sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A385119
|
G.f. A(x) satisfies A(x) = 1 + 9*x*A(x)^(5/3).
|
[
"1",
"9",
"135",
"2430",
"48195",
"1015740",
"22320522",
"505692720",
"11727186075",
"277005649635",
"6641224015140",
"161193712078854",
"3953072078945730",
"97801207953712200",
"2438092322304120720",
"61182608813245896840",
"1544295394480280288715",
"39180450803555268621540"
] |
[
"nonn"
] | 13 | 0 | 2 |
[
"A135864",
"A214668",
"A245114",
"A385117",
"A385119"
] | null |
Seiichi Manyama, Jun 18 2025
| 2025-06-20T08:10:47 |
oeisdata/seq/A385/A385119.seq
|
61d46e6351038e9007ab08e0988b7912
|
A385120
|
Number of fixed tree-like polyedges on the square lattice with n edges, rooted at a vertex.
|
[
"1",
"4",
"18",
"88",
"435",
"2184",
"11018",
"55888",
"284229",
"1448800",
"7396290",
"37804344",
"193405121",
"990117104",
"5072380140"
] |
[
"nonn",
"more",
"hard"
] | 56 | 0 | 2 |
[
"A056841",
"A066158",
"A096267",
"A308409",
"A385120"
] | null |
Ben Samberg, Jun 18 2025
| 2025-07-04T17:19:47 |
oeisdata/seq/A385/A385120.seq
|
b27f4c57e40004c4fa6880f413abafe9
|
A385121
|
a(n+1) = 12*a(n) - a(n-1), a(0) = a(1) = 2, a(n) = a(1-n).
|
[
"2",
"2",
"22",
"262",
"3122",
"37202",
"443302",
"5282422",
"62945762",
"750066722",
"8937854902",
"106504192102",
"1269112450322",
"15122845211762",
"180205030090822",
"2147337515878102",
"25587845160446402",
"304906804409478722",
"3633293807753298262",
"43294618888630100422"
] |
[
"nonn",
"easy"
] | 10 | 0 | 1 |
[
"A061292",
"A077417",
"A385121"
] | null |
Michael Somos, Jun 18 2025
| 2025-06-18T23:18:26 |
oeisdata/seq/A385/A385121.seq
|
74de0af9981e4c5f6cb94686e1b5f2cf
|
A385122
|
a(n) = d(phi(n)) - phi(d(n)) where d(n) = A000005(n) is the number of divisors and phi(n) = A000010(n) is the Euler totient function.
|
[
"0",
"0",
"1",
"0",
"2",
"0",
"3",
"1",
"2",
"1",
"3",
"1",
"5",
"2",
"2",
"0",
"4",
"2",
"5",
"2",
"4",
"2",
"3",
"0",
"4",
"4",
"4",
"4",
"5",
"0",
"7",
"3",
"4",
"3",
"6",
"0",
"8",
"4",
"6",
"1",
"7",
"2",
"7",
"4",
"6",
"2",
"3",
"1",
"6",
"4",
"4",
"6",
"5",
"2",
"6",
"4",
"7",
"4",
"3",
"1",
"11",
"6",
"7",
"0",
"8",
"2",
"7",
"4",
"4",
"4",
"7",
"4",
"11",
"7",
"6",
"7",
"10",
"4",
"7",
"2",
"4",
"6",
"3",
"4",
"5",
"6"
] |
[
"sign"
] | 12 | 1 | 5 |
[
"A000005",
"A000010",
"A062821",
"A078148",
"A078150",
"A163109",
"A385122"
] | null |
Sean A. Irvine, Jun 18 2025
| 2025-06-19T11:56:45 |
oeisdata/seq/A385/A385122.seq
|
1075fdc94eb23ee3f0ac3dac5832c10c
|
A385123
|
Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes.
|
[
"1",
"0",
"1",
"0",
"2",
"2",
"0",
"5",
"6",
"6",
"0",
"14",
"22",
"36",
"24",
"0",
"42",
"90",
"150",
"240",
"120",
"0",
"132",
"378",
"648",
"1560",
"1800",
"720",
"0",
"429",
"1638",
"3318",
"8400",
"16800",
"15120",
"5040",
"0",
"1430",
"7278",
"18180",
"43128",
"126000",
"191520",
"141120",
"40320",
"0",
"4862",
"32946",
"98502",
"238320",
"834120",
"1905120",
"2328480",
"1451520",
"362880"
] |
[
"nonn",
"tabl"
] | 7 | 0 | 5 |
[
"A000108",
"A000142",
"A107429",
"A384685",
"A384747",
"A385123",
"A385125"
] | null |
John Tyler Rascoe, Jun 18 2025
| 2025-06-22T03:11:35 |
oeisdata/seq/A385/A385123.seq
|
d22ecec681cc5f10401c7cbe0d563453
|
A385124
|
Numbers k such that there are exactly 7 primes between 30*k and 30*k+30.
|
[
"1",
"2",
"49",
"62",
"79",
"89",
"188",
"6627",
"9491",
"18674",
"22621",
"31982",
"34083",
"38226",
"38520",
"41545",
"48713",
"53887",
"89459",
"103205",
"114731",
"123306",
"139742",
"140609",
"149125",
"168237",
"175125",
"210554",
"223949",
"229269",
"237794",
"240007",
"267356",
"288467",
"321451",
"364921",
"368248",
"373370",
"391701"
] |
[
"nonn"
] | 40 | 1 | 2 |
[
"A000720",
"A098592",
"A100418",
"A100419",
"A100420",
"A100421",
"A100422",
"A100423",
"A385124"
] | null |
Jianglin Luo, Jun 18 2025
| 2025-06-24T15:33:50 |
oeisdata/seq/A385/A385124.seq
|
ce9d49824b1f6e3d38be32ae89ba210d
|
A385125
|
Number of rooted ordered trees with n non-root nodes all labeled with numbers greater than 0 such that the labels of all groups of sibling nodes cover the same initial interval.
|
[
"1",
"1",
"4",
"17",
"96",
"642",
"5238",
"50745",
"568976",
"7256750",
"103622742",
"1634819518",
"28208152974",
"528060735100",
"10654676857578"
] |
[
"nonn",
"more"
] | 11 | 0 | 3 |
[
"A000108",
"A107429",
"A384685",
"A384747",
"A385123",
"A385125"
] | null |
John Tyler Rascoe, Jun 18 2025
| 2025-06-22T03:11:30 |
oeisdata/seq/A385/A385125.seq
|
0ad024f011cc6fe68dd75aadca1872fd
|
A385126
|
Hereditarily evil prime powers: numbers of the form p^k where p is prime and p^j is evil for 1 <= j <= k.
|
[
"3",
"5",
"9",
"17",
"23",
"27",
"29",
"43",
"53",
"71",
"83",
"89",
"101",
"113",
"139",
"149",
"163",
"197",
"257",
"263",
"269",
"277",
"281",
"293",
"311",
"317",
"337",
"347",
"349",
"353",
"359",
"373",
"383",
"389",
"401",
"449",
"461",
"467",
"479",
"503",
"509",
"523",
"547",
"571",
"593",
"599",
"619",
"643",
"673",
"683",
"691",
"739",
"751",
"773",
"797",
"811",
"821",
"839",
"853",
"857",
"863",
"881"
] |
[
"nonn",
"base"
] | 9 | 1 | 1 |
[
"A001969",
"A027699",
"A385126"
] | null |
Robert Israel, Jun 18 2025
| 2025-06-25T00:44:59 |
oeisdata/seq/A385/A385126.seq
|
e827072bbbbfab009f6179920cc1b2f9
|
A385127
|
Consecutive internal states of the linear congruential pseudo-random number generator for gcc 2.6.3 when started at 1.
|
[
"1",
"69074",
"475904815",
"884950952",
"997714317",
"2674863854",
"2153294491",
"4064640292",
"103025113",
"3375687626",
"3068976839",
"1640333408",
"3540823269",
"1389565030",
"527860659",
"3125448028",
"2218581681",
"3669905602",
"625116511",
"3161038872",
"3721292605",
"2231040222",
"880447435"
] |
[
"nonn",
"easy"
] | 11 | 1 | 2 |
[
"A084276",
"A096552",
"A385127"
] | null |
Sean A. Irvine, Jun 18 2025
| 2025-06-23T19:38:09 |
oeisdata/seq/A385/A385127.seq
|
dec7800dadd769c1e147cf20c34ba608
|
A385128
|
The number of divisors of n whose maximum exponent in their prime factorization is even.
|
[
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"6",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"5",
"2",
"3",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"5",
"1",
"1",
"3",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"6",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"5",
"3",
"1",
"1",
"5",
"1",
"1",
"1"
] |
[
"nonn",
"easy"
] | 9 | 1 | 4 |
[
"A000005",
"A001221",
"A001620",
"A051903",
"A368714",
"A383156",
"A385128",
"A385129",
"A385130"
] | null |
Amiram Eldar, Jun 24 2025
| 2025-06-25T01:26:26 |
oeisdata/seq/A385/A385128.seq
|
01e98a4a955c771931d438116c5bf827
|
A385129
|
The number of divisors of n whose maximum exponent in their prime factorization is odd.
|
[
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"3",
"3",
"2",
"1",
"3",
"1",
"3",
"3",
"3",
"1",
"5",
"1",
"3",
"2",
"3",
"1",
"7",
"1",
"3",
"3",
"3",
"3",
"3",
"1",
"3",
"3",
"5",
"1",
"7",
"1",
"3",
"3",
"3",
"1",
"5",
"1",
"3",
"3",
"3",
"1",
"5",
"3",
"5",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"3",
"3",
"7",
"1",
"3",
"3",
"7",
"1",
"6",
"1",
"3",
"3",
"3",
"3",
"7",
"1",
"5",
"2",
"3",
"1",
"7",
"3",
"3",
"3"
] |
[
"nonn",
"easy"
] | 10 | 1 | 6 |
[
"A000005",
"A001221",
"A001620",
"A051903",
"A368714",
"A383156",
"A385128",
"A385129",
"A385131"
] | null |
Amiram Eldar, Jun 24 2025
| 2025-06-25T01:26:33 |
oeisdata/seq/A385/A385129.seq
|
c8b9f5aef827c1537bbe6c5e9d99ef4a
|
A385130
|
The sum of divisors of n whose maximum exponent in their prime factorization is even.
|
[
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"5",
"10",
"1",
"1",
"17",
"1",
"1",
"1",
"21",
"1",
"28",
"1",
"25",
"1",
"1",
"1",
"17",
"26",
"1",
"10",
"33",
"1",
"1",
"1",
"21",
"1",
"1",
"1",
"80",
"1",
"1",
"1",
"25",
"1",
"1",
"1",
"49",
"55",
"1",
"1",
"81",
"50",
"76",
"1",
"57",
"1",
"28",
"1",
"33",
"1",
"1",
"1",
"97",
"1",
"1",
"73",
"85",
"1",
"1",
"1",
"73",
"1",
"1",
"1",
"80",
"1",
"1",
"101",
"81",
"1",
"1"
] |
[
"nonn",
"easy"
] | 10 | 1 | 4 |
[
"A000203",
"A001221",
"A013661",
"A051903",
"A368714",
"A383156",
"A385128",
"A385130",
"A385131"
] | null |
Amiram Eldar, Jun 24 2025
| 2025-06-24T06:15:13 |
oeisdata/seq/A385/A385130.seq
|
0e4637c41334ed9925ba0eff7c33cf15
|
A385131
|
The sum of divisors of n whose maximum exponent in their prime factorization is odd.
|
[
"0",
"2",
"3",
"2",
"5",
"11",
"7",
"10",
"3",
"17",
"11",
"11",
"13",
"23",
"23",
"10",
"17",
"11",
"19",
"17",
"31",
"35",
"23",
"43",
"5",
"41",
"30",
"23",
"29",
"71",
"31",
"42",
"47",
"53",
"47",
"11",
"37",
"59",
"55",
"65",
"41",
"95",
"43",
"35",
"23",
"71",
"47",
"43",
"7",
"17",
"71",
"41",
"53",
"92",
"71",
"87",
"79",
"89",
"59",
"71",
"61",
"95",
"31",
"42",
"83",
"143",
"67",
"53"
] |
[
"nonn",
"easy"
] | 10 | 1 | 2 |
[
"A000203",
"A001221",
"A013661",
"A051903",
"A368714",
"A383156",
"A385129",
"A385130",
"A385131"
] | null |
Amiram Eldar, Jun 24 2025
| 2025-06-24T06:15:22 |
oeisdata/seq/A385/A385131.seq
|
376a09997a3777cb4515393317a1acc9
|
A385132
|
The number of integers k from 1 to n such that gcd(n, k) has an even maximum exponent in its prime factorization.
