nwo
stringlengths
10
28
sha
stringlengths
40
40
path
stringlengths
11
97
identifier
stringlengths
1
64
parameters
stringlengths
2
2.24k
return_statement
stringlengths
0
2.17k
docstring
stringlengths
0
5.45k
docstring_summary
stringlengths
0
3.83k
func_begin
int64
1
13.4k
func_end
int64
2
13.4k
function
stringlengths
28
56.4k
url
stringlengths
106
209
project
int64
1
48
executed_lines
list
executed_lines_pc
float64
0
153
missing_lines
list
missing_lines_pc
float64
0
100
covered
bool
2 classes
filecoverage
float64
2.53
100
function_lines
int64
2
1.46k
mccabe
int64
1
253
coverage
float64
0
100
docstring_lines
int64
0
112
function_nodoc
stringlengths
9
56.4k
id
int64
0
29.8k
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/symbol_var.py
symbol_market
(symbol_detail: str = "SC")
映射出市场代码 :param symbol_detail: :return:
映射出市场代码 :param symbol_detail: :return:
24
33
def symbol_market(symbol_detail: str = "SC"): """ 映射出市场代码 :param symbol_detail: :return: """ var_item = symbol_varieties(symbol_detail) for market_item, contract_items in cons.market_exchange_symbols.items(): if var_item in contract_items: return market_item
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/symbol_var.py#L24-L33
25
[ 0, 1, 2, 3, 4, 5 ]
60
[ 6, 7, 8, 9 ]
40
false
25.806452
10
3
60
3
def symbol_market(symbol_detail: str = "SC"): var_item = symbol_varieties(symbol_detail) for market_item, contract_items in cons.market_exchange_symbols.items(): if var_item in contract_items: return market_item
18,134
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/symbol_var.py
find_chinese
(chinese_string: str)
return "".join(res)
查找中文字符 :param chinese_string: 中文字符串 :return:
查找中文字符 :param chinese_string: 中文字符串 :return:
36
44
def find_chinese(chinese_string: str): """ 查找中文字符 :param chinese_string: 中文字符串 :return: """ p = re.compile(r"[\u4e00-\u9fa5]") res = re.findall(p, chinese_string) return "".join(res)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/symbol_var.py#L36-L44
25
[ 0, 1, 2, 3, 4, 5 ]
66.666667
[ 6, 7, 8 ]
33.333333
false
25.806452
9
1
66.666667
3
def find_chinese(chinese_string: str): p = re.compile(r"[\u4e00-\u9fa5]") res = re.findall(p, chinese_string) return "".join(res)
18,135
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/symbol_var.py
chinese_to_english
(chinese_var: str)
return english_list[pos]
映射期货品种中文名称和英文缩写 :param chinese_var: 期货品种中文名称 :return: 对应的英文缩写
映射期货品种中文名称和英文缩写 :param chinese_var: 期货品种中文名称 :return: 对应的英文缩写
47
264
def chinese_to_english(chinese_var: str): """ 映射期货品种中文名称和英文缩写 :param chinese_var: 期货品种中文名称 :return: 对应的英文缩写 """ chinese_list = [ "橡胶", "天然橡胶", "石油沥青", "沥青", "沥青仓库", "沥青(仓库)", "沥青厂库", "沥青(厂库)", "热轧卷板", "热轧板卷", "燃料油", "白银", "线材", "螺纹钢", "铅", "铜", "铝", "锌", "黄金", "钯金", "锡", "镍", "纸浆", "豆一", "大豆", "豆二", "胶合板", "玉米", "玉米淀粉", "聚乙烯", "LLDPE", "LDPE", "豆粕", "豆油", "大豆油", "棕榈油", "纤维板", "鸡蛋", "聚氯乙烯", "PVC", "聚丙烯", "PP", "焦炭", "焦煤", "铁矿石", "乙二醇", "强麦", "强筋小麦", " 强筋小麦", "硬冬白麦", "普麦", "硬白小麦", "硬白小麦()", "皮棉", "棉花", "一号棉", "白糖", "PTA", "菜籽油", "菜油", "早籼稻", "早籼", "甲醇", "柴油", "玻璃", "油菜籽", "菜籽", "菜籽粕", "菜粕", "动力煤", "粳稻", "晚籼稻", "晚籼", "硅铁", "锰硅", "硬麦", "棉纱", "苹果", "原油", "中质含硫原油", "尿素", "20号胶", "苯乙烯", "不锈钢", "粳米", "20号胶20", "红枣", "不锈钢仓库", "纯碱", "液化石油气", "低硫燃料油", "纸浆仓库", "石油沥青厂库", "石油沥青仓库", "螺纹钢仓库", "螺纹钢厂库", "纸浆厂库", "低硫燃料油仓库", "低硫燃料油厂库", "短纤", '涤纶短纤', '生猪', '花生', ] english_list = [ "RU", "RU", "BU", "BU", "BU", "BU", "BU2", "BU2", "HC", "HC", "FU", "AG", "WR", "RB", "PB", "CU", "AL", "ZN", "AU", "AU", "SN", "NI", "SP", "A", "A", "B", "BB", "C", "CS", "L", "L", "L", "M", "Y", "Y", "P", "FB", "JD", "V", "V", "PP", "PP", "J", "JM", "I", "EG", "WH", "WH", "WH", "PM", "PM", "PM", "PM", "CF", "CF", "CF", "SR", "TA", "OI", "OI", "RI", "ER", "MA", "MA", "FG", "RS", "RS", "RM", "RM", "ZC", "JR", "LR", "LR", "SF", "SM", "WT", "CY", "AP", "SC", "SC", "UR", "NR", "EB", "SS", "RR", "NR", "CJ", "SS", "SA", "PG", "LU", "SP", "BU", "BU", "RB", "RB", "SP", "LU", "LU", "PF", "PF", "LH", "PK", ] pos = chinese_list.index(chinese_var) return english_list[pos]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/symbol_var.py#L47-L264
25
[ 0, 1, 2, 3, 4, 5 ]
2.752294
[ 6, 111, 216, 217 ]
1.834862
false
25.806452
218
1
98.165138
3
def chinese_to_english(chinese_var: str): chinese_list = [ "橡胶", "天然橡胶", "石油沥青", "沥青", "沥青仓库", "沥青(仓库)", "沥青厂库", "沥青(厂库)", "热轧卷板", "热轧板卷", "燃料油", "白银", "线材", "螺纹钢", "铅", "铜", "铝", "锌", "黄金", "钯金", "锡", "镍", "纸浆", "豆一", "大豆", "豆二", "胶合板", "玉米", "玉米淀粉", "聚乙烯", "LLDPE", "LDPE", "豆粕", "豆油", "大豆油", "棕榈油", "纤维板", "鸡蛋", "聚氯乙烯", "PVC", "聚丙烯", "PP", "焦炭", "焦煤", "铁矿石", "乙二醇", "强麦", "强筋小麦", " 强筋小麦", "硬冬白麦", "普麦", "硬白小麦", "硬白小麦()", "皮棉", "棉花", "一号棉", "白糖", "PTA", "菜籽油", "菜油", "早籼稻", "早籼", "甲醇", "柴油", "玻璃", "油菜籽", "菜籽", "菜籽粕", "菜粕", "动力煤", "粳稻", "晚籼稻", "晚籼", "硅铁", "锰硅", "硬麦", "棉纱", "苹果", "原油", "中质含硫原油", "尿素", "20号胶", "苯乙烯", "不锈钢", "粳米", "20号胶20", "红枣", "不锈钢仓库", "纯碱", "液化石油气", "低硫燃料油", "纸浆仓库", "石油沥青厂库", "石油沥青仓库", "螺纹钢仓库", "螺纹钢厂库", "纸浆厂库", "低硫燃料油仓库", "低硫燃料油厂库", "短纤", '涤纶短纤', '生猪', '花生', ] english_list = [ "RU", "RU", "BU", "BU", "BU", "BU", "BU2", "BU2", "HC", "HC", "FU", "AG", "WR", "RB", "PB", "CU", "AL", "ZN", "AU", "AU", "SN", "NI", "SP", "A", "A", "B", "BB", "C", "CS", "L", "L", "L", "M", "Y", "Y", "P", "FB", "JD", "V", "V", "PP", "PP", "J", "JM", "I", "EG", "WH", "WH", "WH", "PM", "PM", "PM", "PM", "CF", "CF", "CF", "SR", "TA", "OI", "OI", "RI", "ER", "MA", "MA", "FG", "RS", "RS", "RM", "RM", "ZC", "JR", "LR", "LR", "SF", "SM", "WT", "CY", "AP", "SC", "SC", "UR", "NR", "EB", "SS", "RR", "NR", "CJ", "SS", "SA", "PG", "LU", "SP", "BU", "BU", "RB", "RB", "SP", "LU", "LU", "PF", "PF", "LH", "PK", ] pos = chinese_list.index(chinese_var) return english_list[pos]
18,136
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_warehouse_receipt.py
futures_czce_warehouse_receipt
(trade_date: str = "20200702")
return big_dict
郑州商品交易所-交易数据-仓单日报 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict
郑州商品交易所-交易数据-仓单日报 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict
19
51
def futures_czce_warehouse_receipt(trade_date: str = "20200702") -> dict: """ 郑州商品交易所-交易数据-仓单日报 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict """ url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{trade_date[:4]}/{trade_date}/FutureDataWhsheet.xls" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36" } r = requests.get(url, verify=False, headers=headers) temp_df = pd.read_excel(BytesIO(r.content)) index_list = temp_df[ temp_df.iloc[:, 0].str.find("品种") == 0.0 ].index.to_list() index_list.append(len(temp_df)) big_dict = {} for inner_index in range(len(index_list) - 1): inner_df = temp_df[ index_list[inner_index] : index_list[inner_index + 1] ] inner_key = re.findall(r"[a-zA-Z]+", inner_df.iloc[0, 0])[0] inner_df = inner_df.iloc[1:, :] inner_df.dropna(axis=0, how="all", inplace=True) inner_df.dropna(axis=1, how="all", inplace=True) inner_df.columns = inner_df.iloc[0, :].to_list() inner_df = inner_df.iloc[1:, :] inner_df.reset_index(inplace=True, drop=True) big_dict[inner_key] = inner_df return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_warehouse_receipt.py#L19-L51
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
27.272727
[ 9, 10, 13, 14, 15, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32 ]
54.545455
false
10.588235
33
2
45.454545
6
def futures_czce_warehouse_receipt(trade_date: str = "20200702") -> dict: url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{trade_date[:4]}/{trade_date}/FutureDataWhsheet.xls" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36" } r = requests.get(url, verify=False, headers=headers) temp_df = pd.read_excel(BytesIO(r.content)) index_list = temp_df[ temp_df.iloc[:, 0].str.find("品种") == 0.0 ].index.to_list() index_list.append(len(temp_df)) big_dict = {} for inner_index in range(len(index_list) - 1): inner_df = temp_df[ index_list[inner_index] : index_list[inner_index + 1] ] inner_key = re.findall(r"[a-zA-Z]+", inner_df.iloc[0, 0])[0] inner_df = inner_df.iloc[1:, :] inner_df.dropna(axis=0, how="all", inplace=True) inner_df.dropna(axis=1, how="all", inplace=True) inner_df.columns = inner_df.iloc[0, :].to_list() inner_df = inner_df.iloc[1:, :] inner_df.reset_index(inplace=True, drop=True) big_dict[inner_key] = inner_df return big_dict
18,138
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_warehouse_receipt.py
futures_dce_warehouse_receipt
(trade_date: str = "20200702")
return big_dict
大连商品交易所-行情数据-统计数据-日统计-仓单日报 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/cdrb/index.html :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict
大连商品交易所-行情数据-统计数据-日统计-仓单日报 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/cdrb/index.html :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict
54
90
def futures_dce_warehouse_receipt(trade_date: str = "20200702") -> dict: """ 大连商品交易所-行情数据-统计数据-日统计-仓单日报 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/cdrb/index.html :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict """ url = "http://www.dce.com.cn/publicweb/quotesdata/wbillWeeklyQuotes.html" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36" } params = { "wbillWeeklyQuotes.variety": "all", "year": trade_date[:4], "month": str(int(trade_date[4:6]) - 1), "day": trade_date[6:], } r = requests.get(url, params=params, headers=headers) temp_df = pd.read_html(r.text)[0] index_list = temp_df[ temp_df.iloc[:, 0].str.contains("小计") == 1 ].index.to_list() index_list.insert(0, 0) big_dict = {} for inner_index in range(len(index_list) - 1): if inner_index == 0: temp_index = 0 else: temp_index = index_list[inner_index] + 1 inner_df = temp_df[temp_index : index_list[inner_index + 1] + 1] inner_key = inner_df.iloc[0, 0] inner_df.reset_index(inplace=True, drop=True) inner_df = inner_df.fillna(method="ffill") big_dict[inner_key] = inner_df return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_warehouse_receipt.py#L54-L90
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
24.324324
[ 9, 10, 13, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ]
48.648649
false
10.588235
37
3
51.351351
6
def futures_dce_warehouse_receipt(trade_date: str = "20200702") -> dict: url = "http://www.dce.com.cn/publicweb/quotesdata/wbillWeeklyQuotes.html" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36" } params = { "wbillWeeklyQuotes.variety": "all", "year": trade_date[:4], "month": str(int(trade_date[4:6]) - 1), "day": trade_date[6:], } r = requests.get(url, params=params, headers=headers) temp_df = pd.read_html(r.text)[0] index_list = temp_df[ temp_df.iloc[:, 0].str.contains("小计") == 1 ].index.to_list() index_list.insert(0, 0) big_dict = {} for inner_index in range(len(index_list) - 1): if inner_index == 0: temp_index = 0 else: temp_index = index_list[inner_index] + 1 inner_df = temp_df[temp_index : index_list[inner_index + 1] + 1] inner_key = inner_df.iloc[0, 0] inner_df.reset_index(inplace=True, drop=True) inner_df = inner_df.fillna(method="ffill") big_dict[inner_key] = inner_df return big_dict
18,139
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_warehouse_receipt.py
futures_shfe_warehouse_receipt
(trade_date: str = "20200702")
return big_dict
上海期货交易所指定交割仓库期货仓单日报 http://www.shfe.com.cn/statements/dataview.html?paramid=dailystock&paramdate=20200703 :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict
上海期货交易所指定交割仓库期货仓单日报 http://www.shfe.com.cn/statements/dataview.html?paramid=dailystock&paramdate=20200703 :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict
93
146
def futures_shfe_warehouse_receipt(trade_date: str = "20200702") -> dict: """ 上海期货交易所指定交割仓库期货仓单日报 http://www.shfe.com.cn/statements/dataview.html?paramid=dailystock&paramdate=20200703 :param trade_date: 交易日, e.g., "20200702" :type trade_date: str :return: 指定日期的仓单日报数据 :rtype: dict """ headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36" } url = f"http://www.shfe.com.cn/data/dailydata/{trade_date}dailystock.dat" if trade_date >= "20140519": r = requests.get(url, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["o_cursor"]) temp_df["VARNAME"] = ( temp_df["VARNAME"].str.split(r"$", expand=True).iloc[:, 0] ) temp_df["REGNAME"] = ( temp_df["REGNAME"].str.split(r"$", expand=True).iloc[:, 0] ) temp_df["WHABBRNAME"] = ( temp_df["WHABBRNAME"].str.split(r"$", expand=True).iloc[:, 0] ) big_dict = {} for item in set(temp_df["VARNAME"]): big_dict[item] = temp_df[temp_df["VARNAME"] == item] else: url = f"http://www.shfe.com.cn/data/dailydata/{trade_date}dailystock.html" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] index_list = temp_df[ temp_df.iloc[:, 3].str.contains("单位:") == 1 ].index.to_list() big_dict = {} for inner_index in range(len(index_list)): temp_index_start = index_list[inner_index] if (inner_index + 1) >= len(index_list): if temp_df.iloc[-1, 0].startswith("注:"): temp_index_end = len(temp_df) - 1 else: temp_index_end = len(temp_df) else: temp_index_end = index_list[inner_index + 1] inner_df = temp_df[temp_index_start:temp_index_end] inner_df.reset_index(inplace=True, drop=True) inner_key = inner_df.iloc[0, 0] inner_df.columns = inner_df.iloc[1].to_list() inner_df = inner_df[2:] inner_df.reset_index(inplace=True, drop=True) big_dict[inner_key] = inner_df return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_warehouse_receipt.py#L93-L146
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.666667
[ 9, 12, 13, 14, 15, 16, 17, 20, 23, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53 ]
59.259259
false
10.588235
54
6
40.740741
6
def futures_shfe_warehouse_receipt(trade_date: str = "20200702") -> dict: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36" } url = f"http://www.shfe.com.cn/data/dailydata/{trade_date}dailystock.dat" if trade_date >= "20140519": r = requests.get(url, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["o_cursor"]) temp_df["VARNAME"] = ( temp_df["VARNAME"].str.split(r"$", expand=True).iloc[:, 0] ) temp_df["REGNAME"] = ( temp_df["REGNAME"].str.split(r"$", expand=True).iloc[:, 0] ) temp_df["WHABBRNAME"] = ( temp_df["WHABBRNAME"].str.split(r"$", expand=True).iloc[:, 0] ) big_dict = {} for item in set(temp_df["VARNAME"]): big_dict[item] = temp_df[temp_df["VARNAME"] == item] else: url = f"http://www.shfe.com.cn/data/dailydata/{trade_date}dailystock.html" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] index_list = temp_df[ temp_df.iloc[:, 3].str.contains("单位:") == 1 ].index.to_list() big_dict = {} for inner_index in range(len(index_list)): temp_index_start = index_list[inner_index] if (inner_index + 1) >= len(index_list): if temp_df.iloc[-1, 0].startswith("注:"): temp_index_end = len(temp_df) - 1 else: temp_index_end = len(temp_df) else: temp_index_end = index_list[inner_index + 1] inner_df = temp_df[temp_index_start:temp_index_end] inner_df.reset_index(inplace=True, drop=True) inner_key = inner_df.iloc[0, 0] inner_df.columns = inner_df.iloc[1].to_list() inner_df = inner_df[2:] inner_df.reset_index(inplace=True, drop=True) big_dict[inner_key] = inner_df return big_dict
18,140
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_inventory_99.py
futures_inventory_99
( exchange: str = "大连商品交易所", symbol: str = "豆一" )
99 期货网-大宗商品库存数据 http://www.99qh.com/d/store.aspx :param exchange: 交易所名称; choice of {"上海期货交易所", "郑州商品交易所", "大连商品交易所", "LME", "NYMEX", "CBOT", "NYBOT", "TOCOM", "上海国际能源交易中心", "OSE"} :type exchange: str :param symbol: 交易所对应的具体品种; 如:大连商品交易所的 豆一 :type symbol: str :return: 大宗商品库存数据 :rtype: pandas.DataFrame
99 期货网-大宗商品库存数据 http://www.99qh.com/d/store.aspx :param exchange: 交易所名称; choice of {"上海期货交易所", "郑州商品交易所", "大连商品交易所", "LME", "NYMEX", "CBOT", "NYBOT", "TOCOM", "上海国际能源交易中心", "OSE"} :type exchange: str :param symbol: 交易所对应的具体品种; 如:大连商品交易所的 豆一 :type symbol: str :return: 大宗商品库存数据 :rtype: pandas.DataFrame
18
288
def futures_inventory_99( exchange: str = "大连商品交易所", symbol: str = "豆一" ) -> pd.DataFrame: """ 99 期货网-大宗商品库存数据 http://www.99qh.com/d/store.aspx :param exchange: 交易所名称; choice of {"上海期货交易所", "郑州商品交易所", "大连商品交易所", "LME", "NYMEX", "CBOT", "NYBOT", "TOCOM", "上海国际能源交易中心", "OSE"} :type exchange: str :param symbol: 交易所对应的具体品种; 如:大连商品交易所的 豆一 :type symbol: str :return: 大宗商品库存数据 :rtype: pandas.DataFrame """ data_code = { "1": [ "1", "2", "3", "12", "32", "36", "37", "40", "42", "47", "56", "63", "69", "70", "79", "85", ], "2": [ "4", "14", "29", "31", "33", "38", "44", "45", "50", "51", "52", "55", "59", "64", "66", "67", "75", "76", "81", "82", "87", "92", "95", ], "3": [ "6", "7", "8", "15", "30", "34", "35", "39", "43", "53", "57", "58", "61", "62", "68", "80", "84", "86", "88", "89", "94", ], "4": ["9", "10", "16", "17", "18", "23", "28"], "5": ["11", "20", "21"], "6": ["13", "24", "25", "26", "27"], "7": ["19"], "8": ["22"], "10": ["78", "83", "90", "93"], "11": ["91"], } data_name = { "1": [ "铜", "铝", "橡胶", "燃料油", "锌", "黄金", "螺纹钢", "线材", "铅", "白银", "石油沥青", "热轧卷板", "锡", "镍", "纸浆", "不锈钢", ], "2": [ "强麦", "一号棉", "白糖", "PTA", "菜籽油", "早籼稻", "甲醇", "普麦", "玻璃", "油菜籽", "菜籽粕", "动力煤", "粳稻", "晚籼稻", "硅铁", "锰硅", "棉纱", "苹果", "红枣", "尿素", "纯碱", "短纤", "花生", ], "3": [ "豆一", "豆二", "豆粕", "玉米", "豆油", "聚乙烯", "棕榈油", "聚氯乙烯", "焦炭", "焦煤", "铁矿石", "鸡蛋", "胶合板", "聚丙烯", "玉米淀粉", "乙二醇", "粳米", "苯乙烯", "纤维板", "液化石油气", "生猪", ], "4": ["LME铜", "LME铝", "LME镍", "LME铅", "LME锌", "LME锡", "LME铝合金"], "5": ["COMEX铜", "COMEX金", "COMEX银"], "6": ["CBOT大豆", "CBOT小麦", "CBOT玉米", "CBOT燕麦", "CBOT糙米"], "7": ["NYBOT2号棉"], "8": ["TOCOM橡胶"], "10": ["原油", "20号胶", "低硫燃料油", "国际铜"], "11": ["OSE橡胶"], } temp_out_exchange_name = { "1": "上海期货交易所", "2": "郑州商品交易所", "3": "大连商品交易所", "4": "LME", "5": "NYMEX", "6": "CBOT", "7": "NYBOT", "8": "TOCOM", "10": "上海国际能源交易中心", "11": "OSE", } exchange_map = { value: key for key, value in temp_out_exchange_name.items() } exchange = exchange_map[exchange] temp_symbol_code_map = dict(zip(data_name[exchange], data_code[exchange])) symbol = temp_symbol_code_map[symbol] out_exchange_name = { "1": "上海期货交易所", "2": "郑州商品交易所", "3": "大连商品交易所", "4": "LME", "5": "NYMEX", "6": "CBOT", "7": "NYBOT", "8": "TOCOM", "10": "上海国际能源交易中心", "11": "OSE", } name_temp_dict = {} code_temp_dict = {} for num in data_code.keys(): name_temp_dict[out_exchange_name[num]] = dict( zip(data_code[num], data_name[num]) ) code_temp_dict[num] = dict(zip(data_code[num], data_name[num])) n = 10 while n != 0: try: n -= 1 session = requests.Session() url = "http://service.99qh.com/Storage/Storage.aspx" params = {"page": "99qh"} r = session.post(url, params=params, headers=sample_headers) cookie = r.cookies.get_dict() url = "http://service.99qh.com/Storage/Storage.aspx" params = {"page": "99qh"} r = requests.post( url, params=params, headers=sample_headers, cookies=cookie ) soup = BeautifulSoup(r.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[ 0 ]["value"] payload = { "__EVENTTARGET": "ddlExchName", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": 1, } res = requests.post( url, params={"page": "99qh"}, data=payload, headers=qh_headers, cookies=cookie, ) soup = BeautifulSoup(res.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[ 0 ]["value"] payload = { "__EVENTTARGET": "ddlGoodsName", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": int(symbol), } res = requests.post( url, params=params, data=payload, headers=qh_headers, cookies=cookie, ) data_df = pd.read_html(res.text)[-1].T data_df.columns = data_df.iloc[0, :] data_df = data_df.iloc[1:, :] data_df.reset_index(inplace=True, drop=True) data_df.columns.name = None data_df["日期"] = pd.to_datetime(data_df["日期"]).dt.date data_df["库存"] = pd.to_numeric(data_df["库存"]) data_df["增减"] = pd.to_numeric(data_df["增减"]) data_df.sort_values("日期", inplace=True) data_df.reset_index(inplace=True, drop=True) return data_df except: continue
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_inventory_99.py#L18-L288
25
[ 0 ]
0.369004
[ 13, 88, 163, 175, 178, 179, 180, 181, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 214, 215, 216, 219, 229, 236, 237, 238, 241, 251, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270 ]
17.712177
false
12.280702
271
4
82.287823
8
def futures_inventory_99( exchange: str = "大连商品交易所", symbol: str = "豆一" ) -> pd.DataFrame: data_code = { "1": [ "1", "2", "3", "12", "32", "36", "37", "40", "42", "47", "56", "63", "69", "70", "79", "85", ], "2": [ "4", "14", "29", "31", "33", "38", "44", "45", "50", "51", "52", "55", "59", "64", "66", "67", "75", "76", "81", "82", "87", "92", "95", ], "3": [ "6", "7", "8", "15", "30", "34", "35", "39", "43", "53", "57", "58", "61", "62", "68", "80", "84", "86", "88", "89", "94", ], "4": ["9", "10", "16", "17", "18", "23", "28"], "5": ["11", "20", "21"], "6": ["13", "24", "25", "26", "27"], "7": ["19"], "8": ["22"], "10": ["78", "83", "90", "93"], "11": ["91"], } data_name = { "1": [ "铜", "铝", "橡胶", "燃料油", "锌", "黄金", "螺纹钢", "线材", "铅", "白银", "石油沥青", "热轧卷板", "锡", "镍", "纸浆", "不锈钢", ], "2": [ "强麦", "一号棉", "白糖", "PTA", "菜籽油", "早籼稻", "甲醇", "普麦", "玻璃", "油菜籽", "菜籽粕", "动力煤", "粳稻", "晚籼稻", "硅铁", "锰硅", "棉纱", "苹果", "红枣", "尿素", "纯碱", "短纤", "花生", ], "3": [ "豆一", "豆二", "豆粕", "玉米", "豆油", "聚乙烯", "棕榈油", "聚氯乙烯", "焦炭", "焦煤", "铁矿石", "鸡蛋", "胶合板", "聚丙烯", "玉米淀粉", "乙二醇", "粳米", "苯乙烯", "纤维板", "液化石油气", "生猪", ], "4": ["LME铜", "LME铝", "LME镍", "LME铅", "LME锌", "LME锡", "LME铝合金"], "5": ["COMEX铜", "COMEX金", "COMEX银"], "6": ["CBOT大豆", "CBOT小麦", "CBOT玉米", "CBOT燕麦", "CBOT糙米"], "7": ["NYBOT2号棉"], "8": ["TOCOM橡胶"], "10": ["原油", "20号胶", "低硫燃料油", "国际铜"], "11": ["OSE橡胶"], } temp_out_exchange_name = { "1": "上海期货交易所", "2": "郑州商品交易所", "3": "大连商品交易所", "4": "LME", "5": "NYMEX", "6": "CBOT", "7": "NYBOT", "8": "TOCOM", "10": "上海国际能源交易中心", "11": "OSE", } exchange_map = { value: key for key, value in temp_out_exchange_name.items() } exchange = exchange_map[exchange] temp_symbol_code_map = dict(zip(data_name[exchange], data_code[exchange])) symbol = temp_symbol_code_map[symbol] out_exchange_name = { "1": "上海期货交易所", "2": "郑州商品交易所", "3": "大连商品交易所", "4": "LME", "5": "NYMEX", "6": "CBOT", "7": "NYBOT", "8": "TOCOM", "10": "上海国际能源交易中心", "11": "OSE", } name_temp_dict = {} code_temp_dict = {} for num in data_code.keys(): name_temp_dict[out_exchange_name[num]] = dict( zip(data_code[num], data_name[num]) ) code_temp_dict[num] = dict(zip(data_code[num], data_name[num])) n = 10 while n != 0: try: n -= 1 session = requests.Session() url = "http://service.99qh.com/Storage/Storage.aspx" params = {"page": "99qh"} r = session.post(url, params=params, headers=sample_headers) cookie = r.cookies.get_dict() url = "http://service.99qh.com/Storage/Storage.aspx" params = {"page": "99qh"} r = requests.post( url, params=params, headers=sample_headers, cookies=cookie ) soup = BeautifulSoup(r.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[ 0 ]["value"] payload = { "__EVENTTARGET": "ddlExchName", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": 1, } res = requests.post( url, params={"page": "99qh"}, data=payload, headers=qh_headers, cookies=cookie, ) soup = BeautifulSoup(res.text, "lxml") view_state = soup.find_all(attrs={"id": "__VIEWSTATE"})[0]["value"] even_validation = soup.find_all(attrs={"id": "__EVENTVALIDATION"})[ 0 ]["value"] payload = { "__EVENTTARGET": "ddlGoodsName", "__EVENTARGUMENT": "", "__LASTFOCUS": "", "__VIEWSTATE": view_state, "__VIEWSTATEGENERATOR": "6EAC22FA", "__EVENTVALIDATION": even_validation, "ddlExchName": int(exchange), "ddlGoodsName": int(symbol), } res = requests.post( url, params=params, data=payload, headers=qh_headers, cookies=cookie, ) data_df = pd.read_html(res.text)[-1].T data_df.columns = data_df.iloc[0, :] data_df = data_df.iloc[1:, :] data_df.reset_index(inplace=True, drop=True) data_df.columns.name = None data_df["日期"] = pd.to_datetime(data_df["日期"]).dt.date data_df["库存"] = pd.to_numeric(data_df["库存"]) data_df["增减"] = pd.to_numeric(data_df["增减"]) data_df.sort_values("日期", inplace=True) data_df.reset_index(inplace=True, drop=True) return data_df except: continue
18,141
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_comex.py
futures_comex_inventory
(symbol: str = "黄金") ->
return temp_df
东方财富网-数据中心-COMEX库存数据 http://data.eastmoney.com/pmetal/comex/by.html :param symbol: choice of {"黄金", "白银"} :type symbol: str :return: COMEX库存数据 :rtype: pandas.DataFrame
东方财富网-数据中心-COMEX库存数据 http://data.eastmoney.com/pmetal/comex/by.html :param symbol: choice of {"黄金", "白银"} :type symbol: str :return: COMEX库存数据 :rtype: pandas.DataFrame
13
60
def futures_comex_inventory(symbol: str = "黄金") -> pd.DataFrame: """ 东方财富网-数据中心-COMEX库存数据 http://data.eastmoney.com/pmetal/comex/by.html :param symbol: choice of {"黄金", "白银"} :type symbol: str :return: COMEX库存数据 :rtype: pandas.DataFrame """ symbol_map = { "黄金": "(ID='EMI00069026')", "白银": "(ID='EMI00069027')", } url = "http://dcfm.eastmoney.com/em_mutisvcexpandinterface/api/js/get" params = { "type": "HJBY_KC", "token": "70f12f2f4f091e459a279469fe49eca5", "p": "1", "ps": "5000", "st": "DATADATE", "sr": "-1", "filter": symbol_map[symbol], "js": "var hVtWMLwm={pages:(tp),data:(x)}", "rt": "53367096", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{"):]) temp_df = pd.DataFrame(data_json["data"]) del temp_df["ID"] temp_df["DATADATE"] = pd.to_datetime(temp_df["DATADATE"]).dt.date temp_df.reset_index(inplace=True) temp_df['index'] = range(1, len(temp_df)+1) if symbol == "黄金": temp_df.columns = [ '序号', '日期', f'COMEX{symbol}库存量_1', f'COMEX{symbol}库存量_2', ] elif symbol == "白银": temp_df.columns = [ '序号', '日期', f'COMEX{symbol}库存量_1', f'COMEX{symbol}库存量_2', ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_comex.py#L13-L60
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
18.75
[ 9, 13, 14, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 41, 47 ]
33.333333
false
25
48
3
66.666667
6
def futures_comex_inventory(symbol: str = "黄金") -> pd.DataFrame: symbol_map = { "黄金": "(ID='EMI00069026')", "白银": "(ID='EMI00069027')", } url = "http://dcfm.eastmoney.com/em_mutisvcexpandinterface/api/js/get" params = { "type": "HJBY_KC", "token": "70f12f2f4f091e459a279469fe49eca5", "p": "1", "ps": "5000", "st": "DATADATE", "sr": "-1", "filter": symbol_map[symbol], "js": "var hVtWMLwm={pages:(tp),data:(x)}", "rt": "53367096", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{"):]) temp_df = pd.DataFrame(data_json["data"]) del temp_df["ID"] temp_df["DATADATE"] = pd.to_datetime(temp_df["DATADATE"]).dt.date temp_df.reset_index(inplace=True) temp_df['index'] = range(1, len(temp_df)+1) if symbol == "黄金": temp_df.columns = [ '序号', '日期', f'COMEX{symbol}库存量_1', f'COMEX{symbol}库存量_2', ] elif symbol == "白银": temp_df.columns = [ '序号', '日期', f'COMEX{symbol}库存量_1', f'COMEX{symbol}库存量_2', ] return temp_df
18,142
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_comm_qihuo.py
_futures_comm_qihuo_process
(df: pd.DataFrame, name: str = None)
return common_temp_df
期货手续费数据细节处理函数 https://www.9qihuo.com/qihuoshouxufei :param df: 获取到的 pandas.DataFrame 数据 :type df: pandas.DataFrame :param name: 交易所名称 :type name: str :return: 处理后的数据 :rtype: pandas.DataFrame
期货手续费数据细节处理函数 https://www.9qihuo.com/qihuoshouxufei :param df: 获取到的 pandas.DataFrame 数据 :type df: pandas.DataFrame :param name: 交易所名称 :type name: str :return: 处理后的数据 :rtype: pandas.DataFrame
13
147
def _futures_comm_qihuo_process(df: pd.DataFrame, name: str = None) -> pd.DataFrame: """ 期货手续费数据细节处理函数 https://www.9qihuo.com/qihuoshouxufei :param df: 获取到的 pandas.DataFrame 数据 :type df: pandas.DataFrame :param name: 交易所名称 :type name: str :return: 处理后的数据 :rtype: pandas.DataFrame """ common_temp_df = df.copy() common_temp_df["合约名称"] = ( common_temp_df["合约品种"].str.split("(", expand=True).iloc[:, 0].str.strip() ) common_temp_df["合约代码"] = ( common_temp_df["合约品种"].str.split("(", expand=True).iloc[:, 1].str.strip(")") ) common_temp_df["涨停板"] = ( common_temp_df["涨/跌停板"].str.split("/", expand=True).iloc[:, 0].str.strip() ) common_temp_df["跌停板"] = ( common_temp_df["涨/跌停板"].str.split("/", expand=True).iloc[:, 1].str.strip() ) common_temp_df["保证金-买开"] = common_temp_df["保证金-买开"].str.strip("%") common_temp_df["保证金-卖开"] = common_temp_df["保证金-卖开"].str.strip("%") common_temp_df["保证金-每手"] = common_temp_df["保证金-保证金/每手"].str.strip("元") common_temp_df["手续费"] = common_temp_df["手续费(开+平)"].str.strip("元") try: temp_df_ratio = ( common_temp_df["手续费标准-开仓"][common_temp_df["手续费标准-开仓"].str.contains("万分之")] .str.split("/", expand=True) .iloc[:, 0] .astype(float) / 10000 ) except IndexError as e: temp_df_ratio = pd.NA temp_df_yuan = common_temp_df["手续费标准-开仓"][ common_temp_df["手续费标准-开仓"].str.contains("元") ] common_temp_df["手续费标准-开仓-万分之"] = temp_df_ratio common_temp_df["手续费标准-开仓-元"] = temp_df_yuan.str.strip("元") try: temp_df_ratio = ( common_temp_df["手续费标准-平昨"][common_temp_df["手续费标准-平昨"].str.contains("万分之")] .str.split("/", expand=True) .iloc[:, 0] .astype(float) / 10000 ) except IndexError as e: temp_df_ratio = pd.NA temp_df_yuan = common_temp_df["手续费标准-平昨"][ common_temp_df["手续费标准-平昨"].str.contains("元") ] common_temp_df["手续费标准-平昨-万分之"] = temp_df_ratio common_temp_df["手续费标准-平昨-元"] = temp_df_yuan.str.strip("元") try: temp_df_ratio = ( common_temp_df["手续费标准-平今"][common_temp_df["手续费标准-平今"].str.contains("万分之")] .str.split("/", expand=True) .iloc[:, 0] .astype(float) / 10000 ) except IndexError as e: temp_df_ratio = pd.NA temp_df_yuan = common_temp_df["手续费标准-平今"][ common_temp_df["手续费标准-平今"].str.contains("元") ] common_temp_df["手续费标准-平今-万分之"] = temp_df_ratio common_temp_df["手续费标准-平今-元"] = temp_df_yuan.str.strip("元") del common_temp_df["手续费标准-开仓"] del common_temp_df["手续费标准-平昨"] del common_temp_df["手续费标准-平今"] del common_temp_df["合约品种"] del common_temp_df["涨/跌停板"] del common_temp_df["手续费(开+平)"] del common_temp_df["保证金-保证金/每手"] common_temp_df['交易所名称'] = name common_temp_df = common_temp_df[ [ "交易所名称", "合约名称", "合约代码", "现价", "涨停板", "跌停板", "保证金-买开", "保证金-卖开", "保证金-每手", "手续费标准-开仓-万分之", "手续费标准-开仓-元", "手续费标准-平昨-万分之", "手续费标准-平昨-元", "手续费标准-平今-万分之", "手续费标准-平今-元", "每跳毛利", "手续费", "每跳净利", "备注", ] ] common_temp_df["现价"] = pd.to_numeric(common_temp_df["现价"]) common_temp_df["涨停板"] = pd.to_numeric(common_temp_df["涨停板"]) common_temp_df["跌停板"] = pd.to_numeric(common_temp_df["跌停板"]) common_temp_df["保证金-买开"] = pd.to_numeric(common_temp_df["保证金-买开"]) common_temp_df["保证金-卖开"] = pd.to_numeric(common_temp_df["保证金-卖开"]) common_temp_df["保证金-每手"] = pd.to_numeric(common_temp_df["保证金-每手"]) # common_temp_df["手续费标准-开仓-元"] = pd.to_numeric(common_temp_df["手续费标准-开仓-元"]) # common_temp_df["手续费标准-平昨-元"] = pd.to_numeric(common_temp_df["手续费标准-平昨-元"]) # common_temp_df["手续费标准-平今-元"] = pd.to_numeric(common_temp_df["手续费标准-平今-元"]) common_temp_df["每跳毛利"] = pd.to_numeric(common_temp_df["每跳毛利"]) common_temp_df["手续费"] = pd.to_numeric(common_temp_df["手续费"]) common_temp_df["每跳净利"] = pd.to_numeric(common_temp_df["每跳净利"]) url = "http://www.9qihuo.com/qihuoshouxufei" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") raw_date_text = soup.find('a', attrs={"id": "dlink"}).previous comm_update_time = raw_date_text.split(",")[0].strip("(手续费更新时间:") price_update_time = raw_date_text.split(",")[1].strip("价格更新时间:").strip("。)") common_temp_df['手续费更新时间'] = comm_update_time common_temp_df['价格更新时间'] = price_update_time return common_temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_comm_qihuo.py#L13-L147
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
8.148148
[ 11, 13, 16, 20, 23, 27, 28, 29, 30, 32, 33, 40, 41, 42, 45, 46, 48, 49, 56, 57, 58, 61, 62, 64, 65, 72, 73, 74, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 112, 113, 114, 115, 116, 117, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134 ]
42.222222
false
6.862745
135
4
57.777778
8
def _futures_comm_qihuo_process(df: pd.DataFrame, name: str = None) -> pd.DataFrame: common_temp_df = df.copy() common_temp_df["合约名称"] = ( common_temp_df["合约品种"].str.split("(", expand=True).iloc[:, 0].str.strip() ) common_temp_df["合约代码"] = ( common_temp_df["合约品种"].str.split("(", expand=True).iloc[:, 1].str.strip(")") ) common_temp_df["涨停板"] = ( common_temp_df["涨/跌停板"].str.split("/", expand=True).iloc[:, 0].str.strip() ) common_temp_df["跌停板"] = ( common_temp_df["涨/跌停板"].str.split("/", expand=True).iloc[:, 1].str.strip() ) common_temp_df["保证金-买开"] = common_temp_df["保证金-买开"].str.strip("%") common_temp_df["保证金-卖开"] = common_temp_df["保证金-卖开"].str.strip("%") common_temp_df["保证金-每手"] = common_temp_df["保证金-保证金/每手"].str.strip("元") common_temp_df["手续费"] = common_temp_df["手续费(开+平)"].str.strip("元") try: temp_df_ratio = ( common_temp_df["手续费标准-开仓"][common_temp_df["手续费标准-开仓"].str.contains("万分之")] .str.split("/", expand=True) .iloc[:, 0] .astype(float) / 10000 ) except IndexError as e: temp_df_ratio = pd.NA temp_df_yuan = common_temp_df["手续费标准-开仓"][ common_temp_df["手续费标准-开仓"].str.contains("元") ] common_temp_df["手续费标准-开仓-万分之"] = temp_df_ratio common_temp_df["手续费标准-开仓-元"] = temp_df_yuan.str.strip("元") try: temp_df_ratio = ( common_temp_df["手续费标准-平昨"][common_temp_df["手续费标准-平昨"].str.contains("万分之")] .str.split("/", expand=True) .iloc[:, 0] .astype(float) / 10000 ) except IndexError as e: temp_df_ratio = pd.NA temp_df_yuan = common_temp_df["手续费标准-平昨"][ common_temp_df["手续费标准-平昨"].str.contains("元") ] common_temp_df["手续费标准-平昨-万分之"] = temp_df_ratio common_temp_df["手续费标准-平昨-元"] = temp_df_yuan.str.strip("元") try: temp_df_ratio = ( common_temp_df["手续费标准-平今"][common_temp_df["手续费标准-平今"].str.contains("万分之")] .str.split("/", expand=True) .iloc[:, 0] .astype(float) / 10000 ) except IndexError as e: temp_df_ratio = pd.NA temp_df_yuan = common_temp_df["手续费标准-平今"][ common_temp_df["手续费标准-平今"].str.contains("元") ] common_temp_df["手续费标准-平今-万分之"] = temp_df_ratio common_temp_df["手续费标准-平今-元"] = temp_df_yuan.str.strip("元") del common_temp_df["手续费标准-开仓"] del common_temp_df["手续费标准-平昨"] del common_temp_df["手续费标准-平今"] del common_temp_df["合约品种"] del common_temp_df["涨/跌停板"] del common_temp_df["手续费(开+平)"] del common_temp_df["保证金-保证金/每手"] common_temp_df['交易所名称'] = name common_temp_df = common_temp_df[ [ "交易所名称", "合约名称", "合约代码", "现价", "涨停板", "跌停板", "保证金-买开", "保证金-卖开", "保证金-每手", "手续费标准-开仓-万分之", "手续费标准-开仓-元", "手续费标准-平昨-万分之", "手续费标准-平昨-元", "手续费标准-平今-万分之", "手续费标准-平今-元", "每跳毛利", "手续费", "每跳净利", "备注", ] ] common_temp_df["现价"] = pd.to_numeric(common_temp_df["现价"]) common_temp_df["涨停板"] = pd.to_numeric(common_temp_df["涨停板"]) common_temp_df["跌停板"] = pd.to_numeric(common_temp_df["跌停板"]) common_temp_df["保证金-买开"] = pd.to_numeric(common_temp_df["保证金-买开"]) common_temp_df["保证金-卖开"] = pd.to_numeric(common_temp_df["保证金-卖开"]) common_temp_df["保证金-每手"] = pd.to_numeric(common_temp_df["保证金-每手"]) # common_temp_df["手续费标准-开仓-元"] = pd.to_numeric(common_temp_df["手续费标准-开仓-元"]) # common_temp_df["手续费标准-平昨-元"] = pd.to_numeric(common_temp_df["手续费标准-平昨-元"]) # common_temp_df["手续费标准-平今-元"] = pd.to_numeric(common_temp_df["手续费标准-平今-元"]) common_temp_df["每跳毛利"] = pd.to_numeric(common_temp_df["每跳毛利"]) common_temp_df["手续费"] = pd.to_numeric(common_temp_df["手续费"]) common_temp_df["每跳净利"] = pd.to_numeric(common_temp_df["每跳净利"]) url = "http://www.9qihuo.com/qihuoshouxufei" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") raw_date_text = soup.find('a', attrs={"id": "dlink"}).previous comm_update_time = raw_date_text.split(",")[0].strip("(手续费更新时间:") price_update_time = raw_date_text.split(",")[1].strip("价格更新时间:").strip("。)") common_temp_df['手续费更新时间'] = comm_update_time common_temp_df['价格更新时间'] = price_update_time return common_temp_df
18,143
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_comm_qihuo.py
futures_comm_info
(symbol: str = "所有") ->
九期网-期货手续费 https://www.9qihuo.com/qihuoshouxufei :param symbol: choice of {"所有", "上海期货交易所", "大连商品交易所", "郑州商品交易所", "上海国际能源交易中心", "中国金融期货交易所", "广州期货交易所"} :type symbol: str :return: 期货手续费 :rtype: pandas.DataFrame
九期网-期货手续费 https://www.9qihuo.com/qihuoshouxufei :param symbol: choice of {"所有", "上海期货交易所", "大连商品交易所", "郑州商品交易所", "上海国际能源交易中心", "中国金融期货交易所", "广州期货交易所"} :type symbol: str :return: 期货手续费 :rtype: pandas.DataFrame
150
213
def futures_comm_info(symbol: str = "所有") -> pd.DataFrame: """ 九期网-期货手续费 https://www.9qihuo.com/qihuoshouxufei :param symbol: choice of {"所有", "上海期货交易所", "大连商品交易所", "郑州商品交易所", "上海国际能源交易中心", "中国金融期货交易所", "广州期货交易所"} :type symbol: str :return: 期货手续费 :rtype: pandas.DataFrame """ url = "https://www.9qihuo.com/qihuoshouxufei" r = requests.get(url) temp_df = pd.read_html(r.text)[0] temp_df.columns = [ "合约品种", "现价", "涨/跌停板", "保证金-买开", "保证金-卖开", "保证金-保证金/每手", "手续费标准-开仓", "手续费标准-平昨", "手续费标准-平今", "每跳毛利", "手续费(开+平)", "每跳净利", "备注", "-", "-", ] df_0 = temp_df[temp_df["合约品种"].str.contains("上海期货交易所")].index.values[0] df_1 = temp_df[temp_df["合约品种"].str.contains("大连商品交易所")].index.values[0] df_2 = temp_df[temp_df["合约品种"].str.contains("郑州商品交易所")].index.values[0] df_3 = temp_df[temp_df["合约品种"].str.contains("上海国际能源交易中心")].index.values[0] df_4 = temp_df[temp_df["合约品种"].str.contains("广州期货交易所")].index.values[0] df_5 = temp_df[temp_df["合约品种"].str.contains("中国金融期货交易所")].index.values[0] shfe_df = temp_df.iloc[df_0 + 3: df_1, :].reset_index(drop=True) dce_df = temp_df.iloc[df_1 + 3: df_2, :].reset_index(drop=True) czce_df = temp_df.iloc[df_2 + 3: df_3, :].reset_index(drop=True) ine_df = temp_df.iloc[df_3 + 3: df_4, :].reset_index(drop=True) gfex_df = temp_df.iloc[df_4 + 3: df_5, :].reset_index(drop=True) cffex_df = temp_df.iloc[df_5 + 3:, :].reset_index(drop=True) if symbol == "上海期货交易所": return _futures_comm_qihuo_process(shfe_df, "上海期货交易所") elif symbol == "大连商品交易所": return _futures_comm_qihuo_process(dce_df, "大连商品交易所") elif symbol == "郑州商品交易所": return _futures_comm_qihuo_process(czce_df, "郑州商品交易所") elif symbol == "上海国际能源交易中心": return _futures_comm_qihuo_process(ine_df, "上海国际能源交易中心") elif symbol == "广州期货交易所": return _futures_comm_qihuo_process(gfex_df, "广州期货交易所") elif symbol == "中国金融期货交易所": return _futures_comm_qihuo_process(cffex_df, "中国金融期货交易所") else: big_df = pd.DataFrame() big_df = pd.concat([big_df, _futures_comm_qihuo_process(shfe_df, "上海期货交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(dce_df, "大连商品交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(czce_df, "郑州商品交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(ine_df, "上海国际能源交易中心")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(gfex_df, "广州期货交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(cffex_df, "中国金融期货交易所")], ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_comm_qihuo.py#L150-L213
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.0625
[ 9, 10, 11, 12, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63 ]
56.25
false
6.862745
64
7
43.75
6
def futures_comm_info(symbol: str = "所有") -> pd.DataFrame: url = "https://www.9qihuo.com/qihuoshouxufei" r = requests.get(url) temp_df = pd.read_html(r.text)[0] temp_df.columns = [ "合约品种", "现价", "涨/跌停板", "保证金-买开", "保证金-卖开", "保证金-保证金/每手", "手续费标准-开仓", "手续费标准-平昨", "手续费标准-平今", "每跳毛利", "手续费(开+平)", "每跳净利", "备注", "-", "-", ] df_0 = temp_df[temp_df["合约品种"].str.contains("上海期货交易所")].index.values[0] df_1 = temp_df[temp_df["合约品种"].str.contains("大连商品交易所")].index.values[0] df_2 = temp_df[temp_df["合约品种"].str.contains("郑州商品交易所")].index.values[0] df_3 = temp_df[temp_df["合约品种"].str.contains("上海国际能源交易中心")].index.values[0] df_4 = temp_df[temp_df["合约品种"].str.contains("广州期货交易所")].index.values[0] df_5 = temp_df[temp_df["合约品种"].str.contains("中国金融期货交易所")].index.values[0] shfe_df = temp_df.iloc[df_0 + 3: df_1, :].reset_index(drop=True) dce_df = temp_df.iloc[df_1 + 3: df_2, :].reset_index(drop=True) czce_df = temp_df.iloc[df_2 + 3: df_3, :].reset_index(drop=True) ine_df = temp_df.iloc[df_3 + 3: df_4, :].reset_index(drop=True) gfex_df = temp_df.iloc[df_4 + 3: df_5, :].reset_index(drop=True) cffex_df = temp_df.iloc[df_5 + 3:, :].reset_index(drop=True) if symbol == "上海期货交易所": return _futures_comm_qihuo_process(shfe_df, "上海期货交易所") elif symbol == "大连商品交易所": return _futures_comm_qihuo_process(dce_df, "大连商品交易所") elif symbol == "郑州商品交易所": return _futures_comm_qihuo_process(czce_df, "郑州商品交易所") elif symbol == "上海国际能源交易中心": return _futures_comm_qihuo_process(ine_df, "上海国际能源交易中心") elif symbol == "广州期货交易所": return _futures_comm_qihuo_process(gfex_df, "广州期货交易所") elif symbol == "中国金融期货交易所": return _futures_comm_qihuo_process(cffex_df, "中国金融期货交易所") else: big_df = pd.DataFrame() big_df = pd.concat([big_df, _futures_comm_qihuo_process(shfe_df, "上海期货交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(dce_df, "大连商品交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(czce_df, "郑州商品交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(ine_df, "上海国际能源交易中心")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(gfex_df, "广州期货交易所")], ignore_index=True) big_df = pd.concat([big_df, _futures_comm_qihuo_process(cffex_df, "中国金融期货交易所")], ignore_index=True) return big_df
