nwo
stringlengths
10
28
sha
stringlengths
40
40
path
stringlengths
11
97
identifier
stringlengths
1
64
parameters
stringlengths
2
2.24k
return_statement
stringlengths
0
2.17k
docstring
stringlengths
0
5.45k
docstring_summary
stringlengths
0
3.83k
func_begin
int64
1
13.4k
func_end
int64
2
13.4k
function
stringlengths
28
56.4k
url
stringlengths
106
209
project
int64
1
48
executed_lines
list
executed_lines_pc
float64
0
153
missing_lines
list
missing_lines_pc
float64
0
100
covered
bool
2 classes
filecoverage
float64
2.53
100
function_lines
int64
2
1.46k
mccabe
int64
1
253
coverage
float64
0
100
docstring_lines
int64
0
112
function_nodoc
stringlengths
9
56.4k
id
int64
0
29.8k
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_index_price_nh.py
futures_index_symbol_table_nh
()
return temp_df
南华期货-南华指数所有品种一览表 http://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :return: 南华指数所有品种一览表 :rtype: pandas.DataFrame
南华期货-南华指数所有品种一览表 http://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :return: 南华指数所有品种一览表 :rtype: pandas.DataFrame
16
28
def futures_index_symbol_table_nh() -> pd.DataFrame: """ 南华期货-南华指数所有品种一览表 http://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :return: 南华指数所有品种一览表 :rtype: pandas.DataFrame """ url = "http://www.nanhua.net/ianalysis/plate-variety.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df['firstday'] = pd.to_datetime(temp_df['firstday']).dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_index_price_nh.py#L16-L28
25
[ 0, 1, 2, 3, 4, 5, 6 ]
53.846154
[ 7, 8, 9, 10, 11, 12 ]
46.153846
false
25
13
1
53.846154
4
def futures_index_symbol_table_nh() -> pd.DataFrame: url = "http://www.nanhua.net/ianalysis/plate-variety.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df['firstday'] = pd.to_datetime(temp_df['firstday']).dt.date return temp_df
18,235
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_index_price_nh.py
futures_price_index_nh
(symbol: str = "A")
南华期货-南华指数单品种-价格-所有历史数据 https://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :return: 南华期货-南华指数单品种-价格-所有历史数据 :rtype: pandas.Series
南华期货-南华指数单品种-价格-所有历史数据 https://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :return: 南华期货-南华指数单品种-价格-所有历史数据 :rtype: pandas.Series
31
50
def futures_price_index_nh(symbol: str = "A") -> pd.DataFrame: """ 南华期货-南华指数单品种-价格-所有历史数据 https://www.nanhua.net/ianalysis/varietyindex/price/A.json?t=1574932974280 :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :return: 南华期货-南华指数单品种-价格-所有历史数据 :rtype: pandas.Series """ symbol_df = futures_index_symbol_table_nh() symbol_list = symbol_df["code"].tolist() if symbol in symbol_list: t = time.time() url = f"http://www.nanhua.net/ianalysis/varietyindex/price/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = (pd.to_datetime(temp_df["date"], unit='ms') - pd.Timedelta(hours=-8)).dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_index_price_nh.py#L31-L50
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
45
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]
55
false
25
20
2
45
6
def futures_price_index_nh(symbol: str = "A") -> pd.DataFrame: symbol_df = futures_index_symbol_table_nh() symbol_list = symbol_df["code"].tolist() if symbol in symbol_list: t = time.time() url = f"http://www.nanhua.net/ianalysis/varietyindex/price/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = (pd.to_datetime(temp_df["date"], unit='ms') - pd.Timedelta(hours=-8)).dt.date return temp_df
18,236
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_hog.py
futures_hog_info
(symbol: str = "猪肉批发价") -> pd.Dat
养猪数据中心 https://zhujia.zhuwang.cc/ :param symbol: choice of {"猪肉批发价", "仔猪价格", "生猪期货指数", "二元母猪价格", "生猪产能数据", "饲料原料数据", "中央储备冻猪肉", "白条肉", "育肥猪配合饲料", "肉类价格指数", "猪粮比价", "猪企销售简报-销售量", "猪企销售简报-销售额", "猪企销售简报-销售均价"} :type symbol: str :return: 猪肉信息 :rtype: pandas.DataFrame
养猪数据中心 https://zhujia.zhuwang.cc/ :param symbol: choice of {"猪肉批发价", "仔猪价格", "生猪期货指数", "二元母猪价格", "生猪产能数据", "饲料原料数据", "中央储备冻猪肉", "白条肉", "育肥猪配合饲料", "肉类价格指数", "猪粮比价", "猪企销售简报-销售量", "猪企销售简报-销售额", "猪企销售简报-销售均价"} :type symbol: str :return: 猪肉信息 :rtype: pandas.DataFrame
12
173
def futures_hog_info(symbol: str = "猪肉批发价") -> pd.DataFrame: """ 养猪数据中心 https://zhujia.zhuwang.cc/ :param symbol: choice of {"猪肉批发价", "仔猪价格", "生猪期货指数", "二元母猪价格", "生猪产能数据", "饲料原料数据", "中央储备冻猪肉", "白条肉", "育肥猪配合饲料", "肉类价格指数", "猪粮比价", "猪企销售简报-销售量", "猪企销售简报-销售额", "猪企销售简报-销售均价"} :type symbol: str :return: 猪肉信息 :rtype: pandas.DataFrame """ if symbol == "猪肉批发价": url = "https://zhujia.zhuwang.cc/new_map/zhujiapork/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "item", "value"] del temp_df["item"] return temp_df elif symbol == "仔猪价格": url = "https://zhujia.zhuwang.cc/new_map/zhizhu/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "生猪期货指数": url = "https://zhujia.zhuwang.cc/new_map/shengzhuqihuo/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) need_list = temp_df.iloc[-1, [1, 3, 5, 7, 9, 11, 13, 15]].tolist() temp_df.columns = list("abcdefghijklmnopq") temp_df = temp_df.drop(["b", "d", "f", "h", "j", "l", "n", "p"], axis="columns") temp_df.columns = ["日期"] + need_list return temp_df elif symbol == "二元母猪价格": url = "https://zhujia.zhuwang.cc/new_map/eryuanpig/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "生猪产能数据": url = "https://zhujia.zhuwang.cc/new_map/shengzhuchanneng/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "能繁母猪存栏", "猪肉产量", "生猪存栏", "生猪出栏"] temp_df["能繁母猪存栏"] = pd.to_numeric(temp_df["能繁母猪存栏"], errors="coerce") temp_df["猪肉产量"] = pd.to_numeric(temp_df["猪肉产量"], errors="coerce") temp_df["生猪存栏"] = pd.to_numeric(temp_df["生猪存栏"], errors="coerce") temp_df["生猪出栏"] = pd.to_numeric(temp_df["生猪出栏"], errors="coerce") return temp_df elif symbol == "饲料原料数据": url = "https://zhujia.zhuwang.cc/new_map/pigfeed/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "大豆进口金额", "大豆播种面积", "玉米进口金额", "玉米播种面积"] temp_df["周期"] = temp_df["周期"].astype(int).astype(str) temp_df["大豆进口金额"] = pd.to_numeric(temp_df["大豆进口金额"], errors="coerce") temp_df["大豆播种面积"] = pd.to_numeric(temp_df["大豆播种面积"], errors="coerce") temp_df["玉米进口金额"] = pd.to_numeric(temp_df["玉米进口金额"], errors="coerce") temp_df["玉米播种面积"] = pd.to_numeric(temp_df["玉米播种面积"], errors="coerce") return temp_df elif symbol == "中央储备冻猪肉": url = "https://zhujia.zhuwang.cc/new_map/chubeidongzhurou/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "白条肉": url = "https://zhujia.zhuwang.cc/new_map/baitiaozhurou/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "白条肉平均出厂价格", "环比", "同比"] temp_df["白条肉平均出厂价格"] = pd.to_numeric(temp_df["白条肉平均出厂价格"]) temp_df["环比"] = pd.to_numeric(temp_df["环比"]) temp_df["同比"] = pd.to_numeric(temp_df["同比"]) return temp_df elif symbol == "育肥猪配合饲料": url = "https://zhujia.zhuwang.cc/new_map/yufeipig/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["周期", "发布日期", "_", "本周", "去年同期", "上一周", "_", "_", "_"] temp_df = temp_df[["发布日期", "周期", "本周", "去年同期", "上一周"]] temp_df["去年同期"] = pd.to_numeric(temp_df["去年同期"]) temp_df["上一周"] = pd.to_numeric(temp_df["上一周"]) return temp_df elif symbol == "肉类价格指数": url = "https://zhujia.zhuwang.cc/new_map/meatindex/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "_", "value"] temp_df = temp_df[["date", "value"]] temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "猪粮比价": url = "https://zhujia.zhuwang.cc/new_map/zhuliangbi/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "猪企销售简报-销售量": url = "https://zhujia.zhuwang.cc/new_map/zhuqixiaoshoujianbao/xiaoliang.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "温氏", "正邦", "新希望", "牧原"] temp_df["温氏"] = pd.to_numeric(temp_df["温氏"]) temp_df["正邦"] = pd.to_numeric(temp_df["正邦"]) temp_df["新希望"] = pd.to_numeric(temp_df["新希望"]) temp_df["牧原"] = pd.to_numeric(temp_df["牧原"]) return temp_df elif symbol == "猪企销售简报-销售额": url = "https://zhujia.zhuwang.cc/new_map/zhuqixiaoshoujianbao/xiaoshoue.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "温氏", "正邦", "新希望", "牧原"] temp_df["温氏"] = pd.to_numeric(temp_df["温氏"]) temp_df["正邦"] = pd.to_numeric(temp_df["正邦"]) temp_df["新希望"] = pd.to_numeric(temp_df["新希望"]) temp_df["牧原"] = pd.to_numeric(temp_df["牧原"]) return temp_df elif symbol == "猪企销售简报-销售均价": url = "https://zhujia.zhuwang.cc/new_map/zhuqixiaoshoujianbao/junjia.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "温氏", "正邦", "新希望", "牧原"] temp_df["温氏"] = pd.to_numeric(temp_df["温氏"]) temp_df["正邦"] = pd.to_numeric(temp_df["正邦"]) temp_df["新希望"] = pd.to_numeric(temp_df["新希望"]) temp_df["牧原"] = pd.to_numeric(temp_df["牧原"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_hog.py#L12-L173
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
5.555556
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161 ]
94.444444
false
2.531646
162
15
5.555556
6
def futures_hog_info(symbol: str = "猪肉批发价") -> pd.DataFrame: if symbol == "猪肉批发价": url = "https://zhujia.zhuwang.cc/new_map/zhujiapork/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "item", "value"] del temp_df["item"] return temp_df elif symbol == "仔猪价格": url = "https://zhujia.zhuwang.cc/new_map/zhizhu/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "生猪期货指数": url = "https://zhujia.zhuwang.cc/new_map/shengzhuqihuo/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) need_list = temp_df.iloc[-1, [1, 3, 5, 7, 9, 11, 13, 15]].tolist() temp_df.columns = list("abcdefghijklmnopq") temp_df = temp_df.drop(["b", "d", "f", "h", "j", "l", "n", "p"], axis="columns") temp_df.columns = ["日期"] + need_list return temp_df elif symbol == "二元母猪价格": url = "https://zhujia.zhuwang.cc/new_map/eryuanpig/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "生猪产能数据": url = "https://zhujia.zhuwang.cc/new_map/shengzhuchanneng/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "能繁母猪存栏", "猪肉产量", "生猪存栏", "生猪出栏"] temp_df["能繁母猪存栏"] = pd.to_numeric(temp_df["能繁母猪存栏"], errors="coerce") temp_df["猪肉产量"] = pd.to_numeric(temp_df["猪肉产量"], errors="coerce") temp_df["生猪存栏"] = pd.to_numeric(temp_df["生猪存栏"], errors="coerce") temp_df["生猪出栏"] = pd.to_numeric(temp_df["生猪出栏"], errors="coerce") return temp_df elif symbol == "饲料原料数据": url = "https://zhujia.zhuwang.cc/new_map/pigfeed/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "大豆进口金额", "大豆播种面积", "玉米进口金额", "玉米播种面积"] temp_df["周期"] = temp_df["周期"].astype(int).astype(str) temp_df["大豆进口金额"] = pd.to_numeric(temp_df["大豆进口金额"], errors="coerce") temp_df["大豆播种面积"] = pd.to_numeric(temp_df["大豆播种面积"], errors="coerce") temp_df["玉米进口金额"] = pd.to_numeric(temp_df["玉米进口金额"], errors="coerce") temp_df["玉米播种面积"] = pd.to_numeric(temp_df["玉米播种面积"], errors="coerce") return temp_df elif symbol == "中央储备冻猪肉": url = "https://zhujia.zhuwang.cc/new_map/chubeidongzhurou/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "白条肉": url = "https://zhujia.zhuwang.cc/new_map/baitiaozhurou/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "白条肉平均出厂价格", "环比", "同比"] temp_df["白条肉平均出厂价格"] = pd.to_numeric(temp_df["白条肉平均出厂价格"]) temp_df["环比"] = pd.to_numeric(temp_df["环比"]) temp_df["同比"] = pd.to_numeric(temp_df["同比"]) return temp_df elif symbol == "育肥猪配合饲料": url = "https://zhujia.zhuwang.cc/new_map/yufeipig/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["周期", "发布日期", "_", "本周", "去年同期", "上一周", "_", "_", "_"] temp_df = temp_df[["发布日期", "周期", "本周", "去年同期", "上一周"]] temp_df["去年同期"] = pd.to_numeric(temp_df["去年同期"]) temp_df["上一周"] = pd.to_numeric(temp_df["上一周"]) return temp_df elif symbol == "肉类价格指数": url = "https://zhujia.zhuwang.cc/new_map/meatindex/chart1.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "_", "value"] temp_df = temp_df[["date", "value"]] temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "猪粮比价": url = "https://zhujia.zhuwang.cc/new_map/zhuliangbi/chart2.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"], format="%Y年%m月%d日").dt.date temp_df["value"] = pd.to_numeric(temp_df["value"]) return temp_df elif symbol == "猪企销售简报-销售量": url = "https://zhujia.zhuwang.cc/new_map/zhuqixiaoshoujianbao/xiaoliang.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "温氏", "正邦", "新希望", "牧原"] temp_df["温氏"] = pd.to_numeric(temp_df["温氏"]) temp_df["正邦"] = pd.to_numeric(temp_df["正邦"]) temp_df["新希望"] = pd.to_numeric(temp_df["新希望"]) temp_df["牧原"] = pd.to_numeric(temp_df["牧原"]) return temp_df elif symbol == "猪企销售简报-销售额": url = "https://zhujia.zhuwang.cc/new_map/zhuqixiaoshoujianbao/xiaoshoue.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "温氏", "正邦", "新希望", "牧原"] temp_df["温氏"] = pd.to_numeric(temp_df["温氏"]) temp_df["正邦"] = pd.to_numeric(temp_df["正邦"]) temp_df["新希望"] = pd.to_numeric(temp_df["新希望"]) temp_df["牧原"] = pd.to_numeric(temp_df["牧原"]) return temp_df elif symbol == "猪企销售简报-销售均价": url = "https://zhujia.zhuwang.cc/new_map/zhuqixiaoshoujianbao/junjia.json" params = {"timestamp": "1627567846422"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json).T temp_df.columns = ["周期", "温氏", "正邦", "新希望", "牧原"] temp_df["温氏"] = pd.to_numeric(temp_df["温氏"]) temp_df["正邦"] = pd.to_numeric(temp_df["正邦"]) temp_df["新希望"] = pd.to_numeric(temp_df["新希望"]) temp_df["牧原"] = pd.to_numeric(temp_df["牧原"]) return temp_df
18,237
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_hog.py
futures_hog_rank
(symbol: str = "外三元") -> pd
价格排行榜 https://zhujia.zhuwang.cc/lists.shtml :param symbol: choice of {"外三元", "内三元", "土杂猪", "玉米", "豆粕"} :type symbol: str :return: 价格排行榜 :rtype: pandas.DataFrame
价格排行榜 https://zhujia.zhuwang.cc/lists.shtml :param symbol: choice of {"外三元", "内三元", "土杂猪", "玉米", "豆粕"} :type symbol: str :return: 价格排行榜 :rtype: pandas.DataFrame
176
254
def futures_hog_rank(symbol: str = "外三元") -> pd.DataFrame: """ 价格排行榜 https://zhujia.zhuwang.cc/lists.shtml :param symbol: choice of {"外三元", "内三元", "土杂猪", "玉米", "豆粕"} :type symbol: str :return: 价格排行榜 :rtype: pandas.DataFrame """ if symbol == "外三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "内三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-1.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "土杂猪": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-2.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "玉米": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-3.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "豆粕": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-4.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_hog.py#L176-L254
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
11.392405
[ 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66, 67, 74, 75, 76, 77, 78 ]
50.632911
false
2.531646
79
6
49.367089
6
def futures_hog_rank(symbol: str = "外三元") -> pd.DataFrame: if symbol == "外三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "内三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-1.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "土杂猪": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-2.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "玉米": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-3.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "豆粕": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-4.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df
18,238
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_index_return_nh.py
futures_return_index_nh
(symbol: str = "Y")
南华期货-南华指数单品种-收益率-所有历史数据 http://www.nanhua.net/ianalysis/varietyindex/index/NHCI.json?t=1574932290494 :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :return: 南华指数单品种-收益率-所有历史数据 :rtype: pandas.Series
南华期货-南华指数单品种-收益率-所有历史数据 http://www.nanhua.net/ianalysis/varietyindex/index/NHCI.json?t=1574932290494 :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :return: 南华指数单品种-收益率-所有历史数据 :rtype: pandas.Series
17
37
def futures_return_index_nh(symbol: str = "Y") -> pd.DataFrame: """ 南华期货-南华指数单品种-收益率-所有历史数据 http://www.nanhua.net/ianalysis/varietyindex/index/NHCI.json?t=1574932290494 :param symbol: 通过 ak.futures_index_symbol_table_nh() 获取 :type symbol: str :return: 南华指数单品种-收益率-所有历史数据 :rtype: pandas.Series """ symbol_df = futures_index_symbol_table_nh() symbol_list = symbol_df["code"].tolist() if symbol in symbol_list: t = time.time() url = f"http://www.nanhua.net/ianalysis/varietyindex/index/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = pd.to_datetime(temp_df["date"], unit='ms').dt.date temp_df['value'] = pd.to_numeric(temp_df['value']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_index_return_nh.py#L17-L37
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
42.857143
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]
57.142857
false
33.333333
21
2
42.857143
6
def futures_return_index_nh(symbol: str = "Y") -> pd.DataFrame: symbol_df = futures_index_symbol_table_nh() symbol_list = symbol_df["code"].tolist() if symbol in symbol_list: t = time.time() url = f"http://www.nanhua.net/ianalysis/varietyindex/index/{symbol}.json?t={int(round(t * 1000))}" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = ["date", "value"] temp_df['date'] = pd.to_datetime(temp_df["date"], unit='ms').dt.date temp_df['value'] = pd.to_numeric(temp_df['value']) return temp_df
18,239
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_other_index_nh.py
futures_board_index_nh
(start_date: str = "20220104", end_date: str = "20220413")
return temp_df
南华期货-市场涨跌-板块指数涨跌 http://www.nanhua.net/nhzc/platechange.html :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 板块指数涨跌 :rtype: pandas.DataFrame
南华期货-市场涨跌-板块指数涨跌 http://www.nanhua.net/nhzc/platechange.html :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 板块指数涨跌 :rtype: pandas.DataFrame
17
59
def futures_board_index_nh(start_date: str = "20220104", end_date: str = "20220413") -> pd.DataFrame: """ 南华期货-市场涨跌-板块指数涨跌 http://www.nanhua.net/nhzc/platechange.html :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 板块指数涨跌 :rtype: pandas.DataFrame """ url = f"http://www.nanhua.net/ianalysis/plate/{start_date[:4]}/{start_date[4:6]}/{start_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) start_df = pd.DataFrame(r.json()) start_df.columns = [ 'name', 'code', start_date, ] url = f"http://www.nanhua.net/ianalysis/plate/{end_date[:4]}/{end_date[4:6]}/{end_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) end_df = pd.DataFrame(r.json()) end_df.columns = [ 'name', 'code', 'end_date', ] start_df[end_date] = end_df['end_date'] start_df['gap'] = start_df[end_date] - start_df[start_date] start_df['return'] = start_df['gap']/start_df[start_date] temp_df = start_df temp_df = temp_df[['name', 'return']] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_other_index_nh.py#L17-L59
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
25.581395
[ 11, 12, 15, 16, 17, 23, 24, 27, 28, 29, 35, 36, 37, 39, 40, 42 ]
37.209302
false
13.461538
43
1
62.790698
8
def futures_board_index_nh(start_date: str = "20220104", end_date: str = "20220413") -> pd.DataFrame: url = f"http://www.nanhua.net/ianalysis/plate/{start_date[:4]}/{start_date[4:6]}/{start_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) start_df = pd.DataFrame(r.json()) start_df.columns = [ 'name', 'code', start_date, ] url = f"http://www.nanhua.net/ianalysis/plate/{end_date[:4]}/{end_date[4:6]}/{end_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) end_df = pd.DataFrame(r.json()) end_df.columns = [ 'name', 'code', 'end_date', ] start_df[end_date] = end_df['end_date'] start_df['gap'] = start_df[end_date] - start_df[start_date] start_df['return'] = start_df['gap']/start_df[start_date] temp_df = start_df temp_df = temp_df[['name', 'return']] return temp_df
18,240
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_other_index_nh.py
futures_variety_index_nh
(start_date: str = "20220104", end_date: str = "20220413")
return temp_df
南华期货-市场涨跌-品种指数涨跌 http://www.nanhua.net/nhzc/varietychange.html :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 品种指数涨跌 :rtype: pandas.DataFrame
南华期货-市场涨跌-品种指数涨跌 http://www.nanhua.net/nhzc/varietychange.html :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 品种指数涨跌 :rtype: pandas.DataFrame
62
103
def futures_variety_index_nh(start_date: str = "20220104", end_date: str = "20220413") -> pd.DataFrame: """ 南华期货-市场涨跌-品种指数涨跌 http://www.nanhua.net/nhzc/varietychange.html :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :return: 品种指数涨跌 :rtype: pandas.DataFrame """ url = f"http://www.nanhua.net/ianalysis/variety/{start_date[:4]}/{start_date[4:6]}/{start_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) start_df = pd.DataFrame(r.json()) start_df.columns = [ 'name', 'code', start_date, ] url = f"http://www.nanhua.net/ianalysis/variety/{end_date[:4]}/{end_date[4:6]}/{end_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) end_df = pd.DataFrame(r.json()) end_df.columns = [ 'name', 'code', 'end_date', ] start_df[end_date] = end_df['end_date'] start_df['gap'] = start_df[end_date] - start_df[start_date] start_df['return'] = start_df['gap']/start_df[start_date] temp_df = start_df temp_df = temp_df[['name', 'return']] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_other_index_nh.py#L62-L103
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
26.190476
[ 11, 12, 15, 16, 17, 23, 24, 27, 28, 29, 34, 36, 37, 39, 40, 41 ]
38.095238
false
13.461538
42
1
61.904762
8
def futures_variety_index_nh(start_date: str = "20220104", end_date: str = "20220413") -> pd.DataFrame: url = f"http://www.nanhua.net/ianalysis/variety/{start_date[:4]}/{start_date[4:6]}/{start_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) start_df = pd.DataFrame(r.json()) start_df.columns = [ 'name', 'code', start_date, ] url = f"http://www.nanhua.net/ianalysis/variety/{end_date[:4]}/{end_date[4:6]}/{end_date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) end_df = pd.DataFrame(r.json()) end_df.columns = [ 'name', 'code', 'end_date', ] start_df[end_date] = end_df['end_date'] start_df['gap'] = start_df[end_date] - start_df[start_date] start_df['return'] = start_df['gap']/start_df[start_date] temp_df = start_df temp_df = temp_df[['name', 'return']] return temp_df
18,241
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/futures_derivative/futures_other_index_nh.py
futures_correlation_nh
(date: str = "20220104", period: str = "20")
return temp_df
南华期货-统计监控-相关系数矩阵 http://www.nanhua.net/nhzc/correltable.html :param date: 开始时间 :type date: str :param period: 周期; choice of {"5", "20", "60", "120"} :type period: str :return: 相关系数矩阵 :rtype: pandas.DataFrame
南华期货-统计监控-相关系数矩阵 http://www.nanhua.net/nhzc/correltable.html :param date: 开始时间 :type date: str :param period: 周期; choice of {"5", "20", "60", "120"} :type period: str :return: 相关系数矩阵 :rtype: pandas.DataFrame
106
131
def futures_correlation_nh(date: str = "20220104", period: str = "20") -> pd.DataFrame: """ 南华期货-统计监控-相关系数矩阵 http://www.nanhua.net/nhzc/correltable.html :param date: 开始时间 :type date: str :param period: 周期; choice of {"5", "20", "60", "120"} :type period: str :return: 相关系数矩阵 :rtype: pandas.DataFrame """ url = f"http://www.nanhua.net/ianalysis/correl/{period}/{date[:4]}/{date[4:6]}/{date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) temp_df = pd.DataFrame(r.json()) temp_df.columns = [ '品种代码1', '品种名称1', '品种代码2', '品种名称2', '相关系数', ] temp_df['相关系数'] = pd.to_numeric(temp_df['相关系数']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/futures_derivative/futures_other_index_nh.py#L106-L131
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
42.307692
[ 11, 12, 15, 16, 17, 24, 25 ]
26.923077
false
13.461538
26
1
73.076923
8
def futures_correlation_nh(date: str = "20220104", period: str = "20") -> pd.DataFrame: url = f"http://www.nanhua.net/ianalysis/correl/{period}/{date[:4]}/{date[4:6]}/{date}.json" params = { 't': '1649920913503' } r = requests.get(url, params=params) temp_df = pd.DataFrame(r.json()) temp_df.columns = [ '品种代码1', '品种名称1', '品种代码2', '品种名称2', '相关系数', ] temp_df['相关系数'] = pd.to_numeric(temp_df['相关系数']) return temp_df
18,242
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_spot.py
spot_goods
(symbol: str = "波罗的海干散货指数") -> pd.DataFrame:
return temp_df
新浪财经-商品现货价格指数 http://finance.sina.com.cn/futuremarket/spotprice.shtml#titlePos_0 :param symbol: choice of {"进口大豆价格指数", "波罗的海干散货指数", "钢坯价格指数", "普氏62%铁矿石指数"} :type symbol: str :return: 商品现货价格指数 :rtype: pandas.DataFrame
新浪财经-商品现货价格指数 http://finance.sina.com.cn/futuremarket/spotprice.shtml#titlePos_0 :param symbol: choice of {"进口大豆价格指数", "波罗的海干散货指数", "钢坯价格指数", "普氏62%铁矿石指数"} :type symbol: str :return: 商品现货价格指数 :rtype: pandas.DataFrame
12
39
def spot_goods(symbol: str = "波罗的海干散货指数") -> pd.DataFrame: """ 新浪财经-商品现货价格指数 http://finance.sina.com.cn/futuremarket/spotprice.shtml#titlePos_0 :param symbol: choice of {"进口大豆价格指数", "波罗的海干散货指数", "钢坯价格指数", "普氏62%铁矿石指数"} :type symbol: str :return: 商品现货价格指数 :rtype: pandas.DataFrame """ url = "http://stock.finance.sina.com.cn/futures/api/openapi.php/GoodsIndexService.get_goods_index" symbol_url_dict = { "进口大豆价格指数": "SOY", "波罗的海干散货指数": "BDI", "钢坯价格指数": "GP", "普氏62%铁矿石指数": "PS", } params = {"symbol": symbol_url_dict[symbol], "table": "0"} r = requests.get(url, params=params) r.encoding = "gbk" data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]["data"]) temp_df = temp_df[["opendate", "price", "zde", "zdf"]] temp_df.columns = ["日期", "指数", "涨跌额", "涨跌幅"] temp_df['日期'] = pd.to_datetime(temp_df['日期']).dt.date temp_df['指数'] = pd.to_numeric(temp_df['指数']) temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额']) temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_spot.py#L12-L39
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
32.142857
[ 9, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ]
50
false
23.809524
28
1
50
6
def spot_goods(symbol: str = "波罗的海干散货指数") -> pd.DataFrame: url = "http://stock.finance.sina.com.cn/futures/api/openapi.php/GoodsIndexService.get_goods_index" symbol_url_dict = { "进口大豆价格指数": "SOY", "波罗的海干散货指数": "BDI", "钢坯价格指数": "GP", "普氏62%铁矿石指数": "PS", } params = {"symbol": symbol_url_dict[symbol], "table": "0"} r = requests.get(url, params=params) r.encoding = "gbk" data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]["data"]) temp_df = temp_df[["opendate", "price", "zde", "zdf"]] temp_df.columns = ["日期", "指数", "涨跌额", "涨跌幅"] temp_df['日期'] = pd.to_datetime(temp_df['日期']).dt.date temp_df['指数'] = pd.to_numeric(temp_df['指数']) temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额']) temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅']) return temp_df
18,243
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_eri.py
index_eri
()
return big_df
浙江省排污权交易指数 https://zs.zjpwq.net :return: 浙江省排污权交易指数 :rtype: pandas.DataFrame
浙江省排污权交易指数 https://zs.zjpwq.net :return: 浙江省排污权交易指数 :rtype: pandas.DataFrame
12
72
def index_eri() -> pd.DataFrame: """ 浙江省排污权交易指数 https://zs.zjpwq.net :return: 浙江省排污权交易指数 :rtype: pandas.DataFrame """ url = "https://zs.zjpwq.net/zhe-jiang-pwq-webapi/indexData" params = { "indexId": "1", "areaCode": "330000", "cycle": "MONTH", "structCode": "01", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) del temp_df["id"] del temp_df["indexId"] del temp_df["stageId"] del temp_df["structCode"] del temp_df["areaCode"] del temp_df["rawValue"] temp_df.columns = [ "value", "date", ] temp_df = temp_df[ [ "date", "value", ] ] big_df = temp_df url = "https://zs.zjpwq.net/zhe-jiang-pwq-webapi/rawValueStatistics" params = { "orderBy": "-date", "pageSize": "1000", "quotaType": "0", "index": "TOTAL_QUANTITY", "areaCode": "330000", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) del temp_df["id"] del temp_df["quotaType"] del temp_df["index"] temp_df.columns = [ "date", "value", "update", ] big_df = big_df.merge(temp_df, on="date") big_df.columns = [ "日期", "交易指数", "成交量", "更新时间", ] return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_eri.py#L12-L72
25
[ 0, 1, 2, 3, 4, 5, 6 ]
11.47541
[ 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 33, 34, 35, 42, 43, 44, 45, 46, 47, 48, 53, 54, 60 ]
42.622951
false
15.151515
61
1
57.377049
4
def index_eri() -> pd.DataFrame: url = "https://zs.zjpwq.net/zhe-jiang-pwq-webapi/indexData" params = { "indexId": "1", "areaCode": "330000", "cycle": "MONTH", "structCode": "01", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) del temp_df["id"] del temp_df["indexId"] del temp_df["stageId"] del temp_df["structCode"] del temp_df["areaCode"] del temp_df["rawValue"] temp_df.columns = [ "value", "date", ] temp_df = temp_df[ [ "date", "value", ] ] big_df = temp_df url = "https://zs.zjpwq.net/zhe-jiang-pwq-webapi/rawValueStatistics" params = { "orderBy": "-date", "pageSize": "1000", "quotaType": "0", "index": "TOTAL_QUANTITY", "areaCode": "330000", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) del temp_df["id"] del temp_df["quotaType"] del temp_df["index"] temp_df.columns = [ "date", "value", "update", ] big_df = big_df.merge(temp_df, on="date") big_df.columns = [ "日期", "交易指数", "成交量", "更新时间", ] return big_df
18,244
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_kq_fz.py
index_kq_fz
(symbol: str = "价格指数") -> pd.D
return big_df
中国柯桥纺织指数 http://www.kqindex.cn/flzs/jiage :param symbol: choice of {'价格指数', '景气指数', '外贸指数'} :type symbol: str :return: 中国柯桥纺织指数 :rtype: pandas.DataFrame
中国柯桥纺织指数 http://www.kqindex.cn/flzs/jiage :param symbol: choice of {'价格指数', '景气指数', '外贸指数'} :type symbol: str :return: 中国柯桥纺织指数 :rtype: pandas.DataFrame
14
76
def index_kq_fz(symbol: str = "价格指数") -> pd.DataFrame: """ 中国柯桥纺织指数 http://www.kqindex.cn/flzs/jiage :param symbol: choice of {'价格指数', '景气指数', '外贸指数'} :type symbol: str :return: 中国柯桥纺织指数 :rtype: pandas.DataFrame """ symbol_map = { "价格指数": "1_1", "景气指数": "1_2", "外贸指数": "2", } url = "http://www.kqindex.cn/flzs/table_data" params = { "category": "0", "start": "", "end": "", "indexType": f"{symbol_map[symbol]}", "pageindex": "1", "_": "1619871781413", } r = session.get(url, params=params) data_json = r.json() page_num = data_json["page"] big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): params = { "category": "0", "start": "", "end": "", "indexType": f"{symbol_map[symbol]}", "pageindex": page, "_": "1619871781413", } r = session.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) big_df = big_df.append(temp_df, ignore_index=True) if symbol == "价格指数": big_df.columns = [ "期次", "指数", "涨跌幅", ] elif symbol == "景气指数": big_df.columns = [ "期次", "总景气指数", "涨跌幅", "流通景气指数", "生产景气指数", ] elif symbol == "外贸指数": big_df.columns = [ "期次", "价格指数", "涨跌幅", "景气指数", "涨跌幅", ] return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_kq_fz.py#L14-L76
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
14.285714
[ 9, 14, 15, 23, 24, 25, 26, 27, 28, 36, 37, 38, 39, 40, 41, 46, 47, 54, 55, 62 ]
31.746032
false
18.75
63
5
68.253968
6
def index_kq_fz(symbol: str = "价格指数") -> pd.DataFrame: symbol_map = { "价格指数": "1_1", "景气指数": "1_2", "外贸指数": "2", } url = "http://www.kqindex.cn/flzs/table_data" params = { "category": "0", "start": "", "end": "", "indexType": f"{symbol_map[symbol]}", "pageindex": "1", "_": "1619871781413", } r = session.get(url, params=params) data_json = r.json() page_num = data_json["page"] big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): params = { "category": "0", "start": "", "end": "", "indexType": f"{symbol_map[symbol]}", "pageindex": page, "_": "1619871781413", } r = session.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) big_df = big_df.append(temp_df, ignore_index=True) if symbol == "价格指数": big_df.columns = [ "期次", "指数", "涨跌幅", ] elif symbol == "景气指数": big_df.columns = [ "期次", "总景气指数", "涨跌幅", "流通景气指数", "生产景气指数", ] elif symbol == "外贸指数": big_df.columns = [ "期次", "价格指数", "涨跌幅", "景气指数", "涨跌幅", ] return big_df
18,245
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_investing.py
_get_global_index_area_name_code
()
return name_code_list
全球指数-各国的全球指数数据 https://cn.investing.com/indices/global-indices?majorIndices=on&primarySectors=on&bonds=on&additionalIndices=on&otherIndices=on&c_id=37 :return: 国家和代码 :rtype: dict
全球指数-各国的全球指数数据 https://cn.investing.com/indices/global-indices?majorIndices=on&primarySectors=on&bonds=on&additionalIndices=on&otherIndices=on&c_id=37 :return: 国家和代码 :rtype: dict
19
53
def _get_global_index_area_name_code() -> dict: """ 全球指数-各国的全球指数数据 https://cn.investing.com/indices/global-indices?majorIndices=on&primarySectors=on&bonds=on&additionalIndices=on&otherIndices=on&c_id=37 :return: 国家和代码 :rtype: dict """ url = "https://cn.investing.com/indices/global-indices" params = { "majorIndices": "on", "primarySectors": "on", "bonds": "on", "additionalIndices": "on", "otherIndices": "on", } r = session.get(url, params=params, headers=short_headers) data_text = r.text soup = BeautifulSoup(data_text, "lxml") name_url_option_list = soup.find_all("option")[1:] url_list = [ item["value"] for item in name_url_option_list if "c_id" in item["value"] ] url_list_code = [ item["value"].split("?")[1].split("=")[1] for item in name_url_option_list if "c_id" in item["value"] ] name_list = [item.get_text() for item in name_url_option_list][ : len(url_list) ] _temp_df = pd.DataFrame([name_list, url_list_code]).T name_code_list = dict(zip(_temp_df.iloc[:, 0], _temp_df.iloc[:, 1])) return name_code_list
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_investing.py#L19-L53
25
[ 0, 1, 2, 3, 4, 5, 6 ]
20
[ 7, 8, 15, 16, 17, 18, 19, 24, 29, 32, 33, 34 ]
34.285714
false
12.820513
35
4
65.714286
4
def _get_global_index_area_name_code() -> dict: url = "https://cn.investing.com/indices/global-indices" params = { "majorIndices": "on", "primarySectors": "on", "bonds": "on", "additionalIndices": "on", "otherIndices": "on", } r = session.get(url, params=params, headers=short_headers) data_text = r.text soup = BeautifulSoup(data_text, "lxml") name_url_option_list = soup.find_all("option")[1:] url_list = [ item["value"] for item in name_url_option_list if "c_id" in item["value"] ] url_list_code = [ item["value"].split("?")[1].split("=")[1] for item in name_url_option_list if "c_id" in item["value"] ] name_list = [item.get_text() for item in name_url_option_list][ : len(url_list) ] _temp_df = pd.DataFrame([name_list, url_list_code]).T name_code_list = dict(zip(_temp_df.iloc[:, 0], _temp_df.iloc[:, 1])) return name_code_list
18,246
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_investing.py