|
[
"1",
"1",
"2",
"3",
"4",
"2",
"6",
"5",
"7",
"4",
"10",
"7",
"12",
"6",
"8",
"11",
"16",
"8",
"18",
"13",
"12",
"10",
"22",
"11",
"21",
"12",
"20",
"19",
"28",
"8",
"30",
"21",
"20",
"16",
"24",
"24",
"36",
"18",
"24",
"21",
"40",
"12",
"42",
"31",
"29",
"22",
"46",
"25",
"43",
"22",
"32",
"37",
"52",
"22",
"40",
"31",
"36",
"28",
"58",
"31",
"60",
"30",
"43",
"43",
"48",
"20",
"66",
"49",
"44"
] |
[
"nonn",
"easy"
] | 11 | 1 | 3 |
[
"A001221",
"A051903",
"A368714",
"A384655",
"A385132",
"A385133"
] | null |
Amiram Eldar, Jun 24 2025
| 2025-06-25T01:26:01 |
oeisdata/seq/A385/A385132.seq
|
e4297821f5f24d3d63037c31514c4a5d
|
A385133
|
The number of integers k from 1 to n such that gcd(n, k) has an odd maximum exponent in its prime factorization.
|
[
"0",
"1",
"1",
"1",
"1",
"4",
"1",
"3",
"2",
"6",
"1",
"5",
"1",
"8",
"7",
"5",
"1",
"10",
"1",
"7",
"9",
"12",
"1",
"13",
"4",
"14",
"7",
"9",
"1",
"22",
"1",
"11",
"13",
"18",
"11",
"12",
"1",
"20",
"15",
"19",
"1",
"30",
"1",
"13",
"16",
"24",
"1",
"23",
"6",
"28",
"19",
"15",
"1",
"32",
"15",
"25",
"21",
"30",
"1",
"29",
"1",
"32",
"20",
"21",
"17",
"46",
"1",
"19",
"25",
"46",
"1",
"33",
"1",
"38",
"32"
] |
[
"nonn",
"easy"
] | 12 | 1 | 6 |
[
"A001221",
"A051903",
"A368714",
"A384655",
"A385132",
"A385133"
] | null |
Amiram Eldar, Jun 24 2025
| 2025-06-25T01:26:16 |
oeisdata/seq/A385/A385133.seq
|
cd918ceb4d43daadec817ec70e42e04a
|
A385134
|
The sum of divisors d of n such that n/d is a biquadratefree number (A046100).
|
[
"1",
"3",
"4",
"7",
"6",
"12",
"8",
"15",
"13",
"18",
"12",
"28",
"14",
"24",
"24",
"30",
"18",
"39",
"20",
"42",
"32",
"36",
"24",
"60",
"31",
"42",
"40",
"56",
"30",
"72",
"32",
"60",
"48",
"54",
"48",
"91",
"38",
"60",
"56",
"90",
"42",
"96",
"44",
"84",
"78",
"72",
"48",
"120",
"57",
"93",
"72",
"98",
"54",
"120",
"72",
"120",
"80",
"90",
"60",
"168",
"62",
"96",
"104",
"120",
"84",
"144"
] |
[
"nonn",
"easy",
"mult"
] | 12 | 1 | 2 |
[
"A000203",
"A001615",
"A002131",
"A008683",
"A046100",
"A069208",
"A076752",
"A129527",
"A244963",
"A254981",
"A307430",
"A327626",
"A385006",
"A385134",
"A385135",
"A385136",
"A385137",
"A385138",
"A385139"
] | null |
Amiram Eldar, Jun 19 2025
| 2025-06-20T08:09:32 |
oeisdata/seq/A385/A385134.seq
|
0beb13afa8e1462db2cd2c8502b966a2
|
A385135
|
The sum of divisors d of n such that n/d is an exponentially odd number (A268335).
|
[
"1",
"3",
"4",
"6",
"6",
"12",
"8",
"13",
"12",
"18",
"12",
"24",
"14",
"24",
"24",
"26",
"18",
"36",
"20",
"36",
"32",
"36",
"24",
"52",
"30",
"42",
"37",
"48",
"30",
"72",
"32",
"53",
"48",
"54",
"48",
"72",
"38",
"60",
"56",
"78",
"42",
"96",
"44",
"72",
"72",
"72",
"48",
"104",
"56",
"90",
"72",
"84",
"54",
"111",
"72",
"104",
"80",
"90",
"60",
"144",
"62",
"96",
"96",
"106",
"84",
"144"
] |
[
"nonn",
"easy",
"mult"
] | 9 | 1 | 2 |
[
"A001615",
"A002131",
"A013662",
"A033634",
"A069208",
"A076752",
"A129527",
"A244963",
"A254981",
"A268335",
"A327626",
"A385134",
"A385135",
"A385136",
"A385137",
"A385138",
"A385139"
] | null |
Amiram Eldar, Jun 19 2025
| 2025-06-20T08:09:29 |
oeisdata/seq/A385/A385135.seq
|
7178a00e88910f2f25ea2b46a012e49f
|
A385136
|
The sum of divisors d of n such that n/d is a cubefull number (A036966).
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"19",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"27",
"25",
"26",
"28",
"28",
"29",
"30",
"31",
"39",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"45",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"57",
"49",
"50",
"51",
"52",
"53",
"56",
"55",
"63",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"79",
"65",
"66",
"67",
"68"
] |
[
"nonn",
"easy",
"mult"
] | 10 | 1 | 2 |
[
"A001615",
"A002131",
"A013661",
"A036966",
"A069208",
"A076752",
"A129527",
"A244963",
"A254981",
"A327626",
"A385005",
"A385134",
"A385135",
"A385136",
"A385137",
"A385138",
"A385139"
] | null |
Amiram Eldar, Jun 19 2025
| 2025-06-20T08:09:25 |
oeisdata/seq/A385/A385136.seq
|
fa6c180494c6e74873a82522176c2a99
|
A385137
|
The sum of divisors d of n such that n/d is a 3-smooth number (A003586).
|
[
"1",
"3",
"4",
"7",
"5",
"12",
"7",
"15",
"13",
"15",
"11",
"28",
"13",
"21",
"20",
"31",
"17",
"39",
"19",
"35",
"28",
"33",
"23",
"60",
"25",
"39",
"40",
"49",
"29",
"60",
"31",
"63",
"44",
"51",
"35",
"91",
"37",
"57",
"52",
"75",
"41",
"84",
"43",
"77",
"65",
"69",
"47",
"124",
"49",
"75",
"68",
"91",
"53",
"120",
"55",
"105",
"76",
"87",
"59",
"140",
"61",
"93",
"91",
"127",
"65",
"132"
] |
[
"nonn",
"easy",
"mult"
] | 8 | 1 | 2 |
[
"A001615",
"A002131",
"A003586",
"A064987",
"A069208",
"A072044",
"A072045",
"A072079",
"A076752",
"A129527",
"A244963",
"A254981",
"A327626",
"A385134",
"A385135",
"A385136",
"A385137",
"A385138",
"A385139"
] | null |
Amiram Eldar, Jun 19 2025
| 2025-06-20T08:09:21 |
oeisdata/seq/A385/A385137.seq
|
377e2d1918195eba223de2957f7b393e
|
A385138
|
The sum of divisors d of n such that n/d is a 5-rough number (A007310).
|
[
"1",
"2",
"3",
"4",
"6",
"6",
"8",
"8",
"9",
"12",
"12",
"12",
"14",
"16",
"18",
"16",
"18",
"18",
"20",
"24",
"24",
"24",
"24",
"24",
"31",
"28",
"27",
"32",
"30",
"36",
"32",
"32",
"36",
"36",
"48",
"36",
"38",
"40",
"42",
"48",
"42",
"48",
"44",
"48",
"54",
"48",
"48",
"48",
"57",
"62",
"54",
"56",
"54",
"54",
"72",
"64",
"60",
"60",
"60",
"72",
"62",
"64",
"72",
"64",
"84",
"72",
"68",
"72"
] |
[
"nonn",
"easy",
"mult"
] | 8 | 1 | 2 |
[
"A001615",
"A002131",
"A007310",
"A013661",
"A064987",
"A069208",
"A072044",
"A072045",
"A076752",
"A129527",
"A186099",
"A244963",
"A254981",
"A327626",
"A385134",
"A385135",
"A385136",
"A385137",
"A385138",
"A385139"
] | null |
Amiram Eldar, Jun 19 2025
| 2025-06-20T08:09:43 |
oeisdata/seq/A385/A385138.seq
|
80dcf2a09f0a72b847355721bb508acd
|
A385139
|
The sum of divisors d of n such that n/d has exponents in its prime factorization that are all powers of 2 (A138302).
|
[
"1",
"3",
"4",
"7",
"6",
"12",
"8",
"14",
"13",
"18",
"12",
"28",
"14",
"24",
"24",
"29",
"18",
"39",
"20",
"42",
"32",
"36",
"24",
"56",
"31",
"42",
"39",
"56",
"30",
"72",
"32",
"58",
"48",
"54",
"48",
"91",
"38",
"60",
"56",
"84",
"42",
"96",
"44",
"84",
"78",
"72",
"48",
"116",
"57",
"93",
"72",
"98",
"54",
"117",
"72",
"112",
"80",
"90",
"60",
"168",
"62",
"96",
"104",
"116",
"84",
"144"
] |
[
"nonn",
"mult",
"easy"
] | 8 | 1 | 2 |
[
"A001615",
"A002131",
"A004709",
"A069208",
"A076752",
"A129527",
"A138302",
"A244963",
"A254981",
"A327626",
"A353900",
"A385134",
"A385135",
"A385136",
"A385137",
"A385138",
"A385139"
] | null |
Amiram Eldar, Jun 19 2025
| 2025-06-20T08:09:47 |
oeisdata/seq/A385/A385139.seq
|
c6d9fd4bd74d27297a0a459eee7e185c
|
A385140
|
E.g.f. A(x) satisfies A(x) = exp(2*x*A(-x)^(1/2)).
|
[
"1",
"2",
"0",
"-22",
"-16",
"1042",
"1792",
"-116758",
"-330496",
"24101090",
"96518144",
"-7976308118",
"-41609056256",
"3875582805746",
"25008143335424",
"-2601876338050582",
"-20048671462064128",
"2308957345471798978",
"20711293319504723968",
"-2618684079639256157974",
"-26823633677081126109184"
] |
[
"sign"
] | 14 | 0 | 2 |
[
"A141369",
"A360987",
"A385140",
"A385141"
] | null |
Seiichi Manyama, Jun 19 2025
| 2025-06-19T10:24:21 |
oeisdata/seq/A385/A385140.seq
|
37fcb5d6414896a0a85f27936f09a02a
|
A385141
|
E.g.f. A(x) satisfies A(x) = exp(3*x*A(-x)^(1/3)).
|
[
"1",
"3",
"3",
"-36",
"-147",
"1728",
"14391",
"-193344",
"-2572263",
"39702528",
"744878859",
"-13061956608",
"-320684319675",
"6310454624256",
"192965057926335",
"-4214431981191168",
"-155017339047231951",
"3722456794316931072",
"160513751565607780755",
"-4204149732317088448512"
] |
[
"sign"
] | 14 | 0 | 2 |
[
"A141369",
"A360988",
"A385140",
"A385141"
] | null |
Seiichi Manyama, Jun 19 2025
| 2025-06-19T10:24:30 |
oeisdata/seq/A385/A385141.seq
|
debf1039068438f97134e441f87a17be
|
A385142
|
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) with a(1) = a(2) = a(3) = 0, a(4) = 1, and a(5) = 3.
|
[
"0",
"0",
"0",
"1",
"3",
"6",
"10",
"15",
"22",
"35",
"64",
"129",
"265",
"529",
"1013",
"1873",
"3394",
"6126",
"11148",
"20552",
"38303",
"71760",
"134408",
"250880",
"466361",
"864339",
"1600062",
"2963186",
"5494247",
"10200142",
"18952107",
"35221440",
"65442625",
"121544393",
"225655617",
"418857277",
"777451793",
"1443184210",
"2679343966"
] |
[
"nonn",
"easy"
] | 13 | 1 | 5 |
[
"A017827",
"A385142"
] | null |
Hung Viet Chu, Jun 19 2025
| 2025-06-28T01:00:01 |
oeisdata/seq/A385/A385142.seq
|
c24765a5b2988b71fe60b671b23d649c
|
A385143
|
Number of minimum connected dominating sets in the n X n X n grid graph.
