nwo
stringlengths
10
28
sha
stringlengths
40
40
path
stringlengths
11
97
identifier
stringlengths
1
64
parameters
stringlengths
2
2.24k
return_statement
stringlengths
0
2.17k
docstring
stringlengths
0
5.45k
docstring_summary
stringlengths
0
3.83k
func_begin
int64
1
13.4k
func_end
int64
2
13.4k
function
stringlengths
28
56.4k
url
stringlengths
106
209
project
int64
1
48
executed_lines
list
executed_lines_pc
float64
0
153
missing_lines
list
missing_lines_pc
float64
0
100
covered
bool
2 classes
filecoverage
float64
2.53
100
function_lines
int64
2
1.46k
mccabe
int64
1
253
coverage
float64
0
100
docstring_lines
int64
0
112
function_nodoc
stringlengths
9
56.4k
id
int64
0
29.8k
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdfx_em.py
stock_gdfx_holding_detail_em
(date: str = "20210930")
return big_df
东方财富网-数据中心-股东分析-股东持股明细-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大股东 :rtype: pandas.DataFrame
东方财富网-数据中心-股东分析-股东持股明细-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大股东 :rtype: pandas.DataFrame
578
670
def stock_gdfx_holding_detail_em(date: str = "20210930") -> pd.DataFrame: """ 东方财富网-数据中心-股东分析-股东持股明细-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大股东 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "NOTICE_DATE,SECURITY_CODE,RANK", "sortTypes": "-1,1,1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_DMSK_HOLDERS", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股票代码", "-", "-", "报告期", "股东排名", "-", "股东名称", "期末持股-数量", "期末持股-持股占流通股比", "期末持股-数量变化", "期末持股-数量变化比例", "-", "-", "-", "-", "-", "公告日", "期末持股-流通市值", "-", "-", "股票简称", "-", "-", "-", "期末持股-持股变动", "-", "股东类型", "-", "-", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "股东排名", "股票代码", "股票简称", "报告期", "期末持股-数量", "期末持股-持股占流通股比", "期末持股-数量变化", "期末持股-数量变化比例", "期末持股-持股变动", "期末持股-流通市值", "公告日", ] ] big_df["报告期"] = pd.to_datetime(big_df["报告期"]).dt.date big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"]) big_df["期末持股-持股占流通股比"] = pd.to_numeric(big_df["期末持股-持股占流通股比"]) big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"]) big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"]) big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdfx_em.py#L578-L670
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
9.677419
[ 9, 10, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 67, 85, 86, 87, 88, 89, 90, 91, 92 ]
25.806452
false
5.647841
93
2
74.193548
6
def stock_gdfx_holding_detail_em(date: str = "20210930") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "NOTICE_DATE,SECURITY_CODE,RANK", "sortTypes": "-1,1,1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_DMSK_HOLDERS", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股票代码", "-", "-", "报告期", "股东排名", "-", "股东名称", "期末持股-数量", "期末持股-持股占流通股比", "期末持股-数量变化", "期末持股-数量变化比例", "-", "-", "-", "-", "-", "公告日", "期末持股-流通市值", "-", "-", "股票简称", "-", "-", "-", "期末持股-持股变动", "-", "股东类型", "-", "-", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "股东排名", "股票代码", "股票简称", "报告期", "期末持股-数量", "期末持股-持股占流通股比", "期末持股-数量变化", "期末持股-数量变化比例", "期末持股-持股变动", "期末持股-流通市值", "公告日", ] ] big_df["报告期"] = pd.to_datetime(big_df["报告期"]).dt.date big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"]) big_df["期末持股-持股占流通股比"] = pd.to_numeric(big_df["期末持股-持股占流通股比"]) big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"]) big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"]) big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"]) return big_df
17,834
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdfx_em.py
stock_gdfx_free_holding_analyse_em
(date: str = "20210930")
return big_df
东方财富网-数据中心-股东分析-股东持股分析-十大流通股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大流通股东 :rtype: pandas.DataFrame
东方财富网-数据中心-股东分析-股东持股分析-十大流通股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大流通股东 :rtype: pandas.DataFrame
673
776
def stock_gdfx_free_holding_analyse_em(date: str = "20210930") -> pd.DataFrame: """ 东方财富网-数据中心-股东分析-股东持股分析-十大流通股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大流通股东 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "UPDATE_DATE,SECURITY_CODE,HOLDER_RANK", "sortTypes": "-1,1,1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_CUSTOM_F10_EH_FREEHOLDERS_JOIN_FREEHOLDER_SHAREANALYSIS", "columns": "ALL;D10_ADJCHRATE,D30_ADJCHRATE,D60_ADJCHRATE", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股票代码", "-", "-", "股东名称", "期末持股-数量", "-", "-", "-", "-", "-", "股票简称", "-", "-", "-", "期末持股-流通市值", "-", "-", "期末持股-数量变化比例", "股东类型", "-", "公告日", "报告期", "-", "-", "-", "-", "-", "-", "期末持股-持股变动", "-", "-", "-", "-", "期末持股-数量变化", "-", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "股票代码", "股票简称", "报告期", "期末持股-数量", "期末持股-数量变化", "期末持股-数量变化比例", "期末持股-持股变动", "期末持股-流通市值", "公告日", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] ] big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"]) big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"]) big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"]) big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"]) big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-10个交易日"]) big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-30个交易日"]) big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-60个交易日"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdfx_em.py#L673-L776
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
8.653846
[ 9, 10, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 76, 95, 96, 97, 98, 99, 100, 101, 102, 103 ]
24.038462
false
5.647841
104
2
75.961538
6
def stock_gdfx_free_holding_analyse_em(date: str = "20210930") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "UPDATE_DATE,SECURITY_CODE,HOLDER_RANK", "sortTypes": "-1,1,1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_CUSTOM_F10_EH_FREEHOLDERS_JOIN_FREEHOLDER_SHAREANALYSIS", "columns": "ALL;D10_ADJCHRATE,D30_ADJCHRATE,D60_ADJCHRATE", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股票代码", "-", "-", "股东名称", "期末持股-数量", "-", "-", "-", "-", "-", "股票简称", "-", "-", "-", "期末持股-流通市值", "-", "-", "期末持股-数量变化比例", "股东类型", "-", "公告日", "报告期", "-", "-", "-", "-", "-", "-", "期末持股-持股变动", "-", "-", "-", "-", "期末持股-数量变化", "-", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "股票代码", "股票简称", "报告期", "期末持股-数量", "期末持股-数量变化", "期末持股-数量变化比例", "期末持股-持股变动", "期末持股-流通市值", "公告日", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] ] big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"]) big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"]) big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"]) big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"]) big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-10个交易日"]) big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-30个交易日"]) big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-60个交易日"]) return big_df
17,835
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdfx_em.py
stock_gdfx_holding_analyse_em
(date: str = "20220331")
return big_df
东方财富网-数据中心-股东分析-股东持股分析-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大股东 :rtype: pandas.DataFrame
东方财富网-数据中心-股东分析-股东持股分析-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大股东 :rtype: pandas.DataFrame
779
877
def stock_gdfx_holding_analyse_em(date: str = "20220331") -> pd.DataFrame: """ 东方财富网-数据中心-股东分析-股东持股分析-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: 报告期 :type date: str :return: 十大股东 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "NOTICE_DATE,SECURITY_CODE,RANK", "sortTypes": "-1,1,1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_CUSTOM_DMSK_HOLDERS_JOIN_HOLDER_SHAREANALYSIS", "columns": "ALL;D10_ADJCHRATE,D30_ADJCHRATE,D60_ADJCHRATE", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股票代码", "-", "-", "报告期", "-", "-", "股东名称", "期末持股-数量", "-", "期末持股-数量变化", "期末持股-数量变化比例", "-", "-", "股东类型", "-", "-", "公告日", "-", "-", "-", "股票简称", "-", "-", "期末持股-持股变动", "期末持股-流通市值", "-", "-", "-", "-", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "股票代码", "股票简称", "报告期", "期末持股-数量", "期末持股-数量变化", "期末持股-数量变化比例", "期末持股-持股变动", "期末持股-流通市值", "公告日", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] ] big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date big_df["报告期"] = pd.to_datetime(big_df["报告期"]).dt.date big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"]) big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"]) big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"]) big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"]) big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-10个交易日"]) big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-30个交易日"]) big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-60个交易日"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdfx_em.py#L779-L877
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
9.090909
[ 9, 10, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 70, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 ]
26.262626
false
5.647841
99
2
73.737374
6
def stock_gdfx_holding_analyse_em(date: str = "20220331") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "NOTICE_DATE,SECURITY_CODE,RANK", "sortTypes": "-1,1,1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_CUSTOM_DMSK_HOLDERS_JOIN_HOLDER_SHAREANALYSIS", "columns": "ALL;D10_ADJCHRATE,D30_ADJCHRATE,D60_ADJCHRATE", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股票代码", "-", "-", "报告期", "-", "-", "股东名称", "期末持股-数量", "-", "期末持股-数量变化", "期末持股-数量变化比例", "-", "-", "股东类型", "-", "-", "公告日", "-", "-", "-", "股票简称", "-", "-", "期末持股-持股变动", "期末持股-流通市值", "-", "-", "-", "-", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "股票代码", "股票简称", "报告期", "期末持股-数量", "期末持股-数量变化", "期末持股-数量变化比例", "期末持股-持股变动", "期末持股-流通市值", "公告日", "公告日后涨跌幅-10个交易日", "公告日后涨跌幅-30个交易日", "公告日后涨跌幅-60个交易日", ] ] big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date big_df["报告期"] = pd.to_datetime(big_df["报告期"]).dt.date big_df["期末持股-数量"] = pd.to_numeric(big_df["期末持股-数量"]) big_df["期末持股-数量变化"] = pd.to_numeric(big_df["期末持股-数量变化"]) big_df["期末持股-数量变化比例"] = pd.to_numeric(big_df["期末持股-数量变化比例"]) big_df["期末持股-流通市值"] = pd.to_numeric(big_df["期末持股-流通市值"]) big_df["公告日后涨跌幅-10个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-10个交易日"]) big_df["公告日后涨跌幅-30个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-30个交易日"]) big_df["公告日后涨跌幅-60个交易日"] = pd.to_numeric(big_df["公告日后涨跌幅-60个交易日"]) return big_df
17,836
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdfx_em.py
stock_gdfx_free_holding_teamwork_em
()
return big_df
东方财富网-数据中心-股东分析-股东协同-十大流通股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :return: 十大流通股东 :rtype: pandas.DataFrame
东方财富网-数据中心-股东分析-股东协同-十大流通股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :return: 十大流通股东 :rtype: pandas.DataFrame
880
934
def stock_gdfx_free_holding_teamwork_em() -> pd.DataFrame: """ 东方财富网-数据中心-股东分析-股东协同-十大流通股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :return: 十大流通股东 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "COOPERAT_NUM,HOLDER_NEW,COOPERAT_HOLDER_NEW", "sortTypes": "-1,-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_COOPFREEHOLDER", "columns": "ALL", "source": "WEB", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股东名称", "股东类型", "-", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] ] big_df["协同次数"] = pd.to_numeric(big_df["协同次数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdfx_em.py#L880-L934
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.727273
[ 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 42, 53, 54 ]
32.727273
false
5.647841
55
2
67.272727
4
def stock_gdfx_free_holding_teamwork_em() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "COOPERAT_NUM,HOLDER_NEW,COOPERAT_HOLDER_NEW", "sortTypes": "-1,-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_COOPFREEHOLDER", "columns": "ALL", "source": "WEB", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股东名称", "股东类型", "-", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] ] big_df["协同次数"] = pd.to_numeric(big_df["协同次数"]) return big_df
17,837
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdfx_em.py
stock_gdfx_holding_teamwork_em
()
return big_df
东方财富网-数据中心-股东分析-股东协同-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :return: 十大股东 :rtype: pandas.DataFrame
东方财富网-数据中心-股东分析-股东协同-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :return: 十大股东 :rtype: pandas.DataFrame
937
991
def stock_gdfx_holding_teamwork_em() -> pd.DataFrame: """ 东方财富网-数据中心-股东分析-股东协同-十大股东 https://data.eastmoney.com/gdfx/HoldingAnalyse.html :return: 十大股东 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "COOPERAT_NUM,HOLDER_NEW,COOPERAT_HOLDER_NEW", "sortTypes": "-1,-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_TENHOLDERS_COOPHOLDERS", "columns": "ALL", "source": "WEB", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股东名称", "股东类型", "-", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] ] big_df["协同次数"] = pd.to_numeric(big_df["协同次数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdfx_em.py#L937-L991
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.727273
[ 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 42, 53, 54 ]
32.727273
false
5.647841
55
2
67.272727
4
def stock_gdfx_holding_teamwork_em() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "COOPERAT_NUM,HOLDER_NEW,COOPERAT_HOLDER_NEW", "sortTypes": "-1,-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_TENHOLDERS_COOPHOLDERS", "columns": "ALL", "source": "WEB", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "股东名称", "股东类型", "-", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] big_df = big_df[ [ "序号", "股东名称", "股东类型", "协同股东名称", "协同股东类型", "协同次数", "个股详情", ] ] big_df["协同次数"] = pd.to_numeric(big_df["协同次数"]) return big_df
17,838
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdzjc_em.py
stock_ggcg_em
(symbol: str = "全部") ->
return big_df
东方财富网-数据中心-特色数据-高管持股 http://data.eastmoney.com/executive/gdzjc.html :param symbol: choice of {"全部", "股东增持", "股东减持"} :type symbol: str :return: 高管持股 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-高管持股 http://data.eastmoney.com/executive/gdzjc.html :param symbol: choice of {"全部", "股东增持", "股东减持"} :type symbol: str :return: 高管持股 :rtype: pandas.DataFrame
14
119
def stock_ggcg_em(symbol: str = "全部") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-高管持股 http://data.eastmoney.com/executive/gdzjc.html :param symbol: choice of {"全部", "股东增持", "股东减持"} :type symbol: str :return: 高管持股 :rtype: pandas.DataFrame """ symbol_map = { "全部": "", "股东增持": '(DIRECTION="增持")', "股东减持": '(DIRECTION="减持")', } url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "END_DATE,SECURITY_CODE,EITIME", "sortTypes": "-1,-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_SHARE_HOLDER_INCREASE", "quoteColumns": "f2~01~SECURITY_CODE~NEWEST_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE_QUOTES", "quoteType": "0", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": symbol_map[symbol], } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update( { "pageNumber": page, } ) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "持股变动信息-变动数量", "公告日", "代码", "股东名称", "持股变动信息-占总股本比例", "_", "-", "变动截止日", "-", "变动后持股情况-持股总数", "变动后持股情况-占总股本比例", "_", "变动后持股情况-占流通股比例", "变动后持股情况-持流通股数", "_", "名称", "持股变动信息-增减", "_", "持股变动信息-占流通股比例", "变动开始日", "_", "最新价", "涨跌幅", "_", ] big_df = big_df[ [ "代码", "名称", "最新价", "涨跌幅", "股东名称", "持股变动信息-增减", "持股变动信息-变动数量", "持股变动信息-占总股本比例", "持股变动信息-占流通股比例", "变动后持股情况-持股总数", "变动后持股情况-占总股本比例", "变动后持股情况-持流通股数", "变动后持股情况-占流通股比例", "变动开始日", "变动截止日", "公告日", ] ] big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["持股变动信息-变动数量"] = pd.to_numeric(big_df["持股变动信息-变动数量"]) big_df["持股变动信息-占总股本比例"] = pd.to_numeric(big_df["持股变动信息-占总股本比例"]) big_df["持股变动信息-占流通股比例"] = pd.to_numeric(big_df["持股变动信息-占流通股比例"]) big_df["变动后持股情况-持股总数"] = pd.to_numeric(big_df["变动后持股情况-持股总数"]) big_df["变动后持股情况-占总股本比例"] = pd.to_numeric(big_df["变动后持股情况-占总股本比例"]) big_df["变动后持股情况-持流通股数"] = pd.to_numeric(big_df["变动后持股情况-持流通股数"]) big_df["变动后持股情况-占流通股比例"] = pd.to_numeric(big_df["变动后持股情况-占流通股比例"]) big_df["变动开始日"] = pd.to_datetime(big_df["变动开始日"]).dt.date big_df["变动截止日"] = pd.to_datetime(big_df["变动截止日"]).dt.date big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdzjc_em.py#L14-L119
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
8.490566
[ 9, 14, 15, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 44, 71, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105 ]
26.415094
false
16.666667
106
2
73.584906
6
def stock_ggcg_em(symbol: str = "全部") -> pd.DataFrame: symbol_map = { "全部": "", "股东增持": '(DIRECTION="增持")', "股东减持": '(DIRECTION="减持")', } url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "END_DATE,SECURITY_CODE,EITIME", "sortTypes": "-1,-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_SHARE_HOLDER_INCREASE", "quoteColumns": "f2~01~SECURITY_CODE~NEWEST_PRICE,f3~01~SECURITY_CODE~CHANGE_RATE_QUOTES", "quoteType": "0", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": symbol_map[symbol], } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update( { "pageNumber": page, } ) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "持股变动信息-变动数量", "公告日", "代码", "股东名称", "持股变动信息-占总股本比例", "_", "-", "变动截止日", "-", "变动后持股情况-持股总数", "变动后持股情况-占总股本比例", "_", "变动后持股情况-占流通股比例", "变动后持股情况-持流通股数", "_", "名称", "持股变动信息-增减", "_", "持股变动信息-占流通股比例", "变动开始日", "_", "最新价", "涨跌幅", "_", ] big_df = big_df[ [ "代码", "名称", "最新价", "涨跌幅", "股东名称", "持股变动信息-增减", "持股变动信息-变动数量", "持股变动信息-占总股本比例", "持股变动信息-占流通股比例", "变动后持股情况-持股总数", "变动后持股情况-占总股本比例", "变动后持股情况-持流通股数", "变动后持股情况-占流通股比例", "变动开始日", "变动截止日", "公告日", ] ] big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["持股变动信息-变动数量"] = pd.to_numeric(big_df["持股变动信息-变动数量"]) big_df["持股变动信息-占总股本比例"] = pd.to_numeric(big_df["持股变动信息-占总股本比例"]) big_df["持股变动信息-占流通股比例"] = pd.to_numeric(big_df["持股变动信息-占流通股比例"]) big_df["变动后持股情况-持股总数"] = pd.to_numeric(big_df["变动后持股情况-持股总数"]) big_df["变动后持股情况-占总股本比例"] = pd.to_numeric(big_df["变动后持股情况-占总股本比例"]) big_df["变动后持股情况-持流通股数"] = pd.to_numeric(big_df["变动后持股情况-持流通股数"]) big_df["变动后持股情况-占流通股比例"] = pd.to_numeric(big_df["变动后持股情况-占流通股比例"]) big_df["变动开始日"] = pd.to_datetime(big_df["变动开始日"]).dt.date big_df["变动截止日"] = pd.to_datetime(big_df["变动截止日"]).dt.date big_df["公告日"] = pd.to_datetime(big_df["公告日"]).dt.date return big_df
17,839
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_zh_valuation_baidu.py
stock_zh_valuation_baidu
( symbol: str = "002044", indicator: str = "总市值", period: str = "近一年" )
return temp_df
百度股市通- A 股-财务报表-估值数据 https://gushitong.baidu.com/stock/ab-002044 :param symbol: 股票代码 :type symbol: str :param indicator: choice of {"总市值", "市盈率(TTM)", "市盈率(静)", "市净率", "市现率"} :type indicator: str :param period: choice of {"近一年", "近三年", "近五年", "近十年", "全部"} :type period: str :return: 估值数据 :rtype: pandas.DataFrame
百度股市通- A 股-财务报表-估值数据 https://gushitong.baidu.com/stock/ab-002044 :param symbol: 股票代码 :type symbol: str :param indicator: choice of {"总市值", "市盈率(TTM)", "市盈率(静)", "市净率", "市现率"} :type indicator: str :param period: choice of {"近一年", "近三年", "近五年", "近十年", "全部"} :type period: str :return: 估值数据 :rtype: pandas.DataFrame
12
43
def stock_zh_valuation_baidu( symbol: str = "002044", indicator: str = "总市值", period: str = "近一年" ) -> pd.DataFrame: """ 百度股市通- A 股-财务报表-估值数据 https://gushitong.baidu.com/stock/ab-002044 :param symbol: 股票代码 :type symbol: str :param indicator: choice of {"总市值", "市盈率(TTM)", "市盈率(静)", "市净率", "市现率"} :type indicator: str :param period: choice of {"近一年", "近三年", "近五年", "近十年", "全部"} :type period: str :return: 估值数据 :rtype: pandas.DataFrame """ url = "https://finance.pae.baidu.com/selfselect/openapi" params = { "srcid": "51171", "code": symbol, "market": "ab", "tag": f"{indicator}", "chart_select": period, "skip_industry": "0", "finClientType": "pc", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["Result"]["chartInfo"][0]["body"]) temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_zh_valuation_baidu.py#L12-L43
25
[ 0 ]
3.125
[ 15, 16, 25, 26, 27, 28, 29, 30, 31 ]
28.125
false
31.25
32
1
71.875
10
def stock_zh_valuation_baidu( symbol: str = "002044", indicator: str = "总市值", period: str = "近一年" ) -> pd.DataFrame: url = "https://finance.pae.baidu.com/selfselect/openapi" params = { "srcid": "51171", "code": symbol, "market": "ab", "tag": f"{indicator}", "chart_select": period, "skip_industry": "0", "finClientType": "pc", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["Result"]["chartInfo"][0]["body"]) temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
17,840
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_tfp_em.py
stock_tfp_em
(date: str = "20220523")
return temp_df
东方财富网-数据中心-特色数据-停复牌信息 http://data.eastmoney.com/tfpxx/ :param date: specific date as "2020-03-19" :type date: str :return: 停复牌信息表 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-停复牌信息 http://data.eastmoney.com/tfpxx/ :param date: specific date as "2020-03-19" :type date: str :return: 停复牌信息表 :rtype: pandas.DataFrame
12
58
def stock_tfp_em(date: str = "20220523") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-停复牌信息 http://data.eastmoney.com/tfpxx/ :param date: specific date as "2020-03-19" :type date: str :return: 停复牌信息表 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "SUSPEND_START_DATE", "sortTypes": "-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_CUSTOM_SUSPEND_DATA_INTERFACE", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"""(MARKET="全部")(DATETIME='{"-".join([date[:4], date[4:6], date[6:]])}')""", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.columns = [ "序号", "代码", "名称", "停牌时间", "停牌截止时间", "停牌期限", "停牌原因", "所属市场", "停牌开始日期", "预计复牌时间", "-", "-", ] temp_df = temp_df[ ["序号", "代码", "名称", "停牌时间", "停牌截止时间", "停牌期限", "停牌原因", "所属市场", "预计复牌时间"] ] temp_df["停牌时间"] = pd.to_datetime(temp_df["停牌时间"]).dt.date temp_df["停牌截止时间"] = pd.to_datetime(temp_df["停牌截止时间"]).dt.date temp_df["预计复牌时间"] = pd.to_datetime(temp_df["预计复牌时间"]).dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_tfp_em.py#L12-L58
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
19.148936
[ 9, 10, 21, 22, 23, 24, 25, 26, 40, 43, 44, 45, 46 ]
27.659574
false
25
47
1
72.340426
6
def stock_tfp_em(date: str = "20220523") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "SUSPEND_START_DATE", "sortTypes": "-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_CUSTOM_SUSPEND_DATA_INTERFACE", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"""(MARKET="全部")(DATETIME='{"-".join([date[:4], date[4:6], date[6:]])}')""", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.columns = [ "序号", "代码", "名称", "停牌时间", "停牌截止时间", "停牌期限", "停牌原因", "所属市场", "停牌开始日期", "预计复牌时间", "-", "-", ] temp_df = temp_df[ ["序号", "代码", "名称", "停牌时间", "停牌截止时间", "停牌期限", "停牌原因", "所属市场", "预计复牌时间"] ] temp_df["停牌时间"] = pd.to_datetime(temp_df["停牌时间"]).dt.date temp_df["停牌截止时间"] = pd.to_datetime(temp_df["停牌截止时间"]).dt.date temp_df["预计复牌时间"] = pd.to_datetime(temp_df["预计复牌时间"]).dt.date return temp_df
17,841
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
_get_file_content_ths
(file: str = "ths.js")
return file_data
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
20
31
def _get_file_content_ths(file: str = "ths.js") -> str: """ 获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str """ setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L20-L31
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
66.666667
[ 8, 9, 10, 11 ]
33.333333
false
10.365854
12
2
66.666667
5
def _get_file_content_ths(file: str = "ths.js") -> str: setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
17,842
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
stock_board_industry_name_ths
()
return temp_df
同花顺-板块-行业板块-行业 http://q.10jqka.com.cn/thshy/ :return: 所有行业板块的名称和链接 :rtype: pandas.DataFrame
同花顺-板块-行业板块-行业 http://q.10jqka.com.cn/thshy/ :return: 所有行业板块的名称和链接 :rtype: pandas.DataFrame
34
358
def stock_board_industry_name_ths() -> pd.DataFrame: """ 同花顺-板块-行业板块-行业 http://q.10jqka.com.cn/thshy/ :return: 所有行业板块的名称和链接 :rtype: pandas.DataFrame """ code_name_ths_map = { "881101": "种植业与林业", "881102": "养殖业", "881103": "农产品加工", "881104": "农业服务", "881105": "煤炭开采加工", "881107": "油气开采及服务", "881108": "化学原料", "881109": "化学制品", "881110": "化工合成材料", "881112": "钢铁", "881114": "金属新材料", "881115": "建筑材料", "881116": "建筑装饰", "881117": "通用设备", "881118": "专用设备", "881119": "仪器仪表", "881120": "电力设备", "881121": "半导体及元件", "881122": "光学光电子", "881123": "其他电子", "881124": "消费电子", "881125": "汽车整车", "881126": "汽车零部件", "881127": "非汽车交运", "881128": "汽车服务", "881129": "通信设备", "881130": "计算机设备", "881131": "白色家电", "881132": "黑色家电", "881133": "饮料制造", "881134": "食品加工制造", "881135": "纺织制造", "881136": "服装家纺", "881137": "造纸", "881138": "包装印刷", "881139": "家用轻工", "881140": "化学制药", "881141": "中药", "881142": "生物制品", "881143": "医药商业", "881144": "医疗器械", "881145": "电力", "881146": "燃气", "881148": "港口航运", "881149": "公路铁路运输", "881151": "机场航运", "881152": "物流", "881153": "房地产开发", "881155": "银行", "881156": "保险及其他", "881157": "证券", "881158": "零售", "881159": "贸易", "881160": "景点及旅游", "881161": "酒店及餐饮", "881162": "通信服务", "881163": "计算机应用", "881164": "传媒", "881165": "综合", "881166": "国防军工", "881167": "非金属材料", "881168": "工业金属", "881169": "贵金属", "881170": "小金属", "881171": "自动化设备", "881172": "电子化学品", "881173": "小家电", "881174": "厨卫电器", "881175": "医疗服务", "881176": "房地产服务", "881177": "互联网电商", "881178": "教育", "881179": "其他社会服务", "881180": "石油加工贸易", "881181": "环保", "881182": "美容护理", "884001": "种子生产", "884002": "粮食种植", "884003": "其他种植业", "884004": "林业", "884005": "海洋捕捞", "884006": "水产养殖", "884007": "畜禽养殖", "884008": "饲料", "884009": "果蔬加工", "884010": "粮油加工", "884011": "其他农产品加工", "884012": "农业综合", "884013": "动物保健", "884014": "煤炭开采", "884015": "焦炭加工", "884016": "油气开采", "884018": "油服工程", "884020": "石油加工", "884021": "油品石化贸易", "884022": "纯碱", "884023": "氯碱", "884024": "无机盐", "884025": "其他化学原料", "884026": "氮肥", "884027": "磷肥及磷化工", "884028": "农药", "884030": "涂料油墨", "884031": "钾肥", "884032": "民爆用品", "884033": "纺织化学用品", "884034": "其他化学制品", "884035": "复合肥", "884036": "氟化工", "884039": "聚氨酯", "884041": "涤纶", "884043": "粘胶", "884044": "其他纤维", "884045": "氨纶", "884046": "其他塑料制品", "884048": "改性塑料", "884050": "其他橡胶制品", "884051": "炭黑", "884052": "普钢", "884053": "铝", "884054": "铜", "884055": "铅锌", "884056": "其他金属新材料", "884057": "磁性材料", "884058": "非金属材料Ⅲ", "884059": "玻璃玻纤", "884060": "水泥", "884062": "其他建材", "884063": "耐火材料", "884064": "管材", "884065": "装饰园林", "884066": "房屋建设", "884067": "基础建设", "884068": "专业工程", "884069": "机床工具", "884071": "磨具磨料", "884073": "制冷空调设备", "884074": "其他通用设备", "884075": "金属制品", "884076": "纺织服装设备", "884077": "工程机械", "884078": "农用机械", "884080": "能源及重型设备", "884081": "印刷包装机械", "884082": "其他专用设备", "884083": "楼宇设备", "884084": "环保设备", "884085": "电机", "884086": "电气自控设备", "884088": "输变电设备", "884089": "线缆部件及其他", "884090": "分立器件", "884091": "半导体材料", "884092": "印制电路板", "884093": "被动元件", "884094": "面板", "884095": "LED", "884096": "光学元件", "884098": "消费电子零部件及组装", "884099": "乘用车", "884100": "商用载货车", "884101": "商用载客车", "884105": "轨交设备", "884106": "其他交运设备", "884107": "汽车服务Ⅲ", "884112": "冰洗", "884113": "空调", "884115": "小家电Ⅲ", "884116": "其他白色家电", "884117": "彩电", "884118": "其他黑色家电", "884119": "其他酒类", "884120": "软饮料", "884123": "肉制品", "884124": "调味发酵品", "884125": "乳品", "884126": "其他食品", "884128": "棉纺", "884130": "印染", "884131": "辅料", "884132": "其他纺织", "884136": "鞋帽及其他", "884137": "家纺", "884139": "家具", "884140": "其他家用轻工", "884141": "饰品", "884142": "文娱用品", "884143": "原料药", "884144": "化学制剂", "884145": "医疗设备", "884146": "火电", "884147": "水电", "884149": "热力", "884150": "新能源发电", "884152": "燃气Ⅲ", "884153": "港口", "884154": "高速公路", "884155": "铁路运输", "884156": "机场", "884157": "航空运输", "884158": "多元金融", "884159": "保险", "884160": "百货零售", "884161": "专业连锁", "884162": "商业物业经营", "884163": "人工景点", "884164": "自然景点", "884165": "旅游综合", "884167": "酒店", "884168": "餐饮", "884172": "有线电视网络", "884173": "通信服务Ⅲ", "884174": "软件开发", "884176": "出版", "884177": "影视院线", "884178": "广告营销", "884179": "其他传媒", "884180": "航天装备", "884181": "航空装备", "884182": "地面兵装", "884183": "航海装备", "884184": "特钢", "884185": "贵金属Ⅲ", "884186": "其他小金属", "884188": "白酒", "884189": "啤酒", "884191": "航运", "884192": "仪器仪表Ⅲ", "884193": "其他电子Ⅲ", "884194": "汽车零部件Ⅲ", "884195": "造纸Ⅲ", "884197": "中药Ⅲ", "884199": "医药商业Ⅲ", "884200": "公交", "884201": "物流Ⅲ", "884202": "住宅开发", "884203": "产业地产", "884205": "证券Ⅲ", "884206": "贸易Ⅲ", "884207": "计算机设备Ⅲ", "884208": "综合Ⅲ", "884209": "钛白粉", "884210": "食品及饲料添加剂", "884211": "有机硅", "884212": "合成树脂", "884213": "膜材料", "884214": "冶钢原料", "884215": "稀土", "884216": "能源金属", "884217": "工程咨询服务", "884218": "机器人", "884219": "工控设备", "884220": "激光设备", "884221": "其他自动化设备", "884222": "光伏设备", "884223": "风电设备", "884224": "电池", "884225": "其他电源设备", "884226": "集成电路设计", "884227": "集成电路制造", "884228": "集成电路封测", "884229": "半导体设备", "884230": "品牌消费电子", "884231": "电子化学品Ⅲ", "884232": "厨卫电器Ⅲ", "884233": "休闲食品", "884234": "服装", "884235": "印刷", "884236": "包装", "884237": "瓷砖地板", "884238": "血液制品", "884239": "疫苗", "884240": "其他生物制品", "884242": "医疗耗材", "884243": "体外诊断", "884244": "医疗研发外包", "884245": "其他医疗服务", "884246": "电能综合服务", "884247": "商业地产", "884248": "房地产服务Ⅲ", "884249": "国有大型银行", "884250": "股份制银行", "884251": "城商行", "884252": "农商行", "884253": "其他银行", "884254": "旅游零售", "884255": "互联网电商Ⅲ", "884256": "教育Ⅲ", "884257": "专业服务", "884258": "体育", "884259": "其他社会服务Ⅲ", "884260": "游戏", "884261": "数字媒体", "884262": "通信网络设备及器件", "884263": "通信线缆及配套", "884264": "通信终端及配件", "884265": "其他通信设备", "884266": "军工电子", "884267": "大气治理", "884268": "水务及水治理", "884269": "固废治理", "884270": "综合环境治理", "884271": "个护用品", "884272": "化妆品", "884273": "医疗美容", "884274": "IT服务", } temp_df = pd.DataFrame.from_dict(code_name_ths_map, orient="index") temp_df.reset_index(inplace=True) temp_df.columns = ["code", "name"] temp_df = temp_df[ [ "name", "code", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L34-L358
