sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A385585
|
G.f. A(x) satisfies A(x) = Sum_{k>=0} (k*x)^k * A(k*x).
|
[
"1",
"1",
"5",
"40",
"457",
"7101",
"148270",
"4206121",
"165267951",
"9117777074",
"709325010385",
"77906424970811",
"12109278363587036",
"2670187179684919761",
"836451775445907622685",
"372646977140600929476104",
"236390047765997660237447061",
"213719117789650238860723125601"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A125282",
"A218683",
"A385544",
"A385585"
] | null |
Seiichi Manyama, Jul 03 2025
| 2025-07-04T04:45:21 |
oeisdata/seq/A385/A385585.seq
|
3de20ed386460b6fc5f06b42cd69414a
|
A385586
|
Primes p such that there exists prime q < p such that sigma(p+1) = sigma(q+1) = p + q.
|
[
"37",
"34687",
"65587",
"2089951",
"8161477",
"8340613",
"18927067",
"25855567",
"64346413",
"95150203",
"238973101",
"257658061",
"277743397",
"322210813",
"349883707",
"578403913",
"704710543",
"1121445337",
"1654635937",
"1741780693",
"1804380007",
"1963734061",
"2346701941",
"2360966173",
"2720420707",
"3232299517",
"4343250181",
"4925742973",
"8085909913",
"9044601133"
] |
[
"nonn",
"new"
] | 27 | 1 | 1 |
[
"A000040",
"A000203",
"A008333",
"A063990",
"A259180",
"A385586",
"A385705",
"A385718"
] | null |
S. I. Dimitrov, Jul 03 2025
| 2025-07-08T07:49:25 |
oeisdata/seq/A385/A385586.seq
|
f0b8f863d3730624de45871575ce897c
|
A385587
|
Galileo sequence with ratio k = 4: a(1) = 1, a(2) = k, a(2*n-1) = floor(((k + 1)*a(n) -1)/2), and a(2*n) = floor((k + 1)*a(n)/2) + 1 for n > 2.
|
[
"1",
"4",
"9",
"11",
"22",
"23",
"27",
"28",
"54",
"56",
"57",
"58",
"67",
"68",
"69",
"71",
"134",
"136",
"139",
"141",
"142",
"143",
"144",
"146",
"167",
"168",
"169",
"171",
"172",
"173",
"177",
"178",
"334",
"336",
"339",
"341",
"347",
"348",
"352",
"353",
"354",
"356",
"357",
"358",
"359",
"361",
"364",
"366",
"417",
"418",
"419",
"421",
"422",
"423",
"427",
"428",
"429"
] |
[
"nonn",
"easy",
"look",
"new"
] | 15 | 1 | 2 |
[
"A005408",
"A037861",
"A385587",
"A385610",
"A385643"
] | null |
Stefano Spezia, Jul 03 2025
| 2025-07-09T18:57:41 |
oeisdata/seq/A385/A385587.seq
|
e23e4cfaebb767eccfa6291d460d9a05
|
A385588
|
Number of non-derangements of length n with 2 excedances.
|
[
"0",
"4",
"45",
"251",
"1078",
"4054",
"14115",
"46837",
"150612",
"474200",
"1471561",
"4520959",
"13792002",
"41867242",
"126649983",
"382177817",
"1151251648",
"3463715980",
"10412118981",
"31280396611",
"93933463950",
"281993329214",
"846382640155",
"2539986780541",
"7621705171308",
"22868739391744",
"68613734367105",
"205856772356807"
] |
[
"nonn",
"easy",
"new"
] | 17 | 3 | 2 |
[
"A046739",
"A385588"
] | null |
Aurora Hiveley, Jul 03 2025
| 2025-07-14T23:23:38 |
oeisdata/seq/A385/A385588.seq
|
4ec0ad97d8d7e0edf85fa5c3ad5ed89a
|
A385589
|
a(n) = 2^(n-2)*(3*binomial(n,3) + 6*binomial(n,2) + 6*n + 4).
|
[
"1",
"5",
"22",
"86",
"304",
"992",
"3040",
"8864",
"24832",
"67328",
"177664",
"458240",
"1159168",
"2883584",
"7069696",
"17113088",
"40960000",
"97058816",
"227934208",
"530972672",
"1227882496",
"2820669440",
"6440353792",
"14623440896",
"33034338304",
"74272735232",
"166262210560",
"370675810304",
"823291543552",
"1822139875328"
] |
[
"nonn",
"easy",
"new"
] | 8 | 0 | 2 |
[
"A385407",
"A385589"
] | null |
Enrique Navarrete, Jul 03 2025
| 2025-07-07T18:16:36 |
oeisdata/seq/A385/A385589.seq
|
4e77ddb1fe9a97fa52edacecf3ede95f
|
A385590
|
Triangle read by rows, based on Fibonacci numbers: Let i > 1 be such that F(i) <= n < F(i+1); i.e., i = A130233(n). Then T(n, k) = F(i-1)^2 + 1 - (i-1) mod 2 + (n - F(i)) * F(i-2) + (k-1) * F(i-1) where F(k) = A000045(k).
|
[
"1",
"2",
"3",
"4",
"6",
"8",
"5",
"7",
"9",
"11",
"10",
"13",
"16",
"19",
"22",
"12",
"15",
"18",
"21",
"24",
"27",
"14",
"17",
"20",
"23",
"26",
"29",
"32",
"25",
"30",
"35",
"40",
"45",
"50",
"55",
"60",
"28",
"33",
"38",
"43",
"48",
"53",
"58",
"63",
"68",
"31",
"36",
"41",
"46",
"51",
"56",
"61",
"66",
"71",
"76",
"34",
"39",
"44",
"49",
"54",
"59",
"64",
"69",
"74",
"79",
"84",
"37",
"42",
"47",
"52",
"57",
"62",
"67",
"72",
"77",
"82",
"87",
"92",
"65",
"73",
"81",
"89",
"97"
] |
[
"nonn",
"easy",
"tabl",
"new"
] | 7 | 1 | 2 |
[
"A000045",
"A130233",
"A385590"
] | null |
Werner Schulte, Jul 03 2025
| 2025-07-07T20:01:36 |
oeisdata/seq/A385/A385590.seq
|
b4f47b00237be2473bd1127d93e7fd98
|
A385592
|
Values of u in the quartets (2,u,v,w); i.e., values of u for solutions to 2*(2+u) = v*(v+w), in positive integers, with and v>m, sorted by nondecreasing values of u; see Comments.
|
[
"4",
"7",
"8",
"10",
"10",
"12",
"13",
"13",
"14",
"16",
"16",
"18",
"18",
"19",
"19",
"20",
"22",
"22",
"22",
"23",
"24",
"25",
"25",
"26",
"26",
"28",
"28",
"28",
"28",
"30",
"31",
"31",
"32",
"33",
"33",
"34",
"34",
"34",
"34",
"36",
"37",
"37",
"38",
"38",
"38",
"40",
"40",
"40",
"40",
"42",
"42",
"43",
"43",
"43",
"43",
"44",
"46",
"46",
"46",
"46",
"47",
"48",
"48",
"49",
"49"
] |
[
"nonn",
"new"
] | 19 | 1 | 1 |
[
"A385182",
"A385592",
"A385593",
"A385594"
] | null |
Clark Kimberling, Jul 04 2025
| 2025-07-11T01:13:21 |
oeisdata/seq/A385/A385592.seq
|
719ca19d1b0888fcd1dc72443ebcc3c6
|
A385593
|
The v sequence in quartets (2,u,v,w); see A385592.
|
[
"3",
"3",
"4",
"3",
"4",
"4",
"3",
"5",
"4",
"3",
"4",
"4",
"5",
"3",
"6",
"4",
"3",
"4",
"6",
"5",
"4",
"3",
"6",
"4",
"7",
"3",
"4",
"5",
"6",
"4",
"3",
"6",
"4",
"5",
"7",
"3",
"4",
"6",
"8",
"4",
"3",
"6",
"4",
"5",
"8",
"3",
"4",
"6",
"7",
"4",
"8",
"3",
"5",
"6",
"9",
"4",
"3",
"4",
"6",
"8",
"7",
"4",
"5",
"3",
"6",
"4",
"8",
"3",
"4",
"6",
"9",
"5",
"10",
"4",
"7",
"8",
"3",
"6",
"4",
"3",
"4",
"5",
"6",
"8",
"10",
"4"
] |
[
"nonn",
"new"
] | 6 | 1 | 1 |
[
"A385182",
"A385592",
"A385593",
"A385594"
] | null |
Clark Kimberling, Jul 04 2025
| 2025-07-10T00:43:23 |
oeisdata/seq/A385/A385593.seq
|
7934cbd187fac3543bc820fc0ec62de0
|
A385594
|
The w sequence in quartets (2,u,v,w); see A385592.
|
[
"1",
"3",
"1",
"5",
"2",
"3",
"7",
"1",
"4",
"9",
"5",
"6",
"3",
"11",
"1",
"7",
"13",
"8",
"2",
"5",
"9",
"15",
"3",
"10",
"1",
"17",
"11",
"7",
"4",
"12",
"19",
"5",
"13",
"9",
"3",
"21",
"14",
"6",
"1",
"15",
"23",
"7",
"16",
"11",
"2",
"25",
"17",
"8",
"5",
"18",
"3",
"27",
"13",
"9",
"1",
"19",
"29",
"20",
"10",
"4",
"7",
"21",
"15",
"31",
"11",
"22",
"5",
"33",
"23",
"12",
"3",
"17",
"1",
"24",
"9"
] |
[
"nonn",
"new"
] | 4 | 1 | 2 |
[
"A385182",
"A385592",
"A385593",
"A385594"
] | null |
Clark Kimberling, Jul 07 2025
| 2025-07-10T00:43:54 |
oeisdata/seq/A385/A385594.seq
|
0dbf53aac95247542f2e70ddb62abe8b
|
A385595
|
The u sequence in quartets (3,u,v,w); i.e., values of u for solutions to 3*(3+u) = v*(v+w), in positive integers, with u,v>=3 and u>=m, sorted by nondecreasing values of u; see Comments.
|
[
"5",
"7",
"9",
"11",
"12",
"13",
"13",
"15",
"17",
"17",
"17",
"18",
"19",
"21",
"21",
"21",
"22",
"23",
"25",
"25",
"25",
"27",
"27",
"27",
"29",
"29",
"29",
"30",
"31",
"32",
"32",
"33",
"33",
"33",
"35",
"36",
"37",
"37",
"37",
"37",
"37",
"39",
"39",
"39",
"41",
"41",
"41",
"42",
"42",
"43",
"45",
"45",
"45",
"45",
"46",
"47",
"47",
"47",
"48",
"49",
"49",
"49",
"51",
"51",
"52"
] |
[
"nonn",
"new"
] | 8 | 1 | 1 |
[
"A385182",
"A385592",
"A385595",
"A385596",
"A385597"
] | null |
Clark Kimberling, Jul 07 2025
| 2025-07-11T01:12:56 |
oeisdata/seq/A385/A385595.seq
|
b0f2f83a6b380b212a3dd45d38970b58
|
A385596
|
The v sequence in quartets (3,u,v,w); see A385595.
|
[
"4",
"5",
"4",
"6",
"5",
"4",
"6",
"6",
"4",
"5",
"6",
"7",
"6",
"4",
"6",
"8",
"5",
"6",
"4",
"6",
"7",
"5",
"6",
"9",
"4",
"6",
"8",
"9",
"6",
"5",
"7",
"4",
"6",
"9",
"6",
"9",
"4",
"5",
"6",
"8",
"10",
"6",
"7",
"9",
"4",
"6",
"11",
"5",
"9",
"6",
"4",
"6",
"8",
"9",
"7",
"5",
"6",
"10",
"9",
"4",
"6",
"12",
"6",
"9",
"5",
"11",
"4",
"6",
"7",
"8",
"12",
"9",
"6",
"4",
"5",
"6",
"9",
"10",
"12",
"6",
"7",
"9",
"4",
"6"
] |
[
"nonn",
"new"
] | 4 | 1 | 1 |
[
"A385182",
"A385595",
"A385596"
] | null |
Clark Kimberling, Jul 15 2025
| 2025-07-16T17:57:15 |
oeisdata/seq/A385/A385596.seq
|
b2b7f755afdf0c0a649f9c8f4fce92f5
|
A385597
|
The w sequence in quartets (3,u,v,w); see A385595.
