nwo
stringlengths
10
28
sha
stringlengths
40
40
path
stringlengths
11
97
identifier
stringlengths
1
64
parameters
stringlengths
2
2.24k
return_statement
stringlengths
0
2.17k
docstring
stringlengths
0
5.45k
docstring_summary
stringlengths
0
3.83k
func_begin
int64
1
13.4k
func_end
int64
2
13.4k
function
stringlengths
28
56.4k
url
stringlengths
106
209
project
int64
1
48
executed_lines
list
executed_lines_pc
float64
0
153
missing_lines
list
missing_lines_pc
float64
0
100
covered
bool
2 classes
filecoverage
float64
2.53
100
function_lines
int64
2
1.46k
mccabe
int64
1
253
coverage
float64
0
100
docstring_lines
int64
0
112
function_nodoc
stringlengths
9
56.4k
id
int64
0
29.8k
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_bank_rate
()
return temp_df
东方财富-经济数据-英国-央行公布利率决议 https://data.eastmoney.com/cjsj/foreign_4_3.html :return: 央行公布利率决议 :rtype: pandas.DataFrame
东方财富-经济数据-英国-央行公布利率决议 https://data.eastmoney.com/cjsj/foreign_4_3.html :return: 央行公布利率决议 :rtype: pandas.DataFrame
106
114
def macro_uk_bank_rate() -> pd.DataFrame: """ 东方财富-经济数据-英国-央行公布利率决议 https://data.eastmoney.com/cjsj/foreign_4_3.html :return: 央行公布利率决议 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00342253") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L106-L114
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_bank_rate() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00342253") return temp_df
18,034
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_core_cpi_yearly
()
return temp_df
东方财富-经济数据-英国-核心消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_4_4.html :return: 核心消费者物价指数年率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-核心消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_4_4.html :return: 核心消费者物价指数年率 :rtype: pandas.DataFrame
118
126
def macro_uk_core_cpi_yearly() -> pd.DataFrame: """ 东方财富-经济数据-英国-核心消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_4_4.html :return: 核心消费者物价指数年率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00010279") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L118-L126
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_core_cpi_yearly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00010279") return temp_df
18,035
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_core_cpi_monthly
()
return temp_df
东方财富-经济数据-英国-核心消费者物价指数月率 https://data.eastmoney.com/cjsj/foreign_4_5.html :return: 核心消费者物价指数月率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-核心消费者物价指数月率 https://data.eastmoney.com/cjsj/foreign_4_5.html :return: 核心消费者物价指数月率 :rtype: pandas.DataFrame
130
138
def macro_uk_core_cpi_monthly() -> pd.DataFrame: """ 东方财富-经济数据-英国-核心消费者物价指数月率 https://data.eastmoney.com/cjsj/foreign_4_5.html :return: 核心消费者物价指数月率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00010291") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L130-L138
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_core_cpi_monthly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00010291") return temp_df
18,036
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_cpi_yearly
()
return temp_df
东方财富-经济数据-英国-消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_4_6.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_4_6.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame
142
150
def macro_uk_cpi_yearly() -> pd.DataFrame: """ 东方财富-经济数据-英国-消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_4_6.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00010267") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L142-L150
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_cpi_yearly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00010267") return temp_df
18,037
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_cpi_monthly
()
return temp_df
东方财富-经济数据-英国-消费者物价指数月率 https://data.eastmoney.com/cjsj/foreign_4_7.html :return: 消费者物价指数月率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-消费者物价指数月率 https://data.eastmoney.com/cjsj/foreign_4_7.html :return: 消费者物价指数月率 :rtype: pandas.DataFrame
154
162
def macro_uk_cpi_monthly() -> pd.DataFrame: """ 东方财富-经济数据-英国-消费者物价指数月率 https://data.eastmoney.com/cjsj/foreign_4_7.html :return: 消费者物价指数月率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00010291") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L154-L162
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_cpi_monthly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00010291") return temp_df
18,038
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_retail_monthly
()
return temp_df
东方财富-经济数据-英国-零售销售月率 https://data.eastmoney.com/cjsj/foreign_4_8.html :return: 零售销售月率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-零售销售月率 https://data.eastmoney.com/cjsj/foreign_4_8.html :return: 零售销售月率 :rtype: pandas.DataFrame
166
174
def macro_uk_retail_monthly() -> pd.DataFrame: """ 东方财富-经济数据-英国-零售销售月率 https://data.eastmoney.com/cjsj/foreign_4_8.html :return: 零售销售月率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00158298") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L166-L174
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_retail_monthly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00158298") return temp_df
18,039
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_retail_yearly
()
return temp_df
东方财富-经济数据-英国-零售销售年率 https://data.eastmoney.com/cjsj/foreign_4_9.html :return: 零售销售年率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-零售销售年率 https://data.eastmoney.com/cjsj/foreign_4_9.html :return: 零售销售年率 :rtype: pandas.DataFrame
178
186
def macro_uk_retail_yearly() -> pd.DataFrame: """ 东方财富-经济数据-英国-零售销售年率 https://data.eastmoney.com/cjsj/foreign_4_9.html :return: 零售销售年率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00158297") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L178-L186
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_retail_yearly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00158297") return temp_df
18,040
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_rightmove_yearly
()
return temp_df
东方财富-经济数据-英国-Rightmove 房价指数年率 https://data.eastmoney.com/cjsj/foreign_4_10.html :return: Rightmove 房价指数年率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-Rightmove 房价指数年率 https://data.eastmoney.com/cjsj/foreign_4_10.html :return: Rightmove 房价指数年率 :rtype: pandas.DataFrame
190
198
def macro_uk_rightmove_yearly() -> pd.DataFrame: """ 东方财富-经济数据-英国-Rightmove 房价指数年率 https://data.eastmoney.com/cjsj/foreign_4_10.html :return: Rightmove 房价指数年率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00341608") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L190-L198
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_rightmove_yearly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00341608") return temp_df
18,041
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_rightmove_monthly
()
return temp_df
东方财富-经济数据-英国-Rightmove 房价指数月率 https://data.eastmoney.com/cjsj/foreign_4_11.html :return: Rightmove 房价指数月率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-Rightmove 房价指数月率 https://data.eastmoney.com/cjsj/foreign_4_11.html :return: Rightmove 房价指数月率 :rtype: pandas.DataFrame
202
210
def macro_uk_rightmove_monthly() -> pd.DataFrame: """ 东方财富-经济数据-英国-Rightmove 房价指数月率 https://data.eastmoney.com/cjsj/foreign_4_11.html :return: Rightmove 房价指数月率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00341607") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L202-L210
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_rightmove_monthly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00341607") return temp_df
18,042
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_gdp_quarterly
()
return temp_df
东方财富-经济数据-英国-GDP 季率初值 https://data.eastmoney.com/cjsj/foreign_4_12.html :return: GDP 季率初值 :rtype: pandas.DataFrame
东方财富-经济数据-英国-GDP 季率初值 https://data.eastmoney.com/cjsj/foreign_4_12.html :return: GDP 季率初值 :rtype: pandas.DataFrame
214
222
def macro_uk_gdp_quarterly() -> pd.DataFrame: """ 东方财富-经济数据-英国-GDP 季率初值 https://data.eastmoney.com/cjsj/foreign_4_12.html :return: GDP 季率初值 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00158277") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L214-L222
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_gdp_quarterly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00158277") return temp_df
18,043
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_gdp_yearly
()
return temp_df
东方财富-经济数据-英国-GDP 年率初值 https://data.eastmoney.com/cjsj/foreign_4_13.html :return: GDP 年率初值 :rtype: pandas.DataFrame
东方财富-经济数据-英国-GDP 年率初值 https://data.eastmoney.com/cjsj/foreign_4_13.html :return: GDP 年率初值 :rtype: pandas.DataFrame
226
234
def macro_uk_gdp_yearly() -> pd.DataFrame: """ 东方财富-经济数据-英国-GDP 年率初值 https://data.eastmoney.com/cjsj/foreign_4_13.html :return: GDP 年率初值 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00158276") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L226-L234
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_gdp_yearly() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00158276") return temp_df
18,044
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_uk.py
macro_uk_unemployment_rate
()
return temp_df
东方财富-经济数据-英国-失业率 https://data.eastmoney.com/cjsj/foreign_4_14.html :return: 失业率 :rtype: pandas.DataFrame
东方财富-经济数据-英国-失业率 https://data.eastmoney.com/cjsj/foreign_4_14.html :return: 失业率 :rtype: pandas.DataFrame
238
246
def macro_uk_unemployment_rate() -> pd.DataFrame: """ 东方财富-经济数据-英国-失业率 https://data.eastmoney.com/cjsj/foreign_4_14.html :return: 失业率 :rtype: pandas.DataFrame """ temp_df = macro_uk_core(symbol="EMG00010348") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_uk.py#L238-L246
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
21.73913
9
1
77.777778
4
def macro_uk_unemployment_rate() -> pd.DataFrame: temp_df = macro_uk_core(symbol="EMG00010348") return temp_df
18,045
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_core
(symbol: str = "EMG00341602")
return temp_df
东方财富-数据中心-经济数据一览-宏观经济-瑞士-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-宏观经济-瑞士-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame
13
67
def macro_swiss_core(symbol: str = "EMG00341602") -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-宏观经济-瑞士-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_ECONOMICVALUE_CH", "columns": "ALL", "filter": f'(INDICATOR_ID="{symbol}")', "pageNumber": "1", "pageSize": "5000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1667639896816", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename( columns={ "COUNTRY": "-", "INDICATOR_ID": "-", "INDICATOR_NAME": "-", "REPORT_DATE_CH": "时间", "REPORT_DATE": "-", "PUBLISH_DATE": "发布日期", "VALUE": "现值", "PRE_VALUE": "前值", "INDICATOR_IDOLD": "-", }, inplace=True, ) temp_df = temp_df[ [ "时间", "前值", "现值", "发布日期", ] ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date temp_df.sort_values(["发布日期"], inplace=True, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L13-L67
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.363636
[ 9, 10, 25, 26, 27, 28, 42, 50, 51, 52, 53, 54 ]
21.818182
false
25
55
1
78.181818
6
def macro_swiss_core(symbol: str = "EMG00341602") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_ECONOMICVALUE_CH", "columns": "ALL", "filter": f'(INDICATOR_ID="{symbol}")', "pageNumber": "1", "pageSize": "5000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1667639896816", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename( columns={ "COUNTRY": "-", "INDICATOR_ID": "-", "INDICATOR_NAME": "-", "REPORT_DATE_CH": "时间", "REPORT_DATE": "-", "PUBLISH_DATE": "发布日期", "VALUE": "现值", "PRE_VALUE": "前值", "INDICATOR_IDOLD": "-", }, inplace=True, ) temp_df = temp_df[ [ "时间", "前值", "现值", "发布日期", ] ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date temp_df.sort_values(["发布日期"], inplace=True, ignore_index=True) return temp_df
18,046
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_svme
()
return temp_df
东方财富-经济数据-瑞士-SVME采购经理人指数 http://data.eastmoney.com/cjsj/foreign_2_0.html :return: SVME采购经理人指数 :rtype: pandas.DataFrame
东方财富-经济数据-瑞士-SVME采购经理人指数 http://data.eastmoney.com/cjsj/foreign_2_0.html :return: SVME采购经理人指数 :rtype: pandas.DataFrame
71
79
def macro_swiss_svme(): """ 东方财富-经济数据-瑞士-SVME采购经理人指数 http://data.eastmoney.com/cjsj/foreign_2_0.html :return: SVME采购经理人指数 :rtype: pandas.DataFrame """ temp_df = macro_swiss_core(symbol="EMG00341602") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L71-L79
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
25
9
1
77.777778
4
def macro_swiss_svme(): temp_df = macro_swiss_core(symbol="EMG00341602") return temp_df
18,047
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_trade
()
return temp_df
东方财富-经济数据-瑞士-贸易帐 http://data.eastmoney.com/cjsj/foreign_2_1.html :return: 贸易帐 :rtype: pandas.DataFrame
东方财富-经济数据-瑞士-贸易帐 http://data.eastmoney.com/cjsj/foreign_2_1.html :return: 贸易帐 :rtype: pandas.DataFrame
83
91
def macro_swiss_trade(): """ 东方财富-经济数据-瑞士-贸易帐 http://data.eastmoney.com/cjsj/foreign_2_1.html :return: 贸易帐 :rtype: pandas.DataFrame """ temp_df = macro_swiss_core(symbol="EMG00341603") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L83-L91
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
25
9
1
77.777778
4
def macro_swiss_trade(): temp_df = macro_swiss_core(symbol="EMG00341603") return temp_df
18,048
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_cpi_yearly
()
return temp_df
东方财富-经济数据-瑞士-消费者物价指数年率 http://data.eastmoney.com/cjsj/foreign_2_2.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame
东方财富-经济数据-瑞士-消费者物价指数年率 http://data.eastmoney.com/cjsj/foreign_2_2.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame
95
103
def macro_swiss_cpi_yearly(): """ 东方财富-经济数据-瑞士-消费者物价指数年率 http://data.eastmoney.com/cjsj/foreign_2_2.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame """ temp_df = macro_swiss_core(symbol="EMG00341604") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L95-L103
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
25
9
1
77.777778
4
def macro_swiss_cpi_yearly(): temp_df = macro_swiss_core(symbol="EMG00341604") return temp_df
18,049
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_gdp_quarterly
()
return temp_df
东方财富-经济数据-瑞士-GDP季率 http://data.eastmoney.com/cjsj/foreign_2_3.html :return: GDP季率 :rtype: pandas.DataFrame
东方财富-经济数据-瑞士-GDP季率 http://data.eastmoney.com/cjsj/foreign_2_3.html :return: GDP季率 :rtype: pandas.DataFrame
107
115
def macro_swiss_gdp_quarterly(): """ 东方财富-经济数据-瑞士-GDP季率 http://data.eastmoney.com/cjsj/foreign_2_3.html :return: GDP季率 :rtype: pandas.DataFrame """ temp_df = macro_swiss_core(symbol="EMG00341600") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L107-L115
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
25
9
1
77.777778
4
def macro_swiss_gdp_quarterly(): temp_df = macro_swiss_core(symbol="EMG00341600") return temp_df
18,050
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_gbd_yearly
()
return temp_df
东方财富-经济数据-瑞士-GDP 年率 http://data.eastmoney.com/cjsj/foreign_2_4.html :return: GDP年率 :rtype: pandas.DataFrame
东方财富-经济数据-瑞士-GDP 年率 http://data.eastmoney.com/cjsj/foreign_2_4.html :return: GDP年率 :rtype: pandas.DataFrame
119
127
def macro_swiss_gbd_yearly(): """ 东方财富-经济数据-瑞士-GDP 年率 http://data.eastmoney.com/cjsj/foreign_2_4.html :return: GDP年率 :rtype: pandas.DataFrame """ temp_df = macro_swiss_core(symbol="EMG00341601") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L119-L127
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
25
9
1
77.777778
4
def macro_swiss_gbd_yearly(): temp_df = macro_swiss_core(symbol="EMG00341601") return temp_df
18,051
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_swiss.py
macro_swiss_gbd_bank_rate
()
return temp_df
东方财富-经济数据-瑞士-央行公布利率决议 http://data.eastmoney.com/cjsj/foreign_2_5.html :return: 央行公布利率决议 :rtype: pandas.DataFrame
东方财富-经济数据-瑞士-央行公布利率决议 http://data.eastmoney.com/cjsj/foreign_2_5.html :return: 央行公布利率决议 :rtype: pandas.DataFrame
131
139
def macro_swiss_gbd_bank_rate(): """ 东方财富-经济数据-瑞士-央行公布利率决议 http://data.eastmoney.com/cjsj/foreign_2_5.html :return: 央行公布利率决议 :rtype: pandas.DataFrame """ temp_df = macro_swiss_core(symbol="EMG00341606") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_swiss.py#L131-L139
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
25
9
1
77.777778
4
def macro_swiss_gbd_bank_rate(): temp_df = macro_swiss_core(symbol="EMG00341606") return temp_df
18,052
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_core
(symbol: str = "EMG00179154")
return temp_df
东方财富-数据中心-经济数据一览-宏观经济-德国-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-宏观经济-德国-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame
11
65
def macro_germany_core(symbol: str = "EMG00179154") -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-宏观经济-德国-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_ECONOMICVALUE_GER", "columns": "ALL", "filter": f'(INDICATOR_ID="{symbol}")', "pageNumber": "1", "pageSize": "5000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1667639896816", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename( columns={ "COUNTRY": "-", "INDICATOR_ID": "-", "INDICATOR_NAME": "-", "REPORT_DATE_CH": "时间", "REPORT_DATE": "-", "PUBLISH_DATE": "发布日期", "VALUE": "现值", "PRE_VALUE": "前值", "INDICATOR_IDOLD": "-", }, inplace=True, ) temp_df = temp_df[ [ "时间", "前值", "现值", "发布日期", ] ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date temp_df.sort_values(["发布日期"], inplace=True, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L11-L65
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.363636
[ 9, 10, 25, 26, 27, 28, 42, 50, 51, 52, 53, 54 ]
21.818182
false
22.807018
55
1
78.181818
6
def macro_germany_core(symbol: str = "EMG00179154") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_ECONOMICVALUE_GER", "columns": "ALL", "filter": f'(INDICATOR_ID="{symbol}")', "pageNumber": "1", "pageSize": "5000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1667639896816", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename( columns={ "COUNTRY": "-", "INDICATOR_ID": "-", "INDICATOR_NAME": "-", "REPORT_DATE_CH": "时间", "REPORT_DATE": "-", "PUBLISH_DATE": "发布日期", "VALUE": "现值", "PRE_VALUE": "前值", "INDICATOR_IDOLD": "-", }, inplace=True, ) temp_df = temp_df[ [ "时间", "前值", "现值", "发布日期", ] ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date temp_df.sort_values(["发布日期"], inplace=True, ignore_index=True) return temp_df
18,053
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_ifo
()
return temp_df
东方财富-数据中心-经济数据一览-德国-IFO商业景气指数 https://data.eastmoney.com/cjsj/foreign_1_0.html :return: IFO商业景气指数 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-IFO商业景气指数 https://data.eastmoney.com/cjsj/foreign_1_0.html :return: IFO商业景气指数 :rtype: pandas.DataFrame
69
77
def macro_germany_ifo() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-IFO商业景气指数 https://data.eastmoney.com/cjsj/foreign_1_0.html :return: IFO商业景气指数 :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG00179154") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L69-L77
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_ifo() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG00179154") return temp_df
18,054
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_cpi_monthly
()
return temp_df
东方财富-数据中心-经济数据一览-德国-消费者物价指数月率终值 https://data.eastmoney.com/cjsj/foreign_1_1.html :return: 消费者物价指数月率终值 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-消费者物价指数月率终值 https://data.eastmoney.com/cjsj/foreign_1_1.html :return: 消费者物价指数月率终值 :rtype: pandas.DataFrame
81
89
def macro_germany_cpi_monthly() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-消费者物价指数月率终值 https://data.eastmoney.com/cjsj/foreign_1_1.html :return: 消费者物价指数月率终值 :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG00009758") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L81-L89
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_cpi_monthly() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG00009758") return temp_df
18,055
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_cpi_yearly
()
return temp_df
东方财富-数据中心-经济数据一览-德国-消费者物价指数年率终值 https://data.eastmoney.com/cjsj/foreign_1_2.html :return: 消费者物价指数年率终值 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-消费者物价指数年率终值 https://data.eastmoney.com/cjsj/foreign_1_2.html :return: 消费者物价指数年率终值 :rtype: pandas.DataFrame
93
101
def macro_germany_cpi_yearly() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-消费者物价指数年率终值 https://data.eastmoney.com/cjsj/foreign_1_2.html :return: 消费者物价指数年率终值 :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG00009756") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L93-L101
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_cpi_yearly() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG00009756") return temp_df
18,056
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_trade_adjusted
()
return temp_df
东方财富-数据中心-经济数据一览-德国-贸易帐(季调后) https://data.eastmoney.com/cjsj/foreign_1_3.html :return: 贸易帐(季调后) :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-贸易帐(季调后) https://data.eastmoney.com/cjsj/foreign_1_3.html :return: 贸易帐(季调后) :rtype: pandas.DataFrame
105
113
def macro_germany_trade_adjusted() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-贸易帐(季调后) https://data.eastmoney.com/cjsj/foreign_1_3.html :return: 贸易帐(季调后) :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG00009753") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L105-L113
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_trade_adjusted() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG00009753") return temp_df
18,057
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_gdp
()
return temp_df
东方财富-数据中心-经济数据一览-德国-GDP https://data.eastmoney.com/cjsj/foreign_1_4.html :return: GDP :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-GDP https://data.eastmoney.com/cjsj/foreign_1_4.html :return: GDP :rtype: pandas.DataFrame
117
125
def macro_germany_gdp() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-GDP https://data.eastmoney.com/cjsj/foreign_1_4.html :return: GDP :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG00009720") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L117-L125
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_gdp() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG00009720") return temp_df
18,058
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_retail_sale_monthly
()
return temp_df
东方财富-数据中心-经济数据一览-德国-实际零售销售月率 https://data.eastmoney.com/cjsj/foreign_1_5.html :return: 实际零售销售月率 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-实际零售销售月率 https://data.eastmoney.com/cjsj/foreign_1_5.html :return: 实际零售销售月率 :rtype: pandas.DataFrame
129
137
