nwo
stringlengths 10
28
| sha
stringlengths 40
40
| path
stringlengths 11
97
| identifier
stringlengths 1
64
| parameters
stringlengths 2
2.24k
| return_statement
stringlengths 0
2.17k
| docstring
stringlengths 0
5.45k
| docstring_summary
stringlengths 0
3.83k
| func_begin
int64 1
13.4k
| func_end
int64 2
13.4k
| function
stringlengths 28
56.4k
| url
stringlengths 106
209
| project
int64 1
48
| executed_lines
list | executed_lines_pc
float64 0
153
| missing_lines
list | missing_lines_pc
float64 0
100
| covered
bool 2
classes | filecoverage
float64 2.53
100
| function_lines
int64 2
1.46k
| mccabe
int64 1
253
| coverage
float64 0
100
| docstring_lines
int64 0
112
| function_nodoc
stringlengths 9
56.4k
| id
int64 0
29.8k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
_DendrogramPlotter.calculated_linkage
|
(self)
|
return self._calculate_linkage_scipy()
| 552 | 562 |
def calculated_linkage(self):
try:
return self._calculate_linkage_fastcluster()
except ImportError:
if np.product(self.shape) >= 10000:
msg = ("Clustering large matrix with scipy. Installing "
"`fastcluster` may give better performance.")
warnings.warn(msg)
return self._calculate_linkage_scipy()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L552-L562
| 26 |
[
0,
1
] | 18.181818 |
[
2,
3,
4,
5,
6,
8,
10
] | 63.636364 | false | 42.46824 | 11 | 3 | 36.363636 | 0 |
def calculated_linkage(self):
try:
return self._calculate_linkage_fastcluster()
except ImportError:
if np.product(self.shape) >= 10000:
msg = ("Clustering large matrix with scipy. Installing "
"`fastcluster` may give better performance.")
warnings.warn(msg)
return self._calculate_linkage_scipy()
| 19,195 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
_DendrogramPlotter.calculate_dendrogram
|
(self)
|
return hierarchy.dendrogram(self.linkage, no_plot=True,
color_threshold=-np.inf)
|
Calculates a dendrogram based on the linkage matrix
Made a separate function, not a property because don't want to
recalculate the dendrogram every time it is accessed.
Returns
-------
dendrogram : dict
Dendrogram dictionary as returned by scipy.cluster.hierarchy
.dendrogram. The important key-value pairing is
"reordered_ind" which indicates the re-ordering of the matrix
|
Calculates a dendrogram based on the linkage matrix
| 564 | 578 |
def calculate_dendrogram(self):
"""Calculates a dendrogram based on the linkage matrix
Made a separate function, not a property because don't want to
recalculate the dendrogram every time it is accessed.
Returns
-------
dendrogram : dict
Dendrogram dictionary as returned by scipy.cluster.hierarchy
.dendrogram. The important key-value pairing is
"reordered_ind" which indicates the re-ordering of the matrix
"""
return hierarchy.dendrogram(self.linkage, no_plot=True,
color_threshold=-np.inf)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L564-L578
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 86.666667 |
[
13
] | 6.666667 | false | 42.46824 | 15 | 1 | 93.333333 | 11 |
def calculate_dendrogram(self):
return hierarchy.dendrogram(self.linkage, no_plot=True,
color_threshold=-np.inf)
| 19,196 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
_DendrogramPlotter.reordered_ind
|
(self)
|
return self.dendrogram['leaves']
|
Indices of the matrix, reordered by the dendrogram
|
Indices of the matrix, reordered by the dendrogram
| 581 | 583 |
def reordered_ind(self):
"""Indices of the matrix, reordered by the dendrogram"""
return self.dendrogram['leaves']
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L581-L583
| 26 |
[
0,
1
] | 66.666667 |
[
2
] | 33.333333 | false | 42.46824 | 3 | 1 | 66.666667 | 1 |
def reordered_ind(self):
return self.dendrogram['leaves']
| 19,197 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
_DendrogramPlotter.plot
|
(self, ax, tree_kws)
|
return self
|
Plots a dendrogram of the similarities between data on the axes
Parameters
----------
ax : matplotlib.axes.Axes
Axes object upon which the dendrogram is plotted
|
Plots a dendrogram of the similarities between data on the axes
| 585 | 639 |
def plot(self, ax, tree_kws):
"""Plots a dendrogram of the similarities between data on the axes
Parameters
----------
ax : matplotlib.axes.Axes
Axes object upon which the dendrogram is plotted
"""
tree_kws = {} if tree_kws is None else tree_kws.copy()
tree_kws.setdefault("linewidths", .5)
tree_kws.setdefault("colors", tree_kws.pop("color", (.2, .2, .2)))
if self.rotate and self.axis == 0:
coords = zip(self.dependent_coord, self.independent_coord)
else:
coords = zip(self.independent_coord, self.dependent_coord)
lines = LineCollection([list(zip(x, y)) for x, y in coords],
**tree_kws)
ax.add_collection(lines)
number_of_leaves = len(self.reordered_ind)
max_dependent_coord = max(map(max, self.dependent_coord))
if self.rotate:
ax.yaxis.set_ticks_position('right')
# Constants 10 and 1.05 come from
# `scipy.cluster.hierarchy._plot_dendrogram`
ax.set_ylim(0, number_of_leaves * 10)
ax.set_xlim(0, max_dependent_coord * 1.05)
ax.invert_xaxis()
ax.invert_yaxis()
else:
# Constants 10 and 1.05 come from
# `scipy.cluster.hierarchy._plot_dendrogram`
ax.set_xlim(0, number_of_leaves * 10)
ax.set_ylim(0, max_dependent_coord * 1.05)
despine(ax=ax, bottom=True, left=True)
ax.set(xticks=self.xticks, yticks=self.yticks,
xlabel=self.xlabel, ylabel=self.ylabel)
xtl = ax.set_xticklabels(self.xticklabels)
ytl = ax.set_yticklabels(self.yticklabels, rotation='vertical')
# Force a draw of the plot to avoid matplotlib window error
_draw_figure(ax.figure)
if len(ytl) > 0 and axis_ticklabels_overlap(ytl):
plt.setp(ytl, rotation="horizontal")
if len(xtl) > 0 and axis_ticklabels_overlap(xtl):
plt.setp(xtl, rotation="vertical")
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L585-L639
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 16.363636 |
[
9,
10,
11,
13,
14,
16,
17,
20,
21,
22,
24,
25,
29,
30,
32,
33,
37,
38,
40,
42,
44,
45,
48,
50,
51,
52,
53,
54
] | 50.909091 | false | 42.46824 | 55 | 9 | 49.090909 | 6 |
def plot(self, ax, tree_kws):
tree_kws = {} if tree_kws is None else tree_kws.copy()
tree_kws.setdefault("linewidths", .5)
tree_kws.setdefault("colors", tree_kws.pop("color", (.2, .2, .2)))
if self.rotate and self.axis == 0:
coords = zip(self.dependent_coord, self.independent_coord)
else:
coords = zip(self.independent_coord, self.dependent_coord)
lines = LineCollection([list(zip(x, y)) for x, y in coords],
**tree_kws)
ax.add_collection(lines)
number_of_leaves = len(self.reordered_ind)
max_dependent_coord = max(map(max, self.dependent_coord))
if self.rotate:
ax.yaxis.set_ticks_position('right')
# Constants 10 and 1.05 come from
# `scipy.cluster.hierarchy._plot_dendrogram`
ax.set_ylim(0, number_of_leaves * 10)
ax.set_xlim(0, max_dependent_coord * 1.05)
ax.invert_xaxis()
ax.invert_yaxis()
else:
# Constants 10 and 1.05 come from
# `scipy.cluster.hierarchy._plot_dendrogram`
ax.set_xlim(0, number_of_leaves * 10)
ax.set_ylim(0, max_dependent_coord * 1.05)
despine(ax=ax, bottom=True, left=True)
ax.set(xticks=self.xticks, yticks=self.yticks,
xlabel=self.xlabel, ylabel=self.ylabel)
xtl = ax.set_xticklabels(self.xticklabels)
ytl = ax.set_yticklabels(self.yticklabels, rotation='vertical')
# Force a draw of the plot to avoid matplotlib window error
_draw_figure(ax.figure)
if len(ytl) > 0 and axis_ticklabels_overlap(ytl):
plt.setp(ytl, rotation="horizontal")
if len(xtl) > 0 and axis_ticklabels_overlap(xtl):
plt.setp(xtl, rotation="vertical")
return self
| 19,198 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.__init__
|
(self, data, pivot_kws=None, z_score=None, standard_scale=None,
figsize=None, row_colors=None, col_colors=None, mask=None,
dendrogram_ratio=None, colors_ratio=None, cbar_pos=None)
|
Grid object for organizing clustered heatmap input on to axes
|
Grid object for organizing clustered heatmap input on to axes
| 698 | 772 |
def __init__(self, data, pivot_kws=None, z_score=None, standard_scale=None,
figsize=None, row_colors=None, col_colors=None, mask=None,
dendrogram_ratio=None, colors_ratio=None, cbar_pos=None):
"""Grid object for organizing clustered heatmap input on to axes"""
if _no_scipy:
raise RuntimeError("ClusterGrid requires scipy to be available")
if isinstance(data, pd.DataFrame):
self.data = data
else:
self.data = pd.DataFrame(data)
self.data2d = self.format_data(self.data, pivot_kws, z_score,
standard_scale)
self.mask = _matrix_mask(self.data2d, mask)
self._figure = plt.figure(figsize=figsize)
self.row_colors, self.row_color_labels = \
self._preprocess_colors(data, row_colors, axis=0)
self.col_colors, self.col_color_labels = \
self._preprocess_colors(data, col_colors, axis=1)
try:
row_dendrogram_ratio, col_dendrogram_ratio = dendrogram_ratio
except TypeError:
row_dendrogram_ratio = col_dendrogram_ratio = dendrogram_ratio
try:
row_colors_ratio, col_colors_ratio = colors_ratio
except TypeError:
row_colors_ratio = col_colors_ratio = colors_ratio
width_ratios = self.dim_ratios(self.row_colors,
row_dendrogram_ratio,
row_colors_ratio)
height_ratios = self.dim_ratios(self.col_colors,
col_dendrogram_ratio,
col_colors_ratio)
nrows = 2 if self.col_colors is None else 3
ncols = 2 if self.row_colors is None else 3
self.gs = gridspec.GridSpec(nrows, ncols,
width_ratios=width_ratios,
height_ratios=height_ratios)
self.ax_row_dendrogram = self._figure.add_subplot(self.gs[-1, 0])
self.ax_col_dendrogram = self._figure.add_subplot(self.gs[0, -1])
self.ax_row_dendrogram.set_axis_off()
self.ax_col_dendrogram.set_axis_off()
self.ax_row_colors = None
self.ax_col_colors = None
if self.row_colors is not None:
self.ax_row_colors = self._figure.add_subplot(
self.gs[-1, 1])
if self.col_colors is not None:
self.ax_col_colors = self._figure.add_subplot(
self.gs[1, -1])
self.ax_heatmap = self._figure.add_subplot(self.gs[-1, -1])
if cbar_pos is None:
self.ax_cbar = self.cax = None
else:
# Initialize the colorbar axes in the gridspec so that tight_layout
# works. We will move it where it belongs later. This is a hack.
self.ax_cbar = self._figure.add_subplot(self.gs[0, 0])
self.cax = self.ax_cbar # Backwards compatibility
self.cbar_pos = cbar_pos
self.dendrogram_row = None
self.dendrogram_col = None
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L698-L772
| 26 |
[
0,
3,
4,
5,
6
] | 6.666667 |
[
7,
8,
10,
12,
15,
17,
19,
21,
24,
25,
26,
27,
29,
30,
31,
32,
34,
37,
41,
42,
44,
48,
49,
50,
51,
53,
54,
56,
57,
59,
60,
63,
64,
65,
69,
70,
71,
73,
74
] | 52 | false | 42.46824 | 75 | 8 | 48 | 1 |
def __init__(self, data, pivot_kws=None, z_score=None, standard_scale=None,
figsize=None, row_colors=None, col_colors=None, mask=None,
dendrogram_ratio=None, colors_ratio=None, cbar_pos=None):
if _no_scipy:
raise RuntimeError("ClusterGrid requires scipy to be available")
if isinstance(data, pd.DataFrame):
self.data = data
else:
self.data = pd.DataFrame(data)
self.data2d = self.format_data(self.data, pivot_kws, z_score,
standard_scale)
self.mask = _matrix_mask(self.data2d, mask)
self._figure = plt.figure(figsize=figsize)
self.row_colors, self.row_color_labels = \
self._preprocess_colors(data, row_colors, axis=0)
self.col_colors, self.col_color_labels = \
self._preprocess_colors(data, col_colors, axis=1)
try:
row_dendrogram_ratio, col_dendrogram_ratio = dendrogram_ratio
except TypeError:
row_dendrogram_ratio = col_dendrogram_ratio = dendrogram_ratio
try:
row_colors_ratio, col_colors_ratio = colors_ratio
except TypeError:
row_colors_ratio = col_colors_ratio = colors_ratio
width_ratios = self.dim_ratios(self.row_colors,
row_dendrogram_ratio,
row_colors_ratio)
height_ratios = self.dim_ratios(self.col_colors,
col_dendrogram_ratio,
col_colors_ratio)
nrows = 2 if self.col_colors is None else 3
ncols = 2 if self.row_colors is None else 3
self.gs = gridspec.GridSpec(nrows, ncols,
width_ratios=width_ratios,
height_ratios=height_ratios)
self.ax_row_dendrogram = self._figure.add_subplot(self.gs[-1, 0])
self.ax_col_dendrogram = self._figure.add_subplot(self.gs[0, -1])
self.ax_row_dendrogram.set_axis_off()
self.ax_col_dendrogram.set_axis_off()
self.ax_row_colors = None
self.ax_col_colors = None
if self.row_colors is not None:
self.ax_row_colors = self._figure.add_subplot(
self.gs[-1, 1])
if self.col_colors is not None:
self.ax_col_colors = self._figure.add_subplot(
self.gs[1, -1])
self.ax_heatmap = self._figure.add_subplot(self.gs[-1, -1])
if cbar_pos is None:
self.ax_cbar = self.cax = None
else:
# Initialize the colorbar axes in the gridspec so that tight_layout
# works. We will move it where it belongs later. This is a hack.
self.ax_cbar = self._figure.add_subplot(self.gs[0, 0])
self.cax = self.ax_cbar # Backwards compatibility
self.cbar_pos = cbar_pos
self.dendrogram_row = None
self.dendrogram_col = None
| 19,199 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid._preprocess_colors
|
(self, data, colors, axis)
|
return colors, labels
|
Preprocess {row/col}_colors to extract labels and convert colors.
|
Preprocess {row/col}_colors to extract labels and convert colors.
| 774 | 814 |
def _preprocess_colors(self, data, colors, axis):
"""Preprocess {row/col}_colors to extract labels and convert colors."""
labels = None
if colors is not None:
if isinstance(colors, (pd.DataFrame, pd.Series)):
# If data is unindexed, raise
if (not hasattr(data, "index") and axis == 0) or (
not hasattr(data, "columns") and axis == 1
):
axis_name = "col" if axis else "row"
msg = (f"{axis_name}_colors indices can't be matched with data "
f"indices. Provide {axis_name}_colors as a non-indexed "
"datatype, e.g. by using `.to_numpy()``")
raise TypeError(msg)
# Ensure colors match data indices
if axis == 0:
colors = colors.reindex(data.index)
else:
colors = colors.reindex(data.columns)
# Replace na's with white color
# TODO We should set these to transparent instead
colors = colors.astype(object).fillna('white')
# Extract color values and labels from frame/series
if isinstance(colors, pd.DataFrame):
labels = list(colors.columns)
colors = colors.T.values
else:
if colors.name is None:
labels = [""]
else:
labels = [colors.name]
colors = colors.values
colors = _convert_colors(colors)
return colors, labels
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L774-L814
| 26 |
[
0,
1
] | 4.878049 |
[
2,
4,
5,
8,
11,
12,
15,
18,
19,
21,
25,
28,
29,
30,
32,
33,
35,
36,
38,
40
] | 48.780488 | false | 42.46824 | 41 | 10 | 51.219512 | 1 |
def _preprocess_colors(self, data, colors, axis):
labels = None
if colors is not None:
if isinstance(colors, (pd.DataFrame, pd.Series)):
# If data is unindexed, raise
if (not hasattr(data, "index") and axis == 0) or (
not hasattr(data, "columns") and axis == 1
):
axis_name = "col" if axis else "row"
msg = (f"{axis_name}_colors indices can't be matched with data "
f"indices. Provide {axis_name}_colors as a non-indexed "
"datatype, e.g. by using `.to_numpy()``")
raise TypeError(msg)
# Ensure colors match data indices
if axis == 0:
colors = colors.reindex(data.index)
else:
colors = colors.reindex(data.columns)
# Replace na's with white color
# TODO We should set these to transparent instead
colors = colors.astype(object).fillna('white')
# Extract color values and labels from frame/series
if isinstance(colors, pd.DataFrame):
labels = list(colors.columns)
colors = colors.T.values
else:
if colors.name is None:
labels = [""]
else:
labels = [colors.name]
colors = colors.values
colors = _convert_colors(colors)
return colors, labels
| 19,200 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.format_data
|
(self, data, pivot_kws, z_score=None,
standard_scale=None)
|
return data2d
|
Extract variables from data or use directly.
|
Extract variables from data or use directly.
| 816 | 834 |
def format_data(self, data, pivot_kws, z_score=None,
standard_scale=None):
"""Extract variables from data or use directly."""
# Either the data is already in 2d matrix format, or need to do a pivot
if pivot_kws is not None:
data2d = data.pivot(**pivot_kws)
else:
data2d = data
if z_score is not None and standard_scale is not None:
raise ValueError(
'Cannot perform both z-scoring and standard-scaling on data')
if z_score is not None:
data2d = self.z_score(data2d, z_score)
if standard_scale is not None:
data2d = self.standard_scale(data2d, standard_scale)
return data2d
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L816-L834
| 26 |
[
0
] | 5.263158 |
[
5,
6,
8,
10,
11,
14,
15,
16,
17,
18
] | 52.631579 | false | 42.46824 | 19 | 6 | 47.368421 | 1 |
def format_data(self, data, pivot_kws, z_score=None,
standard_scale=None):
# Either the data is already in 2d matrix format, or need to do a pivot
if pivot_kws is not None:
data2d = data.pivot(**pivot_kws)
else:
data2d = data
if z_score is not None and standard_scale is not None:
raise ValueError(
'Cannot perform both z-scoring and standard-scaling on data')
if z_score is not None:
data2d = self.z_score(data2d, z_score)
if standard_scale is not None:
data2d = self.standard_scale(data2d, standard_scale)
return data2d
| 19,201 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.z_score
|
(data2d, axis=1)
|
Standarize the mean and variance of the data axis
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
normalized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
|
Standarize the mean and variance of the data axis
| 837 | 864 |
def z_score(data2d, axis=1):
"""Standarize the mean and variance of the data axis
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
normalized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
"""
if axis == 1:
z_scored = data2d
else:
z_scored = data2d.T
z_scored = (z_scored - z_scored.mean()) / z_scored.std()
if axis == 1:
return z_scored
else:
return z_scored.T
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L837-L864
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 60.714286 |
[
17,
18,
20,
22,
24,
25,
27
] | 25 | false | 42.46824 | 28 | 3 | 75 | 15 |
def z_score(data2d, axis=1):
if axis == 1:
z_scored = data2d
else:
z_scored = data2d.T
z_scored = (z_scored - z_scored.mean()) / z_scored.std()
if axis == 1:
return z_scored
else:
return z_scored.T
| 19,202 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.standard_scale
|
(data2d, axis=1)
|
Divide the data by the difference between the max and min
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
standardized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
|
Divide the data by the difference between the max and min
| 867 | 898 |
def standard_scale(data2d, axis=1):
"""Divide the data by the difference between the max and min
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
standardized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
"""
# Normalize these values to range from 0 to 1
if axis == 1:
standardized = data2d
else:
standardized = data2d.T
subtract = standardized.min()
standardized = (standardized - subtract) / (
standardized.max() - standardized.min())
if axis == 1:
return standardized
else:
return standardized.T
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L867-L898
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 59.375 |
[
19,
20,
22,
24,
25,
28,
29,
31
] | 25 | false | 42.46824 | 32 | 3 | 75 | 15 |
def standard_scale(data2d, axis=1):
# Normalize these values to range from 0 to 1
if axis == 1:
standardized = data2d
else:
standardized = data2d.T
subtract = standardized.min()
standardized = (standardized - subtract) / (
standardized.max() - standardized.min())
if axis == 1:
return standardized
else:
return standardized.T
| 19,203 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.dim_ratios
|
(self, colors, dendrogram_ratio, colors_ratio)
|
return ratios
|
Get the proportions of the figure taken up by each axes.
|
Get the proportions of the figure taken up by each axes.
| 900 | 916 |
def dim_ratios(self, colors, dendrogram_ratio, colors_ratio):
"""Get the proportions of the figure taken up by each axes."""
ratios = [dendrogram_ratio]
if colors is not None:
# Colors are encoded as rgb, so there is an extra dimension
if np.ndim(colors) > 2:
n_colors = len(colors)
else:
n_colors = 1
ratios += [n_colors * colors_ratio]
# Add the ratio for the heatmap itself
ratios.append(1 - sum(ratios))
return ratios
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L900-L916
| 26 |
[
0,
1
] | 11.764706 |
[
2,
4,
6,
7,
9,
11,
14,
16
] | 47.058824 | false | 42.46824 | 17 | 3 | 52.941176 | 1 |
def dim_ratios(self, colors, dendrogram_ratio, colors_ratio):
ratios = [dendrogram_ratio]
if colors is not None:
# Colors are encoded as rgb, so there is an extra dimension
if np.ndim(colors) > 2:
n_colors = len(colors)
else:
n_colors = 1
ratios += [n_colors * colors_ratio]
# Add the ratio for the heatmap itself
ratios.append(1 - sum(ratios))
return ratios
| 19,204 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.color_list_to_matrix_and_cmap
|
(colors, ind, axis=0)
|
return matrix, cmap
|
Turns a list of colors into a numpy matrix and matplotlib colormap
These arguments can now be plotted using heatmap(matrix, cmap)
and the provided colors will be plotted.
Parameters
----------
colors : list of matplotlib colors
Colors to label the rows or columns of a dataframe.
ind : list of ints
Ordering of the rows or columns, to reorder the original colors
by the clustered dendrogram order
axis : int
Which axis this is labeling
Returns
-------
matrix : numpy.array
A numpy array of integer values, where each indexes into the cmap
cmap : matplotlib.colors.ListedColormap
|
Turns a list of colors into a numpy matrix and matplotlib colormap
| 919 | 968 |
def color_list_to_matrix_and_cmap(colors, ind, axis=0):
"""Turns a list of colors into a numpy matrix and matplotlib colormap
These arguments can now be plotted using heatmap(matrix, cmap)
and the provided colors will be plotted.
Parameters
----------
colors : list of matplotlib colors
Colors to label the rows or columns of a dataframe.
ind : list of ints
Ordering of the rows or columns, to reorder the original colors
by the clustered dendrogram order
axis : int
Which axis this is labeling
Returns
-------
matrix : numpy.array
A numpy array of integer values, where each indexes into the cmap
cmap : matplotlib.colors.ListedColormap
"""
try:
mpl.colors.to_rgb(colors[0])
except ValueError:
# We have a 2D color structure
m, n = len(colors), len(colors[0])
if not all(len(c) == n for c in colors[1:]):
raise ValueError("Multiple side color vectors must have same size")
else:
# We have one vector of colors
m, n = 1, len(colors)
colors = [colors]
# Map from unique colors to colormap index value
unique_colors = {}
matrix = np.zeros((m, n), int)
for i, inner in enumerate(colors):
for j, color in enumerate(inner):
idx = unique_colors.setdefault(color, len(unique_colors))
matrix[i, j] = idx
# Reorder for clustering and transpose for axis
matrix = matrix[:, ind]
if axis == 0:
matrix = matrix.T
cmap = mpl.colors.ListedColormap(list(unique_colors))
return matrix, cmap
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L919-L968
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 46 |
[
23,
24,
25,
27,
28,
29,
32,
33,
36,
37,
38,
39,
40,
41,
44,
45,
46,
48,
49
] | 38 | false | 42.46824 | 50 | 6 | 62 | 20 |
def color_list_to_matrix_and_cmap(colors, ind, axis=0):
try:
mpl.colors.to_rgb(colors[0])
except ValueError:
# We have a 2D color structure
m, n = len(colors), len(colors[0])
if not all(len(c) == n for c in colors[1:]):
raise ValueError("Multiple side color vectors must have same size")
else:
# We have one vector of colors
m, n = 1, len(colors)
colors = [colors]
# Map from unique colors to colormap index value
unique_colors = {}
matrix = np.zeros((m, n), int)
for i, inner in enumerate(colors):
for j, color in enumerate(inner):
idx = unique_colors.setdefault(color, len(unique_colors))
matrix[i, j] = idx
# Reorder for clustering and transpose for axis
matrix = matrix[:, ind]
if axis == 0:
matrix = matrix.T
cmap = mpl.colors.ListedColormap(list(unique_colors))
return matrix, cmap
| 19,205 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.plot_dendrograms
|
(self, row_cluster, col_cluster, metric, method,
row_linkage, col_linkage, tree_kws)
| 970 | 993 |
def plot_dendrograms(self, row_cluster, col_cluster, metric, method,
row_linkage, col_linkage, tree_kws):
# Plot the row dendrogram
if row_cluster:
self.dendrogram_row = dendrogram(
self.data2d, metric=metric, method=method, label=False, axis=0,
ax=self.ax_row_dendrogram, rotate=True, linkage=row_linkage,
tree_kws=tree_kws
)
else:
self.ax_row_dendrogram.set_xticks([])
self.ax_row_dendrogram.set_yticks([])
# PLot the column dendrogram
if col_cluster:
self.dendrogram_col = dendrogram(
self.data2d, metric=metric, method=method, label=False,
axis=1, ax=self.ax_col_dendrogram, linkage=col_linkage,
tree_kws=tree_kws
)
else:
self.ax_col_dendrogram.set_xticks([])
self.ax_col_dendrogram.set_yticks([])
despine(ax=self.ax_row_dendrogram, bottom=True, left=True)
despine(ax=self.ax_col_dendrogram, bottom=True, left=True)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L970-L993
| 26 |
[
0
] | 4.166667 |
[
3,
4,
10,
11,
13,
14,
20,
21,
22,
23
] | 41.666667 | false | 42.46824 | 24 | 3 | 58.333333 | 0 |
def plot_dendrograms(self, row_cluster, col_cluster, metric, method,
row_linkage, col_linkage, tree_kws):
# Plot the row dendrogram
if row_cluster:
self.dendrogram_row = dendrogram(
self.data2d, metric=metric, method=method, label=False, axis=0,
ax=self.ax_row_dendrogram, rotate=True, linkage=row_linkage,
tree_kws=tree_kws
)
else:
self.ax_row_dendrogram.set_xticks([])
self.ax_row_dendrogram.set_yticks([])
# PLot the column dendrogram
if col_cluster:
self.dendrogram_col = dendrogram(
self.data2d, metric=metric, method=method, label=False,
axis=1, ax=self.ax_col_dendrogram, linkage=col_linkage,
tree_kws=tree_kws
)
else:
self.ax_col_dendrogram.set_xticks([])
self.ax_col_dendrogram.set_yticks([])
despine(ax=self.ax_row_dendrogram, bottom=True, left=True)
despine(ax=self.ax_col_dendrogram, bottom=True, left=True)
| 19,206 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.plot_colors
|
(self, xind, yind, **kws)
|
Plots color labels between the dendrogram and the heatmap
Parameters
----------
heatmap_kws : dict
Keyword arguments heatmap
|
Plots color labels between the dendrogram and the heatmap
| 995 | 1,058 |
def plot_colors(self, xind, yind, **kws):
"""Plots color labels between the dendrogram and the heatmap
Parameters
----------
heatmap_kws : dict
Keyword arguments heatmap
"""
# Remove any custom colormap and centering
# TODO this code has consistently caused problems when we
# have missed kwargs that need to be excluded that it might
# be better to rewrite *in*clusively.
kws = kws.copy()
kws.pop('cmap', None)
kws.pop('norm', None)
kws.pop('center', None)
kws.pop('annot', None)
kws.pop('vmin', None)
kws.pop('vmax', None)
kws.pop('robust', None)
kws.pop('xticklabels', None)
kws.pop('yticklabels', None)
# Plot the row colors
if self.row_colors is not None:
matrix, cmap = self.color_list_to_matrix_and_cmap(
self.row_colors, yind, axis=0)
# Get row_color labels
if self.row_color_labels is not None:
row_color_labels = self.row_color_labels
else:
row_color_labels = False
heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_row_colors,
xticklabels=row_color_labels, yticklabels=False, **kws)
# Adjust rotation of labels
if row_color_labels is not False:
plt.setp(self.ax_row_colors.get_xticklabels(), rotation=90)
else:
despine(self.ax_row_colors, left=True, bottom=True)
# Plot the column colors
if self.col_colors is not None:
matrix, cmap = self.color_list_to_matrix_and_cmap(
self.col_colors, xind, axis=1)
# Get col_color labels
if self.col_color_labels is not None:
col_color_labels = self.col_color_labels
else:
col_color_labels = False
heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_col_colors,
xticklabels=False, yticklabels=col_color_labels, **kws)
# Adjust rotation of labels, place on right side
if col_color_labels is not False:
self.ax_col_colors.yaxis.tick_right()
plt.setp(self.ax_col_colors.get_yticklabels(), rotation=0)
else:
despine(self.ax_col_colors, left=True, bottom=True)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L995-L1058
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 20.3125 |
[
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
25,
26,
30,
31,
33,
35,
39,
40,
42,
45,
46,
50,
51,
53,
55,
59,
60,
61,
63
] | 45.3125 | false | 42.46824 | 64 | 7 | 54.6875 | 6 |
def plot_colors(self, xind, yind, **kws):
# Remove any custom colormap and centering
# TODO this code has consistently caused problems when we
# have missed kwargs that need to be excluded that it might
# be better to rewrite *in*clusively.
kws = kws.copy()
kws.pop('cmap', None)
kws.pop('norm', None)
kws.pop('center', None)
kws.pop('annot', None)
kws.pop('vmin', None)
kws.pop('vmax', None)
kws.pop('robust', None)
kws.pop('xticklabels', None)
kws.pop('yticklabels', None)
# Plot the row colors
if self.row_colors is not None:
matrix, cmap = self.color_list_to_matrix_and_cmap(
self.row_colors, yind, axis=0)
# Get row_color labels
if self.row_color_labels is not None:
row_color_labels = self.row_color_labels
else:
row_color_labels = False
heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_row_colors,
xticklabels=row_color_labels, yticklabels=False, **kws)
# Adjust rotation of labels
if row_color_labels is not False:
plt.setp(self.ax_row_colors.get_xticklabels(), rotation=90)
else:
despine(self.ax_row_colors, left=True, bottom=True)
# Plot the column colors
if self.col_colors is not None:
matrix, cmap = self.color_list_to_matrix_and_cmap(
self.col_colors, xind, axis=1)
# Get col_color labels
if self.col_color_labels is not None:
col_color_labels = self.col_color_labels
else:
col_color_labels = False
heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_col_colors,
xticklabels=False, yticklabels=col_color_labels, **kws)
# Adjust rotation of labels, place on right side
if col_color_labels is not False:
self.ax_col_colors.yaxis.tick_right()
plt.setp(self.ax_col_colors.get_yticklabels(), rotation=0)
else:
despine(self.ax_col_colors, left=True, bottom=True)
| 19,207 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.plot_matrix
|
(self, colorbar_kws, xind, yind, **kws)
| 1,060 | 1,115 |
def plot_matrix(self, colorbar_kws, xind, yind, **kws):
self.data2d = self.data2d.iloc[yind, xind]
self.mask = self.mask.iloc[yind, xind]
# Try to reorganize specified tick labels, if provided
xtl = kws.pop("xticklabels", "auto")
try:
xtl = np.asarray(xtl)[xind]
except (TypeError, IndexError):
pass
ytl = kws.pop("yticklabels", "auto")
try:
ytl = np.asarray(ytl)[yind]
except (TypeError, IndexError):
pass
# Reorganize the annotations to match the heatmap
annot = kws.pop("annot", None)
if annot is None or annot is False:
pass
else:
if isinstance(annot, bool):
annot_data = self.data2d
else:
annot_data = np.asarray(annot)
if annot_data.shape != self.data2d.shape:
err = "`data` and `annot` must have same shape."
