nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
FacetGrid._inner_axes
|
(self)
|
Return a flat array of the inner axes.
|
Return a flat array of the inner axes.
| 1,096 | 1,111 |
def _inner_axes(self):
"""Return a flat array of the inner axes."""
if self._col_wrap is None:
return self.axes[:-1, 1:].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i % self._ncol
and i < (self._ncol * (self._nrow - 1))
and i < (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1096-L1111
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
15
] | 93.75 |
[
14
] | 6.25 | false | 96.911197 | 16 | 6 | 93.75 | 1 |
def _inner_axes(self):
if self._col_wrap is None:
return self.axes[:-1, 1:].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i % self._ncol
and i < (self._ncol * (self._nrow - 1))
and i < (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
| 18,987 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
FacetGrid._left_axes
|
(self)
|
Return a flat array of the left column of axes.
|
Return a flat array of the left column of axes.
| 1,114 | 1,123 |
def _left_axes(self):
"""Return a flat array of the left column of axes."""
if self._col_wrap is None:
return self.axes[:, 0].flat
else:
axes = []
for i, ax in enumerate(self.axes):
if not i % self._ncol:
axes.append(ax)
return np.array(axes, object).flat
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1114-L1123
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 96.911197 | 10 | 4 | 100 | 1 |
def _left_axes(self):
if self._col_wrap is None:
return self.axes[:, 0].flat
else:
axes = []
for i, ax in enumerate(self.axes):
if not i % self._ncol:
axes.append(ax)
return np.array(axes, object).flat
| 18,988 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
FacetGrid._not_left_axes
|
(self)
|
Return a flat array of axes that aren't on the left column.
|
Return a flat array of axes that aren't on the left column.
| 1,126 | 1,135 |
def _not_left_axes(self):
"""Return a flat array of axes that aren't on the left column."""
if self._col_wrap is None:
return self.axes[:, 1:].flat
else:
axes = []
for i, ax in enumerate(self.axes):
if i % self._ncol:
axes.append(ax)
return np.array(axes, object).flat
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1126-L1135
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 96.911197 | 10 | 4 | 100 | 1 |
def _not_left_axes(self):
if self._col_wrap is None:
return self.axes[:, 1:].flat
else:
axes = []
for i, ax in enumerate(self.axes):
if i % self._ncol:
axes.append(ax)
return np.array(axes, object).flat
| 18,989 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
FacetGrid._bottom_axes
|
(self)
|
Return a flat array of the bottom row of axes.
|
Return a flat array of the bottom row of axes.
| 1,138 | 1,152 |
def _bottom_axes(self):
"""Return a flat array of the bottom row of axes."""
if self._col_wrap is None:
return self.axes[-1, :].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i >= (self._ncol * (self._nrow - 1))
or i >= (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1138-L1152
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 96.911197 | 15 | 5 | 100 | 1 |
def _bottom_axes(self):
if self._col_wrap is None:
return self.axes[-1, :].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i >= (self._ncol * (self._nrow - 1))
or i >= (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
| 18,990 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
FacetGrid._not_bottom_axes
|
(self)
|
Return a flat array of axes that aren't on the bottom row.
|
Return a flat array of axes that aren't on the bottom row.
| 1,155 | 1,169 |
def _not_bottom_axes(self):
"""Return a flat array of axes that aren't on the bottom row."""
if self._col_wrap is None:
return self.axes[:-1, :].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i < (self._ncol * (self._nrow - 1))
and i < (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1155-L1169
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 96.911197 | 15 | 5 | 100 | 1 |
def _not_bottom_axes(self):
if self._col_wrap is None:
return self.axes[:-1, :].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i < (self._ncol * (self._nrow - 1))
and i < (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
| 18,991 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid.__init__
|
(
self, data, *, hue=None, vars=None, x_vars=None, y_vars=None,
hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True,
height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False,
)
|
Initialize the plot figure and PairGrid object.
Parameters
----------
data : DataFrame
Tidy (long-form) dataframe where each column is a variable and
each row is an observation.
hue : string (variable name)
Variable in ``data`` to map plot aspects to different colors. This
variable will be excluded from the default x and y variables.
vars : list of variable names
Variables within ``data`` to use, otherwise use every column with
a numeric datatype.
{x, y}_vars : lists of variable names
Variables within ``data`` to use separately for the rows and
columns of the figure; i.e. to make a non-square plot.
hue_order : list of strings
Order for the levels of the hue variable in the palette
palette : dict or seaborn color palette
Set of colors for mapping the ``hue`` variable. If a dict, keys
should be values in the ``hue`` variable.
hue_kws : dictionary of param -> list of values mapping
Other keyword arguments to insert into the plotting call to let
other plot attributes vary across levels of the hue variable (e.g.
the markers in a scatterplot).
corner : bool
If True, don't add axes to the upper (off-diagonal) triangle of the
grid, making this a "corner" plot.
height : scalar
Height (in inches) of each facet.
aspect : scalar
Aspect * height gives the width (in inches) of each facet.
layout_pad : scalar
Padding between axes; passed to ``fig.tight_layout``.
despine : boolean
Remove the top and right spines from the plots.
dropna : boolean
Drop missing values from the data before plotting.
See Also
--------
pairplot : Easily drawing common uses of :class:`PairGrid`.
FacetGrid : Subplot grid for plotting conditional relationships.
Examples
--------
.. include:: ../docstrings/PairGrid.rst
|
Initialize the plot figure and PairGrid object.
| 1,186 | 1,358 |
def __init__(
self, data, *, hue=None, vars=None, x_vars=None, y_vars=None,
hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True,
height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False,
):
"""Initialize the plot figure and PairGrid object.
Parameters
----------
data : DataFrame
Tidy (long-form) dataframe where each column is a variable and
each row is an observation.
hue : string (variable name)
Variable in ``data`` to map plot aspects to different colors. This
variable will be excluded from the default x and y variables.
vars : list of variable names
Variables within ``data`` to use, otherwise use every column with
a numeric datatype.
{x, y}_vars : lists of variable names
Variables within ``data`` to use separately for the rows and
columns of the figure; i.e. to make a non-square plot.
hue_order : list of strings
Order for the levels of the hue variable in the palette
palette : dict or seaborn color palette
Set of colors for mapping the ``hue`` variable. If a dict, keys
should be values in the ``hue`` variable.
hue_kws : dictionary of param -> list of values mapping
Other keyword arguments to insert into the plotting call to let
other plot attributes vary across levels of the hue variable (e.g.
the markers in a scatterplot).
corner : bool
If True, don't add axes to the upper (off-diagonal) triangle of the
grid, making this a "corner" plot.
height : scalar
Height (in inches) of each facet.
aspect : scalar
Aspect * height gives the width (in inches) of each facet.
layout_pad : scalar
Padding between axes; passed to ``fig.tight_layout``.
despine : boolean
Remove the top and right spines from the plots.
dropna : boolean
Drop missing values from the data before plotting.
See Also
--------
pairplot : Easily drawing common uses of :class:`PairGrid`.
FacetGrid : Subplot grid for plotting conditional relationships.
Examples
--------
.. include:: ../docstrings/PairGrid.rst
"""
super().__init__()
# Sort out the variables that define the grid
numeric_cols = self._find_numeric_cols(data)
if hue in numeric_cols:
numeric_cols.remove(hue)
if vars is not None:
x_vars = list(vars)
y_vars = list(vars)
if x_vars is None:
x_vars = numeric_cols
if y_vars is None:
y_vars = numeric_cols
if np.isscalar(x_vars):
x_vars = [x_vars]
if np.isscalar(y_vars):
y_vars = [y_vars]
self.x_vars = x_vars = list(x_vars)
self.y_vars = y_vars = list(y_vars)
self.square_grid = self.x_vars == self.y_vars
if not x_vars:
raise ValueError("No variables found for grid columns.")
if not y_vars:
raise ValueError("No variables found for grid rows.")
# Create the figure and the array of subplots
figsize = len(x_vars) * height * aspect, len(y_vars) * height
with _disable_autolayout():
fig = plt.figure(figsize=figsize)
axes = fig.subplots(len(y_vars), len(x_vars),
sharex="col", sharey="row",
squeeze=False)
# Possibly remove upper axes to make a corner grid
# Note: setting up the axes is usually the most time-intensive part
# of using the PairGrid. We are foregoing the speed improvement that
# we would get by just not setting up the hidden axes so that we can
# avoid implementing fig.subplots ourselves. But worth thinking about.
self._corner = corner
if corner:
hide_indices = np.triu_indices_from(axes, 1)
for i, j in zip(*hide_indices):
axes[i, j].remove()
axes[i, j] = None
self._figure = fig
self.axes = axes
self.data = data
# Save what we are going to do with the diagonal
self.diag_sharey = diag_sharey
self.diag_vars = None
self.diag_axes = None
self._dropna = dropna
# Label the axes
self._add_axis_labels()
# Sort out the hue variable
self._hue_var = hue
if hue is None:
self.hue_names = hue_order = ["_nolegend_"]
self.hue_vals = pd.Series(["_nolegend_"] * len(data),
index=data.index)
else:
# We need hue_order and hue_names because the former is used to control
# the order of drawing and the latter is used to control the order of
# the legend. hue_names can become string-typed while hue_order must
# retain the type of the input data. This is messy but results from
# the fact that PairGrid can implement the hue-mapping logic itself
# (and was originally written exclusively that way) but now can delegate
# to the axes-level functions, while always handling legend creation.
# See GH2307
hue_names = hue_order = categorical_order(data[hue], hue_order)
if dropna:
# Filter NA from the list of unique hue names
hue_names = list(filter(pd.notnull, hue_names))
self.hue_names = hue_names
self.hue_vals = data[hue]
# Additional dict of kwarg -> list of values for mapping the hue var
self.hue_kws = hue_kws if hue_kws is not None else {}
self._orig_palette = palette
self._hue_order = hue_order
self.palette = self._get_palette(data, hue, hue_order, palette)
self._legend_data = {}
# Make the plot look nice
for ax in axes[:-1, :].flat:
if ax is None:
continue
for label in ax.get_xticklabels():
label.set_visible(False)
ax.xaxis.offsetText.set_visible(False)
ax.xaxis.label.set_visible(False)
for ax in axes[:, 1:].flat:
if ax is None:
continue
for label in ax.get_yticklabels():
label.set_visible(False)
ax.yaxis.offsetText.set_visible(False)
ax.yaxis.label.set_visible(False)
self._tight_layout_rect = [.01, .01, .99, .99]
self._tight_layout_pad = layout_pad
self._despine = despine
if despine:
utils.despine(fig=fig)
self.tight_layout(pad=layout_pad)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1186-L1358
| 26 |
[
0,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
84,
85,
86,
87,
88,
89,
90,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
134,
135,
136,
137,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
156,
157,
158,
159,
160,
161,
162,
164,
165,
166,
167,
168,
169,
170,
171,
172
] | 56.069364 |
[
71,
82,
138,
155,
163
] | 2.890173 | false | 96.911197 | 173 | 21 | 97.109827 | 48 |
def __init__(
self, data, *, hue=None, vars=None, x_vars=None, y_vars=None,
hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True,
height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False,
):
super().__init__()
# Sort out the variables that define the grid
numeric_cols = self._find_numeric_cols(data)
if hue in numeric_cols:
numeric_cols.remove(hue)
if vars is not None:
x_vars = list(vars)
y_vars = list(vars)
if x_vars is None:
x_vars = numeric_cols
if y_vars is None:
y_vars = numeric_cols
if np.isscalar(x_vars):
x_vars = [x_vars]
if np.isscalar(y_vars):
y_vars = [y_vars]
self.x_vars = x_vars = list(x_vars)
self.y_vars = y_vars = list(y_vars)
self.square_grid = self.x_vars == self.y_vars
if not x_vars:
raise ValueError("No variables found for grid columns.")
if not y_vars:
raise ValueError("No variables found for grid rows.")
# Create the figure and the array of subplots
figsize = len(x_vars) * height * aspect, len(y_vars) * height
with _disable_autolayout():
fig = plt.figure(figsize=figsize)
axes = fig.subplots(len(y_vars), len(x_vars),
sharex="col", sharey="row",
squeeze=False)
# Possibly remove upper axes to make a corner grid
# Note: setting up the axes is usually the most time-intensive part
# of using the PairGrid. We are foregoing the speed improvement that
# we would get by just not setting up the hidden axes so that we can
# avoid implementing fig.subplots ourselves. But worth thinking about.
self._corner = corner
if corner:
hide_indices = np.triu_indices_from(axes, 1)
for i, j in zip(*hide_indices):
axes[i, j].remove()
axes[i, j] = None
self._figure = fig
self.axes = axes
self.data = data
# Save what we are going to do with the diagonal
self.diag_sharey = diag_sharey
self.diag_vars = None
self.diag_axes = None
self._dropna = dropna
# Label the axes
self._add_axis_labels()
# Sort out the hue variable
self._hue_var = hue
if hue is None:
self.hue_names = hue_order = ["_nolegend_"]
self.hue_vals = pd.Series(["_nolegend_"] * len(data),
index=data.index)
else:
# We need hue_order and hue_names because the former is used to control
# the order of drawing and the latter is used to control the order of
# the legend. hue_names can become string-typed while hue_order must
# retain the type of the input data. This is messy but results from
# the fact that PairGrid can implement the hue-mapping logic itself
# (and was originally written exclusively that way) but now can delegate
# to the axes-level functions, while always handling legend creation.
# See GH2307
hue_names = hue_order = categorical_order(data[hue], hue_order)
if dropna:
# Filter NA from the list of unique hue names
hue_names = list(filter(pd.notnull, hue_names))
self.hue_names = hue_names
self.hue_vals = data[hue]
# Additional dict of kwarg -> list of values for mapping the hue var
self.hue_kws = hue_kws if hue_kws is not None else {}
self._orig_palette = palette
self._hue_order = hue_order
self.palette = self._get_palette(data, hue, hue_order, palette)
self._legend_data = {}
# Make the plot look nice
for ax in axes[:-1, :].flat:
if ax is None:
continue
for label in ax.get_xticklabels():
label.set_visible(False)
ax.xaxis.offsetText.set_visible(False)
ax.xaxis.label.set_visible(False)
for ax in axes[:, 1:].flat:
if ax is None:
continue
for label in ax.get_yticklabels():
label.set_visible(False)
ax.yaxis.offsetText.set_visible(False)
ax.yaxis.label.set_visible(False)
self._tight_layout_rect = [.01, .01, .99, .99]
self._tight_layout_pad = layout_pad
self._despine = despine
if despine:
utils.despine(fig=fig)
self.tight_layout(pad=layout_pad)
| 18,992 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid.map
|
(self, func, **kwargs)
|
return self
|
Plot with the same function in every subplot.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
Plot with the same function in every subplot.
| 1,360 | 1,375 |
def map(self, func, **kwargs):
"""Plot with the same function in every subplot.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
row_indices, col_indices = np.indices(self.axes.shape)
indices = zip(row_indices.flat, col_indices.flat)
self._map_bivariate(func, indices, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1360-L1375
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 96.911197 | 16 | 1 | 100 | 8 |
def map(self, func, **kwargs):
row_indices, col_indices = np.indices(self.axes.shape)
indices = zip(row_indices.flat, col_indices.flat)
self._map_bivariate(func, indices, **kwargs)
return self
| 18,993 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid.map_lower
|
(self, func, **kwargs)
|
return self
|
Plot with a bivariate function on the lower diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
Plot with a bivariate function on the lower diagonal subplots.
| 1,377 | 1,390 |
def map_lower(self, func, **kwargs):
"""Plot with a bivariate function on the lower diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
indices = zip(*np.tril_indices_from(self.axes, -1))
self._map_bivariate(func, indices, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1377-L1390
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 96.911197 | 14 | 1 | 100 | 8 |
def map_lower(self, func, **kwargs):
indices = zip(*np.tril_indices_from(self.axes, -1))
self._map_bivariate(func, indices, **kwargs)
return self
| 18,994 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid.map_upper
|
(self, func, **kwargs)
|
return self
|
Plot with a bivariate function on the upper diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
Plot with a bivariate function on the upper diagonal subplots.
| 1,392 | 1,405 |
def map_upper(self, func, **kwargs):
"""Plot with a bivariate function on the upper diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
indices = zip(*np.triu_indices_from(self.axes, 1))
self._map_bivariate(func, indices, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1392-L1405
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 96.911197 | 14 | 1 | 100 | 8 |
def map_upper(self, func, **kwargs):
indices = zip(*np.triu_indices_from(self.axes, 1))
self._map_bivariate(func, indices, **kwargs)
return self
| 18,995 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid.map_offdiag
|
(self, func, **kwargs)
|
return self
|
Plot with a bivariate function on the off-diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
Plot with a bivariate function on the off-diagonal subplots.
| 1,407 | 1,429 |
def map_offdiag(self, func, **kwargs):
"""Plot with a bivariate function on the off-diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
if self.square_grid:
self.map_lower(func, **kwargs)
if not self._corner:
self.map_upper(func, **kwargs)
else:
indices = []
for i, (y_var) in enumerate(self.y_vars):
for j, (x_var) in enumerate(self.x_vars):
if x_var != y_var:
indices.append((i, j))
self._map_bivariate(func, indices, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1407-L1429
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 96.911197 | 23 | 6 | 100 | 8 |
def map_offdiag(self, func, **kwargs):
if self.square_grid:
self.map_lower(func, **kwargs)
if not self._corner:
self.map_upper(func, **kwargs)
else:
indices = []
for i, (y_var) in enumerate(self.y_vars):
for j, (x_var) in enumerate(self.x_vars):
if x_var != y_var:
indices.append((i, j))
self._map_bivariate(func, indices, **kwargs)
return self
| 18,996 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid.map_diag
|
(self, func, **kwargs)
|
return self
|
Plot with a univariate function on each diagonal subplot.
Parameters
----------
func : callable plotting function
Must take an x array as a positional argument and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
Plot with a univariate function on each diagonal subplot.
| 1,431 | 1,511 |
def map_diag(self, func, **kwargs):
"""Plot with a univariate function on each diagonal subplot.
Parameters
----------
func : callable plotting function
Must take an x array as a positional argument and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
# Add special diagonal axes for the univariate plot
if self.diag_axes is None:
diag_vars = []
diag_axes = []
for i, y_var in enumerate(self.y_vars):
for j, x_var in enumerate(self.x_vars):
if x_var == y_var:
# Make the density axes
diag_vars.append(x_var)
ax = self.axes[i, j]
diag_ax = ax.twinx()
diag_ax.set_axis_off()
diag_axes.append(diag_ax)
# Work around matplotlib bug
# https://github.com/matplotlib/matplotlib/issues/15188
if not plt.rcParams.get("ytick.left", True):
for tick in ax.yaxis.majorTicks:
tick.tick1line.set_visible(False)
# Remove main y axis from density axes in a corner plot
if self._corner:
ax.yaxis.set_visible(False)
if self._despine:
utils.despine(ax=ax, left=True)
# TODO add optional density ticks (on the right)
# when drawing a corner plot?
if self.diag_sharey and diag_axes:
for ax in diag_axes[1:]:
share_axis(diag_axes[0], ax, "y")
self.diag_vars = np.array(diag_vars, np.object_)
self.diag_axes = np.array(diag_axes, np.object_)
if "hue" not in signature(func).parameters:
return self._map_diag_iter_hue(func, **kwargs)
# Loop over diagonal variables and axes, making one plot in each
for var, ax in zip(self.diag_vars, self.diag_axes):
plot_kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
plot_kwargs["ax"] = ax
else:
plt.sca(ax)
vector = self.data[var]
if self._hue_var is not None:
hue = self.data[self._hue_var]
else:
hue = None
if self._dropna:
not_na = vector.notna()
if hue is not None:
not_na &= hue.notna()
vector = vector[not_na]
if hue is not None:
hue = hue[not_na]
plot_kwargs.setdefault("hue", hue)
plot_kwargs.setdefault("hue_order", self._hue_order)
plot_kwargs.setdefault("palette", self._orig_palette)
func(x=vector, **plot_kwargs)
ax.legend_ = None
self._add_axis_labels()
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1431-L1511
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
69,
70,
72,
73,
74,
75,
76,
77,
78,
79,
80
] | 96.296296 |
[
57,
68,
71
] | 3.703704 | false | 96.911197 | 81 | 19 | 96.296296 | 8 |
def map_diag(self, func, **kwargs):
# Add special diagonal axes for the univariate plot
if self.diag_axes is None:
diag_vars = []
diag_axes = []
for i, y_var in enumerate(self.y_vars):
for j, x_var in enumerate(self.x_vars):
if x_var == y_var:
# Make the density axes
diag_vars.append(x_var)
ax = self.axes[i, j]
diag_ax = ax.twinx()
diag_ax.set_axis_off()
diag_axes.append(diag_ax)
# Work around matplotlib bug
# https://github.com/matplotlib/matplotlib/issues/15188
if not plt.rcParams.get("ytick.left", True):
for tick in ax.yaxis.majorTicks:
tick.tick1line.set_visible(False)
# Remove main y axis from density axes in a corner plot
if self._corner:
ax.yaxis.set_visible(False)
if self._despine:
utils.despine(ax=ax, left=True)
# TODO add optional density ticks (on the right)
# when drawing a corner plot?
if self.diag_sharey and diag_axes:
for ax in diag_axes[1:]:
share_axis(diag_axes[0], ax, "y")
self.diag_vars = np.array(diag_vars, np.object_)
self.diag_axes = np.array(diag_axes, np.object_)
if "hue" not in signature(func).parameters:
return self._map_diag_iter_hue(func, **kwargs)
# Loop over diagonal variables and axes, making one plot in each
for var, ax in zip(self.diag_vars, self.diag_axes):
plot_kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
plot_kwargs["ax"] = ax
else:
plt.sca(ax)
vector = self.data[var]
if self._hue_var is not None:
hue = self.data[self._hue_var]
else:
hue = None
if self._dropna:
not_na = vector.notna()
if hue is not None:
not_na &= hue.notna()
vector = vector[not_na]
if hue is not None:
hue = hue[not_na]
plot_kwargs.setdefault("hue", hue)
plot_kwargs.setdefault("hue_order", self._hue_order)
plot_kwargs.setdefault("palette", self._orig_palette)
func(x=vector, **plot_kwargs)
ax.legend_ = None
self._add_axis_labels()
return self
| 18,997 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid._map_diag_iter_hue
|
(self, func, **kwargs)
|
return self
|
Put marginal plot on each diagonal axes, iterating over hue.
|
Put marginal plot on each diagonal axes, iterating over hue.
| 1,513 | 1,550 |
def _map_diag_iter_hue(self, func, **kwargs):
"""Put marginal plot on each diagonal axes, iterating over hue."""
# Plot on each of the diagonal axes
fixed_color = kwargs.pop("color", None)
for var, ax in zip(self.diag_vars, self.diag_axes):
hue_grouped = self.data[var].groupby(self.hue_vals)
plot_kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
plot_kwargs["ax"] = ax
else:
plt.sca(ax)
for k, label_k in enumerate(self._hue_order):
# Attempt to get data for this level, allowing for empty
try:
data_k = hue_grouped.get_group(label_k)
except KeyError:
data_k = pd.Series([], dtype=float)
if fixed_color is None:
color = self.palette[k]
else:
color = fixed_color
if self._dropna:
data_k = utils.remove_na(data_k)
if str(func.__module__).startswith("seaborn"):
func(x=data_k, label=label_k, color=color, **plot_kwargs)
else:
func(data_k, label=label_k, color=color, **plot_kwargs)
self._add_axis_labels()
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1513-L1550
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
29,
30,
32,
33,
34,
35,
36,
37
] | 92.105263 |
[
10,
28,
31
] | 7.894737 | false | 96.911197 | 38 | 8 | 92.105263 | 1 |
def _map_diag_iter_hue(self, func, **kwargs):
# Plot on each of the diagonal axes
fixed_color = kwargs.pop("color", None)
for var, ax in zip(self.diag_vars, self.diag_axes):
hue_grouped = self.data[var].groupby(self.hue_vals)
plot_kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
plot_kwargs["ax"] = ax
else:
plt.sca(ax)
for k, label_k in enumerate(self._hue_order):
# Attempt to get data for this level, allowing for empty
try:
data_k = hue_grouped.get_group(label_k)
except KeyError:
data_k = pd.Series([], dtype=float)
if fixed_color is None:
color = self.palette[k]
else:
color = fixed_color
if self._dropna:
data_k = utils.remove_na(data_k)
if str(func.__module__).startswith("seaborn"):
func(x=data_k, label=label_k, color=color, **plot_kwargs)
else:
func(data_k, label=label_k, color=color, **plot_kwargs)
self._add_axis_labels()
return self
| 18,998 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid._map_bivariate
|
(self, func, indices, **kwargs)
|
Draw a bivariate plot on the indicated axes.
|
Draw a bivariate plot on the indicated axes.
| 1,552 | 1,572 |
def _map_bivariate(self, func, indices, **kwargs):
"""Draw a bivariate plot on the indicated axes."""
# This is a hack to handle the fact that new distribution plots don't add
# their artists onto the axes. This is probably superior in general, but
# we'll need a better way to handle it in the axisgrid functions.
from .distributions import histplot, kdeplot
if func is histplot or func is kdeplot:
self._extract_legend_handles = True
kws = kwargs.copy() # Use copy as we insert other kwargs
for i, j in indices:
x_var = self.x_vars[j]
y_var = self.y_vars[i]
ax = self.axes[i, j]
if ax is None: # i.e. we are in corner mode
continue
self._plot_bivariate(x_var, y_var, ax, func, **kws)
self._add_axis_labels()
if "hue" in signature(func).parameters:
self.hue_names = list(self._legend_data)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1552-L1572
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20
] | 100 |
[] | 0 | true | 96.911197 | 21 | 6 | 100 | 1 |
def _map_bivariate(self, func, indices, **kwargs):
# This is a hack to handle the fact that new distribution plots don't add
# their artists onto the axes. This is probably superior in general, but
# we'll need a better way to handle it in the axisgrid functions.
from .distributions import histplot, kdeplot
if func is histplot or func is kdeplot:
self._extract_legend_handles = True
kws = kwargs.copy() # Use copy as we insert other kwargs
for i, j in indices:
x_var = self.x_vars[j]
y_var = self.y_vars[i]
ax = self.axes[i, j]
if ax is None: # i.e. we are in corner mode
continue
self._plot_bivariate(x_var, y_var, ax, func, **kws)
self._add_axis_labels()
if "hue" in signature(func).parameters:
self.hue_names = list(self._legend_data)
| 18,999 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid._plot_bivariate
|
(self, x_var, y_var, ax, func, **kwargs)
|
Draw a bivariate plot on the specified axes.
|
Draw a bivariate plot on the specified axes.
| 1,574 | 1,611 |
def _plot_bivariate(self, x_var, y_var, ax, func, **kwargs):
"""Draw a bivariate plot on the specified axes."""
if "hue" not in signature(func).parameters:
self._plot_bivariate_iter_hue(x_var, y_var, ax, func, **kwargs)
return
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = ax
else:
plt.sca(ax)
if x_var == y_var:
axes_vars = [x_var]
else:
axes_vars = [x_var, y_var]
if self._hue_var is not None and self._hue_var not in axes_vars:
axes_vars.append(self._hue_var)
data = self.data[axes_vars]
if self._dropna:
data = data.dropna()
x = data[x_var]
y = data[y_var]
if self._hue_var is None:
hue = None
else:
hue = data.get(self._hue_var)
if "hue" not in kwargs:
kwargs.update({
"hue": hue, "hue_order": self._hue_order, "palette": self._orig_palette,
})
func(x=x, y=y, **kwargs)
self._update_legend_data(ax)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1574-L1611
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37
] | 97.368421 |
[
10
] | 2.631579 | false | 96.911197 | 38 | 9 | 97.368421 | 1 |
def _plot_bivariate(self, x_var, y_var, ax, func, **kwargs):
if "hue" not in signature(func).parameters:
self._plot_bivariate_iter_hue(x_var, y_var, ax, func, **kwargs)
return
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = ax
else:
plt.sca(ax)
if x_var == y_var:
axes_vars = [x_var]
else:
axes_vars = [x_var, y_var]
if self._hue_var is not None and self._hue_var not in axes_vars:
axes_vars.append(self._hue_var)
data = self.data[axes_vars]
if self._dropna:
data = data.dropna()
x = data[x_var]
y = data[y_var]
if self._hue_var is None:
hue = None
else:
hue = data.get(self._hue_var)
if "hue" not in kwargs:
kwargs.update({
"hue": hue, "hue_order": self._hue_order, "palette": self._orig_palette,
})
func(x=x, y=y, **kwargs)
self._update_legend_data(ax)
| 19,000 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid._plot_bivariate_iter_hue
|
(self, x_var, y_var, ax, func, **kwargs)
|
Draw a bivariate plot while iterating over hue subsets.
|
Draw a bivariate plot while iterating over hue subsets.
| 1,613 | 1,655 |
def _plot_bivariate_iter_hue(self, x_var, y_var, ax, func, **kwargs):
"""Draw a bivariate plot while iterating over hue subsets."""