|
[
"1",
"30",
"75",
"336"
] |
[
"nonn",
"more"
] | 4 | 1 | 2 | null | null |
Eric W. Weisstein, Jun 19 2025
| 2025-06-21T11:49:04 |
oeisdata/seq/A385/A385143.seq
|
369f4c42723df458a9ae43f0a083f4f2
|
A385144
|
a(n) is the smallest 2*n + 1 digit prime consisting of a string of 2*n - 1 identical digits d sandwiched between two same digits different from d, or -1 if no such prime exists.
|
[
"101",
"13331",
"1333331",
"188888881",
"74444444447",
"1666666666661",
"188888888888881",
"16666666666666661",
"1666666666666666661",
"155555555555555555551",
"75555555555555555555557",
"-1",
"-1",
"72222222222222222222222222227",
"3111111111111111111111111111113",
"155555555555555555555555555555551"
] |
[
"sign",
"base"
] | 25 | 1 | 1 |
[
"A384979",
"A385144"
] | null |
Jean-Marc Rebert, Jun 19 2025
| 2025-06-25T10:34:44 |
oeisdata/seq/A385/A385144.seq
|
b65ecec5b742f3fb5968cdc8c2f4810d
|
A385145
|
Integers without 0 as a digit, with an odd number of digits, that are not repdigits, and such that the 2 products [d_1 d_2...dk]*[d_k+1 d_k+2...d_2k+1] and [d_1 d_2...d_k+1]*[d_k+2 d_k+2...d_2k+1] are equal.
|
[
"164",
"195",
"265",
"498",
"16664",
"19995",
"21775",
"24996",
"26665",
"49998",
"1249992",
"1666664",
"1999995",
"2177775",
"2499996",
"2666665",
"4999998",
"124999992",
"166666664",
"199999995",
"217777775",
"249999996",
"266666665",
"499999998",
"12499999992",
"16666666664",
"19999999995",
"21777777775",
"24999999996",
"26666666665"
] |
[
"nonn",
"base"
] | 19 | 1 | 1 |
[
"A052382",
"A385145"
] | null |
Michel Marcus, Jun 19 2025
| 2025-06-20T13:42:42 |
oeisdata/seq/A385/A385145.seq
|
77b17bea12d0629527813bb975db1a4f
|
A385147
|
a(n) = Sum_{i=1..n} 2^phi(i), where phi=A000010.
|
[
"2",
"4",
"8",
"12",
"28",
"32",
"96",
"112",
"176",
"192",
"1216",
"1232",
"5328",
"5392",
"5648",
"5904",
"71440",
"71504",
"333648",
"333904",
"338000",
"339024",
"4533328",
"4533584",
"5582160",
"5586256",
"5848400",
"5852496",
"274287952",
"274288208",
"1348030032",
"1348095568",
"1349144144",
"1349209680",
"1365986896",
"1365990992"
] |
[
"nonn",
"easy"
] | 15 | 1 | 1 |
[
"A000010",
"A066781",
"A385147"
] | null |
Hunter Yeoman, Jun 19 2025
| 2025-07-02T21:15:01 |
oeisdata/seq/A385/A385147.seq
|
54a9a7f0035d26adb1f7ff77bbaf860e
|
A385148
|
a(n) = A001065(A346878(n)).
|
[
"0",
"1",
"6",
"1",
"7",
"15",
"8",
"9",
"11",
"14",
"10",
"55",
"15",
"28",
"54",
"1",
"22",
"17",
"14",
"43",
"66",
"50",
"16",
"64",
"1",
"26",
"78",
"63",
"31",
"172",
"20",
"41",
"90",
"32",
"40",
"45",
"50",
"63",
"144",
"56",
"40",
"196",
"26",
"76",
"259",
"64",
"43",
"236",
"1",
"65",
"126",
"56",
"64",
"136",
"56",
"134",
"186",
"50",
"34",
"504",
"63",
"117",
"198",
"1",
"64",
"300",
"74",
"70",
"222",
"203"
] |
[
"nonn"
] | 22 | 1 | 3 |
[
"A001065",
"A346878",
"A377766",
"A384411",
"A385148"
] | null |
Michel Marcus, Jun 19 2025
| 2025-06-24T07:20:38 |
oeisdata/seq/A385/A385148.seq
|
ff029abc0d96b6a9d2f5ff990813c8dd
|
A385149
|
Number of chiral pairs of asymmetric polyominoes with n cells of the regular tiling with Schläfli symbol {4,oo}.
|
[
"0",
"0",
"0",
"0",
"1",
"8",
"43",
"225",
"1162",
"6081",
"32315",
"174856",
"961764",
"5369567",
"30373643",
"173811011",
"1004802212",
"5861460314",
"34468644574",
"204161097084",
"1217143092549",
"7299002607829",
"44005589820244",
"266608357403244",
"1622502342468552",
"9914884364399700"
] |
[
"nonn",
"easy"
] | 9 | 0 | 6 |
[
"A001764",
"A005034",
"A005036",
"A047749",
"A369315",
"A385149"
] | null |
Robert A. Russell, Jun 19 2025
| 2025-06-22T00:17:30 |
oeisdata/seq/A385/A385149.seq
|
0b739d2dfadba2892af2f2693bce85da
|
A385150
|
Smallest starting x which reaches the Antihydra halting condition for the first time at 3*n+1 terms of the iteration x -> floor(3*x/2).
|
[
"1",
"6",
"10",
"30",
"24",
"46",
"14",
"16",
"1284",
"2398",
"1844",
"1326",
"1048",
"466",
"1822",
"810",
"5826",
"856",
"254",
"2820",
"42658",
"1880",
"21442",
"1396",
"414",
"354130",
"73370",
"311112",
"87492",
"72154",
"195408",
"130272",
"230286",
"227214",
"1668076",
"927548",
"2422042",
"311516",
"4138178",
"1243802"
] |
[
"nonn"
] | 43 | 0 | 2 |
[
"A001764",
"A032766",
"A385150"
] | null |
Roman Khrabrov, Jun 19 2025
| 2025-06-29T06:27:14 |
oeisdata/seq/A385/A385150.seq
|
db23cea7120b471e23dcb0a0751bf138
|
A385151
|
a(n) is the least possible difference between the largest and smallest volumes of distinct three-cuboid combination filling an n X n X n cube.
|
[
"6",
"24",
"20",
"48",
"42",
"80",
"54",
"140",
"99",
"192",
"143",
"252",
"150",
"352",
"238",
"432",
"304",
"520",
"294",
"660",
"437",
"768",
"525",
"884",
"486",
"1064",
"696",
"1200",
"806",
"1344",
"726",
"1564",
"1015",
"1728",
"1147",
"1900",
"1014",
"2160",
"1394",
"2352",
"1548",
"2552",
"1350",
"2852",
"1833",
"3072",
"2009",
"3300",
"1734"
] |
[
"nonn",
"new"
] | 34 | 3 | 1 |
[
"A276523",
"A381847",
"A385151"
] | null |
Janaka Rodrigo, Jun 19 2025
| 2025-07-16T23:34:56 |
oeisdata/seq/A385/A385151.seq
|
7d6505e8a3a621248f631e2b8fadf648
|
A385152
|
Pentagonal numbers that are one-fifth of another pentagonal number.
|
[
"0",
"1",
"2262",
"11017977685",
"24316671758562",
"118442787685171571497",
"261403178754290105125230",
"1273254889025744028795358122877",
"2810072963163120003620778537378426",
"13687435462403616663579190345877254457425",
"30208163863695025530402450846321663951473670"
] |
[
"nonn",
"new"
] | 22 | 1 | 3 |
[
"A000326",
"A385146",
"A385152"
] | null |
Kelvin Voskuijl, Jun 19 2025
| 2025-07-08T19:02:31 |
oeisdata/seq/A385/A385152.seq
|
c46475c8e77b36370d2685fabe552b59
|
A385153
|
a(n) is the least possible difference between the largest and smallest volumes of distinct four-cuboid combinations filling an n X n X n cube.
|
[
"5",
"16",
"16",
"36",
"30",
"60",
"48",
"100",
"83",
"96",
"123",
"182",
"130",
"264",
"182",
"324",
"224",
"280",
"259",
"484",
"369",
"576",
"449",
"676",
"423",
"560",
"528",
"900",
"598",
"1008",
"638",
"1054",
"859",
"864",
"979",
"1330",
"884",
"1620",
"1054",
"1764",
"1152",
"1364",
"1185",
"2116",
"1553",
"2304",
"1713",
"2500",
"1513",
"1924",
"1760"
] |
[
"nonn",
"new"
] | 30 | 3 | 1 |
[
"A276523",
"A384311",
"A385153"
] | null |
Janaka Rodrigo, Jun 19 2025
| 2025-07-16T23:35:05 |
oeisdata/seq/A385/A385153.seq
|
1705410de7cc92664ff6f5e07eef145e
|
A385155
|
Numbers z such that there exist two integers 0<x<y<z such that (1/sigma(x) + 1/sigma(y) + 1/sigma(z))*(x + y + z) = 3.
|
[
"1380",
"1540",
"1560",
"1638",
"2016",
"2250",
"2520",
"2556",
"2700",
"2772",
"3024",
"3120",
"3312",
"3360",
"3408",
"3480",
"3640",
"3654",
"3780",
"3816",
"3828",
"3876",
"4200",
"4320",
"4440",
"4452",
"4620",
"4920",
"4956",
"5220",
"5280",
"5292",
"5304",
"5340",
"5400",
"5460",
"5472",
"5640",
"5700",
"5724",
"5760",
"5940",
"6048",
"6060",
"6180"
] |
[
"nonn",
"hard"
] | 24 | 1 | 1 |
[
"A000203",
"A125492",
"A384487",
"A384814",
"A385155"
] | null |
S. I. Dimitrov, Jun 19 2025
| 2025-06-25T11:03:14 |
oeisdata/seq/A385/A385155.seq
|
1b3135e87a8b705030344fc3b37f52ce
|
A385157
|
Numbers k so that the binary expansion of 3^k starts with the binary expansion of k.
|
[
"1",
"2",
"3",
"9",
"27",
"65",
"95",
"123",
"163",
"303",
"451",
"597",
"760",
"1757",
"2546",
"2700",
"7142",
"25030",
"25719",
"25772",
"49105",
"61426",
"90981",
"107497",
"194210",
"659077",
"6732590",
"8513462",
"9344030",
"14549893",
"32276115",
"89912342",
"181720904",
"280120681",
"437484689",
"896754175",
"10625891495",
"30605576222"
] |
[
"nonn",
"base"
] | 43 | 1 | 2 |
[
"A000244",
"A004656",
"A385157"
] | null |
Jayde S. Massmann, Jun 19 2025
| 2025-06-27T04:14:04 |
oeisdata/seq/A385/A385157.seq
|
93ccff9c7b8d4e9b764a5bd3c964008e
|
A385163
|
Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) is the multiplicative order of 1+-i modulo p in Gaussian integers.
|
[
"8",
"24",
"40",
"72",
"88",
"40",
"56",
"184",
"232",
"264",
"280",
"312",
"328",
"408",
"424",
"56",
"520",
"552",
"120",
"648",
"664",
"712",
"760",
"792",
"840",
"296",
"904",
"952",
"200",
"1048",
"1080",
"376",
"408",
"1240",
"120",
"1384",
"1432",
"1464",
"1512",
"1528",
"1672",
"344",
"584",
"1768",
"1848",
"1864",
"1912",
"1944",
"1960",
"664",
"2008",
"2088",
"2184",
"2248",
"456"
] |
[
"nonn",
"easy"
] | 16 | 1 | 1 |
[
"A002145",
"A384164",
"A385163",
"A385165"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-20T12:42:32 |
oeisdata/seq/A385/A385163.seq
|
50eac41f3fbb03fbb3d7c6470879428a
|
A385164
|
Let p = A002145(n) be the n-th prime == 3 (mod 4); 8*a(n) is the multiplicative order of 1+-i modulo p in Gaussian integers.
|
[
"1",
"3",
"5",
"9",
"11",
"5",
"7",
"23",
"29",
"33",
"35",
"39",
"41",
"51",
"53",
"7",
"65",
"69",
"15",
"81",
"83",
"89",
"95",
"99",
"105",
"37",
"113",
"119",
"25",
"131",
"135",
"47",
"51",
"155",
"15",
"173",
"179",
"183",
"189",
"191",
"209",
"43",
"73",
"221",
"231",
"233",
"239",
"243",
"245",
"83",
"251",
"261",
"273",
"281",
"57",
"293",
"299",
"303",
"309",
"45",
"107",
"323",
"329",
"11",
"115"
] |
[
"nonn",
"easy"
] | 14 | 1 | 2 |
[
"A002145",
"A385163",
"A385164"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-20T15:07:38 |
oeisdata/seq/A385/A385164.seq
|
f12bce30108325b15b2074096b8a83f5
|
A385165
|
Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) is the multiplicative order of 2+-i modulo p in Gaussian integers.
