repo_id
stringlengths 4
110
| author
stringlengths 2
27
⌀ | model_type
stringlengths 2
29
⌀ | files_per_repo
int64 2
15.4k
| downloads_30d
int64 0
19.9M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.34k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
30
| languages
stringlengths 4
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringclasses 29
values | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
15
| prs_closed
int64 0
28
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 1
class | has_text
bool 1
class | text_length
int64 401
598k
| is_nc
bool 1
class | readme
stringlengths 0
598k
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
it5/mt5-base-question-answering
|
it5
|
mt5
| 11 | 6 |
transformers
| 0 |
text2text-generation
| true | true | true |
apache-2.0
|
['it']
|
['squad_it']
|
{'emissions': '40g"', 'source': 'Google Cloud Platform Carbon Footprint', 'training_type': 'fine-tuning', 'geographical_location': 'Eemshaven, Netherlands, Europe', 'hardware_used': '1 TPU v3-8 VM'}
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['italian', 'sequence-to-sequence', 'squad_it', 'text2text-question-answering', 'text2text-generation']
| true | true | true | 2,658 | false |
# mT5 Base for Question Answering ⁉️ 🇮🇹
This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on extractive question answering on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io).
A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.
## Using the model
Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:
```python
from transformers import pipelines
qa = pipeline("text2text-generation", model='it5/mt5-base-question-answering')
qa("In seguito all' evento di estinzione del Cretaceo-Paleogene, l' estinzione dei dinosauri e il clima umido possono aver permesso alla foresta pluviale tropicale di diffondersi in tutto il continente. Dal 66-34 Mya, la foresta pluviale si estendeva fino a sud fino a 45°. Le fluttuazioni climatiche degli ultimi 34 milioni di anni hanno permesso alle regioni della savana di espandersi fino ai tropici. Durante l' Oligocene, ad esempio, la foresta pluviale ha attraversato una banda relativamente stretta. Si espandeva di nuovo durante il Miocene medio, poi si ritrasse ad una formazione prevalentemente interna all' ultimo massimo glaciale. Tuttavia, la foresta pluviale è riuscita ancora a prosperare durante questi periodi glaciali, consentendo la sopravvivenza e l' evoluzione di un' ampia varietà di specie. Domanda: La foresta pluviale amazzonica è diventata per lo più una foresta interna intorno a quale evento globale?")
>>> [{"generated_text": "ultimo massimo glaciale"}]
```
or loaded using autoclasses:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-question-answering")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-question-answering")
```
If you use this model in your research, please cite our work as:
```bibtex
@article{sarti-nissim-2022-it5,
title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
author={Sarti, Gabriele and Nissim, Malvina},
journal={ArXiv preprint 2203.03759},
url={https://arxiv.org/abs/2203.03759},
year={2022},
month={mar}
}
```
|
a819ac9cb222d77f29ade3f2bd612532
|
Haifeng1999/ddpm-butterflies-128
|
Haifeng1999
| null | 13 | 3 |
diffusers
| 0 | null | false | false | false |
apache-2.0
|
['en']
|
['huggan/smithsonian_butterflies_subset']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,233 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/Haifeng1999/ddpm-butterflies-128/tensorboard?#scalars)
|
1e74370ab98328a7c0b0910cbfb9f6e0
|
Siqi/marian-finetuned-kde4-en-to-fr-2
|
Siqi
|
marian
| 14 | 3 |
transformers
| 0 |
translation
| true | false | false |
apache-2.0
| null |
['kde4']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation', 'generated_from_trainer']
| true | true | true | 1,077 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr-2
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8559
- Bleu: 52.9326
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ee95d5d01e05a68ce5a5fa0a6d70910e
|
thisisHJLee/wav2vec2-large-xls-r-1b-korean-sample5
|
thisisHJLee
|
wav2vec2
| 10 | 7 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,496 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-1b-korean-sample5
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1118
- Cer: 0.0217
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3411 | 1.0 | 12588 | 0.2680 | 0.0738 |
| 0.2237 | 2.0 | 25176 | 0.1812 | 0.0470 |
| 0.1529 | 3.0 | 37764 | 0.1482 | 0.0339 |
| 0.1011 | 4.0 | 50352 | 0.1168 | 0.0256 |
| 0.0715 | 5.0 | 62940 | 0.1118 | 0.0217 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.11.0
|
d0bd22589e65f0ec701dc4155614afb5
|
jojoUla/bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
|
jojoUla
|
bert
| 16 | 0 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,788 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-40) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.8321 | 1.0 | 2 | 4.3250 |
| 3.383 | 2.0 | 4 | 2.4023 |
| 1.9548 | 3.0 | 6 | 1.2925 |
| 1.4856 | 4.0 | 8 | 1.5152 |
| 0.9588 | 5.0 | 10 | 1.7731 |
| 1.2668 | 6.0 | 12 | 1.3830 |
| 0.8441 | 7.0 | 14 | 1.9760 |
| 1.0173 | 8.0 | 16 | 1.2364 |
| 0.6814 | 9.0 | 18 | 1.1771 |
| 0.9044 | 10.0 | 20 | 1.4721 |
| 0.6889 | 11.0 | 22 | 0.8518 |
| 0.5845 | 12.0 | 24 | 0.6993 |
| 0.4068 | 13.0 | 26 | 1.1771 |
| 0.5957 | 14.0 | 28 | 0.5895 |
| 0.4277 | 15.0 | 30 | 0.5326 |
| 0.3736 | 16.0 | 32 | 1.0893 |
| 0.413 | 17.0 | 34 | 1.3267 |
| 0.5718 | 18.0 | 36 | 1.0331 |
| 0.3892 | 19.0 | 38 | 1.0793 |
| 0.3913 | 20.0 | 40 | 0.8742 |
| 0.4794 | 21.0 | 42 | 1.1264 |
| 0.4626 | 22.0 | 44 | 1.1857 |
| 0.2683 | 23.0 | 46 | 1.5181 |
| 0.3436 | 24.0 | 48 | 1.4419 |
| 0.3793 | 25.0 | 50 | 1.4198 |
| 0.356 | 26.0 | 52 | 1.1776 |
| 0.2189 | 27.0 | 54 | 0.7166 |
| 0.286 | 28.0 | 56 | 0.7601 |
| 0.3681 | 29.0 | 58 | 1.2592 |
| 0.5858 | 30.0 | 60 | 0.6520 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
03135dae806a9dd569dd337088c1dfeb
|
ahmeddbahaa/AraBART-finetuned-ar
|
ahmeddbahaa
|
mbart
| 16 | 3 |
transformers
| 0 |
summarization
| true | false | false |
apache-2.0
| null |
['xlsum']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['summarization', 'generated_from_trainer']
| true | true | true | 2,392 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AraBART-finetuned-ar
This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7449
- Rouge-1: 31.08
- Rouge-2: 14.68
- Rouge-l: 27.36
- Gen Len: 19.64
- Bertscore: 73.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 10
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 4.4318 | 1.0 | 2345 | 3.7996 | 28.93 | 13.2 | 25.56 | 19.51 | 73.17 |
| 4.0338 | 2.0 | 4690 | 3.7483 | 30.29 | 14.24 | 26.73 | 19.5 | 73.59 |
| 3.8586 | 3.0 | 7035 | 3.7281 | 30.44 | 14.44 | 26.92 | 19.75 | 73.58 |
| 3.7289 | 4.0 | 9380 | 3.7204 | 30.55 | 14.49 | 26.88 | 19.66 | 73.73 |
| 3.6245 | 5.0 | 11725 | 3.7199 | 30.73 | 14.63 | 27.11 | 19.69 | 73.68 |
| 3.5392 | 6.0 | 14070 | 3.7221 | 30.85 | 14.65 | 27.21 | 19.7 | 73.77 |
| 3.4694 | 7.0 | 16415 | 3.7286 | 31.08 | 14.8 | 27.41 | 19.62 | 73.84 |
| 3.4126 | 8.0 | 18760 | 3.7384 | 31.06 | 14.77 | 27.41 | 19.64 | 73.82 |
| 3.3718 | 9.0 | 21105 | 3.7398 | 31.18 | 14.89 | 27.49 | 19.67 | 73.87 |
| 3.3428 | 10.0 | 23450 | 3.7449 | 31.19 | 14.88 | 27.44 | 19.68 | 73.87 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
47980bd9736fea0ee01c37ae41e7da46
|
projecte-aina/roberta-base-ca-cased-ner
|
projecte-aina
|
roberta
| 11 | 102 |
transformers
| 1 |
token-classification
| true | false | false |
apache-2.0
|
['ca']
|
['projecte-aina/ancora-ca-ner']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['catalan', 'named entity recognition', 'ner', 'CaText', 'Catalan Textual Corpus']
| true | true | true | 4,787 | false |
# Catalan BERTa (RoBERTa-base) finetuned for Named Entity Recognition.
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to Use](#how-to-use)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Variable and metrics](#variable-and-metrics)
- [Evaluation results](#evaluation-results)
- [Additional information](#addional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Citing information](#citing-information)
- [Disclaimer](#disclaimer))
</details>
## Model description
The **roberta-base-ca-cased-ner** is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa](https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
## Intended uses and limitations
## How to use
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Training
We used the NER dataset in Catalan called [Ancora-ca-ner](https://huggingface.co/datasets/projecte-aina/ancora-ca-ner) for training and evaluation.
## Evaluation
We evaluated the _roberta-base-ca-cased-ner_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines:
| Model | Ancora-ca-ner (F1)|
| ------------|:-------------|
| roberta-base-ca-cased-ner | **88.13** |
| mBERT | 86.38 |
| XLM-RoBERTa | 87.66 |
| WikiBERT-ca | 77.66 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
### Contact information
For further information, send an email to aina@bsc.es
### Copyright
Copyright (c) 2021 Text Mining Unit at Barcelona Supercomputing Center
### Licensing Information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
### Citation information
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
### Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|
8edd361d4251083eb3eec42e46b2a9cc
|
Helsinki-NLP/opus-mt-dra-en
|
Helsinki-NLP
|
marian
| 11 | 70 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
|
['ta', 'kn', 'ml', 'te', 'dra', 'en']
| null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 2,272 | false |
### dra-eng
* source group: Dravidian languages
* target group: English
* OPUS readme: [dra-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dra-eng/README.md)
* model: transformer
* source language(s): kan mal tam tel
* target language(s): eng
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/dra-eng/opus2m-2020-07-31.zip)
* test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dra-eng/opus2m-2020-07-31.test.txt)
* test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dra-eng/opus2m-2020-07-31.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.kan-eng.kan.eng | 9.1 | 0.312 |
| Tatoeba-test.mal-eng.mal.eng | 42.0 | 0.584 |
| Tatoeba-test.multi.eng | 30.0 | 0.493 |
| Tatoeba-test.tam-eng.tam.eng | 30.2 | 0.467 |
| Tatoeba-test.tel-eng.tel.eng | 15.9 | 0.378 |
### System Info:
- hf_name: dra-eng
- source_languages: dra
- target_languages: eng
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dra-eng/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['ta', 'kn', 'ml', 'te', 'dra', 'en']
- src_constituents: {'tam', 'kan', 'mal', 'tel'}
- tgt_constituents: {'eng'}
- src_multilingual: True
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/dra-eng/opus2m-2020-07-31.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/dra-eng/opus2m-2020-07-31.test.txt
- src_alpha3: dra
- tgt_alpha3: eng
- short_pair: dra-en
- chrF2_score: 0.493
- bleu: 30.0
- brevity_penalty: 1.0
- ref_len: 10641.0
- src_name: Dravidian languages
- tgt_name: English
- train_date: 2020-07-31
- src_alpha2: dra
- tgt_alpha2: en
- prefer_old: False
- long_pair: dra-eng
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41
|
e16f73b6b3580a0299925ca796ea13c8
|
Xeronate/sggryzza
|
Xeronate
| null | 18 | 8 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['text-to-image', 'stable-diffusion']
| false | true | true | 418 | false |
### sggryzza Dreambooth model trained by Xeronate with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
27205d294277084fb052922b2a7ce6bb
|
StonyBrookNLP/teabreac-poet-large-iirc-retrieved
|
StonyBrookNLP
|
bart
| 9 | 3 |
transformers
| 0 |
text2text-generation
| true | false | false |
cc-by-4.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['question-answering, multi-step-reasoning, multi-hop-reasoning']
| false | true | true | 2,638 | false |
# What's this?
This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496).
This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details.
We release the following models:
- **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}`
- **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}`
- **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}`
The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`.
The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`.
The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**.
# How to use it?
Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac
model_name = "StonyBrookNLP/teabreac-poet-large-iirc-retrieved"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
enable_digit_tokenization(tokenizer)
input_texts = [
"answer_me: Who scored the first touchdown of the game?" +
"context: ... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..."
# Note: some models have slightly different qn/ctxt format. See the github repo.
]
input_ids = tokenizer(
input_texts, return_tensors="pt",
truncation=True, max_length=800,
add_special_tokens=True, padding=True,
)["input_ids"]
generated_ids = model.generate(input_ids, min_length=1, max_length=50)
generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
generated_predictions = [
tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions
]
# => ["Chaz Schilens"]
```
|
3bac07f6542187e7502704840f85b8d4
|
torayeff/distilbert-base-uncased-finetuned-imdb
|
torayeff
|
distilbert
| 9 | 9 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,318 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4898 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
a765ca2f8a3a985b97fdf1e796aadae2
|
42MARU/ko-42maru-wav2vec2-conformer-del-1s
|
42MARU
|
wav2vec2-conformer
| 8 | 12 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['ko']
|
['KsponSpeech']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'automatic-speech-recognition']
| false | true | true | 2,992 | false |
# ko-42maru-wav2vec2-conformer-del-1s
## Table of Contents
- [ko-42maru-wav2vec2-conformer-del-1s](#ko-42maru-wav2vec2-conformer-del-1s)
- [Table of Contents](#table-of-contents)
- [Model Details](#model-details)
- [Evaluation](#evaluation)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
- **Model Description:**
해당 모델은 wav2vec2-conformer base architecture에 scratch pre-training 되었습니다. <br />
Wav2Vec2ConformerForCTC를 이용하여 KsponSpeech에 대한 Fine-Tuning 모델입니다. <br />
- Dataset use [AIHub KsponSpeech](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123) <br />
Datasets는 해당 Data를 전처리하여 임의로 만들어 사용하였습니다. <br />
del-1s의 의미는 1초 이하의 데이터 필터링을 의미합니다. <br />
해당 모델은 **음성전사를 자체 커스텀한 42maru** 기준의 데이터로 학습된 모델입니다. (숫자와 영어는 한글 표기법을 따름) <br />
- **Developed by:** TADev (@lIlBrother, @ddobokki, @jp42maru)
- **Language(s):** Korean
- **License:** apache-2.0
- **Parent Model:** See the [wav2vec2-conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer) for more information about the pre-trained base model. (해당 모델은 wav2vec2-conformer base architecture에 scratch pre-training 되었습니다.)