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = ax
else:
plt.sca(ax)
if x_var == y_var:
axes_vars = [x_var]
else:
axes_vars = [x_var, y_var]
hue_grouped = self.data.groupby(self.hue_vals)
for k, label_k in enumerate(self._hue_order):
kws = kwargs.copy()
# Attempt to get data for this level, allowing for empty
try:
data_k = hue_grouped.get_group(label_k)
except KeyError:
data_k = pd.DataFrame(columns=axes_vars,
dtype=float)
if self._dropna:
data_k = data_k[axes_vars].dropna()
x = data_k[x_var]
y = data_k[y_var]
for kw, val_list in self.hue_kws.items():
kws[kw] = val_list[k]
kws.setdefault("color", self.palette[k])
if self._hue_var is not None:
kws["label"] = label_k
if str(func.__module__).startswith("seaborn"):
func(x=x, y=y, **kws)
else:
func(x, y, **kws)
self._update_legend_data(ax)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1613-L1655
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42
] | 100 |
[] | 0 | true | 96.911197 | 43 | 9 | 100 | 1 |
def _plot_bivariate_iter_hue(self, x_var, y_var, ax, func, **kwargs):
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = ax
else:
plt.sca(ax)
if x_var == y_var:
axes_vars = [x_var]
else:
axes_vars = [x_var, y_var]
hue_grouped = self.data.groupby(self.hue_vals)
for k, label_k in enumerate(self._hue_order):
kws = kwargs.copy()
# Attempt to get data for this level, allowing for empty
try:
data_k = hue_grouped.get_group(label_k)
except KeyError:
data_k = pd.DataFrame(columns=axes_vars,
dtype=float)
if self._dropna:
data_k = data_k[axes_vars].dropna()
x = data_k[x_var]
y = data_k[y_var]
for kw, val_list in self.hue_kws.items():
kws[kw] = val_list[k]
kws.setdefault("color", self.palette[k])
if self._hue_var is not None:
kws["label"] = label_k
if str(func.__module__).startswith("seaborn"):
func(x=x, y=y, **kws)
else:
func(x, y, **kws)
self._update_legend_data(ax)
| 19,001 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid._add_axis_labels
|
(self)
|
Add labels to the left and bottom Axes.
|
Add labels to the left and bottom Axes.
| 1,657 | 1,662 |
def _add_axis_labels(self):
"""Add labels to the left and bottom Axes."""
for ax, label in zip(self.axes[-1, :], self.x_vars):
ax.set_xlabel(label)
for ax, label in zip(self.axes[:, 0], self.y_vars):
ax.set_ylabel(label)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1657-L1662
| 26 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 96.911197 | 6 | 3 | 100 | 1 |
def _add_axis_labels(self):
for ax, label in zip(self.axes[-1, :], self.x_vars):
ax.set_xlabel(label)
for ax, label in zip(self.axes[:, 0], self.y_vars):
ax.set_ylabel(label)
| 19,002 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
PairGrid._find_numeric_cols
|
(self, data)
|
return numeric_cols
|
Find which variables in a DataFrame are numeric.
|
Find which variables in a DataFrame are numeric.
| 1,664 | 1,670 |
def _find_numeric_cols(self, data):
"""Find which variables in a DataFrame are numeric."""
numeric_cols = []
for col in data:
if variable_type(data[col]) == "numeric":
numeric_cols.append(col)
return numeric_cols
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1664-L1670
| 26 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 96.911197 | 7 | 3 | 100 | 1 |
def _find_numeric_cols(self, data):
numeric_cols = []
for col in data:
if variable_type(data[col]) == "numeric":
numeric_cols.append(col)
return numeric_cols
| 19,003 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid.__init__
|
(
self, data=None, *,
x=None, y=None, hue=None,
height=6, ratio=5, space=.2,
palette=None, hue_order=None, hue_norm=None,
dropna=False, xlim=None, ylim=None, marginal_ticks=False,
)
| 1,681 | 1,761 |
def __init__(
self, data=None, *,
x=None, y=None, hue=None,
height=6, ratio=5, space=.2,
palette=None, hue_order=None, hue_norm=None,
dropna=False, xlim=None, ylim=None, marginal_ticks=False,
):
# Set up the subplot grid
f = plt.figure(figsize=(height, height))
gs = plt.GridSpec(ratio + 1, ratio + 1)
ax_joint = f.add_subplot(gs[1:, :-1])
ax_marg_x = f.add_subplot(gs[0, :-1], sharex=ax_joint)
ax_marg_y = f.add_subplot(gs[1:, -1], sharey=ax_joint)
self._figure = f
self.ax_joint = ax_joint
self.ax_marg_x = ax_marg_x
self.ax_marg_y = ax_marg_y
# Turn off tick visibility for the measure axis on the marginal plots
plt.setp(ax_marg_x.get_xticklabels(), visible=False)
plt.setp(ax_marg_y.get_yticklabels(), visible=False)
plt.setp(ax_marg_x.get_xticklabels(minor=True), visible=False)
plt.setp(ax_marg_y.get_yticklabels(minor=True), visible=False)
# Turn off the ticks on the density axis for the marginal plots
if not marginal_ticks:
plt.setp(ax_marg_x.yaxis.get_majorticklines(), visible=False)
plt.setp(ax_marg_x.yaxis.get_minorticklines(), visible=False)
plt.setp(ax_marg_y.xaxis.get_majorticklines(), visible=False)
plt.setp(ax_marg_y.xaxis.get_minorticklines(), visible=False)
plt.setp(ax_marg_x.get_yticklabels(), visible=False)
plt.setp(ax_marg_y.get_xticklabels(), visible=False)
plt.setp(ax_marg_x.get_yticklabels(minor=True), visible=False)
plt.setp(ax_marg_y.get_xticklabels(minor=True), visible=False)
ax_marg_x.yaxis.grid(False)
ax_marg_y.xaxis.grid(False)
# Process the input variables
p = VectorPlotter(data=data, variables=dict(x=x, y=y, hue=hue))
plot_data = p.plot_data.loc[:, p.plot_data.notna().any()]
# Possibly drop NA
if dropna:
plot_data = plot_data.dropna()
def get_var(var):
vector = plot_data.get(var, None)
if vector is not None:
vector = vector.rename(p.variables.get(var, None))
return vector
self.x = get_var("x")
self.y = get_var("y")
self.hue = get_var("hue")
for axis in "xy":
name = p.variables.get(axis, None)
if name is not None:
getattr(ax_joint, f"set_{axis}label")(name)
if xlim is not None:
ax_joint.set_xlim(xlim)
if ylim is not None:
ax_joint.set_ylim(ylim)
# Store the semantic mapping parameters for axes-level functions
self._hue_params = dict(palette=palette, hue_order=hue_order, hue_norm=hue_norm)
# Make the grid look nice
utils.despine(f)
if not marginal_ticks:
utils.despine(ax=ax_marg_x, left=True)
utils.despine(ax=ax_marg_y, bottom=True)
for axes in [ax_marg_x, ax_marg_y]:
for axis in [axes.xaxis, axes.yaxis]:
axis.label.set_visible(False)
f.tight_layout()
f.subplots_adjust(hspace=space, wspace=space)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1681-L1761
| 26 |
[
0,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80
] | 91.358025 |
[] | 0 | false | 96.911197 | 81 | 12 | 100 | 0 |
def __init__(
self, data=None, *,
x=None, y=None, hue=None,
height=6, ratio=5, space=.2,
palette=None, hue_order=None, hue_norm=None,
dropna=False, xlim=None, ylim=None, marginal_ticks=False,
):
# Set up the subplot grid
f = plt.figure(figsize=(height, height))
gs = plt.GridSpec(ratio + 1, ratio + 1)
ax_joint = f.add_subplot(gs[1:, :-1])
ax_marg_x = f.add_subplot(gs[0, :-1], sharex=ax_joint)
ax_marg_y = f.add_subplot(gs[1:, -1], sharey=ax_joint)
self._figure = f
self.ax_joint = ax_joint
self.ax_marg_x = ax_marg_x
self.ax_marg_y = ax_marg_y
# Turn off tick visibility for the measure axis on the marginal plots
plt.setp(ax_marg_x.get_xticklabels(), visible=False)
plt.setp(ax_marg_y.get_yticklabels(), visible=False)
plt.setp(ax_marg_x.get_xticklabels(minor=True), visible=False)
plt.setp(ax_marg_y.get_yticklabels(minor=True), visible=False)
# Turn off the ticks on the density axis for the marginal plots
if not marginal_ticks:
plt.setp(ax_marg_x.yaxis.get_majorticklines(), visible=False)
plt.setp(ax_marg_x.yaxis.get_minorticklines(), visible=False)
plt.setp(ax_marg_y.xaxis.get_majorticklines(), visible=False)
plt.setp(ax_marg_y.xaxis.get_minorticklines(), visible=False)
plt.setp(ax_marg_x.get_yticklabels(), visible=False)
plt.setp(ax_marg_y.get_xticklabels(), visible=False)
plt.setp(ax_marg_x.get_yticklabels(minor=True), visible=False)
plt.setp(ax_marg_y.get_xticklabels(minor=True), visible=False)
ax_marg_x.yaxis.grid(False)
ax_marg_y.xaxis.grid(False)
# Process the input variables
p = VectorPlotter(data=data, variables=dict(x=x, y=y, hue=hue))
plot_data = p.plot_data.loc[:, p.plot_data.notna().any()]
# Possibly drop NA
if dropna:
plot_data = plot_data.dropna()
def get_var(var):
vector = plot_data.get(var, None)
if vector is not None:
vector = vector.rename(p.variables.get(var, None))
return vector
self.x = get_var("x")
self.y = get_var("y")
self.hue = get_var("hue")
for axis in "xy":
name = p.variables.get(axis, None)
if name is not None:
getattr(ax_joint, f"set_{axis}label")(name)
if xlim is not None:
ax_joint.set_xlim(xlim)
if ylim is not None:
ax_joint.set_ylim(ylim)
# Store the semantic mapping parameters for axes-level functions
self._hue_params = dict(palette=palette, hue_order=hue_order, hue_norm=hue_norm)
# Make the grid look nice
utils.despine(f)
if not marginal_ticks:
utils.despine(ax=ax_marg_x, left=True)
utils.despine(ax=ax_marg_y, bottom=True)
for axes in [ax_marg_x, ax_marg_y]:
for axis in [axes.xaxis, axes.yaxis]:
axis.label.set_visible(False)
f.tight_layout()
f.subplots_adjust(hspace=space, wspace=space)
| 19,004 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid._inject_kwargs
|
(self, func, kws, params)
|
Add params to kws if they are accepted by func.
|
Add params to kws if they are accepted by func.
| 1,763 | 1,768 |
def _inject_kwargs(self, func, kws, params):
"""Add params to kws if they are accepted by func."""
func_params = signature(func).parameters
for key, val in params.items():
if key in func_params:
kws.setdefault(key, val)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1763-L1768
| 26 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 96.911197 | 6 | 3 | 100 | 1 |
def _inject_kwargs(self, func, kws, params):
func_params = signature(func).parameters
for key, val in params.items():
if key in func_params:
kws.setdefault(key, val)
| 19,005 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid.plot
|
(self, joint_func, marginal_func, **kwargs)
|
return self
|
Draw the plot by passing functions for joint and marginal axes.
This method passes the ``kwargs`` dictionary to both functions. If you
need more control, call :meth:`JointGrid.plot_joint` and
:meth:`JointGrid.plot_marginals` directly with specific parameters.
Parameters
----------
joint_func, marginal_func : callables
Functions to draw the bivariate and univariate plots. See methods
referenced above for information about the required characteristics
of these functions.
kwargs
Additional keyword arguments are passed to both functions.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
Draw the plot by passing functions for joint and marginal axes.
| 1,770 | 1,794 |
def plot(self, joint_func, marginal_func, **kwargs):
"""Draw the plot by passing functions for joint and marginal axes.
This method passes the ``kwargs`` dictionary to both functions. If you
need more control, call :meth:`JointGrid.plot_joint` and
:meth:`JointGrid.plot_marginals` directly with specific parameters.
Parameters
----------
joint_func, marginal_func : callables
Functions to draw the bivariate and univariate plots. See methods
referenced above for information about the required characteristics
of these functions.
kwargs
Additional keyword arguments are passed to both functions.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
self.plot_marginals(marginal_func, **kwargs)
self.plot_joint(joint_func, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1770-L1794
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 100 |
[] | 0 | true | 96.911197 | 25 | 1 | 100 | 19 |
def plot(self, joint_func, marginal_func, **kwargs):
self.plot_marginals(marginal_func, **kwargs)
self.plot_joint(joint_func, **kwargs)
return self
| 19,006 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid.plot_joint
|
(self, func, **kwargs)
|
return self
|
Draw a bivariate plot on the joint axes of the grid.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y``. Otherwise,
it must accept ``x`` and ``y`` vectors of data as the first two
positional arguments, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, the function must
accept ``hue`` as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
Draw a bivariate plot on the joint axes of the grid.
| 1,796 | 1,830 |
def plot_joint(self, func, **kwargs):
"""Draw a bivariate plot on the joint axes of the grid.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y``. Otherwise,
it must accept ``x`` and ``y`` vectors of data as the first two
positional arguments, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, the function must
accept ``hue`` as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = self.ax_joint
else:
plt.sca(self.ax_joint)
if self.hue is not None:
kwargs["hue"] = self.hue
self._inject_kwargs(func, kwargs, self._hue_params)
if str(func.__module__).startswith("seaborn"):
func(x=self.x, y=self.y, **kwargs)
else:
func(self.x, self.y, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1796-L1830
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34
] | 100 |
[] | 0 | true | 96.911197 | 35 | 4 | 100 | 17 |
def plot_joint(self, func, **kwargs):
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = self.ax_joint
else:
plt.sca(self.ax_joint)
if self.hue is not None:
kwargs["hue"] = self.hue
self._inject_kwargs(func, kwargs, self._hue_params)
if str(func.__module__).startswith("seaborn"):
func(x=self.x, y=self.y, **kwargs)
else:
func(self.x, self.y, **kwargs)
return self
| 19,007 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid.plot_marginals
|
(self, func, **kwargs)
|
return self
|
Draw univariate plots on each marginal axes.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y`` and plot
when only one of them is defined. Otherwise, it must accept a vector
of data as the first positional argument and determine its orientation
using the ``vertical`` parameter, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, it must accept ``hue``
as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
Draw univariate plots on each marginal axes.
| 1,832 | 1,891 |
def plot_marginals(self, func, **kwargs):
"""Draw univariate plots on each marginal axes.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y`` and plot
when only one of them is defined. Otherwise, it must accept a vector
of data as the first positional argument and determine its orientation
using the ``vertical`` parameter, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, it must accept ``hue``
as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
seaborn_func = (
str(func.__module__).startswith("seaborn")
# deprecated distplot has a legacy API, special case it
and not func.__name__ == "distplot"
)
func_params = signature(func).parameters
kwargs = kwargs.copy()
if self.hue is not None:
kwargs["hue"] = self.hue
self._inject_kwargs(func, kwargs, self._hue_params)
if "legend" in func_params:
kwargs.setdefault("legend", False)
if "orientation" in func_params:
# e.g. plt.hist
orient_kw_x = {"orientation": "vertical"}
orient_kw_y = {"orientation": "horizontal"}
elif "vertical" in func_params:
# e.g. sns.distplot (also how did this get backwards?)
orient_kw_x = {"vertical": False}
orient_kw_y = {"vertical": True}
if seaborn_func:
func(x=self.x, ax=self.ax_marg_x, **kwargs)
else:
plt.sca(self.ax_marg_x)
func(self.x, **orient_kw_x, **kwargs)
if seaborn_func:
func(y=self.y, ax=self.ax_marg_y, **kwargs)
else:
plt.sca(self.ax_marg_y)
func(self.y, **orient_kw_y, **kwargs)
self.ax_marg_x.yaxis.get_label().set_visible(False)
self.ax_marg_y.xaxis.get_label().set_visible(False)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1832-L1891
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59
] | 100 |
[] | 0 | true | 96.911197 | 60 | 8 | 100 | 18 |
def plot_marginals(self, func, **kwargs):
seaborn_func = (
str(func.__module__).startswith("seaborn")
# deprecated distplot has a legacy API, special case it
and not func.__name__ == "distplot"
)
func_params = signature(func).parameters
kwargs = kwargs.copy()
if self.hue is not None:
kwargs["hue"] = self.hue
self._inject_kwargs(func, kwargs, self._hue_params)
if "legend" in func_params:
kwargs.setdefault("legend", False)
if "orientation" in func_params:
# e.g. plt.hist
orient_kw_x = {"orientation": "vertical"}
orient_kw_y = {"orientation": "horizontal"}
elif "vertical" in func_params:
# e.g. sns.distplot (also how did this get backwards?)
orient_kw_x = {"vertical": False}
orient_kw_y = {"vertical": True}
if seaborn_func:
func(x=self.x, ax=self.ax_marg_x, **kwargs)
else:
plt.sca(self.ax_marg_x)
func(self.x, **orient_kw_x, **kwargs)
if seaborn_func:
func(y=self.y, ax=self.ax_marg_y, **kwargs)
else:
plt.sca(self.ax_marg_y)
func(self.y, **orient_kw_y, **kwargs)
self.ax_marg_x.yaxis.get_label().set_visible(False)
self.ax_marg_y.xaxis.get_label().set_visible(False)
return self
| 19,008 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid.refline
|
(
self, *, x=None, y=None, joint=True, marginal=True,
color='.5', linestyle='--', **line_kws
)
|
return self
|
Add a reference line(s) to joint and/or marginal axes.
Parameters
----------
x, y : numeric
Value(s) to draw the line(s) at.
joint, marginal : bools
Whether to add the reference line(s) to the joint/marginal axes.
color : :mod:`matplotlib color <matplotlib.colors>`
Specifies the color of the reference line(s).
linestyle : str
Specifies the style of the reference line(s).
line_kws : key, value mappings
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
is not None.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
Add a reference line(s) to joint and/or marginal axes.
| 1,893 | 1,935 |
def refline(
self, *, x=None, y=None, joint=True, marginal=True,
color='.5', linestyle='--', **line_kws
):
"""Add a reference line(s) to joint and/or marginal axes.
Parameters
----------
x, y : numeric
Value(s) to draw the line(s) at.
joint, marginal : bools
Whether to add the reference line(s) to the joint/marginal axes.
color : :mod:`matplotlib color <matplotlib.colors>`
Specifies the color of the reference line(s).
linestyle : str
Specifies the style of the reference line(s).
line_kws : key, value mappings
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
is not None.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
line_kws['color'] = color
line_kws['linestyle'] = linestyle
if x is not None:
if joint:
self.ax_joint.axvline(x, **line_kws)
if marginal:
self.ax_marg_x.axvline(x, **line_kws)
if y is not None:
if joint:
self.ax_joint.axhline(y, **line_kws)
if marginal:
self.ax_marg_y.axhline(y, **line_kws)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1893-L1935
| 26 |
[
0,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42
] | 41.860465 |
[] | 0 | false | 96.911197 | 43 | 7 | 100 | 21 |
def refline(
self, *, x=None, y=None, joint=True, marginal=True,
color='.5', linestyle='--', **line_kws
):
line_kws['color'] = color
line_kws['linestyle'] = linestyle
if x is not None:
if joint:
self.ax_joint.axvline(x, **line_kws)
if marginal:
self.ax_marg_x.axvline(x, **line_kws)
if y is not None:
if joint:
self.ax_joint.axhline(y, **line_kws)
if marginal:
self.ax_marg_y.axhline(y, **line_kws)
return self
| 19,009 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/axisgrid.py
|
JointGrid.set_axis_labels
|
(self, xlabel="", ylabel="", **kwargs)
|
return self
|
Set axis labels on the bivariate axes.
Parameters
----------
xlabel, ylabel : strings
Label names for the x and y variables.
kwargs : key, value mappings
Other keyword arguments are passed to the following functions:
- :meth:`matplotlib.axes.Axes.set_xlabel`
- :meth:`matplotlib.axes.Axes.set_ylabel`
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
Set axis labels on the bivariate axes.
| 1,937 | 1,958 |
def set_axis_labels(self, xlabel="", ylabel="", **kwargs):
"""Set axis labels on the bivariate axes.
Parameters
----------
xlabel, ylabel : strings
Label names for the x and y variables.
kwargs : key, value mappings
Other keyword arguments are passed to the following functions:
- :meth:`matplotlib.axes.Axes.set_xlabel`
- :meth:`matplotlib.axes.Axes.set_ylabel`
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
self.ax_joint.set_xlabel(xlabel, **kwargs)
self.ax_joint.set_ylabel(ylabel, **kwargs)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/axisgrid.py#L1937-L1958
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 100 |
[] | 0 | true | 96.911197 | 22 | 1 | 100 | 16 |
def set_axis_labels(self, xlabel="", ylabel="", **kwargs):
self.ax_joint.set_xlabel(xlabel, **kwargs)
self.ax_joint.set_ylabel(ylabel, **kwargs)
return self
| 19,010 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
set_theme
|
(context="notebook", style="darkgrid", palette="deep",
font="sans-serif", font_scale=1, color_codes=True, rc=None)
|
Set aspects of the visual theme for all matplotlib and seaborn plots.
This function changes the global defaults for all plots using the
matplotlib rcParams system. The themeing is decomposed into several distinct
sets of parameter values.
The options are illustrated in the :doc:`aesthetics <../tutorial/aesthetics>`
and :doc:`color palette <../tutorial/color_palettes>` tutorials.
Parameters
----------
context : string or dict
Scaling parameters, see :func:`plotting_context`.
style : string or dict
Axes style parameters, see :func:`axes_style`.
palette : string or sequence
Color palette, see :func:`color_palette`.
font : string
Font family, see matplotlib font manager.
font_scale : float, optional
Separate scaling factor to independently scale the size of the
font elements.
color_codes : bool
If ``True`` and ``palette`` is a seaborn palette, remap the shorthand
color codes (e.g. "b", "g", "r", etc.) to the colors from this palette.
rc : dict or None
Dictionary of rc parameter mappings to override the above.
Examples
--------
.. include:: ../docstrings/set_theme.rst
|
Set aspects of the visual theme for all matplotlib and seaborn plots.
| 82 | 123 |
def set_theme(context="notebook", style="darkgrid", palette="deep",
font="sans-serif", font_scale=1, color_codes=True, rc=None):
"""
Set aspects of the visual theme for all matplotlib and seaborn plots.
This function changes the global defaults for all plots using the
matplotlib rcParams system. The themeing is decomposed into several distinct
sets of parameter values.
The options are illustrated in the :doc:`aesthetics <../tutorial/aesthetics>`
and :doc:`color palette <../tutorial/color_palettes>` tutorials.
Parameters
----------
context : string or dict
Scaling parameters, see :func:`plotting_context`.
style : string or dict
Axes style parameters, see :func:`axes_style`.
palette : string or sequence
Color palette, see :func:`color_palette`.
font : string
Font family, see matplotlib font manager.
font_scale : float, optional
Separate scaling factor to independently scale the size of the
font elements.
color_codes : bool
If ``True`` and ``palette`` is a seaborn palette, remap the shorthand
color codes (e.g. "b", "g", "r", etc.) to the colors from this palette.
rc : dict or None
Dictionary of rc parameter mappings to override the above.
Examples
--------
.. include:: ../docstrings/set_theme.rst
"""
set_context(context, font_scale)
set_style(style, rc={"font.family": font})
set_palette(palette, color_codes=color_codes)
if rc is not None:
mpl.rcParams.update(rc)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L82-L123
| 26 |
[
0,
36,
37,
38,
39,
40,
41
] | 16.666667 |
[] | 0 | false | 100 | 42 | 2 | 100 | 32 |
def set_theme(context="notebook", style="darkgrid", palette="deep",
font="sans-serif", font_scale=1, color_codes=True, rc=None):
set_context(context, font_scale)
set_style(style, rc={"font.family": font})
set_palette(palette, color_codes=color_codes)
if rc is not None:
mpl.rcParams.update(rc)
| 19,011 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
set
|
(*args, **kwargs)
|
Alias for :func:`set_theme`, which is the preferred interface.
This function may be removed in the future.
|
Alias for :func:`set_theme`, which is the preferred interface.
| 126 | 132 |
def set(*args, **kwargs):
"""
Alias for :func:`set_theme`, which is the preferred interface.
This function may be removed in the future.
"""
set_theme(*args, **kwargs)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L126-L132
| 26 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 100 | 7 | 1 | 100 | 3 |
def set(*args, **kwargs):
set_theme(*args, **kwargs)
| 19,012 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
reset_defaults
|
()
|
Restore all RC params to default settings.
|
Restore all RC params to default settings.
| 135 | 137 |
def reset_defaults():
"""Restore all RC params to default settings."""
mpl.rcParams.update(mpl.rcParamsDefault)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L135-L137
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 100 | 3 | 1 | 100 | 1 |
def reset_defaults():
mpl.rcParams.update(mpl.rcParamsDefault)
| 19,013 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
reset_orig
|
()
|
Restore all RC params to original settings (respects custom rc).
|
Restore all RC params to original settings (respects custom rc).
| 140 | 143 |
def reset_orig():
"""Restore all RC params to original settings (respects custom rc)."""
from . import _orig_rc_params
mpl.rcParams.update(_orig_rc_params)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L140-L143
| 26 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 100 | 4 | 1 | 100 | 1 |
def reset_orig():
from . import _orig_rc_params
mpl.rcParams.update(_orig_rc_params)
| 19,014 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
axes_style
|
(style=None, rc=None)
|
return style_object
|
Get the parameters that control the general style of the plots.
