repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Kevincp560/bigbird-pegasus-large-bigpatent-finetuned-pubMed
Kevincp560
bigbird_pegasus
10
2
transformers
2
text2text-generation
true
false
false
apache-2.0
null
['pub_med_summarization_dataset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,931
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-pegasus-large-bigpatent-finetuned-pubMed This model is a fine-tuned version of [google/bigbird-pegasus-large-bigpatent](https://huggingface.co/google/bigbird-pegasus-large-bigpatent) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.5403 - Rouge1: 45.0851 - Rouge2: 19.5488 - Rougel: 27.391 - Rougelsum: 41.112 - Gen Len: 231.608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1198 | 1.0 | 500 | 1.6285 | 43.0579 | 18.1792 | 26.421 | 39.0769 | 214.924 | | 1.6939 | 2.0 | 1000 | 1.5696 | 44.0679 | 18.9331 | 26.84 | 40.0684 | 222.814 | | 1.6195 | 3.0 | 1500 | 1.5506 | 44.7352 | 19.3532 | 27.2418 | 40.7454 | 229.396 | | 1.5798 | 4.0 | 2000 | 1.5403 | 45.0415 | 19.5019 | 27.2969 | 40.951 | 231.044 | | 1.5592 | 5.0 | 2500 | 1.5403 | 45.0851 | 19.5488 | 27.391 | 41.112 | 231.608 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
6f78db0bcb1aa92c35d82598852c16de
sd-concepts-library/joe-mad
sd-concepts-library
null
9
0
null
3
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
998
false
### Joe Mad on Stable Diffusion This is the `<joe-mad>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<joe-mad> 0](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/3.jpeg) ![<joe-mad> 1](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/0.jpeg) ![<joe-mad> 2](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/1.jpeg) ![<joe-mad> 3](https://huggingface.co/sd-concepts-library/joe-mad/resolve/main/concept_images/2.jpeg)
0b1a27a907e49c51949ca691c442a4d8
paola-md/recipe-lr2e05-wd0.005-bs16
paola-md
roberta
6
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,468
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.005-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2780 - Rmse: 0.5272 - Mse: 0.2780 - Mae: 0.4314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 1245 | 0.2743 | 0.5237 | 0.2743 | 0.4112 | | 0.2738 | 2.0 | 2490 | 0.2811 | 0.5302 | 0.2811 | 0.4288 | | 0.2724 | 3.0 | 3735 | 0.2780 | 0.5272 | 0.2780 | 0.4314 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
685620d5f40ee9f82c0087adbe5e00f8
akashsingh123/wav2vec2-base-timit-demo-colab
akashsingh123
wav2vec2
9
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
991
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
58b9b14d33b0a733b56c7e10180d5db8
jonatasgrosman/exp_w2v2t_es_vp-nl_s203
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
469
false
# exp_w2v2t_es_vp-nl_s203 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
6b22464aeb54c31d913ef0891f03f5fa
Passexam4sure/DVA-C01-Dumps-2023
Passexam4sure
null
2
0
adapter-transformers
0
text-classification
false
false
false
artistic-2.0
['en']
['fka/awesome-chatgpt-prompts']
null
0
0
0
0
0
0
0
['code']
false
true
true
1,114
false
DVA-C01 PDFs, which stand for AWS Certified Developer - Associate Exam DVA-C01, can be reliable for exam preparation for a few reasons: 1: They provide a digital copy of the exam's content, including the topics and objectives that will be covered on the test. 2: They are easy to access and can be downloaded and used on a variety of devices, making it convenient to study on-the-go. 3: Some DVA-C01 PDFs may include practice questions and answer explanations, which can help you prepare and identify areas where you may need more study. 4: Many DVA-C01 PDFs are created by experts, who have already taken the exam and have an in-depth knowledge of the exam's format, content, and difficulty level. However, it's important to note that not all DVA-C01 PDFs are reliable or of the same quality, so it's recommended to look for the ones from reputable sources, and also to use them in conjunction with other resources such as AWS official documentation, hands-on practice and online training to achieve best results. Click Here To Get DVA-C01 Dumps 2023: https://www.passexam4sure.com/amazon/dva-c01-dumps.html
66d48b17519f3b7992deb91b9de78022
tensorspeech/tts-mb_melgan-synpaflex-fr
tensorspeech
null
4
0
tensorflowtts
2
text-to-speech
false
false
false
apache-2.0
['fr']
['synpaflex']
null
0
0
0
0
0
0
0
['tensorflowtts', 'audio', 'text-to-speech', 'mel-to-wav']
false
true
true
2,262
false
# Multi-band MelGAN trained on Synpaflex (Fr) This repository provides a pretrained [Multi-band MelGAN](https://arxiv.org/abs/2005.05106) trained on Synpaflex dataset (French). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Wav ```python import soundfile as sf import numpy as np import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-synpaflex-fr") text = "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous étions amis" input_ids = processor.text_to_sequence(text) # tacotron2 inference (text-to-mel) decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), ) # melgan inference (mel-to-wav) audio = mb_melgan.inference(mel_outputs)[0, :, 0] # save to file sf.write('./audio.wav', audio, 22050, "PCM_16") ``` #### Referencing Multi-band MelGAN ``` @misc{yang2020multiband, title={Multi-band MelGAN: Faster Waveform Generation for High-Quality Text-to-Speech}, author={Geng Yang and Shan Yang and Kai Liu and Peng Fang and Wei Chen and Lei Xie}, year={2020}, eprint={2005.05106}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` #### Referencing TensorFlowTTS ``` @misc{TFTTS, author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata, Trinh Le and Yunchao He}, title = {TensorflowTTS}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}}, } ```
34cea1eba528cbaaf60977b952fcefd8
Yagorka/ddpm-butterflies-128
Yagorka
null
33
2
diffusers
0
null
false
false
false
apache-2.0
['en']
['imagefolder']
null
0
0
0
0
0
0
0
[]
false
true
true
1,201
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Yagorka/ddpm-butterflies-128/tensorboard?#scalars)
f09589100f214ce288edd3f391d43cb2
Rajan/donut-base-sroie_300
Rajan
vision-encoder-decoder
15
0
transformers
0
null
true
false
false
mit
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
980
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie_300 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
0c547a007c352ceaf535441e4a37a9da
jmunoz/finetuning-sentiment-model-3000-samples_jmnew
jmunoz
distilbert
13
11
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,060
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples_jmnew This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 - Accuracy: 0.8733 - F1: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
bed56e0ef3539b82e508528b86b0ea75
gustavecortal/roberta-reman-tec
gustavecortal
roberta
11
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,547
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cold_remanandtec_gpu_v1 This model is a fine-tuned version of [ibm/ColD-Fusion](https://huggingface.co/ibm/ColD-Fusion) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0737 - F1: 0.9462 - Roc Auc: 0.9592 - Recall: 0.9362 - Precision: 0.9565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:|:---------:| | 0.3606 | 1.0 | 1521 | 0.1974 | 0.8936 | 0.9247 | 0.8936 | 0.8936 | | 0.2715 | 2.0 | 3042 | 0.1247 | 0.8989 | 0.9167 | 0.8511 | 0.9524 | | 0.1811 | 3.0 | 4563 | 0.0737 | 0.9462 | 0.9592 | 0.9362 | 0.9565 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
fb60f03636dde4705f50adb15ed07ad4
farsipal/whisper-sm-el-intlv-xs
farsipal
whisper
19
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['el']
['mozilla-foundation/common_voice_11_0', 'google/fleurs']
null
2
1
1
0
0
0
0
['whisper-event', 'generated_from_trainer', 'hf-asr-leaderboard', 'automatic-speech-recognition', 'greek']
true
true
true
2,095
false
# Whisper small (Greek) Trained on Interleaved Datasets This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on interleaved mozilla-foundation/common_voice_11_0 (el) and google/fleurs (el_gr) dataset. It achieves the following results on the evaluation set: - Loss: 0.4741 - Wer: 20.0687 ## Model description The model was developed during the Whisper Fine-Tuning Event in December 2022. More details on the model can be found [in the original paper](https://cdn.openai.com/papers/whisper.pdf) ## Intended uses & limitations The model is fine-tuned for transcription in the Greek language. ## Training and evaluation data This model was trained by interleaving the training and evaluation splits from two different datasets: - mozilla-foundation/common_voice_11_0 (el) - google/fleurs (el_gr) ## Training procedure The python script used is a modified version of the script provided by Hugging Face and can be found [here](https://github.com/kamfonas/whisper-fine-tuning-event/blob/minor-mods-by-farsipal/run_speech_recognition_seq2seq_streaming.py) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0186 | 4.98 | 1000 | 0.3619 | 21.0067 | | 0.0012 | 9.95 | 2000 | 0.4347 | 20.3009 | | 0.0005 | 14.93 | 3000 | 0.4741 | 20.0687 | | 0.0003 | 19.9 | 4000 | 0.4974 | 20.1152 | | 0.0003 | 24.88 | 5000 | 0.5066 | 20.2266 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1
2aa9ae4a2dece1e04bcd061018c3828b
Helsinki-NLP/opus-mt-gaa-sv
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-gaa-sv * source languages: gaa * target languages: sv * OPUS readme: [gaa-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gaa-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gaa-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gaa.sv | 30.1 | 0.489 |
3d7e08903ac7b5f3dcb415236f19a0f0
aGabillon/distilbert-base-uncased-finetuned-emotion
aGabillon
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,345
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2294 - Accuracy: 0.9215 - F1: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8304 | 1.0 | 250 | 0.3312 | 0.899 | 0.8962 | | 0.2547 | 2.0 | 500 | 0.2294 | 0.9215 | 0.9219 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
3cf70c7b93174315559d8b38eff1d10c
muhtasham/mini-mlm-tweet-target-tweet