_get_global_country_name_url
()
return name_code_map_dict
可获得指数数据国家对应的 URL https://cn.investing.com/indices/ :return: 国家和 URL :rtype: dict
可获得指数数据国家对应的 URL https://cn.investing.com/indices/ :return: 国家和 URL :rtype: dict
56
75
def _get_global_country_name_url() -> dict: """ 可获得指数数据国家对应的 URL https://cn.investing.com/indices/ :return: 国家和 URL :rtype: dict """ url = "https://cn.investing.com/indices/" res = session.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find( "select", attrs={"name": "country"} ).find_all("option")[ 1: ] # 去掉-所有国家及地区 url_list = [item["value"] for item in name_url_option_list] name_list = [item.get_text() for item in name_url_option_list] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_investing.py#L56-L75
25
[ 0, 1, 2, 3, 4, 5, 6 ]
35
[ 7, 8, 9, 10, 15, 16, 17, 18, 19 ]
45
false
12.820513
20
3
55
4
def _get_global_country_name_url() -> dict: url = "https://cn.investing.com/indices/" res = session.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find( "select", attrs={"name": "country"} ).find_all("option")[ 1: ] # 去掉-所有国家及地区 url_list = [item["value"] for item in name_url_option_list] name_list = [item.get_text() for item in name_url_option_list] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict
18,247
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_investing.py
index_investing_global_area_index_name_code
(area: str = "中国") ->
return name_code_map_dict
指定 area 的所有指数和代码 https://cn.investing.com/indices/ :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type area: str :return: 指定 area 的所有指数和代码 :rtype: dict
指定 area 的所有指数和代码 https://cn.investing.com/indices/ :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type area: str :return: 指定 area 的所有指数和代码 :rtype: dict
78
105
def index_investing_global_area_index_name_code(area: str = "中国") -> dict: """ 指定 area 的所有指数和代码 https://cn.investing.com/indices/ :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type area: str :return: 指定 area 的所有指数和代码 :rtype: dict """ scraper = cfscrape.create_scraper(delay=10) pd.set_option("mode.chained_assignment", None) name_url_dict = _get_global_country_name_url() url = f"https://cn.investing.com{name_url_dict[area]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on" r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") code_list = [ item["data-id"] for item in soup.find_all("table")[1].find_all( "span", attrs={"class": "alertBellGrayPlus"} ) ] name_list = [ item.find("a").text for item in soup.find_all("td", attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, code_list)) return name_code_map_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_investing.py#L78-L105
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
32.142857
[ 9, 10, 11, 12, 13, 14, 15, 21, 25, 26, 27 ]
39.285714
false
12.820513
28
3
60.714286
6
def index_investing_global_area_index_name_code(area: str = "中国") -> dict: scraper = cfscrape.create_scraper(delay=10) pd.set_option("mode.chained_assignment", None) name_url_dict = _get_global_country_name_url() url = f"https://cn.investing.com{name_url_dict[area]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on" r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") code_list = [ item["data-id"] for item in soup.find_all("table")[1].find_all( "span", attrs={"class": "alertBellGrayPlus"} ) ] name_list = [ item.find("a").text for item in soup.find_all("td", attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, code_list)) return name_code_map_dict
18,248
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_investing.py
index_investing_global_area_index_name_url
(area: str = "中国") ->
return name_code_map_dict
指定 area 的所有指数和 URL 地址 https://cn.investing.com/indices/ :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type area: str :return: 指定 area 的所有指数和 URL 地址 :rtype: dict
指定 area 的所有指数和 URL 地址 https://cn.investing.com/indices/ :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type area: str :return: 指定 area 的所有指数和 URL 地址 :rtype: dict
108
133
def index_investing_global_area_index_name_url(area: str = "中国") -> dict: """ 指定 area 的所有指数和 URL 地址 https://cn.investing.com/indices/ :param area: 指定的国家或地区;ak._get_global_country_name_url() 函数返回的国家或地区的名称 :type area: str :return: 指定 area 的所有指数和 URL 地址 :rtype: dict """ scraper = cfscrape.create_scraper(delay=10) pd.set_option("mode.chained_assignment", None) name_url_dict = _get_global_country_name_url() url = f"https://cn.investing.com{name_url_dict[area]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on" r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") code_list = [ item.find("a")["href"] for item in soup.find_all("td", attrs={"class": "plusIconTd"}) ] name_list = [ item.find("a").text for item in soup.find_all("td", attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, code_list)) return name_code_map_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_investing.py#L108-L133
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
34.615385
[ 9, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25 ]
42.307692
false
12.820513
26
3
57.692308
6
def index_investing_global_area_index_name_url(area: str = "中国") -> dict: scraper = cfscrape.create_scraper(delay=10) pd.set_option("mode.chained_assignment", None) name_url_dict = _get_global_country_name_url() url = f"https://cn.investing.com{name_url_dict[area]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on" r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") code_list = [ item.find("a")["href"] for item in soup.find_all("td", attrs={"class": "plusIconTd"}) ] name_list = [ item.find("a").text for item in soup.find_all("td", attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, code_list)) return name_code_map_dict
18,249
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_investing.py
index_investing_global
( area: str = "中国", symbol: str = "上证指数", period: str = "每日", start_date: str = "20100101", end_date: str = "20211031", )
return df_data
具体国家或地区的从 start_date 到 end_date 期间的数据 https://cn.investing.com/indices/ftse-epra-nareit-hong-kong-historical-data :param area: 对应函数中的国家或地区名称 :type area: str :param symbol: 对应函数中的指数名称 :type symbol: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '20000101', 注意格式 :type start_date: str :param end_date: '20191017', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame
具体国家或地区的从 start_date 到 end_date 期间的数据 https://cn.investing.com/indices/ftse-epra-nareit-hong-kong-historical-data :param area: 对应函数中的国家或地区名称 :type area: str :param symbol: 对应函数中的指数名称 :type symbol: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '20000101', 注意格式 :type start_date: str :param end_date: '20191017', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame
136
222
def index_investing_global( area: str = "中国", symbol: str = "上证指数", period: str = "每日", start_date: str = "20100101", end_date: str = "20211031", ) -> pd.DataFrame: """ 具体国家或地区的从 start_date 到 end_date 期间的数据 https://cn.investing.com/indices/ftse-epra-nareit-hong-kong-historical-data :param area: 对应函数中的国家或地区名称 :type area: str :param symbol: 对应函数中的指数名称 :type symbol: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '20000101', 注意格式 :type start_date: str :param end_date: '20191017', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} name_code_dict = index_investing_global_area_index_name_code(area) url = f"https://api.investing.com/api/financialdata/historical/{name_code_dict[symbol]}" params = { "start-date": start_date, "end-date": end_date, "time-frame": period_map[period], "add-missing-rows": "false", } headers = { "accept": "application/json, text/plain, */*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "domain-id": "cn", "origin": "https://cn.investing.com", "pragma": "no-cache", "referer": "https://cn.investing.com/", "sec-ch-ua": '"Google Chrome";v="105", "Not)A;Brand";v="8", "Chromium";v="105"', "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": '"Windows"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2NjM2NjQ1NzUsImp0aSI6IjIyODA4MDM5MSIsImlhdCI6MTY2MzY2MDk3NSwiaXNzIjoiaW52ZXN0aW5nLmNvbSIsInVzZXJfaWQiOjIyODA4MDM5MSwicHJpbWFyeV9kb21haW5faWQiOiIxIiwiQXV0aG5TeXN0ZW1Ub2tlbiI6IiIsIkF1dGhuU2Vzc2lvblRva2VuIjoiIiwiRGV2aWNlVG9rZW4iOiIiLCJVYXBpVG9rZW4iOiJObmclMkJmMlJyUHpjeWRtdHRaell5TW1JN1pUNWliV1prTURJMVB6czlNeVUySWpVN1lEYzNjV1ZxYWlSZ1kyVjVNamRsWWpRMFptWTFQMkk4TnpCdlBEWXlQbVJrWXo4M01tQnJaMmN3TW1aaU1HVm9ZbWRtWmpBNU5UWTdhRE0lMkJOalUxTW1Cdk56VmxPbW93WUR4bGJUSWdaWGswY0daM05XZGlNamQyYnlnMk9UNSUyRlpEUSUyRllESm1hMjluTURJeFlqRmxQV0l3Wmpjd1pUVXhPenN6S3paOSIsIkF1dGhuSWQiOiIiLCJJc0RvdWJsZUVuY3J5cHRlZCI6ZmFsc2UsIkRldmljZUlkIjoiIiwiUmVmcmVzaEV4cGlyZWRBdCI6MTY2NjE4MDk3NX0.uRLTP1IG3696uxHm3Qq0D8z4o3nfsD3CaIS9cZGjsV0", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36", } scraper = cfscrape.create_scraper(delay=10) r = scraper.get(url, params=params, headers=headers) r.encoding = "utf-8" r = requests.get(url, params=params, headers=headers) data_json = r.json() df_data = pd.DataFrame(data_json["data"]) df_data.columns = [ "-", "-", "-", "日期", "-", "-", "-", "-", "-", "交易量", "-", "收盘", "开盘", "高", "低", "涨跌幅", ] df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]] df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date df_data["收盘"] = pd.to_numeric(df_data["收盘"]) df_data["开盘"] = pd.to_numeric(df_data["开盘"]) df_data["高"] = pd.to_numeric(df_data["高"]) df_data["低"] = pd.to_numeric(df_data["低"]) df_data["交易量"] = pd.to_numeric(df_data["交易量"]) df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"]) df_data.sort_values("日期", inplace=True) df_data.reset_index(inplace=True, drop=True) return df_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_investing.py#L136-L222
25
[ 0 ]
1.149425
[ 23, 24, 25, 26, 27, 28, 34, 52, 53, 54, 55, 56, 57, 58, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86 ]
28.735632
false
12.820513
87
1
71.264368
14
def index_investing_global( area: str = "中国", symbol: str = "上证指数", period: str = "每日", start_date: str = "20100101", end_date: str = "20211031", ) -> pd.DataFrame: start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} name_code_dict = index_investing_global_area_index_name_code(area) url = f"https://api.investing.com/api/financialdata/historical/{name_code_dict[symbol]}" params = { "start-date": start_date, "end-date": end_date, "time-frame": period_map[period], "add-missing-rows": "false", } headers = { "accept": "application/json, text/plain, */*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "domain-id": "cn", "origin": "https://cn.investing.com", "pragma": "no-cache", "referer": "https://cn.investing.com/", "sec-ch-ua": '"Google Chrome";v="105", "Not)A;Brand";v="8", "Chromium";v="105"', "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": '"Windows"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2NjM2NjQ1NzUsImp0aSI6IjIyODA4MDM5MSIsImlhdCI6MTY2MzY2MDk3NSwiaXNzIjoiaW52ZXN0aW5nLmNvbSIsInVzZXJfaWQiOjIyODA4MDM5MSwicHJpbWFyeV9kb21haW5faWQiOiIxIiwiQXV0aG5TeXN0ZW1Ub2tlbiI6IiIsIkF1dGhuU2Vzc2lvblRva2VuIjoiIiwiRGV2aWNlVG9rZW4iOiIiLCJVYXBpVG9rZW4iOiJObmclMkJmMlJyUHpjeWRtdHRaell5TW1JN1pUNWliV1prTURJMVB6czlNeVUySWpVN1lEYzNjV1ZxYWlSZ1kyVjVNamRsWWpRMFptWTFQMkk4TnpCdlBEWXlQbVJrWXo4M01tQnJaMmN3TW1aaU1HVm9ZbWRtWmpBNU5UWTdhRE0lMkJOalUxTW1Cdk56VmxPbW93WUR4bGJUSWdaWGswY0daM05XZGlNamQyYnlnMk9UNSUyRlpEUSUyRllESm1hMjluTURJeFlqRmxQV0l3Wmpjd1pUVXhPenN6S3paOSIsIkF1dGhuSWQiOiIiLCJJc0RvdWJsZUVuY3J5cHRlZCI6ZmFsc2UsIkRldmljZUlkIjoiIiwiUmVmcmVzaEV4cGlyZWRBdCI6MTY2NjE4MDk3NX0.uRLTP1IG3696uxHm3Qq0D8z4o3nfsD3CaIS9cZGjsV0", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36", } scraper = cfscrape.create_scraper(delay=10) r = scraper.get(url, params=params, headers=headers) r.encoding = "utf-8" r = requests.get(url, params=params, headers=headers) data_json = r.json() df_data = pd.DataFrame(data_json["data"]) df_data.columns = [ "-", "-", "-", "日期", "-", "-", "-", "-", "-", "交易量", "-", "收盘", "开盘", "高", "低", "涨跌幅", ] df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]] df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date df_data["收盘"] = pd.to_numeric(df_data["收盘"]) df_data["开盘"] = pd.to_numeric(df_data["开盘"]) df_data["高"] = pd.to_numeric(df_data["高"]) df_data["低"] = pd.to_numeric(df_data["低"]) df_data["交易量"] = pd.to_numeric(df_data["交易量"]) df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"]) df_data.sort_values("日期", inplace=True) df_data.reset_index(inplace=True, drop=True) return df_data
18,250
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_investing.py
index_investing_global_from_url
( url: str = "https://www.investing.com/indices/ftse-epra-nareit-eurozone", period: str = "每日", start_date: str = "20000101", end_date: str = "20220808", )
return df_data
获得具体指数的从 start_date 到 end_date 期间的数据 https://www.investing.com/indices/ftse-epra-nareit-eurozone :param url: 具体数据链接 :type url: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '20000101', 注意格式 :type start_date: str :param end_date: '20191017', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame
获得具体指数的从 start_date 到 end_date 期间的数据 https://www.investing.com/indices/ftse-epra-nareit-eurozone :param url: 具体数据链接 :type url: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '20000101', 注意格式 :type start_date: str :param end_date: '20191017', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame
225
300
def index_investing_global_from_url( url: str = "https://www.investing.com/indices/ftse-epra-nareit-eurozone", period: str = "每日", start_date: str = "20000101", end_date: str = "20220808", ) -> pd.DataFrame: """ 获得具体指数的从 start_date 到 end_date 期间的数据 https://www.investing.com/indices/ftse-epra-nareit-eurozone :param url: 具体数据链接 :type url: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '20000101', 注意格式 :type start_date: str :param end_date: '20191017', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame """ url = url.replace("www", "cn") scraper = cfscrape.create_scraper(delay=10) r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") data_text = soup.find("script", attrs={"id": "__NEXT_DATA__"}).text data_json = json.loads(data_text) code = json.loads(data_json["props"]["pageProps"]["state"])["dataStore"][ "pageInfoStore" ]["identifiers"]["instrument_id"] start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} url = f"https://api.investing.com/api/financialdata/historical/{code}" params = { "start-date": start_date, "end-date": end_date, "time-frame": period_map[period], "add-missing-rows": "false", } headers = { "domain-id": "cn", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() df_data = pd.DataFrame(data_json["data"]) df_data.columns = [ "-", "-", "-", "日期", "-", "-", "-", "-", "-", "交易量", "-", "收盘", "开盘", "高", "低", "涨跌幅", ] df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]] df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date df_data["收盘"] = pd.to_numeric(df_data["收盘"]) df_data["开盘"] = pd.to_numeric(df_data["开盘"]) df_data["高"] = pd.to_numeric(df_data["高"]) df_data["低"] = pd.to_numeric(df_data["低"]) df_data["交易量"] = pd.to_numeric(df_data["交易量"]) df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"]) df_data.sort_values("日期", inplace=True) df_data.reset_index(inplace=True, drop=True) return df_data
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_investing.py#L225-L300
25
[ 0 ]
1.315789
[ 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 39, 44, 45, 46, 47, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 ]
36.842105
false
12.820513
76
1
63.157895
12
def index_investing_global_from_url( url: str = "https://www.investing.com/indices/ftse-epra-nareit-eurozone", period: str = "每日", start_date: str = "20000101", end_date: str = "20220808", ) -> pd.DataFrame: url = url.replace("www", "cn") scraper = cfscrape.create_scraper(delay=10) r = scraper.get(url) soup = BeautifulSoup(r.text, "lxml") data_text = soup.find("script", attrs={"id": "__NEXT_DATA__"}).text data_json = json.loads(data_text) code = json.loads(data_json["props"]["pageProps"]["state"])["dataStore"][ "pageInfoStore" ]["identifiers"]["instrument_id"] start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} url = f"https://api.investing.com/api/financialdata/historical/{code}" params = { "start-date": start_date, "end-date": end_date, "time-frame": period_map[period], "add-missing-rows": "false", } headers = { "domain-id": "cn", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() df_data = pd.DataFrame(data_json["data"]) df_data.columns = [ "-", "-", "-", "日期", "-", "-", "-", "-", "-", "交易量", "-", "收盘", "开盘", "高", "低", "涨跌幅", ] df_data = df_data[["日期", "收盘", "开盘", "高", "低", "交易量", "涨跌幅"]] df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date df_data["收盘"] = pd.to_numeric(df_data["收盘"]) df_data["开盘"] = pd.to_numeric(df_data["开盘"]) df_data["高"] = pd.to_numeric(df_data["高"]) df_data["低"] = pd.to_numeric(df_data["低"]) df_data["交易量"] = pd.to_numeric(df_data["交易量"]) df_data["涨跌幅"] = pd.to_numeric(df_data["涨跌幅"]) df_data.sort_values("日期", inplace=True) df_data.reset_index(inplace=True, drop=True) return df_data
18,251
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_baidu.py
decrypt
(t: str, e: str)
return "".join([a[j] for j in e])
解密函数 :param t: 加密字符 :type t: str :param e: 加密字符 :type e: str :return: 解密后字符 :rtype: str
解密函数 :param t: 加密字符 :type t: str :param e: 加密字符 :type e: str :return: 解密后字符 :rtype: str
12
26
def decrypt(t: str, e: str) -> str: """ 解密函数 :param t: 加密字符 :type t: str :param e: 加密字符 :type e: str :return: 解密后字符 :rtype: str """ n, i, a, result = list(t), list(e), {}, [] ln = int(len(n) / 2) start, end = n[ln:], n[:ln] a = dict(zip(end, start)) return "".join([a[j] for j in e])
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_baidu.py#L12-L26
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
66.666667
[ 10, 11, 12, 13, 14 ]
33.333333
false
8.181818
15
2
66.666667
7
def decrypt(t: str, e: str) -> str: n, i, a, result = list(t), list(e), {}, [] ln = int(len(n) / 2) start, end = n[ln:], n[:ln] a = dict(zip(end, start)) return "".join([a[j] for j in e])
18,252
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_baidu.py
get_ptbk
(uniqid: str, cookie: str)
获取编码 :param uniqid: 传入 uniqid :type uniqid: str :param cookie: 传入 cookie :type cookie: str :return: 编码 :rtype: str
获取编码 :param uniqid: 传入 uniqid :type uniqid: str :param cookie: 传入 cookie :type cookie: str :return: 编码 :rtype: str
29
59
def get_ptbk(uniqid: str, cookie: str) -> str: """ 获取编码 :param uniqid: 传入 uniqid :type uniqid: str :param cookie: 传入 cookie :type cookie: str :return: 编码 :rtype: str """ headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "https://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) with session.get( url=f"http://index.baidu.com/Interface/ptbk?uniqid={uniqid}" ) as response: ptbk = response.json()["data"] return ptbk
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_baidu.py#L29-L59
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
32.258065
[ 10, 24, 25, 26, 29, 30 ]
19.354839
false
8.181818
31
2
80.645161
7
def get_ptbk(uniqid: str, cookie: str) -> str: headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "https://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) with session.get( url=f"http://index.baidu.com/Interface/ptbk?uniqid={uniqid}" ) as response: ptbk = response.json()["data"] return ptbk
18,253
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_baidu.py
baidu_search_index
( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-05-01", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, )
百度-搜索指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 搜索指数 :rtype: pandas.Series
百度-搜索指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 搜索指数 :rtype: pandas.Series
62
519
def baidu_search_index( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-05-01", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, ) -> str: """ 百度-搜索指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 搜索指数 :rtype: pandas.Series """ baidu_area_map = { ("广东", "广州", "95"), ("广东", "深圳", "94"), ("广东", "东莞", "133"), ("广东", "云浮", "195"), ("广东", "佛山", "196"), ("广东", "湛江", "197"), ("广东", "江门", "198"), ("广东", "惠州", "199"), ("广东", "珠海", "200"), ("广东", "韶关", "201"), ("广东", "阳江", "202"), ("广东", "茂名", "203"), ("广东", "潮州", "204"), ("广东", "揭阳", "205"), ("广东", "中山", "207"), ("广东", "清远", "208"), ("广东", "肇庆", "209"), ("广东", "河源", "210"), ("广东", "梅州", "211"), ("广东", "汕头", "212"), ("广东", "汕尾", "213"), ("河南", "郑州", "168"), ("河南", "南阳", "262"), ("河南", "新乡", "263"), ("河南", "开封", "264"), ("河南", "焦作", "265"), ("河南", "平顶山", "266"), ("河南", "许昌", "268"), ("河南", "安阳", "370"), ("河南", "驻马店", "371"), ("河南", "信阳", "373"), ("河南", "鹤壁", "374"), ("河南", "周口", "375"), ("河南", "商丘", "376"), ("河南", "洛阳", "378"), ("河南", "漯河", "379"), ("河南", "濮阳", "380"), ("河南", "三门峡", "381"), ("河南", "济源", "667"), ("四川", "成都", "97"), ("四川", "宜宾", "96"), ("四川", "绵阳", "98"), ("四川", "广元", "99"), ("四川", "遂宁", "100"), ("四川", "巴中", "101"), ("四川", "内江", "102"), ("四川", "泸州", "103"), ("四川", "南充", "104"), ("四川", "德阳", "106"), ("四川", "乐山", "107"), ("四川", "广安", "108"), ("四川", "资阳", "109"), ("四川", "自贡", "111"), ("四川", "攀枝花", "112"), ("四川", "达州", "113"), ("四川", "雅安", "114"), ("四川", "眉山", "291"), ("四川", "甘孜", "417"), ("四川", "阿坝", "457"), ("四川", "凉山", "479"), ("江苏", "南京", "125"), ("江苏", "苏州", "126"), ("江苏", "无锡", "127"), ("江苏", "连云港", "156"), ("江苏", "淮安", "157"), ("江苏", "扬州", "158"), ("江苏", "泰州", "159"), ("江苏", "盐城", "160"), ("江苏", "徐州", "161"), ("江苏", "常州", "162"), ("江苏", "南通", "163"), ("江苏", "镇江", "169"), ("江苏", "宿迁", "172"), ("湖北", "武汉", "28"), ("湖北", "黄石", "30"), ("湖北", "荆州", "31"), ("湖北", "襄阳", "32"), ("湖北", "黄冈", "33"), ("湖北", "荆门", "34"), ("湖北", "宜昌", "35"), ("湖北", "十堰", "36"), ("湖北", "随州", "37"), ("湖北", "恩施", "38"), ("湖北", "鄂州", "39"), ("湖北", "咸宁", "40"), ("湖北", "孝感", "41"), ("湖北", "仙桃", "42"), ("湖北", "天门", "73"), ("湖北", "潜江", "74"), ("湖北", "神农架", "687"), ("浙江", "杭州", "138"), ("浙江", "丽水", "134"), ("浙江", "金华", "135"), ("浙江", "温州", "149"), ("浙江", "台州", "287"), ("浙江", "衢州", "288"), ("浙江", "宁波", "289"), ("浙江", "绍兴", "303"), ("浙江", "嘉兴", "304"), ("浙江", "湖州", "305"), ("浙江", "舟山", "306"), ("福建", "福州", "50"), ("福建", "莆田", "51"), ("福建", "三明", "52"), ("福建", "龙岩", "53"), ("福建", "厦门", "54"), ("福建", "泉州", "55"), ("福建", "漳州", "56"), ("福建", "宁德", "87"), ("福建", "南平", "253"), ("黑龙江", "哈尔滨", "152"), ("黑龙江", "大庆", "153"), ("黑龙江", "伊春", "295"), ("黑龙江", "大兴安岭", "297"), ("黑龙江", "黑河", "300"), ("黑龙江", "鹤岗", "301"), ("黑龙江", "七台河", "302"), ("黑龙江", "齐齐哈尔", "319"), ("黑龙江", "佳木斯", "320"), ("黑龙江", "牡丹江", "322"), ("黑龙江", "鸡西", "323"), ("黑龙江", "绥化", "324"), ("黑龙江", "双鸭山", "359"), ("山东", "济南", "1"), ("山东", "滨州", "76"), ("山东", "青岛", "77"), ("山东", "烟台", "78"), ("山东", "临沂", "79"), ("山东", "潍坊", "80"), ("山东", "淄博", "81"), ("山东", "东营", "82"), ("山东", "聊城", "83"), ("山东", "菏泽", "84"), ("山东", "枣庄", "85"), ("山东", "德州", "86"), ("山东", "威海", "88"), ("山东", "济宁", "352"), ("山东", "泰安", "353"), ("山东", "莱芜", "356"), ("山东", "日照", "366"), ("陕西", "西安", "165"), ("陕西", "铜川", "271"), ("陕西", "安康", "272"), ("陕西", "宝鸡", "273"), ("陕西", "商洛", "274"), ("陕西", "渭南", "275"), ("陕西", "汉中", "276"), ("陕西", "咸阳", "277"), ("陕西", "榆林", "278"), ("陕西", "延安", "401"), ("河北", "石家庄", "141"), ("河北", "衡水", "143"), ("河北", "张家口", "144"), ("河北", "承德", "145"), ("河北", "秦皇岛", "146"), ("河北", "廊坊", "147"), ("河北", "沧州", "148"), ("河北", "保定", "259"), ("河北", "唐山", "261"), ("河北", "邯郸", "292"), ("河北", "邢台", "293"), ("辽宁", "沈阳", "150"), ("辽宁", "大连", "29"), ("辽宁", "盘锦", "151"), ("辽宁", "鞍山", "215"), ("辽宁", "朝阳", "216"), ("辽宁", "锦州", "217"), ("辽宁", "铁岭", "218"), ("辽宁", "丹东", "219"), ("辽宁", "本溪", "220"), ("辽宁", "营口", "221"), ("辽宁", "抚顺", "222"), ("辽宁", "阜新", "223"), ("辽宁", "辽阳", "224"), ("辽宁", "葫芦岛", "225"), ("吉林", "长春", "154"), ("吉林", "四平", "155"), ("吉林", "辽源", "191"), ("吉林", "松原", "194"), ("吉林", "吉林", "270"), ("吉林", "通化", "407"), ("吉林", "白山", "408"), ("吉林", "白城", "410"), ("吉林", "延边", "525"), ("云南", "昆明", "117"), ("云南", "玉溪", "123"), ("云南", "楚雄", "124"), ("云南", "大理", "334"), ("云南", "昭通", "335"), ("云南", "红河", "337"), ("云南", "曲靖", "339"), ("云南", "丽江", "342"), ("云南", "临沧", "350"), ("云南", "文山", "437"), ("云南", "保山", "438"), ("云南", "普洱", "666"), ("云南", "西双版纳", "668"), ("云南", "德宏", "669"), ("云南", "怒江", "671"), ("云南", "迪庆", "672"), ("新疆", "乌鲁木齐", "467"), ("新疆", "石河子", "280"), ("新疆", "吐鲁番", "310"), ("新疆", "昌吉", "311"), ("新疆", "哈密", "312"), ("新疆", "阿克苏", "315"), ("新疆", "克拉玛依", "317"), ("新疆", "博尔塔拉", "318"), ("新疆", "阿勒泰", "383"), ("新疆", "喀什", "384"), ("新疆", "和田", "386"), ("新疆", "巴音郭楞", "499"), ("新疆", "伊犁", "520"), ("新疆", "塔城", "563"), ("新疆", "克孜勒苏柯尔克孜", "653"), ("新疆", "五家渠", "661"), ("新疆", "阿拉尔", "692"), ("新疆", "图木舒克", "693"), ("广西", "南宁", "90"), ("广西", "柳州", "89"), ("广西", "桂林", "91"), ("广西", "贺州", "92"), ("广西", "贵港", "93"), ("广西", "玉林", "118"), ("广西", "河池", "119"), ("广西", "北海", "128"), ("广西", "钦州", "129"), ("广西", "防城港", "130"), ("广西", "百色", "131"), ("广西", "梧州", "132"), ("广西", "来宾", "506"), ("广西", "崇左", "665"), ("山西", "太原", "231"), ("山西", "大同", "227"), ("山西", "长治", "228"), ("山西", "忻州", "229"), ("山西", "晋中", "230"), ("山西", "临汾", "232"), ("山西", "运城", "233"), ("山西", "晋城", "234"), ("山西", "朔州", "235"), ("山西", "阳泉", "236"), ("山西", "吕梁", "237"), ("湖南", "长沙", "43"), ("湖南", "岳阳", "44"), ("湖南", "衡阳", "45"), ("湖南", "株洲", "46"), ("湖南", "湘潭", "47"), ("湖南", "益阳", "48"), ("湖南", "郴州", "49"), ("湖南", "湘西", "65"), ("湖南", "娄底", "66"), ("湖南", "怀化", "67"), ("湖南", "常德", "68"), ("湖南", "张家界", "226"), ("湖南", "永州", "269"), ("湖南", "邵阳", "405"), ("江西", "南昌", "5"), ("江西", "九江", "6"), ("江西", "鹰潭", "7"), ("江西", "抚州", "8"), ("江西", "上饶", "9"), ("江西", "赣州", "10"), ("江西", "吉安", "115"), ("江西", "萍乡", "136"), ("江西", "景德镇", "137"), ("江西", "新余", "246"), ("江西", "宜春", "256"), ("安徽", "合肥", "189"), ("安徽", "铜陵", "173"), ("安徽", "黄山", "174"), ("安徽", "池州", "175"), ("安徽", "宣城", "176"), ("安徽", "巢湖", "177"), ("安徽", "淮南", "178"), ("安徽", "宿州", "179"), ("安徽", "六安", "181"), ("安徽", "滁州", "182"), ("安徽", "淮北", "183"), ("安徽", "阜阳", "184"), ("安徽", "马鞍山", "185"), ("安徽", "安庆", "186"), ("安徽", "蚌埠", "187"), ("安徽", "芜湖", "188"), ("安徽", "亳州", "391"), ("内蒙古", "呼和浩特", "20"), ("内蒙古", "包头", "13"), ("内蒙古", "鄂尔多斯", "14"), ("内蒙古", "巴彦淖尔", "15"), ("内蒙古", "乌海", "16"), ("内蒙古", "阿拉善盟", "17"), ("内蒙古", "锡林郭勒盟", "19"), ("内蒙古", "赤峰", "21"), ("内蒙古", "通辽", "22"), ("内蒙古", "呼伦贝尔", "25"), ("内蒙古", "乌兰察布", "331"), ("内蒙古", "兴安盟", "333"), ("甘肃", "兰州", "166"), ("甘肃", "庆阳", "281"), ("甘肃", "定西", "282"), ("甘肃", "武威", "283"), ("甘肃", "酒泉", "284"), ("甘肃", "张掖", "285"), ("甘肃", "嘉峪关", "286"), ("甘肃", "平凉", "307"), ("甘肃", "天水", "308"), ("甘肃", "白银", "309"), ("甘肃", "金昌", "343"), ("甘肃", "陇南", "344"), ("甘肃", "临夏", "346"), ("甘肃", "甘南", "673"), ("海南", "海口", "239"), ("海南", "万宁", "241"), ("海南", "琼海", "242"), ("海南", "三亚", "243"), ("海南", "儋州", "244"), ("海南", "东方", "456"), ("海南", "五指山", "582"), ("海南", "文昌", "670"), ("海南", "陵水", "674"), ("海南", "澄迈", "675"), ("海南", "乐东", "679"), ("海南", "临高", "680"), ("海南", "定安", "681"), ("海南", "昌江", "683"), ("海南", "屯昌", "684"), ("海南", "保亭", "686"), ("海南", "白沙", "689"), ("海南", "琼中", "690"), ("贵州", "贵阳", "2"), ("贵州", "黔南", "3"), ("贵州", "六盘水", "4"), ("贵州", "遵义", "59"), ("贵州", "黔东南", "61"), ("贵州", "铜仁", "422"), ("贵州", "安顺", "424"), ("贵州", "毕节", "426"), ("贵州", "黔西南", "588"), ("宁夏", "银川", "140"), ("宁夏", "吴忠", "395"), ("宁夏", "固原", "396"), ("宁夏", "石嘴山", "472"), ("宁夏", "中卫", "480"), ("青海", "西宁", "139"), ("青海", "海西", "608"), ("青海", "海东", "652"), ("青海", "玉树", "659"), ("青海", "海南", "676"), ("青海", "海北", "682"), ("青海", "黄南", "685"), ("青海", "果洛", "688"), ("西藏", "拉萨", "466"), ("西藏", "日喀则", "516"), ("西藏", "那曲", "655"), ("西藏", "林芝", "656"), ("西藏", "山南", "677"), ("西藏", "昌都", "678"), ("西藏", "阿里", "691"), ("北京", "北京", "911"), ("上海", "上海", "910"), ("重庆", "重庆", "904"), ("天津", "天津", "923") } if province == "全国": area = "0" else: result_list = [item for item in baidu_area_map if item[0] == province and item[1] == city] if result_list: area = result_list[0][2] else: raise "请按照百度指数的要求输入正确的省份和城市" headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Cipher-Text": text, "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Referer": "https://index.baidu.com/v2/main/index.html", "Proxy-Connection": "keep-alive", "Referer": "zhishu.baidu.com", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) params = { "area": area, "word": '[[{"name":' + f'"{word}"' + ',"wordType"' + ":1}]]", "startDate": start_date, "endDate": end_date, } with session.get( url="http://index.baidu.com/api/SearchApi/index", params=params ) as response: data = response.json()["data"] all_data = data["userIndexes"][0]["all"]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = [int(item) if item != "" else 0 for item in result] if len(result) == len( pd.date_range(start=start_date, end=end_date, freq="7D") ): temp_df_7 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="7D"), result, ], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 else: temp_df_1 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="1D"), result, ], index=["date", word], ).T temp_df_1.index = pd.to_datetime(temp_df_1["date"]) del temp_df_1["date"] return temp_df_1
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_baidu.py#L62-L519
25
[ 0 ]
0.218341
[ 29, 393, 394, 396, 397, 398, 400, 401, 417, 418, 419, 425, 428, 429, 430, 431, 432, 433, 434, 437, 444, 445, 446, 448, 455, 456, 457 ]
5.895197
false
8.181818
458
8
94.104803
18
def baidu_search_index( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-05-01", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, ) -> str: baidu_area_map = { ("广东", "广州", "95"), ("广东", "深圳", "94"), ("广东", "东莞", "133"), ("广东", "云浮", "195"), ("广东", "佛山", "196"), ("广东", "湛江", "197"), ("广东", "江门", "198"), ("广东", "惠州", "199"), ("广东", "珠海", "200"), ("广东", "韶关", "201"), ("广东", "阳江", "202"), ("广东", "茂名", "203"), ("广东", "潮州", "204"), ("广东", "揭阳", "205"), ("广东", "中山", "207"), ("广东", "清远", "208"), ("广东", "肇庆", "209"), ("广东", "河源", "210"), ("广东", "梅州", "211"), ("广东", "汕头", "212"), ("广东", "汕尾", "213"), ("河南", "郑州", "168"), ("河南", "南阳", "262"), ("河南", "新乡", "263"), ("河南", "开封", "264"), ("河南", "焦作", "265"), ("河南", "平顶山", "266"), ("河南", "许昌", "268"), ("河南", "安阳", "370"), ("河南", "驻马店", "371"), ("河南", "信阳", "373"), ("河南", "鹤壁", "374"), ("河南", "周口", "375"), ("河南", "商丘", "376"), ("河南", "洛阳", "378"), ("河南", "漯河", "379"), ("河南", "濮阳", "380"), ("河南", "三门峡", "381"), ("河南", "济源", "667"), ("四川", "成都", "97"), ("四川", "宜宾", "96"), ("四川", "绵阳", "98"), ("四川", "广元", "99"), ("四川", "遂宁", "100"), ("四川", "巴中", "101"), ("四川", "内江", "102"), ("四川", "泸州", "103"), ("四川", "南充", "104"), ("四川", "德阳", "106"), ("四川", "乐山", "107"), ("四川", "广安", "108"), ("四川", "资阳", "109"), ("四川", "自贡", "111"), ("四川", "攀枝花", "112"), ("四川", "达州", "113"), ("四川", "雅安", "114"), ("四川", "眉山", "291"), ("四川", "甘孜", "417"), ("四川", "阿坝", "457"), ("四川", "凉山", "479"), ("江苏", "南京", "125"), ("江苏", "苏州", "126"), ("江苏", "无锡", "127"), ("江苏", "连云港", "156"), ("江苏", "淮安", "157"), ("江苏", "扬州", "158"), ("江苏", "泰州", "159"), ("江苏", "盐城", "160"), ("江苏", "徐州", "161"), ("江苏", "常州", "162"), ("江苏", "南通", "163"), ("江苏", "镇江", "169"), ("江苏", "宿迁", "172"), ("湖北", "武汉", "28"), ("湖北", "黄石", "30"), ("湖北", "荆州", "31"), ("湖北", "襄阳", "32"), ("湖北", "黄冈", "33"), ("湖北", "荆门", "34"), ("湖北", "宜昌", "35"), ("湖北", "十堰", "36"), ("湖北", "随州", "37"), ("湖北", "恩施", "38"), ("湖北", "鄂州", "39"), ("湖北", "咸宁", "40"), ("湖北", "孝感", "41"), ("湖北", "仙桃", "42"), ("湖北", "天门", "73"), ("湖北", "潜江", "74"), ("湖北", "神农架", "687"), ("浙江", "杭州", "138"), ("浙江", "丽水", "134"), ("浙江", "金华", "135"), ("浙江", "温州", "149"), ("浙江", "台州", "287"), ("浙江", "衢州", "288"), ("浙江", "宁波", "289"), ("浙江", "绍兴", "303"), ("浙江", "嘉兴", "304"), ("浙江", "湖州", "305"), ("浙江", "舟山", "306"), ("福建", "福州", "50"), ("福建", "莆田", "51"), ("福建", "三明", "52"), ("福建", "龙岩", "53"), ("福建", "厦门", "54"), ("福建", "泉州", "55"), ("福建", "漳州", "56"), ("福建", "宁德", "87"), ("福建", "南平", "253"), ("黑龙江", "哈尔滨", "152"), ("黑龙江", "大庆", "153"), ("黑龙江", "伊春", "295"), ("黑龙江", "大兴安岭", "297"), ("黑龙江", "黑河", "300"), ("黑龙江", "鹤岗", "301"), ("黑龙江", "七台河", "302"), ("黑龙江", "齐齐哈尔", "319"), ("黑龙江", "佳木斯", "320"), ("黑龙江", "牡丹江", "322"), ("黑龙江", "鸡西", "323"), ("黑龙江", "绥化", "324"), ("黑龙江", "双鸭山", "359"), ("山东", "济南", "1"), ("山东", "滨州", "76"), ("山东", "青岛", "77"), ("山东", "烟台", "78"), ("山东", "临沂", "79"), ("山东", "潍坊", "80"), ("山东", "淄博", "81"), ("山东", "东营", "82"), ("山东", "聊城", "83"), ("山东", "菏泽", "84"), ("山东", "枣庄", "85"), ("山东", "德州", "86"), ("山东", "威海", "88"), ("山东", "济宁", "352"), ("山东", "泰安", "353"), ("山东", "莱芜", "356"), ("山东", "日照", "366"), ("陕西", "西安", "165"), ("陕西", "铜川", "271"), ("陕西", "安康", "272"), ("陕西", "宝鸡", "273"), ("陕西", "商洛", "274"), ("陕西", "渭南", "275"), ("陕西", "汉中", "276"), ("陕西", "咸阳", "277"), ("陕西", "榆林", "278"), ("陕西", "延安", "401"), ("河北", "石家庄", "141"), ("河北", "衡水", "143"), ("河北", "张家口", "144"), ("河北", "承德", "145"), ("河北", "秦皇岛", "146"), ("河北", "廊坊", "147"), ("河北", "沧州", "148"), ("河北", "保定", "259"), ("河北", "唐山", "261"), ("河北", "邯郸", "292"), ("河北", "邢台", "293"), ("辽宁", "沈阳", "150"), ("辽宁", "大连", "29"), ("辽宁", "盘锦", "151"), ("辽宁", "鞍山", "215"), ("辽宁", "朝阳", "216"), ("辽宁", "锦州", "217"), ("辽宁", "铁岭", "218"), ("辽宁", "丹东", "219"), ("辽宁", "本溪", "220"), ("辽宁", "营口", "221"), ("辽宁", "抚顺", "222"), ("辽宁", "阜新", "223"), ("辽宁", "辽阳", "224"), ("辽宁", "葫芦岛", "225"), ("吉林", "长春", "154"), ("吉林", "四平", "155"), ("吉林", "辽源", "191"), ("吉林", "松原", "194"), ("吉林", "吉林", "270"), ("吉林", "通化", "407"), ("吉林", "白山", "408"), ("吉林", "白城", "410"), ("吉林", "延边", "525"), ("云南", "昆明", "117"), ("云南", "玉溪", "123"), ("云南", "楚雄", "124"), ("云南", "大理", "334"), ("云南", "昭通", "335"), ("云南", "红河", "337"), ("云南", "曲靖", "339"), ("云南", "丽江", "342"), ("云南", "临沧", "350"), ("云南", "文山", "437"), ("云南", "保山", "438"), ("云南", "普洱", "666"), ("云南", "西双版纳", "668"), ("云南", "德宏", "669"), ("云南", "怒江", "671"), ("云南", "迪庆", "672"), ("新疆", "乌鲁木齐", "467"), ("新疆", "石河子", "280"), ("新疆", "吐鲁番", "310"), ("新疆", "昌吉", "311"), ("新疆", "哈密", "312"), ("新疆", "阿克苏", "315"), ("新疆", "克拉玛依", "317"), ("新疆", "博尔塔拉", "318"), ("新疆", "阿勒泰", "383"), ("新疆", "喀什", "384"), ("新疆", "和田", "386"), ("新疆", "巴音郭楞", "499"), ("新疆", "伊犁", "520"), ("新疆", "塔城", "563"), ("新疆", "克孜勒苏柯尔克孜", "653"), ("新疆", "五家渠", "661"), ("新疆", "阿拉尔", "692"), ("新疆", "图木舒克", "693"), ("广西", "南宁", "90"), ("广西", "柳州", "89"), ("广西", "桂林", "91"), ("广西", "贺州", "92"), ("广西", "贵港", "93"), ("广西", "玉林", "118"), ("广西", "河池", "119"), ("广西", "北海", "128"), ("广西", "钦州", "129"), ("广西", "防城港", "130"), ("广西", "百色", "131"), ("广西", "梧州", "132"), ("广西", "来宾", "506"), ("广西", "崇左", "665"), ("山西", "太原", "231"), ("山西", "大同", "227"), ("山西", "长治", "228"), ("山西", "忻州", "229"), ("山西", "晋中", "230"), ("山西", "临汾", "232"), ("山西", "运城", "233"), ("山西", "晋城", "234"), ("山西", "朔州", "235"), ("山西", "阳泉", "236"), ("山西", "吕梁", "237"), ("湖南", "长沙", "43"), ("湖南", "岳阳", "44"), ("湖南", "衡阳", "45"), ("湖南", "株洲", "46"), ("湖南", "湘潭", "47"), ("湖南", "益阳", "48"), ("湖南", "郴州", "49"), ("湖南", "湘西", "65"), ("湖南", "娄底", "66"), ("湖南", "怀化", "67"), ("湖南", "常德", "68"), ("湖南", "张家界", "226"), ("湖南", "永州", "269"), ("湖南", "邵阳", "405"), ("江西", "南昌", "5"), ("江西", "九江", "6"), ("江西", "鹰潭", "7"), ("江西", "抚州", "8"), ("江西", "上饶", "9"), ("江西", "赣州", "10"), ("江西", "吉安", "115"), ("江西", "萍乡", "136"), ("江西", "景德镇", "137"), ("江西", "新余", "246"), ("江西", "宜春", "256"), ("安徽", "合肥", "189"), ("安徽", "铜陵", "173"), ("安徽", "黄山", "174"), ("安徽", "池州", "175"), ("安徽", "宣城", "176"), ("安徽", "巢湖", "177"), ("安徽", "淮南", "178"), ("安徽", "宿州", "179"), ("安徽", "六安", "181"), ("安徽", "滁州", "182"), ("安徽", "淮北", "183"), ("安徽", "阜阳", "184"), ("安徽", "马鞍山", "185"), ("安徽", "安庆", "186"), ("安徽", "蚌埠", "187"), ("安徽", "芜湖", "188"), ("安徽", "亳州", "391"), ("内蒙古", "呼和浩特", "20"), ("内蒙古", "包头", "13"), ("内蒙古", "鄂尔多斯", "14"), ("内蒙古", "巴彦淖尔", "15"), ("内蒙古", "乌海", "16"), ("内蒙古", "阿拉善盟", "17"), ("内蒙古", "锡林郭勒盟", "19"), ("内蒙古", "赤峰", "21"), ("内蒙古", "通辽", "22"), ("内蒙古", "呼伦贝尔", "25"), ("内蒙古", "乌兰察布", "331"), ("内蒙古", "兴安盟", "333"), ("甘肃", "兰州", "166"), ("甘肃", "庆阳", "281"), ("甘肃", "定西", "282"), ("甘肃", "武威", "283"), ("甘肃", "酒泉", "284"), ("甘肃", "张掖", "285"), ("甘肃", "嘉峪关", "286"), ("甘肃", "平凉", "307"), ("甘肃", "天水", "308"), ("甘肃", "白银", "309"), ("甘肃", "金昌", "343"), ("甘肃", "陇南", "344"), ("甘肃", "临夏", "346"), ("甘肃", "甘南", "673"), ("海南", "海口", "239"), ("海南", "万宁", "241"), ("海南", "琼海", "242"), ("海南", "三亚", "243"), ("海南", "儋州", "244"), ("海南", "东方", "456"), ("海南", "五指山", "582"), ("海南", "文昌", "670"), ("海南", "陵水", "674"), ("海南", "澄迈", "675"), ("海南", "乐东", "679"), ("海南", "临高", "680"), ("海南", "定安", "681"), ("海南", "昌江", "683"), ("海南", "屯昌", "684"), ("海南", "保亭", "686"), ("海南", "白沙", "689"), ("海南", "琼中", "690"), ("贵州", "贵阳", "2"), ("贵州", "黔南", "3"), ("贵州", "六盘水", "4"), ("贵州", "遵义", "59"), ("贵州", "黔东南", "61"), ("贵州", "铜仁", "422"), ("贵州", "安顺", "424"), ("贵州", "毕节", "426"), ("贵州", "黔西南", "588"), ("宁夏", "银川", "140"), ("宁夏", "吴忠", "395"), ("宁夏", "固原", "396"), ("宁夏", "石嘴山", "472"), ("宁夏", "中卫", "480"), ("青海", "西宁", "139"), ("青海", "海西", "608"), ("青海", "海东", "652"), ("青海", "玉树", "659"), ("青海", "海南", "676"), ("青海", "海北", "682"), ("青海", "黄南", "685"), ("青海", "果洛", "688"), ("西藏", "拉萨", "466"), ("西藏", "日喀则", "516"), ("西藏", "那曲", "655"), ("西藏", "林芝", "656"), ("西藏", "山南", "677"), ("西藏", "昌都", "678"), ("西藏", "阿里", "691"), ("北京", "北京", "911"), ("上海", "上海", "910"), ("重庆", "重庆", "904"), ("天津", "天津", "923") } if province == "全国": area = "0" else: result_list = [item for item in baidu_area_map if item[0] == province and item[1] == city] if result_list: area = result_list[0][2] else: raise "请按照百度指数的要求输入正确的省份和城市" headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Cipher-Text": text, "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Referer": "https://index.baidu.com/v2/main/index.html", "Proxy-Connection": "keep-alive", "Referer": "zhishu.baidu.com", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) params = { "area": area, "word": '[[{"name":' + f'"{word}"' + ',"wordType"' + ":1}]]", "startDate": start_date, "endDate": end_date, } with session.get( url="http://index.baidu.com/api/SearchApi/index", params=params ) as response: data = response.json()["data"] all_data = data["userIndexes"][0]["all"]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = [int(item) if item != "" else 0 for item in result] if len(result) == len( pd.date_range(start=start_date, end=end_date, freq="7D") ): temp_df_7 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="7D"), result, ], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 else: temp_df_1 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="1D"), result, ], index=["date", word], ).T temp_df_1.index = pd.to_datetime(temp_df_1["date"]) del temp_df_1["date"] return temp_df_1