The style parameters control properties like the color of the background and
whether a grid is enabled by default. This is accomplished using the
matplotlib rcParams system.
The options are illustrated in the
:doc:`aesthetics tutorial <../tutorial/aesthetics>`.
This function can also be used as a context manager to temporarily
alter the global defaults. See :func:`set_theme` or :func:`set_style`
to modify the global defaults for all plots.
Parameters
----------
style : None, dict, or one of {darkgrid, whitegrid, dark, white, ticks}
A dictionary of parameters or the name of a preconfigured style.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
style dictionaries. This only updates parameters that are
considered part of the style definition.
Examples
--------
.. include:: ../docstrings/axes_style.rst
|
Get the parameters that control the general style of the plots.
| 146 | 300 |
def axes_style(style=None, rc=None):
"""
Get the parameters that control the general style of the plots.
The style parameters control properties like the color of the background and
whether a grid is enabled by default. This is accomplished using the
matplotlib rcParams system.
The options are illustrated in the
:doc:`aesthetics tutorial <../tutorial/aesthetics>`.
This function can also be used as a context manager to temporarily
alter the global defaults. See :func:`set_theme` or :func:`set_style`
to modify the global defaults for all plots.
Parameters
----------
style : None, dict, or one of {darkgrid, whitegrid, dark, white, ticks}
A dictionary of parameters or the name of a preconfigured style.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
style dictionaries. This only updates parameters that are
considered part of the style definition.
Examples
--------
.. include:: ../docstrings/axes_style.rst
"""
if style is None:
style_dict = {k: mpl.rcParams[k] for k in _style_keys}
elif isinstance(style, dict):
style_dict = style
else:
styles = ["white", "dark", "whitegrid", "darkgrid", "ticks"]
if style not in styles:
raise ValueError(f"style must be one of {', '.join(styles)}")
# Define colors here
dark_gray = ".15"
light_gray = ".8"
# Common parameters
style_dict = {
"figure.facecolor": "white",
"axes.labelcolor": dark_gray,
"xtick.direction": "out",
"ytick.direction": "out",
"xtick.color": dark_gray,
"ytick.color": dark_gray,
"axes.axisbelow": True,
"grid.linestyle": "-",
"text.color": dark_gray,
"font.family": ["sans-serif"],
"font.sans-serif": ["Arial", "DejaVu Sans", "Liberation Sans",
"Bitstream Vera Sans", "sans-serif"],
"lines.solid_capstyle": "round",
"patch.edgecolor": "w",
"patch.force_edgecolor": True,
"image.cmap": "rocket",
"xtick.top": False,
"ytick.right": False,
}
# Set grid on or off
if "grid" in style:
style_dict.update({
"axes.grid": True,
})
else:
style_dict.update({
"axes.grid": False,
})
# Set the color of the background, spines, and grids
if style.startswith("dark"):
style_dict.update({
"axes.facecolor": "#EAEAF2",
"axes.edgecolor": "white",
"grid.color": "white",
"axes.spines.left": True,
"axes.spines.bottom": True,
"axes.spines.right": True,
"axes.spines.top": True,
})
elif style == "whitegrid":
style_dict.update({
"axes.facecolor": "white",
"axes.edgecolor": light_gray,
"grid.color": light_gray,
"axes.spines.left": True,
"axes.spines.bottom": True,
"axes.spines.right": True,
"axes.spines.top": True,
})
elif style in ["white", "ticks"]:
style_dict.update({
"axes.facecolor": "white",
"axes.edgecolor": dark_gray,
"grid.color": light_gray,
"axes.spines.left": True,
"axes.spines.bottom": True,
"axes.spines.right": True,
"axes.spines.top": True,
})
# Show or hide the axes ticks
if style == "ticks":
style_dict.update({
"xtick.bottom": True,
"ytick.left": True,
})
else:
style_dict.update({
"xtick.bottom": False,
"ytick.left": False,
})
# Remove entries that are not defined in the base list of valid keys
# This lets us handle matplotlib <=/> 2.0
style_dict = {k: v for k, v in style_dict.items() if k in _style_keys}
# Override these settings with the provided rc dictionary
if rc is not None:
rc = {k: v for k, v in rc.items() if k in _style_keys}
style_dict.update(rc)
# Wrap in an _AxesStyle object so this can be used in a with statement
style_object = _AxesStyle(style_dict)
return style_object
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L146-L300
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154
] | 100 |
[] | 0 | true | 100 | 155 | 10 | 100 | 26 |
def axes_style(style=None, rc=None):
if style is None:
style_dict = {k: mpl.rcParams[k] for k in _style_keys}
elif isinstance(style, dict):
style_dict = style
else:
styles = ["white", "dark", "whitegrid", "darkgrid", "ticks"]
if style not in styles:
raise ValueError(f"style must be one of {', '.join(styles)}")
# Define colors here
dark_gray = ".15"
light_gray = ".8"
# Common parameters
style_dict = {
"figure.facecolor": "white",
"axes.labelcolor": dark_gray,
"xtick.direction": "out",
"ytick.direction": "out",
"xtick.color": dark_gray,
"ytick.color": dark_gray,
"axes.axisbelow": True,
"grid.linestyle": "-",
"text.color": dark_gray,
"font.family": ["sans-serif"],
"font.sans-serif": ["Arial", "DejaVu Sans", "Liberation Sans",
"Bitstream Vera Sans", "sans-serif"],
"lines.solid_capstyle": "round",
"patch.edgecolor": "w",
"patch.force_edgecolor": True,
"image.cmap": "rocket",
"xtick.top": False,
"ytick.right": False,
}
# Set grid on or off
if "grid" in style:
style_dict.update({
"axes.grid": True,
})
else:
style_dict.update({
"axes.grid": False,
})
# Set the color of the background, spines, and grids
if style.startswith("dark"):
style_dict.update({
"axes.facecolor": "#EAEAF2",
"axes.edgecolor": "white",
"grid.color": "white",
"axes.spines.left": True,
"axes.spines.bottom": True,
"axes.spines.right": True,
"axes.spines.top": True,
})
elif style == "whitegrid":
style_dict.update({
"axes.facecolor": "white",
"axes.edgecolor": light_gray,
"grid.color": light_gray,
"axes.spines.left": True,
"axes.spines.bottom": True,
"axes.spines.right": True,
"axes.spines.top": True,
})
elif style in ["white", "ticks"]:
style_dict.update({
"axes.facecolor": "white",
"axes.edgecolor": dark_gray,
"grid.color": light_gray,
"axes.spines.left": True,
"axes.spines.bottom": True,
"axes.spines.right": True,
"axes.spines.top": True,
})
# Show or hide the axes ticks
if style == "ticks":
style_dict.update({
"xtick.bottom": True,
"ytick.left": True,
})
else:
style_dict.update({
"xtick.bottom": False,
"ytick.left": False,
})
# Remove entries that are not defined in the base list of valid keys
# This lets us handle matplotlib <=/> 2.0
style_dict = {k: v for k, v in style_dict.items() if k in _style_keys}
# Override these settings with the provided rc dictionary
if rc is not None:
rc = {k: v for k, v in rc.items() if k in _style_keys}
style_dict.update(rc)
# Wrap in an _AxesStyle object so this can be used in a with statement
style_object = _AxesStyle(style_dict)
return style_object
| 19,015 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
set_style
|
(style=None, rc=None)
|
Set the parameters that control the general style of the plots.
The style parameters control properties like the color of the background and
whether a grid is enabled by default. This is accomplished using the
matplotlib rcParams system.
The options are illustrated in the
:doc:`aesthetics tutorial <../tutorial/aesthetics>`.
See :func:`axes_style` to get the parameter values.
Parameters
----------
style : dict, or one of {darkgrid, whitegrid, dark, white, ticks}
A dictionary of parameters or the name of a preconfigured style.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
style dictionaries. This only updates parameters that are
considered part of the style definition.
Examples
--------
.. include:: ../docstrings/set_style.rst
|
Set the parameters that control the general style of the plots.
| 303 | 332 |
def set_style(style=None, rc=None):
"""
Set the parameters that control the general style of the plots.
The style parameters control properties like the color of the background and
whether a grid is enabled by default. This is accomplished using the
matplotlib rcParams system.
The options are illustrated in the
:doc:`aesthetics tutorial <../tutorial/aesthetics>`.
See :func:`axes_style` to get the parameter values.
Parameters
----------
style : dict, or one of {darkgrid, whitegrid, dark, white, ticks}
A dictionary of parameters or the name of a preconfigured style.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
style dictionaries. This only updates parameters that are
considered part of the style definition.
Examples
--------
.. include:: ../docstrings/set_style.rst
"""
style_object = axes_style(style, rc)
mpl.rcParams.update(style_object)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L303-L332
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29
] | 100 |
[] | 0 | true | 100 | 30 | 1 | 100 | 24 |
def set_style(style=None, rc=None):
style_object = axes_style(style, rc)
mpl.rcParams.update(style_object)
| 19,016 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
plotting_context
|
(context=None, font_scale=1, rc=None)
|
return context_object
|
Get the parameters that control the scaling of plot elements.
This affects things like the size of the labels, lines, and other elements
of the plot, but not the overall style. This is accomplished using the
matplotlib rcParams system.
The base context is "notebook", and the other contexts are "paper", "talk",
and "poster", which are version of the notebook parameters scaled by different
values. Font elements can also be scaled independently of (but relative to)
the other values.
This function can also be used as a context manager to temporarily
alter the global defaults. See :func:`set_theme` or :func:`set_context`
to modify the global defaults for all plots.
Parameters
----------
context : None, dict, or one of {paper, notebook, talk, poster}
A dictionary of parameters or the name of a preconfigured set.
font_scale : float, optional
Separate scaling factor to independently scale the size of the
font elements.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
context dictionaries. This only updates parameters that are
considered part of the context definition.
Examples
--------
.. include:: ../docstrings/plotting_context.rst
|
Get the parameters that control the scaling of plot elements.
| 335 | 433 |
def plotting_context(context=None, font_scale=1, rc=None):
"""
Get the parameters that control the scaling of plot elements.
This affects things like the size of the labels, lines, and other elements
of the plot, but not the overall style. This is accomplished using the
matplotlib rcParams system.
The base context is "notebook", and the other contexts are "paper", "talk",
and "poster", which are version of the notebook parameters scaled by different
values. Font elements can also be scaled independently of (but relative to)
the other values.
This function can also be used as a context manager to temporarily
alter the global defaults. See :func:`set_theme` or :func:`set_context`
to modify the global defaults for all plots.
Parameters
----------
context : None, dict, or one of {paper, notebook, talk, poster}
A dictionary of parameters or the name of a preconfigured set.
font_scale : float, optional
Separate scaling factor to independently scale the size of the
font elements.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
context dictionaries. This only updates parameters that are
considered part of the context definition.
Examples
--------
.. include:: ../docstrings/plotting_context.rst
"""
if context is None:
context_dict = {k: mpl.rcParams[k] for k in _context_keys}
elif isinstance(context, dict):
context_dict = context
else:
contexts = ["paper", "notebook", "talk", "poster"]
if context not in contexts:
raise ValueError(f"context must be in {', '.join(contexts)}")
# Set up dictionary of default parameters
texts_base_context = {
"font.size": 12,
"axes.labelsize": 12,
"axes.titlesize": 12,
"xtick.labelsize": 11,
"ytick.labelsize": 11,
"legend.fontsize": 11,
"legend.title_fontsize": 12,
}
base_context = {
"axes.linewidth": 1.25,
"grid.linewidth": 1,
"lines.linewidth": 1.5,
"lines.markersize": 6,
"patch.linewidth": 1,
"xtick.major.width": 1.25,
"ytick.major.width": 1.25,
"xtick.minor.width": 1,
"ytick.minor.width": 1,
"xtick.major.size": 6,
"ytick.major.size": 6,
"xtick.minor.size": 4,
"ytick.minor.size": 4,
}
base_context.update(texts_base_context)
# Scale all the parameters by the same factor depending on the context
scaling = dict(paper=.8, notebook=1, talk=1.5, poster=2)[context]
context_dict = {k: v * scaling for k, v in base_context.items()}
# Now independently scale the fonts
font_keys = texts_base_context.keys()
font_dict = {k: context_dict[k] * font_scale for k in font_keys}
context_dict.update(font_dict)
# Override these settings with the provided rc dictionary
if rc is not None:
rc = {k: v for k, v in rc.items() if k in _context_keys}
context_dict.update(rc)
# Wrap in a _PlottingContext object so this can be used in a with statement
context_object = _PlottingContext(context_dict)
return context_object
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L335-L433
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98
] | 100 |
[] | 0 | true | 100 | 99 | 5 | 100 | 31 |
def plotting_context(context=None, font_scale=1, rc=None):
if context is None:
context_dict = {k: mpl.rcParams[k] for k in _context_keys}
elif isinstance(context, dict):
context_dict = context
else:
contexts = ["paper", "notebook", "talk", "poster"]
if context not in contexts:
raise ValueError(f"context must be in {', '.join(contexts)}")
# Set up dictionary of default parameters
texts_base_context = {
"font.size": 12,
"axes.labelsize": 12,
"axes.titlesize": 12,
"xtick.labelsize": 11,
"ytick.labelsize": 11,
"legend.fontsize": 11,
"legend.title_fontsize": 12,
}
base_context = {
"axes.linewidth": 1.25,
"grid.linewidth": 1,
"lines.linewidth": 1.5,
"lines.markersize": 6,
"patch.linewidth": 1,
"xtick.major.width": 1.25,
"ytick.major.width": 1.25,
"xtick.minor.width": 1,
"ytick.minor.width": 1,
"xtick.major.size": 6,
"ytick.major.size": 6,
"xtick.minor.size": 4,
"ytick.minor.size": 4,
}
base_context.update(texts_base_context)
# Scale all the parameters by the same factor depending on the context
scaling = dict(paper=.8, notebook=1, talk=1.5, poster=2)[context]
context_dict = {k: v * scaling for k, v in base_context.items()}
# Now independently scale the fonts
font_keys = texts_base_context.keys()
font_dict = {k: context_dict[k] * font_scale for k in font_keys}
context_dict.update(font_dict)
# Override these settings with the provided rc dictionary
if rc is not None:
rc = {k: v for k, v in rc.items() if k in _context_keys}
context_dict.update(rc)
# Wrap in a _PlottingContext object so this can be used in a with statement
context_object = _PlottingContext(context_dict)
return context_object
| 19,017 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
set_context
|
(context=None, font_scale=1, rc=None)
|
Set the parameters that control the scaling of plot elements.
This affects things like the size of the labels, lines, and other elements
of the plot, but not the overall style. This is accomplished using the
matplotlib rcParams system.
The base context is "notebook", and the other contexts are "paper", "talk",
and "poster", which are version of the notebook parameters scaled by different
values. Font elements can also be scaled independently of (but relative to)
the other values.
See :func:`plotting_context` to get the parameter values.
Parameters
----------
context : dict, or one of {paper, notebook, talk, poster}
A dictionary of parameters or the name of a preconfigured set.
font_scale : float, optional
Separate scaling factor to independently scale the size of the
font elements.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
context dictionaries. This only updates parameters that are
considered part of the context definition.
Examples
--------
.. include:: ../docstrings/set_context.rst
|
Set the parameters that control the scaling of plot elements.
| 436 | 470 |
def set_context(context=None, font_scale=1, rc=None):
"""
Set the parameters that control the scaling of plot elements.
This affects things like the size of the labels, lines, and other elements
of the plot, but not the overall style. This is accomplished using the
matplotlib rcParams system.
The base context is "notebook", and the other contexts are "paper", "talk",
and "poster", which are version of the notebook parameters scaled by different
values. Font elements can also be scaled independently of (but relative to)
the other values.
See :func:`plotting_context` to get the parameter values.
Parameters
----------
context : dict, or one of {paper, notebook, talk, poster}
A dictionary of parameters or the name of a preconfigured set.
font_scale : float, optional
Separate scaling factor to independently scale the size of the
font elements.
rc : dict, optional
Parameter mappings to override the values in the preset seaborn
context dictionaries. This only updates parameters that are
considered part of the context definition.
Examples
--------
.. include:: ../docstrings/set_context.rst
"""
context_object = plotting_context(context, font_scale, rc)
mpl.rcParams.update(context_object)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L436-L470
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34
] | 100 |
[] | 0 | true | 100 | 35 | 1 | 100 | 29 |
def set_context(context=None, font_scale=1, rc=None):
context_object = plotting_context(context, font_scale, rc)
mpl.rcParams.update(context_object)
| 19,018 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
set_palette
|
(palette, n_colors=None, desat=None, color_codes=False)
|
Set the matplotlib color cycle using a seaborn palette.
Parameters
----------
palette : seaborn color paltte | matplotlib colormap | hls | husl
Palette definition. Should be something :func:`color_palette` can process.
n_colors : int
Number of colors in the cycle. The default number of colors will depend
on the format of ``palette``, see the :func:`color_palette`
documentation for more information.
desat : float
Proportion to desaturate each color by.
color_codes : bool
If ``True`` and ``palette`` is a seaborn palette, remap the shorthand
color codes (e.g. "b", "g", "r", etc.) to the colors from this palette.
See Also
--------
color_palette : build a color palette or set the color cycle temporarily
in a ``with`` statement.
set_context : set parameters to scale plot elements
set_style : set the default parameters for figure style
|
Set the matplotlib color cycle using a seaborn palette.
| 502 | 534 |
def set_palette(palette, n_colors=None, desat=None, color_codes=False):
"""Set the matplotlib color cycle using a seaborn palette.
Parameters
----------
palette : seaborn color paltte | matplotlib colormap | hls | husl
Palette definition. Should be something :func:`color_palette` can process.
n_colors : int
Number of colors in the cycle. The default number of colors will depend
on the format of ``palette``, see the :func:`color_palette`
documentation for more information.
desat : float
Proportion to desaturate each color by.
color_codes : bool
If ``True`` and ``palette`` is a seaborn palette, remap the shorthand
color codes (e.g. "b", "g", "r", etc.) to the colors from this palette.
See Also
--------
color_palette : build a color palette or set the color cycle temporarily
in a ``with`` statement.
set_context : set parameters to scale plot elements
set_style : set the default parameters for figure style
"""
colors = palettes.color_palette(palette, n_colors, desat)
cyl = cycler('color', colors)
mpl.rcParams['axes.prop_cycle'] = cyl
if color_codes:
try:
palettes.set_color_codes(palette)
except (ValueError, TypeError):
pass
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L502-L534
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32
] | 100 |
[] | 0 | true | 100 | 33 | 3 | 100 | 22 |
def set_palette(palette, n_colors=None, desat=None, color_codes=False):
colors = palettes.color_palette(palette, n_colors, desat)
cyl = cycler('color', colors)
mpl.rcParams['axes.prop_cycle'] = cyl
if color_codes:
try:
palettes.set_color_codes(palette)
except (ValueError, TypeError):
pass
| 19,019 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
_RCAesthetics.__enter__
|
(self)
| 474 | 477 |
def __enter__(self):
rc = mpl.rcParams
self._orig = {k: rc[k] for k in self._keys}
self._set(self)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L474-L477
| 26 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 100 | 4 | 1 | 100 | 0 |
def __enter__(self):
rc = mpl.rcParams
self._orig = {k: rc[k] for k in self._keys}
self._set(self)
| 19,020 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
_RCAesthetics.__exit__
|
(self, exc_type, exc_value, exc_tb)
| 479 | 480 |
def __exit__(self, exc_type, exc_value, exc_tb):
self._set(self._orig)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L479-L480
| 26 |
[
0,
1
] | 100 |
[] | 0 | true | 100 | 2 | 1 | 100 | 0 |
def __exit__(self, exc_type, exc_value, exc_tb):
self._set(self._orig)
| 19,021 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/rcmod.py
|
_RCAesthetics.__call__
|
(self, func)
|
return wrapper
| 482 | 487 |
def __call__(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
with self:
return func(*args, **kwargs)
return wrapper
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/rcmod.py#L482-L487
| 26 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 100 | 6 | 3 | 100 | 0 |
def __call__(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
with self:
return func(*args, **kwargs)
return wrapper
| 19,022 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
ci_to_errsize
|
(cis, heights)
|
return errsize
|
Convert intervals to error arguments relative to plot heights.
Parameters
----------
cis : 2 x n sequence
sequence of confidence interval limits
heights : n sequence
sequence of plot heights
Returns
-------
errsize : 2 x n array
sequence of error size relative to height values in correct
format as argument for plt.bar
|
Convert intervals to error arguments relative to plot heights.
| 25 | 52 |
def ci_to_errsize(cis, heights):
"""Convert intervals to error arguments relative to plot heights.
Parameters
----------
cis : 2 x n sequence
sequence of confidence interval limits
heights : n sequence
sequence of plot heights
Returns
-------
errsize : 2 x n array
sequence of error size relative to height values in correct
format as argument for plt.bar
"""
cis = np.atleast_2d(cis).reshape(2, -1)
heights = np.atleast_1d(heights)
errsize = []
for i, (low, high) in enumerate(np.transpose(cis)):
h = heights[i]
elow = h - low
ehigh = high - h
errsize.append([elow, ehigh])
errsize = np.asarray(errsize).T
return errsize
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L25-L52
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 100 |
[] | 0 | true | 93.220339 | 28 | 2 | 100 | 14 |
def ci_to_errsize(cis, heights):
cis = np.atleast_2d(cis).reshape(2, -1)
heights = np.atleast_1d(heights)
errsize = []
for i, (low, high) in enumerate(np.transpose(cis)):
h = heights[i]
elow = h - low
ehigh = high - h
errsize.append([elow, ehigh])
errsize = np.asarray(errsize).T
return errsize
| 19,023 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_normal_quantile_func
|
(q)
|
return qf(q)
|
Compute the quantile function of the standard normal distribution.
This wrapper exists because we are dropping scipy as a mandatory dependency
but statistics.NormalDist was added to the standard library in 3.8.
|
Compute the quantile function of the standard normal distribution.
| 55 | 75 |
def _normal_quantile_func(q):
"""
Compute the quantile function of the standard normal distribution.
This wrapper exists because we are dropping scipy as a mandatory dependency
but statistics.NormalDist was added to the standard library in 3.8.
"""
try:
from statistics import NormalDist
qf = np.vectorize(NormalDist().inv_cdf)
except ImportError:
try:
from scipy.stats import norm
qf = norm.ppf
except ImportError:
msg = (
"Standard normal quantile functions require either Python>=3.8 or scipy"
)
raise RuntimeError(msg)
return qf(q)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L55-L75
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
20
] | 57.142857 |
[
11,
12,
13,
14,
15,
16,
19
] | 33.333333 | false | 93.220339 | 21 | 3 | 66.666667 | 4 |
def _normal_quantile_func(q):
try:
from statistics import NormalDist
qf = np.vectorize(NormalDist().inv_cdf)
except ImportError:
try:
from scipy.stats import norm
qf = norm.ppf
except ImportError:
msg = (
"Standard normal quantile functions require either Python>=3.8 or scipy"
)
raise RuntimeError(msg)
return qf(q)
| 19,024 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_draw_figure
|
(fig)
|
Force draw of a matplotlib figure, accounting for back-compat.
|
Force draw of a matplotlib figure, accounting for back-compat.
| 78 | 86 |
def _draw_figure(fig):
"""Force draw of a matplotlib figure, accounting for back-compat."""
# See https://github.com/matplotlib/matplotlib/issues/19197 for context
fig.canvas.draw()
if fig.stale:
try:
fig.draw(fig.canvas.get_renderer())
except AttributeError:
pass
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L78-L86
| 26 |
[
0,
1,
2,
3,
4
] | 55.555556 |
[
5,
6,
7,
8
] | 44.444444 | false | 93.220339 | 9 | 3 | 55.555556 | 1 |
def _draw_figure(fig):
# See https://github.com/matplotlib/matplotlib/issues/19197 for context
fig.canvas.draw()
if fig.stale:
try:
fig.draw(fig.canvas.get_renderer())
except AttributeError:
pass
| 19,025 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_default_color
|
(method, hue, color, kws)
|
return color
|
If needed, get a default color by using the matplotlib property cycle.
|
If needed, get a default color by using the matplotlib property cycle.
| 89 | 157 |
def _default_color(method, hue, color, kws):
"""If needed, get a default color by using the matplotlib property cycle."""
if hue is not None:
# This warning is probably user-friendly, but it's currently triggered
# in a FacetGrid context and I don't want to mess with that logic right now
# if color is not None:
# msg = "`color` is ignored when `hue` is assigned."
# warnings.warn(msg)
return None
kws = kws.copy()
kws.pop("label", None)
if color is not None:
return color
elif method.__name__ == "plot":
color = _normalize_kwargs(kws, mpl.lines.Line2D).get("color")
scout, = method([], [], scalex=False, scaley=False, color=color)
color = scout.get_color()
scout.remove()
elif method.__name__ == "scatter":
# Matplotlib will raise if the size of x/y don't match s/c,
# and the latter might be in the kws dict
scout_size = max(
np.atleast_1d(kws.get(key, [])).shape[0]
for key in ["s", "c", "fc", "facecolor", "facecolors"]
)
scout_x = scout_y = np.full(scout_size, np.nan)
scout = method(scout_x, scout_y, **kws)
facecolors = scout.get_facecolors()
if not len(facecolors):
# Handle bug in matplotlib <= 3.2 (I think)
# This will limit the ability to use non color= kwargs to specify
# a color in versions of matplotlib with the bug, but trying to
# work out what the user wanted by re-implementing the broken logic
# of inspecting the kwargs is probably too brittle.
single_color = False
else:
single_color = np.unique(facecolors, axis=0).shape[0] == 1
# Allow the user to specify an array of colors through various kwargs
if "c" not in kws and single_color:
color = to_rgb(facecolors[0])
scout.remove()
elif method.__name__ == "bar":
# bar() needs masked, not empty data, to generate a patch
scout, = method([np.nan], [np.nan], **kws)
color = to_rgb(scout.get_facecolor())
scout.remove()
elif method.__name__ == "fill_between":
kws = _normalize_kwargs(kws, mpl.collections.PolyCollection)
scout = method([], [], **kws)
facecolor = scout.get_facecolor()
color = to_rgb(facecolor[0])
scout.remove()
return color
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L89-L157
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68
] | 98.550725 |
[
43
] | 1.449275 | false | 93.220339 | 69 | 10 | 98.550725 | 1 |
def _default_color(method, hue, color, kws):
if hue is not None:
# This warning is probably user-friendly, but it's currently triggered
# in a FacetGrid context and I don't want to mess with that logic right now
# if color is not None:
# msg = "`color` is ignored when `hue` is assigned."
# warnings.warn(msg)
return None
kws = kws.copy()
kws.pop("label", None)
if color is not None:
return color
elif method.__name__ == "plot":
color = _normalize_kwargs(kws, mpl.lines.Line2D).get("color")
scout, = method([], [], scalex=False, scaley=False, color=color)
color = scout.get_color()
scout.remove()
elif method.__name__ == "scatter":
# Matplotlib will raise if the size of x/y don't match s/c,
# and the latter might be in the kws dict
scout_size = max(
np.atleast_1d(kws.get(key, [])).shape[0]
for key in ["s", "c", "fc", "facecolor", "facecolors"]
)
scout_x = scout_y = np.full(scout_size, np.nan)
scout = method(scout_x, scout_y, **kws)
facecolors = scout.get_facecolors()
if not len(facecolors):
# Handle bug in matplotlib <= 3.2 (I think)
# This will limit the ability to use non color= kwargs to specify
# a color in versions of matplotlib with the bug, but trying to
# work out what the user wanted by re-implementing the broken logic
# of inspecting the kwargs is probably too brittle.
single_color = False
else:
single_color = np.unique(facecolors, axis=0).shape[0] == 1
# Allow the user to specify an array of colors through various kwargs
if "c" not in kws and single_color:
color = to_rgb(facecolors[0])
scout.remove()
elif method.__name__ == "bar":
# bar() needs masked, not empty data, to generate a patch
scout, = method([np.nan], [np.nan], **kws)
color = to_rgb(scout.get_facecolor())
scout.remove()
elif method.__name__ == "fill_between":
kws = _normalize_kwargs(kws, mpl.collections.PolyCollection)
scout = method([], [], **kws)
facecolor = scout.get_facecolor()
color = to_rgb(facecolor[0])
scout.remove()
return color
| 19,026 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
desaturate
|
(color, prop)
|
return new_color
|
Decrease the saturation channel of a color by some percent.