18,144
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
get_rank_sum_daily
( start_day: str = "20210510", end_day: str = "20210510", vars_list: list = cons.contract_symbols, )
return records.reset_index(drop=True)
采集四个期货交易所前 5、前 10、前 15、前 20 会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名,没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得,并不是真实的品种排名列表 注2:大商所只公布了品种排名,未公布标的排名 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame 展期收益率数据(DataFrame): symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD
采集四个期货交易所前 5、前 10、前 15、前 20 会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名,没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得,并不是真实的品种排名列表 注2:大商所只公布了品种排名,未公布标的排名 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame 展期收益率数据(DataFrame): symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD
56
110
def get_rank_sum_daily( start_day: str = "20210510", end_day: str = "20210510", vars_list: list = cons.contract_symbols, ): """ 采集四个期货交易所前 5、前 10、前 15、前 20 会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名,没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得,并不是真实的品种排名列表 注2:大商所只公布了品种排名,未公布标的排名 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame 展期收益率数据(DataFrame): symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD """ start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now()) ) ) records = pd.DataFrame() while start_day <= end_day: print(start_day) if start_day.strftime("%Y%m%d") in calendar: data = get_rank_sum(start_day, vars_list) if data is False: print( f"{start_day.strftime('%Y-%m-%d')}日交易所数据连接失败,已超过20次,您的地址被网站墙了,请保存好返回数据,稍后从该日期起重试" ) return records.reset_index(drop=True) records = records.append(data) else: warnings.warn(f"{start_day.strftime('%Y%m%d')}非交易日") start_day += datetime.timedelta(days=1) return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L56-L110
25
[ 0 ]
1.818182
[ 27, 32, 39, 40, 41, 42, 43, 44, 45, 48, 49, 51, 52, 54 ]
25.454545
false
7.692308
55
4
74.545455
20
def get_rank_sum_daily( start_day: str = "20210510", end_day: str = "20210510", vars_list: list = cons.contract_symbols, ): start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now()) ) ) records = pd.DataFrame() while start_day <= end_day: print(start_day) if start_day.strftime("%Y%m%d") in calendar: data = get_rank_sum(start_day, vars_list) if data is False: print( f"{start_day.strftime('%Y-%m-%d')}日交易所数据连接失败,已超过20次,您的地址被网站墙了,请保存好返回数据,稍后从该日期起重试" ) return records.reset_index(drop=True) records = records.append(data) else: warnings.warn(f"{start_day.strftime('%Y%m%d')}非交易日") start_day += datetime.timedelta(days=1) return records.reset_index(drop=True)
18,145
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
get_rank_sum
( date: str = "20210525", vars_list: list = cons.contract_symbols )
return records.reset_index(drop=True)
抓取四个期货交易所前5、前10、前15、前20会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名, 没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得, 并不是真实的品种排名列表 注2:大商所只公布了品种排名, 未公布标的排名 :param date: 日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如 RB, AL等列表 为空时为所有商品 :return: pd.DataFrame: 展期收益率数据 symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD
抓取四个期货交易所前5、前10、前15、前20会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名, 没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得, 并不是真实的品种排名列表 注2:大商所只公布了品种排名, 未公布标的排名 :param date: 日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如 RB, AL等列表 为空时为所有商品 :return: pd.DataFrame: 展期收益率数据 symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD
113
282
def get_rank_sum( date: str = "20210525", vars_list: list = cons.contract_symbols ): """ 抓取四个期货交易所前5、前10、前15、前20会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名, 没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得, 并不是真实的品种排名列表 注2:大商所只公布了品种排名, 未公布标的排名 :param date: 日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如 RB, AL等列表 为空时为所有商品 :return: pd.DataFrame: 展期收益率数据 symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD """ date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return None dce_var = [ i for i in vars_list if i in cons.market_exchange_symbols["dce"] ] shfe_var = [ i for i in vars_list if i in cons.market_exchange_symbols["shfe"] ] czce_var = [ i for i in vars_list if i in cons.market_exchange_symbols["czce"] ] cffex_var = [ i for i in vars_list if i in cons.market_exchange_symbols["cffex"] ] big_dict = {} if len(dce_var) > 0: data = get_dce_rank_table(date, dce_var) if data is False: return False big_dict.update(data) if len(shfe_var) > 0: data = get_shfe_rank_table(date, shfe_var) if data is False: return False big_dict.update(data) if len(czce_var) > 0: data = get_czce_rank_table(date, czce_var) if data is False: return False big_dict.update(data) if len(cffex_var) > 0: data = get_cffex_rank_table(date, cffex_var) if data is False: return False big_dict.update(data) records = pd.DataFrame() for symbol, table in big_dict.items(): table = table.applymap(lambda x: 0 if x == "" else x) for symbol_inner in set(table["symbol"]): var = symbol_varieties(symbol_inner) if var in vars_list: if var in czce_var: for col in [ item for item in table.columns if item.find("open_interest") > -1 ] + ["vol", "vol_chg"]: table[col] = [ float(value.replace(",", "")) if value != "-" else 0.0 for value in table[col] ] table_cut = table[table["symbol"] == symbol_inner] table_cut["rank"] = table_cut["rank"].astype("float") table_cut_top5 = table_cut[table_cut["rank"] <= 5] table_cut_top10 = table_cut[table_cut["rank"] <= 10] table_cut_top15 = table_cut[table_cut["rank"] <= 15] table_cut_top20 = table_cut[table_cut["rank"] <= 20] big_dict = { "symbol": symbol_inner, "variety": var, "vol_top5": table_cut_top5["vol"].sum(), "vol_chg_top5": table_cut_top5["vol_chg"].sum(), "long_open_interest_top5": table_cut_top5[ "long_open_interest" ].sum(), "long_open_interest_chg_top5": table_cut_top5[ "long_open_interest_chg" ].sum(), "short_open_interest_top5": table_cut_top5[ "short_open_interest" ].sum(), "short_open_interest_chg_top5": table_cut_top5[ "short_open_interest_chg" ].sum(), "vol_top10": table_cut_top10["vol"].sum(), "vol_chg_top10": table_cut_top10["vol_chg"].sum(), "long_open_interest_top10": table_cut_top10[ "long_open_interest" ].sum(), "long_open_interest_chg_top10": table_cut_top10[ "long_open_interest_chg" ].sum(), "short_open_interest_top10": table_cut_top10[ "short_open_interest" ].sum(), "short_open_interest_chg_top10": table_cut_top10[ "short_open_interest_chg" ].sum(), "vol_top15": table_cut_top15["vol"].sum(), "vol_chg_top15": table_cut_top15["vol_chg"].sum(), "long_open_interest_top15": table_cut_top15[ "long_open_interest" ].sum(), "long_open_interest_chg_top15": table_cut_top15[ "long_open_interest_chg" ].sum(), "short_open_interest_top15": table_cut_top15[ "short_open_interest" ].sum(), "short_open_interest_chg_top15": table_cut_top15[ "short_open_interest_chg" ].sum(), "vol_top20": table_cut_top20["vol"].sum(), "vol_chg_top20": table_cut_top20["vol_chg"].sum(), "long_open_interest_top20": table_cut_top20[ "long_open_interest" ].sum(), "long_open_interest_chg_top20": table_cut_top20[ "long_open_interest_chg" ].sum(), "short_open_interest_top20": table_cut_top20[ "short_open_interest" ].sum(), "short_open_interest_chg_top20": table_cut_top20[ "short_open_interest_chg" ].sum(), "date": date.strftime("%Y%m%d"), } records = records.append(pd.DataFrame(big_dict, index=[0])) if len(big_dict.items()) > 0: add_vars = [ i for i in cons.market_exchange_symbols["dce"] + cons.market_exchange_symbols["shfe"] + cons.market_exchange_symbols["cffex"] if i in records["variety"].tolist() ] for var in add_vars: records_cut = records[records["variety"] == var] var_record = pd.DataFrame(records_cut.sum()).T var_record["date"] = date.strftime("%Y%m%d") var_record.loc[:, ["variety", "symbol"]] = var records = records.append(var_record) return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L113-L282
25
[ 0 ]
0.588235
[ 24, 27, 28, 29, 30, 33, 36, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 77, 84, 85, 86, 87, 88, 89, 91, 152, 154, 155, 162, 163, 164, 165, 166, 167, 169 ]
32.352941
false
7.692308
170
24
67.647059
19
def get_rank_sum( date: str = "20210525", vars_list: list = cons.contract_symbols ): date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return None dce_var = [ i for i in vars_list if i in cons.market_exchange_symbols["dce"] ] shfe_var = [ i for i in vars_list if i in cons.market_exchange_symbols["shfe"] ] czce_var = [ i for i in vars_list if i in cons.market_exchange_symbols["czce"] ] cffex_var = [ i for i in vars_list if i in cons.market_exchange_symbols["cffex"] ] big_dict = {} if len(dce_var) > 0: data = get_dce_rank_table(date, dce_var) if data is False: return False big_dict.update(data) if len(shfe_var) > 0: data = get_shfe_rank_table(date, shfe_var) if data is False: return False big_dict.update(data) if len(czce_var) > 0: data = get_czce_rank_table(date, czce_var) if data is False: return False big_dict.update(data) if len(cffex_var) > 0: data = get_cffex_rank_table(date, cffex_var) if data is False: return False big_dict.update(data) records = pd.DataFrame() for symbol, table in big_dict.items(): table = table.applymap(lambda x: 0 if x == "" else x) for symbol_inner in set(table["symbol"]): var = symbol_varieties(symbol_inner) if var in vars_list: if var in czce_var: for col in [ item for item in table.columns if item.find("open_interest") > -1 ] + ["vol", "vol_chg"]: table[col] = [ float(value.replace(",", "")) if value != "-" else 0.0 for value in table[col] ] table_cut = table[table["symbol"] == symbol_inner] table_cut["rank"] = table_cut["rank"].astype("float") table_cut_top5 = table_cut[table_cut["rank"] <= 5] table_cut_top10 = table_cut[table_cut["rank"] <= 10] table_cut_top15 = table_cut[table_cut["rank"] <= 15] table_cut_top20 = table_cut[table_cut["rank"] <= 20] big_dict = { "symbol": symbol_inner, "variety": var, "vol_top5": table_cut_top5["vol"].sum(), "vol_chg_top5": table_cut_top5["vol_chg"].sum(), "long_open_interest_top5": table_cut_top5[ "long_open_interest" ].sum(), "long_open_interest_chg_top5": table_cut_top5[ "long_open_interest_chg" ].sum(), "short_open_interest_top5": table_cut_top5[ "short_open_interest" ].sum(), "short_open_interest_chg_top5": table_cut_top5[ "short_open_interest_chg" ].sum(), "vol_top10": table_cut_top10["vol"].sum(), "vol_chg_top10": table_cut_top10["vol_chg"].sum(), "long_open_interest_top10": table_cut_top10[ "long_open_interest" ].sum(), "long_open_interest_chg_top10": table_cut_top10[ "long_open_interest_chg" ].sum(), "short_open_interest_top10": table_cut_top10[ "short_open_interest" ].sum(), "short_open_interest_chg_top10": table_cut_top10[ "short_open_interest_chg" ].sum(), "vol_top15": table_cut_top15["vol"].sum(), "vol_chg_top15": table_cut_top15["vol_chg"].sum(), "long_open_interest_top15": table_cut_top15[ "long_open_interest" ].sum(), "long_open_interest_chg_top15": table_cut_top15[ "long_open_interest_chg" ].sum(), "short_open_interest_top15": table_cut_top15[ "short_open_interest" ].sum(), "short_open_interest_chg_top15": table_cut_top15[ "short_open_interest_chg" ].sum(), "vol_top20": table_cut_top20["vol"].sum(), "vol_chg_top20": table_cut_top20["vol_chg"].sum(), "long_open_interest_top20": table_cut_top20[ "long_open_interest" ].sum(), "long_open_interest_chg_top20": table_cut_top20[ "long_open_interest_chg" ].sum(), "short_open_interest_top20": table_cut_top20[ "short_open_interest" ].sum(), "short_open_interest_chg_top20": table_cut_top20[ "short_open_interest_chg" ].sum(), "date": date.strftime("%Y%m%d"), } records = records.append(pd.DataFrame(big_dict, index=[0])) if len(big_dict.items()) > 0: add_vars = [ i for i in cons.market_exchange_symbols["dce"] + cons.market_exchange_symbols["shfe"] + cons.market_exchange_symbols["cffex"] if i in records["variety"].tolist() ] for var in add_vars: records_cut = records[records["variety"] == var] var_record = pd.DataFrame(records_cut.sum()).T var_record["date"] = date.strftime("%Y%m%d") var_record.loc[:, ["variety", "symbol"]] = var records = records.append(var_record) return records.reset_index(drop=True)
18,146
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
get_shfe_rank_table
(date=None, vars_list=cons.contract_symbols)
return big_dict
上海期货交易所前 20 会员持仓排名数据明细 注:该交易所只公布每个品种内部的标的排名,没有公布品种的总排名 数据从20020107开始,每交易日16:30左右更新数据 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
上海期货交易所前 20 会员持仓排名数据明细 注:该交易所只公布每个品种内部的标的排名,没有公布品种的总排名 数据从20020107开始,每交易日16:30左右更新数据 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
285
367
def get_shfe_rank_table(date=None, vars_list=cons.contract_symbols): """ 上海期货交易所前 20 会员持仓排名数据明细 注:该交易所只公布每个品种内部的标的排名,没有公布品种的总排名 数据从20020107开始,每交易日16:30左右更新数据 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2002, 1, 7): print("shfe数据源开始日期为20020107,跳过") return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} url = cons.SHFE_VOL_RANK_URL % (date.strftime("%Y%m%d")) r = requests_link(url, "utf-8") try: context = json.loads(r.text) except: return {} df = pd.DataFrame(context["o_cursor"]) df = df.rename( columns={ "CJ1": "vol", "CJ1_CHG": "vol_chg", "CJ2": "long_open_interest", "CJ2_CHG": "long_open_interest_chg", "CJ3": "short_open_interest", "CJ3_CHG": "short_open_interest_chg", "PARTICIPANTABBR1": "vol_party_name", "PARTICIPANTABBR2": "long_party_name", "PARTICIPANTABBR3": "short_party_name", "PRODUCTNAME": "product1", "RANK": "rank", "INSTRUMENTID": "symbol", "PRODUCTSORTNO": "product2", } ) if len(df.columns) < 3: return {} df = df.applymap(lambda x: x.strip() if isinstance(x, str) else x) df = df.applymap(lambda x: None if x == "" else x) df["variety"] = df["symbol"].apply(lambda x: symbol_varieties(x)) df = df[df["rank"] > 0] for col in [ "PARTICIPANTID1", "PARTICIPANTID2", "PARTICIPANTID3", "product1", "product2", ]: try: del df[col] except: pass get_vars = [var for var in vars_list if var in df["variety"].tolist()] big_dict = {} for var in get_vars: df_var = df[df["variety"] == var] for symbol in set(df_var["symbol"]): df_symbol = df_var[df_var["symbol"] == symbol] big_dict[symbol] = df_symbol.reset_index(drop=True) return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L285-L367
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ]
26.506024
[ 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 57, 58, 59, 60, 61, 63, 64, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82 ]
40.963855
false
7.692308
83
10
59.036145
19
def get_shfe_rank_table(date=None, vars_list=cons.contract_symbols): date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2002, 1, 7): print("shfe数据源开始日期为20020107,跳过") return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} url = cons.SHFE_VOL_RANK_URL % (date.strftime("%Y%m%d")) r = requests_link(url, "utf-8") try: context = json.loads(r.text) except: return {} df = pd.DataFrame(context["o_cursor"]) df = df.rename( columns={ "CJ1": "vol", "CJ1_CHG": "vol_chg", "CJ2": "long_open_interest", "CJ2_CHG": "long_open_interest_chg", "CJ3": "short_open_interest", "CJ3_CHG": "short_open_interest_chg", "PARTICIPANTABBR1": "vol_party_name", "PARTICIPANTABBR2": "long_party_name", "PARTICIPANTABBR3": "short_party_name", "PRODUCTNAME": "product1", "RANK": "rank", "INSTRUMENTID": "symbol", "PRODUCTSORTNO": "product2", } ) if len(df.columns) < 3: return {} df = df.applymap(lambda x: x.strip() if isinstance(x, str) else x) df = df.applymap(lambda x: None if x == "" else x) df["variety"] = df["symbol"].apply(lambda x: symbol_varieties(x)) df = df[df["rank"] > 0] for col in [ "PARTICIPANTID1", "PARTICIPANTID2", "PARTICIPANTID3", "product1", "product2", ]: try: del df[col] except: pass get_vars = [var for var in vars_list if var in df["variety"].tolist()] big_dict = {} for var in get_vars: df_var = df[df["variety"] == var] for symbol in set(df_var["symbol"]): df_symbol = df_var[df_var["symbol"] == symbol] big_dict[symbol] = df_symbol.reset_index(drop=True) return big_dict
18,147
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
_czce_df_read
(url, skip_rows, encoding="utf-8", header=0)
return data
郑州商品交易所的网页数据 :param header: :type header: :param url: 网站 string :param skip_rows: 去掉前几行 int :param encoding: utf-8 or gbk or gb2312 :return: pd.DataFrame
郑州商品交易所的网页数据 :param header: :type header: :param url: 网站 string :param skip_rows: 去掉前几行 int :param encoding: utf-8 or gbk or gb2312 :return: pd.DataFrame
370
403
def _czce_df_read(url, skip_rows, encoding="utf-8", header=0): """ 郑州商品交易所的网页数据 :param header: :type header: :param url: 网站 string :param skip_rows: 去掉前几行 int :param encoding: utf-8 or gbk or gb2312 :return: pd.DataFrame """ headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36", "Host": "www.czce.com.cn", "Cookie": "XquW6dFMPxV380S=CAaD3sMkdXv3fUoaJlICIEv0MVegGq5EoMyBcxkOjCgSjmpuovYFuTLtYFcxTZGw; XquW6dFMPxV380T=5QTTjUlA6f6WiDO7fMGmqNxHBWz.hKIc8lb_tc1o4nHrJM4nsXCAI9VHaKyV_jkHh4cIVvD25kGQAh.MvLL1SHRA20HCG9mVVHPhAzktNdPK3evjm0NYbTg2Gu_XGGtPhecxLvdFQ0.JlAxy_z0C15_KdO8kOI18i4K0rFERNPxjXq5qG1Gs.QiOm976wODY.pe8XCQtAsuLYJ.N4DpTgNfHJp04jhMl0SntHhr.jhh3dFjMXBx.JEHngXBzY6gQAhER7uSKAeSktruxFeuKlebse.vrPghHqWvJm4WPTEvDQ8q", } r = requests_link(url, encoding, headers=headers) data = pd.read_html( r.text, match=".+", flavor=None, header=header, index_col=0, skiprows=skip_rows, attrs=None, parse_dates=False, thousands=", ", encoding="gbk", decimal=".", converters=None, na_values=None, keep_default_na=True, ) return data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L370-L403
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
29.411765
[ 10, 16, 17, 33 ]
11.764706
false
7.692308
34
1
88.235294
7
def _czce_df_read(url, skip_rows, encoding="utf-8", header=0): headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36", "Host": "www.czce.com.cn", "Cookie": "XquW6dFMPxV380S=CAaD3sMkdXv3fUoaJlICIEv0MVegGq5EoMyBcxkOjCgSjmpuovYFuTLtYFcxTZGw; XquW6dFMPxV380T=5QTTjUlA6f6WiDO7fMGmqNxHBWz.hKIc8lb_tc1o4nHrJM4nsXCAI9VHaKyV_jkHh4cIVvD25kGQAh.MvLL1SHRA20HCG9mVVHPhAzktNdPK3evjm0NYbTg2Gu_XGGtPhecxLvdFQ0.JlAxy_z0C15_KdO8kOI18i4K0rFERNPxjXq5qG1Gs.QiOm976wODY.pe8XCQtAsuLYJ.N4DpTgNfHJp04jhMl0SntHhr.jhh3dFjMXBx.JEHngXBzY6gQAhER7uSKAeSktruxFeuKlebse.vrPghHqWvJm4WPTEvDQ8q", } r = requests_link(url, encoding, headers=headers) data = pd.read_html( r.text, match=".+", flavor=None, header=header, index_col=0, skiprows=skip_rows, attrs=None, parse_dates=False, thousands=", ", encoding="gbk", decimal=".", converters=None, na_values=None, keep_default_na=True, ) return data
18,148
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
get_czce_rank_table
( date: str = "20210428", vars_list: list = cons.contract_symbols )
return new_big_dict
郑州商品交易所前 20 会员持仓排名数据明细 注:该交易所既公布了品种排名, 也公布了标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20050509开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
郑州商品交易所前 20 会员持仓排名数据明细 注:该交易所既公布了品种排名, 也公布了标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20050509开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
406
501
def get_czce_rank_table( date: str = "20210428", vars_list: list = cons.contract_symbols ): """ 郑州商品交易所前 20 会员持仓排名数据明细 注:该交易所既公布了品种排名, 也公布了标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20050509开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2015, 10, 8): print("CZCE可获取的数据源开始日期为 20151008, 请输入合适的日期参数") return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} if date >= datetime.date(2015, 10, 8): url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date.year}/{date.isoformat().replace('-', '')}/FutureDataHolding.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_pinzhong_index = [ item + 1 for item in temp_df[ temp_df.iloc[:, 0].str.contains("合计", na=False) ].index.to_list() ] temp_pinzhong_index.insert(0, 0) temp_pinzhong_index.pop() temp_symbol_index = ( temp_df.iloc[temp_pinzhong_index, 0] .str.split(" ", expand=True) .iloc[:, 0] ) symbol_list = [ re.compile(r"[0-9a-zA-Z_]+").findall(item)[0] for item in temp_symbol_index.values ] temp_symbol_index_list = temp_symbol_index.index.to_list() big_dict = {} for i in range(len(temp_symbol_index_list) - 1): inner_temp_df = temp_df[ temp_symbol_index_list[i] + 2 : temp_symbol_index_list[i + 1] - 1 ] inner_temp_df.columns = [ "rank", "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", ] inner_temp_df.reset_index(inplace=True, drop=True) big_dict[symbol_list[i]] = inner_temp_df inner_temp_df = temp_df[temp_symbol_index_list[i + 1] + 2 : -1] inner_temp_df.columns = [ "rank", "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", ] inner_temp_df.reset_index(inplace=True, drop=True) big_dict[symbol_list[-1]] = inner_temp_df new_big_dict = {} for key, value in big_dict.items(): value["symbol"] = key value["variety"] = re.compile(r"[a-zA-Z_]+").findall(key)[0] new_big_dict[key] = value return new_big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L406-L501
25
[ 0 ]
1.041667
[ 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 43, 44, 45, 50, 54, 55, 56, 57, 60, 72, 73, 74, 75, 87, 88, 89, 90, 91, 92, 93, 95 ]
34.375
false
7.692308
96
8
65.625
18
def get_czce_rank_table( date: str = "20210428", vars_list: list = cons.contract_symbols ): date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2015, 10, 8): print("CZCE可获取的数据源开始日期为 20151008, 请输入合适的日期参数") return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} if date >= datetime.date(2015, 10, 8): url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date.year}/{date.isoformat().replace('-', '')}/FutureDataHolding.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_pinzhong_index = [ item + 1 for item in temp_df[ temp_df.iloc[:, 0].str.contains("合计", na=False) ].index.to_list() ] temp_pinzhong_index.insert(0, 0) temp_pinzhong_index.pop() temp_symbol_index = ( temp_df.iloc[temp_pinzhong_index, 0] .str.split(" ", expand=True) .iloc[:, 0] ) symbol_list = [ re.compile(r"[0-9a-zA-Z_]+").findall(item)[0] for item in temp_symbol_index.values ] temp_symbol_index_list = temp_symbol_index.index.to_list() big_dict = {} for i in range(len(temp_symbol_index_list) - 1): inner_temp_df = temp_df[ temp_symbol_index_list[i] + 2 : temp_symbol_index_list[i + 1] - 1 ] inner_temp_df.columns = [ "rank", "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", ] inner_temp_df.reset_index(inplace=True, drop=True) big_dict[symbol_list[i]] = inner_temp_df inner_temp_df = temp_df[temp_symbol_index_list[i + 1] + 2 : -1] inner_temp_df.columns = [ "rank", "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", ] inner_temp_df.reset_index(inplace=True, drop=True) big_dict[symbol_list[-1]] = inner_temp_df new_big_dict = {} for key, value in big_dict.items(): value["symbol"] = key value["variety"] = re.compile(r"[a-zA-Z_]+").findall(key)[0] new_big_dict[key] = value return new_big_dict
18,149
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
_get_dce_contract_list
(date, var)
大连商品交易所取消了品种排名,只提供标的合约排名,需要获取标的合约列表 :param date: 日期 datetime.date 对象, 为空时为当天 :param var: 合约品种 :return: list 公布了持仓排名的合约列表
大连商品交易所取消了品种排名,只提供标的合约排名,需要获取标的合约列表 :param date: 日期 datetime.date 对象, 为空时为当天 :param var: 合约品种 :return: list 公布了持仓排名的合约列表
504
554
def _get_dce_contract_list(date, var): """ 大连商品交易所取消了品种排名,只提供标的合约排名,需要获取标的合约列表 :param date: 日期 datetime.date 对象, 为空时为当天 :param var: 合约品种 :return: list 公布了持仓排名的合约列表 """ url = ( "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html" ) headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "close", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", } params = { "memberDealPosiQuotes.variety": var.lower(), "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": "all", "contract.variety_id": var.lower(), "contract": "", } while 1: try: r = requests.post(url, params=params, headers=headers) soup = BeautifulSoup(r.text, "lxml") contract_list = [ re.findall( r"\d+", item["onclick"] .strip("javascript:setContract_id('") .strip("');"), )[0] for item in soup.find_all(attrs={"name": "contract"}) ] contract_list = [var.lower() + item for item in contract_list] return contract_list except: time.sleep(5) continue
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L504-L554
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.72549
[ 7, 10, 22, 33, 34, 35, 36, 37, 46, 47, 48, 49, 50 ]
25.490196
false
7.692308
51
5
74.509804
4
def _get_dce_contract_list(date, var): url = ( "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html" ) headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "close", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", } params = { "memberDealPosiQuotes.variety": var.lower(), "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": "all", "contract.variety_id": var.lower(), "contract": "", } while 1: try: r = requests.post(url, params=params, headers=headers) soup = BeautifulSoup(r.text, "lxml") contract_list = [ re.findall( r"\d+", item["onclick"] .strip("javascript:setContract_id('") .strip("');"), )[0] for item in soup.find_all(attrs={"name": "contract"}) ] contract_list = [var.lower() + item for item in contract_list] return contract_list except: time.sleep(5) continue
18,150
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
get_dce_rank_table
( date: str = "20210309", vars_list=cons.contract_symbols )
return big_dict
大连商品交易所前 20 会员持仓排名数据明细, 由于交易所网站问题, 需要 20200720 之后才有数据 注: 该交易所只公布标的合约排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象, 为空时为当天 :param vars_list: 合约品种如 RB、AL 等列表为空时为所有商品, 数据从 20060104 开始,每交易日 16:30 左右更新数据 :return: pandas.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
大连商品交易所前 20 会员持仓排名数据明细, 由于交易所网站问题, 需要 20200720 之后才有数据 注: 该交易所只公布标的合约排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象, 为空时为当天 :param vars_list: 合约品种如 RB、AL 等列表为空时为所有商品, 数据从 20060104 开始,每交易日 16:30 左右更新数据 :return: pandas.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
557
708
def get_dce_rank_table( date: str = "20210309", vars_list=cons.contract_symbols ): """ 大连商品交易所前 20 会员持仓排名数据明细, 由于交易所网站问题, 需要 20200720 之后才有数据 注: 该交易所只公布标的合约排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象, 为空时为当天 :param vars_list: 合约品种如 RB、AL 等列表为空时为所有商品, 数据从 20060104 开始,每交易日 16:30 左右更新数据 :return: pandas.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ date_string = date date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2006, 1, 4): print(Exception("大连商品交易所数据源开始日期为 20060104,跳过")) return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} vars_list = [ i for i in vars_list if i in cons.market_exchange_symbols["dce"] ] big_dict = {} for var in vars_list: # var = 'V' symbol_list = _get_dce_contract_list(date, var) for symbol in symbol_list: # print(symbol) url = cons.DCE_VOL_RANK_URL_1 % ( var.lower(), symbol, var.lower(), date.year, date.month - 1, date.day, ) try: temp_df = pd.read_excel( url[:-3] + "excel", header=0, skiprows=3 ) temp_df.dropna(how="any", axis=0, inplace=True) temp_df = temp_df.applymap(lambda x: str(x).replace(",", "")) del temp_df["名次.1"] del temp_df["名次.2"] temp_df.rename( columns={ "名次": "rank", "会员简称": "vol_party_name", "成交量": "vol", "增减": "vol_chg", "会员简称.1": "long_party_name", "持买单量": "long_open_interest", "增减.1": "long_open_interest_chg", "会员简称.2": "short_party_name", "持卖单量": "short_open_interest", "增减.2": "short_open_interest_chg", }, inplace=True, ) temp_df["symbol"] = symbol.upper() temp_df["var"] = var temp_df["date"] = date_string temp_df = temp_df.applymap( lambda x: str(x).replace("-", "0") if x == "-" else x ) temp_df["rank"] = range(1, len(temp_df) + 1) temp_df["vol"] = temp_df["vol"].astype(float) temp_df["vol_chg"] = temp_df["vol_chg"].astype(float) temp_df["long_open_interest"] = temp_df[ "long_open_interest" ].astype(float) temp_df["long_open_interest_chg"] = temp_df[ "long_open_interest_chg" ].astype(float) temp_df["short_open_interest"] = temp_df[ "short_open_interest" ].astype(float) temp_df["short_open_interest_chg"] = temp_df[ "short_open_interest_chg" ].astype(float) big_dict[symbol] = temp_df except: temp_url = "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html" payload = { "memberDealPosiQuotes.variety": var.lower(), "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": str(date.day).zfill(2), "contract.contract_id": symbol, "contract.variety_id": var.lower(), "contract": "", } r = requests.post(temp_url, data=payload) if r.status_code != 200: big_dict[symbol] = {} else: temp_df = pd.read_html(r.text)[1].iloc[:-1, :] del temp_df["名次.1"] del temp_df["名次.2"] temp_df.rename( columns={ "名次": "rank", "会员简称": "vol_party_name", "成交量": "vol", "增减": "vol_chg", "会员简称.1": "long_party_name", "持买单量": "long_open_interest", "增减.1": "long_open_interest_chg", "会员简称.2": "short_party_name", "持卖单量": "short_open_interest", "增减.2": "short_open_interest_chg", }, inplace=True, ) temp_df["symbol"] = symbol.upper() temp_df["var"] = var temp_df["date"] = date_string temp_df = temp_df.applymap( lambda x: str(x).replace("-", "0") if x == "-" else x ) temp_df["rank"] = range(1, len(temp_df) + 1) temp_df["vol"] = temp_df["vol"].astype(float) temp_df["vol_chg"] = temp_df["vol_chg"].astype(float) temp_df["long_open_interest"] = temp_df[ "long_open_interest" ].astype(float) temp_df["long_open_interest_chg"] = temp_df[ "long_open_interest_chg" ].astype(float) temp_df["short_open_interest"] = temp_df[ "short_open_interest" ].astype(float) temp_df["short_open_interest_chg"] = temp_df[ "short_open_interest_chg" ].astype(float) big_dict[symbol] = temp_df return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L557-L708
25
[ 0 ]
0.657895
[ 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37, 39, 40, 42, 50, 51, 54, 55, 56, 57, 58, 73, 74, 75, 76, 79, 80, 81, 82, 85, 88, 91, 94, 95, 96, 97, 107, 108, 109, 111, 112, 113, 114, 129, 130, 131, 132, 135, 136, 137, 138, 141, 144, 147, 150, 151 ]
36.842105
false
7.692308
152
8
63.157895
18
def get_dce_rank_table( date: str = "20210309", vars_list=cons.contract_symbols ): date_string = date date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2006, 1, 4): print(Exception("大连商品交易所数据源开始日期为 20060104,跳过")) return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} vars_list = [ i for i in vars_list if i in cons.market_exchange_symbols["dce"] ] big_dict = {} for var in vars_list: # var = 'V' symbol_list = _get_dce_contract_list(date, var) for symbol in symbol_list: # print(symbol) url = cons.DCE_VOL_RANK_URL_1 % ( var.lower(), symbol, var.lower(), date.year, date.month - 1, date.day, ) try: temp_df = pd.read_excel( url[:-3] + "excel", header=0, skiprows=3 ) temp_df.dropna(how="any", axis=0, inplace=True) temp_df = temp_df.applymap(lambda x: str(x).replace(",", "")) del temp_df["名次.1"] del temp_df["名次.2"] temp_df.rename( columns={ "名次": "rank", "会员简称": "vol_party_name", "成交量": "vol", "增减": "vol_chg", "会员简称.1": "long_party_name", "持买单量": "long_open_interest", "增减.1": "long_open_interest_chg", "会员简称.2": "short_party_name", "持卖单量": "short_open_interest", "增减.2": "short_open_interest_chg", }, inplace=True, ) temp_df["symbol"] = symbol.upper() temp_df["var"] = var temp_df["date"] = date_string temp_df = temp_df.applymap( lambda x: str(x).replace("-", "0") if x == "-" else x ) temp_df["rank"] = range(1, len(temp_df) + 1) temp_df["vol"] = temp_df["vol"].astype(float) temp_df["vol_chg"] = temp_df["vol_chg"].astype(float) temp_df["long_open_interest"] = temp_df[ "long_open_interest" ].astype(float) temp_df["long_open_interest_chg"] = temp_df[ "long_open_interest_chg" ].astype(float) temp_df["short_open_interest"] = temp_df[ "short_open_interest" ].astype(float) temp_df["short_open_interest_chg"] = temp_df[ "short_open_interest_chg" ].astype(float) big_dict[symbol] = temp_df except: temp_url = "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html" payload = { "memberDealPosiQuotes.variety": var.lower(), "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": str(date.day).zfill(2), "contract.contract_id": symbol, "contract.variety_id": var.lower(), "contract": "", } r = requests.post(temp_url, data=payload) if r.status_code != 200: big_dict[symbol] = {} else: temp_df = pd.read_html(r.text)[1].iloc[:-1, :] del temp_df["名次.1"] del temp_df["名次.2"] temp_df.rename( columns={ "名次": "rank", "会员简称": "vol_party_name", "成交量": "vol", "增减": "vol_chg", "会员简称.1": "long_party_name", "持买单量": "long_open_interest", "增减.1": "long_open_interest_chg", "会员简称.2": "short_party_name", "持卖单量": "short_open_interest", "增减.2": "short_open_interest_chg", }, inplace=True, ) temp_df["symbol"] = symbol.upper() temp_df["var"] = var temp_df["date"] = date_string temp_df = temp_df.applymap( lambda x: str(x).replace("-", "0") if x == "-" else x ) temp_df["rank"] = range(1, len(temp_df) + 1) temp_df["vol"] = temp_df["vol"].astype(float) temp_df["vol_chg"] = temp_df["vol_chg"].astype(float) temp_df["long_open_interest"] = temp_df[ "long_open_interest" ].astype(float) temp_df["long_open_interest_chg"] = temp_df[ "long_open_interest_chg" ].astype(float) temp_df["short_open_interest"] = temp_df[ "short_open_interest" ].astype(float) temp_df["short_open_interest_chg"] = temp_df[ "short_open_interest_chg" ].astype(float) big_dict[symbol] = temp_df return big_dict
18,151
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
get_cffex_rank_table
(date="20200427", vars_list=cons.contract_symbols)
return big_dict
中国金融期货交易所前 20 会员持仓排名数据明细 注:该交易所既公布品种排名,也公布标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20100416开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
中国金融期货交易所前 20 会员持仓排名数据明细 注:该交易所既公布品种排名,也公布标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20100416开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD
711
773
def get_cffex_rank_table(date="20200427", vars_list=cons.contract_symbols): """ 中国金融期货交易所前 20 会员持仓排名数据明细 注:该交易所既公布品种排名,也公布标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20100416开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ vars_list = [ i for i in vars_list if i in cons.market_exchange_symbols["cffex"] ] date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2010, 4, 16): print(Exception("cffex数据源开始日期为20100416,跳过")) return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} big_dict = {} for var in vars_list: # print(var) # var = "IF" url = cons.CFFEX_VOL_RANK_URL % ( date.strftime("%Y%m"), date.strftime("%d"), var, ) r = requests_link(url, encoding="gbk") if not r: return False if "网页错误" not in r.text: try: temp_chche = StringIO(r.text.split("\n交易日,")[1]) except: temp_chche = StringIO( r.text.split("\n交易日,")[0][4:] ) # 20200316开始数据结构变化,统一格式 table = pd.read_csv(temp_chche) table = table.dropna(how="any") table = table.applymap( lambda x: x.strip() if isinstance(x, str) else x ) for symbol in set(table["合约"]): table_cut = table[table["合约"] == symbol] table_cut.columns = ["symbol", "rank"] + rank_columns table_cut = _table_cut_cal(pd.DataFrame(table_cut), symbol) big_dict[symbol] = table_cut.reset_index(drop=True) return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L711-L773
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]
33.333333
[ 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 37, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 57, 58, 59, 60, 61, 62 ]
44.444444
false
7.692308
63
9
55.555556
18
def get_cffex_rank_table(date="20200427", vars_list=cons.contract_symbols): vars_list = [ i for i in vars_list if i in cons.market_exchange_symbols["cffex"] ] date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date < datetime.date(2010, 4, 16): print(Exception("cffex数据源开始日期为20100416,跳过")) return {} if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} big_dict = {} for var in vars_list: # print(var) # var = "IF" url = cons.CFFEX_VOL_RANK_URL % ( date.strftime("%Y%m"), date.strftime("%d"), var, ) r = requests_link(url, encoding="gbk") if not r: return False if "网页错误" not in r.text: try: temp_chche = StringIO(r.text.split("\n交易日,")[1]) except: temp_chche = StringIO( r.text.split("\n交易日,")[0][4:] ) # 20200316开始数据结构变化,统一格式 table = pd.read_csv(temp_chche) table = table.dropna(how="any") table = table.applymap( lambda x: x.strip() if isinstance(x, str) else x ) for symbol in set(table["合约"]): table_cut = table[table["合约"] == symbol] table_cut.columns = ["symbol", "rank"] + rank_columns table_cut = _table_cut_cal(pd.DataFrame(table_cut), symbol) big_dict[symbol] = table_cut.reset_index(drop=True) return big_dict
18,152
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
_table_cut_cal
(table_cut, symbol)
return table_cut
表格切分 :param table_cut: 需要切分的表格 :type table_cut: pandas.DataFrame :param symbol: 具体合约的代码 :type symbol: str :return: 表格切分后的结果 :rtype: pandas.DataFrame
表格切分 :param table_cut: 需要切分的表格 :type table_cut: pandas.DataFrame :param symbol: 具体合约的代码 :type symbol: str :return: 表格切分后的结果 :rtype: pandas.DataFrame
776
800
def _table_cut_cal(table_cut, symbol): """ 表格切分 :param table_cut: 需要切分的表格 :type table_cut: pandas.DataFrame :param symbol: 具体合约的代码 :type symbol: str :return: 表格切分后的结果 :rtype: pandas.DataFrame """ var = symbol_varieties(symbol) table_cut[intColumns + ["rank"]] = table_cut[intColumns + ["rank"]].astype( int ) table_cut_sum = table_cut.sum() table_cut_sum["rank"] = 999 for col in ["vol_party_name", "long_party_name", "short_party_name"]: table_cut_sum[col] = None table_cut = table_cut.append(pd.DataFrame(table_cut_sum).T, sort=True) table_cut["symbol"] = symbol table_cut["variety"] = var table_cut[intColumns + ["rank"]] = table_cut[intColumns + ["rank"]].astype( int ) return table_cut
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L776-L800
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
40
[ 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 24 ]
44
false
7.692308
25
2
56
7
def _table_cut_cal(table_cut, symbol): var = symbol_varieties(symbol) table_cut[intColumns + ["rank"]] = table_cut[intColumns + ["rank"]].astype( int ) table_cut_sum = table_cut.sum() table_cut_sum["rank"] = 999 for col in ["vol_party_name", "long_party_name", "short_party_name"]: table_cut_sum[col] = None table_cut = table_cut.append(pd.DataFrame(table_cut_sum).T, sort=True) table_cut["symbol"] = symbol table_cut["variety"] = var table_cut[intColumns + ["rank"]] = table_cut[intColumns + ["rank"]].astype( int ) return table_cut
18,153
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
futures_dce_position_rank
(date: str = "20160919")
return big_dict
大连商品交易所-每日持仓排名-具体合约 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rcjccpm/index.html :param date: 指定交易日; e.g., "20200511" :type date: str :return: 指定日期的持仓排名数据 :rtype: pandas.DataFrame
大连商品交易所-每日持仓排名-具体合约 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rcjccpm/index.html :param date: 指定交易日; e.g., "20200511" :type date: str :return: 指定日期的持仓排名数据 :rtype: pandas.DataFrame
803
1,021
