sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A385231
Odd multiplicative orders of -5 modulo primes.
[ "1", "1", "3", "11", "7", "21", "23", "15", "11", "41", "51", "53", "21", "27", "83", "111", "113", "57", "131", "141", "153", "173", "87", "61", "191", "105", "221", "7", "231", "233", "27", "251", "127", "5", "261", "273", "281", "293", "303", "107", "323", "165", "341", "175", "177", "363", "371", "19", "393", "205", "137", "59", "431", "63", "443", "453", "473", "483", "491", "177", "181", "551", "277", "187", "141" ]
[ "nonn", "easy" ]
21
1
3
[ "A139686", "A380532", "A385193", "A385225", "A385226", "A385227", "A385228", "A385229", "A385230", "A385231" ]
null
Jianing Song, Jun 22 2025
2025-06-30T04:39:27
oeisdata/seq/A385/A385231.seq
65b0a5d5e6b193c2adf64873539eae0e
A385232
Numbers that can be written as s^x + t^y, with 1 < s < t and {s,t} = {x,y}; that is, are of the form s^s + t^t or s^t + t^s.
[ "17", "31", "32", "57", "100", "145", "177", "260", "283", "320", "368", "593", "945", "1124", "1649", "2169", "2530", "3129", "3152", "3381", "4240", "5392", "7073", "8361", "16580", "18785", "20412", "23401", "32993", "46660", "46683", "46912", "49781", "60049", "65792", "69632", "94932", "131361", "178478", "262468", "268705", "397585", "423393", "524649", "533169", "823547", "823570" ]
[ "nonn", "easy" ]
28
1
1
[ "A000312", "A001597", "A173054", "A385232", "A385233", "A385614" ]
null
Alberto Zanoni, Jun 28 2025
2025-07-04T19:21:15
oeisdata/seq/A385/A385232.seq
ea021ada46a9a47768779796cc2eb075
A385233
Numbers that can be written as s^x + t^y + u^z with 1 < s < t < u and {s,t,u} = {x,y,z} (the sequence of exponents can be any permutation of s,t,u).
[ "59", "84", "89", "105", "127", "149", "166", "204", "273", "276", "287", "289", "313", "347", "356", "372", "433", "480", "576", "620", "624", "673", "773", "777", "849", "932", "949", "1065", "1151", "1201", "1230", "1250", "1376", "1380", "1653", "1676", "2033", "2089", "2196", "2244", "2425", "2534", "2545", "2786", "3142", "3156", "3157", "3225", "3270", "3302", "3385", "3388", "3408", "3445", "3718", "4070", "4148", "4249" ]
[ "nonn" ]
22
1
1
[ "A001597", "A385232", "A385233" ]
null
Alberto Zanoni, Jun 28 2025
2025-07-04T14:11:49
oeisdata/seq/A385/A385233.seq
df1e41092e7bb17012647366d7715faa
A385234
a(n) is the number of partitions of n into primes of the form 4*k + 1.
[ "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "2", "1", "3", "2", "2", "3", "2", "3", "2", "3", "4", "2", "3", "3", "4", "5", "3", "5", "4", "5", "5", "5", "6", "5", "6", "5", "7", "7", "6", "8", "7", "9", "8", "8", "11", "8", "11", "10", "10", "13", "9", "14", "12", "13", "15", "12", "17" ]
[ "nonn", "new" ]
14
0
31
[ "A000607", "A002144", "A024941", "A024942", "A319734", "A385234", "A385235" ]
null
Felix Huber, Jul 06 2025
2025-07-11T15:35:17
oeisdata/seq/A385/A385234.seq
3f2bb2c70a1e908b3781978736491e88
A385235
a(n) is the number of partitions of n into primes of the form 4*k + 3.
[ "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "2", "1", "1", "2", "2", "2", "2", "3", "3", "3", "3", "4", "4", "3", "5", "5", "5", "6", "6", "7", "7", "7", "8", "9", "9", "9", "11", "11", "12", "13", "14", "15", "15", "17", "17", "19", "20", "20", "23", "24", "25", "26", "29", "30", "30", "34", "35", "37", "39", "41", "44", "46", "49", "51", "55", "57", "59", "64", "66", "70", "73", "77" ]
[ "nonn", "new" ]
6
0
15
[ "A000607", "A002145", "A024941", "A024942", "A385234", "A385235" ]
null
Felix Huber, Jul 06 2025
2025-07-10T23:51:11
oeisdata/seq/A385/A385235.seq
4232cdf6118c242bc6f5b3cfa5acd1f5
A385236
Largest x such that x^2+y^2 = A001481(n), x and y are nonnegative integers.
[ "0", "1", "1", "2", "2", "2", "3", "3", "3", "4", "4", "3", "4", "5", "5", "5", "4", "5", "6", "6", "6", "5", "6", "7", "7", "6", "7", "7", "6", "8", "8", "8", "6", "8", "7", "8", "9", "9", "9", "8", "9", "9", "7", "10", "10", "10", "9", "10", "8", "10", "9", "11", "11", "11", "8", "11", "10", "11", "12", "12", "11", "12", "10", "12", "11", "12", "9", "10", "13", "13", "13", "13", "12", "10", "13", "12", "13", "14", "14", "14", "11", "14", "12", "14", "13", "14", "15" ]
[ "nonn", "new" ]
16
1
4
[ "A001481", "A229140", "A283303", "A283304", "A385236" ]
null
Zhuorui He, Jul 08 2025
2025-07-09T10:17:13
oeisdata/seq/A385/A385236.seq
20cb85c654c43e96a3844c6890647eec
A385237
Smallest x such that x^3+y^3 = A004999(n), x and y are nonnegative integers.
[ "0", "0", "1", "0", "1", "2", "0", "1", "2", "3", "0", "1", "2", "3", "0", "1", "4", "2", "3", "4", "0", "1", "2", "3", "5", "4", "5", "0", "1", "2", "3", "4", "6", "5", "0", "1", "2", "3", "6", "4", "5", "7", "6", "0", "1", "2", "3", "4", "5", "7", "6", "0", "1", "2", "8", "3", "4", "7", "5", "6", "8", "0", "1", "2", "7", "3", "4", "5", "9", "8", "6", "7", "0", "1", "2", "3", "4", "8", "5", "6", "10", "9", "7", "0", "1", "2", "3", "8", "4", "5", "10", "6", "9", "7", "11" ]
[ "nonn", "new" ]
13
1
6
[ "A004999", "A229140", "A385237" ]
null
Zhuorui He, Jul 08 2025
2025-07-08T07:47:29
oeisdata/seq/A385/A385237.seq
6e40369cccf359894e6c1553042ec84f
A385256
Decimal expansion of the volume of a gyroelongated triangular bicupola with unit edge.
[ "4", "6", "9", "4", "5", "6", "4", "3", "9", "2", "9", "1", "5", "8", "9", "3", "6", "7", "6", "2", "1", "4", "2", "2", "1", "6", "5", "1", "2", "9", "6", "1", "4", "9", "0", "8", "1", "9", "6", "9", "5", "6", "9", "0", "6", "5", "6", "9", "4", "0", "1", "8", "6", "8", "0", "7", "8", "5", "7", "1", "1", "6", "8", "5", "4", "4", "0", "9", "8", "8", "0", "4", "7", "8", "7", "0", "3", "9", "8", "6", "4", "7", "8", "4", "7", "5", "3", "1", "9", "0" ]
[ "nonn", "cons", "easy" ]
9
1
1
[ "A002193", "A384143", "A385256", "A385257" ]
null
Paolo Xausa, Jun 24 2025
2025-06-25T10:26:05
oeisdata/seq/A385/A385256.seq
e3b7825c979a0f781ff017fecdf0ee66
A385257
Decimal expansion of the surface area of a gyroelongated triangular bicupola with unit edge.
[ "1", "4", "6", "6", "0", "2", "5", "4", "0", "3", "7", "8", "4", "4", "3", "8", "6", "4", "6", "7", "6", "3", "7", "2", "3", "1", "7", "0", "7", "5", "2", "9", "3", "6", "1", "8", "3", "4", "7", "1", "4", "0", "2", "6", "2", "6", "9", "0", "5", "1", "9", "0", "3", "1", "4", "0", "2", "7", "9", "0", "3", "4", "8", "9", "7", "2", "5", "9", "6", "6", "5", "0", "8", "4", "5", "4", "4", "0", "0", "0", "1", "8", "5", "4", "0", "5", "7", "3", "0", "9" ]
[ "nonn", "cons", "easy" ]
10
2
2
[ "A002194", "A010527", "A332133", "A375193", "A385256", "A385257" ]
null
Paolo Xausa, Jun 24 2025
2025-06-28T09:14:55
oeisdata/seq/A385/A385257.seq
89e248413a37f5ecd757f5e6b41df24d
A385258
Decimal expansion of the volume of a gyroelongated square bicupola with unit edge.
[ "8", "1", "5", "3", "5", "7", "4", "8", "3", "3", "6", "2", "1", "2", "6", "3", "4", "0", "2", "5", "2", "6", "0", "2", "1", "3", "1", "6", "2", "6", "6", "2", "7", "2", "7", "0", "2", "6", "7", "3", "2", "1", "4", "9", "0", "4", "4", "9", "8", "3", "7", "7", "2", "2", "7", "1", "4", "8", "6", "3", "4", "8", "6", "4", "0", "9", "8", "4", "8", "4", "3", "6", "5", "6", "8", "3", "6", "7", "6", "5", "2", "1", "8", "9", "9", "6", "8", "5", "4", "9" ]
[ "nonn", "cons", "easy" ]
7
1
1
[ "A002193", "A010466", "A179587", "A384214", "A384287", "A385256", "A385258", "A385259" ]
null
Paolo Xausa, Jun 26 2025
2025-06-26T12:09:17
oeisdata/seq/A385/A385258.seq
817177f0895cb2d541b39bdf51ff9b4e
A385259
Decimal expansion of the surface area of a gyroelongated square bicupola with unit edge.