## Evaluation
Just using `load_metric("wer")` and `load_metric("wer")` in huggingface `datasets` library <br />
## How to Get Started With the Model
KenLM과 혼용된 Wav2Vec2ProcessorWithLM 예제를 보시려면 [42maru-kenlm 예제](https://huggingface.co/42MARU/ko-ctc-kenlm-42maru-only-wiki)를 참고하세요
```python
import librosa
from pyctcdecode import build_ctcdecoder
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForCTC,
AutoTokenizer,
Wav2Vec2ProcessorWithLM,
)
from transformers.pipelines import AutomaticSpeechRecognitionPipeline
audio_path = ""
# 모델과 토크나이저, 예측을 위한 각 모듈들을 불러옵니다.
model = AutoModelForCTC.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s")
feature_extractor = AutoFeatureExtractor.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s")
tokenizer = AutoTokenizer.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s")
beamsearch_decoder = build_ctcdecoder(
labels=list(tokenizer.encoder.keys()),
kenlm_model_path=None,
)
processor = Wav2Vec2ProcessorWithLM(
feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=beamsearch_decoder
)
# 실제 예측을 위한 파이프라인에 정의된 모듈들을 삽입.
asr_pipeline = AutomaticSpeechRecognitionPipeline(
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
decoder=processor.decoder,
device=-1,
)
# 음성파일을 불러오고 beamsearch 파라미터를 특정하여 예측을 수행합니다.
raw_data, _ = librosa.load(audio_path, sr=16000)
kwargs = {"decoder_kwargs": {"beam_width": 100}}
pred = asr_pipeline(inputs=raw_data, **kwargs)["text"]
# 모델이 자소 분리 유니코드 텍스트로 나오므로, 일반 String으로 변환해줄 필요가 있습니다.
result = unicodedata.normalize("NFC", pred)
print(result)
# 안녕하세요 하나둘셋 테스트입니다.
```
*Beam-100 Result (WER)*:
| "clean" | "other" |
| ------- | ------- |
| 21.52 | 25.72 |
|
5c44d07235a10258674c8ceca251ed4b
|
w11wo/indonesian-roberta-base-indonli
|
w11wo
|
roberta
| 11 | 26 |
transformers
| 0 |
text-classification
| true | true | false |
mit
|
['id']
|
['indonli']
| null | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
['indonesian-roberta-base-indonli']
| true | true | true | 2,899 | false |
## Indonesian RoBERTa Base IndoNLI
Indonesian RoBERTa Base IndoNLI is a natural language inference (NLI) model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`IndoNLI`](https://github.com/ir-nlp-csui/indonli)'s dataset consisting of Indonesian Wikipedia, news, and Web articles [1].
After training, the model achieved an evaluation/dev accuracy of 77.06%. On the benchmark `test_lay` subset, the model achieved an accuracy of 74.24% and on the benchmark `test_expert` subset, the model achieved an accuracy of 61.66%.
Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| --------------------------------- | ------- | ------------ | ------------------------------- |
| `indonesian-roberta-base-indonli` | 124M | RoBERTa Base | `IndoNLI` |
## Evaluation Results
The model was trained for 5 epochs, with a batch size of 16, a learning rate of 2e-5, a weight decay of 0.1, and a warmup ratio of 0.2, with linear annealing to 0. The best model was loaded at the end.
| Epoch | Training Loss | Validation Loss | Accuracy |
| ----- | ------------- | --------------- | -------- |
| 1 | 0.989200 | 0.691663 | 0.731452 |
| 2 | 0.673000 | 0.621913 | 0.766045 |
| 3 | 0.449900 | 0.662543 | 0.770596 |
| 4 | 0.293600 | 0.777059 | 0.768320 |
| 5 | 0.194200 | 0.948068 | 0.764224 |
## How to Use
### As NLI Classifier
```python
from transformers import pipeline
pretrained_name = "w11wo/indonesian-roberta-base-indonli"
nlp = pipeline(
"sentiment-analysis",
model=pretrained_name,
tokenizer=pretrained_name
)
nlp("Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih.")
```
## Disclaimer
Do consider the biases which come from both the pre-trained RoBERTa model and the `IndoNLI` dataset that may be carried over into the results of this model.
## References
[1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). [IndoNLI: A Natural Language Inference Dataset for Indonesian](https://arxiv.org/abs/2110.14566). _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing_. Association for Computational Linguistics.
## Author
Indonesian RoBERTa Base IndoNLI was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
|
73d30c9c5b8f26784a5ef5da79671498
|
heyal/finetuning-sentiment-model-5000-samples
|
heyal
|
distilbert
| 13 | 10 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,056 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-5000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4210
- Accuracy: 0.8383
- F1: 0.8348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
f4cb0a61fdb2c0cd4ec2ce404bd18529
|
MultiBertGunjanPatrick/multiberts-seed-0-500k
|
MultiBertGunjanPatrick
|
bert
| 7 | 2 |
transformers
| 0 | null | true | false | false |
apache-2.0
|
['en']
|
['bookcorpus', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['exbert', 'multiberts', 'multiberts-seed-0']
| false | true | true | 6,483 | false |
# MultiBERTs Seed 0 Checkpoint 500k (uncased)
Seed 0 intermediate checkpoint 500k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in
[this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint.
The final checkpoint can be found at [multiberts-seed-0](https://hf.co/multberts-seed-0). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani).
## Model description
MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the MultiBERTs model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('multiberts-seed-0-500k')
model = BertModel.from_pretrained("multiberts-seed-0-500k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular
checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint.
## Training data
The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size
of 256. The sequence length was set to 512 throughout. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2106-16163,
author = {Thibault Sellam and
Steve Yadlowsky and
Jason Wei and
Naomi Saphra and
Alexander D'Amour and
Tal Linzen and
Jasmijn Bastings and
Iulia Turc and
Jacob Eisenstein and
Dipanjan Das and
Ian Tenney and
Ellie Pavlick},
title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis},
journal = {CoRR},
volume = {abs/2106.16163},
year = {2021},
url = {https://arxiv.org/abs/2106.16163},
eprinttype = {arXiv},
eprint = {2106.16163},
timestamp = {Mon, 05 Jul 2021 15:15:50 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=multiberts">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
283a8b685a68065a2b463b23a94e188e
|
Vandita/distilroberta-base-finetuned-SarcojiComplEmojisDistilRoberta-baseMLM1
|
Vandita
|
roberta
| 9 | 3 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,303 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-SarcojiComplEmojisDistilRoberta-baseMLM1
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2176 | 1.0 | 768 | 2.9178 |
| 2.9632 | 2.0 | 1536 | 2.8355 |
| 2.9201 | 3.0 | 2304 | 2.8462 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2
|
5e390f9397cd5b9556fd4e726c3abac7
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601
|
jonatasgrosman
|
wav2vec2
| 10 | 3 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['de']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'de']
| false | true | true | 499 | false |
# exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
ebec7275c0e9c4acfa2158657eb3468e
|
HPL/roberta-base-unlabeled-gab-semeval2023-task10-45000samplesample
|
HPL
|
roberta
| 11 | 2 |
transformers
| 0 |
fill-mask
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,381 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-unlabeled-gab-semeval2023-task10-45000samplesample
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1441
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4294 | 1.0 | 1407 | 2.2323 |
| 2.3091 | 2.0 | 2814 | 2.1470 |
| 2.23 | 3.0 | 4221 | 2.1767 |
| 2.1866 | 4.0 | 5628 | 2.1625 |
| 2.171 | 5.0 | 7035 | 2.1441 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.10.3
|
2e2395d102cd3d8206d0d6aa9d6420d5
|
Helsinki-NLP/opus-mt-de-ee
|
Helsinki-NLP
|
marian
| 10 | 9 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 768 | false |
### opus-mt-de-ee
* source languages: de
* target languages: ee
* OPUS readme: [de-ee](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-ee/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-ee/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-ee/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-ee/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.ee | 24.6 | 0.463 |
|
5f3e76466ab0bd0022c88ee09b556418
|
silviacamplani/distilbert-base-uncased-finetuned-dapt-ner-ai_data
|
silviacamplani
|
distilbert
| 18 | 2 |
transformers
| 0 |
token-classification
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 2,072 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# silviacamplani/distilbert-base-uncased-finetuned-dapt-ner-ai_data
This model is a fine-tuned version of [silviacamplani/distilbert-base-uncased-finetuned-ai_data](https://huggingface.co/silviacamplani/distilbert-base-uncased-finetuned-ai_data) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.3549
- Validation Loss: 2.3081
- Train Precision: 0.0
- Train Recall: 0.0
- Train F1: 0.0
- Train Accuracy: 0.6392
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 3.0905 | 2.8512 | 0.0 | 0.0 | 0.0 | 0.6376 | 0 |
| 2.6612 | 2.4783 | 0.0 | 0.0 | 0.0 | 0.6392 | 1 |
| 2.3549 | 2.3081 | 0.0 | 0.0 | 0.0 | 0.6392 | 2 |
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.6.4
- Datasets 2.1.0
- Tokenizers 0.12.1
|
4be39b83f9a31458603e90e4d2bd5275
|
juliensimon/distilbert-base-uncased-finetuned-cola
|
juliensimon
|
distilbert
| 10 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,571 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7737
- Matthews Correlation: 0.5335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5225 | 1.0 | 535 | 0.5170 | 0.4007 |
| 0.3509 | 2.0 | 1070 | 0.5220 | 0.4837 |
| 0.2405 | 3.0 | 1605 | 0.6164 | 0.5186 |
| 0.1777 | 4.0 | 2140 | 0.7737 | 0.5335 |
| 0.1295 | 5.0 | 2675 | 0.8374 | 0.5162 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|
3d3ebf303e9aac8c406357c66a20bcaa
|
gokuls/distilbert_sa_GLUE_Experiment_rte_384
|
gokuls
|
distilbert
| 17 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,740 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_rte_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6919
- Accuracy: 0.5271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.698 | 1.0 | 10 | 0.6962 | 0.4729 |
| 0.6969 | 2.0 | 20 | 0.6966 | 0.4729 |
| 0.6955 | 3.0 | 30 | 0.6919 | 0.5271 |
| 0.6932 | 4.0 | 40 | 0.6990 | 0.4729 |
| 0.6941 | 5.0 | 50 | 0.6931 | 0.5054 |
| 0.6892 | 6.0 | 60 | 0.6929 | 0.5199 |
| 0.6843 | 7.0 | 70 | 0.6931 | 0.5560 |
| 0.6399 | 8.0 | 80 | 0.7372 | 0.4982 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
bef328018fd0e090322ca5ec5f4cdceb
|
KoichiYasuoka/deberta-large-japanese-unidic-luw-upos
|
KoichiYasuoka
|
deberta-v2
| 8 | 10 |
transformers
| 0 |
token-classification
| true | false | false |
cc-by-sa-4.0
|
['ja']
|
['universal_dependencies']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['japanese', 'token-classification', 'pos', 'dependency-parsing']
| false | true | true | 1,411 | false |
# deberta-large-japanese-unidic-luw-upos
## Model Description
This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) [FEATS](https://universaldependencies.org/u/feat/).
## How to Use
```py
import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos")
s="国境の長いトンネルを抜けると雪国であった。"
t=tokenizer.tokenize(s)
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print(list(zip(t,p)))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
[fugashi](https://pypi.org/project/fugashi), [unidic-lite](https://pypi.org/project/unidic-lite) and [pytokenizations](https://pypi.org/project/pytokenizations) are required.
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
|
677fab8b7a7afed7da0a721dc6befbc9
|
pyronear/mobilenet_v3_large
|
pyronear
| null | 5 | 2 |
transformers
| 0 |
image-classification
| true | false | false |
apache-2.0
| null |
['pyronear/openfire']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['image-classification', 'pytorch', 'onnx']
| false | true | true | 3,106 | false |
# MobileNet V3 - Large model
Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf).
## Model description
The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger.
## Installation
### Prerequisites
Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision.
### Latest stable release
You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows:
```shell
pip install pyrovision
```
or using [conda](https://anaconda.org/pyronear/pyrovision):
```shell
conda install -c pyronear pyrovision
```
### Developer mode
Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
```shell
git clone https://github.com/pyronear/pyro-vision.git
pip install -e pyro-vision/.
```
## Usage instructions
```python
from PIL import Image
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
from torchvision.transforms.functional import InterpolationMode
from pyrovision.models import model_from_hf_hub
model = model_from_hf_hub("pyronear/mobilenet_v3_large").eval()
img = Image.open(path_to_an_image).convert("RGB")
# Preprocessing
config = model.default_cfg
transform = Compose([
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
PILToTensor(),
ConvertImageDtype(torch.float32),
Normalize(config['mean'], config['std'])
])
input_tensor = transform(img).unsqueeze(0)
# Inference
with torch.inference_mode():
output = model(input_tensor)
probs = output.squeeze(0).softmax(dim=0)
```
## Citation
Original paper
```bibtex
@article{DBLP:journals/corr/abs-1905-02244,
author = {Andrew Howard and
Mark Sandler and
Grace Chu and
Liang{-}Chieh Chen and
Bo Chen and
Mingxing Tan and
Weijun Wang and
Yukun Zhu and
Ruoming Pang and
Vijay Vasudevan and
Quoc V. Le and
Hartwig Adam},
title = {Searching for MobileNetV3},
journal = {CoRR},
volume = {abs/1905.02244},
year = {2019},
url = {http://arxiv.org/abs/1905.02244},
eprinttype = {arXiv},
eprint = {1905.02244},
timestamp = {Thu, 27 May 2021 16:20:51 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Source of this implementation
```bibtex
@software{chintala_torchvision_2017,
author = {Chintala, Soumith},
month = {4},
title = {{Torchvision}},
url = {https://github.com/pytorch/vision},
year = {2017}
}
```
|
34f5923c6d2388bbb2a802a78d5f8db1
|
Helsinki-NLP/opus-mt-es-ro
|
Helsinki-NLP
|
marian
| 10 | 20 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 770 | false |
### opus-mt-es-ro
* source languages: es
* target languages: ro
* OPUS readme: [es-ro](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ro/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ro/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ro/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ro/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.es.ro | 45.7 | 0.666 |
|
637bd24589b5fa9c6c5d648cbfef0cf2
|
Guizmus/DarkSoulsDiffusion
|
Guizmus
| null | 24 | 26 |
diffusers
| 22 |
text-to-image
| false | false | false |
creativeml-openrail-m
|
['en']
| null | null | 5 | 3 | 2 | 0 | 1 | 0 | 1 |
['stable-diffusion', 'text-to-image', 'image-to-image']
| false | true | true | 1,394 | false |
# DarkSouls Diffusion
<p>
<img src="https://huggingface.co/Guizmus/DarkSoulsDiffusion/resolve/main/showcase.jpg"/><br/>
This is a Dreamboothed Stable Diffusion model trained on the DarkSouls series Style.<br/>
The total dataset is made of 100 pictures, and the training has been done on runawayml 1.5 and the new VAE, with 2500 steps (LR1e-6) then 24k more steps (LR1e-7).<br/>
The token "DarkSouls Style" will bring in the new concept.<br/>
The recommended sampling is k_Euler_a or DPM++ 2M Karras on 20 steps, CFGS 7 .