def futures_dce_position_rank(date: str = "20160919") -> dict: """ 大连商品交易所-每日持仓排名-具体合约 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rcjccpm/index.html :param date: 指定交易日; e.g., "20200511" :type date: str :return: 指定日期的持仓排名数据 :rtype: pandas.DataFrame """ date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} url = "http://www.dce.com.cn/publicweb/quotesdata/exportMemberDealPosiQuotesBatchData.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Length": "160", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Referer": "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", } payload = { "memberDealPosiQuotes.variety": "a", "memberDealPosiQuotes.trade_type": "0", "contract.contract_id": "a2009", "contract.variety_id": "a", "year": date.year, "month": date.month - 1, "day": date.day, "batchExportFlag": "batch", } r = requests.post(url, payload, headers=headers) big_dict = dict() with zipfile.ZipFile(BytesIO(r.content), "r") as z: for i in z.namelist(): file_name = i.encode("cp437").decode("GBK") if not file_name.startswith(date.strftime("%Y%m%d")): continue try: data = pd.read_table(z.open(i), header=None, sep="\t").iloc[ :-6 ] if len(data) < 12: # 处理没有活跃合约的情况 big_dict[file_name.split("_")[1]] = pd.DataFrame() continue temp_filter = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() if ( temp_filter[1] - temp_filter[0] < 5 ): # 过滤有无成交量但是有买卖持仓的数据, 如 20201105_c2011_成交量_买持仓_卖持仓排名.txt big_dict[file_name.split("_")[1]] = pd.DataFrame() continue start_list = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() data = data.iloc[ start_list[0] :, data.columns[data.iloc[start_list[0], :].notnull()], ] data.reset_index(inplace=True, drop=True) start_list = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() end_list = data[ data.iloc[:, 0].str.find("总计") == 0 ].index.tolist() part_one = data[start_list[0] : end_list[0]].iloc[1:, :] part_two = data[start_list[1] : end_list[1]].iloc[1:, :] part_three = data[start_list[2] : end_list[2]].iloc[1:, :] temp_df = pd.concat( [ part_one.reset_index(drop=True), part_two.reset_index(drop=True), part_three.reset_index(drop=True), ], axis=1, ignore_index=True, ) temp_df.columns = [ "名次", "会员简称", "成交量", "增减", "名次", "会员简称", "持买单量", "增减", "名次", "会员简称", "持卖单量", "增减", ] temp_df["rank"] = range(1, len(temp_df) + 1) del temp_df["名次"] temp_df.columns = [ "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", "rank", ] temp_df["symbol"] = file_name.split("_")[1] temp_df["variety"] = file_name.split("_")[1][:-4].upper() temp_df = temp_df[ [ "long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety", ] ] big_dict[file_name.split("_")[1]] = temp_df except UnicodeDecodeError as e: try: data = pd.read_table( z.open(i), header=None, sep="\\s+", encoding="gb2312", skiprows=3, ) except: data = pd.read_table( z.open(i), header=None, sep="\\s+", encoding="gb2312", skiprows=4, ) start_list = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() end_list = data[ data.iloc[:, 0].str.find("总计") == 0 ].index.tolist() part_one = data[start_list[0] : end_list[0]].iloc[1:, :] part_two = data[start_list[1] : end_list[1]].iloc[1:, :] part_three = data[start_list[2] : end_list[2]].iloc[1:, :] temp_df = pd.concat( [ part_one.reset_index(drop=True), part_two.reset_index(drop=True), part_three.reset_index(drop=True), ], axis=1, ignore_index=True, ) temp_df.columns = [ "名次", "会员简称", "成交量", "增减", "名次", "会员简称", "持买单量", "增减", "名次", "会员简称", "持卖单量", "增减", ] temp_df["rank"] = range(1, len(temp_df) + 1) del temp_df["名次"] temp_df.columns = [ "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", "rank", ] temp_df["symbol"] = file_name.split("_")[1] temp_df["variety"] = file_name.split("_")[1][:-4].upper() temp_df = temp_df[ [ "long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety", ] ] big_dict[file_name.split("_")[1]] = temp_df return big_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L803-L1021
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
4.109589
[ 9, 12, 13, 14, 15, 16, 31, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 58, 61, 62, 63, 66, 70, 71, 74, 77, 78, 79, 80, 89, 103, 104, 105, 117, 118, 119, 135, 136, 137, 138, 145, 146, 153, 156, 159, 160, 161, 162, 171, 185, 186, 187, 199, 200, 201, 217, 218 ]
27.39726
false
7.692308
219
9
72.60274
6
def futures_dce_position_rank(date: str = "20160919") -> dict: date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} url = "http://www.dce.com.cn/publicweb/quotesdata/exportMemberDealPosiQuotesBatchData.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Length": "160", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Referer": "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", } payload = { "memberDealPosiQuotes.variety": "a", "memberDealPosiQuotes.trade_type": "0", "contract.contract_id": "a2009", "contract.variety_id": "a", "year": date.year, "month": date.month - 1, "day": date.day, "batchExportFlag": "batch", } r = requests.post(url, payload, headers=headers) big_dict = dict() with zipfile.ZipFile(BytesIO(r.content), "r") as z: for i in z.namelist(): file_name = i.encode("cp437").decode("GBK") if not file_name.startswith(date.strftime("%Y%m%d")): continue try: data = pd.read_table(z.open(i), header=None, sep="\t").iloc[ :-6 ] if len(data) < 12: # 处理没有活跃合约的情况 big_dict[file_name.split("_")[1]] = pd.DataFrame() continue temp_filter = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() if ( temp_filter[1] - temp_filter[0] < 5 ): # 过滤有无成交量但是有买卖持仓的数据, 如 20201105_c2011_成交量_买持仓_卖持仓排名.txt big_dict[file_name.split("_")[1]] = pd.DataFrame() continue start_list = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() data = data.iloc[ start_list[0] :, data.columns[data.iloc[start_list[0], :].notnull()], ] data.reset_index(inplace=True, drop=True) start_list = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() end_list = data[ data.iloc[:, 0].str.find("总计") == 0 ].index.tolist() part_one = data[start_list[0] : end_list[0]].iloc[1:, :] part_two = data[start_list[1] : end_list[1]].iloc[1:, :] part_three = data[start_list[2] : end_list[2]].iloc[1:, :] temp_df = pd.concat( [ part_one.reset_index(drop=True), part_two.reset_index(drop=True), part_three.reset_index(drop=True), ], axis=1, ignore_index=True, ) temp_df.columns = [ "名次", "会员简称", "成交量", "增减", "名次", "会员简称", "持买单量", "增减", "名次", "会员简称", "持卖单量", "增减", ] temp_df["rank"] = range(1, len(temp_df) + 1) del temp_df["名次"] temp_df.columns = [ "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", "rank", ] temp_df["symbol"] = file_name.split("_")[1] temp_df["variety"] = file_name.split("_")[1][:-4].upper() temp_df = temp_df[ [ "long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety", ] ] big_dict[file_name.split("_")[1]] = temp_df except UnicodeDecodeError as e: try: data = pd.read_table( z.open(i), header=None, sep="\\s+", encoding="gb2312", skiprows=3, ) except: data = pd.read_table( z.open(i), header=None, sep="\\s+", encoding="gb2312", skiprows=4, ) start_list = data[ data.iloc[:, 0].str.find("名次") == 0 ].index.tolist() end_list = data[ data.iloc[:, 0].str.find("总计") == 0 ].index.tolist() part_one = data[start_list[0] : end_list[0]].iloc[1:, :] part_two = data[start_list[1] : end_list[1]].iloc[1:, :] part_three = data[start_list[2] : end_list[2]].iloc[1:, :] temp_df = pd.concat( [ part_one.reset_index(drop=True), part_two.reset_index(drop=True), part_three.reset_index(drop=True), ], axis=1, ignore_index=True, ) temp_df.columns = [ "名次", "会员简称", "成交量", "增减", "名次", "会员简称", "持买单量", "增减", "名次", "会员简称", "持卖单量", "增减", ] temp_df["rank"] = range(1, len(temp_df) + 1) del temp_df["名次"] temp_df.columns = [ "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", "rank", ] temp_df["symbol"] = file_name.split("_")[1] temp_df["variety"] = file_name.split("_")[1][:-4].upper() temp_df = temp_df[ [ "long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety", ] ] big_dict[file_name.split("_")[1]] = temp_df return big_dict
18,154
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cot.py
futures_dce_position_rank_other
(date: str = "20160104")
return big_df
1,024
1,119
def futures_dce_position_rank_other(date: str = "20160104"): date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} url = ( "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html" ) payload = { "memberDealPosiQuotes.variety": "c", "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": "all", "contract.variety_id": "c", "contract": "", } r = requests.post(url, data=payload) soup = BeautifulSoup(r.text, "lxml") symbol_list = [ item["onclick"].strip("javascript:setVariety(").strip("');") for item in soup.find_all(attrs={"class": "selBox"})[-3].find_all( "input" ) ] big_df = dict() for symbol in symbol_list: payload = { "memberDealPosiQuotes.variety": symbol, "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": "all", "contract.variety_id": symbol, "contract": "", } r = requests.post(url, data=payload) soup = BeautifulSoup(r.text, "lxml") contract_list = [ item["onclick"].strip("javascript:setContract_id('").strip("');") for item in soup.find_all(attrs={"name": "contract"}) ] if contract_list: if len(contract_list[0]) == 4: contract_list = [symbol + item for item in contract_list] for contract in contract_list: payload = { "memberDealPosiQuotes.variety": symbol, "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": contract, "contract.variety_id": symbol, "contract": "", } r = requests.post(url, data=payload) temp_df = pd.read_html(r.text)[1].iloc[:-1, :] temp_df.columns = [ "rank", "vol_party_name", "vol", "vol_chg", "_", "long_party_name", "long_open_interest", "long_open_interest_chg", "_", "short_party_name", "short_open_interest", "short_open_interest_chg", ] temp_df["variety"] = symbol.upper() temp_df["symbol"] = contract temp_df = temp_df[ [ "long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety", ] ] big_df[contract] = temp_df return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cot.py#L1024-L1119
25
[ 0 ]
1.041667
[ 1, 4, 5, 6, 7, 10, 20, 21, 22, 28, 29, 30, 40, 41, 42, 46, 47, 48, 49, 50, 60, 61, 62, 76, 77, 78, 94, 95 ]
29.166667
false
7.692308
96
9
70.833333
0
def futures_dce_position_rank_other(date: str = "20160104"): date = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if date.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % date.strftime("%Y%m%d")) return {} url = ( "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html" ) payload = { "memberDealPosiQuotes.variety": "c", "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": "all", "contract.variety_id": "c", "contract": "", } r = requests.post(url, data=payload) soup = BeautifulSoup(r.text, "lxml") symbol_list = [ item["onclick"].strip("javascript:setVariety(").strip("');") for item in soup.find_all(attrs={"class": "selBox"})[-3].find_all( "input" ) ] big_df = dict() for symbol in symbol_list: payload = { "memberDealPosiQuotes.variety": symbol, "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": "all", "contract.variety_id": symbol, "contract": "", } r = requests.post(url, data=payload) soup = BeautifulSoup(r.text, "lxml") contract_list = [ item["onclick"].strip("javascript:setContract_id('").strip("');") for item in soup.find_all(attrs={"name": "contract"}) ] if contract_list: if len(contract_list[0]) == 4: contract_list = [symbol + item for item in contract_list] for contract in contract_list: payload = { "memberDealPosiQuotes.variety": symbol, "memberDealPosiQuotes.trade_type": "0", "year": date.year, "month": date.month - 1, "day": date.day, "contract.contract_id": contract, "contract.variety_id": symbol, "contract": "", } r = requests.post(url, data=payload) temp_df = pd.read_html(r.text)[1].iloc[:-1, :] temp_df.columns = [ "rank", "vol_party_name", "vol", "vol_chg", "_", "long_party_name", "long_open_interest", "long_open_interest_chg", "_", "short_party_name", "short_open_interest", "short_open_interest_chg", ] temp_df["variety"] = symbol.upper() temp_df["symbol"] = contract temp_df = temp_df[ [ "long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety", ] ] big_df[contract] = temp_df return big_df
18,155
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_spot_stock_em.py
futures_spot_stock
(symbol: str = "能源") ->
return temp_df
东方财富网-数据中心-现货与股票 http://data.eastmoney.com/ifdata/xhgp.html :param symbol: choice of {'能源', '化工', '塑料', '纺织', '有色', '钢铁', '建材', '农副'} :type symbol: str :return: 现货与股票上下游对应数据 :rtype: pandas.DataFrame
东方财富网-数据中心-现货与股票 http://data.eastmoney.com/ifdata/xhgp.html :param symbol: choice of {'能源', '化工', '塑料', '纺织', '有色', '钢铁', '建材', '农副'} :type symbol: str :return: 现货与股票上下游对应数据 :rtype: pandas.DataFrame
14
88
def futures_spot_stock(symbol: str = "能源") -> pd.DataFrame: """ 东方财富网-数据中心-现货与股票 http://data.eastmoney.com/ifdata/xhgp.html :param symbol: choice of {'能源', '化工', '塑料', '纺织', '有色', '钢铁', '建材', '农副'} :type symbol: str :return: 现货与股票上下游对应数据 :rtype: pandas.DataFrame """ map_dict = { "能源": 0, "化工": 1, "塑料": 2, "纺织": 3, "有色": 4, "钢铁": 5, "建材": 6, "农副": 7, } url = "http://data.eastmoney.com/ifdata/xhgp.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "data.eastmoney.com", "Pragma": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36", } r = requests.get(url, headers=headers) data_text = r.text temp_json = demjson.decode( data_text[ data_text.find("pagedata"): data_text.find( "/newstatic/js/common/emdataview.js" ) ] .strip("pagedata= ") .strip(';\n </script>\n <script src="') ) date_list = list(temp_json["dates"].values()) temp_json = temp_json["datas"] temp_df = temp_json[map_dict.get(symbol)] temp_df = pd.DataFrame(temp_df["list"]) xyyh_list = [ "-" if item == [] else ", ".join([inner_item["name"] for inner_item in item]) for item in temp_df["xyyhs"].tolist() ] scs_list = [ "-" if item == [] else ", ".join([inner_item["name"] for inner_item in item]) for item in temp_df["scss"].tolist() ] temp_df["scss"] = scs_list temp_df["xyyhs"] = xyyh_list temp_df.columns = [ "商品名称", date_list[0], date_list[1], date_list[2], date_list[3], date_list[4], "最新价格", "近半年涨跌幅", "生产商", "下游用户", ] temp_df[date_list[0]] = pd.to_numeric(temp_df[date_list[0]]) temp_df[date_list[1]] = pd.to_numeric(temp_df[date_list[1]]) temp_df[date_list[2]] = pd.to_numeric(temp_df[date_list[2]]) temp_df[date_list[3]] = pd.to_numeric(temp_df[date_list[3]]) temp_df['最新价格'] = pd.to_numeric(temp_df['最新价格']) temp_df['近半年涨跌幅'] = pd.to_numeric(temp_df['近半年涨跌幅']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_spot_stock_em.py#L14-L88
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
12
[ 9, 19, 20, 31, 32, 33, 42, 43, 44, 45, 46, 50, 54, 55, 56, 68, 69, 70, 71, 72, 73, 74 ]
29.333333
false
19.354839
75
5
70.666667
6
def futures_spot_stock(symbol: str = "能源") -> pd.DataFrame: map_dict = { "能源": 0, "化工": 1, "塑料": 2, "纺织": 3, "有色": 4, "钢铁": 5, "建材": 6, "农副": 7, } url = "http://data.eastmoney.com/ifdata/xhgp.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "data.eastmoney.com", "Pragma": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36", } r = requests.get(url, headers=headers) data_text = r.text temp_json = demjson.decode( data_text[ data_text.find("pagedata"): data_text.find( "/newstatic/js/common/emdataview.js" ) ] .strip("pagedata= ") .strip(';\n </script>\n <script src="') ) date_list = list(temp_json["dates"].values()) temp_json = temp_json["datas"] temp_df = temp_json[map_dict.get(symbol)] temp_df = pd.DataFrame(temp_df["list"]) xyyh_list = [ "-" if item == [] else ", ".join([inner_item["name"] for inner_item in item]) for item in temp_df["xyyhs"].tolist() ] scs_list = [ "-" if item == [] else ", ".join([inner_item["name"] for inner_item in item]) for item in temp_df["scss"].tolist() ] temp_df["scss"] = scs_list temp_df["xyyhs"] = xyyh_list temp_df.columns = [ "商品名称", date_list[0], date_list[1], date_list[2], date_list[3], date_list[4], "最新价格", "近半年涨跌幅", "生产商", "下游用户", ] temp_df[date_list[0]] = pd.to_numeric(temp_df[date_list[0]]) temp_df[date_list[1]] = pd.to_numeric(temp_df[date_list[1]]) temp_df[date_list[2]] = pd.to_numeric(temp_df[date_list[2]]) temp_df[date_list[3]] = pd.to_numeric(temp_df[date_list[3]]) temp_df['最新价格'] = pd.to_numeric(temp_df['最新价格']) temp_df['近半年涨跌幅'] = pd.to_numeric(temp_df['近半年涨跌幅']) return temp_df
18,156
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_basis.py
futures_spot_price_daily
( start_day: str = "20210201", end_day: str = "20210208", vars_list=cons.contract_symbols, )
指定时间段内大宗商品现货价格及相应基差 http://www.100ppi.com/sf/ :param start_day: str 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param end_day: str 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param vars_list: list 合约品种如 [RB, AL]; 默认参数为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD
指定时间段内大宗商品现货价格及相应基差 http://www.100ppi.com/sf/ :param start_day: str 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param end_day: str 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param vars_list: list 合约品种如 [RB, AL]; 默认参数为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD
30
74
def futures_spot_price_daily( start_day: str = "20210201", end_day: str = "20210208", vars_list=cons.contract_symbols, ): """ 指定时间段内大宗商品现货价格及相应基差 http://www.100ppi.com/sf/ :param start_day: str 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param end_day: str 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param vars_list: list 合约品种如 [RB, AL]; 默认参数为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD """ start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date(cons.get_latest_data_date(datetime.datetime.now())) ) df_list = [] while start_day <= end_day: temp_df = futures_spot_price(start_day, vars_list) if temp_df is False: return pd.concat(df_list).reset_index(drop=True) elif temp_df is not None: df_list.append(temp_df) start_day += datetime.timedelta(days=1) if len(df_list) > 0: temp_df = pd.concat(df_list) temp_df.reset_index(drop=True, inplace=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_basis.py#L30-L74
25
[ 0 ]
2.222222
[ 25, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 ]
31.111111
false
13.6
45
5
68.888889
18
def futures_spot_price_daily( start_day: str = "20210201", end_day: str = "20210208", vars_list=cons.contract_symbols, ): start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date(cons.get_latest_data_date(datetime.datetime.now())) ) df_list = [] while start_day <= end_day: temp_df = futures_spot_price(start_day, vars_list) if temp_df is False: return pd.concat(df_list).reset_index(drop=True) elif temp_df is not None: df_list.append(temp_df) start_day += datetime.timedelta(days=1) if len(df_list) > 0: temp_df = pd.concat(df_list) temp_df.reset_index(drop=True, inplace=True) return temp_df
18,157
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_basis.py
futures_spot_price
(date: str = "20210201", vars_list: list = cons.contract_symbols)
指定交易日大宗商品现货价格及相应基差 http://www.100ppi.com/sf/day-2017-09-12.html :param date: 开始日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象; 为空时为当天 :param vars_list: 合约品种如 RB、AL 等列表 为空时为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD
指定交易日大宗商品现货价格及相应基差 http://www.100ppi.com/sf/day-2017-09-12.html :param date: 开始日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象; 为空时为当天 :param vars_list: 合约品种如 RB、AL 等列表 为空时为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD
77
129
def futures_spot_price(date: str = "20210201", vars_list: list = cons.contract_symbols) -> pd.DataFrame: """ 指定交易日大宗商品现货价格及相应基差 http://www.100ppi.com/sf/day-2017-09-12.html :param date: 开始日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象; 为空时为当天 :param vars_list: 合约品种如 RB、AL 等列表 为空时为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2011, 1, 4): raise Exception("数据源开始日期为 20110104, 请将获取数据时间点设置在 20110104 后") if date.strftime("%Y%m%d") not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return u1 = cons.SYS_SPOT_PRICE_LATEST_URL u2 = cons.SYS_SPOT_PRICE_URL.format(date.strftime("%Y-%m-%d")) i = 1 while True: for url in [u2, u1]: try: # url = u2 r = pandas_read_html_link(url) string = r[0].loc[1, 1] news = "".join(re.findall(r"[0-9]", string)) if news[3:11] == date.strftime("%Y%m%d"): records = _check_information(r[1], date) records.index = records["symbol"] var_list_in_market = [i for i in vars_list if i in records.index] temp_df = records.loc[var_list_in_market, :] temp_df.reset_index(drop=True, inplace=True) return temp_df else: time.sleep(3) except: print(f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败,第{str(i)}次尝试,最多5次") i += 1 if i > 5: print( f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败, 如果当前交易日是 2018-09-12, 由于生意社源数据缺失, 无法访问, 否则为重复访问已超过5次,您的地址被网站墙了,请保存好返回数据,稍后从该日期起重试" ) return False
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_basis.py#L77-L129
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
37.735849
[ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 52 ]
54.716981
false
13.6
53
9
45.283019
17
def futures_spot_price(date: str = "20210201", vars_list: list = cons.contract_symbols) -> pd.DataFrame: date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2011, 1, 4): raise Exception("数据源开始日期为 20110104, 请将获取数据时间点设置在 20110104 后") if date.strftime("%Y%m%d") not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return u1 = cons.SYS_SPOT_PRICE_LATEST_URL u2 = cons.SYS_SPOT_PRICE_URL.format(date.strftime("%Y-%m-%d")) i = 1 while True: for url in [u2, u1]: try: # url = u2 r = pandas_read_html_link(url) string = r[0].loc[1, 1] news = "".join(re.findall(r"[0-9]", string)) if news[3:11] == date.strftime("%Y%m%d"): records = _check_information(r[1], date) records.index = records["symbol"] var_list_in_market = [i for i in vars_list if i in records.index] temp_df = records.loc[var_list_in_market, :] temp_df.reset_index(drop=True, inplace=True) return temp_df else: time.sleep(3) except: print(f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败,第{str(i)}次尝试,最多5次") i += 1 if i > 5: print( f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败, 如果当前交易日是 2018-09-12, 由于生意社源数据缺失, 无法访问, 否则为重复访问已超过5次,您的地址被网站墙了,请保存好返回数据,稍后从该日期起重试" ) return False
18,158
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_basis.py
_check_information
(df_data, date)
return records
数据验证和计算模块 :param df_data: pandas.DataFrame 采集的数据 :param date: datetime.date 具体某一天 YYYYMMDD :return: pandas.DataFrame 中间数据 symbol spot_price near_contract ... near_basis_rate dom_basis_rate date CU 49620.00 cu1811 ... -0.002418 -0.003426 20181108 RB 4551.54 rb1811 ... -0.013521 -0.134359 20181108 ZN 22420.00 zn1811 ... -0.032114 -0.076271 20181108 AL 13900.00 al1812 ... 0.005396 0.003957 20181108 AU 274.10 au1811 ... 0.005655 0.020430 20181108 WR 4806.25 wr1903 ... -0.180026 -0.237035 20181108 RU 10438.89 ru1811 ... -0.020969 0.084406 20181108 PB 18600.00 pb1811 ... -0.001344 -0.010215 20181108 AG 3542.67 ag1811 ... -0.000754 0.009408 20181108 BU 4045.53 bu1811 ... -0.129904 -0.149679 20181108 HC 4043.33 hc1811 ... -0.035449 -0.088128 20...
数据验证和计算模块 :param df_data: pandas.DataFrame 采集的数据 :param date: datetime.date 具体某一天 YYYYMMDD :return: pandas.DataFrame 中间数据 symbol spot_price near_contract ... near_basis_rate dom_basis_rate date CU 49620.00 cu1811 ... -0.002418 -0.003426 20181108 RB 4551.54 rb1811 ... -0.013521 -0.134359 20181108 ZN 22420.00 zn1811 ... -0.032114 -0.076271 20181108 AL 13900.00 al1812 ... 0.005396 0.003957 20181108 AU 274.10 au1811 ... 0.005655 0.020430 20181108 WR 4806.25 wr1903 ... -0.180026 -0.237035 20181108 RU 10438.89 ru1811 ... -0.020969 0.084406 20181108 PB 18600.00 pb1811 ... -0.001344 -0.010215 20181108 AG 3542.67 ag1811 ... -0.000754 0.009408 20181108 BU 4045.53 bu1811 ... -0.129904 -0.149679 20181108 HC 4043.33 hc1811 ... -0.035449 -0.088128 20...
132
236
def _check_information(df_data, date): """ 数据验证和计算模块 :param df_data: pandas.DataFrame 采集的数据 :param date: datetime.date 具体某一天 YYYYMMDD :return: pandas.DataFrame 中间数据 symbol spot_price near_contract ... near_basis_rate dom_basis_rate date CU 49620.00 cu1811 ... -0.002418 -0.003426 20181108 RB 4551.54 rb1811 ... -0.013521 -0.134359 20181108 ZN 22420.00 zn1811 ... -0.032114 -0.076271 20181108 AL 13900.00 al1812 ... 0.005396 0.003957 20181108 AU 274.10 au1811 ... 0.005655 0.020430 20181108 WR 4806.25 wr1903 ... -0.180026 -0.237035 20181108 RU 10438.89 ru1811 ... -0.020969 0.084406 20181108 PB 18600.00 pb1811 ... -0.001344 -0.010215 20181108 AG 3542.67 ag1811 ... -0.000754 0.009408 20181108 BU 4045.53 bu1811 ... -0.129904 -0.149679 20181108 HC 4043.33 hc1811 ... -0.035449 -0.088128 20... """ df_data = df_data.loc[:, [0, 1, 2, 3, 5, 6]] df_data.columns = [ "symbol", "spot_price", "near_contract", "near_contract_price", "dominant_contract", "dominant_contract_price", ] records = pd.DataFrame() for string in df_data["symbol"].tolist(): if string == "PTA": news = "PTA" else: news = "".join(re.findall(r"[\u4e00-\u9fa5]", string)) if news != "" and news not in ["商品", "价格", "上海期货交易所", "郑州商品交易所", "大连商品交易所"]: symbol = chinese_to_english(news) record = pd.DataFrame(df_data[df_data["symbol"] == string]) record.loc[:, "symbol"] = symbol record.loc[:, "spot_price"] = record.loc[:, "spot_price"].astype(float) if ( symbol == "JD" ): # 鸡蛋现货为元/公斤, 鸡蛋期货为元/500千克, 其余元/吨(http://www.100ppi.com/sf/) record.loc[:, "spot_price"] = float(record["spot_price"]) * 500 elif ( symbol == "FG" ): # 上表中现货单位为元/平方米, 期货单位为元/吨. 换算公式:元/平方米*80=元/吨(http://www.100ppi.com/sf/959.html) record.loc[:, "spot_price"] = float(record["spot_price"]) * 80 records = records.append(record) records.loc[ :, ["near_contract_price", "dominant_contract_price", "spot_price"] ] = records.loc[ :, ["near_contract_price", "dominant_contract_price", "spot_price"] ].astype( "float" ) records.loc[:, "near_contract"] = records["near_contract"].replace( r"[^0-9]*(\d*)$", r"\g<1>", regex=True ) records.loc[:, "dominant_contract"] = records["dominant_contract"].replace( r"[^0-9]*(\d*)$", r"\g<1>", regex=True ) records.loc[:, "near_contract"] = records["symbol"] + records.loc[ :, "near_contract" ].astype("int").astype("str") records.loc[:, "dominant_contract"] = records["symbol"] + records.loc[ :, "dominant_contract" ].astype("int").astype("str") records["near_contract"] = records["near_contract"].apply( lambda x: x.lower() if x[:-4] in cons.market_exchange_symbols["shfe"] + cons.market_exchange_symbols["dce"] else x ) records.loc[:, "dominant_contract"] = records.loc[:, "dominant_contract"].apply( lambda x: x.lower() if x[:-4] in cons.market_exchange_symbols["shfe"] + cons.market_exchange_symbols["dce"] else x ) records.loc[:, "near_contract"] = records.loc[:, "near_contract"].apply( lambda x: x[:-4] + x[-3:] if x[:-4] in cons.market_exchange_symbols["czce"] else x ) records.loc[:, "dominant_contract"] = records.loc[:, "dominant_contract"].apply( lambda x: x[:-4] + x[-3:] if x[:-4] in cons.market_exchange_symbols["czce"] else x ) records["near_basis"] = records["near_contract_price"] - records["spot_price"] records["dom_basis"] = records["dominant_contract_price"] - records["spot_price"] records["near_basis_rate"] = ( records["near_contract_price"] / records["spot_price"] - 1 ) records["dom_basis_rate"] = ( records["dominant_contract_price"] / records["spot_price"] - 1 ) records.loc[:, "date"] = date.strftime("%Y%m%d") return records
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_basis.py#L132-L236
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
19.047619
[ 20, 21, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 43, 44, 47, 48, 50, 58, 61, 65, 68, 72, 78, 84, 89, 95, 96, 97, 100, 103, 104 ]
30.47619
false
13.6
105
7
69.52381
17
def _check_information(df_data, date): df_data = df_data.loc[:, [0, 1, 2, 3, 5, 6]] df_data.columns = [ "symbol", "spot_price", "near_contract", "near_contract_price", "dominant_contract", "dominant_contract_price", ] records = pd.DataFrame() for string in df_data["symbol"].tolist(): if string == "PTA": news = "PTA" else: news = "".join(re.findall(r"[\u4e00-\u9fa5]", string)) if news != "" and news not in ["商品", "价格", "上海期货交易所", "郑州商品交易所", "大连商品交易所"]: symbol = chinese_to_english(news) record = pd.DataFrame(df_data[df_data["symbol"] == string]) record.loc[:, "symbol"] = symbol record.loc[:, "spot_price"] = record.loc[:, "spot_price"].astype(float) if ( symbol == "JD" ): # 鸡蛋现货为元/公斤, 鸡蛋期货为元/500千克, 其余元/吨(http://www.100ppi.com/sf/) record.loc[:, "spot_price"] = float(record["spot_price"]) * 500 elif ( symbol == "FG" ): # 上表中现货单位为元/平方米, 期货单位为元/吨. 换算公式:元/平方米*80=元/吨(http://www.100ppi.com/sf/959.html) record.loc[:, "spot_price"] = float(record["spot_price"]) * 80 records = records.append(record) records.loc[ :, ["near_contract_price", "dominant_contract_price", "spot_price"] ] = records.loc[ :, ["near_contract_price", "dominant_contract_price", "spot_price"] ].astype( "float" ) records.loc[:, "near_contract"] = records["near_contract"].replace( r"[^0-9]*(\d*)$", r"\g<1>", regex=True ) records.loc[:, "dominant_contract"] = records["dominant_contract"].replace( r"[^0-9]*(\d*)$", r"\g<1>", regex=True ) records.loc[:, "near_contract"] = records["symbol"] + records.loc[ :, "near_contract" ].astype("int").astype("str") records.loc[:, "dominant_contract"] = records["symbol"] + records.loc[ :, "dominant_contract" ].astype("int").astype("str") records["near_contract"] = records["near_contract"].apply( lambda x: x.lower() if x[:-4] in cons.market_exchange_symbols["shfe"] + cons.market_exchange_symbols["dce"] else x ) records.loc[:, "dominant_contract"] = records.loc[:, "dominant_contract"].apply( lambda x: x.lower() if x[:-4] in cons.market_exchange_symbols["shfe"] + cons.market_exchange_symbols["dce"] else x ) records.loc[:, "near_contract"] = records.loc[:, "near_contract"].apply( lambda x: x[:-4] + x[-3:] if x[:-4] in cons.market_exchange_symbols["czce"] else x ) records.loc[:, "dominant_contract"] = records.loc[:, "dominant_contract"].apply( lambda x: x[:-4] + x[-3:] if x[:-4] in cons.market_exchange_symbols["czce"] else x ) records["near_basis"] = records["near_contract_price"] - records["spot_price"] records["dom_basis"] = records["dominant_contract_price"] - records["spot_price"] records["near_basis_rate"] = ( records["near_contract_price"] / records["spot_price"] - 1 ) records["dom_basis_rate"] = ( records["dominant_contract_price"] / records["spot_price"] - 1 ) records.loc[:, "date"] = date.strftime("%Y%m%d") return records
18,159
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_basis.py
_join_head
(content: pd.DataFrame)
return headers
239
247
def _join_head(content: pd.DataFrame) -> List: headers = [] for s1, s2 in zip(content.iloc[0], content.iloc[1]): if s1 != s2: s = f'{s1}{s2}' else: s = s1 headers.append(s) return headers
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_basis.py#L239-L247
25
[ 0 ]
11.111111
[ 1, 2, 3, 4, 6, 7, 8 ]
77.777778
false
13.6
9
3
22.222222
0
def _join_head(content: pd.DataFrame) -> List: headers = [] for s1, s2 in zip(content.iloc[0], content.iloc[1]): if s1 != s2: s = f'{s1}{s2}' else: s = s1 headers.append(s) return headers
18,160
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_basis.py
futures_spot_price_previous
(date: str = "20220209")
return basis
具体交易日大宗商品现货价格及相应基差 http://www.100ppi.com/sf/day-2017-09-12.html :param date: 交易日; 历史日期 :type date: str :return: 现货价格及相应基差 :rtype: pandas.DataFrame
具体交易日大宗商品现货价格及相应基差 http://www.100ppi.com/sf/day-2017-09-12.html :param date: 交易日; 历史日期 :type date: str :return: 现货价格及相应基差 :rtype: pandas.DataFrame
250
291
def futures_spot_price_previous(date: str = "20220209") -> pd.DataFrame: """ 具体交易日大宗商品现货价格及相应基差 http://www.100ppi.com/sf/day-2017-09-12.html :param date: 交易日; 历史日期 :type date: str :return: 现货价格及相应基差 :rtype: pandas.DataFrame """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2011, 1, 4): raise Exception("数据源开始日期为 20110104, 请将获取数据时间点设置在 20110104 后") if date.strftime("%Y%m%d") not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return url = date.strftime('http://www.100ppi.com/sf2/day-%Y-%m-%d.html') content = pandas_read_html_link(url) main = content[1] # Header header = _join_head(main) # Values values = main[main[4].str.endswith('%')] values.columns = header # Basis basis = pd.concat(content[2:-1]) basis.columns = ['主力合约基差', '主力合约基差(%)'] basis['商品'] = values['商品'].tolist() basis = pd.merge(values[["商品", "现货价格", "主力合约代码", "主力合约价格"]], basis) basis = pd.merge(basis, values[["商品", "180日内主力基差最高", "180日内主力基差最低", "180日内主力基差平均"]]) basis.columns = [ "商品", "现货价格", "主力合约代码", "主力合约价格", "主力合约基差", "主力合约变动百分比", "180日内主力基差最高", "180日内主力基差最低", "180日内主力基差平均", ] basis['主力合约变动百分比'] = basis['主力合约变动百分比'].str.strip("%") return basis
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_basis.py#L250-L291
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
21.428571
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29, 40, 41 ]
47.619048
false
13.6
42
3
52.380952
6
def futures_spot_price_previous(date: str = "20220209") -> pd.DataFrame: date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2011, 1, 4): raise Exception("数据源开始日期为 20110104, 请将获取数据时间点设置在 20110104 后") if date.strftime("%Y%m%d") not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return url = date.strftime('http://www.100ppi.com/sf2/day-%Y-%m-%d.html') content = pandas_read_html_link(url) main = content[1] # Header header = _join_head(main) # Values values = main[main[4].str.endswith('%')] values.columns = header # Basis basis = pd.concat(content[2:-1]) basis.columns = ['主力合约基差', '主力合约基差(%)'] basis['商品'] = values['商品'].tolist() basis = pd.merge(values[["商品", "现货价格", "主力合约代码", "主力合约价格"]], basis) basis = pd.merge(basis, values[["商品", "180日内主力基差最高", "180日内主力基差最低", "180日内主力基差平均"]]) basis.columns = [ "商品", "现货价格", "主力合约代码", "主力合约价格", "主力合约基差", "主力合约变动百分比", "180日内主力基差最高", "180日内主力基差最低", "180日内主力基差平均", ] basis['主力合约变动百分比'] = basis['主力合约变动百分比'].str.strip("%") return basis
18,161
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_index_ccidx.py
futures_index_ccidx
(symbol: str = "中证商品期货指数") -> pd.DataFrame
return temp_df
中证商品指数-商品指数-日频率 http://www.ccidx.com/index.html :param symbol: choice of {"中证商品期货指数", "中证商品期货价格指数"} :type symbol: str :return: 商品指数-日频率 :rtype: pandas.DataFrame
中证商品指数-商品指数-日频率 http://www.ccidx.com/index.html :param symbol: choice of {"中证商品期货指数", "中证商品期货价格指数"} :type symbol: str :return: 商品指数-日频率 :rtype: pandas.DataFrame
12
55
def futures_index_ccidx(symbol: str = "中证商品期货指数") -> pd.DataFrame: """ 中证商品指数-商品指数-日频率 http://www.ccidx.com/index.html :param symbol: choice of {"中证商品期货指数", "中证商品期货价格指数"} :type symbol: str :return: 商品指数-日频率 :rtype: pandas.DataFrame """ futures_index_map = { "中证商品期货指数": "100001.CCI", "中证商品期货价格指数": "000001.CCI", } url = "http://www.ccidx.com/front/ajax_downZSHQ.do" params = {"indexCode": futures_index_map[symbol]} r = requests.get(url, params=params) temp_df = pd.read_excel(r.content, header=1) temp_df.columns = [ "日期", "指数代码", "指数中文全称", "指数中文简称", "指数英文全称", "指数英文简称", "开盘", "最高", "最低", "收盘", "结算", "涨跌", "涨跌幅", ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["开盘"] = pd.to_numeric(temp_df["开盘"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["收盘"] = pd.to_numeric(temp_df["收盘"], errors="coerce") temp_df["结算"] = pd.to_numeric(temp_df["结算"], errors="coerce") temp_df["涨跌"] = pd.to_numeric(temp_df["涨跌"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df.sort_values(['日期'], inplace=True) temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_index_ccidx.py#L12-L55
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
20.454545
[ 9, 13, 14, 15, 16, 18, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 ]
38.636364
false
15.789474
44
1
61.363636
6
def futures_index_ccidx(symbol: str = "中证商品期货指数") -> pd.DataFrame: futures_index_map = { "中证商品期货指数": "100001.CCI", "中证商品期货价格指数": "000001.CCI", } url = "http://www.ccidx.com/front/ajax_downZSHQ.do" params = {"indexCode": futures_index_map[symbol]} r = requests.get(url, params=params) temp_df = pd.read_excel(r.content, header=1) temp_df.columns = [ "日期", "指数代码", "指数中文全称", "指数中文简称", "指数英文全称", "指数英文简称", "开盘", "最高", "最低", "收盘", "结算", "涨跌", "涨跌幅", ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["开盘"] = pd.to_numeric(temp_df["开盘"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["收盘"] = pd.to_numeric(temp_df["收盘"], errors="coerce") temp_df["结算"] = pd.to_numeric(temp_df["结算"], errors="coerce") temp_df["涨跌"] = pd.to_numeric(temp_df["涨跌"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df.sort_values(['日期'], inplace=True) temp_df.reset_index(inplace=True, drop=True) return temp_df
18,162
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_index_ccidx.py
futures_index_min_ccidx
(symbol: str = "中证监控油脂油料期货指数") -> pd.DataFrame:
return temp_df
中证商品指数-商品指数-分时数据 http://www.ccidx.com/index.html :param symbol: choice of {"中证商品期货指数", "中证商品期货价格指数", "中证监控油脂油料期货指数", "中证监控软商品期货指数", "中证监控能化期货指数", "中证监控钢铁期货指数"} :type symbol: str :return: 商品指数-分时数据 :rtype: pandas.DataFrame
中证商品指数-商品指数-分时数据 http://www.ccidx.com/index.html :param symbol: choice of {"中证商品期货指数", "中证商品期货价格指数", "中证监控油脂油料期货指数", "中证监控软商品期货指数", "中证监控能化期货指数", "中证监控钢铁期货指数"} :type symbol: str :return: 商品指数-分时数据 :rtype: pandas.DataFrame
58
108
def futures_index_min_ccidx(symbol: str = "中证监控油脂油料期货指数") -> pd.DataFrame: """ 中证商品指数-商品指数-分时数据 http://www.ccidx.com/index.html :param symbol: choice of {"中证商品期货指数", "中证商品期货价格指数", "中证监控油脂油料期货指数", "中证监控软商品期货指数", "中证监控能化期货指数", "中证监控钢铁期货指数"} :type symbol: str :return: 商品指数-分时数据 :rtype: pandas.DataFrame """ futures_index_map = { "中证商品期货指数": ["100001.CCI", "0"], "中证商品期货价格指数": ["000001.CCI", "1"], "中证监控油脂油料期货指数": ["606005.CCI", "2"], "中证监控软商品期货指数": ["606008.CCI", "3"], "中证监控能化期货指数": ["606010.CCI", "4"], "中证监控钢铁期货指数": ["606011.CCI", "5"], } url = "http://www.ccidx.com/cscidx/csciAction/loadTimeData" params = {"r": "0.08644997232349438"} payload = { "indexCode": futures_index_map[symbol][0], "indexType": futures_index_map[symbol][1], "pointer": "all", } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "44", "Connection": "keep-alive", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "www.ccidx.com", "Origin": "http://www.ccidx.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://www.ccidx.com/cscidx/quote1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.post(url, params=params, data=payload, headers=headers) data_json = r.json() temp_df = pd.DataFrame( [data_json["dataMap"]["axisList"], data_json["dataMap"]["lineList"]] ).T temp_df.columns = [ "datetime", "value", ] temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_index_ccidx.py#L58-L108
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
17.647059
[ 9, 17, 18, 19, 24, 40, 41, 42, 45, 49, 50 ]
21.568627
false
15.789474
51
1
78.431373
6
def futures_index_min_ccidx(symbol: str = "中证监控油脂油料期货指数") -> pd.DataFrame: futures_index_map = { "中证商品期货指数": ["100001.CCI", "0"], "中证商品期货价格指数": ["000001.CCI", "1"], "中证监控油脂油料期货指数": ["606005.CCI", "2"], "中证监控软商品期货指数": ["606008.CCI", "3"], "中证监控能化期货指数": ["606010.CCI", "4"], "中证监控钢铁期货指数": ["606011.CCI", "5"], } url = "http://www.ccidx.com/cscidx/csciAction/loadTimeData" params = {"r": "0.08644997232349438"} payload = { "indexCode": futures_index_map[symbol][0], "indexType": futures_index_map[symbol][1], "pointer": "all", } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "44", "Connection": "keep-alive", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "www.ccidx.com", "Origin": "http://www.ccidx.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://www.ccidx.com/cscidx/quote1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.post(url, params=params, data=payload, headers=headers) data_json = r.json() temp_df = pd.DataFrame( [data_json["dataMap"]["axisList"], data_json["dataMap"]["lineList"]] ).T temp_df.columns = [ "datetime", "value", ] temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df
18,163
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_rule.py
futures_rule
(date: str = "20221027")
return big_df
国泰君安期货-交易日历数据表 https://www.gtjaqh.com/pc/calendar.html :param date: 需要指定为交易日, 且是近期的日期 :type date: str :return: 交易日历数据 :rtype: pandas.DataFrame
国泰君安期货-交易日历数据表 https://www.gtjaqh.com/pc/calendar.html :param date: 需要指定为交易日, 且是近期的日期 :type date: str :return: 交易日历数据 :rtype: pandas.DataFrame
12
32
def futures_rule(date: str = "20221027") -> pd.DataFrame: """ 国泰君安期货-交易日历数据表 https://www.gtjaqh.com/pc/calendar.html :param date: 需要指定为交易日, 且是近期的日期 :type date: str :return: 交易日历数据 :rtype: pandas.DataFrame """ url = " https://www.gtjaqh.com/pc/calendar" params = {"date": f"{date}"} r = requests.get(url, params=params) big_df = pd.read_html(r.text, header=1)[0] big_df["交易保证金比例"] = big_df["交易保证金比例"].str.strip("%") big_df["交易保证金比例"] = pd.to_numeric(big_df["交易保证金比例"], errors="coerce") big_df["涨跌停板幅度"] = big_df["涨跌停板幅度"].str.strip("%") big_df["涨跌停板幅度"] = pd.to_numeric(big_df["涨跌停板幅度"], errors="coerce") big_df["合约乘数"] = pd.to_numeric(big_df["合约乘数"], errors="coerce") big_df["最小变动价位"] = pd.to_numeric(big_df["最小变动价位"], errors="coerce") big_df["限价单每笔最大下单手数"] = pd.to_numeric(big_df["限价单每笔最大下单手数"], errors="coerce") return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_rule.py#L12-L32
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
42.857143
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]
57.142857
false
26.315789
21
1
42.857143
6