25
[ 0, 1, 2, 3, 4, 5, 6 ]
2.153846
[ 7, 315, 316, 317, 318, 324 ]
1.846154
false
10.365854
325
1
98.153846
4
def stock_board_industry_name_ths() -> pd.DataFrame: code_name_ths_map = { "881101": "种植业与林业", "881102": "养殖业", "881103": "农产品加工", "881104": "农业服务", "881105": "煤炭开采加工", "881107": "油气开采及服务", "881108": "化学原料", "881109": "化学制品", "881110": "化工合成材料", "881112": "钢铁", "881114": "金属新材料", "881115": "建筑材料", "881116": "建筑装饰", "881117": "通用设备", "881118": "专用设备", "881119": "仪器仪表", "881120": "电力设备", "881121": "半导体及元件", "881122": "光学光电子", "881123": "其他电子", "881124": "消费电子", "881125": "汽车整车", "881126": "汽车零部件", "881127": "非汽车交运", "881128": "汽车服务", "881129": "通信设备", "881130": "计算机设备", "881131": "白色家电", "881132": "黑色家电", "881133": "饮料制造", "881134": "食品加工制造", "881135": "纺织制造", "881136": "服装家纺", "881137": "造纸", "881138": "包装印刷", "881139": "家用轻工", "881140": "化学制药", "881141": "中药", "881142": "生物制品", "881143": "医药商业", "881144": "医疗器械", "881145": "电力", "881146": "燃气", "881148": "港口航运", "881149": "公路铁路运输", "881151": "机场航运", "881152": "物流", "881153": "房地产开发", "881155": "银行", "881156": "保险及其他", "881157": "证券", "881158": "零售", "881159": "贸易", "881160": "景点及旅游", "881161": "酒店及餐饮", "881162": "通信服务", "881163": "计算机应用", "881164": "传媒", "881165": "综合", "881166": "国防军工", "881167": "非金属材料", "881168": "工业金属", "881169": "贵金属", "881170": "小金属", "881171": "自动化设备", "881172": "电子化学品", "881173": "小家电", "881174": "厨卫电器", "881175": "医疗服务", "881176": "房地产服务", "881177": "互联网电商", "881178": "教育", "881179": "其他社会服务", "881180": "石油加工贸易", "881181": "环保", "881182": "美容护理", "884001": "种子生产", "884002": "粮食种植", "884003": "其他种植业", "884004": "林业", "884005": "海洋捕捞", "884006": "水产养殖", "884007": "畜禽养殖", "884008": "饲料", "884009": "果蔬加工", "884010": "粮油加工", "884011": "其他农产品加工", "884012": "农业综合", "884013": "动物保健", "884014": "煤炭开采", "884015": "焦炭加工", "884016": "油气开采", "884018": "油服工程", "884020": "石油加工", "884021": "油品石化贸易", "884022": "纯碱", "884023": "氯碱", "884024": "无机盐", "884025": "其他化学原料", "884026": "氮肥", "884027": "磷肥及磷化工", "884028": "农药", "884030": "涂料油墨", "884031": "钾肥", "884032": "民爆用品", "884033": "纺织化学用品", "884034": "其他化学制品", "884035": "复合肥", "884036": "氟化工", "884039": "聚氨酯", "884041": "涤纶", "884043": "粘胶", "884044": "其他纤维", "884045": "氨纶", "884046": "其他塑料制品", "884048": "改性塑料", "884050": "其他橡胶制品", "884051": "炭黑", "884052": "普钢", "884053": "铝", "884054": "铜", "884055": "铅锌", "884056": "其他金属新材料", "884057": "磁性材料", "884058": "非金属材料Ⅲ", "884059": "玻璃玻纤", "884060": "水泥", "884062": "其他建材", "884063": "耐火材料", "884064": "管材", "884065": "装饰园林", "884066": "房屋建设", "884067": "基础建设", "884068": "专业工程", "884069": "机床工具", "884071": "磨具磨料", "884073": "制冷空调设备", "884074": "其他通用设备", "884075": "金属制品", "884076": "纺织服装设备", "884077": "工程机械", "884078": "农用机械", "884080": "能源及重型设备", "884081": "印刷包装机械", "884082": "其他专用设备", "884083": "楼宇设备", "884084": "环保设备", "884085": "电机", "884086": "电气自控设备", "884088": "输变电设备", "884089": "线缆部件及其他", "884090": "分立器件", "884091": "半导体材料", "884092": "印制电路板", "884093": "被动元件", "884094": "面板", "884095": "LED", "884096": "光学元件", "884098": "消费电子零部件及组装", "884099": "乘用车", "884100": "商用载货车", "884101": "商用载客车", "884105": "轨交设备", "884106": "其他交运设备", "884107": "汽车服务Ⅲ", "884112": "冰洗", "884113": "空调", "884115": "小家电Ⅲ", "884116": "其他白色家电", "884117": "彩电", "884118": "其他黑色家电", "884119": "其他酒类", "884120": "软饮料", "884123": "肉制品", "884124": "调味发酵品", "884125": "乳品", "884126": "其他食品", "884128": "棉纺", "884130": "印染", "884131": "辅料", "884132": "其他纺织", "884136": "鞋帽及其他", "884137": "家纺", "884139": "家具", "884140": "其他家用轻工", "884141": "饰品", "884142": "文娱用品", "884143": "原料药", "884144": "化学制剂", "884145": "医疗设备", "884146": "火电", "884147": "水电", "884149": "热力", "884150": "新能源发电", "884152": "燃气Ⅲ", "884153": "港口", "884154": "高速公路", "884155": "铁路运输", "884156": "机场", "884157": "航空运输", "884158": "多元金融", "884159": "保险", "884160": "百货零售", "884161": "专业连锁", "884162": "商业物业经营", "884163": "人工景点", "884164": "自然景点", "884165": "旅游综合", "884167": "酒店", "884168": "餐饮", "884172": "有线电视网络", "884173": "通信服务Ⅲ", "884174": "软件开发", "884176": "出版", "884177": "影视院线", "884178": "广告营销", "884179": "其他传媒", "884180": "航天装备", "884181": "航空装备", "884182": "地面兵装", "884183": "航海装备", "884184": "特钢", "884185": "贵金属Ⅲ", "884186": "其他小金属", "884188": "白酒", "884189": "啤酒", "884191": "航运", "884192": "仪器仪表Ⅲ", "884193": "其他电子Ⅲ", "884194": "汽车零部件Ⅲ", "884195": "造纸Ⅲ", "884197": "中药Ⅲ", "884199": "医药商业Ⅲ", "884200": "公交", "884201": "物流Ⅲ", "884202": "住宅开发", "884203": "产业地产", "884205": "证券Ⅲ", "884206": "贸易Ⅲ", "884207": "计算机设备Ⅲ", "884208": "综合Ⅲ", "884209": "钛白粉", "884210": "食品及饲料添加剂", "884211": "有机硅", "884212": "合成树脂", "884213": "膜材料", "884214": "冶钢原料", "884215": "稀土", "884216": "能源金属", "884217": "工程咨询服务", "884218": "机器人", "884219": "工控设备", "884220": "激光设备", "884221": "其他自动化设备", "884222": "光伏设备", "884223": "风电设备", "884224": "电池", "884225": "其他电源设备", "884226": "集成电路设计", "884227": "集成电路制造", "884228": "集成电路封测", "884229": "半导体设备", "884230": "品牌消费电子", "884231": "电子化学品Ⅲ", "884232": "厨卫电器Ⅲ", "884233": "休闲食品", "884234": "服装", "884235": "印刷", "884236": "包装", "884237": "瓷砖地板", "884238": "血液制品", "884239": "疫苗", "884240": "其他生物制品", "884242": "医疗耗材", "884243": "体外诊断", "884244": "医疗研发外包", "884245": "其他医疗服务", "884246": "电能综合服务", "884247": "商业地产", "884248": "房地产服务Ⅲ", "884249": "国有大型银行", "884250": "股份制银行", "884251": "城商行", "884252": "农商行", "884253": "其他银行", "884254": "旅游零售", "884255": "互联网电商Ⅲ", "884256": "教育Ⅲ", "884257": "专业服务", "884258": "体育", "884259": "其他社会服务Ⅲ", "884260": "游戏", "884261": "数字媒体", "884262": "通信网络设备及器件", "884263": "通信线缆及配套", "884264": "通信终端及配件", "884265": "其他通信设备", "884266": "军工电子", "884267": "大气治理", "884268": "水务及水治理", "884269": "固废治理", "884270": "综合环境治理", "884271": "个护用品", "884272": "化妆品", "884273": "医疗美容", "884274": "IT服务", } temp_df = pd.DataFrame.from_dict(code_name_ths_map, orient="index") temp_df.reset_index(inplace=True) temp_df.columns = ["code", "name"] temp_df = temp_df[ [ "name", "code", ] ] return temp_df
17,843
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
stock_board_industry_cons_ths
(symbol: str = "半导体及元件") -> pd.DataF
return big_df
同花顺-板块-行业板块-成份股 https://q.10jqka.com.cn/thshy/detail/code/881121/ :param symbol: 板块名称 :type symbol: str :return: 成份股 :rtype: pandas.DataFrame
同花顺-板块-行业板块-成份股 https://q.10jqka.com.cn/thshy/detail/code/881121/ :param symbol: 板块名称 :type symbol: str :return: 成份股 :rtype: pandas.DataFrame
361
415
def stock_board_industry_cons_ths(symbol: str = "半导体及元件") -> pd.DataFrame: """ 同花顺-板块-行业板块-成份股 https://q.10jqka.com.cn/thshy/detail/code/881121/ :param symbol: 板块名称 :type symbol: str :return: 成份股 :rtype: pandas.DataFrame """ stock_board_ths_map_df = stock_board_industry_name_ths() symbol = stock_board_ths_map_df[stock_board_ths_map_df["name"] == symbol][ "code" ].values[0] js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://q.10jqka.com.cn/thshy/detail/field/199112/order/desc/page/1/ajax/1/code/{symbol}" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: page_num = int( soup.find_all("a", attrs={"class": "changePage"})[-1]["page"] ) except IndexError as e: page_num = 1 big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://q.10jqka.com.cn/thshy/detail/field/199112/order/desc/page/{page}/ajax/1/code/{symbol}" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( { "涨跌幅(%)": "涨跌幅", "涨速(%)": "涨速", "换手(%)": "换手", "振幅(%)": "振幅", }, inplace=True, axis=1, ) del big_df["加自选"] big_df["代码"] = big_df["代码"].astype(str).str.zfill(6) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L361-L415
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.363636
[ 9, 10, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 37, 38, 39, 40, 42, 52, 53, 54 ]
47.272727
false
10.365854
55
3
52.727273
6
def stock_board_industry_cons_ths(symbol: str = "半导体及元件") -> pd.DataFrame: stock_board_ths_map_df = stock_board_industry_name_ths() symbol = stock_board_ths_map_df[stock_board_ths_map_df["name"] == symbol][ "code" ].values[0] js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://q.10jqka.com.cn/thshy/detail/field/199112/order/desc/page/1/ajax/1/code/{symbol}" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: page_num = int( soup.find_all("a", attrs={"class": "changePage"})[-1]["page"] ) except IndexError as e: page_num = 1 big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://q.10jqka.com.cn/thshy/detail/field/199112/order/desc/page/{page}/ajax/1/code/{symbol}" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( { "涨跌幅(%)": "涨跌幅", "涨速(%)": "涨速", "换手(%)": "换手", "振幅(%)": "振幅", }, inplace=True, axis=1, ) del big_df["加自选"] big_df["代码"] = big_df["代码"].astype(str).str.zfill(6) return big_df
17,844
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
stock_board_industry_info_ths
(symbol: str = "半导体及元件") -> pd.DataF
return temp_df
同花顺-板块-行业板块-板块简介 http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 板块简介 :type symbol: str :return: 板块简介 :rtype: pandas.DataFrame
同花顺-板块-行业板块-板块简介 http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 板块简介 :type symbol: str :return: 板块简介 :rtype: pandas.DataFrame
418
451
def stock_board_industry_info_ths(symbol: str = "半导体及元件") -> pd.DataFrame: """ 同花顺-板块-行业板块-板块简介 http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 板块简介 :type symbol: str :return: 板块简介 :rtype: pandas.DataFrame """ stock_board_ths_map_df = stock_board_industry_name_ths() symbol_code = stock_board_ths_map_df[ stock_board_ths_map_df["name"] == symbol ]["code"].values[0] url = f"http://q.10jqka.com.cn/thshy/detail/code/{symbol_code}/" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", } r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") name_list = [ item.text.strip() for item in soup.find("div", attrs={"class": "board-infos"}).find_all( "dt" ) ] value_list = [ item.text.strip().replace("\n", "/") for item in soup.find("div", attrs={"class": "board-infos"}).find_all( "dd" ) ] temp_df = pd.DataFrame([name_list, value_list]).T temp_df.columns = ["项目", "值"] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L418-L451
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
26.470588
[ 9, 10, 13, 14, 17, 18, 19, 25, 31, 32, 33 ]
32.352941
false
10.365854
34
3
67.647059
6
def stock_board_industry_info_ths(symbol: str = "半导体及元件") -> pd.DataFrame: stock_board_ths_map_df = stock_board_industry_name_ths() symbol_code = stock_board_ths_map_df[ stock_board_ths_map_df["name"] == symbol ]["code"].values[0] url = f"http://q.10jqka.com.cn/thshy/detail/code/{symbol_code}/" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", } r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") name_list = [ item.text.strip() for item in soup.find("div", attrs={"class": "board-infos"}).find_all( "dt" ) ] value_list = [ item.text.strip().replace("\n", "/") for item in soup.find("div", attrs={"class": "board-infos"}).find_all( "dd" ) ] temp_df = pd.DataFrame([name_list, value_list]).T temp_df.columns = ["项目", "值"] return temp_df
17,845
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
stock_board_industry_index_ths
( symbol: str = "半导体及元件", start_date: str = "20200101", end_date: str = "20211027", )
return big_df
同花顺-板块-行业板块-指数数据 http://q.10jqka.com.cn/gn/detail/code/301558/ :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param symbol: 指数数据 :type symbol: str :return: 指数数据 :rtype: pandas.DataFrame
同花顺-板块-行业板块-指数数据 http://q.10jqka.com.cn/gn/detail/code/301558/ :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param symbol: 指数数据 :type symbol: str :return: 指数数据 :rtype: pandas.DataFrame
454
544
def stock_board_industry_index_ths( symbol: str = "半导体及元件", start_date: str = "20200101", end_date: str = "20211027", ) -> pd.DataFrame: """ 同花顺-板块-行业板块-指数数据 http://q.10jqka.com.cn/gn/detail/code/301558/ :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param symbol: 指数数据 :type symbol: str :return: 指数数据 :rtype: pandas.DataFrame """ code_map = stock_board_industry_name_ths() code_map = dict(zip(code_map["name"].values, code_map["code"].values)) symbol_code = code_map[symbol] big_df = pd.DataFrame() current_year = datetime.now().year for year in tqdm(range(2000, current_year + 1), leave=False): url = f"http://d.10jqka.com.cn/v4/line/bk_{symbol_code}/01/{year}.js" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Referer": "http://q.10jqka.com.cn", "Host": "d.10jqka.com.cn", } r = requests.get(url, headers=headers) data_text = r.text try: demjson.decode(data_text[data_text.find("{") : -1]) except: continue temp_df = demjson.decode(data_text[data_text.find("{") : -1]) temp_df = pd.DataFrame(temp_df["data"].split(";")) temp_df = temp_df.iloc[:, 0].str.split(",", expand=True) big_df = pd.concat([big_df, temp_df], ignore_index=True) if len(big_df.columns) == 11: big_df.columns = [ "日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "成交额", "_", "_", "_", "_", ] else: big_df.columns = [ "日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "成交额", "_", "_", "_", "_", "_", ] big_df = big_df[ [ "日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "成交额", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date condition_one = pd.to_datetime(start_date) < big_df["日期"] condition_two = pd.to_datetime(end_date) > big_df["日期"] big_df = big_df[condition_one & condition_two] big_df["开盘价"] = pd.to_numeric(big_df["开盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["成交额"] = pd.to_numeric(big_df["成交额"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L454-L544
25
[ 0 ]
1.098901
[ 17, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 55, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 ]
36.263736
false
10.365854
91
4
63.736264
10
def stock_board_industry_index_ths( symbol: str = "半导体及元件", start_date: str = "20200101", end_date: str = "20211027", ) -> pd.DataFrame: code_map = stock_board_industry_name_ths() code_map = dict(zip(code_map["name"].values, code_map["code"].values)) symbol_code = code_map[symbol] big_df = pd.DataFrame() current_year = datetime.now().year for year in tqdm(range(2000, current_year + 1), leave=False): url = f"http://d.10jqka.com.cn/v4/line/bk_{symbol_code}/01/{year}.js" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Referer": "http://q.10jqka.com.cn", "Host": "d.10jqka.com.cn", } r = requests.get(url, headers=headers) data_text = r.text try: demjson.decode(data_text[data_text.find("{") : -1]) except: continue temp_df = demjson.decode(data_text[data_text.find("{") : -1]) temp_df = pd.DataFrame(temp_df["data"].split(";")) temp_df = temp_df.iloc[:, 0].str.split(",", expand=True) big_df = pd.concat([big_df, temp_df], ignore_index=True) if len(big_df.columns) == 11: big_df.columns = [ "日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "成交额", "_", "_", "_", "_", ] else: big_df.columns = [ "日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "成交额", "_", "_", "_", "_", "_", ] big_df = big_df[ [ "日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "成交额", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date condition_one = pd.to_datetime(start_date) < big_df["日期"] condition_two = pd.to_datetime(end_date) > big_df["日期"] big_df = big_df[condition_one & condition_two] big_df["开盘价"] = pd.to_numeric(big_df["开盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["成交额"] = pd.to_numeric(big_df["成交额"]) return big_df
17,846
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
stock_ipo_benefit_ths
()
return big_df
同花顺-数据中心-新股数据-IPO受益股 https://data.10jqka.com.cn/ipo/syg/ :return: IPO受益股 :rtype: pandas.DataFrame
同花顺-数据中心-新股数据-IPO受益股 https://data.10jqka.com.cn/ipo/syg/ :return: IPO受益股 :rtype: pandas.DataFrame
547
600
def stock_ipo_benefit_ths() -> pd.DataFrame: """ 同花顺-数据中心-新股数据-IPO受益股 https://data.10jqka.com.cn/ipo/syg/ :return: IPO受益股 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", "hexin-v": v_code } url = f"http://data.10jqka.com.cn/ipo/syg/field/invest/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") page_num = soup.find("span", attrs={"class": "page_info"}).text.split("/")[ 1 ] big_df = pd.DataFrame() for page in tqdm(range(1, int(page_num) + 1), leave=False): url = f"http://data.10jqka.com.cn/ipo/syg/field/invest/order/desc/page/{page}/ajax/1/free/1/" v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", "hexin-v": v_code } r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "涨跌幅", "市值", "参股家数", "投资总额", "投资占市值比", "参股对象", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["序号"] = pd.to_numeric(big_df["序号"], errors="coerce") big_df["收盘价"] = pd.to_numeric(big_df["收盘价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["参股家数"] = pd.to_numeric(big_df["参股家数"], errors="coerce") big_df["投资占市值比"] = pd.to_numeric(big_df["投资占市值比"], errors="coerce") return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L547-L600
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.962963
[ 7, 8, 9, 10, 11, 16, 17, 18, 19, 22, 23, 24, 25, 26, 31, 32, 33, 35, 47, 48, 49, 50, 51, 52, 53 ]
46.296296
false
10.365854
54
2
53.703704
4
def stock_ipo_benefit_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", "hexin-v": v_code } url = f"http://data.10jqka.com.cn/ipo/syg/field/invest/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") page_num = soup.find("span", attrs={"class": "page_info"}).text.split("/")[ 1 ] big_df = pd.DataFrame() for page in tqdm(range(1, int(page_num) + 1), leave=False): url = f"http://data.10jqka.com.cn/ipo/syg/field/invest/order/desc/page/{page}/ajax/1/free/1/" v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", "hexin-v": v_code } r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "涨跌幅", "市值", "参股家数", "投资总额", "投资占市值比", "参股对象", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["序号"] = pd.to_numeric(big_df["序号"], errors="coerce") big_df["收盘价"] = pd.to_numeric(big_df["收盘价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["参股家数"] = pd.to_numeric(big_df["参股家数"], errors="coerce") big_df["投资占市值比"] = pd.to_numeric(big_df["投资占市值比"], errors="coerce") return big_df
17,847
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_board_industry_ths.py
stock_board_industry_summary_ths
()
return big_df
同花顺-数据中心-行业板块-同花顺行业一览表 https://q.10jqka.com.cn/thshy/ :return: 同花顺行业一览表 :rtype: pandas.DataFrame
同花顺-数据中心-行业板块-同花顺行业一览表 https://q.10jqka.com.cn/thshy/ :return: 同花顺行业一览表 :rtype: pandas.DataFrame
603
655
def stock_board_industry_summary_ths() -> pd.DataFrame: """ 同花顺-数据中心-行业板块-同花顺行业一览表 https://q.10jqka.com.cn/thshy/ :return: 同花顺行业一览表 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://q.10jqka.com.cn/thshy/index/field/199112/order/desc/page/1/ajax/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") page_num = soup.find("span", attrs={"class": "page_info"}).text.split("/")[ 1 ] big_df = pd.DataFrame() for page in tqdm(range(1, int(page_num) + 1), leave=False): url = f"http://q.10jqka.com.cn/thshy/index/field/199112/order/desc/page/{page}/ajax/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "板块", "涨跌幅", "总成交量", "总成交额", "净流入", "上涨家数", "下跌家数", "均价", "领涨股", "领涨股-最新价", "领涨股-涨跌幅", ] big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["总成交量"] = pd.to_numeric(big_df["总成交量"], errors="coerce") big_df["总成交额"] = pd.to_numeric(big_df["总成交额"], errors="coerce") big_df["净流入"] = pd.to_numeric(big_df["净流入"], errors="coerce") big_df["上涨家数"] = pd.to_numeric(big_df["上涨家数"], errors="coerce") big_df["下跌家数"] = pd.to_numeric(big_df["下跌家数"], errors="coerce") big_df["均价"] = pd.to_numeric(big_df["均价"], errors="coerce") big_df["领涨股-最新价"] = pd.to_numeric(big_df["领涨股-最新价"], errors="coerce") big_df["领涨股-涨跌幅"] = pd.to_numeric(big_df["领涨股-涨跌幅"], errors="coerce") return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_board_industry_ths.py#L603-L655
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.207547
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 28, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 ]
49.056604
false
10.365854
53
2
50.943396
4
def stock_board_industry_summary_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://q.10jqka.com.cn/thshy/index/field/199112/order/desc/page/1/ajax/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") page_num = soup.find("span", attrs={"class": "page_info"}).text.split("/")[ 1 ] big_df = pd.DataFrame() for page in tqdm(range(1, int(page_num) + 1), leave=False): url = f"http://q.10jqka.com.cn/thshy/index/field/199112/order/desc/page/{page}/ajax/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "板块", "涨跌幅", "总成交量", "总成交额", "净流入", "上涨家数", "下跌家数", "均价", "领涨股", "领涨股-最新价", "领涨股-涨跌幅", ] big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["总成交量"] = pd.to_numeric(big_df["总成交量"], errors="coerce") big_df["总成交额"] = pd.to_numeric(big_df["总成交额"], errors="coerce") big_df["净流入"] = pd.to_numeric(big_df["净流入"], errors="coerce") big_df["上涨家数"] = pd.to_numeric(big_df["上涨家数"], errors="coerce") big_df["下跌家数"] = pd.to_numeric(big_df["下跌家数"], errors="coerce") big_df["均价"] = pd.to_numeric(big_df["均价"], errors="coerce") big_df["领涨股-最新价"] = pd.to_numeric(big_df["领涨股-最新价"], errors="coerce") big_df["领涨股-涨跌幅"] = pd.to_numeric(big_df["领涨股-涨跌幅"], errors="coerce") return big_df
17,848
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_analyst_em.py
stock_analyst_rank_em
(year: str = "2022")
return big_df
东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数 http://data.eastmoney.com/invest/invest/list.html :param year: 从 2015 年至今 :type year: str :return: 东方财富分析师指数 :rtype: pandas.DataFrame
东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数 http://data.eastmoney.com/invest/invest/list.html :param year: 从 2015 年至今 :type year: str :return: 东方财富分析师指数 :rtype: pandas.DataFrame
13
99
def stock_analyst_rank_em(year: str = "2022") -> pd.DataFrame: """ 东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数 http://data.eastmoney.com/invest/invest/list.html :param year: 从 2015 年至今 :type year: str :return: 东方财富分析师指数 :rtype: pandas.DataFrame """ url = "https://data.eastmoney.com/dataapi/invest/list" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } params = { "sortColumns": "YEAR_YIELD", "sortTypes": "-1", "pageSize": "50", "pageNumber": "1", "reportName": "RPT_ANALYST_INDEX_RANK", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f'(YEAR="{year}")', "limit": "top100", } r = requests.get(url, params=params, headers=headers) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1)): params.update({"pageNumber": page}) r = requests.get(url, params=params, headers=headers) data_json = r.json() data_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, data_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = list(range(1, len(big_df) + 1)) big_df.columns = [ "序号", "分析师ID", "分析师名称", "更新日期", "年度", "分析师单位", "_", "年度指数", f"{year}年收益率", "3个月收益率", "6个月收益率", "12个月收益率", "成分股个数", f"{year}最新个股评级-股票名称", "_", f"{year}最新个股评级-股票代码", "_", "行业代码", "行业", ] big_df = big_df[ [ "序号", "分析师名称", "分析师单位", "年度指数", f"{year}年收益率", "3个月收益率", "6个月收益率", "12个月收益率", "成分股个数", f"{year}最新个股评级-股票名称", f"{year}最新个股评级-股票代码", "分析师ID", "行业代码", "行业", "更新日期", "年度", ] ] big_df["更新日期"] = pd.to_datetime(big_df["更新日期"]).dt.date big_df["年度指数"] = pd.to_numeric(big_df["年度指数"]) big_df[f"{year}年收益率"] = pd.to_numeric(big_df[f"{year}年收益率"]) big_df["3个月收益率"] = pd.to_numeric(big_df["3个月收益率"]) big_df["6个月收益率"] = pd.to_numeric(big_df["6个月收益率"]) big_df["12个月收益率"] = pd.to_numeric(big_df["12个月收益率"]) big_df["成分股个数"] = pd.to_numeric(big_df["成分股个数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_analyst_em.py#L13-L99
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
10.344828
[ 9, 10, 13, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 59, 79, 80, 81, 82, 83, 84, 85, 86 ]
28.735632
false
8.75
87
2
71.264368
6
def stock_analyst_rank_em(year: str = "2022") -> pd.DataFrame: url = "https://data.eastmoney.com/dataapi/invest/list" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } params = { "sortColumns": "YEAR_YIELD", "sortTypes": "-1", "pageSize": "50", "pageNumber": "1", "reportName": "RPT_ANALYST_INDEX_RANK", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f'(YEAR="{year}")', "limit": "top100", } r = requests.get(url, params=params, headers=headers) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1)): params.update({"pageNumber": page}) r = requests.get(url, params=params, headers=headers) data_json = r.json() data_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, data_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = list(range(1, len(big_df) + 1)) big_df.columns = [ "序号", "分析师ID", "分析师名称", "更新日期", "年度", "分析师单位", "_", "年度指数", f"{year}年收益率", "3个月收益率", "6个月收益率", "12个月收益率", "成分股个数", f"{year}最新个股评级-股票名称", "_", f"{year}最新个股评级-股票代码", "_", "行业代码", "行业", ] big_df = big_df[ [ "序号", "分析师名称", "分析师单位", "年度指数", f"{year}年收益率", "3个月收益率", "6个月收益率", "12个月收益率", "成分股个数", f"{year}最新个股评级-股票名称", f"{year}最新个股评级-股票代码", "分析师ID", "行业代码", "行业", "更新日期", "年度", ] ] big_df["更新日期"] = pd.to_datetime(big_df["更新日期"]).dt.date big_df["年度指数"] = pd.to_numeric(big_df["年度指数"]) big_df[f"{year}年收益率"] = pd.to_numeric(big_df[f"{year}年收益率"]) big_df["3个月收益率"] = pd.to_numeric(big_df["3个月收益率"]) big_df["6个月收益率"] = pd.to_numeric(big_df["6个月收益率"]) big_df["12个月收益率"] = pd.to_numeric(big_df["12个月收益率"]) big_df["成分股个数"] = pd.to_numeric(big_df["成分股个数"]) return big_df
17,849
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_analyst_em.py
stock_analyst_detail_em
( analyst_id: str = "11000200926", indicator: str = "最新跟踪成分股" )
东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数2020最新排行-分析师详情 http://data.eastmoney.com/invest/invest/11000200926.html :param analyst_id: 分析师 ID, 从 ak.stock_analyst_rank_em() 获取 :type analyst_id: str :param indicator: ["最新跟踪成分股", "历史跟踪成分股", "历史指数"] :type indicator: str :return: 具体指标的数据 :rtype: pandas.DataFrame
东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数2020最新排行-分析师详情 http://data.eastmoney.com/invest/invest/11000200926.html :param analyst_id: 分析师 ID, 从 ak.stock_analyst_rank_em() 获取 :type analyst_id: str :param indicator: ["最新跟踪成分股", "历史跟踪成分股", "历史指数"] :type indicator: str :return: 具体指标的数据 :rtype: pandas.DataFrame
102
212
def stock_analyst_detail_em( analyst_id: str = "11000200926", indicator: str = "最新跟踪成分股" ) -> pd.DataFrame: """ 东方财富网-数据中心-研究报告-东方财富分析师指数-东方财富分析师指数2020最新排行-分析师详情 http://data.eastmoney.com/invest/invest/11000200926.html :param analyst_id: 分析师 ID, 从 ak.stock_analyst_rank_em() 获取 :type analyst_id: str :param indicator: ["最新跟踪成分股", "历史跟踪成分股", "历史指数"] :type indicator: str :return: 具体指标的数据 :rtype: pandas.DataFrame """ headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } url = "http://data.eastmoney.com/dataapi/invest/other" if indicator == "最新跟踪成分股": params = { "href": "/api/Zgfxzs/json/AnalysisIndexNew.aspx", "paramsstr": f"index=1&size=100&code={analyst_id}", } r = requests.get(url, params=params, headers=headers) json_data = r.json() if len(json_data) == 0: return pd.DataFrame() temp_df = pd.DataFrame(json_data["re"]) temp_df.reset_index(inplace=True) temp_df["index"] = list(range(1, len(temp_df) + 1)) temp_df.columns = [ "序号", "股票代码", "股票名称", "调入日期", "当前评级名称", "成交价格(前复权)", "最新价格", "最新评级日期", "_", "阶段涨跌幅", ] temp_df = temp_df[ [ "序号", "股票代码", "股票名称", "调入日期", "最新评级日期", "当前评级名称", "成交价格(前复权)", "最新价格", "阶段涨跌幅", ] ] temp_df["调入日期"] = pd.to_datetime(temp_df["调入日期"]).dt.date temp_df["最新评级日期"] = pd.to_datetime(temp_df["最新评级日期"]).dt.date temp_df["成交价格(前复权)"] = pd.to_numeric(temp_df["成交价格(前复权)"]) temp_df["最新价格"] = pd.to_numeric(temp_df["最新价格"]) temp_df["阶段涨跌幅"] = pd.to_numeric(temp_df["阶段涨跌幅"]) return temp_df elif indicator == "历史跟踪成分股": params = { "href": "/api/Zgfxzs/json/AnalysisIndexls.aspx", "paramsstr": f"index=1&size=100&code={analyst_id}", } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame(json_data["re"]) temp_df.reset_index(inplace=True) temp_df["index"] = list(range(1, len(temp_df) + 1)) temp_df.columns = [ "序号", "股票代码", "股票名称", "调入日期", "调出日期", "调入时评级名称", "调出原因", "_", "累计涨跌幅", ] temp_df = temp_df[ [ "序号", "股票代码", "股票名称", "调入日期", "调出日期", "调入时评级名称", "调出原因", "累计涨跌幅", ] ] temp_df["调入日期"] = pd.to_datetime(temp_df["调入日期"]).dt.date temp_df["调出日期"] = pd.to_datetime(temp_df["调出日期"]).dt.date temp_df["累计涨跌幅"] = pd.to_numeric(temp_df["累计涨跌幅"]) return temp_df elif indicator == "历史指数": params = { "href": "/DataCenter_V3/chart/AnalystsIndex.ashx", "paramsstr": f"code={analyst_id}&d=&isxml=True", } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame( [json_data["X"].split(","), json_data["Y"][0].split(",")], index=["date", "value"], ).T temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_analyst_em.py#L102-L212