Parameters
----------
color : matplotlib color
hex, rgb-tuple, or html color name
prop : float
saturation channel of color will be multiplied by this value
Returns
-------
new_color : rgb tuple
desaturated color code in RGB tuple representation
|
Decrease the saturation channel of a color by some percent.
| 160 | 192 |
def desaturate(color, prop):
"""Decrease the saturation channel of a color by some percent.
Parameters
----------
color : matplotlib color
hex, rgb-tuple, or html color name
prop : float
saturation channel of color will be multiplied by this value
Returns
-------
new_color : rgb tuple
desaturated color code in RGB tuple representation
"""
# Check inputs
if not 0 <= prop <= 1:
raise ValueError("prop must be between 0 and 1")
# Get rgb tuple rep
rgb = to_rgb(color)
# Convert to hls
h, l, s = colorsys.rgb_to_hls(*rgb)
# Desaturate the saturation channel
s *= prop
# Convert back to rgb
new_color = colorsys.hls_to_rgb(h, l, s)
return new_color
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L160-L192
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32
] | 100 |
[] | 0 | true | 93.220339 | 33 | 2 | 100 | 13 |
def desaturate(color, prop):
# Check inputs
if not 0 <= prop <= 1:
raise ValueError("prop must be between 0 and 1")
# Get rgb tuple rep
rgb = to_rgb(color)
# Convert to hls
h, l, s = colorsys.rgb_to_hls(*rgb)
# Desaturate the saturation channel
s *= prop
# Convert back to rgb
new_color = colorsys.hls_to_rgb(h, l, s)
return new_color
| 19,027 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
saturate
|
(color)
|
return set_hls_values(color, s=1)
|
Return a fully saturated color with the same hue.
Parameters
----------
color : matplotlib color
hex, rgb-tuple, or html color name
Returns
-------
new_color : rgb tuple
saturated color code in RGB tuple representation
|
Return a fully saturated color with the same hue.
| 195 | 209 |
def saturate(color):
"""Return a fully saturated color with the same hue.
Parameters
----------
color : matplotlib color
hex, rgb-tuple, or html color name
Returns
-------
new_color : rgb tuple
saturated color code in RGB tuple representation
"""
return set_hls_values(color, s=1)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L195-L209
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 93.220339 | 15 | 1 | 100 | 11 |
def saturate(color):
return set_hls_values(color, s=1)
| 19,028 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
set_hls_values
|
(color, h=None, l=None, s=None)
|
return rgb
|
Independently manipulate the h, l, or s channels of a color.
Parameters
----------
color : matplotlib color
hex, rgb-tuple, or html color name
h, l, s : floats between 0 and 1, or None
new values for each channel in hls space
Returns
-------
new_color : rgb tuple
new color code in RGB tuple representation
|
Independently manipulate the h, l, or s channels of a color.
| 212 | 236 |
def set_hls_values(color, h=None, l=None, s=None): # noqa
"""Independently manipulate the h, l, or s channels of a color.
Parameters
----------
color : matplotlib color
hex, rgb-tuple, or html color name
h, l, s : floats between 0 and 1, or None
new values for each channel in hls space
Returns
-------
new_color : rgb tuple
new color code in RGB tuple representation
"""
# Get an RGB tuple representation
rgb = to_rgb(color)
vals = list(colorsys.rgb_to_hls(*rgb))
for i, val in enumerate([h, l, s]):
if val is not None:
vals[i] = val
rgb = colorsys.hls_to_rgb(*vals)
return rgb
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L212-L236
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 100 |
[] | 0 | true | 93.220339 | 25 | 3 | 100 | 13 |
def set_hls_values(color, h=None, l=None, s=None): # noqa
# Get an RGB tuple representation
rgb = to_rgb(color)
vals = list(colorsys.rgb_to_hls(*rgb))
for i, val in enumerate([h, l, s]):
if val is not None:
vals[i] = val
rgb = colorsys.hls_to_rgb(*vals)
return rgb
| 19,029 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
axlabel
|
(xlabel, ylabel, **kwargs)
|
Grab current axis and label it.
DEPRECATED: will be removed in a future version.
|
Grab current axis and label it.
| 239 | 249 |
def axlabel(xlabel, ylabel, **kwargs):
"""Grab current axis and label it.
DEPRECATED: will be removed in a future version.
"""
msg = "This function is deprecated and will be removed in a future version"
warnings.warn(msg, FutureWarning)
ax = plt.gca()
ax.set_xlabel(xlabel, **kwargs)
ax.set_ylabel(ylabel, **kwargs)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L239-L249
| 26 |
[
0,
1,
2,
3,
4,
5
] | 54.545455 |
[
6,
7,
8,
9,
10
] | 45.454545 | false | 93.220339 | 11 | 1 | 54.545455 | 3 |
def axlabel(xlabel, ylabel, **kwargs):
msg = "This function is deprecated and will be removed in a future version"
warnings.warn(msg, FutureWarning)
ax = plt.gca()
ax.set_xlabel(xlabel, **kwargs)
ax.set_ylabel(ylabel, **kwargs)
| 19,030 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
remove_na
|
(vector)
|
return vector[pd.notnull(vector)]
|
Helper method for removing null values from data vectors.
Parameters
----------
vector : vector object
Must implement boolean masking with [] subscript syntax.
Returns
-------
clean_clean : same type as ``vector``
Vector of data with null values removed. May be a copy or a view.
|
Helper method for removing null values from data vectors.
| 252 | 266 |
def remove_na(vector):
"""Helper method for removing null values from data vectors.
Parameters
----------
vector : vector object
Must implement boolean masking with [] subscript syntax.
Returns
-------
clean_clean : same type as ``vector``
Vector of data with null values removed. May be a copy or a view.
"""
return vector[pd.notnull(vector)]
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L252-L266
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 93.220339 | 15 | 1 | 100 | 11 |
def remove_na(vector):
return vector[pd.notnull(vector)]
| 19,031 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
get_color_cycle
|
()
|
return cycler.by_key()['color'] if 'color' in cycler.keys else [".15"]
|
Return the list of colors in the current matplotlib color cycle
Parameters
----------
None
Returns
-------
colors : list
List of matplotlib colors in the current cycle, or dark gray if
the current color cycle is empty.
|
Return the list of colors in the current matplotlib color cycle
| 269 | 283 |
def get_color_cycle():
"""Return the list of colors in the current matplotlib color cycle
Parameters
----------
None
Returns
-------
colors : list
List of matplotlib colors in the current cycle, or dark gray if
the current color cycle is empty.
"""
cycler = mpl.rcParams['axes.prop_cycle']
return cycler.by_key()['color'] if 'color' in cycler.keys else [".15"]
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L269-L283
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 93.220339 | 15 | 1 | 100 | 11 |
def get_color_cycle():
cycler = mpl.rcParams['axes.prop_cycle']
return cycler.by_key()['color'] if 'color' in cycler.keys else [".15"]
| 19,032 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
despine
|
(fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False)
|
Remove the top and right spines from plot(s).
fig : matplotlib figure, optional
Figure to despine all axes of, defaults to the current figure.
ax : matplotlib axes, optional
Specific axes object to despine. Ignored if fig is provided.
top, right, left, bottom : boolean, optional
If True, remove that spine.
offset : int or dict, optional
Absolute distance, in points, spines should be moved away
from the axes (negative values move spines inward). A single value
applies to all spines; a dict can be used to set offset values per
side.
trim : bool, optional
If True, limit spines to the smallest and largest major tick
on each non-despined axis.
Returns
-------
None
|
Remove the top and right spines from plot(s).
| 286 | 385 |
def despine(fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False):
"""Remove the top and right spines from plot(s).
fig : matplotlib figure, optional
Figure to despine all axes of, defaults to the current figure.
ax : matplotlib axes, optional
Specific axes object to despine. Ignored if fig is provided.
top, right, left, bottom : boolean, optional
If True, remove that spine.
offset : int or dict, optional
Absolute distance, in points, spines should be moved away
from the axes (negative values move spines inward). A single value
applies to all spines; a dict can be used to set offset values per
side.
trim : bool, optional
If True, limit spines to the smallest and largest major tick
on each non-despined axis.
Returns
-------
None
"""
# Get references to the axes we want
if fig is None and ax is None:
axes = plt.gcf().axes
elif fig is not None:
axes = fig.axes
elif ax is not None:
axes = [ax]
for ax_i in axes:
for side in ["top", "right", "left", "bottom"]:
# Toggle the spine objects
is_visible = not locals()[side]
ax_i.spines[side].set_visible(is_visible)
if offset is not None and is_visible:
try:
val = offset.get(side, 0)
except AttributeError:
val = offset
ax_i.spines[side].set_position(('outward', val))
# Potentially move the ticks
if left and not right:
maj_on = any(
t.tick1line.get_visible()
for t in ax_i.yaxis.majorTicks
)
min_on = any(
t.tick1line.get_visible()
for t in ax_i.yaxis.minorTicks
)
ax_i.yaxis.set_ticks_position("right")
for t in ax_i.yaxis.majorTicks:
t.tick2line.set_visible(maj_on)
for t in ax_i.yaxis.minorTicks:
t.tick2line.set_visible(min_on)
if bottom and not top:
maj_on = any(
t.tick1line.get_visible()
for t in ax_i.xaxis.majorTicks
)
min_on = any(
t.tick1line.get_visible()
for t in ax_i.xaxis.minorTicks
)
ax_i.xaxis.set_ticks_position("top")
for t in ax_i.xaxis.majorTicks:
t.tick2line.set_visible(maj_on)
for t in ax_i.xaxis.minorTicks:
t.tick2line.set_visible(min_on)
if trim:
# clip off the parts of the spines that extend past major ticks
xticks = np.asarray(ax_i.get_xticks())
if xticks.size:
firsttick = np.compress(xticks >= min(ax_i.get_xlim()),
xticks)[0]
lasttick = np.compress(xticks <= max(ax_i.get_xlim()),
xticks)[-1]
ax_i.spines['bottom'].set_bounds(firsttick, lasttick)
ax_i.spines['top'].set_bounds(firsttick, lasttick)
newticks = xticks.compress(xticks <= lasttick)
newticks = newticks.compress(newticks >= firsttick)
ax_i.set_xticks(newticks)
yticks = np.asarray(ax_i.get_yticks())
if yticks.size:
firsttick = np.compress(yticks >= min(ax_i.get_ylim()),
yticks)[0]
lasttick = np.compress(yticks <= max(ax_i.get_ylim()),
yticks)[-1]
ax_i.spines['left'].set_bounds(firsttick, lasttick)
ax_i.spines['right'].set_bounds(firsttick, lasttick)
newticks = yticks.compress(yticks <= lasttick)
newticks = newticks.compress(newticks >= firsttick)
ax_i.set_yticks(newticks)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L286-L385
| 26 |
[
0,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
50,
54,
55,
56,
57,
58,
59,
60,
61,
65,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
81,
83,
84,
85,
86,
87,
88,
89,
90,
91,
93,
95,
96,
97,
98,
99
] | 61 |
[] | 0 | false | 93.220339 | 100 | 21 | 100 | 20 |
def despine(fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False):
# Get references to the axes we want
if fig is None and ax is None:
axes = plt.gcf().axes
elif fig is not None:
axes = fig.axes
elif ax is not None:
axes = [ax]
for ax_i in axes:
for side in ["top", "right", "left", "bottom"]:
# Toggle the spine objects
is_visible = not locals()[side]
ax_i.spines[side].set_visible(is_visible)
if offset is not None and is_visible:
try:
val = offset.get(side, 0)
except AttributeError:
val = offset
ax_i.spines[side].set_position(('outward', val))
# Potentially move the ticks
if left and not right:
maj_on = any(
t.tick1line.get_visible()
for t in ax_i.yaxis.majorTicks
)
min_on = any(
t.tick1line.get_visible()
for t in ax_i.yaxis.minorTicks
)
ax_i.yaxis.set_ticks_position("right")
for t in ax_i.yaxis.majorTicks:
t.tick2line.set_visible(maj_on)
for t in ax_i.yaxis.minorTicks:
t.tick2line.set_visible(min_on)
if bottom and not top:
maj_on = any(
t.tick1line.get_visible()
for t in ax_i.xaxis.majorTicks
)
min_on = any(
t.tick1line.get_visible()
for t in ax_i.xaxis.minorTicks
)
ax_i.xaxis.set_ticks_position("top")
for t in ax_i.xaxis.majorTicks:
t.tick2line.set_visible(maj_on)
for t in ax_i.xaxis.minorTicks:
t.tick2line.set_visible(min_on)
if trim:
# clip off the parts of the spines that extend past major ticks
xticks = np.asarray(ax_i.get_xticks())
if xticks.size:
firsttick = np.compress(xticks >= min(ax_i.get_xlim()),
xticks)[0]
lasttick = np.compress(xticks <= max(ax_i.get_xlim()),
xticks)[-1]
ax_i.spines['bottom'].set_bounds(firsttick, lasttick)
ax_i.spines['top'].set_bounds(firsttick, lasttick)
newticks = xticks.compress(xticks <= lasttick)
newticks = newticks.compress(newticks >= firsttick)
ax_i.set_xticks(newticks)
yticks = np.asarray(ax_i.get_yticks())
if yticks.size:
firsttick = np.compress(yticks >= min(ax_i.get_ylim()),
yticks)[0]
lasttick = np.compress(yticks <= max(ax_i.get_ylim()),
yticks)[-1]
ax_i.spines['left'].set_bounds(firsttick, lasttick)
ax_i.spines['right'].set_bounds(firsttick, lasttick)
newticks = yticks.compress(yticks <= lasttick)
newticks = newticks.compress(newticks >= firsttick)
ax_i.set_yticks(newticks)
| 19,033 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
move_legend
|
(obj, loc, **kwargs)
|
Recreate a plot's legend at a new location.
The name is a slight misnomer. Matplotlib legends do not expose public
control over their position parameters. So this function creates a new legend,
copying over the data from the original object, which is then removed.
Parameters
----------
obj : the object with the plot
This argument can be either a seaborn or matplotlib object:
- :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid`
- :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure`
loc : str or int
Location argument, as in :meth:`matplotlib.axes.Axes.legend`.
kwargs
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`.
Examples
--------
.. include:: ../docstrings/move_legend.rst
|
Recreate a plot's legend at a new location.
| 388 | 475 |
def move_legend(obj, loc, **kwargs):
"""
Recreate a plot's legend at a new location.
The name is a slight misnomer. Matplotlib legends do not expose public
control over their position parameters. So this function creates a new legend,
copying over the data from the original object, which is then removed.
Parameters
----------
obj : the object with the plot
This argument can be either a seaborn or matplotlib object:
- :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid`
- :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure`
loc : str or int
Location argument, as in :meth:`matplotlib.axes.Axes.legend`.
kwargs
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`.
Examples
--------
.. include:: ../docstrings/move_legend.rst
"""
# This is a somewhat hackish solution that will hopefully be obviated by
# upstream improvements to matplotlib legends that make them easier to
# modify after creation.
from seaborn.axisgrid import Grid # Avoid circular import
# Locate the legend object and a method to recreate the legend
if isinstance(obj, Grid):
old_legend = obj.legend
legend_func = obj.figure.legend
elif isinstance(obj, mpl.axes.Axes):
old_legend = obj.legend_
legend_func = obj.legend
elif isinstance(obj, mpl.figure.Figure):
if obj.legends:
old_legend = obj.legends[-1]
else:
old_legend = None
legend_func = obj.legend
else:
err = "`obj` must be a seaborn Grid or matplotlib Axes or Figure instance."
raise TypeError(err)
if old_legend is None:
err = f"{obj} has no legend attached."
raise ValueError(err)
# Extract the components of the legend we need to reuse
handles = old_legend.legendHandles
labels = [t.get_text() for t in old_legend.get_texts()]
# Extract legend properties that can be passed to the recreation method
# (Vexingly, these don't all round-trip)
legend_kws = inspect.signature(mpl.legend.Legend).parameters
props = {k: v for k, v in old_legend.properties().items() if k in legend_kws}
# Delegate default bbox_to_anchor rules to matplotlib
props.pop("bbox_to_anchor")
# Try to propagate the existing title and font properties; respect new ones too
title = props.pop("title")
if "title" in kwargs:
title.set_text(kwargs.pop("title"))
title_kwargs = {k: v for k, v in kwargs.items() if k.startswith("title_")}
for key, val in title_kwargs.items():
title.set(**{key[6:]: val})
kwargs.pop(key)
# Try to respect the frame visibility
kwargs.setdefault("frameon", old_legend.legendPatch.get_visible())
# Remove the old legend and create the new one
props.update(kwargs)
old_legend.remove()
new_legend = legend_func(handles, labels, loc=loc, **props)
new_legend.set_title(title.get_text(), title.get_fontproperties())
# Let the Grid object continue to track the correct legend object
if isinstance(obj, Grid):
obj._legend = new_legend
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L388-L475
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87
] | 100 |
[] | 0 | true | 93.220339 | 88 | 10 | 100 | 24 |
def move_legend(obj, loc, **kwargs):
# This is a somewhat hackish solution that will hopefully be obviated by
# upstream improvements to matplotlib legends that make them easier to
# modify after creation.
from seaborn.axisgrid import Grid # Avoid circular import
# Locate the legend object and a method to recreate the legend
if isinstance(obj, Grid):
old_legend = obj.legend
legend_func = obj.figure.legend
elif isinstance(obj, mpl.axes.Axes):
old_legend = obj.legend_
legend_func = obj.legend
elif isinstance(obj, mpl.figure.Figure):
if obj.legends:
old_legend = obj.legends[-1]
else:
old_legend = None
legend_func = obj.legend
else:
err = "`obj` must be a seaborn Grid or matplotlib Axes or Figure instance."
raise TypeError(err)
if old_legend is None:
err = f"{obj} has no legend attached."
raise ValueError(err)
# Extract the components of the legend we need to reuse
handles = old_legend.legendHandles
labels = [t.get_text() for t in old_legend.get_texts()]
# Extract legend properties that can be passed to the recreation method
# (Vexingly, these don't all round-trip)
legend_kws = inspect.signature(mpl.legend.Legend).parameters
props = {k: v for k, v in old_legend.properties().items() if k in legend_kws}
# Delegate default bbox_to_anchor rules to matplotlib
props.pop("bbox_to_anchor")
# Try to propagate the existing title and font properties; respect new ones too
title = props.pop("title")
if "title" in kwargs:
title.set_text(kwargs.pop("title"))
title_kwargs = {k: v for k, v in kwargs.items() if k.startswith("title_")}
for key, val in title_kwargs.items():
title.set(**{key[6:]: val})
kwargs.pop(key)
# Try to respect the frame visibility
kwargs.setdefault("frameon", old_legend.legendPatch.get_visible())
# Remove the old legend and create the new one
props.update(kwargs)
old_legend.remove()
new_legend = legend_func(handles, labels, loc=loc, **props)
new_legend.set_title(title.get_text(), title.get_fontproperties())
# Let the Grid object continue to track the correct legend object
if isinstance(obj, Grid):
obj._legend = new_legend
| 19,034 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_kde_support
|
(data, bw, gridsize, cut, clip)
|
return support
|
Establish support for a kernel density estimate.
|
Establish support for a kernel density estimate.
| 478 | 484 |
def _kde_support(data, bw, gridsize, cut, clip):
"""Establish support for a kernel density estimate."""
support_min = max(data.min() - bw * cut, clip[0])
support_max = min(data.max() + bw * cut, clip[1])
support = np.linspace(support_min, support_max, gridsize)
return support
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L478-L484
| 26 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 93.220339 | 7 | 1 | 100 | 1 |
def _kde_support(data, bw, gridsize, cut, clip):
support_min = max(data.min() - bw * cut, clip[0])
support_max = min(data.max() + bw * cut, clip[1])
support = np.linspace(support_min, support_max, gridsize)
return support
| 19,035 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
ci
|
(a, which=95, axis=None)
|
return np.nanpercentile(a, p, axis)
|
Return a percentile range from an array of values.
|
Return a percentile range from an array of values.
| 487 | 490 |
def ci(a, which=95, axis=None):
"""Return a percentile range from an array of values."""
p = 50 - which / 2, 50 + which / 2
return np.nanpercentile(a, p, axis)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L487-L490
| 26 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 93.220339 | 4 | 1 | 100 | 1 |
def ci(a, which=95, axis=None):
p = 50 - which / 2, 50 + which / 2
return np.nanpercentile(a, p, axis)
| 19,036 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
get_dataset_names
|
()
|
return datasets
|
Report available example datasets, useful for reporting issues.
Requires an internet connection.
|
Report available example datasets, useful for reporting issues.
| 493 | 505 |
def get_dataset_names():
"""Report available example datasets, useful for reporting issues.
Requires an internet connection.
"""
url = "https://github.com/mwaskom/seaborn-data"
with urlopen(url) as resp:
html = resp.read()
pat = r"/mwaskom/seaborn-data/blob/master/(\w*).csv"
datasets = re.findall(pat, html.decode())
return datasets
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L493-L505
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 93.220339 | 13 | 2 | 100 | 3 |
def get_dataset_names():
url = "https://github.com/mwaskom/seaborn-data"
with urlopen(url) as resp:
html = resp.read()
pat = r"/mwaskom/seaborn-data/blob/master/(\w*).csv"
datasets = re.findall(pat, html.decode())
return datasets
| 19,037 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
get_data_home
|
(data_home=None)
|
return data_home
|
Return a path to the cache directory for example datasets.
This directory is used by :func:`load_dataset`.
If the ``data_home`` argument is not provided, it will use a directory
specified by the `SEABORN_DATA` environment variable (if it exists)
or otherwise default to an OS-appropriate user cache location.
|
Return a path to the cache directory for example datasets.
| 508 | 523 |
def get_data_home(data_home=None):
"""Return a path to the cache directory for example datasets.
This directory is used by :func:`load_dataset`.
If the ``data_home`` argument is not provided, it will use a directory
specified by the `SEABORN_DATA` environment variable (if it exists)
or otherwise default to an OS-appropriate user cache location.
"""
if data_home is None:
data_home = os.environ.get("SEABORN_DATA", user_cache_dir("seaborn"))
data_home = os.path.expanduser(data_home)
if not os.path.exists(data_home):
os.makedirs(data_home)
return data_home
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L508-L523
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
15
] | 93.75 |
[
14
] | 6.25 | false | 93.220339 | 16 | 3 | 93.75 | 7 |
def get_data_home(data_home=None):
if data_home is None:
data_home = os.environ.get("SEABORN_DATA", user_cache_dir("seaborn"))
data_home = os.path.expanduser(data_home)
if not os.path.exists(data_home):
os.makedirs(data_home)
return data_home
| 19,038 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
load_dataset
|
(name, cache=True, data_home=None, **kws)
|
return df
|
Load an example dataset from the online repository (requires internet).
This function provides quick access to a small number of example datasets
that are useful for documenting seaborn or generating reproducible examples
for bug reports. It is not necessary for normal usage.
Note that some of the datasets have a small amount of preprocessing applied
to define a proper ordering for categorical variables.
Use :func:`get_dataset_names` to see a list of available datasets.
Parameters
----------
name : str
Name of the dataset (``{name}.csv`` on
https://github.com/mwaskom/seaborn-data).
cache : boolean, optional
If True, try to load from the local cache first, and save to the cache
if a download is required.
data_home : string, optional
The directory in which to cache data; see :func:`get_data_home`.
kws : keys and values, optional
Additional keyword arguments are passed to passed through to
:func:`pandas.read_csv`.
Returns
-------
df : :class:`pandas.DataFrame`
Tabular data, possibly with some preprocessing applied.
|
Load an example dataset from the online repository (requires internet).
| 526 | 631 |
def load_dataset(name, cache=True, data_home=None, **kws):
"""Load an example dataset from the online repository (requires internet).
This function provides quick access to a small number of example datasets
that are useful for documenting seaborn or generating reproducible examples
for bug reports. It is not necessary for normal usage.
Note that some of the datasets have a small amount of preprocessing applied
to define a proper ordering for categorical variables.
Use :func:`get_dataset_names` to see a list of available datasets.
Parameters
----------
name : str
Name of the dataset (``{name}.csv`` on
https://github.com/mwaskom/seaborn-data).
cache : boolean, optional
If True, try to load from the local cache first, and save to the cache
if a download is required.
data_home : string, optional
The directory in which to cache data; see :func:`get_data_home`.
kws : keys and values, optional
Additional keyword arguments are passed to passed through to
:func:`pandas.read_csv`.
Returns
-------
df : :class:`pandas.DataFrame`
Tabular data, possibly with some preprocessing applied.
"""
# A common beginner mistake is to assume that one's personal data needs
# to be passed through this function to be usable with seaborn.
# Let's provide a more helpful error than you would otherwise get.
if isinstance(name, pd.DataFrame):
err = (
"This function accepts only strings (the name of an example dataset). "
"You passed a pandas DataFrame. If you have your own dataset, "
"it is not necessary to use this function before plotting."