</p>
[CKPT download link](https://huggingface.co/Guizmus/DarkSoulsDiffusion/resolve/main/DarkSoulsStyle_v1-3.ckpt)
## 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX]().
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "Guizmus/DarkSoulsDiffusion"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a soldier engulfed in fire, DarkSouls Style"
image = pipe(prompt).images[0]
image.save("./DarkSouls Style.png")
```
|
4f405ce2eeac796084998552d8653f6e
|
pinot/wav2vec2-large-xls-r-300m-ja-colab-3
|
pinot
|
wav2vec2
| 13 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice_10_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,940 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-ja-colab-3
This model is a fine-tuned version of [pinot/wav2vec2-large-xls-r-300m-ja-colab-2](https://huggingface.co/pinot/wav2vec2-large-xls-r-300m-ja-colab-2) on the common_voice_10_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2696
- Wer: 0.2299
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 637 | 1.4666 | 0.2862 |
| No log | 2.0 | 1274 | 1.4405 | 0.2866 |
| No log | 3.0 | 1911 | 1.4162 | 0.2762 |
| No log | 4.0 | 2548 | 1.4128 | 0.2709 |
| 0.2814 | 5.0 | 3185 | 1.3927 | 0.2613 |
| 0.2814 | 6.0 | 3822 | 1.3629 | 0.2536 |
| 0.2814 | 7.0 | 4459 | 1.3349 | 0.2429 |
| 0.2814 | 8.0 | 5096 | 1.3116 | 0.2356 |
| 0.1624 | 9.0 | 5733 | 1.2774 | 0.2307 |
| 0.1624 | 10.0 | 6370 | 1.2696 | 0.2299 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.10.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
17be88e92e4dadf8573ffe19b8fa24d7
|
kasrahabib/all-MiniLM-L6-v2-finetunned-90percentile-384embd-kmeans-propogated
|
kasrahabib
|
bert
| 10 | 5 |
transformers
| 0 |
text-classification
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 2,361 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# kasrahabib/all-MiniLM-L6-v2-finetunned-90percentile-384embd-kmeans-propogated
This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0070
- Validation Loss: 0.1409
- Train Precision: 0.9618
- Train Recall: 0.9758
- Train F1: 0.9688
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.2455 | 0.1360 | 0.9231 | 0.9879 | 0.9544 | 0 |
| 0.0735 | 0.1060 | 0.9640 | 0.9734 | 0.9687 | 1 |
| 0.0450 | 0.1178 | 0.9485 | 0.9806 | 0.9643 | 2 |
| 0.0286 | 0.1038 | 0.9599 | 0.9855 | 0.9725 | 3 |
| 0.0194 | 0.1229 | 0.9684 | 0.9661 | 0.9673 | 4 |
| 0.0183 | 0.1307 | 0.9617 | 0.9734 | 0.9675 | 5 |
| 0.0113 | 0.1295 | 0.9618 | 0.9758 | 0.9688 | 6 |
| 0.0101 | 0.1397 | 0.9508 | 0.9831 | 0.9667 | 7 |
| 0.0093 | 0.1417 | 0.9618 | 0.9758 | 0.9688 | 8 |
| 0.0070 | 0.1409 | 0.9618 | 0.9758 | 0.9688 | 9 |
### Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
8b95535994432bb934788f001270aada
|
anjankumar/Anjan-finetuned-iitbombay-en-to-hi
|
anjankumar
|
marian
| 14 | 2 |
transformers
| 1 |
translation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation', 'generated_from_trainer']
| true | true | true | 1,080 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Anjan-finetuned-iitbombay-en-to-hi
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-hi](https://huggingface.co/Helsinki-NLP/opus-mt-en-hi) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7924
- Bleu: 6.3001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
80188e438beac487dd2ba0e76450bc83
|
tftransformers/mt5-small
|
tftransformers
| null | 6 | 2 | null | 0 | null | false | false | false |
apache-2.0
|
['multilingual']
|
['mc4']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,422 | false |
[Google's mT5](https://github.com/google-research/multilingual-t5)
mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
**Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.
Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual)
Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5)
Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel*
## Abstract
The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. All of the code and model checkpoints used in this work are publicly available.
## Usage
```
from tf_transformers.models import MT5Model
# Any MT5 model (mt5-small, mt5-base etc)
model_name = 'mt5-small'
model = MT5Model.from_pretrained(model_name)
```
|
82cd93a3a9e2702d65ba183be466bea3
|
Helsinki-NLP/opus-mt-lg-sv
|
Helsinki-NLP
|
marian
| 10 | 13 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 768 | false |
### opus-mt-lg-sv
* source languages: lg
* target languages: sv
* OPUS readme: [lg-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lg-sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lg-sv/opus-2020-01-09.zip)
* test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-sv/opus-2020-01-09.test.txt)
* test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-sv/opus-2020-01-09.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.lg.sv | 24.5 | 0.423 |
|
28b1f6cf957e3b718b8413a9b457d0e7
|
ueb1/distilbert-base-uncased-finetuned-ner
|
ueb1
|
distilbert
| 13 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,555 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0608
- Precision: 0.9290
- Recall: 0.9371
- F1: 0.9331
- Accuracy: 0.9840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2276 | 1.0 | 878 | 0.0685 | 0.9204 | 0.9246 | 0.9225 | 0.9814 |
| 0.0498 | 2.0 | 1756 | 0.0622 | 0.9238 | 0.9358 | 0.9298 | 0.9833 |
| 0.0298 | 3.0 | 2634 | 0.0608 | 0.9290 | 0.9371 | 0.9331 | 0.9840 |
### Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|
e970510b5e8ae1cb47a4169e5b3030b3
|
wietsedv/xlm-roberta-base-ft-udpos28-lzh
|
wietsedv
|
xlm-roberta
| 8 | 13 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
|
['lzh']
|
['universal_dependencies']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['part-of-speech', 'token-classification']
| true | true | true | 579 | false |
# XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Classical Chinese
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
```
|
34cf9253d51281c3650a456a353ad8b0
|
dipteshkanojia/hing-roberta-NCM-run-1
|
dipteshkanojia
|
xlm-roberta
| 9 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
cc-by-4.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 3,124 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hing-roberta-NCM-run-1
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2912
- Accuracy: 0.6667
- Precision: 0.6513
- Recall: 0.6494
- F1: 0.6502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8968 | 1.0 | 927 | 0.8552 | 0.6257 | 0.6508 | 0.5961 | 0.5969 |
| 0.7022 | 2.0 | 1854 | 1.1142 | 0.3937 | 0.3270 | 0.3273 | 0.2051 |
| 0.5569 | 3.0 | 2781 | 0.9130 | 0.6591 | 0.6566 | 0.6612 | 0.6509 |
| 0.363 | 4.0 | 3708 | 1.6630 | 0.6526 | 0.6634 | 0.6414 | 0.6436 |
| 0.2801 | 5.0 | 4635 | 2.0458 | 0.6451 | 0.6339 | 0.6345 | 0.6330 |
| 0.1925 | 6.0 | 5562 | 2.3378 | 0.6570 | 0.6439 | 0.6254 | 0.6277 |
| 0.1297 | 7.0 | 6489 | 2.5205 | 0.6839 | 0.6719 | 0.6651 | 0.6675 |
| 0.114 | 8.0 | 7416 | 2.8373 | 0.6505 | 0.6379 | 0.6249 | 0.6280 |
| 0.0994 | 9.0 | 8343 | 2.5358 | 0.6634 | 0.6539 | 0.6446 | 0.6474 |
| 0.0977 | 10.0 | 9270 | 2.8244 | 0.6537 | 0.6489 | 0.6210 | 0.6238 |
| 0.0623 | 11.0 | 10197 | 2.7593 | 0.6764 | 0.6602 | 0.6487 | 0.6510 |
| 0.0537 | 12.0 | 11124 | 2.9823 | 0.6677 | 0.6679 | 0.6450 | 0.6488 |
| 0.0432 | 13.0 | 12051 | 3.0792 | 0.6537 | 0.6465 | 0.6352 | 0.6378 |
| 0.0406 | 14.0 | 12978 | 3.0707 | 0.6688 | 0.6592 | 0.6509 | 0.6534 |
| 0.0296 | 15.0 | 13905 | 3.3289 | 0.6667 | 0.6596 | 0.6452 | 0.6486 |
| 0.0288 | 16.0 | 14832 | 3.2147 | 0.6645 | 0.6592 | 0.6512 | 0.6528 |
| 0.024 | 17.0 | 15759 | 3.3284 | 0.6645 | 0.6470 | 0.6405 | 0.6425 |
| 0.0201 | 18.0 | 16686 | 3.2428 | 0.6688 | 0.6515 | 0.6515 | 0.6515 |
| 0.0176 | 19.0 | 17613 | 3.2680 | 0.6710 | 0.6574 | 0.6536 | 0.6547 |
| 0.0168 | 20.0 | 18540 | 3.2912 | 0.6667 | 0.6513 | 0.6494 | 0.6502 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1
|
842177b9364682d6b313f941480891b8
|
google/multiberts-seed_3-step_800k
|
google
|
bert
| 8 | 12 |
transformers
| 0 | null | true | true | false |
apache-2.0
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['multiberts', 'multiberts-seed_3', 'multiberts-seed_3-step_800k']
| false | true | true | 3,521 | false |
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 800k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #3, captured at step 800k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_800k')
model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_800k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_800k')
model = BertModel.from_pretrained("google/multiberts-seed_3-step_800k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
ecf44ae9c688b20cddcbd58208e82062
|
henryscheible/eval_v2_rte
|
henryscheible
|
bert
| 13 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 886 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eval_v2_rte
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
0eec04edd03e4739474dd856ed108442
|
stevenwh/indobert-base-p2-finetuned-mer-10k
|
stevenwh
|
bert
| 10 | 3 |
transformers
| 0 |
fill-mask
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,663 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indobert-base-p2-finetuned-mer-10k
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3370
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.9568 | 1.0 | 274 | 3.6237 |
| 3.4802 | 2.0 | 548 | 3.0803 |
| 3.0626 | 3.0 | 822 | 2.8108 |
| 2.8591 | 4.0 | 1096 | 2.6345 |
| 2.7182 | 5.0 | 1370 | 2.5492 |
| 2.6223 | 6.0 | 1644 | 2.4692 |
| 2.5426 | 7.0 | 1918 | 2.4122 |
| 2.5019 | 8.0 | 2192 | 2.3611 |
| 2.4649 | 9.0 | 2466 | 2.3447 |
| 2.4631 | 10.0 | 2740 | 2.3392 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Tokenizers 0.13.2
|
372f39a03810d5144682384f7eb164a6
|
GW12/wav2vec2-libri-train360_2-colab
|
GW12
|
wav2vec2
| 15 | 11 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 7,583 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-libri-train360_2-colab
This model is a fine-tuned version of [GW12/wav2vec2-libri-train360-colab](https://huggingface.co/GW12/wav2vec2-libri-train360-colab) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1024
- Wer: 0.0959
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.219 | 0.04 | 500 | 0.1976 | 0.1215 |
| 0.0762 | 0.08 | 1000 | 0.2818 | 0.1324 |
| 0.0824 | 0.12 | 1500 | 0.4541 | 0.1602 |
| 0.0807 | 0.15 | 2000 | 0.1556 | 0.1162 |
| 0.0799 | 0.19 | 2500 | 0.1618 | 0.1164 |
| 0.0826 | 0.23 | 3000 | 0.3510 | 0.1379 |
| 0.0809 | 0.27 | 3500 | 0.1486 | 0.1182 |
| 0.0854 | 0.31 | 4000 | 0.1267 | 0.1177 |
| 0.0817 | 0.35 | 4500 | 0.1581 | 0.1218 |
| 0.0835 | 0.38 | 5000 | 0.1670 | 0.1251 |
| 0.0841 | 0.42 | 5500 | 0.1576 | 0.1179 |
| 0.0798 | 0.46 | 6000 | 0.2201 | 0.1300 |
| 0.083 | 0.5 | 6500 | 0.1165 | 0.1179 |
| 0.0878 | 0.54 | 7000 | 0.2640 | 0.1430 |
| 0.0811 | 0.58 | 7500 | 0.1585 | 0.1288 |
| 0.083 | 0.62 | 8000 | 0.3127 | 0.1370 |
| 0.083 | 0.65 | 8500 | 0.4790 | 0.1449 |
| 0.0775 | 0.69 | 9000 | 0.1651 | 0.1163 |
| 0.0787 | 0.73 | 9500 | 1.6426 | 0.2083 |
| 0.0781 | 0.77 | 10000 | 0.2307 | 0.1324 |
| 0.0827 | 0.81 | 10500 | 0.1765 | 0.1318 |
| 0.0816 | 0.85 | 11000 | 0.1679 | 0.1201 |
| 0.0797 | 0.88 | 11500 | 0.2506 | 0.1508 |
| 0.0813 | 0.92 | 12000 | 0.1893 | 0.1239 |
| 0.0758 | 0.96 | 12500 | 0.1266 | 0.1147 |
| 0.091 | 1.0 | 13000 | 0.1606 | 0.1180 |
| 0.0677 | 1.04 | 13500 | 0.1107 | 0.1118 |
| 0.0733 | 1.08 | 14000 | 0.1734 | 0.1565 |
| 0.072 | 1.12 | 14500 | 0.1141 | 0.1126 |
| 0.0731 | 1.15 | 15000 | 0.1125 | 0.1112 |
| 0.0793 | 1.19 | 15500 | 0.1818 | 0.1146 |
| 0.07 | 1.23 | 16000 | 0.2678 | 0.1265 |
| 0.0658 | 1.27 | 16500 | 0.2909 | 0.1203 |
| 0.0678 | 1.31 | 17000 | 0.3241 | 0.1280 |
| 0.0681 | 1.35 | 17500 | 0.3243 | 0.1497 |
| 0.0666 | 1.38 | 18000 | 0.2056 | 0.1150 |
| 0.0667 | 1.42 | 18500 | 0.4678 | 0.1252 |
| 0.0656 | 1.46 | 19000 | 0.1603 | 0.1138 |
| 0.0662 | 1.5 | 19500 | 0.1554 | 0.1115 |
| 0.0669 | 1.54 | 20000 | 0.1215 | 0.1101 |
| 0.0681 | 1.58 | 20500 | 0.1118 | 0.1083 |
| 0.0708 | 1.62 | 21000 | 0.1743 | 0.1146 |
| 0.0673 | 1.65 | 21500 | 0.1509 | 0.1109 |
| 0.0667 | 1.69 | 22000 | 0.3411 | 0.1495 |
| 0.065 | 1.73 | 22500 | 0.1045 | 0.1067 |
| 0.0644 | 1.77 | 23000 | 0.0999 | 0.1075 |
| 0.0643 | 1.81 | 23500 | 0.1019 | 0.1073 |
| 0.0675 | 1.85 | 24000 | 0.1196 | 0.1073 |
| 0.0618 | 1.88 | 24500 | 0.1092 | 0.1086 |
| 0.0626 | 1.92 | 25000 | 0.1256 | 0.1070 |
| 0.0635 | 1.96 | 25500 | 0.1183 | 0.1069 |
| 0.0621 | 2.0 | 26000 | 0.1180 | 0.1091 |
| 0.0548 | 2.04 | 26500 | 0.1199 | 0.1048 |
| 0.0548 | 2.08 | 27000 | 0.1215 | 0.1057 |
| 0.0531 | 2.12 | 27500 | 0.1086 | 0.1036 |
| 0.0548 | 2.15 | 28000 | 0.1103 | 0.1043 |
| 0.054 | 2.19 | 28500 | 0.1078 | 0.1048 |
| 0.0521 | 2.23 | 29000 | 0.1094 | 0.1039 |
| 0.0534 | 2.27 | 29500 | 0.1058 | 0.1037 |
| 0.0539 | 2.31 | 30000 | 0.1035 | 0.1026 |
| 0.0516 | 2.35 | 30500 | 0.1009 | 0.1027 |
| 0.0525 | 2.38 | 31000 | 0.1292 | 0.1056 |
| 0.0501 | 2.42 | 31500 | 0.1124 | 0.1033 |
| 0.052 | 2.46 | 32000 | 0.1020 | 0.1028 |
| 0.0519 | 2.5 | 32500 | 0.1131 | 0.1038 |
| 0.0498 | 2.54 | 33000 | 0.1036 | 0.1031 |
| 0.0525 | 2.58 | 33500 | 0.0994 | 0.1005 |
| 0.0506 | 2.61 | 34000 | 0.1093 | 0.1015 |
| 0.0484 | 2.65 | 34500 | 0.1048 | 0.1005 |
| 0.0493 | 2.69 | 35000 | 0.1192 | 0.1028 |
| 0.048 | 2.73 | 35500 | 0.1208 | 0.1020 |