def futures_rule(date: str = "20221027") -> pd.DataFrame: url = " https://www.gtjaqh.com/pc/calendar" params = {"date": f"{date}"} r = requests.get(url, params=params) big_df = pd.read_html(r.text, header=1)[0] big_df["交易保证金比例"] = big_df["交易保证金比例"].str.strip("%") big_df["交易保证金比例"] = pd.to_numeric(big_df["交易保证金比例"], errors="coerce") big_df["涨跌停板幅度"] = big_df["涨跌停板幅度"].str.strip("%") big_df["涨跌停板幅度"] = pd.to_numeric(big_df["涨跌停板幅度"], errors="coerce") big_df["合约乘数"] = pd.to_numeric(big_df["合约乘数"], errors="coerce") big_df["最小变动价位"] = pd.to_numeric(big_df["最小变动价位"], errors="coerce") big_df["限价单每笔最大下单手数"] = pd.to_numeric(big_df["限价单每笔最大下单手数"], errors="coerce") return big_df
18,164
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_foreign.py
futures_foreign_hist
(symbol: str = "ZSD")
return data_df
外盘期货-历史行情数据-日频率 http://finance.sina.com.cn/money/future/hf.html :param symbol: futures symbol, you can get it from futures_foreign_commodity_subscribe_exchange_symbol :type symbol: str :return: historical data from 2010 :rtype: pandas.DataFrame
外盘期货-历史行情数据-日频率 http://finance.sina.com.cn/money/future/hf.html :param symbol: futures symbol, you can get it from futures_foreign_commodity_subscribe_exchange_symbol :type symbol: str :return: historical data from 2010 :rtype: pandas.DataFrame
16
35
def futures_foreign_hist(symbol: str = "ZSD") -> pd.DataFrame: """ 外盘期货-历史行情数据-日频率 http://finance.sina.com.cn/money/future/hf.html :param symbol: futures symbol, you can get it from futures_foreign_commodity_subscribe_exchange_symbol :type symbol: str :return: historical data from 2010 :rtype: pandas.DataFrame """ today = f'{datetime.today().year}_{datetime.today().month}_{datetime.today().day}' url = f"https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_S{today}=/GlobalFuturesService.getGlobalFuturesDailyKLine" params = { "symbol": symbol, "_": today, "source": "web", } r = requests.get(url, params=params) data_text = r.text data_df = pd.read_json(data_text[data_text.find("["):-2]) return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_foreign.py#L16-L35
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
45
[ 9, 10, 11, 16, 17, 18, 19 ]
35
false
29.62963
20
1
65
6
def futures_foreign_hist(symbol: str = "ZSD") -> pd.DataFrame: today = f'{datetime.today().year}_{datetime.today().month}_{datetime.today().day}' url = f"https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_S{today}=/GlobalFuturesService.getGlobalFuturesDailyKLine" params = { "symbol": symbol, "_": today, "source": "web", } r = requests.get(url, params=params) data_text = r.text data_df = pd.read_json(data_text[data_text.find("["):-2]) return data_df
18,165
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_foreign.py
futures_foreign_detail
(symbol: str = "ZSD")
return data_df
foreign futures contract detail data :param symbol: futures symbol, you can get it from hf_subscribe_exchange_symbol function :type symbol: str :return: contract detail :rtype: pandas.DataFrame
foreign futures contract detail data :param symbol: futures symbol, you can get it from hf_subscribe_exchange_symbol function :type symbol: str :return: contract detail :rtype: pandas.DataFrame
38
51
def futures_foreign_detail(symbol: str = "ZSD") -> pd.DataFrame: """ foreign futures contract detail data :param symbol: futures symbol, you can get it from hf_subscribe_exchange_symbol function :type symbol: str :return: contract detail :rtype: pandas.DataFrame """ url = f"https://finance.sina.com.cn/futures/quotes/{symbol}.shtml" r = requests.get(url) r.encoding = "gbk" data_text = r.text data_df = pd.read_html(data_text)[6] return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_foreign.py#L38-L51
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
57.142857
[ 8, 9, 10, 11, 12, 13 ]
42.857143
false
29.62963
14
1
57.142857
5
def futures_foreign_detail(symbol: str = "ZSD") -> pd.DataFrame: url = f"https://finance.sina.com.cn/futures/quotes/{symbol}.shtml" r = requests.get(url) r.encoding = "gbk" data_text = r.text data_df = pd.read_html(data_text)[6] return data_df
18,166
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cons.py
convert_date
(date)
return None
transform a date string to datetime.date object :param date, string, e.g. 2016-01-01, 20160101 or 2016/01/01 :return: object of datetime.date(such as 2016-01-01) or None
transform a date string to datetime.date object :param date, string, e.g. 2016-01-01, 20160101 or 2016/01/01 :return: object of datetime.date(such as 2016-01-01) or None
432
450
def convert_date(date): """ transform a date string to datetime.date object :param date, string, e.g. 2016-01-01, 20160101 or 2016/01/01 :return: object of datetime.date(such as 2016-01-01) or None """ if isinstance(date, datetime.date): return date elif isinstance(date, str): match = DATE_PATTERN.match(date) if match: groups = match.groups() if len(groups) == 3: return datetime.date( year=int(groups[0]), month=int(groups[1]), day=int(groups[2]), ) return None
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cons.py#L432-L450
25
[ 0, 1, 2, 3, 4, 5 ]
31.578947
[ 6, 7, 8, 9, 10, 11, 12, 13, 18 ]
47.368421
false
66.129032
19
5
52.631579
3
def convert_date(date): if isinstance(date, datetime.date): return date elif isinstance(date, str): match = DATE_PATTERN.match(date) if match: groups = match.groups() if len(groups) == 3: return datetime.date( year=int(groups[0]), month=int(groups[1]), day=int(groups[2]), ) return None
18,167
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cons.py
get_json_path
(name, module_file)
return module_json_path
获取 JSON 配置文件的路径(从模块所在目录查找) :param name: 文件名 :param module_file: filename :return: str json_file_path
获取 JSON 配置文件的路径(从模块所在目录查找) :param name: 文件名 :param module_file: filename :return: str json_file_path
453
464
def get_json_path(name, module_file): """ 获取 JSON 配置文件的路径(从模块所在目录查找) :param name: 文件名 :param module_file: filename :return: str json_file_path """ module_folder = os.path.abspath( os.path.dirname(os.path.dirname(module_file)) ) module_json_path = os.path.join(module_folder, "file_fold", name) return module_json_path
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cons.py#L453-L464
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
100
[]
0
true
66.129032
12
1
100
4
def get_json_path(name, module_file): module_folder = os.path.abspath( os.path.dirname(os.path.dirname(module_file)) ) module_json_path = os.path.join(module_folder, "file_fold", name) return module_json_path
18,168
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cons.py
get_pk_path
(name, module_file)
return module_json_path
获取 pickle 配置文件的路径(从模块所在目录查找) :param name: 文件名 :param module_file: filename :return: str json_file_path
获取 pickle 配置文件的路径(从模块所在目录查找) :param name: 文件名 :param module_file: filename :return: str json_file_path
467
478
def get_pk_path(name, module_file): """ 获取 pickle 配置文件的路径(从模块所在目录查找) :param name: 文件名 :param module_file: filename :return: str json_file_path """ module_folder = os.path.abspath( os.path.dirname(os.path.dirname(module_file)) ) module_json_path = os.path.join(module_folder, "file_fold", name) return module_json_path
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cons.py#L467-L478
25
[ 0, 1, 2, 3, 4, 5, 6 ]
58.333333
[ 7, 10, 11 ]
25
false
66.129032
12
1
75
4
def get_pk_path(name, module_file): module_folder = os.path.abspath( os.path.dirname(os.path.dirname(module_file)) ) module_json_path = os.path.join(module_folder, "file_fold", name) return module_json_path
18,169
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cons.py
get_pk_data
(file_name)
return pickle.load(open(setting_file_path, "rb"))
获取交易日历至 2019 年结束, 这里的交易日历需要按年更新 :return: json
获取交易日历至 2019 年结束, 这里的交易日历需要按年更新 :return: json
481
488
def get_pk_data(file_name): """ 获取交易日历至 2019 年结束, 这里的交易日历需要按年更新 :return: json """ setting_file_name = file_name setting_file_path = get_pk_path(setting_file_name, __file__) return pickle.load(open(setting_file_path, "rb"))
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cons.py#L481-L488
25
[ 0, 1, 2, 3, 4 ]
62.5
[ 5, 6, 7 ]
37.5
false
66.129032
8
1
62.5
2
def get_pk_data(file_name): setting_file_name = file_name setting_file_path = get_pk_path(setting_file_name, __file__) return pickle.load(open(setting_file_path, "rb"))
18,170
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cons.py
get_calendar
()
return data_json
获取交易日历, 这里的交易日历需要按年更新, 主要是从新浪获取的 :return: 交易日历 :rtype: json
获取交易日历, 这里的交易日历需要按年更新, 主要是从新浪获取的 :return: 交易日历 :rtype: json
491
501
def get_calendar(): """ 获取交易日历, 这里的交易日历需要按年更新, 主要是从新浪获取的 :return: 交易日历 :rtype: json """ setting_file_name = "calendar.json" setting_file_path = get_json_path(setting_file_name, __file__) with open(setting_file_path, "r") as f: data_json = json.load(f) return data_json
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cons.py#L491-L501
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
100
[]
0
true
66.129032
11
2
100
3
def get_calendar(): setting_file_name = "calendar.json" setting_file_path = get_json_path(setting_file_name, __file__) with open(setting_file_path, "r") as f: data_json = json.load(f) return data_json
18,171
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/cons.py
last_trading_day
(day)
获取前一个交易日 :param day: "%Y%m%d" or datetime.date() :return last_day: "%Y%m%d" or datetime.date()
获取前一个交易日 :param day: "%Y%m%d" or datetime.date() :return last_day: "%Y%m%d" or datetime.date()
504
528
def last_trading_day(day): """ 获取前一个交易日 :param day: "%Y%m%d" or datetime.date() :return last_day: "%Y%m%d" or datetime.date() """ calendar = get_calendar() if isinstance(day, str): if day not in calendar: print("Today is not trading day:" + day) return False pos = calendar.index(day) last_day = calendar[pos - 1] return last_day elif isinstance(day, datetime.date): d_str = day.strftime("%Y%m%d") if d_str not in calendar: print("Today is not working day:" + d_str) return False pos = calendar.index(d_str) last_day = calendar[pos - 1] last_day = datetime.datetime.strptime(last_day, "%Y%m%d").date() return last_day
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/cons.py#L504-L528
25
[ 0, 1, 2, 3, 4, 5 ]
24
[ 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24 ]
68
false
66.129032
25
5
32
3
def last_trading_day(day): calendar = get_calendar() if isinstance(day, str): if day not in calendar: print("Today is not trading day:" + day) return False pos = calendar.index(day) last_day = calendar[pos - 1] return last_day elif isinstance(day, datetime.date): d_str = day.strftime("%Y%m%d") if d_str not in calendar: print("Today is not working day:" + d_str) return False pos = calendar.index(d_str) last_day = calendar[pos - 1] last_day = datetime.datetime.strptime(last_day, "%Y%m%d").date() return last_day
18,172
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/requests_fun.py
requests_link
(url: str, encoding: str = "utf-8", method: str = "get", data: Dict = None, headers: Dict = None)
利用 requests 请求网站, 爬取网站内容, 如网站链接失败, 可重复爬取 20 次 :param url: string 网站地址 :param encoding: string 编码类型: "utf-8", "gbk", "gb2312" :param method: string 访问方法: "get", "post" :param data: dict 上传数据: 键值对 :param headers: dict 游览器请求头: 键值对 :return: requests.response 爬取返回内容: response
利用 requests 请求网站, 爬取网站内容, 如网站链接失败, 可重复爬取 20 次 :param url: string 网站地址 :param encoding: string 编码类型: "utf-8", "gbk", "gb2312" :param method: string 访问方法: "get", "post" :param data: dict 上传数据: 键值对 :param headers: dict 游览器请求头: 键值对 :return: requests.response 爬取返回内容: response
14
42
def requests_link(url: str, encoding: str = "utf-8", method: str = "get", data: Dict = None, headers: Dict = None): """ 利用 requests 请求网站, 爬取网站内容, 如网站链接失败, 可重复爬取 20 次 :param url: string 网站地址 :param encoding: string 编码类型: "utf-8", "gbk", "gb2312" :param method: string 访问方法: "get", "post" :param data: dict 上传数据: 键值对 :param headers: dict 游览器请求头: 键值对 :return: requests.response 爬取返回内容: response """ i = 0 while True: try: if method == "get": r = requests.get(url, timeout=20) r.encoding = encoding return r elif method == "post": r = requests.post(url, timeout=20, data=data, headers=headers) r.encoding = encoding return r else: raise ValueError("请提供正确的请求方式") except: i += 1 print(f"第{str(i)}次链接失败, 最多尝试 20 次") time.sleep(5) if i > 20: return None
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/requests_fun.py#L14-L42
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
34.482759
[ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28 ]
62.068966
false
15.555556
29
6
37.931034
7
def requests_link(url: str, encoding: str = "utf-8", method: str = "get", data: Dict = None, headers: Dict = None): i = 0 while True: try: if method == "get": r = requests.get(url, timeout=20) r.encoding = encoding return r elif method == "post": r = requests.post(url, timeout=20, data=data, headers=headers) r.encoding = encoding return r else: raise ValueError("请提供正确的请求方式") except: i += 1 print(f"第{str(i)}次链接失败, 最多尝试 20 次") time.sleep(5) if i > 20: return None
18,173
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/requests_fun.py
pandas_read_html_link
(url: str, encoding: str = "utf-8", method: str = "get", data: Dict = None, headers: Dict = None)
利用 pandas 提供的 read_html 函数来直接提取网页中的表格内容, 如网站链接失败, 可重复爬取 20 次 :param url: string 网站地址 :param encoding: string 编码类型: "utf-8", "gbk", "gb2312" :param method: string 访问方法: "get", "post" :param data: dict 上传数据: 键值对 :param headers: dict 游览器请求头: 键值对 :return: requests.response 爬取返回内容: response
利用 pandas 提供的 read_html 函数来直接提取网页中的表格内容, 如网站链接失败, 可重复爬取 20 次 :param url: string 网站地址 :param encoding: string 编码类型: "utf-8", "gbk", "gb2312" :param method: string 访问方法: "get", "post" :param data: dict 上传数据: 键值对 :param headers: dict 游览器请求头: 键值对 :return: requests.response 爬取返回内容: response
45
75
def pandas_read_html_link(url: str, encoding: str = "utf-8", method: str = "get", data: Dict = None, headers: Dict = None): """ 利用 pandas 提供的 read_html 函数来直接提取网页中的表格内容, 如网站链接失败, 可重复爬取 20 次 :param url: string 网站地址 :param encoding: string 编码类型: "utf-8", "gbk", "gb2312" :param method: string 访问方法: "get", "post" :param data: dict 上传数据: 键值对 :param headers: dict 游览器请求头: 键值对 :return: requests.response 爬取返回内容: response """ i = 0 while True: try: if method == "get": r = requests.get(url, timeout=20) r.encoding = encoding r = pd.read_html(r.text, encoding=encoding) return r elif method == "post": r = requests.post(url, timeout=20, data=data, headers=headers) r.encoding = encoding r = pd.read_html(r.text, encoding=encoding) return r else: raise ValueError("请提供正确的请求方式") except requests.exceptions.Timeout as e: i += 1 print(f"第{str(i)}次链接失败, 最多尝试20次", e) time.sleep(5) if i > 20: return None
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/requests_fun.py#L45-L75
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
32.258065
[ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30 ]
64.516129
false
15.555556
31
6
35.483871
7
def pandas_read_html_link(url: str, encoding: str = "utf-8", method: str = "get", data: Dict = None, headers: Dict = None): i = 0 while True: try: if method == "get": r = requests.get(url, timeout=20) r.encoding = encoding r = pd.read_html(r.text, encoding=encoding) return r elif method == "post": r = requests.post(url, timeout=20, data=data, headers=headers) r.encoding = encoding r = pd.read_html(r.text, encoding=encoding) return r else: raise ValueError("请提供正确的请求方式") except requests.exceptions.Timeout as e: i += 1 print(f"第{str(i)}次链接失败, 最多尝试20次", e) time.sleep(5) if i > 20: return None
18,174
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_contract_detail.py
futures_contract_detail
(symbol: str = 'AP2101')
return temp_df
查询期货合约详情 https://finance.sina.com.cn/futures/quotes/V2101.shtml :param symbol: 合约 :type symbol: str :return: 期货合约详情 :rtype: pandas.DataFrame
查询期货合约详情 https://finance.sina.com.cn/futures/quotes/V2101.shtml :param symbol: 合约 :type symbol: str :return: 期货合约详情 :rtype: pandas.DataFrame
12
32
def futures_contract_detail(symbol: str = 'AP2101') -> pd.DataFrame: """ 查询期货合约详情 https://finance.sina.com.cn/futures/quotes/V2101.shtml :param symbol: 合约 :type symbol: str :return: 期货合约详情 :rtype: pandas.DataFrame """ url = f"https://finance.sina.com.cn/futures/quotes/{symbol}.shtml" r = requests.get(url) r.encoding = 'gb2312' temp_df = pd.read_html(r.text)[6] data_one = temp_df.iloc[:, :2] data_one.columns = ['item', 'value'] data_two = temp_df.iloc[:, 2:4] data_two.columns = ['item', 'value'] data_three = temp_df.iloc[:, 4:] data_three.columns = ['item', 'value'] temp_df = pd.concat([data_one, data_two, data_three], axis=0, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_contract_detail.py#L12-L32
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
42.857143
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]
57.142857
false
26.315789
21
1
42.857143
6
def futures_contract_detail(symbol: str = 'AP2101') -> pd.DataFrame: url = f"https://finance.sina.com.cn/futures/quotes/{symbol}.shtml" r = requests.get(url) r.encoding = 'gb2312' temp_df = pd.read_html(r.text)[6] data_one = temp_df.iloc[:, :2] data_one.columns = ['item', 'value'] data_two = temp_df.iloc[:, 2:4] data_two.columns = ['item', 'value'] data_three = temp_df.iloc[:, 4:] data_three.columns = ['item', 'value'] temp_df = pd.concat([data_one, data_two, data_three], axis=0, ignore_index=True) return temp_df
18,175
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
futures_symbol_mark
()
return temp_df
期货的品种和代码映射 http://vip.stock.finance.sina.com.cn/quotes_service/view/js/qihuohangqing.js :return: 期货的品种和代码映射 :rtype: pandas.DataFrame
期货的品种和代码映射 http://vip.stock.finance.sina.com.cn/quotes_service/view/js/qihuohangqing.js :return: 期货的品种和代码映射 :rtype: pandas.DataFrame
27
78
def futures_symbol_mark() -> pd.DataFrame: """ 期货的品种和代码映射 http://vip.stock.finance.sina.com.cn/quotes_service/view/js/qihuohangqing.js :return: 期货的品种和代码映射 :rtype: pandas.DataFrame """ url = "http://vip.stock.finance.sina.com.cn/quotes_service/view/js/qihuohangqing.js" r = requests.get(url) r.encoding = "gb2312" data_text = r.text raw_json = data_text[data_text.find("{") : data_text.find("}") + 1] data_json = demjson.decode(raw_json) czce_mark_list = [item[1] for item in data_json["czce"][1:]] dce_mark_list = [item[1] for item in data_json["dce"][1:]] shfe_mark_list = [item[1] for item in data_json["shfe"][1:]] cffex_mark_list = [item[1] for item in data_json["cffex"][1:]] all_mark_list = ( czce_mark_list + dce_mark_list + shfe_mark_list + cffex_mark_list ) czce_market_name_list = [data_json["czce"][0]] * len(czce_mark_list) dce_market_name_list = [data_json["dce"][0]] * len(dce_mark_list) shfe_market_name_list = [data_json["shfe"][0]] * len(shfe_mark_list) cffex_market_name_list = [data_json["cffex"][0]] * len(cffex_mark_list) all_market_name_list = ( czce_market_name_list + dce_market_name_list + shfe_market_name_list + cffex_market_name_list ) czce_symbol_list = [item[0] for item in data_json["czce"][1:]] dce_symbol_list = [item[0] for item in data_json["dce"][1:]] shfe_symbol_list = [item[0] for item in data_json["shfe"][1:]] cffex_symbol_list = [item[0] for item in data_json["cffex"][1:]] all_symbol_list = ( czce_symbol_list + dce_symbol_list + shfe_symbol_list + cffex_symbol_list ) temp_df = pd.DataFrame( [all_market_name_list, all_symbol_list, all_mark_list] ).T temp_df.columns = [ "exchange", "symbol", "mark", ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L27-L78
25
[ 0, 1, 2, 3, 4, 5, 6 ]
13.461538
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 32, 33, 34, 35, 36, 43, 46, 51 ]
46.153846
false
8.085106
52
9
53.846154
4
def futures_symbol_mark() -> pd.DataFrame: url = "http://vip.stock.finance.sina.com.cn/quotes_service/view/js/qihuohangqing.js" r = requests.get(url) r.encoding = "gb2312" data_text = r.text raw_json = data_text[data_text.find("{") : data_text.find("}") + 1] data_json = demjson.decode(raw_json) czce_mark_list = [item[1] for item in data_json["czce"][1:]] dce_mark_list = [item[1] for item in data_json["dce"][1:]] shfe_mark_list = [item[1] for item in data_json["shfe"][1:]] cffex_mark_list = [item[1] for item in data_json["cffex"][1:]] all_mark_list = ( czce_mark_list + dce_mark_list + shfe_mark_list + cffex_mark_list ) czce_market_name_list = [data_json["czce"][0]] * len(czce_mark_list) dce_market_name_list = [data_json["dce"][0]] * len(dce_mark_list) shfe_market_name_list = [data_json["shfe"][0]] * len(shfe_mark_list) cffex_market_name_list = [data_json["cffex"][0]] * len(cffex_mark_list) all_market_name_list = ( czce_market_name_list + dce_market_name_list + shfe_market_name_list + cffex_market_name_list ) czce_symbol_list = [item[0] for item in data_json["czce"][1:]] dce_symbol_list = [item[0] for item in data_json["dce"][1:]] shfe_symbol_list = [item[0] for item in data_json["shfe"][1:]] cffex_symbol_list = [item[0] for item in data_json["cffex"][1:]] all_symbol_list = ( czce_symbol_list + dce_symbol_list + shfe_symbol_list + cffex_symbol_list ) temp_df = pd.DataFrame( [all_market_name_list, all_symbol_list, all_mark_list] ).T temp_df.columns = [ "exchange", "symbol", "mark", ] return temp_df
18,176
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
futures_zh_realtime
(symbol: str = "白糖") ->
return temp_df
期货品种当前时刻所有可交易的合约实时数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 品种名称;可以通过 ak.futures_symbol_mark() 获取所有品种命名表 :type symbol: str :return: 期货品种当前时刻所有可交易的合约实时数据 :rtype: pandas.DataFrame
期货品种当前时刻所有可交易的合约实时数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 品种名称;可以通过 ak.futures_symbol_mark() 获取所有品种命名表 :type symbol: str :return: 期货品种当前时刻所有可交易的合约实时数据 :rtype: pandas.DataFrame
81
125
def futures_zh_realtime(symbol: str = "白糖") -> pd.DataFrame: """ 期货品种当前时刻所有可交易的合约实时数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 品种名称;可以通过 ak.futures_symbol_mark() 获取所有品种命名表 :type symbol: str :return: 期货品种当前时刻所有可交易的合约实时数据 :rtype: pandas.DataFrame """ _futures_symbol_mark_df = futures_symbol_mark() symbol_mark_map = dict( zip(_futures_symbol_mark_df["symbol"], _futures_symbol_mark_df["mark"]) ) url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQFuturesData" params = { "page": "1", "sort": "position", "asc": "0", "node": symbol_mark_map[symbol], "base": "futures", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df["trade"] = pd.to_numeric(temp_df["trade"]) temp_df["settlement"] = pd.to_numeric(temp_df["settlement"]) temp_df["presettlement"] = pd.to_numeric(temp_df["presettlement"]) temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["bidprice1"] = pd.to_numeric(temp_df["bidprice1"]) temp_df["askprice1"] = pd.to_numeric(temp_df["askprice1"]) temp_df["bidvol1"] = pd.to_numeric(temp_df["bidvol1"]) temp_df["askvol1"] = pd.to_numeric(temp_df["askvol1"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["position"] = pd.to_numeric(temp_df["position"]) temp_df["preclose"] = pd.to_numeric(temp_df["preclose"]) temp_df["changepercent"] = pd.to_numeric(temp_df["changepercent"]) temp_df["bid"] = pd.to_numeric(temp_df["bid"]) temp_df["ask"] = pd.to_numeric(temp_df["ask"]) temp_df["prevsettlement"] = pd.to_numeric(temp_df["prevsettlement"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L81-L125
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
20
[ 9, 10, 13, 14, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44 ]
57.777778
false
8.085106
45
1
42.222222
6
def futures_zh_realtime(symbol: str = "白糖") -> pd.DataFrame: _futures_symbol_mark_df = futures_symbol_mark() symbol_mark_map = dict( zip(_futures_symbol_mark_df["symbol"], _futures_symbol_mark_df["mark"]) ) url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQFuturesData" params = { "page": "1", "sort": "position", "asc": "0", "node": symbol_mark_map[symbol], "base": "futures", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df["trade"] = pd.to_numeric(temp_df["trade"]) temp_df["settlement"] = pd.to_numeric(temp_df["settlement"]) temp_df["presettlement"] = pd.to_numeric(temp_df["presettlement"]) temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["bidprice1"] = pd.to_numeric(temp_df["bidprice1"]) temp_df["askprice1"] = pd.to_numeric(temp_df["askprice1"]) temp_df["bidvol1"] = pd.to_numeric(temp_df["bidvol1"]) temp_df["askvol1"] = pd.to_numeric(temp_df["askvol1"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["position"] = pd.to_numeric(temp_df["position"]) temp_df["preclose"] = pd.to_numeric(temp_df["preclose"]) temp_df["changepercent"] = pd.to_numeric(temp_df["changepercent"]) temp_df["bid"] = pd.to_numeric(temp_df["bid"]) temp_df["ask"] = pd.to_numeric(temp_df["ask"]) temp_df["prevsettlement"] = pd.to_numeric(temp_df["prevsettlement"]) return temp_df
18,177
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
zh_subscribe_exchange_symbol
(symbol: str = "dce")
交易所具体的可交易品种 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'} :type symbol: str :return: 交易所具体的可交易品种 :rtype: dict
交易所具体的可交易品种 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'} :type symbol: str :return: 交易所具体的可交易品种 :rtype: dict
128
154
def zh_subscribe_exchange_symbol(symbol: str = "dce") -> dict: """ 交易所具体的可交易品种 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'} :type symbol: str :return: 交易所具体的可交易品种 :rtype: dict """ r = requests.get(zh_subscribe_exchange_symbol_url) r.encoding = "gbk" data_text = r.text data_json = demjson.decode( data_text[data_text.find("{") : data_text.find("};") + 1] ) if symbol == "czce": data_json["czce"].remove("郑州商品交易所") return pd.DataFrame(data_json["czce"]) if symbol == "dce": data_json["dce"].remove("大连商品交易所") return pd.DataFrame(data_json["dce"]) if symbol == "shfe": data_json["shfe"].remove("上海期货交易所") return pd.DataFrame(data_json["shfe"]) if symbol == "cffex": data_json["cffex"].remove("中国金融期货交易所") return pd.DataFrame(data_json["cffex"])
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L128-L154
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
33.333333
[ 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]
59.259259
false
8.085106
27
5
40.740741
6
def zh_subscribe_exchange_symbol(symbol: str = "dce") -> dict: r = requests.get(zh_subscribe_exchange_symbol_url) r.encoding = "gbk" data_text = r.text data_json = demjson.decode( data_text[data_text.find("{") : data_text.find("};") + 1] ) if symbol == "czce": data_json["czce"].remove("郑州商品交易所") return pd.DataFrame(data_json["czce"]) if symbol == "dce": data_json["dce"].remove("大连商品交易所") return pd.DataFrame(data_json["dce"]) if symbol == "shfe": data_json["shfe"].remove("上海期货交易所") return pd.DataFrame(data_json["shfe"]) if symbol == "cffex": data_json["cffex"].remove("中国金融期货交易所") return pd.DataFrame(data_json["cffex"])
18,178
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
match_main_contract
(symbol: str = "cffex")
return ",".join([item for item in subscribe_exchange_list])
新浪财经-期货-主力合约 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'} :type symbol: str :return: 主力合约的字符串 :rtype: str
新浪财经-期货-主力合约 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'} :type symbol: str :return: 主力合约的字符串 :rtype: str
157
190
def match_main_contract(symbol: str = "cffex") -> str: """ 新浪财经-期货-主力合约 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'} :type symbol: str :return: 主力合约的字符串 :rtype: str """ subscribe_exchange_list = [] exchange_symbol_list = ( zh_subscribe_exchange_symbol(symbol).iloc[:, 1].tolist() ) for item in exchange_symbol_list: # item = 'sngz_qh' zh_match_main_contract_payload.update({"node": item}) res = requests.get( zh_match_main_contract_url, params=zh_match_main_contract_payload ) data_json = demjson.decode(res.text) data_df = pd.DataFrame(data_json) try: main_contract = data_df[data_df.iloc[:, 3:].duplicated()] print(main_contract["symbol"].values[0]) subscribe_exchange_list.append(main_contract["symbol"].values[0]) except: if len(data_df) == 1: subscribe_exchange_list.append(data_df["symbol"].values[0]) print(data_df["symbol"].values[0]) else: print(item, "无主力合约") continue print(f"{symbol}主力合约获取成功") return ",".join([item for item in subscribe_exchange_list])
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L157-L190
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
26.470588
[ 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33 ]
55.882353
false
8.085106
34
5
44.117647
6
def match_main_contract(symbol: str = "cffex") -> str: subscribe_exchange_list = [] exchange_symbol_list = ( zh_subscribe_exchange_symbol(symbol).iloc[:, 1].tolist() ) for item in exchange_symbol_list: # item = 'sngz_qh' zh_match_main_contract_payload.update({"node": item}) res = requests.get( zh_match_main_contract_url, params=zh_match_main_contract_payload ) data_json = demjson.decode(res.text) data_df = pd.DataFrame(data_json) try: main_contract = data_df[data_df.iloc[:, 3:].duplicated()] print(main_contract["symbol"].values[0]) subscribe_exchange_list.append(main_contract["symbol"].values[0]) except: if len(data_df) == 1: subscribe_exchange_list.append(data_df["symbol"].values[0]) print(data_df["symbol"].values[0]) else: print(item, "无主力合约") continue print(f"{symbol}主力合约获取成功") return ",".join([item for item in subscribe_exchange_list])
18,179
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
futures_zh_spot
( symbol: str = "V2209", market: str = "CF", adjust: str = "0", )
期货的实时行情数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 合约名称的字符串组合 :type symbol: str :param market: CF 为商品期货 :type market: str :param adjust: '1' or '0'; 字符串的 0 或 1 :type adjust: str :return: 期货的实时行情数据 :rtype: pandas.DataFrame
期货的实时行情数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 合约名称的字符串组合 :type symbol: str :param market: CF 为商品期货 :type market: str :param adjust: '1' or '0'; 字符串的 0 或 1 :type adjust: str :return: 期货的实时行情数据 :rtype: pandas.DataFrame
193
599
def futures_zh_spot( symbol: str = "V2209", market: str = "CF", adjust: str = "0", ) -> pd.DataFrame: """ 期货的实时行情数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 合约名称的字符串组合 :type symbol: str :param market: CF 为商品期货 :type market: str :param adjust: '1' or '0'; 字符串的 0 或 1 :type adjust: str :return: 期货的实时行情数据 :rtype: pandas.DataFrame """ file_data = "Math.round(Math.random() * 2147483648).toString(16)" ctx = py_mini_racer.MiniRacer() rn_code = ctx.eval(file_data) subscribe_list = ",".join( ["nf_" + item.strip() for item in symbol.split(",")] ) url = f"https://hq.sinajs.cn/rn={rn_code}&list={subscribe_list}" headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Host": "hq.sinajs.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://vip.stock.finance.sina.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36", } r = requests.get(url, headers=headers) data_df = pd.DataFrame( [ item.strip().split("=")[1].split(",") for item in r.text.split(";") if item.strip() != "" ] ) data_df.iloc[:, 0] = data_df.iloc[:, 0].str.replace('"', "") data_df.iloc[:, -1] = data_df.iloc[:, -1].str.replace('"', "") if adjust == "1": contract_name_list = [ item.split("_")[1] for item in subscribe_list.split(",") ] contract_min_list = [] contract_exchange_list = [] for contract_name in contract_name_list: temp_df = futures_contract_detail(symbol=contract_name) exchange_name = temp_df[temp_df["item"] == "上市交易所"][ "value" ].values[0] contract_exchange_list.append(exchange_name) contract_min = temp_df[temp_df["item"] == "最小变动价位"][ "value" ].values[0] contract_min_list.append(contract_min) if market == "CF": data_df.columns = [ "symbol", "time", "open", "high", "low", "last_close", "bid_price", "ask_price", "current_price", "avg_price", "last_settle_price", "buy_vol", "sell_vol", "hold", "volume", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "bid_price", "ask_price", "buy_vol", "sell_vol", "hold", "volume", "avg_price", "last_close", "last_settle_price", ] ] data_df["exchange"] = contract_exchange_list data_df["contract"] = contract_name_list data_df["contract_min_change"] = contract_min_list data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["bid_price"] = pd.to_numeric(data_df["bid_price"]) data_df["ask_price"] = pd.to_numeric(data_df["ask_price"]) data_df["buy_vol"] = pd.to_numeric(data_df["buy_vol"]) data_df["sell_vol"] = pd.to_numeric(data_df["sell_vol"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["avg_price"] = pd.to_numeric(data_df["avg_price"]) data_df["last_close"] = pd.to_numeric(data_df["last_close"]) data_df["last_settle_price"] = pd.to_numeric( data_df["last_settle_price"] ) data_df.dropna(subset=["current_price"], inplace=True) return data_df else: data_df.columns = [ "open", "high", "low", "current_price", "volume", "amount", "hold", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_" "_", "time", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "symbol", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "hold", "volume", "amount", ] ] data_df["exchange"] = contract_exchange_list data_df["contract"] = contract_name_list data_df["contract_min_change"] = contract_min_list data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["amount"] = pd.to_numeric(data_df["amount"]) data_df.dropna(subset=["current_price"], inplace=True) return data_df else: if market == "CF": # 此处由于 20220601 接口变动,增加了字段,此处增加异常判断,except 后为新代码 try: data_df.columns = [ "symbol", "time", "open", "high", "low", "last_close", "bid_price", "ask_price", "current_price", "avg_price", "last_settle_price", "buy_vol", "sell_vol", "hold", "volume", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] except: data_df.columns = [ "symbol", "time", "open", "high", "low", "last_close", "bid_price", "ask_price", "current_price", "avg_price", "last_settle_price", "buy_vol", "sell_vol", "hold", "volume", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "bid_price", "ask_price", "buy_vol", "sell_vol", "hold", "volume", "avg_price", "last_close", "last_settle_price", ] ] data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["bid_price"] = pd.to_numeric(data_df["bid_price"]) data_df["ask_price"] = pd.to_numeric(data_df["ask_price"]) data_df["buy_vol"] = pd.to_numeric(data_df["buy_vol"]) data_df["sell_vol"] = pd.to_numeric(data_df["sell_vol"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["avg_price"] = pd.to_numeric(data_df["avg_price"]) data_df["last_close"] = pd.to_numeric(data_df["last_close"]) data_df["last_settle_price"] = pd.to_numeric( data_df["last_settle_price"] ) data_df.dropna(subset=["current_price"], inplace=True) return data_df else: data_df.columns = [ "open", "high", "low", "current_price", "volume", "amount", "hold", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_" "_", "time", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "symbol", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "hold", "volume", "amount", ] ] data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["amount"] = pd.to_numeric(data_df["amount"]) data_df.dropna(subset=["current_price"], inplace=True) return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L193-L599
25
[ 0 ]
0.2457
[ 17, 18, 19, 20, 23, 24, 35, 36, 43, 44, 45, 46, 49, 50, 51, 52, 53, 56, 57, 60, 61, 62, 92, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 130, 131, 133, 185, 198, 199, 200, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 215, 216, 246, 247, 293, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 329, 330, 332, 384, 397, 398, 399, 400, 401, 402, 403, 405, 406 ]
21.375921
false
8.085106
407
9
78.624079
10
def futures_zh_spot( symbol: str = "V2209", market: str = "CF", adjust: str = "0", ) -> pd.DataFrame: file_data = "Math.round(Math.random() * 2147483648).toString(16)" ctx = py_mini_racer.MiniRacer() rn_code = ctx.eval(file_data) subscribe_list = ",".join( ["nf_" + item.strip() for item in symbol.split(",")] ) url = f"https://hq.sinajs.cn/rn={rn_code}&list={subscribe_list}" headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Host": "hq.sinajs.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://vip.stock.finance.sina.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36", } r = requests.get(url, headers=headers) data_df = pd.DataFrame( [ item.strip().split("=")[1].split(",") for item in r.text.split(";") if item.strip() != "" ] ) data_df.iloc[:, 0] = data_df.iloc[:, 0].str.replace('"', "") data_df.iloc[:, -1] = data_df.iloc[:, -1].str.replace('"', "") if adjust == "1": contract_name_list = [ item.split("_")[1] for item in subscribe_list.split(",") ] contract_min_list = [] contract_exchange_list = [] for contract_name in contract_name_list: temp_df = futures_contract_detail(symbol=contract_name) exchange_name = temp_df[temp_df["item"] == "上市交易所"][ "value" ].values[0] contract_exchange_list.append(exchange_name) contract_min = temp_df[temp_df["item"] == "最小变动价位"][ "value" ].values[0] contract_min_list.append(contract_min) if market == "CF": data_df.columns = [ "symbol", "time", "open", "high", "low", "last_close", "bid_price", "ask_price", "current_price", "avg_price", "last_settle_price", "buy_vol", "sell_vol", "hold", "volume", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "bid_price", "ask_price", "buy_vol", "sell_vol", "hold", "volume", "avg_price", "last_close", "last_settle_price", ] ] data_df["exchange"] = contract_exchange_list data_df["contract"] = contract_name_list data_df["contract_min_change"] = contract_min_list data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["bid_price"] = pd.to_numeric(data_df["bid_price"]) data_df["ask_price"] = pd.to_numeric(data_df["ask_price"]) data_df["buy_vol"] = pd.to_numeric(data_df["buy_vol"]) data_df["sell_vol"] = pd.to_numeric(data_df["sell_vol"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["avg_price"] = pd.to_numeric(data_df["avg_price"]) data_df["last_close"] = pd.to_numeric(data_df["last_close"]) data_df["last_settle_price"] = pd.to_numeric( data_df["last_settle_price"] ) data_df.dropna(subset=["current_price"], inplace=True) return data_df else: data_df.columns = [ "open", "high", "low", "current_price", "volume", "amount", "hold", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_" "_", "time", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "symbol", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "hold", "volume", "amount", ] ] data_df["exchange"] = contract_exchange_list data_df["contract"] = contract_name_list data_df["contract_min_change"] = contract_min_list data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["amount"] = pd.to_numeric(data_df["amount"]) data_df.dropna(subset=["current_price"], inplace=True) return data_df else: if market == "CF": # 此处由于 20220601 接口变动,增加了字段,此处增加异常判断,except 后为新代码 try: data_df.columns = [ "symbol", "time", "open", "high", "low", "last_close", "bid_price", "ask_price", "current_price", "avg_price", "last_settle_price", "buy_vol", "sell_vol", "hold", "volume", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] except: data_df.columns = [ "symbol", "time", "open", "high", "low", "last_close", "bid_price", "ask_price", "current_price", "avg_price", "last_settle_price", "buy_vol", "sell_vol", "hold", "volume", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "bid_price", "ask_price", "buy_vol", "sell_vol", "hold", "volume", "avg_price", "last_close", "last_settle_price", ] ] data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["bid_price"] = pd.to_numeric(data_df["bid_price"]) data_df["ask_price"] = pd.to_numeric(data_df["ask_price"]) data_df["buy_vol"] = pd.to_numeric(data_df["buy_vol"]) data_df["sell_vol"] = pd.to_numeric(data_df["sell_vol"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["avg_price"] = pd.to_numeric(data_df["avg_price"]) data_df["last_close"] = pd.to_numeric(data_df["last_close"]) data_df["last_settle_price"] = pd.to_numeric( data_df["last_settle_price"] ) data_df.dropna(subset=["current_price"], inplace=True) return data_df else: data_df.columns = [ "open", "high", "low", "current_price", "volume", "amount", "hold", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_" "_", "time", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "symbol", ] data_df = data_df[ [ "symbol", "time", "open", "high", "low", "current_price", "hold", "volume", "amount", ] ] data_df["open"] = pd.to_numeric(data_df["open"]) data_df["high"] = pd.to_numeric(data_df["high"]) data_df["low"] = pd.to_numeric(data_df["low"]) data_df["current_price"] = pd.to_numeric(data_df["current_price"]) data_df["hold"] = pd.to_numeric(data_df["hold"]) data_df["volume"] = pd.to_numeric(data_df["volume"]) data_df["amount"] = pd.to_numeric(data_df["amount"]) data_df.dropna(subset=["current_price"], inplace=True) return data_df