)
raise TypeError(err)
url = f"https://raw.githubusercontent.com/mwaskom/seaborn-data/master/{name}.csv"
if cache:
cache_path = os.path.join(get_data_home(data_home), os.path.basename(url))
if not os.path.exists(cache_path):
if name not in get_dataset_names():
raise ValueError(f"'{name}' is not one of the example datasets.")
urlretrieve(url, cache_path)
full_path = cache_path
else:
full_path = url
df = pd.read_csv(full_path, **kws)
if df.iloc[-1].isnull().all():
df = df.iloc[:-1]
# Set some columns as a categorical type with ordered levels
if name == "tips":
df["day"] = pd.Categorical(df["day"], ["Thur", "Fri", "Sat", "Sun"])
df["sex"] = pd.Categorical(df["sex"], ["Male", "Female"])
df["time"] = pd.Categorical(df["time"], ["Lunch", "Dinner"])
df["smoker"] = pd.Categorical(df["smoker"], ["Yes", "No"])
elif name == "flights":
months = df["month"].str[:3]
df["month"] = pd.Categorical(months, months.unique())
elif name == "exercise":
df["time"] = pd.Categorical(df["time"], ["1 min", "15 min", "30 min"])
df["kind"] = pd.Categorical(df["kind"], ["rest", "walking", "running"])
df["diet"] = pd.Categorical(df["diet"], ["no fat", "low fat"])
elif name == "titanic":
df["class"] = pd.Categorical(df["class"], ["First", "Second", "Third"])
df["deck"] = pd.Categorical(df["deck"], list("ABCDEFG"))
elif name == "penguins":
df["sex"] = df["sex"].str.title()
elif name == "diamonds":
df["color"] = pd.Categorical(
df["color"], ["D", "E", "F", "G", "H", "I", "J"],
)
df["clarity"] = pd.Categorical(
df["clarity"], ["IF", "VVS1", "VVS2", "VS1", "VS2", "SI1", "SI2", "I1"],
)
df["cut"] = pd.Categorical(
df["cut"], ["Ideal", "Premium", "Very Good", "Good", "Fair"],
)
elif name == "taxis":
df["pickup"] = pd.to_datetime(df["pickup"])
df["dropoff"] = pd.to_datetime(df["dropoff"])
elif name == "seaice":
df["Date"] = pd.to_datetime(df["Date"])
elif name == "dowjones":
df["Date"] = pd.to_datetime(df["Date"])
return df
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L526-L631
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105
] | 97.169811 |
[
58
] | 0.943396 | false | 93.220339 | 106 | 15 | 99.056604 | 29 |
def load_dataset(name, cache=True, data_home=None, **kws):
# A common beginner mistake is to assume that one's personal data needs
# to be passed through this function to be usable with seaborn.
# Let's provide a more helpful error than you would otherwise get.
if isinstance(name, pd.DataFrame):
err = (
"This function accepts only strings (the name of an example dataset). "
"You passed a pandas DataFrame. If you have your own dataset, "
"it is not necessary to use this function before plotting."
)
raise TypeError(err)
url = f"https://raw.githubusercontent.com/mwaskom/seaborn-data/master/{name}.csv"
if cache:
cache_path = os.path.join(get_data_home(data_home), os.path.basename(url))
if not os.path.exists(cache_path):
if name not in get_dataset_names():
raise ValueError(f"'{name}' is not one of the example datasets.")
urlretrieve(url, cache_path)
full_path = cache_path
else:
full_path = url
df = pd.read_csv(full_path, **kws)
if df.iloc[-1].isnull().all():
df = df.iloc[:-1]
# Set some columns as a categorical type with ordered levels
if name == "tips":
df["day"] = pd.Categorical(df["day"], ["Thur", "Fri", "Sat", "Sun"])
df["sex"] = pd.Categorical(df["sex"], ["Male", "Female"])
df["time"] = pd.Categorical(df["time"], ["Lunch", "Dinner"])
df["smoker"] = pd.Categorical(df["smoker"], ["Yes", "No"])
elif name == "flights":
months = df["month"].str[:3]
df["month"] = pd.Categorical(months, months.unique())
elif name == "exercise":
df["time"] = pd.Categorical(df["time"], ["1 min", "15 min", "30 min"])
df["kind"] = pd.Categorical(df["kind"], ["rest", "walking", "running"])
df["diet"] = pd.Categorical(df["diet"], ["no fat", "low fat"])
elif name == "titanic":
df["class"] = pd.Categorical(df["class"], ["First", "Second", "Third"])
df["deck"] = pd.Categorical(df["deck"], list("ABCDEFG"))
elif name == "penguins":
df["sex"] = df["sex"].str.title()
elif name == "diamonds":
df["color"] = pd.Categorical(
df["color"], ["D", "E", "F", "G", "H", "I", "J"],
)
df["clarity"] = pd.Categorical(
df["clarity"], ["IF", "VVS1", "VVS2", "VS1", "VS2", "SI1", "SI2", "I1"],
)
df["cut"] = pd.Categorical(
df["cut"], ["Ideal", "Premium", "Very Good", "Good", "Fair"],
)
elif name == "taxis":
df["pickup"] = pd.to_datetime(df["pickup"])
df["dropoff"] = pd.to_datetime(df["dropoff"])
elif name == "seaice":
df["Date"] = pd.to_datetime(df["Date"])
elif name == "dowjones":
df["Date"] = pd.to_datetime(df["Date"])
return df
| 19,039 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
axis_ticklabels_overlap
|
(labels)
|
Return a boolean for whether the list of ticklabels have overlaps.
Parameters
----------
labels : list of matplotlib ticklabels
Returns
-------
overlap : boolean
True if any of the labels overlap.
|
Return a boolean for whether the list of ticklabels have overlaps.
| 634 | 655 |
def axis_ticklabels_overlap(labels):
"""Return a boolean for whether the list of ticklabels have overlaps.
Parameters
----------
labels : list of matplotlib ticklabels
Returns
-------
overlap : boolean
True if any of the labels overlap.
"""
if not labels:
return False
try:
bboxes = [l.get_window_extent() for l in labels]
overlaps = [b.count_overlaps(bboxes) for b in bboxes]
return max(overlaps) > 1
except RuntimeError:
# Issue on macos backend raises an error in the above code
return False
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L634-L655
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 86.363636 |
[
19,
21
] | 9.090909 | false | 93.220339 | 22 | 5 | 90.909091 | 10 |
def axis_ticklabels_overlap(labels):
if not labels:
return False
try:
bboxes = [l.get_window_extent() for l in labels]
overlaps = [b.count_overlaps(bboxes) for b in bboxes]
return max(overlaps) > 1
except RuntimeError:
# Issue on macos backend raises an error in the above code
return False
| 19,040 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
axes_ticklabels_overlap
|
(ax)
|
return (axis_ticklabels_overlap(ax.get_xticklabels()),
axis_ticklabels_overlap(ax.get_yticklabels()))
|
Return booleans for whether the x and y ticklabels on an Axes overlap.
Parameters
----------
ax : matplotlib Axes
Returns
-------
x_overlap, y_overlap : booleans
True when the labels on that axis overlap.
|
Return booleans for whether the x and y ticklabels on an Axes overlap.
| 658 | 672 |
def axes_ticklabels_overlap(ax):
"""Return booleans for whether the x and y ticklabels on an Axes overlap.
Parameters
----------
ax : matplotlib Axes
Returns
-------
x_overlap, y_overlap : booleans
True when the labels on that axis overlap.
"""
return (axis_ticklabels_overlap(ax.get_xticklabels()),
axis_ticklabels_overlap(ax.get_yticklabels()))
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L658-L672
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 93.220339 | 15 | 1 | 100 | 10 |
def axes_ticklabels_overlap(ax):
return (axis_ticklabels_overlap(ax.get_xticklabels()),
axis_ticklabels_overlap(ax.get_yticklabels()))
| 19,041 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
locator_to_legend_entries
|
(locator, limits, dtype)
|
return raw_levels, formatted_levels
|
Return levels and formatted levels for brief numeric legends.
|
Return levels and formatted levels for brief numeric legends.
| 675 | 702 |
def locator_to_legend_entries(locator, limits, dtype):
"""Return levels and formatted levels for brief numeric legends."""
raw_levels = locator.tick_values(*limits).astype(dtype)
# The locator can return ticks outside the limits, clip them here
raw_levels = [l for l in raw_levels if l >= limits[0] and l <= limits[1]]
class dummy_axis:
def get_view_interval(self):
return limits
if isinstance(locator, mpl.ticker.LogLocator):
formatter = mpl.ticker.LogFormatter()
else:
formatter = mpl.ticker.ScalarFormatter()
# Avoid having an offset/scientific notation which we don't currently
# have any way of representing in the legend
formatter.set_useOffset(False)
formatter.set_scientific(False)
formatter.axis = dummy_axis()
# TODO: The following two lines should be replaced
# once pinned matplotlib>=3.1.0 with:
# formatted_levels = formatter.format_ticks(raw_levels)
formatter.set_locs(raw_levels)
formatted_levels = [formatter(x) for x in raw_levels]
return raw_levels, formatted_levels
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L675-L702
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27
] | 100 |
[] | 0 | true | 93.220339 | 28 | 6 | 100 | 1 |
def locator_to_legend_entries(locator, limits, dtype):
raw_levels = locator.tick_values(*limits).astype(dtype)
# The locator can return ticks outside the limits, clip them here
raw_levels = [l for l in raw_levels if l >= limits[0] and l <= limits[1]]
class dummy_axis:
def get_view_interval(self):
return limits
if isinstance(locator, mpl.ticker.LogLocator):
formatter = mpl.ticker.LogFormatter()
else:
formatter = mpl.ticker.ScalarFormatter()
# Avoid having an offset/scientific notation which we don't currently
# have any way of representing in the legend
formatter.set_useOffset(False)
formatter.set_scientific(False)
formatter.axis = dummy_axis()
# TODO: The following two lines should be replaced
# once pinned matplotlib>=3.1.0 with:
# formatted_levels = formatter.format_ticks(raw_levels)
formatter.set_locs(raw_levels)
formatted_levels = [formatter(x) for x in raw_levels]
return raw_levels, formatted_levels
| 19,042 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
relative_luminance
|
(color)
|
Calculate the relative luminance of a color according to W3C standards
Parameters
----------
color : matplotlib color or sequence of matplotlib colors
Hex code, rgb-tuple, or html color name.
Returns
-------
luminance : float(s) between 0 and 1
|
Calculate the relative luminance of a color according to W3C standards
| 705 | 724 |
def relative_luminance(color):
"""Calculate the relative luminance of a color according to W3C standards
Parameters
----------
color : matplotlib color or sequence of matplotlib colors
Hex code, rgb-tuple, or html color name.
Returns
-------
luminance : float(s) between 0 and 1
"""
rgb = mpl.colors.colorConverter.to_rgba_array(color)[:, :3]
rgb = np.where(rgb <= .03928, rgb / 12.92, ((rgb + .055) / 1.055) ** 2.4)
lum = rgb.dot([.2126, .7152, .0722])
try:
return lum.item()
except ValueError:
return lum
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L705-L724
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
] | 100 |
[] | 0 | true | 93.220339 | 20 | 2 | 100 | 10 |
def relative_luminance(color):
rgb = mpl.colors.colorConverter.to_rgba_array(color)[:, :3]
rgb = np.where(rgb <= .03928, rgb / 12.92, ((rgb + .055) / 1.055) ** 2.4)
lum = rgb.dot([.2126, .7152, .0722])
try:
return lum.item()
except ValueError:
return lum
| 19,043 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
to_utf8
|
(obj)
|
Return a string representing a Python object.
Strings (i.e. type ``str``) are returned unchanged.
Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings.
For other objects, the method ``__str__()`` is called, and the result is
returned as a string.
Parameters
----------
obj : object
Any Python object
Returns
-------
s : str
UTF-8-decoded string representation of ``obj``
|
Return a string representing a Python object.
| 727 | 753 |
def to_utf8(obj):
"""Return a string representing a Python object.
Strings (i.e. type ``str``) are returned unchanged.
Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings.
For other objects, the method ``__str__()`` is called, and the result is
returned as a string.
Parameters
----------
obj : object
Any Python object
Returns
-------
s : str
UTF-8-decoded string representation of ``obj``
"""
if isinstance(obj, str):
return obj
try:
return obj.decode(encoding="utf-8")
except AttributeError: # obj is not bytes-like
return str(obj)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L727-L753
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26
] | 100 |
[] | 0 | true | 93.220339 | 27 | 3 | 100 | 18 |
def to_utf8(obj):
if isinstance(obj, str):
return obj
try:
return obj.decode(encoding="utf-8")
except AttributeError: # obj is not bytes-like
return str(obj)
| 19,044 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_normalize_kwargs
|
(kws, artist)
|
return kws
|
Wrapper for mpl.cbook.normalize_kwargs that supports <= 3.2.1.
|
Wrapper for mpl.cbook.normalize_kwargs that supports <= 3.2.1.
| 756 | 773 |
def _normalize_kwargs(kws, artist):
"""Wrapper for mpl.cbook.normalize_kwargs that supports <= 3.2.1."""
_alias_map = {
'color': ['c'],
'linewidth': ['lw'],
'linestyle': ['ls'],
'facecolor': ['fc'],
'edgecolor': ['ec'],
'markerfacecolor': ['mfc'],
'markeredgecolor': ['mec'],
'markeredgewidth': ['mew'],
'markersize': ['ms']
}
try:
kws = normalize_kwargs(kws, artist)
except AttributeError:
kws = normalize_kwargs(kws, _alias_map)
return kws
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L756-L773
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
17
] | 88.888889 |
[
15,
16
] | 11.111111 | false | 93.220339 | 18 | 2 | 88.888889 | 1 |
def _normalize_kwargs(kws, artist):
_alias_map = {
'color': ['c'],
'linewidth': ['lw'],
'linestyle': ['ls'],
'facecolor': ['fc'],
'edgecolor': ['ec'],
'markerfacecolor': ['mfc'],
'markeredgecolor': ['mec'],
'markeredgewidth': ['mew'],
'markersize': ['ms']
}
try:
kws = normalize_kwargs(kws, artist)
except AttributeError:
kws = normalize_kwargs(kws, _alias_map)
return kws
| 19,045 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_check_argument
|
(param, options, value)
|
Raise if value for param is not in options.
|
Raise if value for param is not in options.
| 776 | 781 |
def _check_argument(param, options, value):
"""Raise if value for param is not in options."""
if value not in options:
raise ValueError(
f"`{param}` must be one of {options}, but {repr(value)} was passed."
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L776-L781
| 26 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 93.220339 | 6 | 2 | 100 | 1 |
def _check_argument(param, options, value):
if value not in options:
raise ValueError(
f"`{param}` must be one of {options}, but {repr(value)} was passed."
)
| 19,046 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_assign_default_kwargs
|
(kws, call_func, source_func)
|
return kws
|
Assign default kwargs for call_func using values from source_func.
|
Assign default kwargs for call_func using values from source_func.
| 784 | 800 |
def _assign_default_kwargs(kws, call_func, source_func):
"""Assign default kwargs for call_func using values from source_func."""
# This exists so that axes-level functions and figure-level functions can
# both call a Plotter method while having the default kwargs be defined in
# the signature of the axes-level function.
# An alternative would be to have a decorator on the method that sets its
# defaults based on those defined in the axes-level function.
# Then the figure-level function would not need to worry about defaults.
# I am not sure which is better.
needed = inspect.signature(call_func).parameters
defaults = inspect.signature(source_func).parameters
for param in needed:
if param in defaults and param not in kws:
kws[param] = defaults[param].default
return kws
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L784-L800
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 100 |
[] | 0 | true | 93.220339 | 17 | 4 | 100 | 1 |
def _assign_default_kwargs(kws, call_func, source_func):
# This exists so that axes-level functions and figure-level functions can
# both call a Plotter method while having the default kwargs be defined in
# the signature of the axes-level function.
# An alternative would be to have a decorator on the method that sets its
# defaults based on those defined in the axes-level function.
# Then the figure-level function would not need to worry about defaults.
# I am not sure which is better.
needed = inspect.signature(call_func).parameters
defaults = inspect.signature(source_func).parameters
for param in needed:
if param in defaults and param not in kws:
kws[param] = defaults[param].default
return kws
| 19,047 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
adjust_legend_subtitles
|
(legend)
|
Make invisible-handle "subtitles" entries look more like titles.
Note: This function is not part of the public API and may be changed or removed.
|
Make invisible-handle "subtitles" entries look more like titles.
| 803 | 820 |
def adjust_legend_subtitles(legend):
"""
Make invisible-handle "subtitles" entries look more like titles.
Note: This function is not part of the public API and may be changed or removed.
"""
# Legend title not in rcParams until 3.0
font_size = plt.rcParams.get("legend.title_fontsize", None)
hpackers = legend.findobj(mpl.offsetbox.VPacker)[0].get_children()
for hpack in hpackers:
draw_area, text_area = hpack.get_children()
handles = draw_area.get_children()
if not all(artist.get_visible() for artist in handles):
draw_area.set_width(0)
for text in text_area.get_children():
if font_size is not None:
text.set_size(font_size)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L803-L820
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 94.444444 |
[
17
] | 5.555556 | false | 93.220339 | 18 | 5 | 94.444444 | 3 |
def adjust_legend_subtitles(legend):
# Legend title not in rcParams until 3.0
font_size = plt.rcParams.get("legend.title_fontsize", None)
hpackers = legend.findobj(mpl.offsetbox.VPacker)[0].get_children()
for hpack in hpackers:
draw_area, text_area = hpack.get_children()
handles = draw_area.get_children()
if not all(artist.get_visible() for artist in handles):
draw_area.set_width(0)
for text in text_area.get_children():
if font_size is not None:
text.set_size(font_size)
| 19,048 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_deprecate_ci
|
(errorbar, ci)
|
return errorbar
|
Warn on usage of ci= and convert to appropriate errorbar= arg.
ci was deprecated when errorbar was added in 0.12. It should not be removed
completely for some time, but it can be moved out of function definitions
(and extracted from kwargs) after one cycle.
|
Warn on usage of ci= and convert to appropriate errorbar= arg.
| 823 | 845 |
def _deprecate_ci(errorbar, ci):
"""
Warn on usage of ci= and convert to appropriate errorbar= arg.
ci was deprecated when errorbar was added in 0.12. It should not be removed
completely for some time, but it can be moved out of function definitions
(and extracted from kwargs) after one cycle.
"""
if ci != "deprecated":
if ci is None:
errorbar = None
elif ci == "sd":
errorbar = "sd"
else:
errorbar = ("ci", ci)
msg = (
"\n\nThe `ci` parameter is deprecated. "
f"Use `errorbar={repr(errorbar)}` for the same effect.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=3)
return errorbar
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L823-L845
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 93.220339 | 23 | 4 | 100 | 5 |
def _deprecate_ci(errorbar, ci):
if ci != "deprecated":
if ci is None:
errorbar = None
elif ci == "sd":
errorbar = "sd"
else:
errorbar = ("ci", ci)
msg = (
"\n\nThe `ci` parameter is deprecated. "
f"Use `errorbar={repr(errorbar)}` for the same effect.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=3)
return errorbar
| 19,049 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_disable_autolayout
|
()
|
Context manager for preventing rc-controlled auto-layout behavior.
|
Context manager for preventing rc-controlled auto-layout behavior.
| 849 | 864 |
def _disable_autolayout():
"""Context manager for preventing rc-controlled auto-layout behavior."""
# This is a workaround for an issue in matplotlib, for details see
# https://github.com/mwaskom/seaborn/issues/2914
# The only affect of this rcParam is to set the default value for
# layout= in plt.figure, so we could just do that instead.
# But then we would need to own the complexity of the transition
# from tight_layout=True -> layout="tight". This seems easier,
# but can be removed when (if) that is simpler on the matplotlib side,
# or if the layout algorithms are improved to handle figure legends.
orig_val = mpl.rcParams["figure.autolayout"]
try:
mpl.rcParams["figure.autolayout"] = False
yield
finally:
mpl.rcParams["figure.autolayout"] = orig_val
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L849-L864
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 100 |
[] | 0 | true | 93.220339 | 16 | 1 | 100 | 1 |
def _disable_autolayout():
# This is a workaround for an issue in matplotlib, for details see
# https://github.com/mwaskom/seaborn/issues/2914
# The only affect of this rcParam is to set the default value for
# layout= in plt.figure, so we could just do that instead.
# But then we would need to own the complexity of the transition
# from tight_layout=True -> layout="tight". This seems easier,
# but can be removed when (if) that is simpler on the matplotlib side,
# or if the layout algorithms are improved to handle figure legends.
orig_val = mpl.rcParams["figure.autolayout"]
try:
mpl.rcParams["figure.autolayout"] = False
yield
finally:
mpl.rcParams["figure.autolayout"] = orig_val
| 19,050 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/utils.py
|
_version_predates
|
(lib: ModuleType, version: str)
|
return Version(lib.__version__) < Version(version)
|
Helper function for checking version compatibility.
|
Helper function for checking version compatibility.
| 867 | 869 |
def _version_predates(lib: ModuleType, version: str) -> bool:
"""Helper function for checking version compatibility."""
return Version(lib.__version__) < Version(version)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/utils.py#L867-L869
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 93.220339 | 3 | 1 | 100 | 1 |
def _version_predates(lib: ModuleType, version: str) -> bool:
return Version(lib.__version__) < Version(version)
| 19,051 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
variable_type
|
(vector, boolean_type="numeric")
|
return VariableType("categorical")
|
Determine whether a vector contains numeric, categorical, or datetime data.
This function differs from the pandas typing API in two ways:
- Python sequences or object-typed PyData objects are considered numeric if
all of their entries are numeric.
- String or mixed-type data are considered categorical even if not
explicitly represented as a :class:`pandas.api.types.CategoricalDtype`.
Parameters
----------
vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence
Input data to test.
boolean_type : 'numeric' or 'categorical'
Type to use for vectors containing only 0s and 1s (and NAs).
Returns
-------
var_type : 'numeric', 'categorical', or 'datetime'
Name identifying the type of data in the vector.
|
Determine whether a vector contains numeric, categorical, or datetime data.
| 1,469 | 1,549 |
def variable_type(vector, boolean_type="numeric"):
"""
Determine whether a vector contains numeric, categorical, or datetime data.
This function differs from the pandas typing API in two ways:
- Python sequences or object-typed PyData objects are considered numeric if
all of their entries are numeric.
- String or mixed-type data are considered categorical even if not
explicitly represented as a :class:`pandas.api.types.CategoricalDtype`.
Parameters
----------
vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence
Input data to test.
boolean_type : 'numeric' or 'categorical'
Type to use for vectors containing only 0s and 1s (and NAs).
Returns
-------
var_type : 'numeric', 'categorical', or 'datetime'
Name identifying the type of data in the vector.
"""
# If a categorical dtype is set, infer categorical
if pd.api.types.is_categorical_dtype(vector):
return VariableType("categorical")
# Special-case all-na data, which is always "numeric"
if pd.isna(vector).all():
return VariableType("numeric")
# Special-case binary/boolean data, allow caller to determine
# This triggers a numpy warning when vector has strings/objects
# https://github.com/numpy/numpy/issues/6784
# Because we reduce with .all(), we are agnostic about whether the
# comparison returns a scalar or vector, so we will ignore the warning.
# It triggers a separate DeprecationWarning when the vector has datetimes:
# https://github.com/numpy/numpy/issues/13548
# This is considered a bug by numpy and will likely go away.
with warnings.catch_warnings():
warnings.simplefilter(
action='ignore', category=(FutureWarning, DeprecationWarning)
)
if np.isin(vector, [0, 1, np.nan]).all():
return VariableType(boolean_type)
# Defer to positive pandas tests
if pd.api.types.is_numeric_dtype(vector):
return VariableType("numeric")
if pd.api.types.is_datetime64_dtype(vector):
return VariableType("datetime")
# --- If we get to here, we need to check the entries
# Check for a collection where everything is a number
def all_numeric(x):
for x_i in x:
if not isinstance(x_i, Number):
return False
return True
if all_numeric(vector):
return VariableType("numeric")
# Check for a collection where everything is a datetime
def all_datetime(x):
for x_i in x:
if not isinstance(x_i, (datetime, np.datetime64)):
return False
return True
if all_datetime(vector):
return VariableType("datetime")
# Otherwise, our final fallback is to consider things categorical
return VariableType("categorical")
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1469-L1549
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80
] | 100 |
[] | 0 | true | 97.668038 | 81 | 15 | 100 | 20 |
def variable_type(vector, boolean_type="numeric"):
# If a categorical dtype is set, infer categorical
if pd.api.types.is_categorical_dtype(vector):
return VariableType("categorical")
# Special-case all-na data, which is always "numeric"
if pd.isna(vector).all():
return VariableType("numeric")
# Special-case binary/boolean data, allow caller to determine
# This triggers a numpy warning when vector has strings/objects
# https://github.com/numpy/numpy/issues/6784
# Because we reduce with .all(), we are agnostic about whether the
# comparison returns a scalar or vector, so we will ignore the warning.
# It triggers a separate DeprecationWarning when the vector has datetimes:
# https://github.com/numpy/numpy/issues/13548
# This is considered a bug by numpy and will likely go away.
with warnings.catch_warnings():
warnings.simplefilter(
action='ignore', category=(FutureWarning, DeprecationWarning)
)
if np.isin(vector, [0, 1, np.nan]).all():
return VariableType(boolean_type)
# Defer to positive pandas tests
if pd.api.types.is_numeric_dtype(vector):
return VariableType("numeric")
if pd.api.types.is_datetime64_dtype(vector):
return VariableType("datetime")
# --- If we get to here, we need to check the entries
# Check for a collection where everything is a number
def all_numeric(x):
for x_i in x:
if not isinstance(x_i, Number):
return False
return True
if all_numeric(vector):
return VariableType("numeric")
# Check for a collection where everything is a datetime
def all_datetime(x):
for x_i in x:
if not isinstance(x_i, (datetime, np.datetime64)):
return False
return True
if all_datetime(vector):
return VariableType("datetime")
# Otherwise, our final fallback is to consider things categorical
return VariableType("categorical")
| 19,060 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
infer_orient
|
(x=None, y=None, orient=None, require_numeric=True)
|
Determine how the plot should be oriented based on the data.
For historical reasons, the convention is to call a plot "horizontally"
or "vertically" oriented based on the axis representing its dependent
variable. Practically, this is used when determining the axis for
numerical aggregation.
Parameters
----------
x, y : Vector data or None
Positional data vectors for the plot.
orient : string or None
Specified orientation, which must start with "v" or "h" if not None.
require_numeric : bool
If set, raise when the implied dependent variable is not numeric.
Returns
-------
orient : "v" or "h"
Raises
------
ValueError: When `orient` is not None and does not start with "h" or "v"
TypeError: When dependent variable is not numeric, with `require_numeric`
|
Determine how the plot should be oriented based on the data.
| 1,552 | 1,631 |
def infer_orient(x=None, y=None, orient=None, require_numeric=True):
"""Determine how the plot should be oriented based on the data.
For historical reasons, the convention is to call a plot "horizontally"
or "vertically" oriented based on the axis representing its dependent
variable. Practically, this is used when determining the axis for
numerical aggregation.
Parameters
----------
x, y : Vector data or None
Positional data vectors for the plot.
orient : string or None
Specified orientation, which must start with "v" or "h" if not None.
require_numeric : bool
If set, raise when the implied dependent variable is not numeric.
Returns
-------
orient : "v" or "h"
Raises
------
ValueError: When `orient` is not None and does not start with "h" or "v"
TypeError: When dependent variable is not numeric, with `require_numeric`
"""
x_type = None if x is None else variable_type(x)
y_type = None if y is None else variable_type(y)
nonnumeric_dv_error = "{} orientation requires numeric `{}` variable."
single_var_warning = "{} orientation ignored with only `{}` specified."
if x is None:
if str(orient).startswith("h"):
warnings.warn(single_var_warning.format("Horizontal", "y"))
if require_numeric and y_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Vertical", "y"))
return "v"
elif y is None:
if str(orient).startswith("v"):
warnings.warn(single_var_warning.format("Vertical", "x"))
if require_numeric and x_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Horizontal", "x"))
return "h"
elif str(orient).startswith("v"):
if require_numeric and y_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Vertical", "y"))
return "v"
elif str(orient).startswith("h"):
if require_numeric and x_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Horizontal", "x"))
return "h"
elif orient is not None:
err = (
"`orient` must start with 'v' or 'h' or be None, "
f"but `{repr(orient)}` was passed."