| 0.0473 | 2.77 | 36000 | 0.1410 | 0.1042 |
| 0.0472 | 2.81 | 36500 | 0.1382 | 0.1052 |
| 0.0467 | 2.85 | 37000 | 0.1118 | 0.1012 |
| 0.0473 | 2.88 | 37500 | 0.1032 | 0.1002 |
| 0.0466 | 2.92 | 38000 | 0.1041 | 0.1004 |
| 0.0455 | 2.96 | 38500 | 0.1056 | 0.1004 |
| 0.0483 | 3.0 | 39000 | 0.1091 | 0.0995 |
| 0.0408 | 3.04 | 39500 | 0.1170 | 0.1012 |
| 0.0395 | 3.08 | 40000 | 0.1106 | 0.0995 |
| 0.0407 | 3.11 | 40500 | 0.1075 | 0.0998 |
| 0.0403 | 3.15 | 41000 | 0.1129 | 0.1000 |
| 0.0397 | 3.19 | 41500 | 0.1062 | 0.0993 |
| 0.0389 | 3.23 | 42000 | 0.1072 | 0.0990 |
| 0.0385 | 3.27 | 42500 | 0.1032 | 0.0985 |
| 0.0389 | 3.31 | 43000 | 0.0989 | 0.0973 |
| 0.0404 | 3.35 | 43500 | 0.1031 | 0.0973 |
| 0.0387 | 3.38 | 44000 | 0.0998 | 0.0974 |
| 0.0391 | 3.42 | 44500 | 0.1000 | 0.0969 |
| 0.0387 | 3.46 | 45000 | 0.0982 | 0.0968 |
| 0.0407 | 3.5 | 45500 | 0.1057 | 0.0979 |
| 0.038 | 3.54 | 46000 | 0.1026 | 0.0974 |
| 0.0399 | 3.58 | 46500 | 0.1020 | 0.0970 |
| 0.0387 | 3.61 | 47000 | 0.1022 | 0.0968 |
| 0.0379 | 3.65 | 47500 | 0.1016 | 0.0961 |
| 0.0369 | 3.69 | 48000 | 0.1012 | 0.0957 |
| 0.0372 | 3.73 | 48500 | 0.0993 | 0.0956 |
| 0.0361 | 3.77 | 49000 | 0.1013 | 0.0951 |
| 0.0366 | 3.81 | 49500 | 0.1020 | 0.0956 |
| 0.0377 | 3.85 | 50000 | 0.1014 | 0.0961 |
| 0.0363 | 3.88 | 50500 | 0.1019 | 0.0962 |
| 0.0368 | 3.92 | 51000 | 0.1033 | 0.0963 |
| 0.0381 | 3.96 | 51500 | 0.1026 | 0.0960 |
| 0.0364 | 4.0 | 52000 | 0.1024 | 0.0959 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.11.0
|
421bb82108e112f1726fcfd1d4d85359
|
yuhuizhang/finetuned_gpt2_sst2_negation0.0005_pretrainedTrue
|
yuhuizhang
|
gpt2
| 11 | 0 |
transformers
| 0 |
text-generation
| true | false | false |
mit
| null |
['sst2']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,248 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_gpt2_sst2_negation0.0005_pretrainedTrue
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the sst2 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5276
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1086 | 1.0 | 1059 | 3.5051 |
| 2.9257 | 2.0 | 2118 | 3.5195 |
| 2.833 | 3.0 | 3177 | 3.5276 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.13.1+cu117
- Datasets 2.5.2
- Tokenizers 0.12.1
|
9c498cb16b2896a10f56d1e930636a8c
|
timhbach/Team-Gryffindor-DistilBERT-finetuned-ner-creditcardcontract
|
timhbach
|
distilbert
| 17 | 11 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,222 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Team-Gryffindor-DistilBERT-finetuned-ner-creditcardcontract
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0231
- eval_precision: 0.7448
- eval_recall: 0.75
- eval_f1: 0.7474
- eval_accuracy: 0.9942
- eval_runtime: 61.7618
- eval_samples_per_second: 27.201
- eval_steps_per_second: 3.4
- epoch: 3.0
- step: 5670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6
|
c7ed2c0f2213ce047f77c66b547a2ae2
|
s3nh/DialoGPT-large-Morty
|
s3nh
|
gpt2
| 9 | 4 |
transformers
| 0 |
conversational
| true | false | false |
openrail
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 3,587 | false |
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
<img src = 'https://images.unsplash.com/photo-1592564630984-7410f94db184?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1146&q=80'>
### Description
DialogGPT is a variant of the GPT (Generative Pretrained Transformer) language model developed by OpenAI. It's a deep neural network-based language model that's trained on massive amounts of text data to generate human-like text.
DialogGPT uses the transformer architecture, which is a type of neural network designed for processing sequential data such as language. During the training phase, the model is exposed to a large corpus of text and learns to predict the next word in a sequence given the previous words.
In the context of dialog, DialogGPT is trained to predict the response in a conversation, given the context of the conversation. This context can include one or more turns of the conversation, along with any additional information such as the topic of the conversation or the speaker's personality.
At inference time, the model takes the current context of the conversation as input and generates a response. The response is generated by sampling from the model's predicted distribution over the vocabulary.
Overall, DialogGPT provides a flexible and powerful solution for generating human-like text in a conversational context, allowing for the creation of a wide range of applications such as chatbots, conversational agents, and virtual assistants
## Parameters
Model was trained for 40 epochs, using params as follows.
```
per_gpu_train_batch_size: int = 2
self.per_gpu_eval_batch_size: int = 2
self.gradient_accumulation_steps: int = 1
self.learning_rate: float = 5e-5
self.weight_decay: float = 0.0
self.adam_epsilon: float = 1e-8
self.max_grad_norm: int = 1.0
self.num_train_epochs: int = 40
self.max_steps: int = -1
self.warmup_steps: int = 0
self.logging_steps: int = 1000
self.save_steps: int = 3500
self.save_total_limit = None
self.eval_all_checkpoints: bool = False
self.no_cuda: bool = False
self.overwrite_output_dir: bool = True
self.overwrite_cache: bool = True
self.should_continue: bool = False
self.seed: int = 42
self.local_rank: int = -1
self.fp16: bool = False
self.fp16_opt_level: str = 'O1'
```
## Usage
DialoGPT large version, finetuned on Morty's sequences (Rick and Morty Cartoon character).
Simple snippet of how to infer of this model:
```python
from transformers import AutoModelWithLMHead, AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('s3nh/DialoGPT-small-morty')
model = AutoModelWithLMHead.from_pretrained('s3nh/DialoGPT-small-morty')
for step in range(4):
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
print("MortyBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
fa3e44a3054d344161d2c185391370c7
|
DOOGLAK/Tagged_One_500v4_NER_Model_3Epochs_AUGMENTED
|
DOOGLAK
|
bert
| 13 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['tagged_one500v4_wikigold_split']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,565 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Tagged_One_500v4_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v4_wikigold_split dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2804
- Precision: 0.6656
- Recall: 0.6225
- F1: 0.6433
- Accuracy: 0.9187
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 183 | 0.2784 | 0.5897 | 0.5076 | 0.5456 | 0.9064 |
| No log | 2.0 | 366 | 0.2816 | 0.6535 | 0.5787 | 0.6138 | 0.9112 |
| 0.1091 | 3.0 | 549 | 0.2804 | 0.6656 | 0.6225 | 0.6433 | 0.9187 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
|
75dd49c466bff8708c0a80f553405bc8
|
TimKond/S-PubMedBert-MedQuAD
|
TimKond
|
bert
| 12 | 10 |
sentence-transformers
| 0 |
sentence-similarity
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
| false | true | true | 3,652 | false |
# S-PubMedBert-MedQuAD
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('TimKond/S-PubMedBert-MedQuAD')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('TimKond/S-PubMedBert-MedQuAD')
model = AutoModel.from_pretrained('TimKond/S-PubMedBert-MedQuAD')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.DataLoader` of length 82590 with parameters:
```
{'batch_size': 2, 'shuffle':True}
```
**Loss**:
`sentence_transformers.losses.SoftmaxLoss` with parameters:
```
{'num_labels': 2, 'sentence_embedding_dimension': '768'}
```
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 1,
"evaluation_steps": 0,
"evaluator": None,
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 8259,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
e3facf46fcd01f0072e2bcfd97c50123
|
lewtun/sagemaker-distilbert-emotion
|
lewtun
|
distilbert
| 10 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 27 | 25 | 2 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,285 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sagemaker-distilbert-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2322
- Accuracy: 0.921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9306 | 1.0 | 500 | 0.2322 | 0.921 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
cb5c7b217c0d3974d5a2243a47120589
|
SantoshUske/my_awesome_wnut_model
|
SantoshUske
|
distilbert
| 14 | 11 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 894 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Tokenizers 0.13.2
|
d68aac9e022ec69f30f66d3b39494efe
|
sd-concepts-library/bada-club
|
sd-concepts-library
| null | 9 | 0 | null | 0 | null | false | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,018 | false |
### bada club on Stable Diffusion
This is the `<bada-club>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
19d5e8ec9da8db5c42df95f43c8a796b
|
bluepen5805/blue_pencil
|
bluepen5805
| null | 9 | 0 | null | 11 |
text-to-image
| false | false | false |
creativeml-openrail-m
|
['ja']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['stable-diffusion', 'text-to-image']
| false | true | true | 3,071 | false |
# blue_pencil
<strong>blue_pencil</strong> は、様々なモデルを適当な配合でマージしたモデルです。
有名なモデルをいくつか思い浮かべてください。
あなたが思い浮かべたモデルは、恐らくこのモデルに含まれています。
このマージモデルの特徴はわかりません。
いろいろなモデルをマージしてみることが目的なので、質も高くありません。
全てのモデルは [stable-diffusion-webui-model-tookit](https://github.com/arenatemp/stable-diffusion-webui-model-toolkit) を用いて `fp16` にしています。
---
## `blue_pencil-v1b` <small>(`@20230212`)</small>
`blue_pencil-v1` の [Amalgam_Mix](https://civitai.com/models/4758/amalgammix) の代わりに [Balor-V2](https://huggingface.co/ploughB660/Balor-V2) を階層マージしたモデルです
v1 とはちょっと傾向が違います
### 推奨設定
* VAE
* [vae-ft-mse-840000-ema-pruned](https://huggingface.co/stabilityai/sd-vae-ft-mse-original)
* Negative Embedding
* [EasyNegative](https://huggingface.co/datasets/gsdf/EasyNegative)
### 出力例
```
girl, tokyo, scenery
Negative prompt: EasyNegative
Steps: 30, Sampler: DPM++ SDE Karras, CFG scale: 7.5, Seed: 205537258
Size: 768x768, Clip skip: 2
Denoising strength: 0.65, Hires upscale: 2, Hires upscaler: Latent (nearest-exact)
```

---
## `blue_pencil-v1` <small>(`@20230211`)</small>
以下のモデルが含まれています(順不同)
<details>
* [Defmix-v1.1](https://huggingface.co/Defpoint/Defmix-v1.0)
* Counterfeit v1.0
* Counterfeit v2.0
* Basil Mix
* Anything v4.0
* [PastelRainier](https://huggingface.co/Hemlok/RainierMix)
* ACertainThing
* Anything-V4.5
* Counterfeit-V2.0
* Evt_V4-preview
* basil_mix
* pastel-mix
* [GingerMixR](https://huggingface.co/Hemlok/GingerMix)
* LimeMixV2
* [Elysium_Anime_V3](https://huggingface.co/hesw23168/SD-Elysium-Model)
* [SukiyakiMix-v1.0](https://huggingface.co/Vsukiyaki/SukiyakiMix-v1.0)
* pastel-mix
* AbyssOrangeMix2
* [HD-20](https://www.cognitionai.org/hdhowtogetstarted)
* [7th_anime_v3_testA](https://huggingface.co/syaimu/7th_test)
* [AniReal](https://huggingface.co/Hosioka/AniReal)
* [TriPhaze_B](https://huggingface.co/Lucetepolis/TriPhaze)
* ultracolor.v4
* Counterfeit-V2.5
* Treebark
* [Nabylon-v1.2](https://huggingface.co/NegiInNattoMaki/Nabylon-v1.0)
* AbyssOrangeMix2
* LonganMix
* and more
* [atwcustom_V4](https://huggingface.co/atsuwo/ATW-custom)
* [Amalgam_Mix](https://civitai.com/models/4758/amalgammix)
</details>
### 推奨設定
* VAE
* [vae-ft-mse-840000-ema-pruned](https://huggingface.co/stabilityai/sd-vae-ft-mse-original)
* Negative Embedding
* [EasyNegative](https://huggingface.co/datasets/gsdf/EasyNegative)
### 出力例
#### 1
```
girl, tokyo, scenery
Negative prompt: EasyNegative
Steps: 30, Sampler: DPM++ SDE Karras, CFG scale: 7.5, Seed: 2526423076
Size: 768x768, Clip skip: 2
```

##### Hires. fix
```
Denoising strength: 0.6, Hires upscale: 2, Hires upscaler: Latent (nearest-exact)
```

#### 2
```
girl, early teen, kimono, sakura, particles
Negative prompt: EasyNegative
Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7.5, Seed: 4036639388,
Size: 512x768, Clip skip: 2
```

##### Hires. fix
```
Denoising strength: 0.62, Hires upscale: 2, Hires upscaler: Latent (nearest-exact)
```

#### 3
```
girl, early teen, t-shirt, pants, from behind, landscape, scenery, apocalyptic
Negative prompt: EasyNegative
Steps: 40, Sampler: DPM++ SDE Karras, CFG scale: 7.5, Seed: 748447692,
Size: 768x512, Clip skip: 2
```

|
d4675c81f0e7f1ada9494da479d653d9
|
elopezlopez/xlnet-base-cased_fold_4_binary_v1
|
elopezlopez
|
xlnet
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,637 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased_fold_4_binary_v1
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5724
- F1: 0.8315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 289 | 0.4043 | 0.8009 |
| 0.4373 | 2.0 | 578 | 0.4093 | 0.8260 |
| 0.4373 | 3.0 | 867 | 0.5084 | 0.8206 |
| 0.2707 | 4.0 | 1156 | 0.5945 | 0.8087 |
| 0.2707 | 5.0 | 1445 | 0.6389 | 0.8251 |
| 0.1691 | 6.0 | 1734 | 0.8131 | 0.8156 |
| 0.1012 | 7.0 | 2023 | 0.9865 | 0.8190 |
| 0.1012 | 8.0 | 2312 | 1.1356 | 0.8342 |
| 0.0506 | 9.0 | 2601 | 1.0624 | 0.8369 |
| 0.0506 | 10.0 | 2890 | 1.2604 | 0.8255 |
| 0.0384 | 11.0 | 3179 | 1.2648 | 0.8183 |
| 0.0384 | 12.0 | 3468 | 1.3763 | 0.8158 |
| 0.0318 | 13.0 | 3757 | 1.4966 | 0.8217 |
| 0.0221 | 14.0 | 4046 | 1.3889 | 0.8250 |
| 0.0221 | 15.0 | 4335 | 1.4014 | 0.8284 |
| 0.0145 | 16.0 | 4624 | 1.5321 | 0.8289 |
| 0.0145 | 17.0 | 4913 | 1.4914 | 0.8233 |