|
[
"2",
"1",
"5",
"1",
"4",
"8",
"2",
"3",
"11",
"7",
"4",
"2",
"5",
"14",
"6",
"1",
"10",
"7",
"17",
"8",
"5",
"13",
"9",
"1",
"20",
"10",
"4",
"2",
"11",
"16",
"8",
"23",
"12",
"3",
"13",
"4",
"26",
"19",
"14",
"7",
"2",
"15",
"11",
"5",
"29",
"16",
"1",
"22",
"6",
"17",
"32",
"18",
"10",
"7",
"14",
"25",
"19",
"5",
"8",
"35",
"20",
"1",
"21",
"9",
"28",
"4",
"38",
"22",
"17",
"13",
"2",
"10",
"23",
"41"
] |
[
"nonn",
"new"
] | 4 | 1 | 1 |
[
"A385182",
"A385595",
"A385597"
] | null |
Clark Kimberling, Jul 10 2025
| 2025-07-12T18:52:36 |
oeisdata/seq/A385/A385597.seq
|
2785b1b11c973cdffa1e9a5bc48ff9e5
|
A385598
|
The u sequence in quartets (4,u,v,w); i.e., values of u for solutions to 4(4+u) = v(v+w), in positive integers, v>m, sorted by nondecreasing values of u; see Comments.
|
[
"6",
"8",
"10",
"11",
"11",
"14",
"14",
"16",
"16",
"17",
"17",
"18",
"20",
"20",
"21",
"22",
"23",
"23",
"24",
"24",
"26",
"26",
"26",
"26",
"28",
"29",
"29",
"30",
"31",
"31",
"31",
"32",
"32",
"32",
"34",
"35",
"35",
"36",
"36",
"36",
"38",
"38",
"38",
"38",
"40",
"40",
"41",
"41",
"41",
"41",
"41",
"42",
"44",
"44",
"44",
"45",
"46",
"46",
"46",
"47",
"47",
"48",
"48",
"50",
"50"
] |
[
"nonn",
"new"
] | 5 | 1 | 1 |
[
"A385182",
"A385592",
"A385598",
"A385599",
"A385600"
] | null |
Clark Kimberling, Jul 10 2025
| 2025-07-12T18:53:22 |
oeisdata/seq/A385/A385598.seq
|
37a3e58201d6b199214637c35845b846
|
A385599
|
The v sequence in quartets (4,u,v,w); see A385182.
|
[
"5",
"6",
"7",
"5",
"6",
"6",
"8",
"5",
"8",
"6",
"7",
"8",
"6",
"8",
"5",
"8",
"6",
"9",
"7",
"8",
"5",
"6",
"8",
"10",
"8",
"6",
"11",
"8",
"5",
"7",
"10",
"6",
"8",
"9",
"8",
"6",
"12",
"5",
"8",
"10",
"6",
"7",
"8",
"12",
"8",
"11",
"5",
"6",
"9",
"10",
"12",
"8",
"6",
"8",
"12",
"7",
"5",
"8",
"10",
"6",
"12",
"8",
"13",
"6",
"8",
"9",
"12",
"5",
"10",
"11",
"7",
"8",
"14",
"6",
"12",
"8",
"5",
"6",
"8",
"10"
] |
[
"nonn",
"new"
] | 4 | 1 | 1 |
[
"A385182",
"A385598",
"A385599"
] | null |
Clark Kimberling, Jul 12 2025
| 2025-07-13T19:20:10 |
oeisdata/seq/A385/A385599.seq
|
1be3f16f89fbb45c0c8d7f31426adf0c
|
A385600
|
The w sequence in quartets (4,u,v,w); see A385182.
|
[
"3",
"2",
"1",
"7",
"4",
"6",
"1",
"11",
"2",
"8",
"5",
"3",
"10",
"4",
"15",
"5",
"12",
"3",
"9",
"6",
"19",
"14",
"7",
"2",
"8",
"16",
"1",
"9",
"23",
"13",
"4",
"18",
"10",
"7",
"11",
"20",
"1",
"27",
"12",
"6",
"22",
"17",
"13",
"2",
"14",
"5",
"31",
"24",
"11",
"8",
"3",
"15",
"26",
"16",
"4",
"21",
"35",
"17",
"10",
"28",
"5",
"18",
"3",
"30",
"19",
"15",
"6",
"39",
"12",
"9",
"25",
"20",
"2"
] |
[
"nonn",
"new"
] | 4 | 1 | 1 |
[
"A385182",
"A385598",
"A385600"
] | null |
Clark Kimberling, Jul 12 2025
| 2025-07-13T19:20:37 |
oeisdata/seq/A385/A385600.seq
|
3358f69f19cb2191ae148119b4177e22
|
A385601
|
Expansion of e.g.f. cosh(x)^2*(x+x^2/2).
|
[
"0",
"1",
"1",
"6",
"12",
"40",
"120",
"224",
"896",
"1152",
"5760",
"5632",
"33792",
"26624",
"186368",
"122880",
"983040",
"557056",
"5013504",
"2490368",
"24903680",
"11010048",
"121110528",
"48234496",
"578813952",
"209715200",
"2726297600",
"905969664",
"12683575296",
"3892314112",
"58384711680",
"16642998272",
"266287972352",
"70866960384"
] |
[
"nonn",
"easy",
"new"
] | 7 | 0 | 4 |
[
"A229580",
"A229679",
"A385083",
"A385601"
] | null |
Enrique Navarrete, Jul 04 2025
| 2025-07-08T18:35:15 |
oeisdata/seq/A385/A385601.seq
|
03795de2411dd5685766c53438ac9175
|
A385606
|
Diagonal of the rational function 1/(1 - (v^3 + w^3 + x^3 + y^3 + z^3 + v*w*x*y*z)).
|
[
"1",
"1",
"1",
"121",
"721",
"2521",
"120121",
"1262521",
"7514641",
"200655841",
"2804296441",
"23211542641",
"443673670441",
"7070369866561",
"73192033638361",
"1173608444069881",
"19482750854113681",
"235115468646608881",
"3483568444035458401",
"57574418930692099801",
"769737183831483390601",
"11118980118960559362001"
] |
[
"nonn"
] | 8 | 0 | 4 |
[
"A082489",
"A361636",
"A361703",
"A385606",
"A385607"
] | null |
Seiichi Manyama, Jul 04 2025
| 2025-07-04T10:04:51 |
oeisdata/seq/A385/A385606.seq
|
4f184f4d2c0c4e188958f832f6ab79fb
|
A385607
|
Diagonal of the rational function 1/(1 - (v^2 + w^2 + x^2 + y^2 + z^2 + v*w*x*y*z)).
|
[
"1",
"1",
"121",
"721",
"115921",
"1254121",
"175667521",
"2723150641",
"328524651841",
"6553910658241",
"694593264839761",
"16751100559753561",
"1592929589394223081",
"44555491032952142881",
"3872288533662063462481",
"121957120480085202781681",
"9836937778718128127534881",
"341177468192261294809070401"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A082489",
"A361636",
"A361703",
"A385606",
"A385607"
] | null |
Seiichi Manyama, Jul 04 2025
| 2025-07-04T10:04:47 |
oeisdata/seq/A385/A385607.seq
|
d437c9631d4e4474c1bac224f22e617c
|
A385608
|
a(n) = 2-adic valuation of A003266(n).
|
[
"0",
"0",
"0",
"1",
"1",
"1",
"4",
"4",
"4",
"5",
"5",
"5",
"9",
"9",
"9",
"10",
"10",
"10",
"13",
"13",
"13",
"14",
"14",
"14",
"19",
"19",
"19",
"20",
"20",
"20",
"23",
"23",
"23",
"24",
"24",
"24",
"28",
"28",
"28",
"29",
"29",
"29",
"32",
"32",
"32",
"33",
"33",
"33",
"39",
"39",
"39",
"40",
"40",
"40",
"43",
"43",
"43",
"44",
"44",
"44",
"48",
"48",
"48",
"49",
"49",
"49",
"52",
"52",
"52",
"53",
"53",
"53"
] |
[
"nonn",
"easy",
"new"
] | 29 | 0 | 7 |
[
"A000120",
"A003266",
"A007814",
"A337923",
"A385458",
"A385608",
"A385609"
] | null |
Paolo Xausa, Jul 04 2025
| 2025-07-16T10:13:57 |
oeisdata/seq/A385/A385608.seq
|
b19d8c5ed2616cec77fa7f0d5bf83965
|
A385609
|
Partial sums of A090740.
|
[
"1",
"4",
"5",
"9",
"10",
"13",
"14",
"19",
"20",
"23",
"24",
"28",
"29",
"32",
"33",
"39",
"40",
"43",
"44",
"48",
"49",
"52",
"53",
"58",
"59",
"62",
"63",
"67",
"68",
"71",
"72",
"79",
"80",
"83",
"84",
"88",
"89",
"92",
"93",
"98",
"99",
"102",
"103",
"107",
"108",
"111",
"112",
"118",
"119",
"122",
"123",
"127",
"128",
"131",
"132",
"137",
"138",
"141",
"142",
"146",
"147",
"150",
"151"
] |
[
"nonn",
"easy",
"new"
] | 12 | 1 | 2 |
[
"A000120",
"A090740",
"A385608",
"A385609"
] | null |
Paolo Xausa, Jul 04 2025
| 2025-07-16T00:58:45 |
oeisdata/seq/A385/A385609.seq
|
439a48dc960f2254671f883713b574e9
|
A385610
|
Galileo sequence with ratio k = 2: a(1) = 1, a(2) = k, a(2*n-1) = floor(((k + 1)*a(n) -1)/2), and a(2*n) = floor((k + 1)*a(n)/2) + 1 for n > 2.
|
[
"1",
"2",
"2",
"4",
"2",
"4",
"5",
"7",
"2",
"4",
"5",
"7",
"7",
"8",
"10",
"11",
"2",
"4",
"5",
"7",
"7",
"8",
"10",
"11",
"10",
"11",
"11",
"13",
"14",
"16",
"16",
"17",
"2",
"4",
"5",
"7",
"7",
"8",
"10",
"11",
"10",
"11",
"11",
"13",
"14",
"16",
"16",
"17",
"14",
"16",
"16",
"17",
"16",
"17",
"19",
"20",
"20",
"22",
"23",
"25",
"23",
"25",
"25",
"26",
"2",
"4",
"5",
"7",
"7",
"8",
"10",
"11",
"10",
"11"
] |
[
"nonn",
"easy",
"look",
"new"
] | 11 | 1 | 2 |
[
"A005408",
"A037861",
"A385587",
"A385610",
"A385643"
] | null |
Stefano Spezia, Jul 04 2025
| 2025-07-09T18:57:52 |
oeisdata/seq/A385/A385610.seq
|
66e5d28b8cdc2a0cebb106862aea7654
|
A385611
|
Numbers that can be written as s^w + t^x + u^y + v^z with 1 < s < t < u and {s,t,u,v} = {w,x,y,z} (the sequence of exponents can be any permutation of s,t,u,v).
|
[
"202",
"245",
"254",
"322",
"340",
"348",
"377",
"383",
"400",
"422",
"460",
"465",
"468",
"532",
"545",
"548",
"568",
"603",
"628",
"688",
"700",
"730",
"736",
"738",
"739",
"845",
"865",
"876",
"892",
"922",
"936",
"961",
"977",
"1002",
"1029",
"1033",
"1036",
"1092",
"1122",
"1138",
"1174",
"1205",
"1234",
"1236",
"1265",
"1269",
"1338",
"1403",
"1407",
"1433"
] |
[
"nonn",
"new"
] | 18 | 1 | 1 |
[
"A001597",
"A385232",
"A385233",
"A385611"
] | null |
Jean-Marc Rebert, Jul 04 2025
| 2025-07-08T22:11:20 |
oeisdata/seq/A385/A385611.seq
|
2bbf5281d82089b4e65246ba5d594667
|
A385612
|
Decimal expansion zeta''''(0) (negated).