raise ValueError(err)
annot_data = annot_data[yind][:, xind]
annot = annot_data
# Setting ax_cbar=None in clustermap call implies no colorbar
kws.setdefault("cbar", self.ax_cbar is not None)
heatmap(self.data2d, ax=self.ax_heatmap, cbar_ax=self.ax_cbar,
cbar_kws=colorbar_kws, mask=self.mask,
xticklabels=xtl, yticklabels=ytl, annot=annot, **kws)
ytl = self.ax_heatmap.get_yticklabels()
ytl_rot = None if not ytl else ytl[0].get_rotation()
self.ax_heatmap.yaxis.set_ticks_position('right')
self.ax_heatmap.yaxis.set_label_position('right')
if ytl_rot is not None:
ytl = self.ax_heatmap.get_yticklabels()
plt.setp(ytl, rotation=ytl_rot)
tight_params = dict(h_pad=.02, w_pad=.02)
if self.ax_cbar is None:
self._figure.tight_layout(**tight_params)
else:
# Turn the colorbar axes off for tight layout so that its
# ticks don't interfere with the rest of the plot layout.
# Then move it.
self.ax_cbar.set_axis_off()
self._figure.tight_layout(**tight_params)
self.ax_cbar.set_axis_on()
self.ax_cbar.set_position(self.cbar_pos)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L1060-L1115
| 26 |
[
0
] | 1.785714 |
[
1,
2,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
17,
18,
19,
21,
22,
24,
25,
26,
27,
28,
29,
32,
33,
37,
38,
39,
40,
41,
42,
43,
45,
46,
47,
52,
53,
54,
55
] | 69.642857 | false | 42.46824 | 56 | 9 | 30.357143 | 0 |
def plot_matrix(self, colorbar_kws, xind, yind, **kws):
self.data2d = self.data2d.iloc[yind, xind]
self.mask = self.mask.iloc[yind, xind]
# Try to reorganize specified tick labels, if provided
xtl = kws.pop("xticklabels", "auto")
try:
xtl = np.asarray(xtl)[xind]
except (TypeError, IndexError):
pass
ytl = kws.pop("yticklabels", "auto")
try:
ytl = np.asarray(ytl)[yind]
except (TypeError, IndexError):
pass
# Reorganize the annotations to match the heatmap
annot = kws.pop("annot", None)
if annot is None or annot is False:
pass
else:
if isinstance(annot, bool):
annot_data = self.data2d
else:
annot_data = np.asarray(annot)
if annot_data.shape != self.data2d.shape:
err = "`data` and `annot` must have same shape."
raise ValueError(err)
annot_data = annot_data[yind][:, xind]
annot = annot_data
# Setting ax_cbar=None in clustermap call implies no colorbar
kws.setdefault("cbar", self.ax_cbar is not None)
heatmap(self.data2d, ax=self.ax_heatmap, cbar_ax=self.ax_cbar,
cbar_kws=colorbar_kws, mask=self.mask,
xticklabels=xtl, yticklabels=ytl, annot=annot, **kws)
ytl = self.ax_heatmap.get_yticklabels()
ytl_rot = None if not ytl else ytl[0].get_rotation()
self.ax_heatmap.yaxis.set_ticks_position('right')
self.ax_heatmap.yaxis.set_label_position('right')
if ytl_rot is not None:
ytl = self.ax_heatmap.get_yticklabels()
plt.setp(ytl, rotation=ytl_rot)
tight_params = dict(h_pad=.02, w_pad=.02)
if self.ax_cbar is None:
self._figure.tight_layout(**tight_params)
else:
# Turn the colorbar axes off for tight layout so that its
# ticks don't interfere with the rest of the plot layout.
# Then move it.
self.ax_cbar.set_axis_off()
self._figure.tight_layout(**tight_params)
self.ax_cbar.set_axis_on()
self.ax_cbar.set_position(self.cbar_pos)
| 19,208 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/matrix.py
|
ClusterGrid.plot
|
(self, metric, method, colorbar_kws, row_cluster, col_cluster,
row_linkage, col_linkage, tree_kws, **kws)
|
return self
| 1,117 | 1,143 |
def plot(self, metric, method, colorbar_kws, row_cluster, col_cluster,
row_linkage, col_linkage, tree_kws, **kws):
# heatmap square=True sets the aspect ratio on the axes, but that is
# not compatible with the multi-axes layout of clustergrid
if kws.get("square", False):
msg = "``square=True`` ignored in clustermap"
warnings.warn(msg)
kws.pop("square")
colorbar_kws = {} if colorbar_kws is None else colorbar_kws
self.plot_dendrograms(row_cluster, col_cluster, metric, method,
row_linkage=row_linkage, col_linkage=col_linkage,
tree_kws=tree_kws)
try:
xind = self.dendrogram_col.reordered_ind
except AttributeError:
xind = np.arange(self.data2d.shape[1])
try:
yind = self.dendrogram_row.reordered_ind
except AttributeError:
yind = np.arange(self.data2d.shape[0])
self.plot_colors(xind, yind, **kws)
self.plot_matrix(colorbar_kws, xind, yind, **kws)
return self
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/matrix.py#L1117-L1143
| 26 |
[
0
] | 3.703704 |
[
5,
6,
7,
8,
10,
12,
15,
16,
17,
18,
19,
20,
21,
22,
24,
25,
26
] | 62.962963 | false | 42.46824 | 27 | 4 | 37.037037 | 0 |
def plot(self, metric, method, colorbar_kws, row_cluster, col_cluster,
row_linkage, col_linkage, tree_kws, **kws):
# heatmap square=True sets the aspect ratio on the axes, but that is
# not compatible with the multi-axes layout of clustergrid
if kws.get("square", False):
msg = "``square=True`` ignored in clustermap"
warnings.warn(msg)
kws.pop("square")
colorbar_kws = {} if colorbar_kws is None else colorbar_kws
self.plot_dendrograms(row_cluster, col_cluster, metric, method,
row_linkage=row_linkage, col_linkage=col_linkage,
tree_kws=tree_kws)
try:
xind = self.dendrogram_col.reordered_ind
except AttributeError:
xind = np.arange(self.data2d.shape[1])
try:
yind = self.dendrogram_row.reordered_ind
except AttributeError:
yind = np.arange(self.data2d.shape[0])
self.plot_colors(xind, yind, **kws)
self.plot_matrix(colorbar_kws, xind, yind, **kws)
return self
| 19,209 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/algorithms.py
|
bootstrap
|
(*args, **kwargs)
|
return np.array(boot_dist)
|
Resample one or more arrays with replacement and store aggregate values.
Positional arguments are a sequence of arrays to bootstrap along the first
axis and pass to a summary function.
Keyword arguments:
n_boot : int, default=10000
Number of iterations
axis : int, default=None
Will pass axis to ``func`` as a keyword argument.
units : array, default=None
Array of sampling unit IDs. When used the bootstrap resamples units
and then observations within units instead of individual
datapoints.
func : string or callable, default="mean"
Function to call on the args that are passed in. If string, uses as
name of function in the numpy namespace. If nans are present in the
data, will try to use nan-aware version of named function.
seed : Generator | SeedSequence | RandomState | int | None
Seed for the random number generator; useful if you want
reproducible resamples.
Returns
-------
boot_dist: array
array of bootstrapped statistic values
|
Resample one or more arrays with replacement and store aggregate values.
| 6 | 101 |
def bootstrap(*args, **kwargs):
"""Resample one or more arrays with replacement and store aggregate values.
Positional arguments are a sequence of arrays to bootstrap along the first
axis and pass to a summary function.
Keyword arguments:
n_boot : int, default=10000
Number of iterations
axis : int, default=None
Will pass axis to ``func`` as a keyword argument.
units : array, default=None
Array of sampling unit IDs. When used the bootstrap resamples units
and then observations within units instead of individual
datapoints.
func : string or callable, default="mean"
Function to call on the args that are passed in. If string, uses as
name of function in the numpy namespace. If nans are present in the
data, will try to use nan-aware version of named function.
seed : Generator | SeedSequence | RandomState | int | None
Seed for the random number generator; useful if you want
reproducible resamples.
Returns
-------
boot_dist: array
array of bootstrapped statistic values
"""
# Ensure list of arrays are same length
if len(np.unique(list(map(len, args)))) > 1:
raise ValueError("All input arrays must have the same length")
n = len(args[0])
# Default keyword arguments
n_boot = kwargs.get("n_boot", 10000)
func = kwargs.get("func", "mean")
axis = kwargs.get("axis", None)
units = kwargs.get("units", None)
random_seed = kwargs.get("random_seed", None)
if random_seed is not None:
msg = "`random_seed` has been renamed to `seed` and will be removed"
warnings.warn(msg)
seed = kwargs.get("seed", random_seed)
if axis is None:
func_kwargs = dict()
else:
func_kwargs = dict(axis=axis)
# Initialize the resampler
if isinstance(seed, np.random.RandomState):
rng = seed
else:
rng = np.random.default_rng(seed)
# Coerce to arrays
args = list(map(np.asarray, args))
if units is not None:
units = np.asarray(units)
if isinstance(func, str):
# Allow named numpy functions
f = getattr(np, func)
# Try to use nan-aware version of function if necessary
missing_data = np.isnan(np.sum(np.column_stack(args)))
if missing_data and not func.startswith("nan"):
nanf = getattr(np, f"nan{func}", None)
if nanf is None:
msg = f"Data contain nans but no nan-aware version of `{func}` found"
warnings.warn(msg, UserWarning)
else:
f = nanf
else:
f = func
# Handle numpy changes
try:
integers = rng.integers
except AttributeError:
integers = rng.randint
# Do the bootstrap
if units is not None:
return _structured_bootstrap(args, n_boot, units, f,
func_kwargs, integers)
boot_dist = []
for i in range(int(n_boot)):
resampler = integers(0, n, n, dtype=np.intp) # intp is indexing dtype
sample = [a.take(resampler, axis=0) for a in args]
boot_dist.append(f(*sample, **func_kwargs))
return np.array(boot_dist)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/algorithms.py#L6-L101
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95
] | 100 |
[] | 0 | true | 100 | 96 | 14 | 100 | 26 |
def bootstrap(*args, **kwargs):
# Ensure list of arrays are same length
if len(np.unique(list(map(len, args)))) > 1:
raise ValueError("All input arrays must have the same length")
n = len(args[0])
# Default keyword arguments
n_boot = kwargs.get("n_boot", 10000)
func = kwargs.get("func", "mean")
axis = kwargs.get("axis", None)
units = kwargs.get("units", None)
random_seed = kwargs.get("random_seed", None)
if random_seed is not None:
msg = "`random_seed` has been renamed to `seed` and will be removed"
warnings.warn(msg)
seed = kwargs.get("seed", random_seed)
if axis is None:
func_kwargs = dict()
else:
func_kwargs = dict(axis=axis)
# Initialize the resampler
if isinstance(seed, np.random.RandomState):
rng = seed
else:
rng = np.random.default_rng(seed)
# Coerce to arrays
args = list(map(np.asarray, args))
if units is not None:
units = np.asarray(units)
if isinstance(func, str):
# Allow named numpy functions
f = getattr(np, func)
# Try to use nan-aware version of function if necessary
missing_data = np.isnan(np.sum(np.column_stack(args)))
if missing_data and not func.startswith("nan"):
nanf = getattr(np, f"nan{func}", None)
if nanf is None:
msg = f"Data contain nans but no nan-aware version of `{func}` found"
warnings.warn(msg, UserWarning)
else:
f = nanf
else:
f = func
# Handle numpy changes
try:
integers = rng.integers
except AttributeError:
integers = rng.randint
# Do the bootstrap
if units is not None:
return _structured_bootstrap(args, n_boot, units, f,
func_kwargs, integers)
boot_dist = []
for i in range(int(n_boot)):
resampler = integers(0, n, n, dtype=np.intp) # intp is indexing dtype
sample = [a.take(resampler, axis=0) for a in args]
boot_dist.append(f(*sample, **func_kwargs))
return np.array(boot_dist)
| 19,210 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/algorithms.py
|
_structured_bootstrap
|
(args, n_boot, units, func, func_kwargs, integers)
|
return np.array(boot_dist)
|
Resample units instead of datapoints.
|
Resample units instead of datapoints.
| 104 | 120 |
def _structured_bootstrap(args, n_boot, units, func, func_kwargs, integers):
"""Resample units instead of datapoints."""
unique_units = np.unique(units)
n_units = len(unique_units)
args = [[a[units == unit] for unit in unique_units] for a in args]
boot_dist = []
for i in range(int(n_boot)):
resampler = integers(0, n_units, n_units, dtype=np.intp)
sample = [[a[i] for i in resampler] for a in args]
lengths = map(len, sample[0])
resampler = [integers(0, n, n, dtype=np.intp) for n in lengths]
sample = [[c.take(r, axis=0) for c, r in zip(a, resampler)] for a in sample]
sample = list(map(np.concatenate, sample))
boot_dist.append(func(*sample, **func_kwargs))
return np.array(boot_dist)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/algorithms.py#L104-L120
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 100 |
[] | 0 | true | 100 | 17 | 9 | 100 | 1 |
def _structured_bootstrap(args, n_boot, units, func, func_kwargs, integers):
unique_units = np.unique(units)
n_units = len(unique_units)
args = [[a[units == unit] for unit in unique_units] for a in args]
boot_dist = []
for i in range(int(n_boot)):
resampler = integers(0, n_units, n_units, dtype=np.intp)
sample = [[a[i] for i in resampler] for a in args]
lengths = map(len, sample[0])
resampler = [integers(0, n, n, dtype=np.intp) for n in lengths]
sample = [[c.take(r, axis=0) for c, r in zip(a, resampler)] for a in sample]
sample = list(map(np.concatenate, sample))
boot_dist.append(func(*sample, **func_kwargs))
return np.array(boot_dist)
| 19,211 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
histplot
|
(
data=None, *,
# Vector variables
x=None, y=None, hue=None, weights=None,
# Histogram computation parameters
stat="count", bins="auto", binwidth=None, binrange=None,
discrete=None, cumulative=False, common_bins=True, common_norm=True,
# Histogram appearance parameters
multiple="layer", element="bars", fill=True, shrink=1,
# Histogram smoothing with a kernel density estimate
kde=False, kde_kws=None, line_kws=None,
# Bivariate histogram parameters
thresh=0, pthresh=None, pmax=None, cbar=False, cbar_ax=None, cbar_kws=None,
# Hue mapping parameters
palette=None, hue_order=None, hue_norm=None, color=None,
# Axes information
log_scale=None, legend=True, ax=None,
# Other appearance keywords
**kwargs,
)
|
return ax
| 1,374 | 1,465 |
def histplot(
data=None, *,
# Vector variables
x=None, y=None, hue=None, weights=None,
# Histogram computation parameters
stat="count", bins="auto", binwidth=None, binrange=None,
discrete=None, cumulative=False, common_bins=True, common_norm=True,
# Histogram appearance parameters
multiple="layer", element="bars", fill=True, shrink=1,
# Histogram smoothing with a kernel density estimate
kde=False, kde_kws=None, line_kws=None,
# Bivariate histogram parameters
thresh=0, pthresh=None, pmax=None, cbar=False, cbar_ax=None, cbar_kws=None,
# Hue mapping parameters
palette=None, hue_order=None, hue_norm=None, color=None,
# Axes information
log_scale=None, legend=True, ax=None,
# Other appearance keywords
**kwargs,
):
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals())
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
if ax is None:
ax = plt.gca()
p._attach(ax, log_scale=log_scale)
if p.univariate: # Note, bivariate plots won't cycle
if fill:
method = ax.bar if element == "bars" else ax.fill_between
else:
method = ax.plot
color = _default_color(method, hue, color, kwargs)
if not p.has_xy_data:
return ax
# Default to discrete bins for categorical variables
if discrete is None:
discrete = p._default_discrete()
estimate_kws = dict(
stat=stat,
bins=bins,
binwidth=binwidth,
binrange=binrange,
discrete=discrete,
cumulative=cumulative,
)
if p.univariate:
p.plot_univariate_histogram(
multiple=multiple,
element=element,
fill=fill,
shrink=shrink,
common_norm=common_norm,
common_bins=common_bins,
kde=kde,
kde_kws=kde_kws,
color=color,
legend=legend,
estimate_kws=estimate_kws,
line_kws=line_kws,
**kwargs,
)
else:
p.plot_bivariate_histogram(
common_bins=common_bins,
common_norm=common_norm,
thresh=thresh,
pthresh=pthresh,
pmax=pmax,
color=color,
legend=legend,
cbar=cbar,
cbar_ax=cbar_ax,
cbar_kws=cbar_kws,
estimate_kws=estimate_kws,
**kwargs,
)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1374-L1465
| 26 |
[
0,
20,
21,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
55,
56,
57,
58,
75,
76,
90,
91
] | 35.869565 |
[] | 0 | false | 96.354167 | 92 | 7 | 100 | 0 |
def histplot(
data=None, *,
# Vector variables
x=None, y=None, hue=None, weights=None,
# Histogram computation parameters
stat="count", bins="auto", binwidth=None, binrange=None,
discrete=None, cumulative=False, common_bins=True, common_norm=True,
# Histogram appearance parameters
multiple="layer", element="bars", fill=True, shrink=1,
# Histogram smoothing with a kernel density estimate
kde=False, kde_kws=None, line_kws=None,
# Bivariate histogram parameters
thresh=0, pthresh=None, pmax=None, cbar=False, cbar_ax=None, cbar_kws=None,
# Hue mapping parameters
palette=None, hue_order=None, hue_norm=None, color=None,
# Axes information
log_scale=None, legend=True, ax=None,
# Other appearance keywords
**kwargs,
):
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals())
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
if ax is None:
ax = plt.gca()
p._attach(ax, log_scale=log_scale)
if p.univariate: # Note, bivariate plots won't cycle
if fill:
method = ax.bar if element == "bars" else ax.fill_between
else:
method = ax.plot
color = _default_color(method, hue, color, kwargs)
if not p.has_xy_data:
return ax
# Default to discrete bins for categorical variables
if discrete is None:
discrete = p._default_discrete()
estimate_kws = dict(
stat=stat,
bins=bins,
binwidth=binwidth,
binrange=binrange,
discrete=discrete,
cumulative=cumulative,
)
if p.univariate:
p.plot_univariate_histogram(
multiple=multiple,
element=element,
fill=fill,
shrink=shrink,
common_norm=common_norm,
common_bins=common_bins,
kde=kde,
kde_kws=kde_kws,
color=color,
legend=legend,
estimate_kws=estimate_kws,
line_kws=line_kws,
**kwargs,
)
else:
p.plot_bivariate_histogram(
common_bins=common_bins,
common_norm=common_norm,
thresh=thresh,
pthresh=pthresh,
pmax=pmax,
color=color,
legend=legend,
cbar=cbar,
cbar_ax=cbar_ax,
cbar_kws=cbar_kws,
estimate_kws=estimate_kws,
**kwargs,
)
return ax
| 19,212 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
kdeplot
|
(
data=None, *, x=None, y=None, hue=None, weights=None,
palette=None, hue_order=None, hue_norm=None, color=None, fill=None,
multiple="layer", common_norm=True, common_grid=False, cumulative=False,
bw_method="scott", bw_adjust=1, warn_singular=True, log_scale=None,
levels=10, thresh=.05, gridsize=200, cut=3, clip=None,
legend=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None,
**kwargs,
)
|
return ax
| 1,597 | 1,746 |
def kdeplot(
data=None, *, x=None, y=None, hue=None, weights=None,
palette=None, hue_order=None, hue_norm=None, color=None, fill=None,
multiple="layer", common_norm=True, common_grid=False, cumulative=False,
bw_method="scott", bw_adjust=1, warn_singular=True, log_scale=None,
levels=10, thresh=.05, gridsize=200, cut=3, clip=None,
legend=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None,
**kwargs,
):
# --- Start with backwards compatability for versions < 0.11.0 ----------------
# Handle (past) deprecation of `data2`
if "data2" in kwargs:
msg = "`data2` has been removed (replaced by `y`); please update your code."
TypeError(msg)
# Handle deprecation of `vertical`
vertical = kwargs.pop("vertical", None)
if vertical is not None:
if vertical:
action_taken = "assigning data to `y`."
if x is None:
data, y = y, data
else:
x, y = y, x
else:
action_taken = "assigning data to `x`."
msg = textwrap.dedent(f"""\n
The `vertical` parameter is deprecated; {action_taken}
This will become an error in seaborn v0.13.0; please update your code.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
# Handle deprecation of `bw`
bw = kwargs.pop("bw", None)
if bw is not None:
msg = textwrap.dedent(f"""\n
The `bw` parameter is deprecated in favor of `bw_method` and `bw_adjust`.
Setting `bw_method={bw}`, but please see the docs for the new parameters
and update your code. This will become an error in seaborn v0.13.0.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
bw_method = bw
# Handle deprecation of `kernel`
if kwargs.pop("kernel", None) is not None:
msg = textwrap.dedent("""\n
Support for alternate kernels has been removed; using Gaussian kernel.
This will become an error in seaborn v0.13.0; please update your code.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
# Handle deprecation of shade_lowest
shade_lowest = kwargs.pop("shade_lowest", None)
if shade_lowest is not None:
if shade_lowest:
thresh = 0
msg = textwrap.dedent(f"""\n
`shade_lowest` has been replaced by `thresh`; setting `thresh={thresh}.
This will become an error in seaborn v0.13.0; please update your code.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
# Handle "soft" deprecation of shade `shade` is not really the right
# terminology here, but unlike some of the other deprecated parameters it
# is probably very commonly used and much hard to remove. This is therefore
# going to be a longer process where, first, `fill` will be introduced and
# be used throughout the documentation. In 0.12, when kwarg-only
# enforcement hits, we can remove the shade/shade_lowest out of the
# function signature all together and pull them out of the kwargs. Then we
# can actually fire a FutureWarning, and eventually remove.
shade = kwargs.pop("shade", None)
if shade is not None:
fill = shade
msg = textwrap.dedent(f"""\n
`shade` is now deprecated in favor of `fill`; setting `fill={shade}`.
This will become an error in seaborn v0.14.0; please update your code.
""")
warnings.warn(msg, FutureWarning, stacklevel=2)
# Handle `n_levels`
# This was never in the formal API but it was processed, and appeared in an
# example. We can treat as an alias for `levels` now and deprecate later.
levels = kwargs.pop("n_levels", levels)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals()),
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
if ax is None:
ax = plt.gca()
p._attach(ax, allowed_types=["numeric", "datetime"], log_scale=log_scale)
method = ax.fill_between if fill else ax.plot
color = _default_color(method, hue, color, kwargs)
if not p.has_xy_data:
return ax
# Pack the kwargs for statistics.KDE
estimate_kws = dict(
bw_method=bw_method,
bw_adjust=bw_adjust,
gridsize=gridsize,
cut=cut,
clip=clip,
cumulative=cumulative,
)
if p.univariate:
plot_kws = kwargs.copy()
p.plot_univariate_density(
multiple=multiple,
common_norm=common_norm,
common_grid=common_grid,
fill=fill,
color=color,
legend=legend,
warn_singular=warn_singular,
estimate_kws=estimate_kws,
**plot_kws,
)
else:
p.plot_bivariate_density(
common_norm=common_norm,
fill=fill,
levels=levels,
thresh=thresh,
legend=legend,
color=color,
warn_singular=warn_singular,
cbar=cbar,
cbar_ax=cbar_ax,
cbar_kws=cbar_kws,
estimate_kws=estimate_kws,
**kwargs,
)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1597-L1746
| 26 |
[
0,
12,
13,
17,
18,
19,
20,
21,
22,
25,
28,
31,
32,
33,
34,
35,
36,
37,
41,
42,
43,
44,
45,
46,
47,
50,
51,
52,
53,
54,
55,
71,
72,
73,
74,
75,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149
] | 72 |
[
14,
15,
23,
27,
56,
57,
58,
62
] | 5.333333 | false | 96.354167 | 150 | 13 | 94.666667 | 0 |
def kdeplot(
data=None, *, x=None, y=None, hue=None, weights=None,
palette=None, hue_order=None, hue_norm=None, color=None, fill=None,
multiple="layer", common_norm=True, common_grid=False, cumulative=False,
bw_method="scott", bw_adjust=1, warn_singular=True, log_scale=None,
levels=10, thresh=.05, gridsize=200, cut=3, clip=None,
legend=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None,
**kwargs,
):
# --- Start with backwards compatability for versions < 0.11.0 ----------------
# Handle (past) deprecation of `data2`
if "data2" in kwargs:
msg = "`data2` has been removed (replaced by `y`); please update your code."
TypeError(msg)
# Handle deprecation of `vertical`
vertical = kwargs.pop("vertical", None)
if vertical is not None:
if vertical:
action_taken = "assigning data to `y`."
if x is None:
data, y = y, data
else:
x, y = y, x
else:
action_taken = "assigning data to `x`."
msg = textwrap.dedent(f"""\n
The `vertical` parameter is deprecated; {action_taken}
This will become an error in seaborn v0.13.0; please update your code.\n
The `bw` parameter is deprecated in favor of `bw_method` and `bw_adjust`.
Setting `bw_method={bw}`, but please see the docs for the new parameters
and update your code. This will become an error in seaborn v0.13.0.\n
Support for alternate kernels has been removed; using Gaussian kernel.
This will become an error in seaborn v0.13.0; please update your code.\n
`shade_lowest` has been replaced by `thresh`; setting `thresh={thresh}.
This will become an error in seaborn v0.13.0; please update your code.\n
`shade` is now deprecated in favor of `fill`; setting `fill={shade}`.
This will become an error in seaborn v0.14.0; please update your code.
""")
warnings.warn(msg, FutureWarning, stacklevel=2)
# Handle `n_levels`
# This was never in the formal API but it was processed, and appeared in an
# example. We can treat as an alias for `levels` now and deprecate later.
levels = kwargs.pop("n_levels", levels)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals()),
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
if ax is None:
ax = plt.gca()
p._attach(ax, allowed_types=["numeric", "datetime"], log_scale=log_scale)
method = ax.fill_between if fill else ax.plot
color = _default_color(method, hue, color, kwargs)
if not p.has_xy_data:
return ax
# Pack the kwargs for statistics.KDE
estimate_kws = dict(
bw_method=bw_method,
bw_adjust=bw_adjust,
gridsize=gridsize,
cut=cut,
clip=clip,
cumulative=cumulative,
)
if p.univariate:
plot_kws = kwargs.copy()
p.plot_univariate_density(
multiple=multiple,
common_norm=common_norm,
common_grid=common_grid,
fill=fill,
color=color,
legend=legend,
warn_singular=warn_singular,
estimate_kws=estimate_kws,
**plot_kws,
)
else:
p.plot_bivariate_density(
common_norm=common_norm,
fill=fill,
levels=levels,
thresh=thresh,
legend=legend,
color=color,
warn_singular=warn_singular,
cbar=cbar,
cbar_ax=cbar_ax,
cbar_kws=cbar_kws,
estimate_kws=estimate_kws,
**kwargs,
)
return ax
| 19,213 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
ecdfplot
|
(
data=None, *,
# Vector variables
x=None, y=None, hue=None, weights=None,
# Computation parameters
stat="proportion", complementary=False,
# Hue mapping parameters
palette=None, hue_order=None, hue_norm=None,
# Axes information
log_scale=None, legend=True, ax=None,
# Other appearance keywords
**kwargs,
)
|
return ax
| 1,877 | 1,930 |
def ecdfplot(
data=None, *,
# Vector variables
x=None, y=None, hue=None, weights=None,
# Computation parameters
stat="proportion", complementary=False,
# Hue mapping parameters
palette=None, hue_order=None, hue_norm=None,
# Axes information
log_scale=None, legend=True, ax=None,
# Other appearance keywords
**kwargs,
):
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals())
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
# We could support other semantics (size, style) here fairly easily
# But it would make distplot a bit more complicated.
# It's always possible to add features like that later, so I am going to defer.
# It will be even easier to wait until after there is a more general/abstract
# way to go from semantic specs to artist attributes.
if ax is None:
ax = plt.gca()
p._attach(ax, log_scale=log_scale)
color = kwargs.pop("color", kwargs.pop("c", None))
kwargs["color"] = _default_color(ax.plot, hue, color, kwargs)
if not p.has_xy_data:
return ax
# We could add this one day, but it's of dubious value
if not p.univariate:
raise NotImplementedError("Bivariate ECDF plots are not implemented")
estimate_kws = dict(
stat=stat,
complementary=complementary,
)
p.plot_univariate_ecdf(
estimate_kws=estimate_kws,
legend=legend,
**kwargs,
)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1877-L1930
| 26 |
[
0,
13,
14,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
38,
39,
41,
42,
46,
47,
52,
53
] | 54.716981 |
[
36
] | 1.886792 | false | 96.354167 | 54 | 4 | 98.113208 | 0 |
def ecdfplot(
data=None, *,
# Vector variables
x=None, y=None, hue=None, weights=None,
# Computation parameters
stat="proportion", complementary=False,
# Hue mapping parameters
palette=None, hue_order=None, hue_norm=None,
# Axes information
log_scale=None, legend=True, ax=None,
# Other appearance keywords
**kwargs,
):
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals())
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
# We could support other semantics (size, style) here fairly easily
# But it would make distplot a bit more complicated.
# It's always possible to add features like that later, so I am going to defer.
# It will be even easier to wait until after there is a more general/abstract
# way to go from semantic specs to artist attributes.
if ax is None:
ax = plt.gca()
p._attach(ax, log_scale=log_scale)
color = kwargs.pop("color", kwargs.pop("c", None))
kwargs["color"] = _default_color(ax.plot, hue, color, kwargs)
if not p.has_xy_data:
return ax
# We could add this one day, but it's of dubious value
if not p.univariate:
raise NotImplementedError("Bivariate ECDF plots are not implemented")
estimate_kws = dict(
stat=stat,
complementary=complementary,
)
p.plot_univariate_ecdf(
estimate_kws=estimate_kws,
legend=legend,
**kwargs,
)
return ax
| 19,214 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
rugplot
|
(
data=None, *, x=None, y=None, hue=None, height=.025, expand_margins=True,
palette=None, hue_order=None, hue_norm=None, legend=True, ax=None, **kwargs
)
|
return ax
| 1,989 | 2,066 |
def rugplot(
data=None, *, x=None, y=None, hue=None, height=.025, expand_margins=True,
palette=None, hue_order=None, hue_norm=None, legend=True, ax=None, **kwargs
):
# A note: I think it would make sense to add multiple= to rugplot and allow
# rugs for different hue variables to be shifted orthogonal to the data axis
# But is this stacking, or dodging?
# A note: if we want to add a style semantic to rugplot,
# we could make an option that draws the rug using scatterplot
# A note, it would also be nice to offer some kind of histogram/density
# rugplot, since alpha blending doesn't work great in the large n regime
# --- Start with backwards compatability for versions < 0.11.0 ----------------
a = kwargs.pop("a", None)
axis = kwargs.pop("axis", None)
if a is not None:
data = a
msg = textwrap.dedent("""\n
The `a` parameter has been replaced; use `x`, `y`, and/or `data` instead.
Please update your code; This will become an error in seaborn v0.13.0.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
if axis is not None:
if axis == "x":
x = data
elif axis == "y":
y = data
msg = textwrap.dedent(f"""\n
The `axis` parameter has been deprecated; use the `{axis}` parameter instead.
Please update your code; this will become an error in seaborn v0.13.0.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
vertical = kwargs.pop("vertical", None)
if vertical is not None:
if vertical:
action_taken = "assigning data to `y`."
if x is None:
data, y = y, data
else:
x, y = y, x
else:
action_taken = "assigning data to `x`."
msg = textwrap.dedent(f"""\n
The `vertical` parameter is deprecated; {action_taken}
This will become an error in seaborn v0.13.0; please update your code.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
weights = None
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals()),
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
if ax is None:
ax = plt.gca()
p._attach(ax)
color = kwargs.pop("color", kwargs.pop("c", None))
kwargs["color"] = _default_color(ax.plot, hue, color, kwargs)
if not p.has_xy_data:
return ax
p.plot_rug(height, expand_margins, legend, **kwargs)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1989-L2066
| 26 |
[
0,
16,
17,
18,
19,
20,
21,
22,
25,
26,
27,
28,
29,
30,
31,
32,
33,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77
] | 71.794872 |
[
46,
48
] | 2.564103 | false | 96.354167 | 78 | 10 | 97.435897 | 0 |
def rugplot(
data=None, *, x=None, y=None, hue=None, height=.025, expand_margins=True,
palette=None, hue_order=None, hue_norm=None, legend=True, ax=None, **kwargs
):
# A note: I think it would make sense to add multiple= to rugplot and allow
# rugs for different hue variables to be shifted orthogonal to the data axis
# But is this stacking, or dodging?
# A note: if we want to add a style semantic to rugplot,
# we could make an option that draws the rug using scatterplot
# A note, it would also be nice to offer some kind of histogram/density
# rugplot, since alpha blending doesn't work great in the large n regime
# --- Start with backwards compatability for versions < 0.11.0 ----------------
a = kwargs.pop("a", None)
axis = kwargs.pop("axis", None)
if a is not None:
data = a
msg = textwrap.dedent("""\n
The `a` parameter has been replaced; use `x`, `y`, and/or `data` instead.
Please update your code; This will become an error in seaborn v0.13.0.\n
The `axis` parameter has been deprecated; use the `{axis}` parameter instead.
Please update your code; this will become an error in seaborn v0.13.0.\n
The `vertical` parameter is deprecated; {action_taken}
This will become an error in seaborn v0.13.0; please update your code.