def macro_germany_retail_sale_monthly() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-实际零售销售月率 https://data.eastmoney.com/cjsj/foreign_1_5.html :return: 实际零售销售月率 :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG01333186") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L129-L137
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_retail_sale_monthly() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG01333186") return temp_df
18,059
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_retail_sale_yearly
()
return temp_df
东方财富-数据中心-经济数据一览-德国-实际零售销售年率 https://data.eastmoney.com/cjsj/foreign_1_6.html :return: 实际零售销售年率 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-实际零售销售年率 https://data.eastmoney.com/cjsj/foreign_1_6.html :return: 实际零售销售年率 :rtype: pandas.DataFrame
141
149
def macro_germany_retail_sale_yearly() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-实际零售销售年率 https://data.eastmoney.com/cjsj/foreign_1_6.html :return: 实际零售销售年率 :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG01333192") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L141-L149
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_retail_sale_yearly() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG01333192") return temp_df
18,060
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_germany.py
macro_germany_zew
()
return temp_df
东方财富-数据中心-经济数据一览-德国-ZEW 经济景气指数 https://data.eastmoney.com/cjsj/foreign_1_7.html :return: ZEW 经济景气指数 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-德国-ZEW 经济景气指数 https://data.eastmoney.com/cjsj/foreign_1_7.html :return: ZEW 经济景气指数 :rtype: pandas.DataFrame
153
161
def macro_germany_zew() -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-德国-ZEW 经济景气指数 https://data.eastmoney.com/cjsj/foreign_1_7.html :return: ZEW 经济景气指数 :rtype: pandas.DataFrame """ temp_df = macro_germany_core(symbol="EMG00172577") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_germany.py#L153-L161
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
22.807018
9
1
77.777778
4
def macro_germany_zew() -> pd.DataFrame: temp_df = macro_germany_core(symbol="EMG00172577") return temp_df
18,061
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_japan.py
macro_japan_core
(symbol: str = "EMG00341602")
return temp_df
东方财富-数据中心-经济数据一览-宏观经济-日本-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame
东方财富-数据中心-经济数据一览-宏观经济-日本-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame
12
66
def macro_japan_core(symbol: str = "EMG00341602") -> pd.DataFrame: """ 东方财富-数据中心-经济数据一览-宏观经济-日本-核心代码 https://data.eastmoney.com/cjsj/foreign_1_0.html :param symbol: 代码 :type symbol: str :return: 指定 symbol 的数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_ECONOMICVALUE_JPAN", "columns": "ALL", "filter": f'(INDICATOR_ID="{symbol}")', "pageNumber": "1", "pageSize": "5000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1667639896816", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename( columns={ "COUNTRY": "-", "INDICATOR_ID": "-", "INDICATOR_NAME": "-", "REPORT_DATE_CH": "时间", "REPORT_DATE": "-", "PUBLISH_DATE": "发布日期", "VALUE": "现值", "PRE_VALUE": "前值", "INDICATOR_IDOLD": "-", }, inplace=True, ) temp_df = temp_df[ [ "时间", "前值", "现值", "发布日期", ] ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date temp_df.sort_values(["发布日期"], inplace=True, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_japan.py#L12-L66
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.363636
[ 9, 10, 25, 26, 27, 28, 42, 50, 51, 52, 53, 54 ]
21.818182
false
23.809524
55
1
78.181818
6
def macro_japan_core(symbol: str = "EMG00341602") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_ECONOMICVALUE_JPAN", "columns": "ALL", "filter": f'(INDICATOR_ID="{symbol}")', "pageNumber": "1", "pageSize": "5000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1667639896816", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename( columns={ "COUNTRY": "-", "INDICATOR_ID": "-", "INDICATOR_NAME": "-", "REPORT_DATE_CH": "时间", "REPORT_DATE": "-", "PUBLISH_DATE": "发布日期", "VALUE": "现值", "PRE_VALUE": "前值", "INDICATOR_IDOLD": "-", }, inplace=True, ) temp_df = temp_df[ [ "时间", "前值", "现值", "发布日期", ] ] temp_df["前值"] = pd.to_numeric(temp_df["前值"]) temp_df["现值"] = pd.to_numeric(temp_df["现值"]) temp_df["发布日期"] = pd.to_datetime(temp_df["发布日期"]).dt.date temp_df.sort_values(["发布日期"], inplace=True, ignore_index=True) return temp_df
18,062
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_japan.py
macro_japan_bank_rate
()
return temp_df
东方财富-经济数据-日本-央行公布利率决议 https://data.eastmoney.com/cjsj/foreign_3_0.html :return: 央行公布利率决议 :rtype: pandas.DataFrame
东方财富-经济数据-日本-央行公布利率决议 https://data.eastmoney.com/cjsj/foreign_3_0.html :return: 央行公布利率决议 :rtype: pandas.DataFrame
70
78
def macro_japan_bank_rate() -> pd.DataFrame: """ 东方财富-经济数据-日本-央行公布利率决议 https://data.eastmoney.com/cjsj/foreign_3_0.html :return: 央行公布利率决议 :rtype: pandas.DataFrame """ temp_df = macro_japan_core(symbol="EMG00342252") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_japan.py#L70-L78
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
23.809524
9
1
77.777778
4
def macro_japan_bank_rate() -> pd.DataFrame: temp_df = macro_japan_core(symbol="EMG00342252") return temp_df
18,063
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_japan.py
macro_japan_cpi_yearly
()
return temp_df
东方财富-经济数据-日本-全国消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_3_1.html :return: 全国消费者物价指数年率 :rtype: pandas.DataFrame
东方财富-经济数据-日本-全国消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_3_1.html :return: 全国消费者物价指数年率 :rtype: pandas.DataFrame
82
90
def macro_japan_cpi_yearly() -> pd.DataFrame: """ 东方财富-经济数据-日本-全国消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_3_1.html :return: 全国消费者物价指数年率 :rtype: pandas.DataFrame """ temp_df = macro_japan_core(symbol="EMG00005004") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_japan.py#L82-L90
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
23.809524
9
1
77.777778
4
def macro_japan_cpi_yearly() -> pd.DataFrame: temp_df = macro_japan_core(symbol="EMG00005004") return temp_df
18,064
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_japan.py
macro_japan_core_cpi_yearly
()
return temp_df
东方财富-经济数据-日本-全国核心消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_2_2.html :return: 全国核心消费者物价指数年率 :rtype: pandas.DataFrame
东方财富-经济数据-日本-全国核心消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_2_2.html :return: 全国核心消费者物价指数年率 :rtype: pandas.DataFrame
94
102
def macro_japan_core_cpi_yearly() -> pd.DataFrame: """ 东方财富-经济数据-日本-全国核心消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_2_2.html :return: 全国核心消费者物价指数年率 :rtype: pandas.DataFrame """ temp_df = macro_japan_core(symbol="EMG00158099") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_japan.py#L94-L102
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
23.809524
9
1
77.777778
4
def macro_japan_core_cpi_yearly() -> pd.DataFrame: temp_df = macro_japan_core(symbol="EMG00158099") return temp_df
18,065
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_japan.py
macro_japan_unemployment_rate
()
return temp_df
东方财富-经济数据-日本-失业率 https://data.eastmoney.com/cjsj/foreign_2_3.html :return: 失业率 :rtype: pandas.DataFrame
东方财富-经济数据-日本-失业率 https://data.eastmoney.com/cjsj/foreign_2_3.html :return: 失业率 :rtype: pandas.DataFrame
106
114
def macro_japan_unemployment_rate() -> pd.DataFrame: """ 东方财富-经济数据-日本-失业率 https://data.eastmoney.com/cjsj/foreign_2_3.html :return: 失业率 :rtype: pandas.DataFrame """ temp_df = macro_japan_core(symbol="EMG00005047") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_japan.py#L106-L114
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
23.809524
9
1
77.777778
4
def macro_japan_unemployment_rate() -> pd.DataFrame: temp_df = macro_japan_core(symbol="EMG00005047") return temp_df
18,066
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_japan.py
macro_japan_head_indicator
()
return temp_df
东方财富-经济数据-日本-领先指标终值 https://data.eastmoney.com/cjsj/foreign_3_4.html :return: 领先指标终值 :rtype: pandas.DataFrame
东方财富-经济数据-日本-领先指标终值 https://data.eastmoney.com/cjsj/foreign_3_4.html :return: 领先指标终值 :rtype: pandas.DataFrame
118
126
def macro_japan_head_indicator() -> pd.DataFrame: """ 东方财富-经济数据-日本-领先指标终值 https://data.eastmoney.com/cjsj/foreign_3_4.html :return: 领先指标终值 :rtype: pandas.DataFrame """ temp_df = macro_japan_core(symbol="EMG00005117") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_japan.py#L118-L126
25
[ 0, 1, 2, 3, 4, 5, 6 ]
77.777778
[ 7, 8 ]
22.222222
false
23.809524
9
1
77.777778
4
def macro_japan_head_indicator() -> pd.DataFrame: temp_df = macro_japan_core(symbol="EMG00005117") return temp_df
18,067
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_constitute.py
macro_cons_gold
()
return big_df
全球最大黄金 ETF—SPDR Gold Trust 持仓报告, 数据区间从 20041118-至今 https://datacenter.jin10.com/reportType/dc_etf_gold :return: 持仓报告 :rtype: pandas.DataFrame
全球最大黄金 ETF—SPDR Gold Trust 持仓报告, 数据区间从 20041118-至今 https://datacenter.jin10.com/reportType/dc_etf_gold :return: 持仓报告 :rtype: pandas.DataFrame
16
77
def macro_cons_gold() -> pd.DataFrame: """ 全球最大黄金 ETF—SPDR Gold Trust 持仓报告, 数据区间从 20041118-至今 https://datacenter.jin10.com/reportType/dc_etf_gold :return: 持仓报告 :rtype: pandas.DataFrame """ t = time.time() headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "etf", "attr_id": "1", "max_date": "", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df.columns = [ "日期", "总库存", "增持/减持", "总价值", ] big_df["商品"] = "黄金" big_df = big_df[ [ "商品", "日期", "总库存", "增持/减持", "总价值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["总库存"] = pd.to_numeric(big_df["总库存"], errors="coerce") big_df["增持/减持"] = pd.to_numeric(big_df["增持/减持"], errors="coerce") big_df["总价值"] = pd.to_numeric(big_df["总价值"], errors="coerce") big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_constitute.py#L16-L77
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.290323
[ 7, 8, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 38, 39, 45, 46, 55, 56, 57, 58, 59, 60, 61 ]
40.322581
false
11.111111
62
3
59.677419
4
def macro_cons_gold() -> pd.DataFrame: t = time.time() headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "etf", "attr_id": "1", "max_date": "", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df.columns = [ "日期", "总库存", "增持/减持", "总价值", ] big_df["商品"] = "黄金" big_df = big_df[ [ "商品", "日期", "总库存", "增持/减持", "总价值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["总库存"] = pd.to_numeric(big_df["总库存"], errors="coerce") big_df["增持/减持"] = pd.to_numeric(big_df["增持/减持"], errors="coerce") big_df["总价值"] = pd.to_numeric(big_df["总价值"], errors="coerce") big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,068
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_constitute.py
macro_cons_silver
()
return big_df
全球最大白银 ETF—SPDR Gold Trust 持仓报告, 数据区间从 20041118-至今 https://datacenter.jin10.com/reportType/dc_etf_sliver :return: 持仓报告 :rtype: pandas.DataFrame
全球最大白银 ETF—SPDR Gold Trust 持仓报告, 数据区间从 20041118-至今 https://datacenter.jin10.com/reportType/dc_etf_sliver :return: 持仓报告 :rtype: pandas.DataFrame
80
141
def macro_cons_silver() -> pd.DataFrame: """ 全球最大白银 ETF—SPDR Gold Trust 持仓报告, 数据区间从 20041118-至今 https://datacenter.jin10.com/reportType/dc_etf_sliver :return: 持仓报告 :rtype: pandas.DataFrame """ t = time.time() headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "etf", "attr_id": "2", "max_date": "", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df.columns = [ "日期", "总库存", "增持/减持", "总价值", ] big_df["商品"] = "白银" big_df = big_df[ [ "商品", "日期", "总库存", "增持/减持", "总价值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["总库存"] = pd.to_numeric(big_df["总库存"], errors="coerce") big_df["增持/减持"] = pd.to_numeric(big_df["增持/减持"], errors="coerce") big_df["总价值"] = pd.to_numeric(big_df["总价值"], errors="coerce") big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_constitute.py#L80-L141
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.290323
[ 7, 8, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 38, 39, 45, 46, 55, 56, 57, 58, 59, 60, 61 ]
40.322581
false
11.111111
62
3
59.677419
4
def macro_cons_silver() -> pd.DataFrame: t = time.time() headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "etf", "attr_id": "2", "max_date": "", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df.columns = [ "日期", "总库存", "增持/减持", "总价值", ] big_df["商品"] = "白银" big_df = big_df[ [ "商品", "日期", "总库存", "增持/减持", "总价值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["总库存"] = pd.to_numeric(big_df["总库存"], errors="coerce") big_df["增持/减持"] = pd.to_numeric(big_df["增持/减持"], errors="coerce") big_df["总价值"] = pd.to_numeric(big_df["总价值"], errors="coerce") big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,069
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_constitute.py
macro_cons_opec_month
()
return big_df
欧佩克报告-月度, 数据区间从 20170118-至今 这里返回的具体索引日期的数据为上一个月的数据, 由于某些国家的数据有缺失 只选择有数据的国家返回 20200312:fix:由于 “厄瓜多尔” 已经有几个月没有更新数据,在这里加以剔除 https://datacenter.jin10.com/reportType/dc_opec_report :return: 欧佩克报告-月度 :rtype: pandas.DataFrame
欧佩克报告-月度, 数据区间从 20170118-至今 这里返回的具体索引日期的数据为上一个月的数据, 由于某些国家的数据有缺失 只选择有数据的国家返回 20200312:fix:由于 “厄瓜多尔” 已经有几个月没有更新数据,在这里加以剔除 https://datacenter.jin10.com/reportType/dc_opec_report :return: 欧佩克报告-月度 :rtype: pandas.DataFrame
144
230
def macro_cons_opec_month() -> pd.DataFrame: """ 欧佩克报告-月度, 数据区间从 20170118-至今 这里返回的具体索引日期的数据为上一个月的数据, 由于某些国家的数据有缺失 只选择有数据的国家返回 20200312:fix:由于 “厄瓜多尔” 已经有几个月没有更新数据,在这里加以剔除 https://datacenter.jin10.com/reportType/dc_opec_report :return: 欧佩克报告-月度 :rtype: pandas.DataFrame """ t = time.time() big_df = pd.DataFrame() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_opec_report", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get( f"https://datacenter-api.jin10.com/reports/dates?category=opec&_={str(int(round(t * 1000)))}", headers=headers, ) # 日期序列 all_date_list = res.json()["data"] bar = tqdm(reversed(all_date_list)) for item in bar: bar.set_description(f"Please wait for a moment, now downloading {item}'s data") res = requests.get( f"https://datacenter-api.jin10.com/reports/list?category=opec&date={item}&_={str(int(round(t * 1000)))}", headers=headers, ) temp_df = pd.DataFrame( res.json()["data"]["values"], columns=pd.DataFrame(res.json()["data"]["keys"])["name"].tolist(), ).T temp_df.columns = temp_df.iloc[0, :] temp_df = temp_df.iloc[1:, :] try: temp_df = temp_df[ [ "阿尔及利亚", "安哥拉", "加蓬", "伊朗", "伊拉克", "科威特", "利比亚", "尼日利亚", "沙特", "阿联酋", "委内瑞拉", "欧佩克产量", ] ].iloc[-2, :] except: temp_df = temp_df[ [ "阿尔及利亚", "安哥拉", "加蓬", "伊朗", "伊拉克", "科威特", "利比亚", "尼日利亚", "沙特", "阿联酋", "委内瑞拉", "欧佩克产量", ] ].iloc[-1, :] temp_df.dropna(inplace=True) big_df[temp_df.name] = temp_df big_df = big_df.T big_df = big_df.astype(float) big_df.reset_index(inplace=True) big_df.rename(columns={"index": "日期"}, inplace=True) big_df.columns.name = None return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_constitute.py#L144-L230
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
11.494253
[ 10, 11, 12, 27, 31, 32, 33, 34, 35, 39, 43, 44, 45, 46, 62, 63, 79, 80, 81, 82, 83, 84, 85, 86 ]
27.586207
false
11.111111
87
3
72.413793
7
def macro_cons_opec_month() -> pd.DataFrame: t = time.time() big_df = pd.DataFrame() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_opec_report", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get( f"https://datacenter-api.jin10.com/reports/dates?category=opec&_={str(int(round(t * 1000)))}", headers=headers, ) # 日期序列 all_date_list = res.json()["data"] bar = tqdm(reversed(all_date_list)) for item in bar: bar.set_description(f"Please wait for a moment, now downloading {item}'s data") res = requests.get( f"https://datacenter-api.jin10.com/reports/list?category=opec&date={item}&_={str(int(round(t * 1000)))}", headers=headers, ) temp_df = pd.DataFrame( res.json()["data"]["values"], columns=pd.DataFrame(res.json()["data"]["keys"])["name"].tolist(), ).T temp_df.columns = temp_df.iloc[0, :] temp_df = temp_df.iloc[1:, :] try: temp_df = temp_df[ [ "阿尔及利亚", "安哥拉", "加蓬", "伊朗", "伊拉克", "科威特", "利比亚", "尼日利亚", "沙特", "阿联酋", "委内瑞拉", "欧佩克产量", ] ].iloc[-2, :] except: temp_df = temp_df[ [ "阿尔及利亚", "安哥拉", "加蓬", "伊朗", "伊拉克", "科威特", "利比亚", "尼日利亚", "沙特", "阿联酋", "委内瑞拉", "欧佩克产量", ] ].iloc[-1, :] temp_df.dropna(inplace=True) big_df[temp_df.name] = temp_df big_df = big_df.T big_df = big_df.astype(float) big_df.reset_index(inplace=True) big_df.rename(columns={"index": "日期"}, inplace=True) big_df.columns.name = None return big_df
18,070
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_usa_interest_rate
()
return big_df
美联储利率决议报告, 数据区间从 19820927-至今 https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v=1578581921 :return: 美联储利率决议报告-今值(%) :rtype: pandas.Series
美联储利率决议报告, 数据区间从 19820927-至今 https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v=1578581921 :return: 美联储利率决议报告-今值(%) :rtype: pandas.Series
28
100
def macro_bank_usa_interest_rate() -> pd.DataFrame: """ 美联储利率决议报告, 数据区间从 19820927-至今 https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v=1578581921 :return: 美联储利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "24", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "美联储利率决议" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L28-L100
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_usa_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "24", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "美联储利率决议" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,071
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_euro_interest_rate
()
return big_df
欧洲央行决议报告, 数据区间从 19990101-至今 https://datacenter.jin10.com/reportType/dc_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_interest_rate_decision_all.js?v=1578581663 :return: 欧洲央行决议报告-今值(%) :rtype: pandas.Series
欧洲央行决议报告, 数据区间从 19990101-至今 https://datacenter.jin10.com/reportType/dc_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_interest_rate_decision_all.js?v=1578581663 :return: 欧洲央行决议报告-今值(%) :rtype: pandas.Series
104
176
def macro_bank_euro_interest_rate() -> pd.DataFrame: """ 欧洲央行决议报告, 数据区间从 19990101-至今 https://datacenter.jin10.com/reportType/dc_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_interest_rate_decision_all.js?v=1578581663 :return: 欧洲央行决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "21", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "欧元区利率决议" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L104-L176
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_euro_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "21", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "欧元区利率决议" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,072
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_newzealand_interest_rate
()
return big_df
新西兰联储决议报告, 数据区间从 19990401-至今 https://datacenter.jin10.com/reportType/dc_newzealand_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_newzealand_interest_rate_decision_all.js?v=1578582075 :return: 新西兰联储决议报告-今值(%) :rtype: pandas.Series
新西兰联储决议报告, 数据区间从 19990401-至今 https://datacenter.jin10.com/reportType/dc_newzealand_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_newzealand_interest_rate_decision_all.js?v=1578582075 :return: 新西兰联储决议报告-今值(%) :rtype: pandas.Series
180
252
def macro_bank_newzealand_interest_rate() -> pd.DataFrame: """ 新西兰联储决议报告, 数据区间从 19990401-至今 https://datacenter.jin10.com/reportType/dc_newzealand_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_newzealand_interest_rate_decision_all.js?v=1578582075 :return: 新西兰联储决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "23", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "新西兰利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L180-L252
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_newzealand_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "23", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "新西兰利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,073
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_china_interest_rate
()
return big_df
中国人民银行利率报告, 数据区间从 19910501-至今 https://datacenter.jin10.com/reportType/dc_china_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_china_interest_rate_decision_all.js?v=1578582163 :return: 中国人民银行利率报告-今值(%) :rtype: pandas.Series
中国人民银行利率报告, 数据区间从 19910501-至今 https://datacenter.jin10.com/reportType/dc_china_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_china_interest_rate_decision_all.js?v=1578582163 :return: 中国人民银行利率报告-今值(%) :rtype: pandas.Series
256
328
def macro_bank_china_interest_rate() -> pd.DataFrame: """ 中国人民银行利率报告, 数据区间从 19910501-至今 https://datacenter.jin10.com/reportType/dc_china_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_china_interest_rate_decision_all.js?v=1578582163 :return: 中国人民银行利率报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "91", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "中国人民银行利率报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L256-L328
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_china_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "91", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "中国人民银行利率报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,074
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_switzerland_interest_rate
()
return big_df
瑞士央行利率决议报告, 数据区间从 20080313-至今 https://datacenter.jin10.com/reportType/dc_switzerland_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_switzerland_interest_rate_decision_all.js?v=1578582240 :return: 瑞士央行利率决议报告-今值(%) :rtype: pandas.Series
瑞士央行利率决议报告, 数据区间从 20080313-至今 https://datacenter.jin10.com/reportType/dc_switzerland_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_switzerland_interest_rate_decision_all.js?v=1578582240 :return: 瑞士央行利率决议报告-今值(%) :rtype: pandas.Series
332
404
def macro_bank_switzerland_interest_rate() -> pd.DataFrame: """ 瑞士央行利率决议报告, 数据区间从 20080313-至今 https://datacenter.jin10.com/reportType/dc_switzerland_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_switzerland_interest_rate_decision_all.js?v=1578582240 :return: 瑞士央行利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "25", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "瑞士央行利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L332-L404
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_switzerland_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "25", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "瑞士央行利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,075
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_english_interest_rate
()
return big_df
英国央行决议报告, 数据区间从 19700101-至今 https://datacenter.jin10.com/reportType/dc_english_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_english_interest_rate_decision_all.js?v=1578582331 :return: 英国央行决议报告-今值(%) :rtype: pandas.Series