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,546
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-mlm-tweet-target-tweet This model is a fine-tuned version of [muhtasham/mini-mlm-tweet](https://huggingface.co/muhtasham/mini-mlm-tweet) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.4122 - Accuracy: 0.7353 - F1: 0.7377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8264 | 4.9 | 500 | 0.7479 | 0.7219 | 0.7190 | | 0.3705 | 9.8 | 1000 | 0.8205 | 0.7487 | 0.7479 | | 0.1775 | 14.71 | 1500 | 1.0049 | 0.7273 | 0.7286 | | 0.092 | 19.61 | 2000 | 1.1698 | 0.7353 | 0.7351 | | 0.0513 | 24.51 | 2500 | 1.4122 | 0.7353 | 0.7377 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
b171c645a3b32c4be08701746f3920db
Das282000Prit/fyp-finetuned-brown
Das282000Prit
bert
8
2
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,530
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Das282000Prit/fyp-finetuned-brown This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.5777 - Validation Loss: 3.0737 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -844, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5777 | 3.0737 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
d625b5ef0608008fd3831014f1d29661
pollner/yelp
pollner
bert
12
12
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['yelp_review_full']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,312
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yelp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.0380 - Accuracy: 0.587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.2336 | 0.447 | | No log | 2.0 | 250 | 1.0153 | 0.562 | | No log | 3.0 | 375 | 1.0380 | 0.587 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
df05bffffa744ec5cabed8564a0c1f07
PeterBanning71/gpt2-small-spanish-finetuned-rap
PeterBanning71
gpt2
11
9
transformers
0
summarization
true
false
false
apache-2.0
null
['amazon_reviews_multi']
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,299
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-finetuned-rap This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 4.7161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 27 | 4.8244 | | No log | 2.0 | 54 | 4.7367 | | No log | 3.0 | 81 | 4.7161 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
02013bff7c576039336b8050f242adc2
jamesesguerra/distilbart-cnn-12-6-finetuned-1.1.0
jamesesguerra
bart
14
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,477
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-1.1.0 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0274 - Rouge1: 84.662 - Rouge2: 83.5616 - Rougel: 84.4282 - Rougelsum: 84.4667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.0911 | 1.0 | 97 | 0.0286 | 85.8678 | 84.7683 | 85.7147 | 85.6949 | | 0.0442 | 2.0 | 194 | 0.0274 | 84.662 | 83.5616 | 84.4282 | 84.4667 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
e6882c089991599ae0d48a5b1abf918b
Lemswasabi/wav2vec2-large-xlsr-53-842h-luxembourgish-11h-with-lm
Lemswasabi
wav2vec2
20
0
transformers
0
automatic-speech-recognition
true
false
false
mit
['lb']
null
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'generated_from_trainer']
false
true
true
1,826
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ## Model description We fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech collected from [RTL.lu](https://www.rtl.lu/). Then the model was fine-tuned on 11h of labelled Luxembourgish speech from the same domain. Additionally, we rescore the output transcription with a 5-gram language model trained on text corpora from RTL.lu and the Luxembourgish parliament. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1 ## Citation This model is a result of our paper `IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS` submitted to the [IEEE SLT 2022 workshop](https://slt2022.org/) ``` @misc{lb-wav2vec2, author = {Nguyen, Le Minh and Nayak, Shekhar and Coler, Matt.}, keywords = {Luxembourgish, multilingual speech recognition, language modelling, wav2vec 2.0 XLSR-53, under-resourced language}, title = {IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS}, year = {2022}, copyright = {2023 IEEE} } ```
d1b22decf902d6d2d471d82334fa83e0
Xessen/bert-turkish-cased
Xessen
bert
4
0
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
974
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-turkish-cased This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.8.0 - Tokenizers 0.13.2
ac74c6d11760f1d6a51328bcfedd80f4
Evel/VividWatercolors
Evel
null
17
174
diffusers
9
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
1
1
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers']
false
true
true
4,819
false
Introducing my new Vivid Watercolors dreambooth model. The model is trained with beautiful, artist-agnostic watercolor images using the midjourney method. The token is "wtrcolor style" It can be challenging to use, but with the right prompts, but it can create stunning artwork. See an example prompt that I use in tests: wtrcolor style, Digital art of (subject), official art, frontal, smiling, masterpiece, Beautiful, ((watercolor)), face paint, paint splatter, intricate details. Highly detailed, detailed eyes, [dripping:0.5], Trending on artstation, by [artist] Using "watercolor" in the pronpt is necessary to get a good watercolor texture, try words like face (paint, paint splatter, dripping). For a negative prompt I use this one: (bad_prompt:0.8), ((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), (((dead eyes))), (((out of frame))), ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), blur, (((watermarked)), ((out of focus)), (((low contrast))), (((zoomed in))), (((crossed eyes))), (((disfigured)), ((bad art)), (weird colors), (((oversaturated art))), multiple persons, multiple faces, (vector), (vector-art), (((high contrast))) Here's some txt2img exemples: ![01789-313339253-wtrcolor style, Beautiful girl walking on the street, watercolor.png](https://s3.amazonaws.com/moonup/production/uploads/1674343785833-635418b012edd0ed5dc1f5a1.png) ![01792-465168129-wtrcolor style, Beautiful girl portrait, watercolor, face paint, paint splatter.png](https://s3.amazonaws.com/moonup/production/uploads/1674343785836-635418b012edd0ed5dc1f5a1.png) ![01798-352490785-wtrcolor style, Digital art of (Margot Robie as Harley Queen) official art, frontal, smiling, masterpiece, Beautiful, watercolor.png](https://s3.amazonaws.com/moonup/production/uploads/1674343787003-635418b012edd0ed5dc1f5a1.png) ![01807-2954444586-wtrcolor style, Digital art of (Wonder Woman) official art, frontal, smiling, masterpiece, Beautiful, ((watercolor)), face paint.png](https://s3.amazonaws.com/moonup/production/uploads/1674343787004-635418b012edd0ed5dc1f5a1.png) ![01830-3282318438-wtrcolor style, Digital art of (Retrowave bunny girl with glasses and headphone character design), official art, frontal, smilin.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786969-635418b012edd0ed5dc1f5a1.png) ![01893-3282318438-wtrcolor style, Digital art of (dog character), official art, frontal, smiling, masterpiece, Beautiful, ((watercolor)), face pai.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786958-635418b012edd0ed5dc1f5a1.png) ![01894-3282318438-wtrcolor style, Digital art of (cat character), official art, frontal, smiling, masterpiece, Beautiful, ((watercolor)), face pai.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786968-635418b012edd0ed5dc1f5a1.png) ![01898-3384663569-wtrcolor style, Digital art of (Supergirl), official art, frontal, smiling, masterpiece, Beautiful, ((watercolor)), face paint,.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786939-635418b012edd0ed5dc1f5a1.png) ![01906-1806000013-wtrcolor style, Digital art of (black girl with the afro hairstyle, fallen angel girl, mermaid underwater, senior man, chubby gi.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786835-635418b012edd0ed5dc1f5a1.png) ![01908-3808560957-wtrcolor style, Digital art of (fallen angel girl with angel wings), official art, frontal, smiling, masterpiece, Beautiful, ((w.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786951-635418b012edd0ed5dc1f5a1.png) ![01932-1882495945-wtrcolor style, Digital art of (chubby woman), official art, frontal, smiling, masterpiece, Beautiful, ((watercolor)), face pain.png](https://s3.amazonaws.com/moonup/production/uploads/1674343786953-635418b012edd0ed5dc1f5a1.png) Here an img2img exemple: ![bbebbebebebeb.png](https://s3.amazonaws.com/moonup/production/uploads/1674344139512-635418b012edd0ed5dc1f5a1.png) ![classic-blue-volkswagen-beetle-wallpaper-3750x3000_34.jpg](https://s3.amazonaws.com/moonup/production/uploads/1674344139339-635418b012edd0ed5dc1f5a1.jpeg) In img2img you may need to increase the prompt like: (((wtrcolor style))) You can play with the settings, is easier to get good results with the right prompt: For me, the sweet spot is around 30 steps, euler a, cfg 8-9. (Clip skip 2 kinda lead to softer results) See the tests here: https://imgur.com/a/ghVhVhy
93c1135878e11577239831f580589916
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-0
anas-awadalla
roberta
17
5
transformers
0
question-answering
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
985
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
6cef4d6a440f9e45ed920b833ab397c0
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5
gary109
wav2vec2
14
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'gary109/AI_Light_Dance', 'generated_from_trainer']
true
true
true
2,030
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0163 - Wer: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8867 | 1.0 | 376 | 1.0382 | 0.6821 | | 0.8861 | 2.0 | 752 | 1.0260 | 0.6686 | | 0.8682 | 3.0 | 1128 | 1.0358 | 0.6604 | | 0.8662 | 4.0 | 1504 | 1.0234 | 0.6665 | | 0.8463 | 5.0 | 1880 | 1.0333 | 0.6666 | | 0.8573 | 6.0 | 2256 | 1.0163 | 0.6622 | | 0.8628 | 7.0 | 2632 | 1.0209 | 0.6551 | | 0.8493 | 8.0 | 3008 | 1.0525 | 0.6582 | | 0.8371 | 9.0 | 3384 | 1.0409 | 0.6515 | | 0.8229 | 10.0 | 3760 | 1.0597 | 0.6523 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