18,254
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_baidu.py
baidu_info_index
( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-06-01", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, )
百度-资讯指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 资讯指数 :rtype: pandas.Series
百度-资讯指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 资讯指数 :rtype: pandas.Series
522
979
def baidu_info_index( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-06-01", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, ) -> str: """ 百度-资讯指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 资讯指数 :rtype: pandas.Series """ baidu_area_map = { ("广东", "广州", "95"), ("广东", "深圳", "94"), ("广东", "东莞", "133"), ("广东", "云浮", "195"), ("广东", "佛山", "196"), ("广东", "湛江", "197"), ("广东", "江门", "198"), ("广东", "惠州", "199"), ("广东", "珠海", "200"), ("广东", "韶关", "201"), ("广东", "阳江", "202"), ("广东", "茂名", "203"), ("广东", "潮州", "204"), ("广东", "揭阳", "205"), ("广东", "中山", "207"), ("广东", "清远", "208"), ("广东", "肇庆", "209"), ("广东", "河源", "210"), ("广东", "梅州", "211"), ("广东", "汕头", "212"), ("广东", "汕尾", "213"), ("河南", "郑州", "168"), ("河南", "南阳", "262"), ("河南", "新乡", "263"), ("河南", "开封", "264"), ("河南", "焦作", "265"), ("河南", "平顶山", "266"), ("河南", "许昌", "268"), ("河南", "安阳", "370"), ("河南", "驻马店", "371"), ("河南", "信阳", "373"), ("河南", "鹤壁", "374"), ("河南", "周口", "375"), ("河南", "商丘", "376"), ("河南", "洛阳", "378"), ("河南", "漯河", "379"), ("河南", "濮阳", "380"), ("河南", "三门峡", "381"), ("河南", "济源", "667"), ("四川", "成都", "97"), ("四川", "宜宾", "96"), ("四川", "绵阳", "98"), ("四川", "广元", "99"), ("四川", "遂宁", "100"), ("四川", "巴中", "101"), ("四川", "内江", "102"), ("四川", "泸州", "103"), ("四川", "南充", "104"), ("四川", "德阳", "106"), ("四川", "乐山", "107"), ("四川", "广安", "108"), ("四川", "资阳", "109"), ("四川", "自贡", "111"), ("四川", "攀枝花", "112"), ("四川", "达州", "113"), ("四川", "雅安", "114"), ("四川", "眉山", "291"), ("四川", "甘孜", "417"), ("四川", "阿坝", "457"), ("四川", "凉山", "479"), ("江苏", "南京", "125"), ("江苏", "苏州", "126"), ("江苏", "无锡", "127"), ("江苏", "连云港", "156"), ("江苏", "淮安", "157"), ("江苏", "扬州", "158"), ("江苏", "泰州", "159"), ("江苏", "盐城", "160"), ("江苏", "徐州", "161"), ("江苏", "常州", "162"), ("江苏", "南通", "163"), ("江苏", "镇江", "169"), ("江苏", "宿迁", "172"), ("湖北", "武汉", "28"), ("湖北", "黄石", "30"), ("湖北", "荆州", "31"), ("湖北", "襄阳", "32"), ("湖北", "黄冈", "33"), ("湖北", "荆门", "34"), ("湖北", "宜昌", "35"), ("湖北", "十堰", "36"), ("湖北", "随州", "37"), ("湖北", "恩施", "38"), ("湖北", "鄂州", "39"), ("湖北", "咸宁", "40"), ("湖北", "孝感", "41"), ("湖北", "仙桃", "42"), ("湖北", "天门", "73"), ("湖北", "潜江", "74"), ("湖北", "神农架", "687"), ("浙江", "杭州", "138"), ("浙江", "丽水", "134"), ("浙江", "金华", "135"), ("浙江", "温州", "149"), ("浙江", "台州", "287"), ("浙江", "衢州", "288"), ("浙江", "宁波", "289"), ("浙江", "绍兴", "303"), ("浙江", "嘉兴", "304"), ("浙江", "湖州", "305"), ("浙江", "舟山", "306"), ("福建", "福州", "50"), ("福建", "莆田", "51"), ("福建", "三明", "52"), ("福建", "龙岩", "53"), ("福建", "厦门", "54"), ("福建", "泉州", "55"), ("福建", "漳州", "56"), ("福建", "宁德", "87"), ("福建", "南平", "253"), ("黑龙江", "哈尔滨", "152"), ("黑龙江", "大庆", "153"), ("黑龙江", "伊春", "295"), ("黑龙江", "大兴安岭", "297"), ("黑龙江", "黑河", "300"), ("黑龙江", "鹤岗", "301"), ("黑龙江", "七台河", "302"), ("黑龙江", "齐齐哈尔", "319"), ("黑龙江", "佳木斯", "320"), ("黑龙江", "牡丹江", "322"), ("黑龙江", "鸡西", "323"), ("黑龙江", "绥化", "324"), ("黑龙江", "双鸭山", "359"), ("山东", "济南", "1"), ("山东", "滨州", "76"), ("山东", "青岛", "77"), ("山东", "烟台", "78"), ("山东", "临沂", "79"), ("山东", "潍坊", "80"), ("山东", "淄博", "81"), ("山东", "东营", "82"), ("山东", "聊城", "83"), ("山东", "菏泽", "84"), ("山东", "枣庄", "85"), ("山东", "德州", "86"), ("山东", "威海", "88"), ("山东", "济宁", "352"), ("山东", "泰安", "353"), ("山东", "莱芜", "356"), ("山东", "日照", "366"), ("陕西", "西安", "165"), ("陕西", "铜川", "271"), ("陕西", "安康", "272"), ("陕西", "宝鸡", "273"), ("陕西", "商洛", "274"), ("陕西", "渭南", "275"), ("陕西", "汉中", "276"), ("陕西", "咸阳", "277"), ("陕西", "榆林", "278"), ("陕西", "延安", "401"), ("河北", "石家庄", "141"), ("河北", "衡水", "143"), ("河北", "张家口", "144"), ("河北", "承德", "145"), ("河北", "秦皇岛", "146"), ("河北", "廊坊", "147"), ("河北", "沧州", "148"), ("河北", "保定", "259"), ("河北", "唐山", "261"), ("河北", "邯郸", "292"), ("河北", "邢台", "293"), ("辽宁", "沈阳", "150"), ("辽宁", "大连", "29"), ("辽宁", "盘锦", "151"), ("辽宁", "鞍山", "215"), ("辽宁", "朝阳", "216"), ("辽宁", "锦州", "217"), ("辽宁", "铁岭", "218"), ("辽宁", "丹东", "219"), ("辽宁", "本溪", "220"), ("辽宁", "营口", "221"), ("辽宁", "抚顺", "222"), ("辽宁", "阜新", "223"), ("辽宁", "辽阳", "224"), ("辽宁", "葫芦岛", "225"), ("吉林", "长春", "154"), ("吉林", "四平", "155"), ("吉林", "辽源", "191"), ("吉林", "松原", "194"), ("吉林", "吉林", "270"), ("吉林", "通化", "407"), ("吉林", "白山", "408"), ("吉林", "白城", "410"), ("吉林", "延边", "525"), ("云南", "昆明", "117"), ("云南", "玉溪", "123"), ("云南", "楚雄", "124"), ("云南", "大理", "334"), ("云南", "昭通", "335"), ("云南", "红河", "337"), ("云南", "曲靖", "339"), ("云南", "丽江", "342"), ("云南", "临沧", "350"), ("云南", "文山", "437"), ("云南", "保山", "438"), ("云南", "普洱", "666"), ("云南", "西双版纳", "668"), ("云南", "德宏", "669"), ("云南", "怒江", "671"), ("云南", "迪庆", "672"), ("新疆", "乌鲁木齐", "467"), ("新疆", "石河子", "280"), ("新疆", "吐鲁番", "310"), ("新疆", "昌吉", "311"), ("新疆", "哈密", "312"), ("新疆", "阿克苏", "315"), ("新疆", "克拉玛依", "317"), ("新疆", "博尔塔拉", "318"), ("新疆", "阿勒泰", "383"), ("新疆", "喀什", "384"), ("新疆", "和田", "386"), ("新疆", "巴音郭楞", "499"), ("新疆", "伊犁", "520"), ("新疆", "塔城", "563"), ("新疆", "克孜勒苏柯尔克孜", "653"), ("新疆", "五家渠", "661"), ("新疆", "阿拉尔", "692"), ("新疆", "图木舒克", "693"), ("广西", "南宁", "90"), ("广西", "柳州", "89"), ("广西", "桂林", "91"), ("广西", "贺州", "92"), ("广西", "贵港", "93"), ("广西", "玉林", "118"), ("广西", "河池", "119"), ("广西", "北海", "128"), ("广西", "钦州", "129"), ("广西", "防城港", "130"), ("广西", "百色", "131"), ("广西", "梧州", "132"), ("广西", "来宾", "506"), ("广西", "崇左", "665"), ("山西", "太原", "231"), ("山西", "大同", "227"), ("山西", "长治", "228"), ("山西", "忻州", "229"), ("山西", "晋中", "230"), ("山西", "临汾", "232"), ("山西", "运城", "233"), ("山西", "晋城", "234"), ("山西", "朔州", "235"), ("山西", "阳泉", "236"), ("山西", "吕梁", "237"), ("湖南", "长沙", "43"), ("湖南", "岳阳", "44"), ("湖南", "衡阳", "45"), ("湖南", "株洲", "46"), ("湖南", "湘潭", "47"), ("湖南", "益阳", "48"), ("湖南", "郴州", "49"), ("湖南", "湘西", "65"), ("湖南", "娄底", "66"), ("湖南", "怀化", "67"), ("湖南", "常德", "68"), ("湖南", "张家界", "226"), ("湖南", "永州", "269"), ("湖南", "邵阳", "405"), ("江西", "南昌", "5"), ("江西", "九江", "6"), ("江西", "鹰潭", "7"), ("江西", "抚州", "8"), ("江西", "上饶", "9"), ("江西", "赣州", "10"), ("江西", "吉安", "115"), ("江西", "萍乡", "136"), ("江西", "景德镇", "137"), ("江西", "新余", "246"), ("江西", "宜春", "256"), ("安徽", "合肥", "189"), ("安徽", "铜陵", "173"), ("安徽", "黄山", "174"), ("安徽", "池州", "175"), ("安徽", "宣城", "176"), ("安徽", "巢湖", "177"), ("安徽", "淮南", "178"), ("安徽", "宿州", "179"), ("安徽", "六安", "181"), ("安徽", "滁州", "182"), ("安徽", "淮北", "183"), ("安徽", "阜阳", "184"), ("安徽", "马鞍山", "185"), ("安徽", "安庆", "186"), ("安徽", "蚌埠", "187"), ("安徽", "芜湖", "188"), ("安徽", "亳州", "391"), ("内蒙古", "呼和浩特", "20"), ("内蒙古", "包头", "13"), ("内蒙古", "鄂尔多斯", "14"), ("内蒙古", "巴彦淖尔", "15"), ("内蒙古", "乌海", "16"), ("内蒙古", "阿拉善盟", "17"), ("内蒙古", "锡林郭勒盟", "19"), ("内蒙古", "赤峰", "21"), ("内蒙古", "通辽", "22"), ("内蒙古", "呼伦贝尔", "25"), ("内蒙古", "乌兰察布", "331"), ("内蒙古", "兴安盟", "333"), ("甘肃", "兰州", "166"), ("甘肃", "庆阳", "281"), ("甘肃", "定西", "282"), ("甘肃", "武威", "283"), ("甘肃", "酒泉", "284"), ("甘肃", "张掖", "285"), ("甘肃", "嘉峪关", "286"), ("甘肃", "平凉", "307"), ("甘肃", "天水", "308"), ("甘肃", "白银", "309"), ("甘肃", "金昌", "343"), ("甘肃", "陇南", "344"), ("甘肃", "临夏", "346"), ("甘肃", "甘南", "673"), ("海南", "海口", "239"), ("海南", "万宁", "241"), ("海南", "琼海", "242"), ("海南", "三亚", "243"), ("海南", "儋州", "244"), ("海南", "东方", "456"), ("海南", "五指山", "582"), ("海南", "文昌", "670"), ("海南", "陵水", "674"), ("海南", "澄迈", "675"), ("海南", "乐东", "679"), ("海南", "临高", "680"), ("海南", "定安", "681"), ("海南", "昌江", "683"), ("海南", "屯昌", "684"), ("海南", "保亭", "686"), ("海南", "白沙", "689"), ("海南", "琼中", "690"), ("贵州", "贵阳", "2"), ("贵州", "黔南", "3"), ("贵州", "六盘水", "4"), ("贵州", "遵义", "59"), ("贵州", "黔东南", "61"), ("贵州", "铜仁", "422"), ("贵州", "安顺", "424"), ("贵州", "毕节", "426"), ("贵州", "黔西南", "588"), ("宁夏", "银川", "140"), ("宁夏", "吴忠", "395"), ("宁夏", "固原", "396"), ("宁夏", "石嘴山", "472"), ("宁夏", "中卫", "480"), ("青海", "西宁", "139"), ("青海", "海西", "608"), ("青海", "海东", "652"), ("青海", "玉树", "659"), ("青海", "海南", "676"), ("青海", "海北", "682"), ("青海", "黄南", "685"), ("青海", "果洛", "688"), ("西藏", "拉萨", "466"), ("西藏", "日喀则", "516"), ("西藏", "那曲", "655"), ("西藏", "林芝", "656"), ("西藏", "山南", "677"), ("西藏", "昌都", "678"), ("西藏", "阿里", "691"), ("北京", "北京", "911"), ("上海", "上海", "910"), ("重庆", "重庆", "904"), ("天津", "天津", "923") } if province == "全国": area = "0" else: result_list = [item for item in baidu_area_map if item[0] == province and item[1] == city] if result_list: area = result_list[0][2] else: raise "请按照百度指数的要求输入正确的省份和城市" headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cipher-Text": text, "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "https://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) params = { "area": area, "word": '[[{"name":' + f'"{word}"' + ',"wordType"' + ":1}]]", "startDate": start_date, "endDate": end_date, } with session.get( url=f"http://index.baidu.com/api/FeedSearchApi/getFeedIndex", params=params, ) as response: data = response.json()["data"] all_data = data["index"][0]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = [int(item) if item != "" else 0 for item in result] if len(result) == len( pd.date_range(start=start_date, end=end_date, freq="7D") ): temp_df_7 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="7D"), result, ], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 else: temp_df_1 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="1D"), result, ], index=["date", word], ).T temp_df_1.index = pd.to_datetime(temp_df_1["date"]) del temp_df_1["date"] return temp_df_1
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_baidu.py#L522-L979
25
[ 0 ]
0.218341
[ 29, 393, 394, 396, 397, 398, 400, 401, 416, 417, 418, 424, 428, 429, 430, 431, 432, 433, 434, 437, 444, 445, 446, 448, 455, 456, 457 ]
5.895197
false
8.181818
458
8
94.104803
18
def baidu_info_index( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-06-01", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, ) -> str: baidu_area_map = { ("广东", "广州", "95"), ("广东", "深圳", "94"), ("广东", "东莞", "133"), ("广东", "云浮", "195"), ("广东", "佛山", "196"), ("广东", "湛江", "197"), ("广东", "江门", "198"), ("广东", "惠州", "199"), ("广东", "珠海", "200"), ("广东", "韶关", "201"), ("广东", "阳江", "202"), ("广东", "茂名", "203"), ("广东", "潮州", "204"), ("广东", "揭阳", "205"), ("广东", "中山", "207"), ("广东", "清远", "208"), ("广东", "肇庆", "209"), ("广东", "河源", "210"), ("广东", "梅州", "211"), ("广东", "汕头", "212"), ("广东", "汕尾", "213"), ("河南", "郑州", "168"), ("河南", "南阳", "262"), ("河南", "新乡", "263"), ("河南", "开封", "264"), ("河南", "焦作", "265"), ("河南", "平顶山", "266"), ("河南", "许昌", "268"), ("河南", "安阳", "370"), ("河南", "驻马店", "371"), ("河南", "信阳", "373"), ("河南", "鹤壁", "374"), ("河南", "周口", "375"), ("河南", "商丘", "376"), ("河南", "洛阳", "378"), ("河南", "漯河", "379"), ("河南", "濮阳", "380"), ("河南", "三门峡", "381"), ("河南", "济源", "667"), ("四川", "成都", "97"), ("四川", "宜宾", "96"), ("四川", "绵阳", "98"), ("四川", "广元", "99"), ("四川", "遂宁", "100"), ("四川", "巴中", "101"), ("四川", "内江", "102"), ("四川", "泸州", "103"), ("四川", "南充", "104"), ("四川", "德阳", "106"), ("四川", "乐山", "107"), ("四川", "广安", "108"), ("四川", "资阳", "109"), ("四川", "自贡", "111"), ("四川", "攀枝花", "112"), ("四川", "达州", "113"), ("四川", "雅安", "114"), ("四川", "眉山", "291"), ("四川", "甘孜", "417"), ("四川", "阿坝", "457"), ("四川", "凉山", "479"), ("江苏", "南京", "125"), ("江苏", "苏州", "126"), ("江苏", "无锡", "127"), ("江苏", "连云港", "156"), ("江苏", "淮安", "157"), ("江苏", "扬州", "158"), ("江苏", "泰州", "159"), ("江苏", "盐城", "160"), ("江苏", "徐州", "161"), ("江苏", "常州", "162"), ("江苏", "南通", "163"), ("江苏", "镇江", "169"), ("江苏", "宿迁", "172"), ("湖北", "武汉", "28"), ("湖北", "黄石", "30"), ("湖北", "荆州", "31"), ("湖北", "襄阳", "32"), ("湖北", "黄冈", "33"), ("湖北", "荆门", "34"), ("湖北", "宜昌", "35"), ("湖北", "十堰", "36"), ("湖北", "随州", "37"), ("湖北", "恩施", "38"), ("湖北", "鄂州", "39"), ("湖北", "咸宁", "40"), ("湖北", "孝感", "41"), ("湖北", "仙桃", "42"), ("湖北", "天门", "73"), ("湖北", "潜江", "74"), ("湖北", "神农架", "687"), ("浙江", "杭州", "138"), ("浙江", "丽水", "134"), ("浙江", "金华", "135"), ("浙江", "温州", "149"), ("浙江", "台州", "287"), ("浙江", "衢州", "288"), ("浙江", "宁波", "289"), ("浙江", "绍兴", "303"), ("浙江", "嘉兴", "304"), ("浙江", "湖州", "305"), ("浙江", "舟山", "306"), ("福建", "福州", "50"), ("福建", "莆田", "51"), ("福建", "三明", "52"), ("福建", "龙岩", "53"), ("福建", "厦门", "54"), ("福建", "泉州", "55"), ("福建", "漳州", "56"), ("福建", "宁德", "87"), ("福建", "南平", "253"), ("黑龙江", "哈尔滨", "152"), ("黑龙江", "大庆", "153"), ("黑龙江", "伊春", "295"), ("黑龙江", "大兴安岭", "297"), ("黑龙江", "黑河", "300"), ("黑龙江", "鹤岗", "301"), ("黑龙江", "七台河", "302"), ("黑龙江", "齐齐哈尔", "319"), ("黑龙江", "佳木斯", "320"), ("黑龙江", "牡丹江", "322"), ("黑龙江", "鸡西", "323"), ("黑龙江", "绥化", "324"), ("黑龙江", "双鸭山", "359"), ("山东", "济南", "1"), ("山东", "滨州", "76"), ("山东", "青岛", "77"), ("山东", "烟台", "78"), ("山东", "临沂", "79"), ("山东", "潍坊", "80"), ("山东", "淄博", "81"), ("山东", "东营", "82"), ("山东", "聊城", "83"), ("山东", "菏泽", "84"), ("山东", "枣庄", "85"), ("山东", "德州", "86"), ("山东", "威海", "88"), ("山东", "济宁", "352"), ("山东", "泰安", "353"), ("山东", "莱芜", "356"), ("山东", "日照", "366"), ("陕西", "西安", "165"), ("陕西", "铜川", "271"), ("陕西", "安康", "272"), ("陕西", "宝鸡", "273"), ("陕西", "商洛", "274"), ("陕西", "渭南", "275"), ("陕西", "汉中", "276"), ("陕西", "咸阳", "277"), ("陕西", "榆林", "278"), ("陕西", "延安", "401"), ("河北", "石家庄", "141"), ("河北", "衡水", "143"), ("河北", "张家口", "144"), ("河北", "承德", "145"), ("河北", "秦皇岛", "146"), ("河北", "廊坊", "147"), ("河北", "沧州", "148"), ("河北", "保定", "259"), ("河北", "唐山", "261"), ("河北", "邯郸", "292"), ("河北", "邢台", "293"), ("辽宁", "沈阳", "150"), ("辽宁", "大连", "29"), ("辽宁", "盘锦", "151"), ("辽宁", "鞍山", "215"), ("辽宁", "朝阳", "216"), ("辽宁", "锦州", "217"), ("辽宁", "铁岭", "218"), ("辽宁", "丹东", "219"), ("辽宁", "本溪", "220"), ("辽宁", "营口", "221"), ("辽宁", "抚顺", "222"), ("辽宁", "阜新", "223"), ("辽宁", "辽阳", "224"), ("辽宁", "葫芦岛", "225"), ("吉林", "长春", "154"), ("吉林", "四平", "155"), ("吉林", "辽源", "191"), ("吉林", "松原", "194"), ("吉林", "吉林", "270"), ("吉林", "通化", "407"), ("吉林", "白山", "408"), ("吉林", "白城", "410"), ("吉林", "延边", "525"), ("云南", "昆明", "117"), ("云南", "玉溪", "123"), ("云南", "楚雄", "124"), ("云南", "大理", "334"), ("云南", "昭通", "335"), ("云南", "红河", "337"), ("云南", "曲靖", "339"), ("云南", "丽江", "342"), ("云南", "临沧", "350"), ("云南", "文山", "437"), ("云南", "保山", "438"), ("云南", "普洱", "666"), ("云南", "西双版纳", "668"), ("云南", "德宏", "669"), ("云南", "怒江", "671"), ("云南", "迪庆", "672"), ("新疆", "乌鲁木齐", "467"), ("新疆", "石河子", "280"), ("新疆", "吐鲁番", "310"), ("新疆", "昌吉", "311"), ("新疆", "哈密", "312"), ("新疆", "阿克苏", "315"), ("新疆", "克拉玛依", "317"), ("新疆", "博尔塔拉", "318"), ("新疆", "阿勒泰", "383"), ("新疆", "喀什", "384"), ("新疆", "和田", "386"), ("新疆", "巴音郭楞", "499"), ("新疆", "伊犁", "520"), ("新疆", "塔城", "563"), ("新疆", "克孜勒苏柯尔克孜", "653"), ("新疆", "五家渠", "661"), ("新疆", "阿拉尔", "692"), ("新疆", "图木舒克", "693"), ("广西", "南宁", "90"), ("广西", "柳州", "89"), ("广西", "桂林", "91"), ("广西", "贺州", "92"), ("广西", "贵港", "93"), ("广西", "玉林", "118"), ("广西", "河池", "119"), ("广西", "北海", "128"), ("广西", "钦州", "129"), ("广西", "防城港", "130"), ("广西", "百色", "131"), ("广西", "梧州", "132"), ("广西", "来宾", "506"), ("广西", "崇左", "665"), ("山西", "太原", "231"), ("山西", "大同", "227"), ("山西", "长治", "228"), ("山西", "忻州", "229"), ("山西", "晋中", "230"), ("山西", "临汾", "232"), ("山西", "运城", "233"), ("山西", "晋城", "234"), ("山西", "朔州", "235"), ("山西", "阳泉", "236"), ("山西", "吕梁", "237"), ("湖南", "长沙", "43"), ("湖南", "岳阳", "44"), ("湖南", "衡阳", "45"), ("湖南", "株洲", "46"), ("湖南", "湘潭", "47"), ("湖南", "益阳", "48"), ("湖南", "郴州", "49"), ("湖南", "湘西", "65"), ("湖南", "娄底", "66"), ("湖南", "怀化", "67"), ("湖南", "常德", "68"), ("湖南", "张家界", "226"), ("湖南", "永州", "269"), ("湖南", "邵阳", "405"), ("江西", "南昌", "5"), ("江西", "九江", "6"), ("江西", "鹰潭", "7"), ("江西", "抚州", "8"), ("江西", "上饶", "9"), ("江西", "赣州", "10"), ("江西", "吉安", "115"), ("江西", "萍乡", "136"), ("江西", "景德镇", "137"), ("江西", "新余", "246"), ("江西", "宜春", "256"), ("安徽", "合肥", "189"), ("安徽", "铜陵", "173"), ("安徽", "黄山", "174"), ("安徽", "池州", "175"), ("安徽", "宣城", "176"), ("安徽", "巢湖", "177"), ("安徽", "淮南", "178"), ("安徽", "宿州", "179"), ("安徽", "六安", "181"), ("安徽", "滁州", "182"), ("安徽", "淮北", "183"), ("安徽", "阜阳", "184"), ("安徽", "马鞍山", "185"), ("安徽", "安庆", "186"), ("安徽", "蚌埠", "187"), ("安徽", "芜湖", "188"), ("安徽", "亳州", "391"), ("内蒙古", "呼和浩特", "20"), ("内蒙古", "包头", "13"), ("内蒙古", "鄂尔多斯", "14"), ("内蒙古", "巴彦淖尔", "15"), ("内蒙古", "乌海", "16"), ("内蒙古", "阿拉善盟", "17"), ("内蒙古", "锡林郭勒盟", "19"), ("内蒙古", "赤峰", "21"), ("内蒙古", "通辽", "22"), ("内蒙古", "呼伦贝尔", "25"), ("内蒙古", "乌兰察布", "331"), ("内蒙古", "兴安盟", "333"), ("甘肃", "兰州", "166"), ("甘肃", "庆阳", "281"), ("甘肃", "定西", "282"), ("甘肃", "武威", "283"), ("甘肃", "酒泉", "284"), ("甘肃", "张掖", "285"), ("甘肃", "嘉峪关", "286"), ("甘肃", "平凉", "307"), ("甘肃", "天水", "308"), ("甘肃", "白银", "309"), ("甘肃", "金昌", "343"), ("甘肃", "陇南", "344"), ("甘肃", "临夏", "346"), ("甘肃", "甘南", "673"), ("海南", "海口", "239"), ("海南", "万宁", "241"), ("海南", "琼海", "242"), ("海南", "三亚", "243"), ("海南", "儋州", "244"), ("海南", "东方", "456"), ("海南", "五指山", "582"), ("海南", "文昌", "670"), ("海南", "陵水", "674"), ("海南", "澄迈", "675"), ("海南", "乐东", "679"), ("海南", "临高", "680"), ("海南", "定安", "681"), ("海南", "昌江", "683"), ("海南", "屯昌", "684"), ("海南", "保亭", "686"), ("海南", "白沙", "689"), ("海南", "琼中", "690"), ("贵州", "贵阳", "2"), ("贵州", "黔南", "3"), ("贵州", "六盘水", "4"), ("贵州", "遵义", "59"), ("贵州", "黔东南", "61"), ("贵州", "铜仁", "422"), ("贵州", "安顺", "424"), ("贵州", "毕节", "426"), ("贵州", "黔西南", "588"), ("宁夏", "银川", "140"), ("宁夏", "吴忠", "395"), ("宁夏", "固原", "396"), ("宁夏", "石嘴山", "472"), ("宁夏", "中卫", "480"), ("青海", "西宁", "139"), ("青海", "海西", "608"), ("青海", "海东", "652"), ("青海", "玉树", "659"), ("青海", "海南", "676"), ("青海", "海北", "682"), ("青海", "黄南", "685"), ("青海", "果洛", "688"), ("西藏", "拉萨", "466"), ("西藏", "日喀则", "516"), ("西藏", "那曲", "655"), ("西藏", "林芝", "656"), ("西藏", "山南", "677"), ("西藏", "昌都", "678"), ("西藏", "阿里", "691"), ("北京", "北京", "911"), ("上海", "上海", "910"), ("重庆", "重庆", "904"), ("天津", "天津", "923") } if province == "全国": area = "0" else: result_list = [item for item in baidu_area_map if item[0] == province and item[1] == city] if result_list: area = result_list[0][2] else: raise "请按照百度指数的要求输入正确的省份和城市" headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cipher-Text": text, "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "https://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) params = { "area": area, "word": '[[{"name":' + f'"{word}"' + ',"wordType"' + ":1}]]", "startDate": start_date, "endDate": end_date, } with session.get( url=f"http://index.baidu.com/api/FeedSearchApi/getFeedIndex", params=params, ) as response: data = response.json()["data"] all_data = data["index"][0]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = [int(item) if item != "" else 0 for item in result] if len(result) == len( pd.date_range(start=start_date, end=end_date, freq="7D") ): temp_df_7 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="7D"), result, ], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 else: temp_df_1 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="1D"), result, ], index=["date", word], ).T temp_df_1.index = pd.to_datetime(temp_df_1["date"]) del temp_df_1["date"] return temp_df_1
18,255
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_baidu.py
baidu_media_index
( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-04-20", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, )
百度-媒体指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 媒体指数 :rtype: pandas.Series
百度-媒体指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 媒体指数 :rtype: pandas.Series
982
1,439
def baidu_media_index( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-04-20", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, ) -> str: """ 百度-媒体指数 https://index.baidu.com/v2/index.html :param word: 需要搜索的词语 :type word: str :param start_date: 开始时间;注意开始时间和结束时间不要超过一年 :type start_date: str :param end_date: 结束时间;注意开始时间和结束时间不要超过一年 :type end_date: str :param province: 省份, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`四川` :type province: str :param city: 城市, 默认为 `全国`; 请按照百度指数提供的名称进行输入, 比如:`成都` :type city: str :param cookie: 输入 cookie :type cookie: str :param text: 输入 text :type text: str :return: 媒体指数 :rtype: pandas.Series """ baidu_area_map = { ("广东", "广州", "95"), ("广东", "深圳", "94"), ("广东", "东莞", "133"), ("广东", "云浮", "195"), ("广东", "佛山", "196"), ("广东", "湛江", "197"), ("广东", "江门", "198"), ("广东", "惠州", "199"), ("广东", "珠海", "200"), ("广东", "韶关", "201"), ("广东", "阳江", "202"), ("广东", "茂名", "203"), ("广东", "潮州", "204"), ("广东", "揭阳", "205"), ("广东", "中山", "207"), ("广东", "清远", "208"), ("广东", "肇庆", "209"), ("广东", "河源", "210"), ("广东", "梅州", "211"), ("广东", "汕头", "212"), ("广东", "汕尾", "213"), ("河南", "郑州", "168"), ("河南", "南阳", "262"), ("河南", "新乡", "263"), ("河南", "开封", "264"), ("河南", "焦作", "265"), ("河南", "平顶山", "266"), ("河南", "许昌", "268"), ("河南", "安阳", "370"), ("河南", "驻马店", "371"), ("河南", "信阳", "373"), ("河南", "鹤壁", "374"), ("河南", "周口", "375"), ("河南", "商丘", "376"), ("河南", "洛阳", "378"), ("河南", "漯河", "379"), ("河南", "濮阳", "380"), ("河南", "三门峡", "381"), ("河南", "济源", "667"), ("四川", "成都", "97"), ("四川", "宜宾", "96"), ("四川", "绵阳", "98"), ("四川", "广元", "99"), ("四川", "遂宁", "100"), ("四川", "巴中", "101"), ("四川", "内江", "102"), ("四川", "泸州", "103"), ("四川", "南充", "104"), ("四川", "德阳", "106"), ("四川", "乐山", "107"), ("四川", "广安", "108"), ("四川", "资阳", "109"), ("四川", "自贡", "111"), ("四川", "攀枝花", "112"), ("四川", "达州", "113"), ("四川", "雅安", "114"), ("四川", "眉山", "291"), ("四川", "甘孜", "417"), ("四川", "阿坝", "457"), ("四川", "凉山", "479"), ("江苏", "南京", "125"), ("江苏", "苏州", "126"), ("江苏", "无锡", "127"), ("江苏", "连云港", "156"), ("江苏", "淮安", "157"), ("江苏", "扬州", "158"), ("江苏", "泰州", "159"), ("江苏", "盐城", "160"), ("江苏", "徐州", "161"), ("江苏", "常州", "162"), ("江苏", "南通", "163"), ("江苏", "镇江", "169"), ("江苏", "宿迁", "172"), ("湖北", "武汉", "28"), ("湖北", "黄石", "30"), ("湖北", "荆州", "31"), ("湖北", "襄阳", "32"), ("湖北", "黄冈", "33"), ("湖北", "荆门", "34"), ("湖北", "宜昌", "35"), ("湖北", "十堰", "36"), ("湖北", "随州", "37"), ("湖北", "恩施", "38"), ("湖北", "鄂州", "39"), ("湖北", "咸宁", "40"), ("湖北", "孝感", "41"), ("湖北", "仙桃", "42"), ("湖北", "天门", "73"), ("湖北", "潜江", "74"), ("湖北", "神农架", "687"), ("浙江", "杭州", "138"), ("浙江", "丽水", "134"), ("浙江", "金华", "135"), ("浙江", "温州", "149"), ("浙江", "台州", "287"), ("浙江", "衢州", "288"), ("浙江", "宁波", "289"), ("浙江", "绍兴", "303"), ("浙江", "嘉兴", "304"), ("浙江", "湖州", "305"), ("浙江", "舟山", "306"), ("福建", "福州", "50"), ("福建", "莆田", "51"), ("福建", "三明", "52"), ("福建", "龙岩", "53"), ("福建", "厦门", "54"), ("福建", "泉州", "55"), ("福建", "漳州", "56"), ("福建", "宁德", "87"), ("福建", "南平", "253"), ("黑龙江", "哈尔滨", "152"), ("黑龙江", "大庆", "153"), ("黑龙江", "伊春", "295"), ("黑龙江", "大兴安岭", "297"), ("黑龙江", "黑河", "300"), ("黑龙江", "鹤岗", "301"), ("黑龙江", "七台河", "302"), ("黑龙江", "齐齐哈尔", "319"), ("黑龙江", "佳木斯", "320"), ("黑龙江", "牡丹江", "322"), ("黑龙江", "鸡西", "323"), ("黑龙江", "绥化", "324"), ("黑龙江", "双鸭山", "359"), ("山东", "济南", "1"), ("山东", "滨州", "76"), ("山东", "青岛", "77"), ("山东", "烟台", "78"), ("山东", "临沂", "79"), ("山东", "潍坊", "80"), ("山东", "淄博", "81"), ("山东", "东营", "82"), ("山东", "聊城", "83"), ("山东", "菏泽", "84"), ("山东", "枣庄", "85"), ("山东", "德州", "86"), ("山东", "威海", "88"), ("山东", "济宁", "352"), ("山东", "泰安", "353"), ("山东", "莱芜", "356"), ("山东", "日照", "366"), ("陕西", "西安", "165"), ("陕西", "铜川", "271"), ("陕西", "安康", "272"), ("陕西", "宝鸡", "273"), ("陕西", "商洛", "274"), ("陕西", "渭南", "275"), ("陕西", "汉中", "276"), ("陕西", "咸阳", "277"), ("陕西", "榆林", "278"), ("陕西", "延安", "401"), ("河北", "石家庄", "141"), ("河北", "衡水", "143"), ("河北", "张家口", "144"), ("河北", "承德", "145"), ("河北", "秦皇岛", "146"), ("河北", "廊坊", "147"), ("河北", "沧州", "148"), ("河北", "保定", "259"), ("河北", "唐山", "261"), ("河北", "邯郸", "292"), ("河北", "邢台", "293"), ("辽宁", "沈阳", "150"), ("辽宁", "大连", "29"), ("辽宁", "盘锦", "151"), ("辽宁", "鞍山", "215"), ("辽宁", "朝阳", "216"), ("辽宁", "锦州", "217"), ("辽宁", "铁岭", "218"), ("辽宁", "丹东", "219"), ("辽宁", "本溪", "220"), ("辽宁", "营口", "221"), ("辽宁", "抚顺", "222"), ("辽宁", "阜新", "223"), ("辽宁", "辽阳", "224"), ("辽宁", "葫芦岛", "225"), ("吉林", "长春", "154"), ("吉林", "四平", "155"), ("吉林", "辽源", "191"), ("吉林", "松原", "194"), ("吉林", "吉林", "270"), ("吉林", "通化", "407"), ("吉林", "白山", "408"), ("吉林", "白城", "410"), ("吉林", "延边", "525"), ("云南", "昆明", "117"), ("云南", "玉溪", "123"), ("云南", "楚雄", "124"), ("云南", "大理", "334"), ("云南", "昭通", "335"), ("云南", "红河", "337"), ("云南", "曲靖", "339"), ("云南", "丽江", "342"), ("云南", "临沧", "350"), ("云南", "文山", "437"), ("云南", "保山", "438"), ("云南", "普洱", "666"), ("云南", "西双版纳", "668"), ("云南", "德宏", "669"), ("云南", "怒江", "671"), ("云南", "迪庆", "672"), ("新疆", "乌鲁木齐", "467"), ("新疆", "石河子", "280"), ("新疆", "吐鲁番", "310"), ("新疆", "昌吉", "311"), ("新疆", "哈密", "312"), ("新疆", "阿克苏", "315"), ("新疆", "克拉玛依", "317"), ("新疆", "博尔塔拉", "318"), ("新疆", "阿勒泰", "383"), ("新疆", "喀什", "384"), ("新疆", "和田", "386"), ("新疆", "巴音郭楞", "499"), ("新疆", "伊犁", "520"), ("新疆", "塔城", "563"), ("新疆", "克孜勒苏柯尔克孜", "653"), ("新疆", "五家渠", "661"), ("新疆", "阿拉尔", "692"), ("新疆", "图木舒克", "693"), ("广西", "南宁", "90"), ("广西", "柳州", "89"), ("广西", "桂林", "91"), ("广西", "贺州", "92"), ("广西", "贵港", "93"), ("广西", "玉林", "118"), ("广西", "河池", "119"), ("广西", "北海", "128"), ("广西", "钦州", "129"), ("广西", "防城港", "130"), ("广西", "百色", "131"), ("广西", "梧州", "132"), ("广西", "来宾", "506"), ("广西", "崇左", "665"), ("山西", "太原", "231"), ("山西", "大同", "227"), ("山西", "长治", "228"), ("山西", "忻州", "229"), ("山西", "晋中", "230"), ("山西", "临汾", "232"), ("山西", "运城", "233"), ("山西", "晋城", "234"), ("山西", "朔州", "235"), ("山西", "阳泉", "236"), ("山西", "吕梁", "237"), ("湖南", "长沙", "43"), ("湖南", "岳阳", "44"), ("湖南", "衡阳", "45"), ("湖南", "株洲", "46"), ("湖南", "湘潭", "47"), ("湖南", "益阳", "48"), ("湖南", "郴州", "49"), ("湖南", "湘西", "65"), ("湖南", "娄底", "66"), ("湖南", "怀化", "67"), ("湖南", "常德", "68"), ("湖南", "张家界", "226"), ("湖南", "永州", "269"), ("湖南", "邵阳", "405"), ("江西", "南昌", "5"), ("江西", "九江", "6"), ("江西", "鹰潭", "7"), ("江西", "抚州", "8"), ("江西", "上饶", "9"), ("江西", "赣州", "10"), ("江西", "吉安", "115"), ("江西", "萍乡", "136"), ("江西", "景德镇", "137"), ("江西", "新余", "246"), ("江西", "宜春", "256"), ("安徽", "合肥", "189"), ("安徽", "铜陵", "173"), ("安徽", "黄山", "174"), ("安徽", "池州", "175"), ("安徽", "宣城", "176"), ("安徽", "巢湖", "177"), ("安徽", "淮南", "178"), ("安徽", "宿州", "179"), ("安徽", "六安", "181"), ("安徽", "滁州", "182"), ("安徽", "淮北", "183"), ("安徽", "阜阳", "184"), ("安徽", "马鞍山", "185"), ("安徽", "安庆", "186"), ("安徽", "蚌埠", "187"), ("安徽", "芜湖", "188"), ("安徽", "亳州", "391"), ("内蒙古", "呼和浩特", "20"), ("内蒙古", "包头", "13"), ("内蒙古", "鄂尔多斯", "14"), ("内蒙古", "巴彦淖尔", "15"), ("内蒙古", "乌海", "16"), ("内蒙古", "阿拉善盟", "17"), ("内蒙古", "锡林郭勒盟", "19"), ("内蒙古", "赤峰", "21"), ("内蒙古", "通辽", "22"), ("内蒙古", "呼伦贝尔", "25"), ("内蒙古", "乌兰察布", "331"), ("内蒙古", "兴安盟", "333"), ("甘肃", "兰州", "166"), ("甘肃", "庆阳", "281"), ("甘肃", "定西", "282"), ("甘肃", "武威", "283"), ("甘肃", "酒泉", "284"), ("甘肃", "张掖", "285"), ("甘肃", "嘉峪关", "286"), ("甘肃", "平凉", "307"), ("甘肃", "天水", "308"), ("甘肃", "白银", "309"), ("甘肃", "金昌", "343"), ("甘肃", "陇南", "344"), ("甘肃", "临夏", "346"), ("甘肃", "甘南", "673"), ("海南", "海口", "239"), ("海南", "万宁", "241"), ("海南", "琼海", "242"), ("海南", "三亚", "243"), ("海南", "儋州", "244"), ("海南", "东方", "456"), ("海南", "五指山", "582"), ("海南", "文昌", "670"), ("海南", "陵水", "674"), ("海南", "澄迈", "675"), ("海南", "乐东", "679"), ("海南", "临高", "680"), ("海南", "定安", "681"), ("海南", "昌江", "683"), ("海南", "屯昌", "684"), ("海南", "保亭", "686"), ("海南", "白沙", "689"), ("海南", "琼中", "690"), ("贵州", "贵阳", "2"), ("贵州", "黔南", "3"), ("贵州", "六盘水", "4"), ("贵州", "遵义", "59"), ("贵州", "黔东南", "61"), ("贵州", "铜仁", "422"), ("贵州", "安顺", "424"), ("贵州", "毕节", "426"), ("贵州", "黔西南", "588"), ("宁夏", "银川", "140"), ("宁夏", "吴忠", "395"), ("宁夏", "固原", "396"), ("宁夏", "石嘴山", "472"), ("宁夏", "中卫", "480"), ("青海", "西宁", "139"), ("青海", "海西", "608"), ("青海", "海东", "652"), ("青海", "玉树", "659"), ("青海", "海南", "676"), ("青海", "海北", "682"), ("青海", "黄南", "685"), ("青海", "果洛", "688"), ("西藏", "拉萨", "466"), ("西藏", "日喀则", "516"), ("西藏", "那曲", "655"), ("西藏", "林芝", "656"), ("西藏", "山南", "677"), ("西藏", "昌都", "678"), ("西藏", "阿里", "691"), ("北京", "北京", "911"), ("上海", "上海", "910"), ("重庆", "重庆", "904"), ("天津", "天津", "923") } if province == "全国": area = "0" else: result_list = [item for item in baidu_area_map if item[0] == province and item[1] == city] if result_list: area = result_list[0][2] else: raise "请按照百度指数的要求输入正确的省份和城市" headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cipher-Text": text, "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "https://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) params = { "area": area, "word": '[[{"name":' + f'"{word}"' + ',"wordType"' + ":1}]]", "startDate": start_date, "endDate": end_date, } with session.get( url=f"http://index.baidu.com/api/NewsApi/getNewsIndex", params=params ) as response: data = response.json()["data"] all_data = data["index"][0]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = ["0" if item == "" else item for item in result] result = [int(item) for item in result] if len(result) == len( pd.date_range(start=start_date, end=end_date, freq="7D") ): temp_df_7 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="7D"), result, ], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 else: temp_df_1 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="1D"), result, ], index=["date", word], ).T temp_df_1.index = pd.to_datetime(temp_df_1["date"]) del temp_df_1["date"] return temp_df_1
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_baidu.py#L982-L1439
25
[ 0 ]
0.218341
[ 29, 393, 394, 396, 397, 398, 400, 401, 416, 417, 418, 424, 427, 428, 429, 430, 431, 432, 433, 434, 437, 444, 445, 446, 448, 455, 456, 457 ]
6.113537
false
8.181818
458
9
93.886463
18