|
[
"8",
"48",
"30",
"180",
"528",
"96",
"1848",
"2208",
"1740",
"1496",
"360",
"1560",
"2296",
"10608",
"11448",
"5376",
"4290",
"1932",
"11400",
"8856",
"27888",
"16020",
"1216",
"3300",
"3710",
"49728",
"51528",
"14280",
"3150",
"69168",
"7344",
"80088",
"8568",
"48360",
"13695",
"40136",
"6444",
"44896",
"7980",
"146688",
"29260",
"92880",
"48180"
] |
[
"nonn",
"easy"
] | 22 | 1 | 1 |
[
"A002145",
"A211241",
"A385163",
"A385165",
"A385166"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-21T19:59:14 |
oeisdata/seq/A385/A385165.seq
|
54323871e7aca78de20eadc54bd0bb7a
|
A385166
|
Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) = (p+1) * ord(5,p) / ord(2+-i,p) = (p+1) * ord(5,p) / A385165(n). Here ord(a,m) is the multiplicative order of a modulo m.
|
[
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"5",
"1",
"1",
"1",
"1",
"3",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"11",
"1",
"4",
"3",
"10",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"6",
"1",
"3",
"1",
"1",
"1",
"4",
"3",
"24",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"4",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"8",
"1",
"27",
"1",
"1",
"1",
"1",
"20",
"3",
"1",
"4",
"1",
"1"
] |
[
"nonn",
"easy"
] | 17 | 1 | 3 |
[
"A002145",
"A211450",
"A385165",
"A385166",
"A385167",
"A385168",
"A385180"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-21T19:59:56 |
oeisdata/seq/A385/A385166.seq
|
3ba0d45b61c652f58ce006fbf298dcaf
|
A385167
|
Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) is even. Here ord(a,m) is the multiplicative order of a modulo m.
|
[
"11",
"79",
"131",
"199",
"211",
"239",
"251",
"331",
"359",
"439",
"479",
"491",
"571",
"599",
"691",
"719",
"811",
"839",
"919",
"971",
"1039",
"1051",
"1091",
"1171",
"1279",
"1291",
"1319",
"1399",
"1439",
"1451",
"1531",
"1559",
"1571",
"1759",
"1811",
"1879",
"1931",
"1999",
"2011",
"2039",
"2131",
"2239",
"2251",
"2371",
"2399",
"2411",
"2531",
"2719",
"2731",
"2851",
"2879",
"2971",
"2999"
] |
[
"nonn",
"easy"
] | 23 | 1 | 1 |
[
"A002145",
"A122869",
"A385165",
"A385166",
"A385167",
"A385168",
"A385180"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-23T14:41:34 |
oeisdata/seq/A385/A385167.seq
|
1ebe29be277b2d751fdd3a138e71478c
|
A385168
|
Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) > 1. Here ord(a,m) is the multiplicative order of a modulo m.
|
[
"11",
"79",
"83",
"131",
"139",
"191",
"199",
"211",
"239",
"251",
"307",
"331",
"347",
"359",
"419",
"439",
"479",
"491",
"503",
"571",
"587",
"599",
"659",
"691",
"719",
"811",
"839",
"863",
"919",
"947",
"971",
"1019",
"1039",
"1051",
"1091",
"1103",
"1171",
"1223",
"1231",
"1279",
"1291",
"1319",
"1399",
"1439",
"1451",
"1499",
"1523",
"1531",
"1559",
"1567",
"1571",
"1619",
"1667",
"1759"
] |
[
"nonn",
"easy"
] | 20 | 1 | 1 |
[
"A002145",
"A384948",
"A385165",
"A385166",
"A385167",
"A385168",
"A385180"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-23T14:41:40 |
oeisdata/seq/A385/A385168.seq
|
3ff9e5b4c9df130ed88b1ec674b897b8
|
A385169
|
Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is odd.
|
[
"331",
"571",
"599",
"691",
"839",
"971",
"1051",
"1171",
"1291",
"1451",
"1571",
"1879",
"2131",
"2411",
"2971",
"3251",
"3331",
"3491",
"3571",
"3691",
"3851",
"4051",
"4091",
"4211",
"4651",
"4679",
"4691",
"4919",
"4931",
"5051",
"5171",
"5479",
"5531",
"5651",
"5839",
"5851",
"5879",
"6011",
"6599",
"6679",
"6691",
"7079",
"7211",
"7331",
"7691",
"8011",
"8039",
"8171",
"8731",
"8839",
"9011",
"9371",
"9811"
] |
[
"nonn",
"easy"
] | 27 | 1 | 1 |
[
"A122869",
"A385165",
"A385167",
"A385168",
"A385169",
"A385179",
"A385180",
"A385188",
"A385192",
"A385217"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-26T14:31:02 |
oeisdata/seq/A385/A385169.seq
|
6f9be9b4de77871b99fa21ae740d616c
|
A385170
|
a(n) is the integer part of the reciprocal of the distance of x_n from its nearest integer, where x_n is the n-th extrema of gamma(x).
|
[
"1",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5"
] |
[
"nonn"
] | 35 | 0 | 2 |
[
"A256687",
"A374856",
"A377506",
"A385170"
] | null |
Jwalin Bhatt, Jun 20 2025
| 2025-07-02T17:33:02 |
oeisdata/seq/A385/A385170.seq
|
ab7625e39f86fd19bbc2bc11bd3c8846
|
A385171
|
Perfect powers m^k whose decimal expansion begins with k and ends with m, where m and k are greater than 1.
|
[
"25",
"59049",
"78125",
"13060694016",
"17179869184",
"19073486328125",
"30514648531249",
"53613724194557",
"59120987373568",
"65944160601201",
"116490258898219",
"324965351768751",
"512908935546875",
"21936950640377856",
"371308922853718751",
"578261433548013568",
"913517247483640899"
] |
[
"nonn",
"base"
] | 8 | 1 | 1 |
[
"A001597",
"A003226",
"A033819",
"A051248",
"A074250",
"A378857",
"A385171"
] | null |
Gonzalo Martínez, Jun 20 2025
| 2025-06-25T11:03:06 |
oeisdata/seq/A385/A385171.seq
|
7f6bbfb2909cfe21931a6da9abbc93bf
|
A385173
|
Smallest number of vertices for which n nonisomorphic connected cubic symmetric graphs exist.
|
[
"2",
"4",
"20",
"56",
"182",
"432",
"168",
"364",
"1792",
"816",
"1024",
"1344",
"1296",
"1536",
"6840"
] |
[
"nonn",
"more",
"hard"
] | 4 | 0 | 1 |
[
"A059282",
"A385173"
] | null |
Eric W. Weisstein, Jun 20 2025
| 2025-06-21T11:49:00 |
oeisdata/seq/A385/A385173.seq
|
5e0bf4187ae86ab92985c49bf8ec9e26
|
A385175
|
Cubes using at most three distinct digits, not ending in 0.
|
[
"1",
"8",
"27",
"64",
"125",
"216",
"343",
"512",
"729",
"1331",
"2744",
"3375",
"46656",
"238328",
"778688",
"1030301",
"5177717",
"7077888",
"9393931",
"700227072",
"1003003001",
"44474744007",
"1000300030001",
"1000030000300001",
"1331399339931331",
"3163316636166336",
"1000003000003000001",
"1000000300000030000001",
"1000000030000000300000001"
] |
[
"nonn",
"base",
"changed"
] | 22 | 1 | 2 |
[
"A000578",
"A018884",
"A030292",
"A155146",
"A202940",
"A385175"
] | null |
Gonzalo Martínez, Jun 20 2025
| 2025-07-10T11:24:07 |
oeisdata/seq/A385/A385175.seq
|
a5e89723375c42b6a6e4829b44431554
|
A385177
|
a(n) = Sum_{k=1..n} ceiling(k/phi), where phi is the golden ratio (A001622).
|
[
"1",
"3",
"5",
"8",
"12",
"16",
"21",
"26",
"32",
"39",
"46",
"54",
"63",
"72",
"82",
"92",
"103",
"115",
"127",
"140",
"153",
"167",
"182",
"197",
"213",
"230",
"247",
"265",
"283",
"302",
"322",
"342",
"363",
"385",
"407",
"430",
"453",
"477",
"502",
"527",
"553",
"579",
"606",
"634",
"662",
"691",
"721",
"751",
"782",
"813",
"845",
"878",
"911",
"945",
"979",
"1014",
"1050",
"1086",
"1123"
] |
[
"nonn",
"easy"
] | 12 | 1 | 2 |
[
"A001622",
"A019446",
"A183136",
"A385177"
] | null |
Paolo Xausa, Jun 20 2025
| 2025-06-21T11:24:41 |
oeisdata/seq/A385/A385177.seq
|
2f2ed79caf2088d0ab73162b388e2fa5
|
A385178
|
Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.
|
[
"0",
"1",
"1",
"3",
"4",
"5",
"7",
"10",
"14",
"19",
"15",
"22",
"32",
"46",
"65",
"31",
"46",
"68",
"100",
"146",
"211",
"63",
"94",
"140",
"208",
"308",
"454",
"665",
"127",
"190",
"284",
"424",
"632",
"940",
"1394",
"2059",
"255",
"382",
"572",
"856",
"1280",
"1912",
"2852",
"4246",
"6305",
"511",
"766",
"1148",
"1720",
"2576",
"3856",
"5768",
"8620",
"12866",
"19171"
] |
[
"nonn",
"tabl",
"easy"
] | 76 | 0 | 4 |
[
"A000225",
"A001047",
"A027649",
"A028243",
"A033484",
"A036561",
"A053209",
"A053581",
"A059268",
"A081656",
"A248216",
"A291012",
"A321003",
"A385178"
] | null |
Paul Curtz, Jun 20 2025
| 2025-06-28T17:56:20 |
oeisdata/seq/A385/A385178.seq
|
a68add7e10f0a6772d51e36dc6636caf
|
A385179
|
Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is congruent to 2 modulo 4.
|
[
"11",
"131",
"211",
"251",
"491",
"811",
"919",
"1039",
"1091",
"1319",
"1399",
"1531",
"1811",
"1931",
"2011",
"2251",
"2371",
"2531",
"2731",
"2851",
"3011",
"3079",
"3371",
"3931",
"4079",
"4451",
"4519",
"4759",
"5011",
"5639",
"6091",
"6131",
"6211",
"6359",
"6451",
"6491",
"6571",
"6971",
"7411",
"7451",
"7559",
"7639",
"8291",
"8719",
"8971",
"9091",
"9491",
"9719",
"9839",
"9851",
"9931"
] |
[
"nonn",
"easy"
] | 23 | 1 | 1 |
[
"A122869",
"A385165",
"A385167",
"A385168",
"A385169",
"A385179",
"A385188",
"A385218"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-22T21:32:32 |
oeisdata/seq/A385/A385179.seq
|
a4cea9a688770fce8576bc3054c6b39f
|
A385180
|
Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) is divisible by 4. Here ord(a,m) is the multiplicative order of a modulo m.
|
[
"331",
"571",
"599",
"691",
"839",
"919",
"971",
"1039",
"1051",
"1171",
"1279",
"1291",
"1319",
"1399",
"1439",
"1451",
"1571",
"1759",
"1879",
"2131",
"2411",
"2879",
"2971",
"3079",
"3251",
"3331",
"3491",
"3571",
"3691",
"3851",
"4051",
"4079",
"4091",
"4211",
"4519",
"4639",
"4651",
"4679",
"4691",
"4759",
"4919",
"4931",
"5051",
"5119",
"5171",
"5279",
"5479",
"5519",
"5531"
] |
[
"nonn",
"easy"
] | 25 | 1 | 1 |
[
"A002145",
"A122869",
"A385165",
"A385166",
"A385167",
"A385168",
"A385180"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-23T14:41:26 |
oeisdata/seq/A385/A385180.seq
|
183370d927d71c8ccda585ce5777b93d
|
A385181
|
Number of disconnected cubic symmetric graphs on 2n vertices.