e0f894c1f6dabb594bec06ee0c6c0422
aminjalali/distilbert-base-uncased-finetuned-emotion
aminjalali
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,343
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2123 - Accuracy: 0.926 - F1: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8198 | 1.0 | 250 | 0.3147 | 0.904 | 0.9003 | | 0.2438 | 2.0 | 500 | 0.2123 | 0.926 | 0.9258 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
3e300f7f596af396afc4e2ce64f88c72
AndrewR/distilgpt2-finetuned-katpoems-lm
AndrewR
gpt2
14
0
transformers
1
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,245
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-katpoems-lm This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 59 | 4.6509 | | No log | 2.0 | 118 | 4.6476 | | No log | 3.0 | 177 | 4.6519 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
50c686a3bc622eb3092f8b242c3c96e7
jonatasgrosman/exp_w2v2t_fr_hubert_s990
jonatasgrosman
hubert
10
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'fr']
false
true
true
452
false
# exp_w2v2t_fr_hubert_s990 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
de6e1caf43d994462db2a3f588523dab
ogimgio/finetuned-die-berufliche-praxis-im-rahmen-des-pflegeprozesses-ausuben
ogimgio
bert
12
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,367
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-die-berufliche-praxis-im-rahmen-des-pflegeprozesses-ausuben This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4610 - Accuracy: 0.7900 - F1: 0.7788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4867 | 1.0 | 1365 | 0.4591 | 0.7879 | 0.7762 | | 0.39 | 2.0 | 2730 | 0.4610 | 0.7900 | 0.7788 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.13.2
553f506a2c6039d8ddb455fdb21f107f
sonoisa/t5-base-japanese
sonoisa
t5
8
26,723
transformers
17
feature-extraction
true
false
true
cc-by-sa-4.0
['ja']
['wikipedia', 'oscar', 'cc100']
null
0
0
0
0
1
0
1
['t5', 'text2text-generation', 'seq2seq']
false
true
true
3,433
false
# 日本語T5事前学習済みモデル This is a T5 (Text-to-Text Transfer Transformer) model pretrained on Japanese corpus. 次の日本語コーパス(約100GB)を用いて事前学習を行ったT5 (Text-to-Text Transfer Transformer) モデルです。 * [Wikipedia](https://ja.wikipedia.org)の日本語ダンプデータ (2020年7月6日時点のもの) * [OSCAR](https://oscar-corpus.com)の日本語コーパス * [CC-100](http://data.statmt.org/cc-100/)の日本語コーパス このモデルは事前学習のみを行なったものであり、特定のタスクに利用するにはファインチューニングする必要があります。 本モデルにも、大規模コーパスを用いた言語モデルにつきまとう、学習データの内容の偏りに由来する偏った(倫理的ではなかったり、有害だったり、バイアスがあったりする)出力結果になる問題が潜在的にあります。 この問題が発生しうることを想定した上で、被害が発生しない用途にのみ利用するよう気をつけてください。 SentencePieceトークナイザーの学習には上記Wikipediaの全データを用いました。 # 転移学習のサンプルコード https://github.com/sonoisa/t5-japanese # ベンチマーク ## livedoorニュース分類タスク livedoorニュースコーパスを用いたニュース記事のジャンル予測タスクの精度は次の通りです。 Google製多言語T5モデルに比べて、モデルサイズが25%小さく、6ptほど精度が高いです。 日本語T5 ([t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese), パラメータ数は222M, [再現用コード](https://github.com/sonoisa/t5-japanese/blob/main/t5_japanese_classification.ipynb)) | label | precision | recall | f1-score | support | | ----------- | ----------- | ------- | -------- | ------- | | 0 | 0.96 | 0.94 | 0.95 | 130 | | 1 | 0.98 | 0.99 | 0.99 | 121 | | 2 | 0.96 | 0.96 | 0.96 | 123 | | 3 | 0.86 | 0.91 | 0.89 | 82 | | 4 | 0.96 | 0.97 | 0.97 | 129 | | 5 | 0.96 | 0.96 | 0.96 | 141 | | 6 | 0.98 | 0.98 | 0.98 | 127 | | 7 | 1.00 | 0.99 | 1.00 | 127 | | 8 | 0.99 | 0.97 | 0.98 | 120 | | accuracy | | | 0.97 | 1100 | | macro avg | 0.96 | 0.96 | 0.96 | 1100 | | weighted avg | 0.97 | 0.97 | 0.97 | 1100 | 比較対象: 多言語T5 ([google/mt5-small](https://huggingface.co/google/mt5-small), パラメータ数は300M) | label | precision | recall | f1-score | support | | ----------- | ----------- | ------- | -------- | ------- | | 0 | 0.91 | 0.88 | 0.90 | 130 | | 1 | 0.84 | 0.93 | 0.89 | 121 | | 2 | 0.93 | 0.80 | 0.86 | 123 | | 3 | 0.82 | 0.74 | 0.78 | 82 | | 4 | 0.90 | 0.95 | 0.92 | 129 | | 5 | 0.89 | 0.89 | 0.89 | 141 | | 6 | 0.97 | 0.98 | 0.97 | 127 | | 7 | 0.95 | 0.98 | 0.97 | 127 | | 8 | 0.93 | 0.95 | 0.94 | 120 | | accuracy | | | 0.91 | 1100 | | macro avg | 0.91 | 0.90 | 0.90 | 1100 | | weighted avg | 0.91 | 0.91 | 0.91 | 1100 | ## JGLUEベンチマーク [JGLUE](https://github.com/yahoojapan/JGLUE)ベンチマークの結果は次のとおりです(順次追加)。 - MARC-ja: 準備中 - JSTS: 準備中 - JNLI: 準備中 - JSQuAD: EM=0.900, F1=0.945, [再現用コード](https://github.com/sonoisa/t5-japanese/blob/main/t5_JSQuAD.ipynb) - JCommonsenseQA: 準備中 # 免責事項 本モデルの作者は本モデルを作成するにあたって、その内容、機能等について細心の注意を払っておりますが、モデルの出力が正確であるかどうか、安全なものであるか等について保証をするものではなく、何らの責任を負うものではありません。本モデルの利用により、万一、利用者に何らかの不都合や損害が発生したとしても、モデルやデータセットの作者や作者の所属組織は何らの責任を負うものではありません。利用者には本モデルやデータセットの作者や所属組織が責任を負わないことを明確にする義務があります。 # ライセンス [CC-BY SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.ja) [Common Crawlの利用規約](http://commoncrawl.org/terms-of-use/)も守るようご注意ください。
8c669e59375f2aba7fd8798a2af00ee8
AIARTCHAN/aichan_blend
AIARTCHAN
null
48
0
null
32
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'aiartchan']
false
true
true
1,431
false
Mixed stable diffusion models from the ai image channel and elsewhere. Feel free to download. ## file download code example ```python # urlretrieve, no progressbar from urllib.request import urlretrieve from huggingface_hub import hf_hub_url repo_id = "AIARTCHAN/aichan_blend" filename = "AbyssOrangeMix2_nsfw-pruned.safetensors" url = hf_hub_url(repo_id, filename) urlretrieve(url, filename) ``` ```python # with tqdm, urllib import shutil from urllib.request import urlopen from huggingface_hub import hf_hub_url from tqdm import tqdm repo_id = "AIARTCHAN/aichan_blend" filename = "AbyssOrangeMix2_nsfw-pruned.safetensors" url = hf_hub_url(repo_id, filename) with urlopen(url) as resp: total = int(resp.headers.get("Content-Length", 0)) with tqdm.wrapattr( resp, "read", total=total, desc="Download..." ) as src: with open(filename, "wb") as dst: shutil.copyfileobj(src, dst) ``` ```python # with tqdm, requests import shutil import requests from huggingface_hub import hf_hub_url from tqdm import tqdm repo_id = "AIARTCHAN/aichan_blend" filename = "AbyssOrangeMix2_nsfw-pruned.safetensors" url = hf_hub_url(repo_id, filename) resp = requests.get(url, stream=True) total = int(resp.headers.get("Content-Length", 0)) with tqdm.wrapattr( resp.raw, "read", total=total, desc="Download..." ) as src: with open(filename, "wb") as dst: shutil.copyfileobj(src, dst) ```
7ccc3cd42908a2e30491a00fba9dada6
zates/distilbert-base-uncased-finetuned-squad-seed-69
zates
distilbert
14
7
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad_v2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,295
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-seed-69 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2185 | 1.0 | 8235 | 1.2774 | | 0.9512 | 2.0 | 16470 | 1.2549 | | 0.7704 | 3.0 | 24705 | 1.4246 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
004b089516cc051701764f9ed71f0e25
sentence-transformers/nli-distilroberta-base-v2
sentence-transformers
roberta
15
734
sentence-transformers
0
sentence-similarity
true
true
true
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,555
false
# sentence-transformers/nli-distilroberta-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/nli-distilroberta-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/nli-distilroberta-base-v2') model = AutoModel.from_pretrained('sentence-transformers/nli-distilroberta-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/nli-distilroberta-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
b9b0d2a001b9cc42ca3fb02ec0498b8f
cdefghijkl/wnt1
cdefghijkl
null
18
4
diffusers
2
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
609
false
### wnt1 Dreambooth model trained by cdefghijkl with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
9b820d09c1d04cc3f737715c5de0ea94
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-3
SetFit
distilbert
10
5
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,462
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9681 - Accuracy: 0.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1073 | 1.0 | 5 | 1.1393 | 0.0 | | 1.0392 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0302 | 3.0 | 15 | 1.1694 | 0.2 | | 0.9176 | 4.0 | 20 | 1.1846 | 0.2 | | 0.8339 | 5.0 | 25 | 1.1663 | 0.2 | | 0.7533 | 6.0 | 30 | 1.1513 | 0.4 | | 0.6327 | 7.0 | 35 | 1.1474 | 0.4 | | 0.4402 | 8.0 | 40 | 1.1385 | 0.4 | | 0.3752 | 9.0 | 45 | 1.0965 | 0.2 | | 0.3448 | 10.0 | 50 | 1.0357 | 0.2 | | 0.2582 | 11.0 | 55 | 1.0438 | 0.2 | | 0.1903 | 12.0 | 60 | 1.0561 | 0.2 | | 0.1479 | 13.0 | 65 | 1.0569 | 0.2 | | 0.1129 | 14.0 | 70 | 1.0455 | 0.2 | | 0.1071 | 15.0 | 75 | 1.0416 | 0.4 | | 0.0672 | 16.0 | 80 | 1.1164 | 0.4 | | 0.0561 | 17.0 | 85 | 1.1846 | 0.6 | | 0.0463 | 18.0 | 90 | 1.2040 | 0.6 | | 0.0431 | 19.0 | 95 | 1.2078 | 0.6 | | 0.0314 | 20.0 | 100 | 1.2368 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
57addf7e990469dc4c0baa32058e2e84
Ramuvannela/bert-fine-tuned-cola
Ramuvannela
bert
13
17
transformers
0
text-classification
true
true
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,387
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8073 - Matthews Correlation: 0.6107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4681 | 1.0 | 1069 | 0.5613 | 0.4892 | | 0.321 | 2.0 | 2138 | 0.6681 | 0.5851 | | 0.1781 | 3.0 | 3207 | 0.8073 | 0.6107 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ef9803fcabf8b54afc90c15344c733cb
dehio/german-qg-t5-quad
dehio
t5
17
3
transformers
1
text2text-generation
true
false
false
mit
['de']
['deepset/germanquad']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
1,364
false
# german-qg-t5-quad This model is fine-tuned in question generation in German. The expected answer must be highlighted with a &lt;hl> token. ## Task example #### Input generate question: Obwohl die Vereinigten Staaten wie auch viele Staaten des Commonwealth Erben des <hl> britischen Common Laws <hl> sind, setzt sich das amerikanische Recht bedeutend davon ab. Dies rührt größtenteils von dem langen Zeitraum her, [...] #### Expected output Von welchem Gesetzt stammt das Amerikanische ab? ## Model description This model is a fine-tuned version of [valhalla/t5-base-qg-hl](https://huggingface.co/valhalla/t5-base-qg-hl) on the [GermanQUAD](https://www.deepset.ai/germanquad) dataset. ## Training and evaluation data The training script can be accessed [here](https://github.com/d-e-h-i-o/german-qg). ### Evaluation The model achieves a BLEU-4 score of **11.30** on the GermanQuAD test set (n=2204). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 100 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
9eaae1cb0a29cd2f069fe66667851b4f