""")
warnings.warn(msg, UserWarning, stacklevel=2)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
weights = None
p = _DistributionPlotter(
data=data,
variables=_DistributionPlotter.get_semantics(locals()),
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
if ax is None:
ax = plt.gca()
p._attach(ax)
color = kwargs.pop("color", kwargs.pop("c", None))
kwargs["color"] = _default_color(ax.plot, hue, color, kwargs)
if not p.has_xy_data:
return ax
p.plot_rug(height, expand_margins, legend, **kwargs)
return ax
| 19,215 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
displot
|
(
data=None, *,
# Vector variables
x=None, y=None, hue=None, row=None, col=None, weights=None,
# Other plot parameters
kind="hist", rug=False, rug_kws=None, log_scale=None, legend=True,
# Hue-mapping parameters
palette=None, hue_order=None, hue_norm=None, color=None,
# Faceting parameters
col_wrap=None, row_order=None, col_order=None,
height=5, aspect=1, facet_kws=None,
**kwargs,
)
|
return g
| 2,111 | 2,300 |
def displot(
data=None, *,
# Vector variables
x=None, y=None, hue=None, row=None, col=None, weights=None,
# Other plot parameters
kind="hist", rug=False, rug_kws=None, log_scale=None, legend=True,
# Hue-mapping parameters
palette=None, hue_order=None, hue_norm=None, color=None,
# Faceting parameters
col_wrap=None, row_order=None, col_order=None,
height=5, aspect=1, facet_kws=None,
**kwargs,
):
p = _DistributionFacetPlotter(
data=data,
variables=_DistributionFacetPlotter.get_semantics(locals())
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
_check_argument("kind", ["hist", "kde", "ecdf"], kind)
# --- Initialize the FacetGrid object
# Check for attempt to plot onto specific axes and warn
if "ax" in kwargs:
msg = (
"`displot` is a figure-level function and does not accept "
"the ax= parameter. You may wish to try {}plot.".format(kind)
)
warnings.warn(msg, UserWarning)
kwargs.pop("ax")
for var in ["row", "col"]:
# Handle faceting variables that lack name information
if var in p.variables and p.variables[var] is None:
p.variables[var] = f"_{var}_"
# Adapt the plot_data dataframe for use with FacetGrid
grid_data = p.plot_data.rename(columns=p.variables)
grid_data = grid_data.loc[:, ~grid_data.columns.duplicated()]
col_name = p.variables.get("col")
row_name = p.variables.get("row")
if facet_kws is None:
facet_kws = {}
g = FacetGrid(
data=grid_data, row=row_name, col=col_name,
col_wrap=col_wrap, row_order=row_order,
col_order=col_order, height=height,
aspect=aspect,
**facet_kws,
)
# Now attach the axes object to the plotter object
if kind == "kde":
allowed_types = ["numeric", "datetime"]
else:
allowed_types = None
p._attach(g, allowed_types=allowed_types, log_scale=log_scale)
# Check for a specification that lacks x/y data and return early
if not p.has_xy_data:
return g
if color is None and hue is None:
color = "C0"
# XXX else warn if hue is not None?
kwargs["legend"] = legend
# --- Draw the plots
if kind == "hist":
hist_kws = kwargs.copy()
# Extract the parameters that will go directly to Histogram
estimate_defaults = {}
_assign_default_kwargs(estimate_defaults, Histogram.__init__, histplot)
estimate_kws = {}
for key, default_val in estimate_defaults.items():
estimate_kws[key] = hist_kws.pop(key, default_val)
# Handle derivative defaults
if estimate_kws["discrete"] is None:
estimate_kws["discrete"] = p._default_discrete()
hist_kws["estimate_kws"] = estimate_kws
hist_kws.setdefault("color", color)
if p.univariate:
_assign_default_kwargs(hist_kws, p.plot_univariate_histogram, histplot)
p.plot_univariate_histogram(**hist_kws)
else:
_assign_default_kwargs(hist_kws, p.plot_bivariate_histogram, histplot)
p.plot_bivariate_histogram(**hist_kws)
elif kind == "kde":
kde_kws = kwargs.copy()
# Extract the parameters that will go directly to KDE
estimate_defaults = {}
_assign_default_kwargs(estimate_defaults, KDE.__init__, kdeplot)
estimate_kws = {}
for key, default_val in estimate_defaults.items():
estimate_kws[key] = kde_kws.pop(key, default_val)
kde_kws["estimate_kws"] = estimate_kws
kde_kws["color"] = color
if p.univariate:
_assign_default_kwargs(kde_kws, p.plot_univariate_density, kdeplot)
p.plot_univariate_density(**kde_kws)
else:
_assign_default_kwargs(kde_kws, p.plot_bivariate_density, kdeplot)
p.plot_bivariate_density(**kde_kws)
elif kind == "ecdf":
ecdf_kws = kwargs.copy()
# Extract the parameters that will go directly to the estimator
estimate_kws = {}
estimate_defaults = {}
_assign_default_kwargs(estimate_defaults, ECDF.__init__, ecdfplot)
for key, default_val in estimate_defaults.items():
estimate_kws[key] = ecdf_kws.pop(key, default_val)
ecdf_kws["estimate_kws"] = estimate_kws
ecdf_kws["color"] = color
if p.univariate:
_assign_default_kwargs(ecdf_kws, p.plot_univariate_ecdf, ecdfplot)
p.plot_univariate_ecdf(**ecdf_kws)
else:
raise NotImplementedError("Bivariate ECDF plots are not implemented")
# All plot kinds can include a rug
if rug:
# TODO with expand_margins=True, each facet expands margins... annoying!
if rug_kws is None:
rug_kws = {}
_assign_default_kwargs(rug_kws, p.plot_rug, rugplot)
rug_kws["legend"] = False
if color is not None:
rug_kws["color"] = color
p.plot_rug(**rug_kws)
# Call FacetGrid annotation methods
# Note that the legend is currently set inside the plotting method
g.set_axis_labels(
x_var=p.variables.get("x", g.axes.flat[0].get_xlabel()),
y_var=p.variables.get("y", g.axes.flat[0].get_ylabel()),
)
g.set_titles()
g.tight_layout()
if data is not None and (x is not None or y is not None):
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
g.data = pd.merge(
data,
g.data[g.data.columns.difference(data.columns)],
left_index=True,
right_index=True,
)
else:
wide_cols = {
k: f"_{k}_" if v is None else v for k, v in p.variables.items()
}
g.data = p.plot_data.rename(columns=wide_cols)
return g
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L2111-L2300
| 26 |
[
0,
13,
14,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
57,
58,
59,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
171,
172,
173,
174,
175,
176,
177,
184,
187,
188,
189
] | 77.777778 |
[] | 0 | false | 96.354167 | 190 | 27 | 100 | 0 |
def displot(
data=None, *,
# Vector variables
x=None, y=None, hue=None, row=None, col=None, weights=None,
# Other plot parameters
kind="hist", rug=False, rug_kws=None, log_scale=None, legend=True,
# Hue-mapping parameters
palette=None, hue_order=None, hue_norm=None, color=None,
# Faceting parameters
col_wrap=None, row_order=None, col_order=None,
height=5, aspect=1, facet_kws=None,
**kwargs,
):
p = _DistributionFacetPlotter(
data=data,
variables=_DistributionFacetPlotter.get_semantics(locals())
)
p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
_check_argument("kind", ["hist", "kde", "ecdf"], kind)
# --- Initialize the FacetGrid object
# Check for attempt to plot onto specific axes and warn
if "ax" in kwargs:
msg = (
"`displot` is a figure-level function and does not accept "
"the ax= parameter. You may wish to try {}plot.".format(kind)
)
warnings.warn(msg, UserWarning)
kwargs.pop("ax")
for var in ["row", "col"]:
# Handle faceting variables that lack name information
if var in p.variables and p.variables[var] is None:
p.variables[var] = f"_{var}_"
# Adapt the plot_data dataframe for use with FacetGrid
grid_data = p.plot_data.rename(columns=p.variables)
grid_data = grid_data.loc[:, ~grid_data.columns.duplicated()]
col_name = p.variables.get("col")
row_name = p.variables.get("row")
if facet_kws is None:
facet_kws = {}
g = FacetGrid(
data=grid_data, row=row_name, col=col_name,
col_wrap=col_wrap, row_order=row_order,
col_order=col_order, height=height,
aspect=aspect,
**facet_kws,
)
# Now attach the axes object to the plotter object
if kind == "kde":
allowed_types = ["numeric", "datetime"]
else:
allowed_types = None
p._attach(g, allowed_types=allowed_types, log_scale=log_scale)
# Check for a specification that lacks x/y data and return early
if not p.has_xy_data:
return g
if color is None and hue is None:
color = "C0"
# XXX else warn if hue is not None?
kwargs["legend"] = legend
# --- Draw the plots
if kind == "hist":
hist_kws = kwargs.copy()
# Extract the parameters that will go directly to Histogram
estimate_defaults = {}
_assign_default_kwargs(estimate_defaults, Histogram.__init__, histplot)
estimate_kws = {}
for key, default_val in estimate_defaults.items():
estimate_kws[key] = hist_kws.pop(key, default_val)
# Handle derivative defaults
if estimate_kws["discrete"] is None:
estimate_kws["discrete"] = p._default_discrete()
hist_kws["estimate_kws"] = estimate_kws
hist_kws.setdefault("color", color)
if p.univariate:
_assign_default_kwargs(hist_kws, p.plot_univariate_histogram, histplot)
p.plot_univariate_histogram(**hist_kws)
else:
_assign_default_kwargs(hist_kws, p.plot_bivariate_histogram, histplot)
p.plot_bivariate_histogram(**hist_kws)
elif kind == "kde":
kde_kws = kwargs.copy()
# Extract the parameters that will go directly to KDE
estimate_defaults = {}
_assign_default_kwargs(estimate_defaults, KDE.__init__, kdeplot)
estimate_kws = {}
for key, default_val in estimate_defaults.items():
estimate_kws[key] = kde_kws.pop(key, default_val)
kde_kws["estimate_kws"] = estimate_kws
kde_kws["color"] = color
if p.univariate:
_assign_default_kwargs(kde_kws, p.plot_univariate_density, kdeplot)
p.plot_univariate_density(**kde_kws)
else:
_assign_default_kwargs(kde_kws, p.plot_bivariate_density, kdeplot)
p.plot_bivariate_density(**kde_kws)
elif kind == "ecdf":
ecdf_kws = kwargs.copy()
# Extract the parameters that will go directly to the estimator
estimate_kws = {}
estimate_defaults = {}
_assign_default_kwargs(estimate_defaults, ECDF.__init__, ecdfplot)
for key, default_val in estimate_defaults.items():
estimate_kws[key] = ecdf_kws.pop(key, default_val)
ecdf_kws["estimate_kws"] = estimate_kws
ecdf_kws["color"] = color
if p.univariate:
_assign_default_kwargs(ecdf_kws, p.plot_univariate_ecdf, ecdfplot)
p.plot_univariate_ecdf(**ecdf_kws)
else:
raise NotImplementedError("Bivariate ECDF plots are not implemented")
# All plot kinds can include a rug
if rug:
# TODO with expand_margins=True, each facet expands margins... annoying!
if rug_kws is None:
rug_kws = {}
_assign_default_kwargs(rug_kws, p.plot_rug, rugplot)
rug_kws["legend"] = False
if color is not None:
rug_kws["color"] = color
p.plot_rug(**rug_kws)
# Call FacetGrid annotation methods
# Note that the legend is currently set inside the plotting method
g.set_axis_labels(
x_var=p.variables.get("x", g.axes.flat[0].get_xlabel()),
y_var=p.variables.get("y", g.axes.flat[0].get_ylabel()),
)
g.set_titles()
g.tight_layout()
if data is not None and (x is not None or y is not None):
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
g.data = pd.merge(
data,
g.data[g.data.columns.difference(data.columns)],
left_index=True,
right_index=True,
)
else:
wide_cols = {
k: f"_{k}_" if v is None else v for k, v in p.variables.items()
}
g.data = p.plot_data.rename(columns=wide_cols)
return g
| 19,216 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_freedman_diaconis_bins
|
(a)
|
Calculate number of hist bins using Freedman-Diaconis rule.
|
Calculate number of hist bins using Freedman-Diaconis rule.
| 2,390 | 2,402 |
def _freedman_diaconis_bins(a):
"""Calculate number of hist bins using Freedman-Diaconis rule."""
# From https://stats.stackexchange.com/questions/798/
a = np.asarray(a)
if len(a) < 2:
return 1
iqr = np.subtract.reduce(np.nanpercentile(a, [75, 25]))
h = 2 * iqr / (len(a) ** (1 / 3))
# fall back to sqrt(a) bins if iqr is 0
if h == 0:
return int(np.sqrt(a.size))
else:
return int(np.ceil((a.max() - a.min()) / h))
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L2390-L2402
| 26 |
[
0,
1,
2,
3,
4,
6,
7,
8,
9,
11,
12
] | 84.615385 |
[
5,
10
] | 15.384615 | false | 96.354167 | 13 | 3 | 84.615385 | 1 |
def _freedman_diaconis_bins(a):
# From https://stats.stackexchange.com/questions/798/
a = np.asarray(a)
if len(a) < 2:
return 1
iqr = np.subtract.reduce(np.nanpercentile(a, [75, 25]))
h = 2 * iqr / (len(a) ** (1 / 3))
# fall back to sqrt(a) bins if iqr is 0
if h == 0:
return int(np.sqrt(a.size))
else:
return int(np.ceil((a.max() - a.min()) / h))
| 19,217 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
distplot
|
(a=None, bins=None, hist=True, kde=True, rug=False, fit=None,
hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None,
color=None, vertical=False, norm_hist=False, axlabel=None,
label=None, ax=None, x=None)
|
return ax
|
DEPRECATED
This function has been deprecated and will be removed in seaborn v0.14.0.
It has been replaced by :func:`histplot` and :func:`displot`, two functions
with a modern API and many more capabilities.
For a guide to updating, please see this notebook:
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
|
DEPRECATED
| 2,405 | 2,546 |
def distplot(a=None, bins=None, hist=True, kde=True, rug=False, fit=None,
hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None,
color=None, vertical=False, norm_hist=False, axlabel=None,
label=None, ax=None, x=None):
"""
DEPRECATED
This function has been deprecated and will be removed in seaborn v0.14.0.
It has been replaced by :func:`histplot` and :func:`displot`, two functions
with a modern API and many more capabilities.
For a guide to updating, please see this notebook:
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
"""
if kde and not hist:
axes_level_suggestion = (
"`kdeplot` (an axes-level function for kernel density plots)"
)
else:
axes_level_suggestion = (
"`histplot` (an axes-level function for histograms)"
)
msg = textwrap.dedent(f"""
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or {axes_level_suggestion}.
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
""")
warnings.warn(msg, UserWarning, stacklevel=2)
if ax is None:
ax = plt.gca()
# Intelligently label the support axis
label_ax = bool(axlabel)
if axlabel is None and hasattr(a, "name"):
axlabel = a.name
if axlabel is not None:
label_ax = True
# Support new-style API
if x is not None:
a = x
# Make a a 1-d float array
a = np.asarray(a, float)
if a.ndim > 1:
a = a.squeeze()
# Drop null values from array
a = remove_na(a)
# Decide if the hist is normed
norm_hist = norm_hist or kde or (fit is not None)
# Handle dictionary defaults
hist_kws = {} if hist_kws is None else hist_kws.copy()
kde_kws = {} if kde_kws is None else kde_kws.copy()
rug_kws = {} if rug_kws is None else rug_kws.copy()
fit_kws = {} if fit_kws is None else fit_kws.copy()
# Get the color from the current color cycle
if color is None:
if vertical:
line, = ax.plot(0, a.mean())
else:
line, = ax.plot(a.mean(), 0)
color = line.get_color()
line.remove()
# Plug the label into the right kwarg dictionary
if label is not None:
if hist:
hist_kws["label"] = label
elif kde:
kde_kws["label"] = label
elif rug:
rug_kws["label"] = label
elif fit:
fit_kws["label"] = label
if hist:
if bins is None:
bins = min(_freedman_diaconis_bins(a), 50)
hist_kws.setdefault("alpha", 0.4)
hist_kws.setdefault("density", norm_hist)
orientation = "horizontal" if vertical else "vertical"
hist_color = hist_kws.pop("color", color)
ax.hist(a, bins, orientation=orientation,
color=hist_color, **hist_kws)
if hist_color != color:
hist_kws["color"] = hist_color
axis = "y" if vertical else "x"
if kde:
kde_color = kde_kws.pop("color", color)
kdeplot(**{axis: a}, ax=ax, color=kde_color, **kde_kws)
if kde_color != color:
kde_kws["color"] = kde_color
if rug:
rug_color = rug_kws.pop("color", color)
rugplot(**{axis: a}, ax=ax, color=rug_color, **rug_kws)
if rug_color != color:
rug_kws["color"] = rug_color
if fit is not None:
def pdf(x):
return fit.pdf(x, *params)
fit_color = fit_kws.pop("color", "#282828")
gridsize = fit_kws.pop("gridsize", 200)
cut = fit_kws.pop("cut", 3)
clip = fit_kws.pop("clip", (-np.inf, np.inf))
bw = gaussian_kde(a).scotts_factor() * a.std(ddof=1)
x = _kde_support(a, bw, gridsize, cut, clip)
params = fit.fit(a)
y = pdf(x)
if vertical:
x, y = y, x
ax.plot(x, y, color=fit_color, **fit_kws)
if fit_color != "#282828":
fit_kws["color"] = fit_color
if label_ax:
if vertical:
ax.set_ylabel(axlabel)
else:
ax.set_xlabel(axlabel)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L2405-L2546
| 26 |
[
0,
16,
17,
18,
22,
25,
26,
27,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
52,
53,
54,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
101,
102,
103,
104,
105,
106,
107,
109,
110,
111,
112,
113,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
131,
132,
134,
135,
136,
137,
138,
139,
140,
141
] | 69.014085 |
[
50,
55,
80,
81,
82,
83,
84,
85,
86,
87,
100,
108,
114,
130,
133
] | 10.56338 | false | 96.354167 | 142 | 31 | 89.43662 | 9 |
def distplot(a=None, bins=None, hist=True, kde=True, rug=False, fit=None,
hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None,
color=None, vertical=False, norm_hist=False, axlabel=None,
label=None, ax=None, x=None):
if kde and not hist:
axes_level_suggestion = (
"`kdeplot` (an axes-level function for kernel density plots)"
)
else:
axes_level_suggestion = (
"`histplot` (an axes-level function for histograms)"
)
msg = textwrap.dedent(f"""
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or {axes_level_suggestion}.
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
""")
warnings.warn(msg, UserWarning, stacklevel=2)
if ax is None:
ax = plt.gca()
# Intelligently label the support axis
label_ax = bool(axlabel)
if axlabel is None and hasattr(a, "name"):
axlabel = a.name
if axlabel is not None:
label_ax = True
# Support new-style API
if x is not None:
a = x
# Make a a 1-d float array
a = np.asarray(a, float)
if a.ndim > 1:
a = a.squeeze()
# Drop null values from array
a = remove_na(a)
# Decide if the hist is normed
norm_hist = norm_hist or kde or (fit is not None)
# Handle dictionary defaults
hist_kws = {} if hist_kws is None else hist_kws.copy()
kde_kws = {} if kde_kws is None else kde_kws.copy()
rug_kws = {} if rug_kws is None else rug_kws.copy()
fit_kws = {} if fit_kws is None else fit_kws.copy()
# Get the color from the current color cycle
if color is None:
if vertical:
line, = ax.plot(0, a.mean())
else:
line, = ax.plot(a.mean(), 0)
color = line.get_color()
line.remove()
# Plug the label into the right kwarg dictionary
if label is not None:
if hist:
hist_kws["label"] = label
elif kde:
kde_kws["label"] = label
elif rug:
rug_kws["label"] = label
elif fit:
fit_kws["label"] = label
if hist:
if bins is None:
bins = min(_freedman_diaconis_bins(a), 50)
hist_kws.setdefault("alpha", 0.4)
hist_kws.setdefault("density", norm_hist)
orientation = "horizontal" if vertical else "vertical"
hist_color = hist_kws.pop("color", color)
ax.hist(a, bins, orientation=orientation,
color=hist_color, **hist_kws)
if hist_color != color:
hist_kws["color"] = hist_color
axis = "y" if vertical else "x"
if kde:
kde_color = kde_kws.pop("color", color)
kdeplot(**{axis: a}, ax=ax, color=kde_color, **kde_kws)
if kde_color != color:
kde_kws["color"] = kde_color
if rug:
rug_color = rug_kws.pop("color", color)
rugplot(**{axis: a}, ax=ax, color=rug_color, **rug_kws)
if rug_color != color:
rug_kws["color"] = rug_color
if fit is not None:
def pdf(x):
return fit.pdf(x, *params)
fit_color = fit_kws.pop("color", "#282828")
gridsize = fit_kws.pop("gridsize", 200)
cut = fit_kws.pop("cut", 3)
clip = fit_kws.pop("clip", (-np.inf, np.inf))
bw = gaussian_kde(a).scotts_factor() * a.std(ddof=1)
x = _kde_support(a, bw, gridsize, cut, clip)
params = fit.fit(a)
y = pdf(x)
if vertical:
x, y = y, x
ax.plot(x, y, color=fit_color, **fit_kws)
if fit_color != "#282828":
fit_kws["color"] = fit_color
if label_ax:
if vertical:
ax.set_ylabel(axlabel)
else:
ax.set_xlabel(axlabel)
return ax
| 19,218 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.__init__
|
(
self,
data=None,
variables={},
)
| 107 | 113 |
def __init__(
self,
data=None,
variables={},
):
super().__init__(data=data, variables=variables)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L107-L113
| 26 |
[
0,
5,
6
] | 42.857143 |
[] | 0 | false | 96.354167 | 7 | 1 | 100 | 0 |
def __init__(
self,
data=None,
variables={},
):
super().__init__(data=data, variables=variables)
| 19,219 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.univariate
|
(self)
|
return bool({"x", "y"} - set(self.variables))
|
Return True if only x or y are used.
|
Return True if only x or y are used.
| 116 | 122 |
def univariate(self):
"""Return True if only x or y are used."""
# TODO this could go down to core, but putting it here now.
# We'd want to be conceptually clear that univariate only applies
# to x/y and not to other semantics, which can exist.
# We haven't settled on a good conceptual name for x/y.
return bool({"x", "y"} - set(self.variables))
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L116-L122
| 26 |
[
0,
1,
2,
3,
4,
5,
6
] | 100 |
[] | 0 | true | 96.354167 | 7 | 1 | 100 | 1 |
def univariate(self):
# TODO this could go down to core, but putting it here now.
# We'd want to be conceptually clear that univariate only applies
# to x/y and not to other semantics, which can exist.
# We haven't settled on a good conceptual name for x/y.
return bool({"x", "y"} - set(self.variables))
| 19,220 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.data_variable
|
(self)
|
return {"x", "y"}.intersection(self.variables).pop()
|
Return the variable with data for univariate plots.
|
Return the variable with data for univariate plots.
| 125 | 130 |
def data_variable(self):
"""Return the variable with data for univariate plots."""
# TODO This could also be in core, but it should have a better name.
if not self.univariate:
raise AttributeError("This is not a univariate plot")
return {"x", "y"}.intersection(self.variables).pop()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L125-L130
| 26 |
[
0,
1,
2,
3,
5
] | 83.333333 |
[
4
] | 16.666667 | false | 96.354167 | 6 | 2 | 83.333333 | 1 |
def data_variable(self):
# TODO This could also be in core, but it should have a better name.
if not self.univariate:
raise AttributeError("This is not a univariate plot")
return {"x", "y"}.intersection(self.variables).pop()
| 19,221 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.has_xy_data
|
(self)
|
return bool({"x", "y"} & set(self.variables))
|
Return True at least one of x or y is defined.
|
Return True at least one of x or y is defined.
| 133 | 136 |
def has_xy_data(self):
"""Return True at least one of x or y is defined."""
# TODO see above points about where this should go
return bool({"x", "y"} & set(self.variables))
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L133-L136
| 26 |
[
0,
1,
2,
3
] | 100 |
[] | 0 | true | 96.354167 | 4 | 1 | 100 | 1 |
def has_xy_data(self):
# TODO see above points about where this should go
return bool({"x", "y"} & set(self.variables))
| 19,222 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._add_legend
|
(
self,
ax_obj, artist, fill, element, multiple, alpha, artist_kws, legend_kws,
)
|
Add artists that reflect semantic mappings and put then in a legend.
|
Add artists that reflect semantic mappings and put then in a legend.
| 138 | 171 |
def _add_legend(
self,
ax_obj, artist, fill, element, multiple, alpha, artist_kws, legend_kws,
):
"""Add artists that reflect semantic mappings and put then in a legend."""
# TODO note that this doesn't handle numeric mappings like the relational plots
handles = []
labels = []
for level in self._hue_map.levels:
color = self._hue_map(level)
kws = self._artist_kws(
artist_kws, fill, element, multiple, color, alpha
)
# color gets added to the kws to workaround an issue with barplot's color
# cycle integration but it causes problems in this context where we are
# setting artist properties directly, so pop it off here
if "facecolor" in kws:
kws.pop("color", None)
handles.append(artist(**kws))
labels.append(level)
if isinstance(ax_obj, mpl.axes.Axes):
ax_obj.legend(handles, labels, title=self.variables["hue"], **legend_kws)
else: # i.e. a FacetGrid. TODO make this better
legend_data = dict(zip(labels, handles))
ax_obj.add_legend(
legend_data,
title=self.variables["hue"],
label_order=self.var_levels["hue"],
**legend_kws
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L138-L171
| 26 |
[
0,
5,
6,
7,
8,
9,
10,
11,
17,
18,
19,
20,
21,
22,
23,
24,
25,
27,
28
] | 55.882353 |
[] | 0 | false | 96.354167 | 34 | 4 | 100 | 1 |
def _add_legend(
self,
ax_obj, artist, fill, element, multiple, alpha, artist_kws, legend_kws,
):
# TODO note that this doesn't handle numeric mappings like the relational plots
handles = []
labels = []
for level in self._hue_map.levels:
color = self._hue_map(level)
kws = self._artist_kws(
artist_kws, fill, element, multiple, color, alpha
)
# color gets added to the kws to workaround an issue with barplot's color
# cycle integration but it causes problems in this context where we are
# setting artist properties directly, so pop it off here
if "facecolor" in kws:
kws.pop("color", None)
handles.append(artist(**kws))
labels.append(level)
if isinstance(ax_obj, mpl.axes.Axes):
ax_obj.legend(handles, labels, title=self.variables["hue"], **legend_kws)
else: # i.e. a FacetGrid. TODO make this better
legend_data = dict(zip(labels, handles))
ax_obj.add_legend(
legend_data,
title=self.variables["hue"],
label_order=self.var_levels["hue"],
**legend_kws
)
| 19,223 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._artist_kws
|
(self, kws, fill, element, multiple, color, alpha)
|
return kws
|
Handle differences between artists in filled/unfilled plots.
|
Handle differences between artists in filled/unfilled plots.
| 173 | 194 |
def _artist_kws(self, kws, fill, element, multiple, color, alpha):
"""Handle differences between artists in filled/unfilled plots."""
kws = kws.copy()
if fill:
kws = _normalize_kwargs(kws, mpl.collections.PolyCollection)
kws.setdefault("facecolor", to_rgba(color, alpha))
if element == "bars":
# Make bar() interface with property cycle correctly
# https://github.com/matplotlib/matplotlib/issues/19385
kws["color"] = "none"
if multiple in ["stack", "fill"] or element == "bars":
kws.setdefault("edgecolor", mpl.rcParams["patch.edgecolor"])
else:
kws.setdefault("edgecolor", to_rgba(color, 1))
elif element == "bars":
kws["facecolor"] = "none"
kws["edgecolor"] = to_rgba(color, alpha)
else:
kws["color"] = to_rgba(color, alpha)
return kws
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L173-L194
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 100 |
[] | 0 | true | 96.354167 | 22 | 6 | 100 | 1 |
def _artist_kws(self, kws, fill, element, multiple, color, alpha):
kws = kws.copy()
if fill:
kws = _normalize_kwargs(kws, mpl.collections.PolyCollection)
kws.setdefault("facecolor", to_rgba(color, alpha))
if element == "bars":
# Make bar() interface with property cycle correctly
# https://github.com/matplotlib/matplotlib/issues/19385
kws["color"] = "none"
if multiple in ["stack", "fill"] or element == "bars":
kws.setdefault("edgecolor", mpl.rcParams["patch.edgecolor"])
else:
kws.setdefault("edgecolor", to_rgba(color, 1))
elif element == "bars":
kws["facecolor"] = "none"
kws["edgecolor"] = to_rgba(color, alpha)
else:
kws["color"] = to_rgba(color, alpha)
return kws
| 19,224 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._quantile_to_level
|
(self, data, quantile)
|
return levels
|
Return data levels corresponding to quantile cuts of mass.
|
Return data levels corresponding to quantile cuts of mass.
| 196 | 204 |
def _quantile_to_level(self, data, quantile):
"""Return data levels corresponding to quantile cuts of mass."""
isoprop = np.asarray(quantile)
values = np.ravel(data)
sorted_values = np.sort(values)[::-1]
normalized_values = np.cumsum(sorted_values) / values.sum()
idx = np.searchsorted(normalized_values, 1 - isoprop)
levels = np.take(sorted_values, idx, mode="clip")
return levels
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L196-L204
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 96.354167 | 9 | 1 | 100 | 1 |
def _quantile_to_level(self, data, quantile):
isoprop = np.asarray(quantile)
values = np.ravel(data)
sorted_values = np.sort(values)[::-1]
normalized_values = np.cumsum(sorted_values) / values.sum()
idx = np.searchsorted(normalized_values, 1 - isoprop)
levels = np.take(sorted_values, idx, mode="clip")
return levels
| 19,225 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._cmap_from_color
|
(self, color)
|
return mpl.colors.ListedColormap(colors[::-1])
|
Return a sequential colormap given a color seed.
|
Return a sequential colormap given a color seed.
| 206 | 218 |
def _cmap_from_color(self, color):
"""Return a sequential colormap given a color seed."""
# Like so much else here, this is broadly useful, but keeping it
# in this class to signify that I haven't thought overly hard about it...
r, g, b, _ = to_rgba(color)
h, s, _ = husl.rgb_to_husl(r, g, b)
xx = np.linspace(-1, 1, int(1.15 * 256))[:256]
ramp = np.zeros((256, 3))
ramp[:, 0] = h
ramp[:, 1] = s * np.cos(xx)
ramp[:, 2] = np.linspace(35, 80, 256)
colors = np.clip([husl.husl_to_rgb(*hsl) for hsl in ramp], 0, 1)
return mpl.colors.ListedColormap(colors[::-1])
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L206-L218
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 96.354167 | 13 | 2 | 100 | 1 |
def _cmap_from_color(self, color):
# Like so much else here, this is broadly useful, but keeping it
# in this class to signify that I haven't thought overly hard about it...
r, g, b, _ = to_rgba(color)
h, s, _ = husl.rgb_to_husl(r, g, b)
xx = np.linspace(-1, 1, int(1.15 * 256))[:256]
ramp = np.zeros((256, 3))
ramp[:, 0] = h
ramp[:, 1] = s * np.cos(xx)
ramp[:, 2] = np.linspace(35, 80, 256)
colors = np.clip([husl.husl_to_rgb(*hsl) for hsl in ramp], 0, 1)
return mpl.colors.ListedColormap(colors[::-1])
| 19,226 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._default_discrete
|
(self)
|
return discrete
|
Find default values for discrete hist estimation based on variable type.
|
Find default values for discrete hist estimation based on variable type.
| 220 | 228 |
def _default_discrete(self):
"""Find default values for discrete hist estimation based on variable type."""
if self.univariate:
discrete = self.var_types[self.data_variable] == "categorical"
else:
discrete_x = self.var_types["x"] == "categorical"
discrete_y = self.var_types["y"] == "categorical"
discrete = discrete_x, discrete_y
return discrete
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L220-L228
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 96.354167 | 9 | 2 | 100 | 1 |
def _default_discrete(self):
if self.univariate:
discrete = self.var_types[self.data_variable] == "categorical"
else:
discrete_x = self.var_types["x"] == "categorical"
discrete_y = self.var_types["y"] == "categorical"
discrete = discrete_x, discrete_y
return discrete
| 19,227 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._resolve_multiple
|
(self, curves, multiple)
|
return curves, baselines
|
Modify the density data structure to handle multiple densities.
|
Modify the density data structure to handle multiple densities.
| 230 | 295 |
def _resolve_multiple(self, curves, multiple):
"""Modify the density data structure to handle multiple densities."""
