sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A385359
Consecutive states of the linear congruential pseudo-random number generator (1597*s + 51749) mod 244944 when started at s=1.
[ "1", "53346", "4799", "122488", "199773", "172142", "135355", "173076", "157289", "174682", "27687", "177968", "131605", "62982", "206963", "142204", "88449", "217058", "97615", "158520", "181037", "133918", "82683", "71684", "142249", "160314", "106727", "13744", "200901", "14006", "129427", "13932", "11249", "135490", "143727" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383126", "A385357", "A385359" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-08T16:45:42
oeisdata/seq/A385/A385359.seq
b54a7602b87e6bca8e8667357e58642e
A385360
Consecutive states of the linear congruential pseudo-random number generator (1861*s + 49297) mod 233280 when started at s=1.
[ "1", "51158", "76095", "61132", "208589", "55506", "2923", "123560", "213657", "155854", "126551", "181188", "150565", "81482", "55299", "84256", "85553", "166470", "54127", "2684", "145341", "157378", "163355", "89112", "24649", "198206", "94983", "219700", "204437", "26874", "139891", "45968", "215265", "115702", "53279" ]
[ "nonn", "easy", "changed" ]
10
1
2
[ "A383127", "A385358", "A385360" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-06T18:15:02
oeisdata/seq/A385/A385360.seq
8ba98cd68cefc9d6ea1eb2189b645f51
A385361
Consecutive states of the linear congruential pseudo-random number generator (2661*s + 36979) mod 175000 when started at s=1.
[ "1", "39640", "169019", "46538", "149597", "164596", "1935", "111014", "45233", "1992", "87691", "107730", "56509", "82428", "102887", "119286", "7025", "5504", "158123", "102282", "84381", "49820", "132999", "97318", "177", "157976", "61115", "88994", "75013", "146572", "165071", "40910", "48489", "91208", "16467", "105666" ]
[ "nonn", "easy", "changed" ]
10
1
2
[ "A383127", "A385360", "A385361" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-06T18:16:33
oeisdata/seq/A385/A385361.seq
3085db5013a3210ba2147f1ca03333d2
A385362
Consecutive states of the linear congruential pseudo-random number generator (2041*s + 25673) mod 121500 when started at s=1.
[ "1", "27714", "92447", "20500", "70173", "266", "82579", "48912", "103565", "113338", "12531", "86444", "39877", "9630", "119003", "32296", "88809", "6842", "17695", "55668", "41561", "44674", "80307", "28760", "40333", "89826", "17039", "53272", "11325", "54998", "10591", "14904", "69737", "82390", "27663", "109856", "74269", "98202" ]
[ "nonn", "look", "easy", "changed" ]
15
1
2
[ "A383126", "A385341", "A385362" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-08T16:47:53
oeisdata/seq/A385/A385362.seq
28ab25716f7b4d925decd1ec694fcd74
A385363
Consecutive states of the linear congruential pseudo-random number generator (3613*s + 45289) mod 214326 when started at s=1.
[ "1", "48902", "123591", "138514", "45161", "109896", "167785", "138566", "18711", "135442", "90977", "183432", "89113", "92906", "80151", "76426", "120539", "42264", "145009", "150062", "188841", "128164", "157661", "210300", "73519", "119522", "11385", "28702", "11831", "139818", "41341", "25100", "71691", "159064", "135515" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383126", "A385340", "A385363" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-08T16:49:27
oeisdata/seq/A385/A385363.seq
f784d77896b6c3d4d98ff8f35d514c14
A385365
Consecutive states of the linear congruential pseudo-random number generator (3661*s + 30809) mod 145800 when started at s=1.
[ "1", "34470", "108479", "13228", "52917", "137546", "139315", "54624", "117473", "135262", "88191", "96860", "49669", "56418", "124307", "76936", "7905", "102614", "119863", "137052", "80381", "81250", "55059", "106208", "9697", "102126", "82895", "99604", "35253", "59042", "107971", "48840", "83249", "83398", "45687", "58316" ]
[ "nonn", "look", "easy", "changed" ]
18
1
2
[ "A383127", "A385361", "A385365" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-08T14:06:56
oeisdata/seq/A385/A385365.seq
e3afe9822c290393064310a35e65dcf6
A385366
a(n) = Sum_{permutations p of [n]} des(p^2), where des(p) is the number of descents of p.
[ "0", "0", "2", "24", "192", "1560", "13680", "131040", "1370880", "15603840", "192326400", "2554675200", "36404121600", "554204851200", "8979363993600", "154305575424000", "2803653844992000", "53708801642496000", "1082001156268032000", "22869278876860416000", "506043617700741120000", "11699825757321461760000" ]
[ "nonn", "easy", "new" ]
19
1
3
[ "A001286", "A385366" ]
null
Yifan Xie, Jun 26 2025
2025-07-14T06:41:34
oeisdata/seq/A385/A385366.seq
d2efbe574528a19e84257bd912e4adcc
A385367
Expansion of e.g.f. 1/(1 - 2 * arcsinh(x)).
[ "1", "2", "8", "46", "352", "3378", "38912", "522702", "8024064", "138586722", "2659565568", "56141737518", "1292851544064", "32253357421842", "866534937329664", "24943658876605902", "765883864848531456", "24985882009464388290", "863077992845681885184", "31469256501815056673070" ]
[ "nonn", "easy", "changed" ]
19
0
2
[ "A007289", "A296675", "A385343", "A385346", "A385367", "A385368", "A385371" ]
null
Seiichi Manyama, Jun 26 2025
2025-07-14T16:30:03
oeisdata/seq/A385/A385367.seq
51bdfb2f1b9f8d433006ddb18513823a
A385368
Expansion of e.g.f. 1/(1 - 3 * arcsinh(x)).
[ "1", "3", "18", "159", "1872", "27567", "487152", "10043163", "236628864", "6272181243", "184725577728", "5984502588567", "211503539764224", "8097842686320423", "333891770433767424", "14750451600690993363", "695078159385543376896", "34800934548420464971635", "1844895428525714717343744" ]
[ "nonn", "easy" ]
15
0
2
[ "A296675", "A385343", "A385347", "A385367", "A385368", "A385372" ]
null
Seiichi Manyama, Jun 26 2025
2025-06-27T04:39:23
oeisdata/seq/A385/A385368.seq
9110b0fe2d262b1a769e5a8358ce6f1d
A385369
Expansion of e.g.f. x + sqrt(x^2 + 1).
[ "1", "1", "1", "0", "-3", "0", "45", "0", "-1575", "0", "99225", "0", "-9823275", "0", "1404728325", "0", "-273922023375", "0", "69850115960625", "0", "-22561587455281875", "0", "9002073394657468125", "0", "-4348001449619557104375", "0", "2500100833531245335015625", "0", "-1687568062633590601135546875", "0" ]
[ "sign", "easy" ]
22
0
5
[ "A006228", "A177698", "A385343", "A385369" ]
null
Seiichi Manyama, Jun 26 2025
2025-06-29T09:33:45
oeisdata/seq/A385/A385369.seq
ac2aba550caa3f94402c76449cf1163b
A385370
Numbers that are the concatenation of a reversible prime and its reversal, and are the product of three (not necessarily distinct) primes whose sum is a prime.
[ "1771", "167761", "953359", "11511511", "13011031", "14399341", "14877841", "15111151", "15833851", "16011061", "16199161", "17411471", "32511523", "35111153", "71877817", "73499437", "74333347", "75899857", "78177187", "91611619", "92277229", "1030110301", "1039119301", "1050110501", "1085335801", "1192772911", "1226996221", "1242112421", "1326776231" ]
[ "nonn", "base" ]
8
1
1
[ "A002113", "A007500", "A014612", "A385370" ]
null
Will Gosnell and Robert Israel, Jun 27 2025
2025-06-27T01:03:23
oeisdata/seq/A385/A385370.seq
19e6a62842aea699adc4a80d9e837d3d
A385371
Expansion of e.g.f. 1/(1 - 2 * arcsinh(x))^(1/2).
[ "1", "1", "3", "14", "93", "804", "8487", "105720", "1520313", "24790800", "451823403", "9101380320", "200808312405", "4816068148800", "124749498365775", "3470782979053440", "103225781141381745", "3268196553960218880", "109745731806193831635", "3895876984699452280320" ]
[ "nonn" ]
18
0
3
[ "A001147", "A296675", "A385310", "A385343", "A385367", "A385371", "A385372" ]
null
Seiichi Manyama, Jun 27 2025
2025-06-27T04:34:55
oeisdata/seq/A385/A385371.seq
5070ec8980a86df81db398cf9911766a
A385372
Expansion of e.g.f. 1/(1 - 3 * arcsinh(x))^(1/3).
[ "1", "1", "4", "27", "264", "3369", "52896", "986187", "21293184", "522491697", "14359993344", "436964488443", "14583637923840", "529683272760537", "20798444046458880", "877927319167721067", "39644175780617748480", "1906959640776766940385", "97344936393086594580480", "5255894631271228490720475" ]
[ "nonn" ]
13
0
3
[ "A007559", "A296675", "A385311", "A385343", "A385371", "A385372" ]
null
Seiichi Manyama, Jun 27 2025
2025-06-27T04:30:36
oeisdata/seq/A385/A385372.seq
6ed36ab260d3dc36c1f87d69857003e8
A385373
Number of solid partitions with multiplicities (1, ..., n).