英国央行决议报告, 数据区间从 19700101-至今 https://datacenter.jin10.com/reportType/dc_english_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_english_interest_rate_decision_all.js?v=1578582331 :return: 英国央行决议报告-今值(%) :rtype: pandas.Series
408
480
def macro_bank_english_interest_rate() -> pd.DataFrame: """ 英国央行决议报告, 数据区间从 19700101-至今 https://datacenter.jin10.com/reportType/dc_english_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_english_interest_rate_decision_all.js?v=1578582331 :return: 英国央行决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "26", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "英国利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L408-L480
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_english_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "26", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "英国利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,076
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_australia_interest_rate
()
return big_df
澳洲联储决议报告, 数据区间从 19800201-至今 https://datacenter.jin10.com/reportType/dc_australia_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_australia_interest_rate_decision_all.js?v=1578582414 :return: 澳洲联储决议报告-今值(%) :rtype: pandas.Series
澳洲联储决议报告, 数据区间从 19800201-至今 https://datacenter.jin10.com/reportType/dc_australia_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_australia_interest_rate_decision_all.js?v=1578582414 :return: 澳洲联储决议报告-今值(%) :rtype: pandas.Series
484
556
def macro_bank_australia_interest_rate() -> pd.DataFrame: """ 澳洲联储决议报告, 数据区间从 19800201-至今 https://datacenter.jin10.com/reportType/dc_australia_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_australia_interest_rate_decision_all.js?v=1578582414 :return: 澳洲联储决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "27", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "澳大利亚利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L484-L556
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_australia_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "27", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "澳大利亚利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,077
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_japan_interest_rate
()
return big_df
日本利率决议报告, 数据区间从 20080214-至今 https://datacenter.jin10.com/reportType/dc_japan_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_japan_interest_rate_decision_all.js?v=1578582485 :return: 日本利率决议报告-今值(%) :rtype: pandas.Series
日本利率决议报告, 数据区间从 20080214-至今 https://datacenter.jin10.com/reportType/dc_japan_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_japan_interest_rate_decision_all.js?v=1578582485 :return: 日本利率决议报告-今值(%) :rtype: pandas.Series
560
632
def macro_bank_japan_interest_rate() -> pd.DataFrame: """ 日本利率决议报告, 数据区间从 20080214-至今 https://datacenter.jin10.com/reportType/dc_japan_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_japan_interest_rate_decision_all.js?v=1578582485 :return: 日本利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "22", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "日本利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L560-L632
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_japan_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "22", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "日本利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,078
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_russia_interest_rate
()
return big_df
俄罗斯利率决议报告, 数据区间从 20030601-至今 https://datacenter.jin10.com/reportType/dc_russia_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_russia_interest_rate_decision_all.js?v=1578582572 :return: 俄罗斯利率决议报告-今值(%) :rtype: pandas.Series
俄罗斯利率决议报告, 数据区间从 20030601-至今 https://datacenter.jin10.com/reportType/dc_russia_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_russia_interest_rate_decision_all.js?v=1578582572 :return: 俄罗斯利率决议报告-今值(%) :rtype: pandas.Series
636
708
def macro_bank_russia_interest_rate() -> pd.DataFrame: """ 俄罗斯利率决议报告, 数据区间从 20030601-至今 https://datacenter.jin10.com/reportType/dc_russia_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_russia_interest_rate_decision_all.js?v=1578582572 :return: 俄罗斯利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "64", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "俄罗斯利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L636-L708
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_russia_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "64", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "俄罗斯利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,079
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_india_interest_rate
()
return big_df
印度利率决议报告, 数据区间从 20000801-至今 https://datacenter.jin10.com/reportType/dc_india_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_india_interest_rate_decision_all.js?v=1578582645 :return: 印度利率决议报告-今值(%) :rtype: pandas.Series
印度利率决议报告, 数据区间从 20000801-至今 https://datacenter.jin10.com/reportType/dc_india_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_india_interest_rate_decision_all.js?v=1578582645 :return: 印度利率决议报告-今值(%) :rtype: pandas.Series
712
784
def macro_bank_india_interest_rate() -> pd.DataFrame: """ 印度利率决议报告, 数据区间从 20000801-至今 https://datacenter.jin10.com/reportType/dc_india_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_india_interest_rate_decision_all.js?v=1578582645 :return: 印度利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "68", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "印度利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L712-L784
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_india_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "68", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "印度利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,080
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_bank.py
macro_bank_brazil_interest_rate
()
return big_df
巴西利率决议报告, 数据区间从 20080201-至今 https://datacenter.jin10.com/reportType/dc_brazil_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_brazil_interest_rate_decision_all.js?v=1578582718 :return: 巴西利率决议报告-今值(%) :rtype: pandas.Series
巴西利率决议报告, 数据区间从 20080201-至今 https://datacenter.jin10.com/reportType/dc_brazil_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_brazil_interest_rate_decision_all.js?v=1578582718 :return: 巴西利率决议报告-今值(%) :rtype: pandas.Series
788
860
def macro_bank_brazil_interest_rate() -> pd.DataFrame: """ 巴西利率决议报告, 数据区间从 20080201-至今 https://datacenter.jin10.com/reportType/dc_brazil_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_brazil_interest_rate_decision_all.js?v=1578582718 :return: 巴西利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "55", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "巴西利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_bank.py#L788-L860
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
10.958904
[ 8, 9, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 48, 49, 50, 57, 66, 67, 68, 69, 70, 71, 72 ]
34.246575
false
5.414013
73
3
65.753425
5
def macro_bank_brazil_interest_rate() -> pd.DataFrame: t = time.time() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "55", "_": str(int(round(t * 1000))), } big_df = pd.DataFrame() while True: r = requests.get(url, params=params, headers=headers) data_json = r.json() if not data_json["data"]["values"]: break temp_df = pd.DataFrame(data_json["data"]["values"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) last_date_str = temp_df.iat[-1, 0] last_date_str = ( ( datetime.datetime.strptime(last_date_str, "%Y-%m-%d") - datetime.timedelta(days=1) ) .date() .isoformat() ) params.update({"max_date": f"{last_date_str}"}) big_df["商品"] = "巴西利率决议报告" big_df.columns = [ "日期", "今值", "预测值", "前值", "商品", ] big_df = big_df[ [ "商品", "日期", "今值", "预测值", "前值", ] ] big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df.sort_values(["日期"], inplace=True) big_df.reset_index(inplace=True, drop=True) return big_df
18,081
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_gdp_yoy
()
return big_df
欧元区季度 GDP 年率报告, 数据区间从 20131114-至今 https://datacenter.jin10.com/reportType/dc_eurozone_gdp_yoy :return: 欧元区季度 GDP 年率报告 :rtype: pandas.DataFrame
欧元区季度 GDP 年率报告, 数据区间从 20131114-至今 https://datacenter.jin10.com/reportType/dc_eurozone_gdp_yoy :return: 欧元区季度 GDP 年率报告 :rtype: pandas.DataFrame
23
75
def macro_euro_gdp_yoy() -> pd.DataFrame: """ 欧元区季度 GDP 年率报告, 数据区间从 20131114-至今 https://datacenter.jin10.com/reportType/dc_eurozone_gdp_yoy :return: 欧元区季度 GDP 年率报告 :rtype: pandas.DataFrame """ ec = 84 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区季度GDP年率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L23-L75
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.207547
[ 7, 8, 9, 10, 17, 18, 19, 20, 21, 22, 23, 24, 30, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52 ]
47.169811
false
5.104408
53
4
52.830189
4
def macro_euro_gdp_yoy() -> pd.DataFrame: ec = 84 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区季度GDP年率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,082
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_cpi_mom
()
return big_df
欧元区 CPI 月率报告, 数据区间从 19900301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_cpi_mom https://cdn.jin10.com/dc/reports/dc_eurozone_cpi_mom_all.js?v=1578578318 :return: 欧元区CPI月率报告 :rtype: pandas.Series
欧元区 CPI 月率报告, 数据区间从 19900301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_cpi_mom https://cdn.jin10.com/dc/reports/dc_eurozone_cpi_mom_all.js?v=1578578318 :return: 欧元区CPI月率报告 :rtype: pandas.Series
79
130
def macro_euro_cpi_mom() -> pd.DataFrame: """ 欧元区 CPI 月率报告, 数据区间从 19900301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_cpi_mom https://cdn.jin10.com/dc/reports/dc_eurozone_cpi_mom_all.js?v=1578578318 :return: 欧元区CPI月率报告 :rtype: pandas.Series """ ec = 84 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区CPI月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L79-L130
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_cpi_mom() -> pd.DataFrame: ec = 84 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区CPI月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,083
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_cpi_yoy
()
return big_df
欧元区CPI年率报告, 数据区间从19910201-至今 https://datacenter.jin10.com/reportType/dc_eurozone_cpi_yoy https://cdn.jin10.com/dc/reports/dc_eurozone_cpi_yoy_all.js?v=1578578404 :return: 欧元区CPI年率报告-今值(%) :rtype: pandas.Series
欧元区CPI年率报告, 数据区间从19910201-至今 https://datacenter.jin10.com/reportType/dc_eurozone_cpi_yoy https://cdn.jin10.com/dc/reports/dc_eurozone_cpi_yoy_all.js?v=1578578404 :return: 欧元区CPI年率报告-今值(%) :rtype: pandas.Series
134
185
def macro_euro_cpi_yoy() -> pd.DataFrame: """ 欧元区CPI年率报告, 数据区间从19910201-至今 https://datacenter.jin10.com/reportType/dc_eurozone_cpi_yoy https://cdn.jin10.com/dc/reports/dc_eurozone_cpi_yoy_all.js?v=1578578404 :return: 欧元区CPI年率报告-今值(%) :rtype: pandas.Series """ ec = 8 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区CPI年率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L134-L185
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_cpi_yoy() -> pd.DataFrame: ec = 8 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区CPI年率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,084
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_ppi_mom
()
return big_df
欧元区PPI月率报告, 数据区间从19810301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_ppi_mom https://cdn.jin10.com/dc/reports/dc_eurozone_ppi_mom_all.js?v=1578578493 :return: 欧元区PPI月率报告-今值(%) :rtype: pandas.Series
欧元区PPI月率报告, 数据区间从19810301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_ppi_mom https://cdn.jin10.com/dc/reports/dc_eurozone_ppi_mom_all.js?v=1578578493 :return: 欧元区PPI月率报告-今值(%) :rtype: pandas.Series
189
240
def macro_euro_ppi_mom() -> pd.DataFrame: """ 欧元区PPI月率报告, 数据区间从19810301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_ppi_mom https://cdn.jin10.com/dc/reports/dc_eurozone_ppi_mom_all.js?v=1578578493 :return: 欧元区PPI月率报告-今值(%) :rtype: pandas.Series """ ec = 36 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区PPI月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L189-L240
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_ppi_mom() -> pd.DataFrame: ec = 36 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区PPI月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,085
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_retail_sales_mom
()
return big_df
欧元区零售销售月率报告, 数据区间从20000301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_retail_sales_mom https://cdn.jin10.com/dc/reports/dc_eurozone_retail_sales_mom_all.js?v=1578578576 :return: 欧元区零售销售月率报告-今值(%) :rtype: pandas.Series
欧元区零售销售月率报告, 数据区间从20000301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_retail_sales_mom https://cdn.jin10.com/dc/reports/dc_eurozone_retail_sales_mom_all.js?v=1578578576 :return: 欧元区零售销售月率报告-今值(%) :rtype: pandas.Series
244
295
def macro_euro_retail_sales_mom() -> pd.DataFrame: """ 欧元区零售销售月率报告, 数据区间从20000301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_retail_sales_mom https://cdn.jin10.com/dc/reports/dc_eurozone_retail_sales_mom_all.js?v=1578578576 :return: 欧元区零售销售月率报告-今值(%) :rtype: pandas.Series """ ec = 38 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区零售销售月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L244-L295
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_retail_sales_mom() -> pd.DataFrame: ec = 38 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区零售销售月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,086
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_employment_change_qoq
()
return big_df
欧元区季调后就业人数季率报告, 数据区间从20083017-至今 https://datacenter.jin10.com/reportType/dc_eurozone_employment_change_qoq https://cdn.jin10.com/dc/reports/dc_eurozone_employment_change_qoq_all.js?v=1578578699 :return: 欧元区季调后就业人数季率报告-今值(%) :rtype: pandas.Series
欧元区季调后就业人数季率报告, 数据区间从20083017-至今 https://datacenter.jin10.com/reportType/dc_eurozone_employment_change_qoq https://cdn.jin10.com/dc/reports/dc_eurozone_employment_change_qoq_all.js?v=1578578699 :return: 欧元区季调后就业人数季率报告-今值(%) :rtype: pandas.Series
299
350
def macro_euro_employment_change_qoq() -> pd.DataFrame: """ 欧元区季调后就业人数季率报告, 数据区间从20083017-至今 https://datacenter.jin10.com/reportType/dc_eurozone_employment_change_qoq https://cdn.jin10.com/dc/reports/dc_eurozone_employment_change_qoq_all.js?v=1578578699 :return: 欧元区季调后就业人数季率报告-今值(%) :rtype: pandas.Series """ ec = 14 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区季调后就业人数季率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L299-L350
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_employment_change_qoq() -> pd.DataFrame: ec = 14 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区季调后就业人数季率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,087
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_unemployment_rate_mom
()
return big_df
欧元区失业率报告, 数据区间从19980501-至今 https://datacenter.jin10.com/reportType/dc_eurozone_unemployment_rate_mom https://cdn.jin10.com/dc/reports/dc_eurozone_unemployment_rate_mom_all.js?v=1578578767 :return: 欧元区失业率报告-今值(%) :rtype: pandas.Series
欧元区失业率报告, 数据区间从19980501-至今 https://datacenter.jin10.com/reportType/dc_eurozone_unemployment_rate_mom https://cdn.jin10.com/dc/reports/dc_eurozone_unemployment_rate_mom_all.js?v=1578578767 :return: 欧元区失业率报告-今值(%) :rtype: pandas.Series
354
405
def macro_euro_unemployment_rate_mom() -> pd.DataFrame: """ 欧元区失业率报告, 数据区间从19980501-至今 https://datacenter.jin10.com/reportType/dc_eurozone_unemployment_rate_mom https://cdn.jin10.com/dc/reports/dc_eurozone_unemployment_rate_mom_all.js?v=1578578767 :return: 欧元区失业率报告-今值(%) :rtype: pandas.Series """ ec = 46 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区失业率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L354-L405
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_unemployment_rate_mom() -> pd.DataFrame: ec = 46 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区失业率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,088
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_trade_balance
()
return big_df
欧元区未季调贸易帐报告, 数据区间从19990201-至今 https://datacenter.jin10.com/reportType/dc_eurozone_trade_balance_mom https://cdn.jin10.com/dc/reports/dc_eurozone_trade_balance_mom_all.js?v=1578577862 :return: 欧元区未季调贸易帐报告-今值(亿欧元) :rtype: pandas.Series
欧元区未季调贸易帐报告, 数据区间从19990201-至今 https://datacenter.jin10.com/reportType/dc_eurozone_trade_balance_mom https://cdn.jin10.com/dc/reports/dc_eurozone_trade_balance_mom_all.js?v=1578577862 :return: 欧元区未季调贸易帐报告-今值(亿欧元) :rtype: pandas.Series
409
460
def macro_euro_trade_balance() -> pd.DataFrame: """ 欧元区未季调贸易帐报告, 数据区间从19990201-至今 https://datacenter.jin10.com/reportType/dc_eurozone_trade_balance_mom https://cdn.jin10.com/dc/reports/dc_eurozone_trade_balance_mom_all.js?v=1578577862 :return: 欧元区未季调贸易帐报告-今值(亿欧元) :rtype: pandas.Series """ ec = 43 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区未季调贸易帐" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L409-L460
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_trade_balance() -> pd.DataFrame: ec = 43 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区未季调贸易帐" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,089
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_current_account_mom
()
return big_df
欧元区经常帐报告, 数据区间从20080221-至今, 前两个值需要去掉 https://datacenter.jin10.com/reportType/dc_eurozone_current_account_mom https://cdn.jin10.com/dc/reports/dc_eurozone_current_account_mom_all.js?v=1578577976 :return: 欧元区经常帐报告-今值(亿欧元) :rtype: pandas.Series
欧元区经常帐报告, 数据区间从20080221-至今, 前两个值需要去掉 https://datacenter.jin10.com/reportType/dc_eurozone_current_account_mom https://cdn.jin10.com/dc/reports/dc_eurozone_current_account_mom_all.js?v=1578577976 :return: 欧元区经常帐报告-今值(亿欧元) :rtype: pandas.Series
464
515
def macro_euro_current_account_mom() -> pd.DataFrame: """ 欧元区经常帐报告, 数据区间从20080221-至今, 前两个值需要去掉 https://datacenter.jin10.com/reportType/dc_eurozone_current_account_mom https://cdn.jin10.com/dc/reports/dc_eurozone_current_account_mom_all.js?v=1578577976 :return: 欧元区经常帐报告-今值(亿欧元) :rtype: pandas.Series """ ec = 11 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区经常帐" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L464-L515
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_current_account_mom() -> pd.DataFrame: ec = 11 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区经常帐" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,090
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_industrial_production_mom
()
return big_df
欧元区工业产出月率报告, 数据区间从19910301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_industrial_production_mom https://cdn.jin10.com/dc/reports/dc_eurozone_industrial_production_mom_all.js?v=1578577377 :return: 欧元区工业产出月率报告-今值(%) :rtype: pandas.Series
欧元区工业产出月率报告, 数据区间从19910301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_industrial_production_mom https://cdn.jin10.com/dc/reports/dc_eurozone_industrial_production_mom_all.js?v=1578577377 :return: 欧元区工业产出月率报告-今值(%) :rtype: pandas.Series
519
570
def macro_euro_industrial_production_mom() -> pd.DataFrame: """ 欧元区工业产出月率报告, 数据区间从19910301-至今 https://datacenter.jin10.com/reportType/dc_eurozone_industrial_production_mom https://cdn.jin10.com/dc/reports/dc_eurozone_industrial_production_mom_all.js?v=1578577377 :return: 欧元区工业产出月率报告-今值(%) :rtype: pandas.Series """ ec = 19 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区工业产出月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L519-L570
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_industrial_production_mom() -> pd.DataFrame: ec = 19 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区工业产出月率" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,091
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_manufacturing_pmi
()
return big_df
欧元区制造业PMI初值报告, 数据区间从20080222-至今 https://datacenter.jin10.com/reportType/dc_eurozone_manufacturing_pmi https://cdn.jin10.com/dc/reports/dc_eurozone_manufacturing_pmi_all.js?v=1578577537 :return: 欧元区制造业PMI初值报告-今值 :rtype: pandas.Series
欧元区制造业PMI初值报告, 数据区间从20080222-至今 https://datacenter.jin10.com/reportType/dc_eurozone_manufacturing_pmi https://cdn.jin10.com/dc/reports/dc_eurozone_manufacturing_pmi_all.js?v=1578577537 :return: 欧元区制造业PMI初值报告-今值 :rtype: pandas.Series
574
625
def macro_euro_manufacturing_pmi() -> pd.DataFrame: """ 欧元区制造业PMI初值报告, 数据区间从20080222-至今 https://datacenter.jin10.com/reportType/dc_eurozone_manufacturing_pmi https://cdn.jin10.com/dc/reports/dc_eurozone_manufacturing_pmi_all.js?v=1578577537 :return: 欧元区制造业PMI初值报告-今值 :rtype: pandas.Series """ ec = 30 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区制造业PMI初值" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L574-L625
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_manufacturing_pmi() -> pd.DataFrame: ec = 30 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区制造业PMI初值" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,092
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_services_pmi
()
return big_df
欧元区服务业PMI终值报告, 数据区间从 20080222-至今 https://datacenter.jin10.com/reportType/dc_eurozone_services_pmi https://cdn.jin10.com/dc/reports/dc_eurozone_services_pmi_all.js?v=1578577639 :return: 欧元区服务业PMI终值报告-今值 :rtype: pandas.Series
欧元区服务业PMI终值报告, 数据区间从 20080222-至今 https://datacenter.jin10.com/reportType/dc_eurozone_services_pmi https://cdn.jin10.com/dc/reports/dc_eurozone_services_pmi_all.js?v=1578577639 :return: 欧元区服务业PMI终值报告-今值 :rtype: pandas.Series
629
680
def macro_euro_services_pmi() -> pd.DataFrame: """ 欧元区服务业PMI终值报告, 数据区间从 20080222-至今 https://datacenter.jin10.com/reportType/dc_eurozone_services_pmi https://cdn.jin10.com/dc/reports/dc_eurozone_services_pmi_all.js?v=1578577639 :return: 欧元区服务业PMI终值报告-今值 :rtype: pandas.Series """ ec = 41 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区服务业PMI终值" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L629-L680
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.384615
[ 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51 ]
48.076923
false
5.104408
52
4
51.923077
5
def macro_euro_services_pmi() -> pd.DataFrame: ec = 41 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区服务业PMI终值" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,093
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_zew_economic_sentiment
()
return big_df
欧元区ZEW经济景气指数报告, 数据区间从20080212-至今 https://datacenter.jin10.com/reportType/dc_eurozone_zew_economic_sentiment https://cdn.jin10.com/dc/reports/dc_eurozone_zew_economic_sentiment_all.js?v=1578577013 :return: 欧元区ZEW经济景气指数报告-今值 :rtype: pandas.Series