18,180
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
futures_zh_minute_sina
( symbol: str = "IF2008", period: str = "5" )
return temp_df
中国各品种期货分钟频率数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_3 :param symbol: 可以通过 match_main_contract(symbol="cffex") 获取, 或者访问网页获取 :type symbol: str :param period: choice of {"1": "1分钟", "5": "5分钟", "15": "15分钟", "30": "30分钟", "60": "60分钟"} :type period: str :return: 指定 symbol 和 period 的数据 :rtype: pandas.DataFrame
中国各品种期货分钟频率数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_3 :param symbol: 可以通过 match_main_contract(symbol="cffex") 获取, 或者访问网页获取 :type symbol: str :param period: choice of {"1": "1分钟", "5": "5分钟", "15": "15分钟", "30": "30分钟", "60": "60分钟"} :type period: str :return: 指定 symbol 和 period 的数据 :rtype: pandas.DataFrame
602
637
def futures_zh_minute_sina( symbol: str = "IF2008", period: str = "5" ) -> pd.DataFrame: """ 中国各品种期货分钟频率数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_3 :param symbol: 可以通过 match_main_contract(symbol="cffex") 获取, 或者访问网页获取 :type symbol: str :param period: choice of {"1": "1分钟", "5": "5分钟", "15": "15分钟", "30": "30分钟", "60": "60分钟"} :type period: str :return: 指定 symbol 和 period 的数据 :rtype: pandas.DataFrame """ url = "https://stock2.finance.sina.com.cn/futures/api/jsonp.php/=/InnerFuturesNewService.getFewMinLine" params = { "symbol": symbol, "type": period, } r = requests.get(url, params=params) temp_df = pd.DataFrame(json.loads(r.text.split("=(")[1].split(");")[0])) temp_df.columns = [ "datetime", "open", "high", "low", "close", "volume", "hold", ] temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["hold"] = pd.to_numeric(temp_df["hold"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L602-L637
25
[ 0 ]
2.777778
[ 13, 14, 18, 19, 20, 29, 30, 31, 32, 33, 34, 35 ]
33.333333
false
8.085106
36
1
66.666667
8
def futures_zh_minute_sina( symbol: str = "IF2008", period: str = "5" ) -> pd.DataFrame: url = "https://stock2.finance.sina.com.cn/futures/api/jsonp.php/=/InnerFuturesNewService.getFewMinLine" params = { "symbol": symbol, "type": period, } r = requests.get(url, params=params) temp_df = pd.DataFrame(json.loads(r.text.split("=(")[1].split(");")[0])) temp_df.columns = [ "datetime", "open", "high", "low", "close", "volume", "hold", ] temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["hold"] = pd.to_numeric(temp_df["hold"]) return temp_df
18,181
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_zh_sina.py
futures_zh_daily_sina
(symbol: str = "V2105")
return temp_df
中国各品种期货日频率数据 https://finance.sina.com.cn/futures/quotes/V2105.shtml :param symbol: 可以通过 match_main_contract(symbol="cffex") 获取, 或者访问网页获取 :type symbol: str :return: 指定 symbol 和 period 的数据 :rtype: pandas.DataFrame
中国各品种期货日频率数据 https://finance.sina.com.cn/futures/quotes/V2105.shtml :param symbol: 可以通过 match_main_contract(symbol="cffex") 获取, 或者访问网页获取 :type symbol: str :return: 指定 symbol 和 period 的数据 :rtype: pandas.DataFrame
640
674
def futures_zh_daily_sina(symbol: str = "V2105") -> pd.DataFrame: """ 中国各品种期货日频率数据 https://finance.sina.com.cn/futures/quotes/V2105.shtml :param symbol: 可以通过 match_main_contract(symbol="cffex") 获取, 或者访问网页获取 :type symbol: str :return: 指定 symbol 和 period 的数据 :rtype: pandas.DataFrame """ date = "20210412" url = "https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_V21052021_4_12=/InnerFuturesNewService.getDailyKLine" params = { "symbol": symbol, "type": "_".join([date[:4], date[4:6], date[6:]]), } r = requests.get(url, params=params) temp_df = pd.DataFrame(json.loads(r.text.split("=(")[1].split(");")[0])) temp_df.columns = [ "date", "open", "high", "low", "close", "volume", "hold", "settle", ] temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["hold"] = pd.to_numeric(temp_df["hold"]) temp_df["settle"] = pd.to_numeric(temp_df["settle"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_zh_sina.py#L640-L674
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
25.714286
[ 9, 10, 11, 15, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34 ]
40
false
8.085106
35
1
60
6
def futures_zh_daily_sina(symbol: str = "V2105") -> pd.DataFrame: date = "20210412" url = "https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_V21052021_4_12=/InnerFuturesNewService.getDailyKLine" params = { "symbol": symbol, "type": "_".join([date[:4], date[4:6], date[6:]]), } r = requests.get(url, params=params) temp_df = pd.DataFrame(json.loads(r.text.split("=(")[1].split(");")[0])) temp_df.columns = [ "date", "open", "high", "low", "close", "volume", "hold", "settle", ] temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["hold"] = pd.to_numeric(temp_df["hold"]) temp_df["settle"] = pd.to_numeric(temp_df["settle"]) return temp_df
18,182
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
_futures_daily_czce
( date: str = "20100824", dataset: str = "datahistory2010" )
return temp_df
郑州商品交易所-交易数据-历史行情下载 http://www.czce.com.cn/cn/jysj/lshqxz/H770319index_1.htm :param date: 需要的日期 :type date: str :param dataset: 数据集的名称; 此处只需要替换 datahistory2010 中的 2010 即可 :type dataset: str :return: 指定日期的所有品种行情数据 :rtype: pandas.DataFrame
郑州商品交易所-交易数据-历史行情下载 http://www.czce.com.cn/cn/jysj/lshqxz/H770319index_1.htm :param date: 需要的日期 :type date: str :param dataset: 数据集的名称; 此处只需要替换 datahistory2010 中的 2010 即可 :type dataset: str :return: 指定日期的所有品种行情数据 :rtype: pandas.DataFrame
22
105
def _futures_daily_czce( date: str = "20100824", dataset: str = "datahistory2010" ) -> pd.DataFrame: """ 郑州商品交易所-交易数据-历史行情下载 http://www.czce.com.cn/cn/jysj/lshqxz/H770319index_1.htm :param date: 需要的日期 :type date: str :param dataset: 数据集的名称; 此处只需要替换 datahistory2010 中的 2010 即可 :type dataset: str :return: 指定日期的所有品种行情数据 :rtype: pandas.DataFrame """ url = f"http://www.czce.com.cn/cn/exchange/{dataset}.zip" r = requests.get(url) with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(f"{dataset}.txt") as my_file: data = my_file.read().decode("gb2312") data_df = pd.read_table(StringIO(data), sep=r"|", header=1) data_df.columns = [item.strip() for item in data_df.columns] data_df.dropna(axis=1, inplace=True) for column in data_df.columns: try: data_df[column] = data_df[column].str.strip("\t") data_df[column] = data_df[column].str.replace(",", "") except: data_df[column] = data_df[column] data_df["昨结算"] = pd.to_numeric(data_df["昨结算"]) data_df["今开盘"] = pd.to_numeric(data_df["今开盘"]) data_df["最高价"] = pd.to_numeric(data_df["最高价"]) data_df["最低价"] = pd.to_numeric(data_df["最低价"]) data_df["今收盘"] = pd.to_numeric(data_df["今收盘"]) data_df["今结算"] = pd.to_numeric(data_df["今结算"]) data_df["涨跌1"] = pd.to_numeric(data_df["涨跌1"]) data_df["涨跌2"] = pd.to_numeric(data_df["涨跌2"]) data_df["成交量(手)"] = pd.to_numeric(data_df["成交量(手)"]) data_df["空盘量"] = pd.to_numeric(data_df["空盘量"]) data_df["增减量"] = pd.to_numeric(data_df["增减量"]) data_df["成交额(万元)"] = pd.to_numeric(data_df["成交额(万元)"]) data_df["交割结算价"] = pd.to_numeric(data_df["交割结算价"]) data_df["交易日期"] = pd.to_datetime(data_df["交易日期"]) data_df.columns = [ "date", "symbol", "pre_settle", "open", "high", "low", "close", "settle", "-", "-", "volume", "open_interest", "-", "turnover", "-", ] variety_list = [ re.compile(r"[a-zA-Z_]+").findall(item)[0] for item in data_df["symbol"] ] data_df["variety"] = variety_list data_df = data_df[ [ "symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety", ] ] temp_df = data_df[data_df["date"] == pd.Timestamp(date)].copy() temp_df["date"] = date temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L22-L105
25
[ 0 ]
1.190476
[ 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 59, 63, 64, 80, 81, 82, 83 ]
42.857143
false
6.64557
84
7
57.142857
8
def _futures_daily_czce( date: str = "20100824", dataset: str = "datahistory2010" ) -> pd.DataFrame: url = f"http://www.czce.com.cn/cn/exchange/{dataset}.zip" r = requests.get(url) with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(f"{dataset}.txt") as my_file: data = my_file.read().decode("gb2312") data_df = pd.read_table(StringIO(data), sep=r"|", header=1) data_df.columns = [item.strip() for item in data_df.columns] data_df.dropna(axis=1, inplace=True) for column in data_df.columns: try: data_df[column] = data_df[column].str.strip("\t") data_df[column] = data_df[column].str.replace(",", "") except: data_df[column] = data_df[column] data_df["昨结算"] = pd.to_numeric(data_df["昨结算"]) data_df["今开盘"] = pd.to_numeric(data_df["今开盘"]) data_df["最高价"] = pd.to_numeric(data_df["最高价"]) data_df["最低价"] = pd.to_numeric(data_df["最低价"]) data_df["今收盘"] = pd.to_numeric(data_df["今收盘"]) data_df["今结算"] = pd.to_numeric(data_df["今结算"]) data_df["涨跌1"] = pd.to_numeric(data_df["涨跌1"]) data_df["涨跌2"] = pd.to_numeric(data_df["涨跌2"]) data_df["成交量(手)"] = pd.to_numeric(data_df["成交量(手)"]) data_df["空盘量"] = pd.to_numeric(data_df["空盘量"]) data_df["增减量"] = pd.to_numeric(data_df["增减量"]) data_df["成交额(万元)"] = pd.to_numeric(data_df["成交额(万元)"]) data_df["交割结算价"] = pd.to_numeric(data_df["交割结算价"]) data_df["交易日期"] = pd.to_datetime(data_df["交易日期"]) data_df.columns = [ "date", "symbol", "pre_settle", "open", "high", "low", "close", "settle", "-", "-", "volume", "open_interest", "-", "turnover", "-", ] variety_list = [ re.compile(r"[a-zA-Z_]+").findall(item)[0] for item in data_df["symbol"] ] data_df["variety"] = variety_list data_df = data_df[ [ "symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety", ] ] temp_df = data_df[data_df["date"] == pd.Timestamp(date)].copy() temp_df["date"] = date temp_df.reset_index(inplace=True, drop=True) return temp_df
18,183
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_cffex_daily
(date: str = "20100416")
return data_df
中国金融期货交易所-日频率交易数据 http://www.cffex.com.cn/rtj/ :param date: 交易日; 数据开始时间为 20100416 :type date: str :return: 日频率交易数据 :rtype: pandas.DataFrame
中国金融期货交易所-日频率交易数据 http://www.cffex.com.cn/rtj/ :param date: 交易日; 数据开始时间为 20100416 :type date: str :return: 日频率交易数据 :rtype: pandas.DataFrame
108
196
def get_cffex_daily(date: str = "20100416") -> pd.DataFrame: """ 中国金融期货交易所-日频率交易数据 http://www.cffex.com.cn/rtj/ :param date: 交易日; 数据开始时间为 20100416 :type date: str :return: 日频率交易数据 :rtype: pandas.DataFrame """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None url = ( f"http://www.cffex.com.cn/sj/historysj/{date[:-2]}/zip/{date[:-2]}.zip" ) r = requests.get(url) try: with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(f"{date}_1.csv") as my_file: data = my_file.read().decode("gb2312") data_df = pd.read_csv(StringIO(data)) except: return None data_df = data_df[data_df["合约代码"] != "小计"] data_df = data_df[data_df["合约代码"] != "合计"] data_df = data_df[~data_df["合约代码"].str.contains("IO")] data_df.reset_index(inplace=True, drop=True) data_df["合约代码"] = data_df["合约代码"].str.strip() symbol_list = data_df["合约代码"].to_list() variety_list = [ re.compile(r"[a-zA-Z_]+").findall(item)[0] for item in symbol_list ] if data_df.shape[1] == 15: data_df.columns = [ "symbol", "open", "high", "low", "volume", "turnover", "open_interest", "_", "close", "settle", "pre_settle", "_", "_", "_", "_", ] else: data_df.columns = [ "symbol", "open", "high", "low", "volume", "turnover", "open_interest", "_", "close", "settle", "pre_settle", "_", "_", "_", ] data_df["date"] = date data_df["variety"] = variety_list data_df = data_df[ [ "symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety", ] ] return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L108-L196
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
10.11236
[ 9, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 35, 36, 54, 70, 71, 72, 88 ]
29.213483
false
6.64557
89
7
70.786517
6
def get_cffex_daily(date: str = "20100416") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None url = ( f"http://www.cffex.com.cn/sj/historysj/{date[:-2]}/zip/{date[:-2]}.zip" ) r = requests.get(url) try: with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(f"{date}_1.csv") as my_file: data = my_file.read().decode("gb2312") data_df = pd.read_csv(StringIO(data)) except: return None data_df = data_df[data_df["合约代码"] != "小计"] data_df = data_df[data_df["合约代码"] != "合计"] data_df = data_df[~data_df["合约代码"].str.contains("IO")] data_df.reset_index(inplace=True, drop=True) data_df["合约代码"] = data_df["合约代码"].str.strip() symbol_list = data_df["合约代码"].to_list() variety_list = [ re.compile(r"[a-zA-Z_]+").findall(item)[0] for item in symbol_list ] if data_df.shape[1] == 15: data_df.columns = [ "symbol", "open", "high", "low", "volume", "turnover", "open_interest", "_", "close", "settle", "pre_settle", "_", "_", "_", "_", ] else: data_df.columns = [ "symbol", "open", "high", "low", "volume", "turnover", "open_interest", "_", "close", "settle", "pre_settle", "_", "_", "_", ] data_df["date"] = date data_df["variety"] = variety_list data_df = data_df[ [ "symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety", ] ] return data_df
18,184
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_gfex_daily
(date: str = "20221223")
return result_df
广州期货交易所-日频率-量价数据 广州期货交易所: 工业硅(上市时间: 20221222) http://www.gfex.com.cn/gfex/rihq/hqsj_tjsj.shtml :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 广州期货交易所-日频率-量价数据 :rtype: pandas.DataFrame
广州期货交易所-日频率-量价数据 广州期货交易所: 工业硅(上市时间: 20221222) http://www.gfex.com.cn/gfex/rihq/hqsj_tjsj.shtml :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 广州期货交易所-日频率-量价数据 :rtype: pandas.DataFrame
199
260
def get_gfex_daily(date: str = "20221223") -> pd.DataFrame: """ 广州期货交易所-日频率-量价数据 广州期货交易所: 工业硅(上市时间: 20221222) http://www.gfex.com.cn/gfex/rihq/hqsj_tjsj.shtml :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 广州期货交易所-日频率-量价数据 :rtype: pandas.DataFrame """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return url = f"http://www.gfex.com.cn/u/interfacesWebTiDayQuotes/loadList" payload = { 'trade_date': date, 'trade_type': '0' } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "32", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "www.gfex.com.cn", "Origin": "http://www.gfex.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://www.gfex.com.cn/gfex/rihq/hqsj_tjsj.shtml", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36", "X-Requested-With": "XMLHttpRequest", "content-type": "application/x-www-form-urlencoded" } r = requests.post(url, data=payload, headers=headers) try: data_json = r.json() except: return result_df = pd.DataFrame(data_json['data']) result_df = result_df[~result_df['variety'].str.contains("小计")] result_df = result_df[~result_df['variety'].str.contains("总计")] result_df['symbol'] = result_df['varietyOrder'].str.upper() + result_df['delivMonth'] result_df['date'] = date result_df['open'] = pd.to_numeric(result_df['open'], errors="coerce") result_df['high'] = pd.to_numeric(result_df['high'], errors="coerce") result_df['low'] = pd.to_numeric(result_df['low'], errors="coerce") result_df['close'] = pd.to_numeric(result_df['close'], errors="coerce") result_df['volume'] = pd.to_numeric(result_df['volumn'], errors="coerce") result_df['open_interest'] = pd.to_numeric(result_df['openInterest'], errors="coerce") result_df['turnover'] = pd.to_numeric(result_df['turnover'], errors="coerce") result_df['settle'] = pd.to_numeric(result_df['clearPrice'], errors="coerce") result_df['pre_settle'] = pd.to_numeric(result_df['lastClear'], errors="coerce") result_df['variety'] = result_df['varietyOrder'].str.upper() result_df = result_df[ ['symbol', 'date', 'open', 'high', 'low', 'close', 'volume', 'open_interest', 'turnover', 'settle', 'pre_settle', 'variety'] ] return result_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L199-L260
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
16.129032
[ 10, 13, 15, 16, 17, 21, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61 ]
45.16129
false
6.64557
62
3
54.83871
7
def get_gfex_daily(date: str = "20221223") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return url = f"http://www.gfex.com.cn/u/interfacesWebTiDayQuotes/loadList" payload = { 'trade_date': date, 'trade_type': '0' } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "32", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "www.gfex.com.cn", "Origin": "http://www.gfex.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://www.gfex.com.cn/gfex/rihq/hqsj_tjsj.shtml", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36", "X-Requested-With": "XMLHttpRequest", "content-type": "application/x-www-form-urlencoded" } r = requests.post(url, data=payload, headers=headers) try: data_json = r.json() except: return result_df = pd.DataFrame(data_json['data']) result_df = result_df[~result_df['variety'].str.contains("小计")] result_df = result_df[~result_df['variety'].str.contains("总计")] result_df['symbol'] = result_df['varietyOrder'].str.upper() + result_df['delivMonth'] result_df['date'] = date result_df['open'] = pd.to_numeric(result_df['open'], errors="coerce") result_df['high'] = pd.to_numeric(result_df['high'], errors="coerce") result_df['low'] = pd.to_numeric(result_df['low'], errors="coerce") result_df['close'] = pd.to_numeric(result_df['close'], errors="coerce") result_df['volume'] = pd.to_numeric(result_df['volumn'], errors="coerce") result_df['open_interest'] = pd.to_numeric(result_df['openInterest'], errors="coerce") result_df['turnover'] = pd.to_numeric(result_df['turnover'], errors="coerce") result_df['settle'] = pd.to_numeric(result_df['clearPrice'], errors="coerce") result_df['pre_settle'] = pd.to_numeric(result_df['lastClear'], errors="coerce") result_df['variety'] = result_df['varietyOrder'].str.upper() result_df = result_df[ ['symbol', 'date', 'open', 'high', 'low', 'close', 'volume', 'open_interest', 'turnover', 'settle', 'pre_settle', 'variety'] ] return result_df
18,185
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_ine_daily
(date: str = "20220208")
return result_df
上海国际能源交易中心-日频率-量价数据 上海国际能源交易中心: 原油期货(上市时间: 20180326); 20号胶期货(上市时间: 20190812) trade_price: http://www.ine.cn/statements/daily/?paramid=kx trade_note: http://www.ine.cn/data/datanote.dat :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 上海国际能源交易中心-日频率-量价数据 :rtype: pandas.DataFrame or None
上海国际能源交易中心-日频率-量价数据 上海国际能源交易中心: 原油期货(上市时间: 20180326); 20号胶期货(上市时间: 20190812) trade_price: http://www.ine.cn/statements/daily/?paramid=kx trade_note: http://www.ine.cn/data/datanote.dat :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 上海国际能源交易中心-日频率-量价数据 :rtype: pandas.DataFrame or None
263
331
def get_ine_daily(date: str = "20220208") -> pd.DataFrame: """ 上海国际能源交易中心-日频率-量价数据 上海国际能源交易中心: 原油期货(上市时间: 20180326); 20号胶期货(上市时间: 20190812) trade_price: http://www.ine.cn/statements/daily/?paramid=kx trade_note: http://www.ine.cn/data/datanote.dat :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 上海国际能源交易中心-日频率-量价数据 :rtype: pandas.DataFrame or None """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return url = f"http://www.ine.cn/data/dailydata/kx/kx{day.strftime('%Y%m%d')}.dat" r = requests.get(url) result_df = pd.DataFrame() try: data_json = r.json() except: return temp_df = pd.DataFrame(data_json["o_curinstrument"]).iloc[:-1, :] temp_df = temp_df[temp_df["DELIVERYMONTH"] != "小计"] temp_df = temp_df[~temp_df["PRODUCTNAME"].str.contains("总计")] try: result_df["symbol"] = ( temp_df["PRODUCTGROUPID"].str.upper().str.strip() + temp_df["DELIVERYMONTH"] ) except: result_df["symbol"] = ( temp_df["PRODUCTID"] .str.upper() .str.strip() .str.split("_", expand=True) .iloc[:, 0] + temp_df["DELIVERYMONTH"] ) result_df["date"] = day.strftime("%Y%m%d") result_df["open"] = temp_df["OPENPRICE"] result_df["high"] = temp_df["HIGHESTPRICE"] result_df["low"] = temp_df["LOWESTPRICE"] result_df["close"] = temp_df["CLOSEPRICE"] result_df["volume"] = temp_df["VOLUME"] result_df["open_interest"] = temp_df["OPENINTEREST"] try: result_df["turnover"] = temp_df["TURNOVER"] except: result_df["turnover"] = 0 result_df["settle"] = temp_df["SETTLEMENTPRICE"] result_df["pre_settle"] = temp_df["PRESETTLEMENTPRICE"] try: result_df["variety"] = ( temp_df["PRODUCTGROUPID"].str.upper().str.strip() ) except: result_df["variety"] = ( temp_df["PRODUCTID"] .str.upper() .str.strip() .str.split("_", expand=True) .iloc[:, 0] ) result_df = result_df[result_df["symbol"] != "总计"] result_df = result_df[~result_df["symbol"].str.contains("efp")] return result_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L263-L331
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
15.942029
[ 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 66, 67, 68 ]
53.623188
false
6.64557
69
6
46.376812
8
def get_ine_daily(date: str = "20220208") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return url = f"http://www.ine.cn/data/dailydata/kx/kx{day.strftime('%Y%m%d')}.dat" r = requests.get(url) result_df = pd.DataFrame() try: data_json = r.json() except: return temp_df = pd.DataFrame(data_json["o_curinstrument"]).iloc[:-1, :] temp_df = temp_df[temp_df["DELIVERYMONTH"] != "小计"] temp_df = temp_df[~temp_df["PRODUCTNAME"].str.contains("总计")] try: result_df["symbol"] = ( temp_df["PRODUCTGROUPID"].str.upper().str.strip() + temp_df["DELIVERYMONTH"] ) except: result_df["symbol"] = ( temp_df["PRODUCTID"] .str.upper() .str.strip() .str.split("_", expand=True) .iloc[:, 0] + temp_df["DELIVERYMONTH"] ) result_df["date"] = day.strftime("%Y%m%d") result_df["open"] = temp_df["OPENPRICE"] result_df["high"] = temp_df["HIGHESTPRICE"] result_df["low"] = temp_df["LOWESTPRICE"] result_df["close"] = temp_df["CLOSEPRICE"] result_df["volume"] = temp_df["VOLUME"] result_df["open_interest"] = temp_df["OPENINTEREST"] try: result_df["turnover"] = temp_df["TURNOVER"] except: result_df["turnover"] = 0 result_df["settle"] = temp_df["SETTLEMENTPRICE"] result_df["pre_settle"] = temp_df["PRESETTLEMENTPRICE"] try: result_df["variety"] = ( temp_df["PRODUCTGROUPID"].str.upper().str.strip() ) except: result_df["variety"] = ( temp_df["PRODUCTID"] .str.upper() .str.strip() .str.split("_", expand=True) .iloc[:, 0] ) result_df = result_df[result_df["symbol"] != "总计"] result_df = result_df[~result_df["symbol"].str.contains("efp")] return result_df
18,186
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_czce_daily
(date: str = "20050525")
郑州商品交易所-日频率-量价数据 http://www.czce.com.cn/cn/jysj/mrhq/H770301index_1.htm :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象,默认为当前交易日; 日期需要大于 20100824 :type date: str or datetime.date :return: 郑州商品交易所-日频率-量价数据 :rtype: pandas.DataFrame or None
郑州商品交易所-日频率-量价数据 http://www.czce.com.cn/cn/jysj/mrhq/H770301index_1.htm :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象,默认为当前交易日; 日期需要大于 20100824 :type date: str or datetime.date :return: 郑州商品交易所-日频率-量价数据 :rtype: pandas.DataFrame or None
334
444
def get_czce_daily(date: str = "20050525") -> pd.DataFrame: """ 郑州商品交易所-日频率-量价数据 http://www.czce.com.cn/cn/jysj/mrhq/H770301index_1.htm :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象,默认为当前交易日; 日期需要大于 20100824 :type date: str or datetime.date :return: 郑州商品交易所-日频率-量价数据 :rtype: pandas.DataFrame or None """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return if day > datetime.date(2010, 8, 24): if day > datetime.date(2015, 11, 11): u = cons.CZCE_DAILY_URL_3 url = u % (day.strftime("%Y"), day.strftime("%Y%m%d")) elif day <= datetime.date(2015, 11, 11): u = cons.CZCE_DAILY_URL_2 url = u % (day.strftime("%Y"), day.strftime("%Y%m%d")) listed_columns = cons.CZCE_COLUMNS output_columns = cons.OUTPUT_COLUMNS try: r = requests.get(url) if ( datetime.date(2015, 11, 12) <= day <= datetime.date(2017, 12, 27) ): html = str(r.content, encoding="gbk") else: html = r.text except requests.exceptions.HTTPError as reason: if reason.response.status_code != 404: print( cons.CZCE_DAILY_URL_3 % (day.strftime("%Y"), day.strftime("%Y%m%d")), reason, ) return if html.find("您的访问出错了") >= 0 or html.find("无期权每日行情交易记录") >= 0: return html = [ i.replace(" ", "").split("|") for i in html.split("\n")[:-4] if i[0][0] != "小" ] if day > datetime.date(2015, 11, 11): if html[1][0] not in ["品种月份", "品种代码", "合约代码"]: return dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in html[2:]: m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = { "date": day_const, "symbol": row[0], "variety": m.group(1), } for i, field in enumerate(listed_columns): if row[i + 1] == "\r" or row[i + 1] == "": row_dict[field] = 0.0 elif field in [ "volume", "open_interest", "oi_chg", "exercise_volume", ]: row[i + 1] = row[i + 1].replace(",", "") row_dict[field] = int(row[i + 1]) else: row[i + 1] = row[i + 1].replace(",", "") row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] elif day <= datetime.date(2015, 11, 11): dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in html[1:]: row = row[0].split(",") m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = { "date": day_const, "symbol": row[0], "variety": m.group(1), } for i, field in enumerate(listed_columns): if row[i + 1] == "\r": row_dict[field] = 0.0 elif field in [ "volume", "open_interest", "oi_chg", "exercise_volume", ]: row_dict[field] = int(float(row[i + 1])) else: row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] if day <= datetime.date(2010, 8, 24): _futures_daily_czce_df = _futures_daily_czce(date) return _futures_daily_czce_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L334-L444
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
8.108108
[ 9, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 33, 34, 35, 36, 41, 42, 43, 44, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 64, 65, 66, 67, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 94, 95, 96, 102, 104, 105, 106, 108, 109, 110 ]
57.657658
false
6.64557
111
26
42.342342
6
def get_czce_daily(date: str = "20050525") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return if day > datetime.date(2010, 8, 24): if day > datetime.date(2015, 11, 11): u = cons.CZCE_DAILY_URL_3 url = u % (day.strftime("%Y"), day.strftime("%Y%m%d")) elif day <= datetime.date(2015, 11, 11): u = cons.CZCE_DAILY_URL_2 url = u % (day.strftime("%Y"), day.strftime("%Y%m%d")) listed_columns = cons.CZCE_COLUMNS output_columns = cons.OUTPUT_COLUMNS try: r = requests.get(url) if ( datetime.date(2015, 11, 12) <= day <= datetime.date(2017, 12, 27) ): html = str(r.content, encoding="gbk") else: html = r.text except requests.exceptions.HTTPError as reason: if reason.response.status_code != 404: print( cons.CZCE_DAILY_URL_3 % (day.strftime("%Y"), day.strftime("%Y%m%d")), reason, ) return if html.find("您的访问出错了") >= 0 or html.find("无期权每日行情交易记录") >= 0: return html = [ i.replace(" ", "").split("|") for i in html.split("\n")[:-4] if i[0][0] != "小" ] if day > datetime.date(2015, 11, 11): if html[1][0] not in ["品种月份", "品种代码", "合约代码"]: return dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in html[2:]: m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = { "date": day_const, "symbol": row[0], "variety": m.group(1), } for i, field in enumerate(listed_columns): if row[i + 1] == "\r" or row[i + 1] == "": row_dict[field] = 0.0 elif field in [ "volume", "open_interest", "oi_chg", "exercise_volume", ]: row[i + 1] = row[i + 1].replace(",", "") row_dict[field] = int(row[i + 1]) else: row[i + 1] = row[i + 1].replace(",", "") row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] elif day <= datetime.date(2015, 11, 11): dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in html[1:]: row = row[0].split(",") m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = { "date": day_const, "symbol": row[0], "variety": m.group(1), } for i, field in enumerate(listed_columns): if row[i + 1] == "\r": row_dict[field] = 0.0 elif field in [ "volume", "open_interest", "oi_chg", "exercise_volume", ]: row_dict[field] = int(float(row[i + 1])) else: row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] if day <= datetime.date(2010, 8, 24): _futures_daily_czce_df = _futures_daily_czce(date) return _futures_daily_czce_df
18,187
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_shfe_v_wap
(date: str = "20131017")
上期所日成交均价数据 Parameters ------ date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 Return ------- DataFrame 郑商所日交易数据(DataFrame): symbol 合约代码 date 日期 time_range v_wap时段,分09:00-10:15和09:00-15:00两类 v_wap 加权平均成交均价 或 None(给定日期没有数据)
上期所日成交均价数据 Parameters ------ date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 Return ------- DataFrame 郑商所日交易数据(DataFrame): symbol 合约代码 date 日期 time_range v_wap时段,分09:00-10:15和09:00-15:00两类 v_wap 加权平均成交均价 或 None(给定日期没有数据)
447
490
def get_shfe_v_wap(date: str = "20131017") -> pd.DataFrame: """ 上期所日成交均价数据 Parameters ------ date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 Return ------- DataFrame 郑商所日交易数据(DataFrame): symbol 合约代码 date 日期 time_range v_wap时段,分09:00-10:15和09:00-15:00两类 v_wap 加权平均成交均价 或 None(给定日期没有数据) """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None try: json_data = json.loads( requests_link( cons.SHFE_V_WAP_URL % (day.strftime("%Y%m%d")), headers=cons.headers, encoding="utf-8", ).text ) except: return None if len(json_data["o_currefprice"]) == 0: return None try: df = pd.DataFrame(json_data["o_currefprice"]) df["INSTRUMENTID"] = df["INSTRUMENTID"].str.strip() df[":B1"].astype("int16") return df.rename(columns=cons.SHFE_V_WAP_COLUMNS)[ list(cons.SHFE_V_WAP_COLUMNS.values()) ] except: return None
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L447-L490
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ]
36.363636
[ 16, 19, 21, 22, 23, 30, 31, 33, 34, 35, 36, 37, 38, 39, 42, 43 ]
36.363636
false
6.64557
44
5
63.636364
13
def get_shfe_v_wap(date: str = "20131017") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None try: json_data = json.loads( requests_link( cons.SHFE_V_WAP_URL % (day.strftime("%Y%m%d")), headers=cons.headers, encoding="utf-8", ).text ) except: return None if len(json_data["o_currefprice"]) == 0: return None try: df = pd.DataFrame(json_data["o_currefprice"]) df["INSTRUMENTID"] = df["INSTRUMENTID"].str.strip() df[":B1"].astype("int16") return df.rename(columns=cons.SHFE_V_WAP_COLUMNS)[ list(cons.SHFE_V_WAP_COLUMNS.values()) ] except: return None
18,188
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_shfe_daily
(date: str = "20220415")
return df[cons.OUTPUT_COLUMNS]
上海期货交易所-日频率-量价数据 http://www.shfe.com.cn/statements/dataview.html?paramid=kx :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 默认为当前交易日 :type date: str or datetime.date :return: 上海期货交易所-日频率-量价数据 :rtype: pandas.DataFrame or None 上期所日交易数据(DataFrame): symbol 合约代码 date 日期 open 开盘价 high 最高价 low 最低价 close 收盘价 volume 成交量 open_interest 持仓量 turnover 成交额 settle 结算价 pre_settle 前结算价 variety 合约类别 或 None(给定交易日没有交易数据)
上海期货交易所-日频率-量价数据 http://www.shfe.com.cn/statements/dataview.html?paramid=kx :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 默认为当前交易日 :type date: str or datetime.date :return: 上海期货交易所-日频率-量价数据 :rtype: pandas.DataFrame or None 上期所日交易数据(DataFrame): symbol 合约代码 date 日期 open 开盘价 high 最高价 low 最低价 close 收盘价 volume 成交量 open_interest 持仓量 turnover 成交额 settle 结算价 pre_settle 前结算价 variety 合约类别 或 None(给定交易日没有交易数据)
493
571
def get_shfe_daily(date: str = "20220415") -> pd.DataFrame: """ 上海期货交易所-日频率-量价数据 http://www.shfe.com.cn/statements/dataview.html?paramid=kx :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 默认为当前交易日 :type date: str or datetime.date :return: 上海期货交易所-日频率-量价数据 :rtype: pandas.DataFrame or None 上期所日交易数据(DataFrame): symbol 合约代码 date 日期 open 开盘价 high 最高价 low 最低价 close 收盘价 volume 成交量 open_interest 持仓量 turnover 成交额 settle 结算价 pre_settle 前结算价 variety 合约类别 或 None(给定交易日没有交易数据) """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return try: json_data = json.loads( requests_link( cons.SHFE_DAILY_URL % (day.strftime("%Y%m%d")), headers=cons.shfe_headers, ).text ) except requests.HTTPError as reason: if reason.response != 404: print(cons.SHFE_DAILY_URL % (day.strftime("%Y%m%d")), reason) return if len(json_data["o_curinstrument"]) == 0: return df = pd.DataFrame( [ row for row in json_data["o_curinstrument"] if row["DELIVERYMONTH"] not in ["小计", "合计"] and row["DELIVERYMONTH"] != "" ] ) try: df["variety"] = df["PRODUCTGROUPID"].str.upper().str.strip() except KeyError as e: df["variety"] = ( df["PRODUCTID"] .str.upper() .str.split("_", expand=True) .iloc[:, 0] .str.strip() ) df["symbol"] = df["variety"] + df["DELIVERYMONTH"] df["date"] = day.strftime("%Y%m%d") v_wap_df = get_shfe_v_wap(day) if v_wap_df is not None: df = pd.merge( df, v_wap_df[v_wap_df.time_range == "9:00-15:00"], on=["date", "symbol"], how="left", ) df["turnover"] = df.v_wap * df.VOLUME else: df["VOLUME"] = df["VOLUME"].apply(lambda x: 0 if x == "" else x) df["turnover"] = df["VOLUME"] * df["SETTLEMENTPRICE"] df.rename(columns=cons.SHFE_COLUMNS, inplace=True) df = df[~df["symbol"].str.contains("efp")] return df[cons.OUTPUT_COLUMNS]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L493-L571
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 ]
29.113924
[ 23, 26, 28, 29, 30, 36, 37, 38, 39, 41, 42, 44, 52, 53, 54, 55, 62, 63, 64, 65, 66, 72, 74, 75, 76, 77, 78 ]
34.177215
false
6.64557
79
9
65.822785
20
def get_shfe_daily(date: str = "20220415") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return try: json_data = json.loads( requests_link( cons.SHFE_DAILY_URL % (day.strftime("%Y%m%d")), headers=cons.shfe_headers, ).text ) except requests.HTTPError as reason: if reason.response != 404: print(cons.SHFE_DAILY_URL % (day.strftime("%Y%m%d")), reason) return if len(json_data["o_curinstrument"]) == 0: return df = pd.DataFrame( [ row for row in json_data["o_curinstrument"] if row["DELIVERYMONTH"] not in ["小计", "合计"] and row["DELIVERYMONTH"] != "" ] ) try: df["variety"] = df["PRODUCTGROUPID"].str.upper().str.strip() except KeyError as e: df["variety"] = ( df["PRODUCTID"] .str.upper() .str.split("_", expand=True) .iloc[:, 0] .str.strip() ) df["symbol"] = df["variety"] + df["DELIVERYMONTH"] df["date"] = day.strftime("%Y%m%d") v_wap_df = get_shfe_v_wap(day) if v_wap_df is not None: df = pd.merge( df, v_wap_df[v_wap_df.time_range == "9:00-15:00"], on=["date", "symbol"], how="left", ) df["turnover"] = df.v_wap * df.VOLUME else: df["VOLUME"] = df["VOLUME"].apply(lambda x: 0 if x == "" else x) df["turnover"] = df["VOLUME"] * df["SETTLEMENTPRICE"] df.rename(columns=cons.SHFE_COLUMNS, inplace=True) df = df[~df["symbol"].str.contains("efp")] return df[cons.OUTPUT_COLUMNS]
18,189
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_dce_daily
(date: str = "20220308")
return data_df
大连商品交易所日交易数据 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rxq/index.html :param date: 交易日, e.g., 20200416 :type date: str :return: 具体交易日的个品种行情数据 :rtype: pandas.DataFrame
大连商品交易所日交易数据 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rxq/index.html :param date: 交易日, e.g., 20200416 :type date: str :return: 具体交易日的个品种行情数据 :rtype: pandas.DataFrame
574
671
def get_dce_daily(date: str = "20220308") -> pd.DataFrame: """ 大连商品交易所日交易数据 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rxq/index.html :param date: 交易日, e.g., 20200416 :type date: str :return: 具体交易日的个品种行情数据 :rtype: pandas.DataFrame """ day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None url = ( "http://www.dce.com.cn/publicweb/quotesdata/exportDayQuotesChData.html" ) headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Length": "86", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Referer": "http://www.dce.com.cn/publicweb/quotesdata/dayQuotesCh.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36", } params = { "dayQuotes.variety": "all", "dayQuotes.trade_type": "0", "year": date[:4], "month": str(int(date[4:6]) - 1), "day": date[6:], "exportFlag": "excel", } r = requests.post(url, data=params, headers=headers) data_df = pd.read_excel(BytesIO(r.content)) data_df = data_df[~data_df["商品名称"].str.contains("小计")] data_df = data_df[~data_df["商品名称"].str.contains("总计")] data_df["variety"] = data_df["商品名称"].map(lambda x: cons.DCE_MAP[x]) data_df["symbol"] = data_df["合约名称"] del data_df["商品名称"] del data_df["合约名称"] data_df.columns = [ "open", "high", "low", "close", "pre_settle", "settle", "_", "_", "volume", "open_interest", "_", "turnover", "variety", "symbol", ] data_df["date"] = date data_df = data_df[ [ "symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety", ] ] data_df = data_df.applymap(lambda x: x.replace(",", "")) data_df = data_df.astype( { "open": "float", "high": "float", "low": "float", "close": "float", "volume": "float", "open_interest": "float", "turnover": "float", "settle": "float", "pre_settle": "float", } ) data_df.reset_index(inplace=True, drop=True) return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L574-L671
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
9.183673
[ 9, 12, 14, 15, 18, 33, 41, 42, 43, 44, 45, 46, 47, 48, 49, 65, 66, 82, 83, 96, 97 ]
21.428571
false
6.64557
98
2
78.571429
6
def get_dce_daily(date: str = "20220308") -> pd.DataFrame: day = ( cons.convert_date(date) if date is not None else datetime.date.today() ) if day.strftime("%Y%m%d") not in calendar: # warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None url = ( "http://www.dce.com.cn/publicweb/quotesdata/exportDayQuotesChData.html" ) headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Length": "86", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Referer": "http://www.dce.com.cn/publicweb/quotesdata/dayQuotesCh.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36", } params = { "dayQuotes.variety": "all", "dayQuotes.trade_type": "0", "year": date[:4], "month": str(int(date[4:6]) - 1), "day": date[6:], "exportFlag": "excel", } r = requests.post(url, data=params, headers=headers) data_df = pd.read_excel(BytesIO(r.content)) data_df = data_df[~data_df["商品名称"].str.contains("小计")] data_df = data_df[~data_df["商品名称"].str.contains("总计")] data_df["variety"] = data_df["商品名称"].map(lambda x: cons.DCE_MAP[x]) data_df["symbol"] = data_df["合约名称"] del data_df["商品名称"] del data_df["合约名称"] data_df.columns = [ "open", "high", "low", "close", "pre_settle", "settle", "_", "_", "volume", "open_interest", "_", "turnover", "variety", "symbol", ] data_df["date"] = date data_df = data_df[ [ "symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety", ] ] data_df = data_df.applymap(lambda x: x.replace(",", "")) data_df = data_df.astype( { "open": "float", "high": "float", "low": "float", "close": "float", "volume": "float", "open_interest": "float", "turnover": "float", "settle": "float", "pre_settle": "float", } ) data_df.reset_index(inplace=True, drop=True) return data_df
18,190
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_daily_bar.py
get_futures_daily
( start_date: str = "20220208", end_date: str = "20220208", market: str = "CFFEX", )
交易所日交易数据 :param start_date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_date: str :param end_date: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_date: str :param market: 'CFFEX' 中金所, 'CZCE' 郑商所, 'SHFE' 上期所, 'DCE' 大商所 之一, 'INE' 上海国际能源交易中心, "GFEX" 广州期货交易所。默认为中金所 :type market: str :return: 交易所日交易数据 :rtype: pandas.DataFrame
交易所日交易数据 :param start_date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_date: str :param end_date: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_date: str :param market: 'CFFEX' 中金所, 'CZCE' 郑商所, 'SHFE' 上期所, 'DCE' 大商所 之一, 'INE' 上海国际能源交易中心, "GFEX" 广州期货交易所。默认为中金所 :type market: str :return: 交易所日交易数据 :rtype: pandas.DataFrame
674
729
def get_futures_daily( start_date: str = "20220208", end_date: str = "20220208", market: str = "CFFEX", ) -> pd.DataFrame: """ 交易所日交易数据 :param start_date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_date: str :param end_date: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_date: str :param market: 'CFFEX' 中金所, 'CZCE' 郑商所, 'SHFE' 上期所, 'DCE' 大商所 之一, 'INE' 上海国际能源交易中心, "GFEX" 广州期货交易所。默认为中金所 :type market: str :return: 交易所日交易数据 :rtype: pandas.DataFrame """ if market.upper() == "CFFEX": f = get_cffex_daily elif market.upper() == "CZCE": f = get_czce_daily elif market.upper() == "SHFE": f = get_shfe_daily elif market.upper() == "DCE": f = get_dce_daily elif market.upper() == "INE": f = get_ine_daily elif market.upper() == "GFEX": f = get_gfex_daily else: print("Invalid Market Symbol") return start_date = ( cons.convert_date(start_date) if start_date is not None else datetime.date.today() ) end_date = ( cons.convert_date(end_date) if end_date is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now()) ) ) df_list = list() while start_date <= end_date: df = f(date=str(start_date).replace("-", "")) if df is not None: df_list.append(df) start_date += datetime.timedelta(days=1) if len(df_list) > 0: temp_df = pd.concat(df_list).reset_index(drop=True) temp_df = temp_df[~temp_df["symbol"].str.contains("efp")] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_daily_bar.py#L674-L729