|
[
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"2",
"1",
"2",
"0",
"3",
"0",
"2",
"2",
"3",
"0",
"3",
"0",
"5",
"2",
"1",
"0",
"5",
"1",
"2",
"2",
"4",
"0",
"6",
"0",
"4",
"1",
"1",
"2",
"5",
"0",
"2",
"2",
"7",
"0",
"5",
"0",
"2",
"4",
"1",
"0",
"7",
"1",
"5",
"1",
"3",
"0",
"4",
"1",
"8",
"2",
"1",
"0",
"10",
"0",
"2",
"4",
"5",
"2",
"2",
"0",
"2",
"1",
"6",
"0",
"8",
"0",
"2",
"4",
"3",
"1",
"4",
"0",
"9",
"3",
"1",
"0",
"11",
"1"
] |
[
"nonn"
] | 5 | 1 | 6 |
[
"A059282",
"A385181"
] | null |
Eric W. Weisstein, Jun 20 2025
| 2025-06-21T11:48:56 |
oeisdata/seq/A385/A385181.seq
|
688f8bc65f46e3e514805cc656e0f70a
|
A385182
|
Values of u in the quartets (1,u,v,w); i.e., values of u for solutions to (1+u) = v*(v+w), in positive integers, with v>1, sorted by nondecreasing values of u; see Comments.
|
[
"5",
"7",
"9",
"11",
"11",
"13",
"14",
"15",
"17",
"17",
"19",
"19",
"20",
"21",
"23",
"23",
"23",
"25",
"26",
"27",
"27",
"29",
"29",
"29",
"31",
"31",
"32",
"33",
"34",
"35",
"35",
"35",
"37",
"38",
"39",
"39",
"39",
"41",
"41",
"41",
"43",
"43",
"44",
"44",
"45",
"47",
"47",
"47",
"47",
"49",
"49",
"50",
"51",
"51",
"53",
"53",
"53",
"54",
"55",
"55",
"55",
"56",
"57",
"59",
"59"
] |
[
"nonn",
"new"
] | 27 | 1 | 1 |
[
"A056924",
"A385182",
"A385183",
"A385184",
"A385592",
"A385593",
"A385594",
"A385595",
"A385596",
"A385597",
"A385598",
"A385599",
"A385600"
] | null |
Clark Kimberling, Jun 23 2025
| 2025-07-10T00:14:03 |
oeisdata/seq/A385/A385182.seq
|
a90bdc9116446599e42990cd4c77260c
|
A385183
|
The v sequence in quartets (1,u,v,w); see A385182.
|
[
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"3",
"2",
"4",
"3",
"2",
"2",
"3",
"4",
"2",
"3",
"2",
"4",
"2",
"3",
"5",
"2",
"4",
"3",
"2",
"5",
"2",
"3",
"4",
"2",
"3",
"2",
"4",
"5",
"2",
"3",
"6",
"2",
"4",
"3",
"5",
"2",
"2",
"3",
"4",
"6",
"2",
"5",
"3",
"2",
"4",
"2",
"3",
"6",
"5",
"2",
"4",
"7",
"3",
"2",
"2",
"3",
"4",
"5",
"6",
"2",
"3",
"7",
"2",
"4",
"5",
"2",
"3",
"6",
"2",
"4",
"3",
"2",
"5",
"7",
"2",
"3",
"4"
] |
[
"nonn",
"new"
] | 14 | 1 | 1 |
[
"A385182",
"A385183"
] | null |
Clark Kimberling, Jun 23 2025
| 2025-07-10T00:26:36 |
oeisdata/seq/A385/A385183.seq
|
e6cd50594103b7fc6ca4f5c49e3a6ed3
|
A385184
|
The w sequence in quartets (1,u,v,w); see A385182.
|
[
"1",
"2",
"3",
"4",
"1",
"5",
"2",
"6",
"7",
"3",
"8",
"1",
"4",
"9",
"10",
"5",
"2",
"11",
"6",
"12",
"3",
"13",
"7",
"1",
"14",
"4",
"8",
"15",
"2",
"16",
"9",
"5",
"17",
"10",
"18",
"6",
"3",
"19",
"11",
"1",
"20",
"7",
"12",
"4",
"21",
"22",
"13",
"8",
"2",
"23",
"5",
"14",
"24",
"9",
"25",
"15",
"3",
"6",
"26",
"10",
"1",
"16",
"27",
"28",
"17",
"11",
"7",
"4",
"29",
"18",
"2",
"30",
"12",
"8",
"31"
] |
[
"nonn",
"new"
] | 11 | 1 | 2 |
[
"A385182",
"A385184"
] | null |
Clark Kimberling, Jun 26 2025
| 2025-07-10T00:27:32 |
oeisdata/seq/A385/A385184.seq
|
2d29189c1ea7e866f892b8e0d5a9dc08
|
A385186
|
Numbers y such that there exists an integer 0 < x < y such that sigma(x)^x * sigma(y)^y = (x+y)^(x+y).
|
[
"284",
"1210",
"2924",
"5564",
"6368",
"10856",
"14595",
"18416",
"76084",
"66992",
"71145",
"87633",
"88730",
"124155",
"139815",
"123152",
"153176",
"168730",
"176336",
"180848",
"203432",
"202444",
"365084",
"389924",
"430402",
"399592",
"455344",
"486178",
"514736",
"525915",
"669688",
"686072"
] |
[
"nonn",
"hard"
] | 9 | 1 | 1 |
[
"A000203",
"A002046",
"A383932",
"A385186"
] | null |
S. I. Dimitrov, Jun 20 2025
| 2025-06-26T19:28:49 |
oeisdata/seq/A385/A385186.seq
|
67617c8b26d4413f205327866de362d0
|
A385187
|
Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A002378(n) and its long leg and hypotenuse are consecutive natural numbers.
|
[
"1",
"6",
"330",
"3036",
"14820",
"51330",
"142926",
"341880",
"731016",
"1433790",
"2625810",
"4547796",
"7519980",
"11957946",
"18389910",
"27475440",
"40025616",
"57024630",
"79652826",
"109311180",
"147647220",
"196582386",
"258340830",
"335479656",
"430920600",
"547983150",
"690419106",
"862448580",
"1068797436",
"1314736170",
"1606120230"
] |
[
"nonn",
"easy"
] | 6 | 1 | 2 |
[
"A002378",
"A142463",
"A385022",
"A385187"
] | null |
Miguel-Ángel Pérez García-Ortega, Jun 20 2025
| 2025-07-02T16:42:00 |
oeisdata/seq/A385/A385187.seq
|
089d5398972d9bf5d621600b496f2e1e
|
A385188
|
Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is not divisible by 2 or 3.
|
[
"599",
"691",
"1291",
"1451",
"2411",
"3851",
"4919",
"5051",
"5479",
"5531",
"5879",
"6599",
"7079",
"7691",
"8011",
"8039",
"11491",
"13291",
"14011",
"15091",
"15971",
"16651",
"17359",
"18731",
"19211",
"19531",
"20731",
"22651",
"23971",
"24611",
"25639",
"25679",
"26251",
"32051",
"32359",
"32531",
"32771",
"32971",
"35879",
"37039",
"37571",
"38011",
"38371"
] |
[
"nonn",
"easy"
] | 14 | 1 | 1 |
[
"A122869",
"A385165",
"A385167",
"A385168",
"A385169",
"A385179",
"A385180",
"A385188",
"A385191",
"A385219"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-22T21:32:26 |
oeisdata/seq/A385/A385188.seq
|
f7a4300bcbf916f3f40a72b6d7b2a622
|
A385189
|
Intersection of A055932 and A002378.
|
[
"2",
"6",
"12",
"30",
"72",
"90",
"210",
"240",
"420",
"600",
"1260",
"6480",
"15750",
"50400",
"147840",
"194040",
"291060",
"510510",
"2942940",
"4324320",
"5762400",
"9147600",
"19136250",
"96049800",
"153153000",
"15178363200",
"37822664880",
"401392571580"
] |
[
"nonn",
"fini",
"full"
] | 34 | 1 | 1 |
[
"A002110",
"A002378",
"A007947",
"A055932",
"A385189"
] | null |
Ken Clements, Jun 20 2025
| 2025-06-27T23:34:45 |
oeisdata/seq/A385/A385189.seq
|
b3521a084d1bd77ff58c8e3527a41c7c
|
A385190
|
Primes p == 3 (mod 4), p > 3 such that 1+-i are 24th powers modulo p.
|
[
"31",
"127",
"191",
"223",
"383",
"479",
"863",
"1151",
"1439",
"1471",
"1823",
"2111",
"2143",
"2207",
"2399",
"2591",
"2687",
"2879",
"3167",
"3359",
"3391",
"4127",
"4703",
"4799",
"5087",
"5279",
"5471",
"5503",
"6047",
"6079",
"6143",
"6271",
"6719",
"6911",
"7103",
"7487",
"7583",
"8191",
"8287",
"8447",
"8543",
"8831",
"8863",
"9311",
"9439",
"9631",
"9791",
"9887"
] |
[
"nonn",
"easy"
] | 12 | 1 | 1 |
[
"A002145",
"A385163",
"A385190",
"A385191"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-21T00:45:53 |
oeisdata/seq/A385/A385190.seq
|
11c4b386d8353c8d1ef5aad26c2531ae
|
A385191
|
Primes p == 3 (mod 4), p > 3 such that 2+-i are 24th powers modulo p.
|
[
"599",
"691",
"1039",
"1291",
"1451",
"1759",
"2411",
"2879",
"3079",
"3491",
"3851",
"4519",
"4639",
"4919",
"5051",
"5479",
"5519",
"5531",
"5639",
"5879",
"6011",
"6079",
"6599",
"6719",
"7079",
"7691",
"8011",
"8039",
"8171",
"8731",
"9439",
"9839",
"10799",
"11159",
"11239",
"11411",
"11491",
"12239",
"12799",
"13291",
"13679",
"13759",
"13879",
"14011",
"14639"
] |
[
"nonn",
"easy"
] | 11 | 1 | 1 |
[
"A002145",
"A122869",
"A385165",
"A385188",
"A385190",
"A385191"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-21T00:45:49 |
oeisdata/seq/A385/A385191.seq
|
4a2b46ab9a2dae408c958097cb1294e7
|
A385192
|
Primes p such that multiplicative order of 5 modulo p is odd.
|
[
"2",
"11",
"19",
"31",
"59",
"71",
"79",
"101",
"109",
"131",
"139",
"149",
"151",
"179",
"181",
"191",
"199",
"211",
"239",
"251",
"269",
"271",
"311",
"331",
"359",
"379",
"389",
"401",
"409",
"419",
"431",
"439",
"461",
"479",
"491",
"499",
"541",
"569",
"571",
"599",
"619",
"631",
"659",
"691",
"719",
"739",
"751",
"811",
"829",
"839",
"859",
"911",
"919",
"941",
"971",
"991"
] |
[
"nonn",
"easy"
] | 23 | 1 | 1 |
[
"A014663",
"A040105",
"A045468",
"A122869",
"A163183",
"A385192",
"A385193",
"A385220",
"A385221",
"A385223",
"A385224",
"A385225"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-28T12:53:24 |
oeisdata/seq/A385/A385192.seq
|
5544c127c0e3adb0960b37dd7ae2502c
|
A385193
|
Odd multiplicative orders of 5 modulo primes.
|
[
"1",
"5",
"9",
"3",
"29",
"5",
"39",
"25",
"27",
"65",
"69",
"37",
"75",
"89",
"15",
"19",
"33",
"35",
"119",
"25",
"67",
"27",
"155",
"165",
"179",
"21",
"97",
"25",
"17",
"209",
"215",
"219",
"115",
"239",
"245",
"249",
"135",
"71",
"285",
"299",
"309",
"35",
"329",
"115",
"359",
"123",
"375",
"405",
"9",
"419",
"429",
"455",
"459",
"235",
"485",
"495",
"509",
"255",
"515",
"173",
"525",
"265",
"267",
"109",
"575",
"45"
] |
[
"nonn",
"easy"
] | 26 | 1 | 2 |
[
"A139686",
"A211241",
"A385192",
"A385193",
"A385226",
"A385227",
"A385228",
"A385229",
"A385230",
"A385231"
] | null |
Jianing Song, Jun 20 2025
| 2025-06-28T17:08:45 |
oeisdata/seq/A385/A385193.seq
|
5ef523d246a2477be6561ac25af07c66
|
A385194
|
Minimum number of steps to reach n by repeated doubling and/or digit reversal starting from 1, or -1 if n cannot be reached.