[ "1", "1", "6", "138", "14049", "6851919" ]
[ "nonn", "more" ]
8
0
3
[ "A000217", "A000219", "A000293", "A164894", "A379277", "A385373" ]
null
John Tyler Rascoe, Jun 27 2025
2025-07-02T17:13:06
oeisdata/seq/A385/A385373.seq
444d896341a19b34666cc0fd9eccd975
A385374
a(n) is the number of partitions of n into tau(n) distinct parts.
[ "1", "0", "1", "0", "2", "0", "3", "0", "3", "1", "5", "0", "6", "5", "6", "1", "8", "0", "9", "0", "27", "34", "11", "0", "40", "64", "72", "14", "14", "0", "15", "44", "150", "169", "185", "0", "18", "249", "270", "5", "20", "11", "21", "454", "532", "478", "23", "0", "176", "1057", "672", "1360", "26", "288", "864", "434", "972", "1033", "29", "0", "30", "1285", "4494", "4011", "1495" ]
[ "nonn", "look", "new" ]
12
1
5
[ "A000005", "A060016", "A385374", "A385375" ]
null
Felix Huber, Jul 06 2025
2025-07-11T15:35:08
oeisdata/seq/A385/A385374.seq
027ddce142e4d724c7d600270cc79b09
A385375
Numbers k that can't be partitioned into tau(k) distinct parts.
[ "2", "4", "6", "8", "12", "18", "20", "24", "30", "36", "48", "60", "72", "120" ]
[ "nonn", "fini", "full", "new" ]
17
1
1
[ "A000005", "A000217", "A374793", "A385374", "A385375" ]
null
Felix Huber, Jul 11 2025
2025-07-17T22:26:03
oeisdata/seq/A385/A385375.seq
25f24bc929895066c40fa1b4ca656eb6
A385376
Expansion of e.g.f. 1/(1 - 2 * arcsin(x))^(1/2).
[ "1", "1", "3", "16", "117", "1104", "12687", "172320", "2698377", "47880960", "949330203", "20801387520", "499149710205", "13018307696640", "366673138800615", "11092295404707840", "358685609335654545", "12346621534211604480", "450741642786156589875", "17395372731952677519360", "707614393333663454022405" ]
[ "nonn" ]
13
0
3
[ "A001147", "A189780", "A385343", "A385346", "A385376", "A385377" ]
null
Seiichi Manyama, Jun 27 2025
2025-06-27T04:33:56
oeisdata/seq/A385/A385376.seq
b069179e6dc93ea7979fce848c7c0577
A385377
Expansion of e.g.f. 1/(1 - 3 * arcsin(x))^(1/3).
[ "1", "1", "4", "29", "296", "3929", "64096", "1241437", "27834496", "709117073", "20232018944", "639064971293", "22138797783040", "834595012185193", "34013250713804800", "1490126154034917917", "69836524615835156480", "3486395656135414573985", "184703404516197170544640", "10349751400296465164293405" ]
[ "nonn" ]
10
0
3
[ "A007559", "A189780", "A385343", "A385347", "A385376", "A385377" ]
null
Seiichi Manyama, Jun 27 2025
2025-06-27T08:49:26
oeisdata/seq/A385/A385377.seq
56cc3523ea853138024e4c78531b9718
A385378
The maximum possible number of distinct factors in the factorization of n into prime powers (A246655).
[ "0", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "2", "2", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "1", "3", "1", "2", "2", "2", "1", "3", "2", "3", "2", "2", "1", "3", "1", "2", "2", "3", "2", "3", "1", "2", "2", "3", "1", "3", "1", "2", "2", "2", "2", "3", "1", "3", "2", "2", "1", "3", "2", "2", "2" ]
[ "nonn", "easy" ]
10
1
6
[ "A000430", "A000961", "A001221", "A003056", "A004709", "A024923", "A077761", "A086435", "A118914", "A246655", "A254578", "A375272", "A376885", "A384422", "A385378", "A385379" ]
null
Amiram Eldar, Jun 27 2025
2025-06-29T10:09:52
oeisdata/seq/A385/A385378.seq
381407d67b3c6faaf15906de3a6c3ed6
A385379
The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers.
[ "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "2", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "2", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0" ]
[ "nonn", "easy" ]
7
1
32
[ "A001694", "A005117", "A052146", "A077761", "A118914", "A246547", "A246655", "A376679", "A385378", "A385379", "A385380" ]
null
Amiram Eldar, Jun 27 2025
2025-06-29T10:09:48
oeisdata/seq/A385/A385379.seq
bd62512bde9cef36e6df7979eb0742ef
A385380
Partial products of the sequence nonprime powers of primes (A025475).
[ "1", "4", "32", "288", "4608", "115200", "3110400", "99532800", "4877107200", "312134860800", "25282923724800", "3059233770700800", "382404221337600000", "48947740331212800000", "8272168115974963200000", "2010136852181916057600000", "514595034158570510745600000", "148717964871826877605478400000" ]
[ "nonn", "easy" ]
7
1
2
[ "A001694", "A024923", "A025475", "A025487", "A181800", "A385379", "A385380" ]
null
Amiram Eldar, Jun 27 2025
2025-06-27T16:26:50
oeisdata/seq/A385/A385380.seq
9bf53ccf116941af8699ae0d40280a50
A385381
Triangle read by rows: T(n,k) is the number of polyominoes, i.e., connected nonempty subsets of square cells (or vertices), of the n X k flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= n.
[ "1", "2", "5", "3", "10", "28", "4", "21", "102", "801", "5", "40", "382", "6790", "129550", "6", "86", "1788", "68569", "2694721" ]
[ "nonn", "tabl", "more" ]
6
1
2
[ "A385381", "A385382", "A385384", "A385386" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:08:19
oeisdata/seq/A385/A385381.seq
3babcca3d54d6bbe294f245342c3d037
A385382
Number of polyominoes, i.e., connected nonempty subsets of square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns.
[ "1", "5", "28", "801", "129550" ]
[ "nonn", "more" ]
5
1
2
[ "A385381", "A385382", "A385383", "A385384", "A385387" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:25
oeisdata/seq/A385/A385382.seq
bec3b97b32173e4c6e6e41e074f28bc0
A385383
Irregular triangle read by rows: T(n,k) is the number of polyominoes of size k, i.e., connected subsets of k square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= n^2.
[ "1", "1", "2", "1", "1", "1", "2", "3", "5", "6", "6", "3", "1", "1", "1", "2", "3", "9", "17", "44", "81", "150", "163", "161", "88", "56", "16", "8", "1", "1", "1", "2", "3", "9", "21", "62", "168", "490", "1324", "3370", "7433", "13905", "20961", "24927", "23008", "16766", "9825", "4669", "1831", "576", "157", "32", "8", "1", "1" ]
[ "nonn", "tabf" ]
5
1
3
[ "A056780", "A385382", "A385383", "A385385", "A385388" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:29
oeisdata/seq/A385/A385383.seq
30bb17b9ec51a6df28972858828de9cb
A385384
Number of polyominoes, i.e., connected nonempty subsets of square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns.
[ "1", "4", "19", "437", "65325" ]
[ "nonn", "more" ]
5
1
2
[ "A385382", "A385384", "A385385", "A385389" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:37
oeisdata/seq/A385/A385384.seq
3e0eea5b4bfc5d42eb2935fa4814b895
A385385
Irregular triangle read by rows: T(n,k) is the number of polyominoes of size k, i.e., connected subsets of k square cells (or vertices), of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns; 1 <= k <= n^2.
[ "1", "1", "1", "1", "1", "1", "1", "2", "3", "4", "4", "2", "1", "1", "1", "1", "2", "5", "10", "23", "44", "80", "87", "86", "49", "32", "10", "5", "1", "1", "1", "1", "2", "5", "12", "32", "88", "249", "675", "1699", "3747", "6993", "10538", "12531", "11580", "8458", "4975", "2378", "943", "305", "87", "19", "5", "1", "1" ]
[ "nonn", "tabf" ]
7
1
8
[ "A000105", "A369605", "A385383", "A385384", "A385385", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:40
oeisdata/seq/A385/A385385.seq
bf1466b8b566758d547119a42aa78197
A385386
Triangle read by rows: T(n,k) is the number of polysticks, i.e., connected nonempty subsets of edges, of the n X k flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= n.
[ "3", "7", "40", "14", "225", "6432", "26", "1768", "255451", "43918404" ]
[ "nonn", "tabl", "more" ]
5
1
1
[ "A385381", "A385386", "A385387", "A385389" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:32
oeisdata/seq/A385/A385386.seq
d7472c1f8ec56c11f2d9f0261909e703
A385387
Number of polysticks, i.e., connected nonempty subsets of edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns.
[ "3", "40", "6432", "43918404" ]
[ "nonn", "more" ]
5
1
1
[ "A385382", "A385386", "A385387", "A385388", "A385389" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:44
oeisdata/seq/A385/A385387.seq
c3e1cf2f8a2e73933e06be6c48b58374
A385388
Irregular triangle read by rows: T(n,k) is the number of polysticks of size k, i.e., connected subsets of k edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns; 1 <= k <= 2*n^2.