[ "2", "0", "3", "9", "2", "3", "0", "4", "8", "4", "5", "4", "1", "3", "2", "6", "3", "7", "6", "1", "1", "6", "4", "6", "7", "8", "0", "4", "9", "0", "3", "5", "2", "3", "4", "2", "0", "1", "6", "5", "6", "8", "3", "1", "5", "2", "2", "8", "6", "2", "2", "8", "3", "7", "6", "8", "3", "3", "4", "8", "4", "1", "8", "7", "6", "7", "1", "1", "5", "9", "8", "1", "0", "1", "4", "5", "2", "8", "0", "0", "2", "2", "2", "4", "8", "6", "8", "7", "7", "1" ]
[ "nonn", "cons", "easy" ]
10
2
1
[ "A002194", "A179588", "A384215", "A385257", "A385258", "A385259" ]
null
Paolo Xausa, Jun 26 2025
2025-06-26T12:09:31
oeisdata/seq/A385/A385259.seq
33534696dbcaa3e9e58937d5d18a9372
A385260
Decimal expansion of the volume of a gyroelongated pentagonal bicupola with unit edge.
[ "1", "1", "3", "9", "7", "3", "7", "8", "5", "1", "2", "2", "1", "3", "3", "8", "1", "1", "2", "4", "0", "8", "9", "4", "3", "3", "0", "9", "3", "5", "0", "5", "6", "8", "0", "2", "1", "2", "4", "4", "6", "8", "7", "9", "5", "0", "3", "6", "7", "8", "0", "2", "3", "9", "7", "4", "9", "9", "4", "9", "0", "7", "2", "8", "8", "7", "7", "7", "4", "4", "7", "4", "8", "9", "1", "5", "3", "4", "2", "3", "4", "7", "3", "3", "0", "5", "5", "6", "5", "7" ]
[ "nonn", "cons", "easy" ]
8
2
3
[ "A002163", "A384283", "A385256", "A385258", "A385260", "A385261" ]
null
Paolo Xausa, Jun 27 2025
2025-06-29T09:04:33
oeisdata/seq/A385/A385260.seq
7c702803022d801547181783bad47e2e
A385261
Decimal expansion of the surface area of a gyroelongated pentagonal bicupola with unit edge.
[ "2", "6", "4", "3", "1", "3", "3", "5", "8", "5", "7", "9", "4", "4", "5", "1", "3", "5", "4", "6", "9", "7", "3", "8", "7", "1", "5", "1", "6", "0", "7", "1", "2", "6", "1", "9", "5", "0", "8", "8", "5", "7", "8", "7", "7", "4", "3", "5", "9", "8", "2", "5", "1", "3", "6", "8", "8", "3", "2", "7", "4", "1", "7", "5", "9", "9", "3", "7", "2", "3", "5", "6", "1", "1", "2", "3", "3", "9", "3", "2", "7", "4", "0", "7", "7", "3", "4", "7", "8", "8" ]
[ "nonn", "cons", "easy" ]
7
2
1
[ "A002163", "A002194", "A384284", "A385257", "A385259", "A385260", "A385261" ]
null
Paolo Xausa, Jun 27 2025
2025-06-29T09:04:39
oeisdata/seq/A385/A385261.seq
140f1695b8b9857b686d5784c9348101
A385262
Decimal expansion of the volume of a gyroelongated pentagonal cupolarotunda with unit edge.
[ "1", "5", "9", "9", "1", "0", "9", "6", "1", "6", "2", "0", "0", "4", "8", "9", "0", "0", "6", "3", "0", "6", "2", "9", "8", "0", "0", "1", "1", "7", "2", "0", "8", "0", "4", "0", "5", "5", "6", "9", "4", "0", "0", "9", "9", "4", "0", "0", "5", "3", "3", "3", "4", "9", "3", "4", "8", "6", "4", "7", "4", "6", "8", "8", "9", "5", "0", "2", "0", "0", "4", "8", "5", "0", "0", "4", "8", "4", "4", "3", "8", "1", "4", "5", "3", "3", "0", "4", "3", "2" ]
[ "nonn", "cons", "easy" ]
9
2
2
[ "A002163", "A384283", "A385256", "A385258", "A385260", "A385262", "A385263" ]
null
Paolo Xausa, Jun 27 2025
2025-06-30T09:58:00
oeisdata/seq/A385/A385262.seq
c2ad9310131cb95af0196ac8883ee2b9
A385263
Decimal expansion of the surface area of a gyroelongated pentagonal cupolarotunda with unit edge.
[ "3", "2", "1", "9", "8", "7", "8", "6", "3", "7", "0", "3", "5", "0", "4", "4", "4", "7", "7", "7", "6", "7", "8", "2", "3", "9", "3", "2", "9", "8", "9", "6", "6", "5", "0", "4", "0", "6", "6", "0", "1", "1", "6", "5", "1", "6", "0", "9", "1", "2", "2", "1", "8", "7", "9", "9", "9", "3", "7", "9", "7", "4", "0", "1", "9", "3", "7", "1", "4", "9", "6", "8", "4", "3", "4", "1", "4", "7", "6", "3", "9", "4", "3", "7", "8", "7", "1", "1", "7", "8" ]
[ "nonn", "cons", "easy" ]
7
2
1
[ "A002163", "A002194", "A384284", "A385257", "A385259", "A385261", "A385262", "A385263" ]
null
Paolo Xausa, Jun 30 2025
2025-06-30T09:57:55
oeisdata/seq/A385/A385263.seq
74366c4aa660f1fc47d0009ce01031b6
A385264
Decimal expansion of the volume of a gyroelongated pentagonal birotunda with unit edge.
[ "2", "0", "5", "8", "4", "8", "1", "3", "8", "1", "1", "7", "9", "6", "3", "9", "9", "0", "0", "2", "0", "3", "6", "5", "2", "6", "9", "2", "9", "9", "3", "5", "9", "2", "7", "8", "9", "8", "9", "4", "1", "1", "4", "0", "3", "7", "6", "4", "2", "8", "6", "4", "5", "8", "9", "4", "7", "3", "4", "5", "8", "6", "4", "9", "0", "2", "2", "6", "5", "6", "2", "2", "1", "0", "9", "4", "3", "4", "6", "4", "1", "5", "5", "7", "6", "0", "5", "2", "0", "6" ]
[ "nonn", "cons", "easy" ]
10
2
1
[ "A002163", "A384283", "A385260", "A385262", "A385264", "A385488" ]
null
Paolo Xausa, Jun 30 2025
2025-07-03T01:16:39
oeisdata/seq/A385/A385264.seq
364047f2ba65395becd9d69502e95c21
A385265
Number of edge-connected components of polygonal cells in the pinwheel tiling up to rotation of the tiling.
[ "1", "2", "4", "13", "53", "209", "904", "3963", "17900", "81745", "378554", "1768236", "8327789", "39471091", "188145066", "901117082", "4334151970", "20923370406", "101341800704", "492289834345" ]
[ "nonn", "more", "hard" ]
13
0
2
[ "A000105", "A000228", "A000577", "A197156", "A197159", "A197459", "A197462", "A197465", "A309159", "A343398", "A343406", "A343577", "A344211", "A344213", "A383908", "A385265", "A385266" ]
null
Peter Kagey and Bert Dobbelaere, Jun 23 2025
2025-06-25T01:09:13
oeisdata/seq/A385/A385265.seq
654affca9e37ea3c50d76d9018580593
A385266
Number of edge-connected components of polygonal cells in the basketweave tiling up to rotation and reflection of the tiling.