|
[
"0",
"1",
"-1",
"2",
"37",
"-1",
"29",
"3",
"-1",
"38",
"-1",
"-1",
"33",
"30",
"-1",
"4",
"14",
"-1",
"25",
"39",
"-1",
"-1",
"6",
"-1",
"35",
"34",
"-1",
"31",
"9",
"-1",
"33",
"5",
"-1",
"12",
"28",
"-1",
"17",
"25",
"-1",
"40",
"30",
"-1",
"13",
"-1",
"-1",
"7",
"19",
"-1",
"18",
"36",
"-1",
"35",
"28",
"-1",
"-1",
"32",
"-1",
"10",
"24",
"-1",
"5",
"34",
"-1",
"6",
"32",
"-1",
"27",
"13"
] |
[
"sign",
"base"
] | 11 | 1 | 4 |
[
"A004086",
"A385194"
] | null |
David Radcliffe, Jun 20 2025
| 2025-06-22T03:32:19 |
oeisdata/seq/A385/A385194.seq
|
808585930f65c8b0c884ece1fe0d1143
|
A385195
|
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is either 1 or 2.
|
[
"1",
"2",
"2",
"3",
"4",
"4",
"6",
"7",
"8",
"8",
"10",
"6",
"12",
"12",
"8",
"15",
"16",
"16",
"18",
"12",
"12",
"20",
"22",
"14",
"24",
"24",
"26",
"18",
"28",
"16",
"30",
"31",
"20",
"32",
"24",
"24",
"36",
"36",
"24",
"28",
"40",
"24",
"42",
"30",
"32",
"44",
"46",
"30",
"48",
"48",
"32",
"36",
"52",
"52",
"40",
"42",
"36",
"56",
"58",
"24",
"60",
"60",
"48",
"63",
"48",
"40",
"66",
"48",
"44"
] |
[
"nonn",
"easy",
"mult"
] | 11 | 1 | 2 |
[
"A047994",
"A065463",
"A077610",
"A126246",
"A138191",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058",
"A385195",
"A385196",
"A385197",
"A385198",
"A385199"
] | null |
Amiram Eldar, Jun 21 2025
| 2025-06-22T16:33:52 |
oeisdata/seq/A385/A385195.seq
|
88f62a5b32fa0dd60a93c9a7ab368ab4
|
A385196
|
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a prime number.
|
[
"0",
"1",
"1",
"0",
"1",
"3",
"1",
"0",
"0",
"5",
"1",
"3",
"1",
"7",
"6",
"0",
"1",
"8",
"1",
"3",
"8",
"11",
"1",
"7",
"0",
"13",
"0",
"3",
"1",
"14",
"1",
"0",
"12",
"17",
"10",
"0",
"1",
"19",
"14",
"7",
"1",
"20",
"1",
"3",
"8",
"23",
"1",
"15",
"0",
"24",
"18",
"3",
"1",
"26",
"14",
"7",
"20",
"29",
"1",
"18",
"1",
"31",
"8",
"0",
"16",
"32",
"1",
"3",
"24",
"34",
"1",
"0",
"1",
"37",
"24",
"3",
"16",
"38"
] |
[
"nonn",
"easy"
] | 10 | 1 | 6 |
[
"A010051",
"A047994",
"A065463",
"A077610",
"A117494",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058",
"A385195",
"A385196",
"A385197",
"A385198",
"A385199"
] | null |
Amiram Eldar, Jun 21 2025
| 2025-06-23T02:46:10 |
oeisdata/seq/A385/A385196.seq
|
4a4b44810b20bf4fde2b2ccf5ed0f0dc
|
A385197
|
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a noncomposite number.
|
[
"1",
"2",
"3",
"3",
"5",
"5",
"7",
"7",
"8",
"9",
"11",
"9",
"13",
"13",
"14",
"15",
"17",
"16",
"19",
"15",
"20",
"21",
"23",
"21",
"24",
"25",
"26",
"21",
"29",
"22",
"31",
"31",
"32",
"33",
"34",
"24",
"37",
"37",
"38",
"35",
"41",
"32",
"43",
"33",
"40",
"45",
"47",
"45",
"48",
"48",
"50",
"39",
"53",
"52",
"54",
"49",
"56",
"57",
"59",
"42",
"61",
"61",
"56",
"63",
"64",
"52",
"67",
"51"
] |
[
"nonn",
"easy"
] | 7 | 1 | 2 |
[
"A047994",
"A065463",
"A077610",
"A080339",
"A349338",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058",
"A385195",
"A385196",
"A385197",
"A385198",
"A385199"
] | null |
Amiram Eldar, Jun 21 2025
| 2025-06-22T16:33:43 |
oeisdata/seq/A385/A385197.seq
|
264f1bf501ea7a0d74ccc6819fb8d937
|
A385198
|
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a prime power (A246655).
|
[
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"1",
"5",
"1",
"7",
"6",
"1",
"1",
"9",
"1",
"7",
"8",
"11",
"1",
"9",
"1",
"13",
"1",
"9",
"1",
"14",
"1",
"1",
"12",
"17",
"10",
"11",
"1",
"19",
"14",
"11",
"1",
"20",
"1",
"13",
"12",
"23",
"1",
"17",
"1",
"25",
"18",
"15",
"1",
"27",
"14",
"13",
"20",
"29",
"1",
"26",
"1",
"31",
"14",
"1",
"16",
"32",
"1",
"19",
"24",
"34",
"1",
"15",
"1",
"37",
"26",
"21"
] |
[
"nonn",
"easy"
] | 7 | 1 | 6 |
[
"A047994",
"A065463",
"A069513",
"A077610",
"A116512",
"A246655",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058",
"A385195",
"A385196",
"A385197",
"A385198",
"A385199"
] | null |
Amiram Eldar, Jun 21 2025
| 2025-06-22T16:33:37 |
oeisdata/seq/A385/A385198.seq
|
305e524afe611a8d246461437998da5c
|
A385199
|
The number of integers k from 1 to n such that the greatest divisor of k that is either 1 or a prime power (A000961).
|
[
"1",
"2",
"3",
"4",
"5",
"5",
"7",
"8",
"9",
"9",
"11",
"11",
"13",
"13",
"14",
"16",
"17",
"17",
"19",
"19",
"20",
"21",
"23",
"23",
"25",
"25",
"27",
"27",
"29",
"22",
"31",
"32",
"32",
"33",
"34",
"35",
"37",
"37",
"38",
"39",
"41",
"32",
"43",
"43",
"44",
"45",
"47",
"47",
"49",
"49",
"50",
"51",
"53",
"53",
"54",
"55",
"56",
"57",
"59",
"50",
"61",
"61",
"62",
"64",
"64",
"52",
"67",
"67"
] |
[
"nonn",
"easy"
] | 7 | 1 | 2 |
[
"A000961",
"A010055",
"A047994",
"A065463",
"A077610",
"A131233",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058",
"A385195",
"A385196",
"A385197",
"A385198",
"A385199"
] | null |
Amiram Eldar, Jun 21 2025
| 2025-06-22T16:33:31 |
oeisdata/seq/A385/A385199.seq
|
76a1769ffc9a575305a832a1efc35a06
|
A385200
|
The sum of the exponents e for the integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a prime power p^e.
|
[
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"2",
"5",
"1",
"7",
"1",
"7",
"6",
"4",
"1",
"10",
"1",
"11",
"8",
"11",
"1",
"13",
"2",
"13",
"3",
"15",
"1",
"14",
"1",
"5",
"12",
"17",
"10",
"22",
"1",
"19",
"14",
"19",
"1",
"20",
"1",
"23",
"16",
"23",
"1",
"23",
"2",
"26",
"18",
"27",
"1",
"29",
"14",
"25",
"20",
"29",
"1",
"34",
"1",
"31",
"20",
"6",
"16",
"32",
"1",
"35",
"24",
"34",
"1",
"38",
"1",
"37",
"28"
] |
[
"nonn",
"easy"
] | 8 | 1 | 4 |
[
"A047994",
"A065463",
"A077610",
"A122410",
"A246655",
"A384047",
"A385198",
"A385200"
] | null |
Amiram Eldar, Jun 21 2025
| 2025-06-22T16:33:21 |
oeisdata/seq/A385/A385200.seq
|
e691d2f99e57131c56222729898f420b
|
A385201
|
Palindromic primes indexed by palindromic primes.
|
[
"3",
"5",
"11",
"131",
"313",
"94349",
"1123211",
"1212121",
"1360631",
"1422241",
"3075703",
"3293923",
"3400043",
"3447443",
"9711179",
"9852589",
"100161001",
"101171101",
"108505801",
"109111901",
"13929592931",
"14125852141",
"14209390241",
"14895559841",
"14986568941",
"15911711951",
"16172327161",
"16257475261",
"16727672761"
] |
[
"nonn",
"base",
"easy"
] | 8 | 1 | 1 |
[
"A000040",
"A002113",
"A002385",
"A385201"
] | null |
Alexander Yutkin, Jun 21 2025
| 2025-06-27T16:11:57 |
oeisdata/seq/A385/A385201.seq
|
178dc3d09e45eb4e74ad8732c7bc5732
|
A385202
|
Irregular triangle read by rows: let S be an ordered set of nondivisors of n such that a and b belong to S if a + b = n. T(n,k) is the k-th member of S. If S is empty, T(n,k) = 0.
|
[
"0",
"0",
"0",
"0",
"2",
"3",
"0",
"2",
"3",
"4",
"5",
"3",
"5",
"2",
"4",
"5",
"7",
"3",
"4",
"6",
"7",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"5",
"7",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"3",
"4",
"5",
"6",
"8",
"9",
"10",
"11",
"2",
"4",
"6",
"7",
"8",
"9",
"11",
"13",
"3",
"5",
"6",
"7",
"9",
"10",
"11",
"13",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"4",
"5",
"7",
"8",
"10",
"11",
"13",
"14"
] |
[
"nonn",
"tabf"
] | 6 | 1 | 5 |
[
"A086369",
"A385202"
] | null |
Miles Englezou, Jun 21 2025
| 2025-06-26T23:00:02 |
oeisdata/seq/A385/A385202.seq
|
c404da1ad89dc4a69452d1bb074fba3a
|
A385203
|
G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^2 )^(1/5).
|
[
"1",
"5",
"0",
"-125",
"625",
"5625",
"-87500",
"0",
"9140625",
"-60156250",
"-653125000",
"11654296875",
"0",
"-1470068359375",
"10353515625000",
"118916992187500",
"-2225148925781250",
"0",
"302784667968750000",
"-2199076690673828125",
"-25952287445068359375",
"497460246276855468750",
"0"
] |
[
"sign"
] | 9 | 0 | 2 |
[
"A078534",
"A385203",
"A385204",
"A385205"
] | null |
Seiichi Manyama, Jun 21 2025
| 2025-06-21T11:50:32 |
oeisdata/seq/A385/A385203.seq
|
bbe63a215381f310a5cfe2699f15a85f
|
A385204
|
G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^3 )^(1/5).
|
[
"1",
"5",
"25",
"0",
"-1250",
"-6875",
"65625",
"1062500",
"0",
"-116796875",
"-782031250",
"8609375000",
"155390625000",
"0",
"-19950927734375",
"-141498046875000",
"1635108642578125",
"30759411621093750",
"0",
"-4223049316406250000",
"-30787073669433593750",
"364567847442626953125"
] |
[
"sign"
] | 11 | 0 | 2 |
[
"A078534",
"A385203",
"A385204",
"A385205"
] | null |
Seiichi Manyama, Jun 21 2025
| 2025-06-22T00:16:27 |
oeisdata/seq/A385/A385204.seq
|
b016ee7223d49e79942548bc5324fd80
|
A385205
|
G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^4 )^(1/5).
|
[
"1",
"5",
"50",
"500",
"4375",
"27500",
"0",
"-3562500",
"-70078125",
"-876562500",
"-6926562500",
"0",
"1189169921875",
"25690820312500",
"346441406250000",
"2911880859375000",
"0",
"-550017993164062500",
"-12339622131347656250",
"-171953389892578125000",
"-1487552714691162109375",
"0"
] |
[
"sign"
] | 15 | 0 | 2 |
[
"A078534",
"A182122",
"A299958",
"A376636",
"A385203",
"A385204",
"A385205",
"A385207"
] | null |
Seiichi Manyama, Jun 21 2025
| 2025-06-21T11:49:31 |
oeisdata/seq/A385/A385205.seq
|
eb30a0ee1f49bcddcfd18839c90baf8a
|
A385206
|
G.f. A(x) satisfies A(x) = ( 1 + 49*x*A(x) )^(1/7).