欧元区ZEW经济景气指数报告, 数据区间从20080212-至今 https://datacenter.jin10.com/reportType/dc_eurozone_zew_economic_sentiment https://cdn.jin10.com/dc/reports/dc_eurozone_zew_economic_sentiment_all.js?v=1578577013 :return: 欧元区ZEW经济景气指数报告-今值 :rtype: pandas.Series
684
734
def macro_euro_zew_economic_sentiment() -> pd.DataFrame: """ 欧元区ZEW经济景气指数报告, 数据区间从20080212-至今 https://datacenter.jin10.com/reportType/dc_eurozone_zew_economic_sentiment https://cdn.jin10.com/dc/reports/dc_eurozone_zew_economic_sentiment_all.js?v=1578577013 :return: 欧元区ZEW经济景气指数报告-今值 :rtype: pandas.Series """ ec = 48 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区ZEW经济景气指数" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L684-L734
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.686275
[ 8, 9, 10, 11, 17, 18, 19, 20, 21, 22, 23, 24, 30, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50 ]
49.019608
false
5.104408
51
4
50.980392
5
def macro_euro_zew_economic_sentiment() -> pd.DataFrame: ec = 48 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区ZEW经济景气指数" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,094
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_sentix_investor_confidence
()
return big_df
欧元区Sentix投资者信心指数报告, 数据区间从20020801-至今 https://datacenter.jin10.com/reportType/dc_eurozone_sentix_investor_confidence https://cdn.jin10.com/dc/reports/dc_eurozone_sentix_investor_confidence_all.js?v=1578577195 :return: 欧元区Sentix投资者信心指数报告-今值 :rtype: pandas.Series
欧元区Sentix投资者信心指数报告, 数据区间从20020801-至今 https://datacenter.jin10.com/reportType/dc_eurozone_sentix_investor_confidence https://cdn.jin10.com/dc/reports/dc_eurozone_sentix_investor_confidence_all.js?v=1578577195 :return: 欧元区Sentix投资者信心指数报告-今值 :rtype: pandas.Series
738
788
def macro_euro_sentix_investor_confidence() -> pd.DataFrame: """ 欧元区Sentix投资者信心指数报告, 数据区间从20020801-至今 https://datacenter.jin10.com/reportType/dc_eurozone_sentix_investor_confidence https://cdn.jin10.com/dc/reports/dc_eurozone_sentix_investor_confidence_all.js?v=1578577195 :return: 欧元区Sentix投资者信心指数报告-今值 :rtype: pandas.Series """ ec = 40 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区Sentix投资者信心指数" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L738-L788
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
15.686275
[ 8, 9, 10, 11, 17, 18, 19, 20, 21, 22, 23, 24, 30, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50 ]
49.019608
false
5.104408
51
4
50.980392
5
def macro_euro_sentix_investor_confidence() -> pd.DataFrame: ec = 40 url = "https://datacenter-api.jin10.com/reports/dates" params = {"category": "ec", "attr_id": ec, "_": "1667473128417"} headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() date_list = data_json["data"] date_point_list = [item for num, item in enumerate(date_list) if num % 20 == 0] big_df = pd.DataFrame() for date in tqdm(date_point_list, leave=False): url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": f"{date}", "category": "ec", "attr_id": ec, "_": "1667475232449", } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["data"]["values"], columns=[item["name"] for item in data_json["data"]["keys"]], ) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df["商品"] = "欧元区Sentix投资者信心指数" big_df = big_df[["商品", "日期", "今值", "预测值", "前值"]] big_df["今值"] = pd.to_numeric(big_df["今值"]) big_df["预测值"] = pd.to_numeric(big_df["预测值"]) big_df["前值"] = pd.to_numeric(big_df["前值"]) big_df["日期"] = pd.to_datetime(big_df["日期"]).dt.date big_df.sort_values(["日期"], ignore_index=True, inplace=True) return big_df
18,095
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_lme_holding
()
return big_df
伦敦金属交易所(LME)-持仓报告, 数据区间从 20151022-至今 https://datacenter.jin10.com/reportType/dc_lme_traders_report https://cdn.jin10.com/data_center/reports/lme_position.json?_=1591533934658 :return: 伦敦金属交易所(LME)-持仓报告 :rtype: pandas.DataFrame
伦敦金属交易所(LME)-持仓报告, 数据区间从 20151022-至今 https://datacenter.jin10.com/reportType/dc_lme_traders_report https://cdn.jin10.com/data_center/reports/lme_position.json?_=1591533934658 :return: 伦敦金属交易所(LME)-持仓报告 :rtype: pandas.DataFrame
792
815
def macro_euro_lme_holding() -> pd.DataFrame: """ 伦敦金属交易所(LME)-持仓报告, 数据区间从 20151022-至今 https://datacenter.jin10.com/reportType/dc_lme_traders_report https://cdn.jin10.com/data_center/reports/lme_position.json?_=1591533934658 :return: 伦敦金属交易所(LME)-持仓报告 :rtype: pandas.DataFrame """ t = time.time() params = {"_": str(int(round(t * 1000)))} r = requests.get( "https://cdn.jin10.com/data_center/reports/lme_position.json", params=params ) json_data = r.json() temp_df = pd.DataFrame(json_data["values"]).T temp_df.fillna(value="[0, 0, 0]", inplace=True) big_df = pd.DataFrame() for item in temp_df.columns: for i in range(3): inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i]) inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"] big_df = pd.concat([big_df, inner_temp_df], axis=1) big_df.sort_index(inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L792-L815
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
33.333333
[ 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 ]
58.333333
false
5.104408
24
3
41.666667
5
def macro_euro_lme_holding() -> pd.DataFrame: t = time.time() params = {"_": str(int(round(t * 1000)))} r = requests.get( "https://cdn.jin10.com/data_center/reports/lme_position.json", params=params ) json_data = r.json() temp_df = pd.DataFrame(json_data["values"]).T temp_df.fillna(value="[0, 0, 0]", inplace=True) big_df = pd.DataFrame() for item in temp_df.columns: for i in range(3): inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i]) inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"] big_df = pd.concat([big_df, inner_temp_df], axis=1) big_df.sort_index(inplace=True) return big_df
18,096
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_euro.py
macro_euro_lme_stock
()
return big_df
伦敦金属交易所(LME)-库存报告, 数据区间从 20140702-至今 https://datacenter.jin10.com/reportType/dc_lme_report https://cdn.jin10.com/data_center/reports/lme_stock.json?_=1591535304783 :return: 伦敦金属交易所(LME)-库存报告 :rtype: pandas.DataFrame
伦敦金属交易所(LME)-库存报告, 数据区间从 20140702-至今 https://datacenter.jin10.com/reportType/dc_lme_report https://cdn.jin10.com/data_center/reports/lme_stock.json?_=1591535304783 :return: 伦敦金属交易所(LME)-库存报告 :rtype: pandas.DataFrame
819
841
def macro_euro_lme_stock() -> pd.DataFrame: """ 伦敦金属交易所(LME)-库存报告, 数据区间从 20140702-至今 https://datacenter.jin10.com/reportType/dc_lme_report https://cdn.jin10.com/data_center/reports/lme_stock.json?_=1591535304783 :return: 伦敦金属交易所(LME)-库存报告 :rtype: pandas.DataFrame """ t = time.time() params = {"_": str(int(round(t * 1000)))} r = requests.get( "https://cdn.jin10.com/data_center/reports/lme_stock.json", params=params ) json_data = r.json() temp_df = pd.DataFrame(json_data["values"]).T big_df = pd.DataFrame() for item in temp_df.columns: for i in range(3): inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i]) inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"] big_df = pd.concat([big_df, inner_temp_df], axis=1) big_df.sort_index(inplace=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_euro.py#L819-L841
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
34.782609
[ 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 ]
56.521739
false
5.104408
23
3
43.478261
5
def macro_euro_lme_stock() -> pd.DataFrame: t = time.time() params = {"_": str(int(round(t * 1000)))} r = requests.get( "https://cdn.jin10.com/data_center/reports/lme_stock.json", params=params ) json_data = r.json() temp_df = pd.DataFrame(json_data["values"]).T big_df = pd.DataFrame() for item in temp_df.columns: for i in range(3): inner_temp_df = temp_df.loc[:, item].apply(lambda x: eval(str(x))[i]) inner_temp_df.name = inner_temp_df.name + "-" + json_data["keys"][i]["name"] big_df = pd.concat([big_df, inner_temp_df], axis=1) big_df.sort_index(inplace=True) return big_df
18,097
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_qyspjg
()
return temp_df
东方财富-经济数据一览-中国-企业商品价格指数 https://data.eastmoney.com/cjsj/qyspjg.html :return: 企业商品价格指数 :rtype: pandas.DataFrame
东方财富-经济数据一览-中国-企业商品价格指数 https://data.eastmoney.com/cjsj/qyspjg.html :return: 企业商品价格指数 :rtype: pandas.DataFrame
33
102
def macro_china_qyspjg() -> pd.DataFrame: """ 东方财富-经济数据一览-中国-企业商品价格指数 https://data.eastmoney.com/cjsj/qyspjg.html :return: 企业商品价格指数 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "columns": "REPORT_DATE,TIME,BASE,BASE_SAME,BASE_SEQUENTIAL,FARM_BASE,FARM_BASE_SAME,FARM_BASE_SEQUENTIAL,MINERAL_BASE,MINERAL_BASE_SAME,MINERAL_BASE_SEQUENTIAL,ENERGY_BASE,ENERGY_BASE_SAME,ENERGY_BASE_SEQUENTIAL", "pageNumber": "1", "pageSize": "2000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "reportName": "RPT_ECONOMY_GOODS_INDEX", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1669047266881", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename(columns={ 'REPORT_DATE': "-", 'TIME': "月份", 'BASE': "总指数-指数值", 'BASE_SAME': "总指数-同比增长", 'BASE_SEQUENTIAL': "总指数-环比增长", 'FARM_BASE': "农产品-指数值", 'FARM_BASE_SAME':"农产品-同比增长", 'FARM_BASE_SEQUENTIAL':"农产品-环比增长", 'MINERAL_BASE':"矿产品-指数值", 'MINERAL_BASE_SAME':"矿产品-同比增长", 'MINERAL_BASE_SEQUENTIAL':"矿产品-环比增长", 'ENERGY_BASE':"煤油电-指数值", 'ENERGY_BASE_SAME':"煤油电-同比增长", 'ENERGY_BASE_SEQUENTIAL': "煤油电-环比增长" }, inplace=True) temp_df = temp_df[[ "月份", "总指数-指数值", "总指数-同比增长", "总指数-环比增长", "农产品-指数值", "农产品-同比增长", "农产品-环比增长", "矿产品-指数值", "矿产品-同比增长", "矿产品-环比增长", "煤油电-指数值", "煤油电-同比增长", "煤油电-环比增长" ]] temp_df["总指数-指数值"] = pd.to_numeric(temp_df["总指数-指数值"], errors="coerce") temp_df["总指数-同比增长"] = pd.to_numeric(temp_df["总指数-同比增长"], errors="coerce") temp_df["总指数-环比增长"] = pd.to_numeric(temp_df["总指数-环比增长"], errors="coerce") temp_df["农产品-指数值"] = pd.to_numeric(temp_df["农产品-指数值"], errors="coerce") temp_df["农产品-同比增长"] = pd.to_numeric(temp_df["农产品-同比增长"], errors="coerce") temp_df["农产品-环比增长"] = pd.to_numeric(temp_df["农产品-环比增长"], errors="coerce") temp_df["矿产品-指数值"] = pd.to_numeric(temp_df["矿产品-指数值"], errors="coerce") temp_df["矿产品-同比增长"] = pd.to_numeric(temp_df["矿产品-同比增长"], errors="coerce") temp_df["矿产品-环比增长"] = pd.to_numeric(temp_df["矿产品-环比增长"], errors="coerce") temp_df["煤油电-指数值"] = pd.to_numeric(temp_df["煤油电-指数值"], errors="coerce") temp_df["煤油电-同比增长"] = pd.to_numeric(temp_df["煤油电-同比增长"], errors="coerce") temp_df["煤油电-环比增长"] = pd.to_numeric(temp_df["煤油电-环比增长"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L33-L102
25
[ 0, 1, 2, 3, 4, 5, 6 ]
10
[ 7, 8, 22, 23, 24, 25, 42, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 ]
28.571429
false
5.033557
70
1
71.428571
4
def macro_china_qyspjg() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "columns": "REPORT_DATE,TIME,BASE,BASE_SAME,BASE_SEQUENTIAL,FARM_BASE,FARM_BASE_SAME,FARM_BASE_SEQUENTIAL,MINERAL_BASE,MINERAL_BASE_SAME,MINERAL_BASE_SEQUENTIAL,ENERGY_BASE,ENERGY_BASE_SAME,ENERGY_BASE_SEQUENTIAL", "pageNumber": "1", "pageSize": "2000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "reportName": "RPT_ECONOMY_GOODS_INDEX", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1669047266881", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.rename(columns={ 'REPORT_DATE': "-", 'TIME': "月份", 'BASE': "总指数-指数值", 'BASE_SAME': "总指数-同比增长", 'BASE_SEQUENTIAL': "总指数-环比增长", 'FARM_BASE': "农产品-指数值", 'FARM_BASE_SAME':"农产品-同比增长", 'FARM_BASE_SEQUENTIAL':"农产品-环比增长", 'MINERAL_BASE':"矿产品-指数值", 'MINERAL_BASE_SAME':"矿产品-同比增长", 'MINERAL_BASE_SEQUENTIAL':"矿产品-环比增长", 'ENERGY_BASE':"煤油电-指数值", 'ENERGY_BASE_SAME':"煤油电-同比增长", 'ENERGY_BASE_SEQUENTIAL': "煤油电-环比增长" }, inplace=True) temp_df = temp_df[[ "月份", "总指数-指数值", "总指数-同比增长", "总指数-环比增长", "农产品-指数值", "农产品-同比增长", "农产品-环比增长", "矿产品-指数值", "矿产品-同比增长", "矿产品-环比增长", "煤油电-指数值", "煤油电-同比增长", "煤油电-环比增长" ]] temp_df["总指数-指数值"] = pd.to_numeric(temp_df["总指数-指数值"], errors="coerce") temp_df["总指数-同比增长"] = pd.to_numeric(temp_df["总指数-同比增长"], errors="coerce") temp_df["总指数-环比增长"] = pd.to_numeric(temp_df["总指数-环比增长"], errors="coerce") temp_df["农产品-指数值"] = pd.to_numeric(temp_df["农产品-指数值"], errors="coerce") temp_df["农产品-同比增长"] = pd.to_numeric(temp_df["农产品-同比增长"], errors="coerce") temp_df["农产品-环比增长"] = pd.to_numeric(temp_df["农产品-环比增长"], errors="coerce") temp_df["矿产品-指数值"] = pd.to_numeric(temp_df["矿产品-指数值"], errors="coerce") temp_df["矿产品-同比增长"] = pd.to_numeric(temp_df["矿产品-同比增长"], errors="coerce") temp_df["矿产品-环比增长"] = pd.to_numeric(temp_df["矿产品-环比增长"], errors="coerce") temp_df["煤油电-指数值"] = pd.to_numeric(temp_df["煤油电-指数值"], errors="coerce") temp_df["煤油电-同比增长"] = pd.to_numeric(temp_df["煤油电-同比增长"], errors="coerce") temp_df["煤油电-环比增长"] = pd.to_numeric(temp_df["煤油电-环比增长"], errors="coerce") return temp_df
18,098
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_fdi
()
return temp_df
东方财富-经济数据一览-中国-外商直接投资数据 https://data.eastmoney.com/cjsj/fdi.html :return: 外商直接投资数据 :rtype: pandas.DataFrame
东方财富-经济数据一览-中国-外商直接投资数据 https://data.eastmoney.com/cjsj/fdi.html :return: 外商直接投资数据 :rtype: pandas.DataFrame
106
154
def macro_china_fdi() -> pd.DataFrame: """ 东方财富-经济数据一览-中国-外商直接投资数据 https://data.eastmoney.com/cjsj/fdi.html :return: 外商直接投资数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "columns": "REPORT_DATE,TIME,ACTUAL_FOREIGN,ACTUAL_FOREIGN_SAME,ACTUAL_FOREIGN_SEQUENTIAL,ACTUAL_FOREIGN_ACCUMULATE,FOREIGN_ACCUMULATE_SAME", "pageNumber": "1", "pageSize": "2000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "reportName": "RPT_ECONOMY_FDI", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1669047266881", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.columns = [ "-", "月份", "当月", "当月-同比增长", "当月-环比增长", "累计", "累计-同比增长", ] temp_df = temp_df[[ "月份", "当月", "当月-同比增长", "当月-环比增长", "累计", "累计-同比增长", ]] temp_df["当月"] = pd.to_numeric(temp_df["当月"], errors="coerce") temp_df["当月-同比增长"] = pd.to_numeric(temp_df["当月-同比增长"], errors="coerce") temp_df["当月-环比增长"] = pd.to_numeric(temp_df["当月-环比增长"], errors="coerce") temp_df["累计"] = pd.to_numeric(temp_df["累计"], errors="coerce") temp_df["累计-同比增长"] = pd.to_numeric(temp_df["累计-同比增长"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L106-L154
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.285714
[ 7, 8, 22, 23, 24, 26, 35, 43, 44, 45, 46, 47, 48 ]
26.530612
false
5.033557
49
1
73.469388
4
def macro_china_fdi() -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "columns": "REPORT_DATE,TIME,ACTUAL_FOREIGN,ACTUAL_FOREIGN_SAME,ACTUAL_FOREIGN_SEQUENTIAL,ACTUAL_FOREIGN_ACCUMULATE,FOREIGN_ACCUMULATE_SAME", "pageNumber": "1", "pageSize": "2000", "sortColumns": "REPORT_DATE", "sortTypes": "-1", "source": "WEB", "client": "WEB", "reportName": "RPT_ECONOMY_FDI", "p": "1", "pageNo": "1", "pageNum": "1", "_": "1669047266881", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.columns = [ "-", "月份", "当月", "当月-同比增长", "当月-环比增长", "累计", "累计-同比增长", ] temp_df = temp_df[[ "月份", "当月", "当月-同比增长", "当月-环比增长", "累计", "累计-同比增长", ]] temp_df["当月"] = pd.to_numeric(temp_df["当月"], errors="coerce") temp_df["当月-同比增长"] = pd.to_numeric(temp_df["当月-同比增长"], errors="coerce") temp_df["当月-环比增长"] = pd.to_numeric(temp_df["当月-环比增长"], errors="coerce") temp_df["累计"] = pd.to_numeric(temp_df["累计"], errors="coerce") temp_df["累计-同比增长"] = pd.to_numeric(temp_df["累计-同比增长"], errors="coerce") return temp_df
18,099
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_shrzgm
()
return temp_df
商务数据中心-国内贸易-社会融资规模增量统计 http://data.mofcom.gov.cn/gnmy/shrzgm.shtml :return: 社会融资规模增量统计 :rtype: pandas.DataFrame
商务数据中心-国内贸易-社会融资规模增量统计 http://data.mofcom.gov.cn/gnmy/shrzgm.shtml :return: 社会融资规模增量统计 :rtype: pandas.DataFrame
158
203
def macro_china_shrzgm() -> pd.DataFrame: """ 商务数据中心-国内贸易-社会融资规模增量统计 http://data.mofcom.gov.cn/gnmy/shrzgm.shtml :return: 社会融资规模增量统计 :rtype: pandas.DataFrame """ url = "http://data.mofcom.gov.cn/datamofcom/front/gnmy/shrzgmQuery" r = requests.post(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = [ "月份", "其中-未贴现银行承兑汇票", "其中-委托贷款", "其中-委托贷款外币贷款", "其中-人民币贷款", "其中-企业债券", "社会融资规模增量", "其中-非金融企业境内股票融资", "其中-信托贷款", ] temp_df = temp_df[ [ "月份", "社会融资规模增量", "其中-人民币贷款", "其中-委托贷款外币贷款", "其中-委托贷款", "其中-信托贷款", "其中-未贴现银行承兑汇票", "其中-企业债券", "其中-非金融企业境内股票融资", ] ] temp_df["社会融资规模增量"] = pd.to_numeric(temp_df["社会融资规模增量"]) temp_df["其中-人民币贷款"] = pd.to_numeric(temp_df["其中-人民币贷款"]) temp_df["其中-委托贷款外币贷款"] = pd.to_numeric(temp_df["其中-委托贷款外币贷款"]) temp_df["其中-委托贷款"] = pd.to_numeric(temp_df["其中-委托贷款"]) temp_df["其中-信托贷款"] = pd.to_numeric(temp_df["其中-信托贷款"]) temp_df["其中-未贴现银行承兑汇票"] = pd.to_numeric(temp_df["其中-未贴现银行承兑汇票"]) temp_df["其中-企业债券"] = pd.to_numeric(temp_df["其中-企业债券"]) temp_df["其中-非金融企业境内股票融资"] = pd.to_numeric(temp_df["其中-非金融企业境内股票融资"]) temp_df.sort_values(["月份"], inplace=True) temp_df.reset_index(drop=True, inplace=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L158-L203
25
[ 0, 1, 2, 3, 4, 5, 6 ]
15.217391
[ 7, 8, 9, 10, 11, 22, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 ]
36.956522
false
5.033557
46
1
63.043478
4
def macro_china_shrzgm() -> pd.DataFrame: url = "http://data.mofcom.gov.cn/datamofcom/front/gnmy/shrzgmQuery" r = requests.post(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = [ "月份", "其中-未贴现银行承兑汇票", "其中-委托贷款", "其中-委托贷款外币贷款", "其中-人民币贷款", "其中-企业债券", "社会融资规模增量", "其中-非金融企业境内股票融资", "其中-信托贷款", ] temp_df = temp_df[ [ "月份", "社会融资规模增量", "其中-人民币贷款", "其中-委托贷款外币贷款", "其中-委托贷款", "其中-信托贷款", "其中-未贴现银行承兑汇票", "其中-企业债券", "其中-非金融企业境内股票融资", ] ] temp_df["社会融资规模增量"] = pd.to_numeric(temp_df["社会融资规模增量"]) temp_df["其中-人民币贷款"] = pd.to_numeric(temp_df["其中-人民币贷款"]) temp_df["其中-委托贷款外币贷款"] = pd.to_numeric(temp_df["其中-委托贷款外币贷款"]) temp_df["其中-委托贷款"] = pd.to_numeric(temp_df["其中-委托贷款"]) temp_df["其中-信托贷款"] = pd.to_numeric(temp_df["其中-信托贷款"]) temp_df["其中-未贴现银行承兑汇票"] = pd.to_numeric(temp_df["其中-未贴现银行承兑汇票"]) temp_df["其中-企业债券"] = pd.to_numeric(temp_df["其中-企业债券"]) temp_df["其中-非金融企业境内股票融资"] = pd.to_numeric(temp_df["其中-非金融企业境内股票融资"]) temp_df.sort_values(["月份"], inplace=True) temp_df.reset_index(drop=True, inplace=True) return temp_df
18,100
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_gdp_yearly
()
return temp_df
金十数据中心-中国 GDP 年率报告, 数据区间从 20110120-至今 https://datacenter.jin10.com/reportType/dc_chinese_gdp_yoy :return: 中国 GDP 年率报告 :rtype: pandas.DataFrame
金十数据中心-中国 GDP 年率报告, 数据区间从 20110120-至今 https://datacenter.jin10.com/reportType/dc_chinese_gdp_yoy :return: 中国 GDP 年率报告 :rtype: pandas.DataFrame
207
262
def macro_china_gdp_yearly() -> pd.DataFrame: """ 金十数据中心-中国 GDP 年率报告, 数据区间从 20110120-至今 https://datacenter.jin10.com/reportType/dc_chinese_gdp_yoy :return: 中国 GDP 年率报告 :rtype: pandas.DataFrame """ t = time.time() r = requests.get( JS_CHINA_GDP_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(r.text[r.text.find("{") : r.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国GDP年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "57", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = pd.concat([temp_df, temp_se]) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L207-L262
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.5
[ 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 ]
44.642857
false
5.033557
56
3
55.357143
4
def macro_china_gdp_yearly() -> pd.DataFrame: t = time.time() r = requests.get( JS_CHINA_GDP_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(r.text[r.text.find("{") : r.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国GDP年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "57", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = pd.concat([temp_df, temp_se]) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
18,101
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_cpi_yearly
()
return temp_df
中国年度 CPI 数据, 数据区间从 19860201-至今 https://datacenter.jin10.com/reportType/dc_chinese_cpi_yoy :return: 中国年度 CPI 数据 :rtype: pandas.DataFrame
中国年度 CPI 数据, 数据区间从 19860201-至今 https://datacenter.jin10.com/reportType/dc_chinese_cpi_yoy :return: 中国年度 CPI 数据 :rtype: pandas.DataFrame
266
320
def macro_china_cpi_yearly() -> pd.DataFrame: """ 中国年度 CPI 数据, 数据区间从 19860201-至今 https://datacenter.jin10.com/reportType/dc_chinese_cpi_yoy :return: 中国年度 CPI 数据 :rtype: pandas.DataFrame """ t = time.time() res = requests.get( JS_CHINA_CPI_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国CPI年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df["date"] = pd.to_datetime(date_list) temp_df = value_df[["date", "今值(%)"]] temp_df.columns = ["date", "value"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "56", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.columns = ["date", "value"] temp_df = pd.concat([temp_df, temp_se], ignore_index=True) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.dropna(inplace=True) temp_df.sort_values(["date"], inplace=True) temp_df.drop_duplicates(subset="date", inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["value"] = pd.to_numeric(temp_df["value"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L266-L320
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.727273
[ 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 28, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 ]
43.636364
false
5.033557
55
3
56.363636
4
def macro_china_cpi_yearly() -> pd.DataFrame: t = time.time() res = requests.get( JS_CHINA_CPI_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国CPI年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df["date"] = pd.to_datetime(date_list) temp_df = value_df[["date", "今值(%)"]] temp_df.columns = ["date", "value"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "56", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.columns = ["date", "value"] temp_df = pd.concat([temp_df, temp_se], ignore_index=True) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.dropna(inplace=True) temp_df.sort_values(["date"], inplace=True) temp_df.drop_duplicates(subset="date", inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["value"] = pd.to_numeric(temp_df["value"], errors="coerce") return temp_df
18,102
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_cpi_monthly
()
return temp_df
中国月度 CPI 数据, 数据区间从 19960201-至今 https://datacenter.jin10.com/reportType/dc_chinese_cpi_mom :return: 中国月度 CPI 数据 :rtype: pandas.Series
中国月度 CPI 数据, 数据区间从 19960201-至今 https://datacenter.jin10.com/reportType/dc_chinese_cpi_mom :return: 中国月度 CPI 数据 :rtype: pandas.Series
324
381
def macro_china_cpi_monthly() -> pd.DataFrame: """ 中国月度 CPI 数据, 数据区间从 19960201-至今 https://datacenter.jin10.com/reportType/dc_chinese_cpi_mom :return: 中国月度 CPI 数据 :rtype: pandas.Series """ t = time.time() res = requests.get( JS_CHINA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "72", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi" temp_df = temp_df.astype("float") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L324-L381
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.068966
[ 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 ]
46.551724
false
5.033557
58
3
53.448276
4