25
[ 0 ]
1.785714
[ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 37, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55 ]
46.428571
false
6.64557
56
10
53.571429
9
def get_futures_daily( start_date: str = "20220208", end_date: str = "20220208", market: str = "CFFEX", ) -> pd.DataFrame: if market.upper() == "CFFEX": f = get_cffex_daily elif market.upper() == "CZCE": f = get_czce_daily elif market.upper() == "SHFE": f = get_shfe_daily elif market.upper() == "DCE": f = get_dce_daily elif market.upper() == "INE": f = get_ine_daily elif market.upper() == "GFEX": f = get_gfex_daily else: print("Invalid Market Symbol") return start_date = ( cons.convert_date(start_date) if start_date is not None else datetime.date.today() ) end_date = ( cons.convert_date(end_date) if end_date is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now()) ) ) df_list = list() while start_date <= end_date: df = f(date=str(start_date).replace("-", "")) if df is not None: df_list.append(df) start_date += datetime.timedelta(days=1) if len(df_list) > 0: temp_df = pd.concat(df_list).reset_index(drop=True) temp_df = temp_df[~temp_df["symbol"].str.contains("efp")] return temp_df
18,191
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_dce_receipt
(date: str = None, vars_list: List = cons.contract_symbols)
return records.reset_index(drop=True)
大连商品交易所-注册仓单数据 :param date: 开始日期: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 为空时为当天 :type date: str :param vars_list: 合约品种如 RB, AL等列表, 为空时为所有商品数据从 20060106开始,每周五更新仓单数据。直到20090407起,每交易日都更新仓单数据 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
大连商品交易所-注册仓单数据 :param date: 开始日期: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 为空时为当天 :type date: str :param vars_list: 合约品种如 RB, AL等列表, 为空时为所有商品数据从 20060106开始,每周五更新仓单数据。直到20090407起,每交易日都更新仓单数据 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
28
64
def get_dce_receipt(date: str = None, vars_list: List = cons.contract_symbols): """ 大连商品交易所-注册仓单数据 :param date: 开始日期: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 为空时为当天 :type date: str :param vars_list: 合约品种如 RB, AL等列表, 为空时为所有商品数据从 20060106开始,每周五更新仓单数据。直到20090407起,每交易日都更新仓单数据 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame """ if not isinstance(vars_list, list): return warnings.warn("vars_list: 必须是列表") date = cons.convert_date(date) if date is not None else datetime.date.today() if date.strftime('%Y%m%d') not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return None payload = { "weekQuotes.variety": "all", "year": date.year, "month": date.month - 1, # 网站月份描述少 1 个月, 属于网站问题 "day": date.day } data = pandas_read_html_link(cons.DCE_RECEIPT_URL, method="post", data=payload, headers=cons.dce_headers)[0] records = pd.DataFrame() for x in data.to_dict(orient='records'): if isinstance(x['品种'], str): if x['品种'][-2:] == '小计': var = x['品种'][:-2] temp_data = {'var': chinese_to_english(var), 'receipt': int(x['今日仓单量']), 'receipt_chg': int(x['增减']), 'date': date.strftime('%Y%m%d')} records = pd.concat([records, pd.DataFrame(temp_data, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L28-L64
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
27.027027
[ 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36 ]
54.054054
false
7.971014
37
8
45.945946
7
def get_dce_receipt(date: str = None, vars_list: List = cons.contract_symbols): if not isinstance(vars_list, list): return warnings.warn("vars_list: 必须是列表") date = cons.convert_date(date) if date is not None else datetime.date.today() if date.strftime('%Y%m%d') not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return None payload = { "weekQuotes.variety": "all", "year": date.year, "month": date.month - 1, # 网站月份描述少 1 个月, 属于网站问题 "day": date.day } data = pandas_read_html_link(cons.DCE_RECEIPT_URL, method="post", data=payload, headers=cons.dce_headers)[0] records = pd.DataFrame() for x in data.to_dict(orient='records'): if isinstance(x['品种'], str): if x['品种'][-2:] == '小计': var = x['品种'][:-2] temp_data = {'var': chinese_to_english(var), 'receipt': int(x['今日仓单量']), 'receipt_chg': int(x['增减']), 'date': date.strftime('%Y%m%d')} records = pd.concat([records, pd.DataFrame(temp_data, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
18,192
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_shfe_receipt_1
(date: str = None, vars_list: List = cons.contract_symbols)
return records.reset_index(drop=True)
上海期货交易所-注册仓单数据-类型1 适用 20081006 至 20140518(包括)、20100126、20101029日期交易所格式混乱,直接回复脚本中 pandas.DataFrame, 20100416、20130821日期交易所数据丢失 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :type vars_list: list :return: 注册仓单数据-类型1 :rtype: pandas.DataFrame
上海期货交易所-注册仓单数据-类型1 适用 20081006 至 20140518(包括)、20100126、20101029日期交易所格式混乱,直接回复脚本中 pandas.DataFrame, 20100416、20130821日期交易所数据丢失 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :type vars_list: list :return: 注册仓单数据-类型1 :rtype: pandas.DataFrame
67
115
def get_shfe_receipt_1(date: str = None, vars_list: List = cons.contract_symbols) -> pd.DataFrame: """ 上海期货交易所-注册仓单数据-类型1 适用 20081006 至 20140518(包括)、20100126、20101029日期交易所格式混乱,直接回复脚本中 pandas.DataFrame, 20100416、20130821日期交易所数据丢失 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :type vars_list: list :return: 注册仓单数据-类型1 :rtype: pandas.DataFrame """ if not isinstance(vars_list, list): return warnings.warn(f"symbol_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return None if date == '20100126': shfe_20100126['date'] = date return shfe_20100126 elif date == '20101029': shfe_20101029['date'] = date return shfe_20101029 elif date in ['20100416', '20130821']: return warnings.warn('20100416、20130821交易所数据丢失') else: var_list = ['天然橡胶', '沥青仓库', '沥青厂库', '热轧卷板', '燃料油', '白银', '线材', '螺纹钢', '铅', '铜', '铝', '锌', '黄金', '锡', '镍'] url = cons.SHFE_RECEIPT_URL_1 % date data = pandas_read_html_link(url)[0] indexes = [x for x in data.index if (data[0].tolist()[x] in var_list)] last_index = [x for x in data.index if '注' in str(data[0].tolist()[x])][0] - 1 records = pd.DataFrame() for i in list(range(len(indexes))): if i != len(indexes) - 1: data_cut = data.loc[indexes[i]:indexes[i + 1] - 1, :] else: data_cut = data.loc[indexes[i]:last_index, :] data_cut = data_cut.fillna(method='pad') data_dict = dict() data_dict['var'] = chinese_to_english(data_cut[0].tolist()[0]) data_dict['receipt'] = int(data_cut[2].tolist()[-1]) data_dict['receipt_chg'] = int(data_cut[3].tolist()[-1]) data_dict['date'] = date records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L67-L115
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
22.44898
[ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 ]
73.469388
false
7.971014
49
12
26.530612
8
def get_shfe_receipt_1(date: str = None, vars_list: List = cons.contract_symbols) -> pd.DataFrame: if not isinstance(vars_list, list): return warnings.warn(f"symbol_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return None if date == '20100126': shfe_20100126['date'] = date return shfe_20100126 elif date == '20101029': shfe_20101029['date'] = date return shfe_20101029 elif date in ['20100416', '20130821']: return warnings.warn('20100416、20130821交易所数据丢失') else: var_list = ['天然橡胶', '沥青仓库', '沥青厂库', '热轧卷板', '燃料油', '白银', '线材', '螺纹钢', '铅', '铜', '铝', '锌', '黄金', '锡', '镍'] url = cons.SHFE_RECEIPT_URL_1 % date data = pandas_read_html_link(url)[0] indexes = [x for x in data.index if (data[0].tolist()[x] in var_list)] last_index = [x for x in data.index if '注' in str(data[0].tolist()[x])][0] - 1 records = pd.DataFrame() for i in list(range(len(indexes))): if i != len(indexes) - 1: data_cut = data.loc[indexes[i]:indexes[i + 1] - 1, :] else: data_cut = data.loc[indexes[i]:last_index, :] data_cut = data_cut.fillna(method='pad') data_dict = dict() data_dict['var'] = chinese_to_english(data_cut[0].tolist()[0]) data_dict['receipt'] = int(data_cut[2].tolist()[-1]) data_dict['receipt_chg'] = int(data_cut[3].tolist()[-1]) data_dict['date'] = date records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
18,193
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_shfe_receipt_2
(date: str = None, vars_list: List = cons.contract_symbols)
return records.reset_index(drop=True)
上海商品交易所-注册仓单数据-类型2 适用 20140519(包括)-至今 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 RB、AL 等列表 为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
上海商品交易所-注册仓单数据-类型2 适用 20140519(包括)-至今 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 RB、AL 等列表 为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
118
165
def get_shfe_receipt_2(date: str = None, vars_list: List = cons.contract_symbols) -> pd.DataFrame: """ 上海商品交易所-注册仓单数据-类型2 适用 20140519(包括)-至今 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 RB、AL 等列表 为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame """ if not isinstance(vars_list, list): return warnings.warn(f"symbol_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None url = cons.SHFE_RECEIPT_URL_2 % date r = requests_link(url, encoding='utf-8') try: context = r.json() except: return pd.DataFrame() data = pd.DataFrame(context['o_cursor']) if len(data.columns) < 1: return pd.DataFrame() records = pd.DataFrame() for var in set(data['VARNAME'].tolist()): data_cut = data[data['VARNAME'] == var] if "BC" in var: data_dict = {'var': "BC", 'receipt': int(data_cut['WRTWGHTS'].tolist()[-1]), 'receipt_chg': int(data_cut['WRTCHANGE'].tolist()[-1]), 'date': date} else: data_dict = {'var': chinese_to_english(re.sub(r"\W|[a-zA-Z]", "", var)), 'receipt': int(data_cut['WRTWGHTS'].tolist()[-1]), 'receipt_chg': int(data_cut['WRTCHANGE'].tolist()[-1]), 'date': date} records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) temp_records = records.groupby('var')[['receipt', 'receipt_chg']].sum().reset_index() temp_records['date'] = date records = temp_records if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L118-L165
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
22.916667
[ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47 ]
62.5
false
7.971014
48
9
37.5
8
def get_shfe_receipt_2(date: str = None, vars_list: List = cons.contract_symbols) -> pd.DataFrame: if not isinstance(vars_list, list): return warnings.warn(f"symbol_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None url = cons.SHFE_RECEIPT_URL_2 % date r = requests_link(url, encoding='utf-8') try: context = r.json() except: return pd.DataFrame() data = pd.DataFrame(context['o_cursor']) if len(data.columns) < 1: return pd.DataFrame() records = pd.DataFrame() for var in set(data['VARNAME'].tolist()): data_cut = data[data['VARNAME'] == var] if "BC" in var: data_dict = {'var': "BC", 'receipt': int(data_cut['WRTWGHTS'].tolist()[-1]), 'receipt_chg': int(data_cut['WRTCHANGE'].tolist()[-1]), 'date': date} else: data_dict = {'var': chinese_to_english(re.sub(r"\W|[a-zA-Z]", "", var)), 'receipt': int(data_cut['WRTWGHTS'].tolist()[-1]), 'receipt_chg': int(data_cut['WRTCHANGE'].tolist()[-1]), 'date': date} records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) temp_records = records.groupby('var')[['receipt', 'receipt_chg']].sum().reset_index() temp_records['date'] = date records = temp_records if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
18,194
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_czce_receipt_1
(date: str = None, vars_list: List = cons.contract_symbols)
return records.reset_index(drop=True)
郑州商品交易所-注册仓单数据 适用 20080222 至 20100824(包括) :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: list :type vars_list: 合约品种如 CF、TA 等列表 为空时为所有商品 :return: 注册仓单数据 :rtype: pandas.DataFrame
郑州商品交易所-注册仓单数据 适用 20080222 至 20100824(包括) :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: list :type vars_list: 合约品种如 CF、TA 等列表 为空时为所有商品 :return: 注册仓单数据 :rtype: pandas.DataFrame
168
215
def get_czce_receipt_1(date: str = None, vars_list: List = cons.contract_symbols): """ 郑州商品交易所-注册仓单数据 适用 20080222 至 20100824(包括) :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: list :type vars_list: 合约品种如 CF、TA 等列表 为空时为所有商品 :return: 注册仓单数据 :rtype: pandas.DataFrame """ date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None if date == '20090820': return pd.DataFrame() url = cons.CZCE_RECEIPT_URL_1 % date r = requests_link(url, encoding='utf-8') context = r.text data = pd.read_html(context)[1] records = pd.DataFrame() indexes = [x for x in data.index if '品种:' in str(data[0].tolist()[x])] ends = [x for x in data.index if '总计' in str(data[0].tolist()[x])] for i in list(range(len(indexes))): if i != len(indexes) - 1: data_cut = data.loc[indexes[i]:ends[i], :] data_cut = data_cut.fillna(method='pad') else: data_cut = data.loc[indexes[i]:, :] data_cut = data_cut.fillna(method='pad') if 'PTA' in data_cut[0].tolist()[0]: var = 'TA' else: var = chinese_to_english(re.sub(r'[A-Z]+', '', data_cut[0].tolist()[0][3:])) if var == 'CF': receipt = data_cut[6].tolist()[-1] receipt_chg = data_cut[7].tolist()[-1] else: receipt = data_cut[5].tolist()[-1] receipt_chg = data_cut[6].tolist()[-1] data_dict = {'var': var, 'receipt': int(receipt), 'receipt_chg': int(receipt_chg), 'date': date} records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L168-L215
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
22.916667
[ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47 ]
70.833333
false
7.971014
48
11
29.166667
8
def get_czce_receipt_1(date: str = None, vars_list: List = cons.contract_symbols): date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None if date == '20090820': return pd.DataFrame() url = cons.CZCE_RECEIPT_URL_1 % date r = requests_link(url, encoding='utf-8') context = r.text data = pd.read_html(context)[1] records = pd.DataFrame() indexes = [x for x in data.index if '品种:' in str(data[0].tolist()[x])] ends = [x for x in data.index if '总计' in str(data[0].tolist()[x])] for i in list(range(len(indexes))): if i != len(indexes) - 1: data_cut = data.loc[indexes[i]:ends[i], :] data_cut = data_cut.fillna(method='pad') else: data_cut = data.loc[indexes[i]:, :] data_cut = data_cut.fillna(method='pad') if 'PTA' in data_cut[0].tolist()[0]: var = 'TA' else: var = chinese_to_english(re.sub(r'[A-Z]+', '', data_cut[0].tolist()[0][3:])) if var == 'CF': receipt = data_cut[6].tolist()[-1] receipt_chg = data_cut[7].tolist()[-1] else: receipt = data_cut[5].tolist()[-1] receipt_chg = data_cut[6].tolist()[-1] data_dict = {'var': var, 'receipt': int(receipt), 'receipt_chg': int(receipt_chg), 'date': date} records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
18,195
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_czce_receipt_2
(date: str = None, vars_list: List = cons.contract_symbols)
return records.reset_index(drop=True)
郑州商品交易所-注册仓单数据 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm 适用 20100825(包括) - 20151111(包括) :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 CF、TA 等列表为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
郑州商品交易所-注册仓单数据 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm 适用 20100825(包括) - 20151111(包括) :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 CF、TA 等列表为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
218
262
def get_czce_receipt_2(date: str = None, vars_list: List = cons.contract_symbols): """ 郑州商品交易所-注册仓单数据 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm 适用 20100825(包括) - 20151111(包括) :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 CF、TA 等列表为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame """ if not isinstance(vars_list, list): return warnings.warn(f"symbol_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None url = cons.CZCE_RECEIPT_URL_2 % (date[:4], date) r = requests.get(url) r.encoding = 'utf-8' data = pd.read_html(r.text)[3:] records = pd.DataFrame() for data_cut in data: if len(data_cut.columns) > 3: last_indexes = [x for x in data_cut.index if '注:' in str(data_cut[0].tolist()[x])] if len(last_indexes) > 0: last_index = last_indexes[0] - 1 data_cut = data_cut.loc[:last_index, :] if 'PTA' in data_cut[0].tolist()[0]: var = 'TA' else: strings = data_cut[0].tolist()[0] string = strings.split(' ')[0][3:] var = chinese_to_english(re.sub(r'[A-Z]+', '', string)) data_cut.columns = data_cut.T[1].tolist() receipt = data_cut['仓单数量'].tolist()[-1] receipt_chg = data_cut['当日增减'].tolist()[-1] data_dict = {'var': var, 'receipt': int(receipt), 'receipt_chg': int(receipt_chg), 'date': date} records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L218-L262
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
26.666667
[ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 ]
71.111111
false
7.971014
45
10
28.888889
9
def get_czce_receipt_2(date: str = None, vars_list: List = cons.contract_symbols): if not isinstance(vars_list, list): return warnings.warn(f"symbol_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None url = cons.CZCE_RECEIPT_URL_2 % (date[:4], date) r = requests.get(url) r.encoding = 'utf-8' data = pd.read_html(r.text)[3:] records = pd.DataFrame() for data_cut in data: if len(data_cut.columns) > 3: last_indexes = [x for x in data_cut.index if '注:' in str(data_cut[0].tolist()[x])] if len(last_indexes) > 0: last_index = last_indexes[0] - 1 data_cut = data_cut.loc[:last_index, :] if 'PTA' in data_cut[0].tolist()[0]: var = 'TA' else: strings = data_cut[0].tolist()[0] string = strings.split(' ')[0][3:] var = chinese_to_english(re.sub(r'[A-Z]+', '', string)) data_cut.columns = data_cut.T[1].tolist() receipt = data_cut['仓单数量'].tolist()[-1] receipt_chg = data_cut['当日增减'].tolist()[-1] data_dict = {'var': var, 'receipt': int(receipt), 'receipt_chg': int(receipt_chg), 'date': date} records = pd.concat([records, pd.DataFrame(data_dict, index=[0])]) if len(records.index) != 0: records.index = records['var'] vars_in_market = [i for i in vars_list if i in records.index] records = records.loc[vars_in_market, :] return records.reset_index(drop=True)
18,196
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_czce_receipt_3
(date: str = None, vars_list: List = cons.contract_symbols)
return records.reset_index(drop=True)
郑州商品交易所-注册仓单数据 适用 20151008-至今 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 CF、TA 等列表为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
郑州商品交易所-注册仓单数据 适用 20151008-至今 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 CF、TA 等列表为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame
265
335
def get_czce_receipt_3(date: str = None, vars_list: List = cons.contract_symbols) -> pd.DataFrame: """ 郑州商品交易所-注册仓单数据 适用 20151008-至今 http://www.czce.com.cn/cn/jysj/cdrb/H770310index_1.htm :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type date: str :param vars_list: 合约品种如 CF、TA 等列表为空时为所有商品 :type vars_list: list :return: 注册仓单数据 :rtype: pandas.DataFrame """ if not isinstance(vars_list, list): return warnings.warn("vars_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataWhsheet.xls" r = requests_link(url, encoding='utf-8') temp_df = pd.read_excel(BytesIO(r.content)) temp_df = temp_df[[bool(1-item) for item in [item if item is not pd.NA else False for item in temp_df.iloc[:, 0].str.contains("非农产品")]]] temp_df.reset_index(inplace=True, drop=True) range_list_one = list(temp_df[[item if not pd.isnull(item) else False for item in temp_df.iloc[:, 0].str.contains("品种")]].index) range_list_two = list(temp_df[[item if not pd.isnull(item) else False for item in temp_df.iloc[:, 0].str.contains("品种")]].index)[1:] range_list_two.append(None) symbol_list = [] receipt_list = [] receipt_chg_list = [] for page in range(len(range_list_one)): inner_df = temp_df[range_list_one[page]: range_list_two[page]] reg = re.compile(r'[A-Z]+') try: symbol = reg.findall(inner_df.iloc[0, 0])[0] except: continue symbol_list.append(symbol) inner_df.columns = inner_df.iloc[1, :] inner_df = inner_df.iloc[2:, :] inner_df = inner_df.dropna(axis=1, how='all') if symbol == "PTA": try: receipt_list.append(inner_df['仓单数量(完税)'].iloc[-1] + inner_df['仓单数量(保税)'].iloc[-1]) # 20210316 TA 分为保税和完税 except: receipt_list.append(0) elif symbol == "MA": try: try: receipt_list.append(inner_df['仓单数量(完税)'].iloc[-2] + inner_df['仓单数量(保税)'].iloc[-2]) # 20210316 MA 分为保税和完税 except: receipt_list.append(inner_df['仓单数量(完税)'].iloc[-2]) # 处理 MA 的特殊格式 except: receipt_list.append(0) else: try: receipt_list.append(inner_df['仓单数量'].iloc[-1]) except: receipt_list.append(0) if symbol == "MA": receipt_chg_list.append(inner_df['当日增减'].iloc[-2]) else: receipt_chg_list.append(inner_df['当日增减'].iloc[-1]) data_df = pd.DataFrame([symbol_list, receipt_list, receipt_chg_list, [date]*len(receipt_chg_list)]).T data_df.columns = ['var', 'receipt', 'receipt_chg', 'date'] temp_list = data_df['var'].tolist() data_df['var'] = [item if item != "PTA" else "TA" for item in temp_list] if len(data_df.index) != 0: data_df.index = data_df['var'] vars_in_market = [i for i in vars_list if i in data_df.index] records = data_df.loc[vars_in_market, :] return records.reset_index(drop=True)
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L265-L335
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
16.901408
[ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 ]
80.28169
false
7.971014
71
19
19.71831
9
def get_czce_receipt_3(date: str = None, vars_list: List = cons.contract_symbols) -> pd.DataFrame: if not isinstance(vars_list, list): return warnings.warn("vars_list: 必须是列表") date = cons.convert_date(date).strftime('%Y%m%d') if date is not None else datetime.date.today() if date not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataWhsheet.xls" r = requests_link(url, encoding='utf-8') temp_df = pd.read_excel(BytesIO(r.content)) temp_df = temp_df[[bool(1-item) for item in [item if item is not pd.NA else False for item in temp_df.iloc[:, 0].str.contains("非农产品")]]] temp_df.reset_index(inplace=True, drop=True) range_list_one = list(temp_df[[item if not pd.isnull(item) else False for item in temp_df.iloc[:, 0].str.contains("品种")]].index) range_list_two = list(temp_df[[item if not pd.isnull(item) else False for item in temp_df.iloc[:, 0].str.contains("品种")]].index)[1:] range_list_two.append(None) symbol_list = [] receipt_list = [] receipt_chg_list = [] for page in range(len(range_list_one)): inner_df = temp_df[range_list_one[page]: range_list_two[page]] reg = re.compile(r'[A-Z]+') try: symbol = reg.findall(inner_df.iloc[0, 0])[0] except: continue symbol_list.append(symbol) inner_df.columns = inner_df.iloc[1, :] inner_df = inner_df.iloc[2:, :] inner_df = inner_df.dropna(axis=1, how='all') if symbol == "PTA": try: receipt_list.append(inner_df['仓单数量(完税)'].iloc[-1] + inner_df['仓单数量(保税)'].iloc[-1]) # 20210316 TA 分为保税和完税 except: receipt_list.append(0) elif symbol == "MA": try: try: receipt_list.append(inner_df['仓单数量(完税)'].iloc[-2] + inner_df['仓单数量(保税)'].iloc[-2]) # 20210316 MA 分为保税和完税 except: receipt_list.append(inner_df['仓单数量(完税)'].iloc[-2]) # 处理 MA 的特殊格式 except: receipt_list.append(0) else: try: receipt_list.append(inner_df['仓单数量'].iloc[-1]) except: receipt_list.append(0) if symbol == "MA": receipt_chg_list.append(inner_df['当日增减'].iloc[-2]) else: receipt_chg_list.append(inner_df['当日增减'].iloc[-1]) data_df = pd.DataFrame([symbol_list, receipt_list, receipt_chg_list, [date]*len(receipt_chg_list)]).T data_df.columns = ['var', 'receipt', 'receipt_chg', 'date'] temp_list = data_df['var'].tolist() data_df['var'] = [item if item != "PTA" else "TA" for item in temp_list] if len(data_df.index) != 0: data_df.index = data_df['var'] vars_in_market = [i for i in vars_list if i in data_df.index] records = data_df.loc[vars_in_market, :] return records.reset_index(drop=True)
18,197
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/receipt.py
get_receipt
(start_day: str = None, end_day: str = None, vars_list: List = cons.contract_symbols)
return records
大宗商品-注册仓单数据 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_day: str :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_day: str :param vars_list: 合约品种如 RB、AL 等列表为空时为所有商品 :type vars_list: str :return: 展期收益率数据 :rtype: pandas.DataFrame
大宗商品-注册仓单数据 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_day: str :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_day: str :param vars_list: 合约品种如 RB、AL 等列表为空时为所有商品 :type vars_list: str :return: 展期收益率数据 :rtype: pandas.DataFrame
338
397
def get_receipt(start_day: str = None, end_day: str = None, vars_list: List = cons.contract_symbols): """ 大宗商品-注册仓单数据 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_day: str :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_day: str :param vars_list: 合约品种如 RB、AL 等列表为空时为所有商品 :type vars_list: str :return: 展期收益率数据 :rtype: pandas.DataFrame """ if not isinstance(vars_list, list): return warnings.warn(f"vars_list: 必须是列表") start_day = cons.convert_date(start_day) if start_day is not None else datetime.date.today() end_day = cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now())) records = pd.DataFrame() while start_day <= end_day: if start_day.strftime('%Y%m%d') not in calendar: warnings.warn(f"{start_day.strftime('%Y%m%d')}非交易日") else: print(start_day) for market, market_vars in cons.market_exchange_symbols.items(): if market == 'dce': if start_day >= datetime.date(2009, 4, 7): f = get_dce_receipt else: print('20090407 起,大连商品交易所每个交易日更新仓单数据') f = None elif market == 'shfe': if datetime.date(2008, 10, 6) <= start_day <= datetime.date(2014, 5, 16): f = get_shfe_receipt_1 elif start_day > datetime.date(2014, 5, 16): f = get_shfe_receipt_2 else: f = None print('20081006 起,上海期货交易所每个交易日更新仓单数据') elif market == 'czce': if datetime.date(2008, 3, 3) <= start_day <= datetime.date(2010, 8, 24): f = get_czce_receipt_1 elif datetime.date(2010, 8, 24) < start_day <= datetime.date(2015, 11, 11): f = get_czce_receipt_2 elif start_day > datetime.date(2015, 11, 11): f = get_czce_receipt_3 else: f = None print('20080303 起,郑州商品交易所每个交易日更新仓单数据') get_vars = [var for var in vars_list if var in market_vars] if market != 'cffex' and get_vars != []: if f is not None: records = pd.concat([records, f(start_day, get_vars)]) start_day += datetime.timedelta(days=1) records.reset_index(drop=True, inplace=True) if records.empty: return records if "MA" in records["var"].to_list(): replace_index = records[records["var"] == "MA"]["receipt"].astype(str).str.split("0", expand=True)[0].index records.loc[replace_index, "receipt"] = records[records["var"] == "MA"]["receipt"].astype(str).str.split("0", expand=True)[0] return records
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/receipt.py#L338-L397
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]
20
[ 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 ]
71.666667
false
7.971014
60
20
28.333333
9
def get_receipt(start_day: str = None, end_day: str = None, vars_list: List = cons.contract_symbols): if not isinstance(vars_list, list): return warnings.warn(f"vars_list: 必须是列表") start_day = cons.convert_date(start_day) if start_day is not None else datetime.date.today() end_day = cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now())) records = pd.DataFrame() while start_day <= end_day: if start_day.strftime('%Y%m%d') not in calendar: warnings.warn(f"{start_day.strftime('%Y%m%d')}非交易日") else: print(start_day) for market, market_vars in cons.market_exchange_symbols.items(): if market == 'dce': if start_day >= datetime.date(2009, 4, 7): f = get_dce_receipt else: print('20090407 起,大连商品交易所每个交易日更新仓单数据') f = None elif market == 'shfe': if datetime.date(2008, 10, 6) <= start_day <= datetime.date(2014, 5, 16): f = get_shfe_receipt_1 elif start_day > datetime.date(2014, 5, 16): f = get_shfe_receipt_2 else: f = None print('20081006 起,上海期货交易所每个交易日更新仓单数据') elif market == 'czce': if datetime.date(2008, 3, 3) <= start_day <= datetime.date(2010, 8, 24): f = get_czce_receipt_1 elif datetime.date(2010, 8, 24) < start_day <= datetime.date(2015, 11, 11): f = get_czce_receipt_2 elif start_day > datetime.date(2015, 11, 11): f = get_czce_receipt_3 else: f = None print('20080303 起,郑州商品交易所每个交易日更新仓单数据') get_vars = [var for var in vars_list if var in market_vars] if market != 'cffex' and get_vars != []: if f is not None: records = pd.concat([records, f(start_day, get_vars)]) start_day += datetime.timedelta(days=1) records.reset_index(drop=True, inplace=True) if records.empty: return records if "MA" in records["var"].to_list(): replace_index = records[records["var"] == "MA"]["receipt"].astype(str).str.split("0", expand=True)[0].index records.loc[replace_index, "receipt"] = records[records["var"] == "MA"]["receipt"].astype(str).str.split("0", expand=True)[0] return records
18,198
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_inventory_em.py
futures_inventory_em
(symbol: str = "沪铝") ->
return temp_df
东方财富网-数据中心-期货库存数据 https://data.eastmoney.com/ifdata/kcsj.html :param symbol: https://data.eastmoney.com/ifdata/kcsj.html 对应的中文名称, 如: 沪铝 :type symbol: str :return: 指定品种的库存数据 :rtype: pandas.DataFrame
东方财富网-数据中心-期货库存数据 https://data.eastmoney.com/ifdata/kcsj.html :param symbol: https://data.eastmoney.com/ifdata/kcsj.html 对应的中文名称, 如: 沪铝 :type symbol: str :return: 指定品种的库存数据 :rtype: pandas.DataFrame
12
61
def futures_inventory_em(symbol: str = "沪铝") -> pd.DataFrame: """ 东方财富网-数据中心-期货库存数据 https://data.eastmoney.com/ifdata/kcsj.html :param symbol: https://data.eastmoney.com/ifdata/kcsj.html 对应的中文名称, 如: 沪铝 :type symbol: str :return: 指定品种的库存数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_FUTU_POSITIONCODE", "columns": "TRADE_MARKET_CODE,TRADE_CODE,TRADE_TYPE", "filter": '(IS_MAINCODE="1")', "pageNumber": "1", "pageSize": "500", "source": "WEB", "client": "WEB", "_": "1669352163467", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) symbol_dict = dict(zip(temp_df["TRADE_TYPE"], temp_df["TRADE_CODE"])) url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_FUTU_STOCKDATA", "columns": "SECURITY_CODE,TRADE_DATE,ON_WARRANT_NUM,ADDCHANGE", "filter": f"""(SECURITY_CODE="{symbol_dict[symbol]}")(TRADE_DATE>='2020-10-28')""", "pageNumber": "1", "pageSize": "500", "sortTypes": "-1", "sortColumns": "TRADE_DATE", "source": "WEB", "client": "WEB", "_": "1669352163467", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.columns = ["-", "日期", "库存", "增减"] temp_df = temp_df[["日期", "库存", "增减"]] temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["库存"] = pd.to_numeric(temp_df["库存"], errors="coerce") temp_df["增减"] = pd.to_numeric(temp_df["增减"], errors="coerce") temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_inventory_em.py#L12-L61
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
18
[ 9, 10, 20, 21, 22, 23, 25, 26, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49 ]
38
false
19.230769
50
1
62
6
def futures_inventory_em(symbol: str = "沪铝") -> pd.DataFrame: url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_FUTU_POSITIONCODE", "columns": "TRADE_MARKET_CODE,TRADE_CODE,TRADE_TYPE", "filter": '(IS_MAINCODE="1")', "pageNumber": "1", "pageSize": "500", "source": "WEB", "client": "WEB", "_": "1669352163467", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) symbol_dict = dict(zip(temp_df["TRADE_TYPE"], temp_df["TRADE_CODE"])) url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_FUTU_STOCKDATA", "columns": "SECURITY_CODE,TRADE_DATE,ON_WARRANT_NUM,ADDCHANGE", "filter": f"""(SECURITY_CODE="{symbol_dict[symbol]}")(TRADE_DATE>='2020-10-28')""", "pageNumber": "1", "pageSize": "500", "sortTypes": "-1", "sortColumns": "TRADE_DATE", "source": "WEB", "client": "WEB", "_": "1669352163467", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df.columns = ["-", "日期", "库存", "增减"] temp_df = temp_df[["日期", "库存", "增减"]] temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["库存"] = pd.to_numeric(temp_df["库存"], errors="coerce") temp_df["增减"] = pd.to_numeric(temp_df["增减"], errors="coerce") temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date return temp_df
18,199
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_to_spot_shfe
(date: str = "202101")
return temp_df
上海期货交易所-期转现 http://www.shfe.com.cn/statements/dataview.html?paramid=kx 1、铜、铜(BC)、铝、锌、铅、镍、锡、螺纹钢、线材、热轧卷板、天然橡胶、20号胶、低硫燃料油、燃料油、石油沥青、纸浆、不锈钢的数量单位为:吨;黄金的数量单位为:克;白银的数量单位为:千克;原油的数量单位为:桶。 2、交割量、期转现量为单向计算。 :param date: 年月 :type date: str :return: 上海期货交易所期转现 :rtype: pandas.DataFrame
上海期货交易所-期转现 http://www.shfe.com.cn/statements/dataview.html?paramid=kx 1、铜、铜(BC)、铝、锌、铅、镍、锡、螺纹钢、线材、热轧卷板、天然橡胶、20号胶、低硫燃料油、燃料油、石油沥青、纸浆、不锈钢的数量单位为:吨;黄金的数量单位为:克;白银的数量单位为:千克;原油的数量单位为:桶。 2、交割量、期转现量为单向计算。 :param date: 年月 :type date: str :return: 上海期货交易所期转现 :rtype: pandas.DataFrame
11
44
def futures_to_spot_shfe(date: str = "202101") -> pd.DataFrame: """ 上海期货交易所-期转现 http://www.shfe.com.cn/statements/dataview.html?paramid=kx 1、铜、铜(BC)、铝、锌、铅、镍、锡、螺纹钢、线材、热轧卷板、天然橡胶、20号胶、低硫燃料油、燃料油、石油沥青、纸浆、不锈钢的数量单位为:吨;黄金的数量单位为:克;白银的数量单位为:千克;原油的数量单位为:桶。 2、交割量、期转现量为单向计算。 :param date: 年月 :type date: str :return: 上海期货交易所期转现 :rtype: pandas.DataFrame """ url = f"http://www.shfe.com.cn/data/instrument/ExchangeDelivery{date}.dat" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json["ExchangeDelivery"]) temp_df.columns = [ "_", "日期", "交割量", "_", "期转现量", "合约", "_", "_", ] temp_df = temp_df[ [ "日期", "合约", "交割量", "期转现量", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L11-L44
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
32.352941
[ 11, 12, 13, 14, 15, 25, 33 ]
20.588235
false
11.320755
34
1
79.411765
8
def futures_to_spot_shfe(date: str = "202101") -> pd.DataFrame: url = f"http://www.shfe.com.cn/data/instrument/ExchangeDelivery{date}.dat" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json["ExchangeDelivery"]) temp_df.columns = [ "_", "日期", "交割量", "_", "期转现量", "合约", "_", "_", ] temp_df = temp_df[ [ "日期", "合约", "交割量", "期转现量", ] ] return temp_df
18,200
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_delivery_dce
(date: str = "202101")
return temp_df
大连商品交易所-交割统计 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/jgsj/index.html :param date: 交割日期 :type date: str :return: 大连商品交易所-交割统计 :rtype: pandas.DataFrame
大连商品交易所-交割统计 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/jgsj/index.html :param date: 交割日期 :type date: str :return: 大连商品交易所-交割统计 :rtype: pandas.DataFrame
47
79
def futures_delivery_dce(date: str = "202101") -> pd.DataFrame: """ 大连商品交易所-交割统计 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/jgsj/index.html :param date: 交割日期 :type date: str :return: 大连商品交易所-交割统计 :rtype: pandas.DataFrame """ url = "http://www.dce.com.cn/publicweb/quotesdata/delivery.html" params = { "deliveryQuotes.variety": "all", "year": "", "month": "", "deliveryQuotes.begin_month": date, "deliveryQuotes.end_month": str(int(date) + 1), } headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Pragma": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36", } r = requests.post(url, params=params, headers=headers) temp_df = pd.read_html(r.text)[0] temp_df["交割日期"] = ( temp_df["交割日期"].astype(str).str.split(".", expand=True).iloc[:, 0] ) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L47-L79
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
27.272727
[ 9, 10, 17, 27, 28, 29, 32 ]
21.212121
false
11.320755
33
1
78.787879
6
def futures_delivery_dce(date: str = "202101") -> pd.DataFrame: url = "http://www.dce.com.cn/publicweb/quotesdata/delivery.html" params = { "deliveryQuotes.variety": "all", "year": "", "month": "", "deliveryQuotes.begin_month": date, "deliveryQuotes.end_month": str(int(date) + 1), } headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Pragma": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36", } r = requests.post(url, params=params, headers=headers) temp_df = pd.read_html(r.text)[0] temp_df["交割日期"] = ( temp_df["交割日期"].astype(str).str.split(".", expand=True).iloc[:, 0] ) return temp_df
18,201
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_to_spot_dce
(date: str = "202102")
return temp_df
大连商品交易所-期转现 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/qzxcx/index.html :param date: 期转现日期 :type date: str :return: 大连商品交易所-期转现 :rtype: pandas.DataFrame
大连商品交易所-期转现 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/qzxcx/index.html :param date: 期转现日期 :type date: str :return: 大连商品交易所-期转现 :rtype: pandas.DataFrame
82
104
def futures_to_spot_dce(date: str = "202102") -> pd.DataFrame: """ 大连商品交易所-期转现 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/qzxcx/index.html :param date: 期转现日期 :type date: str :return: 大连商品交易所-期转现 :rtype: pandas.DataFrame """ url = "http://www.dce.com.cn/publicweb/quotesdata/ftsDeal.html" params = { "ftsDealQuotes.variety": "all", "year": "", "month": "", "ftsDealQuotes.begin_month": date, "ftsDealQuotes.end_month": date, } r = requests.post(url, params=params) temp_df = pd.read_html(r.text)[0] temp_df["期转现发生日期"] = ( temp_df["期转现发生日期"].astype(str).str.split(".", expand=True).iloc[:, 0] ) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L82-L104
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
39.130435
[ 9, 10, 17, 18, 19, 22 ]
26.086957
false
11.320755
23
1
73.913043
6
def futures_to_spot_dce(date: str = "202102") -> pd.DataFrame: url = "http://www.dce.com.cn/publicweb/quotesdata/ftsDeal.html" params = { "ftsDealQuotes.variety": "all", "year": "", "month": "", "ftsDealQuotes.begin_month": date, "ftsDealQuotes.end_month": date, } r = requests.post(url, params=params) temp_df = pd.read_html(r.text)[0] temp_df["期转现发生日期"] = ( temp_df["期转现发生日期"].astype(str).str.split(".", expand=True).iloc[:, 0] ) return temp_df
18,202
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_delivery_match_dce
(symbol: str = "a")
return temp_df
大连商品交易所-交割配对表 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/jgsj/index.html :param symbol: 交割品种 :type symbol: str :return: 大连商品交易所-交割配对表 :rtype: pandas.DataFrame
大连商品交易所-交割配对表 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/jgsj/index.html :param symbol: 交割品种 :type symbol: str :return: 大连商品交易所-交割配对表 :rtype: pandas.DataFrame
107
127
def futures_delivery_match_dce(symbol: str = "a") -> pd.DataFrame: """ 大连商品交易所-交割配对表 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/jgtj/jgsj/index.html :param symbol: 交割品种 :type symbol: str :return: 大连商品交易所-交割配对表 :rtype: pandas.DataFrame """ url = "http://www.dce.com.cn/publicweb/quotesdata/deliveryMatch.html" params = { "deliveryMatchQuotes.variety": symbol, "contract.contract_id": "all", "contract.variety_id": symbol, } r = requests.post(url, params=params) temp_df = pd.read_html(r.text)[0] temp_df["配对日期"] = ( temp_df["配对日期"].astype(str).str.split(".", expand=True).iloc[:, 0] ) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L107-L127
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
42.857143
[ 9, 10, 15, 16, 17, 20 ]
28.571429
false
11.320755
21
1
71.428571
6
def futures_delivery_match_dce(symbol: str = "a") -> pd.DataFrame: url = "http://www.dce.com.cn/publicweb/quotesdata/deliveryMatch.html" params = { "deliveryMatchQuotes.variety": symbol, "contract.contract_id": "all", "contract.variety_id": symbol, } r = requests.post(url, params=params) temp_df = pd.read_html(r.text)[0] temp_df["配对日期"] = ( temp_df["配对日期"].astype(str).str.split(".", expand=True).iloc[:, 0] ) return temp_df
18,203
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_to_spot_czce
(date: str = "20210112")
return temp_df
郑州商品交易所-期转现统计 http://www.czce.com.cn/cn/jysj/qzxtj/H770311index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-期转现统计 :rtype: pandas.DataFrame
郑州商品交易所-期转现统计 http://www.czce.com.cn/cn/jysj/qzxtj/H770311index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-期转现统计 :rtype: pandas.DataFrame
130
168