|
[
"1",
"7",
"-98",
"1715",
"-28812",
"369754",
"0",
"-234003861",
"11187831655",
"-379208609780",
"10505577339166",
"-237021026782414",
"3747904201751920",
"0",
"-3136632447485449416",
"165539296779239527515",
"-6087083256734433868530",
"180571542422445599417377",
"-4318405727843353425012650"
] |
[
"sign"
] | 13 | 0 | 2 |
[
"A182122",
"A385206",
"A385207",
"A385208"
] | null |
Seiichi Manyama, Jun 21 2025
| 2025-06-21T11:49:23 |
oeisdata/seq/A385/A385206.seq
|
c9b6118bfabafaaec778a4d37c9224f8
|
A385207
|
G.f. A(x) satisfies A(x) = ( 1 + 49*x*A(x)^6 )^(1/7).
|
[
"1",
"7",
"147",
"3430",
"79233",
"1714314",
"32471124",
"450360372",
"0",
"-313409171166",
"-15459345780879",
"-537166232508360",
"-15185812043764453",
"-348420909370148580",
"-5588125164812112720",
"0",
"4783756561471246040577",
"254794190560328322173970",
"9445124186699596552669050"
] |
[
"sign"
] | 13 | 0 | 2 |
[
"A182122",
"A376636",
"A385205",
"A385206",
"A385207",
"A385208"
] | null |
Seiichi Manyama, Jun 21 2025
| 2025-06-21T11:44:12 |
oeisdata/seq/A385/A385207.seq
|
9b219371d210d25c6538c237942ca35b
|
A385208
|
G.f. A(x) satisfies A(x) = ( 1 + 49*x*A(x)^8 )^(1/7).
|
[
"1",
"7",
"245",
"11319",
"593047",
"33429123",
"1977326743",
"121034349975",
"7601257418678",
"487008549508481",
"31705597390195820",
"2091361378163375955",
"139468121325692304390",
"9387480337647754305649",
"636914947847207765431080",
"43512658997082838985965655",
"2990750175103769856729417627"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A078531",
"A078532",
"A078533",
"A078534",
"A078535",
"A385206",
"A385207",
"A385208"
] | null |
Seiichi Manyama, Jun 21 2025
| 2025-06-21T11:50:21 |
oeisdata/seq/A385/A385208.seq
|
50b49e250f1d85a9b39b5f07be320103
|
A385209
|
Least k such that A086369(k) = n.
|
[
"1",
"2",
"3",
"4",
"9",
"6",
"15",
"16",
"81",
"12",
"45",
"64",
"729",
"24",
"105",
"36",
"225",
"48",
"405",
"1024",
"59049",
"60",
"315",
"4096",
"531441",
"192",
"3645",
"144",
"2025",
"120",
"945",
"65536",
"43046721",
"180",
"1575",
"262144",
"387420489",
"240",
"2835",
"576",
"18225",
"3072",
"295245",
"4194304",
"31381059609",
"360",
"3465",
"1296"
] |
[
"nonn"
] | 22 | 1 | 2 |
[
"A086369",
"A385202",
"A385209"
] | null |
Miles Englezou, Jun 21 2025
| 2025-06-30T07:43:23 |
oeisdata/seq/A385/A385209.seq
|
df9ab13621c16a244bab05dccea2a1a5
|
A385210
|
Number of integers k such that prime(n) + primorial(k) is prime.
|
[
"1",
"1",
"2",
"2",
"3",
"3",
"5",
"2",
"5",
"5",
"4",
"5",
"8",
"3",
"5",
"4",
"7",
"7",
"8",
"7",
"8",
"8",
"7",
"6",
"5",
"11",
"8",
"9",
"8",
"3",
"6",
"6",
"5",
"3",
"7",
"10",
"10",
"7",
"8",
"9",
"5",
"6",
"7",
"8",
"6",
"8",
"6",
"12",
"5",
"11",
"10",
"14",
"8",
"7",
"8",
"8",
"7",
"6",
"6",
"9",
"9",
"11",
"8",
"10",
"10",
"9",
"12",
"8",
"8",
"8",
"6",
"9",
"11",
"11",
"7",
"13",
"5",
"11",
"5",
"9",
"10",
"9",
"9",
"7",
"8"
] |
[
"nonn"
] | 21 | 1 | 3 |
[
"A000040",
"A002110",
"A385210"
] | null |
Daniel D Gibson, Jun 21 2025
| 2025-06-22T09:39:38 |
oeisdata/seq/A385/A385210.seq
|
f8d8c074632c158c740e2fb2065c36e6
|
A385211
|
Number of minimum dominating sets in the n-Pasechnik graph.
|
[
"27",
"12789",
"43560",
"14994"
] |
[
"nonn",
"more"
] | 4 | 1 | 1 | null | null |
Eric W. Weisstein, Jun 21 2025
| 2025-06-21T11:49:08 |
oeisdata/seq/A385/A385211.seq
|
986e8e5c8d48fcd1fc84475929b48169
|
A385212
|
a(n) = n^(mu(n)^2), where mu is the Möbius function (A008683).
|
[
"1",
"2",
"3",
"1",
"5",
"6",
"7",
"1",
"1",
"10",
"11",
"1",
"13",
"14",
"15",
"1",
"17",
"1",
"19",
"1",
"21",
"22",
"23",
"1",
"1",
"26",
"1",
"1",
"29",
"30",
"31",
"1",
"33",
"34",
"35",
"1",
"37",
"38",
"39",
"1",
"41",
"42",
"43",
"1",
"1",
"46",
"47",
"1",
"1",
"1",
"51",
"1",
"53",
"1",
"55",
"1",
"57",
"58",
"59",
"1",
"61",
"62",
"1",
"1",
"65",
"66",
"67",
"1",
"69",
"70",
"71",
"1",
"73",
"74",
"1",
"1",
"77",
"78",
"79",
"1",
"1",
"82",
"83",
"1",
"85",
"86",
"87",
"1",
"89",
"1",
"91",
"1",
"93",
"94",
"95",
"1",
"97",
"1",
"1",
"1"
] |
[
"nonn",
"changed"
] | 20 | 1 | 2 |
[
"A008683",
"A008966",
"A013661",
"A055615",
"A107078",
"A344465",
"A385212"
] | null |
Wesley Ivan Hurt, Jun 21 2025
| 2025-07-05T11:50:49 |
oeisdata/seq/A385/A385212.seq
|
8335b53e9489d52cfdcbdbcf81ec469a
|
A385213
|
Number of maximal runs of consecutive parts increasing by 1 in the prime indices of n (with multiplicity).
|
[
"0",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"3",
"2",
"2",
"3",
"3",
"1",
"1",
"1",
"5",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"4",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"4",
"2",
"3",
"2",
"3",
"1",
"3",
"2",
"4",
"2",
"2",
"1",
"2",
"1",
"2",
"3",
"6",
"2",
"2",
"1",
"3",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"5",
"4",
"2",
"1",
"3",
"2",
"2",
"2"
] |
[
"nonn"
] | 6 | 1 | 4 |
[
"A000079",
"A002110",
"A034839",
"A048767",
"A055396",
"A056239",
"A061395",
"A069010",
"A112798",
"A116674",
"A130091",
"A300820",
"A351202",
"A356606",
"A382525",
"A384877",
"A384878",
"A384890",
"A384893",
"A384906",
"A385213"
] | null |
Gus Wiseman, Jun 22 2025
| 2025-06-22T14:37:42 |
oeisdata/seq/A385/A385213.seq
|
a059467774740527e27aa5f296b132b4
|
A385214
|
Number of subsets of {1..n} without all equal lengths of maximal runs of consecutive elements increasing by 1.
|
[
"0",
"0",
"0",
"0",
"2",
"8",
"25",
"66",
"159",
"361",
"791",
"1688",
"3539",
"7328",
"15040",
"30669",
"62246",
"125896",
"253975",
"511357",
"1028052"
] |
[
"nonn",
"more"
] | 5 | 0 | 5 |
[
"A010027",
"A034839",
"A044813",
"A049988",
"A116674",
"A164707",
"A164708",
"A164710",
"A243815",
"A268193",
"A325325",
"A329738",
"A329739",
"A383013",
"A384175",
"A384176",
"A384177",
"A384879",
"A384884",
"A384885",
"A384886",
"A384887",
"A384888",
"A384889",
"A384891",
"A384892",
"A384893",
"A384904",
"A384905",
"A385214"
] | null |
Gus Wiseman, Jun 25 2025
| 2025-06-25T18:04:35 |
oeisdata/seq/A385/A385214.seq
|
d17fdc5f78aad19aa98e9f9e752d19a7
|
A385215
|
Number of maximal sparse submultisets of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1"
] |
[
"nonn"
] | 8 | 1 | 6 |
[
"A000045",
"A000071",
"A001629",
"A034839",
"A116674",
"A166469",
"A202064",
"A245564",
"A268193",
"A316476",
"A319630",
"A374356",
"A384883",
"A384884",
"A384887",
"A384890",
"A384893",
"A384905",
"A385215",
"A385216"
] | null |
Gus Wiseman, Jul 03 2025
| 2025-07-03T10:08:31 |
oeisdata/seq/A385/A385215.seq
|
2fcf500f69579588987e5dc41c2cfe5b
|
A385216
|
Greatest Heinz number of a sparse submultiset of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
|
[
"1",
"2",
"3",
"4",
"5",
"3",
"7",
"8",
"9",
"10",
"11",
"4",
"13",
"14",
"5",
"16",
"17",
"9",
"19",
"20",
"21",
"22",
"23",
"8",
"25",
"26",
"27",
"28",
"29",
"10",
"31",
"32",
"33",
"34",
"7",
"9",
"37",
"38",
"39",
"40",
"41",
"21",
"43",
"44",
"9",
"46",
"47",
"16",
"49",
"50",
"51",
"52",
"53",
"27",
"55",
"56",
"57",
"58",
"59",
"20",
"61",
"62",
"63",
"64",
"65",
"33",
"67",
"68",
"69"
] |
[
"nonn",
"new"
] | 5 | 1 | 2 |
[
"A000005",
"A000720",
"A001221",
"A001222",
"A005117",
"A008284",
"A051903",
"A051904",
"A055396",
"A056239",
"A061395",
"A091602",
"A104210",
"A112798",
"A122111",
"A130091",
"A166469",
"A212166",
"A239964",
"A240312",
"A245564",
"A268193",
"A316476",
"A319630",
"A374356",
"A381542",
"A384883",
"A385215",
"A385216"
] | null |
Gus Wiseman, Jul 05 2025
| 2025-07-06T17:49:16 |
oeisdata/seq/A385/A385216.seq
|
1a53b8419b98221e12f78a19a9d82966
|
A385217
|
Odd multiplicative orders of 2+-i modulo primes p == 3 (mod 4).
|
[
"13695",
"40755",
"7475",
"19895",
"43995",
"117855",
"138075",
"13185",
"69445",
"87725",
"308505",
"220665",
"567645",
"80735",
"1103355",
"1321125",
"1386945",
"507795",
"1594005",
"130995",
"205975",
"2051325",
"2092035",
"2216565",
"2703975",
"1368315",
"2750685",
"504095",
"3039345",
"212605",
"3342405",
"125081",
"1274665",
"3991725",
"152205",
"4279275"
] |
[
"nonn",
"easy"
] | 11 | 1 | 1 |
[
"A385165",
"A385169",
"A385217",
"A385218",
"A385219"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-23T10:24:43 |
oeisdata/seq/A385/A385217.seq
|
88fe48cbe370f831d3110866e60dbbb0
|
A385218
|
Multiplicative orders of 2+-i modulo p == 3 (mod 4) that are congruent to 2 modulo 4.
|
[
"30",
"4290",
"3710",
"3150",
"20090",
"164430",
"21114",
"22490",
"59514",
"43494",
"244650",
"65110",
"819930",
"932190",
"1011030",
"1266750",
"1405410",
"533830",
"1864590",
"135470",
"2266530",
"79002",
"946970",
"3863190",
"1039890",
"4952850",
"170178",
"566202",
"6277530",
"1324930",
"3091690",
"9397290",
"214314",
"5054610",
"3467950",
"3511090"
] |
[
"nonn",
"easy"
] | 13 | 1 | 1 |
[
"A385165",
"A385179",
"A385217",
"A385218",
"A385219"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-23T10:25:35 |
oeisdata/seq/A385/A385218.seq
|
f11d8e6365d0f45974a4d7b2b98ee293
|
A385219
|
Multiplicative orders of 2+-i modulo p == 3 (mod 4) that are not divisible by 2 or 3.