[ "1", "2", "2", "10", "34", "166", "777", "4053", "21225", "114594", "624242", "3442399", "19121661", "106964679", "601639326", "3400619170", "19301719485", "109962791254" ]
[ "nonn", "hard", "more" ]
12
0
2
[ "A000105", "A000228", "A000577", "A197156", "A197159", "A197459", "A197462", "A197465", "A309159", "A343398", "A343406", "A343577", "A344211", "A344213", "A383908", "A385265", "A385266" ]
null
Peter Kagey and Bert Dobbelaere, Jun 23 2025
2025-06-25T01:09:18
oeisdata/seq/A385/A385266.seq
f42bec46116011963e7177319d2f64ee
A385267
Number of face-connected components of half pyramidille cells in the half pyramidille up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "3", "4", "13", "29", "106", "331", "1222", "4390", "16588", "62865", "243217", "947711", "3732800", "14801687", "59103268", "237305379", "957738244", "3882631356", "15804400624" ]
[ "nonn", "hard", "more" ]
15
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 23 2025
2025-06-26T01:17:30
oeisdata/seq/A385/A385267.seq
3ba087146946c0f7f3d25ac171adecd7
A385268
Number of face-connected components of oblate cubille cells in the oblate cubille up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "1", "3", "7", "24", "93", "427", "2043", "10412", "54072", "287121", "1543567", "8393603", "46040030", "254484780", "1415837030", "7922633039" ]
[ "nonn", "hard", "more" ]
16
0
4
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 23 2025
2025-06-26T01:17:22
oeisdata/seq/A385/A385268.seq
7e700e270a8930ca460114a136a746ac
A385269
Number of face-connected components of quarter cubille cells in the quarter cubille up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "4", "18", "67", "374", "2063", "12482", "76835", "486375", "3119695", "20275051", "133031450", "880300617", "5866722906" ]
[ "nonn", "hard", "more" ]
13
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 23 2025
2025-06-26T01:17:17
oeisdata/seq/A385/A385269.seq
307762ebf553b51dbcaff2ca6b5222ad
A385270
Number of face-connected components of elongated dodecahedral cells in the elongated dodecahedral honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "8", "48", "362", "3530", "37861", "431383", "5059338", "60577228", "736054522", "9050344941", "112374575115" ]
[ "nonn", "hard", "more" ]
13
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 23 2025
2025-06-26T01:17:13
oeisdata/seq/A385/A385270.seq
7355f2275a9e41bf618df7193be88170
A385271
Number of face-connected components of square pyramidal cells in the hexakis cubic honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "3", "9", "17", "60", "166", "606", "2106", "8046", "30801", "122442", "491539", "2007571", "8272122", "34408439", "144084776", "607112043", "2571118048", "10938419260", "46720437135" ]
[ "nonn", "hard", "more" ]
12
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:17:08
oeisdata/seq/A385/A385271.seq
d565445b178d50c5080b265e9b590764
A385272
Number of face-connected components of phyllic disphenoidal cells in the phyllic disphenoidal honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "4", "13", "38", "141", "515", "2043", "8176", "33706", "140471", "593705", "2531933", "10893811", "47202599", "205843902", "902644191", "3977976135", "17609163491" ]
[ "nonn", "hard", "more" ]
10
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:17:02
oeisdata/seq/A385/A385272.seq
976847263141fd7a629847b4788d609b
A385273
Number of face-connected components of polyhedral cells in the quarter oblate octahedrille up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "6", "24", "114", "647", "3883", "24605", "159837", "1060450", "7137627", "48624639", "334475495", "2319909330", "16205238283" ]
[ "nonn", "hard", "more" ]
9
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:16:58
oeisdata/seq/A385/A385273.seq
0e009dca5aa05c4b92f70cf939f4ac52
A385274
Number of face-connected components of rhombic pyramidal cells in the rhombic pyramidal honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "4", "14", "43", "197", "850", "4154", "20371", "103405", "530355", "2760533", "14499363", "76842876", "410164367", "2203491401", "11903591737" ]
[ "nonn", "hard", "more" ]
10
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:16:52
oeisdata/seq/A385/A385274.seq
8cd4bf8df271e00bd081ce0551495b20
A385275
Number of face-connected components of irregular pyramidal cells in the square quarter pyramidille up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "3", "6", "26", "92", "441", "2025", "10141", "51131", "264938", "1387761", "7364492", "39433242", "212959457", "1158325878", "6341136682", "34911146404" ]
[ "nonn", "hard", "more" ]
11
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:16:48
oeisdata/seq/A385/A385275.seq
dcafbfb5531cfe5c4008db0d2166384c
A385276
Number of face-connected components of trapezo-rhombic dodecahedral cells in the trapezo-rhombic dodecahedral honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "9", "57", "460", "4641", "50353", "575375", "6754382", "80887484", "982952256", "12087512169" ]
[ "nonn", "hard", "more" ]
10
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:16:43
oeisdata/seq/A385/A385276.seq
61bfba227ef22ad4e0a4df6eb566fea6
A385277
Number of face-connected components of triangular prismatic cells in the triangular prismatic honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "2", "3", "11", "30", "137", "606", "3243", "17681", "101718", "593931", "3532385", "21220273", "128680158", "785895888", "4830179751", "29847223514" ]
[ "nonn", "more", "hard" ]
9
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-26T01:16:38
oeisdata/seq/A385/A385277.seq
01e6a5f8dc28fab7f67aa6e0c63377c5
A385278
Number of face-connected components of polyhedral cells in the triangular pyramidille up to translation, rotation, and reflection of the honeycomb.
[ "1", "1", "3", "4", "16", "39", "152", "517", "2056", "8002", "32692", "134198", "561511", "2366909", "10075926", "43174057", "186208658", "807426463", "3518610508", "15400996653" ]
[ "nonn", "hard", "more" ]
11
0
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027", "A385267", "A385268", "A385269", "A385270", "A385271", "A385272", "A385273", "A385274", "A385275", "A385276", "A385277", "A385278" ]
null
Peter Kagey and Bert Dobbelaere, Jun 25 2025
2025-06-29T10:08:40
oeisdata/seq/A385/A385278.seq
7407daeffa592a270399a4f50397e0fd
A385279
Consecutive states of the linear congruential pseudo-random number generator (625*s + 6571) mod 31104 when started at s=1.
[ "1", "7196", "25095", "14530", "5453", "24360", "21715", "17102", "26649", "21556", "11039", "858", "14053", "18368", "9195", "30310", "7985", "20556", "8119", "10994", "3837", "9688", "27395", "21246", "3913", "26084", "10575", "21898", "7061", "2928", "1435", "1430", "29409", "4732", "9191", "27810", "685", "30344", "29235", "20398" ]
[ "nonn", "easy" ]
9
1
2
[ "A385036", "A385039", "A385279" ]
null
Sean A. Irvine, Jun 23 2025
2025-06-24T09:59:10
oeisdata/seq/A385/A385279.seq
81a3ec2bba13592ce2056f97f6a69581
A385280
a(n) is the number of n-digit primes of which all digits except one are the same.
[ "4", "20", "46", "43", "40", "53", "35", "49", "40", "38", "44", "52", "35", "45", "49", "42", "38", "57", "27", "45", "38", "47", "37", "52", "33", "45", "56", "38", "36", "65", "29", "56", "48", "40", "38", "58", "37", "33", "57", "40", "37", "61", "41", "39", "37", "44", "36", "55", "47", "43", "47", "43", "35", "62", "43", "46", "29", "35", "37", "56", "39", "41", "46", "48", "39", "74", "45", "34", "34", "35", "34", "67", "39", "45", "43" ]
[ "nonn", "base" ]
20
1
1
[ "A004022", "A010785", "A084673", "A241206", "A258915", "A385280" ]
null
Robert Israel, Jun 24 2025
2025-07-02T18:08:56
oeisdata/seq/A385/A385280.seq
96a4010ac24d446dca4553e97c554971
A385281
Expansion of e.g.f. 1/(1 - 2 * x * cosh(2*x))^(1/2).
[ "1", "1", "3", "27", "249", "2825", "41355", "708883", "13888497", "309267729", "7698772755", "211585744139", "6367841422569", "208299923870233", "7357493992966299", "279095125351544835", "11316313498670411745", "488403056864943302177", "22355228989851909617187", "1081663315375339026249211" ]
[ "nonn" ]
15
0
3
[ "A001147", "A001586", "A069814", "A185951", "A205571", "A235134", "A380155", "A385281", "A385282", "A385283" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T07:41:17
oeisdata/seq/A385/A385281.seq
fc1abcf6f828390608c69a456dbd0dc0
A385282
Expansion of e.g.f. 1/(1 - 3 * x * cosh(3*x))^(1/3).
[ "1", "1", "4", "55", "712", "11605", "248320", "6218443", "178519936", "5846857993", "214490045440", "8700546508159", "387053184719872", "18737207168958109", "980424546959183872", "55142056940797803475", "3317502712746788945920", "212592531182720568805777", "14456626429227650204041216" ]
[ "nonn" ]
14
0
3
[ "A007559", "A069814", "A185951", "A205571", "A385281", "A385282" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T07:39:54
oeisdata/seq/A385/A385282.seq
3e2e81a7c6d7e106f0de938bfc61ec2a
A385283
Expansion of e.g.f. 1/(1 - 2 * x * cos(2*x))^(1/2).
[ "1", "1", "3", "3", "-39", "-775", "-9045", "-85813", "-426447", "7321329", "325555155", "7786757011", "137053423881", "1388713844713", "-21121997539461", "-1827406866674085", "-69034283067822495", "-1852635543265039903", "-30574875232261547613", "308376017794648053539", "54871741689019890859065" ]
[ "sign" ]
16
0
3
[ "A001147", "A001586", "A185951", "A235134", "A352252", "A380155", "A385281", "A385283", "A385284" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T08:09:05
oeisdata/seq/A385/A385283.seq
6f9ba57d9e13e37472b2d3ab90872db4
A385284
Expansion of e.g.f. 1/(1 - 3 * x * cos(3*x))^(1/3).
[ "1", "1", "4", "1", "-152", "-3515", "-54080", "-671363", "-2823296", "199955305", "10101514240", "323321153881", "7583054076928", "80180394219757", "-4570380001660928", "-409907196093564395", "-20705306119297925120", "-748794938843475359663", "-14289862480447260852224", "610587389113316064978481" ]
[ "sign" ]
16
0
3
[ "A007559", "A185951", "A352252", "A385283", "A385284" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T08:08:57
oeisdata/seq/A385/A385284.seq
022271d8ff86ea3799f5c4d06f5da9d8
A385285
a(n) = Sum_{k=0..n} (binomial(n, k) mod 8).
[ "1", "2", "4", "8", "16", "16", "32", "32", "16", "32", "24", "48", "40", "64", "40", "64", "16", "32", "40", "64", "48", "48", "88", "96", "40", "80", "88", "112", "72", "112", "112", "128", "16", "32", "40", "64", "64", "96", "120", "160", "48", "96", "72", "144", "104", "176", "160", "192", "40", "80", "104", "176", "120", "176", "176", "224", "72", "144", "160", "224", "176" ]
[ "nonn", "easy", "changed" ]
32
0
2
[ "A001316", "A034930", "A384715", "A385285" ]
null
Peter Luschny, Jun 26 2025
2025-07-07T11:56:36
oeisdata/seq/A385/A385285.seq
bf4b9d76522ab3464af6a55d0d0d2d50
A385286
a(n) = (n!)^2 [x^n] hypergeom([], [1], x)^8.
[ "1", "8", "120", "2528", "66424", "2039808", "70283424", "2643158400", "106391894904", "4518833256512", "200396211454720", "9205443151733760", "435368682010660000", "21100379936684418560", "1044115187294444772480", "52597451834668445910528", "2691037806733052553149304", "139567074682665782246950080" ]
[ "nonn", "walk" ]
19
0
2
[ "A000012", "A000984", "A002895", "A287316", "A385286" ]
null
Peter Luschny, Jun 24 2025
2025-06-24T16:15:18
oeisdata/seq/A385/A385286.seq
923b7d220a81af9f79af2af5c64ca793
A385288
Numbers with a prime number of prime factors, counted with multiplicity, and whose prime factors are each raised to a prime exponent.