lewtun/mt5-small-finetuned-mlsum
lewtun
mt5
21
5
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['mlsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,419
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-mlsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 1.1475 - Rouge2: 0.1284 - Rougel: 1.0634 - Rougelsum: 1.0778 - Gen Len: 3.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | nan | 1.0 | 808 | nan | 1.1475 | 0.1284 | 1.0634 | 1.0778 | 3.7939 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
fcc2401ad0add2b79c19307d09b79533
svjack/Stable-Diffusion-FineTuned-zh-v2
svjack
null
16
19
diffusers
3
text-to-image
false
false
false
other
['zh']
null
null
2
2
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'zh', 'Chinese']
false
true
true
8,626
false
# Chinese Stable Diffusion Model Card <!-- ![rinna](https://github.com/rinnakk/japanese-clip/blob/master/data/rinna.png?raw=true) --> svjack/Stable-Diffusion-FineTuned-zh-v0 is a Chinese-specific latent text-to-image diffusion model capable of generating images given any Chinese text input. This model was trained by using a powerful text-to-image model, [diffusers](https://github.com/huggingface/diffusers) For more information about our training method, see [train_zh_model.py](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/train_zh_model.py). With the help of a good baseline model [Taiyi-Stable-Diffusion-1B-Chinese-v0.1](IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1) from [IDEA-CCNL](https://github.com/IDEA-CCNL/Fengshenbang-LM) <!-- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rinnakk/japanese-stable-diffusion/blob/master/scripts/txt2img.ipynb) --> ## Model Details - **Developed by:** Zhipeng Yang - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** Chinese - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model (LDM)](https://arxiv.org/abs/2112.10752) that used [Stable Diffusion](https://github.com/CompVis/stable-diffusion) as a pre-trained model. - **Resources for more information:** [https://github.com/svjack/Stable-Diffusion-Chinese-Extend](https://github.com/svjack/Stable-Diffusion-Chinese-Extend) ## Examples Firstly, install our package as follows. This package is modified [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Chinese Stable Diffusion. ```bash diffusers==0.6.0 transformers torch datasets accelerate sentencepiece ``` Run this command to log in with your HF Hub token if you haven't before: ```bash huggingface-cli login ``` Running the pipeline with the LMSDiscreteScheduler scheduler: ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-FineTuned-zh-v2") pipeline.safety_checker = lambda images, clip_input: (images, False) pipeline = pipeline.to("cuda") prompt = '女孩们打开了另一世界的大门' image = pipeline(prompt, guidance_scale=7.5).images[0] ``` ### Generator Results comparison [https://github.com/svjack/Stable-Diffusion-Chinese-Extend](https://github.com/svjack/Stable-Diffusion-Chinese-Extend) ![0](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/imgs/dragon_v2.jpg?raw=true) ![1](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/imgs/dragon_style_v2.jpg?raw=true) ![2](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/imgs/girl_v2.jpg?raw=true) ![3](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/imgs/girl_style_v2.jpg?raw=true) <!-- _Note: `JapaneseStableDiffusionPipeline` is almost same as diffusers' `StableDiffusionPipeline` but added some lines to initialize our models properly._ ## Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1._ The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with Japanese captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Japanese Stable Diffusion was trained on Japanese datasets including [LAION-5B](https://laion.ai/blog/laion-5b/) with Japanese captions, which consists of images that are primarily limited to Japanese descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model. Further, the ability of the model to generate content with non-Japanese prompts is significantly worse than with Japanese-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Training **Training Data** We used the following dataset for training the model: - Approximately 100 million images with Japanese captions, including the Japanese subset of [LAION-5B](https://laion.ai/blog/laion-5b/). **Training Procedure** Japanese Stable Diffusion has the same architecture as Stable Diffusion and was trained by using Stable Diffusion. Because Stable Diffusion was trained on English dataset and the CLIP tokenizer is basically for English, we had 2 stages to transfer to a language-specific model, inspired by [PITI](https://arxiv.org/abs/2205.12952). 1. Train a Japanese-specific text encoder with our Japanese tokenizer from scratch with the latent diffusion model fixed. This stage is expected to map Japanese captions to Stable Diffusion's latent space. 2. Fine-tune the text encoder and the latent diffusion model jointly. This stage is expected to generate Japanese-style images more. [//]: # (_Note: Japanese Stable Diffusion is still running and this checkpoint is the current best one. We might update to a better checkpoint via this repository._) -->
a7b8d80bc5de525c0bc97d4e3a0136c5
anuragshas/wav2vec2-large-xls-r-300m-mr
anuragshas
wav2vec2
19
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['mr']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'robust-speech-event', 'hf-asr-leaderboard']
true
true
true
3,129
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.5740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7378 | 18.18 | 400 | 3.5047 | 1.0 | | 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 | | 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 | | 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 | | 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 | | 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 | | 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 | | 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 | | 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 | | 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 | | 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "या पानास लेखाचे स्वरूप यायला हावे" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 49.177 | 32.811 |
14cb6031836aa13db235280c5b6c4fb7
JoshuaRubin/bert-base-uncased-finetuned-math_punctuation-ignore_word_parts
JoshuaRubin
bert
19
10
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,928
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-math_punctuation-ignore_word_parts This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1981 - Precision: 0.7843 - Recall: 0.7485 - F Score: 0.7648 - Auc: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F Score | Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:-------:|:------:| | 0.1064 | 0.64 | 500 | 0.1082 | 0.7558 | 0.6580 | 0.6964 | 0.9086 | | 0.0781 | 1.27 | 1000 | 0.1025 | 0.7594 | 0.7226 | 0.7365 | 0.9261 | | 0.0757 | 1.91 | 1500 | 0.1001 | 0.7945 | 0.6899 | 0.7302 | 0.9272 | | 0.0538 | 2.54 | 2000 | 0.1061 | 0.7689 | 0.7348 | 0.7480 | 0.9298 | | 0.0425 | 3.18 | 2500 | 0.1123 | 0.7806 | 0.7361 | 0.7560 | 0.9300 | | 0.0377 | 3.81 | 3000 | 0.1159 | 0.7841 | 0.7437 | 0.7610 | 0.9292 | | 0.0235 | 4.45 | 3500 | 0.1259 | 0.7786 | 0.7368 | 0.7561 | 0.9276 | | 0.0227 | 5.08 | 4000 | 0.1436 | 0.7699 | 0.7448 | 0.7555 | 0.9277 | | 0.0159 | 5.72 | 4500 | 0.1466 | 0.7715 | 0.7333 | 0.7514 | 0.9252 | | 0.0106 | 6.35 | 5000 | 0.1574 | 0.7710 | 0.7456 | 0.7566 | 0.9276 | | 0.0111 | 6.99 | 5500 | 0.1560 | 0.7694 | 0.7500 | 0.7595 | 0.9286 | | 0.0074 | 7.62 | 6000 | 0.1645 | 0.7789 | 0.7511 | 0.7639 | 0.9305 | | 0.0056 | 8.26 | 6500 | 0.1745 | 0.7887 | 0.7453 | 0.7648 | 0.9265 | | 0.005 | 8.89 | 7000 | 0.1760 | 0.7779 | 0.7497 | 0.7629 | 0.9281 | | 0.0038 | 9.53 | 7500 | 0.1873 | 0.7826 | 0.7505 | 0.7634 | 0.9273 | | 0.0031 | 10.17 | 8000 | 0.1896 | 0.7855 | 0.7477 | 0.7644 | 0.9258 | | 0.0026 | 10.8 | 8500 | 0.1929 | 0.7849 | 0.7485 | 0.7650 | 0.9263 | | 0.0017 | 11.44 | 9000 | 0.1981 | 0.7843 | 0.7485 | 0.7648 | 0.9248 | ### Framework versions - Transformers 4.25.1 - Pytorch 2.0.0.dev20230111 - Datasets 2.8.0 - Tokenizers 0.13.2
945ed115fac358b64369544945bc5e9a
Helsinki-NLP/opus-mt-bg-fi
Helsinki-NLP
marian
10
16
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-bg-fi * source languages: bg * target languages: fi * OPUS readme: [bg-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bg-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bg-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bg-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bg-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bg.fi | 23.7 | 0.505 |
635e516d078fc4837f5ce4f55813c633
dragonSwing/viwav2vec2-base-3k
dragonSwing
wav2vec2
5
4
transformers
0
automatic-speech-recognition
true
false
false
cc-by-sa-4.0
['vi']
null
null
0
0
0
0
0
0
0
['speech', 'automatic-speech-recognition']
false
true
true
1,333
false
# Wav2Vec2 base model trained of 3K hours of Vietnamese speech The base model is pre-trained on 16kHz sampled speech audio from Vietnamese speech corpus containing 3K hours of spontaneous, reading, and broadcasting speech. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Vietnamese Automatic Speech Recognition. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Facebook's Wav2Vec2 blog](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) [Paper](https://arxiv.org/abs/2006.11477) # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the English pre-trained model. ```python import torch from transformers import Wav2Vec2Model model = Wav2Vec2Model.from_pretrained("dragonSwing/viwav2vec2-base-3k") # Sanity check inputs = torch.rand([1, 16000]) outputs = model(inputs) ```
13f24e1b2a25e95a77a6bd007c487bec