[ "2", "1", "2", "3", "6", "11", "8", "7", "2", "1", "2", "3", "10", "24", "76", "213", "522", "982", "1308", "1274", "972", "593", "288", "114", "38", "10", "2", "1", "2", "3", "10", "28", "104", "387", "1518", "5799", "21336", "73400", "230462", "644155", "1556484", "3151899", "5183442", "6823550", "7342196", "6639409", "5131834", "3433229", "1992710", "1007190", "440148", "166572", "53566", "14806", "3356", "682", "104", "20", "2", "1" ]
[ "nonn", "tabf" ]
6
1
1
[ "A385383", "A385387", "A385388", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:48
oeisdata/seq/A385/A385388.seq
bd79df241435c4fa7ac61526ee492da3
A385389
Number of polysticks, i.e., connected nonempty subsets of edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns.
[ "2", "23", "3257", "21961750" ]
[ "nonn", "more" ]
5
1
1
[ "A385384", "A385387", "A385389", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:51
oeisdata/seq/A385/A385389.seq
4415e93873d8139252256c84312aba6b
A385390
Irregular triangle read by rows: T(n,k) is the number of polysticks of size k, i.e., connected subsets of k edges, of the n X n flat torus, up to cyclic shifts and reflections of rows and columns, as well as interchange of rows and columns; 1 <= k <= 2*n^2.
[ "1", "1", "1", "2", "3", "7", "4", "4", "1", "1", "1", "2", "5", "14", "38", "111", "261", "500", "654", "648", "486", "305", "144", "61", "19", "6", "1", "1", "1", "2", "5", "16", "52", "199", "759", "2921", "10668", "36761", "115231", "322237", "778242", "1576259", "2591721", "3412285", "3671098", "3320276", "2565917", "1717088", "996355", "503860", "220074", "83408", "26783", "7438", "1678", "351", "52", "11", "1", "1" ]
[ "nonn", "tabf" ]
7
1
4
[ "A019988", "A333333", "A385385", "A385388", "A385389", "A385390" ]
null
Pontus von Brömssen, Jun 27 2025
2025-06-29T11:07:56
oeisdata/seq/A385/A385390.seq
6143f9e4b1a0f29c33caf4683f2c9031
A385391
a(n) is the smallest integer k such that A384237(k) = n.
[ "1", "2", "6", "12", "66", "30", "210", "390", "1365", "2310", "3990", "10920", "2730", "84630", "53130", "87780", "114114", "760760", "2042040", "1345890", "285285", "1902810", "570570", "1141140", "25571910", "30240210", "2282280", "358888530", "514083570", "413092680", "998887890", "761140380", "1155284130", "3082219140", "8125850460", "11532931410", "17440042620", "8254436190" ]
[ "nonn", "changed" ]
29
1
2
[ "A002110", "A065295", "A384237", "A384854", "A385100", "A385391" ]
null
Michel Marcus and Juri-Stepan Gerasimov, Jun 27 2025
2025-07-14T10:04:14
oeisdata/seq/A385/A385391.seq
c69b661ef387dc0776c4c49b11d7f764
A385392
The number of divisors d of n such that -(d^d) = d (mod n).
[ "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "1", "5", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "1", "2", "1", "1" ]
[ "nonn" ]
19
1
2
[ "A032741", "A065295", "A384237", "A384781", "A384854", "A385103", "A385392" ]
null
Juri-Stepan Gerasimov, Jun 27 2025
2025-07-02T18:34:27
oeisdata/seq/A385/A385392.seq
5f1044bef1862bc8ee29e6fc34166406
A385393
a(n) = (Sum_{k=0..n} (binomial(n, k) mod 4)) / 2^bitcount(n).
[ "1", "1", "2", "2", "2", "2", "3", "2", "2", "2", "3", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "4", "3", "3", "3", "4", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "4", "3", "3", "3", "4", "4", "4", "4", "4", "3", "3", "3", "4", "3", "4", "4", "4", "3", "3", "3", "4", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "4", "3", "3", "3", "4", "4", "4", "4", "4", "3", "3", "3", "4", "4", "4", "4", "5" ]
[ "nonn" ]
26
0
3
[ "A000120", "A001316", "A384715", "A385393", "A385394" ]
null
Peter Luschny, Jun 27 2025
2025-06-28T13:44:14
oeisdata/seq/A385/A385393.seq
97abd812a6379bb6b8563c829d4c3477
A385394
a(n) = (Sum_{k=0..n} (binomial(n, k) mod 8)) / 2^bitcount(n).
[ "1", "1", "2", "2", "8", "4", "8", "4", "8", "8", "6", "6", "10", "8", "5", "4", "8", "8", "10", "8", "12", "6", "11", "6", "10", "10", "11", "7", "9", "7", "7", "4", "8", "8", "10", "8", "16", "12", "15", "10", "12", "12", "9", "9", "13", "11", "10", "6", "10", "10", "13", "11", "15", "11", "11", "7", "9", "9", "10", "7", "11", "7", "7", "4", "8", "8", "10", "8", "16", "12", "15", "10", "16", "16", "15", "13" ]
[ "nonn" ]
27
0
3
[ "A000120", "A001316", "A385285", "A385393", "A385394" ]
null
Peter Luschny, Jun 27 2025
2025-06-30T21:53:02
oeisdata/seq/A385/A385394.seq
459735c456472d39fedd431f0aeb130d
A385395
Triangle read by rows: T(n, k) = [A047999(n, k) = 1 or A385456(n, k) = 1], where [.] is the Iverson bracket.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1" ]
[ "nonn", "tabl", "new" ]
24
0
null
[ "A047999", "A385395", "A385456" ]
null
Peter Luschny, Jul 03 2025
2025-07-06T02:53:27
oeisdata/seq/A385/A385395.seq
b304f28f77de6b828b52ecb02938d867
A385396
Numbers k such that 8 does not divide binomial(k, j) for any j in 0..k.
[ "0", "1", "2", "3", "4", "5", "6", "7", "9", "11", "13", "15", "19", "23", "27", "31", "39", "47", "55", "63", "79", "95", "111", "127", "159", "191", "223", "255", "319", "383", "447", "511", "639", "767", "895", "1023", "1279", "1535", "1791", "2047", "2559", "3071", "3583", "4095", "5119", "6143", "7167", "8191", "10239", "12287", "14335", "16383", "20479", "24575" ]
[ "nonn" ]
21
1
3
[ "A000225", "A052955", "A385396" ]
null
Peter Luschny, Jun 28 2025
2025-06-30T09:57:24
oeisdata/seq/A385/A385396.seq
ae61f29b9b6fde46e06fa35df201f76f
A385397
Numbers x such that there exist three integers 0<x<=y, z>0 and w>0 such that sigma(x)^3 = sigma(y)^3 = x^3 + y^3 + z^3 + w^3.
[ "153", "216", "255", "324", "672", "735", "1074", "1170", "1218", "2430", "2655", "2736", "3482", "4148", "4605", "4935", "5220", "5446", "5916", "6048", "7140", "9340", "11000", "11160", "12768", "14090", "14098", "14980", "17220", "17696", "18984", "21068", "21948", "22128", "23022", "23205", "24297", "24570", "25284", "25740", "29058", "29640", "30240", "30690", "31008", "31190", "32760", "37140", "39840" ]
[ "nonn", "hard" ]
15
1
1
[ "A000203", "A385325", "A385356", "A385397" ]
null
S. I. Dimitrov, Jun 27 2025
2025-07-01T23:17:18
oeisdata/seq/A385/A385397.seq
1b528a30353e6635d694c7f326bab6d3
A385398
Numbers m >= 1 such that Sum_{k = 1..m} gcd(m, floor(m / k)) > Sum_{k = 1..m} gcd(m, ceiling(m / k)).
[ "407", "539", "559", "637", "671", "793", "803", "949", "1037", "1067", "1159", "1241", "1273", "1331", "1469", "1649", "1679", "1727", "1817", "1843", "1853", "1919", "2057", "2159", "2197", "2231", "2299", "2321", "2507", "2651", "2669", "2743", "2783", "2813", "2873", "2983", "2987", "3007", "3077", "3133", "3161", "3179", "3193", "3211", "3379" ]
[ "nonn" ]
9
1
1
[ "A018804", "A384628", "A385398", "A385402" ]
null
Ctibor O. Zizka, Jun 27 2025
2025-07-02T19:41:43
oeisdata/seq/A385/A385398.seq
c42edca06cbdebb857c428f5072bd06f
A385399
a(n) is the number of free polyominoids that have faces aligned to precisely 2 planes.
[ "0", "1", "5", "33", "197", "1461", "11278", "93486", "799261" ]
[ "nonn", "more" ]
7
1
3
[ "A000105", "A075679", "A385399", "A385400" ]
null
John Mason, Jun 27 2025
2025-06-28T11:15:06
oeisdata/seq/A385/A385399.seq
ba6481e569b2fe941bd1ad21c83423de
A385400
a(n) is the number of free polyominoids that have faces aligned to precisely 3 planes.
[ "0", "0", "2", "16", "239", "3154", "42225", "561178", "7459089" ]
[ "nonn", "more" ]
6
1
3
[ "A000105", "A075679", "A385399", "A385400" ]
null
John Mason, Jun 27 2025
2025-06-28T11:15:11
oeisdata/seq/A385/A385400.seq
a0cbd932d0893e41379bbe6b26d05bf3
A385401
Left-truncatable perfect powers: every suffix is a perfect power.