)
raise ValueError(err)
elif x_type != "categorical" and y_type == "categorical":
return "h"
elif x_type != "numeric" and y_type == "numeric":
return "v"
elif x_type == "numeric" and y_type != "numeric":
return "h"
elif require_numeric and "numeric" not in (x_type, y_type):
err = "Neither the `x` nor `y` variable appears to be numeric."
raise TypeError(err)
else:
return "v"
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1552-L1631
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79
] | 100 |
[] | 0 | true | 97.668038 | 80 | 24 | 100 | 24 |
def infer_orient(x=None, y=None, orient=None, require_numeric=True):
x_type = None if x is None else variable_type(x)
y_type = None if y is None else variable_type(y)
nonnumeric_dv_error = "{} orientation requires numeric `{}` variable."
single_var_warning = "{} orientation ignored with only `{}` specified."
if x is None:
if str(orient).startswith("h"):
warnings.warn(single_var_warning.format("Horizontal", "y"))
if require_numeric and y_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Vertical", "y"))
return "v"
elif y is None:
if str(orient).startswith("v"):
warnings.warn(single_var_warning.format("Vertical", "x"))
if require_numeric and x_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Horizontal", "x"))
return "h"
elif str(orient).startswith("v"):
if require_numeric and y_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Vertical", "y"))
return "v"
elif str(orient).startswith("h"):
if require_numeric and x_type != "numeric":
raise TypeError(nonnumeric_dv_error.format("Horizontal", "x"))
return "h"
elif orient is not None:
err = (
"`orient` must start with 'v' or 'h' or be None, "
f"but `{repr(orient)}` was passed."
)
raise ValueError(err)
elif x_type != "categorical" and y_type == "categorical":
return "h"
elif x_type != "numeric" and y_type == "numeric":
return "v"
elif x_type == "numeric" and y_type != "numeric":
return "h"
elif require_numeric and "numeric" not in (x_type, y_type):
err = "Neither the `x` nor `y` variable appears to be numeric."
raise TypeError(err)
else:
return "v"
| 19,061 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
unique_dashes
|
(n)
|
return dashes[:n]
|
Build an arbitrarily long list of unique dash styles for lines.
Parameters
----------
n : int
Number of unique dash specs to generate.
Returns
-------
dashes : list of strings or tuples
Valid arguments for the ``dashes`` parameter on
:class:`matplotlib.lines.Line2D`. The first spec is a solid
line (``""``), the remainder are sequences of long and short
dashes.
|
Build an arbitrarily long list of unique dash styles for lines.
| 1,634 | 1,682 |
def unique_dashes(n):
"""Build an arbitrarily long list of unique dash styles for lines.
Parameters
----------
n : int
Number of unique dash specs to generate.
Returns
-------
dashes : list of strings or tuples
Valid arguments for the ``dashes`` parameter on
:class:`matplotlib.lines.Line2D`. The first spec is a solid
line (``""``), the remainder are sequences of long and short
dashes.
"""
# Start with dash specs that are well distinguishable
dashes = [
"",
(4, 1.5),
(1, 1),
(3, 1.25, 1.5, 1.25),
(5, 1, 1, 1),
]
# Now programmatically build as many as we need
p = 3
while len(dashes) < n:
# Take combinations of long and short dashes
a = itertools.combinations_with_replacement([3, 1.25], p)
b = itertools.combinations_with_replacement([4, 1], p)
# Interleave the combinations, reversing one of the streams
segment_list = itertools.chain(*zip(
list(a)[1:-1][::-1],
list(b)[1:-1]
))
# Now insert the gaps
for segments in segment_list:
gap = min(segments)
spec = tuple(itertools.chain(*((seg, gap) for seg in segments)))
dashes.append(spec)
p += 1
return dashes[:n]
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1634-L1682
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48
] | 100 |
[] | 0 | true | 97.668038 | 49 | 3 | 100 | 14 |
def unique_dashes(n):
# Start with dash specs that are well distinguishable
dashes = [
"",
(4, 1.5),
(1, 1),
(3, 1.25, 1.5, 1.25),
(5, 1, 1, 1),
]
# Now programmatically build as many as we need
p = 3
while len(dashes) < n:
# Take combinations of long and short dashes
a = itertools.combinations_with_replacement([3, 1.25], p)
b = itertools.combinations_with_replacement([4, 1], p)
# Interleave the combinations, reversing one of the streams
segment_list = itertools.chain(*zip(
list(a)[1:-1][::-1],
list(b)[1:-1]
))
# Now insert the gaps
for segments in segment_list:
gap = min(segments)
spec = tuple(itertools.chain(*((seg, gap) for seg in segments)))
dashes.append(spec)
p += 1
return dashes[:n]
| 19,062 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
unique_markers
|
(n)
|
return markers[:n]
|
Build an arbitrarily long list of unique marker styles for points.
Parameters
----------
n : int
Number of unique marker specs to generate.
Returns
-------
markers : list of string or tuples
Values for defining :class:`matplotlib.markers.MarkerStyle` objects.
All markers will be filled.
|
Build an arbitrarily long list of unique marker styles for points.
| 1,685 | 1,728 |
def unique_markers(n):
"""Build an arbitrarily long list of unique marker styles for points.
Parameters
----------
n : int
Number of unique marker specs to generate.
Returns
-------
markers : list of string or tuples
Values for defining :class:`matplotlib.markers.MarkerStyle` objects.
All markers will be filled.
"""
# Start with marker specs that are well distinguishable
markers = [
"o",
"X",
(4, 0, 45),
"P",
(4, 0, 0),
(4, 1, 0),
"^",
(4, 1, 45),
"v",
]
# Now generate more from regular polygons of increasing order
s = 5
while len(markers) < n:
a = 360 / (s + 1) / 2
markers.extend([
(s + 1, 1, a),
(s + 1, 0, a),
(s, 1, 0),
(s, 0, 0),
])
s += 1
# Convert to MarkerStyle object, using only exactly what we need
# markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]]
return markers[:n]
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1685-L1728
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43
] | 100 |
[] | 0 | true | 97.668038 | 44 | 2 | 100 | 12 |
def unique_markers(n):
# Start with marker specs that are well distinguishable
markers = [
"o",
"X",
(4, 0, 45),
"P",
(4, 0, 0),
(4, 1, 0),
"^",
(4, 1, 45),
"v",
]
# Now generate more from regular polygons of increasing order
s = 5
while len(markers) < n:
a = 360 / (s + 1) / 2
markers.extend([
(s + 1, 1, a),
(s + 1, 0, a),
(s, 1, 0),
(s, 0, 0),
])
s += 1
# Convert to MarkerStyle object, using only exactly what we need
# markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]]
return markers[:n]
| 19,063 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
categorical_order
|
(vector, order=None)
|
return list(order)
|
Return a list of unique data values.
Determine an ordered list of levels in ``values``.
Parameters
----------
vector : list, array, Categorical, or Series
Vector of "categorical" values
order : list-like, optional
Desired order of category levels to override the order determined
from the ``values`` object.
Returns
-------
order : list
Ordered list of category levels not including null values.
|
Return a list of unique data values.
| 1,731 | 1,767 |
def categorical_order(vector, order=None):
"""Return a list of unique data values.
Determine an ordered list of levels in ``values``.
Parameters
----------
vector : list, array, Categorical, or Series
Vector of "categorical" values
order : list-like, optional
Desired order of category levels to override the order determined
from the ``values`` object.
Returns
-------
order : list
Ordered list of category levels not including null values.
"""
if order is None:
if hasattr(vector, "categories"):
order = vector.categories
else:
try:
order = vector.cat.categories
except (TypeError, AttributeError):
try:
order = vector.unique()
except AttributeError:
order = pd.unique(vector)
if variable_type(vector) == "numeric":
order = np.sort(order)
order = filter(pd.notnull, order)
return list(order)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1731-L1767
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36
] | 100 |
[] | 0 | true | 97.668038 | 37 | 6 | 100 | 16 |
def categorical_order(vector, order=None):
if order is None:
if hasattr(vector, "categories"):
order = vector.categories
else:
try:
order = vector.cat.categories
except (TypeError, AttributeError):
try:
order = vector.unique()
except AttributeError:
order = pd.unique(vector)
if variable_type(vector) == "numeric":
order = np.sort(order)
order = filter(pd.notnull, order)
return list(order)
| 19,064 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
SemanticMapping.__init__
|
(self, plotter)
| 42 | 49 |
def __init__(self, plotter):
# TODO Putting this here so we can continue to use a lot of the
# logic that's built into the library, but the idea of this class
# is to move towards semantic mappings that are agnostic about the
# kind of plot they're going to be used to draw.
# Fully achieving that is going to take some thinking.
self.plotter = plotter
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L42-L49
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 97.668038 | 8 | 1 | 100 | 0 |
def __init__(self, plotter):
# TODO Putting this here so we can continue to use a lot of the
# logic that's built into the library, but the idea of this class
# is to move towards semantic mappings that are agnostic about the
# kind of plot they're going to be used to draw.
# Fully achieving that is going to take some thinking.
self.plotter = plotter
| 19,065 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
SemanticMapping.map
|
(cls, plotter, *args, **kwargs)
|
return plotter
| 51 | 55 |
def map(cls, plotter, *args, **kwargs):
# This method is assigned the __init__ docstring
method_name = f"_{cls.__name__[:-7].lower()}_map"
setattr(plotter, method_name, cls(plotter, *args, **kwargs))
return plotter
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L51-L55
| 26 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 97.668038 | 5 | 1 | 100 | 0 |
def map(cls, plotter, *args, **kwargs):
# This method is assigned the __init__ docstring
method_name = f"_{cls.__name__[:-7].lower()}_map"
setattr(plotter, method_name, cls(plotter, *args, **kwargs))
return plotter
| 19,066 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
SemanticMapping._check_list_length
|
(self, levels, values, variable)
|
return values
|
Input check when values are provided as a list.
|
Input check when values are provided as a list.
| 57 | 79 |
def _check_list_length(self, levels, values, variable):
"""Input check when values are provided as a list."""
# Copied from _core/properties; eventually will be replaced for that.
message = ""
if len(levels) > len(values):
message = " ".join([
f"\nThe {variable} list has fewer values ({len(values)})",
f"than needed ({len(levels)}) and will cycle, which may",
"produce an uninterpretable plot."
])
values = [x for _, x in zip(levels, itertools.cycle(values))]
elif len(values) > len(levels):
message = " ".join([
f"The {variable} list has more values ({len(values)})",
f"than needed ({len(levels)}), which may not be intended.",
])
values = values[:len(levels)]
if message:
warnings.warn(message, UserWarning, stacklevel=6)
return values
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L57-L79
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 97.668038 | 23 | 5 | 100 | 1 |
def _check_list_length(self, levels, values, variable):
# Copied from _core/properties; eventually will be replaced for that.
message = ""
if len(levels) > len(values):
message = " ".join([
f"\nThe {variable} list has fewer values ({len(values)})",
f"than needed ({len(levels)}) and will cycle, which may",
"produce an uninterpretable plot."
])
values = [x for _, x in zip(levels, itertools.cycle(values))]
elif len(values) > len(levels):
message = " ".join([
f"The {variable} list has more values ({len(values)})",
f"than needed ({len(levels)}), which may not be intended.",
])
values = values[:len(levels)]
if message:
warnings.warn(message, UserWarning, stacklevel=6)
return values
| 19,067 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
SemanticMapping._lookup_single
|
(self, key)
|
return self.lookup_table[key]
|
Apply the mapping to a single data value.
|
Apply the mapping to a single data value.
| 81 | 83 |
def _lookup_single(self, key):
"""Apply the mapping to a single data value."""
return self.lookup_table[key]
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L81-L83
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 97.668038 | 3 | 1 | 100 | 1 |
def _lookup_single(self, key):
return self.lookup_table[key]
| 19,068 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
SemanticMapping.__call__
|
(self, key, *args, **kwargs)
|
Get the attribute(s) values for the data key.
|
Get the attribute(s) values for the data key.
| 85 | 90 |
def __call__(self, key, *args, **kwargs):
"""Get the attribute(s) values for the data key."""
if isinstance(key, (list, np.ndarray, pd.Series)):
return [self._lookup_single(k, *args, **kwargs) for k in key]
else:
return self._lookup_single(key, *args, **kwargs)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L85-L90
| 26 |
[
0,
1,
2,
3,
4,
5
] | 100 |
[] | 0 | true | 97.668038 | 6 | 3 | 100 | 1 |
def __call__(self, key, *args, **kwargs):
if isinstance(key, (list, np.ndarray, pd.Series)):
return [self._lookup_single(k, *args, **kwargs) for k in key]
else:
return self._lookup_single(key, *args, **kwargs)
| 19,069 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.__init__
|
(self, data=None, variables={})
| 631 | 648 |
def __init__(self, data=None, variables={}):
self._var_levels = {}
# var_ordered is relevant only for categorical axis variables, and may
# be better handled by an internal axis information object that tracks
# such information and is set up by the scale_* methods. The analogous
# information for numeric axes would be information about log scales.
self._var_ordered = {"x": False, "y": False} # alt., used DefaultDict
self.assign_variables(data, variables)
for var, cls in self._semantic_mappings.items():
# Create the mapping function
map_func = partial(cls.map, plotter=self)
setattr(self, f"map_{var}", map_func)
# Call the mapping function to initialize with default values
getattr(self, f"map_{var}")()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L631-L648
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 97.668038 | 18 | 2 | 100 | 0 |
def __init__(self, data=None, variables={}):
self._var_levels = {}
# var_ordered is relevant only for categorical axis variables, and may
# be better handled by an internal axis information object that tracks
# such information and is set up by the scale_* methods. The analogous
# information for numeric axes would be information about log scales.
self._var_ordered = {"x": False, "y": False} # alt., used DefaultDict
self.assign_variables(data, variables)
for var, cls in self._semantic_mappings.items():
# Create the mapping function
map_func = partial(cls.map, plotter=self)
setattr(self, f"map_{var}", map_func)
# Call the mapping function to initialize with default values
getattr(self, f"map_{var}")()
| 19,070 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.get_semantics
|
(cls, kwargs, semantics=None)
|
return variables
|
Subset a dictionary arguments with known semantic variables.
|
Subset a dictionary arguments with known semantic variables.
| 651 | 660 |
def get_semantics(cls, kwargs, semantics=None):
"""Subset a dictionary arguments with known semantic variables."""
# TODO this should be get_variables since we have included x and y
if semantics is None:
semantics = cls.semantics
variables = {}
for key, val in kwargs.items():
if key in semantics and val is not None:
variables[key] = val
return variables
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L651-L660
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
] | 100 |
[] | 0 | true | 97.668038 | 10 | 5 | 100 | 1 |
def get_semantics(cls, kwargs, semantics=None):
# TODO this should be get_variables since we have included x and y
if semantics is None:
semantics = cls.semantics
variables = {}
for key, val in kwargs.items():
if key in semantics and val is not None:
variables[key] = val
return variables
| 19,071 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.has_xy_data
|
(self)
|
return bool({"x", "y"} & set(self.variables))
|
Return True at least one of x or y is defined.
|
Return True at least one of x or y is defined.
| 663 | 665 |
def has_xy_data(self):
"""Return True at least one of x or y is defined."""
return bool({"x", "y"} & set(self.variables))
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L663-L665
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 97.668038 | 3 | 1 | 100 | 1 |
def has_xy_data(self):
return bool({"x", "y"} & set(self.variables))
| 19,072 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.var_levels
|
(self)
|
return self._var_levels
|
Property interface to ordered list of variables levels.
Each time it's accessed, it updates the var_levels dictionary with the
list of levels in the current semantic mappers. But it also allows the
dictionary to persist, so it can be used to set levels by a key. This is
used to track the list of col/row levels using an attached FacetGrid
object, but it's kind of messy and ideally fixed by improving the
faceting logic so it interfaces better with the modern approach to
tracking plot variables.
|
Property interface to ordered list of variables levels.
| 668 | 686 |
def var_levels(self):
"""Property interface to ordered list of variables levels.
Each time it's accessed, it updates the var_levels dictionary with the
list of levels in the current semantic mappers. But it also allows the
dictionary to persist, so it can be used to set levels by a key. This is
used to track the list of col/row levels using an attached FacetGrid
object, but it's kind of messy and ideally fixed by improving the
faceting logic so it interfaces better with the modern approach to
tracking plot variables.
"""
for var in self.variables:
try:
map_obj = getattr(self, f"_{var}_map")
self._var_levels[var] = map_obj.levels
except AttributeError:
pass
return self._var_levels
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L668-L686
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 97.668038 | 19 | 3 | 100 | 9 |
def var_levels(self):
for var in self.variables:
try:
map_obj = getattr(self, f"_{var}_map")
self._var_levels[var] = map_obj.levels
except AttributeError:
pass
return self._var_levels
| 19,073 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.assign_variables
|
(self, data=None, variables={})
|
return self
|
Define plot variables, optionally using lookup from `data`.
|
Define plot variables, optionally using lookup from `data`.
| 688 | 714 |
def assign_variables(self, data=None, variables={}):
"""Define plot variables, optionally using lookup from `data`."""
x = variables.get("x", None)
y = variables.get("y", None)
if x is None and y is None:
self.input_format = "wide"
plot_data, variables = self._assign_variables_wideform(
data, **variables,
)
else:
self.input_format = "long"
plot_data, variables = self._assign_variables_longform(
data, **variables,
)
self.plot_data = plot_data
self.variables = variables
self.var_types = {
v: variable_type(
plot_data[v],
boolean_type="numeric" if v in "xy" else "categorical"
)
for v in variables
}
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L688-L714
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26
] | 100 |
[] | 0 | true | 97.668038 | 27 | 3 | 100 | 1 |
def assign_variables(self, data=None, variables={}):
x = variables.get("x", None)
y = variables.get("y", None)
if x is None and y is None:
self.input_format = "wide"
plot_data, variables = self._assign_variables_wideform(
data, **variables,
)
else:
self.input_format = "long"
plot_data, variables = self._assign_variables_longform(
data, **variables,
)
self.plot_data = plot_data
self.variables = variables
self.var_types = {
v: variable_type(
plot_data[v],
boolean_type="numeric" if v in "xy" else "categorical"
)
for v in variables
}
return self
| 19,074 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter._assign_variables_wideform
|
(self, data=None, **kwargs)
|
return plot_data, variables
|
Define plot variables given wide-form data.
Parameters
----------
data : flat vector or collection of vectors
Data can be a vector or mapping that is coerceable to a Series
or a sequence- or mapping-based collection of such vectors, or a
rectangular numpy array, or a Pandas DataFrame.
kwargs : variable -> data mappings
Behavior with keyword arguments is currently undefined.
Returns
-------
plot_data : :class:`pandas.DataFrame`
Long-form data object mapping seaborn variables (x, y, hue, ...)
to data vectors.
variables : dict
Keys are defined seaborn variables; values are names inferred from
the inputs (or None when no name can be determined).
|
Define plot variables given wide-form data.
| 716 | 856 |
def _assign_variables_wideform(self, data=None, **kwargs):
"""Define plot variables given wide-form data.
Parameters
----------
data : flat vector or collection of vectors
Data can be a vector or mapping that is coerceable to a Series
or a sequence- or mapping-based collection of such vectors, or a
rectangular numpy array, or a Pandas DataFrame.
kwargs : variable -> data mappings
Behavior with keyword arguments is currently undefined.
Returns
-------
plot_data : :class:`pandas.DataFrame`
Long-form data object mapping seaborn variables (x, y, hue, ...)
to data vectors.
variables : dict
Keys are defined seaborn variables; values are names inferred from
the inputs (or None when no name can be determined).
"""
# Raise if semantic or other variables are assigned in wide-form mode
assigned = [k for k, v in kwargs.items() if v is not None]
if any(assigned):
s = "s" if len(assigned) > 1 else ""
err = f"The following variable{s} cannot be assigned with wide-form data: "
err += ", ".join(f"`{v}`" for v in assigned)
raise ValueError(err)
# Determine if the data object actually has any data in it
empty = data is None or not len(data)
# Then, determine if we have "flat" data (a single vector)
if isinstance(data, dict):
values = data.values()
else:
values = np.atleast_1d(np.asarray(data, dtype=object))
flat = not any(
isinstance(v, Iterable) and not isinstance(v, (str, bytes))
for v in values
)
if empty:
# Make an object with the structure of plot_data, but empty
plot_data = pd.DataFrame()
variables = {}
elif flat:
# Handle flat data by converting to pandas Series and using the
# index and/or values to define x and/or y
# (Could be accomplished with a more general to_series() interface)
flat_data = pd.Series(data).copy()
names = {
"@values": flat_data.name,
"@index": flat_data.index.name
}
plot_data = {}
variables = {}
for var in ["x", "y"]:
if var in self.flat_structure:
attr = self.flat_structure[var]
plot_data[var] = getattr(flat_data, attr[1:])
variables[var] = names[self.flat_structure[var]]
plot_data = pd.DataFrame(plot_data)
else:
# Otherwise assume we have some collection of vectors.
# Handle Python sequences such that entries end up in the columns,
# not in the rows, of the intermediate wide DataFrame.
# One way to accomplish this is to convert to a dict of Series.
if isinstance(data, Sequence):
data_dict = {}
for i, var in enumerate(data):
key = getattr(var, "name", i)
# TODO is there a safer/more generic way to ensure Series?
# sort of like np.asarray, but for pandas?
data_dict[key] = pd.Series(var)
data = data_dict
# Pandas requires that dict values either be Series objects
# or all have the same length, but we want to allow "ragged" inputs
if isinstance(data, Mapping):
data = {key: pd.Series(val) for key, val in data.items()}
# Otherwise, delegate to the pandas DataFrame constructor
# This is where we'd prefer to use a general interface that says
# "give me this data as a pandas DataFrame", so we can accept
# DataFrame objects from other libraries
wide_data = pd.DataFrame(data, copy=True)
# At this point we should reduce the dataframe to numeric cols
numeric_cols = [
k for k, v in wide_data.items() if variable_type(v) == "numeric"
]
wide_data = wide_data[numeric_cols]
# Now melt the data to long form
melt_kws = {"var_name": "@columns", "value_name": "@values"}
use_index = "@index" in self.wide_structure.values()
if use_index:
melt_kws["id_vars"] = "@index"
try:
orig_categories = wide_data.columns.categories
orig_ordered = wide_data.columns.ordered
wide_data.columns = wide_data.columns.add_categories("@index")
except AttributeError:
category_columns = False
else:
category_columns = True
wide_data["@index"] = wide_data.index.to_series()
plot_data = wide_data.melt(**melt_kws)
if use_index and category_columns:
plot_data["@columns"] = pd.Categorical(plot_data["@columns"],
orig_categories,
orig_ordered)
# Assign names corresponding to plot semantics
for var, attr in self.wide_structure.items():
plot_data[var] = plot_data[attr]
# Define the variable names
variables = {}
for var, attr in self.wide_structure.items():
obj = getattr(wide_data, attr[1:])
variables[var] = getattr(obj, "name", None)
# Remove redundant columns from plot_data
plot_data = plot_data[list(variables)]
return plot_data, variables
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L716-L856
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140
] | 100 |
[] | 0 | true | 97.668038 | 141 | 20 | 100 | 19 |
def _assign_variables_wideform(self, data=None, **kwargs):
# Raise if semantic or other variables are assigned in wide-form mode
assigned = [k for k, v in kwargs.items() if v is not None]
if any(assigned):
s = "s" if len(assigned) > 1 else ""
err = f"The following variable{s} cannot be assigned with wide-form data: "
err += ", ".join(f"`{v}`" for v in assigned)
raise ValueError(err)
# Determine if the data object actually has any data in it
empty = data is None or not len(data)
# Then, determine if we have "flat" data (a single vector)
if isinstance(data, dict):
values = data.values()
else:
values = np.atleast_1d(np.asarray(data, dtype=object))
flat = not any(
isinstance(v, Iterable) and not isinstance(v, (str, bytes))
for v in values
)
if empty:
# Make an object with the structure of plot_data, but empty
plot_data = pd.DataFrame()
variables = {}
elif flat:
# Handle flat data by converting to pandas Series and using the
# index and/or values to define x and/or y
# (Could be accomplished with a more general to_series() interface)
flat_data = pd.Series(data).copy()
names = {
"@values": flat_data.name,
"@index": flat_data.index.name
}
plot_data = {}
variables = {}
for var in ["x", "y"]:
if var in self.flat_structure:
attr = self.flat_structure[var]
plot_data[var] = getattr(flat_data, attr[1:])
variables[var] = names[self.flat_structure[var]]
plot_data = pd.DataFrame(plot_data)
else:
# Otherwise assume we have some collection of vectors.
# Handle Python sequences such that entries end up in the columns,
# not in the rows, of the intermediate wide DataFrame.
# One way to accomplish this is to convert to a dict of Series.
if isinstance(data, Sequence):
data_dict = {}
for i, var in enumerate(data):
key = getattr(var, "name", i)
# TODO is there a safer/more generic way to ensure Series?
# sort of like np.asarray, but for pandas?
data_dict[key] = pd.Series(var)
data = data_dict
# Pandas requires that dict values either be Series objects
# or all have the same length, but we want to allow "ragged" inputs
if isinstance(data, Mapping):
data = {key: pd.Series(val) for key, val in data.items()}
# Otherwise, delegate to the pandas DataFrame constructor
# This is where we'd prefer to use a general interface that says
# "give me this data as a pandas DataFrame", so we can accept
# DataFrame objects from other libraries
wide_data = pd.DataFrame(data, copy=True)
# At this point we should reduce the dataframe to numeric cols
numeric_cols = [
k for k, v in wide_data.items() if variable_type(v) == "numeric"
]
wide_data = wide_data[numeric_cols]
# Now melt the data to long form
melt_kws = {"var_name": "@columns", "value_name": "@values"}
use_index = "@index" in self.wide_structure.values()
if use_index:
melt_kws["id_vars"] = "@index"
try:
orig_categories = wide_data.columns.categories
orig_ordered = wide_data.columns.ordered
wide_data.columns = wide_data.columns.add_categories("@index")
except AttributeError:
category_columns = False
else:
category_columns = True
wide_data["@index"] = wide_data.index.to_series()
plot_data = wide_data.melt(**melt_kws)
if use_index and category_columns:
plot_data["@columns"] = pd.Categorical(plot_data["@columns"],
orig_categories,
orig_ordered)
# Assign names corresponding to plot semantics
for var, attr in self.wide_structure.items():
plot_data[var] = plot_data[attr]
# Define the variable names
variables = {}
for var, attr in self.wide_structure.items():
obj = getattr(wide_data, attr[1:])
variables[var] = getattr(obj, "name", None)
# Remove redundant columns from plot_data
plot_data = plot_data[list(variables)]
return plot_data, variables
| 19,075 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter._assign_variables_longform
|
(self, data=None, **kwargs)
|
return plot_data, variables
|
Define plot variables given long-form data and/or vector inputs.
Parameters
----------
data : dict-like collection of vectors
Input data where variable names map to vector values.
kwargs : variable -> data mappings
Keys are seaborn variables (x, y, hue, ...) and values are vectors
in any format that can construct a :class:`pandas.DataFrame` or
names of columns or index levels in ``data``.
Returns
-------
plot_data : :class:`pandas.DataFrame`
Long-form data object mapping seaborn variables (x, y, hue, ...)
to data vectors.
variables : dict
Keys are defined seaborn variables; values are names inferred from
the inputs (or None when no name can be determined).