def baidu_media_index( word: str = "python", start_date: str = "2020-01-01", end_date: str = "2020-04-20", province: str = "全国", city: str = "全国", cookie: str = None, text: str = None, ) -> str: baidu_area_map = { ("广东", "广州", "95"), ("广东", "深圳", "94"), ("广东", "东莞", "133"), ("广东", "云浮", "195"), ("广东", "佛山", "196"), ("广东", "湛江", "197"), ("广东", "江门", "198"), ("广东", "惠州", "199"), ("广东", "珠海", "200"), ("广东", "韶关", "201"), ("广东", "阳江", "202"), ("广东", "茂名", "203"), ("广东", "潮州", "204"), ("广东", "揭阳", "205"), ("广东", "中山", "207"), ("广东", "清远", "208"), ("广东", "肇庆", "209"), ("广东", "河源", "210"), ("广东", "梅州", "211"), ("广东", "汕头", "212"), ("广东", "汕尾", "213"), ("河南", "郑州", "168"), ("河南", "南阳", "262"), ("河南", "新乡", "263"), ("河南", "开封", "264"), ("河南", "焦作", "265"), ("河南", "平顶山", "266"), ("河南", "许昌", "268"), ("河南", "安阳", "370"), ("河南", "驻马店", "371"), ("河南", "信阳", "373"), ("河南", "鹤壁", "374"), ("河南", "周口", "375"), ("河南", "商丘", "376"), ("河南", "洛阳", "378"), ("河南", "漯河", "379"), ("河南", "濮阳", "380"), ("河南", "三门峡", "381"), ("河南", "济源", "667"), ("四川", "成都", "97"), ("四川", "宜宾", "96"), ("四川", "绵阳", "98"), ("四川", "广元", "99"), ("四川", "遂宁", "100"), ("四川", "巴中", "101"), ("四川", "内江", "102"), ("四川", "泸州", "103"), ("四川", "南充", "104"), ("四川", "德阳", "106"), ("四川", "乐山", "107"), ("四川", "广安", "108"), ("四川", "资阳", "109"), ("四川", "自贡", "111"), ("四川", "攀枝花", "112"), ("四川", "达州", "113"), ("四川", "雅安", "114"), ("四川", "眉山", "291"), ("四川", "甘孜", "417"), ("四川", "阿坝", "457"), ("四川", "凉山", "479"), ("江苏", "南京", "125"), ("江苏", "苏州", "126"), ("江苏", "无锡", "127"), ("江苏", "连云港", "156"), ("江苏", "淮安", "157"), ("江苏", "扬州", "158"), ("江苏", "泰州", "159"), ("江苏", "盐城", "160"), ("江苏", "徐州", "161"), ("江苏", "常州", "162"), ("江苏", "南通", "163"), ("江苏", "镇江", "169"), ("江苏", "宿迁", "172"), ("湖北", "武汉", "28"), ("湖北", "黄石", "30"), ("湖北", "荆州", "31"), ("湖北", "襄阳", "32"), ("湖北", "黄冈", "33"), ("湖北", "荆门", "34"), ("湖北", "宜昌", "35"), ("湖北", "十堰", "36"), ("湖北", "随州", "37"), ("湖北", "恩施", "38"), ("湖北", "鄂州", "39"), ("湖北", "咸宁", "40"), ("湖北", "孝感", "41"), ("湖北", "仙桃", "42"), ("湖北", "天门", "73"), ("湖北", "潜江", "74"), ("湖北", "神农架", "687"), ("浙江", "杭州", "138"), ("浙江", "丽水", "134"), ("浙江", "金华", "135"), ("浙江", "温州", "149"), ("浙江", "台州", "287"), ("浙江", "衢州", "288"), ("浙江", "宁波", "289"), ("浙江", "绍兴", "303"), ("浙江", "嘉兴", "304"), ("浙江", "湖州", "305"), ("浙江", "舟山", "306"), ("福建", "福州", "50"), ("福建", "莆田", "51"), ("福建", "三明", "52"), ("福建", "龙岩", "53"), ("福建", "厦门", "54"), ("福建", "泉州", "55"), ("福建", "漳州", "56"), ("福建", "宁德", "87"), ("福建", "南平", "253"), ("黑龙江", "哈尔滨", "152"), ("黑龙江", "大庆", "153"), ("黑龙江", "伊春", "295"), ("黑龙江", "大兴安岭", "297"), ("黑龙江", "黑河", "300"), ("黑龙江", "鹤岗", "301"), ("黑龙江", "七台河", "302"), ("黑龙江", "齐齐哈尔", "319"), ("黑龙江", "佳木斯", "320"), ("黑龙江", "牡丹江", "322"), ("黑龙江", "鸡西", "323"), ("黑龙江", "绥化", "324"), ("黑龙江", "双鸭山", "359"), ("山东", "济南", "1"), ("山东", "滨州", "76"), ("山东", "青岛", "77"), ("山东", "烟台", "78"), ("山东", "临沂", "79"), ("山东", "潍坊", "80"), ("山东", "淄博", "81"), ("山东", "东营", "82"), ("山东", "聊城", "83"), ("山东", "菏泽", "84"), ("山东", "枣庄", "85"), ("山东", "德州", "86"), ("山东", "威海", "88"), ("山东", "济宁", "352"), ("山东", "泰安", "353"), ("山东", "莱芜", "356"), ("山东", "日照", "366"), ("陕西", "西安", "165"), ("陕西", "铜川", "271"), ("陕西", "安康", "272"), ("陕西", "宝鸡", "273"), ("陕西", "商洛", "274"), ("陕西", "渭南", "275"), ("陕西", "汉中", "276"), ("陕西", "咸阳", "277"), ("陕西", "榆林", "278"), ("陕西", "延安", "401"), ("河北", "石家庄", "141"), ("河北", "衡水", "143"), ("河北", "张家口", "144"), ("河北", "承德", "145"), ("河北", "秦皇岛", "146"), ("河北", "廊坊", "147"), ("河北", "沧州", "148"), ("河北", "保定", "259"), ("河北", "唐山", "261"), ("河北", "邯郸", "292"), ("河北", "邢台", "293"), ("辽宁", "沈阳", "150"), ("辽宁", "大连", "29"), ("辽宁", "盘锦", "151"), ("辽宁", "鞍山", "215"), ("辽宁", "朝阳", "216"), ("辽宁", "锦州", "217"), ("辽宁", "铁岭", "218"), ("辽宁", "丹东", "219"), ("辽宁", "本溪", "220"), ("辽宁", "营口", "221"), ("辽宁", "抚顺", "222"), ("辽宁", "阜新", "223"), ("辽宁", "辽阳", "224"), ("辽宁", "葫芦岛", "225"), ("吉林", "长春", "154"), ("吉林", "四平", "155"), ("吉林", "辽源", "191"), ("吉林", "松原", "194"), ("吉林", "吉林", "270"), ("吉林", "通化", "407"), ("吉林", "白山", "408"), ("吉林", "白城", "410"), ("吉林", "延边", "525"), ("云南", "昆明", "117"), ("云南", "玉溪", "123"), ("云南", "楚雄", "124"), ("云南", "大理", "334"), ("云南", "昭通", "335"), ("云南", "红河", "337"), ("云南", "曲靖", "339"), ("云南", "丽江", "342"), ("云南", "临沧", "350"), ("云南", "文山", "437"), ("云南", "保山", "438"), ("云南", "普洱", "666"), ("云南", "西双版纳", "668"), ("云南", "德宏", "669"), ("云南", "怒江", "671"), ("云南", "迪庆", "672"), ("新疆", "乌鲁木齐", "467"), ("新疆", "石河子", "280"), ("新疆", "吐鲁番", "310"), ("新疆", "昌吉", "311"), ("新疆", "哈密", "312"), ("新疆", "阿克苏", "315"), ("新疆", "克拉玛依", "317"), ("新疆", "博尔塔拉", "318"), ("新疆", "阿勒泰", "383"), ("新疆", "喀什", "384"), ("新疆", "和田", "386"), ("新疆", "巴音郭楞", "499"), ("新疆", "伊犁", "520"), ("新疆", "塔城", "563"), ("新疆", "克孜勒苏柯尔克孜", "653"), ("新疆", "五家渠", "661"), ("新疆", "阿拉尔", "692"), ("新疆", "图木舒克", "693"), ("广西", "南宁", "90"), ("广西", "柳州", "89"), ("广西", "桂林", "91"), ("广西", "贺州", "92"), ("广西", "贵港", "93"), ("广西", "玉林", "118"), ("广西", "河池", "119"), ("广西", "北海", "128"), ("广西", "钦州", "129"), ("广西", "防城港", "130"), ("广西", "百色", "131"), ("广西", "梧州", "132"), ("广西", "来宾", "506"), ("广西", "崇左", "665"), ("山西", "太原", "231"), ("山西", "大同", "227"), ("山西", "长治", "228"), ("山西", "忻州", "229"), ("山西", "晋中", "230"), ("山西", "临汾", "232"), ("山西", "运城", "233"), ("山西", "晋城", "234"), ("山西", "朔州", "235"), ("山西", "阳泉", "236"), ("山西", "吕梁", "237"), ("湖南", "长沙", "43"), ("湖南", "岳阳", "44"), ("湖南", "衡阳", "45"), ("湖南", "株洲", "46"), ("湖南", "湘潭", "47"), ("湖南", "益阳", "48"), ("湖南", "郴州", "49"), ("湖南", "湘西", "65"), ("湖南", "娄底", "66"), ("湖南", "怀化", "67"), ("湖南", "常德", "68"), ("湖南", "张家界", "226"), ("湖南", "永州", "269"), ("湖南", "邵阳", "405"), ("江西", "南昌", "5"), ("江西", "九江", "6"), ("江西", "鹰潭", "7"), ("江西", "抚州", "8"), ("江西", "上饶", "9"), ("江西", "赣州", "10"), ("江西", "吉安", "115"), ("江西", "萍乡", "136"), ("江西", "景德镇", "137"), ("江西", "新余", "246"), ("江西", "宜春", "256"), ("安徽", "合肥", "189"), ("安徽", "铜陵", "173"), ("安徽", "黄山", "174"), ("安徽", "池州", "175"), ("安徽", "宣城", "176"), ("安徽", "巢湖", "177"), ("安徽", "淮南", "178"), ("安徽", "宿州", "179"), ("安徽", "六安", "181"), ("安徽", "滁州", "182"), ("安徽", "淮北", "183"), ("安徽", "阜阳", "184"), ("安徽", "马鞍山", "185"), ("安徽", "安庆", "186"), ("安徽", "蚌埠", "187"), ("安徽", "芜湖", "188"), ("安徽", "亳州", "391"), ("内蒙古", "呼和浩特", "20"), ("内蒙古", "包头", "13"), ("内蒙古", "鄂尔多斯", "14"), ("内蒙古", "巴彦淖尔", "15"), ("内蒙古", "乌海", "16"), ("内蒙古", "阿拉善盟", "17"), ("内蒙古", "锡林郭勒盟", "19"), ("内蒙古", "赤峰", "21"), ("内蒙古", "通辽", "22"), ("内蒙古", "呼伦贝尔", "25"), ("内蒙古", "乌兰察布", "331"), ("内蒙古", "兴安盟", "333"), ("甘肃", "兰州", "166"), ("甘肃", "庆阳", "281"), ("甘肃", "定西", "282"), ("甘肃", "武威", "283"), ("甘肃", "酒泉", "284"), ("甘肃", "张掖", "285"), ("甘肃", "嘉峪关", "286"), ("甘肃", "平凉", "307"), ("甘肃", "天水", "308"), ("甘肃", "白银", "309"), ("甘肃", "金昌", "343"), ("甘肃", "陇南", "344"), ("甘肃", "临夏", "346"), ("甘肃", "甘南", "673"), ("海南", "海口", "239"), ("海南", "万宁", "241"), ("海南", "琼海", "242"), ("海南", "三亚", "243"), ("海南", "儋州", "244"), ("海南", "东方", "456"), ("海南", "五指山", "582"), ("海南", "文昌", "670"), ("海南", "陵水", "674"), ("海南", "澄迈", "675"), ("海南", "乐东", "679"), ("海南", "临高", "680"), ("海南", "定安", "681"), ("海南", "昌江", "683"), ("海南", "屯昌", "684"), ("海南", "保亭", "686"), ("海南", "白沙", "689"), ("海南", "琼中", "690"), ("贵州", "贵阳", "2"), ("贵州", "黔南", "3"), ("贵州", "六盘水", "4"), ("贵州", "遵义", "59"), ("贵州", "黔东南", "61"), ("贵州", "铜仁", "422"), ("贵州", "安顺", "424"), ("贵州", "毕节", "426"), ("贵州", "黔西南", "588"), ("宁夏", "银川", "140"), ("宁夏", "吴忠", "395"), ("宁夏", "固原", "396"), ("宁夏", "石嘴山", "472"), ("宁夏", "中卫", "480"), ("青海", "西宁", "139"), ("青海", "海西", "608"), ("青海", "海东", "652"), ("青海", "玉树", "659"), ("青海", "海南", "676"), ("青海", "海北", "682"), ("青海", "黄南", "685"), ("青海", "果洛", "688"), ("西藏", "拉萨", "466"), ("西藏", "日喀则", "516"), ("西藏", "那曲", "655"), ("西藏", "林芝", "656"), ("西藏", "山南", "677"), ("西藏", "昌都", "678"), ("西藏", "阿里", "691"), ("北京", "北京", "911"), ("上海", "上海", "910"), ("重庆", "重庆", "904"), ("天津", "天津", "923") } if province == "全国": area = "0" else: result_list = [item for item in baidu_area_map if item[0] == province and item[1] == city] if result_list: area = result_list[0][2] else: raise "请按照百度指数的要求输入正确的省份和城市" headers = { "Accept": "application/json, text/plain, */*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Cache-Control": "no-cache", "Cipher-Text": text, "Cookie": cookie, "DNT": "1", "Host": "index.baidu.com", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "https://index.baidu.com/v2/main/index.html", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } session = requests.Session() session.headers.update(headers) params = { "area": area, "word": '[[{"name":' + f'"{word}"' + ',"wordType"' + ":1}]]", "startDate": start_date, "endDate": end_date, } with session.get( url=f"http://index.baidu.com/api/NewsApi/getNewsIndex", params=params ) as response: data = response.json()["data"] all_data = data["index"][0]["data"] uniqid = data["uniqid"] ptbk = get_ptbk(uniqid, cookie) result = decrypt(ptbk, all_data).split(",") result = ["0" if item == "" else item for item in result] result = [int(item) for item in result] if len(result) == len( pd.date_range(start=start_date, end=end_date, freq="7D") ): temp_df_7 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="7D"), result, ], index=["date", word], ).T temp_df_7.index = pd.to_datetime(temp_df_7["date"]) del temp_df_7["date"] return temp_df_7 else: temp_df_1 = pd.DataFrame( [ pd.date_range(start=start_date, end=end_date, freq="1D"), result, ], index=["date", word], ).T temp_df_1.index = pd.to_datetime(temp_df_1["date"]) del temp_df_1["date"] return temp_df_1
18,256
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/drewry_index.py
drewry_wci_index
(symbol: str = "composite")
return temp_df
Drewry 集装箱指数 https://infogram.com/world-container-index-1h17493095xl4zj :return: choice of {"composite", "shanghai-rotterdam", "rotterdam-shanghai", "shanghai-los angeles", "los angeles-shanghai", "shanghai-genoa", "new york-rotterdam", "rotterdam-new york"} :type: str :return: Drewry 集装箱指数 :rtype: pandas.DataFrame
Drewry 集装箱指数 https://infogram.com/world-container-index-1h17493095xl4zj :return: choice of {"composite", "shanghai-rotterdam", "rotterdam-shanghai", "shanghai-los angeles", "los angeles-shanghai", "shanghai-genoa", "new york-rotterdam", "rotterdam-new york"} :type: str :return: Drewry 集装箱指数 :rtype: pandas.DataFrame
16
49
def drewry_wci_index(symbol: str = "composite") -> pd.DataFrame: """ Drewry 集装箱指数 https://infogram.com/world-container-index-1h17493095xl4zj :return: choice of {"composite", "shanghai-rotterdam", "rotterdam-shanghai", "shanghai-los angeles", "los angeles-shanghai", "shanghai-genoa", "new york-rotterdam", "rotterdam-new york"} :type: str :return: Drewry 集装箱指数 :rtype: pandas.DataFrame """ symbol_map = { "composite": 0, "shanghai-rotterdam": 1, "rotterdam-shanghai": 2, "shanghai-los angeles": 3, "los angeles-shanghai": 4, "shanghai-genoa": 5, "new york-rotterdam": 6, "rotterdam-new york": 7, } url = "https://infogram.com/world-container-index-1h17493095xl4zj" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") data_text = soup.find_all("script")[-5].string.strip("window.infographicData=")[:-1] data_json = demjson.decode(data_text) temp_df = pd.DataFrame(data_json["elements"][2]["data"][symbol_map[symbol]]) temp_df = temp_df.iloc[1:, :] temp_df.columns = ["date", "wci"] day = temp_df["date"].str.split("-", expand=True).iloc[:, 0].str.strip() month = temp_df["date"].str.split("-", expand=True).iloc[:, 1].str.strip() year = temp_df["date"].str.split("-", expand=True).iloc[:, 2].str.strip() temp_df["date"] = day + "-" + month + "-" + year temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["wci"] = pd.to_numeric(temp_df["wci"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/drewry_index.py#L16-L49
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
26.470588
[ 9, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 ]
47.058824
false
17.948718
34
1
52.941176
6
def drewry_wci_index(symbol: str = "composite") -> pd.DataFrame: symbol_map = { "composite": 0, "shanghai-rotterdam": 1, "rotterdam-shanghai": 2, "shanghai-los angeles": 3, "los angeles-shanghai": 4, "shanghai-genoa": 5, "new york-rotterdam": 6, "rotterdam-new york": 7, } url = "https://infogram.com/world-container-index-1h17493095xl4zj" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") data_text = soup.find_all("script")[-5].string.strip("window.infographicData=")[:-1] data_json = demjson.decode(data_text) temp_df = pd.DataFrame(data_json["elements"][2]["data"][symbol_map[symbol]]) temp_df = temp_df.iloc[1:, :] temp_df.columns = ["date", "wci"] day = temp_df["date"].str.split("-", expand=True).iloc[:, 0].str.strip() month = temp_df["date"].str.split("-", expand=True).iloc[:, 1].str.strip() year = temp_df["date"].str.split("-", expand=True).iloc[:, 2].str.strip() temp_df["date"] = day + "-" + month + "-" + year temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["wci"] = pd.to_numeric(temp_df["wci"], errors="coerce") return temp_df
18,257
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/exceptions.py
ResponseError.__init__
(self, message, response)
4
8
def __init__(self, message, response): super(Exception, self).__init__(message) # pass response so it can be handled upstream self.response = response
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/exceptions.py#L4-L8
25
[ 0 ]
20
[ 1, 4 ]
40
false
50
5
1
60
0
def __init__(self, message, response): super(Exception, self).__init__(message) # pass response so it can be handled upstream self.response = response
18,258
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_pmi_com_cx
()
return temp_df
财新数据-指数报告-财新中国 PMI-综合 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-综合 PMI :rtype: pandas.DataFrame
财新数据-指数报告-财新中国 PMI-综合 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-综合 PMI :rtype: pandas.DataFrame
12
33
def index_pmi_com_cx() -> pd.DataFrame(): """ 财新数据-指数报告-财新中国 PMI-综合 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-综合 PMI :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "com"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "综合PMI", "日期"] temp_df = temp_df[ [ "日期", "综合PMI", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L12-L33
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_pmi_com_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "com"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "综合PMI", "日期"] temp_df = temp_df[ [ "日期", "综合PMI", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,259
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_pmi_man_cx
()
return temp_df
财新数据-指数报告-财新中国 PMI-制造业 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-制造业 PMI :rtype: pandas.DataFrame
财新数据-指数报告-财新中国 PMI-制造业 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-制造业 PMI :rtype: pandas.DataFrame
36
57
def index_pmi_man_cx() -> pd.DataFrame(): """ 财新数据-指数报告-财新中国 PMI-制造业 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-制造业 PMI :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "man"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "制造业PMI", "日期"] temp_df = temp_df[ [ "日期", "制造业PMI", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L36-L57
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_pmi_man_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "man"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "制造业PMI", "日期"] temp_df = temp_df[ [ "日期", "制造业PMI", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,260
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_pmi_ser_cx
()
return temp_df
财新数据-指数报告-财新中国 PMI-服务业 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-服务业 PMI :rtype: pandas.DataFrame
财新数据-指数报告-财新中国 PMI-服务业 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-服务业 PMI :rtype: pandas.DataFrame
60
81
def index_pmi_ser_cx() -> pd.DataFrame(): """ 财新数据-指数报告-财新中国 PMI-服务业 PMI https://s.ccxe.com.cn/indices/pmi :return: 财新中国 PMI-服务业 PMI :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ser"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "服务业PMI", "日期"] temp_df = temp_df[ [ "日期", "服务业PMI", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L60-L81
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_pmi_ser_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ser"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "服务业PMI", "日期"] temp_df = temp_df[ [ "日期", "服务业PMI", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,261
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_dei_cx
()
return temp_df
财新数据-指数报告-数字经济指数 https://s.ccxe.com.cn/indices/dei :return: 数字经济指数 :rtype: pandas.DataFrame
财新数据-指数报告-数字经济指数 https://s.ccxe.com.cn/indices/dei :return: 数字经济指数 :rtype: pandas.DataFrame
84
105
def index_dei_cx() -> pd.DataFrame(): """ 财新数据-指数报告-数字经济指数 https://s.ccxe.com.cn/indices/dei :return: 数字经济指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "dei"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "数字经济指数", "日期"] temp_df = temp_df[ [ "日期", "数字经济指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L84-L105
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_dei_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "dei"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "数字经济指数", "日期"] temp_df = temp_df[ [ "日期", "数字经济指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,262
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_ii_cx
()
return temp_df
财新数据-指数报告-产业指数 https://s.ccxe.com.cn/indices/dei :return: 产业指数 :rtype: pandas.DataFrame
财新数据-指数报告-产业指数 https://s.ccxe.com.cn/indices/dei :return: 产业指数 :rtype: pandas.DataFrame
108
129
def index_ii_cx() -> pd.DataFrame(): """ 财新数据-指数报告-产业指数 https://s.ccxe.com.cn/indices/dei :return: 产业指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ii"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "产业指数", "日期"] temp_df = temp_df[ [ "日期", "产业指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L108-L129
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_ii_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ii"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "产业指数", "日期"] temp_df = temp_df[ [ "日期", "产业指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,263
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_si_cx
()
return temp_df
财新数据-指数报告-溢出指数 https://s.ccxe.com.cn/indices/dei :return: 溢出指数 :rtype: pandas.DataFrame
财新数据-指数报告-溢出指数 https://s.ccxe.com.cn/indices/dei :return: 溢出指数 :rtype: pandas.DataFrame
132
153
def index_si_cx() -> pd.DataFrame(): """ 财新数据-指数报告-溢出指数 https://s.ccxe.com.cn/indices/dei :return: 溢出指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "si"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "溢出指数", "日期"] temp_df = temp_df[ [ "日期", "溢出指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L132-L153
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_si_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "si"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "溢出指数", "日期"] temp_df = temp_df[ [ "日期", "溢出指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,264
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_fi_cx
()
return temp_df
财新数据-指数报告-融合指数 https://s.ccxe.com.cn/indices/dei :return: 融合指数 :rtype: pandas.DataFrame
财新数据-指数报告-融合指数 https://s.ccxe.com.cn/indices/dei :return: 融合指数 :rtype: pandas.DataFrame
156
177
def index_fi_cx() -> pd.DataFrame(): """ 财新数据-指数报告-融合指数 https://s.ccxe.com.cn/indices/dei :return: 融合指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "fi"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "融合指数", "日期"] temp_df = temp_df[ [ "日期", "融合指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L156-L177
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_fi_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "fi"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "融合指数", "日期"] temp_df = temp_df[ [ "日期", "融合指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,265
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_bi_cx
()
return temp_df
财新数据-指数报告-基础指数 https://s.ccxe.com.cn/indices/dei :return: 基础指数 :rtype: pandas.DataFrame
财新数据-指数报告-基础指数 https://s.ccxe.com.cn/indices/dei :return: 基础指数 :rtype: pandas.DataFrame
180
201
def index_bi_cx() -> pd.DataFrame(): """ 财新数据-指数报告-基础指数 https://s.ccxe.com.cn/indices/dei :return: 基础指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "bi"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "基础指数", "日期"] temp_df = temp_df[ [ "日期", "基础指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L180-L201
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_bi_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "bi"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "基础指数", "日期"] temp_df = temp_df[ [ "日期", "基础指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,266
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_nei_cx
()
return temp_df
财新数据-指数报告-中国新经济指数 https://s.ccxe.com.cn/indices/nei :return: 中国新经济指数 :rtype: pandas.DataFrame
财新数据-指数报告-中国新经济指数 https://s.ccxe.com.cn/indices/nei :return: 中国新经济指数 :rtype: pandas.DataFrame
204
225
def index_nei_cx() -> pd.DataFrame(): """ 财新数据-指数报告-中国新经济指数 https://s.ccxe.com.cn/indices/nei :return: 中国新经济指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "nei"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "中国新经济指数", "日期"] temp_df = temp_df[ [ "日期", "中国新经济指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L204-L225
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_nei_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "nei"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "中国新经济指数", "日期"] temp_df = temp_df[ [ "日期", "中国新经济指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,267
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_li_cx
()
return temp_df
财新数据-指数报告-劳动力投入指数 https://s.ccxe.com.cn/indices/nei :return: 劳动力投入指数 :rtype: pandas.DataFrame
财新数据-指数报告-劳动力投入指数 https://s.ccxe.com.cn/indices/nei :return: 劳动力投入指数 :rtype: pandas.DataFrame
228
249
def index_li_cx() -> pd.DataFrame(): """ 财新数据-指数报告-劳动力投入指数 https://s.ccxe.com.cn/indices/nei :return: 劳动力投入指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "li"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "劳动力投入指数", "日期"] temp_df = temp_df[ [ "日期", "劳动力投入指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L228-L249
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_li_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "li"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "劳动力投入指数", "日期"] temp_df = temp_df[ [ "日期", "劳动力投入指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,268
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_ci_cx
()
return temp_df
财新数据-指数报告-资本投入指数 https://s.ccxe.com.cn/indices/nei :return: 资本投入指数 :rtype: pandas.DataFrame
财新数据-指数报告-资本投入指数 https://s.ccxe.com.cn/indices/nei :return: 资本投入指数 :rtype: pandas.DataFrame
252
273
def index_ci_cx() -> pd.DataFrame(): """ 财新数据-指数报告-资本投入指数 https://s.ccxe.com.cn/indices/nei :return: 资本投入指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ci"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "资本投入指数", "日期"] temp_df = temp_df[ [ "日期", "资本投入指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L252-L273
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_ci_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ci"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "资本投入指数", "日期"] temp_df = temp_df[ [ "日期", "资本投入指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,269
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_ti_cx
()
return temp_df
财新数据-指数报告-科技投入指数 https://s.ccxe.com.cn/indices/nei :return: 科技投入指数 :rtype: pandas.DataFrame
财新数据-指数报告-科技投入指数 https://s.ccxe.com.cn/indices/nei :return: 科技投入指数 :rtype: pandas.DataFrame
276
297
def index_ti_cx() -> pd.DataFrame(): """ 财新数据-指数报告-科技投入指数 https://s.ccxe.com.cn/indices/nei :return: 科技投入指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ti"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "科技投入指数", "日期"] temp_df = temp_df[ [ "日期", "科技投入指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L276-L297
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_ti_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "ti"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "科技投入指数", "日期"] temp_df = temp_df[ [ "日期", "科技投入指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,270
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_neaw_cx
()
return temp_df
财新数据-指数报告-新经济行业入职平均工资水平 https://s.ccxe.com.cn/indices/nei :return: 新经济行业入职平均工资水平 :rtype: pandas.DataFrame
财新数据-指数报告-新经济行业入职平均工资水平 https://s.ccxe.com.cn/indices/nei :return: 新经济行业入职平均工资水平 :rtype: pandas.DataFrame
300
321
def index_neaw_cx() -> pd.DataFrame(): """ 财新数据-指数报告-新经济行业入职平均工资水平 https://s.ccxe.com.cn/indices/nei :return: 新经济行业入职平均工资水平 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "neaw"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "新经济行业入职平均工资水平", "日期"] temp_df = temp_df[ [ "日期", "新经济行业入职平均工资水平", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L300-L321
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_neaw_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "neaw"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "新经济行业入职平均工资水平", "日期"] temp_df = temp_df[ [ "日期", "新经济行业入职平均工资水平", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,271
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_awpr_cx
()
return temp_df
财新数据-指数报告-新经济入职工资溢价水平 https://s.ccxe.com.cn/indices/nei :return: 新经济入职工资溢价水平 :rtype: pandas.DataFrame
财新数据-指数报告-新经济入职工资溢价水平 https://s.ccxe.com.cn/indices/nei :return: 新经济入职工资溢价水平 :rtype: pandas.DataFrame
324
345
def index_awpr_cx() -> pd.DataFrame(): """ 财新数据-指数报告-新经济入职工资溢价水平 https://s.ccxe.com.cn/indices/nei :return: 新经济入职工资溢价水平 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "awpr"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "新经济入职工资溢价水平", "日期"] temp_df = temp_df[ [ "日期", "新经济入职工资溢价水平", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L324-L345
25
[ 0, 1, 2, 3, 4, 5, 6 ]
31.818182
[ 7, 8, 9, 10, 11, 12, 13, 20, 21 ]
40.909091
false
10.326087
22
1
59.090909
4
def index_awpr_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = {"type": "awpr"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "新经济入职工资溢价水平", "日期"] temp_df = temp_df[ [ "日期", "新经济入职工资溢价水平", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,272
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cx.py
index_cci_cx
()
return temp_df
财新数据-指数报告-大宗商品指数 https://s.ccxe.com.cn/indices/cci :return: 大宗商品指数 :rtype: pandas.DataFrame
财新数据-指数报告-大宗商品指数 https://s.ccxe.com.cn/indices/cci :return: 大宗商品指数 :rtype: pandas.DataFrame
348
373
def index_cci_cx() -> pd.DataFrame(): """ 财新数据-指数报告-大宗商品指数 https://s.ccxe.com.cn/indices/cci :return: 大宗商品指数 :rtype: pandas.DataFrame """ url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = { "type": "cci", "code": "1000050", "month": "-1", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "大宗商品指数", "日期"] temp_df = temp_df[ [ "日期", "大宗商品指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cx.py#L348-L373
25
[ 0, 1, 2, 3, 4, 5, 6 ]
26.923077
[ 7, 8, 13, 14, 15, 16, 17, 24, 25 ]
34.615385
false
10.326087
26
1
65.384615
4
def index_cci_cx() -> pd.DataFrame(): url = "https://s.ccxe.com.cn/api/index/pro/cxIndexTrendInfo" params = { "type": "cci", "code": "1000050", "month": "-1", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.columns = ["变化值", "大宗商品指数", "日期"] temp_df = temp_df[ [ "日期", "大宗商品指数", "变化值", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], unit="ms").dt.date return temp_df
18,273
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cflp.py
index_cflp_price
(symbol: str = "周指数") -> pd
return temp_df
中国公路物流运价指数 http://index.0256.cn/expx.htm :param symbol: choice of {"周指数", "月指数", "季度指数", "年度指数"} :type symbol: str :return: 中国公路物流运价指数 :rtype: pandas.DataFrame
中国公路物流运价指数 http://index.0256.cn/expx.htm :param symbol: choice of {"周指数", "月指数", "季度指数", "年度指数"} :type symbol: str :return: 中国公路物流运价指数 :rtype: pandas.DataFrame
12
58
def index_cflp_price(symbol: str = "周指数") -> pd.DataFrame: """ 中国公路物流运价指数 http://index.0256.cn/expx.htm :param symbol: choice of {"周指数", "月指数", "季度指数", "年度指数"} :type symbol: str :return: 中国公路物流运价指数 :rtype: pandas.DataFrame """ symbol_map = { "周指数": "2", "月指数": "3", "季度指数": "4", "年度指数": "5", } url = "http://index.0256.cn/expcenter_trend.action" params = { "marketId": "1", "attribute1": "5", "exponentTypeId": symbol_map[symbol], "cateId": "2", "attribute2": "华北", "city": "", "startLine": "", "endLine": "", } headers = { "Origin": "http://index.0256.cn", "Referer": "http://index.0256.cn/expx.htm", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36", } r = requests.post(url, data=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame( [ data_json["chart1"]["xLebal"], data_json["chart1"]["yLebal"], data_json["chart2"]["yLebal"], data_json["chart3"]["yLebal"], ] ).T temp_df.columns = ["日期", "定基指数", "环比指数", "同比指数"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["定基指数"] = pd.to_numeric(temp_df["定基指数"]) temp_df["环比指数"] = pd.to_numeric(temp_df["环比指数"]) temp_df["同比指数"] = pd.to_numeric(temp_df["同比指数"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cflp.py#L12-L58
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
19.148936
[ 9, 15, 16, 26, 31, 32, 33, 41, 42, 43, 44, 45, 46 ]
27.659574
false
13.043478
47
1
72.340426
6
def index_cflp_price(symbol: str = "周指数") -> pd.DataFrame: symbol_map = { "周指数": "2", "月指数": "3", "季度指数": "4", "年度指数": "5", } url = "http://index.0256.cn/expcenter_trend.action" params = { "marketId": "1", "attribute1": "5", "exponentTypeId": symbol_map[symbol], "cateId": "2", "attribute2": "华北", "city": "", "startLine": "", "endLine": "", } headers = { "Origin": "http://index.0256.cn", "Referer": "http://index.0256.cn/expx.htm", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36", } r = requests.post(url, data=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame( [ data_json["chart1"]["xLebal"], data_json["chart1"]["yLebal"], data_json["chart2"]["yLebal"], data_json["chart3"]["yLebal"], ] ).T temp_df.columns = ["日期", "定基指数", "环比指数", "同比指数"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["定基指数"] = pd.to_numeric(temp_df["定基指数"]) temp_df["环比指数"] = pd.to_numeric(temp_df["环比指数"]) temp_df["同比指数"] = pd.to_numeric(temp_df["同比指数"]) return temp_df
18,278
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cflp.py
index_cflp_volume
(symbol: str = "月指数") -> pd
return temp_df
中国公路物流运量指数 http://index.0256.cn/expx.htm :param symbol: choice of {"月指数", "季度指数", "年度指数"} :type symbol: str :return: 中国公路物流运量指数 :rtype: pandas.DataFrame
中国公路物流运量指数 http://index.0256.cn/expx.htm :param symbol: choice of {"月指数", "季度指数", "年度指数"} :type symbol: str :return: 中国公路物流运量指数 :rtype: pandas.DataFrame
61
106
def index_cflp_volume(symbol: str = "月指数") -> pd.DataFrame: """ 中国公路物流运量指数 http://index.0256.cn/expx.htm :param symbol: choice of {"月指数", "季度指数", "年度指数"} :type symbol: str :return: 中国公路物流运量指数 :rtype: pandas.DataFrame """ symbol_map = { "月指数": "3", "季度指数": "4", "年度指数": "5", } url = "http://index.0256.cn/volume_query.action" params = { "type": "1", "marketId": "1", "expTypeId": symbol_map[symbol], "startDate1": "", "endDate1": "", "city": "", "startDate3": "", "endDate3": "", } headers = { "Origin": "http://index.0256.cn", "Referer": "http://index.0256.cn/expx.htm", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36", } r = requests.post(url, data=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame( [ data_json["chart1"]["xLebal"], data_json["chart1"]["yLebal"], data_json["chart2"]["yLebal"], data_json["chart3"]["yLebal"], ] ).T temp_df.columns = ["日期", "定基指数", "环比指数", "同比指数"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["定基指数"] = pd.to_numeric(temp_df["定基指数"]) temp_df["环比指数"] = pd.to_numeric(temp_df["环比指数"]) temp_df["同比指数"] = pd.to_numeric(temp_df["同比指数"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cflp.py#L61-L106
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
19.565217
[ 9, 14, 15, 25, 30, 31, 32, 40, 41, 42, 43, 44, 45 ]
28.26087
false
13.043478
46
1
71.73913
6
def index_cflp_volume(symbol: str = "月指数") -> pd.DataFrame: symbol_map = { "月指数": "3", "季度指数": "4", "年度指数": "5", } url = "http://index.0256.cn/volume_query.action" params = { "type": "1", "marketId": "1", "expTypeId": symbol_map[symbol], "startDate1": "", "endDate1": "", "city": "", "startDate3": "", "endDate3": "", } headers = { "Origin": "http://index.0256.cn", "Referer": "http://index.0256.cn/expx.htm", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36", } r = requests.post(url, data=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame( [ data_json["chart1"]["xLebal"], data_json["chart1"]["yLebal"], data_json["chart2"]["yLebal"], data_json["chart3"]["yLebal"], ] ).T temp_df.columns = ["日期", "定基指数", "环比指数", "同比指数"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["定基指数"] = pd.to_numeric(temp_df["定基指数"]) temp_df["环比指数"] = pd.to_numeric(temp_df["环比指数"]) temp_df["同比指数"] = pd.to_numeric(temp_df["同比指数"]) return temp_df
18,279
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_weibo.py
_get_items
(word="股票"):
return {word: re.findall(r"\d+", res.json()["html"])[0]}
16
20
def _get_items(word="股票"): url = "https://data.weibo.com/index/ajax/newindex/searchword" payload = {"word": word} res = requests.post(url, data=payload, headers=index_weibo_headers) return {word: re.findall(r"\d+", res.json()["html"])[0]}
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_weibo.py#L16-L20
25
[ 0 ]
20
[ 1, 2, 3, 4 ]
80
false
22.916667
5
1
20
0
def _get_items(word="股票"): url = "https://data.weibo.com/index/ajax/newindex/searchword" payload = {"word": word} res = requests.post(url, data=payload, headers=index_weibo_headers) return {word: re.findall(r"\d+", res.json()["html"])[0]}
18,280
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_weibo.py
_get_index_data
(wid, time_type)
return df
23
36
def _get_index_data(wid, time_type): url = "http://data.weibo.com/index/ajax/newindex/getchartdata" data = { "wid": wid, "dateGroup": time_type, } res = requests.get(url, params=data, headers=index_weibo_headers) json_df = res.json() data = { "index": json_df["data"][0]["trend"]["x"], "value": json_df["data"][0]["trend"]["s"], } df = pd.DataFrame(data) return df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_weibo.py#L23-L36
25
[ 0 ]
7.142857
[ 1, 2, 6, 7, 8, 12, 13 ]
50
false
22.916667
14
1
50
0