25
[ 0 ]
0.900901
[ 13, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 41, 54, 55, 56, 57, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 81, 93, 94, 95, 96, 97, 98, 102, 103, 104, 108, 109, 110 ]
36.036036
false
8.75
111
5
63.963964
8
def stock_analyst_detail_em( analyst_id: str = "11000200926", indicator: str = "最新跟踪成分股" ) -> pd.DataFrame: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } url = "http://data.eastmoney.com/dataapi/invest/other" if indicator == "最新跟踪成分股": params = { "href": "/api/Zgfxzs/json/AnalysisIndexNew.aspx", "paramsstr": f"index=1&size=100&code={analyst_id}", } r = requests.get(url, params=params, headers=headers) json_data = r.json() if len(json_data) == 0: return pd.DataFrame() temp_df = pd.DataFrame(json_data["re"]) temp_df.reset_index(inplace=True) temp_df["index"] = list(range(1, len(temp_df) + 1)) temp_df.columns = [ "序号", "股票代码", "股票名称", "调入日期", "当前评级名称", "成交价格(前复权)", "最新价格", "最新评级日期", "_", "阶段涨跌幅", ] temp_df = temp_df[ [ "序号", "股票代码", "股票名称", "调入日期", "最新评级日期", "当前评级名称", "成交价格(前复权)", "最新价格", "阶段涨跌幅", ] ] temp_df["调入日期"] = pd.to_datetime(temp_df["调入日期"]).dt.date temp_df["最新评级日期"] = pd.to_datetime(temp_df["最新评级日期"]).dt.date temp_df["成交价格(前复权)"] = pd.to_numeric(temp_df["成交价格(前复权)"]) temp_df["最新价格"] = pd.to_numeric(temp_df["最新价格"]) temp_df["阶段涨跌幅"] = pd.to_numeric(temp_df["阶段涨跌幅"]) return temp_df elif indicator == "历史跟踪成分股": params = { "href": "/api/Zgfxzs/json/AnalysisIndexls.aspx", "paramsstr": f"index=1&size=100&code={analyst_id}", } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame(json_data["re"]) temp_df.reset_index(inplace=True) temp_df["index"] = list(range(1, len(temp_df) + 1)) temp_df.columns = [ "序号", "股票代码", "股票名称", "调入日期", "调出日期", "调入时评级名称", "调出原因", "_", "累计涨跌幅", ] temp_df = temp_df[ [ "序号", "股票代码", "股票名称", "调入日期", "调出日期", "调入时评级名称", "调出原因", "累计涨跌幅", ] ] temp_df["调入日期"] = pd.to_datetime(temp_df["调入日期"]).dt.date temp_df["调出日期"] = pd.to_datetime(temp_df["调出日期"]).dt.date temp_df["累计涨跌幅"] = pd.to_numeric(temp_df["累计涨跌幅"]) return temp_df elif indicator == "历史指数": params = { "href": "/DataCenter_V3/chart/AnalystsIndex.ashx", "paramsstr": f"code={analyst_id}&d=&isxml=True", } r = requests.get(url, params=params, headers=headers) json_data = r.json() temp_df = pd.DataFrame( [json_data["X"].split(","), json_data["Y"][0].split(",")], index=["date", "value"], ).T temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
17,850
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_a_pe_and_pb.py
stock_a_pe_and_pb
(symbol: str = "sz")
return index_df
乐咕乐股-A 股市盈率和市净率 https://legulegu.com/stockdata/hs300-ttm-lyr https://legulegu.com/stockdata/hs300-pb 两个网页分别展示市盈率和市净率,但实际上是来自同一个API的数据 :param symbol: choice of {"sh", "sz", "cy", "zx", "000300.SH" ...} :type symbol: str :return: 指定市场的 A 股的市盈率和市净率,包括等权和加权 :rtype: pandas.DataFrame
乐咕乐股-A 股市盈率和市净率 https://legulegu.com/stockdata/hs300-ttm-lyr https://legulegu.com/stockdata/hs300-pb 两个网页分别展示市盈率和市净率,但实际上是来自同一个API的数据 :param symbol: choice of {"sh", "sz", "cy", "zx", "000300.SH" ...} :type symbol: str :return: 指定市场的 A 股的市盈率和市净率,包括等权和加权 :rtype: pandas.DataFrame
325
359
def stock_a_pe_and_pb(symbol: str = "sz") -> pd.DataFrame: """ 乐咕乐股-A 股市盈率和市净率 https://legulegu.com/stockdata/hs300-ttm-lyr https://legulegu.com/stockdata/hs300-pb 两个网页分别展示市盈率和市净率,但实际上是来自同一个API的数据 :param symbol: choice of {"sh", "sz", "cy", "zx", "000300.SH" ...} :type symbol: str :return: 指定市场的 A 股的市盈率和市净率,包括等权和加权 :rtype: pandas.DataFrame """ url = "https://legulegu.com/api/stockdata/index-basic" params = { "token": token, "indexCode": symbol } if symbol == "sh": params["indexCode"] = "1" if symbol == "sz": params["indexCode"] = "2" if symbol == "cy": params["indexCode"] = "4" if symbol == "kc": params["indexCode"] = "7" r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.index = pd.to_datetime( temp_df["date"], unit="ms", utc=True).dt.tz_convert("Asia/Shanghai").dt.date index_df = temp_df[["addTtmPe", "middleTtmPe", "addLyrPe", "middleLyrPe", "addPb", "ttmPe", "lyrPe", "pb", "middlePb", "close"]] index_df.columns = ["addTtmPe", "middleAddTtmPe", "addLyrPe", "middleAddLyrPe", "addPb", "averageTtmPe", "averageLyr", "averagePb", "middleAveragePb", "close"] index_df.reset_index(inplace=True) return index_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_a_pe_and_pb.py#L325-L359
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
31.428571
[ 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 33, 34 ]
51.428571
false
35.294118
35
5
48.571429
8
def stock_a_pe_and_pb(symbol: str = "sz") -> pd.DataFrame: url = "https://legulegu.com/api/stockdata/index-basic" params = { "token": token, "indexCode": symbol } if symbol == "sh": params["indexCode"] = "1" if symbol == "sz": params["indexCode"] = "2" if symbol == "cy": params["indexCode"] = "4" if symbol == "kc": params["indexCode"] = "7" r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.index = pd.to_datetime( temp_df["date"], unit="ms", utc=True).dt.tz_convert("Asia/Shanghai").dt.date index_df = temp_df[["addTtmPe", "middleTtmPe", "addLyrPe", "middleLyrPe", "addPb", "ttmPe", "lyrPe", "pb", "middlePb", "close"]] index_df.columns = ["addTtmPe", "middleAddTtmPe", "addLyrPe", "middleAddLyrPe", "addPb", "averageTtmPe", "averageLyr", "averagePb", "middleAveragePb", "close"] index_df.reset_index(inplace=True) return index_df
17,851
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lh_yybpm.py
stock_lh_yyb_most
()
return big_df
同花顺-数据中心-营业部排名-上榜次数最多 http://data.10jqka.com.cn/market/longhu/ :return: 上榜次数最多 :rtype: pandas.DataFrame
同花顺-数据中心-营业部排名-上榜次数最多 http://data.10jqka.com.cn/market/longhu/ :return: 上榜次数最多 :rtype: pandas.DataFrame
13
30
def stock_lh_yyb_most() -> pd.DataFrame: """ 同花顺-数据中心-营业部排名-上榜次数最多 http://data.10jqka.com.cn/market/longhu/ :return: 上榜次数最多 :rtype: pandas.DataFrame """ big_df = pd.DataFrame() for page in tqdm(range(1, 11)): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = f'http://data.10jqka.com.cn/ifmarket/lhbyyb/type/1/tab/sbcs/field/sbcs/sort/desc/page/{page}/' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lh_yybpm.py#L13-L30
25
[ 0, 1, 2, 3, 4, 5, 6 ]
38.888889
[ 7, 8, 9, 12, 13, 14, 15, 16, 17 ]
50
false
19.512195
18
2
50
4
def stock_lh_yyb_most() -> pd.DataFrame: big_df = pd.DataFrame() for page in tqdm(range(1, 11)): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = f'http://data.10jqka.com.cn/ifmarket/lhbyyb/type/1/tab/sbcs/field/sbcs/sort/desc/page/{page}/' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df) big_df.reset_index(inplace=True, drop=True) return big_df
17,852
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lh_yybpm.py
stock_lh_yyb_capital
()
return big_df
同花顺-数据中心-营业部排名-资金实力最强 http://data.10jqka.com.cn/market/longhu/ :return: 资金实力最强 :rtype: pandas.DataFrame
同花顺-数据中心-营业部排名-资金实力最强 http://data.10jqka.com.cn/market/longhu/ :return: 资金实力最强 :rtype: pandas.DataFrame
33
50
def stock_lh_yyb_capital() -> pd.DataFrame: """ 同花顺-数据中心-营业部排名-资金实力最强 http://data.10jqka.com.cn/market/longhu/ :return: 资金实力最强 :rtype: pandas.DataFrame """ big_df = pd.DataFrame() for page in tqdm(range(1, 11)): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = f'http://data.10jqka.com.cn/ifmarket/lhbyyb/type/1/tab/zjsl/field/zgczje/sort/desc/page/{page}/' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lh_yybpm.py#L33-L50
25
[ 0, 1, 2, 3, 4, 5, 6 ]
38.888889
[ 7, 8, 9, 12, 13, 14, 15, 16, 17 ]
50
false
19.512195
18
2
50
4
def stock_lh_yyb_capital() -> pd.DataFrame: big_df = pd.DataFrame() for page in tqdm(range(1, 11)): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = f'http://data.10jqka.com.cn/ifmarket/lhbyyb/type/1/tab/zjsl/field/zgczje/sort/desc/page/{page}/' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df) big_df.reset_index(inplace=True, drop=True) return big_df
17,853
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lh_yybpm.py
stock_lh_yyb_control
()
return big_df
同花顺-数据中心-营业部排名-抱团操作实力 http://data.10jqka.com.cn/market/longhu/ :return: 抱团操作实力 :rtype: pandas.DataFrame
同花顺-数据中心-营业部排名-抱团操作实力 http://data.10jqka.com.cn/market/longhu/ :return: 抱团操作实力 :rtype: pandas.DataFrame
53
70
def stock_lh_yyb_control() -> pd.DataFrame: """ 同花顺-数据中心-营业部排名-抱团操作实力 http://data.10jqka.com.cn/market/longhu/ :return: 抱团操作实力 :rtype: pandas.DataFrame """ big_df = pd.DataFrame() for page in tqdm(range(1, 11)): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = f'http://data.10jqka.com.cn/ifmarket/lhbyyb/type/1/tab/btcz/field/xsjs/sort/desc/page/{page}/' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lh_yybpm.py#L53-L70
25
[ 0, 1, 2, 3, 4, 5, 6 ]
38.888889
[ 7, 8, 9, 12, 13, 14, 15, 16, 17 ]
50
false
19.512195
18
2
50
4
def stock_lh_yyb_control() -> pd.DataFrame: big_df = pd.DataFrame() for page in tqdm(range(1, 11)): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = f'http://data.10jqka.com.cn/ifmarket/lhbyyb/type/1/tab/btcz/field/xsjs/sort/desc/page/{page}/' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df) big_df.reset_index(inplace=True, drop=True) return big_df
17,854
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdhs.py
stock_zh_a_gdhs
(symbol: str = "20210930")
return big_df
东方财富网-数据中心-特色数据-股东户数 https://data.eastmoney.com/gdhs/ :param symbol: choice of {"最新", "每个季度末"} :type symbol: str :return: 股东户数 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-股东户数 https://data.eastmoney.com/gdhs/ :param symbol: choice of {"最新", "每个季度末"} :type symbol: str :return: 股东户数 :rtype: pandas.DataFrame
13
112
def stock_zh_a_gdhs(symbol: str = "20210930") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-股东户数 https://data.eastmoney.com/gdhs/ :param symbol: choice of {"最新", "每个季度末"} :type symbol: str :return: 股东户数 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "最新": params = { "sortColumns": "HOLD_NOTICE_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_HOLDERNUMLATEST", "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE", "quoteColumns": "f2,f3", "source": "WEB", "client": "WEB", } else: params = { "sortColumns": "HOLD_NOTICE_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_HOLDERNUM_DET", "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE", "quoteColumns": "f2,f3", "source": "WEB", "client": "WEB", 'filter': f"(END_DATE='{symbol[:4] + '-' + symbol[4:6] + '-' + symbol[6:]}')", } r = requests.get(url, params=params) data_json = r.json() total_page_num = data_json["result"]["pages"] big_df = pd.DataFrame() for page_num in tqdm(range(1, total_page_num + 1), leave=False): params.update({ "pageNumber": page_num, }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "代码", "名称", "股东户数统计截止日-本次", "区间涨跌幅", "户均持股市值", "户均持股数量", "总市值", "总股本", "公告日期", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "股东户数统计截止日-上次", "最新价", "涨跌幅", ] big_df = big_df[ [ "代码", "名称", "最新价", "涨跌幅", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "区间涨跌幅", "股东户数统计截止日-本次", "股东户数统计截止日-上次", "户均持股市值", "户均持股数量", "总市值", "总股本", "公告日期", ] ] big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce") big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce") big_df['股东户数-本次'] = pd.to_numeric(big_df['股东户数-本次'], errors="coerce") big_df['股东户数-上次'] = pd.to_numeric(big_df['股东户数-上次'], errors="coerce") big_df['股东户数-增减'] = pd.to_numeric(big_df['股东户数-增减'], errors="coerce") big_df['股东户数-增减比例'] = pd.to_numeric(big_df['股东户数-增减比例'], errors="coerce") big_df['区间涨跌幅'] = pd.to_numeric(big_df['区间涨跌幅'], errors="coerce") big_df['股东户数统计截止日-本次'] = pd.to_datetime(big_df['股东户数统计截止日-本次']).dt.date big_df['股东户数统计截止日-上次'] = pd.to_datetime(big_df['股东户数统计截止日-上次']).dt.date big_df['户均持股市值'] = pd.to_numeric(big_df['户均持股市值']) big_df['户均持股数量'] = pd.to_numeric(big_df['户均持股数量']) big_df['总市值'] = pd.to_numeric(big_df['总市值']) big_df['总股本'] = pd.to_numeric(big_df['总股本']) big_df['公告日期'] = pd.to_datetime(big_df['公告日期']).dt.date return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdhs.py#L13-L112
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
9
[ 9, 10, 11, 23, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 65, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ]
31
false
10.144928
100
3
69
6
def stock_zh_a_gdhs(symbol: str = "20210930") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "最新": params = { "sortColumns": "HOLD_NOTICE_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_HOLDERNUMLATEST", "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE", "quoteColumns": "f2,f3", "source": "WEB", "client": "WEB", } else: params = { "sortColumns": "HOLD_NOTICE_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_HOLDERNUM_DET", "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE", "quoteColumns": "f2,f3", "source": "WEB", "client": "WEB", 'filter': f"(END_DATE='{symbol[:4] + '-' + symbol[4:6] + '-' + symbol[6:]}')", } r = requests.get(url, params=params) data_json = r.json() total_page_num = data_json["result"]["pages"] big_df = pd.DataFrame() for page_num in tqdm(range(1, total_page_num + 1), leave=False): params.update({ "pageNumber": page_num, }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "代码", "名称", "股东户数统计截止日-本次", "区间涨跌幅", "户均持股市值", "户均持股数量", "总市值", "总股本", "公告日期", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "股东户数统计截止日-上次", "最新价", "涨跌幅", ] big_df = big_df[ [ "代码", "名称", "最新价", "涨跌幅", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "区间涨跌幅", "股东户数统计截止日-本次", "股东户数统计截止日-上次", "户均持股市值", "户均持股数量", "总市值", "总股本", "公告日期", ] ] big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce") big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce") big_df['股东户数-本次'] = pd.to_numeric(big_df['股东户数-本次'], errors="coerce") big_df['股东户数-上次'] = pd.to_numeric(big_df['股东户数-上次'], errors="coerce") big_df['股东户数-增减'] = pd.to_numeric(big_df['股东户数-增减'], errors="coerce") big_df['股东户数-增减比例'] = pd.to_numeric(big_df['股东户数-增减比例'], errors="coerce") big_df['区间涨跌幅'] = pd.to_numeric(big_df['区间涨跌幅'], errors="coerce") big_df['股东户数统计截止日-本次'] = pd.to_datetime(big_df['股东户数统计截止日-本次']).dt.date big_df['股东户数统计截止日-上次'] = pd.to_datetime(big_df['股东户数统计截止日-上次']).dt.date big_df['户均持股市值'] = pd.to_numeric(big_df['户均持股市值']) big_df['户均持股数量'] = pd.to_numeric(big_df['户均持股数量']) big_df['总市值'] = pd.to_numeric(big_df['总市值']) big_df['总股本'] = pd.to_numeric(big_df['总股本']) big_df['公告日期'] = pd.to_datetime(big_df['公告日期']).dt.date return big_df
17,855
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_gdhs.py
stock_zh_a_gdhs_detail_em
(symbol: str = "000002")
return big_df
东方财富网-数据中心-特色数据-股东户数详情 https://data.eastmoney.com/gdhs/detail/000002.html :param symbol: 股票代码 :type symbol: str :return: 股东户数 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-股东户数详情 https://data.eastmoney.com/gdhs/detail/000002.html :param symbol: 股票代码 :type symbol: str :return: 股东户数 :rtype: pandas.DataFrame
115
200
def stock_zh_a_gdhs_detail_em(symbol: str = "000002") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-股东户数详情 https://data.eastmoney.com/gdhs/detail/000002.html :param symbol: 股票代码 :type symbol: str :return: 股东户数 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { 'sortColumns': 'END_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'reportName': 'RPT_HOLDERNUM_DET', 'columns': 'SECURITY_CODE,SECURITY_NAME_ABBR,CHANGE_SHARES,CHANGE_REASON,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE', 'quoteColumns': 'f2,f3', 'filter': f'(SECURITY_CODE="{symbol}")', 'source': 'WEB', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page_num = data_json["result"]["pages"] big_df = pd.DataFrame() for page_num in tqdm(range(1, total_page_num + 1), leave=False): params.update({ "pageNumber": page_num, }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "代码", "名称", "股本变动", "股本变动原因", "股东户数统计截止日", "区间涨跌幅", "户均持股市值", "户均持股数量", "总市值", "总股本", "股东户数公告日期", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "-", "-", "-", ] big_df = big_df[ [ "股东户数统计截止日", "区间涨跌幅", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "户均持股市值", "户均持股数量", "总市值", "总股本", "股本变动", "股本变动原因", "股东户数公告日期", "代码", "名称", ] ] big_df['区间涨跌幅'] = pd.to_numeric(big_df['区间涨跌幅'], errors="coerce") big_df['股东户数-本次'] = pd.to_numeric(big_df['股东户数-本次'], errors="coerce") big_df['股东户数-上次'] = pd.to_numeric(big_df['股东户数-上次'], errors="coerce") big_df['股东户数-增减'] = pd.to_numeric(big_df['股东户数-增减'], errors="coerce") big_df['股东户数-增减比例'] = pd.to_numeric(big_df['股东户数-增减比例'], errors="coerce") big_df['户均持股市值'] = pd.to_numeric(big_df['户均持股市值']) big_df['户均持股数量'] = pd.to_numeric(big_df['户均持股数量']) big_df['总市值'] = pd.to_numeric(big_df['总市值']) big_df['总股本'] = pd.to_numeric(big_df['总股本']) big_df['股本变动'] = pd.to_numeric(big_df['股本变动']) big_df['股东户数统计截止日'] = pd.to_datetime(big_df['股东户数统计截止日']).dt.date big_df['股东户数公告日期'] = pd.to_datetime(big_df['股东户数公告日期']).dt.date return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_gdhs.py#L115-L200
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
10.465116
[ 9, 10, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 54, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85 ]
31.395349
false
10.144928
86
2
68.604651
6
def stock_zh_a_gdhs_detail_em(symbol: str = "000002") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { 'sortColumns': 'END_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'reportName': 'RPT_HOLDERNUM_DET', 'columns': 'SECURITY_CODE,SECURITY_NAME_ABBR,CHANGE_SHARES,CHANGE_REASON,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE', 'quoteColumns': 'f2,f3', 'filter': f'(SECURITY_CODE="{symbol}")', 'source': 'WEB', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page_num = data_json["result"]["pages"] big_df = pd.DataFrame() for page_num in tqdm(range(1, total_page_num + 1), leave=False): params.update({ "pageNumber": page_num, }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "代码", "名称", "股本变动", "股本变动原因", "股东户数统计截止日", "区间涨跌幅", "户均持股市值", "户均持股数量", "总市值", "总股本", "股东户数公告日期", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "-", "-", "-", ] big_df = big_df[ [ "股东户数统计截止日", "区间涨跌幅", "股东户数-本次", "股东户数-上次", "股东户数-增减", "股东户数-增减比例", "户均持股市值", "户均持股数量", "总市值", "总股本", "股本变动", "股本变动原因", "股东户数公告日期", "代码", "名称", ] ] big_df['区间涨跌幅'] = pd.to_numeric(big_df['区间涨跌幅'], errors="coerce") big_df['股东户数-本次'] = pd.to_numeric(big_df['股东户数-本次'], errors="coerce") big_df['股东户数-上次'] = pd.to_numeric(big_df['股东户数-上次'], errors="coerce") big_df['股东户数-增减'] = pd.to_numeric(big_df['股东户数-增减'], errors="coerce") big_df['股东户数-增减比例'] = pd.to_numeric(big_df['股东户数-增减比例'], errors="coerce") big_df['户均持股市值'] = pd.to_numeric(big_df['户均持股市值']) big_df['户均持股数量'] = pd.to_numeric(big_df['户均持股数量']) big_df['总市值'] = pd.to_numeric(big_df['总市值']) big_df['总股本'] = pd.to_numeric(big_df['总股本']) big_df['股本变动'] = pd.to_numeric(big_df['股本变动']) big_df['股东户数统计截止日'] = pd.to_datetime(big_df['股东户数统计截止日']).dt.date big_df['股东户数公告日期'] = pd.to_datetime(big_df['股东户数公告日期']).dt.date return big_df
17,856
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_congestion_lg.py
stock_a_congestion_lg
()
return temp_df
乐咕乐股-大盘拥挤度 https://legulegu.com/stockdata/ashares-congestion :return: 大盘拥挤度 :rtype: pandas.DataFrame
乐咕乐股-大盘拥挤度 https://legulegu.com/stockdata/ashares-congestion :return: 大盘拥挤度 :rtype: pandas.DataFrame
14
35
def stock_a_congestion_lg() -> pd.DataFrame: """ 乐咕乐股-大盘拥挤度 https://legulegu.com/stockdata/ashares-congestion :return: 大盘拥挤度 :rtype: pandas.DataFrame """ url = "https://legulegu.com/api/stockdata/ashares-congestion" token = get_token_lg() params = {"token": token} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['items']) temp_df['date'] = pd.to_datetime(temp_df['date']).dt.date temp_df = temp_df[[ 'date', 'close', 'congestion', ]] temp_df['close'] = pd.to_numeric(temp_df['close'], errors="coerce") temp_df['congestion'] = pd.to_numeric(temp_df['congestion'], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_congestion_lg.py#L14-L35
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21 ]
50
false
31.578947
22
1
50
4
def stock_a_congestion_lg() -> pd.DataFrame: url = "https://legulegu.com/api/stockdata/ashares-congestion" token = get_token_lg() params = {"token": token} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['items']) temp_df['date'] = pd.to_datetime(temp_df['date']).dt.date temp_df = temp_df[[ 'date', 'close', 'congestion', ]] temp_df['close'] = pd.to_numeric(temp_df['close'], errors="coerce") temp_df['congestion'] = pd.to_numeric(temp_df['congestion'], errors="coerce") return temp_df
17,857
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_dxsyl_em.py
stock_dxsyl_em
()
return big_df
东方财富网-数据中心-新股申购-打新收益率 https://data.eastmoney.com/xg/xg/dxsyl.html :return: 打新收益率数据 :rtype: pandas.DataFrame
东方财富网-数据中心-新股申购-打新收益率 https://data.eastmoney.com/xg/xg/dxsyl.html :return: 打新收益率数据 :rtype: pandas.DataFrame
16
106
def stock_dxsyl_em() -> pd.DataFrame: """ 东方财富网-数据中心-新股申购-打新收益率 https://data.eastmoney.com/xg/xg/dxsyl.html :return: 打新收益率数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "LISTING_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "5000", "pageNumber": "1", "reportName": "RPTA_APP_IPOAPPLY", "quoteColumns": "f2~01~SECURITY_CODE,f14~01~SECURITY_CODE", "quoteType": "0", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": """((APPLY_DATE>'2010-01-01')(|@APPLY_DATE="NULL"))((LISTING_DATE>'2010-01-01')(|@LISTING_DATE="NULL"))(TRADE_MARKET_CODE!="069001017")""", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.rename( columns={ "index": "序号", "SECURITY_CODE": "股票代码", "f14": "股票简称", "ISSUE_PRICE": "发行价", "LATELY_PRICE": "最新价", "ONLINE_ISSUE_LWR": "网上-发行中签率", "ONLINE_VA_SHARES": "网上-有效申购股数", "ONLINE_VA_NUM": "网上-有效申购户数", "ONLINE_ES_MULTIPLE": "网上-超额认购倍数", "OFFLINE_VAP_RATIO": "网下-配售中签率", "OFFLINE_VATS": "网下-有效申购股数", "OFFLINE_VAP_OBJECT": "网下-有效申购户数", "OFFLINE_VAS_MULTIPLE": "网下-配售认购倍数", "ISSUE_NUM": "总发行数量", "LD_OPEN_PREMIUM": "开盘溢价", "LD_CLOSE_CHANGE": "首日涨幅", "LISTING_DATE": "上市日期", }, inplace=True, ) big_df = big_df[ [ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "上市日期", ] ] big_df["发行价"] = pd.to_numeric(big_df["发行价"], errors="coerce") big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["网上-发行中签率"] = pd.to_numeric(big_df["网上-发行中签率"], errors="coerce") big_df["网上-有效申购股数"] = pd.to_numeric(big_df["网上-有效申购股数"], errors="coerce") big_df["网上-有效申购户数"] = pd.to_numeric(big_df["网上-有效申购户数"], errors="coerce") big_df["网上-超额认购倍数"] = pd.to_numeric(big_df["网上-超额认购倍数"], errors="coerce") big_df["网下-配售中签率"] = pd.to_numeric(big_df["网下-配售中签率"], errors="coerce") big_df["网下-有效申购股数"] = pd.to_numeric(big_df["网下-有效申购股数"], errors="coerce") big_df["网下-有效申购户数"] = pd.to_numeric(big_df["网下-有效申购户数"], errors="coerce") big_df["网下-配售认购倍数"] = pd.to_numeric(big_df["网下-配售认购倍数"], errors="coerce") big_df["总发行数量"] = pd.to_numeric(big_df["总发行数量"], errors="coerce") big_df["开盘溢价"] = pd.to_numeric(big_df["开盘溢价"], errors="coerce") big_df["首日涨幅"] = pd.to_numeric(big_df["首日涨幅"], errors="coerce") big_df["上市日期"] = pd.to_datetime(big_df["上市日期"]).dt.date return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_dxsyl_em.py#L16-L106
25
[ 0, 1, 2, 3, 4, 5, 6 ]
7.692308
[ 7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 55, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 ]
34.065934
false
5.932203
91
2
65.934066
4
def stock_dxsyl_em() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "LISTING_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "5000", "pageNumber": "1", "reportName": "RPTA_APP_IPOAPPLY", "quoteColumns": "f2~01~SECURITY_CODE,f14~01~SECURITY_CODE", "quoteType": "0", "columns": "ALL", "source": "WEB", "client": "WEB", "filter":, } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.rename( columns={ "index": "序号", "SECURITY_CODE": "股票代码", "f14": "股票简称", "ISSUE_PRICE": "发行价", "LATELY_PRICE": "最新价", "ONLINE_ISSUE_LWR": "网上-发行中签率", "ONLINE_VA_SHARES": "网上-有效申购股数", "ONLINE_VA_NUM": "网上-有效申购户数", "ONLINE_ES_MULTIPLE": "网上-超额认购倍数", "OFFLINE_VAP_RATIO": "网下-配售中签率", "OFFLINE_VATS": "网下-有效申购股数", "OFFLINE_VAP_OBJECT": "网下-有效申购户数", "OFFLINE_VAS_MULTIPLE": "网下-配售认购倍数", "ISSUE_NUM": "总发行数量", "LD_OPEN_PREMIUM": "开盘溢价", "LD_CLOSE_CHANGE": "首日涨幅", "LISTING_DATE": "上市日期", }, inplace=True, ) big_df = big_df[ [ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "上市日期", ] ] big_df["发行价"] = pd.to_numeric(big_df["发行价"], errors="coerce") big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["网上-发行中签率"] = pd.to_numeric(big_df["网上-发行中签率"], errors="coerce") big_df["网上-有效申购股数"] = pd.to_numeric(big_df["网上-有效申购股数"], errors="coerce") big_df["网上-有效申购户数"] = pd.to_numeric(big_df["网上-有效申购户数"], errors="coerce") big_df["网上-超额认购倍数"] = pd.to_numeric(big_df["网上-超额认购倍数"], errors="coerce") big_df["网下-配售中签率"] = pd.to_numeric(big_df["网下-配售中签率"], errors="coerce") big_df["网下-有效申购股数"] = pd.to_numeric(big_df["网下-有效申购股数"], errors="coerce") big_df["网下-有效申购户数"] = pd.to_numeric(big_df["网下-有效申购户数"], errors="coerce") big_df["网下-配售认购倍数"] = pd.to_numeric(big_df["网下-配售认购倍数"], errors="coerce") big_df["总发行数量"] = pd.to_numeric(big_df["总发行数量"], errors="coerce") big_df["开盘溢价"] = pd.to_numeric(big_df["开盘溢价"], errors="coerce") big_df["首日涨幅"] = pd.to_numeric(big_df["首日涨幅"], errors="coerce") big_df["上市日期"] = pd.to_datetime(big_df["上市日期"]).dt.date return big_df
17,858
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_dxsyl_em.py
stock_xgsglb_em
(symbol: str = "京市A股") -> pd
return big_df
新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame
新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame
109
338
def stock_xgsglb_em(symbol: str = "京市A股") -> pd.DataFrame: """ 新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame """ market_map = { "全部股票": """(APPLY_DATE>'2010-01-01')""", "沪市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE in ("069001001001","069001001003","069001001006"))""", "科创板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE="069001001006")""", "深市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE in ("069001002001","069001002002","069001002003","069001002005"))""", "创业板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE="069001002002")""", } url = "http://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "京市A股": params = { "sortColumns": "APPLY_DATE", "sortTypes": "-1", "pageSize": "500", "pageNumber": "1", "columns": "ALL", "reportName": "RPT_NEEQ_ISSUEINFO_LIST", "quoteColumns": "f14~01~SECURITY_CODE~SECURITY_NAME_ABBR", "source": "NEEQSELECT", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, 1 + int(total_page)), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "代码", "-", "简称", "申购代码", "发行总数", "-", "发行价格", "发行市盈率", "申购日", "发行结果公告日", "上市日", "网上发行数量", "顶格申购所需资金", "申购上限", "网上申购缴款日", "网上申购退款日", "-", "网上获配比例", "最新价", "首日收盘价", "网下有效申购倍数", "每百股获利", "-", "-", "-", "-", "-", "-", ] big_df = big_df[ [ "序号", "代码", "简称", "申购代码", "发行总数", "网上发行数量", "顶格申购所需资金", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日", "网上申购缴款日", "网上申购退款日", "上市日", "发行结果公告日", "发行市盈率", "网上获配比例", "网下有效申购倍数", "每百股获利", ] ] big_df["发行总数"] = pd.to_numeric(big_df["发行总数"]) big_df["网上发行数量"] = pd.to_numeric(big_df["网上发行数量"]) big_df["顶格申购所需资金"] = pd.to_numeric(big_df["顶格申购所需资金"]) big_df["申购上限"] = pd.to_numeric(big_df["申购上限"]) big_df["发行价格"] = pd.to_numeric(big_df["发行价格"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["首日收盘价"] = pd.to_numeric(big_df["首日收盘价"]) big_df["发行市盈率"] = pd.to_numeric(big_df["发行市盈率"]) big_df["网上获配比例"] = pd.to_numeric(big_df["网上获配比例"]) big_df["网下有效申购倍数"] = pd.to_numeric(big_df["网下有效申购倍数"]) big_df["每百股获利"] = pd.to_numeric(big_df["每百股获利"]) big_df["申购日"] = pd.to_datetime(big_df["申购日"]).dt.date big_df["网上申购缴款日"] = pd.to_datetime(big_df["网上申购缴款日"]).dt.date big_df["网上申购退款日"] = pd.to_datetime(big_df["网上申购退款日"]).dt.date big_df["上市日"] = pd.to_datetime(big_df["上市日"]).dt.date big_df["发行结果公告日"] = pd.to_datetime(big_df["发行结果公告日"]).dt.date return big_df else: params = { "sortColumns": "APPLY_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "5000", "pageNumber": "1", "reportName": "RPTA_APP_IPOAPPLY", "columns": "SECURITY_CODE,SECURITY_NAME,TRADE_MARKET_CODE,APPLY_CODE,TRADE_MARKET,MARKET_TYPE,ORG_TYPE,ISSUE_NUM,ONLINE_ISSUE_NUM,OFFLINE_PLACING_NUM,TOP_APPLY_MARKETCAP,PREDICT_ONFUND_UPPER,ONLINE_APPLY_UPPER,PREDICT_ONAPPLY_UPPER,ISSUE_PRICE,LATELY_PRICE,CLOSE_PRICE,APPLY_DATE,BALLOT_NUM_DATE,BALLOT_PAY_DATE,LISTING_DATE,AFTER_ISSUE_PE,ONLINE_ISSUE_LWR,INITIAL_MULTIPLE,INDUSTRY_PE_NEW,OFFLINE_EP_OBJECT,CONTINUOUS_1WORD_NUM,TOTAL_CHANGE,PROFIT,LIMIT_UP_PRICE,INFO_CODE,OPEN_PRICE,LD_OPEN_PREMIUM,LD_CLOSE_CHANGE,TURNOVERRATE,LD_HIGH_CHANG,LD_AVERAGE_PRICE,OPEN_DATE,OPEN_AVERAGE_PRICE,PREDICT_PE,PREDICT_ISSUE_PRICE2,PREDICT_ISSUE_PRICE,PREDICT_ISSUE_PRICE1,PREDICT_ISSUE_PE,PREDICT_PE_THREE,ONLINE_APPLY_PRICE,MAIN_BUSINESS", "filter": market_map[symbol], "source": "WEB", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "股票代码", "股票简称", "_", "申购代码", "_", "_", "_", "发行总数", "网上发行", "_", "顶格申购需配市值", "_", "申购上限", "_", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "中签率", "询价累计报价倍数", "_", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "行业市盈率", "_", "_", "_", ] big_df = big_df[ [ "股票代码", "股票简称", "申购代码", "发行总数", "网上发行", "顶格申购需配市值", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "行业市盈率", "中签率", "询价累计报价倍数", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", ] ] big_df["申购日期"] = pd.to_datetime(big_df["申购日期"]).dt.date big_df["中签号公布日"] = pd.to_datetime(big_df["中签号公布日"]).dt.date big_df["中签缴款日期"] = pd.to_datetime(big_df["中签缴款日期"]).dt.date big_df["发行总数"] = pd.to_numeric(big_df["发行总数"]) big_df["网上发行"] = pd.to_numeric(big_df["网上发行"]) big_df["顶格申购需配市值"] = pd.to_numeric(big_df["顶格申购需配市值"]) big_df["申购上限"] = pd.to_numeric(big_df["申购上限"]) big_df["发行价格"] = pd.to_numeric(big_df["发行价格"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["首日收盘价"] = pd.to_numeric(big_df["首日收盘价"]) big_df["发行市盈率"] = pd.to_numeric(big_df["发行市盈率"]) big_df["行业市盈率"] = pd.to_numeric(big_df["行业市盈率"]) big_df["中签率"] = pd.to_numeric(big_df["中签率"]) big_df["询价累计报价倍数"] = pd.to_numeric(big_df["询价累计报价倍数"]) big_df["配售对象报价家数"] = pd.to_numeric(big_df["配售对象报价家数"]) big_df["涨幅"] = pd.to_numeric(big_df["涨幅"]) big_df["每中一签获利"] = pd.to_numeric(big_df["每中一签获利"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_dxsyl_em.py#L109-L338