theojolliffe/bart-model2-3110-e4
theojolliffe
bart
12
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,998
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-3110-e4 This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1-feedback](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1-feedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0700 - Rouge1: 70.0692 - Rouge2: 68.1457 - Rougel: 69.8943 - Rougelsum: 70.0389 - Gen Len: 19.8966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5951 | 1.0 | 553 | 0.3089 | 62.5675 | 54.7411 | 61.2646 | 61.3675 | 19.7241 | | 0.2541 | 2.0 | 1106 | 0.1432 | 66.113 | 61.964 | 64.6141 | 64.9187 | 19.8966 | | 0.1547 | 3.0 | 1659 | 0.0964 | 68.6902 | 64.938 | 67.6197 | 67.9181 | 19.8966 | | 0.1141 | 4.0 | 2212 | 0.1015 | 68.9122 | 66.4279 | 68.4906 | 68.5758 | 19.8966 | | 0.0728 | 5.0 | 2765 | 0.0819 | 69.2271 | 66.8276 | 68.6915 | 68.849 | 19.8966 | | 0.0563 | 6.0 | 3318 | 0.0700 | 70.0692 | 68.1457 | 69.8943 | 70.0389 | 19.8966 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
01f8506ac04b47d373cf946c683b074f
UchihaMadara/model2
UchihaMadara
bert
16
22
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,307
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2319 - Accuracy: 0.9479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 224 | 0.2074 | 0.9453 | | No log | 2.0 | 448 | 0.2421 | 0.9440 | | 0.2593 | 3.0 | 672 | 0.2319 | 0.9479 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
21030e756a998cc7c397cb8a1bf43aaa
viba98/lineal-ic
viba98
null
26
50
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
3
2
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
1,339
false
### lineal-ic Dreambooth model trained by viba98 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: linealic ![linealic 0](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_5.jpg) ![linealic 1](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_4.jpg) ![linealic 2](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_1.jpg) ![linealic 3](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_3.jpg) ![linealic 4](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_7.jpg) ![linealic 5](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_6.jpg) ![linealic 6](https://huggingface.co/viba98/lineal-ic/resolve/main/sample_images/linealic_2.jpg)
6a777096b7011372f40f58716c379528
Isaacp/bert-base-uncased-issues-128
Isaacp
bert
10
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,919
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0986 | 1.0 | 291 | 1.6929 | | 1.6401 | 2.0 | 582 | 1.4304 | | 1.4881 | 3.0 | 873 | 1.3916 | | 1.4 | 4.0 | 1164 | 1.3796 | | 1.3416 | 5.0 | 1455 | 1.2012 | | 1.2807 | 6.0 | 1746 | 1.2733 | | 1.2396 | 7.0 | 2037 | 1.2646 | | 1.1993 | 8.0 | 2328 | 1.2098 | | 1.1661 | 9.0 | 2619 | 1.1862 | | 1.1406 | 10.0 | 2910 | 1.2223 | | 1.1294 | 11.0 | 3201 | 1.2056 | | 1.1042 | 12.0 | 3492 | 1.1655 | | 1.0827 | 13.0 | 3783 | 1.2525 | | 1.0738 | 14.0 | 4074 | 1.1685 | | 1.0626 | 15.0 | 4365 | 1.1182 | | 1.0629 | 16.0 | 4656 | 1.2456 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
578d3b1963f6092af04429b6c1866444
Ramu/distilbert-base-uncased-finetuned-emotion
Ramu
distilbert
14
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,343
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2167 - Accuracy: 0.926 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8112 | 1.0 | 250 | 0.3147 | 0.903 | 0.8992 | | 0.2454 | 2.0 | 500 | 0.2167 | 0.926 | 0.9262 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
a16ba4f7fd7f22a8b25654f9199cb581
Helsinki-NLP/opus-mt-en-ru
Helsinki-NLP
marian
11
55,612
transformers
10
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
1,075
false
### opus-mt-en-ru * source languages: en * target languages: ru * OPUS readme: [en-ru](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ru/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-02-11.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ru/opus-2020-02-11.zip) * test set translations: [opus-2020-02-11.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ru/opus-2020-02-11.test.txt) * test set scores: [opus-2020-02-11.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ru/opus-2020-02-11.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2012.en.ru | 31.1 | 0.581 | | newstest2013.en.ru | 23.5 | 0.513 | | newstest2015-enru.en.ru | 27.5 | 0.564 | | newstest2016-enru.en.ru | 26.4 | 0.548 | | newstest2017-enru.en.ru | 29.1 | 0.572 | | newstest2018-enru.en.ru | 25.4 | 0.554 | | newstest2019-enru.en.ru | 27.1 | 0.533 | | Tatoeba.en.ru | 48.4 | 0.669 |
89359987ac224d646552ade8c0a24bb6
timm/maxvit_small_tf_224.in1k
timm
null
4
137
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
22,015
false
# Model card for maxvit_small_tf_224.in1k An official MaxViT image classification model. Trained in tensorflow on ImageNet-1k by paper authors. Ported from official Tensorflow implementation (https://github.com/google-research/maxvit) to PyTorch by Ross Wightman. ### Model Variants in [maxxvit.py](https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/maxxvit.py) MaxxViT covers a number of related model architectures that share a common structure including: - CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages. - MaxViT - Uniform blocks across all stages, each containing a MBConv (depthwise-separable) convolution block followed by two self-attention blocks with different partitioning schemes (window followed by grid). - CoAtNeXt - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in CoAtNet. All normalization layers are LayerNorm (no BatchNorm). - MaxxViT - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in MaxViT. All normalization layers are LayerNorm (no BatchNorm). - MaxxViT-V2 - A MaxxViT variation that removes the window block attention leaving only ConvNeXt blocks and grid attention w/ more width to compensate. Aside from the major variants listed above, there are more subtle changes from model to model. Any model name with the string `rw` are `timm` specific configs w/ modelling adjustments made to favour PyTorch eager use. These were created while training initial reproductions of the models so there are variations. All models with the string `tf` are models exactly matching Tensorflow based models by the original paper authors with weights ported to PyTorch. This covers a number of MaxViT models. The official CoAtNet models were never released. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 68.9 - GMACs: 11.7 - Activations (M): 53.2 - Image size: 224 x 224 - **Papers:** - MaxViT: Multi-Axis Vision Transformer: https://arxiv.org/abs/2204.01697 - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('maxvit_small_tf_224.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'maxvit_small_tf_224.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 192, 192]) # torch.Size([1, 128, 96, 96]) # torch.Size([1, 256, 48, 48]) # torch.Size([1, 512, 24, 24]) # torch.Size([1, 1024, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'maxvit_small_tf_224.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| ### By Throughput (samples / sec) |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| ## Citation ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ```bibtex @article{tu2022maxvit, title={MaxViT: Multi-Axis Vision Transformer}, author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, journal={ECCV}, year={2022}, } ``` ```bibtex @article{dai2021coatnet, title={CoAtNet: Marrying Convolution and Attention for All Data Sizes}, author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing}, journal={arXiv preprint arXiv:2106.04803}, year={2021} } ```
5347fa1479b3d16975ce93741b5275f8
Deep98/IPod-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,856
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/IPod-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4336 - Train End Logits Accuracy: 0.8819 - Train Start Logits Accuracy: 0.8819 - Validation Loss: 0.3193 - Validation End Logits Accuracy: 0.8636 - Validation Start Logits Accuracy: 0.8636 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4336 | 0.8819 | 0.8819 | 0.3193 | 0.8636 | 0.8636 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ee2bd3044ebe8b030a63ce519e661895
M-Quan/wav2vec2-E
M-Quan
wav2vec2
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,621
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-E This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4832 - Wer: 0.3432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5034 | 4.0 | 500 | 1.1620 | 0.8995 | | 0.5738 | 8.0 | 1000 | 0.4625 | 0.4396 | | 0.2142 | 12.0 | 1500 | 0.4791 | 0.3965 | | 0.1219 | 16.0 | 2000 | 0.4677 | 0.3703 | | 0.0854 | 20.0 | 2500 | 0.4782 | 0.3544 | | 0.0587 | 24.0 | 3000 | 0.4680 | 0.3516 | | 0.044 | 28.0 | 3500 | 0.4832 | 0.3432 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.10.3
7fae9b8b97c7c5cfe64d9586f1fe5632
MultiBertGunjanPatrick/multiberts-seed-2-60k
MultiBertGunjanPatrick
bert
7
4
transformers
0
null
true
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert', 'multiberts', 'multiberts-seed-2']
false
true
true
6,479
false
# MultiBERTs Seed 2 Checkpoint 60k (uncased) Seed 2 intermediate checkpoint 60k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-60k') model = BertModel.from_pretrained("multiberts-seed-2-60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
96b9b3ccbbd72f35ab7fcbdcbe7cde7a
rootcodes/wav2vec2-large-xls-r-300m-turkish-colab
rootcodes
wav2vec2
15
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,791
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4313 - Wer: 0.3336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0055 | 3.67 | 400 | 0.7015 | 0.6789 | | 0.4384 | 7.34 | 800 | 0.4827 | 0.4875 | | 0.2143 | 11.01 | 1200 | 0.4672 | 0.4554 | | 0.1431 | 14.68 | 1600 | 0.4331 | 0.4014 | | 0.1053 | 18.35 | 2000 | 0.4471 | 0.3822 | | 0.0857 | 22.02 | 2400 | 0.4324 | 0.3637 | | 0.0683 | 25.69 | 2800 | 0.4305 | 0.3423 | | 0.0526 | 29.36 | 3200 | 0.4313 | 0.3336 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