def _get_index_data(wid, time_type): url = "http://data.weibo.com/index/ajax/newindex/getchartdata" data = { "wid": wid, "dateGroup": time_type, } res = requests.get(url, params=data, headers=index_weibo_headers) json_df = res.json() data = { "index": json_df["data"][0]["trend"]["x"], "value": json_df["data"][0]["trend"]["s"], } df = pd.DataFrame(data) return df
18,281
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_weibo.py
_process_index
(index)
return index
39
49
def _process_index(index): now = datetime.datetime.now() curr_year = now.year curr_date = "%04d%02d%02d" % (now.year, now.month, now.day) if "月" in index: tmp = index.replace("日", "").split("月") date = "%04d%02d%02d" % (curr_year, int(tmp[0]), int(tmp[1])) if date > curr_date: date = "%04d%02d%02d" % (curr_year - 1, int(tmp[0]), int(tmp[1])) return date return index
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_weibo.py#L39-L49
25
[ 0 ]
9.090909
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
90.909091
false
22.916667
11
3
9.090909
0
def _process_index(index): now = datetime.datetime.now() curr_year = now.year curr_date = "%04d%02d%02d" % (now.year, now.month, now.day) if "月" in index: tmp = index.replace("日", "").split("月") date = "%04d%02d%02d" % (curr_year, int(tmp[0]), int(tmp[1])) if date > curr_date: date = "%04d%02d%02d" % (curr_year - 1, int(tmp[0]), int(tmp[1])) return date return index
18,282
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_weibo.py
weibo_index
(word="python", time_type="3month")
:param word: str :param time_type: str 1hour, 1day, 1month, 3month :return:
:param word: str :param time_type: str 1hour, 1day, 1month, 3month :return:
52
73
def weibo_index(word="python", time_type="3month"): """ :param word: str :param time_type: str 1hour, 1day, 1month, 3month :return: """ dict_keyword = _get_items(word) df_list = [] for keyword, wid in dict_keyword.items(): df = _get_index_data(wid, time_type) if df is not None: df.columns = ["index", keyword] df["index"] = df["index"].apply(lambda x: _process_index(x)) df.set_index("index", inplace=True) df_list.append(df) if len(df_list) > 0: df = pd.concat(df_list, axis=1) if time_type == "1hour" or "1day": df.index = pd.to_datetime(df.index) else: df.index = pd.to_datetime(df.index, format="%Y%m%d") return df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_weibo.py#L52-L73
25
[ 0, 1, 2, 3, 4, 5 ]
27.272727
[ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21 ]
63.636364
false
22.916667
22
6
36.363636
3
def weibo_index(word="python", time_type="3month"): dict_keyword = _get_items(word) df_list = [] for keyword, wid in dict_keyword.items(): df = _get_index_data(wid, time_type) if df is not None: df.columns = ["index", keyword] df["index"] = df["index"].apply(lambda x: _process_index(x)) df.set_index("index", inplace=True) df_list.append(df) if len(df_list) > 0: df = pd.concat(df_list, axis=1) if time_type == "1hour" or "1day": df.index = pd.to_datetime(df.index) else: df.index = pd.to_datetime(df.index, format="%Y%m%d") return df
18,283
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sugar.py
index_sugar_msweet
()
return temp_df
沐甜科技数据中心-中国食糖指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 中国食糖指数 :rtype: pandas.DataFrame
沐甜科技数据中心-中国食糖指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 中国食糖指数 :rtype: pandas.DataFrame
12
35
def index_sugar_msweet() -> pd.DataFrame: """ 沐甜科技数据中心-中国食糖指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 中国食糖指数 :rtype: pandas.DataFrame """ url = "http://www.msweet.com.cn/eportal/ui" params = { "struts.portlet.action": "/portlet/price!getSTZSJson.action", "moduleId": "cb752447cfe24b44b18c7a7e9abab048", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.concat( [pd.DataFrame(data_json["category"]), pd.DataFrame(data_json["data"])], axis=1 ) temp_df.columns = ["日期", "综合价格", "原糖价格", "现货价格"] temp_df.loc[3226, ["原糖价格"]] = 12.88 # 数据源错误 temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["综合价格"] = pd.to_numeric(temp_df["综合价格"]) temp_df["原糖价格"] = pd.to_numeric(temp_df["原糖价格"]) temp_df["现货价格"] = pd.to_numeric(temp_df["现货价格"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sugar.py#L12-L35
25
[ 0, 1, 2, 3, 4, 5, 6 ]
29.166667
[ 7, 8, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23 ]
50
false
12.5
24
1
50
4
def index_sugar_msweet() -> pd.DataFrame: url = "http://www.msweet.com.cn/eportal/ui" params = { "struts.portlet.action": "/portlet/price!getSTZSJson.action", "moduleId": "cb752447cfe24b44b18c7a7e9abab048", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.concat( [pd.DataFrame(data_json["category"]), pd.DataFrame(data_json["data"])], axis=1 ) temp_df.columns = ["日期", "综合价格", "原糖价格", "现货价格"] temp_df.loc[3226, ["原糖价格"]] = 12.88 # 数据源错误 temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["综合价格"] = pd.to_numeric(temp_df["综合价格"]) temp_df["原糖价格"] = pd.to_numeric(temp_df["原糖价格"]) temp_df["现货价格"] = pd.to_numeric(temp_df["现货价格"]) return temp_df
18,284
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sugar.py
index_inner_quote_sugar_msweet
()
return temp_df
沐甜科技数据中心-配额内进口糖估算指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 配额内进口糖估算指数 :rtype: pandas.DataFrame
沐甜科技数据中心-配额内进口糖估算指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 配额内进口糖估算指数 :rtype: pandas.DataFrame
38
79
def index_inner_quote_sugar_msweet() -> pd.DataFrame: """ 沐甜科技数据中心-配额内进口糖估算指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 配额内进口糖估算指数 :rtype: pandas.DataFrame """ url = "http://www.msweet.com.cn/datacenterapply/datacenter/json/JinKongTang.json" r = requests.get(url) data_json = r.json() temp_df = pd.concat( [pd.DataFrame(data_json["category"]), pd.DataFrame(data_json["data"])], axis=1 ) temp_df.columns = [ "日期", "利润空间", "泰国糖", "泰国MA5", "巴西MA5", "利润MA5", "巴西MA10", "巴西糖", "柳州现货价", "广州现货价", "泰国MA10", "利润MA30", "利润MA10", ] temp_df.loc[988, ["泰国糖"]] = 4045.2 # 数据源错误 temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["利润空间"] = pd.to_numeric(temp_df["利润空间"]) temp_df["泰国糖"] = pd.to_numeric(temp_df["泰国糖"]) temp_df["泰国MA5"] = pd.to_numeric(temp_df["泰国MA5"]) temp_df["巴西MA5"] = pd.to_numeric(temp_df["巴西MA5"]) temp_df["巴西MA10"] = pd.to_numeric(temp_df["巴西MA10"]) temp_df["巴西糖"] = pd.to_numeric(temp_df["巴西糖"]) temp_df["柳州现货价"] = pd.to_numeric(temp_df["柳州现货价"]) temp_df["广州现货价"] = pd.to_numeric(temp_df["广州现货价"]) temp_df["泰国MA10"] = pd.to_numeric(temp_df["泰国MA10"]) temp_df["利润MA30"] = pd.to_numeric(temp_df["利润MA30"]) temp_df["利润MA10"] = pd.to_numeric(temp_df["利润MA10"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sugar.py#L38-L79
25
[ 0, 1, 2, 3, 4, 5, 6 ]
16.666667
[ 7, 8, 9, 10, 13, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 ]
45.238095
false
12.5
42
1
54.761905
4
def index_inner_quote_sugar_msweet() -> pd.DataFrame: url = "http://www.msweet.com.cn/datacenterapply/datacenter/json/JinKongTang.json" r = requests.get(url) data_json = r.json() temp_df = pd.concat( [pd.DataFrame(data_json["category"]), pd.DataFrame(data_json["data"])], axis=1 ) temp_df.columns = [ "日期", "利润空间", "泰国糖", "泰国MA5", "巴西MA5", "利润MA5", "巴西MA10", "巴西糖", "柳州现货价", "广州现货价", "泰国MA10", "利润MA30", "利润MA10", ] temp_df.loc[988, ["泰国糖"]] = 4045.2 # 数据源错误 temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["利润空间"] = pd.to_numeric(temp_df["利润空间"]) temp_df["泰国糖"] = pd.to_numeric(temp_df["泰国糖"]) temp_df["泰国MA5"] = pd.to_numeric(temp_df["泰国MA5"]) temp_df["巴西MA5"] = pd.to_numeric(temp_df["巴西MA5"]) temp_df["巴西MA10"] = pd.to_numeric(temp_df["巴西MA10"]) temp_df["巴西糖"] = pd.to_numeric(temp_df["巴西糖"]) temp_df["柳州现货价"] = pd.to_numeric(temp_df["柳州现货价"]) temp_df["广州现货价"] = pd.to_numeric(temp_df["广州现货价"]) temp_df["泰国MA10"] = pd.to_numeric(temp_df["泰国MA10"]) temp_df["利润MA30"] = pd.to_numeric(temp_df["利润MA30"]) temp_df["利润MA10"] = pd.to_numeric(temp_df["利润MA10"]) return temp_df
18,285
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sugar.py
index_outer_quote_sugar_msweet
()
return temp_df
沐甜科技数据中心-配额外进口糖估算指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 配额内进口糖估算指数 :rtype: pandas.DataFrame
沐甜科技数据中心-配额外进口糖估算指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 配额内进口糖估算指数 :rtype: pandas.DataFrame
82
102
def index_outer_quote_sugar_msweet() -> pd.DataFrame: """ 沐甜科技数据中心-配额外进口糖估算指数 http://www.msweet.com.cn/mtkj/sjzx13/index.html :return: 配额内进口糖估算指数 :rtype: pandas.DataFrame """ url = "http://www.msweet.com.cn/datacenterapply/datacenter/json/Jkpewlr.json" r = requests.get(url) data_json = r.json() temp_df = pd.concat( [pd.DataFrame(data_json["category"]), pd.DataFrame(data_json["data"])], axis=1 ) temp_df.columns = ["日期", "巴西糖进口成本", "泰国糖进口利润空间", "巴西糖进口利润空间", "泰国糖进口成本", "日照现货价"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["巴西糖进口成本"] = pd.to_numeric(temp_df["巴西糖进口成本"]) temp_df["泰国糖进口利润空间"] = pd.to_numeric(temp_df["泰国糖进口利润空间"], errors="coerce") temp_df["巴西糖进口利润空间"] = pd.to_numeric(temp_df["巴西糖进口利润空间"], errors="coerce") temp_df["泰国糖进口成本"] = pd.to_numeric(temp_df["泰国糖进口成本"]) temp_df["日照现货价"] = pd.to_numeric(temp_df["日照现货价"], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sugar.py#L82-L102
25
[ 0, 1, 2, 3, 4, 5, 6 ]
33.333333
[ 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20 ]
57.142857
false
12.5
21
1
42.857143
4
def index_outer_quote_sugar_msweet() -> pd.DataFrame: url = "http://www.msweet.com.cn/datacenterapply/datacenter/json/Jkpewlr.json" r = requests.get(url) data_json = r.json() temp_df = pd.concat( [pd.DataFrame(data_json["category"]), pd.DataFrame(data_json["data"])], axis=1 ) temp_df.columns = ["日期", "巴西糖进口成本", "泰国糖进口利润空间", "巴西糖进口利润空间", "泰国糖进口成本", "日照现货价"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["巴西糖进口成本"] = pd.to_numeric(temp_df["巴西糖进口成本"]) temp_df["泰国糖进口利润空间"] = pd.to_numeric(temp_df["泰国糖进口利润空间"], errors="coerce") temp_df["巴西糖进口利润空间"] = pd.to_numeric(temp_df["巴西糖进口利润空间"], errors="coerce") temp_df["泰国糖进口成本"] = pd.to_numeric(temp_df["泰国糖进口成本"]) temp_df["日照现货价"] = pd.to_numeric(temp_df["日照现货价"], errors="coerce") return temp_df
18,286
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
index_stock_cons_sina
(symbol: str = "000300")
return pd.DataFrame(demjson.decode(r.text))
新浪新版股票指数成份页面, 目前该接口可获取指数数量较少 http://vip.stock.finance.sina.com.cn/mkt/#zhishu_000040 :param symbol: 指数代码 :type symbol: str :return: 指数的成份股 :rtype: pandas.DataFrame
新浪新版股票指数成份页面, 目前该接口可获取指数数量较少 http://vip.stock.finance.sina.com.cn/mkt/#zhishu_000040 :param symbol: 指数代码 :type symbol: str :return: 指数的成份股 :rtype: pandas.DataFrame
20
61
def index_stock_cons_sina(symbol: str = "000300") -> pd.DataFrame: """ 新浪新版股票指数成份页面, 目前该接口可获取指数数量较少 http://vip.stock.finance.sina.com.cn/mkt/#zhishu_000040 :param symbol: 指数代码 :type symbol: str :return: 指数的成份股 :rtype: pandas.DataFrame """ if symbol == "000300": symbol = "hs300" url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeStockCountSimple" params = {"node": f"{symbol}"} r = requests.get(url, params=params) page_num = math.ceil(int(r.json()) / 80) + 1 temp_df = pd.DataFrame() for page in range(1, page_num): url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData" params = { "page": str(page), "num": "80", "sort": "symbol", "asc": "1", "node": "hs300", "symbol": "", "_s_r_a": "init", } r = requests.get(url, params=params) temp_df = pd.concat([temp_df, pd.DataFrame(demjson.decode(r.text))], ignore_index=True) return temp_df url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeDataSimple" params = { "page": 1, "num": "3000", "sort": "symbol", "asc": "1", "node": f"zhishu_{symbol}", "_s_r_a": "setlen", } r = requests.get(url, params=params) return pd.DataFrame(demjson.decode(r.text))
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L20-L61
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
21.428571
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 27, 28, 29, 31, 32, 40, 41 ]
40.47619
false
15.09434
42
3
59.52381
6
def index_stock_cons_sina(symbol: str = "000300") -> pd.DataFrame: if symbol == "000300": symbol = "hs300" url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeStockCountSimple" params = {"node": f"{symbol}"} r = requests.get(url, params=params) page_num = math.ceil(int(r.json()) / 80) + 1 temp_df = pd.DataFrame() for page in range(1, page_num): url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData" params = { "page": str(page), "num": "80", "sort": "symbol", "asc": "1", "node": "hs300", "symbol": "", "_s_r_a": "init", } r = requests.get(url, params=params) temp_df = pd.concat([temp_df, pd.DataFrame(demjson.decode(r.text))], ignore_index=True) return temp_df url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeDataSimple" params = { "page": 1, "num": "3000", "sort": "symbol", "asc": "1", "node": f"zhishu_{symbol}", "_s_r_a": "setlen", } r = requests.get(url, params=params) return pd.DataFrame(demjson.decode(r.text))
18,287
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
index_stock_info
()
return index_df[["index_code", "display_name", "publish_date"]]
聚宽-指数数据-指数列表 https://www.joinquant.com/data/dict/indexData :return: 指数信息的数据框 :rtype: pandas.DataFrame
聚宽-指数数据-指数列表 https://www.joinquant.com/data/dict/indexData :return: 指数信息的数据框 :rtype: pandas.DataFrame
64
74
def index_stock_info() -> pd.DataFrame: """ 聚宽-指数数据-指数列表 https://www.joinquant.com/data/dict/indexData :return: 指数信息的数据框 :rtype: pandas.DataFrame """ index_df = pd.read_html("https://www.joinquant.com/data/dict/indexData")[0] index_df["指数代码"] = index_df["指数代码"].str.split(".", expand=True)[0] index_df.columns = ["index_code", "display_name", "publish_date", "-", "-"] return index_df[["index_code", "display_name", "publish_date"]]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L64-L74
25
[ 0, 1, 2, 3, 4, 5, 6 ]
63.636364
[ 7, 8, 9, 10 ]
36.363636
false
15.09434
11
1
63.636364
4
def index_stock_info() -> pd.DataFrame: index_df = pd.read_html("https://www.joinquant.com/data/dict/indexData")[0] index_df["指数代码"] = index_df["指数代码"].str.split(".", expand=True)[0] index_df.columns = ["index_code", "display_name", "publish_date", "-", "-"] return index_df[["index_code", "display_name", "publish_date"]]
18,288
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
index_stock_cons
(symbol: str = "399639")
return temp_df
最新股票指数的成份股目录 http://vip.stock.finance.sina.com.cn/corp/view/vII_NewestComponent.php?page=1&indexid=399639 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 函数获取 :type symbol: str :return: 最新股票指数的成份股目录 :rtype: pandas.DataFrame
最新股票指数的成份股目录 http://vip.stock.finance.sina.com.cn/corp/view/vII_NewestComponent.php?page=1&indexid=399639 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 函数获取 :type symbol: str :return: 最新股票指数的成份股目录 :rtype: pandas.DataFrame
77
110
def index_stock_cons(symbol: str = "399639") -> pd.DataFrame: """ 最新股票指数的成份股目录 http://vip.stock.finance.sina.com.cn/corp/view/vII_NewestComponent.php?page=1&indexid=399639 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 函数获取 :type symbol: str :return: 最新股票指数的成份股目录 :rtype: pandas.DataFrame """ url = f"http://vip.stock.finance.sina.com.cn/corp/go.php/vII_NewestComponent/indexid/{symbol}.phtml" r = requests.get(url) r.encoding = "gb2312" soup = BeautifulSoup(r.text, "lxml") page_num = ( soup.find(attrs={"class": "table2"}) .find("td") .find_all("a")[-1]["href"] .split("page=")[-1] .split("&")[0] ) if page_num == "#": temp_df = pd.read_html(r.text, header=1)[3].iloc[:, :3] temp_df["品种代码"] = temp_df["品种代码"].astype(str).str.zfill(6) return temp_df temp_df = pd.DataFrame() for page in range(1, int(page_num) + 1): url = f"http://vip.stock.finance.sina.com.cn/corp/view/vII_NewestComponent.php?page={page}&indexid={symbol}" r = requests.get(url) r.encoding = "gb2312" temp_df = pd.concat([temp_df, pd.read_html(r.text, header=1)[3]], ignore_index=True) temp_df = temp_df.iloc[:, :3] temp_df["品种代码"] = temp_df["品种代码"].astype(str).str.zfill(6) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L77-L110
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
26.470588
[ 9, 10, 11, 12, 13, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33 ]
52.941176
false
15.09434
34
3
47.058824
6
def index_stock_cons(symbol: str = "399639") -> pd.DataFrame: url = f"http://vip.stock.finance.sina.com.cn/corp/go.php/vII_NewestComponent/indexid/{symbol}.phtml" r = requests.get(url) r.encoding = "gb2312" soup = BeautifulSoup(r.text, "lxml") page_num = ( soup.find(attrs={"class": "table2"}) .find("td") .find_all("a")[-1]["href"] .split("page=")[-1] .split("&")[0] ) if page_num == "#": temp_df = pd.read_html(r.text, header=1)[3].iloc[:, :3] temp_df["品种代码"] = temp_df["品种代码"].astype(str).str.zfill(6) return temp_df temp_df = pd.DataFrame() for page in range(1, int(page_num) + 1): url = f"http://vip.stock.finance.sina.com.cn/corp/view/vII_NewestComponent.php?page={page}&indexid={symbol}" r = requests.get(url) r.encoding = "gb2312" temp_df = pd.concat([temp_df, pd.read_html(r.text, header=1)[3]], ignore_index=True) temp_df = temp_df.iloc[:, :3] temp_df["品种代码"] = temp_df["品种代码"].astype(str).str.zfill(6) return temp_df
18,289
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
index_stock_cons_csindex
(symbol: str = "000300")
return temp_df
中证指数网站-成份股目录 http://www.csindex.com.cn/zh-CN/indices/index-detail/000300 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 函数获取 :type symbol: str :return: 最新指数的成份股 :rtype: pandas.DataFrame
中证指数网站-成份股目录 http://www.csindex.com.cn/zh-CN/indices/index-detail/000300 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 函数获取 :type symbol: str :return: 最新指数的成份股 :rtype: pandas.DataFrame
113
139
def index_stock_cons_csindex(symbol: str = "000300") -> pd.DataFrame: """ 中证指数网站-成份股目录 http://www.csindex.com.cn/zh-CN/indices/index-detail/000300 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 函数获取 :type symbol: str :return: 最新指数的成份股 :rtype: pandas.DataFrame """ url = f"https://csi-web-dev.oss-cn-shanghai-finance-1-pub.aliyuncs.com/static/html/csindex/public/uploads/file/autofile/cons/{symbol}cons.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_df.columns = [ "日期", "指数代码", "指数名称", "指数英文名称", "成分券代码", "成分券名称", "成分券英文名称", "交易所", "交易所英文名称", ] temp_df['日期'] = pd.to_datetime(temp_df['日期'], format="%Y%m%d").dt.date temp_df["指数代码"] = temp_df["指数代码"].astype(str).str.zfill(6) temp_df["成分券代码"] = temp_df["成分券代码"].astype(str).str.zfill(6) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L113-L139
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
33.333333
[ 9, 10, 11, 12, 23, 24, 25, 26 ]
29.62963
false
15.09434
27
1
70.37037
6
def index_stock_cons_csindex(symbol: str = "000300") -> pd.DataFrame: url = f"https://csi-web-dev.oss-cn-shanghai-finance-1-pub.aliyuncs.com/static/html/csindex/public/uploads/file/autofile/cons/{symbol}cons.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_df.columns = [ "日期", "指数代码", "指数名称", "指数英文名称", "成分券代码", "成分券名称", "成分券英文名称", "交易所", "交易所英文名称", ] temp_df['日期'] = pd.to_datetime(temp_df['日期'], format="%Y%m%d").dt.date temp_df["指数代码"] = temp_df["指数代码"].astype(str).str.zfill(6) temp_df["成分券代码"] = temp_df["成分券代码"].astype(str).str.zfill(6) return temp_df
18,290
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
index_stock_cons_weight_csindex
(symbol: str = "000300")
return temp_df
中证指数网站-样本权重 http://www.csindex.com.cn/zh-CN/indices/index-detail/000300 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 接口获取 :type symbol: str :return: 最新指数的成份股权重 :rtype: pandas.DataFrame
中证指数网站-样本权重 http://www.csindex.com.cn/zh-CN/indices/index-detail/000300 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 接口获取 :type symbol: str :return: 最新指数的成份股权重 :rtype: pandas.DataFrame
142
170
def index_stock_cons_weight_csindex(symbol: str = "000300") -> pd.DataFrame: """ 中证指数网站-样本权重 http://www.csindex.com.cn/zh-CN/indices/index-detail/000300 :param symbol: 指数代码, 可以通过 ak.index_stock_info() 接口获取 :type symbol: str :return: 最新指数的成份股权重 :rtype: pandas.DataFrame """ url = f"https://csi-web-dev.oss-cn-shanghai-finance-1-pub.aliyuncs.com/static/html/csindex/public/uploads/file/autofile/closeweight/{symbol}closeweight.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_df.columns = [ "日期", "指数代码", "指数名称", "指数英文名称", "成分券代码", "成分券名称", "成分券英文名称", "交易所", "交易所英文名称", "权重", ] temp_df['日期'] = pd.to_datetime(temp_df['日期'], format="%Y%m%d").dt.date temp_df["指数代码"] = temp_df["指数代码"].astype(str).str.zfill(6) temp_df["成分券代码"] = temp_df["成分券代码"].astype(str).str.zfill(6) temp_df['权重'] = pd.to_numeric(temp_df['权重']) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L142-L170
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
31.034483
[ 9, 10, 11, 12, 24, 25, 26, 27, 28 ]
31.034483
false
15.09434
29
1
68.965517
6
def index_stock_cons_weight_csindex(symbol: str = "000300") -> pd.DataFrame: url = f"https://csi-web-dev.oss-cn-shanghai-finance-1-pub.aliyuncs.com/static/html/csindex/public/uploads/file/autofile/closeweight/{symbol}closeweight.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_df.columns = [ "日期", "指数代码", "指数名称", "指数英文名称", "成分券代码", "成分券名称", "成分券英文名称", "交易所", "交易所英文名称", "权重", ] temp_df['日期'] = pd.to_datetime(temp_df['日期'], format="%Y%m%d").dt.date temp_df["指数代码"] = temp_df["指数代码"].astype(str).str.zfill(6) temp_df["成分券代码"] = temp_df["成分券代码"].astype(str).str.zfill(6) temp_df['权重'] = pd.to_numeric(temp_df['权重']) return temp_df
18,291
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
index_stock_hist
(symbol: str = "sh000300")
return temp_df
指数历史成份, 从 2005 年开始 http://stock.jrj.com.cn/share,sh000300,2015nlscf_2.shtml :param symbol: 指数代码, 需要带市场前缀 :type symbol: str :return: 历史成份的进入和退出数据 :rtype: pandas.DataFrame
指数历史成份, 从 2005 年开始 http://stock.jrj.com.cn/share,sh000300,2015nlscf_2.shtml :param symbol: 指数代码, 需要带市场前缀 :type symbol: str :return: 历史成份的进入和退出数据 :rtype: pandas.DataFrame
173
202
def index_stock_hist(symbol: str = "sh000300") -> pd.DataFrame: """ 指数历史成份, 从 2005 年开始 http://stock.jrj.com.cn/share,sh000300,2015nlscf_2.shtml :param symbol: 指数代码, 需要带市场前缀 :type symbol: str :return: 历史成份的进入和退出数据 :rtype: pandas.DataFrame """ url = f"http://stock.jrj.com.cn/share,{symbol},2015nlscf.shtml" r = requests.get(url) r.encoding = "gb2312" soup = BeautifulSoup(r.text, "lxml") last_page_num = soup.find_all("a", attrs={"target": "_self"})[-2].text temp_df = pd.read_html(r.text)[-1] if last_page_num == "历史成份": temp_df["股票代码"] = temp_df["股票代码"].astype(str).str.zfill(6) del temp_df["股票名称"] temp_df.columns = ["stock_code", "in_date", "out_date"] return temp_df for page in tqdm(range(2, int(last_page_num) + 1), leave=False): url = f"http://stock.jrj.com.cn/share,{symbol},2015nlscf_{page}.shtml" r = requests.get(url) r.encoding = "gb2312" inner_temp_df = pd.read_html(r.text)[-1] temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) temp_df["股票代码"] = temp_df["股票代码"].astype(str).str.zfill(6) del temp_df["股票名称"] temp_df.columns = ["stock_code", "in_date", "out_date"] return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L173-L202
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
30
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 ]
70
false
15.09434
30
3
30
6
def index_stock_hist(symbol: str = "sh000300") -> pd.DataFrame: url = f"http://stock.jrj.com.cn/share,{symbol},2015nlscf.shtml" r = requests.get(url) r.encoding = "gb2312" soup = BeautifulSoup(r.text, "lxml") last_page_num = soup.find_all("a", attrs={"target": "_self"})[-2].text temp_df = pd.read_html(r.text)[-1] if last_page_num == "历史成份": temp_df["股票代码"] = temp_df["股票代码"].astype(str).str.zfill(6) del temp_df["股票名称"] temp_df.columns = ["stock_code", "in_date", "out_date"] return temp_df for page in tqdm(range(2, int(last_page_num) + 1), leave=False): url = f"http://stock.jrj.com.cn/share,{symbol},2015nlscf_{page}.shtml" r = requests.get(url) r.encoding = "gb2312" inner_temp_df = pd.read_html(r.text)[-1] temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) temp_df["股票代码"] = temp_df["股票代码"].astype(str).str.zfill(6) del temp_df["股票名称"] temp_df.columns = ["stock_code", "in_date", "out_date"] return temp_df
18,292
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_cons.py
stock_a_code_to_symbol
(symbol: str = "000300")
输入股票代码判断股票市场 :param symbol: 股票代码 :type symbol: str :return: 股票市场 :rtype: str
输入股票代码判断股票市场 :param symbol: 股票代码 :type symbol: str :return: 股票市场 :rtype: str
205
216
def stock_a_code_to_symbol(symbol: str = "000300") -> str: """ 输入股票代码判断股票市场 :param symbol: 股票代码 :type symbol: str :return: 股票市场 :rtype: str """ if symbol.startswith("6") or symbol.startswith("900"): return f"sh{symbol}" else: return f"sz{symbol}"
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_cons.py#L205-L216
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
66.666667
[ 8, 9, 11 ]
25
false
15.09434
12
3
75
5
def stock_a_code_to_symbol(symbol: str = "000300") -> str: if symbol.startswith("6") or symbol.startswith("900"): return f"sh{symbol}" else: return f"sz{symbol}"
18,293
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
_replace_comma
(x)
去除单元格中的 "," :param x: 单元格元素 :type x: str :return: 处理后的值或原值 :rtype: str
去除单元格中的 "," :param x: 单元格元素 :type x: str :return: 处理后的值或原值 :rtype: str
27
38
def _replace_comma(x): """ 去除单元格中的 "," :param x: 单元格元素 :type x: str :return: 处理后的值或原值 :rtype: str """ if "," in str(x): return str(x).replace(",", "") else: return x
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L27-L38
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
66.666667
[ 8, 9, 11 ]
25
false
14.634146
12
2
75
5
def _replace_comma(x): if "," in str(x): return str(x).replace(",", "") else: return x
18,294
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
get_zh_index_page_count
()
指数的总页数 http://vip.stock.finance.sina.com.cn/mkt/#hs_s :return: 需要抓取的指数的总页数 :rtype: int
指数的总页数 http://vip.stock.finance.sina.com.cn/mkt/#hs_s :return: 需要抓取的指数的总页数 :rtype: int
41
53
def get_zh_index_page_count() -> int: """ 指数的总页数 http://vip.stock.finance.sina.com.cn/mkt/#hs_s :return: 需要抓取的指数的总页数 :rtype: int """ res = requests.get(zh_sina_index_stock_count_url) page_count = int(re.findall(re.compile(r"\d+"), res.text)[0]) / 80 if isinstance(page_count, int): return page_count else: return int(page_count) + 1
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L41-L53
25
[ 0, 1, 2, 3, 4, 5, 6 ]
53.846154
[ 7, 8, 9, 10, 12 ]
38.461538
false
14.634146
13
2
61.538462
4
def get_zh_index_page_count() -> int: res = requests.get(zh_sina_index_stock_count_url) page_count = int(re.findall(re.compile(r"\d+"), res.text)[0]) / 80 if isinstance(page_count, int): return page_count else: return int(page_count) + 1
18,295
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
stock_zh_index_spot
()
return big_df
新浪财经-行情中心首页-A股-分类-所有指数 大量采集会被目标网站服务器封禁 IP, 如果被封禁 IP, 请 10 分钟后再试 http://vip.stock.finance.sina.com.cn/mkt/#hs_s :return: 所有指数的实时行情数据 :rtype: pandas.DataFrame
新浪财经-行情中心首页-A股-分类-所有指数 大量采集会被目标网站服务器封禁 IP, 如果被封禁 IP, 请 10 分钟后再试 http://vip.stock.finance.sina.com.cn/mkt/#hs_s :return: 所有指数的实时行情数据 :rtype: pandas.DataFrame
56
115
def stock_zh_index_spot() -> pd.DataFrame: """ 新浪财经-行情中心首页-A股-分类-所有指数 大量采集会被目标网站服务器封禁 IP, 如果被封禁 IP, 请 10 分钟后再试 http://vip.stock.finance.sina.com.cn/mkt/#hs_s :return: 所有指数的实时行情数据 :rtype: pandas.DataFrame """ big_df = pd.DataFrame() page_count = get_zh_index_page_count() zh_sina_stock_payload_copy = zh_sina_index_stock_payload.copy() for page in tqdm(range(1, page_count + 1), leave=False): zh_sina_stock_payload_copy.update({"page": page}) res = requests.get(zh_sina_index_stock_url, params=zh_sina_stock_payload_copy) data_json = demjson.decode(res.text) big_df = pd.concat([big_df, pd.DataFrame(data_json)], ignore_index=True) big_df = big_df.applymap(_replace_comma) big_df["trade"] = big_df["trade"].astype(float) big_df["pricechange"] = big_df["pricechange"].astype(float) big_df["changepercent"] = big_df["changepercent"].astype(float) big_df["buy"] = big_df["buy"].astype(float) big_df["sell"] = big_df["sell"].astype(float) big_df["settlement"] = big_df["settlement"].astype(float) big_df["open"] = big_df["open"].astype(float) big_df["high"] = big_df["high"].astype(float) big_df["low"] = big_df["low"].astype(float) big_df.columns = [ "代码", "名称", "最新价", "涨跌额", "涨跌幅", "_", "_", "昨收", "今开", "最高", "最低", "成交量", "成交额", "_", "_", ] big_df = big_df[ [ "代码", "名称", "最新价", "涨跌额", "涨跌幅", "昨收", "今开", "最高", "最低", "成交量", "成交额", ] ] return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L56-L115
25
[ 0, 1, 2, 3, 4, 5, 6, 7 ]
13.333333
[ 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 44, 59 ]
35
false
14.634146
60
2
65
5
def stock_zh_index_spot() -> pd.DataFrame: big_df = pd.DataFrame() page_count = get_zh_index_page_count() zh_sina_stock_payload_copy = zh_sina_index_stock_payload.copy() for page in tqdm(range(1, page_count + 1), leave=False): zh_sina_stock_payload_copy.update({"page": page}) res = requests.get(zh_sina_index_stock_url, params=zh_sina_stock_payload_copy) data_json = demjson.decode(res.text) big_df = pd.concat([big_df, pd.DataFrame(data_json)], ignore_index=True) big_df = big_df.applymap(_replace_comma) big_df["trade"] = big_df["trade"].astype(float) big_df["pricechange"] = big_df["pricechange"].astype(float) big_df["changepercent"] = big_df["changepercent"].astype(float) big_df["buy"] = big_df["buy"].astype(float) big_df["sell"] = big_df["sell"].astype(float) big_df["settlement"] = big_df["settlement"].astype(float) big_df["open"] = big_df["open"].astype(float) big_df["high"] = big_df["high"].astype(float) big_df["low"] = big_df["low"].astype(float) big_df.columns = [ "代码", "名称", "最新价", "涨跌额", "涨跌幅", "_", "_", "昨收", "今开", "最高", "最低", "成交量", "成交额", "_", "_", ] big_df = big_df[ [ "代码", "名称", "最新价", "涨跌额", "涨跌幅", "昨收", "今开", "最高", "最低", "成交量", "成交额", ] ] return big_df
18,296
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
stock_zh_index_daily
(symbol: str = "sh000922")
return temp_df
新浪财经-指数-历史行情数据, 大量抓取容易封 IP https://finance.sina.com.cn/realstock/company/sh000909/nc.shtml :param symbol: sz399998, 指定指数代码 :type symbol: str :return: 历史行情数据 :rtype: pandas.DataFrame
新浪财经-指数-历史行情数据, 大量抓取容易封 IP https://finance.sina.com.cn/realstock/company/sh000909/nc.shtml :param symbol: sz399998, 指定指数代码 :type symbol: str :return: 历史行情数据 :rtype: pandas.DataFrame
118
141
def stock_zh_index_daily(symbol: str = "sh000922") -> pd.DataFrame: """ 新浪财经-指数-历史行情数据, 大量抓取容易封 IP https://finance.sina.com.cn/realstock/company/sh000909/nc.shtml :param symbol: sz399998, 指定指数代码 :type symbol: str :return: 历史行情数据 :rtype: pandas.DataFrame """ params = {"d": "2020_2_4"} res = requests.get(zh_sina_index_stock_hist_url.format(symbol), params=params) js_code = py_mini_racer.MiniRacer() js_code.eval(hk_js_decode) dict_list = js_code.call( "d", res.text.split("=")[1].split(";")[0].replace('"', "") ) # 执行js解密代码 temp_df = pd.DataFrame(dict_list) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L118-L141
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
37.5
[ 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23 ]
54.166667
false
14.634146
24
1
45.833333
6
def stock_zh_index_daily(symbol: str = "sh000922") -> pd.DataFrame: params = {"d": "2020_2_4"} res = requests.get(zh_sina_index_stock_hist_url.format(symbol), params=params) js_code = py_mini_racer.MiniRacer() js_code.eval(hk_js_decode) dict_list = js_code.call( "d", res.text.split("=")[1].split(";")[0].replace('"', "") ) # 执行js解密代码 temp_df = pd.DataFrame(dict_list) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) return temp_df
18,297
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
_get_tx_start_year
(symbol: str = "sh000919")
return start_date
腾讯证券-获取所有股票数据的第一天, 注意这个数据是腾讯证券的历史数据第一天 http://gu.qq.com/sh000919/zs :param symbol: 带市场标识的股票代码 :type symbol: str :return: 开始日期 :rtype: pandas.DataFrame
腾讯证券-获取所有股票数据的第一天, 注意这个数据是腾讯证券的历史数据第一天 http://gu.qq.com/sh000919/zs :param symbol: 带市场标识的股票代码 :type symbol: str :return: 开始日期 :rtype: pandas.DataFrame
144
176
def _get_tx_start_year(symbol: str = "sh000919") -> pd.DataFrame: """ 腾讯证券-获取所有股票数据的第一天, 注意这个数据是腾讯证券的历史数据第一天 http://gu.qq.com/sh000919/zs :param symbol: 带市场标识的股票代码 :type symbol: str :return: 开始日期 :rtype: pandas.DataFrame """ url = "http://web.ifzq.gtimg.cn/other/klineweb/klineWeb/weekTrends" params = { "code": symbol, "type": "qfq", "_var": "trend_qfq", "r": "0.3506048543943414", } r = requests.get(url, params=params) data_text = r.text if not demjson.decode(data_text[data_text.find("={") + 1 :])["data"]: url = "https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get" params = { "_var": "kline_dayqfq", "param": f"{symbol},day,,,320,qfq", "r": "0.751892490072597", } r = requests.get(url, params=params) data_text = r.text start_date = demjson.decode(data_text[data_text.find("={") + 1 :])["data"][ symbol ]["day"][0][0] return start_date start_date = demjson.decode(data_text[data_text.find("={") + 1 :])["data"][0][0] return start_date
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L144-L176
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
27.272727
[ 9, 10, 16, 17, 18, 19, 20, 25, 26, 27, 30, 31, 32 ]
39.393939
false
14.634146
33
2
60.606061
6
def _get_tx_start_year(symbol: str = "sh000919") -> pd.DataFrame: url = "http://web.ifzq.gtimg.cn/other/klineweb/klineWeb/weekTrends" params = { "code": symbol, "type": "qfq", "_var": "trend_qfq", "r": "0.3506048543943414", } r = requests.get(url, params=params) data_text = r.text if not demjson.decode(data_text[data_text.find("={") + 1 :])["data"]: url = "https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get" params = { "_var": "kline_dayqfq", "param": f"{symbol},day,,,320,qfq", "r": "0.751892490072597", } r = requests.get(url, params=params) data_text = r.text start_date = demjson.decode(data_text[data_text.find("={") + 1 :])["data"][ symbol ]["day"][0][0] return start_date start_date = demjson.decode(data_text[data_text.find("={") + 1 :])["data"][0][0] return start_date
18,298
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
stock_zh_index_daily_tx
(symbol: str = "sz980017")
return temp_df
腾讯证券-日频-股票或者指数历史数据 作为 stock_zh_index_daily 的补充, 因为在新浪中有部分指数数据缺失 注意都是: 前复权, 不同网站复权方式不同, 不可混用数据 http://gu.qq.com/sh000919/zs :param symbol: 带市场标识的股票或者指数代码 :type symbol: str :return: 前复权的股票和指数数据 :rtype: pandas.DataFrame