[ "1", "4", "8", "9", "49", "64", "81" ]
[ "nonn", "base", "fini", "full" ]
9
1
2
[ "A001597", "A001694", "A164839", "A164840", "A202271", "A385401" ]
null
Stefano Spezia, Jun 27 2025
2025-06-28T10:05:21
oeisdata/seq/A385/A385401.seq
e0c36ec9be11a0202c5ff9dc0462d952
A385402
Numbers m >= 1 such that Sum_{k = 1..m} gcd(m, floor(m / k)) = Sum_{k = 1..m} gcd(m, ceiling(m / k)).
[ "1", "2", "3", "5", "7", "11", "13", "17", "19", "23", "29", "31", "35", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "77", "79", "83", "89", "95", "97", "101", "103", "107", "109", "113", "119", "125", "127", "131", "137", "139", "143", "149", "151", "157", "163", "167", "173", "179", "181", "187", "191", "193", "197", "199", "209", "211", "221" ]
[ "nonn" ]
6
1
2
[ "A018804", "A384628", "A385398", "A385402" ]
null
Ctibor O. Zizka, Jun 27 2025
2025-07-02T17:50:03
oeisdata/seq/A385/A385402.seq
afb2e960e89bb24e455ab9e7a464c2bd
A385403
Minimum number of triples that cover {1..n}, such that every 2-coloring of {1..n} results in at least one monochromatic triple.
[ "10", "10", "7", "8", "8", "8" ]
[ "nonn", "more" ]
12
5
1
[ "A111384", "A383181", "A385403" ]
null
David Dewan, Jun 27 2025
2025-07-03T03:04:42
oeisdata/seq/A385/A385403.seq
1ca46b2f8642086502400d3489b42fbf
A385404
Numbers that can be split into two at any place between their digits such that the resulting numbers are always a nonprime on the left and a prime on the right.
[ "12", "13", "15", "17", "42", "43", "45", "47", "62", "63", "65", "67", "82", "83", "85", "87", "92", "93", "95", "97", "123", "143", "147", "153", "167", "183", "423", "443", "447", "453", "467", "483", "497", "623", "637", "643", "647", "653", "667", "683", "697", "813", "817", "823", "843", "847", "853", "867", "873", "883", "913", "917", "923", "937", "943", "947", "953", "967", "983", "997" ]
[ "nonn", "base", "fini", "full" ]
20
1
1
[ "A024785", "A125524", "A125664", "A385404" ]
null
Tamas Sandor Nagy, Jun 27 2025
2025-06-27T16:26:33
oeisdata/seq/A385/A385404.seq
05a613df4252042c0dfaa80b0183c34f
A385406
Triangle read by rows: T(n, k) = n*(n+1)/2 - floor((n-1)/2) - (-1)^k * floor(k/2).
[ "1", "3", "2", "5", "4", "6", "9", "8", "10", "7", "13", "12", "14", "11", "15", "19", "18", "20", "17", "21", "16", "25", "24", "26", "23", "27", "22", "28", "33", "32", "34", "31", "35", "30", "36", "29", "41", "40", "42", "39", "43", "38", "44", "37", "45", "51", "50", "52", "49", "53", "48", "54", "47", "55", "46", "61", "60", "62", "59", "63", "58", "64", "57", "65", "56", "66", "73", "72", "74", "71", "75", "70", "76", "69", "77", "68", "78", "67" ]
[ "nonn", "easy", "tabl" ]
10
1
2
[ "A006003", "A080827", "A128918", "A213399", "A385406" ]
null
Werner Schulte, Jun 27 2025
2025-06-28T12:53:00
oeisdata/seq/A385/A385406.seq
529bb28d8d539d8ba5fe15b26cddebc7
A385407
Number of strings of length n defined on {0, 1, 2, 3} that contain one or no 1's, two or no 2's, three or no 3's and any number of 0's.
[ "1", "2", "4", "11", "31", "86", "282", "939", "2781", "7186", "16496", "34387", "66299", "119926", "205766", "337731", "533817", "816834", "1215196", "1763771", "2504791", "3488822", "4775794", "6436091", "8551701", "11217426", "14542152", "18650179", "23682611", "29798806", "37177886", "46020307", "56549489", "69013506", "83686836", "100872171" ]
[ "nonn", "easy" ]
16
0
2
[ "A385312", "A385407" ]
null
Enrique Navarrete, Jun 27 2025
2025-07-03T01:02:50
oeisdata/seq/A385/A385407.seq
d3722651a28fffd72efe26d9c85bc287
A385408
Sum over all ordered partitions of [n] of 6^j for an ordered partition with j inversions.
[ "1", "1", "8", "388", "113480", "199246816", "2099255895008", "132708276995157568", "50336523318422432038400", "114556539064849604787867141376", "1564256035642651626332994903500876288", "128158392280785912677966097933268099449960448", "62999559569114394473388668602373642996554916532377600" ]
[ "nonn" ]
12
0
3
[ "A000670", "A381299", "A381426", "A385408" ]
null
Alois P. Heinz, Jun 27 2025
2025-06-27T18:25:41
oeisdata/seq/A385/A385408.seq
548438858247338a7f8331f340210ece
A385409
a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^2, where 0 < x < y < z < w has exactly n integer solutions.
[ "10", "42", "39", "153", "126", "276", "273", "312", "315", "476", "588", "336", "546", "777", "1053", "756", "1216", "1386", "1560", "1134", "1323", "1488", "1365", "1368", "1344", "1596", "2366", "2496", "2988", "1680", "2548", "1736", "2184", "3003", "3720", "2520", "3185", "3552", "2268", "3564", "4095", "3213", "4578", "4392", "5208", "4004", "4599", "5733" ]
[ "nonn", "new" ]
11
1
1
[ "A024975", "A025419", "A377444", "A384430", "A385354", "A385409" ]
null
Zhining Yang, Jun 27 2025
2025-07-08T18:37:22
oeisdata/seq/A385/A385409.seq
0d50b942222d06f7a4870da54068e2c9
A385410
Multiples k of b that are not perfect powers and whose trailing digits form a power of b, where 1 < b < k.
[ "12", "14", "15", "18", "21", "22", "24", "28", "33", "34", "35", "38", "39", "42", "44", "45", "48", "51", "52", "54", "55", "58", "62", "63", "65", "66", "68", "69", "72", "74", "75", "77", "78", "82", "84", "85", "88", "91", "92", "93", "94", "95", "96", "98", "99", "102", "104", "105", "108", "110", "111", "112", "114", "115", "116", "118", "120", "122", "123", "124", "126", "129" ]
[ "nonn", "base", "easy", "new" ]
20
1
1
[ "A002808", "A007916", "A106543", "A384714", "A385410", "A385411", "A385412" ]
null
Stefano Spezia and Michael De Vlieger, Jun 28 2025
2025-07-05T05:15:02
oeisdata/seq/A385/A385410.seq
90a49f4aaa4397dd1a08167e47dd3c8c
A385411
Numbers k that are not perfect powers, not divisible by some b, and whose trailing digits form a power of b, where 1 < b < k.
[ "11", "13", "14", "17", "18", "19", "21", "23", "26", "28", "29", "31", "34", "37", "38", "39", "41", "43", "46", "47", "51", "53", "54", "56", "57", "58", "59", "61", "67", "68", "69", "71", "73", "74", "76", "78", "79", "83", "86", "87", "89", "91", "94", "97", "98", "101", "103", "106", "107", "108", "109", "111", "112", "113", "114", "115", "116", "117", "118", "119", "122", "123", "124" ]
[ "nonn", "base", "easy", "new" ]
24
1
1
[ "A007916", "A384714", "A385410", "A385411", "A385412" ]
null
Stefano Spezia and Michael De Vlieger, Jun 29 2025
2025-07-14T21:44:23
oeisdata/seq/A385/A385411.seq
7d39494fc21c255e60159b214e036271
A385412
Numbers k that are not perfect powers and whose trailing digits form a power of b, where 1 < b < k.
[ "11", "12", "13", "14", "15", "17", "18", "19", "21", "22", "23", "24", "26", "28", "29", "31", "33", "34", "35", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "48", "51", "52", "53", "54", "55", "56", "57", "58", "59", "61", "62", "63", "65", "66", "67", "68", "69", "71", "72", "73", "74", "75", "76", "77", "78", "79", "82", "83", "84", "85", "86", "87", "88", "89", "91", "92" ]
[ "nonn", "base", "easy", "new" ]
10
1
1
[ "A007916", "A384714", "A385410", "A385411", "A385412" ]
null
Stefano Spezia and Michael De Vlieger, Jun 30 2025
2025-07-05T05:15:16
oeisdata/seq/A385/A385412.seq
8cd21181ecaa3c7a45d9ffccecf29bfc
A385413
Number of solid standard Young tableaux of 2n cells and height >= n.
[ "1", "3", "23", "261", "3787", "63395", "1191041", "24547919", "549727747", "13239969349", "340470351905", "9279758909457", "266461484866363" ]
[ "nonn", "more" ]
8
0
2
[ "A215120", "A385413" ]
null
Alois P. Heinz, Jun 27 2025
2025-06-28T19:46:12
oeisdata/seq/A385/A385413.seq
91995d440152f1b47a685725769896c2
A385415
Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.