[ "4", "8", "9", "25", "27", "32", "49", "72", "108", "121", "125", "128", "169", "200", "243", "288", "289", "343", "361", "392", "500", "529", "675", "800", "841", "961", "968", "972", "1125", "1323", "1331", "1352", "1369", "1372", "1568", "1681", "1800", "1849", "2048", "2187", "2197", "2209", "2312", "2700", "2809", "2888", "3087", "3125", "3267", "3481" ]
[ "nonn" ]
22
1
1
[ "A001248", "A001694", "A030078", "A056166", "A114129", "A385288" ]
null
James C. McMahon, Jun 24 2025
2025-06-25T18:04:07
oeisdata/seq/A385/A385288.seq
e6b823bfe8757e3b1ddf52ecdfb1630d
A385289
Numbers whose trailing digits form a power of 2.
[ "1", "2", "4", "8", "11", "12", "14", "16", "18", "21", "22", "24", "28", "31", "32", "34", "38", "41", "42", "44", "48", "51", "52", "54", "58", "61", "62", "64", "68", "71", "72", "74", "78", "81", "82", "84", "88", "91", "92", "94", "98", "101", "102", "104", "108", "111", "112", "114", "116", "118", "121", "122", "124", "128", "131", "132", "134", "138", "141", "142", "144", "148" ]
[ "nonn", "base", "easy" ]
15
1
2
[ "A000079", "A209229", "A384714", "A385289" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T10:34:58
oeisdata/seq/A385/A385289.seq
4d72a8fd478ccff7163068487030fedc
A385290
Indices of records in A378865.
[ "1", "12", "24", "49", "101", "102", "497", "498", "499", "501", "1001", "1002", "2864", "4999", "5001", "10001", "10002", "10624", "12864", "18624", "27648", "123648", "249856", "442368", "786432", "1259874", "2159784", "8249175", "8759124", "10236587", "10236758", "10237649", "10239674", "10239786", "10268473", "10427539", "10476523" ]
[ "nonn", "base" ]
7
1
2
[ "A276348", "A378865", "A379673", "A385290" ]
null
Jinyuan Wang, Jun 24 2025
2025-06-26T01:19:30
oeisdata/seq/A385/A385290.seq
59c1a65f4956819960119f64c27ec9bc
A385291
Square array read by descending antidiagonals: A(n,k) is the number of fixed n-dimensional polyominoes of size k.
[ "1", "1", "1", "1", "2", "1", "1", "6", "3", "1", "1", "19", "15", "4", "1", "1", "63", "86", "28", "5", "1", "1", "216", "534", "234", "45", "6", "1", "1", "760", "3481", "2162", "495", "66", "7", "1", "1", "2725", "23502", "21272", "6095", "901", "91", "8", "1", "1", "9910", "162913", "218740", "80617", "13881", "1484", "120", "9", "1", "1", "36446", "1152870", "2323730", "1121075", "231008", "27468", "2276", "153", "10", "1" ]
[ "nonn", "tabl" ]
23
1
5
[ "A000012", "A000384", "A001168", "A001931", "A151830", "A151831", "A151832", "A151833", "A151834", "A151835", "A195739", "A385291" ]
null
John Mason, Jun 24 2025
2025-06-29T10:09:12
oeisdata/seq/A385/A385291.seq
e8e16e43d34a85e1640205ea96131900
A385292
Numbers whose digits all belong to the same residue class mod 3.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "14", "17", "22", "25", "28", "30", "33", "36", "39", "41", "44", "47", "52", "55", "58", "60", "63", "66", "69", "71", "74", "77", "82", "85", "88", "90", "93", "96", "99", "111", "114", "117", "141", "144", "147", "171", "174", "177", "222", "225", "228", "252", "255", "258", "282", "285", "288", "300", "303", "306", "309", "330", "333", "336", "339", "360", "363", "366" ]
[ "nonn", "base", "easy", "look" ]
18
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T11:38:48
oeisdata/seq/A385/A385292.seq
01d9ff14e1a2cb63554cdd6e2f419b42
A385293
Numbers whose digits all belong to the same residue class mod 4.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "15", "19", "22", "26", "33", "37", "40", "44", "48", "51", "55", "59", "62", "66", "73", "77", "80", "84", "88", "91", "95", "99", "111", "115", "119", "151", "155", "159", "191", "195", "199", "222", "226", "262", "266", "333", "337", "373", "377", "400", "404", "408", "440", "444", "448", "480", "484", "488", "511", "515", "519", "551", "555", "559", "591", "595", "599" ]
[ "nonn", "base", "easy", "look" ]
15
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T17:20:56
oeisdata/seq/A385/A385293.seq
091992688bca8632e27c1a7dff937df5
A385294
Numbers whose digits all belong to the same residue class mod 5.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "16", "22", "27", "33", "38", "44", "49", "50", "55", "61", "66", "72", "77", "83", "88", "94", "99", "111", "116", "161", "166", "222", "227", "272", "277", "333", "338", "383", "388", "444", "449", "494", "499", "500", "505", "550", "555", "611", "616", "661", "666", "722", "727", "772", "777", "833", "838", "883", "888", "944", "949", "994", "999", "1111", "1116" ]
[ "nonn", "base", "easy", "look" ]
16
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T17:19:25
oeisdata/seq/A385/A385294.seq
64b78d4941fe025f5e474ff85270a1a8
A385295
Numbers whose digits all belong to the same residue class mod 6.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "17", "22", "28", "33", "39", "44", "55", "60", "66", "71", "77", "82", "88", "93", "99", "111", "117", "171", "177", "222", "228", "282", "288", "333", "339", "393", "399", "444", "555", "600", "606", "660", "666", "711", "717", "771", "777", "822", "828", "882", "888", "933", "939", "993", "999", "1111", "1117", "1171", "1177", "1711", "1717", "1771", "1777", "2222" ]
[ "nonn", "base", "look" ]
15
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T17:23:26
oeisdata/seq/A385/A385295.seq
50809fa81bacc5adca75e9902e49313b
A385296
Numbers whose digits all belong to the same residue class mod 7.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "18", "22", "29", "33", "44", "55", "66", "70", "77", "81", "88", "92", "99", "111", "118", "181", "188", "222", "229", "292", "299", "333", "444", "555", "666", "700", "707", "770", "777", "811", "818", "881", "888", "922", "929", "992", "999", "1111", "1118", "1181", "1188", "1811", "1818", "1881", "1888", "2222", "2229", "2292", "2299", "2922", "2929", "2992", "2999" ]
[ "nonn", "base", "look" ]
15
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T17:26:00
oeisdata/seq/A385/A385296.seq
64600ec4cbfe91f3aeee8a6cd239992f
A385297
Numbers whose digits all belong to the same residue class mod 8.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "19", "22", "33", "44", "55", "66", "77", "80", "88", "91", "99", "111", "119", "191", "199", "222", "333", "444", "555", "666", "777", "800", "808", "880", "888", "911", "919", "991", "999", "1111", "1119", "1191", "1199", "1911", "1919", "1991", "1999", "2222", "3333", "4444", "5555", "6666", "7777", "8000", "8008", "8080", "8088", "8800", "8808", "8880", "8888" ]
[ "nonn", "base", "look" ]
16
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T17:07:43
oeisdata/seq/A385/A385297.seq
c5a85acc805ea760ce07b95fe0d42aef
A385298
Numbers whose digits all belong to the same residue class mod 9.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "22", "33", "44", "55", "66", "77", "88", "90", "99", "111", "222", "333", "444", "555", "666", "777", "888", "900", "909", "990", "999", "1111", "2222", "3333", "4444", "5555", "6666", "7777", "8888", "9000", "9009", "9090", "9099", "9900", "9909", "9990", "9999", "11111", "22222", "33333", "44444", "55555", "66666", "77777", "88888", "90000", "90009" ]
[ "nonn", "base", "look" ]
15
1
3
[ "A059708", "A385292", "A385293", "A385294", "A385295", "A385296", "A385297", "A385298" ]
null
Stefano Spezia, Jun 24 2025
2025-06-25T17:13:30
oeisdata/seq/A385/A385298.seq
e6c496f65353c9a4fd7667a8e28ac6fa
A385299
Number of Schröder paths of semilength 2n and having n valleys.
[ "1", "1", "11", "155", "2554", "46377", "899107", "18269407", "384577010", "8321452706", "184074021999", "4145999605431", "94799675260406", "2195442934642375", "51402741095491155", "1214975868437406375", "28956949406425290114", "695214262740084758154", "16800125921481031616230", "408354422827279445763942" ]
[ "nonn" ]
25
0
3
[ "A006318", "A007004", "A101282", "A385299" ]
null
Alois P. Heinz, Jun 24 2025
2025-07-02T22:46:56
oeisdata/seq/A385/A385299.seq
78f52247e5434cf8123b90d42ddbfdcc
A385300
Integers k containing only odd digits, except the last digit, such that k^2 is composed of only even digits.
[ "2", "8", "78", "92", "932", "7798", "51192", "939398", "5157798", "7797578", "7797978", "9393978", "15119592", "15773398", "53179378", "53559332", "77979998", "79175932", "155139378", "157759592", "517751738", "535393932", "917933998", "939597798", "1511979592", "5157759592", "7771757978", "7775735378", "9393959798" ]
[ "nonn", "base", "changed" ]
31
1
1
[ "A000290", "A014261", "A030097", "A136904", "A385300" ]
null
Gonzalo Martínez, Jun 24 2025
2025-07-10T08:13:13
oeisdata/seq/A385/A385300.seq
4c5b80618cf43077b042f2e4d08858e0
A385301
a(n) = Sum_{k=0..p-1} 1/k! mod p where p is prime(n) and 1/k! is the inverse of k! modulo p.