|
[
"2",
"3",
"9",
"9",
"7",
"1",
"0",
"3",
"1",
"8",
"8",
"0",
"1",
"3",
"7",
"0",
"7",
"9",
"5",
"8",
"9",
"8",
"7",
"2",
"1",
"9",
"5",
"2",
"7",
"7",
"4",
"1",
"0",
"0",
"5",
"6",
"6",
"1",
"8",
"9",
"1",
"1",
"3",
"9",
"9",
"3",
"4",
"9",
"2",
"1",
"7",
"0",
"3",
"4",
"2",
"4",
"9",
"7",
"6",
"0",
"0",
"9",
"3",
"3",
"3",
"0",
"4",
"6",
"3",
"8",
"2",
"9",
"3",
"8",
"6",
"3",
"3",
"4",
"4",
"9",
"9",
"1",
"3",
"8",
"2",
"8",
"6",
"1",
"8",
"2",
"2",
"7",
"5",
"7",
"8",
"1",
"3",
"3",
"4",
"6",
"9",
"4",
"9",
"0",
"3"
] |
[
"nonn",
"cons",
"new"
] | 26 | 2 | 1 |
[
"A001620",
"A061444",
"A075700",
"A082633",
"A086279",
"A086280",
"A257549",
"A261508",
"A385612"
] | null |
Artur Jasinski, Jul 04 2025
| 2025-07-05T09:59:11 |
oeisdata/seq/A385/A385612.seq
|
66be226d45c3506e3dfc4435e8e9beb2
|
A385613
|
Number of steps that n requires to reach 0 under the map: x-> x^2 - 1 if x is an odd prime, floor(x/3) if x is even, otherwise x - 1. a(n) = -1 if 0 is never reached.
|
[
"0",
"1",
"1",
"3",
"2",
"4",
"2",
"7",
"2",
"3",
"4",
"9",
"3",
"6",
"3",
"4",
"5",
"8",
"3",
"10",
"3",
"4",
"8",
"14",
"3",
"4",
"3",
"4",
"4",
"10",
"5",
"15",
"5",
"6",
"10",
"11",
"4",
"10",
"4",
"5",
"7",
"8",
"4",
"14",
"4",
"5",
"5",
"10",
"6",
"7",
"6",
"7",
"9",
"15",
"4",
"5",
"4",
"5",
"11",
"9",
"4",
"18",
"4",
"5",
"5",
"6",
"9",
"10",
"9",
"10",
"15",
"9",
"4",
"22",
"4",
"5",
"5",
"6",
"4",
"11",
"4"
] |
[
"sign",
"new"
] | 8 | 0 | 4 |
[
"A339991",
"A340801",
"A384713",
"A385613"
] | null |
Ya-Ping Lu, Jul 04 2025
| 2025-07-14T17:00:23 |
oeisdata/seq/A385/A385613.seq
|
d366bcb0ab48a1069f76e0a57fa632b8
|
A385614
|
Numbers of the form x^x + y^y, 1 < x < y.
|
[
"31",
"260",
"283",
"3129",
"3152",
"3381",
"46660",
"46683",
"46912",
"49781",
"823547",
"823570",
"823799",
"826668",
"870199",
"16777220",
"16777243",
"16777472",
"16780341",
"16823872",
"17600759",
"387420493",
"387420516",
"387420745",
"387423614",
"387467145",
"388244032",
"404197705",
"10000000004"
] |
[
"nonn",
"easy",
"changed"
] | 37 | 1 | 1 |
[
"A000312",
"A173054",
"A385232",
"A385614"
] | null |
Sean A. Irvine, Jul 04 2025
| 2025-07-15T08:29:04 |
oeisdata/seq/A385/A385614.seq
|
889341861107ca76c93a4c45945b036c
|
A385615
|
Star numbers corresponding to the point numbers in A385330.
|
[
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"2",
"4",
"3",
"4",
"2",
"3",
"4",
"5",
"3",
"4",
"2",
"5",
"4",
"5",
"3",
"5",
"4",
"2",
"3",
"5",
"6",
"4",
"5",
"6",
"3",
"4",
"6",
"2",
"5",
"6",
"4",
"5",
"3",
"6",
"5",
"4",
"6",
"7",
"2",
"3",
"5",
"7",
"6",
"4",
"7",
"5",
"6",
"3",
"7",
"4",
"6",
"2",
"5",
"7",
"6",
"4",
"7",
"5",
"3",
"6",
"7",
"8",
"5",
"4",
"6",
"7",
"2",
"8",
"3",
"5",
"8",
"7",
"6",
"4",
"8",
"7",
"5",
"6",
"8"
] |
[
"nonn",
"tabf",
"new"
] | 6 | 1 | 2 |
[
"A385330",
"A385615"
] | null |
Sean A. Irvine and Tamas Sandor Nagy, Jul 08 2025
| 2025-07-09T05:32:05 |
oeisdata/seq/A385/A385615.seq
|
50bd2dcee185476b7016a0e8a69a31b7
|
A385617
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x)) ).
|
[
"1",
"2",
"10",
"82",
"1062",
"22646",
"846570",
"58644858",
"7808479582",
"2038568219422",
"1054007965984050",
"1084591195956246130",
"2226674324358059364150",
"9131600163886719149539590",
"74851744440590132840318820090",
"1226745312860243142951267683147178",
"40204124737879503807503331117931168974"
] |
[
"nonn",
"new"
] | 14 | 0 | 2 |
[
"A000051",
"A015083",
"A047749",
"A385617",
"A385618",
"A385622"
] | null |
Seiichi Manyama, Jul 05 2025
| 2025-07-05T09:16:52 |
oeisdata/seq/A385/A385617.seq
|
ca0f0e4b1c29f5b0762be568d1d6da82
|
A385618
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(2*x) + A(3*x)) ).
|
[
"1",
"2",
"14",
"230",
"9014",
"913334",
"254986934",
"203241812630",
"471322195238102",
"3214892041613961206",
"64937611960188470964662",
"3901256965326759127330935830",
"699101347969640933511109922382422",
"374397435055450676411068538643233721206",
"599979003238812649083869782544110463986119734"
] |
[
"nonn",
"new"
] | 13 | 0 | 2 |
[
"A007689",
"A015083",
"A015084",
"A047749",
"A385617",
"A385618"
] | null |
Seiichi Manyama, Jul 05 2025
| 2025-07-05T09:58:48 |
oeisdata/seq/A385/A385618.seq
|
405a594a3927b31d71af76475379902c
|
A385619
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x)) ).
|
[
"1",
"2",
"16",
"320",
"14176",
"1363872",
"288285760",
"135499302976",
"142083696478720",
"331241746024775168",
"1705949708332396248064",
"19272264281263882812337152",
"474329882865823082358501265408",
"25275628582523724268037232839274496",
"2899873213836728319564120809900380069888"
] |
[
"nonn",
"new"
] | 11 | 0 | 2 |
[
"A385617",
"A385619"
] | null |
Seiichi Manyama, Jul 05 2025
| 2025-07-05T09:29:23 |
oeisdata/seq/A385/A385619.seq
|
d9b00521ef16d9f6339e4555c6d24861
|
A385620
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(2*x) + A(3*x)) ).
|
[
"1",
"2",
"24",
"1064",
"158144",
"78427712",
"130391102464",
"725657074158592",
"13450842239318679552",
"825492067428121929359360",
"166724642619378284453845213184",
"110175812687250637947409895640473600",
"236918101449618886434191300434062010777600",
"1649425480856495624442166311045759714226010423296"
] |
[
"nonn",
"new"
] | 13 | 0 | 2 |
[
"A058014",
"A096538",
"A385526",
"A385620"
] | null |
Seiichi Manyama, Jul 05 2025
| 2025-07-05T09:59:02 |
oeisdata/seq/A385/A385620.seq
|
875563473c842a7445ffbbeea7f38f18
|
A385621
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(3*x))/2 ).
|
[
"1",
"1",
"5",
"88",
"5301",
"1115376",
"823422553",
"2109689685664",
"18480955532693321",
"545890697425512822016",
"53732023859661557312932461",
"17451409191554766719804179944960",
"18549102840350232594174973144785505021",
"64075761168350693656591055399719635872352256",
"715103564008507527975398262955305194708318040264449"
] |
[
"nonn",
"new"
] | 12 | 0 | 3 |
[
"A007051",
"A385621",
"A385622"
] | null |
Seiichi Manyama, Jul 05 2025
| 2025-07-05T09:58:53 |
oeisdata/seq/A385/A385621.seq
|
ed794ed33ea8c3d57431288846c25e51
|
A385622
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(3*x))/2 ).
|
[
"1",
"1",
"3",
"20",
"321",
"13847",
"1718124",
"630600310",
"691143519765",
"2269026118814651",
"22336295204505116859",
"659523795328845920952570",
"58417979762116119140729740620",
"15523000838307934869469597031994180",
"12374377440444177691000805646758968904928",
"29593162781962095695448333383964939013238970030"
] |
[
"nonn",
"new"
] | 13 | 0 | 3 |
[
"A007051",
"A385617",
"A385621",
"A385622"
] | null |
Seiichi Manyama, Jul 05 2025
| 2025-07-05T09:58:49 |
oeisdata/seq/A385/A385622.seq
|
8aeb0bc94aeca559594e46f37a97e887
|
A385623
|
Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.
|
[
"0",
"10",
"1",
"20",
"11",
"2",
"30",
"21",
"12",
"3",
"40",
"31",
"22",
"13",
"4",
"50",
"41",
"32",
"23",
"14",
"5",
"60",
"51",
"42",
"33",
"24",
"15",
"6",
"70",
"61",
"52",
"43",
"34",
"25",
"16",
"7",
"80",
"71",
"62",
"53",
"44",
"35",
"26",
"17",
"8",
"90",
"81",
"72",
"63",
"54",
"45",
"36",
"27",
"18",
"9",
"100",
"91",
"82",
"73",
"64",
"55",
"46",
"37",
"28",
"19",
"10",
"110",
"101",
"92",
"83",
"74",
"65",
"56",
"47",
"38",
"29",
"110",
"11"
] |
[
"nonn",
"base",
"easy",
"look",
"tabl",
"new"
] | 17 | 0 | 2 |
[
"A001477",
"A008592",
"A017281",
"A017293",
"A017305",
"A017317",
"A017329",
"A017341",
"A017353",
"A017365",
"A017377",
"A020338",
"A055642",
"A385623",
"A385624"
] | null |
Stefano Spezia, Jul 05 2025
| 2025-07-11T15:37:30 |
oeisdata/seq/A385/A385623.seq
|
4c97d4c1674f4cbeb4a7b3a40e4a2d0d
|
A385624
|
Antidiagonal sums of the array defined in A385623.
|
[
"0",
"11",
"33",
"66",
"110",
"165",
"231",
"308",
"396",
"495",
"605",
"816",
"1128",
"1541",
"2055",
"2670",
"3386",
"4203",
"5121",
"6140",
"7260",
"8481",
"9803",
"11226",
"12750",
"14375",
"16101",
"17928",
"19856",
"21885",
"24015",
"26246",
"28578",
"31011",
"33545",
"36180",
"38916",
"41753",
"44691",
"47730",
"50870",
"54111",
"57453",
"60896"
] |
[
"nonn",
"base",
"new"
] | 12 | 0 | 2 |
[
"A385623",
"A385624"
] | null |
Stefano Spezia, Jul 05 2025
| 2025-07-09T23:50:50 |
oeisdata/seq/A385/A385624.seq
|
040709216e6fdab4424fa15c2a697a73
|
A385625
|
Sum of the divisors d of n with an odd number of primes not exceeding d.
|
[
"0",
"2",
"0",
"2",
"5",
"8",
"0",
"2",
"0",
"7",
"11",
"20",
"0",
"2",
"5",
"2",
"17",
"26",
"0",
"7",
"0",
"13",
"23",
"44",
"30",
"28",
"27",
"30",
"0",
"13",
"31",
"34",
"44",
"53",
"40",
"74",
"0",
"2",
"0",
"7",
"41",
"50",
"0",
"13",
"5",
"25",
"47",
"92",
"49",
"82",
"68",
"80",
"0",
"53",
"16",
"30",
"0",
"2",
"59",
"85",
"0",
"33",
"0",
"34",
"5",
"52",
"67",
"121",
"92",
"112",
"0",
"98",
"73",
"76",
"105",
"78",
"88",
"112",
"0",
"7",
"27",
"43",
"83",
"174",
"107",
"88",
"87",
"101",
"0",
"31",
"0",
"25",
"31",
"49",
"5",
"124",
"97",
"149"
] |
[
"nonn",
"easy",
"new"
] | 11 | 1 | 2 |
[
"A000203",
"A000720",
"A071986",
"A345219",
"A385625",
"A385628"
] | null |
Wesley Ivan Hurt, Jul 05 2025
| 2025-07-05T09:36:13 |
oeisdata/seq/A385/A385625.seq
|
c91cae111acf4ccb26ecafd7548b65dc
|
A385626
|
Table read by rows: T(n, k) = binomial(n, k) * fibonomial(n, k).