Raises
------
ValueError
When variables are strings that don't appear in ``data``.
|
Define plot variables given long-form data and/or vector inputs.
| 858 | 970 |
def _assign_variables_longform(self, data=None, **kwargs):
"""Define plot variables given long-form data and/or vector inputs.
Parameters
----------
data : dict-like collection of vectors
Input data where variable names map to vector values.
kwargs : variable -> data mappings
Keys are seaborn variables (x, y, hue, ...) and values are vectors
in any format that can construct a :class:`pandas.DataFrame` or
names of columns or index levels in ``data``.
Returns
-------
plot_data : :class:`pandas.DataFrame`
Long-form data object mapping seaborn variables (x, y, hue, ...)
to data vectors.
variables : dict
Keys are defined seaborn variables; values are names inferred from
the inputs (or None when no name can be determined).
Raises
------
ValueError
When variables are strings that don't appear in ``data``.
"""
plot_data = {}
variables = {}
# Data is optional; all variables can be defined as vectors
if data is None:
data = {}
# TODO should we try a data.to_dict() or similar here to more
# generally accept objects with that interface?
# Note that dict(df) also works for pandas, and gives us what we
# want, whereas DataFrame.to_dict() gives a nested dict instead of
# a dict of series.
# Variables can also be extracted from the index attribute
# TODO is this the most general way to enable it?
# There is no index.to_dict on multiindex, unfortunately
try:
index = data.index.to_frame()
except AttributeError:
index = {}
# The caller will determine the order of variables in plot_data
for key, val in kwargs.items():
# First try to treat the argument as a key for the data collection.
# But be flexible about what can be used as a key.
# Usually it will be a string, but allow numbers or tuples too when
# taking from the main data object. Only allow strings to reference
# fields in the index, because otherwise there is too much ambiguity.
try:
val_as_data_key = (
val in data
or (isinstance(val, (str, bytes)) and val in index)
)
except (KeyError, TypeError):
val_as_data_key = False
if val_as_data_key:
# We know that __getitem__ will work
if val in data:
plot_data[key] = data[val]
elif val in index:
plot_data[key] = index[val]
variables[key] = val
elif isinstance(val, (str, bytes)):
# This looks like a column name but we don't know what it means!
err = f"Could not interpret value `{val}` for parameter `{key}`"
raise ValueError(err)
else:
# Otherwise, assume the value is itself data
# Raise when data object is present and a vector can't matched
if isinstance(data, pd.DataFrame) and not isinstance(val, pd.Series):
if np.ndim(val) and len(data) != len(val):
val_cls = val.__class__.__name__
err = (
f"Length of {val_cls} vectors must match length of `data`"
f" when both are used, but `data` has length {len(data)}"
f" and the vector passed to `{key}` has length {len(val)}."
)
raise ValueError(err)
plot_data[key] = val
# Try to infer the name of the variable
variables[key] = getattr(val, "name", None)
# Construct a tidy plot DataFrame. This will convert a number of
# types automatically, aligning on index in case of pandas objects
plot_data = pd.DataFrame(plot_data)
# Reduce the variables dictionary to fields with valid data
variables = {
var: name
for var, name in variables.items()
if plot_data[var].notnull().any()
}
return plot_data, variables
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L858-L970
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112
] | 100 |
[] | 0 | true | 97.668038 | 113 | 15 | 100 | 24 |
def _assign_variables_longform(self, data=None, **kwargs):
plot_data = {}
variables = {}
# Data is optional; all variables can be defined as vectors
if data is None:
data = {}
# TODO should we try a data.to_dict() or similar here to more
# generally accept objects with that interface?
# Note that dict(df) also works for pandas, and gives us what we
# want, whereas DataFrame.to_dict() gives a nested dict instead of
# a dict of series.
# Variables can also be extracted from the index attribute
# TODO is this the most general way to enable it?
# There is no index.to_dict on multiindex, unfortunately
try:
index = data.index.to_frame()
except AttributeError:
index = {}
# The caller will determine the order of variables in plot_data
for key, val in kwargs.items():
# First try to treat the argument as a key for the data collection.
# But be flexible about what can be used as a key.
# Usually it will be a string, but allow numbers or tuples too when
# taking from the main data object. Only allow strings to reference
# fields in the index, because otherwise there is too much ambiguity.
try:
val_as_data_key = (
val in data
or (isinstance(val, (str, bytes)) and val in index)
)
except (KeyError, TypeError):
val_as_data_key = False
if val_as_data_key:
# We know that __getitem__ will work
if val in data:
plot_data[key] = data[val]
elif val in index:
plot_data[key] = index[val]
variables[key] = val
elif isinstance(val, (str, bytes)):
# This looks like a column name but we don't know what it means!
err = f"Could not interpret value `{val}` for parameter `{key}`"
raise ValueError(err)
else:
# Otherwise, assume the value is itself data
# Raise when data object is present and a vector can't matched
if isinstance(data, pd.DataFrame) and not isinstance(val, pd.Series):
if np.ndim(val) and len(data) != len(val):
val_cls = val.__class__.__name__
err = (
f"Length of {val_cls} vectors must match length of `data`"
f" when both are used, but `data` has length {len(data)}"
f" and the vector passed to `{key}` has length {len(val)}."
)
raise ValueError(err)
plot_data[key] = val
# Try to infer the name of the variable
variables[key] = getattr(val, "name", None)
# Construct a tidy plot DataFrame. This will convert a number of
# types automatically, aligning on index in case of pandas objects
plot_data = pd.DataFrame(plot_data)
# Reduce the variables dictionary to fields with valid data
variables = {
var: name
for var, name in variables.items()
if plot_data[var].notnull().any()
}
return plot_data, variables
| 19,076 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.iter_data
|
(
self, grouping_vars=None, *,
reverse=False, from_comp_data=False,
by_facet=True, allow_empty=False, dropna=True,
)
|
Generator for getting subsets of data defined by semantic variables.
Also injects "col" and "row" into grouping semantics.
Parameters
----------
grouping_vars : string or list of strings
Semantic variables that define the subsets of data.
reverse : bool
If True, reverse the order of iteration.
from_comp_data : bool
If True, use self.comp_data rather than self.plot_data
by_facet : bool
If True, add faceting variables to the set of grouping variables.
allow_empty : bool
If True, yield an empty dataframe when no observations exist for
combinations of grouping variables.
dropna : bool
If True, remove rows with missing data.
Yields
------
sub_vars : dict
Keys are semantic names, values are the level of that semantic.
sub_data : :class:`pandas.DataFrame`
Subset of ``plot_data`` for this combination of semantic values.
|
Generator for getting subsets of data defined by semantic variables.
| 972 | 1,091 |
def iter_data(
self, grouping_vars=None, *,
reverse=False, from_comp_data=False,
by_facet=True, allow_empty=False, dropna=True,
):
"""Generator for getting subsets of data defined by semantic variables.
Also injects "col" and "row" into grouping semantics.
Parameters
----------
grouping_vars : string or list of strings
Semantic variables that define the subsets of data.
reverse : bool
If True, reverse the order of iteration.
from_comp_data : bool
If True, use self.comp_data rather than self.plot_data
by_facet : bool
If True, add faceting variables to the set of grouping variables.
allow_empty : bool
If True, yield an empty dataframe when no observations exist for
combinations of grouping variables.
dropna : bool
If True, remove rows with missing data.
Yields
------
sub_vars : dict
Keys are semantic names, values are the level of that semantic.
sub_data : :class:`pandas.DataFrame`
Subset of ``plot_data`` for this combination of semantic values.
"""
# TODO should this default to using all (non x/y?) semantics?
# or define grouping vars somewhere?
if grouping_vars is None:
grouping_vars = []
elif isinstance(grouping_vars, str):
grouping_vars = [grouping_vars]
elif isinstance(grouping_vars, tuple):
grouping_vars = list(grouping_vars)
# Always insert faceting variables
if by_facet:
facet_vars = {"col", "row"}
grouping_vars.extend(
facet_vars & set(self.variables) - set(grouping_vars)
)
# Reduce to the semantics used in this plot
grouping_vars = [
var for var in grouping_vars if var in self.variables
]
if from_comp_data:
data = self.comp_data
else:
data = self.plot_data
if dropna:
data = data.dropna()
levels = self.var_levels.copy()
if from_comp_data:
for axis in {"x", "y"} & set(grouping_vars):
if self.var_types[axis] == "categorical":
if self._var_ordered[axis]:
# If the axis is ordered, then the axes in a possible
# facet grid are by definition "shared", or there is a
# single axis with a unique cat -> idx mapping.
# So we can just take the first converter object.
converter = self.converters[axis].iloc[0]
levels[axis] = converter.convert_units(levels[axis])
else:
# Otherwise, the mappings may not be unique, but we can
# use the unique set of index values in comp_data.
levels[axis] = np.sort(data[axis].unique())
elif self.var_types[axis] == "datetime":
levels[axis] = mpl.dates.date2num(levels[axis])
elif self.var_types[axis] == "numeric" and self._log_scaled(axis):
levels[axis] = np.log10(levels[axis])
if grouping_vars:
grouped_data = data.groupby(
grouping_vars, sort=False, as_index=False
)
grouping_keys = []
for var in grouping_vars:
grouping_keys.append(levels.get(var, []))
iter_keys = itertools.product(*grouping_keys)
if reverse:
iter_keys = reversed(list(iter_keys))
for key in iter_keys:
# Pandas fails with singleton tuple inputs
pd_key = key[0] if len(key) == 1 else key
try:
data_subset = grouped_data.get_group(pd_key)
except KeyError:
# XXX we are adding this to allow backwards compatibility
# with the empty artists that old categorical plots would
# add (before 0.12), which we may decide to break, in which
# case this option could be removed
data_subset = data.loc[[]]
if data_subset.empty and not allow_empty:
continue
sub_vars = dict(zip(grouping_vars, key))
yield sub_vars, data_subset.copy()
else:
yield {}, data.copy()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L972-L1091
| 26 |
[
0,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
49,
50,
53,
54,
55,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
118,
119
] | 63.333333 |
[] | 0 | false | 97.668038 | 120 | 22 | 100 | 26 |
def iter_data(
self, grouping_vars=None, *,
reverse=False, from_comp_data=False,
by_facet=True, allow_empty=False, dropna=True,
):
# TODO should this default to using all (non x/y?) semantics?
# or define grouping vars somewhere?
if grouping_vars is None:
grouping_vars = []
elif isinstance(grouping_vars, str):
grouping_vars = [grouping_vars]
elif isinstance(grouping_vars, tuple):
grouping_vars = list(grouping_vars)
# Always insert faceting variables
if by_facet:
facet_vars = {"col", "row"}
grouping_vars.extend(
facet_vars & set(self.variables) - set(grouping_vars)
)
# Reduce to the semantics used in this plot
grouping_vars = [
var for var in grouping_vars if var in self.variables
]
if from_comp_data:
data = self.comp_data
else:
data = self.plot_data
if dropna:
data = data.dropna()
levels = self.var_levels.copy()
if from_comp_data:
for axis in {"x", "y"} & set(grouping_vars):
if self.var_types[axis] == "categorical":
if self._var_ordered[axis]:
# If the axis is ordered, then the axes in a possible
# facet grid are by definition "shared", or there is a
# single axis with a unique cat -> idx mapping.
# So we can just take the first converter object.
converter = self.converters[axis].iloc[0]
levels[axis] = converter.convert_units(levels[axis])
else:
# Otherwise, the mappings may not be unique, but we can
# use the unique set of index values in comp_data.
levels[axis] = np.sort(data[axis].unique())
elif self.var_types[axis] == "datetime":
levels[axis] = mpl.dates.date2num(levels[axis])
elif self.var_types[axis] == "numeric" and self._log_scaled(axis):
levels[axis] = np.log10(levels[axis])
if grouping_vars:
grouped_data = data.groupby(
grouping_vars, sort=False, as_index=False
)
grouping_keys = []
for var in grouping_vars:
grouping_keys.append(levels.get(var, []))
iter_keys = itertools.product(*grouping_keys)
if reverse:
iter_keys = reversed(list(iter_keys))
for key in iter_keys:
# Pandas fails with singleton tuple inputs
pd_key = key[0] if len(key) == 1 else key
try:
data_subset = grouped_data.get_group(pd_key)
except KeyError:
# XXX we are adding this to allow backwards compatibility
# with the empty artists that old categorical plots would
# add (before 0.12), which we may decide to break, in which
# case this option could be removed
data_subset = data.loc[[]]
if data_subset.empty and not allow_empty:
continue
sub_vars = dict(zip(grouping_vars, key))
yield sub_vars, data_subset.copy()
else:
yield {}, data.copy()
| 19,077 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.comp_data
|
(self)
|
return self._comp_data
|
Dataframe with numeric x and y, after unit conversion and log scaling.
|
Dataframe with numeric x and y, after unit conversion and log scaling.
| 1,094 | 1,137 |
def comp_data(self):
"""Dataframe with numeric x and y, after unit conversion and log scaling."""
if not hasattr(self, "ax"):
# Probably a good idea, but will need a bunch of tests updated
# Most of these tests should just use the external interface
# Then this can be re-enabled.
# raise AttributeError("No Axes attached to plotter")
return self.plot_data
if not hasattr(self, "_comp_data"):
comp_data = (
self.plot_data
.copy(deep=False)
.drop(["x", "y"], axis=1, errors="ignore")
)
for var in "yx":
if var not in self.variables:
continue
parts = []
grouped = self.plot_data[var].groupby(self.converters[var], sort=False)
for converter, orig in grouped:
with pd.option_context('mode.use_inf_as_na', True):
orig = orig.dropna()
if var in self.var_levels:
# TODO this should happen in some centralized location
# it is similar to GH2419, but more complicated because
# supporting `order` in categorical plots is tricky
orig = orig[orig.isin(self.var_levels[var])]
comp = pd.to_numeric(converter.convert_units(orig))
if converter.get_scale() == "log":
comp = np.log10(comp)
parts.append(pd.Series(comp, orig.index, name=orig.name))
if parts:
comp_col = pd.concat(parts)
else:
comp_col = pd.Series(dtype=float, name=var)
comp_data.insert(0, var, comp_col)
self._comp_data = comp_data
return self._comp_data
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1094-L1137
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43
] | 100 |
[] | 0 | true | 97.668038 | 44 | 10 | 100 | 1 |
def comp_data(self):
if not hasattr(self, "ax"):
# Probably a good idea, but will need a bunch of tests updated
# Most of these tests should just use the external interface
# Then this can be re-enabled.
# raise AttributeError("No Axes attached to plotter")
return self.plot_data
if not hasattr(self, "_comp_data"):
comp_data = (
self.plot_data
.copy(deep=False)
.drop(["x", "y"], axis=1, errors="ignore")
)
for var in "yx":
if var not in self.variables:
continue
parts = []
grouped = self.plot_data[var].groupby(self.converters[var], sort=False)
for converter, orig in grouped:
with pd.option_context('mode.use_inf_as_na', True):
orig = orig.dropna()
if var in self.var_levels:
# TODO this should happen in some centralized location
# it is similar to GH2419, but more complicated because
# supporting `order` in categorical plots is tricky
orig = orig[orig.isin(self.var_levels[var])]
comp = pd.to_numeric(converter.convert_units(orig))
if converter.get_scale() == "log":
comp = np.log10(comp)
parts.append(pd.Series(comp, orig.index, name=orig.name))
if parts:
comp_col = pd.concat(parts)
else:
comp_col = pd.Series(dtype=float, name=var)
comp_data.insert(0, var, comp_col)
self._comp_data = comp_data
return self._comp_data
| 19,078 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter._get_axes
|
(self, sub_vars)
|
Return an Axes object based on existence of row/col variables.
|
Return an Axes object based on existence of row/col variables.
| 1,139 | 1,152 |
def _get_axes(self, sub_vars):
"""Return an Axes object based on existence of row/col variables."""
row = sub_vars.get("row", None)
col = sub_vars.get("col", None)
if row is not None and col is not None:
return self.facets.axes_dict[(row, col)]
elif row is not None:
return self.facets.axes_dict[row]
elif col is not None:
return self.facets.axes_dict[col]
elif self.ax is None:
return self.facets.ax
else:
return self.ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1139-L1152
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
] | 100 |
[] | 0 | true | 97.668038 | 14 | 6 | 100 | 1 |
def _get_axes(self, sub_vars):
row = sub_vars.get("row", None)
col = sub_vars.get("col", None)
if row is not None and col is not None:
return self.facets.axes_dict[(row, col)]
elif row is not None:
return self.facets.axes_dict[row]
elif col is not None:
return self.facets.axes_dict[col]
elif self.ax is None:
return self.facets.ax
else:
return self.ax
| 19,079 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter._attach
|
(
self,
obj,
allowed_types=None,
log_scale=None,
)
|
Associate the plotter with an Axes manager and initialize its units.
Parameters
----------
obj : :class:`matplotlib.axes.Axes` or :class:'FacetGrid`
Structural object that we will eventually plot onto.
allowed_types : str or list of str
If provided, raise when either the x or y variable does not have
one of the declared seaborn types.
log_scale : bool, number, or pair of bools or numbers
If not False, set the axes to use log scaling, with the given
base or defaulting to 10. If a tuple, interpreted as separate
arguments for the x and y axes.
|
Associate the plotter with an Axes manager and initialize its units.
| 1,154 | 1,293 |
def _attach(
self,
obj,
allowed_types=None,
log_scale=None,
):
"""Associate the plotter with an Axes manager and initialize its units.
Parameters
----------
obj : :class:`matplotlib.axes.Axes` or :class:'FacetGrid`
Structural object that we will eventually plot onto.
allowed_types : str or list of str
If provided, raise when either the x or y variable does not have
one of the declared seaborn types.
log_scale : bool, number, or pair of bools or numbers
If not False, set the axes to use log scaling, with the given
base or defaulting to 10. If a tuple, interpreted as separate
arguments for the x and y axes.
"""
from .axisgrid import FacetGrid
if isinstance(obj, FacetGrid):
self.ax = None
self.facets = obj
ax_list = obj.axes.flatten()
if obj.col_names is not None:
self.var_levels["col"] = obj.col_names
if obj.row_names is not None:
self.var_levels["row"] = obj.row_names
else:
self.ax = obj
self.facets = None
ax_list = [obj]
# Identify which "axis" variables we have defined
axis_variables = set("xy").intersection(self.variables)
# -- Verify the types of our x and y variables here.
# This doesn't really make complete sense being here here, but it's a fine
# place for it, given the current system.
# (Note that for some plots, there might be more complicated restrictions)
# e.g. the categorical plots have their own check that as specific to the
# non-categorical axis.
if allowed_types is None:
allowed_types = ["numeric", "datetime", "categorical"]
elif isinstance(allowed_types, str):
allowed_types = [allowed_types]
for var in axis_variables:
var_type = self.var_types[var]
if var_type not in allowed_types:
err = (
f"The {var} variable is {var_type}, but one of "
f"{allowed_types} is required"
)
raise TypeError(err)
# -- Get axis objects for each row in plot_data for type conversions and scaling
facet_dim = {"x": "col", "y": "row"}
self.converters = {}
for var in axis_variables:
other_var = {"x": "y", "y": "x"}[var]
converter = pd.Series(index=self.plot_data.index, name=var, dtype=object)
share_state = getattr(self.facets, f"_share{var}", True)
# Simplest cases are that we have a single axes, all axes are shared,
# or sharing is only on the orthogonal facet dimension. In these cases,
# all datapoints get converted the same way, so use the first axis
if share_state is True or share_state == facet_dim[other_var]:
converter.loc[:] = getattr(ax_list[0], f"{var}axis")
else:
# Next simplest case is when no axes are shared, and we can
# use the axis objects within each facet
if share_state is False:
for axes_vars, axes_data in self.iter_data():
ax = self._get_axes(axes_vars)
converter.loc[axes_data.index] = getattr(ax, f"{var}axis")
# In the more complicated case, the axes are shared within each
# "file" of the facetgrid. In that case, we need to subset the data
# for that file and assign it the first axis in the slice of the grid
else:
names = getattr(self.facets, f"{share_state}_names")
for i, level in enumerate(names):
idx = (i, 0) if share_state == "row" else (0, i)
axis = getattr(self.facets.axes[idx], f"{var}axis")
converter.loc[self.plot_data[share_state] == level] = axis
# Store the converter vector, which we use elsewhere (e.g comp_data)
self.converters[var] = converter
# Now actually update the matplotlib objects to do the conversion we want
grouped = self.plot_data[var].groupby(self.converters[var], sort=False)
for converter, seed_data in grouped:
if self.var_types[var] == "categorical":
if self._var_ordered[var]:
order = self.var_levels[var]
else:
order = None
seed_data = categorical_order(seed_data, order)
converter.update_units(seed_data)
# -- Set numerical axis scales
# First unpack the log_scale argument
if log_scale is None:
scalex = scaley = False
else:
# Allow single value or x, y tuple
try:
scalex, scaley = log_scale
except TypeError:
scalex = log_scale if "x" in self.variables else False
scaley = log_scale if "y" in self.variables else False
# Now use it
for axis, scale in zip("xy", (scalex, scaley)):
if scale:
for ax in ax_list:
set_scale = getattr(ax, f"set_{axis}scale")
if scale is True:
set_scale("log")
else:
set_scale("log", base=scale)
# For categorical y, we want the "first" level to be at the top of the axis
if self.var_types.get("y", None) == "categorical":
for ax in ax_list:
try:
ax.yaxis.set_inverted(True)
except AttributeError: # mpl < 3.1
if not ax.yaxis_inverted():
ax.invert_yaxis()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1154-L1293
| 26 |
[
0,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136
] | 84.285714 |
[
137,
138,
139
] | 2.142857 | false | 97.668038 | 140 | 27 | 97.857143 | 13 |
def _attach(
self,
obj,
allowed_types=None,
log_scale=None,
):
from .axisgrid import FacetGrid
if isinstance(obj, FacetGrid):
self.ax = None
self.facets = obj
ax_list = obj.axes.flatten()
if obj.col_names is not None:
self.var_levels["col"] = obj.col_names
if obj.row_names is not None:
self.var_levels["row"] = obj.row_names
else:
self.ax = obj
self.facets = None
ax_list = [obj]
# Identify which "axis" variables we have defined
axis_variables = set("xy").intersection(self.variables)
# -- Verify the types of our x and y variables here.
# This doesn't really make complete sense being here here, but it's a fine
# place for it, given the current system.
# (Note that for some plots, there might be more complicated restrictions)
# e.g. the categorical plots have their own check that as specific to the
# non-categorical axis.
if allowed_types is None:
allowed_types = ["numeric", "datetime", "categorical"]
elif isinstance(allowed_types, str):
allowed_types = [allowed_types]
for var in axis_variables:
var_type = self.var_types[var]
if var_type not in allowed_types:
err = (
f"The {var} variable is {var_type}, but one of "
f"{allowed_types} is required"
)
raise TypeError(err)
# -- Get axis objects for each row in plot_data for type conversions and scaling
facet_dim = {"x": "col", "y": "row"}
self.converters = {}
for var in axis_variables:
other_var = {"x": "y", "y": "x"}[var]
converter = pd.Series(index=self.plot_data.index, name=var, dtype=object)
share_state = getattr(self.facets, f"_share{var}", True)
# Simplest cases are that we have a single axes, all axes are shared,
# or sharing is only on the orthogonal facet dimension. In these cases,
# all datapoints get converted the same way, so use the first axis
if share_state is True or share_state == facet_dim[other_var]:
converter.loc[:] = getattr(ax_list[0], f"{var}axis")
else:
# Next simplest case is when no axes are shared, and we can
# use the axis objects within each facet
if share_state is False:
for axes_vars, axes_data in self.iter_data():
ax = self._get_axes(axes_vars)
converter.loc[axes_data.index] = getattr(ax, f"{var}axis")
# In the more complicated case, the axes are shared within each
# "file" of the facetgrid. In that case, we need to subset the data
# for that file and assign it the first axis in the slice of the grid
else:
names = getattr(self.facets, f"{share_state}_names")
for i, level in enumerate(names):
idx = (i, 0) if share_state == "row" else (0, i)
axis = getattr(self.facets.axes[idx], f"{var}axis")
converter.loc[self.plot_data[share_state] == level] = axis
# Store the converter vector, which we use elsewhere (e.g comp_data)
self.converters[var] = converter
# Now actually update the matplotlib objects to do the conversion we want
grouped = self.plot_data[var].groupby(self.converters[var], sort=False)
for converter, seed_data in grouped:
if self.var_types[var] == "categorical":
if self._var_ordered[var]:
order = self.var_levels[var]
else:
order = None
seed_data = categorical_order(seed_data, order)
converter.update_units(seed_data)
# -- Set numerical axis scales
# First unpack the log_scale argument
if log_scale is None:
scalex = scaley = False
else:
# Allow single value or x, y tuple
try:
scalex, scaley = log_scale
except TypeError:
scalex = log_scale if "x" in self.variables else False
scaley = log_scale if "y" in self.variables else False
# Now use it
for axis, scale in zip("xy", (scalex, scaley)):
if scale:
for ax in ax_list:
set_scale = getattr(ax, f"set_{axis}scale")
if scale is True:
set_scale("log")
else:
set_scale("log", base=scale)
# For categorical y, we want the "first" level to be at the top of the axis
if self.var_types.get("y", None) == "categorical":
for ax in ax_list:
try:
ax.yaxis.set_inverted(True)
except AttributeError: # mpl < 3.1
if not ax.yaxis_inverted():
ax.invert_yaxis()
| 19,080 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter._log_scaled
|
(self, axis)
|
return any(log_scaled)
|
Return True if specified axis is log scaled on all attached axes.
|
Return True if specified axis is log scaled on all attached axes.
| 1,297 | 1,315 |
def _log_scaled(self, axis):
"""Return True if specified axis is log scaled on all attached axes."""
if not hasattr(self, "ax"):
return False
if self.ax is None:
axes_list = self.facets.axes.flatten()
else:
axes_list = [self.ax]
log_scaled = []
for ax in axes_list:
data_axis = getattr(ax, f"{axis}axis")
log_scaled.append(data_axis.get_scale() == "log")
if any(log_scaled) and not all(log_scaled):
raise RuntimeError("Axis scaling is not consistent")
return any(log_scaled)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1297-L1315
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
17,
18
] | 94.736842 |
[
16
] | 5.263158 | false | 97.668038 | 19 | 6 | 94.736842 | 1 |
def _log_scaled(self, axis):
if not hasattr(self, "ax"):
return False
if self.ax is None:
axes_list = self.facets.axes.flatten()
else:
axes_list = [self.ax]
log_scaled = []
for ax in axes_list:
data_axis = getattr(ax, f"{axis}axis")
log_scaled.append(data_axis.get_scale() == "log")
if any(log_scaled) and not all(log_scaled):
raise RuntimeError("Axis scaling is not consistent")
return any(log_scaled)
| 19,081 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter._add_axis_labels
|
(self, ax, default_x="", default_y="")
|
Add axis labels if not present, set visibility to match ticklabels.
|
Add axis labels if not present, set visibility to match ticklabels.
| 1,317 | 1,328 |
def _add_axis_labels(self, ax, default_x="", default_y=""):
"""Add axis labels if not present, set visibility to match ticklabels."""