腾讯证券-日频-股票或者指数历史数据 作为 stock_zh_index_daily 的补充, 因为在新浪中有部分指数数据缺失 注意都是: 前复权, 不同网站复权方式不同, 不可混用数据 http://gu.qq.com/sh000919/zs :param symbol: 带市场标识的股票或者指数代码 :type symbol: str :return: 前复权的股票和指数数据 :rtype: pandas.DataFrame
179
224
def stock_zh_index_daily_tx(symbol: str = "sz980017") -> pd.DataFrame: """ 腾讯证券-日频-股票或者指数历史数据 作为 stock_zh_index_daily 的补充, 因为在新浪中有部分指数数据缺失 注意都是: 前复权, 不同网站复权方式不同, 不可混用数据 http://gu.qq.com/sh000919/zs :param symbol: 带市场标识的股票或者指数代码 :type symbol: str :return: 前复权的股票和指数数据 :rtype: pandas.DataFrame """ start_date = _get_tx_start_year(symbol=symbol) url = "https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get" range_start = int(start_date.split("-")[0]) range_end = datetime.date.today().year + 1 temp_df = pd.DataFrame() for year in tqdm(range(range_start, range_end)): params = { "_var": "kline_dayqfq", "param": f"{symbol},day,{year}-01-01,{year + 1}-12-31,640,qfq", "r": "0.8205512681390605", } res = requests.get(url, params=params) text = res.text try: inner_temp_df = pd.DataFrame( demjson.decode(text[text.find("={") + 1 :])["data"][symbol]["day"] ) except: inner_temp_df = pd.DataFrame( demjson.decode(text[text.find("={") + 1 :])["data"][symbol]["qfqday"] ) temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) if temp_df.shape[1] == 6: temp_df.columns = ["date", "open", "close", "high", "low", "amount"] else: temp_df = temp_df.iloc[:, :6] temp_df.columns = ["date", "open", "close", "high", "low", "amount"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df.drop_duplicates(inplace=True, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L179-L224
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
23.913043
[ 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 28, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 ]
56.521739
false
14.634146
46
4
43.478261
8
def stock_zh_index_daily_tx(symbol: str = "sz980017") -> pd.DataFrame: start_date = _get_tx_start_year(symbol=symbol) url = "https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get" range_start = int(start_date.split("-")[0]) range_end = datetime.date.today().year + 1 temp_df = pd.DataFrame() for year in tqdm(range(range_start, range_end)): params = { "_var": "kline_dayqfq", "param": f"{symbol},day,{year}-01-01,{year + 1}-12-31,640,qfq", "r": "0.8205512681390605", } res = requests.get(url, params=params) text = res.text try: inner_temp_df = pd.DataFrame( demjson.decode(text[text.find("={") + 1 :])["data"][symbol]["day"] ) except: inner_temp_df = pd.DataFrame( demjson.decode(text[text.find("={") + 1 :])["data"][symbol]["qfqday"] ) temp_df = pd.concat([temp_df, inner_temp_df], ignore_index=True) if temp_df.shape[1] == 6: temp_df.columns = ["date", "open", "close", "high", "low", "amount"] else: temp_df = temp_df.iloc[:, :6] temp_df.columns = ["date", "open", "close", "high", "low", "amount"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df.drop_duplicates(inplace=True, ignore_index=True) return temp_df
18,299
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_stock_zh.py
stock_zh_index_daily_em
(symbol: str = "sh000913")
return temp_df
东方财富网-股票指数数据 https://quote.eastmoney.com/center/hszs.html :param symbol: 带市场标识的指数代码 :type symbol: str :return: 指数数据 :rtype: pandas.DataFrame
东方财富网-股票指数数据 https://quote.eastmoney.com/center/hszs.html :param symbol: 带市场标识的指数代码 :type symbol: str :return: 指数数据 :rtype: pandas.DataFrame
227
263
def stock_zh_index_daily_em(symbol: str = "sh000913") -> pd.DataFrame: """ 东方财富网-股票指数数据 https://quote.eastmoney.com/center/hszs.html :param symbol: 带市场标识的指数代码 :type symbol: str :return: 指数数据 :rtype: pandas.DataFrame """ market_map = {"sz": "0", "sh": "1"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "cb": "jQuery1124033485574041163946_1596700547000", "secid": f"{market_map[symbol[:2]]}.{symbol[2:]}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "klt": "101", # 日频率 "fqt": "0", "beg": "19900101", "end": "20320101", "_": "1596700547039", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{") : -2]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]["klines"]]) temp_df.columns = ["date", "open", "close", "high", "low", "volume", "amount", "_"] temp_df = temp_df[["date", "open", "close", "high", "low", "volume", "amount"]] temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_stock_zh.py#L227-L263
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
24.324324
[ 9, 10, 11, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ]
43.243243
false
14.634146
37
2
56.756757
6
def stock_zh_index_daily_em(symbol: str = "sh000913") -> pd.DataFrame: market_map = {"sz": "0", "sh": "1"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "cb": "jQuery1124033485574041163946_1596700547000", "secid": f"{market_map[symbol[:2]]}.{symbol[2:]}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "klt": "101", # 日频率 "fqt": "0", "beg": "19900101", "end": "20320101", "_": "1596700547039", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{") : -2]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]["klines"]]) temp_df.columns = ["date", "open", "close", "high", "low", "volume", "amount", "_"] temp_df = temp_df[["date", "open", "close", "high", "low", "volume", "amount"]] temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) return temp_df
18,300
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
nested_to_record
( ds, prefix: str = "", sep: str = ".", level: int = 0, max_level: Optional[int] = None, )
return new_ds
15
58
def nested_to_record( ds, prefix: str = "", sep: str = ".", level: int = 0, max_level: Optional[int] = None, ): """ """ singleton = False if isinstance(ds, dict): ds = [ds] singleton = True new_ds = [] for d in ds: new_d = copy.deepcopy(d) for k, v in d.items(): # each key gets renamed with prefix if not isinstance(k, str): k = str(k) if level == 0: newkey = k else: newkey = prefix + sep + k # flatten if type is dict and # current dict level < maximum level provided and # only dicts gets recurse-flattened # only at level>1 do we rename the rest of the keys if not isinstance(v, dict) or ( max_level is not None and level >= max_level ): if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v continue else: v = new_d.pop(k) new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level)) new_ds.append(new_d) if singleton: return new_ds[0] return new_ds
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L15-L58
25
[ 0 ]
2.272727
[ 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 29, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43 ]
54.545455
false
14.444444
44
11
45.454545
0
def nested_to_record( ds, prefix: str = "", sep: str = ".", level: int = 0, max_level: Optional[int] = None, ): singleton = False if isinstance(ds, dict): ds = [ds] singleton = True new_ds = [] for d in ds: new_d = copy.deepcopy(d) for k, v in d.items(): # each key gets renamed with prefix if not isinstance(k, str): k = str(k) if level == 0: newkey = k else: newkey = prefix + sep + k # flatten if type is dict and # current dict level < maximum level provided and # only dicts gets recurse-flattened # only at level>1 do we rename the rest of the keys if not isinstance(v, dict) or ( max_level is not None and level >= max_level ): if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v continue else: v = new_d.pop(k) new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level)) new_ds.append(new_d) if singleton: return new_ds[0] return new_ds
18,301
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.__init__
( self, hl="en-US", tz=360, geo="", timeout=(2, 5), proxies="", retries=0, backoff_factor=0, )
Initialize default values for params
Initialize default values for params
84
116
def __init__( self, hl="en-US", tz=360, geo="", timeout=(2, 5), proxies="", retries=0, backoff_factor=0, ): """ Initialize default values for params """ # google rate limit self.google_rl = "You have reached your quota limit. Please try again later." self.results = None # set user defined options used globally self.tz = tz self.hl = hl self.geo = geo self.kw_list = list() self.timeout = timeout self.proxies = proxies # add a proxy option self.retries = retries self.backoff_factor = backoff_factor self.proxy_index = 0 self.cookies = self.GetGoogleCookie() # intialize widget payloads self.token_payload = dict() self.interest_over_time_widget = dict() self.interest_by_region_widget = dict() self.related_topics_widget_list = list() self.related_queries_widget_list = list()
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L84-L116
25
[ 0 ]
3.030303
[ 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32 ]
51.515152
false
14.444444
33
1
48.484848
1
def __init__( self, hl="en-US", tz=360, geo="", timeout=(2, 5), proxies="", retries=0, backoff_factor=0, ): # google rate limit self.google_rl = "You have reached your quota limit. Please try again later." self.results = None # set user defined options used globally self.tz = tz self.hl = hl self.geo = geo self.kw_list = list() self.timeout = timeout self.proxies = proxies # add a proxy option self.retries = retries self.backoff_factor = backoff_factor self.proxy_index = 0 self.cookies = self.GetGoogleCookie() # intialize widget payloads self.token_payload = dict() self.interest_over_time_widget = dict() self.interest_by_region_widget = dict() self.related_topics_widget_list = list() self.related_queries_widget_list = list()
18,302
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.GetGoogleCookie
(self)
Gets google cookie (used for each and every proxy; once on init otherwise) Removes proxy from the list on proxy error
Gets google cookie (used for each and every proxy; once on init otherwise) Removes proxy from the list on proxy error
118
147
def GetGoogleCookie(self): """ Gets google cookie (used for each and every proxy; once on init otherwise) Removes proxy from the list on proxy error """ while True: if len(self.proxies) > 0: proxy = {"https": self.proxies[self.proxy_index]} else: proxy = "" try: return dict( filter( lambda i: i[0] == "NID", requests.get( "https://trends.google.com/?geo={geo}".format( geo=self.hl[-2:] ), timeout=self.timeout, proxies=proxy, ).cookies.items(), ) ) except requests.exceptions.ProxyError: print("Proxy error. Changing IP") if len(self.proxies) > 0: self.proxies.remove(self.proxies[self.proxy_index]) else: print("Proxy list is empty. Bye!") continue
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L118-L147
25
[ 0, 1, 2, 3, 4 ]
16.666667
[ 5, 6, 7, 9, 10, 11, 23, 24, 25, 26, 28, 29 ]
40
false
14.444444
30
5
60
2
def GetGoogleCookie(self): while True: if len(self.proxies) > 0: proxy = {"https": self.proxies[self.proxy_index]} else: proxy = "" try: return dict( filter( lambda i: i[0] == "NID", requests.get( "https://trends.google.com/?geo={geo}".format( geo=self.hl[-2:] ), timeout=self.timeout, proxies=proxy, ).cookies.items(), ) ) except requests.exceptions.ProxyError: print("Proxy error. Changing IP") if len(self.proxies) > 0: self.proxies.remove(self.proxies[self.proxy_index]) else: print("Proxy list is empty. Bye!") continue
18,303
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.GetNewProxy
(self)
Increment proxy INDEX; zero on overflow
Increment proxy INDEX; zero on overflow
149
156
def GetNewProxy(self): """ Increment proxy INDEX; zero on overflow """ if self.proxy_index < (len(self.proxies) - 1): self.proxy_index += 1 else: self.proxy_index = 0
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L149-L156
25
[ 0, 1, 2, 3 ]
50
[ 4, 5, 7 ]
37.5
false
14.444444
8
2
62.5
1
def GetNewProxy(self): if self.proxy_index < (len(self.proxies) - 1): self.proxy_index += 1 else: self.proxy_index = 0
18,304
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq._get_data
(self, url, method=GET_METHOD, trim_chars=0, **kwargs)
Send a request to Google and return the JSON response as a Python object :param url: the url to which the request will be sent :param method: the HTTP method ('get' or 'post') :param trim_chars: how many characters should be trimmed off the beginning of the content of the response before this is passed to the JSON parser :param kwargs: any extra key arguments passed to the request builder (usually query parameters or data) :return:
Send a request to Google and return the JSON response as a Python object :param url: the url to which the request will be sent :param method: the HTTP method ('get' or 'post') :param trim_chars: how many characters should be trimmed off the beginning of the content of the response before this is passed to the JSON parser :param kwargs: any extra key arguments passed to the request builder (usually query parameters or data) :return:
158
212
def _get_data(self, url, method=GET_METHOD, trim_chars=0, **kwargs): """Send a request to Google and return the JSON response as a Python object :param url: the url to which the request will be sent :param method: the HTTP method ('get' or 'post') :param trim_chars: how many characters should be trimmed off the beginning of the content of the response before this is passed to the JSON parser :param kwargs: any extra key arguments passed to the request builder (usually query parameters or data) :return: """ s = requests.session() # Retries mechanism. Activated when one of statements >0 (best used for proxy) if self.retries > 0 or self.backoff_factor > 0: retry = Retry( total=self.retries, read=self.retries, connect=self.retries, backoff_factor=self.backoff_factor, ) s.headers.update({"accept-language": self.hl}) if len(self.proxies) > 0: self.cookies = self.GetGoogleCookie() s.proxies.update({"https": self.proxies[self.proxy_index]}) if method == TrendReq.POST_METHOD: response = s.post( url, timeout=self.timeout, cookies=self.cookies, **kwargs ) # DO NOT USE retries or backoff_factor here else: response = s.get( url, timeout=self.timeout, cookies=self.cookies, **kwargs ) # DO NOT USE retries or backoff_factor here # check if the response contains json and throw an exception otherwise # Google mostly sends 'application/json' in the Content-Type header, # but occasionally it sends 'application/javascript # and sometimes even 'text/javascript if ( response.status_code == 200 and "application/json" in response.headers["Content-Type"] or "application/javascript" in response.headers["Content-Type"] or "text/javascript" in response.headers["Content-Type"] ): # trim initial characters # some responses start with garbage characters, like ")]}'," # these have to be cleaned before being passed to the json parser content = response.text[trim_chars:] # parse json self.GetNewProxy() return json.loads(content) else: # error raise exceptions.ResponseError( "The request failed: Google returned a " "response with code {0}.".format(response.status_code), response=response, )
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L158-L212
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.363636
[ 9, 11, 12, 19, 20, 21, 22, 23, 24, 28, 35, 44, 46, 47, 50 ]
27.272727
false
14.444444
55
9
72.727273
7
def _get_data(self, url, method=GET_METHOD, trim_chars=0, **kwargs): s = requests.session() # Retries mechanism. Activated when one of statements >0 (best used for proxy) if self.retries > 0 or self.backoff_factor > 0: retry = Retry( total=self.retries, read=self.retries, connect=self.retries, backoff_factor=self.backoff_factor, ) s.headers.update({"accept-language": self.hl}) if len(self.proxies) > 0: self.cookies = self.GetGoogleCookie() s.proxies.update({"https": self.proxies[self.proxy_index]}) if method == TrendReq.POST_METHOD: response = s.post( url, timeout=self.timeout, cookies=self.cookies, **kwargs ) # DO NOT USE retries or backoff_factor here else: response = s.get( url, timeout=self.timeout, cookies=self.cookies, **kwargs ) # DO NOT USE retries or backoff_factor here # check if the response contains json and throw an exception otherwise # Google mostly sends 'application/json' in the Content-Type header, # but occasionally it sends 'application/javascript # and sometimes even 'text/javascript if ( response.status_code == 200 and "application/json" in response.headers["Content-Type"] or "application/javascript" in response.headers["Content-Type"] or "text/javascript" in response.headers["Content-Type"] ): # trim initial characters # some responses start with garbage characters, like ")]}'," # these have to be cleaned before being passed to the json parser content = response.text[trim_chars:] # parse json self.GetNewProxy() return json.loads(content) else: # error raise exceptions.ResponseError( "The request failed: Google returned a " "response with code {0}.".format(response.status_code), response=response, )
18,305
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.build_payload
(self, kw_list, cat=0, timeframe="today 5-y", geo="", gprop="")
return
Create the payload for related queries, interest over time and interest by region
Create the payload for related queries, interest over time and interest by region
214
232
def build_payload(self, kw_list, cat=0, timeframe="today 5-y", geo="", gprop=""): """Create the payload for related queries, interest over time and interest by region""" self.kw_list = kw_list self.geo = geo or self.geo self.token_payload = { "hl": self.hl, "tz": self.tz, "req": {"comparisonItem": [], "category": cat, "property": gprop}, } # build out json for each keyword for kw in self.kw_list: keyword_payload = {"keyword": kw, "time": timeframe, "geo": self.geo} self.token_payload["req"]["comparisonItem"].append(keyword_payload) # requests will mangle this if it is not a string self.token_payload["req"] = json.dumps(self.token_payload["req"]) # get tokens self._tokens() return
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L214-L232
25
[ 0, 1 ]
10.526316
[ 2, 3, 4, 11, 12, 13, 15, 17, 18 ]
47.368421
false
14.444444
19
3
52.631579
1
def build_payload(self, kw_list, cat=0, timeframe="today 5-y", geo="", gprop=""): self.kw_list = kw_list self.geo = geo or self.geo self.token_payload = { "hl": self.hl, "tz": self.tz, "req": {"comparisonItem": [], "category": cat, "property": gprop}, } # build out json for each keyword for kw in self.kw_list: keyword_payload = {"keyword": kw, "time": timeframe, "geo": self.geo} self.token_payload["req"]["comparisonItem"].append(keyword_payload) # requests will mangle this if it is not a string self.token_payload["req"] = json.dumps(self.token_payload["req"]) # get tokens self._tokens() return
18,306
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq._tokens
(self)
return
Makes request to Google to get API tokens for interest over time, interest by region and related queries
Makes request to Google to get API tokens for interest over time, interest by region and related queries
234
261
def _tokens(self): """Makes request to Google to get API tokens for interest over time, interest by region and related queries""" # make the request and parse the returned json widget_dict = self._get_data( url=TrendReq.GENERAL_URL, method=TrendReq.GET_METHOD, params=self.token_payload, trim_chars=4, )["widgets"] # order of the json matters... first_region_token = True # clear self.related_queries_widget_list and self.related_topics_widget_list # of old keywords'widgets self.related_queries_widget_list[:] = [] self.related_topics_widget_list[:] = [] # assign requests for widget in widget_dict: if widget["id"] == "TIMESERIES": self.interest_over_time_widget = widget if widget["id"] == "GEO_MAP" and first_region_token: self.interest_by_region_widget = widget first_region_token = False # response for each term, put into a list if "RELATED_TOPICS" in widget["id"]: self.related_topics_widget_list.append(widget) if "RELATED_QUERIES" in widget["id"]: self.related_queries_widget_list.append(widget) return
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L234-L261
25
[ 0, 1, 2 ]
10.714286
[ 3, 10, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27 ]
53.571429
false
14.444444
28
7
46.428571
1
def _tokens(self): # make the request and parse the returned json widget_dict = self._get_data( url=TrendReq.GENERAL_URL, method=TrendReq.GET_METHOD, params=self.token_payload, trim_chars=4, )["widgets"] # order of the json matters... first_region_token = True # clear self.related_queries_widget_list and self.related_topics_widget_list # of old keywords'widgets self.related_queries_widget_list[:] = [] self.related_topics_widget_list[:] = [] # assign requests for widget in widget_dict: if widget["id"] == "TIMESERIES": self.interest_over_time_widget = widget if widget["id"] == "GEO_MAP" and first_region_token: self.interest_by_region_widget = widget first_region_token = False # response for each term, put into a list if "RELATED_TOPICS" in widget["id"]: self.related_topics_widget_list.append(widget) if "RELATED_QUERIES" in widget["id"]: self.related_queries_widget_list.append(widget) return
18,307
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.interest_over_time
(self)
return final
Request data from Google's Interest Over Time section and return a dataframe
Request data from Google's Interest Over Time section and return a dataframe
263
312
def interest_over_time(self): """Request data from Google's Interest Over Time section and return a dataframe""" over_time_payload = { # convert to string as requests will mangle "req": json.dumps(self.interest_over_time_widget["request"]), "token": self.interest_over_time_widget["token"], "tz": self.tz, } # make the request and parse the returned json req_json = self._get_data( url=TrendReq.INTEREST_OVER_TIME_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=over_time_payload, ) df = pd.DataFrame(req_json["default"]["timelineData"]) if df.empty: return df df["date"] = pd.to_datetime(df["time"].astype(dtype="float64"), unit="s") df = df.set_index(["date"]).sort_index() # split list columns into separate ones, remove brackets and split on comma result_df = df["value"].apply( lambda x: pd.Series(str(x).replace("[", "").replace("]", "").split(",")) ) # rename each column with its search term, relying on order that google provides... for idx, kw in enumerate(self.kw_list): # there is currently a bug with assigning columns that may be # parsed as a date in pandas: use explicit insert column method result_df.insert(len(result_df.columns), kw, result_df[idx].astype("int")) del result_df[idx] if "isPartial" in df: # make other dataframe from isPartial key data # split list columns into separate ones, remove brackets and split on comma df = df.fillna(False) result_df2 = df["isPartial"].apply( lambda x: pd.Series(str(x).replace("[", "").replace("]", "").split(",")) ) result_df2.columns = ["isPartial"] # concatenate the two dataframes final = pd.concat([result_df, result_df2], axis=1) else: final = result_df final["isPartial"] = False return final
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L263-L312
25
[ 0, 1, 2 ]
6
[ 3, 11, 18, 19, 20, 22, 23, 25, 29, 32, 33, 35, 38, 39, 42, 44, 46, 47, 49 ]
38
false
14.444444
50
4
62
1
def interest_over_time(self): over_time_payload = { # convert to string as requests will mangle "req": json.dumps(self.interest_over_time_widget["request"]), "token": self.interest_over_time_widget["token"], "tz": self.tz, } # make the request and parse the returned json req_json = self._get_data( url=TrendReq.INTEREST_OVER_TIME_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=over_time_payload, ) df = pd.DataFrame(req_json["default"]["timelineData"]) if df.empty: return df df["date"] = pd.to_datetime(df["time"].astype(dtype="float64"), unit="s") df = df.set_index(["date"]).sort_index() # split list columns into separate ones, remove brackets and split on comma result_df = df["value"].apply( lambda x: pd.Series(str(x).replace("[", "").replace("]", "").split(",")) ) # rename each column with its search term, relying on order that google provides... for idx, kw in enumerate(self.kw_list): # there is currently a bug with assigning columns that may be # parsed as a date in pandas: use explicit insert column method result_df.insert(len(result_df.columns), kw, result_df[idx].astype("int")) del result_df[idx] if "isPartial" in df: # make other dataframe from isPartial key data # split list columns into separate ones, remove brackets and split on comma df = df.fillna(False) result_df2 = df["isPartial"].apply( lambda x: pd.Series(str(x).replace("[", "").replace("]", "").split(",")) ) result_df2.columns = ["isPartial"] # concatenate the two dataframes final = pd.concat([result_df, result_df2], axis=1) else: final = result_df final["isPartial"] = False return final
18,308
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.interest_by_region
( self, resolution="COUNTRY", inc_low_vol=False, inc_geo_code=False )
return result_df
Request data from Google's Interest by Region section and return a dataframe
Request data from Google's Interest by Region section and return a dataframe
314
360
def interest_by_region( self, resolution="COUNTRY", inc_low_vol=False, inc_geo_code=False ): """Request data from Google's Interest by Region section and return a dataframe""" # make the request region_payload = dict() if self.geo == "": self.interest_by_region_widget["request"]["resolution"] = resolution elif self.geo == "US" and resolution in ["DMA", "CITY", "REGION"]: self.interest_by_region_widget["request"]["resolution"] = resolution self.interest_by_region_widget["request"][ "includeLowSearchVolumeGeos" ] = inc_low_vol # convert to string as requests will mangle region_payload["req"] = json.dumps(self.interest_by_region_widget["request"]) region_payload["token"] = self.interest_by_region_widget["token"] region_payload["tz"] = self.tz # parse returned json req_json = self._get_data( url=TrendReq.INTEREST_BY_REGION_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=region_payload, ) df = pd.DataFrame(req_json["default"]["geoMapData"]) if df.empty: return df # rename the column with the search keyword df = df[["geoName", "geoCode", "value"]].set_index(["geoName"]).sort_index() # split list columns into separate ones, remove brackets and split on comma result_df = df["value"].apply( lambda x: pd.Series(str(x).replace("[", "").replace("]", "").split(",")) ) if inc_geo_code: result_df["geoCode"] = df["geoCode"] # rename each column with its search term for idx, kw in enumerate(self.kw_list): result_df[kw] = result_df[idx].astype("int") del result_df[idx] return result_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L314-L360
25
[ 0 ]
2.12766
[ 6, 7, 8, 9, 10, 12, 17, 18, 19, 22, 28, 29, 30, 33, 35, 38, 39, 42, 43, 44, 46 ]
44.680851
false
14.444444
47
7
55.319149
1
def interest_by_region( self, resolution="COUNTRY", inc_low_vol=False, inc_geo_code=False ): # make the request region_payload = dict() if self.geo == "": self.interest_by_region_widget["request"]["resolution"] = resolution elif self.geo == "US" and resolution in ["DMA", "CITY", "REGION"]: self.interest_by_region_widget["request"]["resolution"] = resolution self.interest_by_region_widget["request"][ "includeLowSearchVolumeGeos" ] = inc_low_vol # convert to string as requests will mangle region_payload["req"] = json.dumps(self.interest_by_region_widget["request"]) region_payload["token"] = self.interest_by_region_widget["token"] region_payload["tz"] = self.tz # parse returned json req_json = self._get_data( url=TrendReq.INTEREST_BY_REGION_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=region_payload, ) df = pd.DataFrame(req_json["default"]["geoMapData"]) if df.empty: return df # rename the column with the search keyword df = df[["geoName", "geoCode", "value"]].set_index(["geoName"]).sort_index() # split list columns into separate ones, remove brackets and split on comma result_df = df["value"].apply( lambda x: pd.Series(str(x).replace("[", "").replace("]", "").split(",")) ) if inc_geo_code: result_df["geoCode"] = df["geoCode"] # rename each column with its search term for idx, kw in enumerate(self.kw_list): result_df[kw] = result_df[idx].astype("int") del result_df[idx] return result_df
18,309
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.related_topics
(self)
return result_dict
Request data from Google's Related Topics section and return a dictionary of dataframes If no top and/or rising related topics are found, the value for the key "top" and/or "rising" will be None
Request data from Google's Related Topics section and return a dictionary of dataframes
362
408
def related_topics(self): """Request data from Google's Related Topics section and return a dictionary of dataframes If no top and/or rising related topics are found, the value for the key "top" and/or "rising" will be None """ # make the request related_payload = dict() result_dict = dict() for request_json in self.related_topics_widget_list: # ensure we know which keyword we are looking at rather than relying on order kw = request_json["request"]["restriction"]["complexKeywordsRestriction"][ "keyword" ][0]["value"] # convert to string as requests will mangle related_payload["req"] = json.dumps(request_json["request"]) related_payload["token"] = request_json["token"] related_payload["tz"] = self.tz # parse the returned json req_json = self._get_data( url=TrendReq.RELATED_QUERIES_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=related_payload, ) # top topics try: top_list = req_json["default"]["rankedList"][0]["rankedKeyword"] df_top = pd.DataFrame([nested_to_record(d, sep="_") for d in top_list]) except KeyError: # in case no top topics are found, the lines above will throw a KeyError df_top = None # rising topics try: rising_list = req_json["default"]["rankedList"][1]["rankedKeyword"] df_rising = pd.DataFrame( [nested_to_record(d, sep="_") for d in rising_list] ) except KeyError: # in case no rising topics are found, the lines above will throw a KeyError df_rising = None result_dict[kw] = {"rising": df_rising, "top": df_top} return result_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L362-L408
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.893617
[ 7, 8, 9, 11, 15, 16, 17, 20, 28, 29, 30, 31, 33, 36, 37, 38, 41, 43, 45, 46 ]
42.553191
false
14.444444
47
6
57.446809
3
def related_topics(self): # make the request related_payload = dict() result_dict = dict() for request_json in self.related_topics_widget_list: # ensure we know which keyword we are looking at rather than relying on order kw = request_json["request"]["restriction"]["complexKeywordsRestriction"][ "keyword" ][0]["value"] # convert to string as requests will mangle related_payload["req"] = json.dumps(request_json["request"]) related_payload["token"] = request_json["token"] related_payload["tz"] = self.tz # parse the returned json req_json = self._get_data( url=TrendReq.RELATED_QUERIES_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=related_payload, ) # top topics try: top_list = req_json["default"]["rankedList"][0]["rankedKeyword"] df_top = pd.DataFrame([nested_to_record(d, sep="_") for d in top_list]) except KeyError: # in case no top topics are found, the lines above will throw a KeyError df_top = None # rising topics try: rising_list = req_json["default"]["rankedList"][1]["rankedKeyword"] df_rising = pd.DataFrame( [nested_to_record(d, sep="_") for d in rising_list] ) except KeyError: # in case no rising topics are found, the lines above will throw a KeyError df_rising = None result_dict[kw] = {"rising": df_rising, "top": df_top} return result_dict
18,310
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.related_queries
(self)
return result_dict
Request data from Google's Related Queries section and return a dictionary of dataframes If no top and/or rising related queries are found, the value for the key "top" and/or "rising" will be None
Request data from Google's Related Queries section and return a dictionary of dataframes
410
458
def related_queries(self): """Request data from Google's Related Queries section and return a dictionary of dataframes If no top and/or rising related queries are found, the value for the key "top" and/or "rising" will be None """ # make the request related_payload = dict() result_dict = dict() for request_json in self.related_queries_widget_list: # ensure we know which keyword we are looking at rather than relying on order kw = request_json["request"]["restriction"]["complexKeywordsRestriction"][ "keyword" ][0]["value"] # convert to string as requests will mangle related_payload["req"] = json.dumps(request_json["request"]) related_payload["token"] = request_json["token"] related_payload["tz"] = self.tz # parse the returned json req_json = self._get_data( url=TrendReq.RELATED_QUERIES_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=related_payload, ) # top queries try: top_df = pd.DataFrame( req_json["default"]["rankedList"][0]["rankedKeyword"] ) top_df = top_df[["query", "value"]] except KeyError: # in case no top queries are found, the lines above will throw a KeyError top_df = None # rising queries try: rising_df = pd.DataFrame( req_json["default"]["rankedList"][1]["rankedKeyword"] ) rising_df = rising_df[["query", "value"]] except KeyError: # in case no rising queries are found, the lines above will throw a KeyError rising_df = None result_dict[kw] = {"top": top_df, "rising": rising_df} return result_dict
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L410-L458
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.285714
[ 7, 8, 9, 11, 15, 16, 17, 20, 28, 29, 32, 33, 35, 38, 39, 42, 43, 45, 47, 48 ]
40.816327
false
14.444444
49
4
59.183673
3