[ "0", "1", "0", "3", "6", "0", "8", "4", "4", "9", "21", "0", "39", "37", "40", "32", "26", "12", "61", "6", "57", "74", "21", "41", "39", "60", "86", "64", "4", "27", "55", "2", "63", "113", "29", "42", "150", "97", "33", "84", "100", "120", "184", "72", "1", "134", "100", "78", "145", "8", "199", "98", "65", "25", "104", "95", "153", "207", "90", "132", "67", "132", "301", "251", "293", "185", "168", "176", "120", "297" ]
[ "nonn" ]
32
1
4
[ "A064384", "A153229", "A385301" ]
null
Paras Dhanuka, Jun 24 2025
2025-07-01T02:54:40
oeisdata/seq/A385/A385301.seq
3bbad80b86b04c224d3ac98a375c59c3
A385302
Least common multiple of {n^n-1, n^(n-1)-1, ..., n-1}.
[ "1", "0", "3", "104", "5355", "15107664", "2684295425", "2261529015616800", "97901171532649325295", "671549787473885210310580160", "113480471243172592617657936025689", "67423693602852027222491606156048516615143200", "52627558956534012662100374980910169826998422190695" ]
[ "nonn" ]
35
0
3
[ "A000217", "A000961", "A003418", "A048861", "A156291", "A351657", "A385302" ]
null
Avery Diep, Jun 24 2025
2025-06-27T18:41:06
oeisdata/seq/A385/A385302.seq
92026d6e4596eba24665979055b0b6f1
A385303
Decimal expansion of the real number whose continued fraction is Golomb's sequence (A001462).
[ "1", "4", "1", "0", "7", "8", "4", "5", "3", "0", "7", "4", "9", "5", "3", "5", "5", "9", "1", "9", "3", "4", "7", "9", "9", "4", "2", "0", "2", "1", "0", "5", "7", "5", "1", "7", "8", "6", "1", "4", "6", "8", "6", "5", "1", "7", "3", "6", "6", "1", "0", "8", "6", "5", "1", "7", "2", "5", "2", "2", "6", "5", "6", "4", "7", "9", "6", "3", "4", "2", "1", "3", "2", "2", "0", "5", "1", "2", "6", "7", "2", "3", "6", "5", "3", "2", "9", "6", "3", "3", "5", "6", "8", "9", "8", "7", "3", "8", "1", "7" ]
[ "nonn", "cons" ]
18
1
2
[ "A001462", "A052119", "A060997", "A385303" ]
null
Jason Bard, Jun 24 2025
2025-07-02T17:45:33
oeisdata/seq/A385/A385303.seq
9b564fa1d9ad6f0b92e35bfa62ebb099
A385304
Expansion of e.g.f. 1/(1 - 2 * sinh(x))^(1/2).
[ "1", "1", "3", "16", "117", "1096", "12543", "169576", "2644617", "46735936", "922993083", "20145579136", "481555537917", "12511452674176", "351058439096823", "10579734482269696", "340820224678288017", "11687491783287586816", "425075150516293691763", "16343274366458168160256", "662325275389743380902917" ]
[ "nonn" ]
15
0
3
[ "A001147", "A006154", "A136630", "A235134", "A364822", "A380015", "A385304", "A385305", "A385306", "A385308", "A385310" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-28T03:05:26
oeisdata/seq/A385/A385304.seq
be088a7a004de80ffdee55851dc93c28
A385305
Expansion of e.g.f. 1/(1 - 3 * sinh(x))^(1/3).
[ "1", "1", "4", "29", "296", "3921", "63904", "1236509", "27700096", "705098241", "20100847104", "634406699389", "21959759364096", "827184049670161", "33684401687855104", "1474548883501060669", "69051807696652599296", "3444499079760040247681", "182339939994632235515904", "10209271857672376613472349" ]
[ "nonn" ]
12
0
3
[ "A006154", "A007559", "A136630", "A235135", "A380017", "A385304", "A385305", "A385307", "A385309", "A385311" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-28T03:10:53
oeisdata/seq/A385/A385305.seq
551a6e58a737314ea058ef04846da1ae
A385306
Expansion of e.g.f. 1/(1 - 2 * sin(x))^(1/2).
[ "1", "1", "3", "14", "93", "796", "8343", "103424", "1479993", "24008656", "435364683", "8726775584", "191601310293", "4572794295616", "117871476051423", "3263515787807744", "96591500816346993", "3043368045293138176", "101702692426476460563", "3592948632452749243904", "133794496537591022166093" ]
[ "nonn" ]
15
0
3
[ "A000111", "A001147", "A001586", "A007289", "A136630", "A380015", "A385304", "A385306", "A385307", "A385308", "A385310" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-28T03:16:32
oeisdata/seq/A385/A385306.seq
45f3b0f78c0436753e3085ec44f701e0
A385307
Expansion of e.g.f. 1/(1 - 3 * sin(x))^(1/3).
[ "1", "1", "4", "27", "264", "3361", "52704", "981707", "21176704", "519150241", "14255163904", "433384277787", "14451212550144", "524406240059521", "20572970822959104", "867641565719168267", "39145118179183427584", "1881294510800399083201", "95950279080398196834304", "5176039012712211526485147" ]
[ "nonn" ]
13
0
3
[ "A000111", "A007559", "A007788", "A136630", "A380017", "A385305", "A385306", "A385307", "A385309", "A385311" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-28T03:43:11
oeisdata/seq/A385/A385307.seq
7c74053762febe344ab75900a33a4c54
A385308
Expansion of e.g.f. 1/(1 - 2 * x * cosh(x))^(1/2).
[ "1", "1", "3", "18", "141", "1400", "17055", "245392", "4070073", "76483584", "1606033755", "37267953536", "947051118981", "26156846230528", "780174007426359", "24992424003517440", "855795857724702705", "31193844533488074752", "1205893835653392258867", "49280187764171870470144", "2122704756621224015194365" ]
[ "nonn" ]
16
0
3
[ "A001147", "A185951", "A205571", "A352648", "A380015", "A385281", "A385304", "A385306", "A385308", "A385309", "A385310" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-28T03:58:24
oeisdata/seq/A385/A385308.seq
faa053fa2084beebc1fe13aeb53365c5
A385309
Expansion of e.g.f. 1/(1 - 3 * x * cosh(x))^(1/3).
[ "1", "1", "4", "31", "328", "4485", "75520", "1509347", "34916224", "917703145", "27011107840", "880133628231", "31451749424128", "1223047891889837", "51414400611438592", "2323391075748100555", "112315439676217262080", "5783449255108473820497", "316034972288791445241856", "18265740423344520141491951" ]
[ "nonn" ]
15
0
3
[ "A007559", "A185951", "A205571", "A352649", "A380017", "A385282", "A385305", "A385307", "A385308", "A385309", "A385311" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T07:41:27
oeisdata/seq/A385/A385309.seq
949019e2304f7d876052d9cb28403452
A385310
Expansion of e.g.f. 1/(1 - 2 * x * cos(x))^(1/2).
[ "1", "1", "3", "12", "69", "500", "4455", "46928", "571977", "7914384", "122585355", "2100940864", "39470867469", "806555184448", "17808628411119", "422498774818560", "10717948285126545", "289501146405400832", "8295124400250875667", "251300745071590317056", "8025654235707259740885", "269482309052945201181696" ]
[ "nonn" ]
17
0
3
[ "A001147", "A185951", "A352252", "A352646", "A380015", "A385283", "A385304", "A385306", "A385308", "A385310", "A385311" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T08:08:50
oeisdata/seq/A385/A385310.seq
b878a945bfacbe88a0111f818a54f454
A385311
Expansion of e.g.f. 1/(1 - 3 * x * cos(x))^(1/3).
[ "1", "1", "4", "25", "232", "2805", "41920", "744933", "15340416", "359136073", "9419223040", "273558859409", "8714789788672", "302151400126589", "11326084055150592", "456421403198919325", "19677025400034590720", "903660903945306053137", "44042354270955276599296", "2270411632567521580120713" ]
[ "nonn" ]
15
0
3
[ "A007559", "A185951", "A352252", "A352647", "A380017", "A385284", "A385305", "A385307", "A385309", "A385310", "A385311" ]
null
Seiichi Manyama, Jun 24 2025
2025-06-26T08:08:42
oeisdata/seq/A385/A385311.seq
421152f4f706a19895469f2e96963c32
A385312
a(n) is the number of ternary strings of length n with at least one 0, at least two 1's and at least three 2's.
[ "0", "0", "0", "0", "0", "0", "60", "455", "2268", "9366", "34800", "121077", "403392", "1304732", "4133220", "12900771", "39837684", "122064930", "371891592", "1128317489", "3412864056", "10299925992", "31033986588", "93394501983", "280818931020", "843832511150", "2534467085280", "7609793357805", "22843103816688", "68558705110836" ]
[ "nonn", "easy" ]
13
0
7
[ "A000453", "A000478", "A358341", "A385312" ]
null
Enrique Navarrete, Jun 25 2025
2025-06-28T19:46:49
oeisdata/seq/A385/A385312.seq
47eb20a125b8e5ba6e1af2283f9db614
A385313
a(n) = c(n) + Sum_{d|n} d * phi(n/d) * (1 - c(d)), where c = A010051.
[ "1", "2", "3", "6", "5", "8", "7", "16", "15", "14", "11", "30", "13", "20", "23", "40", "17", "45", "19", "54", "33", "32", "23", "80", "45", "38", "63", "78", "29", "97", "31", "96", "53", "50", "59", "144", "37", "56", "63", "144", "41", "139", "43", "126", "135", "68", "47", "200", "91", "135", "83", "150", "53", "189", "95", "208", "93", "86", "59", "300", "61", "92", "195", "224", "113", "223", "67", "198", "113", "245", "71", "372", "73", "110", "225", "222", "137", "265", "79", "360", "243", "122", "83", "432" ]
[ "nonn" ]
10
1
2
[ "A000010", "A010051", "A018804", "A380447", "A385313" ]
null
Wesley Ivan Hurt, Jun 25 2025
2025-07-02T12:15:31
oeisdata/seq/A385/A385313.seq
4e71335791ca4042325ee4ae7f252af9
A385314
a(n) is the least positive integer m such that Sum_{k = 1 .. m} k^n is divisible by n.