|
[
"7475",
"19895",
"69445",
"87725",
"80735",
"205975",
"504095",
"212605",
"125081",
"1274665",
"720055",
"181445",
"1044005",
"492929",
"891335",
"1346365",
"5501795",
"7360445",
"8179505",
"9489095",
"10628035",
"3850775",
"3138905",
"14618765",
"15377605",
"34181",
"17907265",
"21377825",
"23942035",
"5047511",
"13694965",
"6868865",
"28713125"
] |
[
"nonn",
"easy"
] | 13 | 1 | 1 |
[
"A385165",
"A385188",
"A385217",
"A385218",
"A385219"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-23T10:25:31 |
oeisdata/seq/A385/A385219.seq
|
6a73da7ed9f826a6f42c5fe1cdc3f956
|
A385220
|
Primes p such that multiplicative order of 3 modulo p is odd.
|
[
"2",
"11",
"13",
"23",
"47",
"59",
"71",
"83",
"107",
"109",
"131",
"167",
"179",
"181",
"191",
"227",
"229",
"239",
"251",
"263",
"277",
"311",
"313",
"347",
"359",
"383",
"419",
"421",
"431",
"433",
"443",
"467",
"479",
"491",
"503",
"541",
"563",
"587",
"599",
"601",
"647",
"659",
"683",
"709",
"719",
"733",
"743",
"757",
"827",
"829",
"839",
"863",
"887",
"911",
"947",
"971",
"983"
] |
[
"nonn",
"easy"
] | 22 | 1 | 1 |
[
"A014663",
"A040101",
"A045317",
"A068231",
"A097933",
"A163183",
"A301916",
"A385192",
"A385220",
"A385221",
"A385223",
"A385224",
"A385225",
"A385226"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T12:53:34 |
oeisdata/seq/A385/A385220.seq
|
b7325e5ea1877e28432c239911ab386f
|
A385221
|
Primes p such that multiplicative order of 4 modulo p is odd.
|
[
"3",
"7",
"11",
"19",
"23",
"31",
"43",
"47",
"59",
"67",
"71",
"73",
"79",
"83",
"89",
"103",
"107",
"127",
"131",
"139",
"151",
"163",
"167",
"179",
"191",
"199",
"211",
"223",
"227",
"233",
"239",
"251",
"263",
"271",
"281",
"283",
"307",
"311",
"331",
"337",
"347",
"359",
"367",
"379",
"383",
"419",
"431",
"439",
"443",
"463",
"467",
"479",
"487",
"491",
"499",
"503",
"523",
"547",
"563"
] |
[
"nonn",
"easy"
] | 19 | 1 | 1 |
[
"A002145",
"A014663",
"A163183",
"A385192",
"A385220",
"A385221",
"A385223",
"A385224",
"A385225",
"A385227"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T12:53:42 |
oeisdata/seq/A385/A385221.seq
|
88fbc8aef38dd59f5d1f4a4f418aec4c
|
A385222
|
a(n) is the multiplicative order of -10 modulo prime(n); a(1) = a(3) = 0 for completion.
|
[
"0",
"2",
"0",
"3",
"1",
"3",
"16",
"9",
"11",
"28",
"30",
"6",
"10",
"42",
"23",
"26",
"29",
"60",
"66",
"70",
"8",
"26",
"82",
"44",
"96",
"4",
"17",
"106",
"108",
"112",
"21",
"65",
"8",
"23",
"148",
"150",
"39",
"162",
"83",
"86",
"89",
"180",
"190",
"192",
"49",
"198",
"15",
"111",
"226",
"228",
"232",
"14",
"15",
"25",
"256",
"131",
"268",
"10",
"138",
"28"
] |
[
"nonn",
"easy",
"changed"
] | 18 | 1 | 2 |
[
"A002371",
"A007348",
"A014664",
"A062117",
"A082654",
"A211241",
"A211242",
"A211243",
"A211244",
"A211245",
"A337878",
"A380482",
"A380531",
"A380532",
"A380533",
"A380540",
"A380541",
"A380542",
"A385222"
] | null |
Jianing Song, Jun 27 2025
| 2025-07-07T10:44:10 |
oeisdata/seq/A385/A385222.seq
|
868e0da557bb5ce66b1925e06c0ca3ca
|
A385223
|
Primes p such that multiplicative order of -3 modulo p is odd.
|
[
"2",
"7",
"19",
"31",
"37",
"43",
"61",
"67",
"79",
"103",
"127",
"139",
"151",
"157",
"163",
"199",
"211",
"223",
"271",
"283",
"307",
"331",
"349",
"367",
"373",
"379",
"397",
"439",
"463",
"487",
"499",
"523",
"547",
"571",
"607",
"613",
"619",
"631",
"643",
"661",
"691",
"727",
"739",
"751",
"787",
"811",
"823",
"853",
"859",
"877",
"883",
"907",
"919",
"937",
"967",
"991",
"997"
] |
[
"nonn",
"easy"
] | 21 | 1 | 1 |
[
"A002476",
"A014663",
"A068229",
"A163183",
"A385192",
"A385220",
"A385221",
"A385223",
"A385224",
"A385225",
"A385229"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T11:15:26 |
oeisdata/seq/A385/A385223.seq
|
b620aacf1ee191e8397502adb3e96e7c
|
A385224
|
Primes p such that multiplicative order of -4 modulo p is odd.
|
[
"5",
"13",
"29",
"37",
"41",
"53",
"61",
"101",
"109",
"113",
"137",
"149",
"157",
"173",
"181",
"197",
"229",
"269",
"277",
"293",
"313",
"317",
"349",
"373",
"389",
"397",
"409",
"421",
"457",
"461",
"509",
"521",
"541",
"557",
"569",
"593",
"613",
"653",
"661",
"677",
"701",
"709",
"733",
"757",
"761",
"773",
"797",
"809",
"821",
"829",
"853",
"857",
"877",
"941",
"953",
"997"
] |
[
"nonn",
"easy"
] | 20 | 1 | 1 |
[
"A002144",
"A007521",
"A014663",
"A133204",
"A163183",
"A385192",
"A385220",
"A385221",
"A385223",
"A385224",
"A385225",
"A385230"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T12:53:59 |
oeisdata/seq/A385/A385224.seq
|
a530e3d60df5338f15d9c43762c28523
|
A385225
|
Primes p such that multiplicative order of -5 modulo p is odd.
|
[
"2",
"3",
"7",
"23",
"29",
"43",
"47",
"61",
"67",
"83",
"103",
"107",
"127",
"163",
"167",
"223",
"227",
"229",
"263",
"283",
"307",
"347",
"349",
"367",
"383",
"421",
"443",
"449",
"463",
"467",
"487",
"503",
"509",
"521",
"523",
"547",
"563",
"587",
"607",
"643",
"647",
"661",
"683",
"701",
"709",
"727",
"743",
"761",
"787",
"821",
"823",
"827",
"863",
"883",
"887",
"907",
"947",
"967",
"983"
] |
[
"nonn",
"easy"
] | 18 | 1 | 1 |
[
"A014663",
"A122870",
"A139513",
"A163183",
"A385192",
"A385220",
"A385221",
"A385223",
"A385224",
"A385225",
"A385231"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T15:33:33 |
oeisdata/seq/A385/A385225.seq
|
5a3d54e1869b52ada0af04d532704faa
|
A385226
|
Odd multiplicative orders of 3 modulo primes.
|
[
"1",
"5",
"3",
"11",
"23",
"29",
"35",
"41",
"53",
"27",
"65",
"83",
"89",
"45",
"95",
"113",
"57",
"119",
"125",
"131",
"69",
"155",
"39",
"173",
"179",
"191",
"209",
"105",
"43",
"27",
"221",
"233",
"239",
"49",
"251",
"135",
"281",
"293",
"299",
"75",
"323",
"329",
"31",
"177",
"359",
"183",
"371",
"9",
"413",
"207",
"419",
"431",
"443",
"455",
"473",
"485",
"491"
] |
[
"nonn",
"easy"
] | 16 | 1 | 2 |
[
"A062117",
"A139686",
"A385193",
"A385220",
"A385226",
"A385227",
"A385228",
"A385229",
"A385230",
"A385231"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T16:04:00 |
oeisdata/seq/A385/A385226.seq
|
cc91ed526538a0bdd7fc1fc3756a85b9
|
A385227
|
Odd multiplicative orders of 4 modulo primes.
|
[
"1",
"3",
"5",
"9",
"11",
"5",
"7",
"23",
"29",
"33",
"35",
"9",
"39",
"41",
"11",
"51",
"53",
"7",
"65",
"69",
"15",
"81",
"83",
"89",
"95",
"99",
"105",
"37",
"113",
"29",
"119",
"25",
"131",
"135",
"35",
"47",
"51",
"155",
"15",
"21",
"173",
"179",
"183",
"189",
"191",
"209",
"43",
"73",
"221",
"231",
"233",
"239",
"243",
"245",
"83",
"251",
"261",
"273",
"281",
"57",
"293"
] |
[
"nonn",
"easy"
] | 16 | 1 | 2 |
[
"A082654",
"A139686",
"A385193",
"A385221",
"A385226",
"A385227",
"A385228",
"A385229",
"A385230",
"A385231"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-28T16:03:50 |
oeisdata/seq/A385/A385227.seq
|
60d3ae882aecb1fcb7afda39708d6d47
|
A385228
|
Odd multiplicative orders of -2 modulo primes.
|
[
"1",
"5",
"9",
"7",
"29",
"33",
"41",
"53",
"65",
"69",
"81",
"89",
"105",
"113",
"25",
"35",
"47",
"51",
"15",
"173",
"189",
"209",
"221",
"233",
"245",
"83",
"261",
"273",
"281",
"57",
"293",
"77",
"309",
"107",
"329",
"11",
"115",
"123",
"393",
"135",
"413",
"429",
"441",
"453",
"473",
"97",
"509",
"129",
"131",
"175",
"545",
"137",
"561",
"83",
"585",
"593",
"149",
"629",
"641",
"645",
"653",
"713",
"725"
] |
[
"nonn",
"easy",
"changed"
] | 23 | 1 | 2 |
[
"A139686",
"A163183",
"A337878",
"A385193",
"A385226",
"A385227",
"A385228",
"A385229",
"A385230",
"A385231"
] | null |
Jianing Song, Jun 22 2025
| 2025-07-07T10:44:06 |
oeisdata/seq/A385/A385228.seq
|
83bbc9bc1a80a8cfaf97c0504472b684
|
A385229
|
Odd multiplicative orders of -3 modulo primes.
|
[
"1",
"3",
"9",
"15",
"9",
"21",
"5",
"11",
"39",
"17",
"63",
"69",
"25",
"39",
"81",
"99",
"105",
"111",
"15",
"141",
"17",
"165",
"87",
"61",
"93",
"189",
"99",
"73",
"231",
"243",
"83",
"29",
"7",
"285",
"303",
"51",
"103",
"315",
"107",
"11",
"345",
"121",
"369",
"375",
"131",
"405",
"411",
"71",
"429",
"219",
"63",
"453",
"153",
"117",
"161",
"165",
"83",
"17",
"519",
"105",
"531",
"267",
"543",
"561",
"117"
] |
[
"nonn",
"easy"
] | 21 | 1 | 2 |
[
"A139686",
"A380482",
"A385193",
"A385223",
"A385226",
"A385227",
"A385228",
"A385229",
"A385230",
"A385231"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-30T04:37:20 |
oeisdata/seq/A385/A385229.seq
|
2f13da276bab1e776b3e2a1a4574e5b1
|
A385230
|
Odd multiplicative orders of -4 modulo primes.
|
[
"1",
"3",
"7",
"9",
"5",
"13",
"15",
"25",
"9",
"7",
"17",
"37",
"13",
"43",
"45",
"49",
"19",
"67",
"23",
"73",
"39",
"79",
"87",
"93",
"97",
"11",
"51",
"105",
"19",
"115",
"127",
"65",
"135",
"139",
"71",
"37",
"153",
"163",
"165",
"169",
"175",
"177",
"61",
"189",
"95",
"193",
"199",
"101",
"205",
"207",
"213",
"107",
"219",
"235",
"17",
"83",
"23",
"85",
"265",
"89",
"91",
"277",
"279",
"141",
"59",
"75"
] |
[
"nonn",
"easy"
] | 21 | 1 | 2 |
[
"A139686",
"A380531",
"A385193",
"A385224",
"A385226",
"A385227",
"A385228",
"A385229",
"A385230",
"A385231"
] | null |
Jianing Song, Jun 22 2025
| 2025-06-30T04:38:06 |
oeisdata/seq/A385/A385230.seq
|
87bf9c0d9743ca8baca52117d6035bb9
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.