is evaluated. Args: weights (array[float]): array of weights of shape ``(k,)`` wires (Sequence[int]): sequence of qubit indices that the template acts on Keyword Args: ratio_imprim (float): value between 0 and 1 that determines the ratio of imprimitive to rotation gates imprimitive (pennylane.ops.Operation): two-qubit gate to use, defaults to :class:`~pennylane.ops.CNOT` rotations (list[pennylane.ops.Operation]): List of Pauli-X, Pauli-Y and/or Pauli-Z gates. The frequency determines how often a particular rotation type is used. Defaults to the use of all three rotations with equal frequency. seed (int): seed to generate random architecture """ if len(wires) < 2: raise ValueError("RandomLayer requires at least two wires or subsystems to apply " "the imprimitive gates.") if seed is not None: np.random.seed(seed) if rotations is None: rotations = [RX, RY, RZ] i = 0 while i < len(weights): if np.random.random() > ratio_imprim: gate = np.random.choice(rotations) wire = np.random.choice(wires) gate(weights[i], wires=wire) i += 1 else: on_wires = np.random.permutation(wires)[:2] on_wires = list(on_wires) imprimitive(wires=on_wires)
def RandomLayer(weights, wires, ratio_imprim=0.3, imprimitive=CNOT, rotations=None, seed=42): r"""A layer of randomly chosen single qubit rotations and 2-qubit entangling gates, acting on randomly chosen qubits. The number :math:`k` of single qubit rotations is inferred from the first dimension of ``weights``. This is an example of two 4-qubit random layers with four Pauli-y/Pauli-z rotations :math:`R_y, R_z`, controlled-Z gates as imprimitives, as well as ``ratio_imprim=0.3``: .. figure:: ../../_static/layer_rnd.png :align: center :width: 60% :target: javascript:void(0); .. note:: Using the default seed (or any other fixed integer seed) generates one and the same circuit in every quantum node. To generate different circuit architectures, either use a different random seed, or use ``seed=None`` together with the ``cache=False`` option when creating a quantum node. .. warning:: If you use a random number generator anywhere inside the quantum function without the ``cache=False`` option, a new random circuit architecture will be created every time the quantum node is evaluated. Args: weights (array[float]): array of weights of shape ``(k,)`` wires (Sequence[int]): sequence of qubit indices that the template acts on Keyword Args: ratio_imprim (float): value between 0 and 1 that determines the ratio of imprimitive to rotation gates imprimitive (pennylane.ops.Operation): two-qubit gate to use, defaults to :class:`~pennylane.ops.CNOT` rotations (list[pennylane.ops.Operation]): List of Pauli-X, Pauli-Y and/or Pauli-Z gates. The frequency determines how often a particular rotation type is used. Defaults to the use of all three rotations with equal frequency. seed (int): seed to generate random architecture """ if len(wires) < 2: raise ValueError("RandomLayer requires at least two wires or subsystems to apply " "the imprimitive gates.") if seed is not None: np.random.seed(seed) if rotations is None: rotations = [RX, RY, RZ] i = 0 while i < len(weights): if np.random.random() > ratio_imprim: gate = np.random.choice(rotations) wire = np.random.choice(wires) gate(weights[i], wires=wire) i += 1 else: on_wires = np.random.permutation(wires)[:2] on_wires = list(on_wires) imprimitive(wires=on_wires)
8,649
def find_config(config_dir, name, extension='.cfg'): """Build the absolute path for the given configuration file ``name`` :param str config_dir: path to the configuration directory :param str name: configuration file ``name`` :param str extension: configuration file's extension (default to ``.cfg``) :return: the path of the configuration file, either in the current directory or from the ``config_dir`` directory This function tries different location: * the current directory, * the ``config_dir`` directory with the ``extension`` suffix, * the ``config_dir`` directory without a suffix, Example:: >>> from sopel import run_script >>> os.listdir() ['local.cfg', 'extra.ini'] >>> os.listdir(config.DEFAULT_HOMEDIR) ['config.cfg', 'extra.ini', 'module.cfg', 'README'] >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'local.cfg') 'local.cfg' >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'local') '/home/username/.sopel/local' >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'config') '/home/username/.sopel/config.cfg' >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'extra', '.ini') '/home/username/.sopel/extra.ini' """ if os.path.isfile(name): return name name_ext = name + extension for config in enumerate_configs(config_dir, extension): if name_ext == config: return os.path.join(config_dir, name_ext) return os.path.join(config_dir, name)
def find_config(config_dir, name, extension='.cfg'): """Build the absolute path for the given configuration file ``name`` :param str config_dir: path to the configuration directory :param str name: configuration file ``name`` :param str extension: configuration file's extension (default to ``.cfg``) :return: the path of the configuration file, either in the current directory or from the ``config_dir`` directory This function tries different location: * the current directory * the ``config_dir`` directory with the ``extension`` suffix, * the ``config_dir`` directory without a suffix, Example:: >>> from sopel import run_script >>> os.listdir() ['local.cfg', 'extra.ini'] >>> os.listdir(config.DEFAULT_HOMEDIR) ['config.cfg', 'extra.ini', 'module.cfg', 'README'] >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'local.cfg') 'local.cfg' >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'local') '/home/username/.sopel/local' >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'config') '/home/username/.sopel/config.cfg' >>> run_script.find_config(config.DEFAULT_HOMEDIR, 'extra', '.ini') '/home/username/.sopel/extra.ini' """ if os.path.isfile(name): return name name_ext = name + extension for config in enumerate_configs(config_dir, extension): if name_ext == config: return os.path.join(config_dir, name_ext) return os.path.join(config_dir, name)
15,232
def whitespace(value: Any) -> str: """Validate result contains only whitespace.""" if isinstance(value, str) and _WS.fullmatch(value): return value raise vol.Invalid(f"contain non-whitespace: {value}")
def whitespace(value: Any) -> str: """Validate result contains only whitespace.""" if isinstance(value, str) and _WS.fullmatch(value): return value raise vol.Invalid(f"contains non-whitespace: {value}")
43,534
def _get_default_args(func): """Get the default arguments of a function. Args: func (callable): a function Returns: dict[str->tuple]: mapping from argument name to (positional idx, default value) """ signature = inspect.signature(func) return { k: (idx, v.default) for idx, (k, v) in enumerate(signature.parameters.items()) if v.default is not inspect.Parameter.empty }
def _get_default_args(func): """Get the default arguments of a function. Args: func (callable): a function Returns: dict[str, tuple]: mapping from argument name to (positional idx, default value) """ signature = inspect.signature(func) return { k: (idx, v.default) for idx, (k, v) in enumerate(signature.parameters.items()) if v.default is not inspect.Parameter.empty }
50,293
def tag_torrent(infohash, tags_db, tags=None, suggested_tags=None): if tags is None: tags_count = random.randint(2, 6) tags = [] while len(tags) < tags_count: tag = get_random_word(min_length=MIN_TAG_LENGTH) if tag not in tags: tags.append(tag) if suggested_tags is None: suggested_tags_count = random.randint(1, 3) suggested_tags = [] while len(suggested_tags) < suggested_tags_count: tag = get_random_word(min_length=MIN_TAG_LENGTH) if tag not in suggested_tags: suggested_tags.append(tag) def _add_operation(_tag, _op, _key): operation = TagOperation(infohash=infohash, tag=_tag, operation=_op, clock=0, creator_public_key=_key.pub().key_to_bin()) operation.clock = tags_db.get_clock(operation) + 1 tags_db.add_tag_operation(operation, b"") # Give each torrent some tags for tag in tags: for key in [random_key_1, random_key_2]: # Each tag should be proposed by two unique users _add_operation(tag, TagOperationEnum.ADD, key) # Make sure we have some suggestions for tag in suggested_tags: _add_operation(tag, TagOperationEnum.ADD, random_key_3) _add_operation(tag, TagOperationEnum.REMOVE, random_key_2)
def tag_torrent(infohash, tags_db, tags=None, suggested_tags=None): if tags is None: tags_count = random.randint(2, 6) tags = generate_sentence_with_fixed_word_length(tags_count, MIN_TAG_LENGTH) if suggested_tags is None: suggested_tags_count = random.randint(1, 3) suggested_tags = generate_sentence_with_fixed_word_length(suggested_tags_count, MIN_TAG_LENGTH) def _add_operation(_tag, _op, _key): operation = TagOperation(infohash=infohash, tag=_tag, operation=_op, clock=0, creator_public_key=_key.pub().key_to_bin()) operation.clock = tags_db.get_clock(operation) + 1 tags_db.add_tag_operation(operation, b"") # Give each torrent some tags for tag in tags: for key in [random_key_1, random_key_2]: # Each tag should be proposed by two unique users _add_operation(tag, TagOperationEnum.ADD, key) # Make sure we have some suggestions for tag in suggested_tags: _add_operation(tag, TagOperationEnum.ADD, random_key_3) _add_operation(tag, TagOperationEnum.REMOVE, random_key_2)
32,597
def create_issue_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Creates an issue. Args: client (Client): Client to perform calls to GitLab services. args (Dict[str, Any]): XSOAR arguments: - 'state': The state of the issue. - 'labels': Retrieve only issues with the given labels. - 'assignee_username': Retrieve issues by assignee username. Returns: (CommandResults). """ labels = args.get('labels', '') headers = ['Iid', 'Title', 'CreatedAt', 'CreatedBy', 'UpdatedAt', 'Milstone', 'State', 'Assignee'] title = args.get('title', '') description = args.get('description', '') response = client.create_issue_request(labels, title, description) human_readable_dict = { 'Iid': response.get('iid'), 'Title': response.get('title'), 'CreatedAt': response.get('created_at', ' '), 'CreatedBy': response.get('autor.name', ' '), 'UpdatedAt': response.get('updated_at', ' '), 'Milstone': response.get('milestone.title', ' '), 'State': response.get('state', ' '), 'Assignee': response.get('assignee.name', ' ') } human_readable = tableToMarkdown('Create Issue', human_readable_dict, headers=headers, removeNull=True) return CommandResults( outputs_prefix='GitLab.Issue', outputs_key_field='Iid', readable_output=human_readable, outputs=response, raw_response=response )
def create_issue_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Creates an issue. Args: client (Client): Client to perform calls to GitLab services. args (Dict[str, Any]): XSOAR arguments: - 'state': The state of the issue. - 'labels': Retrieve only issues with the given labels. - 'assignee_username': Retrieve issues by assignee username. Returns: (CommandResults). """ labels = args.get('labels', '') headers = ['Iid', 'Title', 'CreatedAt', 'CreatedBy', 'UpdatedAt', 'Milstone', 'State', 'Assignee'] title = args.get('title', '') description = args.get('description', '') response = client.create_issue_request(labels, title, description) human_readable_dict = { 'Iid': response.get('iid'), 'Title': response.get('title'), 'CreatedAt': response.get('created_at', ''), 'CreatedBy': response.get('autor.name', ' '), 'UpdatedAt': response.get('updated_at', ' '), 'Milstone': response.get('milestone.title', ' '), 'State': response.get('state', ' '), 'Assignee': response.get('assignee.name', ' ') } human_readable = tableToMarkdown('Create Issue', human_readable_dict, headers=headers, removeNull=True) return CommandResults( outputs_prefix='GitLab.Issue', outputs_key_field='Iid', readable_output=human_readable, outputs=response, raw_response=response )
34,166
def add_subparser( subparsers: argparse._SubParsersAction, parents: List[argparse.ArgumentParser] ): import rasa.nlu.convert as convert data_parser = subparsers.add_parser( "data", conflict_handler="resolve", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Utils for the Rasa training files.", ) data_parser.set_defaults(func=lambda _: data_parser.print_help(None)) data_subparsers = data_parser.add_subparsers() convert_parser = data_subparsers.add_parser( "convert", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Converts Rasa data between different formats.", ) convert_parser.set_defaults(func=lambda _: convert_parser.print_help(None)) convert_subparsers = convert_parser.add_subparsers() convert_nlu_parser = convert_subparsers.add_parser( "nlu", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Converts NLU data between markdown and json.", ) convert_nlu_parser.set_defaults(func=convert.main) arguments.set_convert_arguments(convert_nlu_parser) split_parser = data_subparsers.add_parser( "split", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Splits Rasa data in training and test data.", ) split_parser.set_defaults(func=lambda _: split_parser.print_help(None)) split_subparsers = split_parser.add_subparsers() nlu_split_parser = split_subparsers.add_parser( "nlu", parents=parents, formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="Performs a split of your NLU data according to the specified " "percentages.", ) nlu_split_parser.set_defaults(func=split_nlu_data) arguments.set_split_arguments(nlu_split_parser)
def add_subparser( subparsers: argparse._SubParsersAction, parents: List[argparse.ArgumentParser] ): import rasa.nlu.convert as convert data_parser = subparsers.add_parser( "data", conflict_handler="resolve", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Utils for the Rasa training files.", ) data_parser.set_defaults(func=lambda _: data_parser.print_help(None)) data_subparsers = data_parser.add_subparsers() convert_parser = data_subparsers.add_parser( "convert", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Converts Rasa data between different formats.", ) convert_parser.set_defaults(func=lambda _: convert_parser.print_help(None)) convert_subparsers = convert_parser.add_subparsers() convert_nlu_parser = convert_subparsers.add_parser( "nlu", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Converts NLU data between Markdown and json formats.", ) convert_nlu_parser.set_defaults(func=convert.main) arguments.set_convert_arguments(convert_nlu_parser) split_parser = data_subparsers.add_parser( "split", formatter_class=argparse.ArgumentDefaultsHelpFormatter, parents=parents, help="Splits Rasa data in training and test data.", ) split_parser.set_defaults(func=lambda _: split_parser.print_help(None)) split_subparsers = split_parser.add_subparsers() nlu_split_parser = split_subparsers.add_parser( "nlu", parents=parents, formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="Performs a split of your NLU data according to the specified " "percentages.", ) nlu_split_parser.set_defaults(func=split_nlu_data) arguments.set_split_arguments(nlu_split_parser)
6,392
def execute(filters=None): columns = get_columns(filters) item_details = get_fifo_queue(filters) to_date = filters["to_date"] data = [] for item, item_dict in iteritems(item_details): item_dict['fifo_queue'] = [item for item in item_dict if item[1]] fifo_queue = sorted(item_dict["fifo_queue"], key=lambda x: x[1]) details = item_dict["details"] if not fifo_queue or (not item_dict.get("total_qty")): continue average_age = get_average_age(fifo_queue, to_date) earliest_age = date_diff(to_date, fifo_queue[0][1]) latest_age = date_diff(to_date, fifo_queue[-1][1]) row = [details.name, details.item_name, details.description, details.item_group, details.brand] if filters.get("show_warehouse_wise_stock"): row.append(details.warehouse) row.extend([item_dict.get("total_qty"), average_age, earliest_age, latest_age, details.stock_uom]) data.append(row) return columns, data
def execute(filters=None): columns = get_columns(filters) item_details = get_fifo_queue(filters) to_date = filters["to_date"] data = [] for item, item_dict in iteritems(item_details): temp_fifo = [d for d in item_dict['fifo_queue'] if d[1]] fifo_queue = sorted(item_dict["fifo_queue"], key=lambda x: x[1]) details = item_dict["details"] if not fifo_queue or (not item_dict.get("total_qty")): continue average_age = get_average_age(fifo_queue, to_date) earliest_age = date_diff(to_date, fifo_queue[0][1]) latest_age = date_diff(to_date, fifo_queue[-1][1]) row = [details.name, details.item_name, details.description, details.item_group, details.brand] if filters.get("show_warehouse_wise_stock"): row.append(details.warehouse) row.extend([item_dict.get("total_qty"), average_age, earliest_age, latest_age, details.stock_uom]) data.append(row) return columns, data
29,312
def update_story( committer_id, story_id, change_list, commit_message): """Updates a story. Commits changes. # NOTE: This function should not be called on its own. Access it # through `topic_services.update_story_and_topic_summary`. Args: committer_id: str. The id of the user who is performing the update action. story_id: str. The story id. change_list: list(StoryChange). These changes are applied in sequence to produce the resulting story. commit_message: str or None. A description of changes made to the story. Raises: ValueError. Expected a commit message but received none. ValidationError. Exploration is already linked to a different story. ValidationError. Story Url Fragment is not unique across the site. """ if not commit_message: raise ValueError('Expected a commit message but received none.') old_story = story_fetchers.get_story_by_id(story_id) new_story, exp_ids_removed_from_story, exp_ids_added_to_story = ( apply_change_list(story_id, change_list)) story_is_published = is_story_published_and_present_in_topic(new_story) exploration_context_models_to_be_deleted = ( exp_models.ExplorationContextModel.get_multi( exp_ids_removed_from_story)) exploration_context_models_to_be_deleted = [ model for model in exploration_context_models_to_be_deleted if model is not None] exploration_context_models_collisions_list = ( exp_models.ExplorationContextModel.get_multi( exp_ids_added_to_story)) for context_model in exploration_context_models_collisions_list: if context_model is not None and context_model.story_id != story_id: raise utils.ValidationError( 'The exploration with ID %s is already linked to story ' 'with ID %s' % (context_model.id, context_model.story_id)) if ( old_story.url_fragment != new_story.url_fragment and does_story_exist_with_url_fragment(new_story.url_fragment)): raise utils.ValidationError( 'Story Url Fragment is not unique across the site.') _save_story( committer_id, new_story, commit_message, change_list, story_is_published) create_story_summary(new_story.id) if story_is_published: opportunity_services.update_exploration_opportunities( old_story, new_story) suggestion_services.auto_reject_translation_suggestions_for_exp_ids( exp_ids_removed_from_story) exp_models.ExplorationContextModel.delete_multi( exploration_context_models_to_be_deleted) new_exploration_context_models = [exp_models.ExplorationContextModel( id=exp_id, story_id=story_id ) for exp_id in exp_ids_added_to_story] exp_models.ExplorationContextModel.update_timestamps_multi( new_exploration_context_models) exp_models.ExplorationContextModel.put_multi(new_exploration_context_models)
def update_story( committer_id, story_id, change_list, commit_message): """Updates a story. Commits changes. # NOTE: This function should not be called on its own. Access it # through `topic_services.update_story_and_topic_summary`. Args: committer_id: str. The id of the user who is performing the update action. story_id: str. The story id. change_list: list(StoryChange). These changes are applied in sequence to produce the resulting story. commit_message: str or None. A description of changes made to the story. Raises: ValueError. Expected a commit message but received None. ValidationError. Exploration is already linked to a different story. ValidationError. Story Url Fragment is not unique across the site. """ if not commit_message: raise ValueError('Expected a commit message but received none.') old_story = story_fetchers.get_story_by_id(story_id) new_story, exp_ids_removed_from_story, exp_ids_added_to_story = ( apply_change_list(story_id, change_list)) story_is_published = is_story_published_and_present_in_topic(new_story) exploration_context_models_to_be_deleted = ( exp_models.ExplorationContextModel.get_multi( exp_ids_removed_from_story)) exploration_context_models_to_be_deleted = [ model for model in exploration_context_models_to_be_deleted if model is not None] exploration_context_models_collisions_list = ( exp_models.ExplorationContextModel.get_multi( exp_ids_added_to_story)) for context_model in exploration_context_models_collisions_list: if context_model is not None and context_model.story_id != story_id: raise utils.ValidationError( 'The exploration with ID %s is already linked to story ' 'with ID %s' % (context_model.id, context_model.story_id)) if ( old_story.url_fragment != new_story.url_fragment and does_story_exist_with_url_fragment(new_story.url_fragment)): raise utils.ValidationError( 'Story Url Fragment is not unique across the site.') _save_story( committer_id, new_story, commit_message, change_list, story_is_published) create_story_summary(new_story.id) if story_is_published: opportunity_services.update_exploration_opportunities( old_story, new_story) suggestion_services.auto_reject_translation_suggestions_for_exp_ids( exp_ids_removed_from_story) exp_models.ExplorationContextModel.delete_multi( exploration_context_models_to_be_deleted) new_exploration_context_models = [exp_models.ExplorationContextModel( id=exp_id, story_id=story_id ) for exp_id in exp_ids_added_to_story] exp_models.ExplorationContextModel.update_timestamps_multi( new_exploration_context_models) exp_models.ExplorationContextModel.put_multi(new_exploration_context_models)
27,523
def snake_and_shadow(name): """ Converts the given name into Pythonic form. Firstly it converts CamelCase names to snake_case. Secondly it looks to see if the name matches a known built-in and if it does it appends an underscore to the name. :param name: The parameter name :type name: str :return: """ snake = inflection.underscore(name) all_reserved = [] all_reserved.extend(list(builtins.__dict__.keys())) all_reserved.extend(keyword.kwlist) if snake in all_reserved: return f"{snake}_" return snake
def snake_and_shadow(name): """ Converts the given name into Pythonic form. Firstly it converts CamelCase names to snake_case. Secondly it looks to see if the name matches a known built-in and if it does it appends an underscore to the name. :param name: The parameter name :type name: str :return: """ snake = inflection.underscore(name) if snake in builtins.__dict__ or keyword.iskeyword(snake): return f"{snake}_" return snake
54,177
def remove_chrs_from_bam(bam, chrs, chrsz, nth=1, out_dir=''): assert(len(chrs)>0) prefix = os.path.join(out_dir, os.path.basename(strip_ext_bam(bam))) suffix = 'no_{}'.format('_'.join(chrs)) final_bam = '{}.{}.bam'.format(prefix, suffix) # tmp_bam = '{}.{}.tmp.bam'.format(prefix, suffix) # tmp_header_sam = '{}.{}.header.tmp.sam'.format(prefix, suffix) tmp_chrsz = '{}.{}.tmp.chrsz'.format(prefix, suffix) # make a temp chrsz file cmd0 = 'zcat -f {chrsz} |' cmd0 += 'grep -v -P \'^({chrs})\\s\' | ' cmd0 += 'awk \'BEGIN{{OFS="\\t"}} {{print $1,0,$2}}\' > {tmp_chrsz}' cmd0 = cmd0.format( chrsz=chrsz, chrs='|'.join(chrs), tmp_chrsz=tmp_chrsz) run_shell_cmd(cmd0) # remove chrs from BAM cmd1 = 'samtools view -b -L {tmp_chrsz} {bam} -@ {nth} > {final_bam}' cmd1 = cmd1.format( tmp_chrsz=tmp_chrsz, bam=bam, nth=nth, final_bam=final_bam) # tmp_bam=tmp_bam) run_shell_cmd(cmd1) rm_f(tmp_chrsz) # # make a temp header # cmd2 = 'samtools view -H {bam} > {tmp_header_sam}' # cmd2 = cmd2.format( # bam=bam, # tmp_header_sam=tmp_header_sam) # run_shell_cmd(cmd2) # # update header # cmd3 = 'samtools reheader {tmp_header_sam} {tmp_bam} > {final_bam}' # cmd3 = cmd3.format( # tmp_header_sam=tmp_header_sam, # tmp_bam=tmp_bam, # final_bam=final_bam) # run_shell_cmd(cmd3) # rm_f([tmp_bam, tmp_header_sam, tmp_chrsz]) return final_bam
def remove_chrs_from_bam(bam, chrs, chrsz, nth=1, out_dir=''): assert(len(chrs)>0) prefix = os.path.join(out_dir, os.path.basename(strip_ext_bam(bam))) suffix = 'no_{}'.format('_'.join(chrs)) final_bam = '{}.{}.bam'.format(prefix, suffix) # tmp_bam = '{}.{}.tmp.bam'.format(prefix, suffix) # tmp_header_sam = '{}.{}.header.tmp.sam'.format(prefix, suffix) tmp_chrsz = '{}.{}.tmp.chrsz'.format(prefix, suffix) # make a temp chrsz file cmd0 = 'zcat -f {chrsz} |' cmd0 += 'grep -v -P \'^({chrs})\\s\' | ' cmd0s = [ 'zcat -f {chrsz} |', 'grep -v -P \'^({chrs})\\s\' |', 'awk \'BEGIN{{OFS="\\t"}} {{print $1,0,$2}}\' > {tmp_chrsz}', ] cmd0 = ' | '.join(cmd0s) cmd0 = cmd0.format( chrsz=chrsz, chrs='|'.join(chrs), tmp_chrsz=tmp_chrsz) run_shell_cmd(cmd0) # remove chrs from BAM cmd1 = 'samtools view -b -L {tmp_chrsz} {bam} -@ {nth} > {final_bam}' cmd1 = cmd1.format( tmp_chrsz=tmp_chrsz, bam=bam, nth=nth, final_bam=final_bam) # tmp_bam=tmp_bam) run_shell_cmd(cmd1) rm_f(tmp_chrsz) # # make a temp header # cmd2 = 'samtools view -H {bam} > {tmp_header_sam}' # cmd2 = cmd2.format( # bam=bam, # tmp_header_sam=tmp_header_sam) # run_shell_cmd(cmd2) # # update header # cmd3 = 'samtools reheader {tmp_header_sam} {tmp_bam} > {final_bam}' # cmd3 = cmd3.format( # tmp_header_sam=tmp_header_sam, # tmp_bam=tmp_bam, # final_bam=final_bam) # run_shell_cmd(cmd3) # rm_f([tmp_bam, tmp_header_sam, tmp_chrsz]) return final_bam