| 0.0172 | 18.0 | 5202 | 1.3946 | 0.8314 |
| 0.0172 | 19.0 | 5491 | 1.5032 | 0.8269 |
| 0.0135 | 20.0 | 5780 | 1.5111 | 0.8328 |
| 0.0087 | 21.0 | 6069 | 1.4899 | 0.8318 |
| 0.0087 | 22.0 | 6358 | 1.5562 | 0.8311 |
| 0.0061 | 23.0 | 6647 | 1.5384 | 0.8327 |
| 0.0061 | 24.0 | 6936 | 1.5798 | 0.8304 |
| 0.0052 | 25.0 | 7225 | 1.5724 | 0.8315 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
78f66df125b3c45592efd74efec52214
|
flamesbob/BrokenM_style
|
flamesbob
| null | 3 | 0 | null | 0 | null | false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 904 | false |
`Broken mirror, shattered mirror, brokenM_style` this style gives a shattered mirror / reflection to prompts.
License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies:
You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
|
1ae7d1f4840f9d97a13ac76613150966
|
aprilzoo/distilbert-base-uncased-finetuned-emotion
|
aprilzoo
|
distilbert
| 12 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,343 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2202
- Accuracy: 0.923
- F1: 0.9232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8244 | 1.0 | 250 | 0.3104 | 0.9025 | 0.8997 |
| 0.2478 | 2.0 | 500 | 0.2202 | 0.923 | 0.9232 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
859921c396305501d880be0fde10f183
|
Norod78/hebrew-gpt_neo-xl-poetry
|
Norod78
|
gpt_neo
| 10 | 8 |
transformers
| 1 |
text-generation
| true | false | true |
mit
|
['he']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,441 | false |
# hebrew-gpt_neo-xl-poetry
Hebrew poetry text generation model which was fine tuned upon on [hebrew-gpt_neo-xl](https://huggingface.co/Norod78/hebrew-gpt_neo-xl).
## Datasets
An assortment of various Hebrew books, magazines and poetry corpuses
## Training Config
Similar to [this one](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-xl/configs) <BR>
## Usage
### Google Colab Notebook
Available [here ](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-xl/Norod78_hebrew_gpt_neo_xl_Colab.ipynb) <BR>
#### Simple usage sample code
```python
!pip install tokenizers==0.10.3 transformers==4.8.0
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-xl-poetry")
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-xl-poetry", pad_token_id=tokenizer.eos_token_id)
prompt_text = "אני אוהב שוקולד ועוגות"
max_len = 512
sample_output_num = 3
seed = 1000
import numpy as np
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
print(f"device: {device}, n_gpu: {n_gpu}")
np.random.seed(seed)
torch.manual_seed(seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed)
model.to(device)
encoded_prompt = tokenizer.encode(
prompt_text, add_special_tokens=False, return_tensors="pt")
encoded_prompt = encoded_prompt.to(device)
if encoded_prompt.size()[-1] == 0:
input_ids = None
else:
input_ids = encoded_prompt
print("input_ids = " + str(input_ids))
if input_ids != None:
max_len += len(encoded_prompt[0])
if max_len > 2048:
max_len = 2048
print("Updated max_len = " + str(max_len))
stop_token = "<|endoftext|>"
new_lines = "\n\n\n"
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length=max_len,
top_k=50,
top_p=0.95,
num_return_sequences=sample_output_num
)
print(100 * '-' + "\n\t\tOutput\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
text = tokenizer.decode(sample_output, skip_special_tokens=True)
# Remove all text after the stop token
text = text[: text.find(stop_token) if stop_token else None]
# Remove all text after 3 newlines
text = text[: text.find(new_lines) if new_lines else None]
print("\n{}: {}".format(i, text))
print("\n" + 100 * '-')
```
|
d3b2b2976595af5c08c903bb8e7c69da
|
ali2066/finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42
|
ali2066
|
distilbert
| 13 | 6 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,622 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0914
- Accuracy: 0.9746
- F1: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0501 | 0.9828 | 0.9913 |
| No log | 2.0 | 208 | 0.0435 | 0.9828 | 0.9913 |
| No log | 3.0 | 312 | 0.0414 | 0.9828 | 0.9913 |
| No log | 4.0 | 416 | 0.0424 | 0.9799 | 0.9898 |
| 0.0547 | 5.0 | 520 | 0.0482 | 0.9828 | 0.9913 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
98b039f32af7726b57e16900d18bd368
|
Alireza1044/albert-base-v2-wnli
|
Alireza1044
|
albert
| 14 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 994 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wnli
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6898
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Training results
### Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu102
- Datasets 1.10.2
- Tokenizers 0.10.3
|
f26cd2a444faa88f1626e835421993c2
|
gabrielsgaspar/test-trainer
|
gabrielsgaspar
|
bert
| 18 | 3 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,374 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-trainer
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2394
- Accuracy: 0.9395
- F1: 0.9396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2518 | 1.0 | 2000 | 0.1971 | 0.931 | 0.9305 |
| 0.1678 | 2.0 | 4000 | 0.1782 | 0.9405 | 0.9406 |
| 0.1048 | 3.0 | 6000 | 0.2394 | 0.9395 | 0.9396 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|
f1f2ba21795546bda7d0ca803a7dab07
|
xiaoxiao012/ddpm-butterflies-128
|
xiaoxiao012
| null | 13 | 0 |
diffusers
| 0 | null | false | false | false |
apache-2.0
|
['en']
|
['huggan/smithsonian_butterflies_subset']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,233 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/xiaoxiao012/ddpm-butterflies-128/tensorboard?#scalars)
|
12616ad388e13c3b9e567b36c4d4a1dd
|
timm/maxvit_xlarge_tf_384.in21k_ft_in1k
|
timm
| null | 4 | 196 |
timm
| 0 |
image-classification
| true | false | false |
apache-2.0
| null |
['imagenet-1k', 'imagenet-21k']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['image-classification', 'timm']
| false | true | true | 22,179 | false |
# Model card for maxvit_xlarge_tf_384.in21k_ft_in1k
An official MaxViT image classification model. Pretrained in tensorflow on ImageNet-21k (21843 Google specific instance of ImageNet-22k) and fine-tuned on ImageNet-1k by paper authors.
Ported from official Tensorflow implementation (https://github.com/google-research/maxvit) to PyTorch by Ross Wightman.
### Model Variants in [maxxvit.py](https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/maxxvit.py)
MaxxViT covers a number of related model architectures that share a common structure including:
- CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
- MaxViT - Uniform blocks across all stages, each containing a MBConv (depthwise-separable) convolution block followed by two self-attention blocks with different partitioning schemes (window followed by grid).
- CoAtNeXt - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in CoAtNet. All normalization layers are LayerNorm (no BatchNorm).
- MaxxViT - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in MaxViT. All normalization layers are LayerNorm (no BatchNorm).
- MaxxViT-V2 - A MaxxViT variation that removes the window block attention leaving only ConvNeXt blocks and grid attention w/ more width to compensate.
Aside from the major variants listed above, there are more subtle changes from model to model. Any model name with the string `rw` are `timm` specific configs w/ modelling adjustments made to favour PyTorch eager use. These were created while training initial reproductions of the models so there are variations.
All models with the string `tf` are models exactly matching Tensorflow based models by the original paper authors with weights ported to PyTorch. This covers a number of MaxViT models. The official CoAtNet models were never released.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 475.3
- GMACs: 292.8
- Activations (M): 668.8
- Image size: 384 x 384
- **Papers:**
- MaxViT: Multi-Axis Vision Transformer: https://arxiv.org/abs/2204.01697
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-21k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('maxvit_xlarge_tf_384.in21k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'maxvit_xlarge_tf_384.in21k_ft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 128, 192, 192])
# torch.Size([1, 128, 96, 96])
# torch.Size([1, 256, 48, 48])
# torch.Size([1, 512, 24, 24])
# torch.Size([1, 1024, 12, 12])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'maxvit_xlarge_tf_384.in21k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
```
## Model Comparison
### By Top-1
|model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86|
### By Throughput (samples / sec)
|model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22|
## Citation
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
```bibtex
@article{tu2022maxvit,
title={MaxViT: Multi-Axis Vision Transformer},
author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
journal={ECCV},
year={2022},
}
```
```bibtex
@article{dai2021coatnet,
title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
journal={arXiv preprint arXiv:2106.04803},
year={2021}
}
```
|
713491aa4ba0f2bf5fde7dc3ff162276
|
Graphcore/hubert-base-superb-ks
|
Graphcore
|
hubert
| 19 | 3 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['superb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio-classification', 'generated_from_trainer']
| true | true | true | 1,217 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-superb-ks
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0848
- Accuracy: 0.9822
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 0
- distributed_type: IPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
- training precision: Mixed Precision
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cpu
- Datasets 2.1.0
- Tokenizers 0.12.1
|
d629a7c2521c68106f00971fba968319
|
Helsinki-NLP/opus-mt-fr-ht
|
Helsinki-NLP
|
marian
| 10 | 7 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 768 | false |
### opus-mt-fr-ht
* source languages: fr
* target languages: ht
* OPUS readme: [fr-ht](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ht/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ht/opus-2020-01-09.zip)
* test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ht/opus-2020-01-09.test.txt)
* test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ht/opus-2020-01-09.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.fr.ht | 29.2 | 0.461 |
|
d62700482b82d321ca061b88d691ee70
|
Helsinki-NLP/opus-mt-fi-fj
|
Helsinki-NLP
|
marian
| 10 | 8 |
transformers
| 0 |
translation
| true | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['translation']
| false | true | true | 768 | false |
### opus-mt-fi-fj
* source languages: fi
* target languages: fj
* OPUS readme: [fi-fj](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-fj/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-fj/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-fj/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-fj/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.fi.fj | 26.6 | 0.500 |
|
5128145ee2a054f59bca53e37f506c6f
|
DOOGLAK/Article_50v3_NER_Model_3Epochs_UNAUGMENTED
|
DOOGLAK
|
bert
| 13 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['article50v3_wikigold_split']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,550 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Article_50v3_NER_Model_3Epochs_UNAUGMENTED
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article50v3_wikigold_split dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7382
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.7789
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 6 | 0.9648 | 0.1172 | 0.0042 | 0.0081 | 0.7782 |
| No log | 2.0 | 12 | 0.7740 | 0.0 | 0.0 | 0.0 | 0.7789 |
| No log | 3.0 | 18 | 0.7382 | 0.0 | 0.0 | 0.0 | 0.7789 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
|
9e7329113d5b80a1ec8081ee996dcae4
|
ArafatBHossain/debert_base_fine_tuned_sent140
|
ArafatBHossain
|
deberta
| 8 | 3 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,335 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# debert_base_fine_tuned_sent140
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9678
- Accuracy: 0.7647
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 408 | 0.8139 | 0.7219 |
| 0.8198 | 2.0 | 816 | 0.7742 | 0.7460 |
| 0.4479 | 3.0 | 1224 | 0.9678 | 0.7647 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
07d6b9a43535bdc8f0b5e6a7d4bb62a9
|
FredZhang7/paint-journey-v2
|
FredZhang7
| null | 30 | 719 |
diffusers
| 13 |
text-to-image
| false | false | false |
creativeml-openrail-m
|
['en']
| null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['text-to-image', 'midjourney', 'stable-diffusion', 'disco-diffusion', 'art', 'arxiv:2208.12242']
| false | true | true | 6,551 | false |
## Paint Journey V2 is [V1](https://huggingface.co/FredZhang7/paint-journey-v1) fine-tuned on 768x768 oil paintings by Midjourney V4, Open Journey V2, Disco Diffusion, and artists given permission
Begin the prompt with **((oil painting))** to add the oil paint effect. For digital and other painting styles, use similar prompts as you would for Midjourney V4 (with some tweaks), Stable Diffusion v1.5 (add more styles), Open Journey V2, or Disco Diffusion.