|
[
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"6",
"6",
"1",
"1",
"12",
"36",
"12",
"1",
"1",
"25",
"150",
"150",
"25",
"1",
"1",
"48",
"600",
"1200",
"600",
"48",
"1",
"1",
"91",
"2184",
"9100",
"9100",
"2184",
"91",
"1",
"1",
"168",
"7644",
"61152",
"127400",
"61152",
"7644",
"168",
"1",
"1",
"306",
"25704",
"389844",
"1559376",
"1559376",
"389844",
"25704",
"306",
"1"
] |
[
"nonn",
"tabl",
"new"
] | 9 | 0 | 5 |
[
"A003266",
"A007318",
"A010048",
"A385626",
"A385630"
] | null |
Peter Luschny, Jul 05 2025
| 2025-07-05T09:58:36 |
oeisdata/seq/A385/A385626.seq
|
e1dc6f5621bfd58fb6863b44d8048180
|
A385627
|
Table read by rows: T(n, k) = (binomial(n, k) * fibonomial(n, k)) mod 2.
|
[
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] |
[
"nonn",
"tabl",
"new"
] | 10 | 0 | null |
[
"A007318",
"A010048",
"A047999",
"A385395",
"A385456",
"A385626",
"A385627",
"A385630"
] | null |
Peter Luschny, Jul 06 2025
| 2025-07-07T03:18:42 |
oeisdata/seq/A385/A385627.seq
|
ba8eb06436dd1e25b17e9ccb43a072db
|
A385628
|
Sum of the divisors d of n with an even number of primes not exceeding d.
|
[
"1",
"1",
"4",
"5",
"1",
"4",
"8",
"13",
"13",
"11",
"1",
"8",
"14",
"22",
"19",
"29",
"1",
"13",
"20",
"35",
"32",
"23",
"1",
"16",
"1",
"14",
"13",
"26",
"30",
"59",
"1",
"29",
"4",
"1",
"8",
"17",
"38",
"58",
"56",
"83",
"1",
"46",
"44",
"71",
"73",
"47",
"1",
"32",
"8",
"11",
"4",
"18",
"54",
"67",
"56",
"90",
"80",
"88",
"1",
"83",
"62",
"63",
"104",
"93",
"79",
"92",
"1",
"5",
"4",
"32",
"72",
"97",
"1",
"38",
"19",
"62",
"8",
"56",
"80",
"179",
"94",
"83",
"1",
"50",
"1",
"44",
"33",
"79",
"90",
"203",
"112",
"143",
"97",
"95",
"115"
] |
[
"nonn",
"easy",
"new"
] | 8 | 1 | 3 |
[
"A000203",
"A000720",
"A131377",
"A345220",
"A385625",
"A385628"
] | null |
Wesley Ivan Hurt, Jul 05 2025
| 2025-07-05T09:36:40 |
oeisdata/seq/A385/A385628.seq
|
49781a2f895854050018b7ba3a008414
|
A385630
|
a(n) = n! * Prod_{k=1..n} Fibonacci(k).
|
[
"1",
"1",
"2",
"12",
"144",
"3600",
"172800",
"15724800",
"2641766400",
"808380518400",
"444609285120000",
"435272490132480000",
"752150862948925440000",
"2278264963872295157760000",
"12024682479317973842657280000",
"110025844685759460660314112000000",
"1737528139277513402747680456704000000"
] |
[
"nonn",
"new"
] | 8 | 0 | 3 |
[
"A000045",
"A000142",
"A003266",
"A385630"
] | null |
Peter Luschny, Jul 05 2025
| 2025-07-05T09:58:42 |
oeisdata/seq/A385/A385630.seq
|
4b12d372cdcb4a26dd9fea3a63880ed3
|
A385631
|
Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.
|
[
"120",
"720",
"2520",
"6720",
"15120",
"30240",
"55440",
"240240",
"360360"
] |
[
"nonn",
"fini",
"full",
"new"
] | 8 | 1 | 1 |
[
"A052787",
"A055932",
"A217056",
"A385189",
"A385415",
"A385631"
] | null |
Ken Clements, Jul 05 2025
| 2025-07-09T16:36:07 |
oeisdata/seq/A385/A385631.seq
|
b4e82280c59a8450d6ad4f23d087af61
|
A385633
|
a(n) = a(n-1) + a(n-3), with a(0) = 1, a(1) = 4, a(2) = 8.
|
[
"1",
"4",
"8",
"9",
"13",
"21",
"30",
"43",
"64",
"94",
"137",
"201",
"295",
"432",
"633",
"928",
"1360",
"1993",
"2921",
"4281",
"6274",
"9195",
"13476",
"19750",
"28945",
"42421",
"62171",
"91116",
"133537",
"195708",
"286824",
"420361",
"616069",
"902893",
"1323254",
"1939323",
"2842216",
"4165470",
"6104793",
"8947009",
"13112479",
"19217272"
] |
[
"nonn",
"easy",
"new"
] | 15 | 0 | 2 |
[
"A000930",
"A179070",
"A385633"
] | null |
Greg Dresden and Saim Usmani, Jul 05 2025
| 2025-07-09T22:14:59 |
oeisdata/seq/A385/A385633.seq
|
5eaed7082e3759d2fb9a282b5d78c515
|
A385634
|
Period 8: repeat [1, 3, 7, 2, 6, 5, 4, 8].
|
[
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8",
"1",
"3",
"7",
"2",
"6",
"5",
"4",
"8"
] |
[
"nonn",
"easy",
"new"
] | 27 | 0 | 2 |
[
"A385491",
"A385634"
] | null |
Christopher W Moriarty, Jul 05 2025
| 2025-07-13T11:08:59 |
oeisdata/seq/A385/A385634.seq
|
cb5f7379f9daf70565cf47ae0e1baccb
|
A385635
|
G.f. satisfies A(x) = x + Product_{n>=2} A(x^n) with A(0) = 1.
|
[
"1",
"1",
"1",
"1",
"2",
"2",
"4",
"4",
"8",
"8",
"13",
"15",
"26",
"26",
"41",
"48",
"73",
"80",
"119",
"136",
"198",
"225",
"313",
"367",
"518",
"585",
"797",
"941",
"1264",
"1466",
"1953",
"2285",
"3022",
"3524",
"4571",
"5391",
"6993",
"8152",
"10440",
"12316",
"15684",
"18370",
"23236",
"27327",
"34389",
"40364",
"50370",
"59292",
"73880",
"86547",
"107080",
"125976",
"155266",
"182058"
] |
[
"nonn",
"new"
] | 9 | 0 | 5 |
[
"A129374",
"A129375",
"A385635"
] | null |
Paul D. Hanna, Jul 05 2025
| 2025-07-06T05:08:02 |
oeisdata/seq/A385/A385635.seq
|
acada605003d3e9103f9a1cd45accbcf
|
A385636
|
Numbers k where sin(sqrt(k)) reaches successive record high values.
|
[
"0",
"1",
"2",
"60",
"61",
"62",
"200",
"417",
"2687",
"1536009",
"57157270",
"81436635",
"143005063",
"706132910",
"2016118929"
] |
[
"nonn",
"more",
"new"
] | 26 | 1 | 3 |
[
"A046959",
"A046964",
"A046965",
"A385636"
] | null |
Artur Jasinski, Jul 05 2025
| 2025-07-18T05:44:50 |
oeisdata/seq/A385/A385636.seq
|
83d2b24c01c9dc27c841b4a9f3868fb8
|
A385637
|
Primes whose decimal expansion consists of the concatenation of m i’s followed by m j’s, ..., iiijjj, iijj and ij, i != j, where 1 <= i, j <= 9 and m > 0.
|
[
"13",
"17",
"19",
"23",
"29",
"31",
"37",
"41",
"43",
"47",
"53",
"59",
"61",
"67",
"71",
"73",
"79",
"83",
"89",
"97",
"44443333444333443343",
"55555553333333555555333333555553333355553333555333553353"
] |
[
"nonn",
"base",
"new"
] | 8 | 1 | 1 |
[
"A034845",
"A059170",
"A385481",
"A385637"
] | null |
Gonzalo Martínez, Jul 05 2025
| 2025-07-14T19:36:54 |
oeisdata/seq/A385/A385637.seq
|
0c29650e3ebc61c348a156d1531658a2
|
A385640
|
Numbers k such that the sum of the digits of k divides k and the sum of the digits of k^2 divides k^2.
|
[
"1",
"2",
"3",
"6",
"9",
"10",
"12",
"18",
"20",
"21",
"24",
"30",
"36",
"42",
"45",
"48",
"54",
"60",
"63",
"72",
"80",
"84",
"90",
"100",
"102",
"108",
"110",
"111",
"112",
"117",
"120",
"126",
"132",
"140",
"144",
"150",
"156",
"162",
"180",
"190",
"198",
"200",
"201",
"204",
"207",
"210",
"216",
"220",
"234",
"240",
"243",
"252",
"264",
"270",
"288",
"300",
"306",
"315"
] |
[
"nonn",
"base",
"easy",
"new"
] | 21 | 1 | 2 |
[
"A005349",
"A007953",
"A385640",
"A385656"
] | null |
Vighnesh Patil, Jul 05 2025
| 2025-07-09T10:13:31 |
oeisdata/seq/A385/A385640.seq
|
e87d35ab3952cac6f00e7f2f06e8d4de
|
A385642
|
G.f. A(x) satisfies 2*(1-x) = Sum_{n=-oo..+oo} (x - A(x)^n)^(n+1) * (A(x) - x^n)^(n+1).
|
[
"1",
"1",
"1",
"2",
"4",
"8",
"13",
"35",
"86",
"191",
"447",
"1103",
"2810",
"6974",
"17471",
"44795",
"115279",
"296474",
"763834",
"1981967",
"5164628",
"13473784",
"35236723",
"92443470",
"243157407",
"640688394",
"1691077318",
"4472493065",
"11849608512",
"31441695581",
"83545685025",
"222309673546",
"592337513731",
"1580160709355",
"4220133780310"
] |
[
"nonn",
"new"
] | 9 | 1 | 4 | null | null |
Paul D. Hanna, Jul 05 2025
| 2025-07-06T05:18:24 |
oeisdata/seq/A385/A385642.seq
|
b2231157e36c8829acdaa6fdc2d542df
|
A385643
|
Galileo sequence with ratio k = 5: a(1) = 1, a(2) = k, a(2*n-1) = floor(((k + 1)*a(n) -1)/2), and a(2*n) = floor((k + 1)*a(n)/2) + 1 for n > 2.
|
[
"1",
"5",
"14",
"16",
"41",
"43",
"47",
"49",
"122",
"124",
"128",
"130",
"140",
"142",
"146",
"148",
"365",
"367",
"371",
"373",
"383",
"385",
"389",
"391",
"419",
"421",
"425",
"427",
"437",
"439",
"443",
"445",
"1094",
"1096",
"1100",
"1102",
"1112",
"1114",
"1118",
"1120",
"1148",
"1150",
"1154",
"1156",
"1166",
"1168",
"1172",
"1174",
"1256",
"1258",
"1262"
] |
[
"nonn",
"easy",
"look",
"new"
] | 8 | 1 | 2 |
[
"A005408",
"A037861",
"A385587",
"A385610",
"A385643"
] | null |
Stefano Spezia, Jul 06 2025
| 2025-07-09T18:57:56 |
oeisdata/seq/A385/A385643.seq
|
d86f7ea728434d8ded4ff9351804244e
|
A385644
|
Swap multiplication and exponentiation in the canonical prime factorization of n.