30,893
def get_indicators(client, indicator_type: [str], last_run_id: Optional[bool] = None, limit: Optional[int] = None)\ -> Tuple[str, list]: """ Retrieving indicators from the API Args: client: OpenCTI Client object. indicator_type: List of indicators types to return. last_run_id: The last id from the previous call to use pagination. limit: the max indicators to fetch Returns: new_last_run: the id of the last indicator indicators: list of indicators """ if 'all' in indicator_type: indicator_type = ['user-account', 'domain', 'email-address', 'file-md5', 'file-sha1', 'file-sha256', 'hostname', 'ipv4-addr', 'ipv6-addr', 'registry-key-value', 'url'] observables = client.stix_observable.list(types=indicator_type, first=limit, after=last_run_id, withPagination=True) new_last_run = observables.get('pagination').get('endCursor') indicators = [ { "value": item['observable_value'], "type": XSOHR_TYPES.get(item['entity_type']), "rawJSON": item, "fields": { "tags": [tag.get('value') for tag in item.get('tags')], "description": item.get('description') } }for item in observables.get('entities') ] return new_last_run, indicators
def get_indicators(client, indicator_type: [str], last_run_id: Optional[int] = None, limit: Optional[int] = None)\ -> Tuple[str, list]: """ Retrieving indicators from the API Args: client: OpenCTI Client object. indicator_type: List of indicators types to return. last_run_id: The last id from the previous call to use pagination. limit: the max indicators to fetch Returns: new_last_run: the id of the last indicator indicators: list of indicators """ if 'all' in indicator_type: indicator_type = ['user-account', 'domain', 'email-address', 'file-md5', 'file-sha1', 'file-sha256', 'hostname', 'ipv4-addr', 'ipv6-addr', 'registry-key-value', 'url'] observables = client.stix_observable.list(types=indicator_type, first=limit, after=last_run_id, withPagination=True) new_last_run = observables.get('pagination').get('endCursor') indicators = [ { "value": item['observable_value'], "type": XSOHR_TYPES.get(item['entity_type']), "rawJSON": item, "fields": { "tags": [tag.get('value') for tag in item.get('tags')], "description": item.get('description') } }for item in observables.get('entities') ] return new_last_run, indicators
14,147
def _build_sig_attr_dict(signals, name_map=None): if name_map is None: name_map = {} if isinstance(signals, dict): return signals else: return {sig: (name_map[sig] if sig in name_map else sig) for sig in signals}
def _build_sig_attr_dict(signals, name_map=None): if name_map is None: name_map = {} if isinstance(signals, dict): return signals else: return {sig: name_map.get(sig, sig) for sig in signals}
43,682
def bit_driver(wires, n): r"""Returns the bit-driver cost Hamiltonian component. This Hamiltonian is defined as: .. math:: H \ = \ (-1)^{n + 1} \displaystyle\sum_{i} Z_i where :math:`Z_i` is the Pauli-Z operator acting on the :math:`i`-th wire and :math:`n \ \in \ \{0, \ 1\}`. This Hamiltonian is often used as a term when constructing larger QAOA cost Hamiltonians. Args: wires (Iterable or Wires): The wires on which the returned Hamiltonian acts n (int): Either :math:`0` or :math:`1`. Determines whether the Hamiltonian assigns lower energies to bitstrings with more :math:`0`s or :math:`1`s, respectively. Returns: .Hamiltonian **Example** >>> wires = range(3) >>> hamiltonian = qaoa.pauli_driver(wires, 1) >>> print(hamiltonian) (1.0) [Z0] + (1.0) [Z1] + (1.0) [Z2] """ if n == 0: coeffs = [-1 for _ in wires] elif n == 1: coeffs = [1 for _ in wires] else: raise ValueError("'state' must be either 0 or 1, got {}".format(n)) ops = [qml.PauliZ(w) for w in wires] return qml.Hamiltonian(coeffs, ops)
def bit_driver(wires, n): r"""Returns the bit-driver cost Hamiltonian component. This Hamiltonian is defined as: .. math:: H \ = \ (-1)^{n + 1} \displaystyle\sum_{i} Z_i where :math:`Z_i` is the Pauli-Z operator acting on the :math:`i`-th wire and :math:`n \ \in \ \{0, \ 1\}`. This Hamiltonian is often used as a term when constructing larger QAOA cost Hamiltonians. Args: wires (Iterable or Wires): The wires on which the returned Hamiltonian acts n (int): Either :math:`0` or :math:`1`. Determines whether the Hamiltonian assigns lower energies to bitstrings with more :math:`0`s or :math:`1`s, respectively. Returns: .Hamiltonian: **Example** >>> wires = range(3) >>> hamiltonian = qaoa.pauli_driver(wires, 1) >>> print(hamiltonian) (1.0) [Z0] + (1.0) [Z1] + (1.0) [Z2] """ if n == 0: coeffs = [-1 for _ in wires] elif n == 1: coeffs = [1 for _ in wires] else: raise ValueError("'state' must be either 0 or 1, got {}".format(n)) ops = [qml.PauliZ(w) for w in wires] return qml.Hamiltonian(coeffs, ops)
33,706
def detect_reporter(func): """Use checkpointing if any arg has "reporter" and args = 2""" func_sig = inspect.signature(func) use_reporter = True try: func_sig.bind({}, reporter=None) except Exception as e: logger.debug(str(e)) use_reporter = False return use_reporter
def detect_reporter(func): """Use reporter if any arg has "reporter" and args = 2""" func_sig = inspect.signature(func) use_reporter = True try: func_sig.bind({}, reporter=None) except Exception as e: logger.debug(str(e)) use_reporter = False return use_reporter
37,451
def frames_configuration(frame_channels: List[List[PulseChannel]], frame_frequencies: List[float], sample_duration: float, frame_indices: List[int] = None) -> Union[dict, None]: """ Ties together the frames of the backend and the frequencies of the frames. Args: frame_channels: A List of lists. Sublist i is a list of channel names that frame i will broadcast on. frame_frequencies: A list of starting frequencies for each frame. sample_duration: time of a sample. frame_indices: The indices of the frames. If None is given these will be in ascending order starting from 0. Returns: frames_config: A dictionary with the frame index as key and the values are a dict which can be used to initialized a ResolvedFrame. Raises: QiskitError: if the number of frame frequencies is not the same as the number of frames, i.e. the length of frame_channels. """ if len(frame_frequencies) != len(frame_channels): raise QiskitError(f'Number of frames {len(frame_channels)} is incompatible with ' f'the number of frame initial frequencies {len(frame_frequencies)}.') frames_config = {} for idx, channels in enumerate(frame_channels): if frame_indices: index = frame_indices[idx] else: index = idx frames_config[index] = { 'frame': Frame(index), 'phase': 0.0, 'frequency': frame_frequencies[idx], 'channels': channels, 'sample_duration': sample_duration } return frames_config
def frames_configuration(frame_channels: List[List[PulseChannel]], frame_frequencies: List[float], dt: float, frame_indices: List[int] = None) -> Union[dict, None]: """ Ties together the frames of the backend and the frequencies of the frames. Args: frame_channels: A List of lists. Sublist i is a list of channel names that frame i will broadcast on. frame_frequencies: A list of starting frequencies for each frame. sample_duration: time of a sample. frame_indices: The indices of the frames. If None is given these will be in ascending order starting from 0. Returns: frames_config: A dictionary with the frame index as key and the values are a dict which can be used to initialized a ResolvedFrame. Raises: QiskitError: if the number of frame frequencies is not the same as the number of frames, i.e. the length of frame_channels. """ if len(frame_frequencies) != len(frame_channels): raise QiskitError(f'Number of frames {len(frame_channels)} is incompatible with ' f'the number of frame initial frequencies {len(frame_frequencies)}.') frames_config = {} for idx, channels in enumerate(frame_channels): if frame_indices: index = frame_indices[idx] else: index = idx frames_config[index] = { 'frame': Frame(index), 'phase': 0.0, 'frequency': frame_frequencies[idx], 'channels': channels, 'sample_duration': sample_duration } return frames_config
878
def _orbits_transversals_from_bsgs(base, strong_gens_distr, transversals_only=False, slp=False): """ Compute basic orbits and transversals from a base and strong generating set. Explanation =========== The generators are provided as distributed across the basic stabilizers. If the optional argument ``transversals_only`` is set to True, only the transversals are returned. Parameters ========== ``base`` - The base. ``strong_gens_distr`` - Strong generators distributed by membership in basic stabilizers. ``transversals_only`` - bool A flag switching between returning only the transversals/ both orbits and transversals. ``slp`` - If ``True``, return a list of dictionaries containing the generator presentations of the elements of the transversals, i.e. the list of indices of generators from `strong_gens_distr[i]` such that their product is the relevant transversal element. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.util import _distribute_gens_by_base >>> S = SymmetricGroup(3) >>> S.schreier_sims() >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) >>> (S.base, strong_gens_distr) ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]]) See Also ======== _distribute_gens_by_base, _handle_precomputed_bsgs """ from sympy.combinatorics.perm_groups import _orbit_transversal base_len = len(base) degree = strong_gens_distr[0][0].size transversals = [None]*base_len slps = [None]*base_len if transversals_only is False: basic_orbits = [None]*base_len for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], base[i], pairs=True, slp=True) transversals[i] = dict(transversals[i]) if transversals_only is False: basic_orbits[i] = list(transversals[i].keys()) if transversals_only: return transversals else: if not slp: return basic_orbits, transversals return basic_orbits, transversals, slps
def _orbits_transversals_from_bsgs(base, strong_gens_distr, transversals_only=False, slp=False): """ Compute basic orbits and transversals from a base and strong generating set. Explanation =========== The generators are provided as distributed across the basic stabilizers. If the optional argument ``transversals_only`` is set to True, only the transversals are returned. Parameters ========== ``base`` - The base. ``strong_gens_distr`` - Strong generators distributed by membership in basic stabilizers. ``transversals_only`` - bool A flag switching between returning only the transversals and both orbits and transversals. ``slp`` - If ``True``, return a list of dictionaries containing the generator presentations of the elements of the transversals, i.e. the list of indices of generators from `strong_gens_distr[i]` such that their product is the relevant transversal element. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.util import _distribute_gens_by_base >>> S = SymmetricGroup(3) >>> S.schreier_sims() >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) >>> (S.base, strong_gens_distr) ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]]) See Also ======== _distribute_gens_by_base, _handle_precomputed_bsgs """ from sympy.combinatorics.perm_groups import _orbit_transversal base_len = len(base) degree = strong_gens_distr[0][0].size transversals = [None]*base_len slps = [None]*base_len if transversals_only is False: basic_orbits = [None]*base_len for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], base[i], pairs=True, slp=True) transversals[i] = dict(transversals[i]) if transversals_only is False: basic_orbits[i] = list(transversals[i].keys()) if transversals_only: return transversals else: if not slp: return basic_orbits, transversals return basic_orbits, transversals, slps
38,794
def getallnodes(state='all', partitions=None): rt = runtime.runtime() nodes = {} if partitions is None: partitions = rt.system.partitions for part in rt.system.partitions: if part not in partitions: continue # This job will not be submitted, it's used only to filter # the nodes based on the partition configuration job = Job.create(part.scheduler, part.launcher_type(), name='placeholder-job', sched_access=part.access, sched_options=rt.jobs_cli_options) available_nodes = part.scheduler.allnodes() available_nodes = part.scheduler.filternodes(job, available_nodes) getlogger().debug( f'Total available nodes for {part.name}: {len(available_nodes)}' ) if state.casefold() != 'all': available_nodes = {n for n in available_nodes if n.in_state(state)} getlogger().debug( f'[F] Selecting nodes in state {state!r}: ' f'available nodes now: {len(available_nodes)}' ) nodes[part.fullname] = [n.name for n in available_nodes] return nodes
def getallnodes(state='all', partitions=None): rt = runtime.runtime() nodes = {} if partitions is None: partitions = rt.system.partitions for part in rt.system.partitions: if part not in partitions: continue # This job will not be submitted, it's used only to filter # the nodes based on the partition configuration dummy_job = Job.create(part.scheduler, part.launcher_type(), name='placeholder-job', sched_access=part.access, sched_options=rt.jobs_cli_options) available_nodes = part.scheduler.allnodes() available_nodes = part.scheduler.filternodes(job, available_nodes) getlogger().debug( f'Total available nodes for {part.name}: {len(available_nodes)}' ) if state.casefold() != 'all': available_nodes = {n for n in available_nodes if n.in_state(state)} getlogger().debug( f'[F] Selecting nodes in state {state!r}: ' f'available nodes now: {len(available_nodes)}' ) nodes[part.fullname] = [n.name for n in available_nodes] return nodes
2,981
def _validate_date_like_dtype(dtype) -> None: """ Check whether the dtype is a date-like dtype. Raises an error if invalid. Parameters ---------- dtype : dtype, type The dtype to check. Raises ------ TypeError : The dtype could not be casted to a date-like dtype. ValueError : The dtype is an illegal date-like dtype (e.g. the the frequency provided is too specific) """ try: typ = np.datetime_data(dtype)[0] except ValueError as e: raise TypeError(f"{e}") if typ != "generic" and typ != "ns": raise ValueError( f"{repr(dtype.name)} is too specific of a frequency, " f"try passing {repr(dtype.type.__name__)}" )
def _validate_date_like_dtype(dtype) -> None: """ Check whether the dtype is a date-like dtype. Raises an error if invalid. Parameters ---------- dtype : dtype, type The dtype to check. Raises ------ TypeError : The dtype could not be casted to a date-like dtype. ValueError : The dtype is an illegal date-like dtype (e.g. the the frequency provided is too specific) """ try: typ = np.datetime_data(dtype)[0] except ValueError as e: raise TypeError(e) if typ != "generic" and typ != "ns": raise ValueError( f"{repr(dtype.name)} is too specific of a frequency, " f"try passing {repr(dtype.type.__name__)}" )
13,516
def load(f, **options): dbcImportEncoding = options.get("dbcImportEncoding", 'iso-8859-1') dbcCommentEncoding = options.get("dbcImportCommentEncoding", dbcImportEncoding) float_factory = options.get('float_factory', default_float_factory) i = 0 class FollowUps(object): nothing, signalComment, frameComment, boardUnitComment, globalComment = list( range(5)) followUp = FollowUps.nothing comment = "" signal = None frame = None boardUnit = None db = CanMatrix() for line in f: i = i + 1 l = line.strip() if l.__len__() == 0: continue try: if followUp == FollowUps.signalComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if signal is not None: signal.addComment(comment[0:-2]) continue elif followUp == FollowUps.frameComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if frame is not None: frame.addComment(comment[0:-2]) continue elif followUp == FollowUps.boardUnitComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if boardUnit is not None: boardUnit.addComment(comment[0:-2]) continue decoded = l.decode(dbcImportEncoding).strip() if decoded.startswith("BO_ "): regexp = re.compile(r"^BO_ ([^\ ]+) ([^\ ]+) *: ([^\ ]+) ([^\ ]+)") temp = regexp.match(decoded) # db.frames.addFrame(Frame(temp.group(1), temp.group(2), temp.group(3), temp.group(4))) frame = Frame(temp.group(2), id=int(temp.group(1)), size=int(temp.group(3)), transmitters=temp.group(4).split()) db.frames.append(frame) elif decoded.startswith("SG_ "): pattern = r"^SG_ +(\w+) *: *(\d+)\|(\d+)@(\d+)([\+|\-]) +\(([0-9.+\-eE]+),([0-9.+\-eE]+)\) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*)\" +(.*)" regexp = re.compile(pattern) temp = regexp.match(decoded) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp_raw = regexp_raw.match(l) if temp: receiver = list(map(str.strip, [str(b) for b in temp.group(11).split(',')])) extras = {} # if float_factory is not None: # extras['float_factory'] = float_factory tempSig = Signal( temp.group(1), startBit=int(temp.group(2)), size=int(temp.group(3)), is_little_endian=(int(temp.group(4)) == 1), is_signed=(temp.group(5) == '-'), factor=temp.group(6), offset=temp.group(7), min=temp.group(8), max=temp.group(9), unit=temp_raw.group(10).decode(dbcImportEncoding), receiver=receiver, **extras ) if not tempSig.is_little_endian: # startbit of motorola coded signals are MSB in dbc tempSig.setStartbit(int(temp.group(2)), bitNumbering=1) frame.addSignal(tempSig) # db.frames.addSignalToLastFrame(tempSig) else: pattern = r"^SG_ +(\w+) +(\w+) *: *(\d+)\|(\d+)@(\d+)([\+|\-]) +\(([0-9.+\-eE]+),([0-9.+\-eE]+)\) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*)\" +(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) receiverTemp = [str(b) for b in temp.group(12).split(',')] receiver = list(map(str.strip, receiverTemp)) multiplex = temp.group(2) is_complex_multiplexed = False if multiplex == 'M': multiplex = 'Multiplexor' elif multiplex.endswith('M'): is_complex_multiplexed = True multiplex = multiplex[:-1] if multiplex != 'Multiplexor': try: multiplex = int(multiplex[1:]) except: raise Exception('error decoding line',line) extras = {} # if float_factory is not None: # extras['float_factory'] = float_factory tempSig = Signal( temp.group(1), startBit=int(temp.group(3)), size=int(temp.group(4)), is_little_endian=(int(temp.group(5)) == 1), is_signed=(temp.group(6) == '-'), factor=temp.group(7), offset=temp.group(8), min=temp.group(9), max=temp.group(10), unit=temp_raw.group(11).decode(dbcImportEncoding), receiver=receiver, multiplex=multiplex, **extras ) if is_complex_multiplexed: tempSig.is_multiplexer = True tempSig.multiplex = 'Multiplexor' if not tempSig.is_little_endian: # startbit of motorola coded signals are MSB in dbc tempSig.setStartbit(int(temp.group(3)), bitNumbering=1) frame.addSignal(tempSig) if is_complex_multiplexed: frame.is_complex_multiplexed = True elif decoded.startswith("BO_TX_BU_ "): regexp = re.compile(r"^BO_TX_BU_ ([0-9]+) *: *(.+);") temp = regexp.match(decoded) botschaft = db.frameById(temp.group(1)) for bu in temp.group(2).split(','): botschaft.addTransmitter(bu) elif decoded.startswith("CM_ SG_ "): pattern = r"^CM_ +SG_ +(\w+) +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: botschaft = db.frameById(temp.group(1)) signal = botschaft.signalByName(temp.group(2)) if signal: try: signal.addComment(temp_raw.group(3).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +SG_ +(\w+) +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: botschaft = db.frameById(temp.group(1)) signal = botschaft.signalByName(temp.group(2)) try: comment = temp_raw.group(3).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.signalComment elif decoded.startswith("CM_ BO_ "): pattern = r"^CM_ +BO_ +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = db.frameById(temp.group(1)) if frame: try: frame.addComment(temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +BO_ +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = db.frameById(temp.group(1)) try: comment = temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.frameComment elif decoded.startswith("CM_ BU_ "): pattern = r"^CM_ +BU_ +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: boardUnit = db.boardUnitByName(temp.group(1)) if boardUnit: try: boardUnit.addComment(temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +BU_ +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: boardUnit = db.boardUnitByName(temp.group(1)) if boardUnit: try: comment = temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.boardUnitComment elif decoded.startswith("BU_:"): pattern = r"^BU_\:(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) if temp: myTempListe = temp.group(1).split(' ') for ele in myTempListe: if len(ele.strip()) > 1: db.boardUnits.append(BoardUnit(ele)) elif decoded.startswith("VAL_ "): regexp = re.compile(r"^VAL_ +(\w+) +(\w+) +(.*);") temp = regexp.match(decoded) if temp: botschaftId = temp.group(1) signal = temp.group(2) tempList = temp.group(3).split('"') if botschaftId.isnumeric(): # value for Frame try: bo = db.frameById(botschaftId) sg = bo.signalByName(signal) for i in range(math.floor(len(tempList) / 2)): val = tempList[i * 2 + 1] if sg: sg.addValues(tempList[i * 2], val) except: logger.error("Error with Line: " + str(tempList)) else: logger.info("Warning: enviroment variables currently not supported") elif decoded.startswith("VAL_TABLE_ "): regexp = re.compile(r"^VAL_TABLE_ +(\w+) +(.*);") temp = regexp.match(decoded) if temp: tableName = temp.group(1) tempList = temp.group(2).split('"') try: valHash = {} for i in range(math.floor(len(tempList) / 2)): val = tempList[i * 2 + 1] valHash[tempList[i * 2].strip()] = val.strip() except: logger.error("Error with Line: " + str(tempList)) db.addValueTable(tableName, valHash) else: logger.debug(l) elif decoded.startswith("BA_DEF_ SG_ "): pattern = r"^BA_DEF_ +SG_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addSignalDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ BO_ "): pattern = r"^BA_DEF_ +BO_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addFrameDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ BU_ "): pattern = r"^BA_DEF_ +BU_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addBUDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ "): pattern = r"^BA_DEF_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addGlobalDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_ "): regexp = re.compile(r"^BA_ +\"[A-Za-z0-9[\-_ .]+\" +(.+)") tempba = regexp.match(decoded) if tempba.group(1).strip().startswith("BO_ "): regexp = re.compile(r"^BA_ +\"(.*)\" +BO_ +(\w+) +(.+);") temp = regexp.match(decoded) db.frameById(int(temp.group(2))).addAttribute( temp.group(1), temp.group(3)) elif tempba.group(1).strip().startswith("SG_ "): regexp = re.compile(r"^BA_ +\"(.*)\" +SG_ +(\w+) +(\w+) +(.+);") temp = regexp.match(decoded) if temp!=None: db.frameById(int(temp.group(2))).signalByName( temp.group(3)).addAttribute(temp.group(1), temp.group(4)) elif tempba.group(1).strip().startswith("BU_ "): regexp = re.compile(r"^BA_ +\"(.*)\" +BU_ +(\w+) +(.+);") temp = regexp.match(decoded) db.boardUnitByName( temp.group(2)).addAttribute( temp.group(1), temp.group(3)) else: regexp = re.compile( r"^BA_ +\"([A-Za-z0-9\-_]+)\" +([\"A-Za-z0-9\-_\.]+);") temp = regexp.match(decoded) if temp: db.addAttribute(temp.group(1), temp.group(2)) elif decoded.startswith("SIG_GROUP_ "): regexp = re.compile(r"^SIG_GROUP_ +(\w+) +(\w+) +(\w+) +\:(.*);") temp = regexp.match(decoded) frame = db.frameById(temp.group(1)) if frame is not None: signalArray = temp.group(4).split(' ') frame.addSignalGroup(temp.group(2), temp.group(3), signalArray) elif decoded.startswith("SIG_VALTYPE_ "): regexp = re.compile(r"^SIG_VALTYPE_ +(\w+) +(\w+)\s*\:(.*);") temp = regexp.match(decoded) frame = db.frameById(temp.group(1)) if frame: signal = frame.signalByName(temp.group(2)) signal.is_float = True # SIG_VALTYPE_ 0 float : 1; elif decoded.startswith("BA_DEF_DEF_ "): pattern = r"^BA_DEF_DEF_ +\"([A-Za-z0-9\-_\.]+)\" +(.+)\;" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addDefineDefault(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("SG_MUL_VAL_ "): pattern = r"^SG_MUL_VAL_ +([0-9]+) +([A-Za-z0-9\-_]+) +([A-Za-z0-9\-_]+) +([0-9]+)\-([0-9]+) *;" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frameId = temp.group(1) signalName = temp.group(2) muxerForSignal = temp.group(3) muxValMin = int(temp.group(4)) muxValMax = int(temp.group(4)) frame = db.frameById(frameId) if frame is not None: signal = frame.signalByName(signalName) frame.is_complex_multiplexed = True signal.muxerForSignal = muxerForSignal signal.muxValMin = muxValMin signal.muxValMax = muxValMax elif decoded.startswith("EV_ "): pattern = r"^EV_ +([A-Za-z0-9\-_]+) *\: +([0-9]+) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(\w*)\" +([0-9.+\-eE]+) +([0-9.+\-eE]+) +([A-Za-z0-9\-_]+) +(.*);" regexp = re.compile(pattern) temp = regexp.match(decoded) varName = temp.group(1) varType = temp.group(2) min = temp.group(3) max = temp.group(4) unit = temp.group(5) initialValue = temp.group(6) evId = temp.group(7) accessType = temp.group(8) accessNodes = temp.group(9).split(",") db.addEnvVar( varName, {"varType": varType, "min" : min, "max" : max, "unit" : unit, "initialValue" : initialValue, "evId" : evId, "accessType" : accessType, "accessNodes" : accessNodes}) except: print ("error with line no: %d" % i) print (line) # else: # print("Unrecocniced line: " + l + " (%d) " % i) # Backtracking for frame in db.frames: # receiver is only given in the signals, so do propagate the receiver # to the frame: frame.updateReceiver() # extended-flag is implicite in canid, thus repair this: if frame.id > 0x80000000: frame.id -= 0x80000000 frame.extended = 1 if "VFrameFormat" in frame.attributes and "_FD" in frame.attributes["VFrameFormat"]: frame.is_fd = True for define in db.globalDefines: if db.globalDefines[define].type == "STRING": if define in db.attributes: db.attributes[define] = db.attributes[define][1:-1] for define in db.buDefines: if db.buDefines[define].type == "STRING": for ecu in db.boardUnits: if define in ecu.attributes: ecu.attributes[define] = ecu.attributes[define][1:-1] for define in db.frameDefines: if db.frameDefines[define].type == "STRING": for frame in db.frames: if define in frame.attributes: frame.attributes[define] = frame.attributes[define][1:-1] for define in db.signalDefines: if db.signalDefines[define].type == "STRING": for frame in db.frames: for signal in frame.signals: if define in signal.attributes: signal.attributes[define] = signal.attributes[define][1:-1] db.EnumAttribs2Values() db.updateEcuList() db.delEcu("Vector__XXX") return db