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
3.913043
[ 9, 16, 17, 18, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 73, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 116, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 186, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229 ]
28.695652
false
5.932203
230
4
71.304348
6
def stock_xgsglb_em(symbol: str = "京市A股") -> pd.DataFrame: market_map = { "全部股票":, "沪市A股":, "科创板":, "深市A股":, "创业板":, } url = "http://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "京市A股": params = { "sortColumns": "APPLY_DATE", "sortTypes": "-1", "pageSize": "500", "pageNumber": "1", "columns": "ALL", "reportName": "RPT_NEEQ_ISSUEINFO_LIST", "quoteColumns": "f14~01~SECURITY_CODE~SECURITY_NAME_ABBR", "source": "NEEQSELECT", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, 1 + int(total_page)), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "代码", "-", "简称", "申购代码", "发行总数", "-", "发行价格", "发行市盈率", "申购日", "发行结果公告日", "上市日", "网上发行数量", "顶格申购所需资金", "申购上限", "网上申购缴款日", "网上申购退款日", "-", "网上获配比例", "最新价", "首日收盘价", "网下有效申购倍数", "每百股获利", "-", "-", "-", "-", "-", "-", ] big_df = big_df[ [ "序号", "代码", "简称", "申购代码", "发行总数", "网上发行数量", "顶格申购所需资金", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日", "网上申购缴款日", "网上申购退款日", "上市日", "发行结果公告日", "发行市盈率", "网上获配比例", "网下有效申购倍数", "每百股获利", ] ] big_df["发行总数"] = pd.to_numeric(big_df["发行总数"]) big_df["网上发行数量"] = pd.to_numeric(big_df["网上发行数量"]) big_df["顶格申购所需资金"] = pd.to_numeric(big_df["顶格申购所需资金"]) big_df["申购上限"] = pd.to_numeric(big_df["申购上限"]) big_df["发行价格"] = pd.to_numeric(big_df["发行价格"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["首日收盘价"] = pd.to_numeric(big_df["首日收盘价"]) big_df["发行市盈率"] = pd.to_numeric(big_df["发行市盈率"]) big_df["网上获配比例"] = pd.to_numeric(big_df["网上获配比例"]) big_df["网下有效申购倍数"] = pd.to_numeric(big_df["网下有效申购倍数"]) big_df["每百股获利"] = pd.to_numeric(big_df["每百股获利"]) big_df["申购日"] = pd.to_datetime(big_df["申购日"]).dt.date big_df["网上申购缴款日"] = pd.to_datetime(big_df["网上申购缴款日"]).dt.date big_df["网上申购退款日"] = pd.to_datetime(big_df["网上申购退款日"]).dt.date big_df["上市日"] = pd.to_datetime(big_df["上市日"]).dt.date big_df["发行结果公告日"] = pd.to_datetime(big_df["发行结果公告日"]).dt.date return big_df else: params = { "sortColumns": "APPLY_DATE,SECURITY_CODE", "sortTypes": "-1,-1", "pageSize": "5000", "pageNumber": "1", "reportName": "RPTA_APP_IPOAPPLY", "columns": "SECURITY_CODE,SECURITY_NAME,TRADE_MARKET_CODE,APPLY_CODE,TRADE_MARKET,MARKET_TYPE,ORG_TYPE,ISSUE_NUM,ONLINE_ISSUE_NUM,OFFLINE_PLACING_NUM,TOP_APPLY_MARKETCAP,PREDICT_ONFUND_UPPER,ONLINE_APPLY_UPPER,PREDICT_ONAPPLY_UPPER,ISSUE_PRICE,LATELY_PRICE,CLOSE_PRICE,APPLY_DATE,BALLOT_NUM_DATE,BALLOT_PAY_DATE,LISTING_DATE,AFTER_ISSUE_PE,ONLINE_ISSUE_LWR,INITIAL_MULTIPLE,INDUSTRY_PE_NEW,OFFLINE_EP_OBJECT,CONTINUOUS_1WORD_NUM,TOTAL_CHANGE,PROFIT,LIMIT_UP_PRICE,INFO_CODE,OPEN_PRICE,LD_OPEN_PREMIUM,LD_CLOSE_CHANGE,TURNOVERRATE,LD_HIGH_CHANG,LD_AVERAGE_PRICE,OPEN_DATE,OPEN_AVERAGE_PRICE,PREDICT_PE,PREDICT_ISSUE_PRICE2,PREDICT_ISSUE_PRICE,PREDICT_ISSUE_PRICE1,PREDICT_ISSUE_PE,PREDICT_PE_THREE,ONLINE_APPLY_PRICE,MAIN_BUSINESS", "filter": market_map[symbol], "source": "WEB", "client": "WEB", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "股票代码", "股票简称", "_", "申购代码", "_", "_", "_", "发行总数", "网上发行", "_", "顶格申购需配市值", "_", "申购上限", "_", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "中签率", "询价累计报价倍数", "_", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "行业市盈率", "_", "_", "_", ] big_df = big_df[ [ "股票代码", "股票简称", "申购代码", "发行总数", "网上发行", "顶格申购需配市值", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "行业市盈率", "中签率", "询价累计报价倍数", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", ] ] big_df["申购日期"] = pd.to_datetime(big_df["申购日期"]).dt.date big_df["中签号公布日"] = pd.to_datetime(big_df["中签号公布日"]).dt.date big_df["中签缴款日期"] = pd.to_datetime(big_df["中签缴款日期"]).dt.date big_df["发行总数"] = pd.to_numeric(big_df["发行总数"]) big_df["网上发行"] = pd.to_numeric(big_df["网上发行"]) big_df["顶格申购需配市值"] = pd.to_numeric(big_df["顶格申购需配市值"]) big_df["申购上限"] = pd.to_numeric(big_df["申购上限"]) big_df["发行价格"] = pd.to_numeric(big_df["发行价格"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["首日收盘价"] = pd.to_numeric(big_df["首日收盘价"]) big_df["发行市盈率"] = pd.to_numeric(big_df["发行市盈率"]) big_df["行业市盈率"] = pd.to_numeric(big_df["行业市盈率"]) big_df["中签率"] = pd.to_numeric(big_df["中签率"]) big_df["询价累计报价倍数"] = pd.to_numeric(big_df["询价累计报价倍数"]) big_df["配售对象报价家数"] = pd.to_numeric(big_df["配售对象报价家数"]) big_df["涨幅"] = pd.to_numeric(big_df["涨幅"]) big_df["每中一签获利"] = pd.to_numeric(big_df["每中一签获利"]) return big_df
17,859
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_cninfo_yjyg.py
stock_report_disclosure
( market: str = "沪深京", period: str = "2021年报" )
return temp_df
巨潮资讯-首页-数据-预约披露 http://www.cninfo.com.cn/new/commonUrl?url=data/yypl :param market: choice of {"沪深京": "szsh", "深市": "sz", "深主板": "szmb", "中小板": "szsme", "创业板": "szcn", "沪市": "sh", "沪主板": "shmb", "科创板": "shkcp"} :type market: str :param period: 最近四期的财报 :type period: str :return: 指定 market 和 period 的数据 :rtype: pandas.DataFrame
巨潮资讯-首页-数据-预约披露 http://www.cninfo.com.cn/new/commonUrl?url=data/yypl :param market: choice of {"沪深京": "szsh", "深市": "sz", "深主板": "szmb", "中小板": "szsme", "创业板": "szcn", "沪市": "sh", "沪主板": "shmb", "科创板": "shkcp"} :type market: str :param period: 最近四期的财报 :type period: str :return: 指定 market 和 period 的数据 :rtype: pandas.DataFrame
12
85
def stock_report_disclosure( market: str = "沪深京", period: str = "2021年报" ) -> pd.DataFrame: """ 巨潮资讯-首页-数据-预约披露 http://www.cninfo.com.cn/new/commonUrl?url=data/yypl :param market: choice of {"沪深京": "szsh", "深市": "sz", "深主板": "szmb", "中小板": "szsme", "创业板": "szcn", "沪市": "sh", "沪主板": "shmb", "科创板": "shkcp"} :type market: str :param period: 最近四期的财报 :type period: str :return: 指定 market 和 period 的数据 :rtype: pandas.DataFrame """ market_map = { "沪深京": "szsh", "深市": "sz", "深主板": "szmb", "创业板": "szcn", "沪市": "sh", "沪主板": "shmb", "科创板": "shkcp", "北交所": "bj", } year = period[:4] period_map = { f"{year}一季": f"{year}-03-31", f"{year}半年报": f"{year}-06-30", f"{year}三季": f"{year}-09-30", f"{year}年报": f"{year}-12-31", } url = "http://www.cninfo.com.cn/new/information/getPrbookInfo" params = { "sectionTime": period_map[period], "firstTime": "", "lastTime": "", "market": market_map[market], "stockCode": "", "orderClos": "", "isDesc": "", "pagesize": "10000", "pagenum": "1", } r = requests.post(url, params=params) text_json = r.json() temp_df = pd.DataFrame(text_json["prbookinfos"]) temp_df.columns = [ "股票代码", "股票简称", "首次预约", "实际披露", "初次变更", "二次变更", "三次变更", "报告期", "-", "组织码", ] temp_df = temp_df[ [ "股票代码", "股票简称", "首次预约", "初次变更", "二次变更", "三次变更", "实际披露", ] ] temp_df["首次预约"] = pd.to_datetime(temp_df["首次预约"]).dt.date temp_df["初次变更"] = pd.to_datetime(temp_df["初次变更"]).dt.date temp_df["二次变更"] = pd.to_datetime(temp_df["二次变更"]).dt.date temp_df["三次变更"] = pd.to_datetime(temp_df["三次变更"]).dt.date temp_df["实际披露"] = pd.to_datetime(temp_df["实际披露"]).dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_cninfo_yjyg.py#L12-L85
25
[ 0 ]
1.351351
[ 13, 23, 24, 30, 31, 42, 43, 44, 45, 57, 68, 69, 70, 71, 72, 73 ]
21.621622
false
21.73913
74
1
78.378378
8
def stock_report_disclosure( market: str = "沪深京", period: str = "2021年报" ) -> pd.DataFrame: market_map = { "沪深京": "szsh", "深市": "sz", "深主板": "szmb", "创业板": "szcn", "沪市": "sh", "沪主板": "shmb", "科创板": "shkcp", "北交所": "bj", } year = period[:4] period_map = { f"{year}一季": f"{year}-03-31", f"{year}半年报": f"{year}-06-30", f"{year}三季": f"{year}-09-30", f"{year}年报": f"{year}-12-31", } url = "http://www.cninfo.com.cn/new/information/getPrbookInfo" params = { "sectionTime": period_map[period], "firstTime": "", "lastTime": "", "market": market_map[market], "stockCode": "", "orderClos": "", "isDesc": "", "pagesize": "10000", "pagenum": "1", } r = requests.post(url, params=params) text_json = r.json() temp_df = pd.DataFrame(text_json["prbookinfos"]) temp_df.columns = [ "股票代码", "股票简称", "首次预约", "实际披露", "初次变更", "二次变更", "三次变更", "报告期", "-", "组织码", ] temp_df = temp_df[ [ "股票代码", "股票简称", "首次预约", "初次变更", "二次变更", "三次变更", "实际披露", ] ] temp_df["首次预约"] = pd.to_datetime(temp_df["首次预约"]).dt.date temp_df["初次变更"] = pd.to_datetime(temp_df["初次变更"]).dt.date temp_df["二次变更"] = pd.to_datetime(temp_df["二次变更"]).dt.date temp_df["三次变更"] = pd.to_datetime(temp_df["三次变更"]).dt.date temp_df["实际披露"] = pd.to_datetime(temp_df["实际披露"]).dt.date return temp_df
17,860
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_market_legu.py
stock_market_activity_legu
()
return temp_df
乐咕乐股网-赚钱效应分析 https://www.legulegu.com/stockdata/market-activity :return: 乐咕乐股网-赚钱效应分析 :rtype: pandas.DataFrame
乐咕乐股网-赚钱效应分析 https://www.legulegu.com/stockdata/market-activity :return: 乐咕乐股网-赚钱效应分析 :rtype: pandas.DataFrame
13
41
def stock_market_activity_legu() -> pd.DataFrame: """ 乐咕乐股网-赚钱效应分析 https://www.legulegu.com/stockdata/market-activity :return: 乐咕乐股网-赚钱效应分析 :rtype: pandas.DataFrame """ url = "https://legulegu.com/stockdata/market-activity" r = requests.get(url) temp_df = pd.read_html(r.text)[0] temp_df_one = temp_df.iloc[:, :2] temp_df_one.columns = ["item", "value"] temp_df_two = temp_df.iloc[:, 2:4] temp_df_two.columns = ["item", "value"] temp_df_three = temp_df.iloc[:, 4:6] temp_df_three.columns = ["item", "value"] temp_df = pd.concat([temp_df_one, temp_df_two, temp_df_three]) temp_df.dropna(how="all", axis=0, inplace=True) soup = BeautifulSoup(r.text, "lxml") item_str = soup.find("div", attrs={"class": "current-index"}).text inner_temp_df = pd.DataFrame(item_str.split(":")).T inner_temp_df.columns = ["item", "value"] temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) item_str = soup.find("div", attrs={"class": "current-data"}).text.strip() inner_temp_df = pd.DataFrame(["统计日期", item_str]).T inner_temp_df.columns = ["item", "value"] temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_market_legu.py#L13-L41
25
[ 0, 1, 2, 3, 4, 5, 6 ]
24.137931
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ]
75.862069
false
20
29
1
24.137931
4
def stock_market_activity_legu() -> pd.DataFrame: url = "https://legulegu.com/stockdata/market-activity" r = requests.get(url) temp_df = pd.read_html(r.text)[0] temp_df_one = temp_df.iloc[:, :2] temp_df_one.columns = ["item", "value"] temp_df_two = temp_df.iloc[:, 2:4] temp_df_two.columns = ["item", "value"] temp_df_three = temp_df.iloc[:, 4:6] temp_df_three.columns = ["item", "value"] temp_df = pd.concat([temp_df_one, temp_df_two, temp_df_three]) temp_df.dropna(how="all", axis=0, inplace=True) soup = BeautifulSoup(r.text, "lxml") item_str = soup.find("div", attrs={"class": "current-index"}).text inner_temp_df = pd.DataFrame(item_str.split(":")).T inner_temp_df.columns = ["item", "value"] temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) item_str = soup.find("div", attrs={"class": "current-data"}).text.strip() inner_temp_df = pd.DataFrame(["统计日期", item_str]).T inner_temp_df.columns = ["item", "value"] temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) temp_df.reset_index(inplace=True, drop=True) return temp_df
17,861
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_sse_margin.py
stock_margin_sse
( start_date: str = "20010106", end_date: str = "20210208" )
return temp_df
上海证券交易所-融资融券数据-融资融券汇总 http://www.sse.com.cn/market/othersdata/margin/sum/ :param start_date: 交易开始日期 :type start_date: str :param end_date: 交易结束日期 :type end_date: str :return: 融资融券汇总 :rtype: pandas.DataFrame
上海证券交易所-融资融券数据-融资融券汇总 http://www.sse.com.cn/market/othersdata/margin/sum/ :param start_date: 交易开始日期 :type start_date: str :param end_date: 交易结束日期 :type end_date: str :return: 融资融券汇总 :rtype: pandas.DataFrame
12
72
def stock_margin_sse( start_date: str = "20010106", end_date: str = "20210208" ) -> pd.DataFrame: """ 上海证券交易所-融资融券数据-融资融券汇总 http://www.sse.com.cn/market/othersdata/margin/sum/ :param start_date: 交易开始日期 :type start_date: str :param end_date: 交易结束日期 :type end_date: str :return: 融资融券汇总 :rtype: pandas.DataFrame """ url = "http://query.sse.com.cn/marketdata/tradedata/queryMargin.do" params = { "isPagination": "true", "beginDate": start_date, "endDate": end_date, "tabType": "", "stockCode": "", "pageHelp.pageSize": "5000", "pageHelp.pageNo": "1", "pageHelp.beginPage": "1", "pageHelp.cacheSize": "1", "pageHelp.endPage": "5", "_": "1612773448860", } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df.columns = [ "_", "信用交易日期", "_", "融券卖出量", "融券余量", "融券余量金额", "_", "_", "融资买入额", "融资融券余额", "融资余额", "_", "_", ] temp_df = temp_df[ [ "信用交易日期", "融资余额", "融资买入额", "融券余量", "融券余量金额", "融券卖出量", "融资融券余额", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_sse_margin.py#L12-L72
25
[ 0 ]
1.639344
[ 13, 14, 27, 31, 32, 33, 34, 49, 60 ]
14.754098
false
21.428571
61
1
85.245902
8
def stock_margin_sse( start_date: str = "20010106", end_date: str = "20210208" ) -> pd.DataFrame: url = "http://query.sse.com.cn/marketdata/tradedata/queryMargin.do" params = { "isPagination": "true", "beginDate": start_date, "endDate": end_date, "tabType": "", "stockCode": "", "pageHelp.pageSize": "5000", "pageHelp.pageNo": "1", "pageHelp.beginPage": "1", "pageHelp.cacheSize": "1", "pageHelp.endPage": "5", "_": "1612773448860", } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df.columns = [ "_", "信用交易日期", "_", "融券卖出量", "融券余量", "融券余量金额", "_", "_", "融资买入额", "融资融券余额", "融资余额", "_", "_", ] temp_df = temp_df[ [ "信用交易日期", "融资余额", "融资买入额", "融券余量", "融券余量金额", "融券卖出量", "融资融券余额", ] ] return temp_df
17,862
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_sse_margin.py
stock_margin_detail_sse
(date: str = "20210205")
return temp_df
上海证券交易所-融资融券数据-融资融券明细 http://www.sse.com.cn/market/othersdata/margin/detail/ :param date: 交易日期 :type date: str :return: 融资融券明细 :rtype: pandas.DataFrame
上海证券交易所-融资融券数据-融资融券明细 http://www.sse.com.cn/market/othersdata/margin/detail/ :param date: 交易日期 :type date: str :return: 融资融券明细 :rtype: pandas.DataFrame
75
135
def stock_margin_detail_sse(date: str = "20210205") -> pd.DataFrame: """ 上海证券交易所-融资融券数据-融资融券明细 http://www.sse.com.cn/market/othersdata/margin/detail/ :param date: 交易日期 :type date: str :return: 融资融券明细 :rtype: pandas.DataFrame """ url = "http://query.sse.com.cn/marketdata/tradedata/queryMargin.do" params = { "isPagination": "true", "tabType": "mxtype", "detailsDate": date, "stockCode": "", "beginDate": "", "endDate": "", "pageHelp.pageSize": "5000", "pageHelp.pageCount": "50", "pageHelp.pageNo": "1", "pageHelp.beginPage": "1", "pageHelp.cacheSize": "1", "pageHelp.endPage": "21", "_": "1612773448860", } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df.columns = [ "_", "信用交易日期", "融券偿还量", "融券卖出量", "融券余量", "_", "_", "融资偿还额", "融资买入额", "_", "融资余额", "标的证券简称", "标的证券代码", ] temp_df = temp_df[ [ "信用交易日期", "标的证券代码", "标的证券简称", "融资余额", "融资买入额", "融资偿还额", "融券余量", "融券卖出量", "融券偿还量", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_sse_margin.py#L75-L135
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.754098
[ 9, 10, 25, 29, 30, 31, 32, 47, 60 ]
14.754098
false
21.428571
61
1
85.245902
6
def stock_margin_detail_sse(date: str = "20210205") -> pd.DataFrame: url = "http://query.sse.com.cn/marketdata/tradedata/queryMargin.do" params = { "isPagination": "true", "tabType": "mxtype", "detailsDate": date, "stockCode": "", "beginDate": "", "endDate": "", "pageHelp.pageSize": "5000", "pageHelp.pageCount": "50", "pageHelp.pageNo": "1", "pageHelp.beginPage": "1", "pageHelp.cacheSize": "1", "pageHelp.endPage": "21", "_": "1612773448860", } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df.columns = [ "_", "信用交易日期", "融券偿还量", "融券卖出量", "融券余量", "_", "_", "融资偿还额", "融资买入额", "_", "融资余额", "标的证券简称", "标的证券代码", ] temp_df = temp_df[ [ "信用交易日期", "标的证券代码", "标的证券简称", "融资余额", "融资买入额", "融资偿还额", "融券余量", "融券卖出量", "融券偿还量", ] ] return temp_df
17,863
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_wencai.py
_get_file_content_ths
(file: str = "ths.js")
return file_data
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
16
27
def _get_file_content_ths(file: str = "ths.js") -> str: """ 获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str """ setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_wencai.py#L16-L27
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
66.666667
[ 8, 9, 10, 11 ]
33.333333
false
20.454545
12
2
66.666667
5
def _get_file_content_ths(file: str = "ths.js") -> str: setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
17,864
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_wencai.py
stock_hot_rank_wc
(date: str = "20210430")
return big_df
问财-热门股票排名 https://www.iwencai.com/unifiedwap/result?w=%E7%83%AD%E9%97%A85000%E8%82%A1%E7%A5%A8&querytype=stock&issugs&sign=1620126514335 :param date: 查询日期 :type date: str :return: 热门股票排名 :rtype: pandas.DataFrame
问财-热门股票排名 https://www.iwencai.com/unifiedwap/result?w=%E7%83%AD%E9%97%A85000%E8%82%A1%E7%A5%A8&querytype=stock&issugs&sign=1620126514335 :param date: 查询日期 :type date: str :return: 热门股票排名 :rtype: pandas.DataFrame
30
110
def stock_hot_rank_wc(date: str = "20210430") -> pd.DataFrame: """ 问财-热门股票排名 https://www.iwencai.com/unifiedwap/result?w=%E7%83%AD%E9%97%A85000%E8%82%A1%E7%A5%A8&querytype=stock&issugs&sign=1620126514335 :param date: 查询日期 :type date: str :return: 热门股票排名 :rtype: pandas.DataFrame """ url = "http://www.iwencai.com/unifiedwap/unified-wap/v2/result/get-robot-data" js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "hexin-v": v_code, "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36", } params = { "question": f"{date}热门5000股票", "perpage": "5000", "page": "1", "secondary_intent": "", "log_info": '{"input_type":"click"}', "source": "Ths_iwencai_Xuangu", "version": "2.0", "query_area": "", "block_list": "", "add_info": '{"urp":{"scene":1,"company":1,"business":1},"contentType":"json"}', } big_df = pd.DataFrame() for page in tqdm(range(1, 11), leave=False): params.update({ "page": page, }) r = requests.post(url, data=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["answer"][0]["txt"][0]["content"]["components"][0][ "data" ]["datas"] ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = range(1, len(big_df) + 1) try: rank_date_str = big_df.columns[1].split("[")[1].strip("]") except: try: rank_date_str = big_df.columns[2].split("[")[1].strip("]") except: rank_date_str = date big_df.rename( columns={ "index": "序号", f"个股热度排名[{rank_date_str}]": "个股热度排名", f"个股热度[{rank_date_str}]": "个股热度", "code": "股票代码", "market_code": "_", "最新涨跌幅": "涨跌幅", "最新价": "现价", "股票代码": "_", }, inplace=True, ) big_df = big_df[ [ "序号", "股票代码", "股票简称", "现价", "涨跌幅", "个股热度", "个股热度排名", ] ] big_df["涨跌幅"] = big_df["涨跌幅"].astype(float).round(2) big_df["排名日期"] = rank_date_str big_df["现价"] = pd.to_numeric(big_df["现价"], errors="coerce") return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_wencai.py#L30-L110
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
11.111111
[ 9, 10, 11, 12, 13, 14, 18, 30, 31, 32, 35, 36, 37, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 66, 77, 78, 79, 80 ]
35.802469
false
20.454545
81
4
64.197531
6
def stock_hot_rank_wc(date: str = "20210430") -> pd.DataFrame: url = "http://www.iwencai.com/unifiedwap/unified-wap/v2/result/get-robot-data" js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "hexin-v": v_code, "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36", } params = { "question": f"{date}热门5000股票", "perpage": "5000", "page": "1", "secondary_intent": "", "log_info": '{"input_type":"click"}', "source": "Ths_iwencai_Xuangu", "version": "2.0", "query_area": "", "block_list": "", "add_info": '{"urp":{"scene":1,"company":1,"business":1},"contentType":"json"}', } big_df = pd.DataFrame() for page in tqdm(range(1, 11), leave=False): params.update({ "page": page, }) r = requests.post(url, data=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["answer"][0]["txt"][0]["content"]["components"][0][ "data" ]["datas"] ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = range(1, len(big_df) + 1) try: rank_date_str = big_df.columns[1].split("[")[1].strip("]") except: try: rank_date_str = big_df.columns[2].split("[")[1].strip("]") except: rank_date_str = date big_df.rename( columns={ "index": "序号", f"个股热度排名[{rank_date_str}]": "个股热度排名", f"个股热度[{rank_date_str}]": "个股热度", "code": "股票代码", "market_code": "_", "最新涨跌幅": "涨跌幅", "最新价": "现价", "股票代码": "_", }, inplace=True, ) big_df = big_df[ [ "序号", "股票代码", "股票简称", "现价", "涨跌幅", "个股热度", "个股热度排名", ] ] big_df["涨跌幅"] = big_df["涨跌幅"].astype(float).round(2) big_df["排名日期"] = rank_date_str big_df["现价"] = pd.to_numeric(big_df["现价"], errors="coerce") return big_df
17,865
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ebs_lg.py
stock_ebs_lg
()
return temp_df
乐咕乐股-股债利差 https://legulegu.com/stockdata/equity-bond-spread :return: 股债利差 :rtype: pandas.DataFrame
乐咕乐股-股债利差 https://legulegu.com/stockdata/equity-bond-spread :return: 股债利差 :rtype: pandas.DataFrame
14
48
def stock_ebs_lg() -> pd.DataFrame: """ 乐咕乐股-股债利差 https://legulegu.com/stockdata/equity-bond-spread :return: 股债利差 :rtype: pandas.DataFrame """ url = "https://legulegu.com/api/stockdata/equity-bond-spread" token = get_token_lg() params = {"token": token, "code": "000300.SH"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.rename( columns={ "date": "日期", "close": "沪深300指数", "peSpread": "股债利差", "peSpreadAverage": "股债利差均线", }, inplace=True, ) temp_df = temp_df[ [ "日期", "沪深300指数", "股债利差", "股债利差均线", ] ] temp_df["沪深300指数"] = pd.to_numeric(temp_df["沪深300指数"], errors="coerce") temp_df["股债利差"] = pd.to_numeric(temp_df["股债利差"], errors="coerce") temp_df["股债利差均线"] = pd.to_numeric(temp_df["股债利差均线"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ebs_lg.py#L14-L48
25
[ 0, 1, 2, 3, 4, 5, 6 ]
20
[ 7, 8, 9, 10, 11, 12, 13, 14, 23, 31, 32, 33, 34 ]
37.142857
false
28.571429
35
1
62.857143
4
def stock_ebs_lg() -> pd.DataFrame: url = "https://legulegu.com/api/stockdata/equity-bond-spread" token = get_token_lg() params = {"token": token, "code": "000300.SH"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.rename( columns={ "date": "日期", "close": "沪深300指数", "peSpread": "股债利差", "peSpreadAverage": "股债利差均线", }, inplace=True, ) temp_df = temp_df[ [ "日期", "沪深300指数", "股债利差", "股债利差均线", ] ] temp_df["沪深300指数"] = pd.to_numeric(temp_df["沪深300指数"], errors="coerce") temp_df["股债利差"] = pd.to_numeric(temp_df["股债利差"], errors="coerce") temp_df["股债利差均线"] = pd.to_numeric(temp_df["股债利差均线"], errors="coerce") return temp_df
17,866
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_qsjy_em.py
stock_qsjy_em
(date: str = "20200731")
return temp_df
东方财富网-数据中心-特色数据-券商业绩月报 http://data.eastmoney.com/other/qsjy.html :param date: 数据月份,从 2010-06-01 开始, e.g., 需要 2011 年 7 月, 则输入 2011-07-01 :type date: str :return: 券商业绩月报 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-券商业绩月报 http://data.eastmoney.com/other/qsjy.html :param date: 数据月份,从 2010-06-01 开始, e.g., 需要 2011 年 7 月, 则输入 2011-07-01 :type date: str :return: 券商业绩月报 :rtype: pandas.DataFrame
12
83
def stock_qsjy_em(date: str = "20200731") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-券商业绩月报 http://data.eastmoney.com/other/qsjy.html :param date: 数据月份,从 2010-06-01 开始, e.g., 需要 2011 年 7 月, 则输入 2011-07-01 :type date: str :return: 券商业绩月报 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "END_DATE", "sortTypes": "-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_PERFORMANCE", "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,NETPROFIT,NP_YOY,NP_QOQ,ACCUMPROFIT,ACCUMPROFIT_YOY,OPERATE_INCOME,OI_YOY,OI_QOQ,ACCUMOI,ACCUMOI_YOY,NET_ASSETS,NA_YOY", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.columns = [ "代码", "简称", "-", "当月净利润-净利润", "当月净利润-同比增长", "当月净利润-环比增长", "当年累计净利润-累计净利润", "当年累计净利润-同比增长", "当月营业收入-营业收入", "当月营业收入-环比增长", "当月营业收入-同比增长", "当年累计营业收入-累计营业收入", "当年累计营业收入-同比增长", "净资产-净资产", "净资产-同比增长", ] temp_df = temp_df[ [ "简称", "代码", "当月净利润-净利润", "当月净利润-同比增长", "当月净利润-环比增长", "当年累计净利润-累计净利润", "当年累计净利润-同比增长", "当月营业收入-营业收入", "当月营业收入-环比增长", "当月营业收入-同比增长", "当年累计营业收入-累计营业收入", "当年累计营业收入-同比增长", "净资产-净资产", "净资产-同比增长", ] ] temp_df["当月净利润-净利润"] = pd.to_numeric(temp_df["当月净利润-净利润"]) temp_df["当月净利润-同比增长"] = pd.to_numeric(temp_df["当月净利润-同比增长"]) temp_df["当月净利润-环比增长"] = pd.to_numeric(temp_df["当月净利润-环比增长"]) temp_df["当年累计净利润-累计净利润"] = pd.to_numeric(temp_df["当年累计净利润-累计净利润"]) temp_df["当年累计净利润-同比增长"] = pd.to_numeric(temp_df["当年累计净利润-同比增长"]) temp_df["当月营业收入-营业收入"] = pd.to_numeric(temp_df["当月营业收入-营业收入"]) temp_df["当月营业收入-环比增长"] = pd.to_numeric(temp_df["当月营业收入-环比增长"]) temp_df["当月营业收入-同比增长"] = pd.to_numeric(temp_df["当月营业收入-同比增长"]) temp_df["当年累计营业收入-累计营业收入"] = pd.to_numeric(temp_df["当年累计营业收入-累计营业收入"]) temp_df["当年累计营业收入-同比增长"] = pd.to_numeric(temp_df["当年累计营业收入-同比增长"]) temp_df["净资产-净资产"] = pd.to_numeric(temp_df["净资产-净资产"]) temp_df["净资产-同比增长"] = pd.to_numeric(temp_df["净资产-同比增长"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_qsjy_em.py#L12-L83
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
12.5
[ 9, 10, 21, 22, 23, 24, 41, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ]
27.777778
false
18.518519
72
1
72.222222
6
def stock_qsjy_em(date: str = "20200731") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "END_DATE", "sortTypes": "-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_PERFORMANCE", "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,NETPROFIT,NP_YOY,NP_QOQ,ACCUMPROFIT,ACCUMPROFIT_YOY,OPERATE_INCOME,OI_YOY,OI_QOQ,ACCUMOI,ACCUMOI_YOY,NET_ASSETS,NA_YOY", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.columns = [ "代码", "简称", "-", "当月净利润-净利润", "当月净利润-同比增长", "当月净利润-环比增长", "当年累计净利润-累计净利润", "当年累计净利润-同比增长", "当月营业收入-营业收入", "当月营业收入-环比增长", "当月营业收入-同比增长", "当年累计营业收入-累计营业收入", "当年累计营业收入-同比增长", "净资产-净资产", "净资产-同比增长", ] temp_df = temp_df[ [ "简称", "代码", "当月净利润-净利润", "当月净利润-同比增长", "当月净利润-环比增长", "当年累计净利润-累计净利润", "当年累计净利润-同比增长", "当月营业收入-营业收入", "当月营业收入-环比增长", "当月营业收入-同比增长", "当年累计营业收入-累计营业收入", "当年累计营业收入-同比增长", "净资产-净资产", "净资产-同比增长", ] ] temp_df["当月净利润-净利润"] = pd.to_numeric(temp_df["当月净利润-净利润"]) temp_df["当月净利润-同比增长"] = pd.to_numeric(temp_df["当月净利润-同比增长"]) temp_df["当月净利润-环比增长"] = pd.to_numeric(temp_df["当月净利润-环比增长"]) temp_df["当年累计净利润-累计净利润"] = pd.to_numeric(temp_df["当年累计净利润-累计净利润"]) temp_df["当年累计净利润-同比增长"] = pd.to_numeric(temp_df["当年累计净利润-同比增长"]) temp_df["当月营业收入-营业收入"] = pd.to_numeric(temp_df["当月营业收入-营业收入"]) temp_df["当月营业收入-环比增长"] = pd.to_numeric(temp_df["当月营业收入-环比增长"]) temp_df["当月营业收入-同比增长"] = pd.to_numeric(temp_df["当月营业收入-同比增长"]) temp_df["当年累计营业收入-累计营业收入"] = pd.to_numeric(temp_df["当年累计营业收入-累计营业收入"]) temp_df["当年累计营业收入-同比增长"] = pd.to_numeric(temp_df["当年累计营业收入-同比增长"]) temp_df["净资产-净资产"] = pd.to_numeric(temp_df["净资产-净资产"]) temp_df["净资产-同比增长"] = pd.to_numeric(temp_df["净资产-同比增长"]) return temp_df
17,867
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_buffett_index_lg.py
stock_buffett_index_lg
()
return temp_df
乐估乐股-底部研究-巴菲特指标 https://legulegu.com/stockdata/marketcap-gdp :return: 巴菲特指标 :rtype: pandas.DataFrame
乐估乐股-底部研究-巴菲特指标 https://legulegu.com/stockdata/marketcap-gdp :return: 巴菲特指标 :rtype: pandas.DataFrame
14
49