|
[
"2",
"3",
"4",
"5",
"8",
"7",
"6",
"6",
"32",
"11",
"64",
"13",
"128",
"243",
"8",
"17",
"64",
"19",
"1024",
"2187",
"2048",
"23",
"216",
"10",
"8192",
"9",
"16384",
"29",
"14134776518227074636666380005943348126619871175004951664972849610340958208",
"31",
"10",
"177147",
"131072",
"78125",
"4096",
"37",
"524288",
"1594323",
"7776",
"41"
] |
[
"nonn",
"new"
] | 45 | 2 | 1 |
[
"A000026",
"A001414",
"A005361",
"A008474",
"A385644"
] | null |
Jens Ahlström, Jul 06 2025
| 2025-07-16T14:26:17 |
oeisdata/seq/A385/A385644.seq
|
b0630d9f201feefcfb6a1b43ec85db25
|
A385645
|
a(n) is the number of distinct sums of distinct prime powers dividing n.
|
[
"1",
"3",
"3",
"7",
"3",
"6",
"3",
"15",
"7",
"7",
"3",
"10",
"3",
"7",
"7",
"31",
"3",
"13",
"3",
"12",
"7",
"7",
"3",
"18",
"7",
"7",
"15",
"14",
"3",
"11",
"3",
"63",
"7",
"7",
"7",
"19",
"3",
"7",
"7",
"20",
"3",
"13",
"3",
"15",
"14",
"7",
"3",
"34",
"7",
"15",
"7",
"15",
"3",
"27",
"7",
"22",
"7",
"7",
"3",
"15",
"3",
"7",
"14",
"127",
"7",
"13",
"3",
"15",
"7",
"13",
"3",
"27",
"3",
"7",
"15",
"15",
"7",
"13"
] |
[
"nonn",
"easy",
"new"
] | 8 | 1 | 2 |
[
"A000040",
"A000961",
"A119347",
"A385645",
"A385646"
] | null |
Felix Huber, Jul 11 2025
| 2025-07-15T17:04:53 |
oeisdata/seq/A385/A385645.seq
|
9c1a6795cba2f3a00835846831674172
|
A385646
|
a(n) is the number of distinct sums of distinct prime factors of n.
|
[
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"3",
"1",
"1",
"3",
"1",
"3",
"3",
"3",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"6",
"1",
"1",
"3",
"3",
"3",
"3",
"1",
"3",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"3",
"1",
"3",
"1",
"3",
"3",
"3",
"1",
"3",
"3",
"3",
"3",
"3",
"1",
"6",
"1",
"3",
"3",
"1",
"3",
"7",
"1",
"3",
"3",
"6",
"1",
"3",
"1",
"3",
"3",
"3",
"3",
"7",
"1",
"3",
"1",
"3",
"1",
"7",
"3",
"3",
"3",
"3"
] |
[
"nonn",
"easy",
"new"
] | 5 | 1 | 6 |
[
"A000040",
"A001221",
"A119347",
"A385645",
"A385646"
] | null |
Felix Huber, Jul 11 2025
| 2025-07-15T16:46:04 |
oeisdata/seq/A385/A385646.seq
|
a81b5058716e31145ea01fdb36694512
|
A385647
|
Decimal expansion of 1 - log(2)/2.
|
[
"6",
"5",
"3",
"4",
"2",
"6",
"4",
"0",
"9",
"7",
"2",
"0",
"0",
"2",
"7",
"3",
"4",
"5",
"2",
"9",
"1",
"3",
"8",
"3",
"9",
"3",
"9",
"2",
"7",
"0",
"9",
"1",
"1",
"7",
"1",
"5",
"9",
"6",
"2",
"2",
"4",
"9",
"9",
"3",
"2",
"8",
"1",
"9",
"8",
"7",
"2",
"3",
"7",
"2",
"9",
"3",
"9",
"6",
"5",
"9",
"9",
"9",
"5",
"2",
"5",
"3",
"3",
"0",
"3",
"1",
"8",
"9",
"0",
"1",
"5",
"1",
"5",
"2",
"6",
"4",
"2",
"1",
"9",
"7",
"0",
"6",
"8",
"3",
"3",
"6"
] |
[
"nonn",
"cons",
"easy",
"new"
] | 19 | 0 | 1 |
[
"A002162",
"A091651",
"A382854",
"A385647"
] | null |
Paolo Xausa, Jul 06 2025
| 2025-07-07T11:53:53 |
oeisdata/seq/A385/A385647.seq
|
35f9254dbaec743068f83e810a2847ee
|
A385648
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x))^2 ).
|
[
"1",
"4",
"64",
"1872",
"91328",
"7563648",
"1115422976",
"306988895488",
"162926170881024",
"169827391985854464",
"350891899856754294784",
"1443597302250006622052352",
"11851990053153536620868173824",
"194396568906445310993071164686336",
"6373487768490075927307409156798611456"
] |
[
"nonn",
"new"
] | 10 | 0 | 2 |
[
"A171192",
"A385617",
"A385648",
"A385649",
"A385650"
] | null |
Seiichi Manyama, Jul 06 2025
| 2025-07-06T10:39:39 |
oeisdata/seq/A385/A385648.seq
|
31f0a8a4d887e25f2380bdd167fcb2fe
|
A385649
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x))^3 ).
|
[
"1",
"8",
"352",
"29696",
"4263424",
"1049470976",
"462206058496",
"380751228633088",
"605491779706159104",
"1892234112450731442176",
"11725274627114715154743296",
"144692808471111027067403108352",
"3563512028948515548768609167736832",
"175339259291213196115801459160952864768"
] |
[
"nonn",
"new"
] | 10 | 0 | 2 |
[
"A171193",
"A385617",
"A385648",
"A385649",
"A385651"
] | null |
Seiichi Manyama, Jul 06 2025
| 2025-07-06T10:39:35 |
oeisdata/seq/A385/A385649.seq
|
57f9068876ff30d7ceaef84cd9e96acb
|
A385650
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^2 ).
|
[
"1",
"4",
"112",
"8800",
"1586944",
"624664064",
"536747751424",
"1018102925488128",
"4288756843049058304",
"40076190507961751044096",
"826422665125748814526283776",
"37363126329930414708850363990016",
"3679235193626553722088195031035805696",
"784317990902751658071943156321585144528896"
] |
[
"nonn",
"new"
] | 10 | 0 | 2 |
[
"A168600",
"A385619",
"A385648",
"A385650",
"A385651"
] | null |
Seiichi Manyama, Jul 06 2025
| 2025-07-06T10:39:49 |
oeisdata/seq/A385/A385650.seq
|
ba52d74dec2ef9b3458565e0686b068a
|
A385651
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^3 ).
|
[
"1",
"8",
"640",
"150272",
"81879040",
"97446821888",
"252536538529792",
"1441194498488532992",
"18238881125752291459072",
"511646632486244583515095040",
"31662959021226253504069431721984",
"4295217009165735294411016058313900032",
"1268984197722535033624735101886101792489472"
] |
[
"nonn",
"new"
] | 11 | 0 | 2 |
[
"A168601",
"A385619",
"A385649",
"A385650",
"A385651"
] | null |
Seiichi Manyama, Jul 06 2025
| 2025-07-06T10:39:42 |
oeisdata/seq/A385/A385651.seq
|
59985c2540ad240e55d6c28d75147f71
|
A385652
|
Maximum frequency of gpf(k) for 2 <= k <= n, where gpf(k) = A006530(k) is the greatest prime factor of k.
|
[
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"9",
"9",
"9",
"9",
"9",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12"
] |
[
"nonn",
"new"
] | 12 | 2 | 3 |
[
"A006530",
"A078899",
"A385503",
"A385652",
"A385653",
"A385654"
] | null |
Pontus von Brömssen, Jul 06 2025
| 2025-07-13T19:21:22 |
oeisdata/seq/A385/A385652.seq
|
16c07f61897685f7bb754c9f275ac056
|
A385653
|
Least k such that A385652(k) = n.
|
[
"2",
"4",
"8",
"12",
"18",
"24",
"27",
"36",
"48",
"54",
"72",
"80",
"90",
"100",
"120",
"125",
"135",
"150",
"160",
"180",
"196",
"210",
"224",
"245",
"252",
"280",
"294",
"315",
"336",
"343",
"350",
"378",
"392",
"420",
"441",
"448",
"490",
"504",
"525",
"560",
"567",
"588",
"630",
"672",
"686",
"700",
"735",
"756",
"784",
"840",
"875",
"882",
"896",
"945",
"980"
] |
[
"nonn",
"new"
] | 11 | 1 | 1 |
[
"A006530",
"A078899",
"A289662",
"A385503",
"A385652",
"A385653",
"A385654"
] | null |
Pontus von Brömssen, Jul 06 2025
| 2025-07-13T19:21:52 |
oeisdata/seq/A385/A385653.seq
|
853a5d27ddd1b3940833a2ba2c26b69f
|
A385654
|
Greatest prime factor of A385653(n).
|
[
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"13",
"13",
"13",
"13",
"13",
"7",
"13",
"13",
"13",
"13",
"13",
"13"
] |
[
"nonn",
"new"
] | 9 | 1 | 1 |
[
"A006530",
"A289662",
"A385503",
"A385652",
"A385653",
"A385654"
] | null |
Pontus von Brömssen, Jul 06 2025
| 2025-07-13T19:22:01 |
oeisdata/seq/A385/A385654.seq
|
b4c0e91d073c810d39ccb7fa60c7279d
|
A385656
|
Numbers k such that the sum of the decimal digits of k^2 divides k^2.
|
[
"1",
"2",
"3",
"6",
"9",
"10",
"12",
"15",
"18",
"20",
"21",
"24",
"30",
"36",
"39",
"42",
"45",
"48",
"49",
"51",
"52",
"54",
"60",
"63",
"65",
"66",
"68",
"72",
"78",
"80",
"84",
"88",
"90",
"96",
"100",
"102",
"104",
"105",
"108",
"110",
"111",
"112",
"117",
"120",
"126",
"132",
"138",
"140",
"144",
"148",
"150",
"156",
"162",
"168",
"174",
"180",
"182",
"190",
"198",
"200",
"201",
"204",
"207"
] |
[
"nonn",
"base",
"easy",
"new"
] | 25 | 1 | 2 |
[
"A005349",
"A007953",
"A034706",
"A118547",
"A385640",
"A385656"
] | null |
Vighnesh Patil, Jul 06 2025
| 2025-07-09T16:50:05 |
oeisdata/seq/A385/A385656.seq
|
18ea89033f039855f4cbc9f577aca515
|
A385659
|
Decimal expansion of log_10(1 + 1/3).
|
[
"1",
"2",
"4",
"9",
"3",
"8",
"7",
"3",
"6",
"6",
"0",
"8",
"2",
"9",
"9",
"9",
"5",
"3",
"1",
"3",
"2",
"4",
"4",
"9",
"8",
"8",
"6",
"1",
"9",
"3",
"8",
"7",
"0",
"7",
"4",
"4",
"3",
"3",
"6",
"2",
"5",
"0",
"8",
"9",
"8",
"7",
"3",
"3",
"5",
"2",
"1",
"2",
"1",
"7",
"7",
"9",
"0",
"9",
"8",
"9",
"2",
"8",
"1",
"9",
"4",
"8",
"9",
"8",
"7",
"2",
"2",
"5",
"7",
"6",
"5",
"1",
"8",
"7",
"8",
"9",
"5",
"9",
"3",
"0",
"8",
"8",
"6"
] |
[
"nonn",
"cons",
"easy",
"new"
] | 24 | 0 | 2 |
[
"A007524",
"A104140",
"A154203",
"A154580",
"A385659"
] | null |
Marco Ripà, Jul 06 2025
| 2025-07-13T11:08:48 |
oeisdata/seq/A385/A385659.seq
|
7b115d9961d1bcbe6023367dfc8e00c6
|
A385660
|
Numbers k such that prime(k+1)-prime(k) divides k.
|
[
"1",
"2",
"4",
"8",
"10",
"12",
"18",
"20",
"24",
"26",
"28",
"36",
"44",
"48",
"52",
"54",
"60",
"64",
"72",
"80",
"84",
"88",
"96",
"98",
"102",
"104",
"108",
"112",
"116",
"120",
"128",
"136",
"140",
"142",
"144",
"148",
"152",
"168",
"174",
"176",
"178",
"180",
"182",
"190",
"192",
"206",
"210",
"212",
"216",
"224",
"230",
"234",
"236",
"240",
"244",
"248",
"252",
"256",
"262",
"264",
"268",
"276",
"286",
"288",
"294"
] |
[
"nonn",
"easy",
"new"
] | 42 | 1 | 2 |
[
"A000040",
"A001223",
"A029707",
"A385660"
] | null |
Vighnesh Patil, Jul 06 2025
| 2025-07-14T22:18:47 |
oeisdata/seq/A385/A385660.seq
|
09981c16e41d4a38b1683c4f5e36e8d1
|
A385684
|
Numbers k such that (38^k - 3^k)/35 is prime.