[](https://colab.research.google.com/github/AMLA-UBC/100-Exploring-the-World-of-Modern-Machine-Learning/blob/main/assets/PaintJourneyV2.ipynb)
## Examples
*All examples were generated using Camenduru's WebUI (see the Colab file)*

*⬆️ 768x1136 portraits, generated using descriptive prompts and without face restoration, [generation parameters](https://huggingface.co/FredZhang7/paint-journey-v2/raw/main/assets/character_settings.txt)*

*⬆️ 1280x768 (mostly) natural landscapes, used shorter prompts, [generation parameters](https://huggingface.co/FredZhang7/paint-journey-v2/raw/main/assets/nature_settings.txt)*

*⬆️ 1152x768 outerspace landscapes, used descriptive prompts, [generation parameters](https://huggingface.co/FredZhang7/paint-journey-v2/raw/main/assets/outerspace_settings.txt)*

*⬆️ 1280x768 lamborghini, [generation parameters](https://huggingface.co/FredZhang7/paint-journey-v2/raw/main/assets/lamborghini_settings.txt)*

*⬆️ 960x768 Eevee, [generation parameters](https://huggingface.co/FredZhang7/paint-journey-v2/raw/main/assets/eevee_settings.txt)*
## Comparisons
Paint Journey V2's paintings are closer to human-drawn art than Open Journey V2.
Compared to models like Dreamlike Diffusion 1.0, PJ V2 tends to generate 768x768 or higher resolution images with reduced noise levels.
This model is also capable of generating stunning portraits at 768x1136 resolution without duplicated faces (with [Camenduru's WebUI](https://github.com/camenduru/stable-diffusion-webui)), a difficult task to models like DreamShaper 3.3.
At lower resolutions, DreamShaper 3.3 tends to generate higher quality portraits than PJ V2 in terms of noise levels, given the same (short) postive and negative prompts.
However, PJ V2 can craft more stunning masterpieces with more descriptive positive and negative prompts and can still generate beautiful landscapes with shorter prompts.
## Training
Instead of solely fine-tuning its Unet, Paint Journey V2 focuses on fine-tuning its text encoder with a diverse range of prompts.
This allows for a seamless blend of the digital and oil painting styles into various other types of prompts, resulting in a more natural and dynamic output.
This model was trained on a curated dataset of roughly 300 images hand-picked from Midjourney, [Prompt Hero](https://prompthero.com/), [PixaBay](https://pixabay.com/images/search/paintings/), Open Journey V2, and Reddit.
Before training, I used R-ESRGAN 4x on many images to increase their resolution and reduce noise.
## Running out of prompts?
Useful resources: [Lexica.art](https://lexica.art/), [Fast GPT PromptGen](https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion-v2), [Prompt Hero](https://prompthero.com/)
## Output Dimensions
Portrait sizes include, but are not limited to, `512x768`, `768x768`, and `768x1136`.
Landscape sizes include, but are not limited to, `768x512`, `768x768`, `1152x768`, and `1280x768`.
## Camenduru's WebUI
```
git clone -b v1.6 https://github.com/camenduru/stable-diffusion-webui
```
<details>
<summary> Click to use Automatic1111's Webui instead, but may not output images as artistic </summary>
```
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
```
</details>
Download [checkpoint](./paint_journey_v2.ckpt) and [vae](./paint_journey_v2.vae.pt) to the `./stable-diffusion-webui/models/Stable-diffusion` folder. Run `webui-user.bat`.
## 🧨 Diffusers
*Tip: using double, tripple, or quadriple brackets around some letters WORD (e.g. "((WORD))") will put an 'emphasis' on WORD*
```bash
pip install --upgrade diffusers transformers
```
```python
# see more sampling algorithms at https://huggingface.co/docs/diffusers/using-diffusers/schedulers#changing-the-scheduler
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
import torch, random, datetime
pipe = StableDiffusionPipeline.from_pretrained("FredZhang7/paint-journey-v2")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
def random_seed():
return random.randint(0, 2**32 - 1)
prompt = "((oil painting)), gentle waves, bright blue sky, white sails billowing, sun glistening on the surface, salty sea air, distant horizon, calm breeze, birds soaring overhead, vibrant colors, artstation digital painting, high resolution, uhd, 4 k, 8k wallpaper" # what you want to see
negative_prompt = "low-res, blurry, haze, dark clouds looming, choppy waves, engine failing, sails tattered, stormy winds".split(", ") # what you don't want to see
seed = random_seed() # replace with the desired seed if needed
width, height = 1280, 768 # width and height of the generated image
cfg_scale = 7.5 # classifer free guidance scale, smaller means more creative, 7 to 11 is usually a good range
num_inference_steps = 40 # sampling steps, 30 to 40 is usually good for Euler Ancestral
generator = torch.Generator("cuda").manual_seed(seed)
with torch.autocast("cuda"):
image = pipe(prompt=prompt,
num_inference_steps=num_inference_steps,
width=width, height=height,
generator=generator,
guidance_scale=cfg_scale).images[0]
def generate_filename(string, seed):
invalid_chars = ["<", ">", ":", '"', "/", "\\", "|", "?", "*"]
for char in invalid_chars:
string = string.replace(char, "")
return f"{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_{seed}_{string}"
image.save(f"./{generate_filename(prompt, seed)}.png")
```
## Safety Checker V2
The official [stable diffusion safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker) uses up 1.22GB VRAM.
I recommend using [Google Safesearch Mini V2](https://huggingface.co/FredZhang7/google-safesearch-mini-v2) (220MB) to save 1.0GB VRAM.
|
84647894c584fbdd23bc415dba58684c
|
RuiqianLi/wav2vec2-xls-r-300m_Mrbrown_finetune1
|
RuiqianLi
|
wav2vec2
| 15 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['uob_singlish']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,017 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m_Mrbrown_finetune1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the uob_singlish dataset.
## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), don't know why the word-error-rate keep 1. But can know that much be the problem of dataset, because last time use the same pre-trained model and standard singlish corpus fine-tune get nice result. (can find it at:RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab)
It achieves the following results on the evaluation set:
- Loss: 3.0927
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 3.7943 | 20.0 | 200 | 3.0597 | 1.0 |
| 2.9902 | 40.0 | 400 | 3.1604 | 1.0 |
| 2.9696 | 60.0 | 600 | 3.1112 | 1.0 |
| 2.8885 | 80.0 | 800 | 3.0234 | 1.0 |
| 2.8154 | 100.0 | 1000 | 3.0927 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
3bdcdbaeeca9c91d582e296d4c613e02
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203
|
jonatasgrosman
|
wav2vec2
| 10 | 4 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['en']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'en']
| false | true | true | 497 | false |
# exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
d28d70a217bf4e86d6cf4d4a652e909b
|
ljh1/mrpc
|
ljh1
|
bert
| 17 | 8 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,042 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mrpc
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5611
- Accuracy: 0.6912
- F1: 0.8158
- Combined Score: 0.7535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.6.1
- Tokenizers 0.12.1
|
b446b8726d1487a3a01cdc651719fe93
|
gustavecortal/roberta_reman
|
gustavecortal
|
roberta
| 11 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,782 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta_reman
This model is a fine-tuned version of [ibm/ColD-Fusion](https://huggingface.co/ibm/ColD-Fusion) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4272
- F1: 0.7004
- Roc Auc: 0.7862
- Accuracy: 0.4330
- Recall: 0.6831
- Precision: 0.7185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------:|:---------:|
| No log | 1.0 | 113 | 0.4673 | 0.5668 | 0.6955 | 0.2990 | 0.4930 | 0.6667 |
| No log | 2.0 | 226 | 0.4187 | 0.6397 | 0.7403 | 0.3918 | 0.5563 | 0.7524 |
| No log | 3.0 | 339 | 0.4272 | 0.7004 | 0.7862 | 0.4330 | 0.6831 | 0.7185 |
| No log | 4.0 | 452 | 0.4191 | 0.6566 | 0.7539 | 0.3918 | 0.6127 | 0.7073 |
| 0.3529 | 5.0 | 565 | 0.4246 | 0.6788 | 0.7706 | 0.4124 | 0.6549 | 0.7045 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+rocm5.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
e583bc93ab97c9f43abfcb0af8caf633
|
MultiBertGunjanPatrick/multiberts-seed-2-1700k
|
MultiBertGunjanPatrick
|
bert
| 7 | 4 |
transformers
| 0 | null | true | false | false |
apache-2.0
|
['en']
|
['bookcorpus', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['exbert', 'multiberts', 'multiberts-seed-2']
| false | true | true | 6,487 | false |
# MultiBERTs Seed 2 Checkpoint 1700k (uncased)
Seed 2 intermediate checkpoint 1700k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in
[this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint.
The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani).
## Model description
MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the MultiBERTs model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-1700k')
model = BertModel.from_pretrained("multiberts-seed-2-1700k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular
checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint.
## Training data
The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size
of 256. The sequence length was set to 512 throughout. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2106-16163,
author = {Thibault Sellam and
Steve Yadlowsky and
Jason Wei and
Naomi Saphra and
Alexander D'Amour and
Tal Linzen and
Jasmijn Bastings and
Iulia Turc and
Jacob Eisenstein and
Dipanjan Das and
Ian Tenney and
Ellie Pavlick},
title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis},
journal = {CoRR},
volume = {abs/2106.16163},
year = {2021},
url = {https://arxiv.org/abs/2106.16163},
eprinttype = {arXiv},
eprint = {2106.16163},
timestamp = {Mon, 05 Jul 2021 15:15:50 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=multiberts">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
bc36f536363a0a15023ba7681980cff1
|
BSC-LT/sciroshot
|
BSC-LT
|
roberta
| 11 | 8 |
transformers
| 0 |
zero-shot-classification
| true | false | false |
apache-2.0
|
['en']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['zero-shot', 'text-classification', 'science', 'mag']
| false | true | true | 8,424 | false |
# SCIroShot
## Overview
<details>
<summary>Click to expand</summary>
- **Model type:** Language Model
- **Architecture:** RoBERTa-large
- **Language:** English
- **License:** Apache 2.0
- **Task:** Zero-Shot Text Classification
- **Data:** Microsoft Academic Graph
- **Additional Resources:**
- [Paper]() <-- WiP (soon to be published in EACL 2023)
- [GitHub](https://github.com/TeMU-BSC/sciroshot)
</details>
## Model description
SCIroShot is an entailment-based Zero-Shot Text Classification model that
has been fine-tuned using a self-made dataset composed of scientific articles
from [Microsoft Academic Graph](https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/)
(MAG). The resulting model achieves SOTA
performance in the scientific domain and very competitive results in other areas.
## Intended Usage
This model is intended to be used for zero-shot text classification in English.
## How to use
```python
from transformers import pipeline
zstc = pipeline("zero-shot-classification", model="BSC-LT/sciroshot")
sentence = "Leo Messi is the best player ever."
candidate_labels = ["politics", "science", "sports", "environment"]
template = "This example is {}"
output = zstc(sentence, candidate_labels, hypothesis_template=template, multi_label=False)
print(output)
print(f'Predicted class: {output["labels"][0]}')
```
## Limitations and bias
No measures have been taken to estimate the bias and toxicity embedded in the model.
Even though the fine-tuning data (which is of a scientific nature) may seem harmless, it is important to note that the corpus used to pre-train the vanilla model is very likely to contain a lot of unfiltered content from the internet, as stated in the [RoBERTa-large model card](https://huggingface.co/roberta-large#limitations-and-bias).
## Training
### Training data
Our data builds on top of scientific-domain
annotated data from Microsoft Academic Graph (MAG).
This database consists of a heterogeneous
graph with billions of records from both scientific
publications and patents, in addition to metadata
information such as the authors, institutions, journals,
conferences and their citation relationships.
The documents are organized in a six-level hierarchical
structure of scientific concepts, where the two
top-most levels are manually curated in order to
guarantee a high level of accuracy.
To create the training corpus, a random sample of
scientific articles with a publication year between
2000 and 2021 were retrieved from MAG with their respective
titles and abstracts in English. This results in over 2M documents
with their corresponding Field Of Study, which was obtained from
the 1-level MAG taxonomy (292 possible classes, such as "Computational biology"
or "Transport Engineering").
The fine-tuning dataset was constructed in a weakly supervised
manner by converting text classification data to the entailment format.
Using the relationship between scientific texts
and their matching concepts in the 1-level MAG
taxonomy we are able to generate the premise-
hypothesis pairs corresponding to the entailment
label. Conversely, we generate the pairs for the
neutral label by removing the actual relationship
between the texts and their scientific concepts and
creating a virtual relationship with those to which
they are not matched.
### Training procedure
The newly-created scientific dataset described in the previous section
was used to fine-tune a 355M parameters RoBERTa model on the entailment task.
To do so, the model has to compute the entailment score between every text that
is fed to it and all candidate labels. The final prediction would be the
highest-scoring class in a single-label classification setup, or the N classes
above a certain threshold in a multi-label scenario.
A subset of 52 labels from the training data were kept apart so that they
could be used as a development set of fully-unseen classes.
As a novelty, the validation was not performed on the entailment task (which is used a proxy)
but directly on the target text classification task. This allows us to stop training at the right
time via early stopping, which prevents the model from "overfitting" to the training task. This method
was our way to counteract an effect that was empirically discovered during the experimentation period, where it was observed
that after a certain point the model can start to worsen in the target task (ZSTC) despite still continuing to
improve in the training task (RTE). The simple act of shortening the training time led to a boost in performance.
Read the paper for more details on the methodology and the analysis of RTE/ZSTC correlation.
## Evaluation
### Evaluation data
The model's performance was evaluated on a collection of disciplinary-labeled textual datasets, both from the scientific domain (closer to training data) and the general domain (to assess generalizability).