def macro_china_cpi_monthly() -> pd.DataFrame: t = time.time() res = requests.get( JS_CHINA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "72", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi" temp_df = temp_df.astype("float") return temp_df
18,103
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_china.py
macro_china_ppi_yearly
()
return temp_df
中国年度 PPI 数据, 数据区间从 19950801-至今 https://datacenter.jin10.com/reportType/dc_chinese_ppi_yoy :return: 中国年度PPI数据 :rtype: pandas.Series
中国年度 PPI 数据, 数据区间从 19950801-至今 https://datacenter.jin10.com/reportType/dc_chinese_ppi_yoy :return: 中国年度PPI数据 :rtype: pandas.Series
385
442
def macro_china_ppi_yearly() -> pd.DataFrame: """ 中国年度 PPI 数据, 数据区间从 19950801-至今 https://datacenter.jin10.com/reportType/dc_chinese_ppi_yoy :return: 中国年度PPI数据 :rtype: pandas.Series """ t = time.time() res = requests.get( JS_CHINA_PPI_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国PPI年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "60", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "ppi" temp_df = temp_df.astype("float") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_china.py#L385-L442
25
[ 0, 1, 2, 3, 4, 5, 6 ]
12.068966
[ 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 ]
46.551724
false
5.033557
58
3
53.448276
4
def macro_china_ppi_yearly() -> pd.DataFrame: t = time.time() res = requests.get( JS_CHINA_PPI_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国PPI年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "60", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "ppi" temp_df = temp_df.astype("float") return temp_df
18,104
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/marco_cnbs.py
macro_cnbs
()
return temp_df
国家金融与发展实验室-中国宏观杠杆率数据 http://114.115.232.154:8080/ :return: 中国宏观杠杆率数据 :rtype: pandas.DataFrame
国家金融与发展实验室-中国宏观杠杆率数据 http://114.115.232.154:8080/ :return: 中国宏观杠杆率数据 :rtype: pandas.DataFrame
11
43
def macro_cnbs() -> pd.DataFrame: """ 国家金融与发展实验室-中国宏观杠杆率数据 http://114.115.232.154:8080/ :return: 中国宏观杠杆率数据 :rtype: pandas.DataFrame """ url = "http://114.115.232.154:8080/handler/download.ashx" temp_df = pd.read_excel( url, sheet_name="Data", header=0, skiprows=1, engine="openpyxl" ) temp_df["Period"] = pd.to_datetime(temp_df["Period"]).dt.strftime("%Y-%m") temp_df.dropna(axis=1, inplace=True) temp_df.columns = [ "年份", "居民部门", "非金融企业部门", "政府部门", "中央政府", "地方政府", "实体经济部门", "金融部门资产方", "金融部门负债方", ] temp_df["居民部门"] = pd.to_numeric(temp_df["居民部门"]) temp_df["非金融企业部门"] = pd.to_numeric(temp_df["非金融企业部门"]) temp_df["政府部门"] = pd.to_numeric(temp_df["政府部门"]) temp_df["中央政府"] = pd.to_numeric(temp_df["中央政府"]) temp_df["地方政府"] = pd.to_numeric(temp_df["地方政府"]) temp_df["实体经济部门"] = pd.to_numeric(temp_df["实体经济部门"]) temp_df["金融部门资产方"] = pd.to_numeric(temp_df["金融部门资产方"]) temp_df["金融部门负债方"] = pd.to_numeric(temp_df["金融部门负债方"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/marco_cnbs.py#L11-L43
25
[ 0, 1, 2, 3, 4, 5, 6 ]
21.212121
[ 7, 8, 11, 12, 13, 24, 25, 26, 27, 28, 29, 30, 31, 32 ]
42.424242
false
20
33
1
57.575758
4
def macro_cnbs() -> pd.DataFrame: url = "http://114.115.232.154:8080/handler/download.ashx" temp_df = pd.read_excel( url, sheet_name="Data", header=0, skiprows=1, engine="openpyxl" ) temp_df["Period"] = pd.to_datetime(temp_df["Period"]).dt.strftime("%Y-%m") temp_df.dropna(axis=1, inplace=True) temp_df.columns = [ "年份", "居民部门", "非金融企业部门", "政府部门", "中央政府", "地方政府", "实体经济部门", "金融部门资产方", "金融部门负债方", ] temp_df["居民部门"] = pd.to_numeric(temp_df["居民部门"]) temp_df["非金融企业部门"] = pd.to_numeric(temp_df["非金融企业部门"]) temp_df["政府部门"] = pd.to_numeric(temp_df["政府部门"]) temp_df["中央政府"] = pd.to_numeric(temp_df["中央政府"]) temp_df["地方政府"] = pd.to_numeric(temp_df["地方政府"]) temp_df["实体经济部门"] = pd.to_numeric(temp_df["实体经济部门"]) temp_df["金融部门资产方"] = pd.to_numeric(temp_df["金融部门资产方"]) temp_df["金融部门负债方"] = pd.to_numeric(temp_df["金融部门负债方"]) return temp_df
18,105
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_other.py
crypto_js_spot
()
return data_df
主流加密货币的实时行情数据, 一次请求返回具体某一时刻行情数据 https://datacenter.jin10.com/reportType/dc_bitcoin_current :return: pandas.DataFrame
主流加密货币的实时行情数据, 一次请求返回具体某一时刻行情数据 https://datacenter.jin10.com/reportType/dc_bitcoin_current :return: pandas.DataFrame
14
52
def crypto_js_spot() -> pd.DataFrame: """ 主流加密货币的实时行情数据, 一次请求返回具体某一时刻行情数据 https://datacenter.jin10.com/reportType/dc_bitcoin_current :return: pandas.DataFrame """ url = "https://datacenter-api.jin10.com/crypto_currency/list" params = { "_": '1672141224307', } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) data_json = r.json() data_df = pd.DataFrame(data_json["data"]) data_df["reported_at"] = pd.to_datetime(data_df["reported_at"]) data_df.columns = [ "市场", "交易品种", "最近报价", "涨跌额", "涨跌幅", "24小时最高", "24小时最低", "24小时成交量", "更新时间", ] data_df["最近报价"] = pd.to_numeric(data_df["最近报价"]) data_df["涨跌额"] = pd.to_numeric(data_df["涨跌额"]) data_df["涨跌幅"] = pd.to_numeric(data_df["涨跌幅"]) data_df["24小时最高"] = pd.to_numeric(data_df["24小时最高"]) data_df["24小时最低"] = pd.to_numeric(data_df["24小时最低"]) data_df["24小时成交量"] = pd.to_numeric(data_df["24小时成交量"]) data_df["更新时间"] = data_df["更新时间"].astype(str) return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_other.py#L14-L52
25
[ 0, 1, 2, 3, 4, 5 ]
15.384615
[ 6, 7, 10, 16, 17, 18, 19, 20, 31, 32, 33, 34, 35, 36, 37, 38 ]
41.025641
false
16.071429
39
1
58.974359
3
def crypto_js_spot() -> pd.DataFrame: url = "https://datacenter-api.jin10.com/crypto_currency/list" params = { "_": '1672141224307', } headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "x-csrf-token", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) data_json = r.json() data_df = pd.DataFrame(data_json["data"]) data_df["reported_at"] = pd.to_datetime(data_df["reported_at"]) data_df.columns = [ "市场", "交易品种", "最近报价", "涨跌额", "涨跌幅", "24小时最高", "24小时最低", "24小时成交量", "更新时间", ] data_df["最近报价"] = pd.to_numeric(data_df["最近报价"]) data_df["涨跌额"] = pd.to_numeric(data_df["涨跌额"]) data_df["涨跌幅"] = pd.to_numeric(data_df["涨跌幅"]) data_df["24小时最高"] = pd.to_numeric(data_df["24小时最高"]) data_df["24小时最低"] = pd.to_numeric(data_df["24小时最低"]) data_df["24小时成交量"] = pd.to_numeric(data_df["24小时成交量"]) data_df["更新时间"] = data_df["更新时间"].astype(str) return data_df
18,106
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_other.py
macro_fx_sentiment
( start_date: str = "20221011", end_date: str = "20221017" )
return temp_df
金十数据-外汇-投机情绪报告 外汇投机情绪报告显示当前市场多空仓位比例,数据由8家交易平台提供,涵盖11个主要货币对和1个黄金品种。 报告内容: 品种: 澳元兑日元、澳元兑美元、欧元兑美元、欧元兑澳元、欧元兑日元、英镑兑美元、英镑兑日元、纽元兑美元、美元兑加元、美元兑瑞郎、美元兑日元以及现货黄金兑美元。 数据: 由Shark - fx整合全球8家交易平台( 包括 Oanda、 FXCM、 Insta、 Dukas、 MyFxBook以及FiboGroup) 的多空投机仓位数据而成。 名词释义: 外汇投机情绪报告显示当前市场多空仓位比例,数据由8家交易平台提供,涵盖11个主要货币对和1个黄金品种。 工具使用策略: Shark-fx声明表示,基于“主流通常都是错误的”的事实,当空头头寸超过60%,交易者就应该建立多头仓位; 同理,当市场多头头寸超过60%,交易者则应该建立空头仓位。此外,当多空仓位比例接近50%的情况下,我们则倾向于建议交易者不要进场,保持观望。 https://datacenter.jin10.com/reportType/dc_ssi_trends :param start_date: 具体交易日 :type start_date: str :param end_date: 具体交易日, 与 end_date 相同 :type end_date: str :return: 投机情绪报告 :rtype: pandas.DataFrame
金十数据-外汇-投机情绪报告 外汇投机情绪报告显示当前市场多空仓位比例,数据由8家交易平台提供,涵盖11个主要货币对和1个黄金品种。 报告内容: 品种: 澳元兑日元、澳元兑美元、欧元兑美元、欧元兑澳元、欧元兑日元、英镑兑美元、英镑兑日元、纽元兑美元、美元兑加元、美元兑瑞郎、美元兑日元以及现货黄金兑美元。 数据: 由Shark - fx整合全球8家交易平台( 包括 Oanda、 FXCM、 Insta、 Dukas、 MyFxBook以及FiboGroup) 的多空投机仓位数据而成。 名词释义: 外汇投机情绪报告显示当前市场多空仓位比例,数据由8家交易平台提供,涵盖11个主要货币对和1个黄金品种。 工具使用策略: Shark-fx声明表示,基于“主流通常都是错误的”的事实,当空头头寸超过60%,交易者就应该建立多头仓位; 同理,当市场多头头寸超过60%,交易者则应该建立空头仓位。此外,当多空仓位比例接近50%的情况下,我们则倾向于建议交易者不要进场,保持观望。 https://datacenter.jin10.com/reportType/dc_ssi_trends :param start_date: 具体交易日 :type start_date: str :param end_date: 具体交易日, 与 end_date 相同 :type end_date: str :return: 投机情绪报告 :rtype: pandas.DataFrame
55
104
def macro_fx_sentiment( start_date: str = "20221011", end_date: str = "20221017" ) -> pd.DataFrame: """ 金十数据-外汇-投机情绪报告 外汇投机情绪报告显示当前市场多空仓位比例,数据由8家交易平台提供,涵盖11个主要货币对和1个黄金品种。 报告内容: 品种: 澳元兑日元、澳元兑美元、欧元兑美元、欧元兑澳元、欧元兑日元、英镑兑美元、英镑兑日元、纽元兑美元、美元兑加元、美元兑瑞郎、美元兑日元以及现货黄金兑美元。 数据: 由Shark - fx整合全球8家交易平台( 包括 Oanda、 FXCM、 Insta、 Dukas、 MyFxBook以及FiboGroup) 的多空投机仓位数据而成。 名词释义: 外汇投机情绪报告显示当前市场多空仓位比例,数据由8家交易平台提供,涵盖11个主要货币对和1个黄金品种。 工具使用策略: Shark-fx声明表示,基于“主流通常都是错误的”的事实,当空头头寸超过60%,交易者就应该建立多头仓位; 同理,当市场多头头寸超过60%,交易者则应该建立空头仓位。此外,当多空仓位比例接近50%的情况下,我们则倾向于建议交易者不要进场,保持观望。 https://datacenter.jin10.com/reportType/dc_ssi_trends :param start_date: 具体交易日 :type start_date: str :param end_date: 具体交易日, 与 end_date 相同 :type end_date: str :return: 投机情绪报告 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "https://datacenter-api.jin10.com/sentiment/datas" params = { "start_date": start_date, "end_date": end_date, "currency_pair": "", "_": int(time.time() * 1000), } headers = { "accept": "*/*", "accept-encoding": "", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_ssi_trends", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["values"]).T temp_df.reset_index(inplace=True) temp_df.rename(columns={"index": "date"}, inplace=True) for col in temp_df.columns[1:]: temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_other.py#L55-L104
25
[ 0 ]
2
[ 18, 19, 20, 21, 27, 42, 43, 44, 45, 46, 47, 48, 49 ]
26
false
16.071429
50
2
74
13
def macro_fx_sentiment( start_date: str = "20221011", end_date: str = "20221017" ) -> pd.DataFrame: start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "https://datacenter-api.jin10.com/sentiment/datas" params = { "start_date": start_date, "end_date": end_date, "currency_pair": "", "_": int(time.time() * 1000), } headers = { "accept": "*/*", "accept-encoding": "", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_ssi_trends", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["values"]).T temp_df.reset_index(inplace=True) temp_df.rename(columns={"index": "date"}, inplace=True) for col in temp_df.columns[1:]: temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce") return temp_df
18,107
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/economic/macro_other.py
index_vix
( start_date: str = "20210401", end_date: str = "20210402" )
return temp_df
金十数据-市场异动-恐慌指数; 只能获取当前交易日近一个月内的数据 https://datacenter.jin10.com/market :param start_date: 具体交易日, 只能获取当前交易日近一个月内的数据 :type start_date: str :param end_date: 具体交易日, 与 end_date 相同, 只能获取当前交易日近一个月内的数据 :type end_date: str :return: 恐慌指数 :rtype: pandas.DataFrame
金十数据-市场异动-恐慌指数; 只能获取当前交易日近一个月内的数据 https://datacenter.jin10.com/market :param start_date: 具体交易日, 只能获取当前交易日近一个月内的数据 :type start_date: str :param end_date: 具体交易日, 与 end_date 相同, 只能获取当前交易日近一个月内的数据 :type end_date: str :return: 恐慌指数 :rtype: pandas.DataFrame
107
151
def index_vix( start_date: str = "20210401", end_date: str = "20210402" ) -> pd.DataFrame: """ 金十数据-市场异动-恐慌指数; 只能获取当前交易日近一个月内的数据 https://datacenter.jin10.com/market :param start_date: 具体交易日, 只能获取当前交易日近一个月内的数据 :type start_date: str :param end_date: 具体交易日, 与 end_date 相同, 只能获取当前交易日近一个月内的数据 :type end_date: str :return: 恐慌指数 :rtype: pandas.DataFrame """ import warnings warnings.warn("由于目标网站未更新数据,该接口即将移除", DeprecationWarning) url = "https://datacenter-api.jin10.com/vix/datas" start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) params = { "start_date": start_date, "end_date": end_date, "_": int(time.time() * 1000), } headers = { "accept": "*/*", "accept-encoding": "", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_ssi_trends", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get(url, params=params, headers=headers) temp_df = pd.DataFrame( res.json()["data"]["values"], index=["开盘价", "当前价", "涨跌", "涨跌幅"] ).T temp_df = temp_df.astype(float) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/economic/macro_other.py#L107-L151
25
[ 0 ]
2.222222
[ 13, 15, 16, 17, 18, 19, 24, 39, 40, 43, 44 ]
24.444444
false
16.071429
45
1
75.555556
8
def index_vix( start_date: str = "20210401", end_date: str = "20210402" ) -> pd.DataFrame: import warnings warnings.warn("由于目标网站未更新数据,该接口即将移除", DeprecationWarning) url = "https://datacenter-api.jin10.com/vix/datas" start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) params = { "start_date": start_date, "end_date": end_date, "_": int(time.time() * 1000), } headers = { "accept": "*/*", "accept-encoding": "", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_ssi_trends", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get(url, params=params, headers=headers) temp_df = pd.DataFrame( res.json()["data"]["values"], index=["开盘价", "当前价", "涨跌", "涨跌幅"] ).T temp_df = temp_df.astype(float) return temp_df
18,108
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
_get_file_content
(file: str = "covid.js")
return file_data
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str
21
32
def _get_file_content(file: str = "covid.js") -> str: """ 获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str """ setting_file_path = get_covid_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L21-L32
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
66.666667
[ 8, 9, 10, 11 ]
33.333333
false
6.904762
12
2
66.666667
5
def _get_file_content(file: str = "covid.js") -> str: setting_file_path = get_covid_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data
18,109
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_risk_area
(symbol: str = "高风险等级地区") -> pd.DataFra
卫生健康委-疫情风险等级查询 http://bmfw.www.gov.cn/yqfxdjcx/risk.html :param symbol: choice of {"高风险等级地区", "中风险等级地区", "低风险等级地区"} :type symbol: str :return: 疫情风险等级查询 :rtype: pandas.DataFrame
卫生健康委-疫情风险等级查询 http://bmfw.www.gov.cn/yqfxdjcx/risk.html :param symbol: choice of {"高风险等级地区", "中风险等级地区", "低风险等级地区"} :type symbol: str :return: 疫情风险等级查询 :rtype: pandas.DataFrame
35
104
def covid_19_risk_area(symbol: str = "高风险等级地区") -> pd.DataFrame: """ 卫生健康委-疫情风险等级查询 http://bmfw.www.gov.cn/yqfxdjcx/risk.html :param symbol: choice of {"高风险等级地区", "中风险等级地区", "低风险等级地区"} :type symbol: str :return: 疫情风险等级查询 :rtype: pandas.DataFrame """ file_data = _get_file_content(file="covid.js") ctx = py_mini_racer.MiniRacer() ctx.eval(file_data) decode_ajax_dict = ctx.call("generateAjaxParmas", "xxx") decode_header_dict = ctx.call("generateHeaderParmas", "xxx") url = "http://bmfw.www.gov.cn/bjww/interface/interfaceJson" payload = { "appId": "NcApplication", "key": "3C502C97ABDA40D0A60FBEE50FAAD1DA", "nonceHeader": "123456789abcdefg", "paasHeader": "zdww", "signatureHeader": eval(decode_ajax_dict)["signatureHeader"], "timestampHeader": eval(decode_ajax_dict)["timestampHeader"], } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "235", "Content-Type": "application/json; charset=UTF-8", "Host": "bmfw.www.gov.cn", "Origin": "http://bmfw.www.gov.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://bmfw.www.gov.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36", "x-wif-nonce": "QkjjtiLM2dCratiA", "x-wif-paasid": "smt-application", "x-wif-signature": eval(decode_header_dict)["signatureHeader"], "x-wif-timestamp": eval(decode_header_dict)["timestampHeader"], } r = requests.post(url, json=payload, headers=headers) data_json = r.json() if symbol == "高风险等级地区": temp_df = pd.DataFrame(data_json["data"]["highlist"]) temp_df = temp_df.explode(["communitys"]) del temp_df["type"] temp_df["grade"] = "高风险" temp_df["report_date"] = data_json["data"]["end_update_time"] temp_df["number"] = data_json["data"]["hcount"] temp_df.reset_index(inplace=True, drop=True) return temp_df elif symbol == "低风险等级地区": temp_df = pd.DataFrame(data_json["data"]["lowlist"]) temp_df = temp_df.explode(["communitys"]) del temp_df["type"] temp_df["grade"] = "低风险" temp_df["report_date"] = data_json["data"]["end_update_time"] temp_df["number"] = data_json["data"]["lcount"] temp_df.reset_index(inplace=True, drop=True) return temp_df else: temp_df = pd.DataFrame(data_json["data"]["middlelist"]) temp_df = temp_df.explode(["communitys"]) del temp_df["type"] temp_df["grade"] = "中风险" temp_df["report_date"] = data_json["data"]["end_update_time"] temp_df["number"] = data_json["data"]["mcount"] temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L35-L104
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
12.857143
[ 9, 10, 11, 12, 13, 14, 15, 23, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69 ]
51.428571
false
6.904762
70
3
48.571429
6
def covid_19_risk_area(symbol: str = "高风险等级地区") -> pd.DataFrame: file_data = _get_file_content(file="covid.js") ctx = py_mini_racer.MiniRacer() ctx.eval(file_data) decode_ajax_dict = ctx.call("generateAjaxParmas", "xxx") decode_header_dict = ctx.call("generateHeaderParmas", "xxx") url = "http://bmfw.www.gov.cn/bjww/interface/interfaceJson" payload = { "appId": "NcApplication", "key": "3C502C97ABDA40D0A60FBEE50FAAD1DA", "nonceHeader": "123456789abcdefg", "paasHeader": "zdww", "signatureHeader": eval(decode_ajax_dict)["signatureHeader"], "timestampHeader": eval(decode_ajax_dict)["timestampHeader"], } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "235", "Content-Type": "application/json; charset=UTF-8", "Host": "bmfw.www.gov.cn", "Origin": "http://bmfw.www.gov.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://bmfw.www.gov.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36", "x-wif-nonce": "QkjjtiLM2dCratiA", "x-wif-paasid": "smt-application", "x-wif-signature": eval(decode_header_dict)["signatureHeader"], "x-wif-timestamp": eval(decode_header_dict)["timestampHeader"], } r = requests.post(url, json=payload, headers=headers) data_json = r.json() if symbol == "高风险等级地区": temp_df = pd.DataFrame(data_json["data"]["highlist"]) temp_df = temp_df.explode(["communitys"]) del temp_df["type"] temp_df["grade"] = "高风险" temp_df["report_date"] = data_json["data"]["end_update_time"] temp_df["number"] = data_json["data"]["hcount"] temp_df.reset_index(inplace=True, drop=True) return temp_df elif symbol == "低风险等级地区": temp_df = pd.DataFrame(data_json["data"]["lowlist"]) temp_df = temp_df.explode(["communitys"]) del temp_df["type"] temp_df["grade"] = "低风险" temp_df["report_date"] = data_json["data"]["end_update_time"] temp_df["number"] = data_json["data"]["lcount"] temp_df.reset_index(inplace=True, drop=True) return temp_df else: temp_df = pd.DataFrame(data_json["data"]["middlelist"]) temp_df = temp_df.explode(["communitys"]) del temp_df["type"] temp_df["grade"] = "中风险" temp_df["report_date"] = data_json["data"]["end_update_time"] temp_df["number"] = data_json["data"]["mcount"] temp_df.reset_index(inplace=True, drop=True) return temp_df
18,110
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_163
(indicator: str = "实时") ->
网易-新型冠状病毒 https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other&#map_block https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other& :param indicator: 参数 :type indicator: str :return: 返回指定 indicator 的数据 :rtype: pandas.DataFrame
网易-新型冠状病毒 https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other&#map_block https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other& :param indicator: 参数 :type indicator: str :return: 返回指定 indicator 的数据 :rtype: pandas.DataFrame
107
302
def covid_19_163(indicator: str = "实时") -> pd.DataFrame: """ 网易-新型冠状病毒 https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other&#map_block https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other& :param indicator: 参数 :type indicator: str :return: 返回指定 indicator 的数据 :rtype: pandas.DataFrame """ url = "https://c.m.163.com/ug/api/wuhan/app/data/list-total" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", } payload = { "t": int(time.time() * 1000), } r = requests.get(url, params=payload, headers=headers) data_json = r.json() # data info url = "https://news.163.com/special/epidemic/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") data_info_df = pd.DataFrame( [ item.text.strip().split(".")[1] for item in soup.find( "div", attrs={"class": "data_tip_pop_text"} ).find_all("p") ] ) data_info_df.columns = ["info"] # 中国历史时点数据 hist_today_df = pd.DataFrame( [item["today"] for item in data_json["data"]["chinaDayList"]], index=[item["date"] for item in data_json["data"]["chinaDayList"]], ) # 中国历史累计数据 hist_total_df = pd.DataFrame( [item["total"] for item in data_json["data"]["chinaDayList"]], index=[item["date"] for item in data_json["data"]["chinaDayList"]], ) # 中国实时数据 current_df = pd.DataFrame.from_dict(data_json["data"]["chinaTotal"]) # 世界历史时点数据 outside_today_df = pd.DataFrame( [item["today"] for item in data_json["data"]["areaTree"]], index=[item["name"] for item in data_json["data"]["areaTree"]], ) # 世界历史累计数据 outside_total_df = pd.DataFrame( [item["total"] for item in data_json["data"]["areaTree"]], index=[item["name"] for item in data_json["data"]["areaTree"]], ) # 全球所有国家及地区时点数据 all_world_today_df = pd.DataFrame( jsonpath.jsonpath(data_json["data"]["areaTree"], "$..today"), index=jsonpath.jsonpath(data_json["data"]["areaTree"], "$..name"), ) # 全球所有国家及地区累计数据 all_world_total_df = pd.DataFrame( jsonpath.jsonpath(data_json["data"]["areaTree"], "$..total"), index=jsonpath.jsonpath(data_json["data"]["areaTree"], "$..name"), ) # 中国各地区累计数据 area_total_df = pd.DataFrame( [ item["total"] for item in data_json["data"]["areaTree"][2]["children"] ], index=[ item["name"] for item in data_json["data"]["areaTree"][2]["children"] ], ) # 中国各地区时点数据 area_today_df = pd.DataFrame( [ item["today"] for item in data_json["data"]["areaTree"][2]["children"] ], index=[ item["name"] for item in data_json["data"]["areaTree"][2]["children"] ], ) # 疫情学术进展 url_article = "https://vip.open.163.com/api/cms/topic/list" payload_article = { "topicid": "00019NGQ", "listnum": "1000", "liststart": "0", "pointstart": "0", "pointend": "255", "useproperty": "true", } r_article = requests.get(url_article, params=payload_article) article_df = pd.DataFrame(r_article.json()["data"]).iloc[:, 1:] # 资讯 url_info = "https://ent.163.com/special/00035080/virus_report_data.js" payload_info = { "_": int(time.time() * 1000), "callback": "callback", } r_info = requests.get(url_info, params=payload_info, headers=headers) data_info_text = r_info.text data_info_json = demjson.decode(data_info_text.strip(" callback(")[:-1]) if indicator == "数据说明": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return data_info_df if indicator == "中国实时数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return current_df if indicator == "中国历史时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return hist_today_df if indicator == "中国历史累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return hist_total_df if indicator == "世界历史时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return outside_today_df if indicator == "世界历史累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return outside_total_df if indicator == "全球所有国家及地区时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return all_world_today_df elif indicator == "全球所有国家及地区累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return all_world_total_df elif indicator == "中国各地区时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return area_today_df elif indicator == "中国各地区累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return area_total_df elif indicator == "疫情学术进展": return article_df elif indicator == "实时资讯新闻播报": return pd.DataFrame(data_info_json["list"]) elif indicator == "实时医院新闻播报": return pd.DataFrame(data_info_json["hospital"]) elif indicator == "前沿知识": return pd.DataFrame(data_info_json["papers"]) elif indicator == "权威发布": return pd.DataFrame(data_info_json["power"]) elif indicator == "境外输入疫情趋势": url = "https://c.m.163.com/ug/api/wuhan/app/data/list-by-area-code" params = {"areaCode": "66", "t": round(int(time.time() * 1000))} r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["list"]) today_list = [item.get("input", 0) for item in temp_df["today"]] total_list = [item.get("input", 0) for item in temp_df["total"]] result_df = pd.DataFrame([today_list, total_list]).T result_df.columns = ["境外输入新增确诊", "境外输入累计确诊"] result_df.index = pd.to_datetime(temp_df.date) return result_df elif indicator == "境外输入确诊病例来源": url = "https://c.m.163.com/ug/api/wuhan/app/index/input-data-list" params = {"t": round(int(time.time() * 1000))} r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["list"]) del temp_df["page"] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L107-L302