|
[
"2",
"3",
"19",
"101",
"229",
"1031",
"2393",
"3121",
"4021"
] |
[
"nonn",
"hard",
"more",
"new"
] | 4 | 1 | 1 |
[
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A229542",
"A375161",
"A375236",
"A377031",
"A385684"
] | null |
Robert Price, Jul 06 2025
| 2025-07-10T23:18:23 |
oeisdata/seq/A385/A385684.seq
|
f7b9d12bd082008f165127c280cf93fd
|
A385685
|
Sequence where k is appended after every k! occurrences of 1, with multiple values following a 1 listed in order.
|
[
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"4",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"4",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3"
] |
[
"nonn",
"new"
] | 17 | 0 | 3 |
[
"A000142",
"A382093",
"A385685",
"A385686"
] | null |
Jwalin Bhatt, Jul 06 2025
| 2025-07-12T08:34:13 |
oeisdata/seq/A385/A385685.seq
|
05c134d700c21ecbb62534705ba3b949
|
A385686
|
Decimal expansion of exp((Sum_{k>=2} log(k)/k!)/(e-1)).
|
[
"1",
"4",
"2",
"1",
"0",
"3",
"7",
"9",
"5",
"9",
"7",
"3",
"1",
"9",
"6",
"0",
"7",
"1",
"5",
"3",
"3",
"7",
"8",
"1",
"4",
"4",
"8",
"9",
"0",
"5",
"9",
"2",
"8",
"5",
"6",
"9",
"5",
"3",
"9",
"8",
"2",
"5",
"7",
"1",
"7",
"4",
"2",
"9",
"3",
"2",
"0",
"0",
"7",
"8",
"6",
"8",
"1",
"0",
"2",
"8",
"0",
"5",
"1",
"8",
"1",
"5",
"8",
"2",
"2",
"1",
"6",
"1",
"7",
"5",
"8",
"0",
"8",
"3",
"0",
"7",
"1",
"7",
"9",
"7",
"5"
] |
[
"nonn",
"cons",
"new"
] | 18 | 1 | 2 |
[
"A296301",
"A306243",
"A382095",
"A385685",
"A385686"
] | null |
Jwalin Bhatt, Jul 06 2025
| 2025-07-13T16:29:14 |
oeisdata/seq/A385/A385686.seq
|
a33ca42e494ff1d47d968be44f03d670
|
A385687
|
E.g.f. A(x) satisfies A(x) = exp( x*((A(x) + A(-x))/2)^2 ).
|
[
"1",
"1",
"1",
"7",
"25",
"341",
"2161",
"44115",
"404209",
"11010025",
"132273601",
"4508793983",
"67085545033",
"2747071330173",
"48765277295281",
"2331905267846731",
"48106649137922017",
"2631174441142423505",
"61862217319644572161",
"3809106344377237185399",
"100542158725584301036921"
] |
[
"nonn",
"new"
] | 18 | 0 | 4 |
[
"A058014",
"A143546",
"A360987",
"A385687",
"A385688",
"A385690"
] | null |
Seiichi Manyama, Jul 06 2025
| 2025-07-07T10:46:56 |
oeisdata/seq/A385/A385687.seq
|
a243f01414097ecc7d49c7eb71fdd2df
|
A385688
|
E.g.f. A(x) satisfies A(x) = exp( x*((A(x) + A(-x))/2)^3 ).
|
[
"1",
"1",
"1",
"10",
"37",
"736",
"4861",
"145552",
"1392553",
"55772416",
"700205401",
"35139710464",
"546584937229",
"32977620613120",
"612127803448981",
"43150087404292096",
"930914421449463505",
"75083676142358560768",
"1846230024226716759601",
"167681514857730519728128",
"4629062510444281987051381"
] |
[
"nonn",
"new"
] | 16 | 0 | 4 |
[
"A058014",
"A143547",
"A360988",
"A385687",
"A385688"
] | null |
Seiichi Manyama, Jul 06 2025
| 2025-07-07T10:46:46 |
oeisdata/seq/A385/A385688.seq
|
0cba3582f5e3a4715803822b5651cb83
|
A385689
|
a(n) = 6*binomial(n,4) + 6*binomial(n,3) + 4*binomial(n,2) + 2*n + 1.
|
[
"1",
"3",
"9",
"25",
"63",
"141",
"283",
"519",
"885",
"1423",
"2181",
"3213",
"4579",
"6345",
"8583",
"11371",
"14793",
"18939",
"23905",
"29793",
"36711",
"44773",
"54099",
"64815",
"77053",
"90951",
"106653",
"124309",
"144075",
"166113",
"190591",
"217683",
"247569",
"280435",
"316473",
"355881",
"398863",
"445629",
"496395",
"551383",
"610821",
"674943"
] |
[
"nonn",
"easy",
"new"
] | 11 | 0 | 2 |
[
"A127873",
"A385689"
] | null |
Enrique Navarrete, Jul 07 2025
| 2025-07-12T22:41:55 |
oeisdata/seq/A385/A385689.seq
|
a98f05f48785395baf9276c6dfff767f
|
A385690
|
E.g.f. A(x) satisfies A(x) = exp( x*A(x)*(A(x) + A(-x))/2 ).
|
[
"1",
"1",
"3",
"25",
"233",
"3901",
"62707",
"1591493",
"36539953",
"1246111705",
"37259797091",
"1597211237425",
"58891746904729",
"3041999861503253",
"133421178853319827",
"8066042741507516701",
"410229480337750129889",
"28415048957473232282161",
"1644249408980809155863491"
] |
[
"nonn",
"new"
] | 11 | 0 | 3 |
[
"A217138",
"A385687",
"A385690",
"A385692"
] | null |
Seiichi Manyama, Jul 07 2025
| 2025-07-07T10:46:40 |
oeisdata/seq/A385/A385690.seq
|
39087e4c7c55cb2e4f87c56dc3943d43
|
A385691
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(w*x) + A(w^2*x))/3 ), where w = exp(2*Pi*i/3).
|
[
"1",
"1",
"1",
"1",
"5",
"21",
"61",
"568",
"4257",
"20917",
"286451",
"3099141",
"21555865",
"390273898",
"5524889553",
"49790422501",
"1121734897937",
"19631020478229",
"217441607213557",
"5862333450708460",
"122222268766006641",
"1606671304363320805",
"50443794604147639487",
"1220712011020970521461"
] |
[
"nonn",
"new"
] | 14 | 0 | 5 |
[
"A058014",
"A124753",
"A385691"
] | null |
Seiichi Manyama, Jul 07 2025
| 2025-07-07T10:21:30 |
oeisdata/seq/A385/A385691.seq
|
7f1c77df41ea676b11b4c3a3253c658f
|
A385692
|
E.g.f. A(x) satisfies A(x) = exp( x*A(x)*(A(x) + A(w*x) + A(w^2*x))/3 ), where w = exp(2*Pi*i/3).
|
[
"1",
"1",
"3",
"16",
"189",
"2256",
"32167",
"767313",
"16423185",
"385872832",
"13923826371",
"431494792224",
"14162204393053",
"685135173015801",
"27831222972658029",
"1174037911440510736",
"71264909409165117009",
"3582888868151242791360",
"184756481500401258020443",
"13494513883839138274687425"
] |
[
"nonn",
"new"
] | 8 | 0 | 3 |
[
"A385690",
"A385692"
] | null |
Seiichi Manyama, Jul 07 2025
| 2025-07-07T10:21:06 |
oeisdata/seq/A385/A385692.seq
|
c185ba6dae1dd376cf90deda457532c4
|
A385694
|
Decimal expansion of the volume of a triaugmented hexagonal prism with unit edge.
|
[
"3",
"3",
"0",
"5",
"1",
"8",
"2",
"9",
"9",
"2",
"5",
"3",
"9",
"8",
"6",
"3",
"4",
"6",
"4",
"6",
"9",
"2",
"0",
"1",
"3",
"8",
"7",
"4",
"3",
"6",
"3",
"6",
"5",
"7",
"5",
"8",
"9",
"6",
"9",
"9",
"0",
"4",
"3",
"8",
"1",
"8",
"4",
"0",
"4",
"0",
"4",
"4",
"9",
"7",
"8",
"6",
"7",
"2",
"0",
"5",
"0",
"3",
"3",
"8",
"1",
"7",
"3",
"2",
"6",
"5",
"7",
"6",
"4",
"5",
"9",
"4",
"2",
"5",
"3",
"5",
"7",
"5",
"0",
"4",
"6",
"9",
"1",
"3",
"0",
"4"
] |
[
"nonn",
"cons",
"easy",
"new"
] | 8 | 1 | 1 |
[
"A010503",
"A104956",
"A385259",
"A385569",
"A385578",
"A385694"
] | null |
Paolo Xausa, Jul 07 2025
| 2025-07-11T22:32:37 |
oeisdata/seq/A385/A385694.seq
|
7f8e9ef4e67085484131865e57ae37d0
|
A385695
|
Decimal expansion of the volume of an augmented dodecahedron with unit edge.
|
[
"7",
"9",
"6",
"4",
"6",
"2",
"1",
"7",
"9",
"3",
"0",
"2",
"0",
"4",
"5",
"6",
"5",
"3",
"9",
"3",
"9",
"9",
"7",
"6",
"9",
"4",
"8",
"9",
"8",
"1",
"0",
"2",
"0",
"3",
"2",
"5",
"5",
"1",
"6",
"4",
"4",
"4",
"1",
"2",
"2",
"7",
"6",
"3",
"7",
"3",
"1",
"6",
"9",
"2",
"2",
"6",
"5",
"2",
"0",
"2",
"4",
"2",
"3",
"1",
"3",
"6",
"0",
"5",
"1",
"6",
"6",
"5",
"8",
"4",
"3",
"4",
"4",
"0",
"0",
"4",
"4",
"4",
"7",
"8",
"4",
"1",
"5",
"9",
"1",
"4"
] |
[
"nonn",
"cons",
"easy",
"new"
] | 11 | 1 | 1 |
[
"A002163",
"A102769",
"A179552",
"A385695",
"A385696",
"A385802",
"A385804"
] | null |
Paolo Xausa, Jul 08 2025
| 2025-07-13T07:07:07 |
oeisdata/seq/A385/A385695.seq
|
52abe9307809cc06150a2bb6a9594a96
|
A385696
|
Decimal expansion of the surface area of an augmented dodecahedron with unit edge.
|
[
"2",
"1",
"0",
"9",
"0",
"3",
"1",
"4",
"9",
"1",
"5",
"9",
"3",
"9",
"7",
"3",
"2",
"7",
"6",
"7",
"2",
"5",
"8",
"4",
"3",
"9",
"6",
"7",
"8",
"1",
"5",
"7",
"0",
"4",
"6",
"0",
"5",
"2",
"1",
"5",
"9",
"6",
"2",
"2",
"4",
"3",
"7",
"3",
"7",
"5",
"1",
"5",
"7",
"4",
"0",
"6",
"3",
"4",
"7",
"8",
"0",
"0",
"5",
"0",
"1",
"5",
"7",
"7",
"4",
"7",
"5",
"1",
"8",
"5",
"4",
"3",
"4",
"6",
"2",
"8",
"5",
"9",
"1",
"0",
"0",
"8",
"2",
"8",
"6",
"3"
] |
[
"nonn",
"cons",
"easy",
"new"
] | 10 | 2 | 1 |
[
"A002194",
"A010476",
"A385695",
"A385696",
"A385803",
"A385805"
] | null |
Paolo Xausa, Jul 08 2025
| 2025-07-13T07:07:36 |
oeisdata/seq/A385/A385696.seq
|
1b2cd5e9ef6bbca92cb17096235f9944
|
A385698
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(-x))*(A(x) + A(w*x) + A(w^2*x))/6 ), where w = exp(2*Pi*i/3).