The following table provides an overview of the number of examples and labels for each dataset:
| Dataset | Labels | Size |
|------------------|--------|--------|
| arXiv | 11 | 3,838 |
| SciDocs-MeSH | 11 | 16,433 |
| SciDocs-MAG | 19 | 17,501 |
| Konstanz | 24 | 10,000 |
| Elsevier | 26 | 14,738 |
| PubMed | 109 | 5,000 |
| Topic Categorization (Yahoo! Answers) | 10 | 60,000 |
| Emotion Detection (UnifyEmotion) | 10 | 15,689 |
| Situation Frame Detection (Situation Typing) | 12 | 3,311 |
Please refer to the paper for further details on each particular dataset.
### Evaluation results
These are the official results reported in the paper:
#### Scientific domain benchmark
| Model | arXiv | SciDocs-MesH | SciDocs-MAG | Konstanz | Elsevier | PubMed |
|-------|-------|--------------|-------------|----------|----------|--------|
| [fb/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) | 33.28 | **66.18**🔥 | 51.77 | 54.62 | 28.41 | **31.59**🔥 |
| SCIroShot | **42.22**🔥 | 59.34 | **69.86**🔥 | **66.07**🔥 | **54.42**🔥 | 27.93 |
#### General domain benchmark
| Model | Topic | Emotion | Situation |
|-------|-------|---------|-----------|
| RTE [(Yin et al., 2019)](https://arxiv.org/pdf/1909.00161.pdf) | 43.8 | 12.6 | **37.2**🔥 |
| FEVER [(Yin et al., 2019)](https://arxiv.org/pdf/1909.00161.pdf) | 40.1 | 24.7 | 21.0 |
| MNLI [(Yin et al., 2019)](https://arxiv.org/pdf/1909.00161.pdf) | 37.9 | 22.3 | 15.4 |
| NSP [(Ma et al., 2021)](https://aclanthology.org/2021.acl-short.99.pdf) | 50.6 | 16.5 | 25.8 |
| NSP-Reverse [(Ma et al., 2021)](https://aclanthology.org/2021.acl-short.99.pdf) | 53.1 | 16.1 | 19.9 |
| SCIroShot | **59.08**🔥 | **24.94**🔥 | 27.42
All the numbers reported above represent **label-wise weighted F1** except for the Topic classification dataset, which is evaluated in terms of **accuracy** following the notation from [(Yin et al., 2019)](https://arxiv.org/pdf/1909.00161.pdf).
## Additional information
### Authors
- SIRIS Lab, Research Division of SIRIS Academic.
- Language Technologies Unit, Barcelona Supercomputing Center.
### Contact
For further information, send an email to either <langtech@bsc.es> or <info@sirisacademic.com>.
### License
This work is distributed under a [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
### Funding
This work was partially funded by 2 projects under EU’s H2020 Research and Innovation Programme:
- INODE (grant agreement No 863410).
- IntelComp (grant agreement No 101004870).
### Citation
```bibtex
Soon to be published in EACL 2023.
```
### Disclaimer
<details>
<summary>Click to expand</summary>
The model published in this repository is intended for a generalist purpose
and is made available to third parties under a Apache v2.0 License.
Please keep in mind that the model may have bias and/or any other undesirable distortions.
When third parties deploy or provide systems and/or services to other parties using this model
(or a system based on it) or become users of the model itself, they should note that it is under
their responsibility to mitigate the risks arising from its use and, in any event, to comply with
applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owners and creators of the model be liable for any results arising from the use made by third parties.
</details>
|
5d427feb5e67fbadfbc76e938402a944
|
tugstugi/wav2vec2-large-xlsr-53-kalmyk
|
tugstugi
|
wav2vec2
| 8 | 9 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['xal']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['speech', 'audio', 'automatic-speech-recognition']
| false | true | true | 791 | false |
## Info
This Wav2Vec2 model was first pretrained on 500 hours Kalmyk TV recordings and 1000 hours Mongolian speech recognition dataset. After that, the model was finetuned on a 300 hours [Kalmyk synthetic STT dataset](https://github.com/tugstugi/mongolian-nlp#datasets) created by a voice conversion model.
* 50% WER on a private test set created from Kalmyk TV recordnings
* on clean voice recordings, the model should have much lower WER
* voice conversion info
* 300 hours [Kalmyk synthetic STT dataset](https://github.com/tugstugi/mongolian-nlp#datasets)
* The source voice is a Kalmyk female voice TTS
* Target voices are from the VCTK dataset
* example data: https://twitter.com/tugstugi/status/1409111296897912835
* each WAV has a different text created from Kalmyk books
|
1f7598a628a5e3b365ace7a22b16749e
|
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-07
|
Khalsuu
|
wav2vec2
| 13 | 10 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['filipino_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,187 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# english-filipino-wav2vec2-l-xls-r-test-07
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6768
- Wer: 0.3755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9255 | 2.09 | 400 | 0.7742 | 0.7694 |
| 0.5792 | 4.19 | 800 | 0.5368 | 0.5250 |
| 0.3611 | 6.28 | 1200 | 0.4796 | 0.4718 |
| 0.2742 | 8.38 | 1600 | 0.5308 | 0.4764 |
| 0.201 | 10.47 | 2000 | 0.5885 | 0.4723 |
| 0.164 | 12.57 | 2400 | 0.5595 | 0.4750 |
| 0.1374 | 14.66 | 2800 | 0.5836 | 0.4366 |
| 0.1138 | 16.75 | 3200 | 0.6110 | 0.4628 |
| 0.0991 | 18.85 | 3600 | 0.6179 | 0.4174 |
| 0.0837 | 20.94 | 4000 | 0.6681 | 0.4170 |
| 0.0722 | 23.04 | 4400 | 0.6665 | 0.4103 |
| 0.0576 | 25.13 | 4800 | 0.7538 | 0.4068 |
| 0.052 | 27.23 | 5200 | 0.6808 | 0.3844 |
| 0.0449 | 29.32 | 5600 | 0.6768 | 0.3755 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
acaefe49bafc684b259307e91c327f24
|
jjmcarrascosa/vit_receipts_classifier
|
jjmcarrascosa
|
vit
| 128 | 3 |
transformers
| 1 |
image-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['image-classification', 'generated_from_trainer']
| true | true | true | 2,374 | false |
# vit_receipts_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cord, rvl-cdip, visual-genome and an external receipt dataset to carry out Binary Classification (`ticket` vs `no_ticket`).
Ticket here is used as a synonym to "receipt".
It achieves the following results on the evaluation set, which contain pictures from the above datasets in scanned, photography or mobile picture formats (color and grayscale):
- Loss: 0.0116
- F1: 0.9991
## Model description
This model is a Binary Classifier finetuned version of ViT, to predict if an input image is a picture / scan of receipts(s) o something else.
## Intended uses & limitations
Use this model to classify your images into tickets or not tickers. WIth the tickets group, you can use Multimodal Information Extraction, as Visual Named Entity Recognition, to extract the ticket items, amounts, total, etc. Check the Cord dataset for more information.
## Training and evaluation data
This model used 2 datasets as positive class (`ticket`):
- `cord`
- `https://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/`
For the negative class (`no_ticket`), the following datasets were used:
- A subset of `RVL-CDIP`
- A subset of `visual-genome`
## Training procedure
Datasets were loaded with different distributions of data for positive and negative classes. Then, normalization and resizing is carried out to adapt it to ViT expected input.
Different runs were carried out changing the data distribution and the hyperparameters to maximize F1.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0026 | 0.28 | 500 | 0.0187 | 0.9982 |
| 0.0186 | 0.56 | 1000 | 0.0116 | 0.9991 |
| 0.0006 | 0.84 | 1500 | 0.0044 | 0.9997 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.11.0+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1
|
234ae6e9263b6b3b979d7558e2c2ef0f
|
woolion/cosmoose-sd
|
woolion
| null | 23 | 2 |
diffusers
| 0 | null | false | false | false |
mit
| null | null | null | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,753 | false |
### Cosmoose-SD on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
#### Model by woolion
This your the Stable Diffusion model fine-tuned the Cosmoose-SD concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt(s)` with `csmoos_style`.
The DreamBooth step was trained on Cosmoose(.org) images, all drawn by Woolion.
You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb).
You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
Sample pictures of this concept:




|
6dbaf7f8d1ba4ffc1815ace7d77be4fc
|
wicharnkeisei/thai-xlm-roberta-base-squad2
|
wicharnkeisei
|
xlm-roberta
| 12 | 72 |
transformers
| 0 |
question-answering
| true | false | false |
cc-by-4.0
|
['th']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,275 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# thai-squad
This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on Thai dataset from [iApp Technology Co., Ltd.](https://github.com/iapp-technology/iapp-wiki-qa-dataset).
## Intended uses & limitations
This model intends to use with Thai question and answering task
## Training and evaluation data
Trained and evaluated by [iApp Technology Co., Ltd.](https://github.com/iapp-technology/iapp-wiki-qa-dataset) dataset.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
## Performance
Evaluated on the SQuAD 1.0 test dataset
```
"exact": 62.51728907330567
"f1": 73.62388955749958
"total": 723
```
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
d818c1f6cfe02c7f97bf2ec5972cd0e1
|
jonatasgrosman/exp_w2v2t_ru_vp-es_s35
|
jonatasgrosman
|
wav2vec2
| 10 | 2 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['ru']
|
['mozilla-foundation/common_voice_7_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'ru']
| false | true | true | 468 | false |
# exp_w2v2t_ru_vp-es_s35
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
d5d052bc02a8e02e9e1a791776f4d66c
|
sameearif88/wav2vec2-base-timit-demo-colab4
|
sameearif88
|
wav2vec2
| 12 | 2 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,341 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab4
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9149
- Wer: 0.5907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.9363 | 13.89 | 500 | 2.7532 | 1.0 |
| 0.9875 | 27.78 | 1000 | 0.9149 | 0.5907 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
f0ca6b2bd6007de73427589d4f49cdd1
|
microsoft/swinv2-large-patch4-window12-192-22k
|
microsoft
|
swinv2
| 5 | 1,627 |
transformers
| 0 |
image-classification
| true | false | false |
apache-2.0
| null |
['imagenet-1k']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['vision', 'image-classification']
| false | true | true | 3,782 | false |
# Swin Transformer v2 (large-sized model)
Swin Transformer v2 model pre-trained on ImageNet-21k at resolution 192x192. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 21k ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 21k ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
f435f58b9645957b7279d6a4ac714042
|
facebook/s2t-large-librispeech-asr
|
facebook
|
speech_to_text
| 11 | 262 |
transformers
| 7 |
automatic-speech-recognition
| true | true | false |
mit
|
['en']
|
['librispeech_asr']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'automatic-speech-recognition', 'hf-asr-leaderboard']
| true | true | true | 5,031 | false |
# S2T-LARGE-LIBRISPEECH-ASR
`s2t-large-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR).
The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text)
## Model description
S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard
autoregressive cross-entropy loss and generates the transcripts autoregressively.
## Intended uses & limitations
This model can be used for end-to-end speech recognition (ASR).
See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints.
### How to use
As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
transcripts by passing the speech features to the model.
*Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the
filter bank features. Make sure to install the `torchaudio` package before running this example.*
You could either install those as extra speech dependancies with
`pip install transformers"[speech, sentencepiece]"` or install the packages seperatly
with `pip install torchaudio sentencepiece`.
```python
import torch
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
from datasets import load_dataset
import soundfile as sf
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-large-librispeech-asr")
processor = Speech2Textprocessor.from_pretrained("facebook/s2t-large-librispeech-asr")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
ds = load_dataset(
"patrickvonplaten/librispeech_asr_dummy",
"clean",
split="validation"
)
ds = ds.map(map_to_array)
input_features = processor(
ds["speech"][0],
sampling_rate=16_000,
return_tensors="pt"
).input_features # Batch size 1
generated_ids = model.generate(input_ids=input_features)
transcription = processor.batch_decode(generated_ids)
```
#### Evaluation on LibriSpeech Test
The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
*"clean"* and *"other"* test dataset.
```python
from datasets import load_dataset, load_metric
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
import soundfile as sf
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset
wer = load_metric("wer")
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-large-librispeech-asr").to("cuda")
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-large-librispeech-asr", do_upper_case=True)
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
input_features = features.input_features.to("cuda")
attention_mask = features.attention_mask.to("cuda")
gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)
batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"])
print("WER:", wer(predictions=result["transcription"], references=result["text"]))
```
*Result (WER)*:
| "clean" | "other" |
|:-------:|:-------:|
| 3.3 | 7.5 |
## Training data
The S2T-LARGE-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of
approximately 1000 hours of 16kHz read English speech.
## Training procedure
### Preprocessing
The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from
WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization)
is applied to each example.
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000.
### Training
The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779).
The encoder receives speech features, and the decoder generates the transcripts autoregressively.