def futures_to_spot_czce(date: str = "20210112") -> pd.DataFrame: """ 郑州商品交易所-期转现统计 http://www.czce.com.cn/cn/jysj/qzxtj/H770311index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-期转现统计 :rtype: pandas.DataFrame """ url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataTrdtrades.xls" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "www.czce.com.cn", "Pragma": "no-cache", "Referer": "http://www.czce.com.cn/", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36", } r = requests.get(url, headers=headers) r.encoding = "utf-8" temp_df = pd.read_excel(r.content, skiprows=1) temp_df.columns = [ "合约代码", "合约数量", ] temp_df = temp_df[ [ "合约代码", "合约数量", ] ] temp_df["合约数量"] = temp_df["合约数量"].str.replace(",", "") temp_df["合约数量"] = pd.to_numeric(temp_df["合约数量"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L130-L168
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
23.076923
[ 9, 10, 22, 23, 24, 26, 30, 36, 37, 38 ]
25.641026
false
11.320755
39
1
74.358974
6
def futures_to_spot_czce(date: str = "20210112") -> pd.DataFrame: url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataTrdtrades.xls" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "www.czce.com.cn", "Pragma": "no-cache", "Referer": "http://www.czce.com.cn/", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36", } r = requests.get(url, headers=headers) r.encoding = "utf-8" temp_df = pd.read_excel(r.content, skiprows=1) temp_df.columns = [ "合约代码", "合约数量", ] temp_df = temp_df[ [ "合约代码", "合约数量", ] ] temp_df["合约数量"] = temp_df["合约数量"].str.replace(",", "") temp_df["合约数量"] = pd.to_numeric(temp_df["合约数量"]) return temp_df
18,204
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_delivery_match_czce
(date: str = "20210106")
return big_df
郑州商品交易所-交割配对 http://www.czce.com.cn/cn/jysj/jgpd/H770308index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-交割配对 :rtype: pandas.DataFrame
郑州商品交易所-交割配对 http://www.czce.com.cn/cn/jysj/jgpd/H770308index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-交割配对 :rtype: pandas.DataFrame
171
216
def futures_delivery_match_czce(date: str = "20210106") -> pd.DataFrame: """ 郑州商品交易所-交割配对 http://www.czce.com.cn/cn/jysj/jgpd/H770308index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-交割配对 :rtype: pandas.DataFrame """ url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataDelsettle.xls" r = requests.get(url) r.encoding = "utf-8" temp_df = pd.read_excel(r.content, skiprows=0) index_flag = temp_df[temp_df.iloc[:, 0].str.contains("配对日期")].index.values big_df = pd.DataFrame() for i, item in enumerate(index_flag): try: temp_inner_df = temp_df[index_flag[i] + 1 : index_flag[i + 1]] except: temp_inner_df = temp_df[index_flag[i] + 1 :] temp_inner_df.columns = temp_inner_df.iloc[0, :] temp_inner_df = temp_inner_df.iloc[1:-1, :] temp_inner_df.reset_index(drop=True, inplace=True) date_contract_str = ( temp_df[temp_df.iloc[:, 0].str.contains("配对日期")] .iloc[:, 0] .values[i] ) inner_date = date_contract_str.split(":")[1].split(" ")[0] symbol = date_contract_str.split(":")[-1] temp_inner_df["配对日期"] = inner_date temp_inner_df["合约代码"] = symbol big_df = pd.concat([big_df, temp_inner_df], ignore_index=True) big_df.columns = [ "卖方会员", "卖方会员-会员简称", "买方会员", "买方会员-会员简称", "交割量", "配对日期", "合约代码", ] big_df["交割量"] = big_df["交割量"].str.replace(",", "") big_df["交割量"] = pd.to_numeric(big_df["交割量"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L171-L216
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
19.565217
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 34, 43, 44, 45 ]
52.173913
false
11.320755
46
3
47.826087
6
def futures_delivery_match_czce(date: str = "20210106") -> pd.DataFrame: url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataDelsettle.xls" r = requests.get(url) r.encoding = "utf-8" temp_df = pd.read_excel(r.content, skiprows=0) index_flag = temp_df[temp_df.iloc[:, 0].str.contains("配对日期")].index.values big_df = pd.DataFrame() for i, item in enumerate(index_flag): try: temp_inner_df = temp_df[index_flag[i] + 1 : index_flag[i + 1]] except: temp_inner_df = temp_df[index_flag[i] + 1 :] temp_inner_df.columns = temp_inner_df.iloc[0, :] temp_inner_df = temp_inner_df.iloc[1:-1, :] temp_inner_df.reset_index(drop=True, inplace=True) date_contract_str = ( temp_df[temp_df.iloc[:, 0].str.contains("配对日期")] .iloc[:, 0] .values[i] ) inner_date = date_contract_str.split(":")[1].split(" ")[0] symbol = date_contract_str.split(":")[-1] temp_inner_df["配对日期"] = inner_date temp_inner_df["合约代码"] = symbol big_df = pd.concat([big_df, temp_inner_df], ignore_index=True) big_df.columns = [ "卖方会员", "卖方会员-会员简称", "买方会员", "买方会员-会员简称", "交割量", "配对日期", "合约代码", ] big_df["交割量"] = big_df["交割量"].str.replace(",", "") big_df["交割量"] = pd.to_numeric(big_df["交割量"]) return big_df
18,205
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_delivery_czce
(date: str = "20210112")
return temp_df
郑州商品交易所-月度交割查询 http://www.czce.com.cn/cn/jysj/ydjgcx/H770316index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-月度交割查询 :rtype: pandas.DataFrame
郑州商品交易所-月度交割查询 http://www.czce.com.cn/cn/jysj/ydjgcx/H770316index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-月度交割查询 :rtype: pandas.DataFrame
219
242
def futures_delivery_czce(date: str = "20210112") -> pd.DataFrame: """ 郑州商品交易所-月度交割查询 http://www.czce.com.cn/cn/jysj/ydjgcx/H770316index_1.htm :param date: 年月日 :type date: str :return: 郑州商品交易所-月度交割查询 :rtype: pandas.DataFrame """ url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataSettlematched.xls" r = requests.get(url) r.encoding = "utf-8" temp_df = pd.read_excel(r.content, skiprows=1) temp_df.columns = [ "品种", "交割数量", "交割额", ] temp_df["交割数量"] = temp_df["交割数量"].str.replace(",", "") temp_df["交割额"] = temp_df["交割额"].str.replace(",", "") temp_df["交割数量"] = pd.to_numeric(temp_df["交割数量"]) temp_df["交割额"] = pd.to_numeric(temp_df["交割额"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L219-L242
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
37.5
[ 9, 10, 11, 12, 13, 18, 19, 21, 22, 23 ]
41.666667
false
11.320755
24
1
58.333333
6
def futures_delivery_czce(date: str = "20210112") -> pd.DataFrame: url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date[:4]}/{date}/FutureDataSettlematched.xls" r = requests.get(url) r.encoding = "utf-8" temp_df = pd.read_excel(r.content, skiprows=1) temp_df.columns = [ "品种", "交割数量", "交割额", ] temp_df["交割数量"] = temp_df["交割数量"].str.replace(",", "") temp_df["交割额"] = temp_df["交割额"].str.replace(",", "") temp_df["交割数量"] = pd.to_numeric(temp_df["交割数量"]) temp_df["交割额"] = pd.to_numeric(temp_df["交割额"]) return temp_df
18,206
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_to_spot.py
futures_delivery_shfe
(date: str = "202003")
return temp_df
上海期货交易所-交割情况表 http://www.shfe.com.cn/statements/dataview.html?paramid=kx 注意: 日期 -> 月度统计 -> 下拉到交割情况表 :param date: 年月日 :type date: str :return: 上海期货交易所-交割情况表 :rtype: pandas.DataFrame
上海期货交易所-交割情况表 http://www.shfe.com.cn/statements/dataview.html?paramid=kx 注意: 日期 -> 月度统计 -> 下拉到交割情况表 :param date: 年月日 :type date: str :return: 上海期货交易所-交割情况表 :rtype: pandas.DataFrame
245
278
def futures_delivery_shfe(date: str = "202003") -> pd.DataFrame: """ 上海期货交易所-交割情况表 http://www.shfe.com.cn/statements/dataview.html?paramid=kx 注意: 日期 -> 月度统计 -> 下拉到交割情况表 :param date: 年月日 :type date: str :return: 上海期货交易所-交割情况表 :rtype: pandas.DataFrame """ url = f"http://www.shfe.com.cn/data/dailydata/{date}monthvarietystatistics.dat" r = requests.get(url) r.encoding = "utf-8" data_json = r.json() temp_df = pd.DataFrame(data_json["o_curdelivery"]) temp_df.columns = [ "品种", "品种代码", "_", "交割量-本月", "交割量-比重", "交割量-本年累计", "交割量-累计同比", ] temp_df = temp_df[ [ "品种", "交割量-本月", "交割量-比重", "交割量-本年累计", "交割量-累计同比", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_to_spot.py#L245-L278
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
29.411765
[ 10, 11, 12, 13, 14, 15, 24, 33 ]
23.529412
false
11.320755
34
1
76.470588
7
def futures_delivery_shfe(date: str = "202003") -> pd.DataFrame: url = f"http://www.shfe.com.cn/data/dailydata/{date}monthvarietystatistics.dat" r = requests.get(url) r.encoding = "utf-8" data_json = r.json() temp_df = pd.DataFrame(data_json["o_curdelivery"]) temp_df.columns = [ "品种", "品种代码", "_", "交割量-本月", "交割量-比重", "交割量-本年累计", "交割量-累计同比", ] temp_df = temp_df[ [ "品种", "交割量-本月", "交割量-比重", "交割量-本年累计", "交割量-累计同比", ] ] return temp_df
18,207
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_hq_sina.py
_get_real_name_list
()
return name_list
新浪-外盘期货所有品种的中文名称 :return: 外盘期货所有品种的中文名称 :rtype: list
新浪-外盘期货所有品种的中文名称 :return: 外盘期货所有品种的中文名称 :rtype: list
17
32
def _get_real_name_list() -> list: """ 新浪-外盘期货所有品种的中文名称 :return: 外盘期货所有品种的中文名称 :rtype: list """ url = "http://finance.sina.com.cn/money/future/hf.html" r = requests.get(url) r.encoding = "gb2312" data_text = r.text need_text = data_text[ data_text.find("var oHF_1 = ") + 12: data_text.find("var oHF_2") - 2 ].replace("\n\t", "") data_json = demjson.decode(need_text) name_list = [item[0].strip() for item in data_json.values()] return name_list
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_hq_sina.py#L17-L32
25
[ 0, 1, 2, 3, 4, 5 ]
37.5
[ 6, 7, 8, 9, 10, 13, 14, 15 ]
50
false
12.941176
16
2
50
3
def _get_real_name_list() -> list: url = "http://finance.sina.com.cn/money/future/hf.html" r = requests.get(url) r.encoding = "gb2312" data_text = r.text need_text = data_text[ data_text.find("var oHF_1 = ") + 12: data_text.find("var oHF_2") - 2 ].replace("\n\t", "") data_json = demjson.decode(need_text) name_list = [item[0].strip() for item in data_json.values()] return name_list
18,208
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_hq_sina.py
futures_foreign_commodity_subscribe_exchange_symbol
()
return code_list
需要订阅的行情的代码 :return: 需要订阅的行情的代码 :rtype: list
需要订阅的行情的代码 :return: 需要订阅的行情的代码 :rtype: list
35
51
def futures_foreign_commodity_subscribe_exchange_symbol() -> list: """ 需要订阅的行情的代码 :return: 需要订阅的行情的代码 :rtype: list """ url = "http://finance.sina.com.cn/money/future/hf.html" r = requests.get(url) r.encoding = "gb2312" data_text = r.text data_json = demjson.decode( data_text[ data_text.find("var oHF_1 = ") + 12: data_text.find("var oHF_2 = ") - 2 ] ) code_list = list(data_json.keys()) return code_list
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_hq_sina.py#L35-L51
25
[ 0, 1, 2, 3, 4, 5 ]
35.294118
[ 6, 7, 8, 9, 10, 15, 16 ]
41.176471
false
12.941176
17
1
58.823529
3
def futures_foreign_commodity_subscribe_exchange_symbol() -> list: url = "http://finance.sina.com.cn/money/future/hf.html" r = requests.get(url) r.encoding = "gb2312" data_text = r.text data_json = demjson.decode( data_text[ data_text.find("var oHF_1 = ") + 12: data_text.find("var oHF_2 = ") - 2 ] ) code_list = list(data_json.keys()) return code_list
18,209
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_hq_sina.py
futures_hq_subscribe_exchange_symbol
()
return temp_df
将品种字典转化为 pandas.DataFrame https://finance.sina.com.cn/money/future/hf.html :return: 品种对应表 :rtype: pandas.DataFrame
将品种字典转化为 pandas.DataFrame https://finance.sina.com.cn/money/future/hf.html :return: 品种对应表 :rtype: pandas.DataFrame
54
92
def futures_hq_subscribe_exchange_symbol() -> pd.DataFrame: """ 将品种字典转化为 pandas.DataFrame https://finance.sina.com.cn/money/future/hf.html :return: 品种对应表 :rtype: pandas.DataFrame """ inner_dict = { "NYBOT-棉花": 'CT', "LME镍3个月": 'NID', "LME铅3个月": 'PBD', "LME锡3个月": 'SND', "LME锌3个月": 'ZSD', "LME铝3个月": 'AHD', "LME铜3个月": 'CAD', "CBOT-黄豆": 'S', "CBOT-小麦": 'W', "CBOT-玉米": 'C', "CBOT-黄豆油": 'BO', "CBOT-黄豆粉": 'SM', "日本橡胶": 'TRB', "COMEX铜": 'HG', "NYMEX天然气": 'NG', "NYMEX原油": 'CL', "COMEX白银": 'SI', "COMEX黄金": 'GC', "CME-瘦肉猪": 'LHC', "布伦特原油": 'OIL', "伦敦金": 'XAU', "伦敦银": 'XAG', "伦敦铂金": 'XPT', "伦敦钯金": 'XPD', "马棕油": 'FCPO', "欧洲碳排放": 'EUA', } temp_df = pd.DataFrame.from_dict(inner_dict, orient='index') temp_df.reset_index(inplace=True) temp_df.columns = ['symbol', 'code'] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_hq_sina.py#L54-L92
25
[ 0, 1, 2, 3, 4, 5, 6 ]
17.948718
[ 7, 35, 36, 37, 38 ]
12.820513
false
12.941176
39
1
87.179487
4
def futures_hq_subscribe_exchange_symbol() -> pd.DataFrame: inner_dict = { "NYBOT-棉花": 'CT', "LME镍3个月": 'NID', "LME铅3个月": 'PBD', "LME锡3个月": 'SND', "LME锌3个月": 'ZSD', "LME铝3个月": 'AHD', "LME铜3个月": 'CAD', "CBOT-黄豆": 'S', "CBOT-小麦": 'W', "CBOT-玉米": 'C', "CBOT-黄豆油": 'BO', "CBOT-黄豆粉": 'SM', "日本橡胶": 'TRB', "COMEX铜": 'HG', "NYMEX天然气": 'NG', "NYMEX原油": 'CL', "COMEX白银": 'SI', "COMEX黄金": 'GC', "CME-瘦肉猪": 'LHC', "布伦特原油": 'OIL', "伦敦金": 'XAU', "伦敦银": 'XAG', "伦敦铂金": 'XPT', "伦敦钯金": 'XPD', "马棕油": 'FCPO', "欧洲碳排放": 'EUA', } temp_df = pd.DataFrame.from_dict(inner_dict, orient='index') temp_df.reset_index(inplace=True) temp_df.columns = ['symbol', 'code'] return temp_df
18,210
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures/futures_hq_sina.py
futures_foreign_commodity_realtime
(subscribe_list: list)
return data_df
新浪-外盘期货-行情数据 https://finance.sina.com.cn/money/future/hf.html :param subscribe_list: 通过调用 ak.futures_hq_subscribe_exchange_symbol() 函数来获取 :type subscribe_list: list :return: 行情数据 :rtype: pandas.DataFrame
新浪-外盘期货-行情数据 https://finance.sina.com.cn/money/future/hf.html :param subscribe_list: 通过调用 ak.futures_hq_subscribe_exchange_symbol() 函数来获取 :type subscribe_list: list :return: 行情数据 :rtype: pandas.DataFrame
95
245
def futures_foreign_commodity_realtime(subscribe_list: list) -> pd.DataFrame: """ 新浪-外盘期货-行情数据 https://finance.sina.com.cn/money/future/hf.html :param subscribe_list: 通过调用 ak.futures_hq_subscribe_exchange_symbol() 函数来获取 :type subscribe_list: list :return: 行情数据 :rtype: pandas.DataFrame """ payload = "?list=" + ",".join(["hf_" + item for item in subscribe_list]) url = "http://hq.sinajs.cn/" + payload headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Host': 'hq.sinajs.cn', 'Pragma': 'no-cache', 'Referer': 'https://finance.sina.com.cn/', 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'Sec-Fetch-Dest': 'script', 'Sec-Fetch-Mode': 'no-cors', 'Sec-Fetch-Site': 'cross-site', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } r = requests.get(url, headers=headers) data_text = r.text data_df = pd.DataFrame( [ item.strip().split("=")[1].split(",") for item in data_text.split(";") if item.strip() != "" ] ) data_df.iloc[:, 0] = data_df.iloc[:, 0].str.replace('"', "") data_df.iloc[:, -1] = data_df.iloc[:, -1].str.replace('"', "") data_df.columns = [ "current_price", "-", "bid", "ask", "high", "low", "time", "last_settle_price", "open", "hold", "-", "-", "date", "symbol", "current_price_rmb", ] temp_symbol_code_df = futures_hq_subscribe_exchange_symbol() temp_symbol_code_dict = dict(zip(temp_symbol_code_df['code'], temp_symbol_code_df['symbol'])) data_df["symbol"] = [temp_symbol_code_dict[subscribe] for subscribe in subscribe_list] data_df = data_df[ [ "symbol", "current_price", "current_price_rmb", "bid", "ask", "high", "low", "time", "last_settle_price", "open", "hold", "date", ] ] data_df.columns = [ "名称", "最新价", "人民币报价", "买价", "卖价", "最高价", "最低价", "行情时间", "昨日结算价", "开盘价", "持仓量", "日期", ] data_df.dropna(how="all", inplace=True) data_df["最新价"] = pd.to_numeric(data_df["最新价"]) data_df["人民币报价"] = pd.to_numeric(data_df["人民币报价"]) data_df["买价"] = pd.to_numeric(data_df["买价"]) data_df["卖价"] = pd.to_numeric(data_df["卖价"]) data_df["最高价"] = pd.to_numeric(data_df["最高价"]) data_df["最低价"] = pd.to_numeric(data_df["最低价"]) data_df["昨日结算价"] = pd.to_numeric(data_df["昨日结算价"]) data_df["开盘价"] = pd.to_numeric(data_df["开盘价"]) data_df["持仓量"] = pd.to_numeric(data_df["持仓量"]) data_df["涨跌额"] = data_df["最新价"] - data_df["昨日结算价"] data_df["涨跌幅"] = (data_df["最新价"] - data_df["昨日结算价"]) / data_df["昨日结算价"] * 100 data_df = data_df[ [ "名称", "最新价", "人民币报价", "涨跌额", "涨跌幅", "开盘价", "最高价", "最低价", "昨日结算价", "持仓量", "买价", "卖价", "行情时间", "日期", ] ] # 获取转换比例数据 url = "https://finance.sina.com.cn/money/future/hf.html" r = requests.get(url) r.encoding = "gb2312" soup = BeautifulSoup(r.text, "lxml") data_text = soup.find_all("script", attrs={"type": "text/javascript"})[ -2 ].string.strip() raw_text = data_text[data_text.find("oHF_1 = "): data_text.find("oHF_2")] need_text = raw_text[raw_text.find("{"): raw_text.rfind("}") + 1] data_json = demjson.decode(need_text) price_mul = pd.DataFrame( [ [item[0] for item in data_json.values()], [item[1][0] for item in data_json.values()], ] ).T price_mul.columns = ["symbol", "price"] # 获取汇率数据 url = "https://hq.sinajs.cn/?list=USDCNY" r = requests.get(url, headers=headers) data_text = r.text usd_rmb = float( data_text[data_text.find('"') + 1: data_text.find(",美元人民币")].split(",")[-1] ) # 计算人民币报价 data_df["人民币报价"] = data_df["最新价"] * price_mul["price"] * usd_rmb data_df.dropna(thresh=4, inplace=True) return data_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures/futures_hq_sina.py#L95-L245
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
5.960265
[ 9, 10, 11, 28, 29, 30, 37, 38, 39, 56, 57, 58, 59, 75, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 121, 122, 123, 124, 125, 128, 129, 130, 131, 137, 140, 141, 142, 143, 148, 149, 150 ]
29.139073
false
12.941176
151
6
70.860927
6
def futures_foreign_commodity_realtime(subscribe_list: list) -> pd.DataFrame: payload = "?list=" + ",".join(["hf_" + item for item in subscribe_list]) url = "http://hq.sinajs.cn/" + payload headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Host': 'hq.sinajs.cn', 'Pragma': 'no-cache', 'Referer': 'https://finance.sina.com.cn/', 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'Sec-Fetch-Dest': 'script', 'Sec-Fetch-Mode': 'no-cors', 'Sec-Fetch-Site': 'cross-site', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } r = requests.get(url, headers=headers) data_text = r.text data_df = pd.DataFrame( [ item.strip().split("=")[1].split(",") for item in data_text.split(";") if item.strip() != "" ] ) data_df.iloc[:, 0] = data_df.iloc[:, 0].str.replace('"', "") data_df.iloc[:, -1] = data_df.iloc[:, -1].str.replace('"', "") data_df.columns = [ "current_price", "-", "bid", "ask", "high", "low", "time", "last_settle_price", "open", "hold", "-", "-", "date", "symbol", "current_price_rmb", ] temp_symbol_code_df = futures_hq_subscribe_exchange_symbol() temp_symbol_code_dict = dict(zip(temp_symbol_code_df['code'], temp_symbol_code_df['symbol'])) data_df["symbol"] = [temp_symbol_code_dict[subscribe] for subscribe in subscribe_list] data_df = data_df[ [ "symbol", "current_price", "current_price_rmb", "bid", "ask", "high", "low", "time", "last_settle_price", "open", "hold", "date", ] ] data_df.columns = [ "名称", "最新价", "人民币报价", "买价", "卖价", "最高价", "最低价", "行情时间", "昨日结算价", "开盘价", "持仓量", "日期", ] data_df.dropna(how="all", inplace=True) data_df["最新价"] = pd.to_numeric(data_df["最新价"]) data_df["人民币报价"] = pd.to_numeric(data_df["人民币报价"]) data_df["买价"] = pd.to_numeric(data_df["买价"]) data_df["卖价"] = pd.to_numeric(data_df["卖价"]) data_df["最高价"] = pd.to_numeric(data_df["最高价"]) data_df["最低价"] = pd.to_numeric(data_df["最低价"]) data_df["昨日结算价"] = pd.to_numeric(data_df["昨日结算价"]) data_df["开盘价"] = pd.to_numeric(data_df["开盘价"]) data_df["持仓量"] = pd.to_numeric(data_df["持仓量"]) data_df["涨跌额"] = data_df["最新价"] - data_df["昨日结算价"] data_df["涨跌幅"] = (data_df["最新价"] - data_df["昨日结算价"]) / data_df["昨日结算价"] * 100 data_df = data_df[ [ "名称", "最新价", "人民币报价", "涨跌额", "涨跌幅", "开盘价", "最高价", "最低价", "昨日结算价", "持仓量", "买价", "卖价", "行情时间", "日期", ] ] # 获取转换比例数据 url = "https://finance.sina.com.cn/money/future/hf.html" r = requests.get(url) r.encoding = "gb2312" soup = BeautifulSoup(r.text, "lxml") data_text = soup.find_all("script", attrs={"type": "text/javascript"})[ -2 ].string.strip() raw_text = data_text[data_text.find("oHF_1 = "): data_text.find("oHF_2")] need_text = raw_text[raw_text.find("{"): raw_text.rfind("}") + 1] data_json = demjson.decode(need_text) price_mul = pd.DataFrame( [ [item[0] for item in data_json.values()], [item[1][0] for item in data_json.values()], ] ).T price_mul.columns = ["symbol", "price"] # 获取汇率数据 url = "https://hq.sinajs.cn/?list=USDCNY" r = requests.get(url, headers=headers) data_text = r.text usd_rmb = float( data_text[data_text.find('"') + 1: data_text.find(",美元人民币")].split(",")[-1] ) # 计算人民币报价 data_df["人民币报价"] = data_df["最新价"] * price_mul["price"] * usd_rmb data_df.dropna(thresh=4, inplace=True) return data_df
18,211
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/reits/reits_basic.py
reits_realtime_em
()
return temp_df
东方财富网-行情中心-REITs-沪深 REITs http://quote.eastmoney.com/center/gridlist.html#fund_reits_all :return: 沪深 REITs-实时行情 :rtype: pandas.DataFrame
东方财富网-行情中心-REITs-沪深 REITs http://quote.eastmoney.com/center/gridlist.html#fund_reits_all :return: 沪深 REITs-实时行情 :rtype: pandas.DataFrame
13
73
def reits_realtime_em() -> pd.DataFrame: """ 东方财富网-行情中心-REITs-沪深 REITs http://quote.eastmoney.com/center/gridlist.html#fund_reits_all :return: 沪深 REITs-实时行情 :rtype: pandas.DataFrame """ url = "http://95.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:9 e:97,m:0 t:10 e:97", "fields": "f2,f3,f4,f5,f6,f12,f14,f15,f16,f17,f18", "_": "1630048369992", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename( { "index": "序号", "f2": "最新价", "f3": "涨跌幅", "f4": "涨跌额", "f5": "成交量", "f6": "成交额", "f12": "代码", "f14": "名称", "f15": "最高价", "f16": "最低价", "f17": "开盘价", "f18": "昨收", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "成交量", "成交额", "开盘价", "最高价", "最低价", "昨收", ] ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/reits/reits_basic.py#L13-L73
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.47541
[ 7, 8, 21, 22, 23, 24, 25, 26, 44, 60 ]
16.393443
false
16.666667
61
1
83.606557
4
def reits_realtime_em() -> pd.DataFrame: url = "http://95.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:9 e:97,m:0 t:10 e:97", "fields": "f2,f3,f4,f5,f6,f12,f14,f15,f16,f17,f18", "_": "1630048369992", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename( { "index": "序号", "f2": "最新价", "f3": "涨跌幅", "f4": "涨跌额", "f5": "成交量", "f6": "成交额", "f12": "代码", "f14": "名称", "f15": "最高价", "f16": "最低价", "f17": "开盘价", "f18": "昨收", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "成交量", "成交额", "开盘价", "最高价", "最低价", "昨收", ] ] return temp_df
18,212
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/reits/reits_basic.py
reits_info_jsl
()
return temp_df
集思录-实时数据-REITs-A 股 REITs https://www.jisilu.cn/data/cnreits/#CnReits :return: A股 REITs :rtype: pandas.DataFrame
集思录-实时数据-REITs-A 股 REITs https://www.jisilu.cn/data/cnreits/#CnReits :return: A股 REITs :rtype: pandas.DataFrame
76
137
def reits_info_jsl() -> pd.DataFrame: """ 集思录-实时数据-REITs-A 股 REITs https://www.jisilu.cn/data/cnreits/#CnReits :return: A股 REITs :rtype: pandas.DataFrame """ url = "https://www.jisilu.cn/data/cnreits/list/" params = {"___jsl": "LST___t=1630052485199"} payload = {"rp": "50", "page": "1"} r = requests.get(url, params=params, json=payload) data_json = r.json() temp_df = pd.DataFrame([item["cell"] for item in data_json["rows"]]) temp_df.rename( { "fund_id": "代码", "fund_nm": "简称", "full_nm": "全称", "project_type": "项目类型", "price": "现价", "increase_rt": "涨幅", "volume": "成交额", "nav": "净值", "nav_dt": "净值日期", "discount_rt": "折价率", "maturity_dt": "到期日", "fund_company": "基金公司", "urls": "链接地址", "last_dt": "更新日期", "last_time": "更新时间", "unit_total": "规模", "left_year": "剩余年限", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "代码", "简称", "现价", "涨幅", "成交额", "净值", "净值日期", "折价率", "规模", "到期日", "剩余年限", "全称", "项目类型", "基金公司", ] ] temp_df['现价'] = pd.to_numeric(temp_df['现价']) temp_df['涨幅'] = pd.to_numeric(temp_df['涨幅']) temp_df['成交额'] = pd.to_numeric(temp_df['成交额']) temp_df['净值'] = pd.to_numeric(temp_df['净值']) temp_df['折价率'] = pd.to_numeric(temp_df['折价率']) temp_df['规模'] = pd.to_numeric(temp_df['规模']) temp_df['剩余年限'] = pd.to_numeric(temp_df['剩余年限']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/reits/reits_basic.py#L76-L137
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.290323
[ 7, 8, 9, 10, 11, 12, 13, 36, 54, 55, 56, 57, 58, 59, 60, 61 ]
25.806452
false
16.666667
62
2
74.193548
4
def reits_info_jsl() -> pd.DataFrame: url = "https://www.jisilu.cn/data/cnreits/list/" params = {"___jsl": "LST___t=1630052485199"} payload = {"rp": "50", "page": "1"} r = requests.get(url, params=params, json=payload) data_json = r.json() temp_df = pd.DataFrame([item["cell"] for item in data_json["rows"]]) temp_df.rename( { "fund_id": "代码", "fund_nm": "简称", "full_nm": "全称", "project_type": "项目类型", "price": "现价", "increase_rt": "涨幅", "volume": "成交额", "nav": "净值", "nav_dt": "净值日期", "discount_rt": "折价率", "maturity_dt": "到期日", "fund_company": "基金公司", "urls": "链接地址", "last_dt": "更新日期", "last_time": "更新时间", "unit_total": "规模", "left_year": "剩余年限", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "代码", "简称", "现价", "涨幅", "成交额", "净值", "净值日期", "折价率", "规模", "到期日", "剩余年限", "全称", "项目类型", "基金公司", ] ] temp_df['现价'] = pd.to_numeric(temp_df['现价']) temp_df['涨幅'] = pd.to_numeric(temp_df['涨幅']) temp_df['成交额'] = pd.to_numeric(temp_df['成交额']) temp_df['净值'] = pd.to_numeric(temp_df['净值']) temp_df['折价率'] = pd.to_numeric(temp_df['折价率']) temp_df['规模'] = pd.to_numeric(temp_df['规模']) temp_df['剩余年限'] = pd.to_numeric(temp_df['剩余年限']) return temp_df
18,213
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/currency_investing.py
_currency_name_url
()
return name_code_dict
货币键值对 :return: 货币键值对 :rtype: dict
货币键值对 :return: 货币键值对 :rtype: dict
20
39
def _currency_name_url() -> dict: """ 货币键值对 :return: 货币键值对 :rtype: dict """ url = "https://cn.investing.com/currencies/" res = requests.post(url, headers=short_headers) data_table = pd.read_html(res.text)[0].iloc[:, 1:] # 实时货币行情 data_table.columns = ["中文名称", "英文名称", "最新", "最高", "最低", "涨跌额", "涨跌幅", "时间"] name_code_dict = dict( zip( data_table["中文名称"].tolist(), [ item.lower().replace("/", "-") for item in data_table["英文名称"].tolist() ], ) ) return name_code_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/currency_investing.py#L20-L39
25
[ 0, 1, 2, 3, 4, 5 ]
30
[ 6, 7, 8, 9, 10, 19 ]
30
false
13.392857
20
2
70
3
def _currency_name_url() -> dict: url = "https://cn.investing.com/currencies/" res = requests.post(url, headers=short_headers) data_table = pd.read_html(res.text)[0].iloc[:, 1:] # 实时货币行情 data_table.columns = ["中文名称", "英文名称", "最新", "最高", "最低", "涨跌额", "涨跌幅", "时间"] name_code_dict = dict( zip( data_table["中文名称"].tolist(), [ item.lower().replace("/", "-") for item in data_table["英文名称"].tolist() ], ) ) return name_code_dict
18,214
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/currency_investing.py
currency_hist_area_index_name_code
(symbol: str = "usd-jpy")
return code
指定 symbol 的所有指数和代码 https://cn.investing.com/indices/ :param symbol: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type symbol: str :return: 指定 area 的所有指数和代码 :rtype: dict
指定 symbol 的所有指数和代码 https://cn.investing.com/indices/ :param symbol: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type symbol: str :return: 指定 area 的所有指数和代码 :rtype: dict
42
61
def currency_hist_area_index_name_code(symbol: str = "usd-jpy") -> dict: """ 指定 symbol 的所有指数和代码 https://cn.investing.com/indices/ :param symbol: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type symbol: str :return: 指定 area 的所有指数和代码 :rtype: dict """ scraper = cfscrape.create_scraper(delay=10) pd.set_option("mode.chained_assignment", None) url = f"https://cn.investing.com/currencies/{symbol}-historical-data" r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") data_text = soup.find("script", attrs={"id": "__NEXT_DATA__"}).text data_json = json.loads(data_text) code = json.loads(data_json["props"]["pageProps"]["state"])["dataStore"][ "pageInfoStore" ]["identifiers"]["instrument_id"] return code
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/currency_investing.py#L42-L61
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
45
[ 9, 10, 11, 12, 13, 14, 15, 16, 19 ]
45
false
13.392857
20
1
55
6
def currency_hist_area_index_name_code(symbol: str = "usd-jpy") -> dict: scraper = cfscrape.create_scraper(delay=10) pd.set_option("mode.chained_assignment", None) url = f"https://cn.investing.com/currencies/{symbol}-historical-data" r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") data_text = soup.find("script", attrs={"id": "__NEXT_DATA__"}).text data_json = json.loads(data_text) code = json.loads(data_json["props"]["pageProps"]["state"])["dataStore"][ "pageInfoStore" ]["identifiers"]["instrument_id"] return code
18,215
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/currency_investing.py
currency_hist
( symbol: str = "usd-jpy", period: str = "每日", start_date: str = "20030101", end_date: str = "20220808", )
return df_data
外汇历史数据, 注意获取数据区间的长短, 输入任意货币对, 具体能否获取, 通过 currency_name_code_dict 查询 :param symbol: 货币对 :type symbol: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: 日期 :type start_date: str :param end_date: 日期 :type end_date: str :return: 货币对历史数据 :rtype: pandas.DataFrame
外汇历史数据, 注意获取数据区间的长短, 输入任意货币对, 具体能否获取, 通过 currency_name_code_dict 查询 :param symbol: 货币对 :type symbol: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: 日期 :type start_date: str :param end_date: 日期 :type end_date: str :return: 货币对历史数据 :rtype: pandas.DataFrame
64
142
def currency_hist( symbol: str = "usd-jpy", period: str = "每日", start_date: str = "20030101", end_date: str = "20220808", ) -> pd.DataFrame: """ 外汇历史数据, 注意获取数据区间的长短, 输入任意货币对, 具体能否获取, 通过 currency_name_code_dict 查询 :param symbol: 货币对 :type symbol: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: 日期 :type start_date: str :param end_date: 日期 :type end_date: str :return: 货币对历史数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) code = currency_hist_area_index_name_code(symbol) url = f"https://api.investing.com/api/financialdata/historical/{code}" period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} params = { "start-date": start_date, "end-date": end_date, "time-frame": period_map[period], "add-missing-rows": "false", } headers = { "accept": "application/json, text/plain, */*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "domain-id": "cn", "origin": "https://cn.investing.com", "pragma": "no-cache", "referer": "https://cn.investing.com/", "sec-ch-ua": '"Google Chrome";v="105", "Not)A;Brand";v="8", "Chromium";v="105"', "sec-ch-ua-mobile": '"?0"', "sec-ch-ua-platform": '"Windows"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() df_data = pd.DataFrame(data_json["data"]) df_data.columns = [ "-", "-", "-", "日期", "-", "-", "-", "-", "-", "交易量", "-", "收盘", "开盘", "高", "低", "涨跌幅", ] df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]] df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date df_data["收盘"] = pd.to_numeric(df_data["收盘"]) df_data["开盘"] = pd.to_numeric(df_data["开盘"]) df_data["高"] = pd.to_numeric(df_data["高"]) df_data["低"] = pd.to_numeric(df_data["低"]) df_data["交易量"] = pd.to_numeric(df_data["交易量"]) df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"]) df_data.sort_values("日期", inplace=True) df_data.reset_index(inplace=True, drop=True) return df_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/currency_investing.py#L64-L142
25
[ 0 ]
1.265823
[ 19, 20, 21, 22, 23, 24, 30, 47, 48, 49, 50, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 ]
27.848101
false
13.392857
79
1
72.151899
11
def currency_hist( symbol: str = "usd-jpy", period: str = "每日", start_date: str = "20030101", end_date: str = "20220808", ) -> pd.DataFrame: start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) code = currency_hist_area_index_name_code(symbol) url = f"https://api.investing.com/api/financialdata/historical/{code}" period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} params = { "start-date": start_date, "end-date": end_date, "time-frame": period_map[period], "add-missing-rows": "false", } headers = { "accept": "application/json, text/plain, */*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "domain-id": "cn", "origin": "https://cn.investing.com", "pragma": "no-cache", "referer": "https://cn.investing.com/", "sec-ch-ua": '"Google Chrome";v="105", "Not)A;Brand";v="8", "Chromium";v="105"', "sec-ch-ua-mobile": '"?0"', "sec-ch-ua-platform": '"Windows"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() df_data = pd.DataFrame(data_json["data"]) df_data.columns = [ "-", "-", "-", "日期", "-", "-", "-", "-", "-", "交易量", "-", "收盘", "开盘", "高", "低", "涨跌幅", ] df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]] df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date df_data["收盘"] = pd.to_numeric(df_data["收盘"]) df_data["开盘"] = pd.to_numeric(df_data["开盘"]) df_data["高"] = pd.to_numeric(df_data["高"]) df_data["低"] = pd.to_numeric(df_data["低"]) df_data["交易量"] = pd.to_numeric(df_data["交易量"]) df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"]) df_data.sort_values("日期", inplace=True) df_data.reset_index(inplace=True, drop=True) return df_data
18,216
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/currency_investing.py
_currency_single
()
return temp_df
英为财情-外汇-单种货币兑换汇率-单种货币列表 :return: 单种货币列表 :rtype: pandas.DataFrame
英为财情-外汇-单种货币兑换汇率-单种货币列表 :return: 单种货币列表 :rtype: pandas.DataFrame
145
164
def _currency_single() -> pd.DataFrame: """ 英为财情-外汇-单种货币兑换汇率-单种货币列表 :return: 单种货币列表 :rtype: pandas.DataFrame """ url = "https://cn.investing.com/currencies/single-currency-crosses" res = requests.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find( "select", attrs={"class": "newInput selectBox"} ).find_all("option") temp_df = pd.DataFrame( [item.get_text().split("-", 1) for item in name_url_option_list] ) temp_df.columns = ["short_name", "name"] temp_df["short_name"] = temp_df["short_name"].str.strip() temp_df["name"] = temp_df["name"].str.strip() temp_df["code"] = [item["value"] for item in name_url_option_list] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/currency_investing.py#L145-L164
25
[ 0, 1, 2, 3, 4, 5 ]
30
[ 6, 7, 8, 9, 12, 15, 16, 17, 18, 19 ]
50
false
13.392857
20
3
50
3
def _currency_single() -> pd.DataFrame: url = "https://cn.investing.com/currencies/single-currency-crosses" res = requests.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find( "select", attrs={"class": "newInput selectBox"} ).find_all("option") temp_df = pd.DataFrame( [item.get_text().split("-", 1) for item in name_url_option_list] ) temp_df.columns = ["short_name", "name"] temp_df["short_name"] = temp_df["short_name"].str.strip() temp_df["name"] = temp_df["name"].str.strip() temp_df["code"] = [item["value"] for item in name_url_option_list] return temp_df
18,217
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/currency_investing.py
currency_name_code
(symbol: str = "usd/jpy")
return temp_df
当前所有可兑换货币对 :param symbol: "usd/jpy" :type symbol: str :return: 中英文货币对 :rtype: pandas.DataFrame name code 0 欧元/美元 eur-usd 1 英镑/美元 gbp-usd 2 美元/日元 usd-jpy 3 美元/瑞士法郎 usd-chf 4 澳大利亚元/美元 aud-usd .. ... ... 268 日元/新加坡元 jpy-sgd 269 科威特第纳尔/日元 kwd-jpy 270 日元/白俄罗斯卢布 jpy-byn 271 日元/乌克兰赫里纳 jpy-uah 272 日元/土耳其里拉 jpy-try
当前所有可兑换货币对 :param symbol: "usd/jpy" :type symbol: str :return: 中英文货币对 :rtype: pandas.DataFrame name code 0 欧元/美元 eur-usd 1 英镑/美元 gbp-usd 2 美元/日元 usd-jpy 3 美元/瑞士法郎 usd-chf 4 澳大利亚元/美元 aud-usd .. ... ... 268 日元/新加坡元 jpy-sgd 269 科威特第纳尔/日元 kwd-jpy 270 日元/白俄罗斯卢布 jpy-byn 271 日元/乌克兰赫里纳 jpy-uah 272 日元/土耳其里拉 jpy-try
167
260
def currency_name_code(symbol: str = "usd/jpy") -> pd.DataFrame: """ 当前所有可兑换货币对 :param symbol: "usd/jpy" :type symbol: str :return: 中英文货币对 :rtype: pandas.DataFrame name code 0 欧元/美元 eur-usd 1 英镑/美元 gbp-usd 2 美元/日元 usd-jpy 3 美元/瑞士法郎 usd-chf 4 澳大利亚元/美元 aud-usd .. ... ... 268 日元/新加坡元 jpy-sgd 269 科威特第纳尔/日元 kwd-jpy 270 日元/白俄罗斯卢布 jpy-byn 271 日元/乌克兰赫里纳 jpy-uah 272 日元/土耳其里拉 jpy-try """ symbol = symbol.upper() currency_df = _currency_single() url = "https://cn.investing.com/currencies/Service/ChangeCurrency" params = { "session_uniq_id": "53bee677662a2336ec07b40738753fc1", "currencies": currency_df[ currency_df["short_name"] == symbol.split("/")[0] ]["code"].values[0], } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "cn.investing.com", "Pragma": "no-cache", "Referer": "https://cn.investing.com/currencies/single-currency-crosses", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, params=params, headers=headers) temp_df = pd.read_html(r.json()["HTML"])[0].iloc[:, 1:] temp_df.rename(columns={"名称.1": "简称"}, inplace=True) temp_df["pids"] = [item[:-1] for item in r.json()["pids"]] name_code_dict_one = dict( zip( temp_df["名称"].tolist(), [ item.lower().replace("/", "-") for item in temp_df["简称"].tolist() ], ) ) params = { "session_uniq_id": "53bee677662a2336ec07b40738753fc1", "currencies": currency_df[ currency_df["short_name"] == symbol.split("/")[1] ]["code"].values[0], } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", # "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "cn.investing.com", "Pragma": "no-cache", "Referer": "https://cn.investing.com/currencies/single-currency-crosses", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, params=params, headers=headers) temp_df = pd.read_html(r.json()["HTML"])[0].iloc[:, 1:] temp_df.rename(columns={"名称.1": "简称"}, inplace=True) temp_df["pids"] = [item[:-1] for item in r.json()["pids"]] name_code_dict_two = dict( zip( temp_df["名称"].tolist(), [ item.lower().replace("/", "-") for item in temp_df["简称"].tolist() ], ) ) name_code_dict_one.update(name_code_dict_two) temp_df = pd.DataFrame.from_dict( name_code_dict_one, orient="index" ).reset_index() temp_df.columns = ["name", "code"] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/currency_investing.py#L167-L260
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
21.276596
[ 20, 21, 22, 23, 29, 42, 43, 44, 45, 46, 55, 61, 75, 76, 77, 78, 79, 88, 89, 92, 93 ]
22.340426
false
13.392857
94
5
77.659574
17
def currency_name_code(symbol: str = "usd/jpy") -> pd.DataFrame: symbol = symbol.upper() currency_df = _currency_single() url = "https://cn.investing.com/currencies/Service/ChangeCurrency" params = { "session_uniq_id": "53bee677662a2336ec07b40738753fc1", "currencies": currency_df[ currency_df["short_name"] == symbol.split("/")[0] ]["code"].values[0], } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "cn.investing.com", "Pragma": "no-cache", "Referer": "https://cn.investing.com/currencies/single-currency-crosses", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, params=params, headers=headers) temp_df = pd.read_html(r.json()["HTML"])[0].iloc[:, 1:] temp_df.rename(columns={"名称.1": "简称"}, inplace=True) temp_df["pids"] = [item[:-1] for item in r.json()["pids"]] name_code_dict_one = dict( zip( temp_df["名称"].tolist(), [ item.lower().replace("/", "-") for item in temp_df["简称"].tolist() ], ) ) params = { "session_uniq_id": "53bee677662a2336ec07b40738753fc1", "currencies": currency_df[ currency_df["short_name"] == symbol.split("/")[1] ]["code"].values[0], } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", # "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "cn.investing.com", "Pragma": "no-cache", "Referer": "https://cn.investing.com/currencies/single-currency-crosses", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, params=params, headers=headers) temp_df = pd.read_html(r.json()["HTML"])[0].iloc[:, 1:] temp_df.rename(columns={"名称.1": "简称"}, inplace=True) temp_df["pids"] = [item[:-1] for item in r.json()["pids"]] name_code_dict_two = dict( zip( temp_df["名称"].tolist(), [ item.lower().replace("/", "-") for item in temp_df["简称"].tolist() ], ) ) name_code_dict_one.update(name_code_dict_two) temp_df = pd.DataFrame.from_dict( name_code_dict_one, orient="index" ).reset_index() temp_df.columns = ["name", "code"] return temp_df
18,218
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/currency_investing.py
currency_pair_map
(symbol: str = "美元") ->
return temp_df
指定货币的所有可获取货币对的数据 https://cn.investing.com/currencies/cny-jmd :param symbol: 指定货币 :type symbol: str :return: 指定货币的所有可获取货币对的数据 :rtype: pandas.DataFrame
指定货币的所有可获取货币对的数据 https://cn.investing.com/currencies/cny-jmd :param symbol: 指定货币 :type symbol: str :return: 指定货币的所有可获取货币对的数据 :rtype: pandas.DataFrame
263
326