# Default baselines have all densities starting at 0
baselines = {k: np.zeros_like(v) for k, v in curves.items()}
# TODO we should have some central clearinghouse for checking if any
# "grouping" (terminnology?) semantics have been assigned
if "hue" not in self.variables:
return curves, baselines
if multiple in ("stack", "fill"):
# Setting stack or fill means that the curves share a
# support grid / set of bin edges, so we can make a dataframe
# Reverse the column order to plot from top to bottom
curves = pd.DataFrame(curves).iloc[:, ::-1]
# Find column groups that are nested within col/row variables
column_groups = {}
for i, keyd in enumerate(map(dict, curves.columns)):
facet_key = keyd.get("col", None), keyd.get("row", None)
column_groups.setdefault(facet_key, [])
column_groups[facet_key].append(i)
baselines = curves.copy()
for col_idxs in column_groups.values():
cols = curves.columns[col_idxs]
norm_constant = curves[cols].sum(axis="columns")
# Take the cumulative sum to stack
curves[cols] = curves[cols].cumsum(axis="columns")
# Normalize by row sum to fill
if multiple == "fill":
curves[cols] = curves[cols].div(norm_constant, axis="index")
# Define where each segment starts
baselines[cols] = curves[cols].shift(1, axis=1).fillna(0)
if multiple == "dodge":
# Account for the unique semantic (non-faceting) levels
# This will require rethiniking if we add other semantics!
hue_levels = self.var_levels["hue"]
n = len(hue_levels)
for key in curves:
level = dict(key)["hue"]
hist = curves[key].reset_index(name="heights")
level_idx = hue_levels.index(level)
if self._log_scaled(self.data_variable):
log_min = np.log10(hist["edges"])
log_max = np.log10(hist["edges"] + hist["widths"])
log_width = (log_max - log_min) / n
new_min = np.power(10, log_min + level_idx * log_width)
new_max = np.power(10, log_min + (level_idx + 1) * log_width)
hist["widths"] = new_max - new_min
hist["edges"] = new_min
else:
hist["widths"] /= n
hist["edges"] += level_idx * hist["widths"]
curves[key] = hist.set_index(["edges", "widths"])["heights"]
return curves, baselines
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L230-L295
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65
] | 100 |
[] | 0 | true | 96.354167 | 66 | 9 | 100 | 1 |
def _resolve_multiple(self, curves, multiple):
# Default baselines have all densities starting at 0
baselines = {k: np.zeros_like(v) for k, v in curves.items()}
# TODO we should have some central clearinghouse for checking if any
# "grouping" (terminnology?) semantics have been assigned
if "hue" not in self.variables:
return curves, baselines
if multiple in ("stack", "fill"):
# Setting stack or fill means that the curves share a
# support grid / set of bin edges, so we can make a dataframe
# Reverse the column order to plot from top to bottom
curves = pd.DataFrame(curves).iloc[:, ::-1]
# Find column groups that are nested within col/row variables
column_groups = {}
for i, keyd in enumerate(map(dict, curves.columns)):
facet_key = keyd.get("col", None), keyd.get("row", None)
column_groups.setdefault(facet_key, [])
column_groups[facet_key].append(i)
baselines = curves.copy()
for col_idxs in column_groups.values():
cols = curves.columns[col_idxs]
norm_constant = curves[cols].sum(axis="columns")
# Take the cumulative sum to stack
curves[cols] = curves[cols].cumsum(axis="columns")
# Normalize by row sum to fill
if multiple == "fill":
curves[cols] = curves[cols].div(norm_constant, axis="index")
# Define where each segment starts
baselines[cols] = curves[cols].shift(1, axis=1).fillna(0)
if multiple == "dodge":
# Account for the unique semantic (non-faceting) levels
# This will require rethiniking if we add other semantics!
hue_levels = self.var_levels["hue"]
n = len(hue_levels)
for key in curves:
level = dict(key)["hue"]
hist = curves[key].reset_index(name="heights")
level_idx = hue_levels.index(level)
if self._log_scaled(self.data_variable):
log_min = np.log10(hist["edges"])
log_max = np.log10(hist["edges"] + hist["widths"])
log_width = (log_max - log_min) / n
new_min = np.power(10, log_min + level_idx * log_width)
new_max = np.power(10, log_min + (level_idx + 1) * log_width)
hist["widths"] = new_max - new_min
hist["edges"] = new_min
else:
hist["widths"] /= n
hist["edges"] += level_idx * hist["widths"]
curves[key] = hist.set_index(["edges", "widths"])["heights"]
return curves, baselines
| 19,228 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._compute_univariate_density
|
(
self,
data_variable,
common_norm,
common_grid,
estimate_kws,
log_scale,
warn_singular=True,
)
|
return densities
| 301 | 373 |
def _compute_univariate_density(
self,
data_variable,
common_norm,
common_grid,
estimate_kws,
log_scale,
warn_singular=True,
):
# Initialize the estimator object
estimator = KDE(**estimate_kws)
if set(self.variables) - {"x", "y"}:
if common_grid:
all_observations = self.comp_data.dropna()
estimator.define_support(all_observations[data_variable])
else:
common_norm = False
all_data = self.plot_data.dropna()
if common_norm and "weights" in all_data:
whole_weight = all_data["weights"].sum()
else:
whole_weight = len(all_data)
densities = {}
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
# Extract the data points from this sub set and remove nulls
observations = sub_data[data_variable]
# Extract the weights for this subset of observations
if "weights" in self.variables:
weights = sub_data["weights"]
part_weight = weights.sum()
else:
weights = None
part_weight = len(sub_data)
# Estimate the density of observations at this level
variance = np.nan_to_num(observations.var())
singular = len(observations) < 2 or math.isclose(variance, 0)
try:
if not singular:
# Convoluted approach needed because numerical failures
# can manifest in a few different ways.
density, support = estimator(observations, weights=weights)
except np.linalg.LinAlgError:
singular = True
if singular:
msg = (
"Dataset has 0 variance; skipping density estimate. "
"Pass `warn_singular=False` to disable this warning."
)
if warn_singular:
warnings.warn(msg, UserWarning, stacklevel=4)
continue
if log_scale:
support = np.power(10, support)
# Apply a scaling factor so that the integral over all subsets is 1
if common_norm:
density *= part_weight / whole_weight
# Store the density for this level
key = tuple(sub_vars.items())
densities[key] = pd.Series(density, index=support)
return densities
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L301-L373
| 26 |
[
0,
10,
11,
12,
13,
14,
15,
16,
18,
19,
20,
21,
22,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72
] | 79.452055 |
[] | 0 | false | 96.354167 | 73 | 14 | 100 | 0 |
def _compute_univariate_density(
self,
data_variable,
common_norm,
common_grid,
estimate_kws,
log_scale,
warn_singular=True,
):
# Initialize the estimator object
estimator = KDE(**estimate_kws)
if set(self.variables) - {"x", "y"}:
if common_grid:
all_observations = self.comp_data.dropna()
estimator.define_support(all_observations[data_variable])
else:
common_norm = False
all_data = self.plot_data.dropna()
if common_norm and "weights" in all_data:
whole_weight = all_data["weights"].sum()
else:
whole_weight = len(all_data)
densities = {}
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
# Extract the data points from this sub set and remove nulls
observations = sub_data[data_variable]
# Extract the weights for this subset of observations
if "weights" in self.variables:
weights = sub_data["weights"]
part_weight = weights.sum()
else:
weights = None
part_weight = len(sub_data)
# Estimate the density of observations at this level
variance = np.nan_to_num(observations.var())
singular = len(observations) < 2 or math.isclose(variance, 0)
try:
if not singular:
# Convoluted approach needed because numerical failures
# can manifest in a few different ways.
density, support = estimator(observations, weights=weights)
except np.linalg.LinAlgError:
singular = True
if singular:
msg = (
"Dataset has 0 variance; skipping density estimate. "
"Pass `warn_singular=False` to disable this warning."
)
if warn_singular:
warnings.warn(msg, UserWarning, stacklevel=4)
continue
if log_scale:
support = np.power(10, support)
# Apply a scaling factor so that the integral over all subsets is 1
if common_norm:
density *= part_weight / whole_weight
# Store the density for this level
key = tuple(sub_vars.items())
densities[key] = pd.Series(density, index=support)
return densities
| 19,229 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.plot_univariate_histogram
|
(
self,
multiple,
element,
fill,
common_norm,
common_bins,
shrink,
kde,
kde_kws,
color,
legend,
line_kws,
estimate_kws,
**plot_kws,
)
| 379 | 742 |
def plot_univariate_histogram(
self,
multiple,
element,
fill,
common_norm,
common_bins,
shrink,
kde,
kde_kws,
color,
legend,
line_kws,
estimate_kws,
**plot_kws,
):
# -- Default keyword dicts
kde_kws = {} if kde_kws is None else kde_kws.copy()
line_kws = {} if line_kws is None else line_kws.copy()
estimate_kws = {} if estimate_kws is None else estimate_kws.copy()
# -- Input checking
_check_argument("multiple", ["layer", "stack", "fill", "dodge"], multiple)
_check_argument("element", ["bars", "step", "poly"], element)
auto_bins_with_weights = (
"weights" in self.variables
and estimate_kws["bins"] == "auto"
and estimate_kws["binwidth"] is None
and not estimate_kws["discrete"]
)
if auto_bins_with_weights:
msg = (
"`bins` cannot be 'auto' when using weights. "
"Setting `bins=10`, but you will likely want to adjust."
)
warnings.warn(msg, UserWarning)
estimate_kws["bins"] = 10
# Simplify downstream code if we are not normalizing
if estimate_kws["stat"] == "count":
common_norm = False
orient = self.data_variable
# Now initialize the Histogram estimator
estimator = Hist(**estimate_kws)
histograms = {}
# Do pre-compute housekeeping related to multiple groups
all_data = self.comp_data.dropna()
all_weights = all_data.get("weights", None)
multiple_histograms = set(self.variables) - {"x", "y"}
if multiple_histograms:
if common_bins:
bin_kws = estimator._define_bin_params(all_data, orient, None)
else:
common_norm = False
if common_norm and all_weights is not None:
whole_weight = all_weights.sum()
else:
whole_weight = len(all_data)
# Estimate the smoothed kernel densities, for use later
if kde:
# TODO alternatively, clip at min/max bins?
kde_kws.setdefault("cut", 0)
kde_kws["cumulative"] = estimate_kws["cumulative"]
log_scale = self._log_scaled(self.data_variable)
densities = self._compute_univariate_density(
self.data_variable,
common_norm,
common_bins,
kde_kws,
log_scale,
warn_singular=False,
)
# First pass through the data to compute the histograms
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
# Prepare the relevant data
key = tuple(sub_vars.items())
orient = self.data_variable
if "weights" in self.variables:
sub_data["weight"] = sub_data.pop("weights")
part_weight = sub_data["weight"].sum()
else:
part_weight = len(sub_data)
# Do the histogram computation
if not (multiple_histograms and common_bins):
bin_kws = estimator._define_bin_params(sub_data, orient, None)
res = estimator._normalize(estimator._eval(sub_data, orient, bin_kws))
heights = res[estimator.stat].to_numpy()
widths = res["space"].to_numpy()
edges = res[orient].to_numpy() - widths / 2
# Rescale the smoothed curve to match the histogram
if kde and key in densities:
density = densities[key]
if estimator.cumulative:
hist_norm = heights.max()
else:
hist_norm = (heights * widths).sum()
densities[key] *= hist_norm
# Convert edges back to original units for plotting
if self._log_scaled(self.data_variable):
widths = np.power(10, edges + widths) - np.power(10, edges)
edges = np.power(10, edges)
# Pack the histogram data and metadata together
edges = edges + (1 - shrink) / 2 * widths
widths *= shrink
index = pd.MultiIndex.from_arrays([
pd.Index(edges, name="edges"),
pd.Index(widths, name="widths"),
])
hist = pd.Series(heights, index=index, name="heights")
# Apply scaling to normalize across groups
if common_norm:
hist *= part_weight / whole_weight
# Store the finalized histogram data for future plotting
histograms[key] = hist
# Modify the histogram and density data to resolve multiple groups
histograms, baselines = self._resolve_multiple(histograms, multiple)
if kde:
densities, _ = self._resolve_multiple(
densities, None if multiple == "dodge" else multiple
)
# Set autoscaling-related meta
sticky_stat = (0, 1) if multiple == "fill" else (0, np.inf)
if multiple == "fill":
# Filled plots should not have any margins
bin_vals = histograms.index.to_frame()
edges = bin_vals["edges"]
widths = bin_vals["widths"]
sticky_data = (
edges.min(),
edges.max() + widths.loc[edges.idxmax()]
)
else:
sticky_data = []
# --- Handle default visual attributes
# Note: default linewidth is determined after plotting
# Default alpha should depend on other parameters
if fill:
# Note: will need to account for other grouping semantics if added
if "hue" in self.variables and multiple == "layer":
default_alpha = .5 if element == "bars" else .25
elif kde:
default_alpha = .5
else:
default_alpha = .75
else:
default_alpha = 1
alpha = plot_kws.pop("alpha", default_alpha) # TODO make parameter?
hist_artists = []
# Go back through the dataset and draw the plots
for sub_vars, _ in self.iter_data("hue", reverse=True):
key = tuple(sub_vars.items())
hist = histograms[key].rename("heights").reset_index()
bottom = np.asarray(baselines[key])
ax = self._get_axes(sub_vars)
# Define the matplotlib attributes that depend on semantic mapping
if "hue" in self.variables:
sub_color = self._hue_map(sub_vars["hue"])
else:
sub_color = color
artist_kws = self._artist_kws(
plot_kws, fill, element, multiple, sub_color, alpha
)
if element == "bars":
# Use matplotlib bar plotting
plot_func = ax.bar if self.data_variable == "x" else ax.barh
artists = plot_func(
hist["edges"],
hist["heights"] - bottom,
hist["widths"],
bottom,
align="edge",
**artist_kws,
)
for bar in artists:
if self.data_variable == "x":
bar.sticky_edges.x[:] = sticky_data
bar.sticky_edges.y[:] = sticky_stat
else:
bar.sticky_edges.x[:] = sticky_stat
bar.sticky_edges.y[:] = sticky_data
hist_artists.extend(artists)
else:
# Use either fill_between or plot to draw hull of histogram
if element == "step":
final = hist.iloc[-1]
x = np.append(hist["edges"], final["edges"] + final["widths"])
y = np.append(hist["heights"], final["heights"])
b = np.append(bottom, bottom[-1])
if self.data_variable == "x":
step = "post"
drawstyle = "steps-post"
else:
step = "post" # fillbetweenx handles mapping internally
drawstyle = "steps-pre"
elif element == "poly":
x = hist["edges"] + hist["widths"] / 2
y = hist["heights"]
b = bottom
step = None
drawstyle = None
if self.data_variable == "x":
if fill:
artist = ax.fill_between(x, b, y, step=step, **artist_kws)
else:
artist, = ax.plot(x, y, drawstyle=drawstyle, **artist_kws)
artist.sticky_edges.x[:] = sticky_data
artist.sticky_edges.y[:] = sticky_stat
else:
if fill:
artist = ax.fill_betweenx(x, b, y, step=step, **artist_kws)
else:
artist, = ax.plot(y, x, drawstyle=drawstyle, **artist_kws)
artist.sticky_edges.x[:] = sticky_stat
artist.sticky_edges.y[:] = sticky_data
hist_artists.append(artist)
if kde:
# Add in the density curves
try:
density = densities[key]
except KeyError:
continue
support = density.index
if "x" in self.variables:
line_args = support, density
sticky_x, sticky_y = None, (0, np.inf)
else:
line_args = density, support
sticky_x, sticky_y = (0, np.inf), None
line_kws["color"] = to_rgba(sub_color, 1)
line, = ax.plot(
*line_args, **line_kws,
)
if sticky_x is not None:
line.sticky_edges.x[:] = sticky_x
if sticky_y is not None:
line.sticky_edges.y[:] = sticky_y
if element == "bars" and "linewidth" not in plot_kws:
# Now we handle linewidth, which depends on the scaling of the plot
# We will base everything on the minimum bin width
hist_metadata = pd.concat([
# Use .items for generality over dict or df
h.index.to_frame() for _, h in histograms.items()
]).reset_index(drop=True)
thin_bar_idx = hist_metadata["widths"].idxmin()
binwidth = hist_metadata.loc[thin_bar_idx, "widths"]
left_edge = hist_metadata.loc[thin_bar_idx, "edges"]
# Set initial value
default_linewidth = math.inf
# Loop through subsets based only on facet variables
for sub_vars, _ in self.iter_data():
ax = self._get_axes(sub_vars)
# Needed in some cases to get valid transforms.
# Innocuous in other cases?
ax.autoscale_view()
# Convert binwidth from data coordinates to pixels
pts_x, pts_y = 72 / ax.figure.dpi * abs(
ax.transData.transform([left_edge + binwidth] * 2)
- ax.transData.transform([left_edge] * 2)
)
if self.data_variable == "x":
binwidth_points = pts_x
else:
binwidth_points = pts_y
# The relative size of the lines depends on the appearance
# This is a provisional value and may need more tweaking
default_linewidth = min(.1 * binwidth_points, default_linewidth)
# Set the attributes
for bar in hist_artists:
# Don't let the lines get too thick
max_linewidth = bar.get_linewidth()
if not fill:
max_linewidth *= 1.5
linewidth = min(default_linewidth, max_linewidth)
# If not filling, don't let lines disappear
if not fill:
min_linewidth = .5
linewidth = max(linewidth, min_linewidth)
bar.set_linewidth(linewidth)
# --- Finalize the plot ----
# Axis labels
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
default_x = default_y = ""
if self.data_variable == "x":
default_y = estimator.stat.capitalize()
if self.data_variable == "y":
default_x = estimator.stat.capitalize()
self._add_axis_labels(ax, default_x, default_y)
# Legend for semantic variables
if "hue" in self.variables and legend:
if fill or element == "bars":
artist = partial(mpl.patches.Patch)
else:
artist = partial(mpl.lines.Line2D, [], [])
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, fill, element, multiple, alpha, plot_kws, {},
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L379-L742
| 26 |
[
0,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
32,
33,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
59,
60,
61,
62,
64,
65,
66,
67,
68,
69,
70,
71,
72,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
139,
140,
141,
142,
143,
144,
145,
146,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
165,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
185,
186,
187,
190,
191,
192,
193,
194,
195,
196,
204,
205,
206,
207,
208,
210,
211,
212,
213,
214,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
245,
246,
247,
249,
250,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268,
269,
270,
272,
273,
274,
275,
276,
279,
280,
281,
282,
283,
284,
285,
286,
287,
288,
289,
290,
291,
294,
295,
296,
297,
298,
299,
300,
301,
302,
303,
304,
305,
306,
307,
308,
309,
310,
311,
315,
316,
318,
319,
320,
321,
322,
323,
324,
325,
326,
327,
328,
329,
330,
331,
332,
333,
334,
335,
336,
337,
338,
339,
340,
341,
342,
343,
344,
345,
346,
347,
348,
349,
350,
351,
352,
353,
354,
355,
356,
359,
360,
361
] | 78.296703 |
[
106,
358
] | 0.549451 | false | 96.354167 | 364 | 56 | 99.450549 | 0 |
def plot_univariate_histogram(
self,
multiple,
element,
fill,
common_norm,
common_bins,
shrink,
kde,
kde_kws,
color,
legend,
line_kws,
estimate_kws,
**plot_kws,
):
# -- Default keyword dicts
kde_kws = {} if kde_kws is None else kde_kws.copy()
line_kws = {} if line_kws is None else line_kws.copy()
estimate_kws = {} if estimate_kws is None else estimate_kws.copy()
# -- Input checking
_check_argument("multiple", ["layer", "stack", "fill", "dodge"], multiple)
_check_argument("element", ["bars", "step", "poly"], element)
auto_bins_with_weights = (
"weights" in self.variables
and estimate_kws["bins"] == "auto"
and estimate_kws["binwidth"] is None
and not estimate_kws["discrete"]
)
if auto_bins_with_weights:
msg = (
"`bins` cannot be 'auto' when using weights. "
"Setting `bins=10`, but you will likely want to adjust."
)
warnings.warn(msg, UserWarning)
estimate_kws["bins"] = 10
# Simplify downstream code if we are not normalizing
if estimate_kws["stat"] == "count":
common_norm = False
orient = self.data_variable
# Now initialize the Histogram estimator
estimator = Hist(**estimate_kws)
histograms = {}
# Do pre-compute housekeeping related to multiple groups
all_data = self.comp_data.dropna()
all_weights = all_data.get("weights", None)
multiple_histograms = set(self.variables) - {"x", "y"}
if multiple_histograms:
if common_bins:
bin_kws = estimator._define_bin_params(all_data, orient, None)
else:
common_norm = False
if common_norm and all_weights is not None:
whole_weight = all_weights.sum()
else:
whole_weight = len(all_data)
# Estimate the smoothed kernel densities, for use later
if kde:
# TODO alternatively, clip at min/max bins?
kde_kws.setdefault("cut", 0)
kde_kws["cumulative"] = estimate_kws["cumulative"]
log_scale = self._log_scaled(self.data_variable)
densities = self._compute_univariate_density(
self.data_variable,
common_norm,
common_bins,
kde_kws,
log_scale,
warn_singular=False,
)
# First pass through the data to compute the histograms
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
# Prepare the relevant data
key = tuple(sub_vars.items())
orient = self.data_variable
if "weights" in self.variables:
sub_data["weight"] = sub_data.pop("weights")
part_weight = sub_data["weight"].sum()
else:
part_weight = len(sub_data)
# Do the histogram computation
if not (multiple_histograms and common_bins):
bin_kws = estimator._define_bin_params(sub_data, orient, None)
res = estimator._normalize(estimator._eval(sub_data, orient, bin_kws))
heights = res[estimator.stat].to_numpy()
widths = res["space"].to_numpy()
edges = res[orient].to_numpy() - widths / 2
# Rescale the smoothed curve to match the histogram
if kde and key in densities:
density = densities[key]
if estimator.cumulative:
hist_norm = heights.max()
else:
hist_norm = (heights * widths).sum()
densities[key] *= hist_norm
# Convert edges back to original units for plotting
if self._log_scaled(self.data_variable):
widths = np.power(10, edges + widths) - np.power(10, edges)
edges = np.power(10, edges)
# Pack the histogram data and metadata together
edges = edges + (1 - shrink) / 2 * widths
widths *= shrink
index = pd.MultiIndex.from_arrays([
pd.Index(edges, name="edges"),
pd.Index(widths, name="widths"),
])
hist = pd.Series(heights, index=index, name="heights")
# Apply scaling to normalize across groups
if common_norm:
hist *= part_weight / whole_weight
# Store the finalized histogram data for future plotting
histograms[key] = hist
# Modify the histogram and density data to resolve multiple groups
histograms, baselines = self._resolve_multiple(histograms, multiple)
if kde:
densities, _ = self._resolve_multiple(
densities, None if multiple == "dodge" else multiple
)
# Set autoscaling-related meta
sticky_stat = (0, 1) if multiple == "fill" else (0, np.inf)
if multiple == "fill":
# Filled plots should not have any margins
bin_vals = histograms.index.to_frame()
edges = bin_vals["edges"]
widths = bin_vals["widths"]
sticky_data = (
edges.min(),
edges.max() + widths.loc[edges.idxmax()]
)
else:
sticky_data = []
# --- Handle default visual attributes
# Note: default linewidth is determined after plotting
# Default alpha should depend on other parameters
if fill:
# Note: will need to account for other grouping semantics if added
if "hue" in self.variables and multiple == "layer":
default_alpha = .5 if element == "bars" else .25
elif kde:
default_alpha = .5
else:
default_alpha = .75
else:
default_alpha = 1
alpha = plot_kws.pop("alpha", default_alpha) # TODO make parameter?
hist_artists = []
# Go back through the dataset and draw the plots
for sub_vars, _ in self.iter_data("hue", reverse=True):
key = tuple(sub_vars.items())
hist = histograms[key].rename("heights").reset_index()
bottom = np.asarray(baselines[key])
ax = self._get_axes(sub_vars)
# Define the matplotlib attributes that depend on semantic mapping
if "hue" in self.variables:
sub_color = self._hue_map(sub_vars["hue"])
else:
sub_color = color
artist_kws = self._artist_kws(
plot_kws, fill, element, multiple, sub_color, alpha
)
if element == "bars":
# Use matplotlib bar plotting
plot_func = ax.bar if self.data_variable == "x" else ax.barh
artists = plot_func(
hist["edges"],
hist["heights"] - bottom,
hist["widths"],
bottom,
align="edge",
**artist_kws,
)
for bar in artists:
if self.data_variable == "x":
bar.sticky_edges.x[:] = sticky_data
bar.sticky_edges.y[:] = sticky_stat
else:
bar.sticky_edges.x[:] = sticky_stat
bar.sticky_edges.y[:] = sticky_data
hist_artists.extend(artists)
else:
# Use either fill_between or plot to draw hull of histogram
if element == "step":
final = hist.iloc[-1]
x = np.append(hist["edges"], final["edges"] + final["widths"])
y = np.append(hist["heights"], final["heights"])
b = np.append(bottom, bottom[-1])
if self.data_variable == "x":
step = "post"
drawstyle = "steps-post"
else:
step = "post" # fillbetweenx handles mapping internally
drawstyle = "steps-pre"
elif element == "poly":
x = hist["edges"] + hist["widths"] / 2
y = hist["heights"]
b = bottom
step = None
drawstyle = None
if self.data_variable == "x":
if fill:
artist = ax.fill_between(x, b, y, step=step, **artist_kws)
else:
artist, = ax.plot(x, y, drawstyle=drawstyle, **artist_kws)
artist.sticky_edges.x[:] = sticky_data
artist.sticky_edges.y[:] = sticky_stat
else:
if fill:
artist = ax.fill_betweenx(x, b, y, step=step, **artist_kws)
else:
artist, = ax.plot(y, x, drawstyle=drawstyle, **artist_kws)
artist.sticky_edges.x[:] = sticky_stat
artist.sticky_edges.y[:] = sticky_data
hist_artists.append(artist)
if kde:
# Add in the density curves
try:
density = densities[key]
except KeyError:
continue
support = density.index
if "x" in self.variables:
line_args = support, density
sticky_x, sticky_y = None, (0, np.inf)
else:
line_args = density, support
sticky_x, sticky_y = (0, np.inf), None
line_kws["color"] = to_rgba(sub_color, 1)
line, = ax.plot(
*line_args, **line_kws,
)
if sticky_x is not None:
line.sticky_edges.x[:] = sticky_x
if sticky_y is not None:
line.sticky_edges.y[:] = sticky_y
if element == "bars" and "linewidth" not in plot_kws:
# Now we handle linewidth, which depends on the scaling of the plot
# We will base everything on the minimum bin width
hist_metadata = pd.concat([
# Use .items for generality over dict or df
h.index.to_frame() for _, h in histograms.items()
]).reset_index(drop=True)
thin_bar_idx = hist_metadata["widths"].idxmin()
binwidth = hist_metadata.loc[thin_bar_idx, "widths"]
left_edge = hist_metadata.loc[thin_bar_idx, "edges"]
# Set initial value
default_linewidth = math.inf
# Loop through subsets based only on facet variables
for sub_vars, _ in self.iter_data():
ax = self._get_axes(sub_vars)
# Needed in some cases to get valid transforms.
# Innocuous in other cases?
ax.autoscale_view()
# Convert binwidth from data coordinates to pixels
pts_x, pts_y = 72 / ax.figure.dpi * abs(
ax.transData.transform([left_edge + binwidth] * 2)
- ax.transData.transform([left_edge] * 2)
)
if self.data_variable == "x":
binwidth_points = pts_x
else:
binwidth_points = pts_y
# The relative size of the lines depends on the appearance
# This is a provisional value and may need more tweaking
default_linewidth = min(.1 * binwidth_points, default_linewidth)
# Set the attributes
for bar in hist_artists:
# Don't let the lines get too thick
max_linewidth = bar.get_linewidth()
if not fill:
max_linewidth *= 1.5
linewidth = min(default_linewidth, max_linewidth)
# If not filling, don't let lines disappear
if not fill:
min_linewidth = .5
linewidth = max(linewidth, min_linewidth)
bar.set_linewidth(linewidth)
# --- Finalize the plot ----
# Axis labels
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
default_x = default_y = ""
if self.data_variable == "x":
default_y = estimator.stat.capitalize()
if self.data_variable == "y":
default_x = estimator.stat.capitalize()
self._add_axis_labels(ax, default_x, default_y)
# Legend for semantic variables
if "hue" in self.variables and legend:
if fill or element == "bars":
artist = partial(mpl.patches.Patch)
else:
artist = partial(mpl.lines.Line2D, [], [])
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, fill, element, multiple, alpha, plot_kws, {},
)
| 19,230 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.plot_bivariate_histogram
|
(
self,
common_bins, common_norm,
thresh, pthresh, pmax,
color, legend,
cbar, cbar_ax, cbar_kws,
estimate_kws,
**plot_kws,
)
| 744 | 899 |
def plot_bivariate_histogram(
self,
common_bins, common_norm,
thresh, pthresh, pmax,
color, legend,
cbar, cbar_ax, cbar_kws,
estimate_kws,
**plot_kws,
):
# Default keyword dicts
cbar_kws = {} if cbar_kws is None else cbar_kws.copy()
# Now initialize the Histogram estimator
estimator = Histogram(**estimate_kws)
# Do pre-compute housekeeping related to multiple groups
if set(self.variables) - {"x", "y"}:
all_data = self.comp_data.dropna()
if common_bins:
estimator.define_bin_params(
all_data["x"],
all_data["y"],
all_data.get("weights", None),
)
else:
common_norm = False
# -- Determine colormap threshold and norm based on the full data
full_heights = []
for _, sub_data in self.iter_data(from_comp_data=True):
sub_heights, _ = estimator(
sub_data["x"], sub_data["y"], sub_data.get("weights", None)
)
full_heights.append(sub_heights)
common_color_norm = not set(self.variables) - {"x", "y"} or common_norm
if pthresh is not None and common_color_norm:
thresh = self._quantile_to_level(full_heights, pthresh)
plot_kws.setdefault("vmin", 0)
if common_color_norm:
if pmax is not None:
vmax = self._quantile_to_level(full_heights, pmax)
else:
vmax = plot_kws.pop("vmax", max(map(np.max, full_heights)))
else:
vmax = None
# Get a default color
# (We won't follow the color cycle here, as multiple plots are unlikely)
if color is None:
color = "C0"
# --- Loop over data (subsets) and draw the histograms
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
if sub_data.empty:
continue
# Do the histogram computation
heights, (x_edges, y_edges) = estimator(
sub_data["x"],
sub_data["y"],
weights=sub_data.get("weights", None),
)
# Check for log scaling on the data axis
if self._log_scaled("x"):
x_edges = np.power(10, x_edges)
if self._log_scaled("y"):
y_edges = np.power(10, y_edges)
# Apply scaling to normalize across groups
if estimator.stat != "count" and common_norm:
heights *= len(sub_data) / len(all_data)
# Define the specific kwargs for this artist
artist_kws = plot_kws.copy()
if "hue" in self.variables:
color = self._hue_map(sub_vars["hue"])
cmap = self._cmap_from_color(color)
artist_kws["cmap"] = cmap
else:
cmap = artist_kws.pop("cmap", None)
if isinstance(cmap, str):
cmap = color_palette(cmap, as_cmap=True)
elif cmap is None:
cmap = self._cmap_from_color(color)
artist_kws["cmap"] = cmap
# Set the upper norm on the colormap
if not common_color_norm and pmax is not None:
vmax = self._quantile_to_level(heights, pmax)
if vmax is not None:
artist_kws["vmax"] = vmax
# Make cells at or below the threshold transparent
if not common_color_norm and pthresh:
thresh = self._quantile_to_level(heights, pthresh)
if thresh is not None:
heights = np.ma.masked_less_equal(heights, thresh)
# Get the axes for this plot
ax = self._get_axes(sub_vars)
# pcolormesh is going to turn the grid off, but we want to keep it
# I'm not sure if there's a better way to get the grid state
x_grid = any([l.get_visible() for l in ax.xaxis.get_gridlines()])
y_grid = any([l.get_visible() for l in ax.yaxis.get_gridlines()])
mesh = ax.pcolormesh(
x_edges,
y_edges,
heights.T,
**artist_kws,
)
# pcolormesh sets sticky edges, but we only want them if not thresholding
if thresh is not None:
mesh.sticky_edges.x[:] = []
mesh.sticky_edges.y[:] = []