eacb41535f3fac51d535349dd0d40238
NX2411/wav2vec2-large-xlsr-en-demo
NX2411
wav2vec2
18
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,863
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-en-demo This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1356 - Wer: 0.2015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3911 | 0.5 | 500 | 0.5397 | 0.2615 | | 0.3413 | 1.01 | 1000 | 0.1423 | 0.2137 | | 0.243 | 1.51 | 1500 | 0.1458 | 0.2210 | | 0.2232 | 2.01 | 2000 | 0.1380 | 0.2143 | | 0.162 | 2.51 | 2500 | 0.1464 | 0.2149 | | 0.1384 | 3.02 | 3000 | 0.1348 | 0.2109 | | 0.1164 | 3.52 | 3500 | 0.1324 | 0.2040 | | 0.1103 | 4.02 | 4000 | 0.1310 | 0.2051 | | 0.0857 | 4.53 | 4500 | 0.1356 | 0.2015 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
cd2d735bc8a5da827c643a0b72b3f5f6
akmoyu/whisper-small-mn
akmoyu
whisper
13
3
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['mn']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,480
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Mn - akmoyu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8308 - Wer: 50.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0306 | 7.94 | 1000 | 0.6344 | 52.8724 | | 0.0017 | 15.87 | 2000 | 0.7480 | 50.3659 | | 0.0004 | 23.81 | 3000 | 0.8137 | 50.5406 | | 0.0003 | 15.87 | 4000 | 0.8308 | 50.5188 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
ad97a29a384194b9518942a2ee0a4ba8
espnet/kan-bayashi_vctk_gst_fastspeech2
espnet
null
21
6
espnet
0
text-to-speech
false
false
false
cc-by-4.0
['en']
['vctk']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'text-to-speech']
false
true
true
1,800
false
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_fastspeech2` ♻️ Imported from https://zenodo.org/record/4036266/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
8286aa0d0d9165de1a6027d1b836df33
paola-md/distilr2-lr1e05-wd0.05-bs64
paola-md
roberta
6
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,519
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilr2-lr1e05-wd0.05-bs64 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2722 - Rmse: 0.5217 - Mse: 0.2722 - Mae: 0.4147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 312 | 0.2749 | 0.5243 | 0.2749 | 0.4243 | | 0.2745 | 2.0 | 624 | 0.2731 | 0.5226 | 0.2731 | 0.4120 | | 0.2732 | 3.0 | 936 | 0.2725 | 0.5220 | 0.2725 | 0.4156 | | 0.2718 | 4.0 | 1248 | 0.2722 | 0.5217 | 0.2722 | 0.4147 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
ca7dc9c99ddc832b37ab797934e477bc
vanme/vmehlin_distilbert-finetuned-squad
vanme
distilbert
12
6
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,199
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vmehlin_distilbert-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1 ### co2_eq_emissions: - emissions: 49.49 g - source: eco2AI - training_time: 00:31:54 - geographical_location: Bavaria, Germany - hardware_used: Intel(R) Xeon(R) Gold 5215 CPUs (2devices) & NVIDIA A40 (1 device)
4eb51a4b230511dfc65f2ca3bd7fb1af
google/multiberts-seed_3-step_100k
google
bert
8
50
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_3', 'multiberts-seed_3-step_100k']
false
true
true
3,521
false
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
160c4de553b7b7c7aa0720e892ca5e50
Billwzl/20split_dataset_version1
Billwzl
distilbert
10
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,751
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20split_dataset_version1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7475 | 1.0 | 11851 | 2.5194 | | 2.5528 | 2.0 | 23702 | 2.4191 | | 2.4649 | 3.0 | 35553 | 2.3646 | | 2.4038 | 4.0 | 47404 | 2.3289 | | 2.3632 | 5.0 | 59255 | 2.2922 | | 2.3273 | 6.0 | 71106 | 2.2739 | | 2.2964 | 7.0 | 82957 | 2.2494 | | 2.2732 | 8.0 | 94808 | 2.2217 | | 2.2526 | 9.0 | 106659 | 2.2149 | | 2.2369 | 10.0 | 118510 | 2.2029 | | 2.222 | 11.0 | 130361 | 2.2020 | | 2.2135 | 12.0 | 142212 | 2.1942 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
32a81be83f80e1ba35dd6fd5318ecc23
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v2
AykeeSalazar
vit
9
13
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,580
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8271 - Accuracy: 0.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 100 | 0.3811 | 0.8511 | | No log | 0.81 | 200 | 0.3707 | 0.8609 | | No log | 1.21 | 300 | 0.5708 | 0.7325 | | No log | 1.61 | 400 | 0.3121 | 0.8778 | | 0.3308 | 2.02 | 500 | 0.3358 | 0.8445 | | 0.3308 | 2.42 | 600 | 0.2820 | 0.8768 | | 0.3308 | 2.82 | 700 | 0.4825 | 0.7695 | | 0.3308 | 3.23 | 800 | 0.3133 | 0.8640 | | 0.3308 | 3.63 | 900 | 0.4509 | 0.8219 | | 0.2028 | 4.03 | 1000 | 0.5426 | 0.7551 | | 0.2028 | 4.44 | 1100 | 0.4886 | 0.8552 | | 0.2028 | 4.84 | 1200 | 0.5649 | 0.7695 | | 0.2028 | 5.24 | 1300 | 0.5925 | 0.7900 | | 0.2028 | 5.65 | 1400 | 0.4203 | 0.8439 | | 0.1471 | 6.05 | 1500 | 0.4275 | 0.8486 | | 0.1471 | 6.45 | 1600 | 0.3683 | 0.8727 | | 0.1471 | 6.85 | 1700 | 0.5709 | 0.8121 | | 0.1471 | 7.26 | 1800 | 0.6209 | 0.7680 | | 0.1471 | 7.66 | 1900 | 0.4971 | 0.8147 | | 0.101 | 8.06 | 2000 | 0.8792 | 0.7567 | | 0.101 | 8.47 | 2100 | 0.3288 | 0.8670 | | 0.101 | 8.87 | 2200 | 0.3643 | 0.8342 | | 0.101 | 9.27 | 2300 | 0.4883 | 0.8711 | | 0.101 | 9.68 | 2400 | 0.2892 | 0.8943 | | 0.0667 | 10.08 | 2500 | 0.5437 | 0.8398 | | 0.0667 | 10.48 | 2600 | 0.5841 | 0.8450 | | 0.0667 | 10.89 | 2700 | 0.8016 | 0.8219 | | 0.0667 | 11.29 | 2800 | 0.6389 | 0.7772 | | 0.0667 | 11.69 | 2900 | 0.3714 | 0.8753 | | 0.0674 | 12.1 | 3000 | 0.9811 | 0.7130 | | 0.0674 | 12.5 | 3100 | 0.6359 | 0.8101 | | 0.0674 | 12.9 | 3200 | 0.5691 | 0.8285 | | 0.0674 | 13.31 | 3300 | 0.6123 | 0.8316 | | 0.0674 | 13.71 | 3400 | 0.3655 | 0.8978 | | 0.0525 | 14.11 | 3500 | 0.4988 | 0.8583 | | 0.0525 | 14.52 | 3600 | 0.6153 | 0.8450 | | 0.0525 | 14.92 | 3700 | 0.4189 | 0.8881 | | 0.0525 | 15.32 | 3800 | 0.9713 | 0.7967 | | 0.0525 | 15.73 | 3900 | 1.1224 | 0.7967 | | 0.0438 | 16.13 | 4000 | 0.5725 | 0.8578 | | 0.0438 | 16.53 | 4100 | 0.4725 | 0.8532 | | 0.0438 | 16.94 | 4200 | 0.4696 | 0.8640 | | 0.0438 | 17.34 | 4300 | 0.4028 | 0.8789 | | 0.0438 | 17.74 | 4400 | 0.9452 | 0.7746 | | 0.0462 | 18.15 | 4500 | 0.4455 | 0.8783 | | 0.0462 | 18.55 | 4600 | 0.6328 | 0.8311 | | 0.0462 | 18.95 | 4700 | 0.6707 | 0.8296 | | 0.0462 | 19.35 | 4800 | 0.7771 | 0.8429 | | 0.0462 | 19.76 | 4900 | 1.2832 | 0.7408 | | 0.0381 | 20.16 | 5000 | 0.5415 | 0.8737 | | 0.0381 | 20.56 | 5100 | 0.8932 | 0.7977 | | 0.0381 | 20.97 | 5200 | 0.5182 | 0.8691 | | 0.0381 | 21.37 | 5300 | 0.5967 | 0.8794 | | 0.0381 | 21.77 | 5400 | 0.8271 | 0.7705 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
3ccd9c193f27dbd30f13a53ca163af96
ser-mei/gpt-finetuning-cervantes
ser-mei
gpt2
11
0
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,817
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-finetuning-cervantes This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.8331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.0291 | 0.96 | 13 | 4.6705 | | 4.7952 | 1.96 | 26 | 4.4547 | | 4.5759 | 2.96 | 39 | 4.3201 | | 4.4032 | 3.96 | 52 | 4.2451 | | 4.269 | 4.96 | 65 | 4.1911 | | 4.143 | 5.96 | 78 | 4.1577 | | 4.0229 | 6.96 | 91 | 4.1306 | | 3.9047 | 7.96 | 104 | 4.1165 | | 3.7886 | 8.96 | 117 | 4.1114 | | 3.6666 | 9.96 | 130 | 4.1109 | | 3.539 | 10.96 | 143 | 4.1201 | | 3.4117 | 11.96 | 156 | 4.1374 | | 3.272 | 12.96 | 169 | 4.1538 | | 3.1283 | 13.96 | 182 | 4.1876 | | 2.9728 | 14.96 | 195 | 4.2226 | | 2.816 | 15.96 | 208 | 4.2695 | | 2.6475 | 16.96 | 221 | 4.3106 | | 2.4765 | 17.96 | 234 | 4.3678 | | 2.302 | 18.96 | 247 | 4.4249 | | 2.1257 | 19.96 | 260 | 4.4908 | | 1.9537 | 20.96 | 273 | 4.5664 | | 1.7834 | 21.96 | 286 | 4.6324 | | 1.6177 | 22.96 | 299 | 4.6944 | | 1.4573 | 23.96 | 312 | 4.7880 | | 1.3057 | 24.96 | 325 | 4.8843 | | 1.1652 | 25.96 | 338 | 4.9760 | | 1.0341 | 26.96 | 351 | 5.0612 | | 0.9101 | 27.96 | 364 | 5.1714 | | 0.8017 | 28.96 | 377 | 5.2702 | | 0.706 | 29.96 | 390 | 5.3530 | | 0.6194 | 30.96 | 403 | 5.4535 | | 0.5436 | 31.96 | 416 | 5.5373 | | 0.4816 | 32.96 | 429 | 5.6153 | | 0.4309 | 33.96 | 442 | 5.7014 | | 0.3899 | 34.96 | 455 | 5.7749 | | 0.3544 | 35.96 | 468 | 5.8430 | | 0.3236 | 36.96 | 481 | 5.9237 | | 0.3005 | 37.96 | 494 | 5.9824 | | 0.2804 | 38.96 | 507 | 6.0264 | | 0.263 | 39.96 | 520 | 6.0797 | | 0.2513 | 40.96 | 533 | 6.1285 | | 0.2376 | 41.96 | 546 | 6.1900 | | 0.2264 | 42.96 | 559 | 6.2212 | | 0.2183 | 43.96 | 572 | 6.2812 | | 0.2104 | 44.96 | 585 | 6.3079 | | 0.203 | 45.96 | 598 | 6.3501 | | 0.1964 | 46.96 | 611 | 6.3730 | | 0.1912 | 47.96 | 624 | 6.4190 | | 0.1854 | 48.96 | 637 | 6.4598 | | 0.1817 | 49.96 | 650 | 6.4618 | | 0.1792 | 50.96 | 663 | 6.4914 | | 0.1748 | 51.96 | 676 | 6.5385 | | 0.1732 | 52.96 | 689 | 6.5689 | | 0.1689 | 53.96 | 702 | 6.5761 | | 0.1672 | 54.96 | 715 | 6.5775 | | 0.1657 | 55.96 | 728 | 6.6362 | | 0.1625 | 56.96 | 741 | 6.6573 | | 0.1611 | 57.96 | 754 | 6.7019 | | 0.1588 | 58.96 | 767 | 6.6602 | | 0.1573 | 59.96 | 780 | 6.7015 | | 0.1547 | 60.96 | 793 | 6.7323 | | 0.1542 | 61.96 | 806 | 6.7368 | | 0.1538 | 62.96 | 819 | 6.7704 | | 0.1513 | 63.96 | 832 | 6.7963 | | 0.1504 | 64.96 | 845 | 6.7988 | | 0.1506 | 65.96 | 858 | 6.8386 | | 0.1497 | 66.96 | 871 | 6.8039 | | 0.15 | 67.96 | 884 | 6.8126 | | 0.1497 | 68.96 | 897 | 6.8858 | | 0.143 | 69.96 | 910 | 6.8331 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+rocm5.2 - Datasets 2.6.1 - Tokenizers 0.13.2
1d56e70c9c6b922679e7e172bea724c0
gvs/wav2vec2-large-xlsr-malayalam
gvs
wav2vec2
9
23
transformers
2
automatic-speech-recognition
true
false
true
apache-2.0
['ml']
['Indic TTS Malayalam Speech Corpus', 'Openslr Malayalam Speech Corpus', 'SMC Malayalam Speech Corpus', 'IIIT-H Indic Speech Databases']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
7,487
false