def currency_pair_map(symbol: str = "美元") -> pd.DataFrame: """ 指定货币的所有可获取货币对的数据 https://cn.investing.com/currencies/cny-jmd :param symbol: 指定货币 :type symbol: str :return: 指定货币的所有可获取货币对的数据 :rtype: pandas.DataFrame """ region_code = [] region_name = [] def has_data_sml_id_but_no_id(tag): return tag.has_attr("data-sml-id") and not tag.has_attr("title") for region_id in tqdm(["4", "1", "8", "7", "6"], leave=False): url = "https://cn.investing.com/currencies/Service/region" params = {"region_ID": region_id, "currency_ID": "false"} headers = { "Accept": "application/json, text/javascript, */*; q=0.01", # "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "cn.investing.com", "Pragma": "no-cache", "Referer": "https://cn.investing.com/currencies/single-currency-crosses", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, params=params, headers=headers) soup = BeautifulSoup(r.text, "lxml") region_code.extend( [ item["continentid"] + "-" + region_id for item in soup.find_all(has_data_sml_id_but_no_id) ] ) region_name.extend( [ item.find("i").text for item in soup.find_all(has_data_sml_id_but_no_id) ] ) name_id_map = dict(zip(region_name, region_code)) url = "https://cn.investing.com/currencies/Service/currency" params = { "region_ID": name_id_map[symbol].split("-")[1], "currency_ID": name_id_map[symbol].split("-")[0], } r = requests.get(url, params=params, headers=headers) soup = BeautifulSoup(r.text, "lxml") temp_code = [ item["href"].split("/")[-1] for item in soup.find_all("a") ] # need temp_name = [ item["title"].replace(" ", "-") for item in soup.find_all("a") ] temp_df = pd.DataFrame([temp_name, temp_code], index=["name", "code"]).T return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/currency_investing.py#L263-L326
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.0625
[ 9, 10, 12, 13, 15, 16, 17, 18, 32, 33, 34, 40, 47, 48, 49, 53, 54, 56, 59, 62, 63 ]
32.8125
false
13.392857
64
8
67.1875
6
def currency_pair_map(symbol: str = "美元") -> pd.DataFrame: region_code = [] region_name = [] def has_data_sml_id_but_no_id(tag): return tag.has_attr("data-sml-id") and not tag.has_attr("title") for region_id in tqdm(["4", "1", "8", "7", "6"], leave=False): url = "https://cn.investing.com/currencies/Service/region" params = {"region_ID": region_id, "currency_ID": "false"} headers = { "Accept": "application/json, text/javascript, */*; q=0.01", # "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "cn.investing.com", "Pragma": "no-cache", "Referer": "https://cn.investing.com/currencies/single-currency-crosses", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, params=params, headers=headers) soup = BeautifulSoup(r.text, "lxml") region_code.extend( [ item["continentid"] + "-" + region_id for item in soup.find_all(has_data_sml_id_but_no_id) ] ) region_name.extend( [ item.find("i").text for item in soup.find_all(has_data_sml_id_but_no_id) ] ) name_id_map = dict(zip(region_name, region_code)) url = "https://cn.investing.com/currencies/Service/currency" params = { "region_ID": name_id_map[symbol].split("-")[1], "currency_ID": name_id_map[symbol].split("-")[0], } r = requests.get(url, params=params, headers=headers) soup = BeautifulSoup(r.text, "lxml") temp_code = [ item["href"].split("/")[-1] for item in soup.find_all("a") ] # need temp_name = [ item["title"].replace(" ", "-") for item in soup.find_all("a") ] temp_df = pd.DataFrame([temp_name, temp_code], index=["name", "code"]).T return temp_df
18,219
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/fx_quote.py
fx_spot_quote
()
return temp_df
中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-外汇市场行情-人民币外汇即期报价 http://www.chinamoney.com.cn/chinese/mkdatapfx/ :return: 人民币外汇即期报价 :rtype: pandas.DataFrame
中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-外汇市场行情-人民币外汇即期报价 http://www.chinamoney.com.cn/chinese/mkdatapfx/ :return: 人民币外汇即期报价 :rtype: pandas.DataFrame
23
44
def fx_spot_quote() -> pd.DataFrame: """ 中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-外汇市场行情-人民币外汇即期报价 http://www.chinamoney.com.cn/chinese/mkdatapfx/ :return: 人民币外汇即期报价 :rtype: pandas.DataFrame """ payload = {"t": str(int(round(time.time() * 1000)))} res = requests.post(FX_SPOT_URL, data=payload, headers=SHORT_HEADERS) temp_df = pd.DataFrame(res.json()["records"]) temp_df = temp_df[["ccyPair", "bidPrc", "askPrc", "midprice", "time"]] temp_df.columns = [ "货币对", "买报价", "卖报价", "-", "-", ] temp_df = temp_df[["货币对", "买报价", "卖报价"]] temp_df["买报价"] = pd.to_numeric(temp_df["买报价"], errors="coerce") temp_df["卖报价"] = pd.to_numeric(temp_df["卖报价"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/fx_quote.py#L23-L44
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 18, 19, 20, 21 ]
40.909091
false
23.076923
22
1
59.090909
4
def fx_spot_quote() -> pd.DataFrame: payload = {"t": str(int(round(time.time() * 1000)))} res = requests.post(FX_SPOT_URL, data=payload, headers=SHORT_HEADERS) temp_df = pd.DataFrame(res.json()["records"]) temp_df = temp_df[["ccyPair", "bidPrc", "askPrc", "midprice", "time"]] temp_df.columns = [ "货币对", "买报价", "卖报价", "-", "-", ] temp_df = temp_df[["货币对", "买报价", "卖报价"]] temp_df["买报价"] = pd.to_numeric(temp_df["买报价"], errors="coerce") temp_df["卖报价"] = pd.to_numeric(temp_df["卖报价"], errors="coerce") return temp_df
18,220
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/fx_quote.py
fx_swap_quote
()
return temp_df
中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-债券市场行情-人民币外汇远掉报价 https://www.chinamoney.com.cn/chinese/index.html :return: 人民币外汇远掉报价 :return: pandas.DataFrame
中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-债券市场行情-人民币外汇远掉报价 https://www.chinamoney.com.cn/chinese/index.html :return: 人民币外汇远掉报价 :return: pandas.DataFrame
47
77
def fx_swap_quote() -> pd.DataFrame: """ 中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-债券市场行情-人民币外汇远掉报价 https://www.chinamoney.com.cn/chinese/index.html :return: 人民币外汇远掉报价 :return: pandas.DataFrame """ payload = {"t": str(int(round(time.time() * 1000)))} res = requests.post(FX_SWAP_URL, data=payload, headers=SHORT_HEADERS) temp_df = pd.DataFrame(res.json()["records"]) temp_df = temp_df[ [ "ccyPair", "label_1W", "label_1M", "label_3M", "label_6M", "label_9M", "label_1Y", ] ] temp_df.columns = [ "货币对", "1周", "1月", "3月", "6月", "9月", "1年", ] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/fx_quote.py#L47-L77
25
[ 0, 1, 2, 3, 4, 5, 6 ]
22.580645
[ 7, 8, 9, 10, 21, 30 ]
19.354839
false
23.076923
31
1
80.645161
4
def fx_swap_quote() -> pd.DataFrame: payload = {"t": str(int(round(time.time() * 1000)))} res = requests.post(FX_SWAP_URL, data=payload, headers=SHORT_HEADERS) temp_df = pd.DataFrame(res.json()["records"]) temp_df = temp_df[ [ "ccyPair", "label_1W", "label_1M", "label_3M", "label_6M", "label_9M", "label_1Y", ] ] temp_df.columns = [ "货币对", "1周", "1月", "3月", "6月", "9月", "1年", ] return temp_df
18,221
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/fx_quote.py
fx_pair_quote
()
return temp_df
中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-债券市场行情-外币对即期报价 http://www.chinamoney.com.cn/chinese/mkdatapfx/ :return: 外币对即期报价 :return: pandas.DataFrame
中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-债券市场行情-外币对即期报价 http://www.chinamoney.com.cn/chinese/mkdatapfx/ :return: 外币对即期报价 :return: pandas.DataFrame
80
101
def fx_pair_quote() -> pd.DataFrame: """ 中国外汇交易中心暨全国银行间同业拆借中心-市场数据-市场行情-债券市场行情-外币对即期报价 http://www.chinamoney.com.cn/chinese/mkdatapfx/ :return: 外币对即期报价 :return: pandas.DataFrame """ payload = {"t": str(int(round(time.time() * 1000)))} res = requests.post(FX_PAIR_URL, data=payload, headers=SHORT_HEADERS) temp_df = pd.DataFrame(res.json()["records"]) temp_df = temp_df[["ccyPair", "bidPrc", "askPrc", "midprice", "time"]] temp_df.columns = [ "货币对", "买报价", "卖报价", "-", "-", ] temp_df = temp_df[["货币对", "买报价", "卖报价"]] temp_df["买报价"] = pd.to_numeric(temp_df["买报价"], errors="coerce") temp_df["卖报价"] = pd.to_numeric(temp_df["卖报价"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/fx_quote.py#L80-L101
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 18, 19, 20, 21 ]
40.909091
false
23.076923
22
1
59.090909
4
def fx_pair_quote() -> pd.DataFrame: payload = {"t": str(int(round(time.time() * 1000)))} res = requests.post(FX_PAIR_URL, data=payload, headers=SHORT_HEADERS) temp_df = pd.DataFrame(res.json()["records"]) temp_df = temp_df[["ccyPair", "bidPrc", "askPrc", "midprice", "time"]] temp_df.columns = [ "货币对", "买报价", "卖报价", "-", "-", ] temp_df = temp_df[["货币对", "买报价", "卖报价"]] temp_df["买报价"] = pd.to_numeric(temp_df["买报价"], errors="coerce") temp_df["卖报价"] = pd.to_numeric(temp_df["卖报价"], errors="coerce") return temp_df
18,222
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/fx/fx_quote_baidu.py
fx_quote_baidu
(symbol: str = "人民币") -> pd
return out_df
百度股市通-外汇-行情榜单 https://gushitong.baidu.com/top/foreign-common-%E5%B8%B8%E7%94%A8 :param symbol: choice of {"人民币", 美元"} :type symbol: str :return: 外汇行情数据 :rtype: pandas.DataFrame
百度股市通-外汇-行情榜单 https://gushitong.baidu.com/top/foreign-common-%E5%B8%B8%E7%94%A8 :param symbol: choice of {"人民币", 美元"} :type symbol: str :return: 外汇行情数据 :rtype: pandas.DataFrame
12
59
def fx_quote_baidu(symbol: str = "人民币") -> pd.DataFrame: """ 百度股市通-外汇-行情榜单 https://gushitong.baidu.com/top/foreign-common-%E5%B8%B8%E7%94%A8 :param symbol: choice of {"人民币", 美元"} :type symbol: str :return: 外汇行情数据 :rtype: pandas.DataFrame """ symbol_map = { "人民币": "rmb", "美元": "dollar", } url = "https://finance.pae.baidu.com/api/getforeignrank" num = 0 params = { 'pn': num, 'rn': '20', 'type': symbol_map[symbol], 'finClientType': 'pc' } out_df = pd.DataFrame() while True: try: r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["Result"] ) temp_list = [] for item in temp_df["list"]: temp_list.append(list(pd.DataFrame(item).T.iloc[1, :].values)) value_df = pd.DataFrame(temp_list, columns=pd.DataFrame(item).T.iloc[0, :].values) big_df = pd.concat([temp_df, value_df], axis=1) del big_df['market'] del big_df['list'] big_df.columns = [ '代码', '名称', '最新价', '涨跌额', '涨跌幅' ] big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['涨跌额'] = pd.to_numeric(big_df['涨跌额']) big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'].str.strip("%")) / 100 out_df = pd.concat([out_df, big_df], ignore_index=True) num = num + 20 params.update({"pn": num}) except: break return out_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/fx/fx_quote_baidu.py#L12-L59
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
18.75
[ 9, 13, 14, 15, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47 ]
56.25
false
14.705882
48
4
43.75
6
def fx_quote_baidu(symbol: str = "人民币") -> pd.DataFrame: symbol_map = { "人民币": "rmb", "美元": "dollar", } url = "https://finance.pae.baidu.com/api/getforeignrank" num = 0 params = { 'pn': num, 'rn': '20', 'type': symbol_map[symbol], 'finClientType': 'pc' } out_df = pd.DataFrame() while True: try: r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( data_json["Result"] ) temp_list = [] for item in temp_df["list"]: temp_list.append(list(pd.DataFrame(item).T.iloc[1, :].values)) value_df = pd.DataFrame(temp_list, columns=pd.DataFrame(item).T.iloc[0, :].values) big_df = pd.concat([temp_df, value_df], axis=1) del big_df['market'] del big_df['list'] big_df.columns = [ '代码', '名称', '最新价', '涨跌额', '涨跌幅' ] big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['涨跌额'] = pd.to_numeric(big_df['涨跌额']) big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'].str.strip("%")) / 100 out_df = pd.concat([out_df, big_df], ignore_index=True) num = num + 20 params.update({"pn": num}) except: break return out_df
18,223
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/sina_futures_index.py
zh_subscribe_exchange_symbol
(symbol: str = "dce")
订阅指定交易所品种的代码 https://finance.sina.com.cn/futuremarket/index.shtml :param symbol: choice of {"dce", "czce", "shfe", "cffex"} :type symbol: str :return: 订阅指定交易所品种的代码 :rtype: pandas.DataFrame
订阅指定交易所品种的代码 https://finance.sina.com.cn/futuremarket/index.shtml :param symbol: choice of {"dce", "czce", "shfe", "cffex"} :type symbol: str :return: 订阅指定交易所品种的代码 :rtype: pandas.DataFrame
19
44
def zh_subscribe_exchange_symbol(symbol: str = "dce") -> pd.DataFrame: """ 订阅指定交易所品种的代码 https://finance.sina.com.cn/futuremarket/index.shtml :param symbol: choice of {"dce", "czce", "shfe", "cffex"} :type symbol: str :return: 订阅指定交易所品种的代码 :rtype: pandas.DataFrame """ r = requests.get(zh_subscribe_exchange_symbol_url) r.encoding = "gb2312" data_json = demjson.decode( r.text[r.text.find("{") : r.text.find("};") + 1] ) if symbol == "czce": data_json["czce"].remove("郑州商品交易所") return pd.DataFrame(data_json["czce"]) if symbol == "dce": data_json["dce"].remove("大连商品交易所") return pd.DataFrame(data_json["dce"]) if symbol == "shfe": data_json["shfe"].remove("上海期货交易所") return pd.DataFrame(data_json["shfe"]) if symbol == "cffex": data_json["cffex"].remove("中国金融期货交易所") return pd.DataFrame(data_json["cffex"])
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/sina_futures_index.py#L19-L44
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
34.615385
[ 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 ]
57.692308
false
14.285714
26
5
42.307692
6
def zh_subscribe_exchange_symbol(symbol: str = "dce") -> pd.DataFrame: r = requests.get(zh_subscribe_exchange_symbol_url) r.encoding = "gb2312" data_json = demjson.decode( r.text[r.text.find("{") : r.text.find("};") + 1] ) if symbol == "czce": data_json["czce"].remove("郑州商品交易所") return pd.DataFrame(data_json["czce"]) if symbol == "dce": data_json["dce"].remove("大连商品交易所") return pd.DataFrame(data_json["dce"]) if symbol == "shfe": data_json["shfe"].remove("上海期货交易所") return pd.DataFrame(data_json["shfe"]) if symbol == "cffex": data_json["cffex"].remove("中国金融期货交易所") return pd.DataFrame(data_json["cffex"])
18,224
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/sina_futures_index.py
match_main_contract
(symbol: str = "shfe")
return temp_df
指定交易所的所有可以提供数据的合约 https://finance.sina.com.cn/futuremarket/index.shtml :param symbol: choice of {"dce", "czce", "shfe", "cffex"} :type symbol: str :return: 指定交易所的所有可以提供数据的合约 :rtype: pandas.DataFrame
指定交易所的所有可以提供数据的合约 https://finance.sina.com.cn/futuremarket/index.shtml :param symbol: choice of {"dce", "czce", "shfe", "cffex"} :type symbol: str :return: 指定交易所的所有可以提供数据的合约 :rtype: pandas.DataFrame
47
81
def match_main_contract(symbol: str = "shfe") -> pd.DataFrame: """ 指定交易所的所有可以提供数据的合约 https://finance.sina.com.cn/futuremarket/index.shtml :param symbol: choice of {"dce", "czce", "shfe", "cffex"} :type symbol: str :return: 指定交易所的所有可以提供数据的合约 :rtype: pandas.DataFrame """ subscribe_list = [] exchange_symbol_list = ( zh_subscribe_exchange_symbol(symbol).iloc[:, 1].tolist() ) for item in exchange_symbol_list: zh_match_main_contract_payload.update({"node": item}) res = requests.get( zh_match_main_contract_url, params=zh_match_main_contract_payload ) data_json = demjson.decode(res.text) data_df = pd.DataFrame(data_json) try: main_contract = data_df[ data_df["name"].str.contains("连续") & data_df["symbol"] .str.extract(r"([\w])(\d)") .iloc[:, 1] .str.contains("0") ].iloc[0, :3] subscribe_list.append(main_contract) except: # print(item, "无主力连续合约") continue # print("主力连续合约获取成功") temp_df = pd.DataFrame(subscribe_list) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/sina_futures_index.py#L47-L81
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
25.714286
[ 9, 10, 13, 14, 15, 18, 19, 20, 21, 28, 29, 31, 33, 34 ]
40
false
14.285714
35
3
60
6
def match_main_contract(symbol: str = "shfe") -> pd.DataFrame: subscribe_list = [] exchange_symbol_list = ( zh_subscribe_exchange_symbol(symbol).iloc[:, 1].tolist() ) for item in exchange_symbol_list: zh_match_main_contract_payload.update({"node": item}) res = requests.get( zh_match_main_contract_url, params=zh_match_main_contract_payload ) data_json = demjson.decode(res.text) data_df = pd.DataFrame(data_json) try: main_contract = data_df[ data_df["name"].str.contains("连续") & data_df["symbol"] .str.extract(r"([\w])(\d)") .iloc[:, 1] .str.contains("0") ].iloc[0, :3] subscribe_list.append(main_contract) except: # print(item, "无主力连续合约") continue # print("主力连续合约获取成功") temp_df = pd.DataFrame(subscribe_list) return temp_df
18,225
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/sina_futures_index.py
futures_display_main_sina
()
return temp_df
新浪主力连续合约品种一览表 https://finance.sina.com.cn/futuremarket/index.shtml :return: 新浪主力连续合约品种一览表 :rtype: pandas.DataFrame
新浪主力连续合约品种一览表 https://finance.sina.com.cn/futuremarket/index.shtml :return: 新浪主力连续合约品种一览表 :rtype: pandas.DataFrame
84
95
def futures_display_main_sina() -> pd.DataFrame: """ 新浪主力连续合约品种一览表 https://finance.sina.com.cn/futuremarket/index.shtml :return: 新浪主力连续合约品种一览表 :rtype: pandas.DataFrame """ temp_df = pd.DataFrame() for item in ["dce", "czce", "shfe", "cffex"]: temp_df = pd.concat([temp_df, match_main_contract(symbol=item)]) temp_df.reset_index(inplace=True, drop=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/sina_futures_index.py#L84-L95
25
[ 0, 1, 2, 3, 4, 5, 6 ]
58.333333
[ 7, 8, 9, 10, 11 ]
41.666667
false
14.285714
12
2
58.333333
4
def futures_display_main_sina() -> pd.DataFrame: temp_df = pd.DataFrame() for item in ["dce", "czce", "shfe", "cffex"]: temp_df = pd.concat([temp_df, match_main_contract(symbol=item)]) temp_df.reset_index(inplace=True, drop=True) return temp_df
18,226
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/sina_futures_index.py
futures_main_sina
( symbol: str = "V0", start_date: str = "19900101", end_date: str = "22220101", )
return temp_df
新浪财经-期货-主力连续日数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 通过 ak.futures_display_main_sina() 函数获取 symbol :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 主力连续日数据 :rtype: pandas.DataFrame
新浪财经-期货-主力连续日数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 通过 ak.futures_display_main_sina() 函数获取 symbol :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 主力连续日数据 :rtype: pandas.DataFrame
98
136
def futures_main_sina( symbol: str = "V0", start_date: str = "19900101", end_date: str = "22220101", ) -> pd.DataFrame: """ 新浪财经-期货-主力连续日数据 http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1 :param symbol: 通过 ak.futures_display_main_sina() 函数获取 symbol :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 主力连续日数据 :rtype: pandas.DataFrame """ trade_date = "20210817" trade_date = trade_date[:4] + "_" + trade_date[4:6] + "_" + trade_date[6:] url = f"https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_{symbol}{trade_date}=/InnerFuturesNewService.getDailyKLine?symbol={symbol}&_={trade_date}" r = requests.get(url) data_text = r.text data_json = data_text[data_text.find("([") + 1 : data_text.rfind("])") + 1] temp_df = pd.read_json(data_json) temp_df.columns = ["日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "持仓量", "动态结算价"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.set_index(["日期"], inplace=True) temp_df.index = pd.to_datetime(temp_df.index) temp_df = temp_df[start_date:end_date] temp_df.reset_index(inplace=True) temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["收盘价"] = pd.to_numeric(temp_df["收盘价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["持仓量"] = pd.to_numeric(temp_df["持仓量"]) temp_df["动态结算价"] = pd.to_numeric(temp_df["动态结算价"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/sina_futures_index.py#L98-L136
25
[ 0 ]
2.564103
[ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 ]
56.410256
false
14.285714
39
1
43.589744
10
def futures_main_sina( symbol: str = "V0", start_date: str = "19900101", end_date: str = "22220101", ) -> pd.DataFrame: trade_date = "20210817" trade_date = trade_date[:4] + "_" + trade_date[4:6] + "_" + trade_date[6:] url = f"https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_{symbol}{trade_date}=/InnerFuturesNewService.getDailyKLine?symbol={symbol}&_={trade_date}" r = requests.get(url) data_text = r.text data_json = data_text[data_text.find("([") + 1 : data_text.rfind("])") + 1] temp_df = pd.read_json(data_json) temp_df.columns = ["日期", "开盘价", "最高价", "最低价", "收盘价", "成交量", "持仓量", "动态结算价"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.set_index(["日期"], inplace=True) temp_df.index = pd.to_datetime(temp_df.index) temp_df = temp_df[start_date:end_date] temp_df.reset_index(inplace=True) temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["收盘价"] = pd.to_numeric(temp_df["收盘价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["持仓量"] = pd.to_numeric(temp_df["持仓量"]) temp_df["动态结算价"] = pd.to_numeric(temp_df["动态结算价"]) return temp_df
18,227
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_egg.py
futures_egg_price_yearly
()
return temp_df
各年度产区鸡蛋价格走势 https://www.jidan7.com/trend/ :return: 各年度产区鸡蛋价格走势 :rtype: pandas.DataFrame
各年度产区鸡蛋价格走势 https://www.jidan7.com/trend/ :return: 各年度产区鸡蛋价格走势 :rtype: pandas.DataFrame
15
61
def futures_egg_price_yearly() -> pd.DataFrame: """ 各年度产区鸡蛋价格走势 https://www.jidan7.com/trend/ :return: 各年度产区鸡蛋价格走势 :rtype: pandas.DataFrame """ url = "https://www.jidan7.com/trend/" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") js_text = soup.find_all("script")[8].string js_text_processed = js_text.replace("\r\n", "") js_text_processed = re.findall(r"(\[.*?])", js_text_processed) year_list = eval(js_text_processed[1]) date_list = eval(js_text_processed[2]) value_2015_list = eval(js_text_processed[4]) value_2016_list = eval(js_text_processed[6]) value_2017_list = eval(js_text_processed[8]) value_2018_list = eval(js_text_processed[10]) value_2019_list = eval(js_text_processed[12]) value_2020_list = eval(js_text_processed[14]) value_2021_list = eval(js_text_processed[16]) value_2022_list = eval(js_text_processed[18]) temp_df = pd.DataFrame( [ date_list, value_2015_list, value_2016_list, value_2017_list, value_2018_list, value_2019_list, value_2020_list, value_2021_list, value_2022_list, ] ).T temp_df.columns = ["日期"] + year_list temp_df = temp_df[:-1] temp_df['2015年'] = pd.to_numeric(temp_df['2015年']) temp_df['2016年'] = pd.to_numeric(temp_df['2016年']) temp_df['2017年'] = pd.to_numeric(temp_df['2017年']) temp_df['2018年'] = pd.to_numeric(temp_df['2018年']) temp_df['2019年'] = pd.to_numeric(temp_df['2019年']) temp_df['2020年'] = pd.to_numeric(temp_df['2020年']) temp_df['2021年'] = pd.to_numeric(temp_df['2021年']) temp_df['2022年'] = pd.to_numeric(temp_df['2022年']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_egg.py#L15-L61
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.893617
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 ]
59.574468
false
11.111111
47
1
40.425532
4
def futures_egg_price_yearly() -> pd.DataFrame: url = "https://www.jidan7.com/trend/" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") js_text = soup.find_all("script")[8].string js_text_processed = js_text.replace("\r\n", "") js_text_processed = re.findall(r"(\[.*?])", js_text_processed) year_list = eval(js_text_processed[1]) date_list = eval(js_text_processed[2]) value_2015_list = eval(js_text_processed[4]) value_2016_list = eval(js_text_processed[6]) value_2017_list = eval(js_text_processed[8]) value_2018_list = eval(js_text_processed[10]) value_2019_list = eval(js_text_processed[12]) value_2020_list = eval(js_text_processed[14]) value_2021_list = eval(js_text_processed[16]) value_2022_list = eval(js_text_processed[18]) temp_df = pd.DataFrame( [ date_list, value_2015_list, value_2016_list, value_2017_list, value_2018_list, value_2019_list, value_2020_list, value_2021_list, value_2022_list, ] ).T temp_df.columns = ["日期"] + year_list temp_df = temp_df[:-1] temp_df['2015年'] = pd.to_numeric(temp_df['2015年']) temp_df['2016年'] = pd.to_numeric(temp_df['2016年']) temp_df['2017年'] = pd.to_numeric(temp_df['2017年']) temp_df['2018年'] = pd.to_numeric(temp_df['2018年']) temp_df['2019年'] = pd.to_numeric(temp_df['2019年']) temp_df['2020年'] = pd.to_numeric(temp_df['2020年']) temp_df['2021年'] = pd.to_numeric(temp_df['2021年']) temp_df['2022年'] = pd.to_numeric(temp_df['2022年']) return temp_df
18,228
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_egg.py
futures_egg_price
()
return temp_df
2015-2021年鸡蛋价格走势 https://www.jidan7.com/trend/ :return: 2015-2021年鸡蛋价格走势 :rtype: pandas.DataFrame
2015-2021年鸡蛋价格走势 https://www.jidan7.com/trend/ :return: 2015-2021年鸡蛋价格走势 :rtype: pandas.DataFrame
64
92
def futures_egg_price() -> pd.DataFrame: """ 2015-2021年鸡蛋价格走势 https://www.jidan7.com/trend/ :return: 2015-2021年鸡蛋价格走势 :rtype: pandas.DataFrame """ url = "https://www.jidan7.com/trend/" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") js_text = soup.find_all("script")[9].string js_text_processed = js_text.replace("\r\n", "") re.findall(r"data: (.*)", js_text_processed) js_text_processed = re.findall(r"(\[.*?])", js_text_processed) date_list = eval(js_text_processed[2]) value_2015_list = eval(re.findall(r"data: (\[.*?])", js_text_processed[3])[0]) temp_df = pd.DataFrame( [ date_list, value_2015_list, ] ).T temp_df.dropna(how="any", inplace=True) temp_df.columns = [ "date", "price", ] temp_df['price'] = pd.to_numeric(temp_df['price']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_egg.py#L64-L92
25
[ 0, 1, 2, 3, 4, 5, 6 ]
24.137931
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 28 ]
48.275862
false
11.111111
29
1
51.724138
4
def futures_egg_price() -> pd.DataFrame: url = "https://www.jidan7.com/trend/" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") js_text = soup.find_all("script")[9].string js_text_processed = js_text.replace("\r\n", "") re.findall(r"data: (.*)", js_text_processed) js_text_processed = re.findall(r"(\[.*?])", js_text_processed) date_list = eval(js_text_processed[2]) value_2015_list = eval(re.findall(r"data: (\[.*?])", js_text_processed[3])[0]) temp_df = pd.DataFrame( [ date_list, value_2015_list, ] ).T temp_df.dropna(how="any", inplace=True) temp_df.columns = [ "date", "price", ] temp_df['price'] = pd.to_numeric(temp_df['price']) return temp_df
18,229
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_egg.py
futures_egg_price_area
()
return temp_df
各主产区鸡蛋均价 https://www.jidan7.com/trend/ :return: 各主产区鸡蛋均价 :rtype: pandas.DataFrame
各主产区鸡蛋均价 https://www.jidan7.com/trend/ :return: 各主产区鸡蛋均价 :rtype: pandas.DataFrame
95
135
def futures_egg_price_area() -> pd.DataFrame: """ 各主产区鸡蛋均价 https://www.jidan7.com/trend/ :return: 各主产区鸡蛋均价 :rtype: pandas.DataFrame """ url = "https://www.jidan7.com/trend/" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") js_text = soup.find_all("script")[10].string js_text_processed = js_text.replace("\r\n", "") js_text_processed = re.findall(r"data: (\[.*?])", js_text_processed) area_list = eval(js_text_processed[0]) date_list = eval(js_text_processed[1]) value_sd_list = eval(js_text_processed[2]) value_hn_list = eval(js_text_processed[3]) value_hb_list = eval(js_text_processed[4]) value_ln_list = eval(js_text_processed[5]) value_js_list = eval(js_text_processed[6]) value_hub_list = eval(js_text_processed[7]) temp_df = pd.DataFrame( [ date_list, value_sd_list, value_hn_list, value_hb_list, value_ln_list, value_js_list, value_hub_list, ] ).T temp_df.dropna(how="any", inplace=True) temp_df.columns = ["日期"] + area_list temp_df['山东均价'] = pd.to_numeric(temp_df['山东均价']) temp_df['河南均价'] = pd.to_numeric(temp_df['河南均价']) temp_df['河北均价'] = pd.to_numeric(temp_df['河北均价']) temp_df['辽宁均价'] = pd.to_numeric(temp_df['辽宁均价']) temp_df['江苏均价'] = pd.to_numeric(temp_df['江苏均价']) temp_df['湖北均价'] = pd.to_numeric(temp_df['湖北均价']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_egg.py#L95-L135
25
[ 0, 1, 2, 3, 4, 5, 6 ]
17.073171
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40 ]
58.536585
false
11.111111
41
1
41.463415
4
def futures_egg_price_area() -> pd.DataFrame: url = "https://www.jidan7.com/trend/" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") js_text = soup.find_all("script")[10].string js_text_processed = js_text.replace("\r\n", "") js_text_processed = re.findall(r"data: (\[.*?])", js_text_processed) area_list = eval(js_text_processed[0]) date_list = eval(js_text_processed[1]) value_sd_list = eval(js_text_processed[2]) value_hn_list = eval(js_text_processed[3]) value_hb_list = eval(js_text_processed[4]) value_ln_list = eval(js_text_processed[5]) value_js_list = eval(js_text_processed[6]) value_hub_list = eval(js_text_processed[7]) temp_df = pd.DataFrame( [ date_list, value_sd_list, value_hn_list, value_hb_list, value_ln_list, value_js_list, value_hub_list, ] ).T temp_df.dropna(how="any", inplace=True) temp_df.columns = ["日期"] + area_list temp_df['山东均价'] = pd.to_numeric(temp_df['山东均价']) temp_df['河南均价'] = pd.to_numeric(temp_df['河南均价']) temp_df['河北均价'] = pd.to_numeric(temp_df['河北均价']) temp_df['辽宁均价'] = pd.to_numeric(temp_df['辽宁均价']) temp_df['江苏均价'] = pd.to_numeric(temp_df['江苏均价']) temp_df['湖北均价'] = pd.to_numeric(temp_df['湖北均价']) return temp_df
18,230
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/sys_spot_futures.py
get_sys_spot_futures_dict
()
return name_url_dict
生意社-商品与期货-现期图: 品种和网址字典 http://www.100ppi.com/sf/792.html :return: dict {'铜': 'http://www.100ppi.com/sf/792.html', '铅': 'http://www.100ppi.com/sf/825.html', '锌': 'http://www.100ppi.com/sf/826.html', '铝': 'http://www.100ppi.com/sf/827.html', '螺纹钢': 'http://www.100ppi.com/sf/927.html', '线材': 'http://www.100ppi.com/sf/740.html', '燃料油': 'http://www.100ppi.com/sf/387.html', '焦炭': 'http://www.100ppi.com/sf/617.html', '天然橡胶': 'http://www.100ppi.com/sf/586.html', '聚氯乙烯': 'http://www.100ppi.com/sf/107.html', '聚乙烯': 'http://www.100ppi.com/sf/435.html', '甲醇': 'http://www.100ppi.com/sf/817.html', '菜籽油': 'http://www.100ppi.com/sf/810.html', '棕榈油': 'http://www.100ppi.com/sf/1084.html', '硬麦': 'http://www.100ppi.com/sf/349.html', '豆一': 'http://www.100ppi.com/sf/1080.html', '豆粕': 'http://www.100ppi.com/sf/312.html', '豆油': 'http://www.100ppi.com/sf/403.html', '玉米': 'http://www.100ppi.com/sf/274.html', '白糖': 'http://www.100ppi.com/sf/564.html', '棉花': 'http://www.100ppi.com/sf/344.html', 'PTA': 'http://www.100ppi.com/sf/356.html', '黄金': 'http://www.100ppi.com/sf/551.html', '白银': 'http://www.100ppi.com/sf/544.html', '玻璃': 'http://www.100ppi.com/sf/959.html', '焦煤': 'http://www.100ppi.com/sf/1121.html', '菜籽粕': 'http://www.100ppi.com/sf/1014.html', '油菜籽': 'http://www.100ppi.com/sf/1087.html', '动力煤': 'http://www.100ppi.com/sf/369.html', '石油沥青': 'http://www.100ppi.com/sf/1022.html', '铁矿石': 'http://www.100ppi.com/sf/961.html', '鸡蛋': 'http://www.100ppi.com/sf/1049.html', '锰硅': 'http://www.100ppi.com/sf/1155.html', '硅铁': 'http://www.100ppi.com/sf/1154.html', '热轧卷板': 'http://www.100ppi.com/sf/195.html', '细木工板': 'http://www.100ppi.com/sf/1158.html', '聚丙烯': 'http://www.100ppi.com/sf/718.html', '锡': 'http://www.100ppi.com/sf/1181.html', '镍': 'http://www.100ppi.com/sf/1182.html', '玉米淀粉': 'http://www.100ppi.com/sf/1209.html'}
生意社-商品与期货-现期图: 品种和网址字典 http://www.100ppi.com/sf/792.html :return: dict {'铜': 'http://www.100ppi.com/sf/792.html', '铅': 'http://www.100ppi.com/sf/825.html', '锌': 'http://www.100ppi.com/sf/826.html', '铝': 'http://www.100ppi.com/sf/827.html', '螺纹钢': 'http://www.100ppi.com/sf/927.html', '线材': 'http://www.100ppi.com/sf/740.html', '燃料油': 'http://www.100ppi.com/sf/387.html', '焦炭': 'http://www.100ppi.com/sf/617.html', '天然橡胶': 'http://www.100ppi.com/sf/586.html', '聚氯乙烯': 'http://www.100ppi.com/sf/107.html', '聚乙烯': 'http://www.100ppi.com/sf/435.html', '甲醇': 'http://www.100ppi.com/sf/817.html', '菜籽油': 'http://www.100ppi.com/sf/810.html', '棕榈油': 'http://www.100ppi.com/sf/1084.html', '硬麦': 'http://www.100ppi.com/sf/349.html', '豆一': 'http://www.100ppi.com/sf/1080.html', '豆粕': 'http://www.100ppi.com/sf/312.html', '豆油': 'http://www.100ppi.com/sf/403.html', '玉米': 'http://www.100ppi.com/sf/274.html', '白糖': 'http://www.100ppi.com/sf/564.html', '棉花': 'http://www.100ppi.com/sf/344.html', 'PTA': 'http://www.100ppi.com/sf/356.html', '黄金': 'http://www.100ppi.com/sf/551.html', '白银': 'http://www.100ppi.com/sf/544.html', '玻璃': 'http://www.100ppi.com/sf/959.html', '焦煤': 'http://www.100ppi.com/sf/1121.html', '菜籽粕': 'http://www.100ppi.com/sf/1014.html', '油菜籽': 'http://www.100ppi.com/sf/1087.html', '动力煤': 'http://www.100ppi.com/sf/369.html', '石油沥青': 'http://www.100ppi.com/sf/1022.html', '铁矿石': 'http://www.100ppi.com/sf/961.html', '鸡蛋': 'http://www.100ppi.com/sf/1049.html', '锰硅': 'http://www.100ppi.com/sf/1155.html', '硅铁': 'http://www.100ppi.com/sf/1154.html', '热轧卷板': 'http://www.100ppi.com/sf/195.html', '细木工板': 'http://www.100ppi.com/sf/1158.html', '聚丙烯': 'http://www.100ppi.com/sf/718.html', '锡': 'http://www.100ppi.com/sf/1181.html', '镍': 'http://www.100ppi.com/sf/1182.html', '玉米淀粉': 'http://www.100ppi.com/sf/1209.html'}
14
26
def get_sys_spot_futures_dict() -> dict: """ 生意社-商品与期货-现期图: 品种和网址字典 http://www.100ppi.com/sf/792.html :return: dict {'铜': 'http://www.100ppi.com/sf/792.html', '铅': 'http://www.100ppi.com/sf/825.html', '锌': 'http://www.100ppi.com/sf/826.html', '铝': 'http://www.100ppi.com/sf/827.html', '螺纹钢': 'http://www.100ppi.com/sf/927.html', '线材': 'http://www.100ppi.com/sf/740.html', '燃料油': 'http://www.100ppi.com/sf/387.html', '焦炭': 'http://www.100ppi.com/sf/617.html', '天然橡胶': 'http://www.100ppi.com/sf/586.html', '聚氯乙烯': 'http://www.100ppi.com/sf/107.html', '聚乙烯': 'http://www.100ppi.com/sf/435.html', '甲醇': 'http://www.100ppi.com/sf/817.html', '菜籽油': 'http://www.100ppi.com/sf/810.html', '棕榈油': 'http://www.100ppi.com/sf/1084.html', '硬麦': 'http://www.100ppi.com/sf/349.html', '豆一': 'http://www.100ppi.com/sf/1080.html', '豆粕': 'http://www.100ppi.com/sf/312.html', '豆油': 'http://www.100ppi.com/sf/403.html', '玉米': 'http://www.100ppi.com/sf/274.html', '白糖': 'http://www.100ppi.com/sf/564.html', '棉花': 'http://www.100ppi.com/sf/344.html', 'PTA': 'http://www.100ppi.com/sf/356.html', '黄金': 'http://www.100ppi.com/sf/551.html', '白银': 'http://www.100ppi.com/sf/544.html', '玻璃': 'http://www.100ppi.com/sf/959.html', '焦煤': 'http://www.100ppi.com/sf/1121.html', '菜籽粕': 'http://www.100ppi.com/sf/1014.html', '油菜籽': 'http://www.100ppi.com/sf/1087.html', '动力煤': 'http://www.100ppi.com/sf/369.html', '石油沥青': 'http://www.100ppi.com/sf/1022.html', '铁矿石': 'http://www.100ppi.com/sf/961.html', '鸡蛋': 'http://www.100ppi.com/sf/1049.html', '锰硅': 'http://www.100ppi.com/sf/1155.html', '硅铁': 'http://www.100ppi.com/sf/1154.html', '热轧卷板': 'http://www.100ppi.com/sf/195.html', '细木工板': 'http://www.100ppi.com/sf/1158.html', '聚丙烯': 'http://www.100ppi.com/sf/718.html', '锡': 'http://www.100ppi.com/sf/1181.html', '镍': 'http://www.100ppi.com/sf/1182.html', '玉米淀粉': 'http://www.100ppi.com/sf/1209.html'} """ url = "http://www.100ppi.com/sf/792.html" res = requests.get(url) soup = BeautifulSoup(res.text, "lxml") temp_item = soup.find("div", attrs={"class": "q8"}).find_all("li") name_url_dict = dict(zip([item.find("a").get_text().strip() for item in temp_item], [item.find("a")["href"] for item in temp_item])) return name_url_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/sys_spot_futures.py#L14-L26
25
[ 0, 1, 2, 3, 4, 5, 6 ]
53.846154
[ 7, 8, 9, 10, 11, 12 ]
46.153846
false
26.923077
13
3
53.846154
4
def get_sys_spot_futures_dict() -> dict: url = "http://www.100ppi.com/sf/792.html" res = requests.get(url) soup = BeautifulSoup(res.text, "lxml") temp_item = soup.find("div", attrs={"class": "q8"}).find_all("li") name_url_dict = dict(zip([item.find("a").get_text().strip() for item in temp_item], [item.find("a")["href"] for item in temp_item])) return name_url_dict
18,231
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/sys_spot_futures.py
get_sys_spot_futures
(symbol: str = "铜") -
return table_df_one, table_df_two, table_df_three
生意社-商品与期货-现期图: 图和表格 :param symbol: str 品种 :return: pd.DataFrame or pic
生意社-商品与期货-现期图: 图和表格 :param symbol: str 品种 :return: pd.DataFrame or pic
29
41
def get_sys_spot_futures(symbol: str = "铜") -> pd.DataFrame: """ 生意社-商品与期货-现期图: 图和表格 :param symbol: str 品种 :return: pd.DataFrame or pic """ name_url_dict = get_sys_spot_futures_dict() url = name_url_dict[symbol] res = requests.get(url) table_df_one = pd.read_html(res.text, header=0, index_col=0)[1].T table_df_two = pd.read_html(res.text, header=0, index_col=0)[2].T table_df_three = pd.read_html(res.text, header=0, index_col=0)[3].T return table_df_one, table_df_two, table_df_three
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/sys_spot_futures.py#L29-L41
25
[ 0, 1, 2, 3, 4, 5 ]
46.153846
[ 6, 7, 8, 9, 10, 11, 12 ]
53.846154
false
26.923077
13
1
46.153846
3
def get_sys_spot_futures(symbol: str = "铜") -> pd.DataFrame: name_url_dict = get_sys_spot_futures_dict() url = name_url_dict[symbol] res = requests.get(url) table_df_one = pd.read_html(res.text, header=0, index_col=0)[1].T table_df_two = pd.read_html(res.text, header=0, index_col=0)[2].T table_df_three = pd.read_html(res.text, header=0, index_col=0)[3].T return table_df_one, table_df_two, table_df_three
18,232
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_index_volatility_nh.py
futures_nh_volatility_index
(symbol: str = "NHCI", period: str = '20')
南华期货-南华指数单品种-波动率-所有历史数据 http://www.nanhua.net/nhzc/varietytrend.html :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :param period: 波动周期 choice of {'5', '20', '60', '120'} :type period: str :return: 波动率-所有历史数据 :rtype: pandas.DataFrame
南华期货-南华指数单品种-波动率-所有历史数据 http://www.nanhua.net/nhzc/varietytrend.html :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :param period: 波动周期 choice of {'5', '20', '60', '120'} :type period: str :return: 波动率-所有历史数据 :rtype: pandas.DataFrame
18
38
def futures_nh_volatility_index(symbol: str = "NHCI", period: str = '20') -> pd.DataFrame: """ 南华期货-南华指数单品种-波动率-所有历史数据 http://www.nanhua.net/nhzc/varietytrend.html :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :param period: 波动周期 choice of {'5', '20', '60', '120'} :type period: str :return: 波动率-所有历史数据 :rtype: pandas.DataFrame """ symbol_df = futures_index_symbol_table_nh() if symbol in symbol_df["code"].tolist(): t = time.time() url = f"http://www.nanhua.net/ianalysis/volatility/{period}/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = pd.to_datetime(temp_df["date"], unit='ms').dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_index_volatility_nh.py#L18-L38
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
52.380952
[ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]
47.619048
false
36.842105
21
2
52.380952
8
def futures_nh_volatility_index(symbol: str = "NHCI", period: str = '20') -> pd.DataFrame: symbol_df = futures_index_symbol_table_nh() if symbol in symbol_df["code"].tolist(): t = time.time() url = f"http://www.nanhua.net/ianalysis/volatility/{period}/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = pd.to_datetime(temp_df["date"], unit='ms').dt.date return temp_df
18,233
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_sina_cot.py
futures_sina_hold_pos
( symbol: str = "成交量", contract: str = "IC2106", date: str = "2021-06-03" )
新浪财经-商品期货-成交持仓 http://vip.stock.finance.sina.com.cn/q/view/vCffex_Positions_cjcc.php?symbol=IC2106&date=2021-06-03 :param symbol: choice of {"成交量", "多单持仓", "空单持仓"} :type symbol: str :param contract: 期货合约 :type contract: str :param date: 查询日期 :type date: str :return: 成交持仓 :rtype: pandas.DataFrame
新浪财经-商品期货-成交持仓 http://vip.stock.finance.sina.com.cn/q/view/vCffex_Positions_cjcc.php?symbol=IC2106&date=2021-06-03 :param symbol: choice of {"成交量", "多单持仓", "空单持仓"} :type symbol: str :param contract: 期货合约 :type contract: str :param date: 查询日期 :type date: str :return: 成交持仓 :rtype: pandas.DataFrame
12
35
def futures_sina_hold_pos( symbol: str = "成交量", contract: str = "IC2106", date: str = "2021-06-03" ) -> pd.DataFrame: """ 新浪财经-商品期货-成交持仓 http://vip.stock.finance.sina.com.cn/q/view/vCffex_Positions_cjcc.php?symbol=IC2106&date=2021-06-03 :param symbol: choice of {"成交量", "多单持仓", "空单持仓"} :type symbol: str :param contract: 期货合约 :type contract: str :param date: 查询日期 :type date: str :return: 成交持仓 :rtype: pandas.DataFrame """ url = "http://vip.stock.finance.sina.com.cn/q/view/vCffex_Positions_cjcc.php" params = {"symbol": contract, "date": date} r = requests.get(url, params=params) if symbol == "成交量": return pd.read_html(r.text)[2] elif symbol == "多单持仓": return pd.read_html(r.text)[3] elif symbol == "空单持仓": return pd.read_html(r.text)[4]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_sina_cot.py#L12-L35
25
[ 0 ]
4.166667
[ 15, 16, 17, 18, 19, 20, 21, 22, 23 ]
37.5
false
31.25
24
4
62.5
10
def futures_sina_hold_pos( symbol: str = "成交量", contract: str = "IC2106", date: str = "2021-06-03" ) -> pd.DataFrame: url = "http://vip.stock.finance.sina.com.cn/q/view/vCffex_Positions_cjcc.php" params = {"symbol": contract, "date": date} r = requests.get(url, params=params) if symbol == "成交量": return pd.read_html(r.text)[2] elif symbol == "多单持仓": return pd.read_html(r.text)[3] elif symbol == "空单持仓": return pd.read_html(r.text)[4]
18,234