# Add an optional colorbar
# Note, we want to improve this. When hue is used, it will stack
# multiple colorbars with redundant ticks in an ugly way.
# But it's going to take some work to have multiple colorbars that
# share ticks nicely.
if cbar:
ax.figure.colorbar(mesh, cbar_ax, ax, **cbar_kws)
# Reset the grid state
if x_grid:
ax.grid(True, axis="x")
if y_grid:
ax.grid(True, axis="y")
# --- Finalize the plot
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
self._add_axis_labels(ax)
if "hue" in self.variables and legend:
# TODO if possible, I would like to move the contour
# intensity information into the legend too and label the
# iso proportions rather than the raw density values
artist_kws = {}
artist = partial(mpl.patches.Patch)
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, True, False, "layer", 1, artist_kws, {},
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L744-L899
| 26 |
[
0,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
26,
27,
28,
29,
30,
31,
32,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
47,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
62,
63,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
86,
87,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153
] | 77.564103 |
[
60,
88
] | 1.282051 | false | 96.354167 | 156 | 33 | 98.717949 | 0 |
def plot_bivariate_histogram(
self,
common_bins, common_norm,
thresh, pthresh, pmax,
color, legend,
cbar, cbar_ax, cbar_kws,
estimate_kws,
**plot_kws,
):
# Default keyword dicts
cbar_kws = {} if cbar_kws is None else cbar_kws.copy()
# Now initialize the Histogram estimator
estimator = Histogram(**estimate_kws)
# Do pre-compute housekeeping related to multiple groups
if set(self.variables) - {"x", "y"}:
all_data = self.comp_data.dropna()
if common_bins:
estimator.define_bin_params(
all_data["x"],
all_data["y"],
all_data.get("weights", None),
)
else:
common_norm = False
# -- Determine colormap threshold and norm based on the full data
full_heights = []
for _, sub_data in self.iter_data(from_comp_data=True):
sub_heights, _ = estimator(
sub_data["x"], sub_data["y"], sub_data.get("weights", None)
)
full_heights.append(sub_heights)
common_color_norm = not set(self.variables) - {"x", "y"} or common_norm
if pthresh is not None and common_color_norm:
thresh = self._quantile_to_level(full_heights, pthresh)
plot_kws.setdefault("vmin", 0)
if common_color_norm:
if pmax is not None:
vmax = self._quantile_to_level(full_heights, pmax)
else:
vmax = plot_kws.pop("vmax", max(map(np.max, full_heights)))
else:
vmax = None
# Get a default color
# (We won't follow the color cycle here, as multiple plots are unlikely)
if color is None:
color = "C0"
# --- Loop over data (subsets) and draw the histograms
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
if sub_data.empty:
continue
# Do the histogram computation
heights, (x_edges, y_edges) = estimator(
sub_data["x"],
sub_data["y"],
weights=sub_data.get("weights", None),
)
# Check for log scaling on the data axis
if self._log_scaled("x"):
x_edges = np.power(10, x_edges)
if self._log_scaled("y"):
y_edges = np.power(10, y_edges)
# Apply scaling to normalize across groups
if estimator.stat != "count" and common_norm:
heights *= len(sub_data) / len(all_data)
# Define the specific kwargs for this artist
artist_kws = plot_kws.copy()
if "hue" in self.variables:
color = self._hue_map(sub_vars["hue"])
cmap = self._cmap_from_color(color)
artist_kws["cmap"] = cmap
else:
cmap = artist_kws.pop("cmap", None)
if isinstance(cmap, str):
cmap = color_palette(cmap, as_cmap=True)
elif cmap is None:
cmap = self._cmap_from_color(color)
artist_kws["cmap"] = cmap
# Set the upper norm on the colormap
if not common_color_norm and pmax is not None:
vmax = self._quantile_to_level(heights, pmax)
if vmax is not None:
artist_kws["vmax"] = vmax
# Make cells at or below the threshold transparent
if not common_color_norm and pthresh:
thresh = self._quantile_to_level(heights, pthresh)
if thresh is not None:
heights = np.ma.masked_less_equal(heights, thresh)
# Get the axes for this plot
ax = self._get_axes(sub_vars)
# pcolormesh is going to turn the grid off, but we want to keep it
# I'm not sure if there's a better way to get the grid state
x_grid = any([l.get_visible() for l in ax.xaxis.get_gridlines()])
y_grid = any([l.get_visible() for l in ax.yaxis.get_gridlines()])
mesh = ax.pcolormesh(
x_edges,
y_edges,
heights.T,
**artist_kws,
)
# pcolormesh sets sticky edges, but we only want them if not thresholding
if thresh is not None:
mesh.sticky_edges.x[:] = []
mesh.sticky_edges.y[:] = []
# Add an optional colorbar
# Note, we want to improve this. When hue is used, it will stack
# multiple colorbars with redundant ticks in an ugly way.
# But it's going to take some work to have multiple colorbars that
# share ticks nicely.
if cbar:
ax.figure.colorbar(mesh, cbar_ax, ax, **cbar_kws)
# Reset the grid state
if x_grid:
ax.grid(True, axis="x")
if y_grid:
ax.grid(True, axis="y")
# --- Finalize the plot
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
self._add_axis_labels(ax)
if "hue" in self.variables and legend:
# TODO if possible, I would like to move the contour
# intensity information into the legend too and label the
# iso proportions rather than the raw density values
artist_kws = {}
artist = partial(mpl.patches.Patch)
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, True, False, "layer", 1, artist_kws, {},
)
| 19,231 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.plot_univariate_density
|
(
self,
multiple,
common_norm,
common_grid,
warn_singular,
fill,
color,
legend,
estimate_kws,
**plot_kws,
)
| 901 | 1,034 |
def plot_univariate_density(
self,
multiple,
common_norm,
common_grid,
warn_singular,
fill,
color,
legend,
estimate_kws,
**plot_kws,
):
# Handle conditional defaults
if fill is None:
fill = multiple in ("stack", "fill")
# Preprocess the matplotlib keyword dictionaries
if fill:
artist = mpl.collections.PolyCollection
else:
artist = mpl.lines.Line2D
plot_kws = _normalize_kwargs(plot_kws, artist)
# Input checking
_check_argument("multiple", ["layer", "stack", "fill"], multiple)
# Always share the evaluation grid when stacking
subsets = bool(set(self.variables) - {"x", "y"})
if subsets and multiple in ("stack", "fill"):
common_grid = True
# Check if the data axis is log scaled
log_scale = self._log_scaled(self.data_variable)
# Do the computation
densities = self._compute_univariate_density(
self.data_variable,
common_norm,
common_grid,
estimate_kws,
log_scale,
warn_singular,
)
# Adjust densities based on the `multiple` rule
densities, baselines = self._resolve_multiple(densities, multiple)
# Control the interaction with autoscaling by defining sticky_edges
# i.e. we don't want autoscale margins below the density curve
sticky_density = (0, 1) if multiple == "fill" else (0, np.inf)
if multiple == "fill":
# Filled plots should not have any margins
sticky_support = densities.index.min(), densities.index.max()
else:
sticky_support = []
if fill:
if multiple == "layer":
default_alpha = .25
else:
default_alpha = .75
else:
default_alpha = 1
alpha = plot_kws.pop("alpha", default_alpha) # TODO make parameter?
# Now iterate through the subsets and draw the densities
# We go backwards so stacked densities read from top-to-bottom
for sub_vars, _ in self.iter_data("hue", reverse=True):
# Extract the support grid and density curve for this level
key = tuple(sub_vars.items())
try:
density = densities[key]
except KeyError:
continue
support = density.index
fill_from = baselines[key]
ax = self._get_axes(sub_vars)
if "hue" in self.variables:
sub_color = self._hue_map(sub_vars["hue"])
else:
sub_color = color
artist_kws = self._artist_kws(
plot_kws, fill, False, multiple, sub_color, alpha
)
# Either plot a curve with observation values on the x axis
if "x" in self.variables:
if fill:
artist = ax.fill_between(support, fill_from, density, **artist_kws)
else:
artist, = ax.plot(support, density, **artist_kws)
artist.sticky_edges.x[:] = sticky_support
artist.sticky_edges.y[:] = sticky_density
# Or plot a curve with observation values on the y axis
else:
if fill:
artist = ax.fill_betweenx(support, fill_from, density, **artist_kws)
else:
artist, = ax.plot(density, support, **artist_kws)
artist.sticky_edges.x[:] = sticky_density
artist.sticky_edges.y[:] = sticky_support
# --- Finalize the plot ----
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
default_x = default_y = ""
if self.data_variable == "x":
default_y = "Density"
if self.data_variable == "y":
default_x = "Density"
self._add_axis_labels(ax, default_x, default_y)
if "hue" in self.variables and legend:
if fill:
artist = partial(mpl.patches.Patch)
else:
artist = partial(mpl.lines.Line2D, [], [])
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, fill, False, multiple, alpha, plot_kws, {},
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L901-L1034
| 26 |
[
0,
13,
14,
15,
16,
17,
18,
19,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
56,
57,
58,
59,
60,
62,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
85,
86,
87,
91,
92,
93,
94,
95,
96,
98,
99,
100,
101,
102,
103,
105,
106,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
128,
129,
130,
131
] | 74.626866 |
[] | 0 | false | 96.354167 | 134 | 19 | 100 | 0 |
def plot_univariate_density(
self,
multiple,
common_norm,
common_grid,
warn_singular,
fill,
color,
legend,
estimate_kws,
**plot_kws,
):
# Handle conditional defaults
if fill is None:
fill = multiple in ("stack", "fill")
# Preprocess the matplotlib keyword dictionaries
if fill:
artist = mpl.collections.PolyCollection
else:
artist = mpl.lines.Line2D
plot_kws = _normalize_kwargs(plot_kws, artist)
# Input checking
_check_argument("multiple", ["layer", "stack", "fill"], multiple)
# Always share the evaluation grid when stacking
subsets = bool(set(self.variables) - {"x", "y"})
if subsets and multiple in ("stack", "fill"):
common_grid = True
# Check if the data axis is log scaled
log_scale = self._log_scaled(self.data_variable)
# Do the computation
densities = self._compute_univariate_density(
self.data_variable,
common_norm,
common_grid,
estimate_kws,
log_scale,
warn_singular,
)
# Adjust densities based on the `multiple` rule
densities, baselines = self._resolve_multiple(densities, multiple)
# Control the interaction with autoscaling by defining sticky_edges
# i.e. we don't want autoscale margins below the density curve
sticky_density = (0, 1) if multiple == "fill" else (0, np.inf)
if multiple == "fill":
# Filled plots should not have any margins
sticky_support = densities.index.min(), densities.index.max()
else:
sticky_support = []
if fill:
if multiple == "layer":
default_alpha = .25
else:
default_alpha = .75
else:
default_alpha = 1
alpha = plot_kws.pop("alpha", default_alpha) # TODO make parameter?
# Now iterate through the subsets and draw the densities
# We go backwards so stacked densities read from top-to-bottom
for sub_vars, _ in self.iter_data("hue", reverse=True):
# Extract the support grid and density curve for this level
key = tuple(sub_vars.items())
try:
density = densities[key]
except KeyError:
continue
support = density.index
fill_from = baselines[key]
ax = self._get_axes(sub_vars)
if "hue" in self.variables:
sub_color = self._hue_map(sub_vars["hue"])
else:
sub_color = color
artist_kws = self._artist_kws(
plot_kws, fill, False, multiple, sub_color, alpha
)
# Either plot a curve with observation values on the x axis
if "x" in self.variables:
if fill:
artist = ax.fill_between(support, fill_from, density, **artist_kws)
else:
artist, = ax.plot(support, density, **artist_kws)
artist.sticky_edges.x[:] = sticky_support
artist.sticky_edges.y[:] = sticky_density
# Or plot a curve with observation values on the y axis
else:
if fill:
artist = ax.fill_betweenx(support, fill_from, density, **artist_kws)
else:
artist, = ax.plot(density, support, **artist_kws)
artist.sticky_edges.x[:] = sticky_density
artist.sticky_edges.y[:] = sticky_support
# --- Finalize the plot ----
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
default_x = default_y = ""
if self.data_variable == "x":
default_y = "Density"
if self.data_variable == "y":
default_x = "Density"
self._add_axis_labels(ax, default_x, default_y)
if "hue" in self.variables and legend:
if fill:
artist = partial(mpl.patches.Patch)
else:
artist = partial(mpl.lines.Line2D, [], [])
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, fill, False, multiple, alpha, plot_kws, {},
)
| 19,232 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.plot_bivariate_density
|
(
self,
common_norm,
fill,
levels,
thresh,
color,
legend,
cbar,
warn_singular,
cbar_ax,
cbar_kws,
estimate_kws,
**contour_kws,
)
| 1,036 | 1,220 |
def plot_bivariate_density(
self,
common_norm,
fill,
levels,
thresh,
color,
legend,
cbar,
warn_singular,
cbar_ax,
cbar_kws,
estimate_kws,
**contour_kws,
):
contour_kws = contour_kws.copy()
estimator = KDE(**estimate_kws)
if not set(self.variables) - {"x", "y"}:
common_norm = False
all_data = self.plot_data.dropna()
# Loop through the subsets and estimate the KDEs
densities, supports = {}, {}
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
# Extract the data points from this sub set
observations = sub_data[["x", "y"]]
min_variance = observations.var().fillna(0).min()
observations = observations["x"], observations["y"]
# Extract the weights for this subset of observations
if "weights" in self.variables:
weights = sub_data["weights"]
else:
weights = None
# Estimate the density of observations at this level
singular = math.isclose(min_variance, 0)
try:
if not singular:
density, support = estimator(*observations, weights=weights)
except np.linalg.LinAlgError:
# Testing for 0 variance doesn't catch all cases where scipy raises,
# but we can also get a ValueError, so we need this convoluted approach
singular = True
if singular:
msg = (
"KDE cannot be estimated (0 variance or perfect covariance). "
"Pass `warn_singular=False` to disable this warning."
)
if warn_singular:
warnings.warn(msg, UserWarning, stacklevel=3)
continue
# Transform the support grid back to the original scale
xx, yy = support
if self._log_scaled("x"):
xx = np.power(10, xx)
if self._log_scaled("y"):
yy = np.power(10, yy)
support = xx, yy
# Apply a scaling factor so that the integral over all subsets is 1
if common_norm:
density *= len(sub_data) / len(all_data)
key = tuple(sub_vars.items())
densities[key] = density
supports[key] = support
# Define a grid of iso-proportion levels
if thresh is None:
thresh = 0
if isinstance(levels, Number):
levels = np.linspace(thresh, 1, levels)
else:
if min(levels) < 0 or max(levels) > 1:
raise ValueError("levels must be in [0, 1]")
# Transform from iso-proportions to iso-densities
if common_norm:
common_levels = self._quantile_to_level(
list(densities.values()), levels,
)
draw_levels = {k: common_levels for k in densities}
else:
draw_levels = {
k: self._quantile_to_level(d, levels)
for k, d in densities.items()
}
# Define the coloring of the contours
if "hue" in self.variables:
for param in ["cmap", "colors"]:
if param in contour_kws:
msg = f"{param} parameter ignored when using hue mapping."
warnings.warn(msg, UserWarning)
contour_kws.pop(param)
else:
# Work out a default coloring of the contours
coloring_given = set(contour_kws) & {"cmap", "colors"}
if fill and not coloring_given:
cmap = self._cmap_from_color(color)
contour_kws["cmap"] = cmap
if not fill and not coloring_given:
contour_kws["colors"] = [color]
# Use our internal colormap lookup
cmap = contour_kws.pop("cmap", None)
if isinstance(cmap, str):
cmap = color_palette(cmap, as_cmap=True)
if cmap is not None:
contour_kws["cmap"] = cmap
# Loop through the subsets again and plot the data
for sub_vars, _ in self.iter_data("hue"):
if "hue" in sub_vars:
color = self._hue_map(sub_vars["hue"])
if fill:
contour_kws["cmap"] = self._cmap_from_color(color)
else:
contour_kws["colors"] = [color]
ax = self._get_axes(sub_vars)
# Choose the function to plot with
# TODO could add a pcolormesh based option as well
# Which would look something like element="raster"
if fill:
contour_func = ax.contourf
else:
contour_func = ax.contour
key = tuple(sub_vars.items())
if key not in densities:
continue
density = densities[key]
xx, yy = supports[key]
label = contour_kws.pop("label", None)
cset = contour_func(
xx, yy, density,
levels=draw_levels[key],
**contour_kws,
)
if "hue" not in self.variables:
cset.collections[0].set_label(label)
# Add a color bar representing the contour heights
# Note: this shows iso densities, not iso proportions
# See more notes in histplot about how this could be improved
if cbar:
cbar_kws = {} if cbar_kws is None else cbar_kws
ax.figure.colorbar(cset, cbar_ax, ax, **cbar_kws)
# --- Finalize the plot
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
self._add_axis_labels(ax)
if "hue" in self.variables and legend:
# TODO if possible, I would like to move the contour
# intensity information into the legend too and label the
# iso proportions rather than the raw density values
artist_kws = {}
if fill:
artist = partial(mpl.patches.Patch)
else:
artist = partial(mpl.lines.Line2D, [], [])
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, fill, False, "layer", 1, artist_kws, {},
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1036-L1220
| 26 |
[
0,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
82,
83,
84,
85,
86,
87,
90,
92,
97,
98,
99,
100,
101,
102,
103,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
129,
130,
131,
132,
133,
134,
135,
136,
137,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
179,
180,
181,
182
] | 79.459459 |
[
117
] | 0.540541 | false | 96.354167 | 185 | 35 | 99.459459 | 0 |
def plot_bivariate_density(
self,
common_norm,
fill,
levels,
thresh,
color,
legend,
cbar,
warn_singular,
cbar_ax,
cbar_kws,
estimate_kws,
**contour_kws,
):
contour_kws = contour_kws.copy()
estimator = KDE(**estimate_kws)
if not set(self.variables) - {"x", "y"}:
common_norm = False
all_data = self.plot_data.dropna()
# Loop through the subsets and estimate the KDEs
densities, supports = {}, {}
for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True):
# Extract the data points from this sub set
observations = sub_data[["x", "y"]]
min_variance = observations.var().fillna(0).min()
observations = observations["x"], observations["y"]
# Extract the weights for this subset of observations
if "weights" in self.variables:
weights = sub_data["weights"]
else:
weights = None
# Estimate the density of observations at this level
singular = math.isclose(min_variance, 0)
try:
if not singular:
density, support = estimator(*observations, weights=weights)
except np.linalg.LinAlgError:
# Testing for 0 variance doesn't catch all cases where scipy raises,
# but we can also get a ValueError, so we need this convoluted approach
singular = True
if singular:
msg = (
"KDE cannot be estimated (0 variance or perfect covariance). "
"Pass `warn_singular=False` to disable this warning."
)
if warn_singular:
warnings.warn(msg, UserWarning, stacklevel=3)
continue
# Transform the support grid back to the original scale
xx, yy = support
if self._log_scaled("x"):
xx = np.power(10, xx)
if self._log_scaled("y"):
yy = np.power(10, yy)
support = xx, yy
# Apply a scaling factor so that the integral over all subsets is 1
if common_norm:
density *= len(sub_data) / len(all_data)
key = tuple(sub_vars.items())
densities[key] = density
supports[key] = support
# Define a grid of iso-proportion levels
if thresh is None:
thresh = 0
if isinstance(levels, Number):
levels = np.linspace(thresh, 1, levels)
else:
if min(levels) < 0 or max(levels) > 1:
raise ValueError("levels must be in [0, 1]")
# Transform from iso-proportions to iso-densities
if common_norm:
common_levels = self._quantile_to_level(
list(densities.values()), levels,
)
draw_levels = {k: common_levels for k in densities}
else:
draw_levels = {
k: self._quantile_to_level(d, levels)
for k, d in densities.items()
}
# Define the coloring of the contours
if "hue" in self.variables:
for param in ["cmap", "colors"]:
if param in contour_kws:
msg = f"{param} parameter ignored when using hue mapping."
warnings.warn(msg, UserWarning)
contour_kws.pop(param)
else:
# Work out a default coloring of the contours
coloring_given = set(contour_kws) & {"cmap", "colors"}
if fill and not coloring_given:
cmap = self._cmap_from_color(color)
contour_kws["cmap"] = cmap
if not fill and not coloring_given:
contour_kws["colors"] = [color]
# Use our internal colormap lookup
cmap = contour_kws.pop("cmap", None)
if isinstance(cmap, str):
cmap = color_palette(cmap, as_cmap=True)
if cmap is not None:
contour_kws["cmap"] = cmap
# Loop through the subsets again and plot the data
for sub_vars, _ in self.iter_data("hue"):
if "hue" in sub_vars:
color = self._hue_map(sub_vars["hue"])
if fill:
contour_kws["cmap"] = self._cmap_from_color(color)
else:
contour_kws["colors"] = [color]
ax = self._get_axes(sub_vars)
# Choose the function to plot with
# TODO could add a pcolormesh based option as well
# Which would look something like element="raster"
if fill:
contour_func = ax.contourf
else:
contour_func = ax.contour
key = tuple(sub_vars.items())
if key not in densities:
continue
density = densities[key]
xx, yy = supports[key]
label = contour_kws.pop("label", None)
cset = contour_func(
xx, yy, density,
levels=draw_levels[key],
**contour_kws,
)
if "hue" not in self.variables:
cset.collections[0].set_label(label)
# Add a color bar representing the contour heights
# Note: this shows iso densities, not iso proportions
# See more notes in histplot about how this could be improved
if cbar:
cbar_kws = {} if cbar_kws is None else cbar_kws
ax.figure.colorbar(cset, cbar_ax, ax, **cbar_kws)
# --- Finalize the plot
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
self._add_axis_labels(ax)
if "hue" in self.variables and legend:
# TODO if possible, I would like to move the contour
# intensity information into the legend too and label the
# iso proportions rather than the raw density values
artist_kws = {}
if fill:
artist = partial(mpl.patches.Patch)
else:
artist = partial(mpl.lines.Line2D, [], [])
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, fill, False, "layer", 1, artist_kws, {},
)
| 19,233 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.plot_univariate_ecdf
|
(self, estimate_kws, legend, **plot_kws)
| 1,222 | 1,289 |
def plot_univariate_ecdf(self, estimate_kws, legend, **plot_kws):
estimator = ECDF(**estimate_kws)
# Set the draw style to step the right way for the data variable
drawstyles = dict(x="steps-post", y="steps-pre")
plot_kws["drawstyle"] = drawstyles[self.data_variable]
# Loop through the subsets, transform and plot the data
for sub_vars, sub_data in self.iter_data(
"hue", reverse=True, from_comp_data=True,
):
# Compute the ECDF
if sub_data.empty:
continue
observations = sub_data[self.data_variable]
weights = sub_data.get("weights", None)
stat, vals = estimator(observations, weights=weights)
# Assign attributes based on semantic mapping
artist_kws = plot_kws.copy()
if "hue" in self.variables:
artist_kws["color"] = self._hue_map(sub_vars["hue"])
# Return the data variable to the linear domain
# This needs an automatic solution; see GH2409
if self._log_scaled(self.data_variable):
vals = np.power(10, vals)
vals[0] = -np.inf
# Work out the orientation of the plot
if self.data_variable == "x":
plot_args = vals, stat
stat_variable = "y"
else:
plot_args = stat, vals
stat_variable = "x"
if estimator.stat == "count":
top_edge = len(observations)
else:
top_edge = 1
# Draw the line for this subset
ax = self._get_axes(sub_vars)
artist, = ax.plot(*plot_args, **artist_kws)
sticky_edges = getattr(artist.sticky_edges, stat_variable)
sticky_edges[:] = 0, top_edge
# --- Finalize the plot ----
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
stat = estimator.stat.capitalize()
default_x = default_y = ""
if self.data_variable == "x":
default_y = stat
if self.data_variable == "y":
default_x = stat
self._add_axis_labels(ax, default_x, default_y)
if "hue" in self.variables and legend:
artist = partial(mpl.lines.Line2D, [], [])
alpha = plot_kws.get("alpha", 1)
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, False, False, None, alpha, plot_kws, {},
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1222-L1289
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
13,
14,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
37,
38,
39,
40,
41,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65
] | 88.235294 |
[
15
] | 1.470588 | false | 96.354167 | 68 | 11 | 98.529412 | 0 |
def plot_univariate_ecdf(self, estimate_kws, legend, **plot_kws):
estimator = ECDF(**estimate_kws)
# Set the draw style to step the right way for the data variable
drawstyles = dict(x="steps-post", y="steps-pre")
plot_kws["drawstyle"] = drawstyles[self.data_variable]
# Loop through the subsets, transform and plot the data
for sub_vars, sub_data in self.iter_data(
"hue", reverse=True, from_comp_data=True,
):
# Compute the ECDF
if sub_data.empty:
continue
observations = sub_data[self.data_variable]
weights = sub_data.get("weights", None)
stat, vals = estimator(observations, weights=weights)
# Assign attributes based on semantic mapping
artist_kws = plot_kws.copy()
if "hue" in self.variables:
artist_kws["color"] = self._hue_map(sub_vars["hue"])
# Return the data variable to the linear domain
# This needs an automatic solution; see GH2409
if self._log_scaled(self.data_variable):
vals = np.power(10, vals)
vals[0] = -np.inf
# Work out the orientation of the plot
if self.data_variable == "x":
plot_args = vals, stat
stat_variable = "y"
else:
plot_args = stat, vals
stat_variable = "x"
if estimator.stat == "count":
top_edge = len(observations)
else:
top_edge = 1
# Draw the line for this subset
ax = self._get_axes(sub_vars)
artist, = ax.plot(*plot_args, **artist_kws)
sticky_edges = getattr(artist.sticky_edges, stat_variable)
sticky_edges[:] = 0, top_edge
# --- Finalize the plot ----
ax = self.ax if self.ax is not None else self.facets.axes.flat[0]
stat = estimator.stat.capitalize()
default_x = default_y = ""
if self.data_variable == "x":
default_y = stat
if self.data_variable == "y":
default_x = stat
self._add_axis_labels(ax, default_x, default_y)
if "hue" in self.variables and legend:
artist = partial(mpl.lines.Line2D, [], [])
alpha = plot_kws.get("alpha", 1)
ax_obj = self.ax if self.ax is not None else self.facets
self._add_legend(
ax_obj, artist, False, False, None, alpha, plot_kws, {},
)
| 19,234 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter.plot_rug
|
(self, height, expand_margins, legend, **kws)
| 1,291 | 1,323 |
def plot_rug(self, height, expand_margins, legend, **kws):
for sub_vars, sub_data, in self.iter_data(from_comp_data=True):
ax = self._get_axes(sub_vars)
kws.setdefault("linewidth", 1)
if expand_margins:
xmarg, ymarg = ax.margins()
if "x" in self.variables:
ymarg += height * 2
if "y" in self.variables:
xmarg += height * 2
ax.margins(x=xmarg, y=ymarg)
if "hue" in self.variables:
kws.pop("c", None)
kws.pop("color", None)
if "x" in self.variables:
self._plot_single_rug(sub_data, "x", height, ax, kws)
if "y" in self.variables:
self._plot_single_rug(sub_data, "y", height, ax, kws)
# --- Finalize the plot
self._add_axis_labels(ax)
if "hue" in self.variables and legend:
# TODO ideally i'd like the legend artist to look like a rug
legend_artist = partial(mpl.lines.Line2D, [], [])
self._add_legend(
ax, legend_artist, False, False, None, 1, {}, {},
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1291-L1323
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30
] | 93.939394 |
[] | 0 | false | 96.354167 | 33 | 10 | 100 | 0 |
def plot_rug(self, height, expand_margins, legend, **kws):
for sub_vars, sub_data, in self.iter_data(from_comp_data=True):
ax = self._get_axes(sub_vars)
kws.setdefault("linewidth", 1)
if expand_margins:
xmarg, ymarg = ax.margins()
if "x" in self.variables:
ymarg += height * 2
if "y" in self.variables:
xmarg += height * 2
ax.margins(x=xmarg, y=ymarg)
if "hue" in self.variables:
kws.pop("c", None)
kws.pop("color", None)
if "x" in self.variables:
self._plot_single_rug(sub_data, "x", height, ax, kws)
if "y" in self.variables:
self._plot_single_rug(sub_data, "y", height, ax, kws)
# --- Finalize the plot
self._add_axis_labels(ax)
if "hue" in self.variables and legend:
# TODO ideally i'd like the legend artist to look like a rug
legend_artist = partial(mpl.lines.Line2D, [], [])
self._add_legend(
ax, legend_artist, False, False, None, 1, {}, {},
)
| 19,235 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/distributions.py
|
_DistributionPlotter._plot_single_rug
|
(self, sub_data, var, height, ax, kws)
|
Draw a rugplot along one axis of the plot.
|
Draw a rugplot along one axis of the plot.
| 1,325 | 1,362 |
def _plot_single_rug(self, sub_data, var, height, ax, kws):
"""Draw a rugplot along one axis of the plot."""
vector = sub_data[var]
n = len(vector)
# Return data to linear domain
# This needs an automatic solution; see GH2409
if self._log_scaled(var):
vector = np.power(10, vector)
# We'll always add a single collection with varying colors
if "hue" in self.variables:
colors = self._hue_map(sub_data["hue"])
else:
colors = None
# Build the array of values for the LineCollection
if var == "x":
trans = tx.blended_transform_factory(ax.transData, ax.transAxes)
xy_pairs = np.column_stack([
np.repeat(vector, 2), np.tile([0, height], n)
])
if var == "y":
trans = tx.blended_transform_factory(ax.transAxes, ax.transData)
xy_pairs = np.column_stack([
np.tile([0, height], n), np.repeat(vector, 2)
])
# Draw the lines on the plot
line_segs = xy_pairs.reshape([n, 2, 2])
ax.add_collection(LineCollection(
line_segs, transform=trans, colors=colors, **kws
))
ax.autoscale_view(scalex=var == "x", scaley=var == "y")
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/distributions.py#L1325-L1362
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37
] | 100 |
[] | 0 | true | 96.354167 | 38 | 5 | 100 | 1 |
def _plot_single_rug(self, sub_data, var, height, ax, kws):
vector = sub_data[var]
n = len(vector)
# Return data to linear domain
# This needs an automatic solution; see GH2409
if self._log_scaled(var):
vector = np.power(10, vector)
# We'll always add a single collection with varying colors
if "hue" in self.variables:
colors = self._hue_map(sub_data["hue"])
else:
colors = None
# Build the array of values for the LineCollection
if var == "x":
trans = tx.blended_transform_factory(ax.transData, ax.transAxes)
xy_pairs = np.column_stack([
np.repeat(vector, 2), np.tile([0, height], n)
])
if var == "y":
trans = tx.blended_transform_factory(ax.transAxes, ax.transData)
xy_pairs = np.column_stack([
np.tile([0, height], n), np.repeat(vector, 2)
])
# Draw the lines on the plot
line_segs = xy_pairs.reshape([n, 2, 2])
ax.add_collection(LineCollection(
line_segs, transform=trans, colors=colors, **kws
))
ax.autoscale_view(scalex=var == "x", scaley=var == "y")
| 19,236 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
lmplot
|
(
data=None, *,
x=None, y=None, hue=None, col=None, row=None,
palette=None, col_wrap=None, height=5, aspect=1, markers="o",
sharex=None, sharey=None, hue_order=None, col_order=None, row_order=None,
legend=True, legend_out=None, x_estimator=None, x_bins=None,
x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, seed=None, order=1, logistic=False, lowess=False,
robust=False, logx=False, x_partial=None, y_partial=None,
truncate=True, x_jitter=None, y_jitter=None, scatter_kws=None,
line_kws=None, facet_kws=None,
)
|
return facets
| 560 | 641 |
def lmplot(
data=None, *,
x=None, y=None, hue=None, col=None, row=None,
palette=None, col_wrap=None, height=5, aspect=1, markers="o",
sharex=None, sharey=None, hue_order=None, col_order=None, row_order=None,
legend=True, legend_out=None, x_estimator=None, x_bins=None,
x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, seed=None, order=1, logistic=False, lowess=False,
robust=False, logx=False, x_partial=None, y_partial=None,
truncate=True, x_jitter=None, y_jitter=None, scatter_kws=None,
line_kws=None, facet_kws=None,
):
if facet_kws is None:
facet_kws = {}
def facet_kw_deprecation(key, val):
msg = (
f"{key} is deprecated from the `lmplot` function signature. "
"Please update your code to pass it using `facet_kws`."
)
if val is not None:
warnings.warn(msg, UserWarning)
facet_kws[key] = val
facet_kw_deprecation("sharex", sharex)
facet_kw_deprecation("sharey", sharey)
facet_kw_deprecation("legend_out", legend_out)
if data is None:
raise TypeError("Missing required keyword argument `data`.")
# Reduce the dataframe to only needed columns
need_cols = [x, y, hue, col, row, units, x_partial, y_partial]
cols = np.unique([a for a in need_cols if a is not None]).tolist()
data = data[cols]
# Initialize the grid
facets = FacetGrid(
data, row=row, col=col, hue=hue,
palette=palette,
row_order=row_order, col_order=col_order, hue_order=hue_order,
height=height, aspect=aspect, col_wrap=col_wrap,
**facet_kws,
)
# Add the markers here as FacetGrid has figured out how many levels of the
# hue variable are needed and we don't want to duplicate that process
if facets.hue_names is None:
n_markers = 1
else:
n_markers = len(facets.hue_names)
if not isinstance(markers, list):
markers = [markers] * n_markers
if len(markers) != n_markers:
raise ValueError("markers must be a singleton or a list of markers "
"for each level of the hue variable")
facets.hue_kws = {"marker": markers}
def update_datalim(data, x, y, ax, **kws):
xys = data[[x, y]].to_numpy().astype(float)
ax.update_datalim(xys, updatey=False)
ax.autoscale_view(scaley=False)
facets.map_dataframe(update_datalim, x=x, y=y)
# Draw the regression plot on each facet
regplot_kws = dict(
x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci,
scatter=scatter, fit_reg=fit_reg, ci=ci, n_boot=n_boot, units=units,
seed=seed, order=order, logistic=logistic, lowess=lowess,
robust=robust, logx=logx, x_partial=x_partial, y_partial=y_partial,
truncate=truncate, x_jitter=x_jitter, y_jitter=y_jitter,
scatter_kws=scatter_kws, line_kws=line_kws,
)
facets.map_dataframe(regplot, x=x, y=y, **regplot_kws)
facets.set_axis_labels(x, y)
# Add a legend
if legend and (hue is not None) and (hue not in [col, row]):
facets.add_legend()
return facets
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L560-L641
| 26 |
[
0,
12,
13,
14,
15,
16,
17,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
47,
48,
49,
51,
52,
53,
54,
55,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
75,
76,
77,
78,
79,
80,
81
] | 62.195122 |
[] | 0 | false | 87.037037 | 82 | 13 | 100 | 0 |
def lmplot(
data=None, *,
x=None, y=None, hue=None, col=None, row=None,
palette=None, col_wrap=None, height=5, aspect=1, markers="o",
sharex=None, sharey=None, hue_order=None, col_order=None, row_order=None,
legend=True, legend_out=None, x_estimator=None, x_bins=None,
x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, seed=None, order=1, logistic=False, lowess=False,
robust=False, logx=False, x_partial=None, y_partial=None,
truncate=True, x_jitter=None, y_jitter=None, scatter_kws=None,
line_kws=None, facet_kws=None,
):
if facet_kws is None:
facet_kws = {}
def facet_kw_deprecation(key, val):
msg = (
f"{key} is deprecated from the `lmplot` function signature. "
"Please update your code to pass it using `facet_kws`."