|
[
"1",
"1",
"1",
"4",
"29",
"256",
"1501",
"28715",
"266001",
"4590064",
"99387041",
"2223185152",
"30919119661",
"1183047504809",
"21297988134879",
"656259407452756",
"23786602263322385",
"856920025214144512",
"18903506095173283273",
"1086514755640058121323",
"29116796997476903252841"
] |
[
"nonn",
"new"
] | 7 | 0 | 4 |
[
"A385698",
"A385699"
] | null |
Seiichi Manyama, Jul 07 2025
| 2025-07-07T10:21:01 |
oeisdata/seq/A385/A385698.seq
|
3ec5c0638afacee0599739f2399c239a
|
A385699
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(-x))*(A(x) + A(w*x) + A(w^2*x))/6 ), where w = exp(2*Pi*i/3).
|
[
"1",
"1",
"1",
"2",
"5",
"13",
"24",
"88",
"181",
"523",
"1616",
"4891",
"10540",
"42009",
"94953",
"294102",
"957259",
"3028320",
"6864540",
"28208447",
"66180997",
"211105506",
"703497178",
"2273009790",
"5283518340",
"22058432677",
"52795736539",
"171169636087",
"578132050147",
"1891182035377",
"4462525373212"
] |
[
"nonn",
"new"
] | 14 | 0 | 4 |
[
"A047749",
"A124753",
"A217138",
"A385698",
"A385699"
] | null |
Seiichi Manyama, Jul 07 2025
| 2025-07-07T10:46:36 |
oeisdata/seq/A385/A385699.seq
|
8de601a66cbaa01c4a415a46ffc5d8ac
|
A385700
|
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 4.
|
[
"0",
"4",
"8",
"21",
"23",
"25",
"27",
"29",
"40",
"42",
"44",
"46",
"48",
"61",
"63",
"65",
"67",
"69",
"80",
"82",
"84",
"86",
"88",
"201",
"203",
"205",
"207",
"209",
"211",
"213",
"215",
"217",
"219",
"221",
"223",
"225",
"227",
"229",
"231",
"233",
"235",
"237",
"239",
"241",
"243",
"245",
"247",
"249",
"251",
"253",
"255",
"257",
"259",
"261",
"263",
"265",
"267",
"269"
] |
[
"nonn",
"base",
"easy",
"look",
"new"
] | 19 | 1 | 2 |
[
"A001477",
"A008585",
"A008591",
"A217398",
"A273892",
"A385700",
"A385701",
"A385702",
"A385703"
] | null |
Stefano Spezia, Jul 07 2025
| 2025-07-08T14:15:30 |
oeisdata/seq/A385/A385700.seq
|
410f33d6577885ea1815973713989307
|
A385701
|
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 6.
|
[
"0",
"6",
"21",
"24",
"27",
"42",
"45",
"48",
"60",
"63",
"66",
"69",
"81",
"84",
"87",
"201",
"204",
"207",
"210",
"213",
"216",
"219",
"222",
"225",
"228",
"231",
"234",
"237",
"240",
"243",
"246",
"249",
"252",
"255",
"258",
"261",
"264",
"267",
"270",
"273",
"276",
"279",
"282",
"285",
"288",
"291",
"294",
"297",
"402",
"405",
"408",
"411",
"414",
"417",
"420",
"423",
"426",
"429"
] |
[
"nonn",
"base",
"easy",
"look",
"new"
] | 16 | 1 | 2 |
[
"A001477",
"A008585",
"A008591",
"A217398",
"A273892",
"A385700",
"A385701",
"A385702",
"A385703"
] | null |
Stefano Spezia, Jul 07 2025
| 2025-07-08T14:15:16 |
oeisdata/seq/A385/A385701.seq
|
4f8a0c767b91af95edb73a69a5fb037c
|
A385702
|
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 7.
|
[
"0",
"7",
"12",
"19",
"24",
"36",
"41",
"48",
"53",
"65",
"70",
"77",
"82",
"89",
"94",
"102",
"109",
"116",
"123",
"130",
"137",
"144",
"151",
"158",
"165",
"172",
"179",
"186",
"193",
"204",
"211",
"218",
"225",
"232",
"239",
"246",
"253",
"260",
"267",
"274",
"281",
"288",
"295",
"306",
"313",
"320",
"327",
"334",
"341",
"348",
"355",
"362",
"369",
"376",
"383",
"390",
"397"
] |
[
"nonn",
"base",
"easy",
"new"
] | 16 | 1 | 2 |
[
"A001477",
"A008585",
"A008591",
"A217398",
"A273892",
"A385700",
"A385701",
"A385702",
"A385703"
] | null |
Stefano Spezia, Jul 07 2025
| 2025-07-08T14:15:07 |
oeisdata/seq/A385/A385702.seq
|
5fde8799efdea0f1977f4f7c20e06af9
|
A385703
|
Numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 8.
|
[
"0",
"8",
"23",
"27",
"42",
"46",
"61",
"65",
"69",
"80",
"84",
"88",
"203",
"207",
"211",
"215",
"219",
"223",
"227",
"231",
"235",
"239",
"243",
"247",
"251",
"255",
"259",
"263",
"267",
"271",
"275",
"279",
"283",
"287",
"291",
"295",
"299",
"402",
"406",
"410",
"414",
"418",
"422",
"426",
"430",
"434",
"438",
"442",
"446",
"450",
"454",
"458",
"462",
"466",
"470",
"474"
] |
[
"nonn",
"base",
"easy",
"new"
] | 15 | 1 | 2 |
[
"A001477",
"A008585",
"A008591",
"A217398",
"A273892",
"A385700",
"A385701",
"A385702",
"A385703"
] | null |
Stefano Spezia, Jul 07 2025
| 2025-07-08T14:14:57 |
oeisdata/seq/A385/A385703.seq
|
6188d9337a58e318c876db9699c81897
|
A385705
|
Primes p such that there exists prime q < p such that sigma(p+1)=sigma(q+1).
|
[
"37",
"61",
"109",
"139",
"157",
"181",
"193",
"233",
"269",
"283",
"347",
"349",
"353",
"367",
"373",
"379",
"487",
"521",
"541",
"563",
"571",
"593",
"613",
"617",
"619",
"641",
"643",
"709",
"727",
"739",
"797",
"811",
"823",
"829",
"853",
"857",
"877",
"907",
"983",
"991",
"1033",
"1051",
"1097",
"1103",
"1117",
"1193",
"1217",
"1229",
"1231",
"1237"
] |
[
"nonn",
"easy",
"new"
] | 13 | 1 | 1 |
[
"A000040",
"A000203",
"A008333",
"A385586",
"A385705"
] | null |
S. I. Dimitrov, Jul 07 2025
| 2025-07-08T10:42:57 |
oeisdata/seq/A385/A385705.seq
|
c6f1f4771330358aaee14ca420e92fc7
|
A385711
|
Primes whose digits are all distinct and pairwise coprime.
|
[
"2",
"3",
"5",
"7",
"13",
"17",
"19",
"23",
"29",
"31",
"37",
"41",
"43",
"47",
"53",
"59",
"61",
"67",
"71",
"73",
"79",
"83",
"89",
"97",
"127",
"137",
"149",
"157",
"167",
"173",
"179",
"197",
"251",
"257",
"271",
"317",
"347",
"419",
"431",
"457",
"479",
"491",
"521",
"523",
"541",
"547",
"571",
"587",
"617",
"719",
"743",
"751",
"761",
"853",
"857",
"859",
"941",
"947",
"971",
"1237",
"1259"
] |
[
"nonn",
"base",
"fini",
"full",
"new"
] | 18 | 1 | 1 |
[
"A029743",
"A038618",
"A385711"
] | null |
Gonzalo Martínez, Jul 07 2025
| 2025-07-17T16:15:18 |
oeisdata/seq/A385/A385711.seq
|
da9eb4c9357356fc8a9187355c4ab2bd
|
A385714
|
a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^n, where 0 < x < y < z has an integer solution, or -1 if no such integer exists.
|
[
"36",
"6",
"6",
"11",
"6",
"3",
"6",
"6",
"3",
"6",
"6",
"3",
"6",
"6",
"3",
"6",
"6",
"3",
"6",
"6",
"3",
"6",
"3",
"2",
"6",
"3",
"2"
] |
[
"nonn",
"more",
"new"
] | 25 | 1 | 1 |
[
"A384430",
"A385354",
"A385565",
"A385566",
"A385714"
] | null |
Jean-Marc Rebert, Jul 07 2025
| 2025-07-15T12:23:54 |
oeisdata/seq/A385/A385714.seq
|
14f42a8edc2ecfd858a541bf0bf8ea97
|
A385715
|
Square array read by descending antidiagonals: A(n,k) is the number of fixed n-dimensional (n,2)-polyominoids, n >= 2, of size k >= 1.
|
[
"1",
"2",
"3",
"6",
"18",
"6",
"19",
"158",
"60",
"10",
"63",
"1611",
"916",
"140",
"15",
"216",
"17811",
"16698",
"3060",
"270",
"21",
"760",
"207395",
"336210",
"81090",
"7690",
"462",
"28",
"2725",
"2505858",
"7218768",
"2396434",
"268005",
"16226",
"728",
"36",
"9910",
"31125711",
"162185112",
"76020890",
"10477161",
"701589",
"30408",
"1080",
"45"
] |
[
"nonn",
"tabl",
"new"
] | 16 | 2 | 2 |
[
"A000217",
"A001168",
"A075678",
"A213820",
"A366335",
"A385291",
"A385581",
"A385715"
] | null |
John Mason, Jul 07 2025
| 2025-07-13T12:51:11 |
oeisdata/seq/A385/A385715.seq
|
e86b5431bf97884297c23cd282b9261c
|
A385717
|
a(n) = a(n-1) + a(n-2) + a(n-3), with a(1) = 4, a(2) = 13, a(3) = 42.
|
[
"4",
"13",
"42",
"59",
"114",
"215",
"388",
"717",
"1320",
"2425",
"4462",
"8207",
"15094",
"27763",
"51064",
"93921",
"172748",
"317733",
"584402",
"1074883",
"1977018",
"3636303",
"6688204",
"12301525",
"22626032",
"41615761",
"76543318",
"140785111",
"258944190",
"476272619"
] |
[
"nonn",
"easy",
"new"
] | 9 | 1 | 1 |
[
"A100683",
"A354080",
"A385717"
] | null |
Greg Dresden and Jiarui Zhou, Jul 07 2025
| 2025-07-13T17:32:04 |
oeisdata/seq/A385/A385717.seq
|
a19df8bb3b3be8fbc145bca11082def4
|
A385718
|
Primes p such that there exists prime q < p such that sigma(q+1) = sigma(p+2) = p + q.
|
[
"367",
"457",
"691",
"341647",
"909091",
"1803421",
"2640571",
"3076903",
"3413191",
"5228611",
"6152383",
"6541477",
"6545197",
"6695503",
"10161133",
"10770313",
"15319693",
"31128511",
"31687069",
"39946483",
"52764031",
"58886803",
"104494483",
"207855001",
"283882153",
"307912921",
"309201751",
"529570609",
"574061053"
] |
[
"nonn",
"new"
] | 11 | 1 | 1 |
[
"A000040",
"A000203",
"A008333",
"A063990",
"A259180",
"A385586",
"A385718"
] | null |
S. I. Dimitrov, Jul 07 2025
| 2025-07-08T09:13:46 |
oeisdata/seq/A385/A385718.seq
|
3a11448fb76b18a915b801085b7405ce
|
A385720
|
Numbers k >= 1 such that k/A000005(k) + (k+1)/A000005(k+1) is an integer.
|
[
"1",
"5",
"6",
"8",
"10",
"13",
"22",
"37",
"45",
"46",
"58",
"61",
"62",
"69",
"73",
"74",
"77",
"82",
"89",
"106",
"114",
"117",
"126",
"146",
"149",
"150",
"154",
"157",
"166",
"167",
"178",
"186",
"193",
"197",
"198",
"206",
"221",
"226",
"233",
"237",
"258",
"261",
"262",
"263",
"266",
"277",
"278",
"279",
"280",
"290",
"293",
"306",
"309",
"311",
"312",
"313"
] |
[
"nonn",
"new"
] | 20 | 1 | 2 |
[
"A000005",
"A005384",
"A005385",
"A077065",
"A256072",
"A385720"
] | null |
Ctibor O. Zizka, Jul 07 2025
| 2025-07-14T04:21:17 |
oeisdata/seq/A385/A385720.seq
|
c4d701bc90225ddc299184dbf153db00
|
A385724
|
The least integer of n consecutive numbers where each has its sum of prime factors, with multiplicity, being a prime.