def load(f, **options): dbcImportEncoding = options.get("dbcImportEncoding", 'iso-8859-1') dbcCommentEncoding = options.get("dbcImportCommentEncoding", dbcImportEncoding) float_factory = options.get('float_factory', default_float_factory) i = 0 class FollowUps(object): nothing, signalComment, frameComment, boardUnitComment, globalComment = list( range(5)) followUp = FollowUps.nothing comment = "" signal = None frame = None boardUnit = None db = CanMatrix() for line in f: i = i + 1 l = line.strip() if l.__len__() == 0: continue try: if followUp == FollowUps.signalComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if signal is not None: signal.addComment(comment[0:-2]) continue elif followUp == FollowUps.frameComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if frame is not None: frame.addComment(comment[0:-2]) continue elif followUp == FollowUps.boardUnitComment: try: comment += "\n" + \ l.decode(dbcCommentEncoding).replace('\\"', '"') except: logger.error("Error decoding line: %d (%s)" % (i, line)) if l.endswith(b'";'): followUp = FollowUps.nothing if boardUnit is not None: boardUnit.addComment(comment[0:-2]) continue decoded = l.decode(dbcImportEncoding).strip() if decoded.startswith("BO_ "): regexp = re.compile(r"^BO_ ([^\ ]+) ([^\ ]+) *: ([^\ ]+) ([^\ ]+)") temp = regexp.match(decoded) # db.frames.addFrame(Frame(temp.group(1), temp.group(2), temp.group(3), temp.group(4))) frame = Frame(temp.group(2), id=int(temp.group(1)), size=int(temp.group(3)), transmitters=temp.group(4).split()) db.frames.append(frame) elif decoded.startswith("SG_ "): pattern = r"^SG_ +(\w+) *: *(\d+)\|(\d+)@(\d+)([\+|\-]) +\(([0-9.+\-eE]+),([0-9.+\-eE]+)\) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*)\" +(.*)" regexp = re.compile(pattern) temp = regexp.match(decoded) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp_raw = regexp_raw.match(l) if temp: receiver = list(map(str.strip, [str(b) for b in temp.group(11).split(',')])) extras = {} # if float_factory is not None: # extras['float_factory'] = float_factory tempSig = Signal( temp.group(1), startBit=int(temp.group(2)), size=int(temp.group(3)), is_little_endian=(int(temp.group(4)) == 1), is_signed=(temp.group(5) == '-'), factor=temp.group(6), offset=temp.group(7), min=temp.group(8), max=temp.group(9), unit=temp_raw.group(10).decode(dbcImportEncoding), receiver=receiver, **extras ) if not tempSig.is_little_endian: # startbit of motorola coded signals are MSB in dbc tempSig.setStartbit(int(temp.group(2)), bitNumbering=1) frame.addSignal(tempSig) # db.frames.addSignalToLastFrame(tempSig) else: pattern = r"^SG_ +(\w+) +(\w+) *: *(\d+)\|(\d+)@(\d+)([\+|\-]) +\(([0-9.+\-eE]+),([0-9.+\-eE]+)\) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(.*)\" +(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) receiver = [b.strip() for b in temp.group(12).split(',')] receiver = list(map(str.strip, receiverTemp)) multiplex = temp.group(2) is_complex_multiplexed = False if multiplex == 'M': multiplex = 'Multiplexor' elif multiplex.endswith('M'): is_complex_multiplexed = True multiplex = multiplex[:-1] if multiplex != 'Multiplexor': try: multiplex = int(multiplex[1:]) except: raise Exception('error decoding line',line) extras = {} # if float_factory is not None: # extras['float_factory'] = float_factory tempSig = Signal( temp.group(1), startBit=int(temp.group(3)), size=int(temp.group(4)), is_little_endian=(int(temp.group(5)) == 1), is_signed=(temp.group(6) == '-'), factor=temp.group(7), offset=temp.group(8), min=temp.group(9), max=temp.group(10), unit=temp_raw.group(11).decode(dbcImportEncoding), receiver=receiver, multiplex=multiplex, **extras ) if is_complex_multiplexed: tempSig.is_multiplexer = True tempSig.multiplex = 'Multiplexor' if not tempSig.is_little_endian: # startbit of motorola coded signals are MSB in dbc tempSig.setStartbit(int(temp.group(3)), bitNumbering=1) frame.addSignal(tempSig) if is_complex_multiplexed: frame.is_complex_multiplexed = True elif decoded.startswith("BO_TX_BU_ "): regexp = re.compile(r"^BO_TX_BU_ ([0-9]+) *: *(.+);") temp = regexp.match(decoded) botschaft = db.frameById(temp.group(1)) for bu in temp.group(2).split(','): botschaft.addTransmitter(bu) elif decoded.startswith("CM_ SG_ "): pattern = r"^CM_ +SG_ +(\w+) +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: botschaft = db.frameById(temp.group(1)) signal = botschaft.signalByName(temp.group(2)) if signal: try: signal.addComment(temp_raw.group(3).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +SG_ +(\w+) +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: botschaft = db.frameById(temp.group(1)) signal = botschaft.signalByName(temp.group(2)) try: comment = temp_raw.group(3).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.signalComment elif decoded.startswith("CM_ BO_ "): pattern = r"^CM_ +BO_ +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = db.frameById(temp.group(1)) if frame: try: frame.addComment(temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +BO_ +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frame = db.frameById(temp.group(1)) try: comment = temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.frameComment elif decoded.startswith("CM_ BU_ "): pattern = r"^CM_ +BU_ +(\w+) +\"(.*)\";" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: boardUnit = db.boardUnitByName(temp.group(1)) if boardUnit: try: boardUnit.addComment(temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"')) except: logger.error( "Error decoding line: %d (%s)" % (i, line)) else: pattern = r"^CM_ +BU_ +(\w+) +\"(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: boardUnit = db.boardUnitByName(temp.group(1)) if boardUnit: try: comment = temp_raw.group(2).decode( dbcCommentEncoding).replace('\\"', '"') except: logger.error( "Error decoding line: %d (%s)" % (i, line)) followUp = FollowUps.boardUnitComment elif decoded.startswith("BU_:"): pattern = r"^BU_\:(.*)" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) if temp: myTempListe = temp.group(1).split(' ') for ele in myTempListe: if len(ele.strip()) > 1: db.boardUnits.append(BoardUnit(ele)) elif decoded.startswith("VAL_ "): regexp = re.compile(r"^VAL_ +(\w+) +(\w+) +(.*);") temp = regexp.match(decoded) if temp: botschaftId = temp.group(1) signal = temp.group(2) tempList = temp.group(3).split('"') if botschaftId.isnumeric(): # value for Frame try: bo = db.frameById(botschaftId) sg = bo.signalByName(signal) for i in range(math.floor(len(tempList) / 2)): val = tempList[i * 2 + 1] if sg: sg.addValues(tempList[i * 2], val) except: logger.error("Error with Line: " + str(tempList)) else: logger.info("Warning: enviroment variables currently not supported") elif decoded.startswith("VAL_TABLE_ "): regexp = re.compile(r"^VAL_TABLE_ +(\w+) +(.*);") temp = regexp.match(decoded) if temp: tableName = temp.group(1) tempList = temp.group(2).split('"') try: valHash = {} for i in range(math.floor(len(tempList) / 2)): val = tempList[i * 2 + 1] valHash[tempList[i * 2].strip()] = val.strip() except: logger.error("Error with Line: " + str(tempList)) db.addValueTable(tableName, valHash) else: logger.debug(l) elif decoded.startswith("BA_DEF_ SG_ "): pattern = r"^BA_DEF_ +SG_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addSignalDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ BO_ "): pattern = r"^BA_DEF_ +BO_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addFrameDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ BU_ "): pattern = r"^BA_DEF_ +BU_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addBUDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_DEF_ "): pattern = r"^BA_DEF_ +\"([A-Za-z0-9\-_]+)\" +(.+);" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addGlobalDefines(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("BA_ "): regexp = re.compile(r"^BA_ +\"[A-Za-z0-9[\-_ .]+\" +(.+)") tempba = regexp.match(decoded) if tempba.group(1).strip().startswith("BO_ "): regexp = re.compile(r"^BA_ +\"(.*)\" +BO_ +(\w+) +(.+);") temp = regexp.match(decoded) db.frameById(int(temp.group(2))).addAttribute( temp.group(1), temp.group(3)) elif tempba.group(1).strip().startswith("SG_ "): regexp = re.compile(r"^BA_ +\"(.*)\" +SG_ +(\w+) +(\w+) +(.+);") temp = regexp.match(decoded) if temp!=None: db.frameById(int(temp.group(2))).signalByName( temp.group(3)).addAttribute(temp.group(1), temp.group(4)) elif tempba.group(1).strip().startswith("BU_ "): regexp = re.compile(r"^BA_ +\"(.*)\" +BU_ +(\w+) +(.+);") temp = regexp.match(decoded) db.boardUnitByName( temp.group(2)).addAttribute( temp.group(1), temp.group(3)) else: regexp = re.compile( r"^BA_ +\"([A-Za-z0-9\-_]+)\" +([\"A-Za-z0-9\-_\.]+);") temp = regexp.match(decoded) if temp: db.addAttribute(temp.group(1), temp.group(2)) elif decoded.startswith("SIG_GROUP_ "): regexp = re.compile(r"^SIG_GROUP_ +(\w+) +(\w+) +(\w+) +\:(.*);") temp = regexp.match(decoded) frame = db.frameById(temp.group(1)) if frame is not None: signalArray = temp.group(4).split(' ') frame.addSignalGroup(temp.group(2), temp.group(3), signalArray) elif decoded.startswith("SIG_VALTYPE_ "): regexp = re.compile(r"^SIG_VALTYPE_ +(\w+) +(\w+)\s*\:(.*);") temp = regexp.match(decoded) frame = db.frameById(temp.group(1)) if frame: signal = frame.signalByName(temp.group(2)) signal.is_float = True # SIG_VALTYPE_ 0 float : 1; elif decoded.startswith("BA_DEF_DEF_ "): pattern = r"^BA_DEF_DEF_ +\"([A-Za-z0-9\-_\.]+)\" +(.+)\;" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: db.addDefineDefault(temp.group(1), temp_raw.group(2).decode(dbcImportEncoding)) elif decoded.startswith("SG_MUL_VAL_ "): pattern = r"^SG_MUL_VAL_ +([0-9]+) +([A-Za-z0-9\-_]+) +([A-Za-z0-9\-_]+) +([0-9]+)\-([0-9]+) *;" regexp = re.compile(pattern) regexp_raw = re.compile(pattern.encode(dbcImportEncoding)) temp = regexp.match(decoded) temp_raw = regexp_raw.match(l) if temp: frameId = temp.group(1) signalName = temp.group(2) muxerForSignal = temp.group(3) muxValMin = int(temp.group(4)) muxValMax = int(temp.group(4)) frame = db.frameById(frameId) if frame is not None: signal = frame.signalByName(signalName) frame.is_complex_multiplexed = True signal.muxerForSignal = muxerForSignal signal.muxValMin = muxValMin signal.muxValMax = muxValMax elif decoded.startswith("EV_ "): pattern = r"^EV_ +([A-Za-z0-9\-_]+) *\: +([0-9]+) +\[([0-9.+\-eE]+)\|([0-9.+\-eE]+)\] +\"(\w*)\" +([0-9.+\-eE]+) +([0-9.+\-eE]+) +([A-Za-z0-9\-_]+) +(.*);" regexp = re.compile(pattern) temp = regexp.match(decoded) varName = temp.group(1) varType = temp.group(2) min = temp.group(3) max = temp.group(4) unit = temp.group(5) initialValue = temp.group(6) evId = temp.group(7) accessType = temp.group(8) accessNodes = temp.group(9).split(",") db.addEnvVar( varName, {"varType": varType, "min" : min, "max" : max, "unit" : unit, "initialValue" : initialValue, "evId" : evId, "accessType" : accessType, "accessNodes" : accessNodes}) except: print ("error with line no: %d" % i) print (line) # else: # print("Unrecocniced line: " + l + " (%d) " % i) # Backtracking for frame in db.frames: # receiver is only given in the signals, so do propagate the receiver # to the frame: frame.updateReceiver() # extended-flag is implicite in canid, thus repair this: if frame.id > 0x80000000: frame.id -= 0x80000000 frame.extended = 1 if "VFrameFormat" in frame.attributes and "_FD" in frame.attributes["VFrameFormat"]: frame.is_fd = True for define in db.globalDefines: if db.globalDefines[define].type == "STRING": if define in db.attributes: db.attributes[define] = db.attributes[define][1:-1] for define in db.buDefines: if db.buDefines[define].type == "STRING": for ecu in db.boardUnits: if define in ecu.attributes: ecu.attributes[define] = ecu.attributes[define][1:-1] for define in db.frameDefines: if db.frameDefines[define].type == "STRING": for frame in db.frames: if define in frame.attributes: frame.attributes[define] = frame.attributes[define][1:-1] for define in db.signalDefines: if db.signalDefines[define].type == "STRING": for frame in db.frames: for signal in frame.signals: if define in signal.attributes: signal.attributes[define] = signal.attributes[define][1:-1] db.EnumAttribs2Values() db.updateEcuList() db.delEcu("Vector__XXX") return db
52,454
def test_ngram_sizes(en_tokenizer): # test that the range suggester works well size_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3]) range_suggester = registry.misc.get("spacy.ngram_range_suggester.v1")( min_size=1, max_size=3 ) docs = [ en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"] ] ngrams_1 = size_suggester(docs) ngrams_2 = range_suggester(docs) assert_equal(ngrams_1.lengths, [1, 3, 6, 9, 12]) assert_equal(ngrams_1.lengths, ngrams_2.lengths) assert_equal(ngrams_1.data, ngrams_2.data) # one more variation range_suggester = registry.misc.get("spacy.ngram_range_suggester.v1")( min_size=2, max_size=4 ) ngrams_3 = range_suggester(docs) assert_equal(ngrams_3.lengths, [0, 1, 3, 6, 9])
def test_ngram_sizes(en_tokenizer): # test that the range suggester works well size_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3]) suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1") range_suggester = suggester_factory(min_size=1, max_size=3) docs = [ en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"] ] ngrams_1 = size_suggester(docs) ngrams_2 = range_suggester(docs) assert_equal(ngrams_1.lengths, [1, 3, 6, 9, 12]) assert_equal(ngrams_1.lengths, ngrams_2.lengths) assert_equal(ngrams_1.data, ngrams_2.data) # one more variation range_suggester = registry.misc.get("spacy.ngram_range_suggester.v1")( min_size=2, max_size=4 ) ngrams_3 = range_suggester(docs) assert_equal(ngrams_3.lengths, [0, 1, 3, 6, 9])
55,724
def imread(filename: str): """custom imaplementation of imread to avoid skimage dependecy""" ext = os.path.splitext(filename)[1] if ext in [".tif", "tiff", ".lsm"]: import tifffile image = tifffile.imread(filename) else: import imageio image = imageio.imread(filename) if not hasattr(image, 'ndim'): return image if image.ndim > 2: if image.shape[-1] not in (3, 4) and image.shape[-3] in (3, 4): image = np.swapaxes(image, -1, -3) image = np.swapaxes(image, -2, -3) return image
def imread(filename: str): """Custom implementation of imread to avoid skimage dependency. Parameters ---------- filename : string The path from which to read the image. Returns ------- data : np.ndarray The image data. """ ext = os.path.splitext(filename)[1] if ext in [".tif", "tiff", ".lsm"]: import tifffile image = tifffile.imread(filename) else: import imageio image = imageio.imread(filename) if not hasattr(image, 'ndim'): return image if image.ndim > 2: if image.shape[-1] not in (3, 4) and image.shape[-3] in (3, 4): image = np.swapaxes(image, -1, -3) image = np.swapaxes(image, -2, -3) return image
33,502
def delete_and_await_stack(**kwargs): cloudformation = aws_stack.connect_to_service("cloudformation") response = cloudformation.delete_stack(**kwargs) assert response["ResponseMetadata"]["HTTPStatusCode"] == 200 result = await_stack_completion(kwargs["StackName"]) return result
def delete_and_await_stack(**kwargs): cloudformation = aws_stack.connect_to_service("cloudformation") response = cloudformation.delete_stack(**kwargs) assert response["ResponseMetadata"]["HTTPStatusCode"] == 200 return await_stack_completion(kwargs["StackName"])
38,512
def star_shape_cell_centers(g: "pp.Grid", as_nan: bool = False) -> np.ndarray: """ For a given grid compute the star shape center for each cell. The algorithm computes the half space intersections, by using the above method half_space_pt, of the spaces defined by the cell faces and the face normals. This is a wrapper method that operate on a grid. Parameters ---------- g: pp.Grid the grid as_nan: bool, optional Decide whether, in case some cells are not star-shaped return nan as new center. Otherwise an exception is raised (default behaviour). Returns ------- np.ndarray The new cell centers. """ # no need for 1d or 0d grids if g.dim < 2: return g.cell_centers # retrieve the faces and nodes faces, _, sgn = sps.find(g.cell_faces) nodes, _, _ = sps.find(g.face_nodes) # shift the nodes close to the origin, to avoid numerical problems when coordinates are # too big xn = g.nodes.copy() xn_shift = np.average(xn, axis=1) xn -= np.tile(xn_shift, (xn.shape[1], 1)).T # compute the star shape cell centers by constructing the half spaces of each cell # given by its faces and related normals cell_centers = np.zeros((3, g.num_cells)) for c in np.arange(g.num_cells): loc = slice(g.cell_faces.indptr[c], g.cell_faces.indptr[c + 1]) faces_loc = faces[loc] loc_n = g.face_nodes.indptr[faces_loc] # make the normals coherent normal = np.multiply( sgn[loc], np.divide(g.face_normals[:, faces_loc], g.face_areas[faces_loc]) ) x0, x1 = xn[:, nodes[loc_n]], xn[:, nodes[loc_n + 1]] coords = np.concatenate((x0, x1), axis=1) # compute a point in the half space intersection of all cell faces try: cell_centers[:, c] = pp.half_space.half_space_interior_point( normal, (x1 + x0) / 2.0, coords ) except ValueError: # the cell is not star-shaped if as_nan: cell_centers[:, c] = np.array([np.nan, np.nan, np.nan]) else: raise ValueError( "Cell not star-shaped impossible to compute the centre" ) # shift back the computed cell centers and return them return cell_centers + np.tile(xn_shift, (g.num_cells, 1)).T
def star_shape_cell_centers(g: "pp.Grid", as_nan: bool = False) -> np.ndarray: """ For a given grid compute the star shape center for each cell. The algorithm computes the half space intersections, by using the above method half_space_pt, of the spaces defined by the cell faces and the face normals. This is a wrapper method that operates on a grid. Parameters ---------- g: pp.Grid the grid as_nan: bool, optional Decide whether, in case some cells are not star-shaped return nan as new center. Otherwise an exception is raised (default behaviour). Returns ------- np.ndarray The new cell centers. """ # no need for 1d or 0d grids if g.dim < 2: return g.cell_centers # retrieve the faces and nodes faces, _, sgn = sps.find(g.cell_faces) nodes, _, _ = sps.find(g.face_nodes) # shift the nodes close to the origin, to avoid numerical problems when coordinates are # too big xn = g.nodes.copy() xn_shift = np.average(xn, axis=1) xn -= np.tile(xn_shift, (xn.shape[1], 1)).T # compute the star shape cell centers by constructing the half spaces of each cell # given by its faces and related normals cell_centers = np.zeros((3, g.num_cells)) for c in np.arange(g.num_cells): loc = slice(g.cell_faces.indptr[c], g.cell_faces.indptr[c + 1]) faces_loc = faces[loc] loc_n = g.face_nodes.indptr[faces_loc] # make the normals coherent normal = np.multiply( sgn[loc], np.divide(g.face_normals[:, faces_loc], g.face_areas[faces_loc]) ) x0, x1 = xn[:, nodes[loc_n]], xn[:, nodes[loc_n + 1]] coords = np.concatenate((x0, x1), axis=1) # compute a point in the half space intersection of all cell faces try: cell_centers[:, c] = pp.half_space.half_space_interior_point( normal, (x1 + x0) / 2.0, coords ) except ValueError: # the cell is not star-shaped if as_nan: cell_centers[:, c] = np.array([np.nan, np.nan, np.nan]) else: raise ValueError( "Cell not star-shaped impossible to compute the centre" ) # shift back the computed cell centers and return them return cell_centers + np.tile(xn_shift, (g.num_cells, 1)).T
28,555
def plot_bpv( data, kind="u_value", t_stat="median", bpv=True, mean=True, reference="samples", n_ref=100, hdi_prob=0.94, color="C0", figsize=None, textsize=None, data_pairs=None, var_names=None, filter_vars=None, coords=None, flatten=None, flatten_pp=None, ax=None, backend=None, plot_ref_kwargs=None, backend_kwargs=None, group="posterior", show=None, ): """ Plot Bayesian p-value for observed data and Posterior/Prior predictive. Parameters ---------- data : az.InferenceData object InferenceData object containing the observed and posterior/prior predictive data. kind : str Type of plot to display (u_value, p_value, t_stat). Defaults to u_value. t_stat : str, float, or callable T statistics to compute from the observations and predictive distributions. Allowed strings are "mean", "median" or "std". Defaults to "median". Alternative a quantile can be passed as a float (or str) in the interval (0, 1). Finally a user defined function is also acepted, see examples section for details. bpv : bool If True (default) add the bayesian p_value to the legend when kind = t_stat. mean : bool Whether or not to plot the mean T statistic. Defaults to True. reference : str How to compute the distributions used as reference for u_values or p_values. Allowed values are "analytical" (default) and "samples". Use `None` to do not plot any reference. n_ref : int, optional Number of reference distributions to sample when `reference=samples` hdi_prob: float, optional Probability for the highest density interval for the analytical reference distribution when computing u_values. Should be in the interval (0, 1]. Defaults to 0.94. color : str Matplotlib color figsize : tuple Figure size. If None it will be defined automatically. textsize : float Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. data_pairs : dict Dictionary containing relations between observed data and posterior/prior predictive data. Dictionary structure: - key = data var_name - value = posterior/prior predictive var_name For example, `data_pairs = {'y' : 'y_hat'}` If None, it will assume that the observed data and the posterior/prior predictive data have the same variable name. var_names : list of variable names Variables to be plotted, if `None` all variable are plotted. Prefix the variables by `~` when you want to exclude them from the plot. filter_vars : {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. coords : dict Dictionary mapping dimensions to selected coordinates to be plotted. Dimensions without a mapping specified will include all coordinates for that dimension. Defaults to including all coordinates for all dimensions if None. flatten : list List of dimensions to flatten in observed_data. Only flattens across the coordinates specified in the coords argument. Defaults to flattening all of the dimensions. flatten_pp : list List of dimensions to flatten in posterior_predictive/prior_predictive. Only flattens across the coordinates specified in the coords argument. Defaults to flattening all of the dimensions. Dimensions should match flatten excluding dimensions for data_pairs parameters. If flatten is defined and flatten_pp is None, then `flatten_pp=flatten`. legend : bool Add legend to figure. By default True. ax : numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). backend : str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". plot_ref_kwargs : dict, optional Extra keyword arguments to control how reference is represented. Passed to `plt.plot` or `plt.axhspan`(when `kind=u_value` and `reference=analytical`). backend_kwargs : bool, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. group : {"prior", "posterior"}, optional Specifies which InferenceData group should be plotted. Defaults to 'posterior'. Other value can be 'prior'. show : bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures Examples -------- Plot Bayesian p_values. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data("regression1d") >>> az.plot_bpv(data, kind="p_value") Plot custom t statistic comparison. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data("regression1d") >>> az.plot_bpv(data, kind="t_stat", t_stat=lambda x:np.percentile(x, q=50, axis=-1)) """ if group not in ("posterior", "prior"): raise TypeError("`group` argument must be either `posterior` or `prior`") for groups in ("{}_predictive".format(group), "observed_data"): if not hasattr(data, groups): raise TypeError('`data` argument must have the group "{group}"'.format(group=groups)) if kind.lower() not in ("t_stat", "u_value", "p_value"): raise TypeError("`kind` argument must be either `t_stat`, `u_value`, or `p_value`") if reference is not None: if reference.lower() not in ("analytical", "samples"): raise TypeError( "`reference` argument must be either `analytical`, `samples`, or `None`" ) if hdi_prob is None: hdi_prob = rcParams["stats.hdi_prob"] else: if not 1 >= hdi_prob > 0: raise ValueError("The value of hdi_prob should be in the interval (0, 1]") if data_pairs is None: data_pairs = {} if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() observed = data.observed_data if group == "posterior": predictive_dataset = data.posterior_predictive elif group == "prior": predictive_dataset = data.prior_predictive if var_names is None: var_names = list(observed.data_vars) var_names = _var_names(var_names, observed, filter_vars) pp_var_names = [data_pairs.get(var, var) for var in var_names] pp_var_names = _var_names(pp_var_names, predictive_dataset, filter_vars) if flatten_pp is None and flatten is None: flatten_pp = list(predictive_dataset.dims.keys()) elif flatten_pp is None: flatten_pp = flatten if flatten is None: flatten = list(observed.dims.keys()) if coords is None: coords = {} total_pp_samples = predictive_dataset.sizes["chain"] * predictive_dataset.sizes["draw"] for key in coords.keys(): coords[key] = np.where(np.in1d(observed[key], coords[key]))[0] obs_plotters = filter_plotters_list( list( xarray_var_iter( observed.isel(coords), skip_dims=set(flatten), var_names=var_names, combined=True ) ), "plot_t_stats", ) length_plotters = len(obs_plotters) pp_plotters = [ tup for _, tup in zip( range(length_plotters), xarray_var_iter( predictive_dataset.isel(coords), var_names=pp_var_names, skip_dims=set(flatten_pp), combined=True, ), ) ] rows, cols = default_grid(length_plotters) (figsize, ax_labelsize, _, _, linewidth, markersize) = _scale_fig_size( figsize, textsize, rows, cols ) if plot_ref_kwargs is None: plot_ref_kwargs = {} if kind == "p_value" and reference == "analytical": plot_ref_kwargs.setdefault("color", "k") plot_ref_kwargs.setdefault("linestyle", "--") else: plot_ref_kwargs.setdefault("alpha", 0.1) plot_ref_kwargs.setdefault("color", color) if backend == "bokeh": color = to_hex(color) plot_ref_kwargs.pop("color") if kind == "p_value" and reference == "analytical": plot_ref_kwargs.pop("linestyle") plot_ref_kwargs.setdefault("line_dash", "dashed") plot_ref_kwargs.setdefault("color", "black") else: plot_ref_kwargs.setdefault("color", color) bpvplot_kwargs = dict( ax=ax, length_plotters=length_plotters, rows=rows, cols=cols, obs_plotters=obs_plotters, pp_plotters=pp_plotters, total_pp_samples=total_pp_samples, kind=kind, bpv=bpv, t_stat=t_stat, reference=reference, n_ref=n_ref, hdi_prob=hdi_prob, mean=mean, color=color, figsize=figsize, ax_labelsize=ax_labelsize, markersize=markersize, linewidth=linewidth, plot_ref_kwargs=plot_ref_kwargs, backend_kwargs=backend_kwargs, show=show, ) # TODO: Add backend kwargs plot = get_plotting_function("plot_bpv", "bpvplot", backend) axes = plot(**bpvplot_kwargs) return axes