def stock_buffett_index_lg() -> pd.DataFrame: """ 乐估乐股-底部研究-巴菲特指标 https://legulegu.com/stockdata/marketcap-gdp :return: 巴菲特指标 :rtype: pandas.DataFrame """ token = get_token_lg() url = "https://legulegu.com/api/stockdata/marketcap-gdp/get-marketcap-gdp" params = {"token": token} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "marketCap": "总市值", "gdp": "GDP", "close": "收盘价", "date": "日期", "quantileInAllHistory": "总历史分位数", "quantileInRecent10Years": "近十年分位数", }, inplace=True, ) temp_df = temp_df[ [ "日期", "收盘价", "总市值", "GDP", "近十年分位数", "总历史分位数", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_buffett_index_lg.py#L14-L49
25
[ 0, 1, 2, 3, 4, 5, 6 ]
19.444444
[ 7, 8, 9, 10, 11, 12, 13, 24, 34, 35 ]
27.777778
false
33.333333
36
1
72.222222
4
def stock_buffett_index_lg() -> pd.DataFrame: token = get_token_lg() url = "https://legulegu.com/api/stockdata/marketcap-gdp/get-marketcap-gdp" params = {"token": token} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "marketCap": "总市值", "gdp": "GDP", "close": "收盘价", "date": "日期", "quantileInAllHistory": "总历史分位数", "quantileInRecent10Years": "近十年分位数", }, inplace=True, ) temp_df = temp_df[ [ "日期", "收盘价", "总市值", "GDP", "近十年分位数", "总历史分位数", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
17,868
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ztb_em.py
stock_zt_pool_em
(date: str = "20220426")
return temp_df
东方财富网-行情中心-涨停板行情-涨停股池 http://quote.eastmoney.com/ztb/detail#type=ztgc :return: 涨停股池 :rtype: pandas.DataFrame
东方财富网-行情中心-涨停板行情-涨停股池 http://quote.eastmoney.com/ztb/detail#type=ztgc :return: 涨停股池 :rtype: pandas.DataFrame
21
102
def stock_zt_pool_em(date: str = "20220426") -> pd.DataFrame: """ 东方财富网-行情中心-涨停板行情-涨停股池 http://quote.eastmoney.com/ztb/detail#type=ztgc :return: 涨停股池 :rtype: pandas.DataFrame """ url = "http://push2ex.eastmoney.com/getTopicZTPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "10000", "sort": "fbt:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "连板数", "首次封板时间", "最后封板时间", "封板资金", "炸板次数", "所属行业", "涨停统计", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "成交额", "流通市值", "总市值", "换手率", "封板资金", "首次封板时间", "最后封板时间", "炸板次数", "涨停统计", "连板数", "所属行业", ] ] temp_df["首次封板时间"] = temp_df["首次封板时间"].astype(str).str.zfill(6) temp_df["最后封板时间"] = temp_df["最后封板时间"].astype(str).str.zfill(6) temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"]) temp_df["总市值"] = pd.to_numeric(temp_df["总市值"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["封板资金"] = pd.to_numeric(temp_df["封板资金"]) temp_df["炸板次数"] = pd.to_numeric(temp_df["炸板次数"]) temp_df["连板数"] = pd.to_numeric(temp_df["连板数"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ztb_em.py#L21-L102
25
[ 0, 1, 2, 3, 4, 5, 6 ]
8.536585
[ 7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 43, 48, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81 ]
30.487805
false
7.29927
82
2
69.512195
4
def stock_zt_pool_em(date: str = "20220426") -> pd.DataFrame: url = "http://push2ex.eastmoney.com/getTopicZTPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "10000", "sort": "fbt:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "连板数", "首次封板时间", "最后封板时间", "封板资金", "炸板次数", "所属行业", "涨停统计", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "成交额", "流通市值", "总市值", "换手率", "封板资金", "首次封板时间", "最后封板时间", "炸板次数", "涨停统计", "连板数", "所属行业", ] ] temp_df["首次封板时间"] = temp_df["首次封板时间"].astype(str).str.zfill(6) temp_df["最后封板时间"] = temp_df["最后封板时间"].astype(str).str.zfill(6) temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"]) temp_df["总市值"] = pd.to_numeric(temp_df["总市值"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["封板资金"] = pd.to_numeric(temp_df["封板资金"]) temp_df["炸板次数"] = pd.to_numeric(temp_df["炸板次数"]) temp_df["连板数"] = pd.to_numeric(temp_df["连板数"]) return temp_df
17,869
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ztb_em.py
stock_zt_pool_previous_em
(date: str = "20210521")
return temp_df
东方财富网-行情中心-涨停板行情-昨日涨停股池 http://quote.eastmoney.com/ztb/detail#type=zrzt :return: 昨日涨停股池 :rtype: pandas.DataFrame
东方财富网-行情中心-涨停板行情-昨日涨停股池 http://quote.eastmoney.com/ztb/detail#type=zrzt :return: 昨日涨停股池 :rtype: pandas.DataFrame
105
176
def stock_zt_pool_previous_em(date: str = "20210521") -> pd.DataFrame: """ 东方财富网-行情中心-涨停板行情-昨日涨停股池 http://quote.eastmoney.com/ztb/detail#type=zrzt :return: 昨日涨停股池 :rtype: pandas.DataFrame """ url = "http://push2ex.eastmoney.com/getYesterdayZTPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "zs:desc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "振幅", "涨速", "昨日封板时间", "昨日连板数", "所属行业", "涨停统计", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "换手率", "涨速", "振幅", "昨日封板时间", "昨日连板数", "涨停统计", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 temp_df["昨日封板时间"] = temp_df["昨日封板时间"].astype(str).str.zfill(6) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ztb_em.py#L105-L176
25
[ 0, 1, 2, 3, 4, 5, 6 ]
9.722222
[ 7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 43, 48, 68, 69, 70, 71 ]
22.222222
false
7.29927
72
2
77.777778
4
def stock_zt_pool_previous_em(date: str = "20210521") -> pd.DataFrame: url = "http://push2ex.eastmoney.com/getYesterdayZTPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "zs:desc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "振幅", "涨速", "昨日封板时间", "昨日连板数", "所属行业", "涨停统计", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "换手率", "涨速", "振幅", "昨日封板时间", "昨日连板数", "涨停统计", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 temp_df["昨日封板时间"] = temp_df["昨日封板时间"].astype(str).str.zfill(6) return temp_df
17,870
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ztb_em.py
stock_zt_pool_strong_em
(date: str = "20210521")
return temp_df
东方财富网-行情中心-涨停板行情-强势股池 http://quote.eastmoney.com/ztb/detail#type=qsgc :return: 强势股池 :rtype: pandas.DataFrame
东方财富网-行情中心-涨停板行情-强势股池 http://quote.eastmoney.com/ztb/detail#type=qsgc :return: 强势股池 :rtype: pandas.DataFrame
179
250
def stock_zt_pool_strong_em(date: str = "20210521") -> pd.DataFrame: """ 东方财富网-行情中心-涨停板行情-强势股池 http://quote.eastmoney.com/ztb/detail#type=qsgc :return: 强势股池 :rtype: pandas.DataFrame """ url = "http://push2ex.eastmoney.com/getTopicQSPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "zdp:desc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "_", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "是否新高", "入选理由", "量比", "涨速", "涨停统计", "所属行业", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "换手率", "涨速", "是否新高", "量比", "涨停统计", "入选理由", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ztb_em.py#L179-L250
25
[ 0, 1, 2, 3, 4, 5, 6 ]
9.722222
[ 7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 44, 49, 69, 70, 71 ]
20.833333
false
7.29927
72
2
79.166667
4
def stock_zt_pool_strong_em(date: str = "20210521") -> pd.DataFrame: url = "http://push2ex.eastmoney.com/getTopicQSPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "zdp:desc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "_", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "是否新高", "入选理由", "量比", "涨速", "涨停统计", "所属行业", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "换手率", "涨速", "是否新高", "量比", "涨停统计", "入选理由", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 return temp_df
17,871
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ztb_em.py
stock_zt_pool_sub_new_em
(date: str = "20210525")
return temp_df
东方财富网-行情中心-涨停板行情-次新股池 http://quote.eastmoney.com/ztb/detail#type=cxgc :return: 次新股池 :rtype: pandas.DataFrame
东方财富网-行情中心-涨停板行情-次新股池 http://quote.eastmoney.com/ztb/detail#type=cxgc :return: 次新股池 :rtype: pandas.DataFrame
253
327
def stock_zt_pool_sub_new_em(date: str = "20210525") -> pd.DataFrame: """ 东方财富网-行情中心-涨停板行情-次新股池 http://quote.eastmoney.com/ztb/detail#type=cxgc :return: 次新股池 :rtype: pandas.DataFrame """ url = "http://push2ex.eastmoney.com/getTopicCXPooll" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "ods:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "_", "涨跌幅", "成交额", "流通市值", "总市值", "转手率", "开板几日", "开板日期", "上市日期", "_", "是否新高", "涨停统计", "所属行业", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "转手率", "开板几日", "开板日期", "上市日期", "是否新高", "涨停统计", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 temp_df.loc[temp_df["涨停价"] > 100000, "涨停价"] = "-" temp_df.loc[temp_df["上市日期"] == 0, "上市日期"] = "-" return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ztb_em.py#L253-L327
25
[ 0, 1, 2, 3, 4, 5, 6 ]
9.333333
[ 7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 45, 50, 70, 71, 72, 73, 74 ]
22.666667
false
7.29927
75
2
77.333333
4
def stock_zt_pool_sub_new_em(date: str = "20210525") -> pd.DataFrame: url = "http://push2ex.eastmoney.com/getTopicCXPooll" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "ods:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "_", "涨跌幅", "成交额", "流通市值", "总市值", "转手率", "开板几日", "开板日期", "上市日期", "_", "是否新高", "涨停统计", "所属行业", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "转手率", "开板几日", "开板日期", "上市日期", "是否新高", "涨停统计", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 temp_df.loc[temp_df["涨停价"] > 100000, "涨停价"] = "-" temp_df.loc[temp_df["上市日期"] == 0, "上市日期"] = "-" return temp_df
17,872
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ztb_em.py
stock_zt_pool_zbgc_em
(date: str = "20210525")
return temp_df
东方财富网-行情中心-涨停板行情-炸板股池 http://quote.eastmoney.com/ztb/detail#type=zbgc :return: 炸板股池 :rtype: pandas.DataFrame
东方财富网-行情中心-涨停板行情-炸板股池 http://quote.eastmoney.com/ztb/detail#type=zbgc :return: 炸板股池 :rtype: pandas.DataFrame
330
401
def stock_zt_pool_zbgc_em(date: str = "20210525") -> pd.DataFrame: """ 东方财富网-行情中心-涨停板行情-炸板股池 http://quote.eastmoney.com/ztb/detail#type=zbgc :return: 炸板股池 :rtype: pandas.DataFrame """ url = "http://push2ex.eastmoney.com/getTopicZBPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "fbt:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "首次封板时间", "炸板次数", "振幅", "涨速", "涨停统计", "所属行业", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "换手率", "涨速", "首次封板时间", "炸板次数", "涨停统计", "振幅", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 temp_df["首次封板时间"] = temp_df["首次封板时间"].astype(str).str.zfill(6) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ztb_em.py#L330-L401
25
[ 0, 1, 2, 3, 4, 5, 6 ]
9.722222
[ 7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 43, 48, 68, 69, 70, 71 ]
22.222222
false
7.29927
72
2
77.777778
4
def stock_zt_pool_zbgc_em(date: str = "20210525") -> pd.DataFrame: url = "http://push2ex.eastmoney.com/getTopicZBPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "170", "sort": "fbt:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨停价", "涨跌幅", "成交额", "流通市值", "总市值", "换手率", "首次封板时间", "炸板次数", "振幅", "涨速", "涨停统计", "所属行业", ] temp_df["涨停统计"] = ( temp_df["涨停统计"].apply(lambda x: dict(x)["days"]).astype(str) + "/" + temp_df["涨停统计"].apply(lambda x: dict(x)["ct"]).astype(str) ) temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "涨停价", "成交额", "流通市值", "总市值", "换手率", "涨速", "首次封板时间", "炸板次数", "涨停统计", "振幅", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["涨停价"] = temp_df["涨停价"] / 1000 temp_df["首次封板时间"] = temp_df["首次封板时间"].astype(str).str.zfill(6) return temp_df
17,873
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_ztb_em.py
stock_zt_pool_dtgc_em
(date: str = "20220425")
return temp_df
东方财富网-行情中心-涨停板行情-跌停股池 http://quote.eastmoney.com/ztb/detail#type=dtgc :param date: 交易日 :type date: str :return: 跌停股池 :rtype: pandas.DataFrame
东方财富网-行情中心-涨停板行情-跌停股池 http://quote.eastmoney.com/ztb/detail#type=dtgc :param date: 交易日 :type date: str :return: 跌停股池 :rtype: pandas.DataFrame
404
485
def stock_zt_pool_dtgc_em(date: str = "20220425") -> pd.DataFrame: """ 东方财富网-行情中心-涨停板行情-跌停股池 http://quote.eastmoney.com/ztb/detail#type=dtgc :param date: 交易日 :type date: str :return: 跌停股池 :rtype: pandas.DataFrame """ url = "http://push2ex.eastmoney.com/getTopicDTPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "10000", "sort": "fund:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨跌幅", "成交额", "流通市值", "总市值", "动态市盈率", "换手率", "封单资金", "最后封板时间", "板上成交额", "连续跌停", "开板次数", "所属行业", ] temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "成交额", "流通市值", "总市值", "动态市盈率", "换手率", "封单资金", "最后封板时间", "板上成交额", "连续跌停", "开板次数", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["最后封板时间"] = temp_df["最后封板时间"].astype(str).str.zfill(6) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"]) temp_df["总市值"] = pd.to_numeric(temp_df["总市值"]) temp_df["动态市盈率"] = pd.to_numeric(temp_df["动态市盈率"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["封单资金"] = pd.to_numeric(temp_df["封单资金"]) temp_df["板上成交额"] = pd.to_numeric(temp_df["板上成交额"]) temp_df["连续跌停"] = pd.to_numeric(temp_df["连续跌停"]) temp_df["开板次数"] = pd.to_numeric(temp_df["开板次数"]) temp_df["开板次数"] = pd.to_numeric(temp_df["开板次数"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_ztb_em.py#L404-L485
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
10.97561
[ 9, 10, 19, 20, 21, 22, 23, 24, 25, 26, 45, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81 ]
31.707317
false
7.29927
82
2
68.292683
6
def stock_zt_pool_dtgc_em(date: str = "20220425") -> pd.DataFrame: url = "http://push2ex.eastmoney.com/getTopicDTPool" params = { "ut": "7eea3edcaed734bea9cbfc24409ed989", "dpt": "wz.ztzt", "Pageindex": "0", "pagesize": "10000", "sort": "fund:asc", "date": date, "_": "1621590489736", } r = requests.get(url, params=params) data_json = r.json() if data_json["data"] is None: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["pool"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "代码", "_", "名称", "最新价", "涨跌幅", "成交额", "流通市值", "总市值", "动态市盈率", "换手率", "封单资金", "最后封板时间", "板上成交额", "连续跌停", "开板次数", "所属行业", ] temp_df = temp_df[ [ "序号", "代码", "名称", "涨跌幅", "最新价", "成交额", "流通市值", "总市值", "动态市盈率", "换手率", "封单资金", "最后封板时间", "板上成交额", "连续跌停", "开板次数", "所属行业", ] ] temp_df["最新价"] = temp_df["最新价"] / 1000 temp_df["最后封板时间"] = temp_df["最后封板时间"].astype(str).str.zfill(6) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"]) temp_df["总市值"] = pd.to_numeric(temp_df["总市值"]) temp_df["动态市盈率"] = pd.to_numeric(temp_df["动态市盈率"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["封单资金"] = pd.to_numeric(temp_df["封单资金"]) temp_df["板上成交额"] = pd.to_numeric(temp_df["板上成交额"]) temp_df["连续跌停"] = pd.to_numeric(temp_df["连续跌停"]) temp_df["开板次数"] = pd.to_numeric(temp_df["开板次数"]) temp_df["开板次数"] = pd.to_numeric(temp_df["开板次数"]) return temp_df
17,874
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_zh_a_spot_em
()
return temp_df
东方财富网-沪深京 A 股-实时行情 https://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网-沪深京 A 股-实时行情 https://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
13
122
def stock_zh_a_spot_em() -> pd.DataFrame: """ 东方财富网-沪深京 A 股-实时行情 https://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L13-L122
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.363636
[ 7, 8, 21, 22, 23, 24, 25, 26, 59, 60, 61, 62, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 ]
30
false
3.979239
110
2
70
4
def stock_zh_a_spot_em() -> pd.DataFrame: url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
17,875
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_sh_a_spot_em
()
return temp_df
东方财富网-沪 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网-沪 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
125
234
def stock_sh_a_spot_em() -> pd.DataFrame: """ 东方财富网-沪 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L125-L234
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.363636
[ 7, 8, 21, 22, 23, 24, 25, 26, 59, 60, 61, 62, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 ]
30
false
3.979239
110
2
70
4
def stock_sh_a_spot_em() -> pd.DataFrame: url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
17,876
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_sz_a_spot_em
()
return temp_df
东方财富网-深 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网-深 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
237
346
def stock_sz_a_spot_em() -> pd.DataFrame: """ 东方财富网-深 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L237-L346
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.363636
[ 7, 8, 21, 22, 23, 24, 25, 26, 59, 60, 61, 62, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 ]
30
false
3.979239
110
2
70
4
def stock_sz_a_spot_em() -> pd.DataFrame: url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
17,877
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_bj_a_spot_em
()
return temp_df
东方财富网-京 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网-京 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
349
458
def stock_bj_a_spot_em() -> pd.DataFrame: """ 东方财富网-京 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L349-L458
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.363636
[ 7, 8, 21, 22, 23, 24, 25, 26, 59, 60, 61, 62, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 ]
30
false
3.979239
110
2
70
4
def stock_bj_a_spot_em() -> pd.DataFrame: url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
17,878
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_new_a_spot_em
()
return temp_df
东方财富网-新股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网-新股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
461
575
def stock_new_a_spot_em() -> pd.DataFrame: """ 东方财富网-新股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "wbp2u": "|0|0|0|web", "fid": "f26", "fs": "m:0 f:8,m:1 f:8", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f26,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "上市日期", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "上市日期", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") temp_df["上市日期"] = pd.to_datetime(temp_df["上市日期"], format="%Y%m%d").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L461-L575
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.086957
[ 7, 8, 22, 23, 24, 25, 26, 27, 61, 62, 63, 64, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114 ]
29.565217
false
3.979239
115
2
70.434783
4
def stock_new_a_spot_em() -> pd.DataFrame: url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "wbp2u": "|0|0|0|web", "fid": "f26", "fs": "m:0 f:8,m:1 f:8", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f26,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "上市日期", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "上市日期", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") temp_df["上市日期"] = pd.to_datetime(temp_df["上市日期"], format="%Y%m%d").dt.date return temp_df
17,879
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_kc_a_spot_em
()
return temp_df
东方财富网-科创板-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网-科创板-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
578
688
def stock_kc_a_spot_em() -> pd.DataFrame: """ 东方财富网-科创板-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://7.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "wbp2u": "|0|0|0|web", "fid": "f3", "fs": "m:1 t:23", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L578-L688
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.306306
[ 7, 8, 22, 23, 24, 25, 26, 27, 60, 61, 62, 63, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 ]
29.72973
false
3.979239
111
2
70.27027
4
def stock_kc_a_spot_em() -> pd.DataFrame: url = "http://7.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "wbp2u": "|0|0|0|web", "fid": "f3", "fs": "m:1 t:23", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
17,880
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_zh_b_spot_em
()
return temp_df
东方财富网- B 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
东方财富网- B 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame
691
800
def stock_zh_b_spot_em() -> pd.DataFrame: """ 东方财富网- B 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://28.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:7,m:1 t:3", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L691-L800
25
[ 0, 1, 2, 3, 4, 5, 6 ]
6.363636
[ 7, 8, 21, 22, 23, 24, 25, 26, 59, 60, 61, 62, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 ]
30
false
3.979239
110
2
70
4
def stock_zh_b_spot_em() -> pd.DataFrame: url = "http://28.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:7,m:1 t:3", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "5分钟涨跌", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "总市值", "流通市值", "涨速", "市净率", "60日涨跌幅", "年初至今涨跌幅", "-", "-", "-", "-", "-", "-", "-", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce") temp_df["涨速"] = pd.to_numeric(temp_df["涨速"], errors="coerce") temp_df["5分钟涨跌"] = pd.to_numeric(temp_df["5分钟涨跌"], errors="coerce") temp_df["60日涨跌幅"] = pd.to_numeric(temp_df["60日涨跌幅"], errors="coerce") temp_df["年初至今涨跌幅"] = pd.to_numeric(temp_df["年初至今涨跌幅"], errors="coerce") return temp_df
17,881
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
code_id_map_em
()
return code_id_dict
东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict
东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict
804
873
def code_id_map_em() -> dict: """ 东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict """ url = "http://80.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df["market_id"] = 1 temp_df.columns = ["sh_code", "sh_id"] code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"])) params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["sz_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"]))) params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["bj_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["bj_id"]))) return code_id_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L804-L873
25
[ 0, 1, 2, 3, 4, 5, 6 ]
10
[ 7, 8, 21, 22, 23, 24, 25, 26, 27, 28, 29, 42, 43, 44, 45, 46, 47, 48, 49, 62, 63, 64, 65, 66, 67, 68, 69 ]
38.571429
false
3.979239
70
4
61.428571
4
def code_id_map_em() -> dict: url = "http://80.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df["market_id"] = 1 temp_df.columns = ["sh_code", "sh_id"] code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"])) params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["sz_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"]))) params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["bj_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["bj_id"]))) return code_id_dict
17,882
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_zh_a_hist
( symbol: str = "000001", period: str = "daily", start_date: str = "19700101", end_date: str = "20500101", adjust: str = "", )
return temp_df
东方财富网-行情首页-沪深京 A 股-每日行情 https://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "前复权", "hfq": "后复权", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame
东方财富网-行情首页-沪深京 A 股-每日行情 https://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "前复权", "hfq": "后复权", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame
876
948
def stock_zh_a_hist( symbol: str = "000001", period: str = "daily", start_date: str = "19700101", end_date: str = "20500101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日行情 https://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "前复权", "hfq": "后复权", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f116", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period_dict[period], "fqt": adjust_dict[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": start_date, "end": end_date, "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not (data_json["data"] and data_json["data"]["klines"]): return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L876-L948
25
[ 0 ]
1.369863
[ 23, 24, 25, 26, 27, 38, 39, 40, 41, 42, 45, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72 ]
32.876712
false
3.979239
73
4
67.123288
14
def stock_zh_a_hist( symbol: str = "000001", period: str = "daily", start_date: str = "19700101", end_date: str = "20500101", adjust: str = "", ) -> pd.DataFrame: code_id_dict = code_id_map_em() adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f116", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period_dict[period], "fqt": adjust_dict[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": start_date, "end": end_date, "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not (data_json["data"] and data_json["data"]["klines"]): return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df
17,883
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_zh_a_hist_min_em
( symbol: str = "000001", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", period: str = "5", adjust: str = "", )
东方财富网-行情首页-沪深京 A 股-每日分时行情 https://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :return: 每日分时行情 :rtype: pandas.DataFrame
东方财富网-行情首页-沪深京 A 股-每日分时行情 https://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :return: 每日分时行情 :rtype: pandas.DataFrame
951
1,078
def stock_zh_a_hist_min_em( symbol: str = "000001", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", period: str = "5", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日分时行情 https://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :return: 每日分时行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "https://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "7eea3edcaed734bea9cbfc24409ed989", "ndays": "5", "iscr": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period, "fqt": adjust_map[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L951-L1078
25
[ 0 ]
0.78125
[ 23, 24, 29, 30, 31, 40, 41, 42, 45, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 80, 81, 82, 85, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 127 ]
33.59375
false
3.979239
128
4
66.40625
14
def stock_zh_a_hist_min_em( symbol: str = "000001", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", period: str = "5", adjust: str = "", ) -> pd.DataFrame: code_id_dict = code_id_map_em() adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "https://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "7eea3edcaed734bea9cbfc24409ed989", "ndays": "5", "iscr": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period, "fqt": adjust_map[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df
17,884
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_zh_a_hist_pre_min_em
( symbol: str = "000001", start_time: str = "09:00:00", end_time: str = "15:50:00", )
return temp_df
东方财富网-行情首页-沪深京 A 股-每日分时行情包含盘前数据 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_time: 开始时间 :type start_time: str :param end_time: 结束时间 :type end_time: str :return: 每日分时行情包含盘前数据 :rtype: pandas.DataFrame
东方财富网-行情首页-沪深京 A 股-每日分时行情包含盘前数据 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_time: 开始时间 :type start_time: str :param end_time: 结束时间 :type end_time: str :return: 每日分时行情包含盘前数据 :rtype: pandas.DataFrame
1,081
1,139
def stock_zh_a_hist_pre_min_em( symbol: str = "000001", start_time: str = "09:00:00", end_time: str = "15:50:00", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日分时行情包含盘前数据 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_time: 开始时间 :type start_time: str :param end_time: 结束时间 :type end_time: str :return: 每日分时行情包含盘前数据 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() url = "https://push2.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "ndays": "1", "iscr": "1", "iscca": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) date_format = temp_df.index[0].date().isoformat() temp_df = temp_df[ date_format + " " + start_time : date_format + " " + end_time ] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1081-L1139
25
[ 0 ]
1.694915
[ 17, 18, 19, 29, 30, 31, 34, 44, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58 ]
33.898305
false
3.979239
59
2
66.101695
10
def stock_zh_a_hist_pre_min_em( symbol: str = "000001", start_time: str = "09:00:00", end_time: str = "15:50:00", ) -> pd.DataFrame: code_id_dict = code_id_map_em() url = "https://push2.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "ndays": "1", "iscr": "1", "iscca": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) date_format = temp_df.index[0].date().isoformat() temp_df = temp_df[ date_format + " " + start_time : date_format + " " + end_time ] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df
17,885
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_hk_spot_em
()
return temp_df
东方财富网-港股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hk_stocks :return: 港股-实时行情 :rtype: pandas.DataFrame
东方财富网-港股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hk_stocks :return: 港股-实时行情 :rtype: pandas.DataFrame
1,142
1,228
def stock_hk_spot_em() -> pd.DataFrame: """ 东方财富网-港股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hk_stocks :return: 港股-实时行情 :rtype: pandas.DataFrame """ url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:128 t:3,m:128 t:4,m:128 t:1,m:128 t:2", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "今开", "最高", "最低", "昨收", "成交量", "成交额", ] ] temp_df["序号"] = pd.to_numeric(temp_df["序号"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1142-L1228
25
[ 0, 1, 2, 3, 4, 5, 6 ]
8.045977
[ 7, 8, 21, 22, 23, 24, 57, 58, 59, 60, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86 ]
24.137931
false
3.979239
87
1
75.862069
4
def stock_hk_spot_em() -> pd.DataFrame: url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "50000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:128 t:3,m:128 t:4,m:128 t:1,m:128 t:2", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "今开", "最高", "最低", "昨收", "成交量", "成交额", ] ] temp_df["序号"] = pd.to_numeric(temp_df["序号"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") return temp_df