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
5.102041
[ 10, 11, 14, 17, 18, 21, 22, 23, 24, 32, 35, 41, 47, 50, 56, 62, 68, 74, 86, 98, 99, 107, 108, 111, 112, 116, 117, 118, 120, 121, 122, 124, 125, 126, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 148, 149, 150, 152, 153, 154, 156, 157, 158, 160, 161, 163, 164, 166, 167, 169, 170, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195 ]
44.897959
false
6.904762
196
33
55.102041
7
def covid_19_163(indicator: str = "实时") -> pd.DataFrame: url = "https://c.m.163.com/ug/api/wuhan/app/data/list-total" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", } payload = { "t": int(time.time() * 1000), } r = requests.get(url, params=payload, headers=headers) data_json = r.json() # data info url = "https://news.163.com/special/epidemic/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") data_info_df = pd.DataFrame( [ item.text.strip().split(".")[1] for item in soup.find( "div", attrs={"class": "data_tip_pop_text"} ).find_all("p") ] ) data_info_df.columns = ["info"] # 中国历史时点数据 hist_today_df = pd.DataFrame( [item["today"] for item in data_json["data"]["chinaDayList"]], index=[item["date"] for item in data_json["data"]["chinaDayList"]], ) # 中国历史累计数据 hist_total_df = pd.DataFrame( [item["total"] for item in data_json["data"]["chinaDayList"]], index=[item["date"] for item in data_json["data"]["chinaDayList"]], ) # 中国实时数据 current_df = pd.DataFrame.from_dict(data_json["data"]["chinaTotal"]) # 世界历史时点数据 outside_today_df = pd.DataFrame( [item["today"] for item in data_json["data"]["areaTree"]], index=[item["name"] for item in data_json["data"]["areaTree"]], ) # 世界历史累计数据 outside_total_df = pd.DataFrame( [item["total"] for item in data_json["data"]["areaTree"]], index=[item["name"] for item in data_json["data"]["areaTree"]], ) # 全球所有国家及地区时点数据 all_world_today_df = pd.DataFrame( jsonpath.jsonpath(data_json["data"]["areaTree"], "$..today"), index=jsonpath.jsonpath(data_json["data"]["areaTree"], "$..name"), ) # 全球所有国家及地区累计数据 all_world_total_df = pd.DataFrame( jsonpath.jsonpath(data_json["data"]["areaTree"], "$..total"), index=jsonpath.jsonpath(data_json["data"]["areaTree"], "$..name"), ) # 中国各地区累计数据 area_total_df = pd.DataFrame( [ item["total"] for item in data_json["data"]["areaTree"][2]["children"] ], index=[ item["name"] for item in data_json["data"]["areaTree"][2]["children"] ], ) # 中国各地区时点数据 area_today_df = pd.DataFrame( [ item["today"] for item in data_json["data"]["areaTree"][2]["children"] ], index=[ item["name"] for item in data_json["data"]["areaTree"][2]["children"] ], ) # 疫情学术进展 url_article = "https://vip.open.163.com/api/cms/topic/list" payload_article = { "topicid": "00019NGQ", "listnum": "1000", "liststart": "0", "pointstart": "0", "pointend": "255", "useproperty": "true", } r_article = requests.get(url_article, params=payload_article) article_df = pd.DataFrame(r_article.json()["data"]).iloc[:, 1:] # 资讯 url_info = "https://ent.163.com/special/00035080/virus_report_data.js" payload_info = { "_": int(time.time() * 1000), "callback": "callback", } r_info = requests.get(url_info, params=payload_info, headers=headers) data_info_text = r_info.text data_info_json = demjson.decode(data_info_text.strip(" callback(")[:-1]) if indicator == "数据说明": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return data_info_df if indicator == "中国实时数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return current_df if indicator == "中国历史时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return hist_today_df if indicator == "中国历史累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return hist_total_df if indicator == "世界历史时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return outside_today_df if indicator == "世界历史累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return outside_total_df if indicator == "全球所有国家及地区时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return all_world_today_df elif indicator == "全球所有国家及地区累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return all_world_total_df elif indicator == "中国各地区时点数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return area_today_df elif indicator == "中国各地区累计数据": print(f"数据更新时间: {data_json['data']['lastUpdateTime']}") return area_total_df elif indicator == "疫情学术进展": return article_df elif indicator == "实时资讯新闻播报": return pd.DataFrame(data_info_json["list"]) elif indicator == "实时医院新闻播报": return pd.DataFrame(data_info_json["hospital"]) elif indicator == "前沿知识": return pd.DataFrame(data_info_json["papers"]) elif indicator == "权威发布": return pd.DataFrame(data_info_json["power"]) elif indicator == "境外输入疫情趋势": url = "https://c.m.163.com/ug/api/wuhan/app/data/list-by-area-code" params = {"areaCode": "66", "t": round(int(time.time() * 1000))} r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["list"]) today_list = [item.get("input", 0) for item in temp_df["today"]] total_list = [item.get("input", 0) for item in temp_df["total"]] result_df = pd.DataFrame([today_list, total_list]).T result_df.columns = ["境外输入新增确诊", "境外输入累计确诊"] result_df.index = pd.to_datetime(temp_df.date) return result_df elif indicator == "境外输入确诊病例来源": url = "https://c.m.163.com/ug/api/wuhan/app/index/input-data-list" params = {"t": round(int(time.time() * 1000))} r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["list"]) del temp_df["page"] return temp_df
18,111
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_dxy
(indicator: str = "浙江省") -> pd
20200315-丁香园接口更新分为国内和国外 https://ncov.dxy.cn/ncovh5/view/pneumonia 丁香园-全国统计-info 丁香园-分地区统计-data 丁香园-全国发热门诊一览表-hospital 丁香园-全国新闻-news :param indicator: choice of {"info", "data", "hospital", "news"} :type indicator: str :return: 返回指定 indicator 的数据 :rtype: pandas.DataFrame
20200315-丁香园接口更新分为国内和国外 https://ncov.dxy.cn/ncovh5/view/pneumonia 丁香园-全国统计-info 丁香园-分地区统计-data 丁香园-全国发热门诊一览表-hospital 丁香园-全国新闻-news :param indicator: choice of {"info", "data", "hospital", "news"} :type indicator: str :return: 返回指定 indicator 的数据 :rtype: pandas.DataFrame
305
499
def covid_19_dxy(indicator: str = "浙江省") -> pd.DataFrame: """ 20200315-丁香园接口更新分为国内和国外 https://ncov.dxy.cn/ncovh5/view/pneumonia 丁香园-全国统计-info 丁香园-分地区统计-data 丁香园-全国发热门诊一览表-hospital 丁香园-全国新闻-news :param indicator: choice of {"info", "data", "hospital", "news"} :type indicator: str :return: 返回指定 indicator 的数据 :rtype: pandas.DataFrame """ url = "https://ncov.dxy.cn/ncovh5/view/pneumonia" r = requests.get(url) r.encoding = "utf-8" soup = BeautifulSoup(r.text, "lxml") # news-china text_data_news = str( soup.find("script", attrs={"id": "getTimelineService1"}) ) temp_json = text_data_news[ text_data_news.find("= [{") + 2 : text_data_news.rfind("}catch") ] json_data = pd.DataFrame(json.loads(temp_json)) chinese_news = json_data[ [ "id", "pubDate", "pubDateStr", "title", "summary", "infoSource", "sourceUrl", "provinceId", ] ] # data-domestic data_text = str(soup.find("script", attrs={"id": "getAreaStat"})) data_text_json = json.loads( data_text[data_text.find("= [{") + 2 : data_text.rfind("catch") - 1] ) big_df = pd.DataFrame() for i, p in enumerate( jsonpath.jsonpath(data_text_json, "$..provinceName") ): temp_df = pd.DataFrame( jsonpath.jsonpath(data_text_json, "$..cities")[i] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) domestic_city_df = big_df data_df = pd.DataFrame(data_text_json).iloc[:, :7] data_df.columns = ["地区", "地区简称", "现存确诊", "累计确诊", "-", "治愈", "死亡"] domestic_province_df = data_df[["地区", "地区简称", "现存确诊", "累计确诊", "治愈", "死亡"]] # data-global data_text = str( soup.find("script", attrs={"id": "getListByCountryTypeService2true"}) ) data_text_json = json.loads( data_text[data_text.find("= [{") + 2 : data_text.rfind("catch") - 1] ) global_df = pd.DataFrame(data_text_json) # info dxy_static = str(soup.find("script", attrs={"id": "getStatisticsService"})) data_json = json.loads( dxy_static[dxy_static.find("= {") + 2 : dxy_static.rfind("}c")] ) china_statistics = pd.DataFrame( [ time.strftime( "%Y-%m-%d %H:%M:%S", time.localtime(data_json["modifyTime"] / 1000), ), data_json["currentConfirmedCount"], data_json["confirmedCount"], data_json["suspectedCount"], data_json["curedCount"], data_json["deadCount"], data_json["seriousCount"], ], index=[ "数据发布时间", "现存确诊", "累计确诊", "境外输入", "累计治愈", "累计死亡", "现存重症", ], columns=["info"], ) foreign_statistics = pd.DataFrame.from_dict( data_json["foreignStatistics"], orient="index" ) global_statistics = pd.DataFrame.from_dict( data_json["globalStatistics"], orient="index" ) # hospital url = "https://assets.dxycdn.com/gitrepo/tod-assets/output/default/pneumonia/index.js" payload = {"t": str(int(time.time()))} r = requests.get(url, params=payload) hospital_df = pd.read_html(r.text)[0].iloc[:, :-1] if indicator == "中国疫情分省统计详情": return domestic_province_df if indicator == "中国疫情分市统计详情": return domestic_city_df elif indicator == "全球疫情分国家统计详情": return global_df elif indicator == "中国疫情实时统计": return china_statistics elif indicator == "国外疫情实时统计": return foreign_statistics elif indicator == "全球疫情实时统计": return global_statistics elif indicator == "中国疫情防控医院": return hospital_df elif indicator == "国内新闻": return chinese_news else: try: data_text = str(soup.find("script", attrs={"id": "getAreaStat"})) data_text_json = json.loads( data_text[ data_text.find("= [{") + 2 : data_text.rfind("catch") - 1 ] ) data_df = pd.DataFrame(data_text_json) # indicator = "浙江省" sub_area = pd.DataFrame( data_df[data_df["provinceName"] == indicator]["cities"].values[ 0 ] ) if sub_area.empty: return if sub_area.shape[1] != 10: sub_area.columns = [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", "id", "_", "_", ] sub_area = sub_area[ [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", ] ] else: sub_area.columns = [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", "id", "_", ] sub_area = sub_area[ [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", ] ] return sub_area except IndexError: print("请输入省/市的全称, 如: 浙江省/上海市 等")
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L305-L499
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]
6.666667
[ 13, 14, 15, 16, 18, 21, 24, 25, 39, 40, 43, 44, 47, 50, 51, 52, 53, 54, 55, 58, 61, 64, 67, 68, 71, 95, 98, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 132, 134, 139, 140, 141, 142, 155, 168, 180, 192, 193, 194 ]
31.794872
false
6.904762
195
13
68.205128
10
def covid_19_dxy(indicator: str = "浙江省") -> pd.DataFrame: url = "https://ncov.dxy.cn/ncovh5/view/pneumonia" r = requests.get(url) r.encoding = "utf-8" soup = BeautifulSoup(r.text, "lxml") # news-china text_data_news = str( soup.find("script", attrs={"id": "getTimelineService1"}) ) temp_json = text_data_news[ text_data_news.find("= [{") + 2 : text_data_news.rfind("}catch") ] json_data = pd.DataFrame(json.loads(temp_json)) chinese_news = json_data[ [ "id", "pubDate", "pubDateStr", "title", "summary", "infoSource", "sourceUrl", "provinceId", ] ] # data-domestic data_text = str(soup.find("script", attrs={"id": "getAreaStat"})) data_text_json = json.loads( data_text[data_text.find("= [{") + 2 : data_text.rfind("catch") - 1] ) big_df = pd.DataFrame() for i, p in enumerate( jsonpath.jsonpath(data_text_json, "$..provinceName") ): temp_df = pd.DataFrame( jsonpath.jsonpath(data_text_json, "$..cities")[i] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) domestic_city_df = big_df data_df = pd.DataFrame(data_text_json).iloc[:, :7] data_df.columns = ["地区", "地区简称", "现存确诊", "累计确诊", "-", "治愈", "死亡"] domestic_province_df = data_df[["地区", "地区简称", "现存确诊", "累计确诊", "治愈", "死亡"]] # data-global data_text = str( soup.find("script", attrs={"id": "getListByCountryTypeService2true"}) ) data_text_json = json.loads( data_text[data_text.find("= [{") + 2 : data_text.rfind("catch") - 1] ) global_df = pd.DataFrame(data_text_json) # info dxy_static = str(soup.find("script", attrs={"id": "getStatisticsService"})) data_json = json.loads( dxy_static[dxy_static.find("= {") + 2 : dxy_static.rfind("}c")] ) china_statistics = pd.DataFrame( [ time.strftime( "%Y-%m-%d %H:%M:%S", time.localtime(data_json["modifyTime"] / 1000), ), data_json["currentConfirmedCount"], data_json["confirmedCount"], data_json["suspectedCount"], data_json["curedCount"], data_json["deadCount"], data_json["seriousCount"], ], index=[ "数据发布时间", "现存确诊", "累计确诊", "境外输入", "累计治愈", "累计死亡", "现存重症", ], columns=["info"], ) foreign_statistics = pd.DataFrame.from_dict( data_json["foreignStatistics"], orient="index" ) global_statistics = pd.DataFrame.from_dict( data_json["globalStatistics"], orient="index" ) # hospital url = "https://assets.dxycdn.com/gitrepo/tod-assets/output/default/pneumonia/index.js" payload = {"t": str(int(time.time()))} r = requests.get(url, params=payload) hospital_df = pd.read_html(r.text)[0].iloc[:, :-1] if indicator == "中国疫情分省统计详情": return domestic_province_df if indicator == "中国疫情分市统计详情": return domestic_city_df elif indicator == "全球疫情分国家统计详情": return global_df elif indicator == "中国疫情实时统计": return china_statistics elif indicator == "国外疫情实时统计": return foreign_statistics elif indicator == "全球疫情实时统计": return global_statistics elif indicator == "中国疫情防控医院": return hospital_df elif indicator == "国内新闻": return chinese_news else: try: data_text = str(soup.find("script", attrs={"id": "getAreaStat"})) data_text_json = json.loads( data_text[ data_text.find("= [{") + 2 : data_text.rfind("catch") - 1 ] ) data_df = pd.DataFrame(data_text_json) # indicator = "浙江省" sub_area = pd.DataFrame( data_df[data_df["provinceName"] == indicator]["cities"].values[ 0 ] ) if sub_area.empty: return if sub_area.shape[1] != 10: sub_area.columns = [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", "id", "_", "_", ] sub_area = sub_area[ [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", ] ] else: sub_area.columns = [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", "id", "_", ] sub_area = sub_area[ [ "区域", "现在确诊人数", "确诊人数", "疑似人数", "治愈人数", "死亡人数", "高危人数", "中危人数", ] ] return sub_area except IndexError: print("请输入省/市的全称, 如: 浙江省/上海市 等")
18,112
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_baidu
(indicator: str = "浙江") ->
百度-新型冠状病毒肺炎-疫情实时大数据报告 https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_pc_1 百度迁徙 https://qianxi.baidu.com/ :param indicator: 看说明文档 :type indicator: str :return: 指定 indicator 的数据 :rtype: pandas.DataFrame
百度-新型冠状病毒肺炎-疫情实时大数据报告 https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_pc_1 百度迁徙 https://qianxi.baidu.com/ :param indicator: 看说明文档 :type indicator: str :return: 指定 indicator 的数据 :rtype: pandas.DataFrame
502
709
def covid_19_baidu(indicator: str = "浙江") -> pd.DataFrame: """ 百度-新型冠状病毒肺炎-疫情实时大数据报告 https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_pc_1 百度迁徙 https://qianxi.baidu.com/ :param indicator: 看说明文档 :type indicator: str :return: 指定 indicator 的数据 :rtype: pandas.DataFrame """ # domestic-city url = "https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_pc_1" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") temp_soup = str(soup.find(attrs={"id": "captain-config"})) data_json = demjson.decode( temp_soup[temp_soup.find("{") : temp_soup.rfind("}") + 1] ) big_df = pd.DataFrame() for i, p in enumerate( [item["area"] for item in data_json["component"][0]["caseList"]] ): temp_df = pd.DataFrame( jsonpath.jsonpath( data_json["component"][0]["caseList"][i], "$.subList" )[0] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) domestic_city_df = big_df domestic_province_df = pd.DataFrame( data_json["component"][0]["caseList"] ).iloc[:, :-2] big_df = pd.DataFrame() for i, p in enumerate( jsonpath.jsonpath( data_json["component"][0]["caseOutsideList"], "$..area" ) ): temp_df = pd.DataFrame( jsonpath.jsonpath( data_json["component"][0]["caseOutsideList"], "$..subList" )[i] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) outside_city_df = big_df outside_country_df = pd.DataFrame( data_json["component"][0]["caseOutsideList"] ).iloc[:, :-1] big_df = pd.DataFrame() for i, p in enumerate( jsonpath.jsonpath(data_json["component"][0]["globalList"], "$..area") ): temp_df = pd.DataFrame( jsonpath.jsonpath( data_json["component"][0]["globalList"], "$..subList" )[i] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) global_country_df = big_df global_continent_df = pd.DataFrame( data_json["component"][0]["globalList"] )[["area", "died", "crued", "confirmed", "confirmedRelative"]] url = "https://opendata.baidu.com/data/inner" params = { "tn": "reserved_all_res_tn", "dspName": "iphone", "from_sf": "1", "dsp": "iphone", "resource_id": "28565", "alr": "1", "query": "国内新型肺炎最新动态", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["Result"][0]["items_v2"][0]["aladdin_res"]["DisplayData"][ "result" ]["items"] ) temp_df.rename( { "bjh_na": "_", "eventDescription": "新闻", "eventTime": "时间", "eventUrl": "链接", "homepageUrl": "_", "item_avatar": "_", "siteName": "来源", }, axis=1, inplace=True, ) temp_df.set_index( pd.to_datetime(temp_df["时间"], unit="s", utc=True), inplace=True ) temp_df.index = ( pd.to_datetime(temp_df["时间"], unit="s", utc=True) .tz_convert("Asia/Shanghai") .index ) del temp_df["时间"] temp_df.reset_index(inplace=True) temp_df["时间"] = ( pd.to_datetime(temp_df["时间"]) .dt.date.astype(str) .str.cat(pd.to_datetime(temp_df["时间"]).dt.time.astype(str), sep=" ") ) temp_df = temp_df[ [ "新闻", "时间", "来源", "链接", ] ] domestic_news = temp_df params = { "tn": "reserved_all_res_tn", "dspName": "iphone", "from_sf": "1", "dsp": "iphone", "resource_id": "28565", "alr": "1", "query": "国外新型肺炎最新动态", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["Result"][0]["items_v2"][0]["aladdin_res"]["DisplayData"][ "result" ]["items"] ) temp_df.rename( { "bjh_na": "_", "eventDescription": "新闻", "eventTime": "时间", "eventUrl": "链接", "homepageUrl": "_", "item_avatar": "_", "siteName": "来源", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "新闻", "时间", "来源", "链接", ] ] temp_df.set_index( pd.to_datetime(temp_df["时间"], unit="s", utc=True), inplace=True ) temp_df.index = ( pd.to_datetime(temp_df["时间"], unit="s", utc=True) .tz_convert("Asia/Shanghai") .index ) del temp_df["时间"] temp_df.reset_index(inplace=True) temp_df["时间"] = ( pd.to_datetime(temp_df["时间"]) .dt.date.astype(str) .str.cat(pd.to_datetime(temp_df["时间"]).dt.time.astype(str), sep=" ") ) temp_df = temp_df[ [ "新闻", "时间", "来源", "链接", ] ] foreign_news = temp_df if indicator == "中国分省份详情": return domestic_province_df elif indicator == "中国分城市详情": return domestic_city_df elif indicator == "国外分国详情": return outside_country_df elif indicator == "国外分城市详情": return outside_city_df elif indicator == "全球分洲详情": return global_continent_df elif indicator == "全球分洲国家详情": return global_country_df elif indicator == "国内新型肺炎最新动态": return domestic_news elif indicator == "国外新型肺炎最新动态": return foreign_news
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L502-L709
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
5.769231
[ 12, 13, 14, 15, 16, 19, 20, 23, 29, 30, 31, 33, 37, 38, 43, 48, 49, 51, 53, 57, 58, 61, 66, 68, 69, 71, 75, 76, 85, 86, 87, 92, 105, 108, 113, 114, 115, 120, 128, 130, 139, 140, 141, 146, 159, 167, 170, 175, 176, 177, 182, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207 ]
32.692308
false
6.904762
208
13
67.307692
8
def covid_19_baidu(indicator: str = "浙江") -> pd.DataFrame: # domestic-city url = "https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_pc_1" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") temp_soup = str(soup.find(attrs={"id": "captain-config"})) data_json = demjson.decode( temp_soup[temp_soup.find("{") : temp_soup.rfind("}") + 1] ) big_df = pd.DataFrame() for i, p in enumerate( [item["area"] for item in data_json["component"][0]["caseList"]] ): temp_df = pd.DataFrame( jsonpath.jsonpath( data_json["component"][0]["caseList"][i], "$.subList" )[0] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) domestic_city_df = big_df domestic_province_df = pd.DataFrame( data_json["component"][0]["caseList"] ).iloc[:, :-2] big_df = pd.DataFrame() for i, p in enumerate( jsonpath.jsonpath( data_json["component"][0]["caseOutsideList"], "$..area" ) ): temp_df = pd.DataFrame( jsonpath.jsonpath( data_json["component"][0]["caseOutsideList"], "$..subList" )[i] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) outside_city_df = big_df outside_country_df = pd.DataFrame( data_json["component"][0]["caseOutsideList"] ).iloc[:, :-1] big_df = pd.DataFrame() for i, p in enumerate( jsonpath.jsonpath(data_json["component"][0]["globalList"], "$..area") ): temp_df = pd.DataFrame( jsonpath.jsonpath( data_json["component"][0]["globalList"], "$..subList" )[i] ) temp_df["province"] = p big_df = pd.concat([big_df, temp_df], ignore_index=True) global_country_df = big_df global_continent_df = pd.DataFrame( data_json["component"][0]["globalList"] )[["area", "died", "crued", "confirmed", "confirmedRelative"]] url = "https://opendata.baidu.com/data/inner" params = { "tn": "reserved_all_res_tn", "dspName": "iphone", "from_sf": "1", "dsp": "iphone", "resource_id": "28565", "alr": "1", "query": "国内新型肺炎最新动态", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["Result"][0]["items_v2"][0]["aladdin_res"]["DisplayData"][ "result" ]["items"] ) temp_df.rename( { "bjh_na": "_", "eventDescription": "新闻", "eventTime": "时间", "eventUrl": "链接", "homepageUrl": "_", "item_avatar": "_", "siteName": "来源", }, axis=1, inplace=True, ) temp_df.set_index( pd.to_datetime(temp_df["时间"], unit="s", utc=True), inplace=True ) temp_df.index = ( pd.to_datetime(temp_df["时间"], unit="s", utc=True) .tz_convert("Asia/Shanghai") .index ) del temp_df["时间"] temp_df.reset_index(inplace=True) temp_df["时间"] = ( pd.to_datetime(temp_df["时间"]) .dt.date.astype(str) .str.cat(pd.to_datetime(temp_df["时间"]).dt.time.astype(str), sep=" ") ) temp_df = temp_df[ [ "新闻", "时间", "来源", "链接", ] ] domestic_news = temp_df params = { "tn": "reserved_all_res_tn", "dspName": "iphone", "from_sf": "1", "dsp": "iphone", "resource_id": "28565", "alr": "1", "query": "国外新型肺炎最新动态", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["Result"][0]["items_v2"][0]["aladdin_res"]["DisplayData"][ "result" ]["items"] ) temp_df.rename( { "bjh_na": "_", "eventDescription": "新闻", "eventTime": "时间", "eventUrl": "链接", "homepageUrl": "_", "item_avatar": "_", "siteName": "来源", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "新闻", "时间", "来源", "链接", ] ] temp_df.set_index( pd.to_datetime(temp_df["时间"], unit="s", utc=True), inplace=True ) temp_df.index = ( pd.to_datetime(temp_df["时间"], unit="s", utc=True) .tz_convert("Asia/Shanghai") .index ) del temp_df["时间"] temp_df.reset_index(inplace=True) temp_df["时间"] = ( pd.to_datetime(temp_df["时间"]) .dt.date.astype(str) .str.cat(pd.to_datetime(temp_df["时间"]).dt.time.astype(str), sep=" ") ) temp_df = temp_df[ [ "新闻", "时间", "来源", "链接", ] ] foreign_news = temp_df if indicator == "中国分省份详情": return domestic_province_df elif indicator == "中国分城市详情": return domestic_city_df elif indicator == "国外分国详情": return outside_country_df elif indicator == "国外分城市详情": return outside_city_df elif indicator == "全球分洲详情": return global_continent_df elif indicator == "全球分洲国家详情": return global_country_df elif indicator == "国内新型肺炎最新动态": return domestic_news elif indicator == "国外新型肺炎最新动态": return foreign_news