[ "6", "24", "60", "120", "210", "720", "3360", "9240", "117600", "166320", "970200", "43243200", "85765680" ]
[ "nonn", "fini", "full", "new" ]
24
1
1
[ "A007531", "A055932", "A083207", "A385189", "A385415" ]
null
Ken Clements, Jun 28 2025
2025-07-14T21:45:29
oeisdata/seq/A385/A385415.seq
7241d2f077930273b330b131266843d8
A385416
The number of unordered factorizations of n into exponentially odd numbers (A268335).
[ "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "1", "4", "1", "2", "2", "2", "1", "5", "1", "3", "2", "2", "2", "3", "1", "2", "2", "4", "1", "5", "1", "2", "2", "2", "1", "5", "1", "2", "2", "2", "1", "4", "2", "4", "2", "2", "1", "6", "1", "2", "2", "4", "2", "5", "1", "2", "2", "5", "1", "5", "1", "2", "2", "2", "2", "5", "1", "5", "2", "2", "1", "6", "2", "2", "2" ]
[ "nonn" ]
8
1
6
[ "A001055", "A005117", "A050361", "A118914", "A246551", "A268335", "A385416", "A385417" ]
null
Amiram Eldar, Jun 28 2025
2025-06-29T10:09:44
oeisdata/seq/A385/A385416.seq
897cf4f04a14f04226dd292ed567724b
A385417
Numbers with a record number of unordered factorizations into exponentially odd numbers (A268335).
[ "1", "6", "24", "30", "60", "96", "120", "210", "240", "420", "480", "720", "840", "1680", "2520", "3360", "5040", "6720", "9240", "10080", "13440", "15120", "18480", "27720", "30240", "36960", "55440", "73920", "110880", "147840", "166320", "221760", "332640", "443520", "665280", "720720", "887040", "960960", "1108800", "1330560", "1441440" ]
[ "nonn" ]
10
1
2
[ "A025487", "A268335", "A385416", "A385417" ]
null
Amiram Eldar, Jun 28 2025
2025-06-29T15:44:13
oeisdata/seq/A385/A385417.seq
912bf472134462bc3e42072623e0edd3
A385418
The number of unordered factorizations of n into powers of primes of the form p^(2^k-1) where p is prime and k >= 0.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
8
1
8
[ "A000688", "A000929", "A036537", "A046951", "A050361", "A050377", "A061704", "A188581", "A188585", "A304327", "A322885", "A362852", "A368248", "A370256", "A384912", "A384913", "A384914", "A384915", "A384916", "A385418" ]
null
Amiram Eldar, Jun 28 2025
2025-06-29T10:09:34
oeisdata/seq/A385/A385418.seq
808b5c2ee809db6d8d37b6078093ccd4
A385419
Expansion of e.g.f. 1/(1 - arcsinh(2*x))^(1/2).
[ "1", "1", "3", "11", "57", "489", "5067", "50595", "573297", "9323985", "168823443", "2679252795", "45149256105", "1121782132665", "29930127386715", "629179051311315", "13329925622622945", "472248682257228705", "17395967794618282275", "434384524558247177835", "10095605146704332967705" ]
[ "sign" ]
11
0
3
[ "A001147", "A296675", "A385343", "A385371", "A385419", "A385420" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:04:56
oeisdata/seq/A385/A385419.seq
504547df52bd79013b6c81dc5eb06ea1
A385420
Expansion of e.g.f. 1/(1 - arcsinh(3*x))^(1/3).
[ "1", "1", "4", "19", "136", "1849", "28576", "383347", "6054016", "162756433", "4512553984", "94198960723", "2151597168640", "94600222614793", "3958651982848000", "103976698299157747", "2765446240371834880", "197818347558313860385", "11750108763413970288640", "335351034570439348695955" ]
[ "sign" ]
14
0
3
[ "A007559", "A296675", "A385343", "A385372", "A385419", "A385420", "A385422" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:05:02
oeisdata/seq/A385/A385420.seq
955a9cb6ef502c4446cd15fef0b95920
A385421
Expansion of e.g.f. 1/(1 - arcsin(2*x))^(1/2).
[ "1", "1", "3", "19", "153", "1689", "21867", "343995", "6114993", "124933425", "2820098643", "70897706595", "1939085791305", "57898697121225", "1859540697970875", "64312039377723915", "2371651908598754145", "93246340110716523105", "3882169166979871734435", "171024539858087082582195" ]
[ "nonn" ]
12
0
3
[ "A001147", "A001586", "A189780", "A385343", "A385421", "A385422" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:39:17
oeisdata/seq/A385/A385421.seq
3671d4ffcac28fe0c221bac51755c791
A385422
Expansion of e.g.f. 1/(1 - arcsin(3*x))^(1/3).
[ "1", "1", "4", "37", "424", "6889", "129376", "3004597", "78196864", "2363157937", "78520720384", "2924352594373", "118146438461440", "5232528466643737", "248845526415892480", "12778931460471237397", "699044652076991610880", "40846771050451091426785", "2526020027235443981025280" ]
[ "nonn" ]
14
0
3
[ "A007559", "A007788", "A189780", "A235135", "A385343", "A385420", "A385421", "A385422" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:47:14
oeisdata/seq/A385/A385422.seq
cc1d54a8b1e2bee93d4e2c52c5320c6a
A385424
Expansion of e.g.f. exp( -LambertW(-arcsin(x)) ).
[ "1", "1", "3", "17", "137", "1465", "19499", "311873", "5829073", "124796081", "3012319315", "80960234577", "2398138520409", "77630951407529", "2726829925494011", "103300796618253825", "4198494172961579169", "182239547736082960737", "8414068749731088539299", "411754575622058760824593" ]
[ "nonn" ]
15
0
3
[ "A277502", "A381142", "A385343", "A385424", "A385425", "A385426", "A385427" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:17:19
oeisdata/seq/A385/A385424.seq
bbc9dcd40f03b0429f60071186ebadfc
A385425
Expansion of e.g.f. exp( -LambertW(-arcsinh(x)) ).
[ "1", "1", "3", "15", "113", "1145", "14499", "220703", "3932865", "80342577", "1851286755", "47510525007", "1344106404849", "41562628517865", "1394711974335939", "50480840239135455", "1960392617938419969", "81309789407316485217", "3587373056789171999811", "167762667997938465311247" ]
[ "nonn" ]
21
0
3
[ "A001147", "A219503", "A385343", "A385369", "A385424", "A385425", "A385428" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:01:50
oeisdata/seq/A385/A385425.seq
e64e7f2c79004e41343f2c804ef447ce
A385426
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-arcsin(x)) ).
[ "1", "1", "3", "17", "145", "1665", "24115", "422305", "8681985", "205042625", "5471351875", "162811832625", "5345929731025", "192007183247425", "7488448738333875", "315170338129570625", "14238153926819850625", "687220571240324330625", "35293921478604240911875", "1921751625123502012140625" ]
[ "nonn" ]
12
0
3
[ "A001147", "A227464", "A381145", "A385343", "A385424", "A385426", "A385427" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T08:45:57
oeisdata/seq/A385/A385426.seq
e59f6ed848926580bf7a6e2c84284961
A385427
E.g.f. A(x) satisfies A(x) = exp( arcsin(x * A(x)) / A(x) ).
[ "1", "1", "1", "2", "13", "100", "861", "9536", "127737", "1938896", "33240185", "639683552", "13601898245", "316356906944", "7998251969813", "218420230243840", "6405441641302641", "200779795515236608", "6699317212660139761", "237070134772942395904", "8868209937245857514365", "349657703494298519409664" ]
[ "nonn", "changed" ]
12
0
4
[ "A381148", "A385343", "A385424", "A385426", "A385427" ]
null
Seiichi Manyama, Jun 28 2025
2025-07-05T05:05:11
oeisdata/seq/A385/A385427.seq
dcd19c461be37d38eb515e0cfe377465
A385428
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)) / A(x) ).
[ "1", "1", "1", "0", "-11", "-80", "-219", "3416", "68265", "550656", "-3285975", "-194101248", "-3177823395", "-5431320960", "1202586098637", "35658624599040", "359507959906641", "-12186663090266112", "-677861502762897711", "-13768767870225444864", "126162451289700276165", "19553934035547470168064" ]
[ "sign" ]
15
0
5
[ "A001147", "A381147", "A385343", "A385369", "A385425", "A385428" ]
null
Seiichi Manyama, Jun 28 2025
2025-06-28T10:02:11
oeisdata/seq/A385/A385428.seq
c04b9f2dd8ec03ca6f6865778bbc875f
A385431
Leading digit of the decimal expansion of the prime zeta function at n.
[ "4", "1", "7", "3", "1", "8", "4", "2", "9", "4", "2", "1", "6", "3", "1", "7", "3", "1", "9", "4", "2", "1", "5", "2", "1", "7", "3", "1", "9", "4", "2", "1", "5", "2", "1", "7", "3", "1", "9", "4", "2", "1", "5", "2", "1", "7", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "6", "3" ]
[ "nonn", "easy", "base", "new" ]
22
2
1
[ "A000040", "A085541", "A085548", "A085964", "A085969", "A111395", "A385430", "A385431" ]
null
Marco Ripà, Jun 28 2025
2025-07-16T21:36:13
oeisdata/seq/A385/A385431.seq
595e4e133316777599cf87e3902611fa
A385432
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete tripartite graph using exactly k interchangeable colors, 3 <= k <= 3*n.