17,886
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_hk_hist
( symbol: str = "40224", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", )
return temp_df
东方财富网-行情-港股-每日行情 http://quote.eastmoney.com/hk/08367.html :param symbol: 港股-每日行情 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame
东方财富网-行情-港股-每日行情 http://quote.eastmoney.com/hk/08367.html :param symbol: 港股-每日行情 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame
1,231
1,303
def stock_hk_hist( symbol: str = "40224", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情-港股-每日行情 http://quote.eastmoney.com/hk/08367.html :param symbol: 港股-每日行情 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://33.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"116.{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) if temp_df.empty: return pd.DataFrame() temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] if temp_df.empty: return pd.DataFrame() temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1231-L1303
25
[ 0 ]
1.369863
[ 23, 24, 25, 26, 37, 38, 39, 42, 43, 44, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72 ]
35.616438
false
3.979239
73
4
64.383562
14
def stock_hk_hist( symbol: str = "40224", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://33.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"116.{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) if temp_df.empty: return pd.DataFrame() temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] if temp_df.empty: return pd.DataFrame() temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df
17,887
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_hk_hist_min_em
( symbol: str = "01611", period: str = "1", adjust: str = "", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", )
return temp_df
东方财富网-行情-港股-每日分时行情 http://quote.eastmoney.com/hk/00948.html :param symbol: 股票代码 :type symbol: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame
东方财富网-行情-港股-每日分时行情 http://quote.eastmoney.com/hk/00948.html :param symbol: 股票代码 :type symbol: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame
1,306
1,432
def stock_hk_hist_min_em( symbol: str = "01611", period: str = "1", adjust: str = "", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: """ 东方财富网-行情-港股-每日分时行情 http://quote.eastmoney.com/hk/00948.html :param symbol: 股票代码 :type symbol: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame """ adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "http://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "iscr": "0", "ndays": "5", "secid": f"116.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "klt": period, "fqt": adjust_map[adjust], "secid": f"116.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1306-L1432
25
[ 0 ]
0.787402
[ 23, 28, 29, 30, 39, 40, 41, 44, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 79, 80, 81, 84, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 126 ]
33.070866
false
3.979239
127
4
66.929134
14
def stock_hk_hist_min_em( symbol: str = "01611", period: str = "1", adjust: str = "", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "http://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "iscr": "0", "ndays": "5", "secid": f"116.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "klt": period, "fqt": adjust_map[adjust], "secid": f"116.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df
17,888
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_us_spot_em
()
return temp_df
东方财富-美股-实时行情 http://quote.eastmoney.com/center/gridlist.html#us_stocks :return: 美股-实时行情; 延迟 15 min :rtype: pandas.DataFrame
东方财富-美股-实时行情 http://quote.eastmoney.com/center/gridlist.html#us_stocks :return: 美股-实时行情; 延迟 15 min :rtype: pandas.DataFrame
1,435
1,531
def stock_us_spot_em() -> pd.DataFrame: """ 东方财富-美股-实时行情 http://quote.eastmoney.com/center/gridlist.html#us_stocks :return: 美股-实时行情; 延迟 15 min :rtype: pandas.DataFrame """ url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:105,m:106,m:107", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "_", "_", "_", "简称", "编码", "名称", "最高价", "最低价", "开盘价", "昨收价", "总市值", "_", "_", "_", "_", "_", "_", "_", "_", "市盈率", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df["代码"] = temp_df["编码"].astype(str) + "." + temp_df["简称"] temp_df = temp_df[ [ "序号", "名称", "最新价", "涨跌额", "涨跌幅", "开盘价", "最高价", "最低价", "昨收价", "总市值", "市盈率", "成交量", "成交额", "振幅", "换手率", "代码", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce") temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce") temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce") temp_df["昨收价"] = pd.to_numeric(temp_df["昨收价"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["市盈率"] = pd.to_numeric(temp_df["市盈率"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1435-L1531
25
[ 0, 1, 2, 3, 4, 5, 6 ]
7.216495
[ 7, 8, 21, 22, 23, 24, 59, 60, 61, 62, 63, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 ]
25.773196
false
3.979239
97
1
74.226804
4
def stock_us_spot_em() -> pd.DataFrame: url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:105,m:106,m:107", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "_", "_", "_", "简称", "编码", "名称", "最高价", "最低价", "开盘价", "昨收价", "总市值", "_", "_", "_", "_", "_", "_", "_", "_", "市盈率", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df["代码"] = temp_df["编码"].astype(str) + "." + temp_df["简称"] temp_df = temp_df[ [ "序号", "名称", "最新价", "涨跌额", "涨跌幅", "开盘价", "最高价", "最低价", "昨收价", "总市值", "市盈率", "成交量", "成交额", "振幅", "换手率", "代码", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce") temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce") temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce") temp_df["昨收价"] = pd.to_numeric(temp_df["昨收价"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["市盈率"] = pd.to_numeric(temp_df["市盈率"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") return temp_df
17,889
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_us_hist
( symbol: str = "105.MSFT", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", )
return temp_df
东方财富网-行情-美股-每日行情 http://quote.eastmoney.com/us/ENTX.html#fullScreenChart :param symbol: 股票代码; 此股票代码需要通过调用 ak.stock_us_spot_em() 的 `代码` 字段获取 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame
东方财富网-行情-美股-每日行情 http://quote.eastmoney.com/us/ENTX.html#fullScreenChart :param symbol: 股票代码; 此股票代码需要通过调用 ak.stock_us_spot_em() 的 `代码` 字段获取 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame
1,534
1,605
def stock_us_hist( symbol: str = "105.MSFT", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情-美股-每日行情 http://quote.eastmoney.com/us/ENTX.html#fullScreenChart :param symbol: 股票代码; 此股票代码需要通过调用 ak.stock_us_spot_em() 的 `代码` 字段获取 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} url = "http://63.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["klines"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df.sort_values(["日期"], inplace=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1534-L1605
25
[ 0 ]
1.388889
[ 23, 24, 25, 26, 37, 38, 39, 40, 41, 44, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ]
34.722222
false
3.979239
72
3
65.277778
14
def stock_us_hist( symbol: str = "105.MSFT", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} url = "http://63.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["klines"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df.sort_values(["日期"], inplace=True) return temp_df
17,890
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hist_em.py
stock_us_hist_min_em
( symbol: str = "105.ATER", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", )
return temp_df
东方财富网-行情首页-美股-每日分时行情 http://quote.eastmoney.com/us/ATER.html :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame
东方财富网-行情首页-美股-每日分时行情 http://quote.eastmoney.com/us/ATER.html :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame
1,608
1,663
def stock_us_hist_min_em( symbol: str = "105.ATER", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: """ 东方财富网-行情首页-美股-每日分时行情 http://quote.eastmoney.com/us/ATER.html :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame """ url = "http://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "iscr": "0", "ndays": "5", "secid": f"{symbol.split('.')[0]}.{symbol.split('.')[1]}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["trends"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hist_em.py#L1608-L1663
25
[ 0 ]
1.785714
[ 17, 18, 27, 28, 29, 30, 31, 34, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 ]
35.714286
false
3.979239
56
3
64.285714
10
def stock_us_hist_min_em( symbol: str = "105.ATER", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: url = "http://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "iscr": "0", "ndays": "5", "secid": f"{symbol.split('.')[0]}.{symbol.split('.')[1]}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["trends"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df
17,891
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
_stock_balance_sheet_by_report_ctype_em
(symbol: str = "SH600519")
return company_type
东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh601878#zcfzb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 :rtype: str
东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh601878#zcfzb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 :rtype: str
16
30
def _stock_balance_sheet_by_report_ctype_em(symbol: str = "SH600519") -> str: """ 东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh601878#zcfzb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 :rtype: str """ url = f"https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index" params = {"type": "web", "code": symbol.lower()} r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") company_type = soup.find(attrs={"id": "hidctype"})["value"] return company_type
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L16-L30
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
60
[ 9, 10, 11, 12, 13, 14 ]
40
false
8.5
15
1
60
6
def _stock_balance_sheet_by_report_ctype_em(symbol: str = "SH600519") -> str: url = f"https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index" params = {"type": "web", "code": symbol.lower()} r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") company_type = soup.find(attrs={"id": "hidctype"})["value"] return company_type
17,892
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_balance_sheet_by_report_em
(symbol: str = "SH600519")
return big_df
东方财富-股票-财务分析-资产负债表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按报告期 :rtype: pandas.DataFrame
东方财富-股票-财务分析-资产负债表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按报告期 :rtype: pandas.DataFrame
33
72
def stock_balance_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-资产负债表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按报告期 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L33-L72
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
22.5
[ 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 35, 36, 37, 38, 39 ]
47.5
false
8.5
40
3
52.5
6
def stock_balance_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,893
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_balance_sheet_by_yearly_em
(symbol: str = "SH600036")
return big_df
东方财富-股票-财务分析-资产负债表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按年度 :rtype: pandas.DataFrame
东方财富-股票-财务分析-资产负债表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按年度 :rtype: pandas.DataFrame
75
121
def stock_balance_sheet_by_yearly_em(symbol: str = "SH600036") -> pd.DataFrame: """ 东方财富-股票-财务分析-资产负债表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按年度 :rtype: pandas.DataFrame """ url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" company_type = _stock_balance_sheet_by_report_ctype_em(symbol) params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() try: temp_df = pd.DataFrame(data_json["data"]) except: company_type = 3 params.update({"companyType": company_type}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L75-L121
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
19.148936
[ 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 42, 43, 44, 45, 46 ]
55.319149
false
8.5
47
4
44.680851
6
def stock_balance_sheet_by_yearly_em(symbol: str = "SH600036") -> pd.DataFrame: url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" company_type = _stock_balance_sheet_by_report_ctype_em(symbol) params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() try: temp_df = pd.DataFrame(data_json["data"]) except: company_type = 3 params.update({"companyType": company_type}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,894
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_profit_sheet_by_report_em
(symbol: str = "SH600519")
return big_df
东方财富-股票-财务分析-利润表-报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-报告期 :rtype: pandas.DataFrame
东方财富-股票-财务分析-利润表-报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-报告期 :rtype: pandas.DataFrame
124
163
def stock_profit_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-报告期 :rtype: pandas.DataFrame """ company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "code": symbol, "dates": item, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L124-L163
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
22.5
[ 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 35, 36, 37, 38, 39 ]
47.5
false
8.5
40
3
52.5
6
def stock_profit_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "code": symbol, "dates": item, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,895
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_profit_sheet_by_yearly_em
(symbol: str = "SH600519")
return big_df
东方财富-股票-财务分析-利润表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按年度 :rtype: pandas.DataFrame
东方财富-股票-财务分析-利润表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按年度 :rtype: pandas.DataFrame
166
205
def stock_profit_sheet_by_yearly_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按年度 :rtype: pandas.DataFrame """ company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L166-L205
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
22.5
[ 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 35, 36, 37, 38, 39 ]
47.5
false
8.5
40
3
52.5
6
def stock_profit_sheet_by_yearly_em(symbol: str = "SH600519") -> pd.DataFrame: company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,896
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_profit_sheet_by_quarterly_em
( symbol: str = "SH600519", )
return big_df
东方财富-股票-财务分析-利润表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按单季度 :rtype: pandas.DataFrame
东方财富-股票-财务分析-利润表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按单季度 :rtype: pandas.DataFrame
208
249
def stock_profit_sheet_by_quarterly_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按单季度 :rtype: pandas.DataFrame """ company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "2", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "2", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L208-L249
25
[ 0 ]
2.380952
[ 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 37, 38, 39, 40, 41 ]
45.238095
false
8.5
42
3
54.761905
6
def stock_profit_sheet_by_quarterly_em( symbol: str = "SH600519", ) -> pd.DataFrame: company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "2", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "2", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,897
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_cash_flow_sheet_by_report_em
( symbol: str = "SH600519", )
return big_df
东方财富-股票-财务分析-现金流量表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按报告期 :rtype: pandas.DataFrame
东方财富-股票-财务分析-现金流量表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按报告期 :rtype: pandas.DataFrame
252
293
def stock_cash_flow_sheet_by_report_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-现金流量表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按报告期 :rtype: pandas.DataFrame """ company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L252-L293
25
[ 0 ]
2.380952
[ 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 37, 38, 39, 40, 41 ]
45.238095
false
8.5
42
3
54.761905
6
def stock_cash_flow_sheet_by_report_em( symbol: str = "SH600519", ) -> pd.DataFrame: company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,898
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_cash_flow_sheet_by_yearly_em
( symbol: str = "SH600519", )
return big_df
东方财富-股票-财务分析-现金流量表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按年度 :rtype: pandas.DataFrame
东方财富-股票-财务分析-现金流量表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按年度 :rtype: pandas.DataFrame
296
337
def stock_cash_flow_sheet_by_yearly_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-现金流量表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按年度 :rtype: pandas.DataFrame """ company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L296-L337
25
[ 0 ]
2.380952
[ 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 37, 38, 39, 40, 41 ]
45.238095
false
8.5
42
3
54.761905
6
def stock_cash_flow_sheet_by_yearly_em( symbol: str = "SH600519", ) -> pd.DataFrame: company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,899
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_three_report_em.py
stock_cash_flow_sheet_by_quarterly_em
( symbol: str = "SH600519", )
return big_df
东方财富-股票-财务分析-现金流量表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按单季度 :rtype: pandas.DataFrame
东方财富-股票-财务分析-现金流量表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按单季度 :rtype: pandas.DataFrame
340
381
def stock_cash_flow_sheet_by_quarterly_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-现金流量表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按单季度 :rtype: pandas.DataFrame """ company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "2", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "2", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_three_report_em.py#L340-L381
25
[ 0 ]
2.380952
[ 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 37, 38, 39, 40, 41 ]
45.238095
false
8.5
42
3
54.761905
6
def stock_cash_flow_sheet_by_quarterly_em( symbol: str = "SH600519", ) -> pd.DataFrame: company_type = 4 url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "2", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [ ",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5) ] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "2", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df
17,900
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hsgt_exchange_rate.py
stock_sgt_settlement_exchange_rate_szse
()
return temp_df
深港通-港股通业务信息-结算汇率 https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html :return: 结算汇率 :rtype: pandas.DataFrame
深港通-港股通业务信息-结算汇率 https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html :return: 结算汇率 :rtype: pandas.DataFrame
16
39
def stock_sgt_settlement_exchange_rate_szse() -> pd.DataFrame: """ 深港通-港股通业务信息-结算汇率 https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html :return: 结算汇率 :rtype: pandas.DataFrame """ url = "https://www.szse.cn/api/report/ShowReport" params = { 'SHOWTYPE': 'xlsx', 'CATALOGID': 'SGT_LSHL', 'TABKEY': 'tab2', 'random': '0.9184251620553985', } r = requests.get(url, params=params) import warnings with warnings.catch_warnings(record=True): warnings.simplefilter("always") temp_df = pd.read_excel(r.content, engine="openpyxl") temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['买入结算汇兑比率'] = pd.to_numeric(temp_df['买入结算汇兑比率'], errors='coerce') temp_df['卖出结算汇兑比率'] = pd.to_numeric(temp_df['卖出结算汇兑比率'], errors='coerce') return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hsgt_exchange_rate.py#L16-L39
25
[ 0, 1, 2, 3, 4, 5, 6 ]
29.166667
[ 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 ]
50
false
13.043478
24
2
50
4
def stock_sgt_settlement_exchange_rate_szse() -> pd.DataFrame: url = "https://www.szse.cn/api/report/ShowReport" params = { 'SHOWTYPE': 'xlsx', 'CATALOGID': 'SGT_LSHL', 'TABKEY': 'tab2', 'random': '0.9184251620553985', } r = requests.get(url, params=params) import warnings with warnings.catch_warnings(record=True): warnings.simplefilter("always") temp_df = pd.read_excel(r.content, engine="openpyxl") temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['买入结算汇兑比率'] = pd.to_numeric(temp_df['买入结算汇兑比率'], errors='coerce') temp_df['卖出结算汇兑比率'] = pd.to_numeric(temp_df['卖出结算汇兑比率'], errors='coerce') return temp_df
17,901
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hsgt_exchange_rate.py
stock_sgt_reference_exchange_rate_szse
()
return temp_df
深港通-港股通业务信息-参考汇率 https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html :return: 参考汇率 :rtype: pandas.DataFrame
深港通-港股通业务信息-参考汇率 https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html :return: 参考汇率 :rtype: pandas.DataFrame
42
65
def stock_sgt_reference_exchange_rate_szse() -> pd.DataFrame: """ 深港通-港股通业务信息-参考汇率 https://www.szse.cn/szhk/hkbussiness/exchangerate/index.html :return: 参考汇率 :rtype: pandas.DataFrame """ url = "https://www.szse.cn/api/report/ShowReport" params = { 'SHOWTYPE': 'xlsx', 'CATALOGID': 'SGT_LSHL', 'TABKEY': 'tab1', 'random': '0.9184251620553985', } r = requests.get(url, params=params) import warnings with warnings.catch_warnings(record=True): warnings.simplefilter("always") temp_df = pd.read_excel(r.content, engine="openpyxl") temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['参考汇率买入价'] = pd.to_numeric(temp_df['参考汇率买入价'], errors='coerce') temp_df['参考汇率卖出价'] = pd.to_numeric(temp_df['参考汇率卖出价'], errors='coerce') return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hsgt_exchange_rate.py#L42-L65
25
[ 0, 1, 2, 3, 4, 5, 6 ]
29.166667
[ 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 ]
50
false
13.043478
24
2
50
4
def stock_sgt_reference_exchange_rate_szse() -> pd.DataFrame: url = "https://www.szse.cn/api/report/ShowReport" params = { 'SHOWTYPE': 'xlsx', 'CATALOGID': 'SGT_LSHL', 'TABKEY': 'tab1', 'random': '0.9184251620553985', } r = requests.get(url, params=params) import warnings with warnings.catch_warnings(record=True): warnings.simplefilter("always") temp_df = pd.read_excel(r.content, engine="openpyxl") temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['参考汇率买入价'] = pd.to_numeric(temp_df['参考汇率买入价'], errors='coerce') temp_df['参考汇率卖出价'] = pd.to_numeric(temp_df['参考汇率卖出价'], errors='coerce') return temp_df
17,902
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hsgt_exchange_rate.py
stock_sgt_reference_exchange_rate_sse
()
return temp_df
沪港通-港股通信息披露-参考汇率 http://www.sse.com.cn/services/hkexsc/disclo/ratios/ :return: 参考汇率 :rtype: pandas.DataFrame
沪港通-港股通信息披露-参考汇率 http://www.sse.com.cn/services/hkexsc/disclo/ratios/ :return: 参考汇率 :rtype: pandas.DataFrame
68
114
def stock_sgt_reference_exchange_rate_sse() -> pd.DataFrame: """ 沪港通-港股通信息披露-参考汇率 http://www.sse.com.cn/services/hkexsc/disclo/ratios/ :return: 参考汇率 :rtype: pandas.DataFrame """ current_date = datetime.now().date().isoformat().replace("-", "") url = "http://query.sse.com.cn/commonSoaQuery.do" params = { 'isPagination': 'true', 'updateDate': '20120601', 'updateDateEnd': current_date, 'sqlId': 'FW_HGT_GGTHL', 'pageHelp.cacheSize': '1', 'pageHelp.pageSize': '10000', 'pageHelp.pageNo': '1', 'pageHelp.beginPage': '1', 'pageHelp.endPage': '1', '_': '1664523262778', } headers = { 'Host': 'query.sse.com.cn', 'Referer': 'http://www.sse.com.cn/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36' } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json['result']) temp_df.rename(columns={ 'currencyType': "货币种类", 'buyPrice': "参考汇率买入价", 'updateDate': "-", 'validDate': "适用日期", 'sellPrice': "参考汇率卖出价" }, inplace=True) temp_df = temp_df[[ "适用日期", "参考汇率买入价", "参考汇率卖出价", "货币种类", ]] temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['参考汇率买入价'] = pd.to_numeric(temp_df['参考汇率买入价'], errors='coerce') temp_df['参考汇率卖出价'] = pd.to_numeric(temp_df['参考汇率卖出价'], errors='coerce') return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hsgt_exchange_rate.py#L68-L114
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.893617
[ 7, 8, 9, 21, 26, 27, 28, 29, 36, 42, 43, 44, 45, 46 ]
29.787234
false
13.043478
47
1
70.212766
4
def stock_sgt_reference_exchange_rate_sse() -> pd.DataFrame: current_date = datetime.now().date().isoformat().replace("-", "") url = "http://query.sse.com.cn/commonSoaQuery.do" params = { 'isPagination': 'true', 'updateDate': '20120601', 'updateDateEnd': current_date, 'sqlId': 'FW_HGT_GGTHL', 'pageHelp.cacheSize': '1', 'pageHelp.pageSize': '10000', 'pageHelp.pageNo': '1', 'pageHelp.beginPage': '1', 'pageHelp.endPage': '1', '_': '1664523262778', } headers = { 'Host': 'query.sse.com.cn', 'Referer': 'http://www.sse.com.cn/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36' } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json['result']) temp_df.rename(columns={ 'currencyType': "货币种类", 'buyPrice': "参考汇率买入价", 'updateDate': "-", 'validDate': "适用日期", 'sellPrice': "参考汇率卖出价" }, inplace=True) temp_df = temp_df[[ "适用日期", "参考汇率买入价", "参考汇率卖出价", "货币种类", ]] temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['参考汇率买入价'] = pd.to_numeric(temp_df['参考汇率买入价'], errors='coerce') temp_df['参考汇率卖出价'] = pd.to_numeric(temp_df['参考汇率卖出价'], errors='coerce') return temp_df
17,903
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hsgt_exchange_rate.py
stock_sgt_settlement_exchange_rate_sse
()
return temp_df
沪港通-港股通信息披露-结算汇兑 http://www.sse.com.cn/services/hkexsc/disclo/ratios/ :return: 结算汇兑比率 :rtype: pandas.DataFrame
沪港通-港股通信息披露-结算汇兑 http://www.sse.com.cn/services/hkexsc/disclo/ratios/ :return: 结算汇兑比率 :rtype: pandas.DataFrame
117
163
def stock_sgt_settlement_exchange_rate_sse() -> pd.DataFrame: """ 沪港通-港股通信息披露-结算汇兑 http://www.sse.com.cn/services/hkexsc/disclo/ratios/ :return: 结算汇兑比率 :rtype: pandas.DataFrame """ current_date = datetime.now().date().isoformat().replace("-", "") url = "http://query.sse.com.cn/commonSoaQuery.do" params = { 'isPagination': 'true', 'updateDate': '20120601', 'updateDateEnd': current_date, 'sqlId': 'FW_HGT_JSHDBL', 'pageHelp.cacheSize': '1', 'pageHelp.pageSize': '10000', 'pageHelp.pageNo': '1', 'pageHelp.beginPage': '1', 'pageHelp.endPage': '1', '_': '1664523262778', } headers = { 'Host': 'query.sse.com.cn', 'Referer': 'http://www.sse.com.cn/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36' } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json['result']) temp_df.rename(columns={ 'currencyType': "货币种类", 'buyPrice': "买入结算汇兑比率", 'updateDate': "-", 'validDate': "适用日期", 'sellPrice': "卖出结算汇兑比率" }, inplace=True) temp_df = temp_df[[ "适用日期", "买入结算汇兑比率", "卖出结算汇兑比率", "货币种类", ]] temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['买入结算汇兑比率'] = pd.to_numeric(temp_df['买入结算汇兑比率'], errors='coerce') temp_df['卖出结算汇兑比率'] = pd.to_numeric(temp_df['卖出结算汇兑比率'], errors='coerce') return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hsgt_exchange_rate.py#L117-L163
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.893617
[ 7, 8, 9, 21, 26, 27, 28, 29, 36, 42, 43, 44, 45, 46 ]
29.787234
false
13.043478
47
1
70.212766
4
def stock_sgt_settlement_exchange_rate_sse() -> pd.DataFrame: current_date = datetime.now().date().isoformat().replace("-", "") url = "http://query.sse.com.cn/commonSoaQuery.do" params = { 'isPagination': 'true', 'updateDate': '20120601', 'updateDateEnd': current_date, 'sqlId': 'FW_HGT_JSHDBL', 'pageHelp.cacheSize': '1', 'pageHelp.pageSize': '10000', 'pageHelp.pageNo': '1', 'pageHelp.beginPage': '1', 'pageHelp.endPage': '1', '_': '1664523262778', } headers = { 'Host': 'query.sse.com.cn', 'Referer': 'http://www.sse.com.cn/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36' } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json['result']) temp_df.rename(columns={ 'currencyType': "货币种类", 'buyPrice': "买入结算汇兑比率", 'updateDate': "-", 'validDate': "适用日期", 'sellPrice': "卖出结算汇兑比率" }, inplace=True) temp_df = temp_df[[ "适用日期", "买入结算汇兑比率", "卖出结算汇兑比率", "货币种类", ]] temp_df.sort_values('适用日期', inplace=True, ignore_index=True) temp_df['适用日期'] = pd.to_datetime(temp_df['适用日期']).dt.date temp_df['买入结算汇兑比率'] = pd.to_numeric(temp_df['买入结算汇兑比率'], errors='coerce') temp_df['卖出结算汇兑比率'] = pd.to_numeric(temp_df['卖出结算汇兑比率'], errors='coerce') return temp_df
17,904
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
_get_file_content_ths
(file: str = "ths.js")
return file_data
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
17
28
def _get_file_content_ths(file: str = "ths.js") -> str: """ 获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str """ setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L17-L28
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
66.666667
[ 8, 9, 10, 11 ]
33.333333
false
5.167959
12
2
66.666667
5
def _get_file_content_ths(file: str = "ths.js") -> str: setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