# Wav2Vec2-Large-XLSR-53-ml Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on ml (Malayalam) using the [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The notebooks used to train model are available [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = <load-test-split-of-combined-dataset> # Details on loading this dataset in the evaluation section processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from datasets import load_dataset, load_metric from pathlib import Path # The custom dataset needs to be created using notebook mentioned at the end of this file data_dir = Path('<path-to-custom-dataset>') dataset_folders = { 'iiit': 'iiit_mal_abi', 'openslr': 'openslr', 'indic-tts': 'indic-tts-ml', 'msc-reviewed': 'msc-reviewed-speech-v1.0+20200825', } # Set directories for datasets openslr_male_dir = data_dir / dataset_folders['openslr'] / 'male' openslr_female_dir = data_dir / dataset_folders['openslr'] / 'female' iiit_dir = data_dir / dataset_folders['iiit'] indic_tts_male_dir = data_dir / dataset_folders['indic-tts'] / 'male' indic_tts_female_dir = data_dir / dataset_folders['indic-tts'] / 'female' msc_reviewed_dir = data_dir / dataset_folders['msc-reviewed'] # Load the datasets openslr_male = load_dataset("json", data_files=[f"{str(openslr_male_dir.absolute())}/sample_{i}.json" for i in range(2023)], split="train") openslr_female = load_dataset("json", data_files=[f"{str(openslr_female_dir.absolute())}/sample_{i}.json" for i in range(2103)], split="train") iiit = load_dataset("json", data_files=[f"{str(iiit_dir.absolute())}/sample_{i}.json" for i in range(1000)], split="train") indic_tts_male = load_dataset("json", data_files=[f"{str(indic_tts_male_dir.absolute())}/sample_{i}.json" for i in range(5649)], split="train") indic_tts_female = load_dataset("json", data_files=[f"{str(indic_tts_female_dir.absolute())}/sample_{i}.json" for i in range(2950)], split="train") msc_reviewed = load_dataset("json", data_files=[f"{str(msc_reviewed_dir.absolute())}/sample_{i}.json" for i in range(1541)], split="train") # Create test split as 20%, set random seed as well. test_size = 0.2 random_seed=1 openslr_male_splits = openslr_male.train_test_split(test_size=test_size, seed=random_seed) openslr_female_splits = openslr_female.train_test_split(test_size=test_size, seed=random_seed) iiit_splits = iiit.train_test_split(test_size=test_size, seed=random_seed) indic_tts_male_splits = indic_tts_male.train_test_split(test_size=test_size, seed=random_seed) indic_tts_female_splits = indic_tts_female.train_test_split(test_size=test_size, seed=random_seed) msc_reviewed_splits = msc_reviewed.train_test_split(test_size=test_size, seed=random_seed) # Get combined test dataset split_list = [openslr_male_splits, openslr_female_splits, indic_tts_male_splits, indic_tts_female_splits, msc_reviewed_splits, iiit_splits] test_dataset = datasets.concatenate_datasets([split['test'] for split in split_list) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model.to("cuda") resamplers = { 48000: torchaudio.transforms.Resample(48_000, 16_000), } chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�Utrnle\\\\_]' unicode_ignore_regex = r'[\\\\u200e]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]) batch["sentence"] = re.sub(unicode_ignore_regex, '', batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) # Resample if its not in 16kHz if sampling_rate != 16000: batch["speech"] = resamplers[sampling_rate](speech_array).squeeze().numpy() else: batch["speech"] = speech_array.squeeze().numpy() # If more than one dimension is present, pick first one if batch["speech"].ndim > 1: batch["speech"] = batch["speech"][0] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (WER)**: 28.43 % ## Training A combined dataset was created using [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The datasets were downloaded and was converted to HF Dataset format using [this notebook](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/make_hf_dataset.ipynb) The notebook used for training and evaluation can be found [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/fine-tune-xlsr-wav2vec2-on-malayalam-asr-with-transformers_v2.ipynb)
b10b5d2e90ea34de829b68d1b14c0f0d
shpotes/xls-r-et-cv_8_0
shpotes
wav2vec2
47
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['et']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'robust-speech-event', 'et', 'hf-asr-leaderboard']
true
true
true
1,795
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4623 - Wer: 0.3420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3082 | 12.5 | 500 | 0.3871 | 0.4907 | | 0.1497 | 25.0 | 1000 | 0.4168 | 0.4278 | | 0.1243 | 37.5 | 1500 | 0.4446 | 0.4220 | | 0.0954 | 50.0 | 2000 | 0.4426 | 0.3946 | | 0.0741 | 62.5 | 2500 | 0.4502 | 0.3800 | | 0.0533 | 75.0 | 3000 | 0.4618 | 0.3653 | | 0.0447 | 87.5 | 3500 | 0.4518 | 0.3461 | | 0.0396 | 100.0 | 4000 | 0.4623 | 0.3420 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
01dc6c2e26af5bb98556a48de22b70ad
l3cube-pune/punjabi-bert
l3cube-pune
bert
8
2
transformers
1
fill-mask
true
false
false
cc-by-4.0
['pa']
null
null
0
0
0
0
0
0
0
[]
false
true
true
516
false
## PunjabiBERT PunjabiBERT is a Punjabi BERT model trained on publicly available Punjabi monolingual datasets. Preliminary details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>]. Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
ce8d0ccf25203287c2a2f5b4f80554f4
Geotrend/distilbert-base-en-no-cased
Geotrend
distilbert
6
2
transformers
0
fill-mask
true
false
false
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,224
false
# distilbert-base-en-no-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-no-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
e09e45f1c54a9a5851651134cff067f8
nc33/t5_finetuned_genboolq
nc33
t5
13
17
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,623
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_finetuned_genboolq This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5011 - Rouge1: 36.4881 - Rouge2: 17.8649 - Rougel: 34.2658 - Rougelsum: 34.2336 - Gen Len: 11.7003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5854 | 1.0 | 2082 | 0.5182 | 35.5544 | 16.9686 | 33.3783 | 33.3536 | 11.5918 | | 0.5479 | 2.0 | 4164 | 0.4969 | 37.0664 | 18.2443 | 34.7139 | 34.6934 | 11.8662 | | 0.5405 | 3.0 | 6246 | 0.5011 | 36.4881 | 17.8649 | 34.2658 | 34.2336 | 11.7003 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
48a2b46f63530d4af5e44b944208065f
Chikashi/t5-small-finetuned-cnndm-wikihow
Chikashi
t5
11
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['wikihow']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,810
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm-wikihow This model is a fine-tuned version of [Sevil/t5-small-finetuned-cnndm_3epoch_v2](https://huggingface.co/Sevil/t5-small-finetuned-cnndm_3epoch_v2) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.2653 - Rouge1: 27.5037 - Rouge2: 10.8442 - Rougel: 23.4674 - Rougelsum: 26.7997 - Gen Len: 18.5558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.8459 | 0.13 | 5000 | 2.5755 | 25.2929 | 8.7852 | 21.2379 | 24.5649 | 18.4758 | | 2.7251 | 0.25 | 10000 | 2.5189 | 25.33 | 9.0505 | 21.4892 | 24.6523 | 18.4513 | | 2.6696 | 0.38 | 15000 | 2.4805 | 26.3909 | 9.6858 | 22.3589 | 25.7297 | 18.4649 | | 2.647 | 0.51 | 20000 | 2.4491 | 25.9234 | 9.3936 | 22.0086 | 25.2342 | 18.5558 | | 2.5973 | 0.64 | 25000 | 2.4251 | 26.4988 | 9.8197 | 22.6201 | 25.8407 | 18.3438 | | 2.5916 | 0.76 | 30000 | 2.4022 | 26.3149 | 9.8432 | 22.3695 | 25.6581 | 18.4506 | | 2.5691 | 0.89 | 35000 | 2.3801 | 26.4198 | 9.8848 | 22.4856 | 25.7847 | 18.5381 | | 2.5365 | 1.02 | 40000 | 2.3755 | 26.5846 | 10.0287 | 22.667 | 25.9606 | 18.5608 | | 2.4649 | 1.14 | 45000 | 2.3663 | 26.5925 | 10.0569 | 22.6191 | 25.9247 | 18.5803 | | 2.4539 | 1.27 | 50000 | 2.3490 | 26.9735 | 10.2389 | 22.9536 | 26.282 | 18.5126 | | 2.4578 | 1.4 | 55000 | 2.3374 | 26.7878 | 10.2275 | 22.849 | 26.1188 | 18.6162 | | 2.4365 | 1.53 | 60000 | 2.3266 | 27.1171 | 10.403 | 23.0596 | 26.4284 | 18.6128 | | 2.428 | 1.65 | 65000 | 2.3209 | 27.1762 | 10.578 | 23.1577 | 26.5007 | 18.5246 | | 2.4293 | 1.78 | 70000 | 2.3145 | 27.0896 | 10.5146 | 23.1502 | 26.4338 | 18.4604 | | 2.4335 | 1.91 | 75000 | 2.2979 | 27.3373 | 10.6273 | 23.2944 | 26.6725 | 18.5403 | | 2.3981 | 2.03 | 80000 | 2.3008 | 27.1857 | 10.6455 | 23.1333 | 26.5203 | 18.5412 | | 2.3395 | 2.16 | 85000 | 2.2908 | 27.3123 | 10.7063 | 23.3126 | 26.626 | 18.4265 | | 2.3463 | 2.29 | 90000 | 2.2869 | 27.5328 | 10.7662 | 23.4527 | 26.8613 | 18.5664 | | 2.3481 | 2.42 | 95000 | 2.2802 | 27.4799 | 10.7826 | 23.4538 | 26.7912 | 18.5449 | | 2.3345 | 2.54 | 100000 | 2.2774 | 27.3182 | 10.724 | 23.3276 | 26.669 | 18.5908 | | 2.3254 | 2.67 | 105000 | 2.2713 | 27.3942 | 10.777 | 23.3918 | 26.7036 | 18.5681 | | 2.3369 | 2.8 | 110000 | 2.2666 | 27.5976 | 10.9144 | 23.5832 | 26.9147 | 18.5471 | | 2.3269 | 2.93 | 115000 | 2.2653 | 27.5037 | 10.8442 | 23.4674 | 26.7997 | 18.5558 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
e1c874743bcb534ee23f4fb5677e5597
alphahg/mbart-large-50-finetuned-en-to-ko-8603428-finetuned-en-to-ko-9914408
alphahg
mbart
12
255
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,363
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-en-to-ko-8603428-finetuned-en-to-ko-9914408 This model is a fine-tuned version of [alphahg/mbart-large-50-finetuned-en-to-ko-8603428](https://huggingface.co/alphahg/mbart-large-50-finetuned-en-to-ko-8603428) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.795 | 1.0 | 18752 | 0.8130 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
45affe2ca8d0d7147b5cc78c6469efd9
GW12/wav2vec2-custom-colab
GW12
wav2vec2
7
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,219