|
[
"17",
"2",
"5",
"10",
"1547",
"8837",
"1293224",
"52445796",
"3267037",
"896531141",
"183208285259"
] |
[
"nonn",
"more",
"new"
] | 10 | 1 | 1 |
[
"A100118",
"A337310",
"A385724"
] | null |
Zhining Yang, Jul 08 2025
| 2025-07-13T15:36:15 |
oeisdata/seq/A385/A385724.seq
|
e0db780d7a5b2339041182e4e5b5f43b
|
A385725
|
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(i*x) + A(-x) + A(-i*x))/4 ), where i is the imaginary unit.
|
[
"1",
"1",
"1",
"1",
"1",
"6",
"31",
"106",
"281",
"3160",
"29701",
"176056",
"768241",
"12702704",
"173361371",
"1466276176",
"8937060081",
"195180709248",
"3494232292681",
"38426220716416",
"301057954180801",
"8174141246647552",
"181144607099402871",
"2452803139819922176",
"23494461553739152201",
"762800754226165963776"
] |
[
"nonn",
"new"
] | 10 | 0 | 6 |
[
"A000272",
"A058014",
"A118968",
"A385691",
"A385725"
] | null |
Seiichi Manyama, Jul 08 2025
| 2025-07-08T07:47:22 |
oeisdata/seq/A385/A385725.seq
|
37ada687b3e500ba1f36b88c2ede8bfa
|
A385726
|
a(n) = 3^n - 6*binomial(n,4) - 6*binomial(n,3) - 4*binomial(n,2) - 2*n - 1.
|
[
"0",
"0",
"0",
"2",
"18",
"102",
"446",
"1668",
"5676",
"18260",
"59049",
"177147",
"531441",
"1594323",
"4782969",
"14348907",
"43046721",
"129140163",
"387420489",
"1162261467",
"3486784401",
"10460353203",
"31381059609",
"94143178827",
"282429536481",
"847288609443",
"2541865828329",
"7625597484987",
"22876792454961",
"68630377364883"
] |
[
"nonn",
"easy",
"new"
] | 7 | 0 | 4 |
[
"A383343",
"A385689",
"A385726"
] | null |
Enrique Navarrete, Jul 08 2025
| 2025-07-12T18:46:32 |
oeisdata/seq/A385/A385726.seq
|
7920c6d747e3b1b80d593ad3f8713c44
|
A385727
|
Minimum base in which the least number with absolute multiplicative persistence n achieves such persistence.
|
[
"0",
"2",
"3",
"6",
"9",
"13",
"17",
"23",
"26",
"29",
"41",
"53",
"53",
"73",
"123",
"159",
"157",
"251",
"332",
"491",
"587",
"691",
"943",
"1187",
"1187",
"1804",
"2923",
"2348",
"6241",
"3541",
"3541",
"7082",
"7082",
"14164",
"10623",
"14164",
"28328",
"56656",
"98533"
] |
[
"nonn",
"more",
"new"
] | 16 | 0 | 2 |
[
"A003001",
"A245760",
"A330152",
"A385727"
] | null |
Brendan Gimby, Jul 08 2025
| 2025-07-17T22:44:13 |
oeisdata/seq/A385/A385727.seq
|
e3434c18916a0f27aabcc3c893f3f6e7
|
A385732
|
Triangle read by rows: the numerators of the Lucas triangle.
|
[
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"4",
"4",
"1",
"1",
"7",
"28",
"7",
"1",
"1",
"11",
"77",
"77",
"11",
"1",
"1",
"18",
"66",
"231",
"66",
"18",
"1",
"1",
"29",
"174",
"957",
"957",
"174",
"29",
"1",
"1",
"47",
"1363",
"4089",
"44979",
"4089",
"1363",
"47",
"1",
"1",
"76",
"3572",
"25897",
"155382",
"155382",
"25897",
"3572",
"76",
"1",
"1",
"123",
"3116",
"36613",
"1061777",
"19111986",
"1061777",
"36613",
"3116",
"123",
"1"
] |
[
"nonn",
"tabl",
"frac",
"new"
] | 15 | 0 | 5 |
[
"A003266",
"A010048",
"A070825",
"A385732",
"A385733"
] | null |
Peter Luschny, Jul 08 2025
| 2025-07-08T22:27:13 |
oeisdata/seq/A385/A385732.seq
|
e798acdc21b89d2d9b5938bc4a8a10a7
|
A385733
|
Triangle read by rows: the denominators of the Lucas triangle.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"2",
"14",
"2",
"3",
"1",
"1",
"1",
"1",
"3",
"3",
"7",
"7",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"77",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"77",
"77",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"2",
"1",
"11",
"99",
"11",
"1",
"2",
"3",
"1",
"1"
] |
[
"nonn",
"tabl",
"frac",
"new"
] | 10 | 0 | 13 |
[
"A003266",
"A010048",
"A070825",
"A385732",
"A385733"
] | null |
Peter Luschny, Jul 08 2025
| 2025-07-14T07:11:40 |
oeisdata/seq/A385/A385733.seq
|
799906df5e21996ec670d2281c1e7658
|
A385734
|
Lucas triangle A385732/A385733 mod 2.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"-1",
"0",
"0",
"1",
"1",
"1",
"0",
"-1",
"-1",
"0",
"1",
"1",
"1",
"1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"-1",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"0",
"1"
] |
[
"sign",
"tabl",
"new"
] | 6 | 0 | null |
[
"A385456",
"A385732",
"A385733",
"A385734"
] | null |
Peter Luschny, Jul 08 2025
| 2025-07-08T22:26:46 |
oeisdata/seq/A385/A385734.seq
|
53653b3fd16b7c927cc0fb4ef9cd41ca
|
A385738
|
For n >= 1, a(n) is the least k such that the Sum_{i=0..(n-1)} (k+i)/A000005(k+i) is an integer or a(n) = -1 if no such k exists.
|
[
"1",
"1",
"6",
"6",
"8",
"5",
"6",
"23",
"5",
"22",
"50",
"26",
"28",
"65",
"119",
"145",
"26",
"349",
"282",
"375",
"280",
"404",
"278",
"369",
"279",
"370",
"277",
"276",
"369",
"378",
"389",
"378",
"389",
"15",
"389",
"13",
"12",
"210",
"10",
"9",
"8",
"210",
"6",
"212",
"421",
"209",
"419",
"3",
"2",
"1",
"378",
"419",
"421",
"418",
"418",
"1026",
"373",
"105",
"104"
] |
[
"nonn",
"new"
] | 12 | 1 | 3 |
[
"A000005",
"A385738"
] | null |
Ctibor O. Zizka, Jul 08 2025
| 2025-07-13T16:44:33 |
oeisdata/seq/A385/A385738.seq
|
3d5975036b5bc5ddd946f28c28a15cba
|
A385739
|
Primes p such that there exists a prime q < p such that sigma(q-1) = sigma(p+1) = p + q.
|
[
"5563",
"203431",
"389923",
"901423",
"5495263",
"7418863",
"28128367",
"188953969",
"210627577",
"392753209",
"402877087",
"505757683",
"619418689",
"2549153611",
"2580356851",
"3953660383",
"5692944349",
"6806206831",
"6894059071",
"7082199673",
"10058113363",
"11307503629",
"12601725943",
"12615171649"
] |
[
"nonn",
"hard",
"new"
] | 16 | 1 | 1 |
[
"A000040",
"A000203",
"A008333",
"A063990",
"A259180",
"A385586",
"A385718",
"A385739"
] | null |
S. I. Dimitrov, Jul 08 2025
| 2025-07-14T16:42:59 |
oeisdata/seq/A385/A385739.seq
|
cd9f19cc887c71b2553598fcdadbf4ec
|
A385740
|
Primes p such that there exists a prime q < p such that sigma(p-1) = sigma(q-1) = p + q.
|
[
"1163",
"7583",
"17099",
"48857",
"65963",
"172859",
"5408423",
"6804047",
"19247087",
"73162367",
"77695043",
"109775657",
"109871933",
"116464757",
"160454717",
"175031957",
"175288493",
"218543393",
"268382183",
"303220769",
"379299989",
"705800723",
"823155779",
"889218389",
"967371143",
"1100618483",
"1242282407",
"1701133163"
] |
[
"nonn",
"hard",
"new"
] | 14 | 1 | 1 |
[
"A000040",
"A000203",
"A008333",
"A063990",
"A259180",
"A385586",
"A385718",
"A385739",
"A385740"
] | null |
S. I. Dimitrov, Jul 08 2025
| 2025-07-14T17:09:08 |
oeisdata/seq/A385/A385740.seq
|
bc56be05e5723ed1af65acd9294924c5
|
A385741
|
a(n) = Sum_{k=0..n} (binomial(n, k) mod 9).
|
[
"1",
"2",
"4",
"8",
"16",
"14",
"28",
"38",
"31",
"8",
"16",
"32",
"28",
"56",
"49",
"62",
"52",
"68",
"28",
"56",
"76",
"62",
"79",
"122",
"91",
"92",
"112",
"8",
"16",
"32",
"28",
"56",
"76",
"80",
"124",
"140",
"28",
"56",
"103",
"80",
"142",
"158",
"145",
"146",
"184",
"62",
"124",
"158",
"100",
"146",
"184",
"188",
"232",
"230",
"28",
"56",
"76",
"80",
"151",
"158",
"136",
"236"
] |
[
"nonn",
"new"
] | 45 | 0 | 2 |
[
"A001316",
"A051638",
"A384715",
"A385285",
"A385741"
] | null |
Chai Wah Wu, Jul 09 2025
| 2025-07-18T08:34:25 |
oeisdata/seq/A385/A385741.seq
|
b6bd06ae1e051d499cae1bf3aa977731
|
A385742
|
Decimal expansion of (Pi/32) * (-1/2- zeta'(4/3)/zeta(4/3)).
|
[
"1",
"9",
"4",
"3",
"9",
"1",
"1",
"9",
"3",
"2",
"9",
"9",
"0",
"6",
"7",
"6",
"2",
"5",
"2",
"3",
"4",
"1",
"6",
"3",
"9",
"3",
"3",
"6",
"9",
"0",
"0",
"6",
"6",
"3",
"5",
"0",
"6",
"2",
"4",
"9",
"7",
"3",
"8",
"2",
"7",
"8",
"6",
"6",
"0",
"3",
"9",
"5",
"8",
"7",
"0",
"5",
"7",
"0",
"7",
"8",
"7",
"3",
"4",
"3",
"8",
"1",
"1",
"3",
"5",
"2",
"8",
"1",
"0",
"6",
"3",
"3",
"9",
"8",
"1",
"9",
"1",
"6",
"0",
"9",
"6",
"1",
"0",
"2",
"4",
"3",
"9",
"5",
"5",
"7",
"6",
"7",
"2",
"1",
"3",
"4",
"7",
"7",
"0",
"0",
"6"
] |
[
"nonn",
"cons",
"new"
] | 17 | 0 | 2 |
[
"A215722",
"A384541",
"A385742"
] | null |
Mats Granvik, Jul 08 2025
| 2025-07-16T01:13:50 |
oeisdata/seq/A385/A385742.seq
|
90a41cff3b5ccda243067040ceed7d4b
|
A385743
|
Numbers k such that A384247(k) = A384247(k+1).
|
[
"1",
"20",
"27",
"35",
"63",
"64",
"104",
"143",
"194",
"208",
"740",
"836",
"1220",
"1299",
"1419",
"1803",
"1892",
"2625",
"3255",
"3705",
"3716",
"3843",
"4096",
"5184",
"5186",
"5635",
"5695",
"7868",
"10659",
"13365",
"16904",
"17948",
"18507",
"18914",
"21007",
"22935",
"25388",
"25545",
"27675",
"30380",
"31599",
"32304",
"32864",
"34595"
] |
[
"nonn",
"new"
] | 8 | 1 | 2 |
[
"A001274",
"A287055",
"A293184",
"A301866",
"A326403",
"A349307",
"A384247",
"A385743"
] | null |
Amiram Eldar, Jul 08 2025
| 2025-07-12T18:50:15 |
oeisdata/seq/A385/A385743.seq
|
c375c72a01f94a6a49a00350c110bd04
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.