18,113
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
migration_area_baidu
( area: str = "乌鲁木齐市", indicator: str = "move_out", date: str = "20200201" )
return temp_df
百度地图慧眼-百度迁徙-XXX迁入地详情 百度地图慧眼-百度迁徙-XXX迁出地详情 以上展示 top100 结果,如不够 100 则展示全部 迁入来源地比例: 从 xx 地迁入到当前区域的人数与当前区域迁入总人口的比值 迁出目的地比例: 从当前区域迁出到 xx 的人口与从当前区域迁出总人口的比值 https://qianxi.baidu.com/?from=shoubai#city=0 :param area: 可以输入 省份 或者 具体城市 但是需要用全称 :type area: str :param indicator: move_in 迁入 move_out 迁出 :type indicator: str :param date: 查询的日期 20200101 以后的时间 :type date: str :return: 迁入地详情/迁出地详情的前 50 个 :rtype: pandas.DataFrame
百度地图慧眼-百度迁徙-XXX迁入地详情 百度地图慧眼-百度迁徙-XXX迁出地详情 以上展示 top100 结果,如不够 100 则展示全部 迁入来源地比例: 从 xx 地迁入到当前区域的人数与当前区域迁入总人口的比值 迁出目的地比例: 从当前区域迁出到 xx 的人口与从当前区域迁出总人口的比值 https://qianxi.baidu.com/?from=shoubai#city=0 :param area: 可以输入 省份 或者 具体城市 但是需要用全称 :type area: str :param indicator: move_in 迁入 move_out 迁出 :type indicator: str :param date: 查询的日期 20200101 以后的时间 :type date: str :return: 迁入地详情/迁出地详情的前 50 个 :rtype: pandas.DataFrame
712
748
def migration_area_baidu( area: str = "乌鲁木齐市", indicator: str = "move_out", date: str = "20200201" ) -> pd.DataFrame: """ 百度地图慧眼-百度迁徙-XXX迁入地详情 百度地图慧眼-百度迁徙-XXX迁出地详情 以上展示 top100 结果,如不够 100 则展示全部 迁入来源地比例: 从 xx 地迁入到当前区域的人数与当前区域迁入总人口的比值 迁出目的地比例: 从当前区域迁出到 xx 的人口与从当前区域迁出总人口的比值 https://qianxi.baidu.com/?from=shoubai#city=0 :param area: 可以输入 省份 或者 具体城市 但是需要用全称 :type area: str :param indicator: move_in 迁入 move_out 迁出 :type indicator: str :param date: 查询的日期 20200101 以后的时间 :type date: str :return: 迁入地详情/迁出地详情的前 50 个 :rtype: pandas.DataFrame """ city_dict.update(province_dict) inner_dict = dict(zip(city_dict.values(), city_dict.keys())) if inner_dict[area] in province_dict.keys(): dt_flag = "province" else: dt_flag = "city" url = "https://huiyan.baidu.com/migration/cityrank.jsonp" params = { "dt": dt_flag, "id": inner_dict[area], "type": indicator, "date": date, } r = requests.get(url, params=params) data_text = r.text[r.text.find("({") + 1 : r.text.rfind(");")] data_json = json.loads(data_text) temp_df = pd.DataFrame(data_json["data"]["list"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L712-L748
25
[ 0 ]
2.702703
[ 19, 20, 21, 22, 24, 25, 26, 32, 33, 34, 35, 36 ]
32.432432
false
6.904762
37
2
67.567568
14
def migration_area_baidu( area: str = "乌鲁木齐市", indicator: str = "move_out", date: str = "20200201" ) -> pd.DataFrame: city_dict.update(province_dict) inner_dict = dict(zip(city_dict.values(), city_dict.keys())) if inner_dict[area] in province_dict.keys(): dt_flag = "province" else: dt_flag = "city" url = "https://huiyan.baidu.com/migration/cityrank.jsonp" params = { "dt": dt_flag, "id": inner_dict[area], "type": indicator, "date": date, } r = requests.get(url, params=params) data_text = r.text[r.text.find("({") + 1 : r.text.rfind(");")] data_json = json.loads(data_text) temp_df = pd.DataFrame(data_json["data"]["list"]) return temp_df
18,114
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
migration_scale_baidu
( area: str = "佛山市", indicator: str = "move_out", start_date: str = "20200110", end_date: str = "20200315", )
return temp_df
百度地图慧眼-百度迁徙-迁徙规模 迁徙规模指数:反映迁入或迁出人口规模,城市间可横向对比城市迁徙边界采用该城市行政区划,包含该城市管辖的区、县、乡、村 https://qianxi.baidu.com/?from=shoubai#city=0 :param area: 可以输入 省份 或者 具体城市 但是需要用全称 :type area: str :param indicator: move_in 迁入 move_out 迁出 :type indicator: str :param start_date: 开始查询的日期 默认就可以 :type start_date: str :param end_date: 结束查询的日期 20200101 以后的时间 :type end_date: str :return: 时间序列的迁徙规模指数 :rtype: pandas.DataFrame
百度地图慧眼-百度迁徙-迁徙规模 迁徙规模指数:反映迁入或迁出人口规模,城市间可横向对比城市迁徙边界采用该城市行政区划,包含该城市管辖的区、县、乡、村 https://qianxi.baidu.com/?from=shoubai#city=0 :param area: 可以输入 省份 或者 具体城市 但是需要用全称 :type area: str :param indicator: move_in 迁入 move_out 迁出 :type indicator: str :param start_date: 开始查询的日期 默认就可以 :type start_date: str :param end_date: 结束查询的日期 20200101 以后的时间 :type end_date: str :return: 时间序列的迁徙规模指数 :rtype: pandas.DataFrame
751
792
def migration_scale_baidu( area: str = "佛山市", indicator: str = "move_out", start_date: str = "20200110", end_date: str = "20200315", ) -> pd.DataFrame: """ 百度地图慧眼-百度迁徙-迁徙规模 迁徙规模指数:反映迁入或迁出人口规模,城市间可横向对比城市迁徙边界采用该城市行政区划,包含该城市管辖的区、县、乡、村 https://qianxi.baidu.com/?from=shoubai#city=0 :param area: 可以输入 省份 或者 具体城市 但是需要用全称 :type area: str :param indicator: move_in 迁入 move_out 迁出 :type indicator: str :param start_date: 开始查询的日期 默认就可以 :type start_date: str :param end_date: 结束查询的日期 20200101 以后的时间 :type end_date: str :return: 时间序列的迁徙规模指数 :rtype: pandas.DataFrame """ city_dict.update(province_dict) inner_dict = dict(zip(city_dict.values(), city_dict.keys())) if inner_dict[area] in province_dict.keys(): dt_flag = "province" else: dt_flag = "city" url = "https://huiyan.baidu.com/migration/historycurve.jsonp" params = { "dt": dt_flag, "id": inner_dict[area], "type": indicator, "startDate": start_date, "endDate": end_date, } r = requests.get(url, params=params) json_data = json.loads(r.text[r.text.find("({") + 1 : r.text.rfind(");")]) temp_df = pd.DataFrame.from_dict(json_data["data"]["list"], orient="index") temp_df.index = pd.to_datetime(temp_df.index) temp_df.columns = ["迁徙规模指数"] temp_df = temp_df[start_date:end_date] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L751-L792
25
[ 0 ]
2.380952
[ 21, 22, 23, 24, 26, 27, 28, 35, 36, 37, 38, 39, 40, 41 ]
33.333333
false
6.904762
42
2
66.666667
13
def migration_scale_baidu( area: str = "佛山市", indicator: str = "move_out", start_date: str = "20200110", end_date: str = "20200315", ) -> pd.DataFrame: city_dict.update(province_dict) inner_dict = dict(zip(city_dict.values(), city_dict.keys())) if inner_dict[area] in province_dict.keys(): dt_flag = "province" else: dt_flag = "city" url = "https://huiyan.baidu.com/migration/historycurve.jsonp" params = { "dt": dt_flag, "id": inner_dict[area], "type": indicator, "startDate": start_date, "endDate": end_date, } r = requests.get(url, params=params) json_data = json.loads(r.text[r.text.find("({") + 1 : r.text.rfind(");")]) temp_df = pd.DataFrame.from_dict(json_data["data"]["list"], orient="index") temp_df.index = pd.to_datetime(temp_df.index) temp_df.columns = ["迁徙规模指数"] temp_df = temp_df[start_date:end_date] return temp_df
18,115
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_trip
()
return temp_df
新型肺炎确诊患者-同程查询 https://rl.inews.qq.com/h5/trip?from=newsapp&ADTAG=tgi.wx.share.message :return: 新型肺炎确诊患者-相同行程查询工具的所有历史数据 :rtype: pandas.DataFrame
新型肺炎确诊患者-同程查询 https://rl.inews.qq.com/h5/trip?from=newsapp&ADTAG=tgi.wx.share.message :return: 新型肺炎确诊患者-相同行程查询工具的所有历史数据 :rtype: pandas.DataFrame
795
806
def covid_19_trip() -> pd.DataFrame: """ 新型肺炎确诊患者-同程查询 https://rl.inews.qq.com/h5/trip?from=newsapp&ADTAG=tgi.wx.share.message :return: 新型肺炎确诊患者-相同行程查询工具的所有历史数据 :rtype: pandas.DataFrame """ url = "https://r.inews.qq.com/api/travelFront" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["list"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L795-L806
25
[ 0, 1, 2, 3, 4, 5, 6 ]
58.333333
[ 7, 8, 9, 10, 11 ]
41.666667
false
6.904762
12
1
58.333333
4
def covid_19_trip() -> pd.DataFrame: url = "https://r.inews.qq.com/api/travelFront" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["list"]) return temp_df
18,116
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_trace
()
return big_df
腾讯新闻-疫情-病患轨迹 https://news.qq.com/hdh5/hebeicomeon.htm#/?ADTAG=yqi :return: 病患轨迹 :rtype: pandas.DataFrame
腾讯新闻-疫情-病患轨迹 https://news.qq.com/hdh5/hebeicomeon.htm#/?ADTAG=yqi :return: 病患轨迹 :rtype: pandas.DataFrame
809
889
def covid_19_trace() -> pd.DataFrame: """ 腾讯新闻-疫情-病患轨迹 https://news.qq.com/hdh5/hebeicomeon.htm#/?ADTAG=yqi :return: 病患轨迹 :rtype: pandas.DataFrame """ url = "https://r.inews.qq.com/api/trackmap/poilist" headers = { "user-agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1" } r = requests.get(url, headers=headers) data_json = r.json() province_list = [item["fullname"] for item in data_json["result"]["list"]] big_df = pd.DataFrame() for province in province_list: url = "https://apis.map.qq.com/place_cloud/search/region" params = { "region": province, "page_size": "200", "table_id": "5ff7d526b34a3525c3169a0b", "key": "NFPBZ-D2N3P-T7FDV-VLBQ6-4DVM7-JQFCR", "fliter": "", } headers = { "Referer": "https://news.qq.com/", "Host": "apis.map.qq.com", "Origin": "https://news.qq.com", "user-agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1", } r = requests.get(url, params=params, headers=headers) data_json = r.json() risk_level = [ item["x"]["risk_level"] for item in data_json["result"]["data"] ] count_time = [ item["x"]["datetime"] for item in data_json["result"]["data"] ] temp_df = pd.DataFrame(data_json["result"]["data"]) del temp_df["location"] del temp_df["id"] del temp_df["polygon"] del temp_df["tel"] del temp_df["ud_id"] del temp_df["adcode"] del temp_df["x"] temp_df["update_time"] = pd.to_datetime( temp_df["update_time"], unit="s" ) temp_df["create_time"] = pd.to_datetime( temp_df["create_time"], unit="s" ) temp_df["risk_level"] = risk_level temp_df["count_time"] = count_time del temp_df["create_time"] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "地址", "城市", "区", "_", "省份", "标题", "更新时间", "风险等级", "统计时间", ] big_df = big_df[ [ "地址", "城市", "区", "省份", "标题", "更新时间", "风险等级", "统计时间", ] ] return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L809-L889
25
[ 0, 1, 2, 3, 4, 5, 6 ]
8.641975
[ 7, 8, 11, 12, 13, 14, 15, 16, 17, 24, 30, 31, 32, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 52, 53, 54, 55, 57, 68, 80 ]
38.271605
false
6.904762
81
5
61.728395
4
def covid_19_trace() -> pd.DataFrame: url = "https://r.inews.qq.com/api/trackmap/poilist" headers = { "user-agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1" } r = requests.get(url, headers=headers) data_json = r.json() province_list = [item["fullname"] for item in data_json["result"]["list"]] big_df = pd.DataFrame() for province in province_list: url = "https://apis.map.qq.com/place_cloud/search/region" params = { "region": province, "page_size": "200", "table_id": "5ff7d526b34a3525c3169a0b", "key": "NFPBZ-D2N3P-T7FDV-VLBQ6-4DVM7-JQFCR", "fliter": "", } headers = { "Referer": "https://news.qq.com/", "Host": "apis.map.qq.com", "Origin": "https://news.qq.com", "user-agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1", } r = requests.get(url, params=params, headers=headers) data_json = r.json() risk_level = [ item["x"]["risk_level"] for item in data_json["result"]["data"] ] count_time = [ item["x"]["datetime"] for item in data_json["result"]["data"] ] temp_df = pd.DataFrame(data_json["result"]["data"]) del temp_df["location"] del temp_df["id"] del temp_df["polygon"] del temp_df["tel"] del temp_df["ud_id"] del temp_df["adcode"] del temp_df["x"] temp_df["update_time"] = pd.to_datetime( temp_df["update_time"], unit="s" ) temp_df["create_time"] = pd.to_datetime( temp_df["create_time"], unit="s" ) temp_df["risk_level"] = risk_level temp_df["count_time"] = count_time del temp_df["create_time"] big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "地址", "城市", "区", "_", "省份", "标题", "更新时间", "风险等级", "统计时间", ] big_df = big_df[ [ "地址", "城市", "区", "省份", "标题", "更新时间", "风险等级", "统计时间", ] ] return big_df
18,117
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_hist_city
(city: str = "武汉市") -> pd
return data_df[data_df["city"] == city]
该接口最好用代理速度比较快, 2019-12-01开始 https://github.com/canghailan/Wuhan-2019-nCoV :param city: 具体的城市 :type city: str :return: COVID-19 具体城市的数据 :rtype: pandas.DataFrame
该接口最好用代理速度比较快, 2019-12-01开始 https://github.com/canghailan/Wuhan-2019-nCoV :param city: 具体的城市 :type city: str :return: COVID-19 具体城市的数据 :rtype: pandas.DataFrame
892
905
def covid_19_hist_city(city: str = "武汉市") -> pd.DataFrame: """ 该接口最好用代理速度比较快, 2019-12-01开始 https://github.com/canghailan/Wuhan-2019-nCoV :param city: 具体的城市 :type city: str :return: COVID-19 具体城市的数据 :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/canghailan/Wuhan-2019-nCoV/master/Wuhan-2019-nCoV.json" r = requests.get(url) data_json = r.json() data_df = pd.DataFrame(data_json) return data_df[data_df["city"] == city]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L892-L905
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
64.285714
[ 9, 10, 11, 12, 13 ]
35.714286
false
6.904762
14
1
64.285714
6
def covid_19_hist_city(city: str = "武汉市") -> pd.DataFrame: url = "https://raw.githubusercontent.com/canghailan/Wuhan-2019-nCoV/master/Wuhan-2019-nCoV.json" r = requests.get(url) data_json = r.json() data_df = pd.DataFrame(data_json) return data_df[data_df["city"] == city]
18,118
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_hist_province
(province: str = "湖北省") -> pd
return data_df[data_df["province"] == province]
该接口最好用代理速度比较快, 2019-12-01开始 https://github.com/canghailan/Wuhan-2019-nCoV :param province: 具体的省份 :type province: str :return: COVID-19 具体城市的数据 :rtype: pandas.DataFrame
该接口最好用代理速度比较快, 2019-12-01开始 https://github.com/canghailan/Wuhan-2019-nCoV :param province: 具体的省份 :type province: str :return: COVID-19 具体城市的数据 :rtype: pandas.DataFrame
908
921
def covid_19_hist_province(province: str = "湖北省") -> pd.DataFrame: """ 该接口最好用代理速度比较快, 2019-12-01开始 https://github.com/canghailan/Wuhan-2019-nCoV :param province: 具体的省份 :type province: str :return: COVID-19 具体城市的数据 :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/canghailan/Wuhan-2019-nCoV/master/Wuhan-2019-nCoV.json" r = requests.get(url) data_json = r.json() data_df = pd.DataFrame(data_json) return data_df[data_df["province"] == province]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L908-L921
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
64.285714
[ 9, 10, 11, 12, 13 ]
35.714286
false
6.904762
14
1
64.285714
6
def covid_19_hist_province(province: str = "湖北省") -> pd.DataFrame: url = "https://raw.githubusercontent.com/canghailan/Wuhan-2019-nCoV/master/Wuhan-2019-nCoV.json" r = requests.get(url) data_json = r.json() data_df = pd.DataFrame(data_json) return data_df[data_df["province"] == province]
18,119
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_csse_daily
(date: str = "2020-04-06")
return temp_df
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE, 采集 GitHub csv 文件需要 raw 地址 https://github.com/CSSEGISandData/COVID-19 :param date: from 2020-01-22 to today :type date: str :return: CSSE data :rtype: pandas.DataFrame
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE, 采集 GitHub csv 文件需要 raw 地址 https://github.com/CSSEGISandData/COVID-19 :param date: from 2020-01-22 to today :type date: str :return: CSSE data :rtype: pandas.DataFrame
924
935
def covid_19_csse_daily(date: str = "2020-04-06") -> pd.DataFrame: """ 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE, 采集 GitHub csv 文件需要 raw 地址 https://github.com/CSSEGISandData/COVID-19 :param date: from 2020-01-22 to today :type date: str :return: CSSE data :rtype: pandas.DataFrame """ url = f"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/{date.split('-')[1]}-{date.split('-')[2]}-{date.split('-')[0]}.csv" temp_df = pd.read_table(url, sep=",") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L924-L935
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
75
[ 9, 10, 11 ]
25
false
6.904762
12
1
75
6
def covid_19_csse_daily(date: str = "2020-04-06") -> pd.DataFrame: url = f"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/{date.split('-')[1]}-{date.split('-')[2]}-{date.split('-')[0]}.csv" temp_df = pd.read_table(url, sep=",") return temp_df
18,120
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_csse_us_confirmed
()
return temp_df
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: us confirmed data :rtype: pandas.DataFrame
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: us confirmed data :rtype: pandas.DataFrame
938
947
def covid_19_csse_us_confirmed() -> pd.DataFrame: """ 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: us confirmed data :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv" temp_df = pd.read_table(url, sep=",") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L938-L947
25
[ 0, 1, 2, 3, 4, 5, 6 ]
70
[ 7, 8, 9 ]
30
false
6.904762
10
1
70
4
def covid_19_csse_us_confirmed() -> pd.DataFrame: url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv" temp_df = pd.read_table(url, sep=",") return temp_df
18,121
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_csse_global_confirmed
()
return temp_df
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: global data :rtype: pandas.DataFrame
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: global data :rtype: pandas.DataFrame
950
959
def covid_19_csse_global_confirmed() -> pd.DataFrame: """ 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: global data :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" temp_df = pd.read_table(url, sep=",") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L950-L959
25
[ 0, 1, 2, 3, 4, 5, 6 ]
70
[ 7, 8, 9 ]
30
false
6.904762
10
1
70
4
def covid_19_csse_global_confirmed() -> pd.DataFrame: url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" temp_df = pd.read_table(url, sep=",") return temp_df
18,122
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_csse_us_death
()
return temp_df
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: us death data :rtype: pandas.DataFrame
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: us death data :rtype: pandas.DataFrame
962
971
def covid_19_csse_us_death() -> pd.DataFrame: """ 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: us death data :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv" temp_df = pd.read_table(url, sep=",") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L962-L971
25
[ 0, 1, 2, 3, 4, 5, 6 ]
70
[ 7, 8, 9 ]
30
false
6.904762
10
1
70
4
def covid_19_csse_us_death() -> pd.DataFrame: url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv" temp_df = pd.read_table(url, sep=",") return temp_df
18,123
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_csse_global_death
()
return temp_df
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: global death data :rtype: pandas.DataFrame
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: global death data :rtype: pandas.DataFrame
974
983
def covid_19_csse_global_death() -> pd.DataFrame: """ 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: global death data :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv" temp_df = pd.read_table(url, sep=",") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L974-L983
25
[ 0, 1, 2, 3, 4, 5, 6 ]
70
[ 7, 8, 9 ]
30
false
6.904762
10
1
70
4
def covid_19_csse_global_death() -> pd.DataFrame: url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv" temp_df = pd.read_table(url, sep=",") return temp_df
18,124
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/event/covid.py
covid_19_csse_global_recovered
()
return temp_df
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: recovered data :rtype: pandas.DataFrame
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: recovered data :rtype: pandas.DataFrame
986
995
def covid_19_csse_global_recovered() -> pd.DataFrame: """ 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19 :return: recovered data :rtype: pandas.DataFrame """ url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv" temp_df = pd.read_table(url, sep=",") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/event/covid.py#L986-L995
25
[ 0, 1, 2, 3, 4, 5, 6 ]
70
[ 7, 8, 9 ]
30
false
6.904762
10
1
70
4
def covid_19_csse_global_recovered() -> pd.DataFrame: url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv" temp_df = pd.read_table(url, sep=",") return temp_df
18,125
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_international.py
get_sector_symbol_name_url
()
return name_code_map_dict
期货所对应板块的 URL :return: dict {'能源': '/commodities/energy', '金属': '/commodities/metals', '农业': '/commodities/softs', '商品指数': '/indices/commodities-indices'}
期货所对应板块的 URL :return: dict {'能源': '/commodities/energy', '金属': '/commodities/metals', '农业': '/commodities/softs', '商品指数': '/indices/commodities-indices'}
17
34
def get_sector_symbol_name_url() -> dict: """ 期货所对应板块的 URL :return: dict {'能源': '/commodities/energy', '金属': '/commodities/metals', '农业': '/commodities/softs', '商品指数': '/indices/commodities-indices'} """ url = "https://cn.investing.com/commodities/" res = requests.get(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find_all(attrs={"class": "linkTitle"}) # 去掉-所有国家及地区 url_list = [item.find("a")["href"] for item in name_url_option_list] name_list = [item.get_text() for item in name_url_option_list] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_international.py#L17-L34
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
50
[ 9, 10, 11, 12, 13, 14, 15, 16, 17 ]
50
false
16.129032
18
3
50
6
def get_sector_symbol_name_url() -> dict: url = "https://cn.investing.com/commodities/" res = requests.get(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find_all(attrs={"class": "linkTitle"}) # 去掉-所有国家及地区 url_list = [item.find("a")["href"] for item in name_url_option_list] name_list = [item.get_text() for item in name_url_option_list] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict
18,126
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_international.py
futures_global_commodity_name_url_map
(sector: str = "能源") ->
return name_code_map_dict
参考网页: https://cn.investing.com/commodities/ 获取选择板块对应的: 具体期货品种的 url 地址 :param sector: 板块, 对应 get_global_country_name_url 品种名称 :type sector: str :return: dict of name-url :rtype: dict {'伦敦布伦特原油': '/commodities/brent-oil', 'WTI原油': '/commodities/crude-oil', '伦敦汽油': '/commodities/london-gas-oil', '天然气': '/commodities/natural-gas?cid=49787', '燃料油': '/commodities/heating-oil', '碳排放': '/commodities/carbon-emissions', 'RBOB汽油': '/commodities/gasoline-rbob', '布伦特原油': '/commodities/brent-oil?cid=49769', '原油': '/commodities/crude-oil?cid=49774'}
参考网页: https://cn.investing.com/commodities/ 获取选择板块对应的: 具体期货品种的 url 地址 :param sector: 板块, 对应 get_global_country_name_url 品种名称 :type sector: str :return: dict of name-url :rtype: dict {'伦敦布伦特原油': '/commodities/brent-oil', 'WTI原油': '/commodities/crude-oil', '伦敦汽油': '/commodities/london-gas-oil', '天然气': '/commodities/natural-gas?cid=49787', '燃料油': '/commodities/heating-oil', '碳排放': '/commodities/carbon-emissions', 'RBOB汽油': '/commodities/gasoline-rbob', '布伦特原油': '/commodities/brent-oil?cid=49769', '原油': '/commodities/crude-oil?cid=49774'}
37
69
def futures_global_commodity_name_url_map(sector: str = "能源") -> dict: """ 参考网页: https://cn.investing.com/commodities/ 获取选择板块对应的: 具体期货品种的 url 地址 :param sector: 板块, 对应 get_global_country_name_url 品种名称 :type sector: str :return: dict of name-url :rtype: dict {'伦敦布伦特原油': '/commodities/brent-oil', 'WTI原油': '/commodities/crude-oil', '伦敦汽油': '/commodities/london-gas-oil', '天然气': '/commodities/natural-gas?cid=49787', '燃料油': '/commodities/heating-oil', '碳排放': '/commodities/carbon-emissions', 'RBOB汽油': '/commodities/gasoline-rbob', '布伦特原油': '/commodities/brent-oil?cid=49769', '原油': '/commodities/crude-oil?cid=49774'} """ name_url_dict = get_sector_symbol_name_url() url = f"https://cn.investing.com{name_url_dict[sector]}" res = requests.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") url_list = [ item.find("a")["href"].split("?")[0] for item in soup.find_all(attrs={"class": "plusIconTd"}) ] name_list = [ item.find("a").get_text() for item in soup.find_all(attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_international.py#L37-L69
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ]
54.545455
[ 18, 19, 20, 21, 22, 26, 30, 31, 32 ]
27.272727
false
16.129032
33
3
72.727273
15
def futures_global_commodity_name_url_map(sector: str = "能源") -> dict: name_url_dict = get_sector_symbol_name_url() url = f"https://cn.investing.com{name_url_dict[sector]}" res = requests.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") url_list = [ item.find("a")["href"].split("?")[0] for item in soup.find_all(attrs={"class": "plusIconTd"}) ] name_list = [ item.find("a").get_text() for item in soup.find_all(attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict
18,127
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_international.py
futures_global_commodity_hist
( sector: str = "能源", symbol: str = "伦敦布伦特原油", start_date: str = "20000101", end_date: str = "20191017", )
return temp_df
国际大宗商品的历史量价数据 https://cn.investing.com/commodities :param sector: 板块名称; 调用 futures_global_commodity_name_url_map 函数获取 :type sector: str :param symbol: 品种名称; 通过访问网站查询 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 国际大宗商品的历史量价数据 :rtype: pandas.DataFrame
国际大宗商品的历史量价数据 https://cn.investing.com/commodities :param sector: 板块名称; 调用 futures_global_commodity_name_url_map 函数获取 :type sector: str :param symbol: 品种名称; 通过访问网站查询 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 国际大宗商品的历史量价数据 :rtype: pandas.DataFrame
72
150
def futures_global_commodity_hist( sector: str = "能源", symbol: str = "伦敦布伦特原油", start_date: str = "20000101", end_date: str = "20191017", ) -> pd.DataFrame: """ 国际大宗商品的历史量价数据 https://cn.investing.com/commodities :param sector: 板块名称; 调用 futures_global_commodity_name_url_map 函数获取 :type sector: str :param symbol: 品种名称; 通过访问网站查询 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 国际大宗商品的历史量价数据 :rtype: pandas.DataFrame """ start_date = "/".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "/".join([end_date[:4], end_date[4:6], end_date[6:]]) name_code_dict = futures_global_commodity_name_url_map(sector) temp_url = f"https://cn.investing.com/{name_code_dict[symbol]}-historical-data" res = requests.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text() res = requests.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[0].strip() para_data = re.findall(r"\d+", data) payload = { "curr_id": para_data[0], "smlID": para_data[1], "header": title, "st_date": start_date, "end_date": end_date, "interval_sec": "Daily", "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", } url = "https://cn.investing.com/instruments/HistoricalDataAjax" r = requests.post(url, data=payload, headers=long_headers) temp_df = pd.read_html(r.text)[0] temp_df["日期"] = pd.to_datetime(temp_df["日期"], format="%Y年%m月%d日") if any(temp_df["交易量"].astype(str).str.contains("-")): temp_df["交易量"][temp_df["交易量"].str.contains("-")] = temp_df["交易量"][ temp_df["交易量"].str.contains("-") ].replace("-", 0) if any(temp_df["交易量"].astype(str).str.contains("B")): temp_df["交易量"][temp_df["交易量"].str.contains("B").fillna(False)] = ( temp_df["交易量"][temp_df["交易量"].str.contains("B").fillna(False)] .str.replace("B", "") .astype(float) * 1000000000 ) if any(temp_df["交易量"].astype(str).str.contains("M")): temp_df["交易量"][temp_df["交易量"].str.contains("M").fillna(False)] = ( temp_df["交易量"][temp_df["交易量"].str.contains("M").fillna(False)] .str.replace("M", "") .astype(float) * 1000000 ) if any(temp_df["交易量"].astype(str).str.contains("K")): temp_df["交易量"][temp_df["交易量"].str.contains("K").fillna(False)] = ( temp_df["交易量"][temp_df["交易量"].str.contains("K").fillna(False)] .str.replace("K", "") .astype(float) * 1000 ) temp_df["交易量"] = temp_df["交易量"].astype(float) temp_df["涨跌幅"] = pd.DataFrame( round(temp_df["涨跌幅"].str.replace("%", "").astype(float) / 100, 6) ) temp_df.name = title temp_df.columns.name = None temp_df.sort_values(["日期"], ascending=False, inplace=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_international.py#L72-L150
25
[ 0 ]
1.265823
[ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 50, 51, 57, 58, 64, 65, 71, 72, 75, 76, 77, 78 ]
37.974684
false
16.129032
79
5
62.025316
12
def futures_global_commodity_hist( sector: str = "能源", symbol: str = "伦敦布伦特原油", start_date: str = "20000101", end_date: str = "20191017", ) -> pd.DataFrame: start_date = "/".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "/".join([end_date[:4], end_date[4:6], end_date[6:]]) name_code_dict = futures_global_commodity_name_url_map(sector) temp_url = f"https://cn.investing.com/{name_code_dict[symbol]}-historical-data" res = requests.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text() res = requests.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[0].strip() para_data = re.findall(r"\d+", data) payload = { "curr_id": para_data[0], "smlID": para_data[1], "header": title, "st_date": start_date, "end_date": end_date, "interval_sec": "Daily", "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", } url = "https://cn.investing.com/instruments/HistoricalDataAjax" r = requests.post(url, data=payload, headers=long_headers) temp_df = pd.read_html(r.text)[0] temp_df["日期"] = pd.to_datetime(temp_df["日期"], format="%Y年%m月%d日") if any(temp_df["交易量"].astype(str).str.contains("-")): temp_df["交易量"][temp_df["交易量"].str.contains("-")] = temp_df["交易量"][ temp_df["交易量"].str.contains("-") ].replace("-", 0) if any(temp_df["交易量"].astype(str).str.contains("B")): temp_df["交易量"][temp_df["交易量"].str.contains("B").fillna(False)] = ( temp_df["交易量"][temp_df["交易量"].str.contains("B").fillna(False)] .str.replace("B", "") .astype(float) * 1000000000 ) if any(temp_df["交易量"].astype(str).str.contains("M")): temp_df["交易量"][temp_df["交易量"].str.contains("M").fillna(False)] = ( temp_df["交易量"][temp_df["交易量"].str.contains("M").fillna(False)] .str.replace("M", "") .astype(float) * 1000000 ) if any(temp_df["交易量"].astype(str).str.contains("K")): temp_df["交易量"][temp_df["交易量"].str.contains("K").fillna(False)] = ( temp_df["交易量"][temp_df["交易量"].str.contains("K").fillna(False)] .str.replace("K", "") .astype(float) * 1000 ) temp_df["交易量"] = temp_df["交易量"].astype(float) temp_df["涨跌幅"] = pd.DataFrame( round(temp_df["涨跌幅"].str.replace("%", "").astype(float) / 100, 6) ) temp_df.name = title temp_df.columns.name = None temp_df.sort_values(["日期"], ascending=False, inplace=True) return temp_df
18,128
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_sgx_daily.py
futures_sgx_daily
( trade_date: str = "20200306", recent_day: str = "3" )
return big_df
Futures daily data from sgx P.S. it will be slowly if you do not use VPN :param trade_date: it means the specific trade day you want to fetch :type trade_date: str e.g., "2020/03/06" :param recent_day: the data range near the specific trade day :type recent_day: str e.g. "3" means 3 day before specific trade day :return: data contains from (trade_date - recent_day) to trade_day :rtype: pandas.DataFrame
Futures daily data from sgx P.S. it will be slowly if you do not use VPN :param trade_date: it means the specific trade day you want to fetch :type trade_date: str e.g., "2020/03/06" :param recent_day: the data range near the specific trade day :type recent_day: str e.g. "3" means 3 day before specific trade day :return: data contains from (trade_date - recent_day) to trade_day :rtype: pandas.DataFrame
20
60
def futures_sgx_daily( trade_date: str = "20200306", recent_day: str = "3" ) -> pd.DataFrame: """ Futures daily data from sgx P.S. it will be slowly if you do not use VPN :param trade_date: it means the specific trade day you want to fetch :type trade_date: str e.g., "2020/03/06" :param recent_day: the data range near the specific trade day :type recent_day: str e.g. "3" means 3 day before specific trade day :return: data contains from (trade_date - recent_day) to trade_day :rtype: pandas.DataFrame """ big_df = pd.DataFrame() index_df = index_investing_global( area="新加坡", symbol="FTSE Singapore", start_date="20200101", end_date=trade_date, ) index_df.sort_index(inplace=True) index_df.reset_index(inplace=True) index_df.reset_index(inplace=True) index_df.index = index_df["index"] + 5840 date_start = index_df.index[-1] + 1 - int(recent_day) date_end = index_df.index[-1] + 1 for page in tqdm(range(date_start, date_end)): # page = 5883 url = ( f"https://links.sgx.com/1.0.0/derivatives-daily/{page}/FUTURE.zip" ) r = requests.get(url) with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(file.namelist()[0]) as my_file: data = my_file.read().decode() if file.namelist()[0].endswith("txt"): data_df = pd.read_table(StringIO(data)) else: data_df = pd.read_csv(StringIO(data)) big_df = pd.concat([big_df, data_df], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_sgx_daily.py#L20-L60
25
[ 0 ]
2.439024
[ 13, 14, 20, 21, 22, 23, 24, 25, 26, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40 ]
46.341463
false
32.258065
41
5
53.658537
8
def futures_sgx_daily( trade_date: str = "20200306", recent_day: str = "3" ) -> pd.DataFrame: big_df = pd.DataFrame() index_df = index_investing_global( area="新加坡", symbol="FTSE Singapore", start_date="20200101", end_date=trade_date, ) index_df.sort_index(inplace=True) index_df.reset_index(inplace=True) index_df.reset_index(inplace=True) index_df.index = index_df["index"] + 5840 date_start = index_df.index[-1] + 1 - int(recent_day) date_end = index_df.index[-1] + 1 for page in tqdm(range(date_start, date_end)): # page = 5883 url = ( f"https://links.sgx.com/1.0.0/derivatives-daily/{page}/FUTURE.zip" ) r = requests.get(url) with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(file.namelist()[0]) as my_file: data = my_file.read().decode() if file.namelist()[0].endswith("txt"): data_df = pd.read_table(StringIO(data)) else: data_df = pd.read_csv(StringIO(data)) big_df = pd.concat([big_df, data_df], ignore_index=True) return big_df
18,129
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_roll_yield.py
get_roll_yield
(date=None, var="BB", symbol1=None, symbol2=None, df=None)
指定交易日指定品种(主力和次主力)或任意两个合约的展期收益率 Parameters ------ date: string 某一天日期 format: YYYYMMDD var: string 合约品种如 RB、AL 等 symbol1: string 合约 1 如 rb1810 symbol2: string 合约 2 如 rb1812 df: DataFrame或None 从dailyBar得到合约价格,如果为空就在函数内部抓dailyBar,直接喂给数据可以让计算加快
指定交易日指定品种(主力和次主力)或任意两个合约的展期收益率 Parameters ------ date: string 某一天日期 format: YYYYMMDD var: string 合约品种如 RB、AL 等 symbol1: string 合约 1 如 rb1810 symbol2: string 合约 2 如 rb1812 df: DataFrame或None 从dailyBar得到合约价格,如果为空就在函数内部抓dailyBar,直接喂给数据可以让计算加快
22
74
def get_roll_yield(date=None, var="BB", symbol1=None, symbol2=None, df=None): """ 指定交易日指定品种(主力和次主力)或任意两个合约的展期收益率 Parameters ------ date: string 某一天日期 format: YYYYMMDD var: string 合约品种如 RB、AL 等 symbol1: string 合约 1 如 rb1810 symbol2: string 合约 2 如 rb1812 df: DataFrame或None 从dailyBar得到合约价格,如果为空就在函数内部抓dailyBar,直接喂给数据可以让计算加快 """ # date = "20100104" date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return None if symbol1: var = symbol_varieties(symbol1) if not isinstance(df, pd.DataFrame): market = symbol_market(var) df = get_futures_daily(start_date=date, end_date=date, market=market) if var: df = df[ ~df["symbol"].str.contains("efp") ] # 20200304 由于交易所获取的数据中会有比如 "CUefp",所以在这里过滤 df = df[df["variety"] == var].sort_values( "open_interest", ascending=False ) # df["close"] = df["close"].astype("float") df["close"] = pd.to_numeric(df["close"]) if len(df["close"]) < 2: return None symbol1 = df["symbol"].tolist()[0] symbol2 = df["symbol"].tolist()[1] close1 = df["close"][df["symbol"] == symbol1].tolist()[0] close2 = df["close"][df["symbol"] == symbol2].tolist()[0] a = re.sub(r"\D", "", symbol1) a_1 = int(a[:-2]) a_2 = int(a[-2:]) b = re.sub(r"\D", "", symbol2) b_1 = int(b[:-2]) b_2 = int(b[-2:]) c = (a_1 - b_1) * 12 + (a_2 - b_2) if close1 == 0 or close2 == 0: return False if c > 0: return math.log(close2 / close1) / c * 12, symbol2, symbol1 else: return math.log(close2 / close1) / c * 12, symbol1, symbol2
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_roll_yield.py#L22-L74
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
22.641509
[ 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52 ]
58.490566
false
15.662651
53
9
41.509434
8
def get_roll_yield(date=None, var="BB", symbol1=None, symbol2=None, df=None): # date = "20100104" date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return None if symbol1: var = symbol_varieties(symbol1) if not isinstance(df, pd.DataFrame): market = symbol_market(var) df = get_futures_daily(start_date=date, end_date=date, market=market) if var: df = df[ ~df["symbol"].str.contains("efp") ] # 20200304 由于交易所获取的数据中会有比如 "CUefp",所以在这里过滤 df = df[df["variety"] == var].sort_values( "open_interest", ascending=False ) # df["close"] = df["close"].astype("float") df["close"] = pd.to_numeric(df["close"]) if len(df["close"]) < 2: return None symbol1 = df["symbol"].tolist()[0] symbol2 = df["symbol"].tolist()[1] close1 = df["close"][df["symbol"] == symbol1].tolist()[0] close2 = df["close"][df["symbol"] == symbol2].tolist()[0] a = re.sub(r"\D", "", symbol1) a_1 = int(a[:-2]) a_2 = int(a[-2:]) b = re.sub(r"\D", "", symbol2) b_1 = int(b[:-2]) b_2 = int(b[-2:]) c = (a_1 - b_1) * 12 + (a_2 - b_2) if close1 == 0 or close2 == 0: return False if c > 0: return math.log(close2 / close1) / c * 12, symbol2, symbol1 else: return math.log(close2 / close1) / c * 12, symbol1, symbol2
18,130
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_roll_yield.py
get_roll_yield_bar
( type_method: str = "var", var: str = "RB", date: str = "20201030", start_day: str = None, end_day: str = None, )
展期收益率 :param type_method: 'symbol': 获取指定交易日指定品种所有交割月合约的收盘价; 'var': 获取指定交易日所有品种两个主力合约的展期收益率(展期收益率横截面); 'date': 获取指定品种每天的两个主力合约的展期收益率(展期收益率时间序列) :param var: 合约品种如 "RB", "AL" 等 :param date: 指定交易日 format: YYYYMMDD :param start_day: 开始日期 format:YYYYMMDD :param end_day: 结束日期 format:YYYYMMDD :return: pandas.DataFrame 展期收益率数据(DataFrame) ry 展期收益率 index 日期或品种
展期收益率 :param type_method: 'symbol': 获取指定交易日指定品种所有交割月合约的收盘价; 'var': 获取指定交易日所有品种两个主力合约的展期收益率(展期收益率横截面); 'date': 获取指定品种每天的两个主力合约的展期收益率(展期收益率时间序列) :param var: 合约品种如 "RB", "AL" 等 :param date: 指定交易日 format: YYYYMMDD :param start_day: 开始日期 format:YYYYMMDD :param end_day: 结束日期 format:YYYYMMDD :return: pandas.DataFrame 展期收益率数据(DataFrame) ry 展期收益率 index 日期或品种
77
170
def get_roll_yield_bar( type_method: str = "var", var: str = "RB", date: str = "20201030", start_day: str = None, end_day: str = None, ): """ 展期收益率 :param type_method: 'symbol': 获取指定交易日指定品种所有交割月合约的收盘价; 'var': 获取指定交易日所有品种两个主力合约的展期收益率(展期收益率横截面); 'date': 获取指定品种每天的两个主力合约的展期收益率(展期收益率时间序列) :param var: 合约品种如 "RB", "AL" 等 :param date: 指定交易日 format: YYYYMMDD :param start_day: 开始日期 format:YYYYMMDD :param end_day: 结束日期 format:YYYYMMDD :return: pandas.DataFrame 展期收益率数据(DataFrame) ry 展期收益率 index 日期或品种 """ date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now()) ) ) if type_method == "symbol": df = get_futures_daily( start_date=date, end_date=date, market=symbol_market(var) ) df = df[df["variety"] == var] return df if type_method == "var": df = pd.DataFrame() for market in ["dce", "cffex", "shfe", "czce", "gfex"]: df = pd.concat( [ df, get_futures_daily( start_date=date, end_date=date, market=market ), ] ) var_list = list(set(df["variety"])) if "IO" in var_list: var_list.remove("IO") # IO 为期权 df_l = pd.DataFrame() for var in var_list: ry = get_roll_yield(date, var, df=df) if ry: df_l = pd.concat( [ df_l, pd.DataFrame( [ry], index=[var], columns=["roll_yield", "near_by", "deferred"], ), ] ) df_l["date"] = date df_l = df_l.sort_values("roll_yield") return df_l if type_method == "date": df_l = pd.DataFrame() while start_day <= end_day: try: ry = get_roll_yield(start_day, var) if ry: df_l = pd.concat( [ df_l, pd.DataFrame( [ry], index=[start_day], columns=["roll_yield", "near_by", "deferred"], ), ] ) except: pass start_day += datetime.timedelta(days=1) return df_l
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_roll_yield.py#L77-L170
25
[ 0 ]
1.06383
[ 19, 22, 27, 35, 36, 39, 40, 42, 43, 44, 45, 53, 54, 55, 56, 57, 58, 59, 60, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 90, 91, 92, 93 ]
35.106383
false
15.662651
94
11
64.893617
10
def get_roll_yield_bar( type_method: str = "var", var: str = "RB", date: str = "20201030", start_day: str = None, end_day: str = None, ): date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now()) ) ) if type_method == "symbol": df = get_futures_daily( start_date=date, end_date=date, market=symbol_market(var) ) df = df[df["variety"] == var] return df if type_method == "var": df = pd.DataFrame() for market in ["dce", "cffex", "shfe", "czce", "gfex"]: df = pd.concat( [ df, get_futures_daily( start_date=date, end_date=date, market=market ), ] ) var_list = list(set(df["variety"])) if "IO" in var_list: var_list.remove("IO") # IO 为期权 df_l = pd.DataFrame() for var in var_list: ry = get_roll_yield(date, var, df=df) if ry: df_l = pd.concat( [ df_l, pd.DataFrame( [ry], index=[var], columns=["roll_yield", "near_by", "deferred"], ), ] ) df_l["date"] = date df_l = df_l.sort_values("roll_yield") return df_l if type_method == "date": df_l = pd.DataFrame() while start_day <= end_day: try: ry = get_roll_yield(start_day, var) if ry: df_l = pd.concat( [ df_l, pd.DataFrame( [ry], index=[start_day], columns=["roll_yield", "near_by", "deferred"], ), ] ) except: pass start_day += datetime.timedelta(days=1) return df_l
18,131
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_news_baidu.py
futures_news_baidu
(symbol: str = "AL")
return temp_df
百度股市通-期货-新闻 https://gushitong.baidu.com/futures/ab-CJ888 :param symbol: 期货品种代码;大写 :type symbol: str :return: 新闻 :rtype: pandas.DataFrame
百度股市通-期货-新闻 https://gushitong.baidu.com/futures/ab-CJ888 :param symbol: 期货品种代码;大写 :type symbol: str :return: 新闻 :rtype: pandas.DataFrame
12
49
def futures_news_baidu(symbol: str = "AL") -> pd.DataFrame: """ 百度股市通-期货-新闻 https://gushitong.baidu.com/futures/ab-CJ888 :param symbol: 期货品种代码;大写 :type symbol: str :return: 新闻 :rtype: pandas.DataFrame """ url = "https://finance.pae.baidu.com/vapi/getfuturesnews" params = {"code": f"{symbol}888", "pn": "0", "rn": "2000", "finClientType": "pc"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["Result"]) temp_df.rename( columns={ "loc": "-", "provider": "-", "source": "-", "publish_time": "发布时间", "third_url": "新闻链接", "title": "标题", "is_self_build": "-", "news_id": "-", "locate_url": "-", }, inplace=True, ) temp_df = temp_df[ [ "标题", "发布时间", "新闻链接", ] ] temp_df["发布时间"] = pd.to_datetime(temp_df["发布时间"], unit="s").dt.date temp_df.sort_values(["发布时间"], inplace=True, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_news_baidu.py#L12-L49
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
23.684211
[ 9, 10, 11, 12, 13, 14, 28, 35, 36, 37 ]
26.315789
false
29.411765
38
1
73.684211
6
def futures_news_baidu(symbol: str = "AL") -> pd.DataFrame: url = "https://finance.pae.baidu.com/vapi/getfuturesnews" params = {"code": f"{symbol}888", "pn": "0", "rn": "2000", "finClientType": "pc"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["Result"]) temp_df.rename( columns={ "loc": "-", "provider": "-", "source": "-", "publish_time": "发布时间", "third_url": "新闻链接", "title": "标题", "is_self_build": "-", "news_id": "-", "locate_url": "-", }, inplace=True, ) temp_df = temp_df[ [ "标题", "发布时间", "新闻链接", ] ] temp_df["发布时间"] = pd.to_datetime(temp_df["发布时间"], unit="s").dt.date temp_df.sort_values(["发布时间"], inplace=True, ignore_index=True) return temp_df
18,132
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/symbol_var.py
symbol_varieties
(contract_code: str)
return symbol_detail
查找到具体合约代码, 返回大写字母的品种名称 :param contract_code: ru1801 :return: RU
查找到具体合约代码, 返回大写字母的品种名称 :param contract_code: ru1801 :return: RU
12
21
def symbol_varieties(contract_code: str): """ 查找到具体合约代码, 返回大写字母的品种名称 :param contract_code: ru1801 :return: RU """ symbol_detail = "".join(re.findall(r"\D", contract_code)).upper().strip() if symbol_detail == "PTA": symbol_detail = "TA" return symbol_detail
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/symbol_var.py#L12-L21
25
[ 0, 1, 2, 3, 4, 5 ]
60
[ 6, 7, 8, 9 ]
40
false
25.806452
10
2
60
3
def symbol_varieties(contract_code: str): symbol_detail = "".join(re.findall(r"\D", contract_code)).upper().strip() if symbol_detail == "PTA": symbol_detail = "TA" return symbol_detail
18,133