[ "1", "3", "2", "7", "4", "4", "6", "15", "2", "4", "10", "8", "12", "3", "5", "31", "16", "27", "18", "24", "6", "11", "22", "31", "4", "12", "2", "7", "28", "4", "30", "63", "11", "8", "14", "40", "36", "19", "12", "31", "40", "8", "42", "16", "5", "11", "46", "31", "6", "4", "17", "32", "52", "40", "10", "31", "18", "28", "58", "31", "60", "15", "6", "127", "4", "27", "66", "8", "23", "7", "70", "80", "72", "36", "5", "47", "6", "36", "78", "31", "2" ]
[ "nonn" ]
19
1
2
[ "A057291", "A057292", "A103438", "A385314" ]
null
Robert Israel, Jun 25 2025
2025-06-27T16:26:58
oeisdata/seq/A385/A385314.seq
738b5847ca99f47664a893d261d12751
A385323
a(n) is the smallest prime p for which the Diophantine equation Sum_{i=1..n} (x_i)^3 = p^3 has a solution, where (x_i), i=1..n, is a strictly increasing sequence of positive integers, or -1 if no such prime exists.
[ "2", "-1", "19", "13", "17", "13", "17", "17", "19", "19", "23", "23", "29", "29", "29", "31", "37", "37", "41", "41", "43", "47", "53", "53", "53", "59", "59", "59", "67", "67", "67", "71", "71" ]
[ "sign", "more", "new" ]
22
1
1
[ "A030052", "A377372", "A377739", "A384439", "A385323" ]
null
Jean-Marc Rebert, Jun 25 2025
2025-07-06T14:56:40
oeisdata/seq/A385/A385323.seq
c6da0bd213299941fecddb062bd9bbb7
A385324
Numbers whose digits are all powers of the same single-digit base.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "22", "24", "28", "31", "33", "39", "41", "42", "44", "48", "51", "55", "61", "66", "71", "77", "81", "82", "84", "88", "91", "93", "99", "111", "112", "113", "114", "115", "116", "117", "118", "119", "121", "122", "124", "128", "131", "133", "139", "141", "142", "144", "148" ]
[ "nonn", "base", "easy", "look" ]
21
1
3
[ "A028846", "A174813", "A276037", "A276039", "A284293", "A385324", "A385351" ]
null
Stefano Spezia, Jun 25 2025
2025-06-27T20:59:59
oeisdata/seq/A385/A385324.seq
26c23715c6d8762f0ea78d7d698614ed
A385325
Numbers x such that there exist two integers y, z both >0 such that sigma(x)^3 = x^3 + y^3 + z^3.
[ "5", "6", "53", "58", "102", "118", "152", "168", "197", "214", "250", "258", "408", "426", "445", "476", "487", "491", "508", "672", "760", "783", "861", "885", "1182", "1204", "1242", "1299", "1305", "1350", "1615", "1890", "1988", "1992", "2040", "2082", "2190", "2465", "2519", "2679", "3105", "3144", "3213", "3276", "3292", "3432", "3994", "4035", "4210", "4256" ]
[ "nonn" ]
30
1
1
[ "A000203", "A003325", "A066784", "A096545", "A385325" ]
null
S. I. Dimitrov, Jun 25 2025
2025-06-27T10:54:55
oeisdata/seq/A385/A385325.seq
0cb1a84b26c6563ff87ed3d58bbf97e4
A385326
The number of positive k <= 2*n + 1 such that 2*n + 1 divides (2^k + 2*n + 1)^2 - 1.
[ "1", "3", "2", "2", "3", "2", "2", "7", "4", "2", "7", "2", "2", "3", "2", "6", "6", "5", "2", "6", "4", "6", "7", "2", "2", "12", "2", "5", "6", "2", "2", "21", "10", "2", "6", "2", "8", "7", "5", "2", "3", "2", "21", "6", "8", "15", "18", "5", "4", "6", "2", "2", "17", "2", "6", "6", "8", "5", "19", "9", "2", "12", "2", "18", "18", "2", "14", "7", "4", "2", "6", "4", "10", "7", "2", "10", "12", "15", "6", "6", "4", "2", "16", "2", "2", "19", "2", "5", "6", "2", "2", "6", "10", "9", "21", "2", "4", "32", "2", "2", "6" ]
[ "nonn" ]
17
0
2
[ "A003462", "A005384", "A005408", "A076481", "A081858", "A102781", "A224486", "A385326" ]
null
Juri-Stepan Gerasimov, Jun 25 2025
2025-07-02T19:09:35
oeisdata/seq/A385/A385326.seq
5a28ac8bcd1c72d9fed767880a6a89d1
A385327
The numbers of people such that, in the variant of the Josephus problem in which three people are skipped and then one is eliminated, the first person is the last to be eliminated.
[ "1", "2", "5", "9", "12", "16", "218", "517", "1226", "6890", "12249", "16332", "21776", "38713", "122353", "687461", "1222153", "51443354", "385389994", "1218022698", "1624030264", "2887164914", "5132737625", "9124866889", "28839085477", "162036891790", "910429504490", "2877406829006", "5115389918233", "510385736583765" ]
[ "nonn", "new" ]
11
1
2
[ "A000079", "A081614", "A088333", "A384770", "A384772", "A384774", "A385327", "A385333" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Jun 25 2025
2025-07-05T22:01:11
oeisdata/seq/A385/A385327.seq
c2938bc7b9efbb69cc28ee4a2ccab74d
A385328
The number of people in a variation of the Josephus problem when the first person is freed and the elimination process is to skip the number of people equaling the number of letters in consecutive numbers, then eliminate the next person.
[ "1", "2", "5", "26", "50", "82", "857", "1114", "3340", "3733", "3777", "11023", "12960", "17992" ]
[ "nonn", "more", "word", "new" ]
21
1
2
[ "A000079", "A380201", "A380202", "A380204", "A380246", "A380247", "A385328" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Jun 25 2025, Jun 25 2025, Jul 06 2025
2025-07-18T22:02:40
oeisdata/seq/A385/A385328.seq
6d100b6389b204f43428d8d597f641cc
A385329
a(n) = 5^n - 2*4^(n-1)*(n+4) + 3^(n-2)*(n^2+5*n+9).
[ "0", "0", "0", "0", "6", "110", "1220", "10612", "79786", "544434", "3468792", "21012200", "122500334", "693324502", "3833742796", "20809676604", "111288341970", "588046458074", "3076991784512", "15972440574064", "82370489136214", "422506631928510", "2157589903432020", "10977781519321220", "55686118748465786" ]
[ "nonn", "easy", "changed" ]
17
0
5
[ "A112495", "A381646", "A385329" ]
null
Enrique Navarrete, Jun 25 2025
2025-07-05T09:59:54
oeisdata/seq/A385/A385329.seq
b1e60e4cae595c5ec85f3e42c16f7ec9
A385330
The point numbers encountered by a rotating marker following the process described in the Comments.
[ "1", "1", "2", "1", "1", "2", "3", "1", "2", "2", "1", "3", "1", "2", "4", "1", "3", "1", "2", "2", "2", "3", "1", "4", "3", "1", "2", "5", "1", "4", "1", "2", "3", "1", "3", "2", "2", "4", "2", "3", "1", "5", "4", "3", "6", "1", "1", "2", "5", "2", "1", "4", "3", "1", "2", "3", "4", "1", "3", "2", "2", "5", "4", "2", "6", "3", "1", "5", "7", "1", "4", "3", "6", "1", "1", "2", "2", "5", "3", "2", "1", "4", "4", "3", "1", "2", "5" ]
[ "nonn", "tabf", "new" ]
32
1
3
[ "A385330", "A385615" ]
null
Tamas Sandor Nagy, Jun 25 2025
2025-07-09T05:31:40
oeisdata/seq/A385/A385330.seq
9725ce78f5259bc1ecf74f80803e33d6
A385331
a(1) = 1 and a(n) is the smallest prime factor of n-th numerator of partial sum for Liouville's constant (A145571), for n > 1.
[ "1", "11", "3", "4447", "7823", "3", "7", "13", "3", "61", "31", "3", "11", "7", "3", "9281", "19163", "3", "17", "53861", "3", "599", "397", "3" ]
[ "nonn", "base", "more" ]
19
1
2
[ "A012245", "A145571", "A385331" ]
null
Gonzalo Martínez, Jun 25 2025
2025-07-01T22:20:52
oeisdata/seq/A385/A385331.seq
6c3865b7eed764c80608132989e9c143
A385332
Integers k such that the set {k, k^2, ..., k^9} contains at least 8 zeroless numbers.
[ "1", "2", "3", "5", "6", "11", "17", "68", "121", "786" ]
[ "nonn", "base", "more" ]
14
1
2
[ "A124648", "A124649", "A385332" ]
null
Gonzalo Martínez, Jun 25 2025
2025-07-01T10:53:43
oeisdata/seq/A385/A385332.seq
185276ece32882ad38d8e4df82b435a3
A385333
The numbers of people such that, in the variant of the Josephus problem in which three people are skipped and then one is eliminated, the last person is the last to be eliminated.