[ "1", "1", "3", "3", "1", "1", "9", "30", "45", "30", "9", "1", "1", "21", "165", "598", "1032", "939", "471", "129", "18", "1", "1", "45", "750", "5655", "19653", "36465", "39250", "25560", "10278", "2545", "375", "30", "1", "1", "93", "3153", "46726", "295905", "978588", "1881306", "2232798", "1704405", "858530", "288768", "64743", "9495", "870", "45", "1", "1", "189", "12810", "364875", "3988530", "21976122", "69388462", "134794821", "1" ]
[ "nonn", "tabf", "easy" ]
8
1
3
[ "A384988", "A385432" ]
null
Julian Allagan, Jun 28 2025
2025-07-03T18:39:52
oeisdata/seq/A385/A385432.seq
9ec81c62e1d9088b625c91f8449faebf
A385434
Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2, reduced mod 3.
[ "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "2", "0", "1", "1", "1", "2", "2", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "1", "0", "2", "0", "1", "0", "1", "0", "2", "0", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "2", "1", "1" ]
[ "nonn", "tabl" ]
24
0
13
[ "A007318", "A022166", "A385434", "A385435" ]
null
David Radcliffe, Jun 28 2025
2025-06-29T12:22:11
oeisdata/seq/A385/A385434.seq
25185d4fb3bc3942be08dae2faaf3680
A385435
Row sums of A385434.
[ "1", "2", "2", "4", "4", "8", "2", "4", "4", "8", "8", "16", "4", "8", "8", "16", "13", "26", "2", "4", "4", "8", "8", "16", "4", "8", "8", "16", "16", "32", "8", "16", "16", "32", "26", "52", "4", "8", "8", "16", "13", "26", "8", "16", "16", "32", "26", "52", "13", "26", "26", "52", "40", "80", "2", "4", "4", "8", "8", "16", "4", "8", "8", "16", "16", "32", "8", "16", "16", "32", "26", "52", "4", "8", "8" ]
[ "nonn", "tabl", "changed" ]
23
0
2
[ "A007318", "A022166", "A051638", "A385434", "A385435" ]
null
David Radcliffe, Jun 28 2025
2025-07-10T19:38:54
oeisdata/seq/A385/A385435.seq
f6f7e61d91aea819c2aa17b8ee702281
A385436
Tribonacci array of the second kind, read by upward antidiagonals.
[ "0", "2", "1", "4", "5", "3", "6", "8", "10", "7", "9", "12", "16", "20", "14", "11", "18", "23", "31", "38", "27", "13", "21", "34", "44", "58", "71", "51", "15", "25", "40", "64", "82", "108", "132", "95", "17", "29", "47", "75", "119", "152", "200", "244", "176", "19", "32", "54", "88", "139", "220", "281", "369", "450", "325", "22", "36", "60", "101", "163", "257", "406", "518", "680" ]
[ "nonn", "tabl", "new" ]
30
1
2
[ "A027084", "A035513", "A136189", "A351631", "A352103", "A372501", "A385436", "A385455", "A385532", "A385533" ]
null
A.H.M. Smeets, Jun 28 2025
2025-07-09T10:17:25
oeisdata/seq/A385/A385436.seq
f0b3432362e09082ef321a33e2ed09aa
A385437
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph with a perfect matching removed using exactly k interchangeable colors, for n >= 1 and 2 <= k <= 2n.
[ "1", "2", "4", "1", "1", "10", "20", "9", "1", "1", "18", "92", "146", "80", "16", "1", "1", "35", "355", "1146", "1492", "850", "220", "25", "1", "1", "68", "1336", "7590", "17831", "19740", "11052", "3230", "490", "36", "1", "1", "133", "5026", "47278", "181251", "332039", "320763", "172788", "53417", "9520", "952", "49", "1", "1", "262", "19097", "287126", "1710016", "4809728", "7204912", "6180858", "3177106", "1003940", "196728", "23660", "1680", "64", "1" ]
[ "nonn", "tabf" ]
8
1
2
null
null
Julian Allagan, Jun 28 2025
2025-07-03T16:39:26
oeisdata/seq/A385/A385437.seq
4b012fdf6578d29c9f0370ba5007a5ce
A385440
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)^2) ).
[ "1", "1", "5", "48", "693", "13440", "328185", "9676800", "334639305", "13284311040", "595505854125", "29756856729600", "1640160546688125", "98860780014796800", "6469121228247302625", "456736803668361216000", "34607895888408878660625", "2801319062499282124800000", "241247999301688986945463125" ]
[ "nonn" ]
13
0
3
[ "A001147", "A381415", "A385343", "A385369", "A385440", "A385441", "A385442" ]
null
Seiichi Manyama, Jun 29 2025
2025-07-04T04:53:18
oeisdata/seq/A385/A385440.seq
c7322ddc01230c7bc015dcf22dab3b97
A385441
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)^3) ).
[ "1", "1", "7", "99", "2145", "62985", "2340135", "105306075", "5568833025", "338526428625", "23261601738375", "1783052341945875", "150846228128621025", "13961656447904590425", "1403387191229030382375", "152244874971071908900875", "17729607712540283209274625", "2206069759660369525039742625", "292095560880436494680262138375" ]
[ "nonn" ]
11
0
3
[ "A001147", "A385343", "A385369", "A385440", "A385441", "A385442" ]
null
Seiichi Manyama, Jun 29 2025
2025-07-04T04:57:29
oeisdata/seq/A385/A385441.seq
b23ce24816550aeaf5e107415db44fdd
A385442
E.g.f. A(x) satisfies A(x) = exp( arcsinh(x * A(x)^4) ).
[ "1", "1", "9", "168", "4845", "190080", "9454725", "570286080", "40454959545", "3300640358400", "304513870485825", "31348317192192000", "3562533636856719525", "443003419150516224000", "59834227558379509360125", "8722929933255903805440000", "1365222778354029313094000625", "228317457245013328565108736000" ]
[ "nonn" ]
10
0
3
[ "A001147", "A385343", "A385369", "A385440", "A385441", "A385442" ]
null
Seiichi Manyama, Jun 29 2025
2025-07-04T05:00:35
oeisdata/seq/A385/A385442.seq
5612653ee89eedf882944c7c19481531
A385443
Expansion of e.g.f. (1/x) * Series_Reversion( x/(3*x + sqrt(9*x^2+1))^(1/3) ).
[ "1", "1", "3", "7", "-55", "-1215", "-8645", "150535", "6200145", "73698625", "-1986309325", "-119693799225", "-1993326710375", "72724743316225", "5768642653648875", "123556356142594375", "-5685256808745889375", "-559310285769833973375", "-14644269999088713108125", "813361265343230663434375" ]
[ "sign" ]
14
0
3
[ "A001147", "A384241", "A385343", "A385443", "A385444" ]
null
Seiichi Manyama, Jun 29 2025
2025-06-29T09:02:39
oeisdata/seq/A385/A385443.seq
70659447c41f25abe4ada2e65c0ce46c
A385444
Expansion of e.g.f. (1/x) * Series_Reversion( x/(4*x + sqrt(16*x^2+1))^(1/4) ).
[ "1", "1", "3", "0", "-195", "-2160", "21735", "1290240", "13253625", "-758419200", "-34777667925", "0", "59136015863925", "2148944878080000", "-60019159896320625", "-8741374232887296000", "-200253365886518319375", "23678097149478739968000", "2107410008390562322321875", "0", "-11628675802354427876266081875" ]
[ "sign" ]
17
0
3
[ "A001147", "A384241", "A385343", "A385443", "A385444" ]
null
Seiichi Manyama, Jun 29 2025
2025-06-29T09:02:34
oeisdata/seq/A385/A385444.seq
e0247e148666c6f613008847914bfcc4
A385445
Decimal expansion of (-1 + 3*phi)*sqrt(3 - phi), with the golden section phi = A001622.
[ "4", "5", "3", "0", "7", "6", "8", "5", "9", "3", "1", "8", "5", "9", "7", "5", "1", "7", "4", "3", "6", "1", "2", "2", "4", "0", "9", "0", "9", "9", "8", "1", "4", "7", "3", "2", "3", "2", "3", "8", "8", "8", "6", "9", "2", "9", "4", "6", "8", "2", "0", "9", "3", "5", "2", "5", "3", "9", "2", "8", "8", "9", "0", "5", "0", "6", "6", "3", "6", "2", "0", "7", "2", "1", "8", "6", "4", "5", "7", "0", "9", "5", "2", "9" ]
[ "nonn", "cons", "easy", "changed" ]
16
1
1
[ "A001622", "A002390", "A090550", "A182007", "A385445", "A385446", "A385447", "A385448" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-07T05:23:13
oeisdata/seq/A385/A385445.seq
f4cb6dc8339af30e9fe4445cf405a63c
A385446
Decimal expansion of -7 + 10*phi, with the golden section phi = A001622.