def plot_bpv( data, kind="u_value", t_stat="median", bpv=True, mean=True, reference="samples", n_ref=100, hdi_prob=0.94, color="C0", figsize=None, textsize=None, data_pairs=None, var_names=None, filter_vars=None, coords=None, flatten=None, flatten_pp=None, ax=None, backend=None, plot_ref_kwargs=None, backend_kwargs=None, group="posterior", show=None, ): """ Plot Bayesian p-value for observed data and Posterior/Prior predictive. Parameters ---------- data : az.InferenceData object InferenceData object containing the observed and posterior/prior predictive data. kind : str Type of plot to display (u_value, p_value, t_stat). Defaults to u_value. t_stat : str, float, or callable T statistics to compute from the observations and predictive distributions. Allowed strings are "mean", "median" or "std". Defaults to "median". Alternative a quantile can be passed as a float (or str) in the interval (0, 1). Finally a user defined function is also acepted, see examples section for details. bpv : bool If True (default) add the bayesian p_value to the legend when kind = t_stat. mean : bool Whether or not to plot the mean T statistic. Defaults to True. reference : str How to compute the distributions used as reference for u_values or p_values. Allowed values are "analytical" (default) and "samples". Use `None` to do not plot any reference. n_ref : int, optional Number of reference distributions to sample when `reference=samples`. Defaults to 100. hdi_prob: float, optional Probability for the highest density interval for the analytical reference distribution when computing u_values. Should be in the interval (0, 1]. Defaults to 0.94. color : str Matplotlib color figsize : tuple Figure size. If None it will be defined automatically. textsize : float Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. data_pairs : dict Dictionary containing relations between observed data and posterior/prior predictive data. Dictionary structure: - key = data var_name - value = posterior/prior predictive var_name For example, `data_pairs = {'y' : 'y_hat'}` If None, it will assume that the observed data and the posterior/prior predictive data have the same variable name. var_names : list of variable names Variables to be plotted, if `None` all variable are plotted. Prefix the variables by `~` when you want to exclude them from the plot. filter_vars : {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. coords : dict Dictionary mapping dimensions to selected coordinates to be plotted. Dimensions without a mapping specified will include all coordinates for that dimension. Defaults to including all coordinates for all dimensions if None. flatten : list List of dimensions to flatten in observed_data. Only flattens across the coordinates specified in the coords argument. Defaults to flattening all of the dimensions. flatten_pp : list List of dimensions to flatten in posterior_predictive/prior_predictive. Only flattens across the coordinates specified in the coords argument. Defaults to flattening all of the dimensions. Dimensions should match flatten excluding dimensions for data_pairs parameters. If flatten is defined and flatten_pp is None, then `flatten_pp=flatten`. legend : bool Add legend to figure. By default True. ax : numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). backend : str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". plot_ref_kwargs : dict, optional Extra keyword arguments to control how reference is represented. Passed to `plt.plot` or `plt.axhspan`(when `kind=u_value` and `reference=analytical`). backend_kwargs : bool, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. group : {"prior", "posterior"}, optional Specifies which InferenceData group should be plotted. Defaults to 'posterior'. Other value can be 'prior'. show : bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures Examples -------- Plot Bayesian p_values. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data("regression1d") >>> az.plot_bpv(data, kind="p_value") Plot custom t statistic comparison. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data("regression1d") >>> az.plot_bpv(data, kind="t_stat", t_stat=lambda x:np.percentile(x, q=50, axis=-1)) """ if group not in ("posterior", "prior"): raise TypeError("`group` argument must be either `posterior` or `prior`") for groups in ("{}_predictive".format(group), "observed_data"): if not hasattr(data, groups): raise TypeError('`data` argument must have the group "{group}"'.format(group=groups)) if kind.lower() not in ("t_stat", "u_value", "p_value"): raise TypeError("`kind` argument must be either `t_stat`, `u_value`, or `p_value`") if reference is not None: if reference.lower() not in ("analytical", "samples"): raise TypeError( "`reference` argument must be either `analytical`, `samples`, or `None`" ) if hdi_prob is None: hdi_prob = rcParams["stats.hdi_prob"] else: if not 1 >= hdi_prob > 0: raise ValueError("The value of hdi_prob should be in the interval (0, 1]") if data_pairs is None: data_pairs = {} if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() observed = data.observed_data if group == "posterior": predictive_dataset = data.posterior_predictive elif group == "prior": predictive_dataset = data.prior_predictive if var_names is None: var_names = list(observed.data_vars) var_names = _var_names(var_names, observed, filter_vars) pp_var_names = [data_pairs.get(var, var) for var in var_names] pp_var_names = _var_names(pp_var_names, predictive_dataset, filter_vars) if flatten_pp is None and flatten is None: flatten_pp = list(predictive_dataset.dims.keys()) elif flatten_pp is None: flatten_pp = flatten if flatten is None: flatten = list(observed.dims.keys()) if coords is None: coords = {} total_pp_samples = predictive_dataset.sizes["chain"] * predictive_dataset.sizes["draw"] for key in coords.keys(): coords[key] = np.where(np.in1d(observed[key], coords[key]))[0] obs_plotters = filter_plotters_list( list( xarray_var_iter( observed.isel(coords), skip_dims=set(flatten), var_names=var_names, combined=True ) ), "plot_t_stats", ) length_plotters = len(obs_plotters) pp_plotters = [ tup for _, tup in zip( range(length_plotters), xarray_var_iter( predictive_dataset.isel(coords), var_names=pp_var_names, skip_dims=set(flatten_pp), combined=True, ), ) ] rows, cols = default_grid(length_plotters) (figsize, ax_labelsize, _, _, linewidth, markersize) = _scale_fig_size( figsize, textsize, rows, cols ) if plot_ref_kwargs is None: plot_ref_kwargs = {} if kind == "p_value" and reference == "analytical": plot_ref_kwargs.setdefault("color", "k") plot_ref_kwargs.setdefault("linestyle", "--") else: plot_ref_kwargs.setdefault("alpha", 0.1) plot_ref_kwargs.setdefault("color", color) if backend == "bokeh": color = to_hex(color) plot_ref_kwargs.pop("color") if kind == "p_value" and reference == "analytical": plot_ref_kwargs.pop("linestyle") plot_ref_kwargs.setdefault("line_dash", "dashed") plot_ref_kwargs.setdefault("color", "black") else: plot_ref_kwargs.setdefault("color", color) bpvplot_kwargs = dict( ax=ax, length_plotters=length_plotters, rows=rows, cols=cols, obs_plotters=obs_plotters, pp_plotters=pp_plotters, total_pp_samples=total_pp_samples, kind=kind, bpv=bpv, t_stat=t_stat, reference=reference, n_ref=n_ref, hdi_prob=hdi_prob, mean=mean, color=color, figsize=figsize, ax_labelsize=ax_labelsize, markersize=markersize, linewidth=linewidth, plot_ref_kwargs=plot_ref_kwargs, backend_kwargs=backend_kwargs, show=show, ) # TODO: Add backend kwargs plot = get_plotting_function("plot_bpv", "bpvplot", backend) axes = plot(**bpvplot_kwargs) return axes
3,407
def _fetch_tags_or_values_per_ids( projects: Sequence[Project], metric_names: Optional[Sequence[str]], referrer: str, column: str = "tags.key", ) -> Tuple[Sequence[Union[Tag, TagValue]], Optional[str]]: """ Function that takes as input projects, metric_names, and a column, and based on the column selection, either returns tags or tag values for the combination of projects and metric_names selected or in the case of no metric_names passed, returns basically all the tags or the tag values available for those projects. In addition, when exactly one metric name is passed in metric_names, then the type (i.e. mapping to the entity) is also returned """ try: metric_ids = _get_metrics_filter_ids(metric_names) except MetricDoesNotExistInIndexer: raise InvalidParams( f"Some or all of the metric names in {metric_names} do not exist in the indexer" ) else: where = [Condition(Column("metric_id"), Op.IN, list(metric_ids))] if metric_ids else [] tag_or_value_ids_per_metric_id = defaultdict(list) # This dictionary is required as a mapping from an entity to the ids available in it to # validate that constituent metrics of a SingleEntityDerivedMetric actually span a single # entity by validating that the ids of the constituent metrics all lie in the same entity supported_metric_ids_in_entities = {} for metric_type in ("counter", "set", "distribution"): entity_key = METRIC_TYPE_TO_ENTITY[metric_type] rows = run_metrics_query( entity_key=entity_key, select=[Column("metric_id"), Column(column)], where=where, groupby=[Column("metric_id"), Column(column)], referrer=referrer, projects=projects, org_id=projects[0].organization_id, ) for row in rows: metric_id = row["metric_id"] if column.startswith("tags["): value_id = row[column] if value_id > 0: tag_or_value_ids_per_metric_id[metric_id].append(value_id) else: tag_or_value_ids_per_metric_id[metric_id].extend(row[column]) supported_metric_ids_in_entities.setdefault(metric_type, []).append(row["metric_id"]) # If we get not results back from snuba, then just return an empty set if not tag_or_value_ids_per_metric_id: if metric_names: error_str = f"The following metrics {metric_names} do not exist in the dataset" else: error_str = "Dataset contains no metric data for your project selection" raise InvalidParams(error_str) tag_or_value_id_lists = tag_or_value_ids_per_metric_id.values() if metric_names: # If there are metric_ids that map to the metric_names provided as an arg that were not # found in the dataset, then we raise an instance of InvalidParams exception if metric_ids != set(tag_or_value_ids_per_metric_id.keys()): # This can occur for metric names that don't have an equivalent in the dataset. raise InvalidParams( f"Not all the requested metrics or the constituent metrics in {metric_names} have " f"data in the dataset" ) # At this point, we are sure that every metric_name/metric_id that was requested is # present in the dataset, and now we need to check that for all derived metrics requested # (if any are requested) are setup correctly i.e. constituent of # SingularEntityDerivedMetric actually span a single entity _validate_requested_derived_metrics_in_input_metrics( metric_names=metric_names, supported_metric_ids_in_entities=supported_metric_ids_in_entities, ) # Only return tags/tag values that occur in all metrics tag_or_value_ids = set.intersection(*map(set, tag_or_value_id_lists)) else: tag_or_value_ids = {tag_id for ids in tag_or_value_id_lists for tag_id in ids} if column.startswith("tags["): tag_id = column.split("tags[")[1].split("]")[0] tags_or_values = [ {"key": reverse_resolve(int(tag_id)), "value": reverse_resolve(value_id)} for value_id in tag_or_value_ids ] tags_or_values.sort(key=lambda tag: (tag["key"], tag["value"])) else: tags_or_values = [{"key": reverse_resolve(tag_id)} for tag_id in tag_or_value_ids] tags_or_values.sort(key=itemgetter("key")) if metric_names and len(metric_names) == 1: metric_type = list(supported_metric_ids_in_entities.keys())[0] return tags_or_values, metric_type return tags_or_values, None
def _fetch_tags_or_values_per_ids( projects: Sequence[Project], metric_names: Optional[Sequence[str]], referrer: str, column: str = "tags.key", ) -> Tuple[Union[Sequence[Tag], Sequence[TagValue]], Optional[str]]: """ Function that takes as input projects, metric_names, and a column, and based on the column selection, either returns tags or tag values for the combination of projects and metric_names selected or in the case of no metric_names passed, returns basically all the tags or the tag values available for those projects. In addition, when exactly one metric name is passed in metric_names, then the type (i.e. mapping to the entity) is also returned """ try: metric_ids = _get_metrics_filter_ids(metric_names) except MetricDoesNotExistInIndexer: raise InvalidParams( f"Some or all of the metric names in {metric_names} do not exist in the indexer" ) else: where = [Condition(Column("metric_id"), Op.IN, list(metric_ids))] if metric_ids else [] tag_or_value_ids_per_metric_id = defaultdict(list) # This dictionary is required as a mapping from an entity to the ids available in it to # validate that constituent metrics of a SingleEntityDerivedMetric actually span a single # entity by validating that the ids of the constituent metrics all lie in the same entity supported_metric_ids_in_entities = {} for metric_type in ("counter", "set", "distribution"): entity_key = METRIC_TYPE_TO_ENTITY[metric_type] rows = run_metrics_query( entity_key=entity_key, select=[Column("metric_id"), Column(column)], where=where, groupby=[Column("metric_id"), Column(column)], referrer=referrer, projects=projects, org_id=projects[0].organization_id, ) for row in rows: metric_id = row["metric_id"] if column.startswith("tags["): value_id = row[column] if value_id > 0: tag_or_value_ids_per_metric_id[metric_id].append(value_id) else: tag_or_value_ids_per_metric_id[metric_id].extend(row[column]) supported_metric_ids_in_entities.setdefault(metric_type, []).append(row["metric_id"]) # If we get not results back from snuba, then just return an empty set if not tag_or_value_ids_per_metric_id: if metric_names: error_str = f"The following metrics {metric_names} do not exist in the dataset" else: error_str = "Dataset contains no metric data for your project selection" raise InvalidParams(error_str) tag_or_value_id_lists = tag_or_value_ids_per_metric_id.values() if metric_names: # If there are metric_ids that map to the metric_names provided as an arg that were not # found in the dataset, then we raise an instance of InvalidParams exception if metric_ids != set(tag_or_value_ids_per_metric_id.keys()): # This can occur for metric names that don't have an equivalent in the dataset. raise InvalidParams( f"Not all the requested metrics or the constituent metrics in {metric_names} have " f"data in the dataset" ) # At this point, we are sure that every metric_name/metric_id that was requested is # present in the dataset, and now we need to check that for all derived metrics requested # (if any are requested) are setup correctly i.e. constituent of # SingularEntityDerivedMetric actually span a single entity _validate_requested_derived_metrics_in_input_metrics( metric_names=metric_names, supported_metric_ids_in_entities=supported_metric_ids_in_entities, ) # Only return tags/tag values that occur in all metrics tag_or_value_ids = set.intersection(*map(set, tag_or_value_id_lists)) else: tag_or_value_ids = {tag_id for ids in tag_or_value_id_lists for tag_id in ids} if column.startswith("tags["): tag_id = column.split("tags[")[1].split("]")[0] tags_or_values = [ {"key": reverse_resolve(int(tag_id)), "value": reverse_resolve(value_id)} for value_id in tag_or_value_ids ] tags_or_values.sort(key=lambda tag: (tag["key"], tag["value"])) else: tags_or_values = [{"key": reverse_resolve(tag_id)} for tag_id in tag_or_value_ids] tags_or_values.sort(key=itemgetter("key")) if metric_names and len(metric_names) == 1: metric_type = list(supported_metric_ids_in_entities.keys())[0] return tags_or_values, metric_type return tags_or_values, None
17,297
def _async_get_imported_entries_indices( current_entries: list[ConfigEntry], ) -> tuple[dict[str, ConfigEntry], dict[int, ConfigEntry]]: """Return a dict of the entries by name.""" # For backwards compat, its possible the first bridge is using the default # name. entries_by_name: dict[str, ConfigEntry] = {} entries_by_port: dict[int, ConfigEntry] = {} for entry in current_entries: if entry.source != SOURCE_IMPORT: continue entries_by_name[entry.data.get(CONF_NAME, BRIDGE_NAME)] = entry entries_by_port[entry.data.get(CONF_PORT, DEFAULT_PORT)] = entry return entries_by_name, entries_by_port
def _async_get_imported_entries_indices( current_entries: list[ConfigEntry], ) -> tuple[dict[str, ConfigEntry], dict[int, ConfigEntry]]: """Return a dicts of the entries by name and port.""" # For backwards compat, its possible the first bridge is using the default # name. entries_by_name: dict[str, ConfigEntry] = {} entries_by_port: dict[int, ConfigEntry] = {} for entry in current_entries: if entry.source != SOURCE_IMPORT: continue entries_by_name[entry.data.get(CONF_NAME, BRIDGE_NAME)] = entry entries_by_port[entry.data.get(CONF_PORT, DEFAULT_PORT)] = entry return entries_by_name, entries_by_port
5,839
def directionalmean(samples, axis=0, nan_policy='propagate'): """ Computes the directional mean of a sample of vectors. Serves as equivalent of the sample mean for directional data whose magnitude is irrelevant, e. g. unit vectors. Parameters ---------- samples : array_like Input array. Must at least be two-dimensional. axis : int, optional Axis along which directional means are computed. Default is 0. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- directionalmean : ndarray Directional mean. Notes ----- This uses a definition of directional mean from [1]_. Essentially, the calculation is as follows. .. code-block:: python mean=samples.mean() directionalmean = mean/np.linalg.norm(mean) References ---------- .. [1] Mardia, Jupp. (2000). *Directional Statistics* (p. 163). Wiley. Examples -------- >>> data = np.array([[0.8660254, 0.5, 0.], [0.8660254, -0.5, 0.]]) >>> directionalmean(data) array([1., 0., 0.]) The `regular`sample mean in contrast does not lie on the unit sphere. >>> data.mean(axis=0) array([0.8660254, 0., 0.]) """ samples = np.asarray(samples) if samples.ndim < 2: raise ValueError("samples must at least be two-dimensional. " "Instead samples has shape: %r." % samples.shape) contains_nan, nan_policy = _contains_nan(samples, nan_policy) if contains_nan and nan_policy == 'omit': mean = np.nanmean(samples, axis = axis) else: mean = np.mean(samples, axis = axis) directional_mean = mean/np.linalg.norm(mean) return directional_mean
def directionalmean(samples, axis=0, nan_policy='propagate'): """ Computes the directional mean of a sample of vectors. Serves as equivalent of the sample mean for directional data whose magnitude is irrelevant, e. g. unit vectors. Parameters ---------- samples : array_like Input array. Must at least be two-dimensional. axis : int, optional Axis along which directional means are computed. Default is 0. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- directionalmean : ndarray Directional mean. Notes ----- This uses a definition of directional mean from [1]_. Essentially, the calculation is as follows. .. code-block:: python mean=samples.mean() directionalmean = mean/np.linalg.norm(mean) References ---------- .. [1] Mardia, Jupp. (2000). *Directional Statistics* (p. 163). Wiley. Examples -------- >>> data = np.array([[0.8660254, 0.5, 0.], [0.8660254, -0.5, 0.]]) >>> directionalmean(data) array([1., 0., 0.]) The `regular`sample mean in contrast does not lie on the unit sphere. >>> data.mean(axis=0) array([0.8660254, 0., 0.]) """ samples = np.asarray(samples) if samples.ndim < 2: raise ValueError("samples must at least be two-dimensional. " "Instead samples has shape: %r." % samples.shape) contains_nan, nan_policy = _contains_nan(samples, nan_policy) if contains_nan and nan_policy == 'omit': mean = np.nanmean(samples, axis = axis) else: mean = np.mean(samples, axis = axis) directional_mean = mean / np.linalg.norm(mean) return directional_mean
18,860
def test_internal_config_cache(): config = spack.config.Configuration() config.push_scope(spack.config.InternalConfigScope('internal', { 'config': { 'build_jobs': 10 } })) config.clear_caches() assert config.get('config:build_jobs') == 10
def test_internal_config_scope_cache_clearing(): config = spack.config.Configuration() config.push_scope(spack.config.InternalConfigScope('internal', { 'config': { 'build_jobs': 10 } })) config.clear_caches() assert config.get('config:build_jobs') == 10
27,952
def perform_build_command(logfile, command, context, keep_link, silent=False): """ Build the project and create a log file. """ LOG.info("Starting build ...") try: original_env_file = os.environ['CODECHECKER_ORIGINAL_BUILD_ENV'] LOG.debug_analyzer('Loading original build env from: %s', original_env_file) with open(original_env_file, 'rb') as env_file: original_env = pickle.load(env_file) # The env is loaded we do not need it anymore. # Remove temporary directory. try: tmp_dir, _ = os.path.split(original_env_file) shutil.rmtree(tmp_dir) except OSError as ex: if ex.errno != errno.ENOENT: LOG.warning('Failed to remove temporary directory: %s ' 'Manual cleanup is required.', tmp_dir) except Exception as ex: LOG.warning(str(ex)) LOG.warning('Failed to get saved original_env' 'using a current copy for logging.') original_env = os.environ.copy() # Run user's commands with intercept. if host_check.check_intercept(original_env): LOG.debug_analyzer("with intercept ...") final_command = command command = ' '.join(["intercept-build", "--cdb", logfile, "sh -c \"" + final_command + "\""]) log_env = original_env LOG.debug_analyzer(command) # Run user's commands in shell. else: # TODO: better platform detection. if platform.system() == 'Linux': LOG.debug_analyzer("with ld logger ...") open(logfile, 'a').close() # Same as linux's touch. log_env = env.get_log_env(logfile, context, original_env) if 'CC_LOGGER_GCC_LIKE' not in log_env: log_env['CC_LOGGER_GCC_LIKE'] = 'gcc:g++:clang:clang++:cc:c++' if keep_link or ('CC_LOGGER_KEEP_LINK' in log_env and log_env['CC_LOGGER_KEEP_LINK'] == 'true'): log_env['CC_LOGGER_KEEP_LINK'] = 'true' else: LOG.error("Intercept-build is required" " to run CodeChecker in OS X.") sys.exit(1) LOG.debug_analyzer(log_env) try: ret_code = execute_buildcmd(command, silent, log_env) if ret_code == 0: LOG.info("Build finished successfully.") LOG.debug_analyzer("The logfile is: %s", logfile) else: LOG.info("Build failed.") sys.exit(ret_code) except Exception as ex: LOG.error("Calling original build command failed.") LOG.error(str(ex)) sys.exit(1) finally: # Removing flock lock file. logfile_lock = logfile + '.lock' if os.path.exists(logfile_lock): os.remove(logfile_lock)
def perform_build_command(logfile, command, context, keep_link, silent=False): """ Build the project and create a log file. """ LOG.info("Starting build ...") try: original_env_file = os.environ['CODECHECKER_ORIGINAL_BUILD_ENV'] LOG.debug_analyzer('Loading original build env from: %s', original_env_file) with open(original_env_file, 'rb') as env_file: original_env = pickle.load(env_file) # The env is loaded we do not need it anymore. # Remove temporary directory. try: tmp_dir, _ = os.path.split(original_env_file) shutil.rmtree(tmp_dir) except OSError as ex: if ex.errno != errno.ENOENT: LOG.warning('Failed to remove temporary directory: %s. ' 'Manual cleanup is required.', tmp_dir) except Exception as ex: LOG.warning(str(ex)) LOG.warning('Failed to get saved original_env' 'using a current copy for logging.') original_env = os.environ.copy() # Run user's commands with intercept. if host_check.check_intercept(original_env): LOG.debug_analyzer("with intercept ...") final_command = command command = ' '.join(["intercept-build", "--cdb", logfile, "sh -c \"" + final_command + "\""]) log_env = original_env LOG.debug_analyzer(command) # Run user's commands in shell. else: # TODO: better platform detection. if platform.system() == 'Linux': LOG.debug_analyzer("with ld logger ...") open(logfile, 'a').close() # Same as linux's touch. log_env = env.get_log_env(logfile, context, original_env) if 'CC_LOGGER_GCC_LIKE' not in log_env: log_env['CC_LOGGER_GCC_LIKE'] = 'gcc:g++:clang:clang++:cc:c++' if keep_link or ('CC_LOGGER_KEEP_LINK' in log_env and log_env['CC_LOGGER_KEEP_LINK'] == 'true'): log_env['CC_LOGGER_KEEP_LINK'] = 'true' else: LOG.error("Intercept-build is required" " to run CodeChecker in OS X.") sys.exit(1) LOG.debug_analyzer(log_env) try: ret_code = execute_buildcmd(command, silent, log_env) if ret_code == 0: LOG.info("Build finished successfully.") LOG.debug_analyzer("The logfile is: %s", logfile) else: LOG.info("Build failed.") sys.exit(ret_code) except Exception as ex: LOG.error("Calling original build command failed.") LOG.error(str(ex)) sys.exit(1) finally: # Removing flock lock file. logfile_lock = logfile + '.lock' if os.path.exists(logfile_lock): os.remove(logfile_lock)