[ "1", "21", "38", "51", "122", "163", "689", "919", "2906", "3875", "5167", "51617", "68823", "163137", "290022", "1629537", "6866858", "9155811", "16276998", "28936886", "38582515", "121939802", "162586403", "216781871", "289042495", "513853325", "685137767", "913517023", "2165373685", "12166489185", "38452113969", "121527668842" ]
[ "nonn", "new" ]
16
1
2
[ "A000225", "A088333", "A182459", "A384770", "A384772", "A384774", "A385327", "A385333" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Jun 25 2025
2025-07-07T00:41:11
oeisdata/seq/A385/A385333.seq
68292a491851f90187f8546841a20bb0
A385334
Cat number of complete graphs on n vertices.
[ "0", "1", "2", "5", "8", "11", "17", "21", "28", "33", "41", "47", "59", "66", "77", "85", "100", "109", "123", "133", "151", "162", "179", "191", "215", "228", "248", "262", "287", "302", "325", "341", "372", "389", "415", "433", "465", "484", "513", "533", "571", "592", "624", "646", "685", "708", "743", "767", "815", "840", "878", "904", "950", "977", "1018", "1046" ]
[ "easy", "nonn", "new" ]
39
1
3
[ "A002620", "A385334" ]
null
Rylo Ashmore, Jun 25 2025
2025-07-16T08:17:18
oeisdata/seq/A385/A385334.seq
291c9da8a89c55451c0e2bc42dc35465
A385335
Consecutive states of the linear congruential pseudo-random number generator (1741*s + 2731) mod 12960 when started at s=1.
[ "1", "4472", "12483", "1714", "6005", "11676", "9367", "6998", "3849", "3520", "971", "8442", "3613", "7364", "6015", "3166", "6737", "3048", "8659", "5570", "6021", "652", "10343", "8454", "11545", "1616", "3867", "8938", "11789", "11700", "12271", "8462", "12513", "2104", "11075", "12786", "10837", "188", "6039", "6070", "8201", "11712" ]
[ "nonn", "look", "easy", "changed" ]
11
1
2
[ "A384431", "A385335", "A385336" ]
null
Sean A. Irvine, Jun 25 2025
2025-07-08T16:40:17
oeisdata/seq/A385/A385335.seq
ba9282bb18bdd9331659b95fb2f918d9
A385336
Consecutive states of the linear congruential pseudo-random number generator (1541*s + 2957) mod 14000 when started at s=1.
[ "1", "4498", "4375", "10832", "7069", "4286", "13683", "4460", "1817", "2954", "5071", "5368", "1045", "3302", "9339", "2356", "7553", "8130", "1287", "12224", "10141", "6238", "11715", "9772", "11609", "426", "1423", "11800", "757", "7494", "1211", "7108", "8385", "2242", "13879", "12496", "9293", "1470", "227", "2764", "6281", "7978", "5055" ]
[ "nonn", "look", "easy", "changed" ]
11
1
2
[ "A385279", "A385335", "A385336" ]
null
Sean A. Irvine, Jun 25 2025
2025-07-08T16:41:52
oeisdata/seq/A385/A385336.seq
a8facf13cd0ebf4452df6459ffd4123f
A385337
Consecutive states of the linear congruential pseudo-random number generator (1291*s + 4621) mod 21870 when started at s=1.
[ "1", "5912", "4383", "20614", "1505", "1146", "18817", "21668", "6279", "18910", "10511", "14922", "1453", "21494", "345", "12616", "20597", "1428", "11089", "17540", "13311", "21172", "173", "9264", "1555", "86", "6297", "20278", "5129", "21420", "14161", "3152", "6033", "7504", "3875", "20886", "2737", "17018", "17379", "2290", "8561" ]
[ "nonn", "look", "easy", "changed" ]
11
1
2
[ "A385036", "A385078", "A385337" ]
null
Sean A. Irvine, Jun 25 2025
2025-07-08T16:43:33
oeisdata/seq/A385/A385337.seq
9489dafd9d14c262fd2d09c5ab553f86
A385338
Consecutive states of the linear congruential pseudo-random number generator (421*s + 17117) mod 81000 when started at s=1.
[ "1", "17538", "29615", "11032", "44589", "78086", "5323", "71100", "61217", "31474", "64671", "27608", "57085", "73902", "25859", "49756", "66393", "23570", "58087", "9744", "69341", "49678", "33555", "49772", "73129", "24426", "13463", "15040", "30957", "9014", "5011", "20748", "4025", "10642", "42399", "47096", "80533", "63510" ]
[ "nonn", "look", "easy", "changed" ]
10
1
2
[ "A383126", "A385039", "A385338" ]
null
Sean A. Irvine, Jun 25 2025
2025-07-06T18:13:09
oeisdata/seq/A385/A385338.seq
314ae446f29b95013a668f76d5dbe1bf
A385339
Consecutive states of the linear congruential pseudo-random number generator (1255*s + 6173) mod 29282 when started at s=1.
[ "1", "7428", "16637", "7542", "13297", "3168", "28943", "19958", "17353", "27662", "22813", "27974", "4425", "25250", "11799", "26508", "9361", "12146", "22763", "23788", "21755", "17874", "8031", "12070", "15229", "26704", "21085", "26202", "5997", "6934", "11589", "26496", "23583", "28018", "1081", "15856", "22975", "26310", "24409" ]
[ "nonn", "easy" ]
6
1
2
[ "A385036", "A385078", "A385279", "A385339" ]
null
Sean A. Irvine, Jun 25 2025
2025-06-25T22:50:05
oeisdata/seq/A385/A385339.seq
7a2340adb4a2985535a609a81eb34458
A385340
Consecutive states of the linear congruential pseudo-random number generator (1093*s + 18257) mod 86436 when started at s=1.
[ "1", "19350", "77423", "20752", "53961", "48278", "60151", "71940", "78353", "10", "29187", "24764", "30841", "17430", "53327", "46804", "4917", "33506", "77887", "9288", "57029", "30598", "11139", "5708", "33709", "40458", "70055", "6076", "3753", "57794", "2383", "29796", "85349", "40270", "37443", "59228", "13897", "81378", "21767" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383126", "A385338", "A385340" ]
null
Sean A. Irvine, Jun 25 2025
2025-07-06T18:13:45
oeisdata/seq/A385/A385340.seq
75007b08018b378c5d0f89ab3fa49203
A385341
Consecutive states of the linear congruential pseudo-random number generator (1021*s + 25673) mod 121500 when started at s=1.
[ "1", "26694", "64247", "11860", "106233", "111566", "89059", "72912", "110825", "61498", "121131", "13424", "2077", "80790", "13763", "105196", "24789", "63242", "79255", "26028", "113261", "118654", "35907", "115220", "53293", "5826", "20519", "77572", "8685", "23558", "21391", "117384", "75737", "79150", "40323", "6956", "80749" ]
[ "nonn", "easy", "changed" ]
9
1
2
[ "A383126", "A385340", "A385341" ]
null
Sean A. Irvine, Jun 25 2025
2025-07-06T18:20:47
oeisdata/seq/A385/A385341.seq
d1e06e862e712667b3ec512c32682271
A385343
Exponential Riordan array (1, arcsin(x)).
[ "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "4", "0", "1", "0", "9", "0", "10", "0", "1", "0", "0", "64", "0", "20", "0", "1", "0", "225", "0", "259", "0", "35", "0", "1", "0", "0", "2304", "0", "784", "0", "56", "0", "1", "0", "11025", "0", "12916", "0", "1974", "0", "84", "0", "1", "0", "0", "147456", "0", "52480", "0", "4368", "0", "120", "0", "1", "0", "893025", "0", "1057221", "0", "172810", "0", "8778", "0", "165", "0", "1" ]
[ "nonn", "tabl" ]
15
0
13
[ "A006228", "A091885", "A121408", "A136630", "A185951", "A385343" ]
null
Seiichi Manyama, Jun 26 2025
2025-06-26T07:34:35
oeisdata/seq/A385/A385343.seq
5e97913d53ff45145bf9636e243dd5be
A385344
Numbers where all the digits of all the prime factors are smaller than 3.
[ "1", "2", "4", "8", "11", "16", "22", "32", "44", "64", "88", "101", "121", "128", "176", "202", "211", "242", "256", "352", "404", "422", "484", "512", "704", "808", "844", "968", "1021", "1024", "1111", "1201", "1331", "1408", "1616", "1688", "1936", "2011", "2042", "2048", "2111", "2221", "2222", "2321", "2402", "2662", "2816", "3232", "3376", "3872", "4022", "4084", "4096", "4222", "4442", "4444", "4642", "4804", "5324", "5632" ]
[ "nonn", "base", "easy" ]
33
1
2
[ "A036953", "A385344", "A385345" ]
null
Jens Ahlström, Jun 26 2025
2025-06-28T11:15:17
oeisdata/seq/A385/A385344.seq
cdc538ca92b48afba7cd63605df990ab
A385345
Numbers without a prime factor with a digit larger than 1.
[ "1", "11", "101", "121", "1111", "1331", "10111", "10201", "12221", "14641", "101111", "111221", "112211", "134431", "161051", "1011001", "1021211", "1030301", "1100101", "1112221", "1223431", "1234321", "1478741", "1771561", "10010101", "10011101", "10100011", "10101101", "10110011", "10111001", "10212211", "11000111", "11100101", "11110111", "11111101" ]
[ "nonn", "base" ]
23
1
2
[ "A020449", "A385344", "A385345" ]
null
Jens Ahlström, Jun 26 2025
2025-06-29T09:06:53
oeisdata/seq/A385/A385345.seq
a4270904f96a163805965bbdf5978366
A385346
Expansion of e.g.f. 1/(1 - 2 * arcsin(x)).
[ "1", "2", "8", "50", "416", "4338", "54272", "792402", "13221888", "248206818", "5177131008", "118784695218", "2973171646464", "80619877999698", "2354230063005696", "73657841729314002", "2458203242895507456", "87165684035402711490", "3272629788196529504256", "129696816160868956695090" ]
[ "nonn", "easy" ]
12
0
2
[ "A189780", "A385343", "A385346", "A385347" ]
null
Seiichi Manyama, Jun 26 2025
2025-06-27T05:45:34
oeisdata/seq/A385/A385346.seq
a7813d6d0fd4d3e0338997f1621bb033
A385347
Expansion of e.g.f. 1/(1 - 3 * arcsin(x)).