)
if val is not None:
warnings.warn(msg, UserWarning)
facet_kws[key] = val
facet_kw_deprecation("sharex", sharex)
facet_kw_deprecation("sharey", sharey)
facet_kw_deprecation("legend_out", legend_out)
if data is None:
raise TypeError("Missing required keyword argument `data`.")
# Reduce the dataframe to only needed columns
need_cols = [x, y, hue, col, row, units, x_partial, y_partial]
cols = np.unique([a for a in need_cols if a is not None]).tolist()
data = data[cols]
# Initialize the grid
facets = FacetGrid(
data, row=row, col=col, hue=hue,
palette=palette,
row_order=row_order, col_order=col_order, hue_order=hue_order,
height=height, aspect=aspect, col_wrap=col_wrap,
**facet_kws,
)
# Add the markers here as FacetGrid has figured out how many levels of the
# hue variable are needed and we don't want to duplicate that process
if facets.hue_names is None:
n_markers = 1
else:
n_markers = len(facets.hue_names)
if not isinstance(markers, list):
markers = [markers] * n_markers
if len(markers) != n_markers:
raise ValueError("markers must be a singleton or a list of markers "
"for each level of the hue variable")
facets.hue_kws = {"marker": markers}
def update_datalim(data, x, y, ax, **kws):
xys = data[[x, y]].to_numpy().astype(float)
ax.update_datalim(xys, updatey=False)
ax.autoscale_view(scaley=False)
facets.map_dataframe(update_datalim, x=x, y=y)
# Draw the regression plot on each facet
regplot_kws = dict(
x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci,
scatter=scatter, fit_reg=fit_reg, ci=ci, n_boot=n_boot, units=units,
seed=seed, order=order, logistic=logistic, lowess=lowess,
robust=robust, logx=logx, x_partial=x_partial, y_partial=y_partial,
truncate=truncate, x_jitter=x_jitter, y_jitter=y_jitter,
scatter_kws=scatter_kws, line_kws=line_kws,
)
facets.map_dataframe(regplot, x=x, y=y, **regplot_kws)
facets.set_axis_labels(x, y)
# Add a legend
if legend and (hue is not None) and (hue not in [col, row]):
facets.add_legend()
return facets
| 19,237 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
regplot
|
(
data=None, *, x=None, y=None,
x_estimator=None, x_bins=None, x_ci="ci",
scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None,
seed=None, order=1, logistic=False, lowess=False, robust=False,
logx=False, x_partial=None, y_partial=None,
truncate=True, dropna=True, x_jitter=None, y_jitter=None,
label=None, color=None, marker="o",
scatter_kws=None, line_kws=None, ax=None
)
|
return ax
| 736 | 760 |
def regplot(
data=None, *, x=None, y=None,
x_estimator=None, x_bins=None, x_ci="ci",
scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None,
seed=None, order=1, logistic=False, lowess=False, robust=False,
logx=False, x_partial=None, y_partial=None,
truncate=True, dropna=True, x_jitter=None, y_jitter=None,
label=None, color=None, marker="o",
scatter_kws=None, line_kws=None, ax=None
):
plotter = _RegressionPlotter(x, y, data, x_estimator, x_bins, x_ci,
scatter, fit_reg, ci, n_boot, units, seed,
order, logistic, lowess, robust, logx,
x_partial, y_partial, truncate, dropna,
x_jitter, y_jitter, color, label)
if ax is None:
ax = plt.gca()
scatter_kws = {} if scatter_kws is None else copy.copy(scatter_kws)
scatter_kws["marker"] = marker
line_kws = {} if line_kws is None else copy.copy(line_kws)
plotter.plot(ax, scatter_kws, line_kws)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L736-L760
| 26 |
[
0,
10,
11,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 48 |
[] | 0 | false | 87.037037 | 25 | 2 | 100 | 0 |
def regplot(
data=None, *, x=None, y=None,
x_estimator=None, x_bins=None, x_ci="ci",
scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None,
seed=None, order=1, logistic=False, lowess=False, robust=False,
logx=False, x_partial=None, y_partial=None,
truncate=True, dropna=True, x_jitter=None, y_jitter=None,
label=None, color=None, marker="o",
scatter_kws=None, line_kws=None, ax=None
):
plotter = _RegressionPlotter(x, y, data, x_estimator, x_bins, x_ci,
scatter, fit_reg, ci, n_boot, units, seed,
order, logistic, lowess, robust, logx,
x_partial, y_partial, truncate, dropna,
x_jitter, y_jitter, color, label)
if ax is None:
ax = plt.gca()
scatter_kws = {} if scatter_kws is None else copy.copy(scatter_kws)
scatter_kws["marker"] = marker
line_kws = {} if line_kws is None else copy.copy(line_kws)
plotter.plot(ax, scatter_kws, line_kws)
return ax
| 19,238 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
residplot
|
(
data=None, *, x=None, y=None,
x_partial=None, y_partial=None, lowess=False,
order=1, robust=False, dropna=True, label=None, color=None,
scatter_kws=None, line_kws=None, ax=None
)
|
return ax
|
Plot the residuals of a linear regression.
This function will regress y on x (possibly as a robust or polynomial
regression) and then draw a scatterplot of the residuals. You can
optionally fit a lowess smoother to the residual plot, which can
help in determining if there is structure to the residuals.
Parameters
----------
data : DataFrame, optional
DataFrame to use if `x` and `y` are column names.
x : vector or string
Data or column name in `data` for the predictor variable.
y : vector or string
Data or column name in `data` for the response variable.
{x, y}_partial : vectors or string(s) , optional
These variables are treated as confounding and are removed from
the `x` or `y` variables before plotting.
lowess : boolean, optional
Fit a lowess smoother to the residual scatterplot.
order : int, optional
Order of the polynomial to fit when calculating the residuals.
robust : boolean, optional
Fit a robust linear regression when calculating the residuals.
dropna : boolean, optional
If True, ignore observations with missing data when fitting and
plotting.
label : string, optional
Label that will be used in any plot legends.
color : matplotlib color, optional
Color to use for all elements of the plot.
{scatter, line}_kws : dictionaries, optional
Additional keyword arguments passed to scatter() and plot() for drawing
the components of the plot.
ax : matplotlib axis, optional
Plot into this axis, otherwise grab the current axis or make a new
one if not existing.
Returns
-------
ax: matplotlib axes
Axes with the regression plot.
See Also
--------
regplot : Plot a simple linear regression model.
jointplot : Draw a :func:`residplot` with univariate marginal distributions
(when used with ``kind="resid"``).
Examples
--------
.. include:: ../docstrings/residplot.rst
|
Plot the residuals of a linear regression.
| 838 | 924 |
def residplot(
data=None, *, x=None, y=None,
x_partial=None, y_partial=None, lowess=False,
order=1, robust=False, dropna=True, label=None, color=None,
scatter_kws=None, line_kws=None, ax=None
):
"""Plot the residuals of a linear regression.
This function will regress y on x (possibly as a robust or polynomial
regression) and then draw a scatterplot of the residuals. You can
optionally fit a lowess smoother to the residual plot, which can
help in determining if there is structure to the residuals.
Parameters
----------
data : DataFrame, optional
DataFrame to use if `x` and `y` are column names.
x : vector or string
Data or column name in `data` for the predictor variable.
y : vector or string
Data or column name in `data` for the response variable.
{x, y}_partial : vectors or string(s) , optional
These variables are treated as confounding and are removed from
the `x` or `y` variables before plotting.
lowess : boolean, optional
Fit a lowess smoother to the residual scatterplot.
order : int, optional
Order of the polynomial to fit when calculating the residuals.
robust : boolean, optional
Fit a robust linear regression when calculating the residuals.
dropna : boolean, optional
If True, ignore observations with missing data when fitting and
plotting.
label : string, optional
Label that will be used in any plot legends.
color : matplotlib color, optional
Color to use for all elements of the plot.
{scatter, line}_kws : dictionaries, optional
Additional keyword arguments passed to scatter() and plot() for drawing
the components of the plot.
ax : matplotlib axis, optional
Plot into this axis, otherwise grab the current axis or make a new
one if not existing.
Returns
-------
ax: matplotlib axes
Axes with the regression plot.
See Also
--------
regplot : Plot a simple linear regression model.
jointplot : Draw a :func:`residplot` with univariate marginal distributions
(when used with ``kind="resid"``).
Examples
--------
.. include:: ../docstrings/residplot.rst
"""
plotter = _RegressionPlotter(x, y, data, ci=None,
order=order, robust=robust,
x_partial=x_partial, y_partial=y_partial,
dropna=dropna, color=color, label=label)
if ax is None:
ax = plt.gca()
# Calculate the residual from a linear regression
_, yhat, _ = plotter.fit_regression(grid=plotter.x)
plotter.y = plotter.y - yhat
# Set the regression option on the plotter
if lowess:
plotter.lowess = True
else:
plotter.fit_reg = False
# Plot a horizontal line at 0
ax.axhline(0, ls=":", c=".2")
# Draw the scatterplot
scatter_kws = {} if scatter_kws is None else scatter_kws.copy()
line_kws = {} if line_kws is None else line_kws.copy()
plotter.plot(ax, scatter_kws, line_kws)
return ax
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L838-L924
| 26 |
[
0,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86
] | 31.034483 |
[
75
] | 1.149425 | false | 87.037037 | 87 | 3 | 98.850575 | 53 |
def residplot(
data=None, *, x=None, y=None,
x_partial=None, y_partial=None, lowess=False,
order=1, robust=False, dropna=True, label=None, color=None,
scatter_kws=None, line_kws=None, ax=None
):
plotter = _RegressionPlotter(x, y, data, ci=None,
order=order, robust=robust,
x_partial=x_partial, y_partial=y_partial,
dropna=dropna, color=color, label=label)
if ax is None:
ax = plt.gca()
# Calculate the residual from a linear regression
_, yhat, _ = plotter.fit_regression(grid=plotter.x)
plotter.y = plotter.y - yhat
# Set the regression option on the plotter
if lowess:
plotter.lowess = True
else:
plotter.fit_reg = False
# Plot a horizontal line at 0
ax.axhline(0, ls=":", c=".2")
# Draw the scatterplot
scatter_kws = {} if scatter_kws is None else scatter_kws.copy()
line_kws = {} if line_kws is None else line_kws.copy()
plotter.plot(ax, scatter_kws, line_kws)
return ax
| 19,239 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_LinearPlotter.establish_variables
|
(self, data, **kws)
|
Extract variables from data or use directly.
|
Extract variables from data or use directly.
| 32 | 54 |
def establish_variables(self, data, **kws):
"""Extract variables from data or use directly."""
self.data = data
# Validate the inputs
any_strings = any([isinstance(v, str) for v in kws.values()])
if any_strings and data is None:
raise ValueError("Must pass `data` if using named variables.")
# Set the variables
for var, val in kws.items():
if isinstance(val, str):
vector = data[val]
elif isinstance(val, list):
vector = np.asarray(val)
else:
vector = val
if vector is not None and vector.shape != (1,):
vector = np.squeeze(vector)
if np.ndim(vector) > 1:
err = "regplot inputs must be 1d"
raise ValueError(err)
setattr(self, var, vector)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L32-L54
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 100 |
[] | 0 | true | 87.037037 | 23 | 10 | 100 | 1 |
def establish_variables(self, data, **kws):
self.data = data
# Validate the inputs
any_strings = any([isinstance(v, str) for v in kws.values()])
if any_strings and data is None:
raise ValueError("Must pass `data` if using named variables.")
# Set the variables
for var, val in kws.items():
if isinstance(val, str):
vector = data[val]
elif isinstance(val, list):
vector = np.asarray(val)
else:
vector = val
if vector is not None and vector.shape != (1,):
vector = np.squeeze(vector)
if np.ndim(vector) > 1:
err = "regplot inputs must be 1d"
raise ValueError(err)
setattr(self, var, vector)
| 19,240 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_LinearPlotter.dropna
|
(self, *vars)
|
Remove observations with missing data.
|
Remove observations with missing data.
| 56 | 64 |
def dropna(self, *vars):
"""Remove observations with missing data."""
vals = [getattr(self, var) for var in vars]
vals = [v for v in vals if v is not None]
not_na = np.all(np.column_stack([pd.notnull(v) for v in vals]), axis=1)
for var in vars:
val = getattr(self, var)
if val is not None:
setattr(self, var, val[not_na])
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L56-L64
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8
] | 100 |
[] | 0 | true | 87.037037 | 9 | 6 | 100 | 1 |
def dropna(self, *vars):
vals = [getattr(self, var) for var in vars]
vals = [v for v in vals if v is not None]
not_na = np.all(np.column_stack([pd.notnull(v) for v in vals]), axis=1)
for var in vars:
val = getattr(self, var)
if val is not None:
setattr(self, var, val[not_na])
| 19,241 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.__init__
|
(self, x, y, data=None, x_estimator=None, x_bins=None,
x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, seed=None, order=1, logistic=False, lowess=False,
robust=False, logx=False, x_partial=None, y_partial=None,
truncate=False, dropna=True, x_jitter=None, y_jitter=None,
color=None, label=None)
| 76 | 134 |
def __init__(self, x, y, data=None, x_estimator=None, x_bins=None,
x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, seed=None, order=1, logistic=False, lowess=False,
robust=False, logx=False, x_partial=None, y_partial=None,
truncate=False, dropna=True, x_jitter=None, y_jitter=None,
color=None, label=None):
# Set member attributes
self.x_estimator = x_estimator
self.ci = ci
self.x_ci = ci if x_ci == "ci" else x_ci
self.n_boot = n_boot
self.seed = seed
self.scatter = scatter
self.fit_reg = fit_reg
self.order = order
self.logistic = logistic
self.lowess = lowess
self.robust = robust
self.logx = logx
self.truncate = truncate
self.x_jitter = x_jitter
self.y_jitter = y_jitter
self.color = color
self.label = label
# Validate the regression options:
if sum((order > 1, logistic, robust, lowess, logx)) > 1:
raise ValueError("Mutually exclusive regression options.")
# Extract the data vals from the arguments or passed dataframe
self.establish_variables(data, x=x, y=y, units=units,
x_partial=x_partial, y_partial=y_partial)
# Drop null observations
if dropna:
self.dropna("x", "y", "units", "x_partial", "y_partial")
# Regress nuisance variables out of the data
if self.x_partial is not None:
self.x = self.regress_out(self.x, self.x_partial)
if self.y_partial is not None:
self.y = self.regress_out(self.y, self.y_partial)
# Possibly bin the predictor variable, which implies a point estimate
if x_bins is not None:
self.x_estimator = np.mean if x_estimator is None else x_estimator
x_discrete, x_bins = self.bin_predictor(x_bins)
self.x_discrete = x_discrete
else:
self.x_discrete = self.x
# Disable regression in case of singleton inputs
if len(self.x) <= 1:
self.fit_reg = False
# Save the range of the x variable for the grid later
if self.fit_reg:
self.x_range = self.x.min(), self.x.max()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L76-L134
| 26 |
[
0,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
50,
51,
52,
53,
54,
55,
56,
57,
58
] | 84.745763 |
[] | 0 | false | 87.037037 | 59 | 8 | 100 | 0 |
def __init__(self, x, y, data=None, x_estimator=None, x_bins=None,
x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, seed=None, order=1, logistic=False, lowess=False,
robust=False, logx=False, x_partial=None, y_partial=None,
truncate=False, dropna=True, x_jitter=None, y_jitter=None,
color=None, label=None):
# Set member attributes
self.x_estimator = x_estimator
self.ci = ci
self.x_ci = ci if x_ci == "ci" else x_ci
self.n_boot = n_boot
self.seed = seed
self.scatter = scatter
self.fit_reg = fit_reg
self.order = order
self.logistic = logistic
self.lowess = lowess
self.robust = robust
self.logx = logx
self.truncate = truncate
self.x_jitter = x_jitter
self.y_jitter = y_jitter
self.color = color
self.label = label
# Validate the regression options:
if sum((order > 1, logistic, robust, lowess, logx)) > 1:
raise ValueError("Mutually exclusive regression options.")
# Extract the data vals from the arguments or passed dataframe
self.establish_variables(data, x=x, y=y, units=units,
x_partial=x_partial, y_partial=y_partial)
# Drop null observations
if dropna:
self.dropna("x", "y", "units", "x_partial", "y_partial")
# Regress nuisance variables out of the data
if self.x_partial is not None:
self.x = self.regress_out(self.x, self.x_partial)
if self.y_partial is not None:
self.y = self.regress_out(self.y, self.y_partial)
# Possibly bin the predictor variable, which implies a point estimate
if x_bins is not None:
self.x_estimator = np.mean if x_estimator is None else x_estimator
x_discrete, x_bins = self.bin_predictor(x_bins)
self.x_discrete = x_discrete
else:
self.x_discrete = self.x
# Disable regression in case of singleton inputs
if len(self.x) <= 1:
self.fit_reg = False
# Save the range of the x variable for the grid later
if self.fit_reg:
self.x_range = self.x.min(), self.x.max()
| 19,242 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.scatter_data
|
(self)
|
return x, y
|
Data where each observation is a point.
|
Data where each observation is a point.
| 137 | 151 |
def scatter_data(self):
"""Data where each observation is a point."""
x_j = self.x_jitter
if x_j is None:
x = self.x
else:
x = self.x + np.random.uniform(-x_j, x_j, len(self.x))
y_j = self.y_jitter
if y_j is None:
y = self.y
else:
y = self.y + np.random.uniform(-y_j, y_j, len(self.y))
return x, y
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L137-L151
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14
] | 100 |
[] | 0 | true | 87.037037 | 15 | 3 | 100 | 1 |
def scatter_data(self):
x_j = self.x_jitter
if x_j is None:
x = self.x
else:
x = self.x + np.random.uniform(-x_j, x_j, len(self.x))
y_j = self.y_jitter
if y_j is None:
y = self.y
else:
y = self.y + np.random.uniform(-y_j, y_j, len(self.y))
return x, y
| 19,243 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.estimate_data
|
(self)
|
return vals, points, cis
|
Data with a point estimate and CI for each discrete x value.
|
Data with a point estimate and CI for each discrete x value.
| 154 | 186 |
def estimate_data(self):
"""Data with a point estimate and CI for each discrete x value."""
x, y = self.x_discrete, self.y
vals = sorted(np.unique(x))
points, cis = [], []
for val in vals:
# Get the point estimate of the y variable
_y = y[x == val]
est = self.x_estimator(_y)
points.append(est)
# Compute the confidence interval for this estimate
if self.x_ci is None:
cis.append(None)
else:
units = None
if self.x_ci == "sd":
sd = np.std(_y)
_ci = est - sd, est + sd
else:
if self.units is not None:
units = self.units[x == val]
boots = algo.bootstrap(_y,
func=self.x_estimator,
n_boot=self.n_boot,
units=units,
seed=self.seed)
_ci = utils.ci(boots, self.x_ci)
cis.append(_ci)
return vals, points, cis
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L154-L186
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32
] | 93.939394 |
[
19,
20
] | 6.060606 | false | 87.037037 | 33 | 5 | 93.939394 | 1 |
def estimate_data(self):
x, y = self.x_discrete, self.y
vals = sorted(np.unique(x))
points, cis = [], []
for val in vals:
# Get the point estimate of the y variable
_y = y[x == val]
est = self.x_estimator(_y)
points.append(est)
# Compute the confidence interval for this estimate
if self.x_ci is None:
cis.append(None)
else:
units = None
if self.x_ci == "sd":
sd = np.std(_y)
_ci = est - sd, est + sd
else:
if self.units is not None:
units = self.units[x == val]
boots = algo.bootstrap(_y,
func=self.x_estimator,
n_boot=self.n_boot,
units=units,
seed=self.seed)
_ci = utils.ci(boots, self.x_ci)
cis.append(_ci)
return vals, points, cis
| 19,244 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.fit_regression
|
(self, ax=None, x_range=None, grid=None)
|
return grid, yhat, err_bands
|
Fit the regression model.
|
Fit the regression model.
| 188 | 227 |
def fit_regression(self, ax=None, x_range=None, grid=None):
"""Fit the regression model."""
# Create the grid for the regression
if grid is None:
if self.truncate:
x_min, x_max = self.x_range
else:
if ax is None:
x_min, x_max = x_range
else:
x_min, x_max = ax.get_xlim()
grid = np.linspace(x_min, x_max, 100)
ci = self.ci
# Fit the regression
if self.order > 1:
yhat, yhat_boots = self.fit_poly(grid, self.order)
elif self.logistic:
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.genmod.families import Binomial
yhat, yhat_boots = self.fit_statsmodels(grid, GLM,
family=Binomial())
elif self.lowess:
ci = None
grid, yhat = self.fit_lowess()
elif self.robust:
from statsmodels.robust.robust_linear_model import RLM
yhat, yhat_boots = self.fit_statsmodels(grid, RLM)
elif self.logx:
yhat, yhat_boots = self.fit_logx(grid)
else:
yhat, yhat_boots = self.fit_fast(grid)
# Compute the confidence interval at each grid point
if ci is None:
err_bands = None
else:
err_bands = utils.ci(yhat_boots, ci, axis=0)
return grid, yhat, err_bands
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L188-L227
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
9,
10,
11,
12,
13,
14,
15,
17,
21,
22,
25,
28,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39
] | 75 |
[
8,
16,
18,
19,
20,
23,
24,
26,
27,
29
] | 25 | false | 87.037037 | 40 | 10 | 75 | 1 |
def fit_regression(self, ax=None, x_range=None, grid=None):
# Create the grid for the regression
if grid is None:
if self.truncate:
x_min, x_max = self.x_range
else:
if ax is None:
x_min, x_max = x_range
else:
x_min, x_max = ax.get_xlim()
grid = np.linspace(x_min, x_max, 100)
ci = self.ci
# Fit the regression
if self.order > 1:
yhat, yhat_boots = self.fit_poly(grid, self.order)
elif self.logistic:
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.genmod.families import Binomial
yhat, yhat_boots = self.fit_statsmodels(grid, GLM,
family=Binomial())
elif self.lowess:
ci = None
grid, yhat = self.fit_lowess()
elif self.robust:
from statsmodels.robust.robust_linear_model import RLM
yhat, yhat_boots = self.fit_statsmodels(grid, RLM)
elif self.logx:
yhat, yhat_boots = self.fit_logx(grid)
else:
yhat, yhat_boots = self.fit_fast(grid)
# Compute the confidence interval at each grid point
if ci is None:
err_bands = None
else:
err_bands = utils.ci(yhat_boots, ci, axis=0)
return grid, yhat, err_bands
| 19,245 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.fit_fast
|
(self, grid)
|
return yhat, yhat_boots
|
Low-level regression and prediction using linear algebra.
|
Low-level regression and prediction using linear algebra.
| 229 | 246 |
def fit_fast(self, grid):
"""Low-level regression and prediction using linear algebra."""
def reg_func(_x, _y):
return np.linalg.pinv(_x).dot(_y)
X, y = np.c_[np.ones(len(self.x)), self.x], self.y
grid = np.c_[np.ones(len(grid)), grid]
yhat = grid.dot(reg_func(X, y))
if self.ci is None:
return yhat, None
beta_boots = algo.bootstrap(X, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed).T
yhat_boots = grid.dot(beta_boots).T
return yhat, yhat_boots
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L229-L246
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 87.037037 | 18 | 3 | 100 | 1 |
def fit_fast(self, grid):
def reg_func(_x, _y):
return np.linalg.pinv(_x).dot(_y)
X, y = np.c_[np.ones(len(self.x)), self.x], self.y
grid = np.c_[np.ones(len(grid)), grid]
yhat = grid.dot(reg_func(X, y))
if self.ci is None:
return yhat, None
beta_boots = algo.bootstrap(X, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed).T
yhat_boots = grid.dot(beta_boots).T
return yhat, yhat_boots
| 19,246 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.fit_poly
|
(self, grid, order)
|
return yhat, yhat_boots
|
Regression using numpy polyfit for higher-order trends.
|
Regression using numpy polyfit for higher-order trends.
| 248 | 263 |
def fit_poly(self, grid, order):
"""Regression using numpy polyfit for higher-order trends."""
def reg_func(_x, _y):
return np.polyval(np.polyfit(_x, _y, order), grid)
x, y = self.x, self.y
yhat = reg_func(x, y)
if self.ci is None:
return yhat, None
yhat_boots = algo.bootstrap(x, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed)
return yhat, yhat_boots
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L248-L263
| 26 |
[
0,
1
] | 12.5 |
[
2,
3,
5,
6,
7,
8,
10,
15
] | 50 | false | 87.037037 | 16 | 3 | 50 | 1 |
def fit_poly(self, grid, order):
def reg_func(_x, _y):
return np.polyval(np.polyfit(_x, _y, order), grid)
x, y = self.x, self.y
yhat = reg_func(x, y)
if self.ci is None:
return yhat, None
yhat_boots = algo.bootstrap(x, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed)
return yhat, yhat_boots
| 19,247 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.fit_statsmodels
|
(self, grid, model, **kwargs)
|
return yhat, yhat_boots
|
More general regression function using statsmodels objects.
|
More general regression function using statsmodels objects.
| 265 | 288 |
def fit_statsmodels(self, grid, model, **kwargs):
"""More general regression function using statsmodels objects."""
import statsmodels.genmod.generalized_linear_model as glm
X, y = np.c_[np.ones(len(self.x)), self.x], self.y
grid = np.c_[np.ones(len(grid)), grid]
def reg_func(_x, _y):
try:
yhat = model(_y, _x, **kwargs).fit().predict(grid)
except glm.PerfectSeparationError:
yhat = np.empty(len(grid))
yhat.fill(np.nan)
return yhat
yhat = reg_func(X, y)
if self.ci is None:
return yhat, None
yhat_boots = algo.bootstrap(X, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed)
return yhat, yhat_boots
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L265-L288
| 26 |
[
0,
1
] | 8.333333 |
[
2,
3,
4,
6,
7,
8,
9,
10,
11,
12,
14,
15,
16,
18,
23
] | 62.5 | false | 87.037037 | 24 | 4 | 37.5 | 1 |
def fit_statsmodels(self, grid, model, **kwargs):
import statsmodels.genmod.generalized_linear_model as glm
X, y = np.c_[np.ones(len(self.x)), self.x], self.y
grid = np.c_[np.ones(len(grid)), grid]
def reg_func(_x, _y):
try:
yhat = model(_y, _x, **kwargs).fit().predict(grid)
except glm.PerfectSeparationError:
yhat = np.empty(len(grid))
yhat.fill(np.nan)
return yhat
yhat = reg_func(X, y)
if self.ci is None:
return yhat, None
yhat_boots = algo.bootstrap(X, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed)
return yhat, yhat_boots
| 19,248 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.fit_lowess
|
(self)
|
return grid, yhat
|
Fit a locally-weighted regression, which returns its own grid.
|
Fit a locally-weighted regression, which returns its own grid.
| 290 | 294 |
def fit_lowess(self):
"""Fit a locally-weighted regression, which returns its own grid."""
from statsmodels.nonparametric.smoothers_lowess import lowess
grid, yhat = lowess(self.y, self.x).T
return grid, yhat
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L290-L294
| 26 |
[
0,
1
] | 40 |
[
2,
3,
4
] | 60 | false | 87.037037 | 5 | 1 | 40 | 1 |
def fit_lowess(self):
from statsmodels.nonparametric.smoothers_lowess import lowess
grid, yhat = lowess(self.y, self.x).T
return grid, yhat
| 19,249 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.fit_logx
|
(self, grid)
|
return yhat, yhat_boots
|
Fit the model in log-space.
|
Fit the model in log-space.
| 296 | 315 |
def fit_logx(self, grid):
"""Fit the model in log-space."""
X, y = np.c_[np.ones(len(self.x)), self.x], self.y
grid = np.c_[np.ones(len(grid)), np.log(grid)]
def reg_func(_x, _y):
_x = np.c_[_x[:, 0], np.log(_x[:, 1])]
return np.linalg.pinv(_x).dot(_y)
yhat = grid.dot(reg_func(X, y))
if self.ci is None:
return yhat, None
beta_boots = algo.bootstrap(X, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed).T
yhat_boots = grid.dot(beta_boots).T
return yhat, yhat_boots
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L296-L315
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
12,
13,
14,
15,
16,
17,
18,
19
] | 95 |
[
11
] | 5 | false | 87.037037 | 20 | 3 | 95 | 1 |
def fit_logx(self, grid):
X, y = np.c_[np.ones(len(self.x)), self.x], self.y
grid = np.c_[np.ones(len(grid)), np.log(grid)]
def reg_func(_x, _y):
_x = np.c_[_x[:, 0], np.log(_x[:, 1])]
return np.linalg.pinv(_x).dot(_y)
yhat = grid.dot(reg_func(X, y))
if self.ci is None:
return yhat, None
beta_boots = algo.bootstrap(X, y,
func=reg_func,
n_boot=self.n_boot,
units=self.units,
seed=self.seed).T
yhat_boots = grid.dot(beta_boots).T
return yhat, yhat_boots
| 19,250 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.bin_predictor
|
(self, bins)
|
return x_binned, bins
|
Discretize a predictor by assigning value to closest bin.
|
Discretize a predictor by assigning value to closest bin.
| 317 | 329 |
def bin_predictor(self, bins):
"""Discretize a predictor by assigning value to closest bin."""
x = np.asarray(self.x)
if np.isscalar(bins):
percentiles = np.linspace(0, 100, bins + 2)[1:-1]
bins = np.percentile(x, percentiles)
else:
bins = np.ravel(bins)
dist = np.abs(np.subtract.outer(x, bins))
x_binned = bins[np.argmin(dist, axis=1)].ravel()
return x_binned, bins
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L317-L329
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12
] | 100 |
[] | 0 | true | 87.037037 | 13 | 2 | 100 | 1 |
def bin_predictor(self, bins):
x = np.asarray(self.x)
if np.isscalar(bins):
percentiles = np.linspace(0, 100, bins + 2)[1:-1]
bins = np.percentile(x, percentiles)
else:
bins = np.ravel(bins)
dist = np.abs(np.subtract.outer(x, bins))
x_binned = bins[np.argmin(dist, axis=1)].ravel()
return x_binned, bins
| 19,251 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.regress_out
|
(self, a, b)
|
return np.asarray(a_prime + a_mean).reshape(a.shape)
|
Regress b from a keeping a's original mean.
|
Regress b from a keeping a's original mean.
| 331 | 338 |
def regress_out(self, a, b):
"""Regress b from a keeping a's original mean."""
a_mean = a.mean()
a = a - a_mean
b = b - b.mean()
b = np.c_[b]
a_prime = a - b.dot(np.linalg.pinv(b).dot(a))
return np.asarray(a_prime + a_mean).reshape(a.shape)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L331-L338
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7
] | 100 |
[] | 0 | true | 87.037037 | 8 | 1 | 100 | 1 |
def regress_out(self, a, b):
a_mean = a.mean()
a = a - a_mean
b = b - b.mean()
b = np.c_[b]
a_prime = a - b.dot(np.linalg.pinv(b).dot(a))
return np.asarray(a_prime + a_mean).reshape(a.shape)
| 19,252 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.plot
|
(self, ax, scatter_kws, line_kws)
|
Draw the full plot.
|
Draw the full plot.
| 340 | 374 |
def plot(self, ax, scatter_kws, line_kws):
"""Draw the full plot."""
# Insert the plot label into the correct set of keyword arguments
if self.scatter:
scatter_kws["label"] = self.label
else:
line_kws["label"] = self.label
# Use the current color cycle state as a default
if self.color is None:
lines, = ax.plot([], [])
color = lines.get_color()
lines.remove()
else:
color = self.color
# Ensure that color is hex to avoid matplotlib weirdness
color = mpl.colors.rgb2hex(mpl.colors.colorConverter.to_rgb(color))
# Let color in keyword arguments override overall plot color
scatter_kws.setdefault("color", color)
line_kws.setdefault("color", color)
# Draw the constituent plots
if self.scatter:
self.scatterplot(ax, scatter_kws)
if self.fit_reg:
self.lineplot(ax, line_kws)
# Label the axes
if hasattr(self.x, "name"):
ax.set_xlabel(self.x.name)
if hasattr(self.y, "name"):
ax.set_ylabel(self.y.name)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L340-L374
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34
] | 100 |
[] | 0 | true | 87.037037 | 35 | 7 | 100 | 1 |
def plot(self, ax, scatter_kws, line_kws):
# Insert the plot label into the correct set of keyword arguments
if self.scatter:
scatter_kws["label"] = self.label
else:
line_kws["label"] = self.label
# Use the current color cycle state as a default
if self.color is None:
lines, = ax.plot([], [])
color = lines.get_color()
lines.remove()
else:
color = self.color
# Ensure that color is hex to avoid matplotlib weirdness
color = mpl.colors.rgb2hex(mpl.colors.colorConverter.to_rgb(color))
# Let color in keyword arguments override overall plot color
scatter_kws.setdefault("color", color)
line_kws.setdefault("color", color)
# Draw the constituent plots
if self.scatter:
self.scatterplot(ax, scatter_kws)
if self.fit_reg:
self.lineplot(ax, line_kws)
# Label the axes
if hasattr(self.x, "name"):
ax.set_xlabel(self.x.name)
if hasattr(self.y, "name"):
ax.set_ylabel(self.y.name)
| 19,253 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.scatterplot
|
(self, ax, kws)
|
Draw the data.
|
Draw the data.
| 376 | 408 |
def scatterplot(self, ax, kws):
"""Draw the data."""