39,987
def _use_external_script_type(client) -> bool: if client.features.model == "1" and client.version > (1, 10, 5): return True if client.features.model == "T" and client.version > (2, 4, 3): return True return False
def _use_external_script_type(client) -> bool: if client.features.model == "1" and client.version >= (1, 11, 1): return True if client.features.model == "T" and client.version > (2, 4, 3): return True return False
31,220
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ api_key = demisto.params().get('apikey') fetch_type = demisto.params().get('fetch_type') # get the service API url base_url = urljoin(demisto.params()['url'], demisto.params()['api_version']) # if your Client class inherits from BaseClient, SSL verification is # handled out of the box by it, just pass ``verify_certificate`` to # the Client constructor verify_certificate = not demisto.params().get('insecure', False) # if your Client class inherits from BaseClient, system proxy is handled # out of the box by it, just pass ``proxy`` to the Client constructor proxy = demisto.params().get('proxy', False) demisto.debug(f'Command being called is {demisto.command()}') try: headers = { 'Authorization': f'Bearer {api_key}' } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif demisto.command() == 'gh-get-message': return_results(gh_get_message_command(client, demisto.args())) elif demisto.command() == 'gh-get-policy': return_results(gh_get_policy_command(client, demisto.args())) elif demisto.command() == 'gh-set-policy': return_results(gh_set_policy_command(client, demisto.args())) elif demisto.command() == 'gh-remediate-message': return_results(gh_remediate_message_command(client, demisto.args())) elif demisto.command() == 'gh-revert-remediate-message': return_results(gh_revert_remediate_message_command(client, demisto.args())) elif demisto.command() == 'gh-search-message': return_results(gh_search_message_command(client, demisto.args())) elif demisto.command() == 'fetch-incidents': if fetch_type is not None: last_run = demisto.getLastRun() demisto.info("GOT LAST RUN: {}".format(last_run)) if not last_run.get("counter"): counter = 0 else: counter = int(last_run.get("counter")) if counter % 3 == 0: if fetch_type == "phishing": incidents = gh_get_phish_reports_command(client) elif fetch_type == "quarantine": incidents = gh_get_quarantine_release_command(client) else: incidents_phish = gh_get_phish_reports_command(client) incidents_quarantine = gh_get_quarantine_release_command(client) incidents = incidents_phish incidents.extend(incidents_quarantine) demisto.incidents(incidents) counter += 1 demisto.setLastRun({'max_phish_id': str(counter)}) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main(): """main function, parses params and runs command functions :return: :rtype: """ api_key = demisto.params().get('apikey') fetch_type = demisto.params().get('fetch_type') # get the service API url base_url = urljoin(demisto.params()['url'], demisto.params()['api_version']) # if your Client class inherits from BaseClient, SSL verification is # handled out of the box by it, just pass ``verify_certificate`` to # the Client constructor verify_certificate = not demisto.params().get('insecure', False) # if your Client class inherits from BaseClient, system proxy is handled # out of the box by it, just pass ``proxy`` to the Client constructor proxy = demisto.params().get('proxy', False) demisto.debug(f'Command being called is {demisto.command()}') try: headers = { 'Authorization': f'Bearer {api_key}' } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif demisto.command() == 'gh-get-message': return_results(gh_get_message_command(client, demisto.args())) elif demisto.command() == 'gh-get-policy': return_results(gh_get_policy_command(client, demisto.args())) elif demisto.command() == 'gh-set-policy': return_results(gh_set_policy_command(client, demisto.args())) elif demisto.command() == 'gh-remediate-message': return_results(gh_remediate_message_command(client, demisto.args())) elif demisto.command() == 'gh-revert-remediate-message': return_results(gh_revert_remediate_message_command(client, demisto.args())) elif demisto.command() == 'gh-search-message': return_results(gh_search_message_command(client, demisto.args())) elif demisto.command() == 'fetch-incidents': if fetch_type is not None: last_run = demisto.getLastRun() demisto.info("GOT LAST RUN: {}".format(last_run)) if not last_run.get("counter"): counter = 0 else: counter = int(last_run.get("counter")) if counter % 3 == 0: if fetch_type == "phishing": incidents = gh_get_phish_reports_command(client) elif fetch_type == "quarantine": incidents = gh_get_quarantine_release_command(client) else: incidents_phish = gh_get_phish_reports_command(client) incidents_quarantine = gh_get_quarantine_release_command(client) incidents = incidents_phish incidents.extend(incidents_quarantine) demisto.incidents(incidents) counter += 1 demisto.setLastRun({'max_phish_id': str(counter)}) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
31,795
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ api_key = demisto.params().get('apikey') # get the service API url base_url = urljoin(demisto.params()['url']) verify_certificate = not demisto.params().get('insecure', False) feature_mapping = demisto.params().get('feature_mapping', None) proxy = demisto.params().get('proxy', False) default_job_id = demisto.params().get('default_job_id', -1) demisto.debug(f'Command being called is {demisto.command()}') try: client = Client( api_key=api_key, base_url=base_url, verify=verify_certificate, proxy=proxy, default_job_id=default_job_id ) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result_test = test_module(client, feature_mapping) return_results(result_test) elif demisto.command() == "arcanna-get-jobs": result_get_jobs = get_jobs(client) return_results(result_get_jobs) elif demisto.command() == "arcanna-send-event": result_send_event = post_event(client, demisto.args()) return_results(result_send_event) elif demisto.command() == "arcanna-get-event-status": result_get_event = get_event_status(client, demisto.args()) return_results(result_get_event) elif demisto.command() == "arcanna-get-default-job-id": result_get_default_id = get_default_job_id(client) return_results(result_get_default_id) elif demisto.command() == "arcanna-set-default-job-id": result_set_default_id = set_default_job_id(client, demisto.args()) return_results(result_set_default_id) elif demisto.command() == "arcanna-send-event-feedback": result_send_feedback = send_event_feedback(client, feature_mapping, demisto.args()) return_results(result_send_feedback) elif demisto.command() == "arcanna-send-bulk-events": result_bulk = send_bulk_events(client, feature_mapping, demisto.args()) return_results(result_bulk) elif demisto.command() == "arcanna-get-feedback-field": result_feedback_field = get_feedback_field(demisto.params()) return_results(result_feedback_field) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ api_key = demisto.params().get('apikey') # get the service API url base_url = urljoin(demisto.params()['url']) verify_certificate = not demisto.params().get('insecure', False) feature_mapping = demisto.params().get('feature_mapping') proxy = demisto.params().get('proxy', False) default_job_id = demisto.params().get('default_job_id', -1) demisto.debug(f'Command being called is {demisto.command()}') try: client = Client( api_key=api_key, base_url=base_url, verify=verify_certificate, proxy=proxy, default_job_id=default_job_id ) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result_test = test_module(client, feature_mapping) return_results(result_test) elif demisto.command() == "arcanna-get-jobs": result_get_jobs = get_jobs(client) return_results(result_get_jobs) elif demisto.command() == "arcanna-send-event": result_send_event = post_event(client, demisto.args()) return_results(result_send_event) elif demisto.command() == "arcanna-get-event-status": result_get_event = get_event_status(client, demisto.args()) return_results(result_get_event) elif demisto.command() == "arcanna-get-default-job-id": result_get_default_id = get_default_job_id(client) return_results(result_get_default_id) elif demisto.command() == "arcanna-set-default-job-id": result_set_default_id = set_default_job_id(client, demisto.args()) return_results(result_set_default_id) elif demisto.command() == "arcanna-send-event-feedback": result_send_feedback = send_event_feedback(client, feature_mapping, demisto.args()) return_results(result_send_feedback) elif demisto.command() == "arcanna-send-bulk-events": result_bulk = send_bulk_events(client, feature_mapping, demisto.args()) return_results(result_bulk) elif demisto.command() == "arcanna-get-feedback-field": result_feedback_field = get_feedback_field(demisto.params()) return_results(result_feedback_field) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
31,732
def get_employee_information_command(client, args): email_address = str(args.get('email_address', '')) response = client.get_employee_information_request(email_address) command_results = CommandResults( outputs_prefix='AbnormalSecurity.EmployeeDetails', outputs_key_field='', outputs=response, raw_response=response ) return command_results
def get_employee_information_command(client, args): email_address = str(args.get('email_address', '')) response = client.get_employee_information_request(email_address) command_results = CommandResults( outputs_prefix='AbnormalSecurity.Employee', outputs_key_field='', outputs=response, raw_response=response ) return command_results
30,993
def check_for_mirrors(): """ Checks for newly created mirrors and handles the mirroring process """ integration_context = get_integration_context(SYNC_CONTEXT) if integration_context.get('mirrors'): mirrors = json.loads(integration_context['mirrors']) updated_mirrors = [] updated_users = [] for mirror in mirrors: if not mirror['mirrored']: investigation_id = mirror['investigation_id'] demisto.info(f'Mirroring: {investigation_id}') mirror = mirrors.pop(mirrors.index(mirror)) if mirror['mirror_to'] and mirror['mirror_direction'] and mirror['mirror_type']: mirror_type = mirror['mirror_type'] auto_close = mirror['auto_close'] direction = mirror['mirror_direction'] channel_id = mirror['channel_id'] if isinstance(auto_close, str): auto_close = bool(strtobool(auto_close)) users: List[Dict] = demisto.mirrorInvestigation(investigation_id, f'{mirror_type}:{direction}', auto_close) if mirror_type != 'none': try: invited_users = invite_to_mirrored_channel(channel_id, users) updated_users.extend(invited_users) except Exception as error: demisto.error(f"There was an error while invite to mirror channel: {error}") mirror['mirrored'] = True updated_mirrors.append(mirror) else: demisto.info(f'Could not mirror {investigation_id}') if updated_mirrors: context = {'mirrors': updated_mirrors} if updated_users: context['users'] = updated_users set_to_integration_context_with_retries(context, OBJECTS_TO_KEYS, SYNC_CONTEXT)
def check_for_mirrors(): """ Checks for newly created mirrors and handles the mirroring process """ integration_context = get_integration_context(SYNC_CONTEXT) if integration_context.get('mirrors'): mirrors = json.loads(integration_context['mirrors']) updated_mirrors = [] updated_users = [] for mirror in mirrors: if not mirror['mirrored']: investigation_id = mirror['investigation_id'] demisto.info(f'Mirroring: {investigation_id}') mirror = mirrors.pop(mirrors.index(mirror)) if mirror['mirror_to'] and mirror['mirror_direction'] and mirror['mirror_type']: mirror_type = mirror['mirror_type'] auto_close = mirror['auto_close'] direction = mirror['mirror_direction'] channel_id = mirror['channel_id'] if isinstance(auto_close, str): auto_close = bool(strtobool(auto_close)) users: List[Dict] = demisto.mirrorInvestigation(investigation_id, f'{mirror_type}:{direction}', auto_close) if mirror_type != 'none': try: invited_users = invite_to_mirrored_channel(channel_id, users) updated_users.extend(invited_users) except Exception as error: demisto.error(f"Could not invite investigation users to the mirrored channel: {error}") mirror['mirrored'] = True updated_mirrors.append(mirror) else: demisto.info(f'Could not mirror {investigation_id}') if updated_mirrors: context = {'mirrors': updated_mirrors} if updated_users: context['users'] = updated_users set_to_integration_context_with_retries(context, OBJECTS_TO_KEYS, SYNC_CONTEXT)
39,617
def _compile_build_meta(build_lib, version, pg_config, runstate_dir, shared_dir, version_suffix): from edb.common import verutils parsed_version = verutils.parse_version(version) vertuple = list(parsed_version._asdict().values()) vertuple[2] = int(vertuple[2]) if version_suffix: vertuple[4] = tuple(version_suffix.split('.')) vertuple = tuple(vertuple) pg_config_path = pathlib.Path(pg_config) if not pg_config_path.is_absolute(): pg_config_path = f"_ROOT / {str(pg_config_path)!r}" else: pg_config_path = repr(str(pg_config_path)) runstate_dir_path = pathlib.Path(runstate_dir) if not runstate_dir_path.is_absolute(): runstate_dir_path = f"_ROOT / {str(runstate_dir_path)!r}" else: runstate_dir_path = repr(str(runstate_dir_path)) shared_dir_path = pathlib.Path(shared_dir) if not shared_dir_path.is_absolute(): shared_dir_path = f"_ROOT / {str(shared_dir_path)!r}" else: shared_dir_path = repr(str(shared_dir_path)) content = textwrap.dedent('''\ # # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # # THIS FILE HAS BEEN AUTOMATICALLY GENERATED. # import pathlib _ROOT = pathlib.Path(__file__).parent PG_CONFIG_PATH = {pg_config_path} RUNSTATE_DIR = {runstate_dir_path} SHARED_DATA_DIR = {shared_dir_path} VERSION = {version!r} ''').format( version=vertuple, pg_config_path=pg_config_path, runstate_dir_path=runstate_dir_path, shared_dir_path=shared_dir_path, ) directory = build_lib / 'edb' if not directory.exists(): directory.mkdir(parents=True) with open(directory / '_buildmeta.py', 'w+t') as f: f.write(content)
def _compile_build_meta(build_lib, version, pg_config, runstate_dir, shared_dir, version_suffix): from edb.common import verutils parsed_version = verutils.parse_version(version) vertuple = list(parsed_version._asdict().values()) vertuple[2] = int(vertuple[2]) if version_suffix: vertuple[4] = tuple(version_suffix.split('.')) vertuple = tuple(vertuple) pg_config_path = pathlib.Path(pg_config) if not pg_config_path.is_absolute(): pg_config_path = f"_ROOT / {str(pg_config_path)!r}" else: pg_config_path = repr(str(pg_config_path)) runstate_dir_path = pathlib.Path(runstate_dir) if not runstate_dir_path.is_absolute(): runstate_dir_path = f"{_ROOT} / {str(runstate_dir_path)!r}" else: runstate_dir_path = repr(str(runstate_dir_path)) shared_dir_path = pathlib.Path(shared_dir) if not shared_dir_path.is_absolute(): shared_dir_path = f"_ROOT / {str(shared_dir_path)!r}" else: shared_dir_path = repr(str(shared_dir_path)) content = textwrap.dedent('''\ # # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # # THIS FILE HAS BEEN AUTOMATICALLY GENERATED. # import pathlib _ROOT = pathlib.Path(__file__).parent PG_CONFIG_PATH = {pg_config_path} RUNSTATE_DIR = {runstate_dir_path} SHARED_DATA_DIR = {shared_dir_path} VERSION = {version!r} ''').format( version=vertuple, pg_config_path=pg_config_path, runstate_dir_path=runstate_dir_path, shared_dir_path=shared_dir_path, ) directory = build_lib / 'edb' if not directory.exists(): directory.mkdir(parents=True) with open(directory / '_buildmeta.py', 'w+t') as f: f.write(content)
23,649
def get_total_irradiance(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=None, airmass=None, albedo=.25, surface_type=None, model='isotropic', model_perez='allsitescomposite1990', **kwargs): r""" Determine total in-plane irradiance and its beam, sky diffuse and ground reflected components, using the specified sky diffuse irradiance model. .. math:: I_{tot} = I_{beam} + I_{sky diffuse} + I_{ground} Sky diffuse models include: * isotropic (default) * klucher * haydavies * reindl * king * perez Parameters ---------- surface_tilt : numeric Panel tilt from horizontal.[degree] surface_azimuth : numeric Panel azimuth from north. [degree] solar_zenith : numeric Solar zenith angle. [degree] solar_azimuth : numeric Solar azimuth angle. [degree] dni : numeric Direct Normal Irradiance. [W/m2] ghi : numeric Global horizontal irradiance. [W/m2] dhi : numeric Diffuse horizontal irradiance. [W/m2] dni_extra : None or numeric, default None Extraterrestrial direct normal irradiance. [W/m2] airmass : None or numeric, default None Relative airmass (not adjusted for pressure). [unitless] albedo : numeric, default 0.25 Surface albedo. [unitless] surface_type : None or String, default None Surface type. See :py:func:`~pvlib.irradiance.grounddiffuse` for the list of accepted values. model : String, default 'isotropic' Irradiance model. Can be one of 'isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez'. model_perez : String, default 'allsitescomposite1990' Used only if model='perez'. See :py:func:`~pvlib.irradiance.perez`. Returns ------- total_irrad : OrderedDict or DataFrame Contains keys/columns ``'poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'``. Notes ----- Models 'haydavies', 'reindl', or 'perez' require 'dni_extra'. Values can be calculated using :py:func:`~pvlib.irradiance.get_extra_radiation`. The 'perez' model requires relative airmass ('airmass') as input. If 'airmass' is not provided, it is calculated usign the defaults in :py:func:`~pvlib.irradiance.get_relative_airmass`. """ poa_sky_diffuse = get_sky_diffuse( surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=dni_extra, airmass=airmass, model=model, model_perez=model_perez) poa_ground_diffuse = get_ground_diffuse(surface_tilt, ghi, albedo, surface_type) aoi_ = aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) irrads = poa_components(aoi_, dni, poa_sky_diffuse, poa_ground_diffuse) return irrads
def get_total_irradiance(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=None, airmass=None, albedo=.25, surface_type=None, model='isotropic', model_perez='allsitescomposite1990', **kwargs): r""" Determine total in-plane irradiance and its beam, sky diffuse and ground reflected components, using the specified sky diffuse irradiance model. .. math:: I_{tot} = I_{beam} + I_{sky diffuse} + I_{ground} Sky diffuse models include: * isotropic (default) * klucher * haydavies * reindl * king * perez Parameters ---------- surface_tilt : numeric Panel tilt from horizontal.[degree] surface_azimuth : numeric Panel azimuth from north. [degree] solar_zenith : numeric Solar zenith angle. [degree] solar_azimuth : numeric Solar azimuth angle. [degree] dni : numeric Direct Normal Irradiance. [W/m2] ghi : numeric Global horizontal irradiance. [W/m2] dhi : numeric Diffuse horizontal irradiance. [W/m2] dni_extra : None or numeric, default None Extraterrestrial direct normal irradiance. [W/m2] airmass : None or numeric, default None Relative airmass (not adjusted for pressure). [unitless] albedo : numeric, default 0.25 Surface albedo. [unitless] surface_type : None or String, default None Surface type. See :py:func:`~pvlib.irradiance.grounddiffuse` for the list of accepted values. model : String, default 'isotropic' Irradiance model. Can be one of 'isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez'. model_perez : String, default 'allsitescomposite1990' Used only if model='perez'. See :py:func:`~pvlib.irradiance.perez`. Returns ------- total_irrad : OrderedDict or DataFrame Contains keys/columns ``'poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'``. Notes ----- Models ``'haydavies'``, ``'reindl'``, or ``'perez'`` require ``dni_extra``. Values can be calculated using :py:func:`~pvlib.irradiance.get_extra_radiation`. The 'perez' model requires relative airmass ('airmass') as input. If 'airmass' is not provided, it is calculated usign the defaults in :py:func:`~pvlib.irradiance.get_relative_airmass`. """ poa_sky_diffuse = get_sky_diffuse( surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=dni_extra, airmass=airmass, model=model, model_perez=model_perez) poa_ground_diffuse = get_ground_diffuse(surface_tilt, ghi, albedo, surface_type) aoi_ = aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) irrads = poa_components(aoi_, dni, poa_sky_diffuse, poa_ground_diffuse) return irrads
59,430
def schedule(circuits: Union[QuantumCircuit, List[QuantumCircuit]], backend: Optional[BaseBackend] = None, inst_map: Optional[InstructionScheduleMap] = None, meas_map: Optional[List[List[int]]] = None, method: Optional[Union[str, List[str]]] = None) -> Union[Schedule, List[Schedule]]: """ Schedule a circuit to a pulse ``Schedule``, using the backend, according to any specified methods. Supported methods are documented in :py:mod:`qiskit.scheduler.schedule_circuit`. Args: circuits: The quantum circuit or circuits to translate backend: A backend instance, which contains hardware-specific data required for scheduling inst_map: Mapping of circuit operations to pulse schedules. If ``None``, defaults to the ``backend``\'s ``instruction_schedule_map`` meas_map: List of sets of qubits that must be measured together. If ``None``, defaults to the ``backend``\'s ``meas_map`` method: Optionally specify a particular scheduling method Returns: A pulse ``Schedule`` that implements the input circuit Raises: QiskitError: If ``inst_map`` and ``meas_map`` are not passed and ``backend`` is not passed """ start_time = time() if inst_map is None: if backend is None: raise QiskitError("Must supply either a backend or InstructionScheduleMap for " "scheduling passes.") if backend.defaults() is None: raise QiskitError("The backend does not support pulse.") inst_map = backend.defaults().instruction_schedule_map if meas_map is None: if backend is None: raise QiskitError("Must supply either a backend or a meas_map for scheduling passes.") meas_map = backend.configuration().meas_map schedule_config = ScheduleConfig(inst_map=inst_map, meas_map=meas_map) circuits = circuits if isinstance(circuits, list) else [circuits] schedules = [schedule_circuit(circuit, schedule_config, method) for circuit in circuits] end_time = time() _log_schedule_time(start_time, end_time) return schedules[0] if len(schedules) == 1 else schedules
def schedule(circuits: Union[QuantumCircuit, List[QuantumCircuit]], backend: Optional[BaseBackend] = None, inst_map: Optional[InstructionScheduleMap] = None, meas_map: Optional[List[List[int]]] = None, method: Optional[Union[str, List[str]]] = None) -> Union[Schedule, List[Schedule]]: """ Schedule a circuit to a pulse ``Schedule``, using the backend, according to any specified methods. Supported methods are documented in :py:mod:`qiskit.scheduler.schedule_circuit`. Args: circuits: The quantum circuit or circuits to translate backend: A backend instance, which contains hardware-specific data required for scheduling inst_map: Mapping of circuit operations to pulse schedules. If ``None``, defaults to the ``backend``\'s ``instruction_schedule_map`` meas_map: List of sets of qubits that must be measured together. If ``None``, defaults to the ``backend``\'s ``meas_map`` method: Optionally specify a particular scheduling method Returns: A pulse ``Schedule`` that implements the input circuit Raises: QiskitError: If ``inst_map`` and ``meas_map`` are not passed and ``backend`` is not passed """ start_time = time() if inst_map is None: if backend is None: raise QiskitError("Must supply either a backend or InstructionScheduleMap for " "scheduling passes.") defaults = backend.defaults() if defaults is None: raise QiskitError("The backend defaults are unavailable. The backend may not support pulse.") inst_map = defaults.instruction_schedule_map if meas_map is None: if backend is None: raise QiskitError("Must supply either a backend or a meas_map for scheduling passes.") meas_map = backend.configuration().meas_map schedule_config = ScheduleConfig(inst_map=inst_map, meas_map=meas_map) circuits = circuits if isinstance(circuits, list) else [circuits] schedules = [schedule_circuit(circuit, schedule_config, method) for circuit in circuits] end_time = time() _log_schedule_time(start_time, end_time) return schedules[0] if len(schedules) == 1 else schedules
13,299