17,905
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_cxg_ths
(symbol: str = "创月新高") -> pd.D
return big_df
同花顺-数据中心-技术选股-创新高 http://data.10jqka.com.cn/rank/cxg/ :param symbol: choice of {"创月新高", "半年新高", "一年新高", "历史新高"} :type symbol: str :return: 创新高数据 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-创新高 http://data.10jqka.com.cn/rank/cxg/ :param symbol: choice of {"创月新高", "半年新高", "一年新高", "历史新高"} :type symbol: str :return: 创新高数据 :rtype: pandas.DataFrame
31
92
def stock_rank_cxg_ths(symbol: str = "创月新高") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-创新高 http://data.10jqka.com.cn/rank/cxg/ :param symbol: choice of {"创月新高", "半年新高", "一年新高", "历史新高"} :type symbol: str :return: 创新高数据 :rtype: pandas.DataFrame """ symbol_map = { "创月新高": "4", "半年新高": "3", "一年新高": "2", "历史新高": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期高点", "前期高点日期", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期高点日期"] = pd.to_datetime(big_df["前期高点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期高点"] = pd.to_numeric(big_df["前期高点"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L31-L92
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.516129
[ 9, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61 ]
50
false
5.167959
62
3
50
6
def stock_rank_cxg_ths(symbol: str = "创月新高") -> pd.DataFrame: symbol_map = { "创月新高": "4", "半年新高": "3", "一年新高": "2", "历史新高": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期高点", "前期高点日期", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期高点日期"] = pd.to_datetime(big_df["前期高点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期高点"] = pd.to_numeric(big_df["前期高点"]) return big_df
17,906
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_cxd_ths
(symbol: str = "创月新低") -> pd.D
return big_df
同花顺-数据中心-技术选股-创新低 http://data.10jqka.com.cn/rank/cxd/ :param symbol: choice of {"创月新低", "半年新低", "一年新低", "历史新低"} :type symbol: str :return: 创新低数据 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-创新低 http://data.10jqka.com.cn/rank/cxd/ :param symbol: choice of {"创月新低", "半年新低", "一年新低", "历史新低"} :type symbol: str :return: 创新低数据 :rtype: pandas.DataFrame
95
156
def stock_rank_cxd_ths(symbol: str = "创月新低") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-创新低 http://data.10jqka.com.cn/rank/cxd/ :param symbol: choice of {"创月新低", "半年新低", "一年新低", "历史新低"} :type symbol: str :return: 创新低数据 :rtype: pandas.DataFrame """ symbol_map = { "创月新低": "4", "半年新低": "3", "一年新低": "2", "历史新低": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期低点", "前期低点日期", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期低点日期"] = pd.to_datetime(big_df["前期低点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期低点"] = pd.to_numeric(big_df["前期低点"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L95-L156
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.516129
[ 9, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61 ]
50
false
5.167959
62
3
50
6
def stock_rank_cxd_ths(symbol: str = "创月新低") -> pd.DataFrame: symbol_map = { "创月新低": "4", "半年新低": "3", "一年新低": "2", "历史新低": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期低点", "前期低点日期", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期低点日期"] = pd.to_datetime(big_df["前期低点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期低点"] = pd.to_numeric(big_df["前期低点"]) return big_df
17,907
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_lxsz_ths
()
return big_df
同花顺-数据中心-技术选股-连续上涨 http://data.10jqka.com.cn/rank/lxsz/ :return: 连续上涨 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-连续上涨 http://data.10jqka.com.cn/rank/lxsz/ :return: 连续上涨 :rtype: pandas.DataFrame
159
214
def stock_rank_lxsz_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-连续上涨 http://data.10jqka.com.cn/rank/lxsz/ :return: 连续上涨 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["连涨天数"] = pd.to_numeric(big_df["连涨天数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L159-L214
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.5
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 47, 48, 49, 50, 51, 52, 53, 54, 55 ]
53.571429
false
5.167959
56
3
46.428571
4
def stock_rank_lxsz_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["连涨天数"] = pd.to_numeric(big_df["连涨天数"]) return big_df
17,908
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_lxxd_ths
()
return big_df
同花顺-数据中心-技术选股-连续下跌 http://data.10jqka.com.cn/rank/lxxd/ :return: 连续下跌 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-连续下跌 http://data.10jqka.com.cn/rank/lxxd/ :return: 连续下跌 :rtype: pandas.DataFrame
217
272
def stock_rank_lxxd_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-连续下跌 http://data.10jqka.com.cn/rank/lxxd/ :return: 连续下跌 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxxd/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxxd/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["连涨天数"] = pd.to_numeric(big_df["连涨天数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L217-L272
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.5
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 47, 48, 49, 50, 51, 52, 53, 54, 55 ]
53.571429
false
5.167959
56
3
46.428571
4
def stock_rank_lxxd_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxxd/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxxd/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["连涨天数"] = pd.to_numeric(big_df["连涨天数"]) return big_df
17,909
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_cxfl_ths
()
return big_df
同花顺-数据中心-技术选股-持续放量 http://data.10jqka.com.cn/rank/cxfl/ :return: 持续放量 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-持续放量 http://data.10jqka.com.cn/rank/cxfl/ :return: 持续放量 :rtype: pandas.DataFrame
275
329
def stock_rank_cxfl_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-持续放量 http://data.10jqka.com.cn/rank/cxfl/ :return: 持续放量 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxfl/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxfl/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "最新价", "成交量", "基准日成交量", "放量天数", "阶段涨跌幅", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["阶段涨跌幅"] = big_df["阶段涨跌幅"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["阶段涨跌幅"] = pd.to_numeric(big_df["阶段涨跌幅"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["放量天数"] = pd.to_numeric(big_df["放量天数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L275-L329
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.727273
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 47, 48, 49, 50, 51, 52, 53, 54 ]
52.727273
false
5.167959
55
3
47.272727
4
def stock_rank_cxfl_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxfl/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxfl/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "最新价", "成交量", "基准日成交量", "放量天数", "阶段涨跌幅", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["阶段涨跌幅"] = big_df["阶段涨跌幅"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["阶段涨跌幅"] = pd.to_numeric(big_df["阶段涨跌幅"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["放量天数"] = pd.to_numeric(big_df["放量天数"]) return big_df
17,910
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_cxsl_ths
()
return big_df
同花顺-数据中心-技术选股-持续缩量 http://data.10jqka.com.cn/rank/cxsl/ :return: 持续缩量 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-持续缩量 http://data.10jqka.com.cn/rank/cxsl/ :return: 持续缩量 :rtype: pandas.DataFrame
332
386
def stock_rank_cxsl_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-持续缩量 http://data.10jqka.com.cn/rank/cxsl/ :return: 持续缩量 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxsl/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxsl/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "最新价", "成交量", "基准日成交量", "缩量天数", "阶段涨跌幅", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["阶段涨跌幅"] = big_df["阶段涨跌幅"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["阶段涨跌幅"] = pd.to_numeric(big_df["阶段涨跌幅"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["缩量天数"] = pd.to_numeric(big_df["缩量天数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L332-L386
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.727273
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 47, 48, 49, 50, 51, 52, 53, 54 ]
52.727273
false
5.167959
55
3
47.272727
4
def stock_rank_cxsl_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxsl/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxsl/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "最新价", "成交量", "基准日成交量", "缩量天数", "阶段涨跌幅", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["阶段涨跌幅"] = big_df["阶段涨跌幅"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["阶段涨跌幅"] = pd.to_numeric(big_df["阶段涨跌幅"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["缩量天数"] = pd.to_numeric(big_df["缩量天数"]) return big_df
17,911
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_xstp_ths
(symbol: str = "500日均线") -> pd
return big_df
同花顺-数据中心-技术选股-向上突破 http://data.10jqka.com.cn/rank/xstp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向上突破 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-向上突破 http://data.10jqka.com.cn/rank/xstp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向上突破 :rtype: pandas.DataFrame
389
452
def stock_rank_xstp_ths(symbol: str = "500日均线") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-向上突破 http://data.10jqka.com.cn/rank/xstp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向上突破 :rtype: pandas.DataFrame """ symbol_map = { "5日均线": 5, "10日均线": 10, "20日均线": 20, "30日均线": 30, "60日均线": 60, "90日均线": 90, "250日均线": 250, "500日均线": 500, } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xstp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xstp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "成交额", "成交量", "涨跌幅", "换手率", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["换手率"] = big_df["换手率"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L389-L452
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.0625
[ 9, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 57, 58, 59, 60, 61, 62, 63 ]
45.3125
false
5.167959
64
3
54.6875
6
def stock_rank_xstp_ths(symbol: str = "500日均线") -> pd.DataFrame: symbol_map = { "5日均线": 5, "10日均线": 10, "20日均线": 20, "30日均线": 30, "60日均线": 60, "90日均线": 90, "250日均线": 250, "500日均线": 500, } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xstp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xstp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "成交额", "成交量", "涨跌幅", "换手率", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["换手率"] = big_df["换手率"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) return big_df
17,912
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_xxtp_ths
(symbol: str = "500日均线") -> pd
return big_df
同花顺-数据中心-技术选股-向下突破 http://data.10jqka.com.cn/rank/xxtp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向下突破 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-向下突破 http://data.10jqka.com.cn/rank/xxtp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向下突破 :rtype: pandas.DataFrame
455
518
def stock_rank_xxtp_ths(symbol: str = "500日均线") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-向下突破 http://data.10jqka.com.cn/rank/xxtp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向下突破 :rtype: pandas.DataFrame """ symbol_map = { "5日均线": 5, "10日均线": 10, "20日均线": 20, "30日均线": 30, "60日均线": 60, "90日均线": 90, "250日均线": 250, "500日均线": 500, } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xxtp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xxtp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "成交额", "成交量", "涨跌幅", "换手率", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["换手率"] = big_df["换手率"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L455-L518
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.0625
[ 9, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 57, 58, 59, 60, 61, 62, 63 ]
45.3125
false
5.167959
64
3
54.6875
6
def stock_rank_xxtp_ths(symbol: str = "500日均线") -> pd.DataFrame: symbol_map = { "5日均线": 5, "10日均线": 10, "20日均线": 20, "30日均线": 30, "60日均线": 60, "90日均线": 90, "250日均线": 250, "500日均线": 500, } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xxtp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xxtp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "成交额", "成交量", "涨跌幅", "换手率", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["换手率"] = big_df["换手率"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) return big_df
17,913
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_ljqs_ths
()
return big_df
同花顺-数据中心-技术选股-量价齐升 http://data.10jqka.com.cn/rank/ljqs/ :return: 量价齐升 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-量价齐升 http://data.10jqka.com.cn/rank/ljqs/ :return: 量价齐升 :rtype: pandas.DataFrame
521
573
def stock_rank_ljqs_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-量价齐升 http://data.10jqka.com.cn/rank/ljqs/ :return: 量价齐升 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqs/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqs/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "量价齐升天数", "阶段涨幅", "累计换手率", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["阶段涨幅"] = big_df["阶段涨幅"].astype(str).str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].astype(str).str.strip("%") big_df["阶段涨幅"] = pd.to_numeric(big_df["阶段涨幅"], errors="coerce") big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["量价齐升天数"] = pd.to_numeric(big_df["量价齐升天数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L521-L573
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.207547
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 45, 46, 47, 48, 49, 50, 51, 52 ]
54.716981
false
5.167959
53
3
45.283019
4
def stock_rank_ljqs_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqs/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqs/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "量价齐升天数", "阶段涨幅", "累计换手率", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["阶段涨幅"] = big_df["阶段涨幅"].astype(str).str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].astype(str).str.strip("%") big_df["阶段涨幅"] = pd.to_numeric(big_df["阶段涨幅"], errors="coerce") big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["量价齐升天数"] = pd.to_numeric(big_df["量价齐升天数"]) return big_df
17,914
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_ljqd_ths
()
return big_df
同花顺-数据中心-技术选股-量价齐跌 http://data.10jqka.com.cn/rank/ljqd/ :return: 量价齐跌 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-量价齐跌 http://data.10jqka.com.cn/rank/ljqd/ :return: 量价齐跌 :rtype: pandas.DataFrame
576
628
def stock_rank_ljqd_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-量价齐跌 http://data.10jqka.com.cn/rank/ljqd/ :return: 量价齐跌 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqd/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqd/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "量价齐跌天数", "阶段涨幅", "累计换手率", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["阶段涨幅"] = big_df["阶段涨幅"].astype(str).str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].astype(str).str.strip("%") big_df["阶段涨幅"] = pd.to_numeric(big_df["阶段涨幅"], errors="coerce") big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["量价齐跌天数"] = pd.to_numeric(big_df["量价齐跌天数"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L576-L628
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.207547
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 45, 46, 47, 48, 49, 50, 51, 52 ]
54.716981
false
5.167959
53
3
45.283019
4
def stock_rank_ljqd_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqd/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqd/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "量价齐跌天数", "阶段涨幅", "累计换手率", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["阶段涨幅"] = big_df["阶段涨幅"].astype(str).str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].astype(str).str.strip("%") big_df["阶段涨幅"] = pd.to_numeric(big_df["阶段涨幅"], errors="coerce") big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["量价齐跌天数"] = pd.to_numeric(big_df["量价齐跌天数"]) return big_df
17,915
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_technology_ths.py
stock_rank_xzjp_ths
()
return big_df
同花顺-数据中心-技术选股-险资举牌 http://data.10jqka.com.cn/financial/xzjp/ :return: 险资举牌 :rtype: pandas.DataFrame
同花顺-数据中心-技术选股-险资举牌 http://data.10jqka.com.cn/financial/xzjp/ :return: 险资举牌 :rtype: pandas.DataFrame
631
692
def stock_rank_xzjp_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-险资举牌 http://data.10jqka.com.cn/financial/xzjp/ :return: 险资举牌 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/ajax/xzjp/field/DECLAREDATE/order/desc/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/ajax/xzjp/field/DECLAREDATE/order/desc/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "举牌公告日", "股票代码", "股票简称", "现价", "涨跌幅", "举牌方", "增持数量", "交易均价", "增持数量占总股本比例", "变动后持股总数", "变动后持股比例", "历史数据", ] big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.zfill(6) big_df["增持数量占总股本比例"] = big_df["增持数量占总股本比例"].astype(str).str.strip("%") big_df["变动后持股比例"] = big_df["变动后持股比例"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["增持数量占总股本比例"] = pd.to_numeric(big_df["增持数量占总股本比例"]) big_df["变动后持股比例"] = pd.to_numeric(big_df["变动后持股比例"]) big_df["举牌公告日"] = pd.to_datetime(big_df["举牌公告日"]).dt.date big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["现价"] = pd.to_numeric(big_df["现价"]) big_df["交易均价"] = pd.to_numeric(big_df["交易均价"]) del big_df["历史数据"] return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_technology_ths.py#L631-L692
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.290323
[ 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61 ]
53.225806
false
5.167959
62
3
46.774194
4
def stock_rank_xzjp_ths() -> pd.DataFrame: js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/ajax/xzjp/field/DECLAREDATE/order/desc/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find( "span", attrs={"class": "page_info"} ).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/ajax/xzjp/field/DECLAREDATE/order/desc/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "序号", "举牌公告日", "股票代码", "股票简称", "现价", "涨跌幅", "举牌方", "增持数量", "交易均价", "增持数量占总股本比例", "变动后持股总数", "变动后持股比例", "历史数据", ] big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.zfill(6) big_df["增持数量占总股本比例"] = big_df["增持数量占总股本比例"].astype(str).str.strip("%") big_df["变动后持股比例"] = big_df["变动后持股比例"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["增持数量占总股本比例"] = pd.to_numeric(big_df["增持数量占总股本比例"]) big_df["变动后持股比例"] = pd.to_numeric(big_df["变动后持股比例"]) big_df["举牌公告日"] = pd.to_datetime(big_df["举牌公告日"]).dt.date big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["现价"] = pd.to_numeric(big_df["现价"]) big_df["交易均价"] = pd.to_numeric(big_df["交易均价"]) del big_df["历史数据"] return big_df
17,916
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_account_em.py
stock_account_statistics_em
()
return temp_df
东方财富网-数据中心-特色数据-股票账户统计 http://data.eastmoney.com/cjsj/gpkhsj.html :return: 股票账户统计数据 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-股票账户统计 http://data.eastmoney.com/cjsj/gpkhsj.html :return: 股票账户统计数据 :rtype: pandas.DataFrame
13
75
def stock_account_statistics_em() -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-股票账户统计 http://data.eastmoney.com/cjsj/gpkhsj.html :return: 股票账户统计数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { 'reportName': 'RPT_STOCK_OPEN_DATA', 'columns': 'ALL', 'pageSize': '500', 'sortColumns': 'STATISTICS_DATE', 'sortTypes': '-1', 'source': 'WEB', 'client': 'WEB', 'p': '1', 'pageNo': '1', 'pageNum': '1', 'pageNumber': '1', '_': '1640749656405', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) temp_df.columns = [ "数据日期", "新增投资者-数量", "新增投资者-环比", "新增投资者-同比", "期末投资者-总量", "期末投资者-A股账户", "期末投资者-B股账户", "上证指数-收盘", "上证指数-涨跌幅", "沪深总市值", "沪深户均市值", "-" ] temp_df = temp_df[[ "数据日期", "新增投资者-数量", "新增投资者-环比", "新增投资者-同比", "期末投资者-总量", "期末投资者-A股账户", "期末投资者-B股账户", "沪深总市值", "沪深户均市值", "上证指数-收盘", "上证指数-涨跌幅", ]] temp_df['新增投资者-数量'] = pd.to_numeric(temp_df['新增投资者-数量']) temp_df['新增投资者-环比'] = pd.to_numeric(temp_df['新增投资者-环比']) temp_df['新增投资者-同比'] = pd.to_numeric(temp_df['新增投资者-同比']) temp_df['期末投资者-总量'] = pd.to_numeric(temp_df['期末投资者-总量']) temp_df['期末投资者-A股账户'] = pd.to_numeric(temp_df['期末投资者-A股账户']) temp_df['期末投资者-B股账户'] = pd.to_numeric(temp_df['期末投资者-B股账户']) temp_df['沪深总市值'] = pd.to_numeric(temp_df['沪深总市值']) temp_df['沪深户均市值'] = pd.to_numeric(temp_df['沪深户均市值']) temp_df['上证指数-收盘'] = pd.to_numeric(temp_df['上证指数-收盘']) temp_df['上证指数-涨跌幅'] = pd.to_numeric(temp_df['上证指数-涨跌幅']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_account_em.py#L13-L75
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.111111
[ 7, 8, 22, 23, 24, 25, 39, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 ]
28.571429
false
20
63
1
71.428571
4
def stock_account_statistics_em() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { 'reportName': 'RPT_STOCK_OPEN_DATA', 'columns': 'ALL', 'pageSize': '500', 'sortColumns': 'STATISTICS_DATE', 'sortTypes': '-1', 'source': 'WEB', 'client': 'WEB', 'p': '1', 'pageNo': '1', 'pageNum': '1', 'pageNumber': '1', '_': '1640749656405', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) temp_df.columns = [ "数据日期", "新增投资者-数量", "新增投资者-环比", "新增投资者-同比", "期末投资者-总量", "期末投资者-A股账户", "期末投资者-B股账户", "上证指数-收盘", "上证指数-涨跌幅", "沪深总市值", "沪深户均市值", "-" ] temp_df = temp_df[[ "数据日期", "新增投资者-数量", "新增投资者-环比", "新增投资者-同比", "期末投资者-总量", "期末投资者-A股账户", "期末投资者-B股账户", "沪深总市值", "沪深户均市值", "上证指数-收盘", "上证指数-涨跌幅", ]] temp_df['新增投资者-数量'] = pd.to_numeric(temp_df['新增投资者-数量']) temp_df['新增投资者-环比'] = pd.to_numeric(temp_df['新增投资者-环比']) temp_df['新增投资者-同比'] = pd.to_numeric(temp_df['新增投资者-同比']) temp_df['期末投资者-总量'] = pd.to_numeric(temp_df['期末投资者-总量']) temp_df['期末投资者-A股账户'] = pd.to_numeric(temp_df['期末投资者-A股账户']) temp_df['期末投资者-B股账户'] = pd.to_numeric(temp_df['期末投资者-B股账户']) temp_df['沪深总市值'] = pd.to_numeric(temp_df['沪深总市值']) temp_df['沪深户均市值'] = pd.to_numeric(temp_df['沪深户均市值']) temp_df['上证指数-收盘'] = pd.to_numeric(temp_df['上证指数-收盘']) temp_df['上证指数-涨跌幅'] = pd.to_numeric(temp_df['上证指数-涨跌幅']) return temp_df
17,917
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_em
()
return big_df
东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ :return: 千股千评数据 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ :return: 千股千评数据 :rtype: pandas.DataFrame
15
110
def stock_comment_em() -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ :return: 千股千评数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "SECURITY_CODE", "sortTypes": "1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_DMSK_TS_STOCKNEW", "quoteColumns": "f2~01~SECURITY_CODE~CLOSE_PRICE,f8~01~SECURITY_CODE~TURNOVERRATE,f3~01~SECURITY_CODE~CHANGE_RATE,f9~01~SECURITY_CODE~PE_DYNAMIC", "columns": "ALL", "filter": "", "token": "894050c76af8597a853f5b408b759f5d", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "代码", "-", "交易日", "名称", "-", "-", "-", "最新价", "涨跌幅", "-", "换手率", "主力成本", "市盈率", "-", "-", "机构参与度", "-", "-", "-", "-", "-", "-", "-", "-", "综合得分", "上升", "目前排名", "关注指数", "-", ] big_df = big_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "换手率", "市盈率", "主力成本", "机构参与度", "综合得分", "上升", "目前排名", "关注指数", "交易日", ] ] big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["换手率"] = pd.to_numeric(big_df["换手率"], errors="coerce") big_df["市盈率"] = pd.to_numeric(big_df["市盈率"], errors="coerce") big_df["主力成本"] = pd.to_numeric(big_df["主力成本"], errors="coerce") big_df["机构参与度"] = pd.to_numeric(big_df["机构参与度"], errors="coerce") big_df["综合得分"] = pd.to_numeric(big_df["综合得分"], errors="coerce") big_df["上升"] = pd.to_numeric(big_df["上升"], errors="coerce") big_df["目前排名"] = pd.to_numeric(big_df["目前排名"], errors="coerce") big_df["关注指数"] = pd.to_numeric(big_df["关注指数"], errors="coerce") big_df["交易日"] = pd.to_datetime(big_df["交易日"]).dt.date return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L15-L110
25
[ 0, 1, 2, 3, 4, 5, 6 ]
7.291667
[ 7, 8, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 65, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 ]
29.166667
false
9.923664
96
2
70.833333
4
def stock_comment_em() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "SECURITY_CODE", "sortTypes": "1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_DMSK_TS_STOCKNEW", "quoteColumns": "f2~01~SECURITY_CODE~CLOSE_PRICE,f8~01~SECURITY_CODE~TURNOVERRATE,f3~01~SECURITY_CODE~CHANGE_RATE,f9~01~SECURITY_CODE~PE_DYNAMIC", "columns": "ALL", "filter": "", "token": "894050c76af8597a853f5b408b759f5d", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "代码", "-", "交易日", "名称", "-", "-", "-", "最新价", "涨跌幅", "-", "换手率", "主力成本", "市盈率", "-", "-", "机构参与度", "-", "-", "-", "-", "-", "-", "-", "-", "综合得分", "上升", "目前排名", "关注指数", "-", ] big_df = big_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "换手率", "市盈率", "主力成本", "机构参与度", "综合得分", "上升", "目前排名", "关注指数", "交易日", ] ] big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["换手率"] = pd.to_numeric(big_df["换手率"], errors="coerce") big_df["市盈率"] = pd.to_numeric(big_df["市盈率"], errors="coerce") big_df["主力成本"] = pd.to_numeric(big_df["主力成本"], errors="coerce") big_df["机构参与度"] = pd.to_numeric(big_df["机构参与度"], errors="coerce") big_df["综合得分"] = pd.to_numeric(big_df["综合得分"], errors="coerce") big_df["上升"] = pd.to_numeric(big_df["上升"], errors="coerce") big_df["目前排名"] = pd.to_numeric(big_df["目前排名"], errors="coerce") big_df["关注指数"] = pd.to_numeric(big_df["关注指数"], errors="coerce") big_df["交易日"] = pd.to_datetime(big_df["交易日"]).dt.date return big_df
17,918
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_detail_zlkp_jgcyd_em
(symbol: str = "600000")
return temp_df
东方财富网-数据中心-特色数据-千股千评-主力控盘-机构参与度 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 主力控盘-机构参与度 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评-主力控盘-机构参与度 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 主力控盘-机构参与度 :rtype: pandas.DataFrame
113
142
def stock_comment_detail_zlkp_jgcyd_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-主力控盘-机构参与度 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 主力控盘-机构参与度 :rtype: pandas.DataFrame """ url = f"https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_DMSK_TS_STOCKEVALUATE", "filter": f'(SECURITY_CODE="{symbol}")', "columns": "ALL", "source": "WEB", "client": "WEB", "sortColumns": "TRADE_DATE", "sortTypes": "-1", "_": "1655387358195", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df = temp_df[["TRADE_DATE", "ORG_PARTICIPATE"]] temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.sort_values(["date"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["value"] = pd.to_numeric(temp_df["value"]) * 100 return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L113-L142
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
30
[ 9, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 ]
40
false
9.923664
30
1
60
6
def stock_comment_detail_zlkp_jgcyd_em(symbol: str = "600000") -> pd.DataFrame: url = f"https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_DMSK_TS_STOCKEVALUATE", "filter": f'(SECURITY_CODE="{symbol}")', "columns": "ALL", "source": "WEB", "client": "WEB", "sortColumns": "TRADE_DATE", "sortTypes": "-1", "_": "1655387358195", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df = temp_df[["TRADE_DATE", "ORG_PARTICIPATE"]] temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.sort_values(["date"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["value"] = pd.to_numeric(temp_df["value"]) * 100 return temp_df
17,919
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_detail_zhpj_lspf_em
(symbol: str = "600000")
return temp_df
东方财富网-数据中心-特色数据-千股千评-综合评价-历史评分 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 综合评价-历史评分 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评-综合评价-历史评分 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 综合评价-历史评分 :rtype: pandas.DataFrame
145
171
def stock_comment_detail_zhpj_lspf_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-综合评价-历史评分 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 综合评价-历史评分 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame( [ data_json["ApiResults"]["zhpj"]["HistoryScore"]["XData"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Score"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Price"], ] ).T temp_df.columns = ["日期", "评分", "股价"] temp_df["日期"] = str(datetime.now().year) + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["评分"] = pd.to_numeric(temp_df["评分"]) temp_df["股价"] = pd.to_numeric(temp_df["股价"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L145-L171
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
33.333333
[ 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26 ]
44.444444
false
9.923664
27
1
55.555556
6
def stock_comment_detail_zhpj_lspf_em(symbol: str = "600000") -> pd.DataFrame: url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame( [ data_json["ApiResults"]["zhpj"]["HistoryScore"]["XData"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Score"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Price"], ] ).T temp_df.columns = ["日期", "评分", "股价"] temp_df["日期"] = str(datetime.now().year) + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["评分"] = pd.to_numeric(temp_df["评分"]) temp_df["股价"] = pd.to_numeric(temp_df["股价"]) return temp_df