[ "9", "1", "8", "0", "3", "3", "9", "8", "8", "7", "4", "9", "8", "9", "4", "8", "4", "8", "2", "0", "4", "5", "8", "6", "8", "3", "4", "3", "6", "5", "6", "3", "8", "1", "1", "7", "7", "2", "0", "3", "0", "9", "1", "7", "9", "8", "0", "5", "7", "6", "2", "8", "6", "2", "1", "3", "5", "4", "4", "8", "6", "2", "2", "7", "0", "5", "2", "6", "0", "4", "6", "2", "8", "1", "8", "9", "0", "2", "4", "4", "9", "7", "0", "7" ]
[ "nonn", "cons", "easy", "changed" ]
10
1
1
[ "A001622", "A182007", "A385445", "A385446" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-06T11:16:57
oeisdata/seq/A385/A385446.seq
5aacd6bdef97d4b1e6a5445d666990b2
A385447
Decimal expansion of sqrt(8 + 9*phi), with the golden section A001622.
[ "4", "7", "4", "9", "9", "7", "9", "5", "6", "8", "2", "4", "5", "4", "3", "1", "2", "6", "7", "2", "7", "2", "0", "3", "6", "9", "2", "7", "0", "3", "7", "1", "5", "4", "8", "9", "2", "7", "7", "4", "6", "6", "1", "6", "7", "4", "6", "8", "8", "0", "8", "9", "8", "0", "6", "1", "0", "3", "4", "2", "6", "0", "3", "9", "5", "7", "4", "1", "8", "8", "3", "2", "4", "0", "1", "1", "6", "5", "9", "9", "4", "0", "9", "5" ]
[ "nonn", "cons", "easy" ]
13
1
1
[ "A001622", "A182007", "A385445", "A385446", "A385447" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-03T08:58:02
oeisdata/seq/A385/A385447.seq
a79b82aeb053cf8f31b22632f5ee5d6a
A385448
Decimal expansion of sqrt(5 + 7*phi)/sqrt(11), with the golden section phi = A001622.
[ "1", "2", "1", "8", "2", "7", "8", "8", "8", "7", "3", "5", "9", "6", "6", "2", "2", "9", "1", "5", "3", "5", "4", "6", "0", "2", "6", "7", "9", "1", "7", "2", "7", "4", "7", "4", "5", "2", "0", "3", "6", "8", "7", "4", "0", "0", "5", "3", "1", "5", "5", "4", "3", "5", "6", "6", "6", "6", "9", "9", "1", "9", "0", "4", "7", "5", "6", "9", "3", "9", "7", "6", "5", "7", "4", "7", "5", "7", "2", "2", "2", "0", "5", "8" ]
[ "nonn", "cons", "easy" ]
9
1
2
[ "A001622", "A010468", "A182007", "A385445", "A385448" ]
null
Wolfdieter Lang, Jul 01 2025
2025-07-03T01:09:19
oeisdata/seq/A385/A385448.seq
e3482b95b513b80b54ad8e31851f6a87
A385449
Irregular triangle, read by rows: row n gives the pair of proper positive fundamental solutions (x, y) of the form x^2 - 2*y^2 representing -A057126(n).
[ "1", "1", "4", "3", "1", "2", "5", "4", "2", "3", "6", "5", "1", "3", "9", "7", "3", "4", "7", "6", "1", "4", "13", "10", "4", "5", "8", "7", "3", "5", "11", "9", "2", "5", "14", "11", "5", "6", "9", "8", "1", "5", "17", "13", "6", "7", "10", "9", "1", "6", "21", "16", "5", "7", "13", "11", "7", "8", "11", "10", "4", "7", "16", "13", "3", "7", "19", "15", "2", "7", "22", "17", "1", "7", "25", "19", "8", "9", "12", "11", "5", "8", "17", "14", "7", "9", "15", "13", "3", "8", "23", "18", "9", "10", "13", "12" ]
[ "nonn", "tabf", "new" ]
6
1
3
[ "A001109", "A007519", "A007522", "A035251", "A038873", "A057126", "A385449" ]
null
Wolfdieter Lang, Jul 11 2025
2025-07-15T21:41:26
oeisdata/seq/A385/A385449.seq
b3d3ed798dfa98f4e708d9e38ed0ccbc
A385450
Decimal expansion of Sum_{k>=1} Fibonacci(k)/binomial(2*k, k).
[ "8", "4", "4", "6", "5", "7", "6", "2", "0", "0", "9", "5", "5", "9", "2", "8", "2", "3", "8", "0", "2", "6", "1", "2", "8", "3", "7", "6", "2", "3", "3", "9", "1", "9", "5", "7", "3", "6", "3", "8", "7", "6", "6", "4", "1", "8", "8", "9", "5", "8", "4", "4", "1", "6", "4", "8", "8", "5", "5", "4", "1", "9", "0", "9", "8", "2", "6", "9", "8", "6", "1", "1", "5", "2", "4", "2", "6", "8", "1", "6", "4", "8", "8", "9", "2", "7", "7", "5", "3", "7", "7", "2", "8", "7", "1", "2", "8", "5", "1", "2", "7", "3", "9", "9", "9" ]
[ "cons", "nonn" ]
19
0
1
[ "A000045", "A000984", "A385450", "A385508" ]
null
Artur Jasinski, Jun 29 2025
2025-07-02T03:21:58
oeisdata/seq/A385/A385450.seq
b6fde59316bcef84064c1d7e2ac9516c
A385451
Least integer k such that the sum of its anti-divisors is equal to k + n.
[ "5", "11", "14", "7", "10", "71", "13", "101", "48", "129", "18", "17", "46", "37", "22", "27", "62", "35", "28", "55", "66", "3279", "92", "49", "42", "155", "32", "1721", "154", "81", "50", "59", "38", "229", "152", "53", "222", "859", "58", "393", "190", "45", "52", "73", "68", "97", "104", "60", "128", "63", "72", "87", "436", "401", "136", "673", "142", "429", "272", "163" ]
[ "nonn", "easy" ]
6
0
1
[ "A066417", "A385451", "A385490" ]
null
Paolo P. Lava, Jun 29 2025
2025-07-04T19:48:59
oeisdata/seq/A385/A385451.seq
9ae21851eca257453cb1ba5b9330670d
A385452
Numbers that are the concatenation of three (not necessarily distinct) primes whose sum is prime, and are also the product of three (not necessarily distinct) primes whose sum is prime.
[ "775", "1975", "3115", "3157", "3175", "3311", "3535", "3553", "3731", "5117", "5135", "5335", "5537", "5593", "5735", "5797", "5957", "6775", "7511", "7675", "7733", "8957", "9737", "11297", "11315", "11473", "11713", "11753", "13115", "13135", "13433", "13615", "13715", "13717", "13783", "13895", "13937", "14935", "15175", "16337", "17297", "17347", "17437", "17537", "17719", "17759" ]
[ "nonn", "base" ]
16
1
1
null
null
Will Gosnell and Robert Israel, Jun 29 2025
2025-07-03T02:24:09
oeisdata/seq/A385/A385452.seq
27bdfee6f9f0e7bfe7e9b000a04afe09
A385453
Decimal expansion of 6*Sum_{k>=0} (-1)^k/(k! (k + 3)! 2^k).
[ "8", "8", "1", "0", "7", "9", "4", "5", "0", "6", "9", "1", "0", "9", "2", "1", "8", "9", "8", "9", "0", "5", "3", "7", "0", "0", "5", "8", "6", "7", "8", "5", "7", "9", "4", "9", "3", "9", "7", "4", "9", "2", "0", "9", "3", "1", "6", "4", "8", "1", "2", "7", "0", "3", "3", "7", "5", "4", "5", "0", "0", "7", "7", "3", "5", "3", "0", "0", "0", "1", "3", "6", "1", "8", "6", "3", "2", "1", "9", "7", "8", "8", "3", "5", "8", "4", "6", "7", "3", "9", "3", "9", "1", "7", "9", "1", "5", "7", "4", "9", "7", "3", "1", "6", "5" ]
[ "cons", "nonn" ]
8
0
1
[ "A334383", "A385453" ]
null
Artur Jasinski, Jun 29 2025
2025-06-30T10:49:17
oeisdata/seq/A385/A385453.seq
a56a522c0f01481fb7344fc6793b770f
A385454
Difference of the largest and smallest semiperimeters of an integral rectangle with area n.
[ "0", "0", "0", "1", "0", "2", "0", "3", "4", "4", "0", "6", "0", "6", "8", "9", "0", "10", "0", "12", "12", "10", "0", "15", "16", "12", "16", "18", "0", "20", "0", "21", "20", "16", "24", "25", "0", "18", "24", "28", "0", "30", "0", "30", "32", "22", "0", "35", "36", "36", "32", "36", "0", "40", "40", "42", "36", "28", "0", "45", "0", "30", "48", "49", "48", "50", "0", "48", "44", "54", "0", "56", "0" ]
[ "nonn" ]
20
1
6
[ "A063655", "A385454" ]
null
James C. McMahon, Jun 29 2025
2025-07-01T01:06:05
oeisdata/seq/A385/A385454.seq
2dc8244b44fe8ff7293bb59bdb616066
A385455
First prepended column of the tribonacci array of the second kind, A385436.