def _project_docs(db, project_name=None, show_empty_releases=False): queries = [Release.yanked.is_(False)] if not show_empty_releases: queries.append(Release.files) releases_list = ( db.query(Release.id) .filter(*queries) .order_by( Release.project_id, Release.is_prerelease.nullslast(), Release._pypi_ordering.desc(), ) .distinct(Release.project_id) ) if project_name: releases_list = releases_list.join(Project).filter(Project.name == project_name) releases_list = releases_list.subquery() r = aliased(Release, name="r") all_versions = ( db.query(func.array_agg(r.version)) .filter(r.project_id == Release.project_id) .correlate(Release) .as_scalar() .label("all_versions") ) classifiers = ( db.query(func.array_agg(Classifier.classifier)) .select_from(release_classifiers) .join(Classifier, Classifier.id == release_classifiers.c.trove_id) .filter(Release.id == release_classifiers.c.release_id) .correlate(Release) .as_scalar() .label("classifiers") ) release_data = ( db.query( Description.raw.label("description"), Release.version.label("latest_version"), all_versions, Release.author, Release.author_email, Release.maintainer, Release.maintainer_email, Release.home_page, Release.summary, Release.keywords, Release.platform, Release.download_url, Release.created, classifiers, Project.normalized_name, Project.name, Project.zscore, ) .select_from(releases_list) .join(Release, Release.id == releases_list.c.id) .join(Description) .outerjoin(Release.project) ) for release in windowed_query(release_data, Release.project_id, 50000): p = ProjectDocument.from_db(release) p._index = None p.full_clean() doc = p.to_dict(include_meta=True) doc.pop("_index", None) yield doc
def _project_docs(db, project_name=None): releases_list = ( db.query(Release.id) .filter(*queries) .order_by( Release.project_id, Release.is_prerelease.nullslast(), Release._pypi_ordering.desc(), ) .distinct(Release.project_id) ) if project_name: releases_list = releases_list.join(Project).filter(Project.name == project_name) releases_list = releases_list.subquery() r = aliased(Release, name="r") all_versions = ( db.query(func.array_agg(r.version)) .filter(r.project_id == Release.project_id) .correlate(Release) .as_scalar() .label("all_versions") ) classifiers = ( db.query(func.array_agg(Classifier.classifier)) .select_from(release_classifiers) .join(Classifier, Classifier.id == release_classifiers.c.trove_id) .filter(Release.id == release_classifiers.c.release_id) .correlate(Release) .as_scalar() .label("classifiers") ) release_data = ( db.query( Description.raw.label("description"), Release.version.label("latest_version"), all_versions, Release.author, Release.author_email, Release.maintainer, Release.maintainer_email, Release.home_page, Release.summary, Release.keywords, Release.platform, Release.download_url, Release.created, classifiers, Project.normalized_name, Project.name, Project.zscore, ) .select_from(releases_list) .join(Release, Release.id == releases_list.c.id) .join(Description) .outerjoin(Release.project) ) for release in windowed_query(release_data, Release.project_id, 50000): p = ProjectDocument.from_db(release) p._index = None p.full_clean() doc = p.to_dict(include_meta=True) doc.pop("_index", None) yield doc
2,983
def test_groupby_crash_on_nunique(axis): # Fix following 30253 df = pd.DataFrame( {("A", "B"): [1, 2], ("A", "C"): [1, 3], ("D", "B"): [0, 0]}, index=pd.bdate_range("20191212", "20191213"), ) df.columns.names = ["COL1", "COL2"] axis_number = df._get_axis_number(axis) if not axis_number: df = df.T nunique_t = df.T.groupby(level=0, axis=axis).nunique().T nunique = df.groupby(axis=int(not axis_number), level=0).nunique() pd.testing.assert_frame_equal(nunique_t, nunique)
def test_groupby_crash_on_nunique(axis): # Fix following 30253 df = pd.DataFrame( {("A", "B"): [1, 2], ("A", "C"): [1, 3], ("D", "B"): [0, 0]}, index=pd.bdate_range("20191212", "20191213"), ) df.columns.names = ["COL1", "COL2"] axis_number = df._get_axis_number(axis) if not axis_number: df = df.T nunique_t = df.T.groupby(level=0, axis=axis).nunique().T nunique = df.groupby(axis=int(not axis_number), level=0).nunique() tm.assert_frame_equal(result, expected)
14,421
def set_mru_totp_code(email, token, env): conn, c = open_database(env, with_connection=True) c.execute('UPDATE totp_credentials SET mru_token=? WHERE user_email=?', (token, email)) if c.rowcount != 1: conn.close() raise ValueError("That's not a user (%s)." % email) conn.commit() return "OK"
def set_mru_totp_code(email, token, env): conn, c = open_database(env, with_connection=True) c.execute('UPDATE totp_credentials SET mru_token=? WHERE user_email=?', (token, email)) if c.rowcount != 1: conn.close() raise ValueError("That's not a user ({}).".format(mail)) conn.commit() return "OK"
3,892
def is_aperiodic(G): """Returns True if `G` is aperiodic. A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph. Parameters ---------- G : NetworkX DiGraph A directed graph Returns ------- bool True if the graph is aperiodic False otherwise Raises ------ NetworkXError If `G` is not directed Examples -------- A graph consisting of one cycle, the length of which is 2 (k = 2 divides the length of every cycle in the graph and therefore the graph is not aperiodic):: >>> DG = nx.DiGraph([(1, 2), (2, 1)]) >>> nx.is_aperiodic(DG) False A graph consisting of two cycles, the length of which differs by one (cycle lengths are coprime, so there is no k > 1 dividing each cycle length and therefore the graph is aperiodic):: >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1), (1, 4), (4, 1)]) >>> nx.is_aperiodic(DG) True Graph without cycles (the lengths of all cycles are equal to zero, so every k > 1 dividing each cycle length and therefore the graph is not aperiodic):: >>> DG = nx.DiGraph([(1, 2), (2, 3)]) >>> nx.is_aperiodic(DG) False Notes ----- This uses the method outlined in [1]_, which runs in $O(m)$ time given $m$ edges in `G`. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles. References ---------- .. [1] Jarvis, J. P.; Shier, D. R. (1996), "Graph-theoretic analysis of finite Markov chains," in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press. """ if not G.is_directed(): raise nx.NetworkXError("is_aperiodic not defined for undirected graphs") s = arbitrary_element(G) levels = {s: 0} this_level = [s] g = 0 lev = 1 while this_level: next_level = [] for u in this_level: for v in G[u]: if v in levels: # Non-Tree Edge g = gcd(g, levels[u] - levels[v] + 1) else: # Tree Edge next_level.append(v) levels[v] = lev this_level = next_level lev += 1 if len(levels) == len(G): # All nodes in tree return g == 1 else: return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
def is_aperiodic(G): """Returns True if `G` is aperiodic. A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph. Parameters ---------- G : NetworkX DiGraph A directed graph Returns ------- bool True if the graph is aperiodic False otherwise Raises ------ NetworkXError If `G` is not directed Examples -------- A graph consisting of one cycle, the length of which is 2 (k = 2 divides the length of every cycle in the graph and therefore the graph is not aperiodic):: >>> DG = nx.DiGraph([(1, 2), (2, 1)]) >>> nx.is_aperiodic(DG) False A graph consisting of two cycles, the length of which differs by one (cycle lengths are coprime, so there is no single value of k, where k > 1 that divides each cycle length and therefore the graph is aperiodic):: >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1), (1, 4), (4, 1)]) >>> nx.is_aperiodic(DG) True Graph without cycles (the lengths of all cycles are equal to zero, so every k > 1 dividing each cycle length and therefore the graph is not aperiodic):: >>> DG = nx.DiGraph([(1, 2), (2, 3)]) >>> nx.is_aperiodic(DG) False Notes ----- This uses the method outlined in [1]_, which runs in $O(m)$ time given $m$ edges in `G`. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles. References ---------- .. [1] Jarvis, J. P.; Shier, D. R. (1996), "Graph-theoretic analysis of finite Markov chains," in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press. """ if not G.is_directed(): raise nx.NetworkXError("is_aperiodic not defined for undirected graphs") s = arbitrary_element(G) levels = {s: 0} this_level = [s] g = 0 lev = 1 while this_level: next_level = [] for u in this_level: for v in G[u]: if v in levels: # Non-Tree Edge g = gcd(g, levels[u] - levels[v] + 1) else: # Tree Edge next_level.append(v) levels[v] = lev this_level = next_level lev += 1 if len(levels) == len(G): # All nodes in tree return g == 1 else: return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
46,023
def edge_aware_blur_pool2d( input: torch.Tensor, kernel_size: int, edge_threshold: float = 2.0, edge_dilatation_kernel_size: int = 3, epsilon: float = 1e-6, ) -> torch.Tensor: r"""Blur the input tensor while maintaining its edges. Edge detection is done with the sobel filter, and blurring is done with a pool2d. Args: input: the input image to blur with shape :math:`(B, C, H, W)`. kernel_size: the kernel size for max pooling. edge_threshold: threshold for the edge decision rule; edge/non-edge. edge_dilatation_kernel_size: the kernel size for dilating the edges. epsilon: for numerical stability. Returns: The blurred tensor of shape :math:`(B, C, H, W)`. """ input = F.pad(input, (2, 2, 2, 2), mode="reflect") # pad to avoid artifacts near physical edges blurred_input = blur_pool2d(input, kernel_size=kernel_size, stride=1) # blurry version of the input # calculate the edges (add epsilon to avoid taking the log of 0) log_input, log_thresh = torch.log2(input + epsilon), torch.log2(torch.tensor(edge_threshold)) edges_x = log_input[..., :, 4:] - log_input[..., :, :-4] edges_y = log_input[..., 4:, :] - log_input[..., :-4, :] edges_x, edges_y = torch.mean(edges_x, dim=-3, keepdim=True), torch.mean(edges_y, dim=-3, keepdim=True) edges_x_mask, edges_y_mask = edges_x.abs() > log_thresh.to(edges_x), edges_y.abs() > log_thresh.to(edges_y) edges_xy_mask = (edges_x_mask[..., 2:-2, :] + edges_y_mask[..., :, 2:-2]).type_as(input) # dilate the content edges to have a soft mask of edges dilated_edges = F.max_pool3d(edges_xy_mask, edge_dilatation_kernel_size, 1, edge_dilatation_kernel_size // 2) # slice the padded regions input = input[..., 2:-2, 2:-2] blurred_input = blurred_input[..., 2:-2, 2:-2] # fuse the input image on edges and blurry input everywhere else blurred = dilated_edges * input + (1.0 - dilated_edges) * blurred_input return blurred
def edge_aware_blur_pool2d( input: torch.Tensor, kernel_size: int, edge_threshold: float = 2.0, edge_dilation_kernel_size: int = 3, epsilon: float = 1e-6, ) -> torch.Tensor: r"""Blur the input tensor while maintaining its edges. Edge detection is done with the sobel filter, and blurring is done with a pool2d. Args: input: the input image to blur with shape :math:`(B, C, H, W)`. kernel_size: the kernel size for max pooling. edge_threshold: threshold for the edge decision rule; edge/non-edge. edge_dilatation_kernel_size: the kernel size for dilating the edges. epsilon: for numerical stability. Returns: The blurred tensor of shape :math:`(B, C, H, W)`. """ input = F.pad(input, (2, 2, 2, 2), mode="reflect") # pad to avoid artifacts near physical edges blurred_input = blur_pool2d(input, kernel_size=kernel_size, stride=1) # blurry version of the input # calculate the edges (add epsilon to avoid taking the log of 0) log_input, log_thresh = torch.log2(input + epsilon), torch.log2(torch.tensor(edge_threshold)) edges_x = log_input[..., :, 4:] - log_input[..., :, :-4] edges_y = log_input[..., 4:, :] - log_input[..., :-4, :] edges_x, edges_y = torch.mean(edges_x, dim=-3, keepdim=True), torch.mean(edges_y, dim=-3, keepdim=True) edges_x_mask, edges_y_mask = edges_x.abs() > log_thresh.to(edges_x), edges_y.abs() > log_thresh.to(edges_y) edges_xy_mask = (edges_x_mask[..., 2:-2, :] + edges_y_mask[..., :, 2:-2]).type_as(input) # dilate the content edges to have a soft mask of edges dilated_edges = F.max_pool3d(edges_xy_mask, edge_dilatation_kernel_size, 1, edge_dilatation_kernel_size // 2) # slice the padded regions input = input[..., 2:-2, 2:-2] blurred_input = blurred_input[..., 2:-2, 2:-2] # fuse the input image on edges and blurry input everywhere else blurred = dilated_edges * input + (1.0 - dilated_edges) * blurred_input return blurred
26,422
def _object_upload(ul_handler, **kwargs): ul_chunks = ul_handler.chunk_prep() return next(ul_chunks.next), 0, 'd41d8cd98f00b204e9800998ecf8427e'
def _object_upload(ul_handler, **kwargs): ul_chunks = ul_handler.chunk_prep() return next(ul_chunks), 0, 'd41d8cd98f00b204e9800998ecf8427e'
47,119
def main(): # Parse the arguments args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.model_name_or_path) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForSeq2SeqLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = AutoModelForSeq2SeqLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Set decoder_start_token_id if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert (args.target_lang is not None and args.source_lang is not None ), "mBart requires --target_lang and --source_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[args.target_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(args.target_lang) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") prefix = args.source_prefix if args.source_prefix is not None else "" # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names # For translation we set the codes of our source and target languages (only useful for mBART, the others will # ignore those attributes). if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): if args.source_lang is not None: tokenizer.src_lang = args.source_lang if args.target_lang is not None: tokenizer.tgt_lang = args.target_lang # Get the language codes for input/target. source_lang = args.source_lang.split("_")[0] target_lang = args.target_lang.split("_")[0] padding = "max_length" if args.pad_to_max_length else False # Temporarily set max_target_length for training. max_target_length = args.max_target_length padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs processed_datasets = raw_datasets.map( preprocess_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if accelerator.use_fp16 else None, ) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be # shorter in multiprocess) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) metric = load_metric("sacrebleu") def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break model.eval() if args.val_max_target_length is None: args.val_max_target_length = args.max_target_length gen_kwargs = { "max_length": args.val_max_target_length if args is not None else config.max_length, "num_beams": args.num_beams, } for step, batch in enumerate(eval_dataloader): with torch.no_grad(): generated_tokens = model.generate( batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs, ) generated_tokens = accelerator.pad_across_processes(generated_tokens, dim=1, pad_index=tokenizer.pad_token_id) labels = batch["labels"] if not args.pad_to_max_length: # If we did not pad to max length, we need to pad the labels too labels = accelerator.pad_across_processes(batch["labels"], dim=1, pad_index=tokenizer.pad_token_id) generated_tokens = accelerator.gather(generated_tokens).cpu().numpy() labels = accelerator.gather(labels).cpu().numpy() if args.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) metric.add_batch( predictions=accelerator.gather(decoded_preds), references=accelerator.gather(decoded_labels), ) eval_metric = metric.compute() logger.info(f"epoch {epoch}: {eval_metric}") if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
def main(): # Parse the arguments args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.model_name_or_path) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForSeq2SeqLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = AutoModelForSeq2SeqLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Set decoder_start_token_id if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert (args.target_lang is not None and args.source_lang is not None ), "mBart requires --target_lang and --source_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[args.target_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(args.target_lang) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") prefix = args.source_prefix if args.source_prefix is not None else "" # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names # For translation we set the codes of our source and target languages (only useful for mBART, the others will # ignore those attributes). if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): if args.source_lang is not None: tokenizer.src_lang = args.source_lang if args.target_lang is not None: tokenizer.tgt_lang = args.target_lang # Get the language codes for input/target. source_lang = args.source_lang.split("_")[0] target_lang = args.target_lang.split("_")[0] padding = "max_length" if args.pad_to_max_length else False # Temporarily set max_target_length for training. max_target_length = args.max_target_length padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs processed_datasets = raw_datasets.map( preprocess_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if accelerator.use_fp16 else None, ) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be # shorter in multiprocess) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) metric = load_metric("sacrebleu") def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break model.eval() if args.val_max_target_length is None: args.val_max_target_length = args.max_target_length gen_kwargs = { "max_length": args.val_max_target_length if args is not None else config.max_length, "num_beams": args.num_beams, } for step, batch in enumerate(eval_dataloader): with torch.no_grad(): generated_tokens = model.generate( batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs, ) generated_tokens = accelerator.pad_across_processes(generated_tokens, dim=1, pad_index=tokenizer.pad_token_id) labels = batch["labels"] if not args.pad_to_max_length: # If we did not pad to max length, we need to pad the labels too labels = accelerator.pad_across_processes(batch["labels"], dim=1, pad_index=tokenizer.pad_token_id) generated_tokens = accelerator.gather(generated_tokens).cpu().numpy() labels = accelerator.gather(labels).cpu().numpy() if args.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) metric.add_batch(predictions=decoded_preds, references=decoded_labels) eval_metric = metric.compute() logger.info(f"epoch {epoch}: {eval_metric}") if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
23,142
def store( sources: Array | Collection[Array], targets: Array | Collection[Array], lock: bool | Lock = True, regions: tuple[slice, ...] | Collection[tuple[slice, ...]] | None = None, compute: bool = True, return_stored: bool = False, **kwargs, ): """Store dask arrays in array-like objects, overwrite data in target This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk so that it does not have to fill up memory. For best performance you can align the block size of the storage target with the block size of your array. If your data fits in memory then you may prefer calling ``np.array(myarray)`` instead. Parameters ---------- sources: Array or collection of Arrays targets: array-like or Delayed or collection of array-likes and/or Delayeds These should support setitem syntax ``target[10:20] = ...`` lock: boolean or threading.Lock, optional Whether or not to lock the data stores while storing. Pass True (lock each file individually), False (don't lock) or a particular :class:`threading.Lock` object to be shared among all writes. regions: tuple of slices or collection of tuples of slices Each ``region`` tuple in ``regions`` should be such that ``target[region].shape = source.shape`` for the corresponding source and target in sources and targets, respectively. If this is a tuple, the contents will be assumed to be slices, so do not provide a tuple of tuples. compute: boolean, optional If true compute immediately; return :class:`dask.delayed.Delayed` otherwise. return_stored: boolean, optional Optionally return the stored result (default False). kwargs: Parameters passed to compute/persist (only used if compute=True) Returns ------- If return_stored=True tuple of Arrays If return_stored=False and compute=True None If return_stored=False and compute=False Delayed Examples -------- >>> import h5py # doctest: +SKIP >>> f = h5py.File('myfile.hdf5', mode='a') # doctest: +SKIP >>> dset = f.create_dataset('/data', shape=x.shape, ... chunks=x.chunks, ... dtype='f8') # doctest: +SKIP >>> store(x, dset) # doctest: +SKIP Alternatively store many arrays at the same time >>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP """ if isinstance(sources, Array): sources = [sources] targets = [targets] # type: ignore if any(not isinstance(s, Array) for s in sources): raise ValueError("All sources must be dask array objects") if len(sources) != len(targets): raise ValueError( "Different number of sources [%d] and targets [%d]" % (len(sources), len(targets)) ) if isinstance(regions, tuple) or regions is None: regions = [regions] # type: ignore if len(sources) > 1 and len(regions) == 1: regions *= len(sources) # type: ignore if len(sources) != len(regions): raise ValueError( "Different number of sources [%d] and targets [%d] than regions [%d]" % (len(sources), len(targets), len(regions)) ) # Optimize all sources together sources_hlg = HighLevelGraph.merge(*[e.__dask_graph__() for e in sources]) sources_layer = Array.__dask_optimize__( sources_hlg, list(core.flatten([e.__dask_keys__() for e in sources])) ) sources_name = "store-sources-" + tokenize(sources) layers = {sources_name: sources_layer} dependencies: dict[str, set] = {sources_name: set()} # Optimize all targets together targets_keys = [] targets_dsks = [] for t in targets: if isinstance(t, Delayed): targets_keys.append(t.key) targets_dsks.append(t.__dask_graph__()) elif is_dask_collection(t): raise TypeError("Targets must be either Delayed objects or array-likes") if targets_dsks: targets_hlg = HighLevelGraph.merge(*targets_dsks) targets_layer = Delayed.__dask_optimize__(targets_hlg, targets_keys) targets_name = "store-targets-" + tokenize(targets_keys) layers[targets_name] = targets_layer dependencies[targets_name] = set() load_stored = return_stored and not compute map_names = [ "store-map-" + tokenize(s, t if isinstance(t, Delayed) else id(t), r) for s, t, r in zip(sources, targets, regions) ] map_keys: list = [] for s, t, n, r in zip(sources, targets, map_names, regions): map_layer = insert_to_ooc( keys=s.__dask_keys__(), chunks=s.chunks, out=t.key if isinstance(t, Delayed) else t, name=n, lock=lock, region=r, return_stored=return_stored, load_stored=load_stored, ) layers[n] = map_layer if isinstance(t, Delayed): dependencies[n] = {sources_name, targets_name} else: dependencies[n] = {sources_name} map_keys += map_layer.keys() if return_stored: store_dsk = HighLevelGraph(layers, dependencies) load_store_dsk: HighLevelGraph | Mapping = store_dsk if compute: store_dlyds = [Delayed(k, store_dsk, layer=k[0]) for k in map_keys] store_dlyds = persist(*store_dlyds, **kwargs) store_dsk_2 = HighLevelGraph.merge(*[e.dask for e in store_dlyds]) load_store_dsk = retrieve_from_ooc(map_keys, store_dsk, store_dsk_2) map_names = ["load-" + n for n in map_names] return tuple( Array(load_store_dsk, n, s.chunks, meta=s) for s, n in zip(sources, map_names) ) elif compute: store_dsk = HighLevelGraph(layers, dependencies) compute_as_if_collection(Array, store_dsk, map_keys, **kwargs) return None else: key = "store-" + tokenize(map_names) layers[key] = {key: map_keys} dependencies[key] = set(map_names) store_dsk = HighLevelGraph(layers, dependencies) return Delayed(key, store_dsk)