# Treat the line-based markers specially, explicitly setting larger
# linewidth than is provided by the seaborn style defaults.
# This would ideally be handled better in matplotlib (i.e., distinguish
# between edgewidth for solid glyphs and linewidth for line glyphs
# but this should do for now.
line_markers = ["1", "2", "3", "4", "+", "x", "|", "_"]
if self.x_estimator is None:
if "marker" in kws and kws["marker"] in line_markers:
lw = mpl.rcParams["lines.linewidth"]
else:
lw = mpl.rcParams["lines.markeredgewidth"]
kws.setdefault("linewidths", lw)
if not hasattr(kws['color'], 'shape') or kws['color'].shape[1] < 4:
kws.setdefault("alpha", .8)
x, y = self.scatter_data
ax.scatter(x, y, **kws)
else:
# TODO abstraction
ci_kws = {"color": kws["color"]}
if "alpha" in kws:
ci_kws["alpha"] = kws["alpha"]
ci_kws["linewidth"] = mpl.rcParams["lines.linewidth"] * 1.75
kws.setdefault("s", 50)
xs, ys, cis = self.estimate_data
if [ci for ci in cis if ci is not None]:
for x, ci in zip(xs, cis):
ax.plot([x, x], ci, **ci_kws)
ax.scatter(xs, ys, **kws)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L376-L408
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32
] | 100 |
[] | 0 | true | 87.037037 | 33 | 10 | 100 | 1 |
def scatterplot(self, ax, kws):
# Treat the line-based markers specially, explicitly setting larger
# linewidth than is provided by the seaborn style defaults.
# This would ideally be handled better in matplotlib (i.e., distinguish
# between edgewidth for solid glyphs and linewidth for line glyphs
# but this should do for now.
line_markers = ["1", "2", "3", "4", "+", "x", "|", "_"]
if self.x_estimator is None:
if "marker" in kws and kws["marker"] in line_markers:
lw = mpl.rcParams["lines.linewidth"]
else:
lw = mpl.rcParams["lines.markeredgewidth"]
kws.setdefault("linewidths", lw)
if not hasattr(kws['color'], 'shape') or kws['color'].shape[1] < 4:
kws.setdefault("alpha", .8)
x, y = self.scatter_data
ax.scatter(x, y, **kws)
else:
# TODO abstraction
ci_kws = {"color": kws["color"]}
if "alpha" in kws:
ci_kws["alpha"] = kws["alpha"]
ci_kws["linewidth"] = mpl.rcParams["lines.linewidth"] * 1.75
kws.setdefault("s", 50)
xs, ys, cis = self.estimate_data
if [ci for ci in cis if ci is not None]:
for x, ci in zip(xs, cis):
ax.plot([x, x], ci, **ci_kws)
ax.scatter(xs, ys, **kws)
| 19,254 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/regression.py
|
_RegressionPlotter.lineplot
|
(self, ax, kws)
|
Draw the model.
|
Draw the model.
| 410 | 426 |
def lineplot(self, ax, kws):
"""Draw the model."""
# Fit the regression model
grid, yhat, err_bands = self.fit_regression(ax)
edges = grid[0], grid[-1]
# Get set default aesthetics
fill_color = kws["color"]
lw = kws.pop("lw", mpl.rcParams["lines.linewidth"] * 1.5)
kws.setdefault("linewidth", lw)
# Draw the regression line and confidence interval
line, = ax.plot(grid, yhat, **kws)
if not self.truncate:
line.sticky_edges.x[:] = edges # Prevent mpl from adding margin
if err_bands is not None:
ax.fill_between(grid, *err_bands, facecolor=fill_color, alpha=.15)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/regression.py#L410-L426
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 100 |
[] | 0 | true | 87.037037 | 17 | 3 | 100 | 1 |
def lineplot(self, ax, kws):
# Fit the regression model
grid, yhat, err_bands = self.fit_regression(ax)
edges = grid[0], grid[-1]
# Get set default aesthetics
fill_color = kws["color"]
lw = kws.pop("lw", mpl.rcParams["lines.linewidth"] * 1.5)
kws.setdefault("linewidth", lw)
# Draw the regression line and confidence interval
line, = ax.plot(grid, yhat, **kws)
if not self.truncate:
line.sticky_edges.x[:] = edges # Prevent mpl from adding margin
if err_bands is not None:
ax.fill_between(grid, *err_bands, facecolor=fill_color, alpha=.15)
| 19,255 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/miscplot.py
|
palplot
|
(pal, size=1)
|
Plot the values in a color palette as a horizontal array.
Parameters
----------
pal : sequence of matplotlib colors
colors, i.e. as returned by seaborn.color_palette()
size :
scaling factor for size of plot
|
Plot the values in a color palette as a horizontal array.
| 9 | 30 |
def palplot(pal, size=1):
"""Plot the values in a color palette as a horizontal array.
Parameters
----------
pal : sequence of matplotlib colors
colors, i.e. as returned by seaborn.color_palette()
size :
scaling factor for size of plot
"""
n = len(pal)
f, ax = plt.subplots(1, 1, figsize=(n * size, size))
ax.imshow(np.arange(n).reshape(1, n),
cmap=mpl.colors.ListedColormap(list(pal)),
interpolation="nearest", aspect="auto")
ax.set_xticks(np.arange(n) - .5)
ax.set_yticks([-.5, .5])
# Ensure nice border between colors
ax.set_xticklabels(["" for _ in range(n)])
# The proper way to set no ticks
ax.yaxis.set_major_locator(ticker.NullLocator())
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/miscplot.py#L9-L30
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21
] | 100 |
[] | 0 | true | 92.592593 | 22 | 2 | 100 | 8 |
def palplot(pal, size=1):
n = len(pal)
f, ax = plt.subplots(1, 1, figsize=(n * size, size))
ax.imshow(np.arange(n).reshape(1, n),
cmap=mpl.colors.ListedColormap(list(pal)),
interpolation="nearest", aspect="auto")
ax.set_xticks(np.arange(n) - .5)
ax.set_yticks([-.5, .5])
# Ensure nice border between colors
ax.set_xticklabels(["" for _ in range(n)])
# The proper way to set no ticks
ax.yaxis.set_major_locator(ticker.NullLocator())
| 19,256 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/miscplot.py
|
dogplot
|
(*_, **__)
|
Who's a good boy?
|
Who's a good boy?
| 33 | 48 |
def dogplot(*_, **__):
"""Who's a good boy?"""
try:
from urllib.request import urlopen
except ImportError:
from urllib2 import urlopen
from io import BytesIO
url = "https://github.com/mwaskom/seaborn-data/raw/master/png/img{}.png"
pic = np.random.randint(2, 7)
data = BytesIO(urlopen(url.format(pic)).read())
img = plt.imread(data)
f, ax = plt.subplots(figsize=(5, 5), dpi=100)
f.subplots_adjust(0, 0, 1, 1)
ax.imshow(img)
ax.set_axis_off()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/miscplot.py#L33-L48
| 26 |
[
0,
1,
2,
3,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
] | 87.5 |
[
4,
5
] | 12.5 | false | 92.592593 | 16 | 2 | 87.5 | 1 |
def dogplot(*_, **__):
try:
from urllib.request import urlopen
except ImportError:
from urllib2 import urlopen
from io import BytesIO
url = "https://github.com/mwaskom/seaborn-data/raw/master/png/img{}.png"
pic = np.random.randint(2, 7)
data = BytesIO(urlopen(url.format(pic)).read())
img = plt.imread(data)
f, ax = plt.subplots(figsize=(5, 5), dpi=100)
f.subplots_adjust(0, 0, 1, 1)
ax.imshow(img)
ax.set_axis_off()
| 19,257 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/dot.py
|
DotBase._resolve_paths
|
(self, data)
|
return paths
| 29 | 45 |
def _resolve_paths(self, data):
paths = []
path_cache = {}
marker = data["marker"]
def get_transformed_path(m):
return m.get_path().transformed(m.get_transform())
if isinstance(marker, mpl.markers.MarkerStyle):
return get_transformed_path(marker)
for m in marker:
if m not in path_cache:
path_cache[m] = get_transformed_path(m)
paths.append(path_cache[m])
return paths
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/dot.py#L29-L45
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16
] | 100 |
[] | 0 | true | 100 | 17 | 5 | 100 | 0 |
def _resolve_paths(self, data):
paths = []
path_cache = {}
marker = data["marker"]
def get_transformed_path(m):
return m.get_path().transformed(m.get_transform())
if isinstance(marker, mpl.markers.MarkerStyle):
return get_transformed_path(marker)
for m in marker:
if m not in path_cache:
path_cache[m] = get_transformed_path(m)
paths.append(path_cache[m])
return paths
| 19,258 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/dot.py
|
DotBase._resolve_properties
|
(self, data, scales)
|
return resolved
| 47 | 60 |
def _resolve_properties(self, data, scales):
resolved = resolve_properties(self, data, scales)
resolved["path"] = self._resolve_paths(resolved)
resolved["size"] = resolved["pointsize"] ** 2
if isinstance(data, dict): # Properties for single dot
filled_marker = resolved["marker"].is_filled()
else:
filled_marker = [m.is_filled() for m in resolved["marker"]]
resolved["fill"] = resolved["fill"] * filled_marker
return resolved
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/dot.py#L47-L60
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
9,
10,
11,
12,
13
] | 92.857143 |
[] | 0 | false | 100 | 14 | 3 | 100 | 0 |
def _resolve_properties(self, data, scales):
resolved = resolve_properties(self, data, scales)
resolved["path"] = self._resolve_paths(resolved)
resolved["size"] = resolved["pointsize"] ** 2
if isinstance(data, dict): # Properties for single dot
filled_marker = resolved["marker"].is_filled()
else:
filled_marker = [m.is_filled() for m in resolved["marker"]]
resolved["fill"] = resolved["fill"] * filled_marker
return resolved
| 19,259 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/dot.py
|
DotBase._plot
|
(self, split_gen, scales, orient)
| 62 | 85 |
def _plot(self, split_gen, scales, orient):
# TODO Not backcompat with allowed (but nonfunctional) univariate plots
# (That should be solved upstream by defaulting to "" for unset x/y?)
# (Be mindful of xmin/xmax, etc!)
for _, data, ax in split_gen():
offsets = np.column_stack([data["x"], data["y"]])
data = self._resolve_properties(data, scales)
points = mpl.collections.PathCollection(
offsets=offsets,
paths=data["path"],
sizes=data["size"],
facecolors=data["facecolor"],
edgecolors=data["edgecolor"],
linewidths=data["linewidth"],
linestyles=data["edgestyle"],
transOffset=ax.transData,
transform=mpl.transforms.IdentityTransform(),
**self.artist_kws,
)
ax.add_collection(points)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/dot.py#L62-L85
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
23
] | 54.166667 |
[] | 0 | false | 100 | 24 | 2 | 100 | 0 |
def _plot(self, split_gen, scales, orient):
# TODO Not backcompat with allowed (but nonfunctional) univariate plots
# (That should be solved upstream by defaulting to "" for unset x/y?)
# (Be mindful of xmin/xmax, etc!)
for _, data, ax in split_gen():
offsets = np.column_stack([data["x"], data["y"]])
data = self._resolve_properties(data, scales)
points = mpl.collections.PathCollection(
offsets=offsets,
paths=data["path"],
sizes=data["size"],
facecolors=data["facecolor"],
edgecolors=data["edgecolor"],
linewidths=data["linewidth"],
linestyles=data["edgestyle"],
transOffset=ax.transData,
transform=mpl.transforms.IdentityTransform(),
**self.artist_kws,
)
ax.add_collection(points)
| 19,260 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/dot.py
|
DotBase._legend_artist
|
(
self, variables: list[str], value: Any, scales: dict[str, Scale],
)
|
return mpl.collections.PathCollection(
paths=[res["path"]],
sizes=[res["size"]],
facecolors=[res["facecolor"]],
edgecolors=[res["edgecolor"]],
linewidths=[res["linewidth"]],
linestyles=[res["edgestyle"]],
transform=mpl.transforms.IdentityTransform(),
**self.artist_kws,
)
| 87 | 103 |
def _legend_artist(
self, variables: list[str], value: Any, scales: dict[str, Scale],
) -> Artist:
key = {v: value for v in variables}
res = self._resolve_properties(key, scales)
return mpl.collections.PathCollection(
paths=[res["path"]],
sizes=[res["size"]],
facecolors=[res["facecolor"]],
edgecolors=[res["edgecolor"]],
linewidths=[res["linewidth"]],
linestyles=[res["edgestyle"]],
transform=mpl.transforms.IdentityTransform(),
**self.artist_kws,
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/dot.py#L87-L103
| 26 |
[
0,
3,
4,
5,
6,
7
] | 35.294118 |
[] | 0 | false | 100 | 17 | 1 | 100 | 0 |
def _legend_artist(
self, variables: list[str], value: Any, scales: dict[str, Scale],
) -> Artist:
key = {v: value for v in variables}
res = self._resolve_properties(key, scales)
return mpl.collections.PathCollection(
paths=[res["path"]],
sizes=[res["size"]],
facecolors=[res["facecolor"]],
edgecolors=[res["edgecolor"]],
linewidths=[res["linewidth"]],
linestyles=[res["edgestyle"]],
transform=mpl.transforms.IdentityTransform(),
**self.artist_kws,
)
| 19,261 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/bar.py
|
BarBase._make_patches
|
(self, data, scales, orient)
|
return bars, vals
| 30 | 73 |
def _make_patches(self, data, scales, orient):
kws = self._resolve_properties(data, scales)
if orient == "x":
kws["x"] = (data["x"] - data["width"] / 2).to_numpy()
kws["y"] = data["baseline"].to_numpy()
kws["w"] = data["width"].to_numpy()
kws["h"] = (data["y"] - data["baseline"]).to_numpy()
else:
kws["x"] = data["baseline"].to_numpy()
kws["y"] = (data["y"] - data["width"] / 2).to_numpy()
kws["w"] = (data["x"] - data["baseline"]).to_numpy()
kws["h"] = data["width"].to_numpy()
kws.pop("width", None)
kws.pop("baseline", None)
val_dim = {"x": "h", "y": "w"}[orient]
bars, vals = [], []
for i in range(len(data)):
row = {k: v[i] for k, v in kws.items()}
# Skip bars with no value. It's possible we'll want to make this
# an option (i.e so you have an artist for animating or annotating),
# but let's keep things simple for now.
if not np.nan_to_num(row[val_dim]):
continue
bar = mpl.patches.Rectangle(
xy=(row["x"], row["y"]),
width=row["w"],
height=row["h"],
facecolor=row["facecolor"],
edgecolor=row["edgecolor"],
linestyle=row["edgestyle"],
linewidth=row["edgewidth"],
**self.artist_kws,
)
bars.append(bar)
vals.append(row[val_dim])
return bars, vals
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/bar.py#L30-L73
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
40,
41,
42,
43
] | 77.272727 |
[] | 0 | false | 99.193548 | 44 | 4 | 100 | 0 |
def _make_patches(self, data, scales, orient):
kws = self._resolve_properties(data, scales)
if orient == "x":
kws["x"] = (data["x"] - data["width"] / 2).to_numpy()
kws["y"] = data["baseline"].to_numpy()
kws["w"] = data["width"].to_numpy()
kws["h"] = (data["y"] - data["baseline"]).to_numpy()
else:
kws["x"] = data["baseline"].to_numpy()
kws["y"] = (data["y"] - data["width"] / 2).to_numpy()
kws["w"] = (data["x"] - data["baseline"]).to_numpy()
kws["h"] = data["width"].to_numpy()
kws.pop("width", None)
kws.pop("baseline", None)
val_dim = {"x": "h", "y": "w"}[orient]
bars, vals = [], []
for i in range(len(data)):
row = {k: v[i] for k, v in kws.items()}
# Skip bars with no value. It's possible we'll want to make this
# an option (i.e so you have an artist for animating or annotating),
# but let's keep things simple for now.
if not np.nan_to_num(row[val_dim]):
continue
bar = mpl.patches.Rectangle(
xy=(row["x"], row["y"]),
width=row["w"],
height=row["h"],
facecolor=row["facecolor"],
edgecolor=row["edgecolor"],
linestyle=row["edgestyle"],
linewidth=row["edgewidth"],
**self.artist_kws,
)
bars.append(bar)
vals.append(row[val_dim])
return bars, vals
| 19,262 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/bar.py
|
BarBase._resolve_properties
|
(self, data, scales)
|
return resolved
| 75 | 89 |
def _resolve_properties(self, data, scales):
resolved = resolve_properties(self, data, scales)
resolved["facecolor"] = resolve_color(self, data, "", scales)
resolved["edgecolor"] = resolve_color(self, data, "edge", scales)
fc = resolved["facecolor"]
if isinstance(fc, tuple):
resolved["facecolor"] = fc[0], fc[1], fc[2], fc[3] * resolved["fill"]
else:
fc[:, 3] = fc[:, 3] * resolved["fill"] # TODO Is inplace mod a problem?
resolved["facecolor"] = fc
return resolved
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/bar.py#L75-L89
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
11,
12,
13,
14
] | 93.333333 |
[] | 0 | false | 99.193548 | 15 | 2 | 100 | 0 |
def _resolve_properties(self, data, scales):
resolved = resolve_properties(self, data, scales)
resolved["facecolor"] = resolve_color(self, data, "", scales)
resolved["edgecolor"] = resolve_color(self, data, "edge", scales)
fc = resolved["facecolor"]
if isinstance(fc, tuple):
resolved["facecolor"] = fc[0], fc[1], fc[2], fc[3] * resolved["fill"]
else:
fc[:, 3] = fc[:, 3] * resolved["fill"] # TODO Is inplace mod a problem?
resolved["facecolor"] = fc
return resolved
| 19,263 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/bar.py
|
BarBase._legend_artist
|
(
self, variables: list[str], value: Any, scales: dict[str, Scale],
)
|
return artist
| 91 | 103 |
def _legend_artist(
self, variables: list[str], value: Any, scales: dict[str, Scale],
) -> Artist:
# TODO return some sensible default?
key = {v: value for v in variables}
key = self._resolve_properties(key, scales)
artist = mpl.patches.Patch(
facecolor=key["facecolor"],
edgecolor=key["edgecolor"],
linewidth=key["edgewidth"],
linestyle=key["edgestyle"],
)
return artist
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/bar.py#L91-L103
| 26 |
[
0,
3,
4,
5,
6,
12
] | 46.153846 |
[] | 0 | false | 99.193548 | 13 | 1 | 100 | 0 |
def _legend_artist(
self, variables: list[str], value: Any, scales: dict[str, Scale],
) -> Artist:
# TODO return some sensible default?
key = {v: value for v in variables}
key = self._resolve_properties(key, scales)
artist = mpl.patches.Patch(
facecolor=key["facecolor"],
edgecolor=key["edgecolor"],
linewidth=key["edgewidth"],
linestyle=key["edgestyle"],
)
return artist
| 19,264 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
resolve_properties
|
(
mark: Mark, data: DataFrame, scales: dict[str, Scale]
)
|
return props
| 231 | 238 |
def resolve_properties(
mark: Mark, data: DataFrame, scales: dict[str, Scale]
) -> dict[str, Any]:
props = {
name: mark._resolve(data, name, scales) for name in mark._mappable_props
}
return props
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L231-L238
| 26 |
[
0,
3,
4,
7
] | 50 |
[] | 0 | false | 98.473282 | 8 | 1 | 100 | 0 |
def resolve_properties(
mark: Mark, data: DataFrame, scales: dict[str, Scale]
) -> dict[str, Any]:
props = {
name: mark._resolve(data, name, scales) for name in mark._mappable_props
}
return props
| 19,265 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
resolve_color
|
(
mark: Mark,
data: DataFrame | dict,
prefix: str = "",
scales: dict[str, Scale] | None = None,
)
|
Obtain a default, specified, or mapped value for a color feature.
This method exists separately to support the relationship between a
color and its corresponding alpha. We want to respect alpha values that
are passed in specified (or mapped) color values but also make use of a
separate `alpha` variable, which can be mapped. This approach may also
be extended to support mapping of specific color channels (i.e.
luminance, chroma) in the future.
Parameters
----------
mark :
Mark with the color property.
data :
Container with data values for features that will be semantically mapped.
prefix :
Support "color", "fillcolor", etc.
|
Obtain a default, specified, or mapped value for a color feature.
| 241 | 291 |
def resolve_color(
mark: Mark,
data: DataFrame | dict,
prefix: str = "",
scales: dict[str, Scale] | None = None,
) -> RGBATuple | ndarray:
"""
Obtain a default, specified, or mapped value for a color feature.
This method exists separately to support the relationship between a
color and its corresponding alpha. We want to respect alpha values that
are passed in specified (or mapped) color values but also make use of a
separate `alpha` variable, which can be mapped. This approach may also
be extended to support mapping of specific color channels (i.e.
luminance, chroma) in the future.
Parameters
----------
mark :
Mark with the color property.
data :
Container with data values for features that will be semantically mapped.
prefix :
Support "color", "fillcolor", etc.
"""
color = mark._resolve(data, f"{prefix}color", scales)
if f"{prefix}alpha" in mark._mappable_props:
alpha = mark._resolve(data, f"{prefix}alpha", scales)
else:
alpha = mark._resolve(data, "alpha", scales)
def visible(x, axis=None):
"""Detect "invisible" colors to set alpha appropriately."""
# TODO First clause only needed to handle non-rgba arrays,
# which we are trying to handle upstream
return np.array(x).dtype.kind != "f" or np.isfinite(x).all(axis)
# Second check here catches vectors of strings with identity scale
# It could probably be handled better upstream. This is a tricky problem
if np.ndim(color) < 2 and all(isinstance(x, float) for x in color):
if len(color) == 4:
return mpl.colors.to_rgba(color)
alpha = alpha if visible(color) else np.nan
return mpl.colors.to_rgba(color, alpha)
else:
if np.ndim(color) == 2 and color.shape[1] == 4:
return mpl.colors.to_rgba_array(color)
alpha = np.where(visible(color, axis=1), alpha, np.nan)
return mpl.colors.to_rgba_array(color, alpha)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L241-L291
| 26 |
[
0,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
49,
50
] | 50.980392 |
[
48
] | 1.960784 | false | 98.473282 | 51 | 9 | 98.039216 | 17 |
def resolve_color(
mark: Mark,
data: DataFrame | dict,
prefix: str = "",
scales: dict[str, Scale] | None = None,
) -> RGBATuple | ndarray:
color = mark._resolve(data, f"{prefix}color", scales)
if f"{prefix}alpha" in mark._mappable_props:
alpha = mark._resolve(data, f"{prefix}alpha", scales)
else:
alpha = mark._resolve(data, "alpha", scales)
def visible(x, axis=None):
# TODO First clause only needed to handle non-rgba arrays,
# which we are trying to handle upstream
return np.array(x).dtype.kind != "f" or np.isfinite(x).all(axis)
# Second check here catches vectors of strings with identity scale
# It could probably be handled better upstream. This is a tricky problem
if np.ndim(color) < 2 and all(isinstance(x, float) for x in color):
if len(color) == 4:
return mpl.colors.to_rgba(color)
alpha = alpha if visible(color) else np.nan
return mpl.colors.to_rgba(color, alpha)
else:
if np.ndim(color) == 2 and color.shape[1] == 4:
return mpl.colors.to_rgba_array(color)
alpha = np.where(visible(color, axis=1), alpha, np.nan)
return mpl.colors.to_rgba_array(color, alpha)
| 19,266 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
document_properties
|
(mark)
|
return mark
| 297 | 316 |
def document_properties(mark):
properties = [f.name for f in fields(mark) if isinstance(f.default, Mappable)]
text = [
"",
" This mark defines the following properties:",
textwrap.fill(
", ".join([f"|{p}|" for p in properties]),
width=78, initial_indent=" " * 8, subsequent_indent=" " * 8,
),
]
docstring_lines = mark.__doc__.split("\n")
new_docstring = "\n".join([
*docstring_lines[:2],
*text,
*docstring_lines[2:],
])
mark.__doc__ = new_docstring
return mark
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L297-L316
| 26 |
[
0,
1,
2,
3,
11,
12,
13,
18,
19
] | 45 |
[] | 0 | false | 98.473282 | 20 | 3 | 100 | 0 |
def document_properties(mark):
properties = [f.name for f in fields(mark) if isinstance(f.default, Mappable)]
text = [
"",
" This mark defines the following properties:",
textwrap.fill(
", ".join([f"|{p}|" for p in properties]),
width=78, initial_indent=" " * 8, subsequent_indent=" " * 8,
),
]
docstring_lines = mark.__doc__.split("\n")
new_docstring = "\n".join([
*docstring_lines[:2],
*text,
*docstring_lines[2:],
])
mark.__doc__ = new_docstring
return mark
| 19,267 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
Mappable.__init__
|
(
self,
val: Any = None,
depend: str | None = None,
rc: str | None = None,
auto: bool = False,
grouping: bool = True,
)
|
Property that can be mapped from data or set directly, with flexible defaults.
Parameters
----------
val : Any
Use this value as the default.
depend : str
Use the value of this feature as the default.
rc : str
Use the value of this rcParam as the default.
auto : bool
The default value will depend on other parameters at compile time.
grouping : bool
If True, use the mapped variable to define groups.
|
Property that can be mapped from data or set directly, with flexible defaults.
| 27 | 61 |
def __init__(
self,
val: Any = None,
depend: str | None = None,
rc: str | None = None,
auto: bool = False,
grouping: bool = True,
):
"""
Property that can be mapped from data or set directly, with flexible defaults.
Parameters
----------
val : Any
Use this value as the default.
depend : str
Use the value of this feature as the default.
rc : str
Use the value of this rcParam as the default.
auto : bool
The default value will depend on other parameters at compile time.
grouping : bool
If True, use the mapped variable to define groups.
"""
if depend is not None:
assert depend in PROPERTIES
if rc is not None:
assert rc in mpl.rcParams
self._val = val
self._rc = rc
self._depend = depend
self._auto = auto
self._grouping = grouping
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L27-L61
| 26 |
[
0,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34
] | 34.285714 |
[] | 0 | false | 98.473282 | 35 | 5 | 100 | 14 |
def __init__(
self,
val: Any = None,
depend: str | None = None,
rc: str | None = None,
auto: bool = False,
grouping: bool = True,
):
if depend is not None:
assert depend in PROPERTIES
if rc is not None:
assert rc in mpl.rcParams
self._val = val
self._rc = rc
self._depend = depend
self._auto = auto
self._grouping = grouping
| 19,268 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
Mappable.__repr__
|
(self)
|
return s
|
Nice formatting for when object appears in Mark init signature.
|
Nice formatting for when object appears in Mark init signature.
| 63 | 75 |
def __repr__(self):
"""Nice formatting for when object appears in Mark init signature."""
if self._val is not None:
s = f"<{repr(self._val)}>"
elif self._depend is not None:
s = f"<depend:{self._depend}>"
elif self._rc is not None:
s = f"<rc:{self._rc}>"
elif self._auto:
s = "<auto>"
else:
s = "<undefined>"
return s
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L63-L75
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
12
] | 92.307692 |
[
11
] | 7.692308 | false | 98.473282 | 13 | 5 | 92.307692 | 1 |
def __repr__(self):
if self._val is not None:
s = f"<{repr(self._val)}>"
elif self._depend is not None:
s = f"<depend:{self._depend}>"
elif self._rc is not None:
s = f"<rc:{self._rc}>"
elif self._auto:
s = "<auto>"
else:
s = "<undefined>"
return s
| 19,269 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
Mappable.depend
|
(self)
|
return self._depend
|
Return the name of the feature to source a default value from.
|
Return the name of the feature to source a default value from.
| 78 | 80 |
def depend(self) -> Any:
"""Return the name of the feature to source a default value from."""
return self._depend
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L78-L80
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 98.473282 | 3 | 1 | 100 | 1 |
def depend(self) -> Any:
return self._depend
| 19,270 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
Mappable.grouping
|
(self)
|
return self._grouping
| 83 | 84 |
def grouping(self) -> bool:
return self._grouping
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L83-L84
| 26 |
[
0,
1
] | 100 |
[] | 0 | true | 98.473282 | 2 | 1 | 100 | 0 |
def grouping(self) -> bool:
return self._grouping
| 19,271 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/base.py
|
Mappable.default
|
(self)
|
return mpl.rcParams.get(self._rc)
|
Get the default value for this feature, or access the relevant rcParam.
|
Get the default value for this feature, or access the relevant rcParam.
| 87 | 91 |
def default(self) -> Any:
"""Get the default value for this feature, or access the relevant rcParam."""
if self._val is not None:
return self._val
return mpl.rcParams.get(self._rc)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/base.py#L87-L91
| 26 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 98.473282 | 5 | 2 | 100 | 1 |
def default(self) -> Any:
if self._val is not None:
return self._val
return mpl.rcParams.get(self._rc)
| 19,272 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/area.py
|
AreaBase._plot
|
(self, split_gen, scales, orient)
| 23 | 51 |
def _plot(self, split_gen, scales, orient):
patches = defaultdict(list)
for keys, data, ax in split_gen():
kws = {}
data = self._standardize_coordinate_parameters(data, orient)
resolved = resolve_properties(self, keys, scales)
verts = self._get_verts(data, orient)
ax.update_datalim(verts)
# TODO should really move this logic into resolve_color
fc = resolve_color(self, keys, "", scales)
if not resolved["fill"]:
fc = mpl.colors.to_rgba(fc, 0)
kws["facecolor"] = fc
kws["edgecolor"] = resolve_color(self, keys, "edge", scales)
kws["linewidth"] = resolved["edgewidth"]
kws["linestyle"] = resolved["edgestyle"]
patches[ax].append(mpl.patches.Polygon(verts, **kws))
for ax, ax_patches in patches.items():
for patch in ax_patches:
self._postprocess_artist(patch, ax, orient)
ax.add_patch(patch)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/area.py#L23-L51
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28
] | 100 |
[] | 0 | true | 96.511628 | 29 | 5 | 100 | 0 |
def _plot(self, split_gen, scales, orient):
patches = defaultdict(list)
for keys, data, ax in split_gen():
kws = {}
data = self._standardize_coordinate_parameters(data, orient)
resolved = resolve_properties(self, keys, scales)
verts = self._get_verts(data, orient)
ax.update_datalim(verts)
# TODO should really move this logic into resolve_color
fc = resolve_color(self, keys, "", scales)
if not resolved["fill"]:
fc = mpl.colors.to_rgba(fc, 0)
kws["facecolor"] = fc
kws["edgecolor"] = resolve_color(self, keys, "edge", scales)
kws["linewidth"] = resolved["edgewidth"]
kws["linestyle"] = resolved["edgestyle"]
patches[ax].append(mpl.patches.Polygon(verts, **kws))
for ax, ax_patches in patches.items():
for patch in ax_patches:
self._postprocess_artist(patch, ax, orient)
ax.add_patch(patch)
| 19,273 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/area.py
|
AreaBase._standardize_coordinate_parameters
|
(self, data, orient)
|
return data
| 53 | 54 |
def _standardize_coordinate_parameters(self, data, orient):
return data
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/area.py#L53-L54
| 26 |
[
0
] | 50 |
[
1
] | 50 | false | 96.511628 | 2 | 1 | 50 | 0 |
def _standardize_coordinate_parameters(self, data, orient):
return data
| 19,274 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/area.py
|
AreaBase._get_verts
|
(self, data, orient)
|
return verts
| 59 | 69 |
def _get_verts(self, data, orient):
dv = {"x": "y", "y": "x"}[orient]
data = data.sort_values(orient, kind="mergesort")
verts = np.concatenate([
data[[orient, f"{dv}min"]].to_numpy(),
data[[orient, f"{dv}max"]].to_numpy()[::-1],
])
if orient == "y":
verts = verts[:, ::-1]
return verts
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/area.py#L59-L69
| 26 |
[
0,
1,
2,
3,
4,
8,
10
] | 63.636364 |
[
9
] | 9.090909 | false | 96.511628 | 11 | 2 | 90.909091 | 0 |
def _get_verts(self, data, orient):
dv = {"x": "y", "y": "x"}[orient]
data = data.sort_values(orient, kind="mergesort")
verts = np.concatenate([
data[[orient, f"{dv}min"]].to_numpy(),
data[[orient, f"{dv}max"]].to_numpy()[::-1],
])
if orient == "y":
verts = verts[:, ::-1]
return verts
| 19,275 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_marks/area.py
|
AreaBase._legend_artist
|
(self, variables, value, scales)
|
return mpl.patches.Patch(
facecolor=fc,
edgecolor=resolve_color(self, keys, "edge", scales),
linewidth=resolved["edgewidth"],
linestyle=resolved["edgestyle"],
**self.artist_kws,
)
| 71 | 86 |
def _legend_artist(self, variables, value, scales):
keys = {v: value for v in variables}
resolved = resolve_properties(self, keys, scales)
fc = resolve_color(self, keys, "", scales)
if not resolved["fill"]:
fc = mpl.colors.to_rgba(fc, 0)
return mpl.patches.Patch(
facecolor=fc,
edgecolor=resolve_color(self, keys, "edge", scales),
linewidth=resolved["edgewidth"],
linestyle=resolved["edgestyle"],
**self.artist_kws,
)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_marks/area.py#L71-L86
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
8,
9
] | 56.25 |
[
7
] | 6.25 | false | 96.511628 | 16 | 2 | 93.75 | 0 |
def _legend_artist(self, variables, value, scales):
keys = {v: value for v in variables}
resolved = resolve_properties(self, keys, scales)
fc = resolve_color(self, keys, "", scales)
if not resolved["fill"]:
fc = mpl.colors.to_rgba(fc, 0)
return mpl.patches.Patch(
facecolor=fc,
edgecolor=resolve_color(self, keys, "edge", scales),
linewidth=resolved["edgewidth"],
linestyle=resolved["edgestyle"],
**self.artist_kws,
)
| 19,276 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/plot.py
|
theme_context
|
(params: dict[str, Any])
|
Temporarily modify specifc matplotlib rcParams.
|
Temporarily modify specifc matplotlib rcParams.
| 94 | 111 |
def theme_context(params: dict[str, Any]) -> Generator:
"""Temporarily modify specifc matplotlib rcParams."""
orig_params = {k: mpl.rcParams[k] for k in params}
color_codes = "bgrmyck"
nice_colors = [*color_palette("deep6"), (.15, .15, .15)]
orig_colors = [mpl.colors.colorConverter.colors[x] for x in color_codes]
# TODO how to allow this to reflect the color cycle when relevant?
try:
mpl.rcParams.update(params)
for (code, color) in zip(color_codes, nice_colors):
mpl.colors.colorConverter.colors[code] = color
mpl.colors.colorConverter.cache[code] = color
yield
finally:
mpl.rcParams.update(orig_params)
for (code, color) in zip(color_codes, orig_colors):
mpl.colors.colorConverter.colors[code] = color
mpl.colors.colorConverter.cache[code] = color
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/plot.py#L94-L111
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 100 |
[] | 0 | true | 98.089172 | 18 | 4 | 100 | 1 |
def theme_context(params: dict[str, Any]) -> Generator:
orig_params = {k: mpl.rcParams[k] for k in params}
color_codes = "bgrmyck"
nice_colors = [*color_palette("deep6"), (.15, .15, .15)]
orig_colors = [mpl.colors.colorConverter.colors[x] for x in color_codes]
# TODO how to allow this to reflect the color cycle when relevant?
try:
mpl.rcParams.update(params)
for (code, color) in zip(color_codes, nice_colors):
mpl.colors.colorConverter.colors[code] = color
mpl.colors.colorConverter.cache[code] = color
yield
finally:
mpl.rcParams.update(orig_params)
for (code, color) in zip(color_codes, orig_colors):
mpl.colors.colorConverter.colors[code] = color
mpl.colors.colorConverter.cache[code] = color
| 19,277 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/plot.py
|
build_plot_signature
|
(cls)
|
return cls
|
Decorator function for giving Plot a useful signature.