[ "-1", "0", "1", "2", "4", "5", "6", "7", "8", "9", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "24", "25", "26", "28", "29", "30", "31", "32", "33", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "48", "49", "50", "51", "52", "53", "55", "56", "57", "58", "59", "61", "62", "63", "64", "65", "66", "68", "69", "70", "72", "73", "74", "75", "76", "77", "79", "80", "81" ]
[ "sign", "new" ]
11
1
4
[ "A278041", "A385436", "A385455" ]
null
A.H.M. Smeets, Jun 29 2025
2025-07-09T10:17:21
oeisdata/seq/A385/A385455.seq
9bb2ef2b14f8c1d1da16d2b5acd31219
A385456
Triangle read by rows, formed by reading Fibonomial coefficients (A010048) mod 2.
[ "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl" ]
24
0
null
[ "A010048", "A047999", "A385456", "A385457", "A385458" ]
null
David Radcliffe, Jun 29 2025
2025-07-04T10:21:41
oeisdata/seq/A385/A385456.seq
7a9b67209d4bedac735e336e981ede17
A385457
Number of odd entries in row n of the Fibonomial triangle (A010048).
[ "1", "2", "3", "2", "4", "6", "2", "4", "6", "4", "8", "12", "2", "4", "6", "4", "8", "12", "4", "8", "12", "8", "16", "24", "2", "4", "6", "4", "8", "12", "4", "8", "12", "8", "16", "24", "4", "8", "12", "8", "16", "24", "8", "16", "24", "16", "32", "48", "2", "4", "6", "4", "8", "12", "4", "8", "12", "8", "16", "24", "4", "8", "12", "8", "16", "24", "8", "16", "24", "16", "32", "48", "4", "8", "12", "8", "16" ]
[ "nonn", "changed" ]
18
0
2
[ "A001316", "A010048", "A047999", "A385456", "A385457", "A385458" ]
null
David Radcliffe, Jun 29 2025
2025-07-15T11:06:08
oeisdata/seq/A385/A385457.seq
74caaa2dfc392547f56e5aaa0b201948
A385458
Triangle read by rows: T(n,k) = exponent of the highest power of 2 dividing each Fibonomial coefficient fibonomial(n, k).
[ "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "3", "2", "3", "3", "0", "0", "0", "3", "2", "2", "3", "0", "0", "0", "0", "0", "2", "2", "2", "0", "0", "0", "0", "1", "1", "0", "3", "3", "0", "1", "1", "0", "0", "0", "1", "0", "0", "3", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "4", "4", "3", "4", "4", "1", "4", "4", "3", "4", "4", "0" ]
[ "nonn", "tabl", "changed" ]
39
0
23
[ "A000120", "A007814", "A010048", "A065040", "A337923", "A385456", "A385457", "A385458", "A385608" ]
null
David Radcliffe, Jun 29 2025
2025-07-18T06:22:52
oeisdata/seq/A385/A385458.seq
c4cbd7ef6632a83349572dedd2eb6379
A385459
Consecutive internal states of the linear congruential pseudo-random number generator (3877*s + 29573) mod 139968 when started at 1.
[ "1", "33450", "104855", "85336", "132861", "49430", "53491", "121572", "91961", "63874", "65679", "65264", "135925", "31278", "82091", "9148", "84465", "115226", "122887", "11400", "137453", "76678", "18147", "121556", "29929", "30834", "40319", "2080", "115557", "6494", "12571", "58476", "132833", "80842", "65655", "112184" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383127", "A385365", "A385459" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T18:21:11
oeisdata/seq/A385/A385459.seq
576c6cad1c10293628f1d8bc797e5f83
A385460
Consecutive internal states of the linear congruential pseudo-random number generator (1366*s + 150889) mod 714025 when started at 1.
[ "1", "152255", "349944", "491668", "585877", "36846", "500775", "173589", "217163", "475172", "187116", "130395", "478234", "85658", "59617", "188861", "371990", "617454", "329528", "450387", "604006", "524210", "54674", "576973", "12407", "676276", "709580", "505244", "566043", "76552", "473271", "446450", "224239", "144638" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A385358", "A385360", "A385460" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T18:18:26
oeisdata/seq/A385/A385460.seq
e7f01ba4e8b1c9b8752c6d06efd1681e
A385461
Consecutive internal states of the linear congruential pseudo-random number generator (8121*s + 28411) mod 134456 when started at 1.
[ "1", "36532", "94847", "116930", "88669", "97480", "121019", "84806", "54305", "23636", "107655", "61754", "11765", "108216", "46131", "63846", "59441", "51732", "103439", "109898", "125597", "18432", "65155", "67806", "83617", "79268", "122967", "38706", "1709", "58232", "48731", "68854", "123697", "50972", "116455", "130418" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383126", "A383127", "A385459", "A385461" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T18:19:30
oeisdata/seq/A385/A385461.seq
badba1fe5a75de11cc22ccf55c74c9f9
A385462
Numbers t which have a proper divisor d_i(t) such that (d_i(t) + sigma(t))/t is an integer k.
[ "2", "4", "8", "10", "16", "24", "32", "44", "60", "64", "84", "128", "136", "152", "168", "184", "252", "256", "270", "336", "512", "630", "752", "756", "792", "864", "884", "924", "936", "1024", "1140", "1170", "1488", "1638", "2048", "2144", "2268", "2272", "2528", "2808", "2970", "3672", "4096", "4320", "4464", "4680", "5148", "5472", "6804", "7308", "7644", "8192", "8384" ]
[ "nonn", "changed" ]
18
1
1
[ "A000005", "A000203", "A007691", "A054027", "A271816", "A364977", "A385462" ]
null
Lechoslaw Ratajczak, Jun 29 2025
2025-07-06T10:40:11
oeisdata/seq/A385/A385462.seq
d5159e2839a065252b3fee528f572abe
A385463
Consecutive internal states of the linear congruential pseudo-random number generator (7141*s + 54773) mod 259200 when started at 1.
[ "1", "61914", "246647", "97000", "149373", "119366", "197779", "13812", "190265", "10738", "11631", "167744", "151477", "110430", "149003", "69196", "148209", "101642", "120295", "92568", "122861", "13174", "40707", "180260", "104233", "219426", "111839", "101872", "207525", "144398", "103291", "231804", "115937", "76090" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383129", "A385358", "A385360", "A385463" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T19:23:55
oeisdata/seq/A385/A385463.seq
bb17aa524cff6c4c7b8f4abf2625a6e2
A385464
Consecutive internal states of the linear congruential pseudo-random number generator (9301*s + 49297) mod 233280 when started at 1.
[ "1", "58598", "127215", "79852", "222509", "178626", "29563", "210920", "164697", "179614", "121031", "182628", "160645", "50042", "96339", "69856", "95153", "3030", "4447", "120284", "233181", "61618", "222635", "184152", "105289", "32846", "186423", "232660", "114677", "103914", "74371", "98768", "33825", "194182", "82319" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A385360", "A385463", "A385464" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T19:23:42
oeisdata/seq/A385/A385464.seq
73461ba180822f47e79ddd8f2fbe1792
A385465
Consecutive internal states of the linear congruential pseudo-random number generator (4096*s + 150889) mod 714025 when started at 1.
[ "1", "154985", "201224", "379543", "326592", "502896", "50780", "364494", "92038", "133337", "70116", "307975", "648339", "288458", "677507", "518411", "51995", "342959", "423778", "150802", "204256", "660190", "276454", "62823", "424897", "450076", "49635", "672749", "308318", "625217", "546071", "531405", "437569", "230763" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A385358", "A385460", "A385465" ]
null
Sean A. Irvine, Jun 29 2025
2025-07-06T19:23:16
oeisdata/seq/A385/A385465.seq
cfc0c0b26435d72831c4d668182443b3
A385466
Primes that are at the end of the local maxima in the sequence of consecutive prime gaps.
[ "11", "17", "29", "37", "67", "79", "97", "107", "127", "137", "149", "191", "197", "239", "251", "277", "307", "331", "347", "367", "397", "419", "431", "439", "457", "479", "499", "521", "541", "557", "587", "631", "673", "701", "719", "751", "769", "787", "809", "821", "827", "853", "877", "907", "929", "967", "991", "1009", "1019", "1031", "1049", "1061", "1087" ]
[ "nonn", "easy", "new" ]
35
1
1
[ "A001223", "A198696", "A385466" ]
null
Emirhan Üçok, Jun 29 2025
2025-07-06T18:49:47
oeisdata/seq/A385/A385466.seq
1985e180279ebefc00cfc6f5a0ed1c00
A385467
a(n) is the number of divisors of sigma(n) that have not yet been counted in the sequence.
[ "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "0", "2", "0", "1", "0", "1", "0", "1", "2", "2", "2", "1", "0", "2", "0", "0", "1", "1", "0", "1", "0", "1", "1", "2", "0", "1", "2", "0", "0", "2", "0", "1", "3", "1", "2", "0", "0", "2", "1", "1", "0", "2", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "2", "1", "0", "1", "3", "1", "0", "0", "0", "2", "2", "1", "0", "3", "0", "0", "0", "1", "1", "0", "0", "2", "1", "3", "0", "1" ]
[ "nonn", "easy", "new" ]
11
1
3
[ "A000005", "A000203", "A027750", "A062068", "A385467", "A385478", "A385479" ]
null
Felix Huber, Jul 01 2025
2025-07-11T09:06:20
oeisdata/seq/A385/A385467.seq
33c4cce15318b45e0211b7d266eb48a8