# TODO ax could default to None and use attached axes if present
# but what to do about the case of facets? Currently using FacetGrid's
# set_axis_labels method, which doesn't add labels to the interior even
# when the axes are not shared. Maybe that makes sense?
if not ax.get_xlabel():
x_visible = any(t.get_visible() for t in ax.get_xticklabels())
ax.set_xlabel(self.variables.get("x", default_x), visible=x_visible)
if not ax.get_ylabel():
y_visible = any(t.get_visible() for t in ax.get_yticklabels())
ax.set_ylabel(self.variables.get("y", default_y), visible=y_visible)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1317-L1328
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11
] | 100 |
[] | 0 | true | 97.668038 | 12 | 3 | 100 | 1 |
def _add_axis_labels(self, ax, default_x="", default_y=""):
# TODO ax could default to None and use attached axes if present
# but what to do about the case of facets? Currently using FacetGrid's
# set_axis_labels method, which doesn't add labels to the interior even
# when the axes are not shared. Maybe that makes sense?
if not ax.get_xlabel():
x_visible = any(t.get_visible() for t in ax.get_xticklabels())
ax.set_xlabel(self.variables.get("x", default_x), visible=x_visible)
if not ax.get_ylabel():
y_visible = any(t.get_visible() for t in ax.get_yticklabels())
ax.set_ylabel(self.variables.get("y", default_y), visible=y_visible)
| 19,082 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.scale_native
|
(self, axis, *args, **kwargs)
| 1,335 | 1,339 |
def scale_native(self, axis, *args, **kwargs):
# Default, defer to matplotlib
raise NotImplementedError
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1335-L1339
| 26 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 97.668038 | 5 | 1 | 100 | 0 |
def scale_native(self, axis, *args, **kwargs):
# Default, defer to matplotlib
raise NotImplementedError
| 19,083 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.scale_numeric
|
(self, axis, *args, **kwargs)
| 1,341 | 1,346 |
def scale_numeric(self, axis, *args, **kwargs):
# Feels needed to completeness, what should it do?
# Perhaps handle log scaling? Set the ticker/formatter/limits?
raise NotImplementedError
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1341-L1346
| 26 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 97.668038 | 6 | 1 | 100 | 0 |
def scale_numeric(self, axis, *args, **kwargs):
# Feels needed to completeness, what should it do?
# Perhaps handle log scaling? Set the ticker/formatter/limits?
raise NotImplementedError
| 19,084 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.scale_datetime
|
(self, axis, *args, **kwargs)
| 1,348 | 1,353 |
def scale_datetime(self, axis, *args, **kwargs):
# Use pd.to_datetime to convert strings or numbers to datetime objects
# Note, use day-resolution for numeric->datetime to match matplotlib
raise NotImplementedError
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1348-L1353
| 26 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 97.668038 | 6 | 1 | 100 | 0 |
def scale_datetime(self, axis, *args, **kwargs):
# Use pd.to_datetime to convert strings or numbers to datetime objects
# Note, use day-resolution for numeric->datetime to match matplotlib
raise NotImplementedError
| 19,085 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VectorPlotter.scale_categorical
|
(self, axis, order=None, formatter=None)
|
return self
|
Enforce categorical (fixed-scale) rules for the data on given axis.
Parameters
----------
axis : "x" or "y"
Axis of the plot to operate on.
order : list
Order that unique values should appear in.
formatter : callable
Function mapping values to a string representation.
Returns
-------
self
|
Enforce categorical (fixed-scale) rules for the data on given axis.
| 1,355 | 1,446 |
def scale_categorical(self, axis, order=None, formatter=None):
"""
Enforce categorical (fixed-scale) rules for the data on given axis.
Parameters
----------
axis : "x" or "y"
Axis of the plot to operate on.
order : list
Order that unique values should appear in.
formatter : callable
Function mapping values to a string representation.
Returns
-------
self
"""
# This method both modifies the internal representation of the data
# (converting it to string) and sets some attributes on self. It might be
# a good idea to have a separate object attached to self that contains the
# information in those attributes (i.e. whether to enforce variable order
# across facets, the order to use) similar to the SemanticMapping objects
# we have for semantic variables. That object could also hold the converter
# objects that get used, if we can decouple those from an existing axis
# (cf. https://github.com/matplotlib/matplotlib/issues/19229).
# There are some interactions with faceting information that would need
# to be thought through, since the converts to use depend on facets.
# If we go that route, these methods could become "borrowed" methods similar
# to what happens with the alternate semantic mapper constructors, although
# that approach is kind of fussy and confusing.
# TODO this method could also set the grid state? Since we like to have no
# grid on the categorical axis by default. Again, a case where we'll need to
# store information until we use it, so best to have a way to collect the
# attributes that this method sets.
# TODO if we are going to set visual properties of the axes with these methods,
# then we could do the steps currently in CategoricalPlotter._adjust_cat_axis
# TODO another, and distinct idea, is to expose a cut= param here
_check_argument("axis", ["x", "y"], axis)
# Categorical plots can be "univariate" in which case they get an anonymous
# category label on the opposite axis.
if axis not in self.variables:
self.variables[axis] = None
self.var_types[axis] = "categorical"
self.plot_data[axis] = ""
# If the "categorical" variable has a numeric type, sort the rows so that
# the default result from categorical_order has those values sorted after
# they have been coerced to strings. The reason for this is so that later
# we can get facet-wise orders that are correct.
# XXX Should this also sort datetimes?
# It feels more consistent, but technically will be a default change
# If so, should also change categorical_order to behave that way
if self.var_types[axis] == "numeric":
self.plot_data = self.plot_data.sort_values(axis, kind="mergesort")
# Now get a reference to the categorical data vector
cat_data = self.plot_data[axis]
# Get the initial categorical order, which we do before string
# conversion to respect the original types of the order list.
# Track whether the order is given explicitly so that we can know
# whether or not to use the order constructed here downstream
self._var_ordered[axis] = order is not None or cat_data.dtype.name == "category"
order = pd.Index(categorical_order(cat_data, order))
# Then convert data to strings. This is because in matplotlib,
# "categorical" data really mean "string" data, so doing this artists
# will be drawn on the categorical axis with a fixed scale.
# TODO implement formatter here; check that it returns strings?
if formatter is not None:
cat_data = cat_data.map(formatter)
order = order.map(formatter)
else:
cat_data = cat_data.astype(str)
order = order.astype(str)
# Update the levels list with the type-converted order variable
self.var_levels[axis] = order
# Now ensure that seaborn will use categorical rules internally
self.var_types[axis] = "categorical"
# Put the string-typed categorical vector back into the plot_data structure
self.plot_data[axis] = cat_data
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1355-L1446
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91
] | 100 |
[] | 0 | true | 97.668038 | 92 | 5 | 100 | 14 |
def scale_categorical(self, axis, order=None, formatter=None):
# This method both modifies the internal representation of the data
# (converting it to string) and sets some attributes on self. It might be
# a good idea to have a separate object attached to self that contains the
# information in those attributes (i.e. whether to enforce variable order
# across facets, the order to use) similar to the SemanticMapping objects
# we have for semantic variables. That object could also hold the converter
# objects that get used, if we can decouple those from an existing axis
# (cf. https://github.com/matplotlib/matplotlib/issues/19229).
# There are some interactions with faceting information that would need
# to be thought through, since the converts to use depend on facets.
# If we go that route, these methods could become "borrowed" methods similar
# to what happens with the alternate semantic mapper constructors, although
# that approach is kind of fussy and confusing.
# TODO this method could also set the grid state? Since we like to have no
# grid on the categorical axis by default. Again, a case where we'll need to
# store information until we use it, so best to have a way to collect the
# attributes that this method sets.
# TODO if we are going to set visual properties of the axes with these methods,
# then we could do the steps currently in CategoricalPlotter._adjust_cat_axis
# TODO another, and distinct idea, is to expose a cut= param here
_check_argument("axis", ["x", "y"], axis)
# Categorical plots can be "univariate" in which case they get an anonymous
# category label on the opposite axis.
if axis not in self.variables:
self.variables[axis] = None
self.var_types[axis] = "categorical"
self.plot_data[axis] = ""
# If the "categorical" variable has a numeric type, sort the rows so that
# the default result from categorical_order has those values sorted after
# they have been coerced to strings. The reason for this is so that later
# we can get facet-wise orders that are correct.
# XXX Should this also sort datetimes?
# It feels more consistent, but technically will be a default change
# If so, should also change categorical_order to behave that way
if self.var_types[axis] == "numeric":
self.plot_data = self.plot_data.sort_values(axis, kind="mergesort")
# Now get a reference to the categorical data vector
cat_data = self.plot_data[axis]
# Get the initial categorical order, which we do before string
# conversion to respect the original types of the order list.
# Track whether the order is given explicitly so that we can know
# whether or not to use the order constructed here downstream
self._var_ordered[axis] = order is not None or cat_data.dtype.name == "category"
order = pd.Index(categorical_order(cat_data, order))
# Then convert data to strings. This is because in matplotlib,
# "categorical" data really mean "string" data, so doing this artists
# will be drawn on the categorical axis with a fixed scale.
# TODO implement formatter here; check that it returns strings?
if formatter is not None:
cat_data = cat_data.map(formatter)
order = order.map(formatter)
else:
cat_data = cat_data.astype(str)
order = order.astype(str)
# Update the levels list with the type-converted order variable
self.var_levels[axis] = order
# Now ensure that seaborn will use categorical rules internally
self.var_types[axis] = "categorical"
# Put the string-typed categorical vector back into the plot_data structure
self.plot_data[axis] = cat_data
return self
| 19,086 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VariableType.__init__
|
(self, data)
| 1,460 | 1,462 |
def __init__(self, data):
assert data in self.allowed, data
super().__init__(data)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1460-L1462
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 97.668038 | 3 | 2 | 100 | 0 |
def __init__(self, data):
assert data in self.allowed, data
super().__init__(data)
| 19,087 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_oldcore.py
|
VariableType.__eq__
|
(self, other)
|
return self.data == other
| 1,464 | 1,466 |
def __eq__(self, other):
assert other in self.allowed, other
return self.data == other
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_oldcore.py#L1464-L1466
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 97.668038 | 3 | 2 | 100 | 0 |
def __eq__(self, other):
assert other in self.allowed, other
return self.data == other
| 19,088 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_decorators.py
|
share_init_params_with_map
|
(cls)
|
return cls
|
Make cls.map a classmethod with same signature as cls.__init__.
|
Make cls.map a classmethod with same signature as cls.__init__.
| 4 | 16 |
def share_init_params_with_map(cls):
"""Make cls.map a classmethod with same signature as cls.__init__."""
map_sig = signature(cls.map)
init_sig = signature(cls.__init__)
new = [v for k, v in init_sig.parameters.items() if k != "self"]
new.insert(0, map_sig.parameters["cls"])
cls.map.__signature__ = map_sig.replace(parameters=new)
cls.map.__doc__ = cls.__init__.__doc__
cls.map = classmethod(cls.map)
return cls
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_decorators.py#L4-L16
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 100 | 13 | 2 | 100 | 1 |
def share_init_params_with_map(cls):
map_sig = signature(cls.map)
init_sig = signature(cls.__init__)
new = [v for k, v in init_sig.parameters.items() if k != "self"]
new.insert(0, map_sig.parameters["cls"])
cls.map.__signature__ = map_sig.replace(parameters=new)
cls.map.__doc__ = cls.__init__.__doc__
cls.map = classmethod(cls.map)
return cls
| 19,089 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/palettes.py
|
_patch_colormap_display
|
()
|
Simplify the rich display of matplotlib color maps in a notebook.
|
Simplify the rich display of matplotlib color maps in a notebook.
| 94 | 119 |
def _patch_colormap_display():
"""Simplify the rich display of matplotlib color maps in a notebook."""
def _repr_png_(self):
"""Generate a PNG representation of the Colormap."""
import io
from PIL import Image
import numpy as np
IMAGE_SIZE = (400, 50)
X = np.tile(np.linspace(0, 1, IMAGE_SIZE[0]), (IMAGE_SIZE[1], 1))
pixels = self(X, bytes=True)
png_bytes = io.BytesIO()
Image.fromarray(pixels).save(png_bytes, format='png')
return png_bytes.getvalue()
def _repr_html_(self):
"""Generate an HTML representation of the Colormap."""
import base64
png_bytes = self._repr_png_()
png_base64 = base64.b64encode(png_bytes).decode('ascii')
return ('<img '
+ 'alt="' + self.name + ' color map" '
+ 'title="' + self.name + '"'
+ 'src="data:image/png;base64,' + png_base64 + '">')
mpl.colors.Colormap._repr_png_ = _repr_png_
mpl.colors.Colormap._repr_html_ = _repr_html_
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/palettes.py#L94-L119
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25
] | 100 |
[] | 0 | true | 99.6 | 26 | 3 | 100 | 1 |
def _patch_colormap_display():
def _repr_png_(self):
import io
from PIL import Image
import numpy as np
IMAGE_SIZE = (400, 50)
X = np.tile(np.linspace(0, 1, IMAGE_SIZE[0]), (IMAGE_SIZE[1], 1))
pixels = self(X, bytes=True)
png_bytes = io.BytesIO()
Image.fromarray(pixels).save(png_bytes, format='png')
return png_bytes.getvalue()
def _repr_html_(self):
import base64
png_bytes = self._repr_png_()
png_base64 = base64.b64encode(png_bytes).decode('ascii')
return ('<img '
+ 'alt="' + self.name + ' color map" '
+ 'title="' + self.name + '"'
+ 'src="data:image/png;base64,' + png_base64 + '">')
mpl.colors.Colormap._repr_png_ = _repr_png_
mpl.colors.Colormap._repr_html_ = _repr_html_
| 19,090 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/palettes.py
|
color_palette
|
(palette=None, n_colors=None, desat=None, as_cmap=False)
|
return palette
|
Return a list of colors or continuous colormap defining a palette.
Possible ``palette`` values include:
- Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind)
- Name of matplotlib colormap
- 'husl' or 'hls'
- 'ch:<cubehelix arguments>'
- 'light:<color>', 'dark:<color>', 'blend:<color>,<color>',
- A sequence of colors in any format matplotlib accepts
Calling this function with ``palette=None`` will return the current
matplotlib color cycle.
This function can also be used in a ``with`` statement to temporarily
set the color cycle for a plot or set of plots.
See the :ref:`tutorial <palette_tutorial>` for more information.
Parameters
----------
palette : None, string, or sequence, optional
Name of palette or None to return current palette. If a sequence, input
colors are used but possibly cycled and desaturated.
n_colors : int, optional
Number of colors in the palette. If ``None``, the default will depend
on how ``palette`` is specified. Named palettes default to 6 colors,
but grabbing the current palette or passing in a list of colors will
not change the number of colors unless this is specified. Asking for
more colors than exist in the palette will cause it to cycle. Ignored
when ``as_cmap`` is True.
desat : float, optional
Proportion to desaturate each color by.
as_cmap : bool
If True, return a :class:`matplotlib.colors.ListedColormap`.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
set_palette : Set the default color cycle for all plots.
set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to
colors from one of the seaborn palettes.
Examples
--------
.. include:: ../docstrings/color_palette.rst
|
Return a list of colors or continuous colormap defining a palette.
| 122 | 255 |
def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False):
"""Return a list of colors or continuous colormap defining a palette.
Possible ``palette`` values include:
- Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind)
- Name of matplotlib colormap
- 'husl' or 'hls'
- 'ch:<cubehelix arguments>'
- 'light:<color>', 'dark:<color>', 'blend:<color>,<color>',
- A sequence of colors in any format matplotlib accepts
Calling this function with ``palette=None`` will return the current
matplotlib color cycle.
This function can also be used in a ``with`` statement to temporarily
set the color cycle for a plot or set of plots.
See the :ref:`tutorial <palette_tutorial>` for more information.
Parameters
----------
palette : None, string, or sequence, optional
Name of palette or None to return current palette. If a sequence, input
colors are used but possibly cycled and desaturated.
n_colors : int, optional
Number of colors in the palette. If ``None``, the default will depend
on how ``palette`` is specified. Named palettes default to 6 colors,
but grabbing the current palette or passing in a list of colors will
not change the number of colors unless this is specified. Asking for
more colors than exist in the palette will cause it to cycle. Ignored
when ``as_cmap`` is True.
desat : float, optional
Proportion to desaturate each color by.
as_cmap : bool
If True, return a :class:`matplotlib.colors.ListedColormap`.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
set_palette : Set the default color cycle for all plots.
set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to
colors from one of the seaborn palettes.
Examples
--------
.. include:: ../docstrings/color_palette.rst
"""
if palette is None:
palette = get_color_cycle()
if n_colors is None:
n_colors = len(palette)
elif not isinstance(palette, str):
palette = palette
if n_colors is None:
n_colors = len(palette)
else:
if n_colors is None:
# Use all colors in a qualitative palette or 6 of another kind
n_colors = QUAL_PALETTE_SIZES.get(palette, 6)
if palette in SEABORN_PALETTES:
# Named "seaborn variant" of matplotlib default color cycle
palette = SEABORN_PALETTES[palette]
elif palette == "hls":
# Evenly spaced colors in cylindrical RGB space
palette = hls_palette(n_colors, as_cmap=as_cmap)
elif palette == "husl":
# Evenly spaced colors in cylindrical Lab space
palette = husl_palette(n_colors, as_cmap=as_cmap)
elif palette.lower() == "jet":
# Paternalism
raise ValueError("No.")
elif palette.startswith("ch:"):
# Cubehelix palette with params specified in string
args, kwargs = _parse_cubehelix_args(palette)
palette = cubehelix_palette(n_colors, *args, **kwargs, as_cmap=as_cmap)
elif palette.startswith("light:"):
# light palette to color specified in string
_, color = palette.split(":")
reverse = color.endswith("_r")
if reverse:
color = color[:-2]
palette = light_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)
elif palette.startswith("dark:"):
# light palette to color specified in string
_, color = palette.split(":")
reverse = color.endswith("_r")
if reverse:
color = color[:-2]
palette = dark_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)
elif palette.startswith("blend:"):
# blend palette between colors specified in string
_, colors = palette.split(":")
colors = colors.split(",")
palette = blend_palette(colors, n_colors, as_cmap=as_cmap)
else:
try:
# Perhaps a named matplotlib colormap?
palette = mpl_palette(palette, n_colors, as_cmap=as_cmap)
except (ValueError, KeyError): # Error class changed in mpl36
raise ValueError(f"{palette!r} is not a valid palette name")
if desat is not None:
palette = [desaturate(c, desat) for c in palette]
if not as_cmap:
# Always return as many colors as we asked for
pal_cycle = cycle(palette)
palette = [next(pal_cycle) for _ in range(n_colors)]
# Always return in r, g, b tuple format
try:
palette = map(mpl.colors.colorConverter.to_rgb, palette)
palette = _ColorPalette(palette)
except ValueError:
raise ValueError(f"Could not generate a palette for {palette}")
return palette
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/palettes.py#L122-L255
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133
] | 100 |
[] | 0 | true | 99.6 | 134 | 22 | 100 | 49 |
def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False):
if palette is None:
palette = get_color_cycle()
if n_colors is None:
n_colors = len(palette)
elif not isinstance(palette, str):
palette = palette
if n_colors is None:
n_colors = len(palette)
else:
if n_colors is None:
# Use all colors in a qualitative palette or 6 of another kind
n_colors = QUAL_PALETTE_SIZES.get(palette, 6)
if palette in SEABORN_PALETTES:
# Named "seaborn variant" of matplotlib default color cycle
palette = SEABORN_PALETTES[palette]
elif palette == "hls":
# Evenly spaced colors in cylindrical RGB space
palette = hls_palette(n_colors, as_cmap=as_cmap)
elif palette == "husl":
# Evenly spaced colors in cylindrical Lab space
palette = husl_palette(n_colors, as_cmap=as_cmap)
elif palette.lower() == "jet":
# Paternalism
raise ValueError("No.")
elif palette.startswith("ch:"):
# Cubehelix palette with params specified in string
args, kwargs = _parse_cubehelix_args(palette)
palette = cubehelix_palette(n_colors, *args, **kwargs, as_cmap=as_cmap)
elif palette.startswith("light:"):
# light palette to color specified in string
_, color = palette.split(":")
reverse = color.endswith("_r")
if reverse:
color = color[:-2]
palette = light_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)
elif palette.startswith("dark:"):
# light palette to color specified in string
_, color = palette.split(":")
reverse = color.endswith("_r")
if reverse:
color = color[:-2]
palette = dark_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)
elif palette.startswith("blend:"):
# blend palette between colors specified in string
_, colors = palette.split(":")
colors = colors.split(",")
palette = blend_palette(colors, n_colors, as_cmap=as_cmap)
else:
try:
# Perhaps a named matplotlib colormap?
palette = mpl_palette(palette, n_colors, as_cmap=as_cmap)
except (ValueError, KeyError): # Error class changed in mpl36
raise ValueError(f"{palette!r} is not a valid palette name")
if desat is not None:
palette = [desaturate(c, desat) for c in palette]
if not as_cmap:
# Always return as many colors as we asked for
pal_cycle = cycle(palette)
palette = [next(pal_cycle) for _ in range(n_colors)]
# Always return in r, g, b tuple format
try:
palette = map(mpl.colors.colorConverter.to_rgb, palette)
palette = _ColorPalette(palette)
except ValueError:
raise ValueError(f"Could not generate a palette for {palette}")
return palette
| 19,091 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/palettes.py
|
hls_palette
|
(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False)
|
Return hues with constant lightness and saturation in the HLS system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
.. note::
While the separation of the resulting colors will be mathematically
constant, the HLS system does not construct a perceptually-uniform space,
so their apparent intensity will vary.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
husl_palette : Make a palette using evenly spaced hues in the HUSL system.
Examples
--------
.. include:: ../docstrings/hls_palette.rst
|
Return hues with constant lightness and saturation in the HLS system.
| 258 | 309 |
def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa
"""
Return hues with constant lightness and saturation in the HLS system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
.. note::
While the separation of the resulting colors will be mathematically
constant, the HLS system does not construct a perceptually-uniform space,
so their apparent intensity will vary.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
husl_palette : Make a palette using evenly spaced hues in the HUSL system.
Examples
--------
.. include:: ../docstrings/hls_palette.rst
"""
if as_cmap:
n_colors = 256
hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]
hues += h
hues %= 1
hues -= hues.astype(int)
palette = [colorsys.hls_to_rgb(h_i, l, s) for h_i in hues]
if as_cmap:
return mpl.colors.ListedColormap(palette, "hls")
else:
return _ColorPalette(palette)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/palettes.py#L258-L309
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51
] | 100 |
[] | 0 | true | 99.6 | 52 | 4 | 100 | 37 |
def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa
if as_cmap:
n_colors = 256
hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]
hues += h
hues %= 1
hues -= hues.astype(int)
palette = [colorsys.hls_to_rgb(h_i, l, s) for h_i in hues]
if as_cmap:
return mpl.colors.ListedColormap(palette, "hls")
else:
return _ColorPalette(palette)
| 19,092 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/palettes.py
|
husl_palette
|
(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False)
|
Return hues with constant lightness and saturation in the HUSL system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
This function is similar to :func:`hls_palette`, but it uses a nonlinear color
space that is more perceptually uniform.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
hls_palette : Make a palette using evenly spaced hues in the HSL system.
Examples
--------
.. include:: ../docstrings/husl_palette.rst
|
Return hues with constant lightness and saturation in the HUSL system.
| 312 | 363 |
def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa
"""
Return hues with constant lightness and saturation in the HUSL system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
This function is similar to :func:`hls_palette`, but it uses a nonlinear color
space that is more perceptually uniform.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
hls_palette : Make a palette using evenly spaced hues in the HSL system.
Examples
--------
.. include:: ../docstrings/husl_palette.rst
"""
if as_cmap:
n_colors = 256
hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]
hues += h
hues %= 1
hues *= 359
s *= 99
l *= 99 # noqa
palette = [_color_to_rgb((h_i, s, l), input="husl") for h_i in hues]
if as_cmap:
return mpl.colors.ListedColormap(palette, "hsl")
else:
return _ColorPalette(palette)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/palettes.py#L312-L363
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51
] | 100 |
[] | 0 | true | 99.6 | 52 | 4 | 100 | 35 |
def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa
if as_cmap:
n_colors = 256
hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]
hues += h
hues %= 1
hues *= 359
s *= 99
l *= 99 # noqa
palette = [_color_to_rgb((h_i, s, l), input="husl") for h_i in hues]
if as_cmap:
return mpl.colors.ListedColormap(palette, "hsl")
else:
return _ColorPalette(palette)
| 19,093 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/palettes.py
|
mpl_palette
|
(name, n_colors=6, as_cmap=False)
|
Return a palette or colormap from the matplotlib registry.
For continuous palettes, evenly-spaced discrete samples are chosen while
excluding the minimum and maximum value in the colormap to provide better
contrast at the extremes.
For qualitative palettes (e.g. those from colorbrewer), exact values are
indexed (rather than interpolated), but fewer than `n_colors` can be returned
if the palette does not define that many.
Parameters
----------
name : string
Name of the palette. This should be a named matplotlib colormap.
n_colors : int
Number of discrete colors in the palette.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
Examples
--------
.. include: ../docstrings/mpl_palette.rst
|
Return a palette or colormap from the matplotlib registry.
| 366 | 417 |
def mpl_palette(name, n_colors=6, as_cmap=False):
"""
Return a palette or colormap from the matplotlib registry.
For continuous palettes, evenly-spaced discrete samples are chosen while
excluding the minimum and maximum value in the colormap to provide better
contrast at the extremes.
For qualitative palettes (e.g. those from colorbrewer), exact values are
indexed (rather than interpolated), but fewer than `n_colors` can be returned
if the palette does not define that many.
Parameters
----------
name : string
Name of the palette. This should be a named matplotlib colormap.
n_colors : int
Number of discrete colors in the palette.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
Examples
--------
.. include: ../docstrings/mpl_palette.rst
"""
if name.endswith("_d"):
sub_name = name[:-2]
if sub_name.endswith("_r"):
reverse = True
sub_name = sub_name[:-2]
else:
reverse = False
pal = color_palette(sub_name, 2) + ["#333333"]
if reverse:
pal = pal[::-1]
cmap = blend_palette(pal, n_colors, as_cmap=True)
else:
cmap = get_colormap(name)
if name in MPL_QUAL_PALS:
bins = np.linspace(0, 1, MPL_QUAL_PALS[name])[:n_colors]
else:
bins = np.linspace(0, 1, int(n_colors) + 2)[1:-1]
palette = list(map(tuple, cmap(bins)[:, :3]))
if as_cmap:
return cmap
else:
return _ColorPalette(palette)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/palettes.py#L366-L417
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51
] | 100 |
[] | 0 | true | 99.6 | 52 | 6 | 100 | 24 |
def mpl_palette(name, n_colors=6, as_cmap=False):
if name.endswith("_d"):
sub_name = name[:-2]
if sub_name.endswith("_r"):
reverse = True
sub_name = sub_name[:-2]
else:
reverse = False
pal = color_palette(sub_name, 2) + ["#333333"]
if reverse:
pal = pal[::-1]
cmap = blend_palette(pal, n_colors, as_cmap=True)
else:
cmap = get_colormap(name)
if name in MPL_QUAL_PALS:
bins = np.linspace(0, 1, MPL_QUAL_PALS[name])[:n_colors]
else:
bins = np.linspace(0, 1, int(n_colors) + 2)[1:-1]
palette = list(map(tuple, cmap(bins)[:, :3]))
if as_cmap:
return cmap
else:
return _ColorPalette(palette)
| 19,094 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.