### BibTeX entry and citation info
```bibtex
@inproceedings{wang2020fairseqs2t,
title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
year = {2020},
}
```
|
b3d996a520b8cf5283933cad8d9d58ba
|
gokuls/distilbert_add_GLUE_Experiment_qqp_384
|
gokuls
|
distilbert
| 17 | 4 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,049 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_qqp_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4096
- Accuracy: 0.8095
- F1: 0.7372
- Combined Score: 0.7734
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.5518 | 1.0 | 1422 | 0.5289 | 0.7376 | 0.6535 | 0.6955 |
| 0.4901 | 2.0 | 2844 | 0.4655 | 0.7772 | 0.6744 | 0.7258 |
| 0.4098 | 3.0 | 4266 | 0.4096 | 0.8095 | 0.7372 | 0.7734 |
| 0.3273 | 4.0 | 5688 | 0.4343 | 0.8211 | 0.7536 | 0.7873 |
| 0.2681 | 5.0 | 7110 | 0.4322 | 0.8286 | 0.7519 | 0.7902 |
| 0.223 | 6.0 | 8532 | 0.4789 | 0.8301 | 0.7502 | 0.7901 |
| 0.1883 | 7.0 | 9954 | 0.4715 | 0.8329 | 0.7663 | 0.7996 |
| 0.1603 | 8.0 | 11376 | 0.5090 | 0.8346 | 0.7577 | 0.7961 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
52837edb2d442ffd06ef5aa1e094abb8
|
siddharth963/vit-base-patch16-224-in21k-finetuned-cassava3
|
siddharth963
|
vit
| 16 | 7 |
transformers
| 0 |
image-classification
| true | false | false |
apache-2.0
| null |
['image_folder']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,911 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-cassava3
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3419
- Accuracy: 0.8855
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5624 | 0.99 | 133 | 0.5866 | 0.8166 |
| 0.4717 | 1.99 | 266 | 0.4245 | 0.8692 |
| 0.4105 | 2.99 | 399 | 0.3708 | 0.8811 |
| 0.3753 | 3.99 | 532 | 0.3646 | 0.8787 |
| 0.2997 | 4.99 | 665 | 0.3655 | 0.8780 |
| 0.3176 | 5.99 | 798 | 0.3545 | 0.8822 |
| 0.2849 | 6.99 | 931 | 0.3441 | 0.8850 |
| 0.2931 | 7.99 | 1064 | 0.3419 | 0.8855 |
| 0.27 | 8.99 | 1197 | 0.3419 | 0.8848 |
| 0.2927 | 9.99 | 1330 | 0.3403 | 0.8853 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
2e1cf0cda0512e937fb06acf5b524ab7
|
grantslewis/spelling-correction-english-base-location-unique-2-2
|
grantslewis
|
bart
| 13 | 3 |
transformers
| 0 |
text2text-generation
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,488 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# spelling-correction-english-base-location-unique-2-2
This model is a fine-tuned version of [grantslewis/spelling-correction-english-base-location-unique-2](https://huggingface.co/grantslewis/spelling-correction-english-base-location-unique-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8272
- Cer: 0.1685
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 70
- eval_batch_size: 70
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 470 | 0.8853 | 0.1740 |
| 0.808 | 2.0 | 940 | 0.8494 | 0.1679 |
| 0.7434 | 3.0 | 1410 | 0.8288 | 0.1700 |
| 0.7324 | 4.0 | 1880 | 0.8272 | 0.1685 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.12.1
|
db43f23d5d79742949ecae7377de64c0
|
jgriffi/xlm-roberta-base-finetuned-panx-all
|
jgriffi
|
xlm-roberta
| 10 | 11 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,319 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1448
- F1: 0.8881
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3029 | 1.0 | 1669 | 0.2075 | 0.7971 |
| 0.164 | 2.0 | 3338 | 0.1612 | 0.8680 |
| 0.1025 | 3.0 | 5007 | 0.1448 | 0.8881 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
521ce5cb91456a89ba5f66bef9c15eee
|
danielbispov/t5-small-finetuned-fi-to-en
|
danielbispov
|
t5
| 14 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['wmt19']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,254 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-fi-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5235
- Bleu: 1.129
- Gen Len: 17.088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:|
| 3.414 | 1.0 | 6250 | 3.5235 | 1.129 | 17.088 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
6019e5142f064f531625565a3cfef683
|
Geotrend/bert-base-en-fr-es-de-zh-cased
|
Geotrend
|
bert
| 8 | 4 |
transformers
| 0 |
fill-mask
| true | true | true |
apache-2.0
|
['multilingual']
|
['wikipedia']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,319 | false |
# bert-base-en-fr-es-de-zh-cased
We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages.
Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy.
For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf).
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-de-zh-cased")
model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-de-zh-cased")
```
To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers).
### How to cite
```bibtex
@inproceedings{smallermbert,
title={Load What You Need: Smaller Versions of Mutlilingual BERT},
author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
booktitle={SustaiNLP / EMNLP},
year={2020}
}
```
## Contact
Please contact amine@geotrend.fr for any question, feedback or request.
|
60ae37e28ca37ed29f43531ae4ffc9ff
|
google/t5-base-lm-adapt
|
google
|
t5
| 10 | 14,383 |
transformers
| 12 |
text2text-generation
| true | true | false |
apache-2.0
|
['en']
|
['c4']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['t5-lm-adapt']
| false | true | true | 3,127 | false |
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted
## Version 1.1 - LM-Adapted
[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-base):
- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).
- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.
- Pre-trained on C4 only without mixing in the downstream tasks.
- no parameter sharing between embedding and classifier layer
- "xl" and "xxl" replace "3B" and "11B". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.
and is pretrained on both the denoising and language modeling objective.
More specifically, this checkpoint is initialized from [T5 Version 1.1 - Base](https://huggingface.co/google/https://huggingface.co/google/t5-v1_1-base)
and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).
This adaptation improves the ability of the model to be used for prompt tuning.
**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is [BigScience's T0pp](https://huggingface.co/bigscience/T0pp).
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?other=t5-lm-adapt)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

|
44670b16c1ec31ac0d39e37406643d91
|
muhtasham/bert-tiny-finetuned-finer
|
muhtasham
|
bert
| 10 | 14 |
transformers
| 1 |
token-classification
| true | false | false |
apache-2.0
| null |
['finer-139', 'nlpaueb/finer-139']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,564 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertiny-finetuned-finer
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the finer-139 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0882
- Precision: 0.5339
- Recall: 0.0360
- F1: 0.0675
- Accuracy: 0.9847
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0871 | 1.0 | 11255 | 0.0952 | 0.0 | 0.0 | 0.0 | 0.9843 |
| 0.0864 | 2.0 | 22510 | 0.0895 | 0.7640 | 0.0082 | 0.0162 | 0.9844 |
| 0.0929 | 3.0 | 33765 | 0.0882 | 0.5339 | 0.0360 | 0.0675 | 0.9847 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ed3712e679a77b89b2c4fde095540297
|
BlackKakapo/t5-base-paraphrase-ro
|
BlackKakapo
|
t5
| 8 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
['apache-2.0']
|
['ro']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,662 | false |
# Romanian paraphrase

Fine-tune t5-base model for paraphrase. Since there is no Romanian dataset for paraphrasing, I had to create my own [dataset](https://huggingface.co/datasets/BlackKakapo/paraphrase-ro-v1). The dataset contains ~60k examples.
### How to use
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("BlackKakapo/t5-base-paraphrase-ro")
model = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/t5-base-paraphrase-ro")
```
### Or
```python
from transformers import T5ForConditionalGeneration, T5TokenizerFast
model = T5ForConditionalGeneration.from_pretrained("BlackKakapo/t5-base-paraphrase-ro")
tokenizer = T5TokenizerFast.from_pretrained("BlackKakapo/t5-base-paraphrase-ro")
```
### Generate
```python
text = "Am impresia că fac multe greșeli."
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
do_sample=True,
max_length=256,
top_k=10,
top_p=0.9,
early_stopping=False,
num_return_sequences=5
)
for beam_output in beam_outputs:
text_para = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
if text.lower() != text_para.lower() or text not in final_outputs:
final_outputs.append(text_para)
break
print(final_outputs)
```
### Output
```out
['Cred că fac multe greșeli.']
```
|
c0cb3ae4c43cbe710171965bbd2e3eec
|
elRivx/gGWoman
|
elRivx
| null | 3 | 0 | null | 2 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['stable-diffusion', 'text-to-image']
| false | true | true | 1,456 | false |
# gGWoman
This is my new Stable Diffusion custom model that bring to you a generic woman generated with non-licenced images.
The magic word is: gGWoman
If you enjoy my work, please consider supporting me:
[](https://www.buymeacoffee.com/elrivx)
Examples:
<img src=https://imgur.com/CQR59kd.png width=30% height=30%>
<img src=https://imgur.com/WVh9kE1.png width=30% height=30%>
<img src=https://imgur.com/y0twso7.png width=30% height=30%>
<img src=https://imgur.com/FVxkzzj.png width=30% height=30%>
## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
bca55f5399ed5159b8ab04eabd6c4de3
|
henryscheible/eval_masked_102_cola
|
henryscheible
| null | 13 | 0 | null | 0 | null | true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,023 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eval_masked_102_cola
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6601
- Matthews Correlation: 0.5989
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
ce1714860b61afa3cf7bee51b127aca0
|
riddhi17pawar/finetuning-sentiment-model-3000-samples
|
riddhi17pawar
|
distilbert
| 13 | 9 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['imdb']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,055 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3029
- Accuracy: 0.8667
- F1: 0.8675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
063323cade8c0b4394d386fbc195d1f3
|
lmqg/flan-t5-small-squad-qg
|
lmqg
|
t5
| 17 | 6 |
transformers
| 0 |
text2text-generation
| true | false | false |
cc-by-4.0
|
['en']
|
['lmqg/qg_squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['question generation']
| true | true | true | 5,263 | false |
# Model Card of `lmqg/flan-t5-small-squad-qg`
This model is fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/flan-t5-small-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/flan-t5-small-squad-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-small-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:---------------------------------------------------------------|
| BERTScore | 90.23 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 56.66 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 40.4 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 30.95 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 24.34 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 25.58 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 63.77 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 51.26 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/flan-t5-small-squad-ae`](https://huggingface.co/lmqg/flan-t5-small-squad-ae). [raw metric file](https://huggingface.co/lmqg/flan-t5-small-squad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.lmqg_flan-t5-small-squad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.34 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 63.8 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 92.13 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 63.89 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 92.58 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 63.8 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: paragraph_answer
- output_types: question
- prefix_types: ['qg']
- model: google/flan-t5-small
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 64
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-small-squad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
0fe8731b92cf998c5be5af038305569c
|
Ahmedshabana/distilbert-base-uncased-finetuned-mnli
|
Ahmedshabana
|
distilbert
| 20 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,473 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-mnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1091
- Accuracy: 0.42
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 32 | 1.1005 | 0.28 |
| No log | 2.0 | 64 | 1.1038 | 0.3 |
| No log | 3.0 | 96 | 1.1074 | 0.32 |
| No log | 4.0 | 128 | 1.1088 | 0.42 |
| No log | 5.0 | 160 | 1.1091 | 0.42 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|
53033267a267da6630207084b42948d1
|
SGrannemann/marian-finetuned-kde4-en-to-fr
|
SGrannemann
|
marian
| 4 | 1 |
transformers
| 0 |
text2text-generation
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,453 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6859
- Validation Loss: 0.8062
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 17733, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.0582 | 0.8792 | 0 |
| 0.7977 | 0.8250 | 1 |
| 0.6859 | 0.8062 | 2 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.8.0
- Datasets 1.18.4
- Tokenizers 0.11.6
|
51b53178d9b020c3d653ef87c9cd8c65
|
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
|
CAMeL-Lab
|
bert
| 11 | 45 |
transformers
| 0 |
text-classification
| true | true | false |
apache-2.0
|
['ar']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,894 | false |
# CAMeLBERT-MSA DID MADAR Twitter-5 Model
## Model description
**CAMeLBERT-MSA DID MADAR Twitter-5 Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model.
For the fine-tuning, we used the [MADAR Twitter-5](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/) dataset, which includes 21 labels.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-MSA DID MADAR Twitter-5 model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5')
>>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟']
>>> did(sentences)
[{'label': 'Egypt', 'score': 0.5741344094276428},
{'label': 'Kuwait', 'score': 0.5225679278373718}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
67d49a8509d40cf7ccaadde78e9a8cce
|
coreml/coreml-kurzgesagtish
|
coreml
| null | 3 | 0 | null | 1 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['coreml', 'stable-diffusion', 'text-to-image']
| false | true | true | 794 | false |
# Core ML Converted Model:
- This model was converted to Core ML for use on Apple Silicon devices. Instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-files-to-Core-ML).<br>
- Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br>
- `split_einsum` version is compatible with all compute unit options including Neural Engine.<br>
# Kurzgesagtish:
Source(s): [CivitAI](https://civitai.com/models/1212/kurzgesagtish)
Here it is the kurzgesagtish model, honestly i didnt know what to call it but it kept being compared to the style used on the kurzgesagt youtube channel, hope you all make amazing things :)
Activation prompt : illustration style kurzgesagtish
|
b7a283c3d3fc290f16d2b1c6b5a8d60d
|
anas-awadalla/roberta-large-houlsby-few-shot-k-1024-finetuned-squad-seed-4
|
anas-awadalla
| null | 19 | 0 | null | 0 | null | false | false | false |
mit
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,095 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-houlsby-few-shot-k-1024-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 4
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
789a9ef0439b9bfa20d57e4eec928bff
|
autoevaluate/glue-mrpc
|
autoevaluate
|
distilbert
| 10 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,516 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# glue-mrpc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3654
- Accuracy: 0.8554
- F1: 0.8998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 230 | 0.4039 | 0.8039 | 0.8611 |
| No log | 2.0 | 460 | 0.3654 | 0.8554 | 0.8998 |
| 0.4368 | 3.0 | 690 | 0.4146 | 0.8407 | 0.8885 |
| 0.4368 | 4.0 | 920 | 0.5756 | 0.8456 | 0.8941 |
| 0.1744 | 5.0 | 1150 | 0.5523 | 0.8456 | 0.8916 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.11.6
|
066ff49976a98c7b3c5e34a2d7cfc5bb
|
Rahul-AppOrchid/donut-base-sroie
|
Rahul-AppOrchid
|
vision-encoder-decoder
| 14 | 1 |
transformers
| 0 | null | true | false | false |
mit
| null |
['imagefolder']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 981 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-sroie
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2
|
48bd1f09a6f668b15ffde2f474ca8506
|
pmfsl/pt-bert-large-finetuned-rte
|
pmfsl
|
bert
| 10 | 2 |
transformers
| 0 |
text-classification
| false | true | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,479 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pmfsl/pt-bert-large-finetuned-rte
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3300
- Validation Loss: 0.1597
- Train Accuracy: 0.9432
- Train F1: 0.9439
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 406, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Train F1 | Epoch |
|:----------:|:---------------:|:--------------:|:--------:|:-----:|
| 0.3300 | 0.1597 | 0.9432 | 0.9439 | 0 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2
|
ecfc235017581ab082aaafa75553a954
|
rhitabrat/bert-finetuned-news
|
rhitabrat
|
bert
| 8 | 3 |
transformers
| 0 |
question-answering
| false | true | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_keras_callback']
| true | true | true | 1,294 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# rhitabrat/bert-finetuned-news
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7333
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 19448, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.1505 | 0 |
| 0.7333 | 1 |
### Framework versions
- Transformers 4.21.2
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
|
c8596d9f7f22c42439c797c0c8aec6f4
|
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_cola_256
|
gokuls
|
distilbert
| 17 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 2,028 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_logit_kd_cola_256
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6808
- Matthews Correlation: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.8053 | 1.0 | 34 | 0.6856 | 0.0 |
| 0.7977 | 2.0 | 68 | 0.6837 | 0.0 |
| 0.7952 | 3.0 | 102 | 0.6832 | 0.0 |
| 0.7934 | 4.0 | 136 | 0.6852 | 0.0 |
| 0.7703 | 5.0 | 170 | 0.6808 | 0.0 |
| 0.7008 | 6.0 | 204 | 0.6885 | 0.0675 |
| 0.6386 | 7.0 | 238 | 0.7263 | 0.1037 |
| 0.6059 | 8.0 | 272 | 0.7450 | 0.0825 |
| 0.577 | 9.0 | 306 | 0.7559 | 0.1071 |
| 0.5531 | 10.0 | 340 | 0.7794 | 0.1048 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
367a7e7841fb3fc1c81c1437df2b8664
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.