Currently this mostly saves us some duplicated typing, but we would
like eventually to have a way of registering new semantic properties,
at which point dynamic signature generation would become more important.
|
Decorator function for giving Plot a useful signature.
| 114 | 143 |
def build_plot_signature(cls):
"""
Decorator function for giving Plot a useful signature.
Currently this mostly saves us some duplicated typing, but we would
like eventually to have a way of registering new semantic properties,
at which point dynamic signature generation would become more important.
"""
sig = inspect.signature(cls)
params = [
inspect.Parameter("args", inspect.Parameter.VAR_POSITIONAL),
inspect.Parameter("data", inspect.Parameter.KEYWORD_ONLY, default=None)
]
params.extend([
inspect.Parameter(name, inspect.Parameter.KEYWORD_ONLY, default=None)
for name in PROPERTIES
])
new_sig = sig.replace(parameters=params)
cls.__signature__ = new_sig
known_properties = textwrap.fill(
", ".join([f"|{p}|" for p in PROPERTIES]),
width=78, subsequent_indent=" " * 8,
)
if cls.__doc__ is not None: # support python -OO mode
cls.__doc__ = cls.__doc__.format(known_properties=known_properties)
return cls
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/plot.py#L114-L143
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29
] | 100 |
[] | 0 | true | 98.089172 | 30 | 4 | 100 | 5 |
def build_plot_signature(cls):
sig = inspect.signature(cls)
params = [
inspect.Parameter("args", inspect.Parameter.VAR_POSITIONAL),
inspect.Parameter("data", inspect.Parameter.KEYWORD_ONLY, default=None)
]
params.extend([
inspect.Parameter(name, inspect.Parameter.KEYWORD_ONLY, default=None)
for name in PROPERTIES
])
new_sig = sig.replace(parameters=params)
cls.__signature__ = new_sig
known_properties = textwrap.fill(
", ".join([f"|{p}|" for p in PROPERTIES]),
width=78, subsequent_indent=" " * 8,
)
if cls.__doc__ is not None: # support python -OO mode
cls.__doc__ = cls.__doc__.format(known_properties=known_properties)
return cls
| 19,278 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/plot.py
|
__init__
|
(self)
| 159 | 161 |
def __init__(self):
super().__init__()
self.reset()
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/plot.py#L159-L161
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 98.089172 | 3 | 1 | 100 | 0 |
def __init__(self):
super().__init__()
self.reset()
| 19,279 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/plot.py
|
_default
|
(self)
|
return {
**self._filter_params(mpl.rcParamsDefault),
**axes_style("darkgrid"),
**plotting_context("notebook"),
"axes.prop_cycle": cycler("color", color_palette("deep")),
}
| 164 | 171 |
def _default(self) -> dict[str, Any]:
return {
**self._filter_params(mpl.rcParamsDefault),
**axes_style("darkgrid"),
**plotting_context("notebook"),
"axes.prop_cycle": cycler("color", color_palette("deep")),
}
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/plot.py#L164-L171
| 26 |
[
0,
1,
2
] | 37.5 |
[] | 0 | false | 98.089172 | 8 | 1 | 100 | 0 |
def _default(self) -> dict[str, Any]:
return {
**self._filter_params(mpl.rcParamsDefault),
**axes_style("darkgrid"),
**plotting_context("notebook"),
"axes.prop_cycle": cycler("color", color_palette("deep")),
}
| 19,280 |
||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/plot.py
|
reset
|
(self)
|
Update the theme dictionary with seaborn's default values.
|
Update the theme dictionary with seaborn's default values.
| 173 | 175 |
def reset(self) -> None:
"""Update the theme dictionary with seaborn's default values."""
self.update(self._default)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/plot.py#L173-L175
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 98.089172 | 3 | 1 | 100 | 1 |
def reset(self) -> None:
self.update(self._default)
| 19,281 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots.__init__
|
(
self,
subplot_spec: dict, # TODO define as TypedDict
facet_spec: FacetSpec,
pair_spec: PairSpec,
)
| 32 | 44 |
def __init__(
self,
subplot_spec: dict, # TODO define as TypedDict
facet_spec: FacetSpec,
pair_spec: PairSpec,
):
self.subplot_spec = subplot_spec
self._check_dimension_uniqueness(facet_spec, pair_spec)
self._determine_grid_dimensions(facet_spec, pair_spec)
self._handle_wrapping(facet_spec, pair_spec)
self._determine_axis_sharing(pair_spec)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L32-L44
| 26 |
[
0,
6,
7,
8,
9,
10,
11,
12
] | 61.538462 |
[] | 0 | false | 98.611111 | 13 | 1 | 100 | 0 |
def __init__(
self,
subplot_spec: dict, # TODO define as TypedDict
facet_spec: FacetSpec,
pair_spec: PairSpec,
):
self.subplot_spec = subplot_spec
self._check_dimension_uniqueness(facet_spec, pair_spec)
self._determine_grid_dimensions(facet_spec, pair_spec)
self._handle_wrapping(facet_spec, pair_spec)
self._determine_axis_sharing(pair_spec)
| 19,282 |
|||
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots._check_dimension_uniqueness
|
(
self, facet_spec: FacetSpec, pair_spec: PairSpec
)
|
Reject specs that pair and facet on (or wrap to) same figure dimension.
|
Reject specs that pair and facet on (or wrap to) same figure dimension.
| 46 | 76 |
def _check_dimension_uniqueness(
self, facet_spec: FacetSpec, pair_spec: PairSpec
) -> None:
"""Reject specs that pair and facet on (or wrap to) same figure dimension."""
err = None
facet_vars = facet_spec.get("variables", {})
if facet_spec.get("wrap") and {"col", "row"} <= set(facet_vars):
err = "Cannot wrap facets when specifying both `col` and `row`."
elif (
pair_spec.get("wrap")
and pair_spec.get("cross", True)
and len(pair_spec.get("structure", {}).get("x", [])) > 1
and len(pair_spec.get("structure", {}).get("y", [])) > 1
):
err = "Cannot wrap subplots when pairing on both `x` and `y`."
collisions = {"x": ["columns", "rows"], "y": ["rows", "columns"]}
for pair_axis, (multi_dim, wrap_dim) in collisions.items():
if pair_axis not in pair_spec.get("structure", {}):
continue
elif multi_dim[:3] in facet_vars:
err = f"Cannot facet the {multi_dim} while pairing on `{pair_axis}``."
elif wrap_dim[:3] in facet_vars and facet_spec.get("wrap"):
err = f"Cannot wrap the {wrap_dim} while pairing on `{pair_axis}``."
elif wrap_dim[:3] in facet_vars and pair_spec.get("wrap"):
err = f"Cannot wrap the {multi_dim} while faceting the {wrap_dim}."
if err is not None:
raise RuntimeError(err)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L46-L76
| 26 |
[
0,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30
] | 93.548387 |
[] | 0 | false | 98.611111 | 31 | 15 | 100 | 1 |
def _check_dimension_uniqueness(
self, facet_spec: FacetSpec, pair_spec: PairSpec
) -> None:
err = None
facet_vars = facet_spec.get("variables", {})
if facet_spec.get("wrap") and {"col", "row"} <= set(facet_vars):
err = "Cannot wrap facets when specifying both `col` and `row`."
elif (
pair_spec.get("wrap")
and pair_spec.get("cross", True)
and len(pair_spec.get("structure", {}).get("x", [])) > 1
and len(pair_spec.get("structure", {}).get("y", [])) > 1
):
err = "Cannot wrap subplots when pairing on both `x` and `y`."
collisions = {"x": ["columns", "rows"], "y": ["rows", "columns"]}
for pair_axis, (multi_dim, wrap_dim) in collisions.items():
if pair_axis not in pair_spec.get("structure", {}):
continue
elif multi_dim[:3] in facet_vars:
err = f"Cannot facet the {multi_dim} while pairing on `{pair_axis}``."
elif wrap_dim[:3] in facet_vars and facet_spec.get("wrap"):
err = f"Cannot wrap the {wrap_dim} while pairing on `{pair_axis}``."
elif wrap_dim[:3] in facet_vars and pair_spec.get("wrap"):
err = f"Cannot wrap the {multi_dim} while faceting the {wrap_dim}."
if err is not None:
raise RuntimeError(err)
| 19,283 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots._determine_grid_dimensions
|
(
self, facet_spec: FacetSpec, pair_spec: PairSpec
)
|
Parse faceting and pairing information to define figure structure.
|
Parse faceting and pairing information to define figure structure.
| 78 | 100 |
def _determine_grid_dimensions(
self, facet_spec: FacetSpec, pair_spec: PairSpec
) -> None:
"""Parse faceting and pairing information to define figure structure."""
self.grid_dimensions: dict[str, list] = {}
for dim, axis in zip(["col", "row"], ["x", "y"]):
facet_vars = facet_spec.get("variables", {})
if dim in facet_vars:
self.grid_dimensions[dim] = facet_spec["structure"][dim]
elif axis in pair_spec.get("structure", {}):
self.grid_dimensions[dim] = [
None for _ in pair_spec.get("structure", {})[axis]
]
else:
self.grid_dimensions[dim] = [None]
self.subplot_spec[f"n{dim}s"] = len(self.grid_dimensions[dim])
if not pair_spec.get("cross", True):
self.subplot_spec["nrows"] = 1
self.n_subplots = self.subplot_spec["ncols"] * self.subplot_spec["nrows"]
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L78-L100
| 26 |
[
0,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 91.304348 |
[] | 0 | false | 98.611111 | 23 | 6 | 100 | 1 |
def _determine_grid_dimensions(
self, facet_spec: FacetSpec, pair_spec: PairSpec
) -> None:
self.grid_dimensions: dict[str, list] = {}
for dim, axis in zip(["col", "row"], ["x", "y"]):
facet_vars = facet_spec.get("variables", {})
if dim in facet_vars:
self.grid_dimensions[dim] = facet_spec["structure"][dim]
elif axis in pair_spec.get("structure", {}):
self.grid_dimensions[dim] = [
None for _ in pair_spec.get("structure", {})[axis]
]
else:
self.grid_dimensions[dim] = [None]
self.subplot_spec[f"n{dim}s"] = len(self.grid_dimensions[dim])
if not pair_spec.get("cross", True):
self.subplot_spec["nrows"] = 1
self.n_subplots = self.subplot_spec["ncols"] * self.subplot_spec["nrows"]
| 19,284 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots._handle_wrapping
|
(
self, facet_spec: FacetSpec, pair_spec: PairSpec
)
|
Update figure structure parameters based on facet/pair wrapping.
|
Update figure structure parameters based on facet/pair wrapping.
| 102 | 119 |
def _handle_wrapping(
self, facet_spec: FacetSpec, pair_spec: PairSpec
) -> None:
"""Update figure structure parameters based on facet/pair wrapping."""
self.wrap = wrap = facet_spec.get("wrap") or pair_spec.get("wrap")
if not wrap:
return
wrap_dim = "row" if self.subplot_spec["nrows"] > 1 else "col"
flow_dim = {"row": "col", "col": "row"}[wrap_dim]
n_subplots = self.subplot_spec[f"n{wrap_dim}s"]
flow = int(np.ceil(n_subplots / wrap))
if wrap < self.subplot_spec[f"n{wrap_dim}s"]:
self.subplot_spec[f"n{wrap_dim}s"] = wrap
self.subplot_spec[f"n{flow_dim}s"] = flow
self.n_subplots = n_subplots
self.wrap_dim = wrap_dim
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L102-L119
| 26 |
[
0,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17
] | 88.888889 |
[] | 0 | false | 98.611111 | 18 | 4 | 100 | 1 |
def _handle_wrapping(
self, facet_spec: FacetSpec, pair_spec: PairSpec
) -> None:
self.wrap = wrap = facet_spec.get("wrap") or pair_spec.get("wrap")
if not wrap:
return
wrap_dim = "row" if self.subplot_spec["nrows"] > 1 else "col"
flow_dim = {"row": "col", "col": "row"}[wrap_dim]
n_subplots = self.subplot_spec[f"n{wrap_dim}s"]
flow = int(np.ceil(n_subplots / wrap))
if wrap < self.subplot_spec[f"n{wrap_dim}s"]:
self.subplot_spec[f"n{wrap_dim}s"] = wrap
self.subplot_spec[f"n{flow_dim}s"] = flow
self.n_subplots = n_subplots
self.wrap_dim = wrap_dim
| 19,285 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots._determine_axis_sharing
|
(self, pair_spec: PairSpec)
|
Update subplot spec with default or specified axis sharing parameters.
|
Update subplot spec with default or specified axis sharing parameters.
| 121 | 140 |
def _determine_axis_sharing(self, pair_spec: PairSpec) -> None:
"""Update subplot spec with default or specified axis sharing parameters."""
axis_to_dim = {"x": "col", "y": "row"}
key: str
val: str | bool
for axis in "xy":
key = f"share{axis}"
# Always use user-specified value, if present
if key not in self.subplot_spec:
if axis in pair_spec.get("structure", {}):
# Paired axes are shared along one dimension by default
if self.wrap is None and pair_spec.get("cross", True):
val = axis_to_dim[axis]
else:
val = False
else:
# This will pick up faceted plots, as well as single subplot
# figures, where the value doesn't really matter
val = True
self.subplot_spec[key] = val
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L121-L140
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19
] | 100 |
[] | 0 | true | 98.611111 | 20 | 6 | 100 | 1 |
def _determine_axis_sharing(self, pair_spec: PairSpec) -> None:
axis_to_dim = {"x": "col", "y": "row"}
key: str
val: str | bool
for axis in "xy":
key = f"share{axis}"
# Always use user-specified value, if present
if key not in self.subplot_spec:
if axis in pair_spec.get("structure", {}):
# Paired axes are shared along one dimension by default
if self.wrap is None and pair_spec.get("cross", True):
val = axis_to_dim[axis]
else:
val = False
else:
# This will pick up faceted plots, as well as single subplot
# figures, where the value doesn't really matter
val = True
self.subplot_spec[key] = val
| 19,286 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots.init_figure
|
(
self,
pair_spec: PairSpec,
pyplot: bool = False,
figure_kws: dict | None = None,
target: Axes | Figure | SubFigure = None,
)
|
return figure
|
Initialize matplotlib objects and add seaborn-relevant metadata.
|
Initialize matplotlib objects and add seaborn-relevant metadata.
| 142 | 261 |
def init_figure(
self,
pair_spec: PairSpec,
pyplot: bool = False,
figure_kws: dict | None = None,
target: Axes | Figure | SubFigure = None,
) -> Figure:
"""Initialize matplotlib objects and add seaborn-relevant metadata."""
# TODO reduce need to pass pair_spec here?
if figure_kws is None:
figure_kws = {}
if isinstance(target, mpl.axes.Axes):
if max(self.subplot_spec["nrows"], self.subplot_spec["ncols"]) > 1:
err = " ".join([
"Cannot create multiple subplots after calling `Plot.on` with",
f"a {mpl.axes.Axes} object.",
])
try:
err += f" You may want to use a {mpl.figure.SubFigure} instead."
except AttributeError: # SubFigure added in mpl 3.4
pass
raise RuntimeError(err)
self._subplot_list = [{
"ax": target,
"left": True,
"right": True,
"top": True,
"bottom": True,
"col": None,
"row": None,
"x": "x",
"y": "y",
}]
self._figure = target.figure
return self._figure
elif (
hasattr(mpl.figure, "SubFigure") # Added in mpl 3.4
and isinstance(target, mpl.figure.SubFigure)
):
figure = target.figure
elif isinstance(target, mpl.figure.Figure):
figure = target
else:
if pyplot:
figure = plt.figure(**figure_kws)
else:
figure = mpl.figure.Figure(**figure_kws)
target = figure
self._figure = figure
axs = target.subplots(**self.subplot_spec, squeeze=False)
if self.wrap:
# Remove unused Axes and flatten the rest into a (2D) vector
axs_flat = axs.ravel({"col": "C", "row": "F"}[self.wrap_dim])
axs, extra = np.split(axs_flat, [self.n_subplots])
for ax in extra:
ax.remove()
if self.wrap_dim == "col":
axs = axs[np.newaxis, :]
else:
axs = axs[:, np.newaxis]
# Get i, j coordinates for each Axes object
# Note that i, j are with respect to faceting/pairing,
# not the subplot grid itself, (which only matters in the case of wrapping).
iter_axs: np.ndenumerate | zip
if not pair_spec.get("cross", True):
indices = np.arange(self.n_subplots)
iter_axs = zip(zip(indices, indices), axs.flat)
else:
iter_axs = np.ndenumerate(axs)
self._subplot_list = []
for (i, j), ax in iter_axs:
info = {"ax": ax}
nrows, ncols = self.subplot_spec["nrows"], self.subplot_spec["ncols"]
if not self.wrap:
info["left"] = j % ncols == 0
info["right"] = (j + 1) % ncols == 0
info["top"] = i == 0
info["bottom"] = i == nrows - 1
elif self.wrap_dim == "col":
info["left"] = j % ncols == 0
info["right"] = ((j + 1) % ncols == 0) or ((j + 1) == self.n_subplots)
info["top"] = j < ncols
info["bottom"] = j >= (self.n_subplots - ncols)
elif self.wrap_dim == "row":
info["left"] = i < nrows
info["right"] = i >= self.n_subplots - nrows
info["top"] = i % nrows == 0
info["bottom"] = ((i + 1) % nrows == 0) or ((i + 1) == self.n_subplots)
if not pair_spec.get("cross", True):
info["top"] = j < ncols
info["bottom"] = j >= self.n_subplots - ncols
for dim in ["row", "col"]:
idx = {"row": i, "col": j}[dim]
info[dim] = self.grid_dimensions[dim][idx]
for axis in "xy":
idx = {"x": j, "y": i}[axis]
if axis in pair_spec.get("structure", {}):
key = f"{axis}{idx}"
else:
key = axis
info[axis] = key
self._subplot_list.append(info)
return figure
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L142-L261
| 26 |
[
0,
9,
10,
11,
12,
13,
14,
15,
16,
20,
21,
24,
25,
26,
37,
38,
39,
40,
44,
45,
46,
48,
49,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
66,
67,
68,
69,
70,
72,
73,
74,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
114,
115,
116,
117,
118,
119
] | 73.333333 |
[
22,
23
] | 1.666667 | false | 98.611111 | 120 | 23 | 98.333333 | 1 |
def init_figure(
self,
pair_spec: PairSpec,
pyplot: bool = False,
figure_kws: dict | None = None,
target: Axes | Figure | SubFigure = None,
) -> Figure:
# TODO reduce need to pass pair_spec here?
if figure_kws is None:
figure_kws = {}
if isinstance(target, mpl.axes.Axes):
if max(self.subplot_spec["nrows"], self.subplot_spec["ncols"]) > 1:
err = " ".join([
"Cannot create multiple subplots after calling `Plot.on` with",
f"a {mpl.axes.Axes} object.",
])
try:
err += f" You may want to use a {mpl.figure.SubFigure} instead."
except AttributeError: # SubFigure added in mpl 3.4
pass
raise RuntimeError(err)
self._subplot_list = [{
"ax": target,
"left": True,
"right": True,
"top": True,
"bottom": True,
"col": None,
"row": None,
"x": "x",
"y": "y",
}]
self._figure = target.figure
return self._figure
elif (
hasattr(mpl.figure, "SubFigure") # Added in mpl 3.4
and isinstance(target, mpl.figure.SubFigure)
):
figure = target.figure
elif isinstance(target, mpl.figure.Figure):
figure = target
else:
if pyplot:
figure = plt.figure(**figure_kws)
else:
figure = mpl.figure.Figure(**figure_kws)
target = figure
self._figure = figure
axs = target.subplots(**self.subplot_spec, squeeze=False)
if self.wrap:
# Remove unused Axes and flatten the rest into a (2D) vector
axs_flat = axs.ravel({"col": "C", "row": "F"}[self.wrap_dim])
axs, extra = np.split(axs_flat, [self.n_subplots])
for ax in extra:
ax.remove()
if self.wrap_dim == "col":
axs = axs[np.newaxis, :]
else:
axs = axs[:, np.newaxis]
# Get i, j coordinates for each Axes object
# Note that i, j are with respect to faceting/pairing,
# not the subplot grid itself, (which only matters in the case of wrapping).
iter_axs: np.ndenumerate | zip
if not pair_spec.get("cross", True):
indices = np.arange(self.n_subplots)
iter_axs = zip(zip(indices, indices), axs.flat)
else:
iter_axs = np.ndenumerate(axs)
self._subplot_list = []
for (i, j), ax in iter_axs:
info = {"ax": ax}
nrows, ncols = self.subplot_spec["nrows"], self.subplot_spec["ncols"]
if not self.wrap:
info["left"] = j % ncols == 0
info["right"] = (j + 1) % ncols == 0
info["top"] = i == 0
info["bottom"] = i == nrows - 1
elif self.wrap_dim == "col":
info["left"] = j % ncols == 0
info["right"] = ((j + 1) % ncols == 0) or ((j + 1) == self.n_subplots)
info["top"] = j < ncols
info["bottom"] = j >= (self.n_subplots - ncols)
elif self.wrap_dim == "row":
info["left"] = i < nrows
info["right"] = i >= self.n_subplots - nrows
info["top"] = i % nrows == 0
info["bottom"] = ((i + 1) % nrows == 0) or ((i + 1) == self.n_subplots)
if not pair_spec.get("cross", True):
info["top"] = j < ncols
info["bottom"] = j >= self.n_subplots - ncols
for dim in ["row", "col"]:
idx = {"row": i, "col": j}[dim]
info[dim] = self.grid_dimensions[dim][idx]
for axis in "xy":
idx = {"x": j, "y": i}[axis]
if axis in pair_spec.get("structure", {}):
key = f"{axis}{idx}"
else:
key = axis
info[axis] = key
self._subplot_list.append(info)
return figure
| 19,287 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots.__iter__
|
(self)
|
Yield each subplot dictionary with Axes object and metadata.
|
Yield each subplot dictionary with Axes object and metadata.
| 263 | 265 |
def __iter__(self) -> Generator[dict, None, None]: # TODO TypedDict?
"""Yield each subplot dictionary with Axes object and metadata."""
yield from self._subplot_list
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L263-L265
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 98.611111 | 3 | 1 | 100 | 1 |
def __iter__(self) -> Generator[dict, None, None]: # TODO TypedDict?
yield from self._subplot_list
| 19,288 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/subplots.py
|
Subplots.__len__
|
(self)
|
return len(self._subplot_list)
|
Return the number of subplots in this figure.
|
Return the number of subplots in this figure.
| 267 | 269 |
def __len__(self) -> int:
"""Return the number of subplots in this figure."""
return len(self._subplot_list)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/subplots.py#L267-L269
| 26 |
[
0,
1,
2
] | 100 |
[] | 0 | true | 98.611111 | 3 | 1 | 100 | 1 |
def __len__(self) -> int:
return len(self._subplot_list)
| 19,289 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/groupby.py
|
GroupBy.__init__
|
(self, order: list[str] | dict[str, list | None])
|
Initialize the GroupBy from grouping variables and optional level orders.
Parameters
----------
order
List of variable names or dict mapping names to desired level orders.
Level order values can be None to use default ordering rules. The
variables can include names that are not expected to appear in the
data; these will be dropped before the groups are defined.
|
Initialize the GroupBy from grouping variables and optional level orders.
| 29 | 47 |
def __init__(self, order: list[str] | dict[str, list | None]):
"""
Initialize the GroupBy from grouping variables and optional level orders.
Parameters
----------
order
List of variable names or dict mapping names to desired level orders.
Level order values can be None to use default ordering rules. The
variables can include names that are not expected to appear in the
data; these will be dropped before the groups are defined.
"""
if not order:
raise ValueError("GroupBy requires at least one grouping variable")
if isinstance(order, list):
order = {k: None for k in order}
self.order = order
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/groupby.py#L29-L47
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
] | 100 |
[] | 0 | true | 100 | 19 | 3 | 100 | 9 |
def __init__(self, order: list[str] | dict[str, list | None]):
if not order:
raise ValueError("GroupBy requires at least one grouping variable")
if isinstance(order, list):
order = {k: None for k in order}
self.order = order
| 19,290 |
|
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/groupby.py
|
GroupBy._get_groups
|
(
self, data: DataFrame
)
|
return grouper, groups
|
Return index with Cartesian product of ordered grouping variable levels.
|
Return index with Cartesian product of ordered grouping variable levels.
| 49 | 71 |
def _get_groups(
self, data: DataFrame
) -> tuple[str | list[str], Index | MultiIndex]:
"""Return index with Cartesian product of ordered grouping variable levels."""
levels = {}
for var, order in self.order.items():
if var in data:
if order is None:
order = categorical_order(data[var])
levels[var] = order
grouper: str | list[str]
groups: Index | MultiIndex
if not levels:
grouper = []
groups = pd.Index([])
elif len(levels) > 1:
grouper = list(levels)
groups = pd.MultiIndex.from_product(levels.values(), names=grouper)
else:
grouper, = list(levels)
groups = pd.Index(levels[grouper], name=grouper)
return grouper, groups
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/groupby.py#L49-L71
| 26 |
[
0,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22
] | 91.304348 |
[] | 0 | false | 100 | 23 | 6 | 100 | 1 |
def _get_groups(
self, data: DataFrame
) -> tuple[str | list[str], Index | MultiIndex]:
levels = {}
for var, order in self.order.items():
if var in data:
if order is None:
order = categorical_order(data[var])
levels[var] = order
grouper: str | list[str]
groups: Index | MultiIndex
if not levels:
grouper = []
groups = pd.Index([])
elif len(levels) > 1:
grouper = list(levels)
groups = pd.MultiIndex.from_product(levels.values(), names=grouper)
else:
grouper, = list(levels)
groups = pd.Index(levels[grouper], name=grouper)
return grouper, groups
| 19,291 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/groupby.py
|
GroupBy._reorder_columns
|
(self, res, data)
|
return res.reindex(columns=pd.Index(cols))
|
Reorder result columns to match original order with new columns appended.
|
Reorder result columns to match original order with new columns appended.
| 73 | 77 |
def _reorder_columns(self, res, data):
"""Reorder result columns to match original order with new columns appended."""
cols = [c for c in data if c in res]
cols += [c for c in res if c not in data]
return res.reindex(columns=pd.Index(cols))
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/groupby.py#L73-L77
| 26 |
[
0,
1,
2,
3,
4
] | 100 |
[] | 0 | true | 100 | 5 | 3 | 100 | 1 |
def _reorder_columns(self, res, data):
cols = [c for c in data if c in res]
cols += [c for c in res if c not in data]
return res.reindex(columns=pd.Index(cols))
| 19,292 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/groupby.py
|
GroupBy.agg
|
(self, data: DataFrame, *args, **kwargs)
|
return res
|
Reduce each group to a single row in the output.
The output will have a row for each unique combination of the grouping
variable levels with null values for the aggregated variable(s) where
those combinations do not appear in the dataset.
|
Reduce each group to a single row in the output.
| 79 | 103 |
def agg(self, data: DataFrame, *args, **kwargs) -> DataFrame:
"""
Reduce each group to a single row in the output.
The output will have a row for each unique combination of the grouping
variable levels with null values for the aggregated variable(s) where
those combinations do not appear in the dataset.
"""
grouper, groups = self._get_groups(data)
if not grouper:
# We will need to see whether there are valid usecases that end up here
raise ValueError("No grouping variables are present in dataframe")
res = (
data
.groupby(grouper, sort=False, observed=True)
.agg(*args, **kwargs)
.reindex(groups)
.reset_index()
.pipe(self._reorder_columns, data)
)
return res
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/groupby.py#L79-L103
| 26 |
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 100 |
[] | 0 | true | 100 | 25 | 2 | 100 | 5 |
def agg(self, data: DataFrame, *args, **kwargs) -> DataFrame:
grouper, groups = self._get_groups(data)
if not grouper:
# We will need to see whether there are valid usecases that end up here
raise ValueError("No grouping variables are present in dataframe")
res = (
data
.groupby(grouper, sort=False, observed=True)
.agg(*args, **kwargs)
.reindex(groups)
.reset_index()
.pipe(self._reorder_columns, data)
)
return res
| 19,293 |
mwaskom/seaborn
|
a47b97e4b98c809db55cbd283de21acba89fe186
|
seaborn/_core/groupby.py
|
GroupBy.apply
|
(
self, data: DataFrame, func: Callable[..., DataFrame],
*args, **kwargs,
)
|
return self._reorder_columns(res, data)
|
Apply a DataFrame -> DataFrame mapping to each group.
|
Apply a DataFrame -> DataFrame mapping to each group.
| 105 | 129 |
def apply(
self, data: DataFrame, func: Callable[..., DataFrame],
*args, **kwargs,
) -> DataFrame:
"""Apply a DataFrame -> DataFrame mapping to each group."""
grouper, groups = self._get_groups(data)
if not grouper:
return self._reorder_columns(func(data, *args, **kwargs), data)
parts = {}
for key, part_df in data.groupby(grouper, sort=False):
parts[key] = func(part_df, *args, **kwargs)
stack = []
for key in groups:
if key in parts:
if isinstance(grouper, list):
# Implies that we had a MultiIndex so key is iterable
group_ids = dict(zip(grouper, cast(Iterable, key)))
else:
group_ids = {grouper: key}
stack.append(parts[key].assign(**group_ids))
res = pd.concat(stack, ignore_index=True)
return self._reorder_columns(res, data)
|
https://github.com/mwaskom/seaborn/blob/a47b97e4b98c809db55cbd283de21acba89fe186/project26/seaborn/_core/groupby.py#L105-L129
| 26 |
[
0,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24
] | 88 |
[] | 0 | false | 100 | 25 | 6 | 100 | 1 |
def apply(
self, data: DataFrame, func: Callable[..., DataFrame],
*args, **kwargs,
) -> DataFrame:
grouper, groups = self._get_groups(data)
if not grouper:
return self._reorder_columns(func(data, *args, **kwargs), data)
parts = {}
for key, part_df in data.groupby(grouper, sort=False):
parts[key] = func(part_df, *args, **kwargs)
stack = []
for key in groups:
if key in parts:
if isinstance(grouper, list):
# Implies that we had a MultiIndex so key is iterable
group_ids = dict(zip(grouper, cast(Iterable, key)))
else:
group_ids = {grouper: key}
stack.append(parts[key].assign(**group_ids))
res = pd.concat(stack, ignore_index=True)
return self._reorder_columns(res, data)
| 19,294 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.