def store( sources: Array | Collection[Array], targets: Array | Collection[Array], lock: bool | Lock = True, regions: tuple[slice, ...] | Collection[tuple[slice, ...]] | None = None, compute: bool = True, return_stored: bool = False, **kwargs, ): """Store dask arrays in array-like objects, overwrite data in target This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk so that it does not have to fill up memory. For best performance you can align the block size of the storage target with the block size of your array. If your data fits in memory then you may prefer calling ``np.array(myarray)`` instead. Parameters ---------- sources: Array or collection of Arrays targets: array-like or Delayed or collection of array-likes and/or Delayeds These should support setitem syntax ``target[10:20] = ...`` lock: boolean or threading.Lock, optional Whether or not to lock the data stores while storing. Pass True (lock each file individually), False (don't lock) or a particular :class:`threading.Lock` object to be shared among all writes. regions: tuple of slices or collection of tuples of slices Each ``region`` tuple in ``regions`` should be such that ``target[region].shape = source.shape`` for the corresponding source and target in sources and targets, respectively. If this is a tuple, the contents will be assumed to be slices, so do not provide a tuple of tuples. compute: boolean, optional If true compute immediately; return :class:`dask.delayed.Delayed` otherwise. return_stored: boolean, optional Optionally return the stored result (default False). kwargs: Parameters passed to compute/persist (only used if compute=True) Returns ------- If return_stored=True tuple of Arrays If return_stored=False and compute=True None If return_stored=False and compute=False Delayed Examples -------- >>> import h5py # doctest: +SKIP >>> f = h5py.File('myfile.hdf5', mode='a') # doctest: +SKIP >>> dset = f.create_dataset('/data', shape=x.shape, ... chunks=x.chunks, ... dtype='f8') # doctest: +SKIP >>> store(x, dset) # doctest: +SKIP Alternatively store many arrays at the same time >>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP """ if isinstance(sources, Array): sources = [sources] targets = [targets] # type: ignore if any(not isinstance(s, Array) for s in sources): raise ValueError("All sources must be dask array objects") if len(sources) != len(targets): raise ValueError( "Different number of sources [%d] and targets [%d]" % (len(sources), len(targets)) ) if isinstance(regions, tuple) or regions is None: regions = [regions] if len(sources) > 1 and len(regions) == 1: regions *= len(sources) # type: ignore if len(sources) != len(regions): raise ValueError( "Different number of sources [%d] and targets [%d] than regions [%d]" % (len(sources), len(targets), len(regions)) ) # Optimize all sources together sources_hlg = HighLevelGraph.merge(*[e.__dask_graph__() for e in sources]) sources_layer = Array.__dask_optimize__( sources_hlg, list(core.flatten([e.__dask_keys__() for e in sources])) ) sources_name = "store-sources-" + tokenize(sources) layers = {sources_name: sources_layer} dependencies: dict[str, set] = {sources_name: set()} # Optimize all targets together targets_keys = [] targets_dsks = [] for t in targets: if isinstance(t, Delayed): targets_keys.append(t.key) targets_dsks.append(t.__dask_graph__()) elif is_dask_collection(t): raise TypeError("Targets must be either Delayed objects or array-likes") if targets_dsks: targets_hlg = HighLevelGraph.merge(*targets_dsks) targets_layer = Delayed.__dask_optimize__(targets_hlg, targets_keys) targets_name = "store-targets-" + tokenize(targets_keys) layers[targets_name] = targets_layer dependencies[targets_name] = set() load_stored = return_stored and not compute map_names = [ "store-map-" + tokenize(s, t if isinstance(t, Delayed) else id(t), r) for s, t, r in zip(sources, targets, regions) ] map_keys: list = [] for s, t, n, r in zip(sources, targets, map_names, regions): map_layer = insert_to_ooc( keys=s.__dask_keys__(), chunks=s.chunks, out=t.key if isinstance(t, Delayed) else t, name=n, lock=lock, region=r, return_stored=return_stored, load_stored=load_stored, ) layers[n] = map_layer if isinstance(t, Delayed): dependencies[n] = {sources_name, targets_name} else: dependencies[n] = {sources_name} map_keys += map_layer.keys() if return_stored: store_dsk = HighLevelGraph(layers, dependencies) load_store_dsk: HighLevelGraph | Mapping = store_dsk if compute: store_dlyds = [Delayed(k, store_dsk, layer=k[0]) for k in map_keys] store_dlyds = persist(*store_dlyds, **kwargs) store_dsk_2 = HighLevelGraph.merge(*[e.dask for e in store_dlyds]) load_store_dsk = retrieve_from_ooc(map_keys, store_dsk, store_dsk_2) map_names = ["load-" + n for n in map_names] return tuple( Array(load_store_dsk, n, s.chunks, meta=s) for s, n in zip(sources, map_names) ) elif compute: store_dsk = HighLevelGraph(layers, dependencies) compute_as_if_collection(Array, store_dsk, map_keys, **kwargs) return None else: key = "store-" + tokenize(map_names) layers[key] = {key: map_keys} dependencies[key] = set(map_names) store_dsk = HighLevelGraph(layers, dependencies) return Delayed(key, store_dsk)
45,587
def ReminderScheduled( intent: Text, trigger_date_time: datetime.datetime, entities: Union[List[Dict[Text, Any]], Dict[Text, Text]] = None, name: Optional[Text] = None, kill_on_user_message: bool = True, timestamp: Optional[float] = None, ) -> EventType: return { "event": "reminder", "timestamp": timestamp, "intent": intent, "entities": entities, "date_time": trigger_date_time.isoformat(), "name": name, "kill_on_user_msg": kill_on_user_message, }
def ReminderScheduled( intent: Text, trigger_date_time: datetime.datetime, entities: Optional[Union[List[Dict[Text, Any]], Dict[Text, Text]]] = None, name: Optional[Text] = None, kill_on_user_message: bool = True, timestamp: Optional[float] = None, ) -> EventType: return { "event": "reminder", "timestamp": timestamp, "intent": intent, "entities": entities, "date_time": trigger_date_time.isoformat(), "name": name, "kill_on_user_msg": kill_on_user_message, }
31,295
def get_indicators_command(client, args: dict) -> CommandResults: """ Gets indicator from opencti to readable output Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ indicator_type = argToList(args.get("indicator_types")) limit = int(args.get('limit', 50)) limit = 200 if limit > 200 else limit last_run_id, indicators_list = get_indicators(client, indicator_type, limit=limit) if indicators_list: indicators = [{'type': indicator['type'], 'value': indicator['value'], 'id': indicator['rawJSON']['id'], 'createdBy': indicator['rawJSON'].get('createdBy').get('id') if indicator['rawJSON'].get('createdBy') else None, 'score': indicator['rawJSON']['x_opencti_score'], 'description': indicator['rawJSON']['x_opencti_description'], 'labels': [label.get('value') for label in indicator['rawJSON'].get('objectLabel')], 'marking': [mark.get('definition') for mark in indicator['rawJSON'].get('objectMarking')] } for indicator in indicators_list] readable_output = tableToMarkdown('Indicators from OpenCTI', indicators, headers=["type", "value", "id"], removeNull=True) return CommandResults( outputs_prefix='OpenCTI.Indicators', outputs_key_field='id', outputs=indicators, readable_output=readable_output, raw_response=indicators_list ) else: return CommandResults(readable_output='No indicators')
def get_indicators_command(client, args: dict) -> CommandResults: """ Gets indicator from opencti to readable output Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ indicator_type = argToList(args.get("indicator_types")) limit = min(arg_to_number(args.get('limit', 50)), 200) last_run_id, indicators_list = get_indicators(client, indicator_type, limit=limit) if indicators_list: indicators = [{'type': indicator['type'], 'value': indicator['value'], 'id': indicator['rawJSON']['id'], 'createdBy': indicator['rawJSON'].get('createdBy').get('id') if indicator['rawJSON'].get('createdBy') else None, 'score': indicator['rawJSON']['x_opencti_score'], 'description': indicator['rawJSON']['x_opencti_description'], 'labels': [label.get('value') for label in indicator['rawJSON'].get('objectLabel')], 'marking': [mark.get('definition') for mark in indicator['rawJSON'].get('objectMarking')] } for indicator in indicators_list] readable_output = tableToMarkdown('Indicators from OpenCTI', indicators, headers=["type", "value", "id"], removeNull=True) return CommandResults( outputs_prefix='OpenCTI.Indicators', outputs_key_field='id', outputs=indicators, readable_output=readable_output, raw_response=indicators_list ) else: return CommandResults(readable_output='No indicators')
5,695
def _perturb_discrepancy(sample, i1, i2, k, disc): """Centered discrepancy after and elementary perturbation on a LHS. An elementary perturbation consists of an exchange of coordinates between two points: ``sample[i1, k] <-> sample[i2, k]``. By construction, this operation conserves the LHS properties. Parameters ---------- sample : array_like (n, d) The sample (before permutation) to compute the discrepancy from. i1 : int The first line of the elementary permutation. i2 : int The second line of the elementary permutation. k : int The column of the elementary permutation. disc : float Centered discrepancy of the design before permutation. Returns ------- discrepancy : float Centered discrepancy. References ---------- .. [1] Jin et al. "An efficient algorithm for constructing optimal design of computer experiments", Journal of Statistical Planning and Inference, 2005. """ sample = np.asarray(sample) n = sample.shape[0] z_ij = sample - 0.5 # Eq (19) c_i1j = 1. / n ** 2. * np.prod(0.5 * (2. + abs(z_ij[i1, :]) + abs(z_ij) - abs(z_ij[i1, :] - z_ij)), axis=1) c_i2j = 1. / n ** 2. * np.prod(0.5 * (2. + abs(z_ij[i2, :]) + abs(z_ij) - abs(z_ij[i2, :] - z_ij)), axis=1) # Eq (20) c_i1i1 = (1. / n ** 2 * np.prod(1 + abs(z_ij[i1, :])) - 2. / n * np.prod(1. + 0.5 * abs(z_ij[i1, :]) - 0.5 * z_ij[i1, :] ** 2)) c_i2i2 = (1. / n ** 2 * np.prod(1 + abs(z_ij[i2, :])) - 2. / n * np.prod(1. + 0.5 * abs(z_ij[i2, :]) - 0.5 * z_ij[i2, :] ** 2)) # Eq (22), typo in the article in the denominator i2 -> i1 num = (2 + abs(z_ij[i2, k]) + abs(z_ij[:, k]) - abs(z_ij[i2, k] - z_ij[:, k])) denum = (2 + abs(z_ij[i1, k]) + abs(z_ij[:, k]) - abs(z_ij[i1, k] - z_ij[:, k])) gamma = num / denum # Eq (23) c_p_i1j = gamma * c_i1j # Eq (24) c_p_i2j = c_i2j / gamma alpha = (1 + abs(z_ij[i2, k])) / (1 + abs(z_ij[i1, k])) beta = (2 - abs(z_ij[i2, k])) / (2 - abs(z_ij[i1, k])) g_i1 = np.prod(1. + abs(z_ij[i1, :])) g_i2 = np.prod(1. + abs(z_ij[i2, :])) h_i1 = np.prod(1. + 0.5 * abs(z_ij[i1, :]) - 0.5 * (z_ij[i1, :] ** 2)) h_i2 = np.prod(1. + 0.5 * abs(z_ij[i2, :]) - 0.5 * (z_ij[i2, :] ** 2)) # Eq (25), typo in the article g is missing c_p_i1i1 = ((g_i1 * alpha) / (n ** 2) - 2. * alpha * beta * h_i1 / n) # Eq (26), typo in the article n ** 2 c_p_i2i2 = ((g_i2 / ((n ** 2) * alpha)) - (2. * h_i2 / (n * alpha * beta))) # Eq (26) sum_ = c_p_i1j - c_i1j + c_p_i2j - c_i2j mask = np.ones(n, dtype=bool) mask[[i1, i2]] = False sum_ = sum(sum_[mask]) disc_ep = (disc + c_p_i1i1 - c_i1i1 + c_p_i2i2 - c_i2i2 + 2 * sum_) return disc_ep
def _perturb_discrepancy(sample, i1, i2, k, disc): """Centered discrepancy after an elementary perturbation of a LHS. An elementary perturbation consists of an exchange of coordinates between two points: ``sample[i1, k] <-> sample[i2, k]``. By construction, this operation conserves the LHS properties. Parameters ---------- sample : array_like (n, d) The sample (before permutation) to compute the discrepancy from. i1 : int The first line of the elementary permutation. i2 : int The second line of the elementary permutation. k : int The column of the elementary permutation. disc : float Centered discrepancy of the design before permutation. Returns ------- discrepancy : float Centered discrepancy. References ---------- .. [1] Jin et al. "An efficient algorithm for constructing optimal design of computer experiments", Journal of Statistical Planning and Inference, 2005. """ sample = np.asarray(sample) n = sample.shape[0] z_ij = sample - 0.5 # Eq (19) c_i1j = 1. / n ** 2. * np.prod(0.5 * (2. + abs(z_ij[i1, :]) + abs(z_ij) - abs(z_ij[i1, :] - z_ij)), axis=1) c_i2j = 1. / n ** 2. * np.prod(0.5 * (2. + abs(z_ij[i2, :]) + abs(z_ij) - abs(z_ij[i2, :] - z_ij)), axis=1) # Eq (20) c_i1i1 = (1. / n ** 2 * np.prod(1 + abs(z_ij[i1, :])) - 2. / n * np.prod(1. + 0.5 * abs(z_ij[i1, :]) - 0.5 * z_ij[i1, :] ** 2)) c_i2i2 = (1. / n ** 2 * np.prod(1 + abs(z_ij[i2, :])) - 2. / n * np.prod(1. + 0.5 * abs(z_ij[i2, :]) - 0.5 * z_ij[i2, :] ** 2)) # Eq (22), typo in the article in the denominator i2 -> i1 num = (2 + abs(z_ij[i2, k]) + abs(z_ij[:, k]) - abs(z_ij[i2, k] - z_ij[:, k])) denum = (2 + abs(z_ij[i1, k]) + abs(z_ij[:, k]) - abs(z_ij[i1, k] - z_ij[:, k])) gamma = num / denum # Eq (23) c_p_i1j = gamma * c_i1j # Eq (24) c_p_i2j = c_i2j / gamma alpha = (1 + abs(z_ij[i2, k])) / (1 + abs(z_ij[i1, k])) beta = (2 - abs(z_ij[i2, k])) / (2 - abs(z_ij[i1, k])) g_i1 = np.prod(1. + abs(z_ij[i1, :])) g_i2 = np.prod(1. + abs(z_ij[i2, :])) h_i1 = np.prod(1. + 0.5 * abs(z_ij[i1, :]) - 0.5 * (z_ij[i1, :] ** 2)) h_i2 = np.prod(1. + 0.5 * abs(z_ij[i2, :]) - 0.5 * (z_ij[i2, :] ** 2)) # Eq (25), typo in the article g is missing c_p_i1i1 = ((g_i1 * alpha) / (n ** 2) - 2. * alpha * beta * h_i1 / n) # Eq (26), typo in the article n ** 2 c_p_i2i2 = ((g_i2 / ((n ** 2) * alpha)) - (2. * h_i2 / (n * alpha * beta))) # Eq (26) sum_ = c_p_i1j - c_i1j + c_p_i2j - c_i2j mask = np.ones(n, dtype=bool) mask[[i1, i2]] = False sum_ = sum(sum_[mask]) disc_ep = (disc + c_p_i1i1 - c_i1i1 + c_p_i2i2 - c_i2i2 + 2 * sum_) return disc_ep
55,840
def generate_from_tests(runner_name: str, handler_name: str, src: Any, fork_name: SpecForkName, bls_active: bool = True, phase: Optional[str]=None) -> Iterable[TestCase]: """ Generate a list of test cases by running tests from the given src in generator-mode. :param runner_name: to categorize the test in general as. :param handler_name: to categorize the test specialization as. :param src: to retrieve tests from (discovered using inspect.getmembers). :param fork_name: to run tests against particular phase and/or fork. (if multiple forks are applicable, indicate the last fork) :param bls_active: optional, to override BLS switch preference. Defaults to True. :param phase: optional, specific phase name :return: an iterable of test cases. """ fn_names = [ name for (name, _) in getmembers(src, isfunction) if name.startswith('test_') ] if phase is None: phase = fork_name print("generating test vectors from tests source: %s" % src.__name__) for name in fn_names: tfn = getattr(src, name) # strip off the `test_` case_name = name if case_name.startswith('test_'): case_name = case_name[5:] yield TestCase( fork_name=fork_name, runner_name=runner_name, handler_name=handler_name, suite_name='pyspec_tests', case_name=case_name, # TODO: with_all_phases and other per-phase tooling, should be replaced with per-fork equivalent. case_fn=lambda: tfn(generator_mode=True, phase=phase, bls_active=bls_active) )
def generate_from_tests(runner_name: str, handler_name: str, src: Any, fork_name: SpecForkName, bls_active: bool = True, phase: Optional[str]=None) -> Iterable[TestCase]: """ Generate a list of test cases by running tests from the given src in generator-mode. :param runner_name: to categorize the test in general as. :param handler_name: to categorize the test specialization as. :param src: to retrieve tests from (discovered using inspect.getmembers). :param fork_name: the folder name for these tests. (if multiple forks are applicable, indicate the last fork) :param bls_active: optional, to override BLS switch preference. Defaults to True. :param phase: optional, to run tests against a particular spec version. Default to `fork_name` value. :return: an iterable of test cases. """ fn_names = [ name for (name, _) in getmembers(src, isfunction) if name.startswith('test_') ] if phase is None: phase = fork_name print("generating test vectors from tests source: %s" % src.__name__) for name in fn_names: tfn = getattr(src, name) # strip off the `test_` case_name = name if case_name.startswith('test_'): case_name = case_name[5:] yield TestCase( fork_name=fork_name, runner_name=runner_name, handler_name=handler_name, suite_name='pyspec_tests', case_name=case_name, # TODO: with_all_phases and other per-phase tooling, should be replaced with per-fork equivalent. case_fn=lambda: tfn(generator_mode=True, phase=phase, bls_active=bls_active) )
31,889
def incremental_level_fetch(client: Client) -> list: """ This method implements the incremental level of the feed. It checks if any updates have been made in the tags from the last time, and returns the updated tags. Args: client: Client object Returns: A list of tag details represents the tags that have been updated. """ results: list = [] integration_context = get_integration_context() # This field saves tags that have been updated since the last time of fetch and need to be updated in demisto list_of_all_updated_tags = argToList(integration_context.get('tags_need_to_be_fetched', '')) time_from_last_update = integration_context.get('time_of_first_fetch') # if there are such tags, we first get all of them and upload to demisto index_to_delete = 0 for tag in list_of_all_updated_tags: if len(results) < PAGE_SIZE: results.append(client.get_tag_details(tag.get('public_tag_name'))) index_to_delete += 1 else: context = get_integration_context() context['time_of_first_fetch'] = date_to_timestamp(datetime.now(), DATE_FORMAT) context['tags_need_to_be_fetched'] = list_of_all_updated_tags[index_to_delete:] set_integration_context(context) return results page_num = 0 has_updates = True while has_updates: response = client.get_tags({'pageNum': page_num, 'pageSize': 200, 'sortBy': 'updated_at', 'order': 'desc'}) tags = response.get('tags', []) for tag in tags: update_time = tag.get('updated_at') update_time = datetime.strptime(update_time, AF_TAGS_DATE_FORMAT).strftime( DATE_FORMAT) if update_time else None update_time = date_to_timestamp(update_time, DATE_FORMAT) if update_time >= time_from_last_update: list_of_all_updated_tags.append( {'public_tag_name': tag.get('public_tag_name')}) else: has_updates = False break page_num += 1 # add only PAGE_SIZE tag_details to results, so we wont make to many calls to the api list_index = 0 for tag in list_of_all_updated_tags: if len(results) < PAGE_SIZE: public_tag_name = tag.get('public_tag_name') response = client.get_tag_details(public_tag_name) results.append(response) list_index += 1 else: break # delete from the list all tags that will be returned this fetch list_of_all_updated_tags = list_of_all_updated_tags[list_index:] # update integration context context = get_integration_context() context['tags_need_to_be_fetched'] = list_of_all_updated_tags context['time_of_first_fetch'] = date_to_timestamp(datetime.now(), DATE_FORMAT) set_integration_context(context) return results
def incremental_level_fetch(client: Client) -> list: """ This method implements the incremental level of the feed. It checks if any updates have been made in the tags from the last time, and returns the updated tags. Args: client: Client object Returns: A list of tag details represents the tags that have been updated. """ results: list = [] integration_context = get_integration_context() # This field saves tags that have been updated since the last time of fetch and need to be updated in demisto list_of_all_updated_tags = argToList(integration_context.get('tags_need_to_be_fetched', '')) time_from_last_update = integration_context.get('time_of_first_fetch') # if there are such tags, we first get all of them and upload to demisto index_to_delete = 0 for tag in list_of_all_updated_tags: if len(results) < PAGE_SIZE: results.append(client.get_tag_details(tag.get('public_tag_name', ''))) index_to_delete += 1 else: context = get_integration_context() context['time_of_first_fetch'] = date_to_timestamp(datetime.now(), DATE_FORMAT) context['tags_need_to_be_fetched'] = list_of_all_updated_tags[index_to_delete:] set_integration_context(context) return results page_num = 0 has_updates = True while has_updates: response = client.get_tags({'pageNum': page_num, 'pageSize': 200, 'sortBy': 'updated_at', 'order': 'desc'}) tags = response.get('tags', []) for tag in tags: update_time = tag.get('updated_at') update_time = datetime.strptime(update_time, AF_TAGS_DATE_FORMAT).strftime( DATE_FORMAT) if update_time else None update_time = date_to_timestamp(update_time, DATE_FORMAT) if update_time >= time_from_last_update: list_of_all_updated_tags.append( {'public_tag_name': tag.get('public_tag_name')}) else: has_updates = False break page_num += 1 # add only PAGE_SIZE tag_details to results, so we wont make to many calls to the api list_index = 0 for tag in list_of_all_updated_tags: if len(results) < PAGE_SIZE: public_tag_name = tag.get('public_tag_name') response = client.get_tag_details(public_tag_name) results.append(response) list_index += 1 else: break # delete from the list all tags that will be returned this fetch list_of_all_updated_tags = list_of_all_updated_tags[list_index:] # update integration context context = get_integration_context() context['tags_need_to_be_fetched'] = list_of_all_updated_tags context['time_of_first_fetch'] = date_to_timestamp(datetime.now(), DATE_FORMAT) set_integration_context(context) return results
29,773
def group_dicoms_into_seqinfos(files, file_filter, dcmfilter, grouping): """Process list of dicoms and return seqinfo and file group `seqinfo` contains per-sequence extract of fields from DICOMs which will be later provided into heuristics to decide on filenames Parameters ---------- files : list of str List of files to consider file_filter : callable, optional Applied to each item of filenames. Should return True if file needs to be kept, False otherwise. dcmfilter : callable, optional If called on dcm_data and returns True, it is used to set series_id grouping : {'studyUID', 'accession_number', None}, optional what to group by: studyUID or accession_number Returns ------- seqinfo : list of list `seqinfo` is a list of info entries per each sequence (some entry there defines a key for `filegrp`) filegrp : dict `filegrp` is a dictionary with files groupped per each sequence """ allowed_groupings = ['studyUID', 'accession_number', None] if grouping not in allowed_groupings: raise ValueError('I do not know how to group by {0}'.format(grouping)) per_studyUID = grouping == 'studyUID' per_accession_number = grouping == 'accession_number' lgr.info("Analyzing %d dicoms", len(files)) groups = [[], []] mwgroup = [] studyUID = None # for sanity check that all DICOMs came from the same # "study". If not -- what is the use-case? (interrupted acquisition?) # and how would then we deal with series numbers # which would differ already if file_filter: nfl_before = len(files) files = list(filter(file_filter, files)) nfl_after = len(files) lgr.info('Filtering out {0} dicoms based on their filename'.format( nfl_before-nfl_after)) for fidx, filename in enumerate(files): from heudiconv.external.dcmstack import ds # TODO after getting a regression test check if the same behavior # with stop_before_pixels=True mw = ds.wrapper_from_data(dcm.read_file(filename, force=True)) for sig in ('iop', 'ICE_Dims', 'SequenceName'): try: del mw.series_signature[sig] except: pass try: file_studyUID = mw.dcm_data.StudyInstanceUID except AttributeError: lgr.info("File {} is missing any StudyInstanceUID".format(filename)) file_studyUID = None # Workaround for protocol name in private siemens csa header try: mw.dcm_data.ProtocolName except AttributeError: mw.dcm_data.ProtocolName = parse_private_csa_header(mw.dcm_data, 'ProtocolName', 'tProtocolName') if mw.is_csa else '' try: series_id = (int(mw.dcm_data.SeriesNumber), mw.dcm_data.ProtocolName) file_studyUID = mw.dcm_data.StudyInstanceUID if not per_studyUID: # verify that we are working with a single study if studyUID is None: studyUID = file_studyUID elif not per_accession_number: assert studyUID == file_studyUID, ( "Conflicting study identifiers found [{}, {}].".format( studyUID, file_studyUID )) except AttributeError as exc: lgr.warning('Ignoring %s since not quite a "normal" DICOM: %s', filename, exc) series_id = (-1, 'none') file_studyUID = None if not series_id[0] < 0: if dcmfilter is not None and dcmfilter(mw.dcm_data): series_id = (-1, mw.dcm_data.ProtocolName) # filter out unwanted non-image-data DICOMs by assigning # a series number < 0 (see test below) if not series_id[0] < 0 and mw.dcm_data[0x0008, 0x0016].repval in ( 'Raw Data Storage', 'GrayscaleSoftcopyPresentationStateStorage'): series_id = (-1, mw.dcm_data.ProtocolName) if per_studyUID: series_id = series_id + (file_studyUID,) ingrp = False for idx in range(len(mwgroup)): # same = mw.is_same_series(mwgroup[idx]) if mw.is_same_series(mwgroup[idx]): # the same series should have the same study uuid assert (mwgroup[idx].dcm_data.get('StudyInstanceUID', None) == file_studyUID) ingrp = True if series_id[0] >= 0: series_id = (mwgroup[idx].dcm_data.SeriesNumber, mwgroup[idx].dcm_data.ProtocolName) if per_studyUID: series_id = series_id + (file_studyUID,) groups[0].append(series_id) groups[1].append(idx) if not ingrp: mwgroup.append(mw) groups[0].append(series_id) groups[1].append(len(mwgroup) - 1) group_map = dict(zip(groups[0], groups[1])) total = 0 seqinfo = OrderedDict() # for the next line to make any sense the series_id needs to # be sortable in a way that preserves the series order for series_id, mwidx in sorted(group_map.items()): if series_id[0] < 0: # skip our fake series with unwanted files continue mw = mwgroup[mwidx] if mw.image_shape is None: # this whole thing has now image data (maybe just PSg DICOMs) # nothing to see here, just move on continue dcminfo = mw.dcm_data series_files = [files[i] for i, s in enumerate(groups[0]) if s == series_id] # turn the series_id into a human-readable string -- string is needed # for JSON storage later on if per_studyUID: studyUID = series_id[2] series_id = series_id[:2] accession_number = dcminfo.get('AccessionNumber') series_id = '-'.join(map(str, series_id)) size = list(mw.image_shape) + [len(series_files)] total += size[-1] if len(size) < 4: size.append(1) # MG - refactor into util function try: TR = float(dcminfo.RepetitionTime) / 1000. except (AttributeError, ValueError): TR = -1 try: TE = float(dcminfo.EchoTime) except (AttributeError, ValueError): TE = -1 try: refphys = str(dcminfo.ReferringPhysicianName) except AttributeError: refphys = '' try: image_type = tuple(dcminfo.ImageType) except AttributeError: image_type = '' try: series_desc = dcminfo.SeriesDescription except AttributeError: series_desc = '' motion_corrected = 'MOCO' in image_type if dcminfo.get([0x18,0x24], None): # GE and Philips scanners sequence_name = dcminfo[0x18,0x24].value elif dcminfo.get([0x19, 0x109c], None): # Siemens scanners sequence_name = dcminfo[0x19, 0x109c].value else: sequence_name = 'Not found' info = SeqInfo( total, op.split(series_files[0])[1], series_id, op.basename(op.dirname(series_files[0])), '-', '-', size[0], size[1], size[2], size[3], TR, TE, dcminfo.ProtocolName, motion_corrected, 'derived' in [x.lower() for x in dcminfo.get('ImageType', [])], dcminfo.get('PatientID'), dcminfo.get('StudyDescription'), refphys, series_desc, #We try to set this further up. sequence_name, image_type, accession_number, # For demographics to populate BIDS participants.tsv dcminfo.get('PatientAge'), dcminfo.get('PatientSex'), dcminfo.get('AcquisitionDate'), dcminfo.get('SeriesInstanceUID') ) # candidates # dcminfo.AccessionNumber # len(dcminfo.ReferencedImageSequence) # len(dcminfo.SourceImageSequence) # FOR demographics if per_studyUID: key = studyUID.split('.')[-1] elif per_accession_number: key = accession_number else: key = '' lgr.debug("%30s %30s %27s %27s %5s nref=%-2d nsrc=%-2d %s" % ( key, info.series_id, series_desc, dcminfo.ProtocolName, info.is_derived, len(dcminfo.get('ReferencedImageSequence', '')), len(dcminfo.get('SourceImageSequence', '')), info.image_type )) if per_studyUID: if studyUID not in seqinfo: seqinfo[studyUID] = OrderedDict() seqinfo[studyUID][info] = series_files elif per_accession_number: if accession_number not in seqinfo: seqinfo[accession_number] = OrderedDict() seqinfo[accession_number][info] = series_files else: seqinfo[info] = series_files if per_studyUID: lgr.info("Generated sequence info for %d studies with %d entries total", len(seqinfo), sum(map(len, seqinfo.values()))) elif per_accession_number: lgr.info("Generated sequence info for %d accession numbers with %d " "entries total", len(seqinfo), sum(map(len, seqinfo.values()))) else: lgr.info("Generated sequence info with %d entries", len(seqinfo)) return seqinfo