[ "1", "3", "18", "165", "2016", "30807", "564912", "12085713", "295498368", "8128142667", "248419104768", "8351633349117", "306299582106624", "12169801665625887", "520721224401217536", "23872081186754865513", "1167357853571179216896", "60652216264444277244435", "3336667444310413833732096" ]
[ "nonn", "easy" ]
13
0
2
[ "A189780", "A385343", "A385346", "A385347" ]
null
Seiichi Manyama, Jun 26 2025
2025-06-27T05:50:51
oeisdata/seq/A385/A385347.seq
d0c814a33bfe1bd56d2bf5d73bd0fca2
A385348
Minimum number of products of the form P^2-i^2 to be used to obtain the GCD defined in A380472.
[ "1", "3", "2", "4", "4", "6", "6", "4", "7", "16", "18", "7", "7", "14", "15", "15", "21", "9", "11", "19", "18", "24", "33", "11", "26", "13", "14", "47", "48", "17", "14", "19", "14", "54", "43", "14", "22", "34", "40", "33", "17", "39", "14", "17", "36", "54", "67", "38", "21", "26", "18", "135", "40", "19", "25", "25", "24", "79", "78", "20", "25", "25", "24", "101", "30", "25", "24", "24", "34", "24" ]
[ "nonn" ]
4
1
2
[ "A380472", "A385348" ]
null
Michel Marcus, Jun 26 2025
2025-06-26T07:42:26
oeisdata/seq/A385/A385348.seq
7be0853cf1b1a25ecf1d8ef50947bc1d
A385349
Product of odd proper divisors of n.
[ "1", "1", "1", "1", "1", "3", "1", "1", "3", "5", "1", "3", "1", "7", "15", "1", "1", "27", "1", "5", "21", "11", "1", "3", "5", "13", "27", "7", "1", "225", "1", "1", "33", "17", "35", "27", "1", "19", "39", "5", "1", "441", "1", "11", "2025", "23", "1", "3", "7", "125", "51", "13", "1", "729", "55", "7", "57", "29", "1", "225", "1", "31", "3969", "1", "65", "1089", "1", "17", "69", "1225", "1", "27", "1", "37", "5625" ]
[ "nonn" ]
21
1
6
[ "A007955", "A007956", "A091570", "A136655", "A385349", "A385350" ]
null
Ilya Gutkovskiy, Jun 26 2025
2025-06-28T20:41:26
oeisdata/seq/A385/A385349.seq
3a333f3b4a05680a3f7ca0a654acc7c1
A385350
Numbers j such that the product of odd proper divisors of j is j.
[ "1", "15", "21", "27", "33", "35", "39", "51", "55", "57", "65", "69", "77", "85", "87", "91", "93", "95", "111", "115", "119", "123", "125", "129", "133", "141", "143", "145", "155", "159", "161", "177", "183", "185", "187", "201", "203", "205", "209", "213", "215", "217", "219", "221", "235", "237", "247", "249", "253", "259", "265", "267", "287", "291", "295", "299" ]
[ "nonn", "easy" ]
22
1
2
[ "A007422", "A030513", "A073582", "A385349", "A385350" ]
null
Ilya Gutkovskiy, Jun 26 2025
2025-06-28T20:38:42
oeisdata/seq/A385/A385350.seq
a36ff730ace032d68990a7916d7b6593
A385351
Perfect powers whose digits are all powers of the same single-digit base.
[ "1", "4", "8", "9", "16", "81", "121", "128", "144", "441", "484", "841", "1331", "1444", "8281", "11881", "14884", "28224", "48841", "114244", "128881", "142884", "221841", "228484", "848241", "1121481", "1281424", "1418481", "2184484", "2214144", "8282884", "9393931", "11142244", "11282881", "18241441", "18818244", "18844281", "21242881" ]
[ "nonn", "base" ]
15
1
2
[ "A001597", "A385324", "A385351" ]
null
Stefano Spezia, Jun 26 2025
2025-06-27T20:59:53
oeisdata/seq/A385/A385351.seq
1ce834fcd91a06c4986e1a8b806746f0
A385352
Number of sums i^2 + j^2 that occur more than once for 1 <= i <= j <= n.
[ "0", "0", "0", "0", "0", "0", "1", "2", "3", "3", "5", "6", "8", "11", "12", "14", "18", "19", "24", "25", "29", "33", "40", "44", "47", "51", "57", "63", "68", "71", "80", "85", "91", "101", "106", "111", "118", "127", "136", "140", "151", "159", "168", "181", "187", "199", "208", "217", "229", "238", "249", "260", "276", "290", "300", "311", "324", "334", "347", "354", "368", "386", "402", "420", "429", "445", "462", "481", "497" ]
[ "nonn" ]
11
1
8
[ "A061790", "A385352" ]
null
Robert Israel, Jun 26 2025
2025-06-27T09:20:54
oeisdata/seq/A385/A385352.seq
5bf731a73eda848085a1241699eadc4e
A385353
Numbers k such that i^(k-i) has digit sum k for at least one i, 1 <= i <= k.
[ "1", "4", "7", "8", "9", "10", "16", "17", "18", "19", "45", "54", "71", "72", "81", "89", "90", "99", "107", "125", "126", "136", "143", "144", "152", "171", "172", "180", "197", "199", "202", "216", "225", "234", "235", "238", "253", "261", "262", "280", "296", "306", "341", "351", "352", "359", "361", "376", "379", "386", "397", "409", "413", "422", "423", "430", "432", "440", "445", "451", "467", "475", "484", "486" ]
[ "nonn", "base" ]
19
1
2
[ "A007953", "A385353" ]
null
Robert Israel, Jun 26 2025
2025-06-30T15:43:01
oeisdata/seq/A385/A385353.seq
6225e9f2fe248296160467d08da68634
A385354
a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^2, where 0 < x < y < z has exactly n integer solutions.
[ "6", "188", "768", "1728", "2640", "21120", "42336", "13824", "71280", "5832", "80352", "74088", "425088", "421875", "1058400", "110592", "287496", "46656" ]
[ "nonn", "more", "changed" ]
11
1
1
[ "A024975", "A025419", "A377444", "A385354" ]
null
Zhining Yang, Jun 26 2025
2025-07-06T02:55:41
oeisdata/seq/A385/A385354.seq
0fc5beb5d61887b31e748784df076366
A385355
Triangular array read by rows: T(n,k) is the number of n X n matrices A over GF(2) such that the dimension of the null space of A^n is equal to k, n>=0, 0<=k<=n.
[ "1", "1", "1", "6", "6", "4", "168", "168", "112", "64", "20160", "20160", "13440", "7680", "4096", "9999360", "9999360", "6666240", "3809280", "2031616", "1048576", "20158709760", "20158709760", "13439139840", "7679508480", "4095737856", "2113929216", "1073741824", "163849992929280", "163849992929280", "109233328619520", "62419044925440", "33290157293568", "17182016667648", "8727373545472", "4398046511104" ]
[ "nonn", "tabl" ]
18
0
4
[ "A002416", "A002884", "A005329", "A053763", "A385355" ]
null
Geoffrey Critzer, Jun 26 2025
2025-07-01T19:36:31
oeisdata/seq/A385/A385355.seq
fed04f2473b1a0941272c0cf9704f4a2
A385356
Numbers x such that there exist two integers 0<x<=y and z>0 such that sigma(x)^2 = sigma(y)^2 = x^2 + y^2 + z^2.
[ "2", "40", "164", "196", "224", "1120", "3040", "13440", "22932", "44200", "76160", "90848", "91720", "174592", "530200", "619840", "687184", "872960", "1686400", "1767040", "1807120", "1927680", "1990912", "2154880", "3653760", "4286880", "5637632", "5759680", "6442128", "8225280", "8943800", "9264320", "9465600", "9694080" ]
[ "nonn" ]
21
1
1
[ "A000203", "A066784", "A096907", "A096908", "A096909", "A096910", "A385325", "A385356" ]
null
S. I. Dimitrov, Jun 26 2025
2025-07-03T00:46:20
oeisdata/seq/A385/A385356.seq
d3ac0e6bfe8827c0ed4e9b0a67773ab9
A385357
Consecutive states of the linear congruential pseudo-random number generator (1277*s + 24749) mod 117128 when started at s=1.
[ "1", "26026", "112727", "26816", "67405", "11854", "52795", "95364", "108585", "8242", "8263", "35080", "79013", "77142", "30435", "3748", "8697", "3658", "10895", "116560", "2181", "115942", "32891", "94732", "4289", "113914", "19951", "85400", "34381", "6286", "87267", "75980", "69225", "110562", "73183", "11296", "42997", "116014" ]
[ "nonn", "easy", "changed" ]
10
1
2
[ "A385340", "A385341", "A385357" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-06T18:12:37
oeisdata/seq/A385/A385357.seq
ca137609fb2c0a6322d2ee5831062307
A385358
Consecutive states of the linear congruential pseudo-random number generator (741*s + 66037) mod 312500 when started at s=1.
[ "1", "66778", "173535", "217972", "20789", "158186", "94363", "301520", "54857", "90074", "248371", "46448", "109005", "213742", "11359", "45556", "73033", "120990", "32127", "122144", "262241", "11618", "237475", "97512", "134929", "48426", "12203", "45960", "59897", "74714", "116611", "224788", "71445", "194282", "278999" ]
[ "nonn", "easy", "changed" ]
10
1
2
[ "A383127", "A385357", "A385358" ]
null
Sean A. Irvine, Jun 26 2025
2025-07-06T18:21:27
oeisdata/seq/A385/A385358.seq
7c8d3a0abe2fe9b2b762a74e927013e2