17,920
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_detail_scrd_focus_em
(symbol: str = "600000")
return temp_df
东方财富网-数据中心-特色数据-千股千评-市场热度-用户关注指数 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-用户关注指数 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评-市场热度-用户关注指数 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-用户关注指数 :rtype: pandas.DataFrame
174
200
def stock_comment_detail_scrd_focus_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-市场热度-用户关注指数 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-用户关注指数 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["focus"][1]["XData"], data_json["ApiResults"]["scrd"]["focus"][1]["Ydata"]["StockFocus"], data_json["ApiResults"]["scrd"]["focus"][1]["Ydata"]["ClosePrice"], ] ).T temp_df.columns = ["日期", "用户关注指数", "收盘价"] temp_df["日期"] = str(datetime.now().year) + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["用户关注指数"] = pd.to_numeric(temp_df["用户关注指数"]) temp_df["收盘价"] = pd.to_numeric(temp_df["收盘价"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L174-L200
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
33.333333
[ 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26 ]
44.444444
false
9.923664
27
1
55.555556
6
def stock_comment_detail_scrd_focus_em(symbol: str = "600000") -> pd.DataFrame: url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["focus"][1]["XData"], data_json["ApiResults"]["scrd"]["focus"][1]["Ydata"]["StockFocus"], data_json["ApiResults"]["scrd"]["focus"][1]["Ydata"]["ClosePrice"], ] ).T temp_df.columns = ["日期", "用户关注指数", "收盘价"] temp_df["日期"] = str(datetime.now().year) + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["用户关注指数"] = pd.to_numeric(temp_df["用户关注指数"]) temp_df["收盘价"] = pd.to_numeric(temp_df["收盘价"]) return temp_df
17,921
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_detail_scrd_desire_em
( symbol: str = "600000", )
return temp_df
东方财富网-数据中心-特色数据-千股千评-市场热度-市场参与意愿 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-市场参与意愿 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评-市场热度-市场参与意愿 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-市场参与意愿 :rtype: pandas.DataFrame
203
247
def stock_comment_detail_scrd_desire_em( symbol: str = "600000", ) -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-市场热度-市场参与意愿 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-市场参与意愿 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() date_str = ( data_json["ApiResults"]["scrd"]["desire"][0][0]["UpdateTime"] .split(" ")[0] .replace("/", "-") ) temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["desire"][1]["XData"], data_json["ApiResults"]["scrd"]["desire"][1]["Ydata"][ "MajorPeopleNumChg" ], data_json["ApiResults"]["scrd"]["desire"][1]["Ydata"][ "PeopleNumChange" ], data_json["ApiResults"]["scrd"]["desire"][1]["Ydata"][ "RetailPeopleNumChg" ], ] ).T temp_df.columns = ["日期时间", "大户", "全部", "散户"] temp_df["日期时间"] = date_str + " " + temp_df["日期时间"] temp_df["日期时间"] = pd.to_datetime(temp_df["日期时间"]) temp_df.sort_values(["日期时间"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["大户"] = pd.to_numeric(temp_df["大户"]) temp_df["全部"] = pd.to_numeric(temp_df["全部"]) temp_df["散户"] = pd.to_numeric(temp_df["散户"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L203-L247
25
[ 0 ]
2.222222
[ 11, 12, 13, 14, 20, 34, 35, 36, 38, 39, 40, 41, 42, 44 ]
31.111111
false
9.923664
45
1
68.888889
6
def stock_comment_detail_scrd_desire_em( symbol: str = "600000", ) -> pd.DataFrame: url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() date_str = ( data_json["ApiResults"]["scrd"]["desire"][0][0]["UpdateTime"] .split(" ")[0] .replace("/", "-") ) temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["desire"][1]["XData"], data_json["ApiResults"]["scrd"]["desire"][1]["Ydata"][ "MajorPeopleNumChg" ], data_json["ApiResults"]["scrd"]["desire"][1]["Ydata"][ "PeopleNumChange" ], data_json["ApiResults"]["scrd"]["desire"][1]["Ydata"][ "RetailPeopleNumChg" ], ] ).T temp_df.columns = ["日期时间", "大户", "全部", "散户"] temp_df["日期时间"] = date_str + " " + temp_df["日期时间"] temp_df["日期时间"] = pd.to_datetime(temp_df["日期时间"]) temp_df.sort_values(["日期时间"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["大户"] = pd.to_numeric(temp_df["大户"]) temp_df["全部"] = pd.to_numeric(temp_df["全部"]) temp_df["散户"] = pd.to_numeric(temp_df["散户"]) return temp_df
17,922
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_detail_scrd_desire_daily_em
( symbol: str = "600000", )
return temp_df
东方财富网-数据中心-特色数据-千股千评-市场热度-日度市场参与意愿 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-日度市场参与意愿 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评-市场热度-日度市场参与意愿 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-日度市场参与意愿 :rtype: pandas.DataFrame
250
290
def stock_comment_detail_scrd_desire_daily_em( symbol: str = "600000", ) -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-市场热度-日度市场参与意愿 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-日度市场参与意愿 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() date_str = ( data_json["ApiResults"]["scrd"]["desire"][0][0]["UpdateTime"] .split(" ")[0] .replace("/", "-") ) temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["desire"][2]["XData"], data_json["ApiResults"]["scrd"]["desire"][2]["Ydata"][ "PeopleNumChg" ], data_json["ApiResults"]["scrd"]["desire"][2]["Ydata"][ "TotalPeopleNumChange" ], ] ).T temp_df.columns = ["日期", "当日意愿下降", "五日累计意愿"] temp_df["日期"] = date_str[:4] + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["当日意愿下降"] = pd.to_numeric(temp_df["当日意愿下降"]) temp_df["五日累计意愿"] = pd.to_numeric(temp_df["五日累计意愿"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L250-L290
25
[ 0 ]
2.439024
[ 11, 12, 13, 14, 20, 31, 32, 33, 35, 36, 37, 38, 40 ]
31.707317
false
9.923664
41
1
68.292683
6
def stock_comment_detail_scrd_desire_daily_em( symbol: str = "600000", ) -> pd.DataFrame: url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() date_str = ( data_json["ApiResults"]["scrd"]["desire"][0][0]["UpdateTime"] .split(" ")[0] .replace("/", "-") ) temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["desire"][2]["XData"], data_json["ApiResults"]["scrd"]["desire"][2]["Ydata"][ "PeopleNumChg" ], data_json["ApiResults"]["scrd"]["desire"][2]["Ydata"][ "TotalPeopleNumChange" ], ] ).T temp_df.columns = ["日期", "当日意愿下降", "五日累计意愿"] temp_df["日期"] = date_str[:4] + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["当日意愿下降"] = pd.to_numeric(temp_df["当日意愿下降"]) temp_df["五日累计意愿"] = pd.to_numeric(temp_df["五日累计意愿"]) return temp_df
17,923
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_comment_em.py
stock_comment_detail_scrd_cost_em
(symbol: str = "600000")
return temp_df
东方财富网-数据中心-特色数据-千股千评-市场热度-市场成本 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-市场成本 :rtype: pandas.DataFrame
东方财富网-数据中心-特色数据-千股千评-市场热度-市场成本 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-市场成本 :rtype: pandas.DataFrame
293
329
def stock_comment_detail_scrd_cost_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-市场热度-市场成本 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 市场热度-市场成本 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() date_str = ( data_json["ApiResults"]["scrd"]["cost"][0][0]["UpdateDate"] .split(" ")[0] .replace("/", "-") ) temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["cost"][1]["XData"], data_json["ApiResults"]["scrd"]["cost"][1]["Ydata"]["AvgBuyPrice"], data_json["ApiResults"]["scrd"]["cost"][1]["Ydata"][ "FiveDayAvgBuyPrice" ], ] ).T temp_df.columns = ["日期", "市场成本", "5日市场成本"] temp_df["日期"] = date_str[:4] + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["市场成本"] = pd.to_numeric(temp_df["市场成本"]) temp_df["5日市场成本"] = pd.to_numeric(temp_df["5日市场成本"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_comment_em.py#L293-L329
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
24.324324
[ 9, 10, 11, 12, 18, 27, 28, 29, 31, 32, 33, 34, 36 ]
35.135135
false
9.923664
37
1
64.864865
6
def stock_comment_detail_scrd_cost_em(symbol: str = "600000") -> pd.DataFrame: url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() date_str = ( data_json["ApiResults"]["scrd"]["cost"][0][0]["UpdateDate"] .split(" ")[0] .replace("/", "-") ) temp_df = pd.DataFrame( [ data_json["ApiResults"]["scrd"]["cost"][1]["XData"], data_json["ApiResults"]["scrd"]["cost"][1]["Ydata"]["AvgBuyPrice"], data_json["ApiResults"]["scrd"]["cost"][1]["Ydata"][ "FiveDayAvgBuyPrice" ], ] ).T temp_df.columns = ["日期", "市场成本", "5日市场成本"] temp_df["日期"] = date_str[:4] + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["市场成本"] = pd.to_numeric(temp_df["市场成本"]) temp_df["5日市场成本"] = pd.to_numeric(temp_df["5日市场成本"]) return temp_df
17,924
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_hot_tgb.py
stock_hot_tgb
()
return temp_df
淘股吧-热门股票 https://www.taoguba.com.cn/stock/moreHotStock :return: 热门股票 :rtype: pandas.DataFrame
淘股吧-热门股票 https://www.taoguba.com.cn/stock/moreHotStock :return: 热门股票 :rtype: pandas.DataFrame
12
27
def stock_hot_tgb() -> pd.DataFrame: """ 淘股吧-热门股票 https://www.taoguba.com.cn/stock/moreHotStock :return: 热门股票 :rtype: pandas.DataFrame """ url = "https://www.taoguba.com.cn/stock/moreHotStock" r = requests.get(url) temp_df = pd.concat([pd.read_html(r.text, header=0)[0], pd.read_html(r.text, header=0)[1]]) temp_df = temp_df[[ "个股代码", "个股名称", ]] temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_hot_tgb.py#L12-L27
25
[ 0, 1, 2, 3, 4, 5, 6 ]
43.75
[ 7, 8, 9, 10, 14, 15 ]
37.5
false
38.461538
16
1
62.5
4
def stock_hot_tgb() -> pd.DataFrame: url = "https://www.taoguba.com.cn/stock/moreHotStock" r = requests.get(url) temp_df = pd.concat([pd.read_html(r.text, header=0)[0], pd.read_html(r.text, header=0)[1]]) temp_df = temp_df[[ "个股代码", "个股名称", ]] temp_df.reset_index(inplace=True, drop=True) return temp_df
17,925
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_cls_alerts.py
stock_zh_a_alerts_cls
()
return temp_df
财联社-今日快讯 https://www.cls.cn/searchPage?keyword=%E5%BF%AB%E8%AE%AF&type=all :return: 财联社-今日快讯 :rtype: pandas.DataFrame
财联社-今日快讯 https://www.cls.cn/searchPage?keyword=%E5%BF%AB%E8%AE%AF&type=all :return: 财联社-今日快讯 :rtype: pandas.DataFrame
16
67
def stock_zh_a_alerts_cls() -> pd.DataFrame: """ 财联社-今日快讯 https://www.cls.cn/searchPage?keyword=%E5%BF%AB%E8%AE%AF&type=all :return: 财联社-今日快讯 :rtype: pandas.DataFrame """ warnings.warn( "该接口将被移除,请使用 ak.stock_telegraph_cls() 接口替代", DeprecationWarning ) url = "https://www.cls.cn/api/sw" params = { "app": "CailianpressWeb", "os": "web", "sv": "7.7.5", } r = requests.get(url, params=params) headers = { "Host": "www.cls.cn", "Connection": "keep-alive", "Content-Length": "112", "Accept": "application/json, text/plain, */*", "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", "Content-Type": "application/json;charset=UTF-8", "Origin": "https://www.cls.cn", "Sec-Fetch-Site": "same-origin", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Dest": "empty", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7", } payload = { "app": "CailianpressWeb", "keyword": "快讯", "os": "web", "page": 0, "rn": 10000, "sv": "7.7.5", "type": "telegram", } r = requests.post(url, headers=headers, params=params, json=payload) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["telegram"]["data"]) temp_df = temp_df[["descr", "time"]] temp_df["descr"] = temp_df["descr"].astype(str).str.replace("</em>", "") temp_df["descr"] = temp_df["descr"].str.replace("<em>", "") temp_df["time"] = pd.to_datetime(temp_df["time"], unit="s").dt.date temp_df.columns = ["快讯信息", "时间"] temp_df = temp_df[["时间", "快讯信息"]] temp_df.sort_values(["时间"], inplace=True) temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_cls_alerts.py#L16-L67
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.461538
[ 7, 10, 11, 16, 17, 31, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
34.615385
false
11.864407
52
1
65.384615
4
def stock_zh_a_alerts_cls() -> pd.DataFrame: warnings.warn( "该接口将被移除,请使用 ak.stock_telegraph_cls() 接口替代", DeprecationWarning ) url = "https://www.cls.cn/api/sw" params = { "app": "CailianpressWeb", "os": "web", "sv": "7.7.5", } r = requests.get(url, params=params) headers = { "Host": "www.cls.cn", "Connection": "keep-alive", "Content-Length": "112", "Accept": "application/json, text/plain, */*", "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", "Content-Type": "application/json;charset=UTF-8", "Origin": "https://www.cls.cn", "Sec-Fetch-Site": "same-origin", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Dest": "empty", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7", } payload = { "app": "CailianpressWeb", "keyword": "快讯", "os": "web", "page": 0, "rn": 10000, "sv": "7.7.5", "type": "telegram", } r = requests.post(url, headers=headers, params=params, json=payload) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["telegram"]["data"]) temp_df = temp_df[["descr", "time"]] temp_df["descr"] = temp_df["descr"].astype(str).str.replace("</em>", "") temp_df["descr"] = temp_df["descr"].str.replace("<em>", "") temp_df["time"] = pd.to_datetime(temp_df["time"], unit="s").dt.date temp_df.columns = ["快讯信息", "时间"] temp_df = temp_df[["时间", "快讯信息"]] temp_df.sort_values(["时间"], inplace=True) temp_df.reset_index(inplace=True, drop=True) return temp_df
17,926
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_cls_alerts.py
stock_telegraph_cls
()
return big_df
财联社-电报 https://www.cls.cn/telegraph :return: 财联社-电报 :rtype: pandas.DataFrame
财联社-电报 https://www.cls.cn/telegraph :return: 财联社-电报 :rtype: pandas.DataFrame
70
114
def stock_telegraph_cls() -> pd.DataFrame: """ 财联社-电报 https://www.cls.cn/telegraph :return: 财联社-电报 :rtype: pandas.DataFrame """ session = requests.session() url = "https://m.cls.cn/telegraph" session.get(url) # 获取 cookies params = { "refresh_type": "1", "rn": "10", "last_time": "", "app": "CailianpressWap", "sv": "1", } ts = pd.Timestamp(pd.Timestamp.now()) current_time = int(ts.timestamp()) params.update({"last_time": current_time}) url = "https://m.cls.cn/nodeapi/telegraphs" r = session.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["roll_data"]) next_time = temp_df["modified_time"].values[-1] n = 1 big_df = temp_df.copy() while n < 15: params.update({"last_time": next_time}) r = session.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["roll_data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) next_time = temp_df["modified_time"].values[-1] n += 1 big_df = big_df[["title", "content", "ctime"]] big_df["ctime"] = pd.to_datetime( big_df["ctime"], unit="s", utc=True ).dt.tz_convert("Asia/Shanghai") big_df.columns = ["标题", "内容", "发布时间"] big_df.sort_values(["发布时间"], inplace=True) big_df.reset_index(inplace=True, drop=True) big_df["发布日期"] = big_df["发布时间"].dt.date big_df["发布时间"] = big_df["发布时间"].dt.time return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_cls_alerts.py#L70-L114
25
[ 0, 1, 2, 3, 4, 5, 6 ]
15.555556
[ 7, 8, 9, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44 ]
66.666667
false
11.864407
45
2
33.333333
4
def stock_telegraph_cls() -> pd.DataFrame: session = requests.session() url = "https://m.cls.cn/telegraph" session.get(url) # 获取 cookies params = { "refresh_type": "1", "rn": "10", "last_time": "", "app": "CailianpressWap", "sv": "1", } ts = pd.Timestamp(pd.Timestamp.now()) current_time = int(ts.timestamp()) params.update({"last_time": current_time}) url = "https://m.cls.cn/nodeapi/telegraphs" r = session.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["roll_data"]) next_time = temp_df["modified_time"].values[-1] n = 1 big_df = temp_df.copy() while n < 15: params.update({"last_time": next_time}) r = session.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["roll_data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) next_time = temp_df["modified_time"].values[-1] n += 1 big_df = big_df[["title", "content", "ctime"]] big_df["ctime"] = pd.to_datetime( big_df["ctime"], unit="s", utc=True ).dt.tz_convert("Asia/Shanghai") big_df.columns = ["标题", "内容", "发布时间"] big_df.sort_values(["发布时间"], inplace=True) big_df.reset_index(inplace=True, drop=True) big_df["发布日期"] = big_df["发布时间"].dt.date big_df["发布时间"] = big_df["发布时间"].dt.time return big_df
17,927
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lhb_sina.py
stock_lhb_detail_daily_sina
( trade_date: str = "20200730", symbol: str = "当日无价格涨跌幅限制的A股,出现异常波动停牌的股票" )
return temp_df
龙虎榜-每日详情 http://vip.stock.finance.sina.com.cn/q/go.php/vInvestConsult/kind/lhb/index.phtml :param trade_date: 交易日, e.g., trade_date="20200729" :type trade_date: str :param symbol: 指定标题 :type symbol: str :return: 龙虎榜-每日详情 :rtype: pandas.DataFrame
龙虎榜-每日详情 http://vip.stock.finance.sina.com.cn/q/go.php/vInvestConsult/kind/lhb/index.phtml :param trade_date: 交易日, e.g., trade_date="20200729" :type trade_date: str :param symbol: 指定标题 :type symbol: str :return: 龙虎榜-每日详情 :rtype: pandas.DataFrame
14
53
def stock_lhb_detail_daily_sina( trade_date: str = "20200730", symbol: str = "当日无价格涨跌幅限制的A股,出现异常波动停牌的股票" ) -> pd.DataFrame: """ 龙虎榜-每日详情 http://vip.stock.finance.sina.com.cn/q/go.php/vInvestConsult/kind/lhb/index.phtml :param trade_date: 交易日, e.g., trade_date="20200729" :type trade_date: str :param symbol: 指定标题 :type symbol: str :return: 龙虎榜-每日详情 :rtype: pandas.DataFrame """ trade_date = "-".join([trade_date[:4], trade_date[4:6], trade_date[6:]]) url = "http://vip.stock.finance.sina.com.cn/q/go.php/vInvestConsult/kind/lhb/index.phtml" params = {"tradedate": trade_date} r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") table_name_list = [ item.get_text().strip() for item in soup.find_all( "span", attrs={"style": "font-weight:bold;font-size:14px;"} ) if item.get_text().strip() != "" ] if symbol == "返回当前交易日所有可查询的指标": return table_name_list else: position_num = table_name_list.index(symbol) if len(table_name_list) == position_num + 1: temp_df_1 = pd.read_html(r.text, flavor='bs4', header=1)[position_num].iloc[0:, :] temp_df_2 = pd.read_html(r.text, flavor='bs4', header=1)[position_num + 1].iloc[0:, :] temp_df_3 = pd.read_html(r.text, flavor='bs4', header=1)[position_num + 2].iloc[0:, :] temp_df = pd.concat([temp_df_1, temp_df_2, temp_df_3], ignore_index=True) else: temp_df = pd.read_html(r.text, flavor='bs4', header=1)[position_num].iloc[0:, :] temp_df["股票代码"] = temp_df["股票代码"].astype(str).str.zfill(6) del temp_df["查看详情"] temp_df.columns = ["序号", "股票代码", "股票名称", "收盘价", "对应值", "成交量", "成交额"] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lhb_sina.py#L14-L53
25
[ 0 ]
2.5
[ 13, 14, 15, 16, 17, 18, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39 ]
47.5
false
10.25641
40
4
52.5
8
def stock_lhb_detail_daily_sina( trade_date: str = "20200730", symbol: str = "当日无价格涨跌幅限制的A股,出现异常波动停牌的股票" ) -> pd.DataFrame: trade_date = "-".join([trade_date[:4], trade_date[4:6], trade_date[6:]]) url = "http://vip.stock.finance.sina.com.cn/q/go.php/vInvestConsult/kind/lhb/index.phtml" params = {"tradedate": trade_date} r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") table_name_list = [ item.get_text().strip() for item in soup.find_all( "span", attrs={"style": "font-weight:bold;font-size:14px;"} ) if item.get_text().strip() != "" ] if symbol == "返回当前交易日所有可查询的指标": return table_name_list else: position_num = table_name_list.index(symbol) if len(table_name_list) == position_num + 1: temp_df_1 = pd.read_html(r.text, flavor='bs4', header=1)[position_num].iloc[0:, :] temp_df_2 = pd.read_html(r.text, flavor='bs4', header=1)[position_num + 1].iloc[0:, :] temp_df_3 = pd.read_html(r.text, flavor='bs4', header=1)[position_num + 2].iloc[0:, :] temp_df = pd.concat([temp_df_1, temp_df_2, temp_df_3], ignore_index=True) else: temp_df = pd.read_html(r.text, flavor='bs4', header=1)[position_num].iloc[0:, :] temp_df["股票代码"] = temp_df["股票代码"].astype(str).str.zfill(6) del temp_df["查看详情"] temp_df.columns = ["序号", "股票代码", "股票名称", "收盘价", "对应值", "成交量", "成交额"] return temp_df
17,928
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lhb_sina.py
_find_last_page
(url: str = None, recent_day: str = "60")
return previous_page
56
82
def _find_last_page(url: str = None, recent_day: str = "60"): url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml" params = { "last": recent_day, "p": "1", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") try: previous_page = int(soup.find_all(attrs={"class": "page"})[-2].text) except: previous_page = 1 if previous_page != 1: while True: params = { "last": recent_day, "p": previous_page, } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") last_page = int(soup.find_all(attrs={"class": "page"})[-2].text) if last_page != previous_page: previous_page = last_page continue else: break return previous_page
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lhb_sina.py#L56-L82
25
[ 0 ]
3.703704
[ 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26 ]
70.37037
false
10.25641
27
5
29.62963
0
def _find_last_page(url: str = None, recent_day: str = "60"): url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml" params = { "last": recent_day, "p": "1", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") try: previous_page = int(soup.find_all(attrs={"class": "page"})[-2].text) except: previous_page = 1 if previous_page != 1: while True: params = { "last": recent_day, "p": previous_page, } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") last_page = int(soup.find_all(attrs={"class": "page"})[-2].text) if last_page != previous_page: previous_page = last_page continue else: break return previous_page
17,929
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lhb_sina.py
stock_lhb_ggtj_sina
(recent_day: str = "30")
return big_df
龙虎榜-个股上榜统计 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-每日详情 :rtype: pandas.DataFrame
龙虎榜-个股上榜统计 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-每日详情 :rtype: pandas.DataFrame
85
107
def stock_lhb_ggtj_sina(recent_day: str = "30") -> pd.DataFrame: """ 龙虎榜-个股上榜统计 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-每日详情 :rtype: pandas.DataFrame """ url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml" last_page_num = _find_last_page(url, recent_day) big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "last": recent_day, "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df.columns = ["股票代码", "股票名称", "上榜次数", "累积购买额", "累积卖出额", "净额", "买入席位数", "卖出席位数"] return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lhb_sina.py#L85-L107
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
39.130435
[ 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22 ]
47.826087
false
10.25641
23
2
52.173913
6
def stock_lhb_ggtj_sina(recent_day: str = "30") -> pd.DataFrame: url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/ggtj/index.phtml" last_page_num = _find_last_page(url, recent_day) big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "last": recent_day, "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df.columns = ["股票代码", "股票名称", "上榜次数", "累积购买额", "累积卖出额", "净额", "买入席位数", "卖出席位数"] return big_df
17,930
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lhb_sina.py
stock_lhb_yytj_sina
(recent_day: str = "5")
return big_df
龙虎榜-营业部上榜统计 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/yytj/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-营业部上榜统计 :rtype: pandas.DataFrame
龙虎榜-营业部上榜统计 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/yytj/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-营业部上榜统计 :rtype: pandas.DataFrame
110
134
def stock_lhb_yytj_sina(recent_day: str = "5") -> pd.DataFrame: """ 龙虎榜-营业部上榜统计 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/yytj/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-营业部上榜统计 :rtype: pandas.DataFrame """ url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/yytj/index.phtml" last_page_num = _find_last_page(url, recent_day) big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "last": "5", "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = ["营业部名称", "上榜次数", "累积购买额", "买入席位数", "累积卖出额", "卖出席位数", "买入前三股票"] big_df['上榜次数'] = pd.to_numeric(big_df['上榜次数'], errors="coerce") big_df['买入席位数'] = pd.to_numeric(big_df['买入席位数'], errors="coerce") big_df['卖出席位数'] = pd.to_numeric(big_df['卖出席位数'], errors="coerce") return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lhb_sina.py#L110-L134
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
36
[ 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24 ]
52
false
10.25641
25
2
48
6
def stock_lhb_yytj_sina(recent_day: str = "5") -> pd.DataFrame: url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/yytj/index.phtml" last_page_num = _find_last_page(url, recent_day) big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "last": "5", "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = ["营业部名称", "上榜次数", "累积购买额", "买入席位数", "累积卖出额", "卖出席位数", "买入前三股票"] big_df['上榜次数'] = pd.to_numeric(big_df['上榜次数'], errors="coerce") big_df['买入席位数'] = pd.to_numeric(big_df['买入席位数'], errors="coerce") big_df['卖出席位数'] = pd.to_numeric(big_df['卖出席位数'], errors="coerce") return big_df
17,931
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lhb_sina.py
stock_lhb_jgzz_sina
(recent_day: str = "5")
return big_df
龙虎榜-机构席位追踪 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgzz/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-机构席位追踪 :rtype: pandas.DataFrame
龙虎榜-机构席位追踪 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgzz/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-机构席位追踪 :rtype: pandas.DataFrame
137
163
def stock_lhb_jgzz_sina(recent_day: str = "5") -> pd.DataFrame: """ 龙虎榜-机构席位追踪 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgzz/index.phtml :param recent_day: choice of {"5": 最近 5 天; "10": 最近 10 天; "30": 最近 30 天; "60": 最近 60 天;} :type recent_day: str :return: 龙虎榜-机构席位追踪 :rtype: pandas.DataFrame """ url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgzz/index.phtml" last_page_num = _find_last_page(url, recent_day) big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "last": recent_day, "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) del big_df["当前价"] del big_df["涨跌幅"] big_df.columns = ["股票代码", "股票名称", "累积买入额", "买入次数", "累积卖出额", "卖出次数", "净额"] big_df['买入次数'] = pd.to_numeric(big_df['买入次数'], errors="coerce") big_df['卖出次数'] = pd.to_numeric(big_df['卖出次数'], errors="coerce") return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lhb_sina.py#L137-L163
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
33.333333
[ 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]
55.555556
false
10.25641
27
2
44.444444
6
def stock_lhb_jgzz_sina(recent_day: str = "5") -> pd.DataFrame: url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgzz/index.phtml" last_page_num = _find_last_page(url, recent_day) big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "last": recent_day, "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) del big_df["当前价"] del big_df["涨跌幅"] big_df.columns = ["股票代码", "股票名称", "累积买入额", "买入次数", "累积卖出额", "卖出次数", "净额"] big_df['买入次数'] = pd.to_numeric(big_df['买入次数'], errors="coerce") big_df['卖出次数'] = pd.to_numeric(big_df['卖出次数'], errors="coerce") return big_df
17,932
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/stock_feature/stock_lhb_sina.py
stock_lhb_jgmx_sina
()
return big_df
龙虎榜-机构席位成交明细 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgmx/index.phtml :return: 龙虎榜-机构席位成交明细 :rtype: pandas.DataFrame
龙虎榜-机构席位成交明细 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgmx/index.phtml :return: 龙虎榜-机构席位成交明细 :rtype: pandas.DataFrame
166
192
def stock_lhb_jgmx_sina() -> pd.DataFrame: """ 龙虎榜-机构席位成交明细 http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgmx/index.phtml :return: 龙虎榜-机构席位成交明细 :rtype: pandas.DataFrame """ url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgmx/index.phtml" params = { "p": "1", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") try: last_page_num = int(soup.find_all(attrs={"class": "page"})[-2].text) except: last_page_num = 1 big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/stock_feature/stock_lhb_sina.py#L166-L192
25
[ 0, 1, 2, 3, 4, 5, 6 ]
25.925926
[ 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26 ]
59.259259
false
10.25641
27
3
40.740741
4
def stock_lhb_jgmx_sina() -> pd.DataFrame: url = "http://vip.stock.finance.sina.com.cn/q/go.php/vLHBData/kind/jgmx/index.phtml" params = { "p": "1", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") try: last_page_num = int(soup.find_all(attrs={"class": "page"})[-2].text) except: last_page_num = 1 big_df = pd.DataFrame() for page in tqdm(range(1, last_page_num + 1), leave=False): params = { "p": page, } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[0].iloc[0:, :] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) return big_df
17,933