def related_queries(self): # make the request related_payload = dict() result_dict = dict() for request_json in self.related_queries_widget_list: # ensure we know which keyword we are looking at rather than relying on order kw = request_json["request"]["restriction"]["complexKeywordsRestriction"][ "keyword" ][0]["value"] # convert to string as requests will mangle related_payload["req"] = json.dumps(request_json["request"]) related_payload["token"] = request_json["token"] related_payload["tz"] = self.tz # parse the returned json req_json = self._get_data( url=TrendReq.RELATED_QUERIES_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=related_payload, ) # top queries try: top_df = pd.DataFrame( req_json["default"]["rankedList"][0]["rankedKeyword"] ) top_df = top_df[["query", "value"]] except KeyError: # in case no top queries are found, the lines above will throw a KeyError top_df = None # rising queries try: rising_df = pd.DataFrame( req_json["default"]["rankedList"][1]["rankedKeyword"] ) rising_df = rising_df[["query", "value"]] except KeyError: # in case no rising queries are found, the lines above will throw a KeyError rising_df = None result_dict[kw] = {"top": top_df, "rising": rising_df} return result_dict
18,311
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.trending_searches
(self, pn="united_states")
return result_df
Request data from Google's Hot Searches section and return a dataframe
Request data from Google's Hot Searches section and return a dataframe
460
470
def trending_searches(self, pn="united_states"): """Request data from Google's Hot Searches section and return a dataframe""" # make the request # forms become obsolute due to the new TRENDING_SEACHES_URL # forms = {'ajax': 1, 'pn': pn, 'htd': '', 'htv': 'l'} req_json = self._get_data( url=TrendReq.TRENDING_SEARCHES_URL, method=TrendReq.GET_METHOD )[pn] result_df = pd.DataFrame(req_json) return result_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L460-L470
25
[ 0, 1, 2, 3, 4, 5 ]
54.545455
[ 6, 9, 10 ]
27.272727
false
14.444444
11
1
72.727273
1
def trending_searches(self, pn="united_states"): # make the request # forms become obsolute due to the new TRENDING_SEACHES_URL # forms = {'ajax': 1, 'pn': pn, 'htd': '', 'htv': 'l'} req_json = self._get_data( url=TrendReq.TRENDING_SEARCHES_URL, method=TrendReq.GET_METHOD )[pn] result_df = pd.DataFrame(req_json) return result_df
18,312
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.today_searches
(self, pn="US")
return result_df.iloc[:, -1]
Request data from Google Daily Trends section and returns a dataframe
Request data from Google Daily Trends section and returns a dataframe
472
487
def today_searches(self, pn="US"): """Request data from Google Daily Trends section and returns a dataframe""" forms = {"ns": 15, "geo": pn, "tz": "-180", "hl": "en-US"} req_json = self._get_data( url=TrendReq.TODAY_SEARCHES_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=forms, )["default"]["trendingSearchesDays"][0]["trendingSearches"] result_df = pd.DataFrame() # parse the returned json sub_df = pd.DataFrame() for trend in req_json: sub_df = sub_df.append(trend["title"], ignore_index=True) result_df = pd.concat([result_df, sub_df]) return result_df.iloc[:, -1]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L472-L487
25
[ 0, 1 ]
12.5
[ 2, 3, 9, 11, 12, 13, 14, 15 ]
50
false
14.444444
16
2
50
1
def today_searches(self, pn="US"): forms = {"ns": 15, "geo": pn, "tz": "-180", "hl": "en-US"} req_json = self._get_data( url=TrendReq.TODAY_SEARCHES_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=forms, )["default"]["trendingSearchesDays"][0]["trendingSearches"] result_df = pd.DataFrame() # parse the returned json sub_df = pd.DataFrame() for trend in req_json: sub_df = sub_df.append(trend["title"], ignore_index=True) result_df = pd.concat([result_df, sub_df]) return result_df.iloc[:, -1]
18,313
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.top_charts
(self, date, hl="en-US", tz=300, geo="GLOBAL")
return df
Request data from Google's Top Charts section and return a dataframe
Request data from Google's Top Charts section and return a dataframe
489
508
def top_charts(self, date, hl="en-US", tz=300, geo="GLOBAL"): """Request data from Google's Top Charts section and return a dataframe""" # create the payload chart_payload = { "hl": hl, "tz": tz, "date": date, "geo": geo, "isMobile": False, } # make the request and parse the returned json req_json = self._get_data( url=TrendReq.TOP_CHARTS_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=chart_payload, )["topCharts"][0]["listItems"] df = pd.DataFrame(req_json) return df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L489-L508
25
[ 0, 1, 2 ]
15
[ 3, 12, 18, 19 ]
20
false
14.444444
20
1
80
1
def top_charts(self, date, hl="en-US", tz=300, geo="GLOBAL"): # create the payload chart_payload = { "hl": hl, "tz": tz, "date": date, "geo": geo, "isMobile": False, } # make the request and parse the returned json req_json = self._get_data( url=TrendReq.TOP_CHARTS_URL, method=TrendReq.GET_METHOD, trim_chars=5, params=chart_payload, )["topCharts"][0]["listItems"] df = pd.DataFrame(req_json) return df
18,314
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.suggestions
(self, keyword)
return req_json
Request data from Google's Keyword Suggestion dropdown and return a dictionary
Request data from Google's Keyword Suggestion dropdown and return a dictionary
510
523
def suggestions(self, keyword): """Request data from Google's Keyword Suggestion dropdown and return a dictionary""" # make the request kw_param = quote(keyword) parameters = {"hl": self.hl} req_json = self._get_data( url=TrendReq.SUGGESTIONS_URL + kw_param, params=parameters, method=TrendReq.GET_METHOD, trim_chars=5, )["default"]["topics"] return req_json
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L510-L523
25
[ 0, 1, 2, 3 ]
28.571429
[ 4, 5, 7, 13 ]
28.571429
false
14.444444
14
1
71.428571
1
def suggestions(self, keyword): # make the request kw_param = quote(keyword) parameters = {"hl": self.hl} req_json = self._get_data( url=TrendReq.SUGGESTIONS_URL + kw_param, params=parameters, method=TrendReq.GET_METHOD, trim_chars=5, )["default"]["topics"] return req_json
18,315
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.categories
(self)
return req_json
Request available categories data from Google's API and return a dictionary
Request available categories data from Google's API and return a dictionary
525
536
def categories(self): """Request available categories data from Google's API and return a dictionary""" params = {"hl": self.hl} req_json = self._get_data( url=TrendReq.CATEGORIES_URL, params=params, method=TrendReq.GET_METHOD, trim_chars=5, ) return req_json
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L525-L536
25
[ 0, 1, 2 ]
25
[ 3, 5, 11 ]
25
false
14.444444
12
1
75
1
def categories(self): params = {"hl": self.hl} req_json = self._get_data( url=TrendReq.CATEGORIES_URL, params=params, method=TrendReq.GET_METHOD, trim_chars=5, ) return req_json
18,316
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/request.py
TrendReq.get_historical_interest
( self, keywords, year_start=2018, month_start=1, day_start=1, hour_start=0, year_end=2018, month_end=2, day_end=1, hour_end=0, cat=0, geo="", gprop="", sleep=0, )
return df.loc[initial_start_date:end_date]
Gets historical hourly data for interest by chunking requests to 1 week at a time (which is what Google allows)
Gets historical hourly data for interest by chunking requests to 1 week at a time (which is what Google allows)
538
611
def get_historical_interest( self, keywords, year_start=2018, month_start=1, day_start=1, hour_start=0, year_end=2018, month_end=2, day_end=1, hour_end=0, cat=0, geo="", gprop="", sleep=0, ): """Gets historical hourly data for interest by chunking requests to 1 week at a time (which is what Google allows)""" # construct datetime obejcts - raises ValueError if invalid parameters initial_start_date = start_date = datetime( year_start, month_start, day_start, hour_start ) end_date = datetime(year_end, month_end, day_end, hour_end) # the timeframe has to be in 1 week intervals or Google will reject it delta = timedelta(days=7) df = pd.DataFrame() date_iterator = start_date date_iterator += delta while True: # format date to comply with API call start_date_str = start_date.strftime("%Y-%m-%dT%H") date_iterator_str = date_iterator.strftime("%Y-%m-%dT%H") tf = start_date_str + " " + date_iterator_str try: self.build_payload(keywords, cat, tf, geo, gprop) week_df = self.interest_over_time() df = df.append(week_df) except Exception as e: print(e) pass start_date += delta date_iterator += delta if date_iterator > end_date: # Run for 7 more days to get remaining data that would have been truncated if we stopped now # This is needed because google requires 7 days yet we may end up with a week result less than a full week start_date_str = start_date.strftime("%Y-%m-%dT%H") date_iterator_str = date_iterator.strftime("%Y-%m-%dT%H") tf = start_date_str + " " + date_iterator_str try: self.build_payload(keywords, cat, tf, geo, gprop) week_df = self.interest_over_time() df = df.append(week_df) except Exception as e: print(e) pass break # just in case you are rate-limited by Google. Recommended is 60 if you are. if sleep > 0: time.sleep(sleep) # Return the dataframe with results from our timeframe return df.loc[initial_start_date:end_date]
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/request.py#L538-L611
25
[ 0 ]
1.351351
[ 19, 22, 25, 27, 29, 30, 32, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 73 ]
45.945946
false
14.444444
74
6
54.054054
1
def get_historical_interest( self, keywords, year_start=2018, month_start=1, day_start=1, hour_start=0, year_end=2018, month_end=2, day_end=1, hour_end=0, cat=0, geo="", gprop="", sleep=0, ): # construct datetime obejcts - raises ValueError if invalid parameters initial_start_date = start_date = datetime( year_start, month_start, day_start, hour_start ) end_date = datetime(year_end, month_end, day_end, hour_end) # the timeframe has to be in 1 week intervals or Google will reject it delta = timedelta(days=7) df = pd.DataFrame() date_iterator = start_date date_iterator += delta while True: # format date to comply with API call start_date_str = start_date.strftime("%Y-%m-%dT%H") date_iterator_str = date_iterator.strftime("%Y-%m-%dT%H") tf = start_date_str + " " + date_iterator_str try: self.build_payload(keywords, cat, tf, geo, gprop) week_df = self.interest_over_time() df = df.append(week_df) except Exception as e: print(e) pass start_date += delta date_iterator += delta if date_iterator > end_date: # Run for 7 more days to get remaining data that would have been truncated if we stopped now # This is needed because google requires 7 days yet we may end up with a week result less than a full week start_date_str = start_date.strftime("%Y-%m-%dT%H") date_iterator_str = date_iterator.strftime("%Y-%m-%dT%H") tf = start_date_str + " " + date_iterator_str try: self.build_payload(keywords, cat, tf, geo, gprop) week_df = self.interest_over_time() df = df.append(week_df) except Exception as e: print(e) pass break # just in case you are rate-limited by Google. Recommended is 60 if you are. if sleep > 0: time.sleep(sleep) # Return the dataframe with results from our timeframe return df.loc[initial_start_date:end_date]
18,317
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_hist_sw
(symbol: str = "801030", period: str = "day")
return temp_df
申万宏源研究-指数发布-指数详情-指数历史数据 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :param period: choice of {"day", "week", "month"} :type period: str :return: 指数历史数据 :rtype: pandas.DataFrame
申万宏源研究-指数发布-指数详情-指数历史数据 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :param period: choice of {"day", "week", "month"} :type period: str :return: 指数历史数据 :rtype: pandas.DataFrame
15
67
def index_hist_sw(symbol: str = "801030", period: str = "day") -> pd.DataFrame: """ 申万宏源研究-指数发布-指数详情-指数历史数据 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :param period: choice of {"day", "week", "month"} :type period: str :return: 指数历史数据 :rtype: pandas.DataFrame """ period_map = { "day": "DAY", "week": "WEEK", "month": "MONTH", } url = "https://www.swhyresearch.com/institute-sw/api/index_publish/trend/" params = { "swindexcode": symbol, "period": period_map[period], } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "swindexcode": "代码", "bargaindate": "日期", "openindex": "开盘", "maxindex": "最高", "minindex": "最低", "closeindex": "收盘", "hike": "", "markup": "", "bargainamount": "成交量", "bargainsum": "成交额", }, inplace=True, ) temp_df = temp_df[ [ "代码", "日期", "收盘", "开盘", "最高", "最低", "成交量", "成交额", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L15-L67
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
20.754717
[ 11, 16, 17, 21, 22, 23, 24, 39, 51, 52 ]
18.867925
false
7.865169
53
1
81.132075
8
def index_hist_sw(symbol: str = "801030", period: str = "day") -> pd.DataFrame: period_map = { "day": "DAY", "week": "WEEK", "month": "MONTH", } url = "https://www.swhyresearch.com/institute-sw/api/index_publish/trend/" params = { "swindexcode": symbol, "period": period_map[period], } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "swindexcode": "代码", "bargaindate": "日期", "openindex": "开盘", "maxindex": "最高", "minindex": "最低", "closeindex": "收盘", "hike": "", "markup": "", "bargainamount": "成交量", "bargainsum": "成交额", }, inplace=True, ) temp_df = temp_df[ [ "代码", "日期", "收盘", "开盘", "最高", "最低", "成交量", "成交额", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date return temp_df
18,318
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_min_sw
(symbol: str = "801001")
return temp_df
申万宏源研究-指数发布-指数详情-指数分时数据 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :return: 指数分时数据 :rtype: pandas.DataFrame
申万宏源研究-指数发布-指数详情-指数分时数据 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :return: 指数分时数据 :rtype: pandas.DataFrame
70
109
def index_min_sw(symbol: str = "801001") -> pd.DataFrame: """ 申万宏源研究-指数发布-指数详情-指数分时数据 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :return: 指数分时数据 :rtype: pandas.DataFrame """ url = ( "https://www.swhyresearch.com/institute-sw/api/index_publish/details/timelines/" ) params = { "swindexcode": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "l1": "代码", "l2": "名称", "l8": "价格", "trading_date": "日期", "trading_time": "时间", }, inplace=True, ) temp_df = temp_df[ [ "代码", "名称", "价格", "日期", "时间", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["价格"] = pd.to_numeric(temp_df["价格"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L70-L109
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
22.5
[ 9, 12, 15, 16, 17, 18, 28, 37, 38, 39 ]
25
false
7.865169
40
1
75
6
def index_min_sw(symbol: str = "801001") -> pd.DataFrame: url = ( "https://www.swhyresearch.com/institute-sw/api/index_publish/details/timelines/" ) params = { "swindexcode": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "l1": "代码", "l2": "名称", "l8": "价格", "trading_date": "日期", "trading_time": "时间", }, inplace=True, ) temp_df = temp_df[ [ "代码", "名称", "价格", "日期", "时间", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["价格"] = pd.to_numeric(temp_df["价格"]) return temp_df
18,319
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_component_sw
(symbol: str = "801001")
return temp_df
申万宏源研究-指数发布-指数详情-成分股 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :return: 成分股 :rtype: pandas.DataFrame
申万宏源研究-指数发布-指数详情-成分股 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :return: 成分股 :rtype: pandas.DataFrame
112
149
def index_component_sw(symbol: str = "801001") -> pd.DataFrame: """ 申万宏源研究-指数发布-指数详情-成分股 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex/releasedetail?code=801001&name=%E7%94%B3%E4%B8%8750 :param symbol: 指数代码 :type symbol: str :return: 成分股 :rtype: pandas.DataFrame """ url = "https://www.swhyresearch.com/institute-sw/api/index_publish/details/component_stocks/" params = {"swindexcode": symbol, "page": "1", "page_size": "10000"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) temp_df.reset_index(inplace=True) temp_df["index"] = temp_df["index"] + 1 temp_df.rename( columns={ "index": "序号", "stockcode": "证券代码", "stockname": "证券名称", "newweight": "最新权重", "beginningdate": "计入日期", }, inplace=True, ) temp_df = temp_df[ [ "序号", "证券代码", "证券名称", "最新权重", "计入日期", ] ] temp_df["计入日期"] = pd.to_datetime(temp_df["计入日期"]).dt.date temp_df["最新权重"] = pd.to_numeric(temp_df["最新权重"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L112-L149
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
23.684211
[ 9, 10, 11, 12, 13, 14, 15, 16, 26, 35, 36, 37 ]
31.578947
false
7.865169
38
1
68.421053
6
def index_component_sw(symbol: str = "801001") -> pd.DataFrame: url = "https://www.swhyresearch.com/institute-sw/api/index_publish/details/component_stocks/" params = {"swindexcode": symbol, "page": "1", "page_size": "10000"} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) temp_df.reset_index(inplace=True) temp_df["index"] = temp_df["index"] + 1 temp_df.rename( columns={ "index": "序号", "stockcode": "证券代码", "stockname": "证券名称", "newweight": "最新权重", "beginningdate": "计入日期", }, inplace=True, ) temp_df = temp_df[ [ "序号", "证券代码", "证券名称", "最新权重", "计入日期", ] ] temp_df["计入日期"] = pd.to_datetime(temp_df["计入日期"]).dt.date temp_df["最新权重"] = pd.to_numeric(temp_df["最新权重"]) return temp_df
18,320
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_realtime_sw
(symbol: str = "二级行业") -> pd.D
return big_df
申万宏源研究-指数系列 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :return: 指数系列实时行情数据 :rtype: pandas.DataFrame
申万宏源研究-指数系列 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :return: 指数系列实时行情数据 :rtype: pandas.DataFrame
152
205
def index_realtime_sw(symbol: str = "二级行业") -> pd.DataFrame: """ 申万宏源研究-指数系列 https://www.swhyresearch.com/institute_sw/allIndex/releasedIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :return: 指数系列实时行情数据 :rtype: pandas.DataFrame """ url = "https://www.swhyresearch.com/institute-sw/api/index_publish/current/" params = {"page": "1", "page_size": "50", "indextype": symbol} r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] big_df = big_df[ [ "指数代码", "指数名称", "昨收盘", "今开盘", "最新价", "成交额", "成交量", "最高价", "最低价", ] ] big_df["昨收盘"] = pd.to_numeric(big_df["昨收盘"]) big_df["今开盘"] = pd.to_numeric(big_df["今开盘"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["成交额"] = pd.to_numeric(big_df["成交额"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L152-L205
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
16.666667
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 33, 46, 47, 48, 49, 50, 51, 52, 53 ]
42.592593
false
7.865169
54
2
57.407407
6
def index_realtime_sw(symbol: str = "二级行业") -> pd.DataFrame: url = "https://www.swhyresearch.com/institute-sw/api/index_publish/current/" params = {"page": "1", "page_size": "50", "indextype": symbol} r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] big_df = big_df[ [ "指数代码", "指数名称", "昨收盘", "今开盘", "最新价", "成交额", "成交量", "最高价", "最低价", ] ] big_df["昨收盘"] = pd.to_numeric(big_df["昨收盘"]) big_df["今开盘"] = pd.to_numeric(big_df["今开盘"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["成交额"] = pd.to_numeric(big_df["成交额"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) return big_df
18,321
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_analysis_daily_sw
( symbol: str = "市场表征", start_date: str = "20221103", end_date: str = "20221103", )
return big_df
申万宏源研究-指数分析 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 指数分析 :rtype: pandas.DataFrame
申万宏源研究-指数分析 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 指数分析 :rtype: pandas.DataFrame
208
279
def index_analysis_daily_sw( symbol: str = "市场表征", start_date: str = "20221103", end_date: str = "20221103", ) -> pd.DataFrame: """ 申万宏源研究-指数分析 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 指数分析 :rtype: pandas.DataFrame """ url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/index_analysis_report/" params = { "page": "1", "page_size": "50", "index_type": symbol, "start_date": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "end_date": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), "type": 'DAY', "swindexcode": "all", } r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( columns={ "swindexcode": "指数代码", "swindexname": "指数名称", "bargaindate": "发布日期", "closeindex": "收盘指数", "bargainamount": "成交量", "markup": "涨跌幅", "turnoverrate": "换手率", "pe": "市盈率", "pb": "市净率", "meanprice": "均价", "bargainsumrate": "成交额占比", "negotiablessharesum1": "流通市值", "negotiablessharesum2": "平均流通市值", "dp": "股息率", }, inplace=True, ) big_df["发布日期"] = pd.to_datetime(big_df["发布日期"]).dt.date big_df["收盘指数"] = pd.to_numeric(big_df["收盘指数"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["市盈率"] = pd.to_numeric(big_df["市盈率"]) big_df["市净率"] = pd.to_numeric(big_df["市净率"]) big_df["均价"] = pd.to_numeric(big_df["均价"]) big_df["成交额占比"] = pd.to_numeric(big_df["成交额占比"]) big_df["流通市值"] = pd.to_numeric(big_df["流通市值"]) big_df["平均流通市值"] = pd.to_numeric(big_df["平均流通市值"]) big_df["股息率"] = pd.to_numeric(big_df["股息率"]) big_df.sort_values(['发布日期'], inplace=True, ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L208-L279
25
[ 0 ]
1.388889
[ 17, 18, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71 ]
38.888889
false
7.865169
72
2
61.111111
10
def index_analysis_daily_sw( symbol: str = "市场表征", start_date: str = "20221103", end_date: str = "20221103", ) -> pd.DataFrame: url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/index_analysis_report/" params = { "page": "1", "page_size": "50", "index_type": symbol, "start_date": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "end_date": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), "type": 'DAY', "swindexcode": "all", } r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( columns={ "swindexcode": "指数代码", "swindexname": "指数名称", "bargaindate": "发布日期", "closeindex": "收盘指数", "bargainamount": "成交量", "markup": "涨跌幅", "turnoverrate": "换手率", "pe": "市盈率", "pb": "市净率", "meanprice": "均价", "bargainsumrate": "成交额占比", "negotiablessharesum1": "流通市值", "negotiablessharesum2": "平均流通市值", "dp": "股息率", }, inplace=True, ) big_df["发布日期"] = pd.to_datetime(big_df["发布日期"]).dt.date big_df["收盘指数"] = pd.to_numeric(big_df["收盘指数"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["市盈率"] = pd.to_numeric(big_df["市盈率"]) big_df["市净率"] = pd.to_numeric(big_df["市净率"]) big_df["均价"] = pd.to_numeric(big_df["均价"]) big_df["成交额占比"] = pd.to_numeric(big_df["成交额占比"]) big_df["流通市值"] = pd.to_numeric(big_df["流通市值"]) big_df["平均流通市值"] = pd.to_numeric(big_df["平均流通市值"]) big_df["股息率"] = pd.to_numeric(big_df["股息率"]) big_df.sort_values(['发布日期'], inplace=True, ignore_index=True) return big_df
18,322
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_analysis_week_month_sw
(symbol: str = "month")
return temp_df
申万宏源研究-周/月报表-日期序列 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"week", "month"} :type symbol: str :return: 日期序列 :rtype: pandas.DataFrame
申万宏源研究-周/月报表-日期序列 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"week", "month"} :type symbol: str :return: 日期序列 :rtype: pandas.DataFrame
282
301
def index_analysis_week_month_sw(symbol: str = "month") -> pd.DataFrame: """ 申万宏源研究-周/月报表-日期序列 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"week", "month"} :type symbol: str :return: 日期序列 :rtype: pandas.DataFrame """ url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/week_month_datetime/" params = { 'type': symbol.upper() } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']) temp_df['bargaindate'] = pd.to_datetime(temp_df['bargaindate']).dt.date temp_df.columns = ['date'] temp_df.sort_values(['date'], inplace=True, ignore_index=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L282-L301
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
45
[ 9, 10, 13, 14, 15, 16, 17, 18, 19 ]
45
false
7.865169
20
1
55
6
def index_analysis_week_month_sw(symbol: str = "month") -> pd.DataFrame: url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/week_month_datetime/" params = { 'type': symbol.upper() } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']) temp_df['bargaindate'] = pd.to_datetime(temp_df['bargaindate']).dt.date temp_df.columns = ['date'] temp_df.sort_values(['date'], inplace=True, ignore_index=True) return temp_df
18,323
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_analysis_weekly_sw
( symbol: str = "市场表征", date: str = "20221104", )
return big_df
申万宏源研究-指数分析-周报告 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param date: 查询日期; 通过调用 ak.index_analysis_week_month_sw(date="20221104") 接口获取 :type date: str :return: 指数分析 :rtype: pandas.DataFrame
申万宏源研究-指数分析-周报告 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param date: 查询日期; 通过调用 ak.index_analysis_week_month_sw(date="20221104") 接口获取 :type date: str :return: 指数分析 :rtype: pandas.DataFrame
304
371
def index_analysis_weekly_sw( symbol: str = "市场表征", date: str = "20221104", ) -> pd.DataFrame: """ 申万宏源研究-指数分析-周报告 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param date: 查询日期; 通过调用 ak.index_analysis_week_month_sw(date="20221104") 接口获取 :type date: str :return: 指数分析 :rtype: pandas.DataFrame """ url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/index_analysis_reports/" params = { "page": "1", "page_size": "50", "index_type": symbol, "bargaindate": "-".join([date[:4], date[4:6], date[6:]]), "type": "WEEK", "swindexcode": "all", } r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( columns={ "swindexcode": "指数代码", "swindexname": "指数名称", "bargaindate": "发布日期", "closeindex": "收盘指数", "bargainamount": "成交量", "markup": "涨跌幅", "turnoverrate": "换手率", "pe": "市盈率", "pb": "市净率", "meanprice": "均价", "bargainsumrate": "成交额占比", "negotiablessharesum1": "流通市值", "negotiablessharesum2": "平均流通市值", "dp": "股息率", }, inplace=True, ) big_df["发布日期"] = pd.to_datetime(big_df["发布日期"]).dt.date big_df["收盘指数"] = pd.to_numeric(big_df["收盘指数"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["市盈率"] = pd.to_numeric(big_df["市盈率"]) big_df["市净率"] = pd.to_numeric(big_df["市净率"]) big_df["均价"] = pd.to_numeric(big_df["均价"]) big_df["成交额占比"] = pd.to_numeric(big_df["成交额占比"]) big_df["流通市值"] = pd.to_numeric(big_df["流通市值"]) big_df["平均流通市值"] = pd.to_numeric(big_df["平均流通市值"]) big_df["股息率"] = pd.to_numeric(big_df["股息率"]) big_df.sort_values(['发布日期'], inplace=True, ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L304-L371
25
[ 0 ]
1.470588
[ 14, 15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67 ]
41.176471
false
7.865169
68
2
58.823529
8
def index_analysis_weekly_sw( symbol: str = "市场表征", date: str = "20221104", ) -> pd.DataFrame: url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/index_analysis_reports/" params = { "page": "1", "page_size": "50", "index_type": symbol, "bargaindate": "-".join([date[:4], date[4:6], date[6:]]), "type": "WEEK", "swindexcode": "all", } r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( columns={ "swindexcode": "指数代码", "swindexname": "指数名称", "bargaindate": "发布日期", "closeindex": "收盘指数", "bargainamount": "成交量", "markup": "涨跌幅", "turnoverrate": "换手率", "pe": "市盈率", "pb": "市净率", "meanprice": "均价", "bargainsumrate": "成交额占比", "negotiablessharesum1": "流通市值", "negotiablessharesum2": "平均流通市值", "dp": "股息率", }, inplace=True, ) big_df["发布日期"] = pd.to_datetime(big_df["发布日期"]).dt.date big_df["收盘指数"] = pd.to_numeric(big_df["收盘指数"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["市盈率"] = pd.to_numeric(big_df["市盈率"]) big_df["市净率"] = pd.to_numeric(big_df["市净率"]) big_df["均价"] = pd.to_numeric(big_df["均价"]) big_df["成交额占比"] = pd.to_numeric(big_df["成交额占比"]) big_df["流通市值"] = pd.to_numeric(big_df["流通市值"]) big_df["平均流通市值"] = pd.to_numeric(big_df["平均流通市值"]) big_df["股息率"] = pd.to_numeric(big_df["股息率"]) big_df.sort_values(['发布日期'], inplace=True, ignore_index=True) return big_df
18,324
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw_research.py
index_analysis_monthly_sw
( symbol: str = "市场表征", date: str = "20221031", )
return big_df
申万宏源研究-指数分析-月报告 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param date: 查询日期; 通过调用 ak.index_analysis_week_month_sw() 接口获取 :type date: str :return: 指数分析 :rtype: pandas.DataFrame
申万宏源研究-指数分析-月报告 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param date: 查询日期; 通过调用 ak.index_analysis_week_month_sw() 接口获取 :type date: str :return: 指数分析 :rtype: pandas.DataFrame
374
441
def index_analysis_monthly_sw( symbol: str = "市场表征", date: str = "20221031", ) -> pd.DataFrame: """ 申万宏源研究-指数分析-月报告 https://www.swhyresearch.com/institute_sw/allIndex/analysisIndex :param symbol: choice of {"市场表征", "一级行业", "二级行业", "风格指数"} :type symbol: str :param date: 查询日期; 通过调用 ak.index_analysis_week_month_sw() 接口获取 :type date: str :return: 指数分析 :rtype: pandas.DataFrame """ url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/index_analysis_reports/" params = { "page": "1", "page_size": "50", "index_type": symbol, "bargaindate": "-".join([date[:4], date[4:6], date[6:]]), "type": "MONTH", "swindexcode": "all", } r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( columns={ "swindexcode": "指数代码", "swindexname": "指数名称", "bargaindate": "发布日期", "closeindex": "收盘指数", "bargainamount": "成交量", "markup": "涨跌幅", "turnoverrate": "换手率", "pe": "市盈率", "pb": "市净率", "meanprice": "均价", "bargainsumrate": "成交额占比", "negotiablessharesum1": "流通市值", "negotiablessharesum2": "平均流通市值", "dp": "股息率", }, inplace=True, ) big_df["发布日期"] = pd.to_datetime(big_df["发布日期"]).dt.date big_df["收盘指数"] = pd.to_numeric(big_df["收盘指数"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["市盈率"] = pd.to_numeric(big_df["市盈率"]) big_df["市净率"] = pd.to_numeric(big_df["市净率"]) big_df["均价"] = pd.to_numeric(big_df["均价"]) big_df["成交额占比"] = pd.to_numeric(big_df["成交额占比"]) big_df["流通市值"] = pd.to_numeric(big_df["流通市值"]) big_df["平均流通市值"] = pd.to_numeric(big_df["平均流通市值"]) big_df["股息率"] = pd.to_numeric(big_df["股息率"]) big_df.sort_values(['发布日期'], inplace=True, ignore_index=True) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw_research.py#L374-L441
25
[ 0 ]
1.470588
[ 14, 15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67 ]
41.176471
false
7.865169
68
2
58.823529
8
def index_analysis_monthly_sw( symbol: str = "市场表征", date: str = "20221031", ) -> pd.DataFrame: url = "https://www.swhyresearch.com/institute-sw/api/index_analysis/index_analysis_reports/" params = { "page": "1", "page_size": "50", "index_type": symbol, "bargaindate": "-".join([date[:4], date[4:6], date[6:]]), "type": "MONTH", "swindexcode": "all", } r = requests.get(url, params=params) data_json = r.json() total_num = data_json["data"]["count"] total_page = math.ceil(total_num / 50) big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"page": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["results"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.rename( columns={ "swindexcode": "指数代码", "swindexname": "指数名称", "bargaindate": "发布日期", "closeindex": "收盘指数", "bargainamount": "成交量", "markup": "涨跌幅", "turnoverrate": "换手率", "pe": "市盈率", "pb": "市净率", "meanprice": "均价", "bargainsumrate": "成交额占比", "negotiablessharesum1": "流通市值", "negotiablessharesum2": "平均流通市值", "dp": "股息率", }, inplace=True, ) big_df["发布日期"] = pd.to_datetime(big_df["发布日期"]).dt.date big_df["收盘指数"] = pd.to_numeric(big_df["收盘指数"]) big_df["成交量"] = pd.to_numeric(big_df["成交量"]) big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["市盈率"] = pd.to_numeric(big_df["市盈率"]) big_df["市净率"] = pd.to_numeric(big_df["市净率"]) big_df["均价"] = pd.to_numeric(big_df["均价"]) big_df["成交额占比"] = pd.to_numeric(big_df["成交额占比"]) big_df["流通市值"] = pd.to_numeric(big_df["流通市值"]) big_df["平均流通市值"] = pd.to_numeric(big_df["平均流通市值"]) big_df["股息率"] = pd.to_numeric(big_df["股息率"]) big_df.sort_values(['发布日期'], inplace=True, ignore_index=True) return big_df
18,325
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/stock_zh_index_csindex.py
stock_zh_index_hist_csindex
( symbol: str = "H30374", start_date: str = "20160101", end_date: str = "20211015", )
return temp_df
中证指数-具体指数-历史行情数据 P.S. 只有收盘价,正常情况下不应使用该接口,除非指数只有中证网站有 https://www.csindex.com.cn/zh-CN/indices/index-detail/H30374#/indices/family/detail?indexCode=H30374 :param symbol: 指数代码; e.g., H30374 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 包含日期和收盘价的指数数据 :rtype: pandas.DataFrame
中证指数-具体指数-历史行情数据 P.S. 只有收盘价,正常情况下不应使用该接口,除非指数只有中证网站有 https://www.csindex.com.cn/zh-CN/indices/index-detail/H30374#/indices/family/detail?indexCode=H30374 :param symbol: 指数代码; e.g., H30374 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 包含日期和收盘价的指数数据 :rtype: pandas.DataFrame
14
69
def stock_zh_index_hist_csindex( symbol: str = "H30374", start_date: str = "20160101", end_date: str = "20211015", ) -> pd.DataFrame: """ 中证指数-具体指数-历史行情数据 P.S. 只有收盘价,正常情况下不应使用该接口,除非指数只有中证网站有 https://www.csindex.com.cn/zh-CN/indices/index-detail/H30374#/indices/family/detail?indexCode=H30374 :param symbol: 指数代码; e.g., H30374 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 包含日期和收盘价的指数数据 :rtype: pandas.DataFrame """ url = "https://www.csindex.com.cn/csindex-home/perf/index-perf" params = { "indexCode": symbol, "startDate": start_date, "endDate": end_date, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) del temp_df["peg"] temp_df.columns = [ "日期", "指数代码", "指数中文全称", "指数中文简称", "指数英文全称", "指数英文简称", "开盘", "最高", "最低", "收盘", "涨跌", "涨跌幅", "成交量", "成交金额", "样本数量", ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["涨跌"] = pd.to_numeric(temp_df["涨跌"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交金额"] = pd.to_numeric(temp_df["成交金额"]) temp_df["样本数量"] = pd.to_numeric(temp_df["样本数量"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/stock_zh_index_csindex.py#L14-L69
25
[ 0 ]
1.785714
[ 18, 19, 24, 25, 26, 27, 28, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 ]
32.142857
false
13.157895
56
1
67.857143
11
def stock_zh_index_hist_csindex( symbol: str = "H30374", start_date: str = "20160101", end_date: str = "20211015", ) -> pd.DataFrame: url = "https://www.csindex.com.cn/csindex-home/perf/index-perf" params = { "indexCode": symbol, "startDate": start_date, "endDate": end_date, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) del temp_df["peg"] temp_df.columns = [ "日期", "指数代码", "指数中文全称", "指数中文简称", "指数英文全称", "指数英文简称", "开盘", "最高", "最低", "收盘", "涨跌", "涨跌幅", "成交量", "成交金额", "样本数量", ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["涨跌"] = pd.to_numeric(temp_df["涨跌"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交金额"] = pd.to_numeric(temp_df["成交金额"]) temp_df["样本数量"] = pd.to_numeric(temp_df["样本数量"]) return temp_df