def group_dicoms_into_seqinfos(files, file_filter, dcmfilter, grouping): """Process list of dicoms and return seqinfo and file group `seqinfo` contains per-sequence extract of fields from DICOMs which will be later provided into heuristics to decide on filenames Parameters ---------- files : list of str List of files to consider file_filter : callable, optional Applied to each item of filenames. Should return True if file needs to be kept, False otherwise. dcmfilter : callable, optional If called on dcm_data and returns True, it is used to set series_id grouping : {'studyUID', 'accession_number', None}, optional what to group by: studyUID or accession_number Returns ------- seqinfo : list of list `seqinfo` is a list of info entries per each sequence (some entry there defines a key for `filegrp`) filegrp : dict `filegrp` is a dictionary with files groupped per each sequence """ allowed_groupings = ['studyUID', 'accession_number', None] if grouping not in allowed_groupings: raise ValueError('I do not know how to group by {0}'.format(grouping)) per_studyUID = grouping == 'studyUID' per_accession_number = grouping == 'accession_number' lgr.info("Analyzing %d dicoms", len(files)) groups = [[], []] mwgroup = [] studyUID = None # for sanity check that all DICOMs came from the same # "study". If not -- what is the use-case? (interrupted acquisition?) # and how would then we deal with series numbers # which would differ already if file_filter: nfl_before = len(files) files = list(filter(file_filter, files)) nfl_after = len(files) lgr.info('Filtering out {0} dicoms based on their filename'.format( nfl_before-nfl_after)) for fidx, filename in enumerate(files): from heudiconv.external.dcmstack import ds # TODO after getting a regression test check if the same behavior # with stop_before_pixels=True mw = ds.wrapper_from_data(dcm.read_file(filename, force=True)) for sig in ('iop', 'ICE_Dims', 'SequenceName'): try: del mw.series_signature[sig] except: pass try: file_studyUID = mw.dcm_data.StudyInstanceUID except AttributeError: lgr.info("File {} is missing any StudyInstanceUID".format(filename)) file_studyUID = None # Workaround for protocol name in private siemens csa header try: mw.dcm_data.ProtocolName except AttributeError: mw.dcm_data.ProtocolName = parse_private_csa_header(mw.dcm_data, 'ProtocolName', 'tProtocolName') if mw.is_csa else '' try: series_id = (int(mw.dcm_data.SeriesNumber), mw.dcm_data.ProtocolName) file_studyUID = mw.dcm_data.StudyInstanceUID if not per_studyUID: # verify that we are working with a single study if studyUID is None: studyUID = file_studyUID elif not per_accession_number: assert studyUID == file_studyUID, ( "Conflicting study identifiers found [{}, {}].".format( studyUID, file_studyUID )) except AttributeError as exc: lgr.warning('Ignoring %s since not quite a "normal" DICOM: %s', filename, exc) series_id = (-1, 'none') file_studyUID = None if not series_id[0] < 0: if dcmfilter is not None and dcmfilter(mw.dcm_data): series_id = (-1, mw.dcm_data.ProtocolName) # filter out unwanted non-image-data DICOMs by assigning # a series number < 0 (see test below) if not series_id[0] < 0 and mw.dcm_data[0x0008, 0x0016].repval in ( 'Raw Data Storage', 'GrayscaleSoftcopyPresentationStateStorage'): series_id = (-1, mw.dcm_data.ProtocolName) if per_studyUID: series_id = series_id + (file_studyUID,) ingrp = False for idx in range(len(mwgroup)): # same = mw.is_same_series(mwgroup[idx]) if mw.is_same_series(mwgroup[idx]): # the same series should have the same study uuid assert (mwgroup[idx].dcm_data.get('StudyInstanceUID', None) == file_studyUID) ingrp = True if series_id[0] >= 0: series_id = (mwgroup[idx].dcm_data.SeriesNumber, mwgroup[idx].dcm_data.ProtocolName) if per_studyUID: series_id = series_id + (file_studyUID,) groups[0].append(series_id) groups[1].append(idx) if not ingrp: mwgroup.append(mw) groups[0].append(series_id) groups[1].append(len(mwgroup) - 1) group_map = dict(zip(groups[0], groups[1])) total = 0 seqinfo = OrderedDict() # for the next line to make any sense the series_id needs to # be sortable in a way that preserves the series order for series_id, mwidx in sorted(group_map.items()): if series_id[0] < 0: # skip our fake series with unwanted files continue mw = mwgroup[mwidx] if mw.image_shape is None: # this whole thing has now image data (maybe just PSg DICOMs) # nothing to see here, just move on continue dcminfo = mw.dcm_data series_files = [files[i] for i, s in enumerate(groups[0]) if s == series_id] # turn the series_id into a human-readable string -- string is needed # for JSON storage later on if per_studyUID: studyUID = series_id[2] series_id = series_id[:2] accession_number = dcminfo.get('AccessionNumber') series_id = '-'.join(map(str, series_id)) size = list(mw.image_shape) + [len(series_files)] total += size[-1] if len(size) < 4: size.append(1) # MG - refactor into util function try: TR = float(dcminfo.RepetitionTime) / 1000. except (AttributeError, ValueError): TR = -1 try: TE = float(dcminfo.EchoTime) except (AttributeError, ValueError): TE = -1 try: refphys = str(dcminfo.ReferringPhysicianName) except AttributeError: refphys = '' try: image_type = tuple(dcminfo.ImageType) except AttributeError: image_type = '' try: series_desc = dcminfo.SeriesDescription except AttributeError: series_desc = '' motion_corrected = 'MOCO' in image_type if dcminfo.get([0x18,0x24], None): # GE and Philips scanners sequence_name = dcminfo[0x18,0x24].value elif dcminfo.get([0x19, 0x109c], None): # Siemens scanners sequence_name = dcminfo[0x19, 0x109c].value else: sequence_name = 'Not found' info = SeqInfo( total, op.split(series_files[0])[1], series_id, op.basename(op.dirname(series_files[0])), '-', '-', size[0], size[1], size[2], size[3], TR, TE, dcminfo.ProtocolName, motion_corrected, 'derived' in [x.lower() for x in dcminfo.get('ImageType', [])], dcminfo.get('PatientID'), dcminfo.get('StudyDescription'), refphys, series_desc, # We try to set this further up. sequence_name, image_type, accession_number, # For demographics to populate BIDS participants.tsv dcminfo.get('PatientAge'), dcminfo.get('PatientSex'), dcminfo.get('AcquisitionDate'), dcminfo.get('SeriesInstanceUID') ) # candidates # dcminfo.AccessionNumber # len(dcminfo.ReferencedImageSequence) # len(dcminfo.SourceImageSequence) # FOR demographics if per_studyUID: key = studyUID.split('.')[-1] elif per_accession_number: key = accession_number else: key = '' lgr.debug("%30s %30s %27s %27s %5s nref=%-2d nsrc=%-2d %s" % ( key, info.series_id, series_desc, dcminfo.ProtocolName, info.is_derived, len(dcminfo.get('ReferencedImageSequence', '')), len(dcminfo.get('SourceImageSequence', '')), info.image_type )) if per_studyUID: if studyUID not in seqinfo: seqinfo[studyUID] = OrderedDict() seqinfo[studyUID][info] = series_files elif per_accession_number: if accession_number not in seqinfo: seqinfo[accession_number] = OrderedDict() seqinfo[accession_number][info] = series_files else: seqinfo[info] = series_files if per_studyUID: lgr.info("Generated sequence info for %d studies with %d entries total", len(seqinfo), sum(map(len, seqinfo.values()))) elif per_accession_number: lgr.info("Generated sequence info for %d accession numbers with %d " "entries total", len(seqinfo), sum(map(len, seqinfo.values()))) else: lgr.info("Generated sequence info with %d entries", len(seqinfo)) return seqinfo
22,689
def test_ocsp_must_staple(context): """Test that OCSP Must-Staple is correctly set in the generated certificate.""" certname = context.get_domain('must-staple') context.certbot(['auth', '--must-staple', '--domains', certname]) certificate = misc.read_certificate(join(context.config_dir, 'live/{0}/cert.pem').format(certname)) assert 'status_request' in certificate or '1.3.6.1.5.5.7.1.24'
def test_ocsp_must_staple(context): """Test that OCSP Must-Staple is correctly set in the generated certificate.""" certname = context.get_domain('must-staple') context.certbot(['auth', '--must-staple', '--domains', certname]) certificate = misc.read_certificate(join(context.config_dir, 'live/{0}/cert.pem').format(certname)) assert 'status_request' in certificate or '1.3.6.1.5.5.7.1.24' in certificate
20,420
def user_list(fields=None): from yunohost.utils.ldap import _get_ldap_interface ldap_attrs = { 'username': 'uid', 'password': 'uid', 'fullname': 'cn', 'firstname': 'givenName', 'lastname': 'sn', 'mail': 'mail', 'mail-alias': 'mail', 'mail-forward': 'maildrop', 'mailbox-quota': 'mailuserquota', 'groups': 'memberOf', 'shell': 'loginShell', 'home-path': 'homeDirectory' } def display_default(values, _): return values[0] if len(values) == 1 else values display = { 'password': lambda values, user: '', 'mail': lambda values, user: display_default(values[:1], user), 'mail-alias': lambda values, _: values[1:], 'mail-forward': lambda values, user: [forward for forward in values if forward != user['uid'][0]], 'groups': lambda values, user: [ group[3:].split(',')[0] for group in values if not group.startswith('cn=all_users,') and not group.startswith('cn=' + user['uid'][0] + ',')], 'shell': lambda values, _: len(values) > 0 and values[0].strip() == "/bin/false" } attrs = set(['uid']) users = {} if not fields: fields = ['username', 'fullname', 'mail', 'mailbox-quota', 'shell'] for field in fields: if field in ldap_attrs: attrs |= set([ldap_attrs[field]]) else: raise YunohostError('field_invalid', field) ldap = _get_ldap_interface() result = ldap.search( "ou=users,dc=yunohost,dc=org", "(&(objectclass=person)(!(uid=root))(!(uid=nobody)))", attrs, ) for user in result: entry = {} for field in fields: values = [] if ldap_attrs[field] in user: values = user[ldap_attrs[field]] entry[field] = display.get(field, display_default)(values, user) users[user['uid'][0]] = entry return {"users": users}
def user_list(fields=None): from yunohost.utils.ldap import _get_ldap_interface ldap_attrs = { 'username': 'uid', 'password': 'uid', 'fullname': 'cn', 'firstname': 'givenName', 'lastname': 'sn', 'mail': 'mail', 'mail-alias': 'mail', 'mail-forward': 'maildrop', 'mailbox-quota': 'mailuserquota', 'groups': 'memberOf', 'shell': 'loginShell', 'home-path': 'homeDirectory' } def display_default(values, _): return values[0] if len(values) == 1 else values display = { 'password': lambda values, user: '', 'mail': lambda values, user: display_default(values[:1], user), 'mail-alias': lambda values, _: values[1:], 'mail-forward': lambda values, user: [forward for forward in values if forward != user['uid'][0]], 'groups': lambda values, user: [ group[3:].split(',')[0] for group in values if not group.startswith('cn=all_users,') and not group.startswith('cn=' + user['uid'][0] + ',')], 'shell': lambda values, _: len(values) > 0 and values[0].strip() == "/bin/false" } attrs = set(['uid']) users = {} if not fields: fields = ['username', 'fullname', 'mail', 'mailbox-quota', 'shell'] for field in fields: if field in ldap_attrs: attrs.add(ldap_attrs[field]) else: raise YunohostError('field_invalid', field) ldap = _get_ldap_interface() result = ldap.search( "ou=users,dc=yunohost,dc=org", "(&(objectclass=person)(!(uid=root))(!(uid=nobody)))", attrs, ) for user in result: entry = {} for field in fields: values = [] if ldap_attrs[field] in user: values = user[ldap_attrs[field]] entry[field] = display.get(field, display_default)(values, user) users[user['uid'][0]] = entry return {"users": users}
41,416
def add_gaia_figure_elements(tpf, fig, magnitude_limit=18): """Make the Gaia Figure Elements""" #Get the positions of the Gaia sources c1 = SkyCoord(tpf.ra, tpf.dec, frame='icrs', unit='deg') # Use pixel scale for query size pix_scale = 4.0 # arcseconds / pixel for Kepler, default if tpf.mission == 'TESS': pix_scale = 21.0 # We are querying with a diameter as the radius, overfilling by 2x. result = Vizier.query_region(c1, catalog=["I/345/gaia2"], radius=Angle(np.max(tpf.shape[1:]) * pix_scale, "arcsec")) if result is None: raise ValueError('No targets found in region.') result = result["I/345/gaia2"].to_pandas() result = result[result.Gmag < magnitude_limit] radecs = np.vstack([result['RA_ICRS'], result['DE_ICRS']]).T coords = tpf.wcs.all_world2pix(radecs, 0) ## TODO, is this supposed to be zero or one????? year = ((tpf.astropy_time[0].jd - 2457206.375) * u.day).to(u.year) pmra = ((np.asarray(result.pmRA) * u.milliarcsecond/u.year) * year).to(u.arcsec).value pmdec = ((np.asarray(result.pmDE) * u.milliarcsecond/u.year) * year).to(u.arcsec).value ## todo: filter NaNs in pmra/pmdec result.RA_ICRS += pmra result.DE_ICRS += pmdec # Gently size the points by their Gaia magnitude sizes = 64.0 / 2**(result['Gmag']/5.0) source = ColumnDataSource(data=dict(ra=result['RA_ICRS'], dec=result['DE_ICRS'], source=result['Source'], Gmag=result['Gmag'], plx=result['Plx'], x=coords[:, 0]+tpf.column, y=coords[:, 1]+tpf.row, size=sizes)) r = fig.circle('x', 'y', source=source,fill_alpha=0.3, size='size', line_color=None, selection_color="firebrick",nonselection_fill_alpha=0.0, nonselection_line_color=None, nonselection_line_alpha=0.0, fill_color="firebrick", hover_fill_color="firebrick", hover_alpha=0.9, hover_line_color="white") fig.add_tools(HoverTool(tooltips=[("Source", "@source"),("G", "@Gmag"),("Parallax", "@plx"), ("RA", "@ra{0,0.00000000}"), ("DEC", "@dec{0,0.00000000}"), ("x", "@x"), ("y", "@y")], renderers=[r], mode='mouse', point_policy="snap_to_data")) return fig, r
def add_gaia_figure_elements(tpf, fig, magnitude_limit=18): """Make the Gaia Figure Elements""" #Get the positions of the Gaia sources c1 = SkyCoord(tpf.ra, tpf.dec, frame='icrs', unit='deg') # Use pixel scale for query size pix_scale = 4.0 # arcseconds / pixel for Kepler, default if tpf.mission == 'TESS': pix_scale = 21.0 # We are querying with a diameter as the radius, overfilling by 2x. result = Vizier.query_region(c1, catalog=["I/345/gaia2"], radius=Angle(np.max(tpf.shape[1:]) * pix_scale, "arcsec")) if result is None: raise ValueError('No targets found in region.') result = result["I/345/gaia2"].to_pandas() result = result[result.Gmag < magnitude_limit] radecs = np.vstack([result['RA_ICRS'], result['DE_ICRS']]).T coords = tpf.wcs.all_world2pix(radecs, 0) ## TODO, is this supposed to be zero or one????? year = ((tpf.astropy_time[0].jd - 2457206.375) * u.day).to(u.year) pmra = ((np.nan_to_num(np.asarray(result.pmRA)) * u.milliarcsecond/u.year) * year).to(u.arcsec).value pmdec = ((np.asarray(result.pmDE) * u.milliarcsecond/u.year) * year).to(u.arcsec).value ## todo: filter NaNs in pmra/pmdec result.RA_ICRS += pmra result.DE_ICRS += pmdec # Gently size the points by their Gaia magnitude sizes = 64.0 / 2**(result['Gmag']/5.0) source = ColumnDataSource(data=dict(ra=result['RA_ICRS'], dec=result['DE_ICRS'], source=result['Source'], Gmag=result['Gmag'], plx=result['Plx'], x=coords[:, 0]+tpf.column, y=coords[:, 1]+tpf.row, size=sizes)) r = fig.circle('x', 'y', source=source,fill_alpha=0.3, size='size', line_color=None, selection_color="firebrick",nonselection_fill_alpha=0.0, nonselection_line_color=None, nonselection_line_alpha=0.0, fill_color="firebrick", hover_fill_color="firebrick", hover_alpha=0.9, hover_line_color="white") fig.add_tools(HoverTool(tooltips=[("Source", "@source"),("G", "@Gmag"),("Parallax", "@plx"), ("RA", "@ra{0,0.00000000}"), ("DEC", "@dec{0,0.00000000}"), ("x", "@x"), ("y", "@y")], renderers=[r], mode='mouse', point_policy="snap_to_data")) return fig, r
42,665
def history_event_from_kraken( events: List[Dict[str, Any]], name: str, msg_aggregator: MessagesAggregator, ) -> Tuple[List[HistoryBaseEntry], bool]: """ This function gets raw data from kraken and creates a list of related history events to be used in the app. It returns a list of events and a boolean in the case that an unknown type is found. """ group_events = [] found_unknown_event = False current_fee_index = len(events) for idx, raw_event in enumerate(events): try: timestamp = TimestampMS((deserialize_fval( value=raw_event['time'], name='time', location='kraken ledger processing', ) * 1000).to_int(exact=False)) identifier = raw_event['refid'] event_type = kraken_ledger_entry_type_to_ours(raw_event['type']) asset = asset_from_kraken(raw_event['asset']) event_subtype = HistoryEventSubType.NONE notes = None raw_amount = deserialize_asset_amount(raw_event['amount']) # If we don't know how to handle an event atm or we find an unsupported # event type the logic will be to store it as unknown and if in the future # we need some information from it we can take actions to process them if event_type == HistoryEventType.TRANSFER: if raw_event['subtype'] == 'spottostaking': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.DEPOSIT_ASSET elif raw_event['subtype'] == 'stakingfromspot': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.RECEIVE_WRAPPED elif raw_event['subtype'] == 'stakingtospot': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.REMOVE_ASSET elif raw_event['subtype'] == 'spotfromstaking': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.RETURN_WRAPPED elif event_type == HistoryEventType.ADJUSTMENT: if raw_amount < ZERO: event_subtype = HistoryEventSubType.SPEND else: event_subtype = HistoryEventSubType.RECEIVE elif event_type == HistoryEventType.STAKING: event_subtype = HistoryEventSubType.REWARD elif event_type == HistoryEventType.INFORMATIONAL: found_unknown_event = True notes = raw_event['type'] log.warning( f'Encountered kraken historic event type we do not process. {raw_event}', ) fee_amount = deserialize_asset_amount(raw_event['fee']) # Make sure to not generate a event for KFEES that is not of type FEE if asset != A_KFEE: group_events.append(HistoryBaseEntry( event_identifier=identifier, sequence_index=idx, timestamp=timestamp, location=Location.KRAKEN, location_label=name, asset=asset, balance=Balance( amount=raw_amount, usd_value=ZERO, ), notes=notes, event_type=event_type, event_subtype=event_subtype, )) if fee_amount != ZERO: group_events.append(HistoryBaseEntry( event_identifier=identifier, sequence_index=current_fee_index, timestamp=timestamp, location=Location.KRAKEN, location_label=name, asset=asset, balance=Balance( amount=fee_amount, usd_value=ZERO, ), notes=notes, event_type=event_type, event_subtype=HistoryEventSubType.FEE, )) # Increase the fee index to not have duplicates in the case of having a normal # fee and KFEE current_fee_index += 1 except (DeserializationError, KeyError, UnknownAsset) as e: msg = str(e) if isinstance(e, KeyError): msg = f'Keyrror {msg}' msg_aggregator.add_error( f'Failed to read ledger event from kraken {raw_event} due to {msg}', ) return [], False return group_events, found_unknown_event
def history_event_from_kraken( events: List[Dict[str, Any]], name: str, msg_aggregator: MessagesAggregator, ) -> Tuple[List[HistoryBaseEntry], bool]: """ This function gets raw data from kraken and creates a list of related history events to be used in the app. It returns a list of events and a boolean in the case that an unknown type is found. """ group_events = [] found_unknown_event = False current_fee_index = len(events) for idx, raw_event in enumerate(events): try: timestamp = TimestampMS((deserialize_fval( value=raw_event['time'], name='time', location='kraken ledger processing', ) * 1000).to_int(exact=False)) identifier = raw_event['refid'] event_type = kraken_ledger_entry_type_to_ours(raw_event['type']) asset = asset_from_kraken(raw_event['asset']) event_subtype = HistoryEventSubType.NONE notes = None raw_amount = deserialize_asset_amount(raw_event['amount']) # If we don't know how to handle an event atm or we find an unsupported # event type the logic will be to store it as unknown and if in the future # we need some information from it we can take actions to process them if event_type == HistoryEventType.TRANSFER: if raw_event['subtype'] == 'spottostaking': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.DEPOSIT_ASSET elif raw_event['subtype'] == 'stakingfromspot': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.RECEIVE_WRAPPED elif raw_event['subtype'] == 'stakingtospot': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.REMOVE_ASSET elif raw_event['subtype'] == 'spotfromstaking': event_type = HistoryEventType.STAKING event_subtype = HistoryEventSubType.RETURN_WRAPPED elif event_type == HistoryEventType.ADJUSTMENT: if raw_amount < ZERO: event_subtype = HistoryEventSubType.SPEND else: event_subtype = HistoryEventSubType.RECEIVE elif event_type == HistoryEventType.STAKING: event_subtype = HistoryEventSubType.REWARD elif event_type == HistoryEventType.INFORMATIONAL: found_unknown_event = True notes = raw_event['type'] log.warning( f'Encountered kraken historic event type we do not process. {raw_event}', ) fee_amount = deserialize_asset_amount(raw_event['fee']) # Make sure to not generate an event for KFEES that is not of type FEE if asset != A_KFEE: group_events.append(HistoryBaseEntry( event_identifier=identifier, sequence_index=idx, timestamp=timestamp, location=Location.KRAKEN, location_label=name, asset=asset, balance=Balance( amount=raw_amount, usd_value=ZERO, ), notes=notes, event_type=event_type, event_subtype=event_subtype, )) if fee_amount != ZERO: group_events.append(HistoryBaseEntry( event_identifier=identifier, sequence_index=current_fee_index, timestamp=timestamp, location=Location.KRAKEN, location_label=name, asset=asset, balance=Balance( amount=fee_amount, usd_value=ZERO, ), notes=notes, event_type=event_type, event_subtype=HistoryEventSubType.FEE, )) # Increase the fee index to not have duplicates in the case of having a normal # fee and KFEE current_fee_index += 1 except (DeserializationError, KeyError, UnknownAsset) as e: msg = str(e) if isinstance(e, KeyError): msg = f'Keyrror {msg}' msg_aggregator.add_error( f'Failed to read ledger event from kraken {raw_event} due to {msg}', ) return [], False return group_events, found_unknown_event
4,179
def bootstrap_ci(arr, ci=.95, n_bootstraps=2000, stat_fun='mean', random_state=None): """Get confidence intervals from non-parametric bootstrap. Parameters ---------- arr : ndarray The input data on which to calculate the confidence interval. ci : float Level of the confidence interval between 0 and 1. n_bootstraps : int Number of bootstraps stat_fun : str | callable Can be "mean", "median", or a callable operating along `axis=0`. random_state : int | float | array_like | None The seed at which to initialize the bootstrap. Returns ------- cis : ndarray Containing the lower boundary of the CI at `cis[0, ...]` and the upper boundary of the CI at `cis[1, ...]`. """ if stat_fun == "mean": def stat_fun(x): return x.mean(axis=0) elif stat_fun == 'median': def stat_fun(x): return np.median(x, axis=0) elif not callable(stat_fun): raise ValueError("stat_fun must be 'mean', 'median' or callable.") n_trials = arr.shape[0] indices = np.arange(n_trials, dtype=int) # BCA would be cool to have too rng = check_random_state(random_state) boot_indices = rng.choice(indices, replace=True, size=(n_bootstraps, len(indices))) stat = np.array([stat_fun(arr[inds]) for inds in boot_indices]) ci = (((1 - ci) / 2) * 100, ((1 - ((1 - ci) / 2))) * 100) ci_low, ci_up = np.percentile(stat, ci, axis=0) return np.array([ci_low, ci_up])
def bootstrap_ci(arr, ci=.95, n_bootstraps=2000, stat_fun='mean', random_state=None): """Get confidence intervals from non-parametric bootstrap. Parameters ---------- arr : ndarray The input data on which to calculate the confidence interval. ci : float Level of the confidence interval between 0 and 1. n_bootstraps : int Number of bootstraps stat_fun : str | callable Can be "mean", "median", or a callable operating along `axis=0`. random_state : int | float | array_like | None The seed at which to initialize the bootstrap. Returns ------- cis : ndarray, shape (2, ...) Containing the lower boundary of the CI at `cis[0, ...]` and the upper boundary of the CI at `cis[1, ...]`. """ if stat_fun == "mean": def stat_fun(x): return x.mean(axis=0) elif stat_fun == 'median': def stat_fun(x): return np.median(x, axis=0) elif not callable(stat_fun): raise ValueError("stat_fun must be 'mean', 'median' or callable.") n_trials = arr.shape[0] indices = np.arange(n_trials, dtype=int) # BCA would be cool to have too rng = check_random_state(random_state) boot_indices = rng.choice(indices, replace=True, size=(n_bootstraps, len(indices))) stat = np.array([stat_fun(arr[inds]) for inds in boot_indices]) ci = (((1 - ci) / 2) * 100, ((1 - ((1 - ci) / 2))) * 100) ci_low, ci_up = np.percentile(stat, ci, axis=0) return np.array([ci_low, ci_up])