18,326
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/stock_zh_index_csindex.py
stock_zh_index_value_csindex
(symbol: str = "H30374")
return temp_df
中证指数-指数估值数据 https://www.csindex.com.cn/zh-CN/indices/index-detail/H30374#/indices/family/detail?indexCode=H30374 :param symbol: 指数代码; e.g., H30374 :type symbol: str :return: 指数估值数据 :rtype: pandas.DataFrame
中证指数-指数估值数据 https://www.csindex.com.cn/zh-CN/indices/index-detail/H30374#/indices/family/detail?indexCode=H30374 :param symbol: 指数代码; e.g., H30374 :type symbol: str :return: 指数估值数据 :rtype: pandas.DataFrame
72
100
def stock_zh_index_value_csindex(symbol: str = "H30374") -> pd.DataFrame: """ 中证指数-指数估值数据 https://www.csindex.com.cn/zh-CN/indices/index-detail/H30374#/indices/family/detail?indexCode=H30374 :param symbol: 指数代码; e.g., H30374 :type symbol: str :return: 指数估值数据 :rtype: pandas.DataFrame """ url = f"https://csi-web-dev.oss-cn-shanghai-finance-1-pub.aliyuncs.com/static/html/csindex/public/uploads/file/autofile/indicator/{symbol}indicator.xls" temp_df = pd.read_excel(url) temp_df.columns = [ "日期", "指数代码", "指数中文全称", "指数中文简称", "指数英文全称", "指数英文简称", "市盈率1", "市盈率2", "股息率1", "股息率2", ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], format="%Y%m%d").dt.date temp_df["市盈率1"] = pd.to_numeric(temp_df["市盈率1"]) temp_df["市盈率2"] = pd.to_numeric(temp_df["市盈率2"]) temp_df["股息率1"] = pd.to_numeric(temp_df["股息率1"]) temp_df["股息率2"] = pd.to_numeric(temp_df["股息率2"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/stock_zh_index_csindex.py#L72-L100
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
31.034483
[ 9, 10, 11, 23, 24, 25, 26, 27, 28 ]
31.034483
false
13.157895
29
1
68.965517
6
def stock_zh_index_value_csindex(symbol: str = "H30374") -> pd.DataFrame: url = f"https://csi-web-dev.oss-cn-shanghai-finance-1-pub.aliyuncs.com/static/html/csindex/public/uploads/file/autofile/indicator/{symbol}indicator.xls" temp_df = pd.read_excel(url) temp_df.columns = [ "日期", "指数代码", "指数中文全称", "指数中文简称", "指数英文全称", "指数英文简称", "市盈率1", "市盈率2", "股息率1", "股息率2", ] temp_df["日期"] = pd.to_datetime(temp_df["日期"], format="%Y%m%d").dt.date temp_df["市盈率1"] = pd.to_numeric(temp_df["市盈率1"]) temp_df["市盈率2"] = pd.to_numeric(temp_df["市盈率2"]) temp_df["股息率1"] = pd.to_numeric(temp_df["股息率1"]) temp_df["股息率2"] = pd.to_numeric(temp_df["股息率2"]) return temp_df
18,327
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/stock_zh_index_csindex.py
index_value_name_funddb
()
return temp_df
funddb-指数估值-指数代码 https://funddb.cn/site/index :return: pandas.DataFrame :rtype: 指数代码
funddb-指数估值-指数代码 https://funddb.cn/site/index :return: pandas.DataFrame :rtype: 指数代码
104
168
def index_value_name_funddb() -> pd.DataFrame: """ funddb-指数估值-指数代码 https://funddb.cn/site/index :return: pandas.DataFrame :rtype: 指数代码 """ url = "https://api.jiucaishuo.com/v2/guzhi/showcategory" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["right_list"]) temp_df.columns = [ "指数开始时间", "-", "指数名称", "指数代码", "最新PE", "最新PB", "PE分位", "PB分位", "股息率", "-", "-", "-", "更新时间", "股息率分位", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", ] temp_df = temp_df[ [ "指数名称", "最新PE", "PE分位", "最新PB", "PB分位", "股息率", "股息率分位", "指数代码", "指数开始时间", "更新时间", ] ] temp_df["指数开始时间"] = pd.to_datetime(temp_df["指数开始时间"]).dt.date temp_df["最新PE"] = pd.to_numeric(temp_df["最新PE"]) temp_df["PE分位"] = pd.to_numeric(temp_df["PE分位"]) temp_df["最新PB"] = pd.to_numeric(temp_df["最新PB"]) temp_df["PB分位"] = pd.to_numeric(temp_df["PB分位"]) temp_df["股息率"] = pd.to_numeric(temp_df["股息率"]) temp_df["股息率分位"] = pd.to_numeric(temp_df["股息率分位"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/stock_zh_index_csindex.py#L104-L168
25
[ 0, 1, 2, 3, 4, 5, 6 ]
10.769231
[ 7, 8, 9, 10, 11, 43, 57, 58, 59, 60, 61, 62, 63, 64 ]
21.538462
false
13.157895
65
1
78.461538
4
def index_value_name_funddb() -> pd.DataFrame: url = "https://api.jiucaishuo.com/v2/guzhi/showcategory" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["right_list"]) temp_df.columns = [ "指数开始时间", "-", "指数名称", "指数代码", "最新PE", "最新PB", "PE分位", "PB分位", "股息率", "-", "-", "-", "更新时间", "股息率分位", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", ] temp_df = temp_df[ [ "指数名称", "最新PE", "PE分位", "最新PB", "PB分位", "股息率", "股息率分位", "指数代码", "指数开始时间", "更新时间", ] ] temp_df["指数开始时间"] = pd.to_datetime(temp_df["指数开始时间"]).dt.date temp_df["最新PE"] = pd.to_numeric(temp_df["最新PE"]) temp_df["PE分位"] = pd.to_numeric(temp_df["PE分位"]) temp_df["最新PB"] = pd.to_numeric(temp_df["最新PB"]) temp_df["PB分位"] = pd.to_numeric(temp_df["PB分位"]) temp_df["股息率"] = pd.to_numeric(temp_df["股息率"]) temp_df["股息率分位"] = pd.to_numeric(temp_df["股息率分位"]) return temp_df
18,328
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/stock_zh_index_csindex.py
index_value_hist_funddb
( symbol: str = "大盘成长", indicator: str = "市盈率" )
return big_df
funddb-指数估值-估值信息 https://funddb.cn/site/index :param symbol: 指数名称; 通过调用 ak.index_value_name_funddb() 来获取 :type symbol: str :param indicator: choice of {'市盈率', '市净率', '股息率'} :type indicator: str :return: 估值信息 :rtype: pandas.DataFrame
funddb-指数估值-估值信息 https://funddb.cn/site/index :param symbol: 指数名称; 通过调用 ak.index_value_name_funddb() 来获取 :type symbol: str :param indicator: choice of {'市盈率', '市净率', '股息率'} :type indicator: str :return: 估值信息 :rtype: pandas.DataFrame
171
230
def index_value_hist_funddb( symbol: str = "大盘成长", indicator: str = "市盈率" ) -> pd.DataFrame: """ funddb-指数估值-估值信息 https://funddb.cn/site/index :param symbol: 指数名称; 通过调用 ak.index_value_name_funddb() 来获取 :type symbol: str :param indicator: choice of {'市盈率', '市净率', '股息率'} :type indicator: str :return: 估值信息 :rtype: pandas.DataFrame """ indicator_map = { "市盈率": "pe", "市净率": "pb", "股息率": "xilv", "风险溢价": "fed", } index_value_name_funddb_df = index_value_name_funddb() name_code_map = dict( zip( index_value_name_funddb_df["指数名称"], index_value_name_funddb_df["指数代码"], ) ) url = "https://api.jiucaishuo.com/v2/guzhi/newtubiaolinedata" payload = { "gu_code": name_code_map[symbol], "pe_category": indicator_map[indicator], } r = requests.post(url, json=payload) data_json = r.json() big_df = pd.DataFrame() temp_df = pd.DataFrame( data_json["data"]["tubiao"]["series"][0]["data"], columns=["timestamp", "value"], ) big_df["日期"] = ( pd.to_datetime(temp_df["timestamp"], unit="ms", utc=True) .dt.tz_convert("Asia/Shanghai") .dt.date ) big_df["平均值"] = pd.to_numeric(temp_df["value"]) big_df[indicator] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][1]["data"]] ) big_df["最低30"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][2]["data"]] ) big_df["最低10"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][3]["data"]] ) big_df["最高30"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][4]["data"]] ) big_df["最高10"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][5]["data"]] ) return big_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/stock_zh_index_csindex.py#L171-L230
25
[ 0 ]
1.666667
[ 13, 19, 20, 26, 27, 31, 32, 33, 34, 38, 43, 44, 47, 50, 53, 56, 59 ]
28.333333
false
13.157895
60
6
71.666667
8
def index_value_hist_funddb( symbol: str = "大盘成长", indicator: str = "市盈率" ) -> pd.DataFrame: indicator_map = { "市盈率": "pe", "市净率": "pb", "股息率": "xilv", "风险溢价": "fed", } index_value_name_funddb_df = index_value_name_funddb() name_code_map = dict( zip( index_value_name_funddb_df["指数名称"], index_value_name_funddb_df["指数代码"], ) ) url = "https://api.jiucaishuo.com/v2/guzhi/newtubiaolinedata" payload = { "gu_code": name_code_map[symbol], "pe_category": indicator_map[indicator], } r = requests.post(url, json=payload) data_json = r.json() big_df = pd.DataFrame() temp_df = pd.DataFrame( data_json["data"]["tubiao"]["series"][0]["data"], columns=["timestamp", "value"], ) big_df["日期"] = ( pd.to_datetime(temp_df["timestamp"], unit="ms", utc=True) .dt.tz_convert("Asia/Shanghai") .dt.date ) big_df["平均值"] = pd.to_numeric(temp_df["value"]) big_df[indicator] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][1]["data"]] ) big_df["最低30"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][2]["data"]] ) big_df["最低10"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][3]["data"]] ) big_df["最高30"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][4]["data"]] ) big_df["最高10"] = pd.to_numeric( [item[1] for item in data_json["data"]["tubiao"]["series"][5]["data"]] ) return big_df
18,329
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_hog.py
index_hog_spot_price
()
return temp_df
行情宝-生猪市场价格指数 http://hqb.nxin.com/pigindex/index.shtml :return: 生猪市场价格指数 :rtype: pandas.DataFrame
行情宝-生猪市场价格指数 http://hqb.nxin.com/pigindex/index.shtml :return: 生猪市场价格指数 :rtype: pandas.DataFrame
12
44
def index_hog_spot_price() -> pd.DataFrame: """ 行情宝-生猪市场价格指数 http://hqb.nxin.com/pigindex/index.shtml :return: 生猪市场价格指数 :rtype: pandas.DataFrame """ url = "http://hqb.nxin.com/pigindex/getPigIndexChart.shtml" params = { 'regionId': '0' } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']) temp_df.columns = [ '日期', '指数', '4个月均线', '6个月均线', '12个月均线', '预售均价', '成交均价', '成交均重', ] temp_df['日期'] = (pd.to_datetime(temp_df['日期'], unit="ms") + pd.Timedelta(hours=8)).dt.date temp_df['指数'] = pd.to_numeric(temp_df['指数'], errors="coerce") temp_df['4个月均线'] = pd.to_numeric(temp_df['4个月均线'], errors="coerce") temp_df['6个月均线'] = pd.to_numeric(temp_df['6个月均线'], errors="coerce") temp_df['12个月均线'] = pd.to_numeric(temp_df['12个月均线'], errors="coerce") temp_df['预售均价'] = pd.to_numeric(temp_df['预售均价'], errors="coerce") temp_df['成交均价'] = pd.to_numeric(temp_df['成交均价'], errors="coerce") temp_df['成交均重'] = pd.to_numeric(temp_df['成交均重'], errors="coerce") return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_hog.py#L12-L44
25
[ 0, 1, 2, 3, 4, 5, 6 ]
21.212121
[ 7, 8, 11, 12, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32 ]
45.454545
false
22.727273
33
1
54.545455
4
def index_hog_spot_price() -> pd.DataFrame: url = "http://hqb.nxin.com/pigindex/getPigIndexChart.shtml" params = { 'regionId': '0' } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']) temp_df.columns = [ '日期', '指数', '4个月均线', '6个月均线', '12个月均线', '预售均价', '成交均价', '成交均重', ] temp_df['日期'] = (pd.to_datetime(temp_df['日期'], unit="ms") + pd.Timedelta(hours=8)).dt.date temp_df['指数'] = pd.to_numeric(temp_df['指数'], errors="coerce") temp_df['4个月均线'] = pd.to_numeric(temp_df['4个月均线'], errors="coerce") temp_df['6个月均线'] = pd.to_numeric(temp_df['6个月均线'], errors="coerce") temp_df['12个月均线'] = pd.to_numeric(temp_df['12个月均线'], errors="coerce") temp_df['预售均价'] = pd.to_numeric(temp_df['预售均价'], errors="coerce") temp_df['成交均价'] = pd.to_numeric(temp_df['成交均价'], errors="coerce") temp_df['成交均重'] = pd.to_numeric(temp_df['成交均重'], errors="coerce") return temp_df
18,330
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_yw.py
index_yw
(symbol: str = "月景气指数") -> pd.Dat
义乌小商品指数 http://www.ywindex.com/Home/Product/index/ :param symbol: choice of {"周价格指数", "月价格指数", "月景气指数"} :type symbol: str :return: 指数结果 :rtype: pandas.DataFrame
义乌小商品指数 http://www.ywindex.com/Home/Product/index/ :param symbol: choice of {"周价格指数", "月价格指数", "月景气指数"} :type symbol: str :return: 指数结果 :rtype: pandas.DataFrame
13
72
def index_yw(symbol: str = "月景气指数") -> pd.DataFrame: """ 义乌小商品指数 http://www.ywindex.com/Home/Product/index/ :param symbol: choice of {"周价格指数", "月价格指数", "月景气指数"} :type symbol: str :return: 指数结果 :rtype: pandas.DataFrame """ name_num_dict = { "周价格指数": 1, "月价格指数": 3, "月景气指数": 5, } url = "http://www.ywindex.com/Home/Product/index/" res = requests.get(url) soup = BeautifulSoup(res.text, "lxml") table_name = ( soup.find_all(attrs={"class": "tablex"})[name_num_dict[symbol]] .get_text() .split("\n\n\n\n\n")[2] .split("\n") ) table_content = ( soup.find_all(attrs={"class": "tablex"})[name_num_dict[symbol]] .get_text() .split("\n\n\n\n\n")[3] .split("\n\n") ) if symbol == "月景气指数": table_df = pd.DataFrame([item.split("\n") for item in table_content]).iloc[ :, :5 ] table_df.columns = ['期数', '景气指数', '规模指数', '效益指数', '市场信心指数'] table_df['期数'] = pd.to_datetime(table_df['期数']).dt.date table_df['景气指数'] = pd.to_numeric(table_df['景气指数']) table_df['规模指数'] = pd.to_numeric(table_df['规模指数']) table_df['效益指数'] = pd.to_numeric(table_df['效益指数']) table_df['市场信心指数'] = pd.to_numeric(table_df['市场信心指数']) return table_df elif symbol == "周价格指数": table_df = pd.DataFrame([item.split("\n") for item in table_content]).iloc[:, :6] table_df.columns = table_name table_df['期数'] = pd.to_datetime(table_df['期数']).dt.date table_df['价格指数'] = pd.to_numeric(table_df['价格指数']) table_df['场内价格指数'] = pd.to_numeric(table_df['场内价格指数']) table_df['网上价格指数'] = pd.to_numeric(table_df['网上价格指数']) table_df['订单价格指数'] = pd.to_numeric(table_df['订单价格指数']) table_df['出口价格指数'] = pd.to_numeric(table_df['出口价格指数']) return table_df elif symbol == "月价格指数": table_df = pd.DataFrame([item.split("\n") for item in table_content]).iloc[:, :6] table_df.columns = table_name table_df['期数'] = pd.to_datetime(table_df['期数']).dt.date table_df['价格指数'] = pd.to_numeric(table_df['价格指数']) table_df['场内价格指数'] = pd.to_numeric(table_df['场内价格指数']) table_df['网上价格指数'] = pd.to_numeric(table_df['网上价格指数']) table_df['订单价格指数'] = pd.to_numeric(table_df['订单价格指数']) table_df['出口价格指数'] = pd.to_numeric(table_df['出口价格指数']) return table_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_yw.py#L13-L72
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
15
[ 9, 14, 15, 16, 17, 23, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 ]
58.333333
false
12.765957
60
7
41.666667
6
def index_yw(symbol: str = "月景气指数") -> pd.DataFrame: name_num_dict = { "周价格指数": 1, "月价格指数": 3, "月景气指数": 5, } url = "http://www.ywindex.com/Home/Product/index/" res = requests.get(url) soup = BeautifulSoup(res.text, "lxml") table_name = ( soup.find_all(attrs={"class": "tablex"})[name_num_dict[symbol]] .get_text() .split("\n\n\n\n\n")[2] .split("\n") ) table_content = ( soup.find_all(attrs={"class": "tablex"})[name_num_dict[symbol]] .get_text() .split("\n\n\n\n\n")[3] .split("\n\n") ) if symbol == "月景气指数": table_df = pd.DataFrame([item.split("\n") for item in table_content]).iloc[ :, :5 ] table_df.columns = ['期数', '景气指数', '规模指数', '效益指数', '市场信心指数'] table_df['期数'] = pd.to_datetime(table_df['期数']).dt.date table_df['景气指数'] = pd.to_numeric(table_df['景气指数']) table_df['规模指数'] = pd.to_numeric(table_df['规模指数']) table_df['效益指数'] = pd.to_numeric(table_df['效益指数']) table_df['市场信心指数'] = pd.to_numeric(table_df['市场信心指数']) return table_df elif symbol == "周价格指数": table_df = pd.DataFrame([item.split("\n") for item in table_content]).iloc[:, :6] table_df.columns = table_name table_df['期数'] = pd.to_datetime(table_df['期数']).dt.date table_df['价格指数'] = pd.to_numeric(table_df['价格指数']) table_df['场内价格指数'] = pd.to_numeric(table_df['场内价格指数']) table_df['网上价格指数'] = pd.to_numeric(table_df['网上价格指数']) table_df['订单价格指数'] = pd.to_numeric(table_df['订单价格指数']) table_df['出口价格指数'] = pd.to_numeric(table_df['出口价格指数']) return table_df elif symbol == "月价格指数": table_df = pd.DataFrame([item.split("\n") for item in table_content]).iloc[:, :6] table_df.columns = table_name table_df['期数'] = pd.to_datetime(table_df['期数']).dt.date table_df['价格指数'] = pd.to_numeric(table_df['价格指数']) table_df['场内价格指数'] = pd.to_numeric(table_df['场内价格指数']) table_df['网上价格指数'] = pd.to_numeric(table_df['网上价格指数']) table_df['订单价格指数'] = pd.to_numeric(table_df['订单价格指数']) table_df['出口价格指数'] = pd.to_numeric(table_df['出口价格指数']) return table_df
18,331
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_kq_ss.py
index_kq_fashion
(symbol: str = "时尚创意指数") -> pd.DataF
return temp_df
柯桥时尚指数 http://ss.kqindex.cn:9559/rinder_web_kqsszs/index/index_page.do :param symbol: choice of {'柯桥时尚指数', '时尚创意指数', '时尚设计人才数', '新花型推出数', '创意产品成交数', '创意企业数量', '时尚活跃度指数', '电商运行数', '时尚平台拓展数', '新产品销售额占比', '企业合作占比', '品牌传播费用', '时尚推广度指数', '国际交流合作次数', '企业参展次数', '外商驻点数量变化', '时尚评价指数'} :type symbol: str :return: 柯桥时尚指数及其子项数据 :rtype: pandas.DataFrame
柯桥时尚指数 http://ss.kqindex.cn:9559/rinder_web_kqsszs/index/index_page.do :param symbol: choice of {'柯桥时尚指数', '时尚创意指数', '时尚设计人才数', '新花型推出数', '创意产品成交数', '创意企业数量', '时尚活跃度指数', '电商运行数', '时尚平台拓展数', '新产品销售额占比', '企业合作占比', '品牌传播费用', '时尚推广度指数', '国际交流合作次数', '企业参展次数', '外商驻点数量变化', '时尚评价指数'} :type symbol: str :return: 柯桥时尚指数及其子项数据 :rtype: pandas.DataFrame
12
71
def index_kq_fashion(symbol: str = "时尚创意指数") -> pd.DataFrame: """ 柯桥时尚指数 http://ss.kqindex.cn:9559/rinder_web_kqsszs/index/index_page.do :param symbol: choice of {'柯桥时尚指数', '时尚创意指数', '时尚设计人才数', '新花型推出数', '创意产品成交数', '创意企业数量', '时尚活跃度指数', '电商运行数', '时尚平台拓展数', '新产品销售额占比', '企业合作占比', '品牌传播费用', '时尚推广度指数', '国际交流合作次数', '企业参展次数', '外商驻点数量变化', '时尚评价指数'} :type symbol: str :return: 柯桥时尚指数及其子项数据 :rtype: pandas.DataFrame """ url = "http://api.idx365.com/index/project/34/data" symbol_map = { "柯桥时尚指数": "root", "时尚创意指数": "01", "时尚设计人才数": "0101", "新花型推出数": "0102", "创意产品成交数": "0103", "创意企业数量": "0104", "时尚活跃度指数": "02", "电商运行数": "0201", "时尚平台拓展数": "0201", "新产品销售额占比": "0201", "企业合作占比": "0201", "品牌传播费用": "0201", "时尚推广度指数": "03", "国际交流合作次数": "0301", "企业参展次数": "0302", "外商驻点数量变化": "0302", "时尚评价指数": "04", } params = {"structCode": symbol_map[symbol]} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "id": "_", "indexValue": "指数", "lastValue": "_", "projId": "_", "publishTime": "日期", "sameValue": "_", "stageId": "_", "structCode": "_", "structName": "_", "version": "_", }, inplace=True, ) temp_df = temp_df[ [ "日期", "指数", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values("日期", inplace=True) temp_df["涨跌值"] = temp_df["指数"].diff() temp_df["涨跌幅"] = temp_df["指数"].pct_change() temp_df.sort_values("日期", ascending=False, inplace=True) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_kq_ss.py#L12-L71
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
15
[ 9, 10, 29, 30, 31, 32, 33, 48, 54, 55, 56, 57, 58, 59 ]
23.333333
false
22.727273
60
1
76.666667
6
def index_kq_fashion(symbol: str = "时尚创意指数") -> pd.DataFrame: url = "http://api.idx365.com/index/project/34/data" symbol_map = { "柯桥时尚指数": "root", "时尚创意指数": "01", "时尚设计人才数": "0101", "新花型推出数": "0102", "创意产品成交数": "0103", "创意企业数量": "0104", "时尚活跃度指数": "02", "电商运行数": "0201", "时尚平台拓展数": "0201", "新产品销售额占比": "0201", "企业合作占比": "0201", "品牌传播费用": "0201", "时尚推广度指数": "03", "国际交流合作次数": "0301", "企业参展次数": "0302", "外商驻点数量变化": "0302", "时尚评价指数": "04", } params = {"structCode": symbol_map[symbol]} r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df.rename( columns={ "id": "_", "indexValue": "指数", "lastValue": "_", "projId": "_", "publishTime": "日期", "sameValue": "_", "stageId": "_", "structCode": "_", "structName": "_", "version": "_", }, inplace=True, ) temp_df = temp_df[ [ "日期", "指数", ] ] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values("日期", inplace=True) temp_df["涨跌值"] = temp_df["指数"].diff() temp_df["涨跌幅"] = temp_df["指数"].pct_change() temp_df.sort_values("日期", ascending=False, inplace=True) return temp_df
18,332
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw.py
sw_index_representation_spot
()
return temp_df
申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame
申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame
20
59
def sw_index_representation_spot() -> pd.DataFrame: """ 申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" params = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "9", "timed": "1632300641756", } r = requests.get(url, params=params) data_json = demjson.decode(r.text) temp_df = pd.DataFrame(data_json["root"]) temp_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw.py#L20-L59
25
[ 0, 1, 2, 3, 4, 5, 6 ]
17.5
[ 7, 8, 18, 19, 20, 21, 32, 33, 34, 35, 36, 37, 38, 39 ]
35
false
7.006369
40
1
65
4
def sw_index_representation_spot() -> pd.DataFrame: url = "http://www.swsindex.com/handler.aspx" params = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "9", "timed": "1632300641756", } r = requests.get(url, params=params) data_json = demjson.decode(r.text) temp_df = pd.DataFrame(data_json["root"]) temp_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df
18,333
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw.py
sw_index_spot
()
return temp_df
申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame
申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame
62
100
def sw_index_spot() -> pd.DataFrame: """ 申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" result = [] for i in range(1, 3): payload = sw_payload.copy() payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw.py#L62-L100
25
[ 0, 1, 2, 3, 4, 5, 6 ]
17.948718
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 31, 32, 33, 34, 35, 36, 37, 38 ]
56.410256
false
7.006369
39
2
43.589744
4
def sw_index_spot() -> pd.DataFrame: url = "http://www.swsindex.com/handler.aspx" result = [] for i in range(1, 3): payload = sw_payload.copy() payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df
18,334
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw.py
sw_index_second_spot
()
return temp_df
申万二级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnId=8833 :return: 申万二级行业-实时行情数据 :rtype: pandas.DataFrame
申万二级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnId=8833 :return: 申万二级行业-实时行情数据 :rtype: pandas.DataFrame
103
149
def sw_index_second_spot() -> pd.DataFrame: """ 申万二级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnId=8833 :return: 申万二级行业-实时行情数据 :rtype: pandas.DataFrame """ result = [] for i in range(1, 8): payload = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801012','801014','801015','801016','801017','801018','801032','801033','801034','801036','801037','801038','801039','801043','801044','801045','801051','801053','801054','801055','801056','801072','801074','801076','801077','801078','801081','801082','801083','801084','801085','801086','801092','801093','801095','801096','801101','801102','801103','801104','801111','801112','801113','801114','801115','801116','801124','801125','801126','801127','801128','801129','801131','801132','801133','801141','801142','801143','801145','801151','801152','801153','801154','801155','801156','801161','801163','801178','801179','801181','801183','801191','801193','801194','801202','801203','801204','801206','801218','801219','801223','801231','801711','801712','801713','801721','801722','801723','801724','801726','801731','801733','801735','801736','801737','801738','801741','801742','801743','801744','801745','801764','801765','801766','801767','801769','801782','801783','801784','801785','801881','801951','801952','801962','801963','801971','801972','801981','801982','801991','801992','801993','801994','801995')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "124", "timed": "", } payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(sw_url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw.py#L103-L149
25
[ 0, 1, 2, 3, 4, 5, 6 ]
14.893617
[ 7, 8, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 39, 40, 41, 42, 43, 44, 45, 46 ]
44.680851
false
7.006369
47
2
55.319149
4
def sw_index_second_spot() -> pd.DataFrame: result = [] for i in range(1, 8): payload = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801012','801014','801015','801016','801017','801018','801032','801033','801034','801036','801037','801038','801039','801043','801044','801045','801051','801053','801054','801055','801056','801072','801074','801076','801077','801078','801081','801082','801083','801084','801085','801086','801092','801093','801095','801096','801101','801102','801103','801104','801111','801112','801113','801114','801115','801116','801124','801125','801126','801127','801128','801129','801131','801132','801133','801141','801142','801143','801145','801151','801152','801153','801154','801155','801156','801161','801163','801178','801179','801181','801183','801191','801193','801194','801202','801203','801204','801206','801218','801219','801223','801231','801711','801712','801713','801721','801722','801723','801724','801726','801731','801733','801735','801736','801737','801738','801741','801742','801743','801744','801745','801764','801765','801766','801767','801769','801782','801783','801784','801785','801881','801951','801952','801962','801963','801971','801972','801981','801982','801991','801992','801993','801994','801995')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "124", "timed": "", } payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(sw_url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = [ "指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量", ] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df
18,335
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw.py
sw_index_cons
(symbol: str = "801011")
return temp_df
申万指数成份信息-包括一级和二级行业都可以查询 http://www.swsindex.com/idx0210.aspx?swindexcode=801010 :param symbol: 指数代码 :type symbol: str :return: 申万指数成份信息 :rtype: pandas.DataFrame
申万指数成份信息-包括一级和二级行业都可以查询 http://www.swsindex.com/idx0210.aspx?swindexcode=801010 :param symbol: 指数代码 :type symbol: str :return: 申万指数成份信息 :rtype: pandas.DataFrame
152
186
def sw_index_cons(symbol: str = "801011") -> pd.DataFrame: """ 申万指数成份信息-包括一级和二级行业都可以查询 http://www.swsindex.com/idx0210.aspx?swindexcode=801010 :param symbol: 指数代码 :type symbol: str :return: 申万指数成份信息 :rtype: pandas.DataFrame """ url = f"http://www.swsindex.com/downfile.aspx?code={symbol}" r = requests.get(url) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 4: stock_code = cols[0].text stock_name = cols[1].text weight = cols[2].text start_date = cols[3].text data.append( { "stock_code": stock_code, "stock_name": stock_name, "start_date": start_date, "weight": weight, } ) temp_df = pd.DataFrame(data) temp_df["start_date"] = pd.to_datetime(temp_df["start_date"]).dt.date temp_df["weight"] = pd.to_numeric(temp_df["weight"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw.py#L152-L186
25
[ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]
25.714286
[ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 31, 32, 33, 34 ]
51.428571
false
7.006369
35
3
48.571429
6
def sw_index_cons(symbol: str = "801011") -> pd.DataFrame: url = f"http://www.swsindex.com/downfile.aspx?code={symbol}" r = requests.get(url) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 4: stock_code = cols[0].text stock_name = cols[1].text weight = cols[2].text start_date = cols[3].text data.append( { "stock_code": stock_code, "stock_name": stock_name, "start_date": start_date, "weight": weight, } ) temp_df = pd.DataFrame(data) temp_df["start_date"] = pd.to_datetime(temp_df["start_date"]).dt.date temp_df["weight"] = pd.to_numeric(temp_df["weight"]) return temp_df
18,336
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw.py
sw_index_daily
( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20201207", )
return temp_df
申万指数一级和二级日频率行情数据 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 申万指数日频率行情数据 :rtype: pandas.DataFrame
申万指数一级和二级日频率行情数据 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 申万指数日频率行情数据 :rtype: pandas.DataFrame
189
254
def sw_index_daily( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20201207", ) -> pd.DataFrame: """ 申万指数一级和二级日频率行情数据 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 申万指数日频率行情数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel2.aspx" params = { "ctable": "swindexhistory", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 10: symbol = cols[0].text index_name = cols[1].text date = cols[2].text open_ = cols[3].text high = cols[4].text low = cols[5].text close = cols[6].text vol = cols[7].text amount = cols[8].text change_pct = cols[9].text data.append( { "index_code": symbol.replace(",", ""), "index_name": index_name.replace(",", ""), "date": date.replace(",", ""), "open": open_.replace(",", ""), "high": high.replace(",", ""), "low": low.replace(",", ""), "close": close.replace(",", ""), "vol": vol.replace(",", ""), "amount": amount.replace(",", ""), "change_pct": change_pct.replace(",", ""), } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["vol"] = pd.to_numeric(temp_df["vol"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df["change_pct"] = pd.to_numeric(temp_df["change_pct"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw.py#L189-L254
25
[ 0 ]
1.515152
[ 17, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 ]
50
false
7.006369
66
3
50
10
def sw_index_daily( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20201207", ) -> pd.DataFrame: start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel2.aspx" params = { "ctable": "swindexhistory", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 10: symbol = cols[0].text index_name = cols[1].text date = cols[2].text open_ = cols[3].text high = cols[4].text low = cols[5].text close = cols[6].text vol = cols[7].text amount = cols[8].text change_pct = cols[9].text data.append( { "index_code": symbol.replace(",", ""), "index_name": index_name.replace(",", ""), "date": date.replace(",", ""), "open": open_.replace(",", ""), "high": high.replace(",", ""), "low": low.replace(",", ""), "close": close.replace(",", ""), "vol": vol.replace(",", ""), "amount": amount.replace(",", ""), "change_pct": change_pct.replace(",", ""), } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["vol"] = pd.to_numeric(temp_df["vol"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df["change_pct"] = pd.to_numeric(temp_df["change_pct"]) return temp_df
18,337
akfamily/akshare
087025d8d6f799b30ca114013e82c1ad22dc9294
akshare/index/index_sw.py
sw_index_daily_indicator
( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20210907", data_type: str = "Day", )
return temp_df
申万一级和二级行业历史行情指标 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param data_type: choice of {"Day": 日报表, "Week": 周报表} :type data_type: str :return: 申万指数不同频率数据 :rtype: pandas.DataFrame
申万一级和二级行业历史行情指标 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param data_type: choice of {"Day": 日报表, "Week": 周报表} :type data_type: str :return: 申万指数不同频率数据 :rtype: pandas.DataFrame
257
348
def sw_index_daily_indicator( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20210907", data_type: str = "Day", ) -> pd.DataFrame: """ 申万一级和二级行业历史行情指标 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param data_type: choice of {"Day": 日报表, "Week": 周报表} :type data_type: str :return: 申万指数不同频率数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel.aspx" params = { "ctable": "V_Report", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}' and type='{data_type}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 14: symbol = cols[0].text index_name = cols[1].text date = cols[2].text close = cols[3].text volume = cols[4].text chg_pct = cols[5].text turn_rate = cols[6].text pe = cols[7].text pb = cols[8].text v_wap = cols[9].text turnover_pct = cols[10].text float_mv = cols[11].text avg_float_mv = cols[12].text dividend_yield_ratio = cols[13].text data.append( { "index_code": symbol, "index_name": index_name, "date": date, "close": close, "volume": volume, "chg_pct": chg_pct, "turn_rate": turn_rate, "pe": pe, "pb": pb, "vwap": v_wap, "float_mv": float_mv, "avg_float_mv": avg_float_mv, "dividend_yield_ratio": dividend_yield_ratio, "turnover_pct": turnover_pct, } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = temp_df["volume"].apply(lambda x: x.replace(",", "")) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["chg_pct"] = pd.to_numeric(temp_df["chg_pct"]) temp_df["turn_rate"] = pd.to_numeric(temp_df["turn_rate"]) temp_df["pe"] = pd.to_numeric(temp_df["pe"]) temp_df["pb"] = pd.to_numeric(temp_df["pb"]) temp_df["vwap"] = pd.to_numeric(temp_df["vwap"]) temp_df["float_mv"] = temp_df["float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["float_mv"] = pd.to_numeric( temp_df["float_mv"], ) temp_df["avg_float_mv"] = temp_df["avg_float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["avg_float_mv"] = pd.to_numeric(temp_df["avg_float_mv"]) temp_df["dividend_yield_ratio"] = pd.to_numeric( temp_df["dividend_yield_ratio"] ) temp_df["turnover_pct"] = pd.to_numeric(temp_df["turnover_pct"]) return temp_df
https://github.com/akfamily/akshare/blob/087025d8d6f799b30ca114013e82c1ad22dc9294/project25/akshare/index/index_sw.py#L257-L348
25
[ 0 ]
1.086957
[ 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 83, 86, 87, 90, 91 ]
47.826087
false
7.006369
92
3
52.173913
12
def sw_index_daily_indicator( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20210907", data_type: str = "Day", ) -> pd.DataFrame: start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel.aspx" params = { "ctable": "V_Report", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}' and type='{data_type}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 14: symbol = cols[0].text index_name = cols[1].text date = cols[2].text close = cols[3].text volume = cols[4].text chg_pct = cols[5].text turn_rate = cols[6].text pe = cols[7].text pb = cols[8].text v_wap = cols[9].text turnover_pct = cols[10].text float_mv = cols[11].text avg_float_mv = cols[12].text dividend_yield_ratio = cols[13].text data.append( { "index_code": symbol, "index_name": index_name, "date": date, "close": close, "volume": volume, "chg_pct": chg_pct, "turn_rate": turn_rate, "pe": pe, "pb": pb, "vwap": v_wap, "float_mv": float_mv, "avg_float_mv": avg_float_mv, "dividend_yield_ratio": dividend_yield_ratio, "turnover_pct": turnover_pct, } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = temp_df["volume"].apply(lambda x: x.replace(",", "")) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["chg_pct"] = pd.to_numeric(temp_df["chg_pct"]) temp_df["turn_rate"] = pd.to_numeric(temp_df["turn_rate"]) temp_df["pe"] = pd.to_numeric(temp_df["pe"]) temp_df["pb"] = pd.to_numeric(temp_df["pb"]) temp_df["vwap"] = pd.to_numeric(temp_df["vwap"]) temp_df["float_mv"] = temp_df["float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["float_mv"] = pd.to_numeric( temp_df["float_mv"], ) temp_df["avg_float_mv"] = temp_df["avg_float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["avg_float_mv"] = pd.to_numeric(temp_df["avg_float_mv"]) temp_df["dividend_yield_ratio"] = pd.to_numeric( temp_df["dividend_yield_ratio"] ) temp_df["turnover_pct"] = pd.to_numeric(temp_df["turnover_pct"]) return temp_df
18,338