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-custom-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7785 - Wer: 0.3534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4783 | 0.3 | 500 | 0.7199 | 0.5564 | | 0.4833 | 0.61 | 1000 | 0.8089 | 0.6181 | | 0.5733 | 0.91 | 1500 | 0.7617 | 0.5530 | | 0.4641 | 1.21 | 2000 | 0.7937 | 0.5731 | | 0.4167 | 1.52 | 2500 | 0.7993 | 0.5102 | | 0.3713 | 1.82 | 3000 | 0.7541 | 0.5437 | | 0.3395 | 2.12 | 3500 | 0.7658 | 0.5148 | | 0.2814 | 2.42 | 4000 | 0.7569 | 0.4783 | | 0.2698 | 2.73 | 4500 | 0.8126 | 0.5174 | | 0.2767 | 3.03 | 5000 | 0.7838 | 0.4676 | | 0.2249 | 3.33 | 5500 | 0.8769 | 0.4743 | | 0.2452 | 3.64 | 6000 | 0.8586 | 0.4778 | | 0.1828 | 3.94 | 6500 | 0.7695 | 0.4528 | | 0.1901 | 4.24 | 7000 | 0.7800 | 0.5021 | | 0.2062 | 4.55 | 7500 | 0.8107 | 0.4567 | | 0.1614 | 4.85 | 8000 | 0.7941 | 0.4094 | | 0.1327 | 5.15 | 8500 | 0.7900 | 0.4241 | | 0.1405 | 5.45 | 9000 | 0.8017 | 0.3992 | | 0.1219 | 5.76 | 9500 | 0.8099 | 0.4043 | | 0.1406 | 6.06 | 10000 | 0.8731 | 0.3913 | | 0.0806 | 6.36 | 10500 | 0.8387 | 0.3868 | | 0.1039 | 6.67 | 11000 | 0.8105 | 0.3905 | | 0.0967 | 6.97 | 11500 | 0.7291 | 0.3728 | | 0.0846 | 7.27 | 12000 | 0.8128 | 0.4201 | | 0.0722 | 7.58 | 12500 | 0.8204 | 0.3751 | | 0.0785 | 7.88 | 13000 | 0.7692 | 0.3760 | | 0.0647 | 8.18 | 13500 | 0.8294 | 0.3752 | | 0.0523 | 8.48 | 14000 | 0.7646 | 0.3763 | | 0.0623 | 8.79 | 14500 | 0.7773 | 0.3572 | | 0.0477 | 9.09 | 15000 | 0.7379 | 0.3635 | | 0.064 | 9.39 | 15500 | 0.7544 | 0.3538 | | 0.0321 | 9.7 | 16000 | 0.8118 | 0.3557 | | 0.0541 | 10.0 | 16500 | 0.7785 | 0.3534 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.0 - Datasets 2.9.0 - Tokenizers 0.13.2
418b1e8e2dd7ce53cfe9e1ebc0b0e349
Kevincp560/distilbart-cnn-12-6-finetuned-pubmed
Kevincp560
bart
13
1
transformers
1
text2text-generation
true
false
false
apache-2.0
null
['pub_med_summarization_dataset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,924
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.9895 - Rouge1: 40.0985 - Rouge2: 16.5016 - Rougel: 24.8319 - Rougelsum: 36.0775 - Gen Len: 141.884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.1709 | 1.0 | 4000 | 2.0257 | 38.1012 | 15.112 | 23.4064 | 33.9373 | 141.9195 | | 1.9495 | 2.0 | 8000 | 1.9593 | 39.529 | 16.1693 | 24.487 | 35.5238 | 141.9785 | | 1.756 | 3.0 | 12000 | 1.9488 | 39.9623 | 16.5799 | 24.949 | 35.9194 | 141.8855 | | 1.6032 | 4.0 | 16000 | 1.9732 | 39.672 | 16.1994 | 24.5996 | 35.7021 | 141.921 | | 1.4817 | 5.0 | 20000 | 1.9895 | 40.0985 | 16.5016 | 24.8319 | 36.0775 | 141.884 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
4d0303a2e4933dedf9d1732052886cc4
Helsinki-NLP/opus-mt-fj-en
Helsinki-NLP
marian
10
75
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
803
false
### opus-mt-fj-en * source languages: fj * target languages: en * OPUS readme: [fj-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fj-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fj-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fj-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fj-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fj.en | 31.0 | 0.471 | | Tatoeba.fj.en | 79.7 | 0.835 |
63e31b76b04add9c7bfae4d583a2b8c9
SzegedAI/hubertusz-tiny-wiki
SzegedAI
bert
9
22
transformers
0
null
true
true
false
apache-2.0
['hu']
['wikipedia']
null
0
0
0
0
0
0
0
['generated_from_keras_callback', 'hubert']
true
true
true
594
false
# hubert-tiny-wiki This model was trained from scratch on the Wikipedia subset of Hungarian Webcorpus 2.0 with MLM and SOP tasks. ### Pre-Training Parameters: First phase: - Training steps: 500.000 - Sequence length: 128 - Batch size: 1024 Second phase: - Training steps: 100.000 - Sequence length: 512 - Batch size: 384 ### Framework versions - Transformers 4.21.3 - TensorFlow 2.10.0 - Datasets 2.4.0 - Tokenizers 0.12.1 # Acknowledgement [![Artificial Intelligence - National Laboratory - Hungary](https://milab.tk.hu/uploads/images/milab_logo_en.png)](https://mi.nemzetilabor.hu/)
adee919f420c0ec162f34625208885fe
Helsinki-NLP/opus-mt-srn-sv
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-srn-sv * source languages: srn * target languages: sv * OPUS readme: [srn-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/srn-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/srn-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/srn-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/srn-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.srn.sv | 32.2 | 0.500 |
ae3d94d3278bb65560eaeaa41189067a
Tanvi2992/ddpm-butterflies-256
Tanvi2992
null
13
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['/content/AS/']
null
0
0
0
0
0
0
0
[]
false
true
true
1,205
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-256 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `/content/AS/` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Tanvi2992/ddpm-butterflies-256/tensorboard?#scalars)
683a8a6f05e569251641f171d9c6879b
KoichiYasuoka/bert-base-slavic-cyrillic-upos
KoichiYasuoka
bert
9
76
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
['be', 'bg', 'mk', 'ru', 'sr', 'uk']
['universal_dependencies']
null
1
1
0
0
0
0
0
['belarusian', 'bulgarian', 'macedonian', 'russian', 'serbian', 'ukrainian', 'token-classification', 'pos', 'dependency-parsing']
false
true
true
1,146
false
# bert-base-slavic-cyrillic-upos ## Model Description This is a BERT model pre-trained with Slavic-Cyrillic ([UD_Belarusian](https://universaldependencies.org/be/) [UD_Bulgarian](https://universaldependencies.org/bg/) [UD_Russian](https://universaldependencies.org/ru/) [UD_Serbian](https://universaldependencies.org/treebanks/sr_set/) [UD_Ukrainian](https://universaldependencies.org/treebanks/uk_iu/)) for POS-tagging and dependency-parsing, derived from [ruBert-base](https://huggingface.co/sberbank-ai/ruBert-base). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-slavic-cyrillic-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-slavic-cyrillic-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-slavic-cyrillic-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
5d4d89b0a4a11b69868dbc1ac48197b7
Yagorka/ddpm-butterflies-256
Yagorka
null
22
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['imagefolder']
null
0
0
0
0
0
0
0
[]
false
true
true
1,201
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-256 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Yagorka/ddpm-butterflies-256/tensorboard?#scalars)
6ff05779467669b2816035929fc54ffc
shpotes/xls-r-eus
shpotes
wav2vec2
34
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['eu']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'robust-speech-event', 'et', 'hf-asr-leaderboard']
true
true
true
2,720
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set: - Loss: 0.2278 - Wer: 0.1787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2548 | 4.24 | 500 | 0.2470 | 0.3663 | | 0.1435 | 8.47 | 1000 | 0.2000 | 0.2791 | | 0.1158 | 12.71 | 1500 | 0.2030 | 0.2652 | | 0.1094 | 16.95 | 2000 | 0.2096 | 0.2605 | | 0.1004 | 21.19 | 2500 | 0.2150 | 0.2477 | | 0.0945 | 25.42 | 3000 | 0.2072 | 0.2369 | | 0.0844 | 29.66 | 3500 | 0.1981 | 0.2328 | | 0.0877 | 33.89 | 4000 | 0.2041 | 0.2425 | | 0.0741 | 38.14 | 4500 | 0.2353 | 0.2421 | | 0.0676 | 42.37 | 5000 | 0.2092 | 0.2213 | | 0.0623 | 46.61 | 5500 | 0.2217 | 0.2250 | | 0.0574 | 50.84 | 6000 | 0.2152 | 0.2179 | | 0.0583 | 55.08 | 6500 | 0.2207 | 0.2186 | | 0.0488 | 59.32 | 7000 | 0.2225 | 0.2159 | | 0.0456 | 63.56 | 7500 | 0.2293 | 0.2031 | | 0.041 | 67.79 | 8000 | 0.2277 | 0.2013 | | 0.0379 | 72.03 | 8500 | 0.2287 | 0.1991 | | 0.0381 | 76.27 | 9000 | 0.2233 | 0.1954 | | 0.0308 | 80.51 | 9500 | 0.2195 | 0.1835 | | 0.0291 | 84.74 | 10000 | 0.2266 | 0.1825 | | 0.0266 | 88.98 | 10500 | 0.2285 | 0.1801 | | 0.0266 | 93.22 | 11000 | 0.2292 | 0.1801 | | 0.0262 | 97.46 | 11500 | 0.2278 | 0.1788 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
6a1d786a5c2ffb99b23cc9f967cc7689
Chrispfield/distilbert-base-uncased-issues-128
Chrispfield
distilbert
10
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,476
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-issues-128 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4041 | 1.0 | 8 | 1.8568 | | 2.1982 | 2.0 | 16 | 2.0790 | | 1.7184 | 3.0 | 24 | 1.9246 | | 1.7248 | 4.0 | 32 | 1.8485 | | 1.5016 | 5.0 | 40 | 1.8484 | | 1.4943 | 6.0 | 48 | 1.8691 | | 1.526 | 7.0 | 56 | 1.7582 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
a2a5858fe067420a7778aa659b66d951
Helsinki-NLP/opus-mt-de-da
Helsinki-NLP
marian
10
169
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
770
false
### opus-mt-de-da * source languages: de * target languages: da * OPUS readme: [de-da](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-da/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-29.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-da/opus-2020-01-29.zip) * test set translations: [opus-2020-01-29.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-da/opus-2020-01-29.test.txt) * test set scores: [opus-2020-01-29.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-da/opus-2020-01-29.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.de.da | 57.2 | 0.730 |
31744148a59b05ac66066ce78d875102
henryscheible/eval_masked_v4_cola
henryscheible
null
13
0
null
0
null
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,022
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eval_masked_v4_cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6890 - Matthews Correlation: 0.5551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
6d306490e924c42dce595893e62b6327
gngpostalsrvc/BERiT_2000_custom_architecture_20_epochs
gngpostalsrvc
roberta
11
2
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
6,456
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_custom_architecture_2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 16.4316 | 0.19 | 500 | 9.0685 | | 8.2958 | 0.39 | 1000 | 7.6483 | | 7.4324 | 0.58 | 1500 | 7.1707 | | 7.0054 | 0.77 | 2000 | 6.8592 | | 6.8522 | 0.97 | 2500 | 6.7710 | | 6.7538 | 1.16 | 3000 | 6.5845 | | 6.634 | 1.36 | 3500 | 6.4525 | | 6.5784 | 1.55 | 4000 | 6.3129 | | 6.5135 | 1.74 | 4500 | 6.3312 | | 6.4552 | 1.94 | 5000 | 6.2546 | | 6.4685 | 2.13 | 5500 | 6.2857 | | 6.4356 | 2.32 | 6000 | 6.2285 | | 6.3566 | 2.52 | 6500 | 6.2295 | | 6.394 | 2.71 | 7000 | 6.1790 | | 6.3412 | 2.9 | 7500 | 6.1880 | | 6.3115 | 3.1 | 8000 | 6.2130 | | 6.3163 | 3.29 | 8500 | 6.1831 | | 6.2978 | 3.49 | 9000 | 6.1945 | | 6.3082 | 3.68 | 9500 | 6.1485 | | 6.2729 | 3.87 | 10000 | 6.1752 | | 6.307 | 4.07 | 10500 | 6.1331 | | 6.2494 | 4.26 | 11000 | 6.1082 | | 6.2523 | 4.45 | 11500 | 6.2110 | | 6.2455 | 4.65 | 12000 | 6.1326 | | 6.2399 | 4.84 | 12500 | 6.1779 | | 6.2297 | 5.03 | 13000 | 6.1587 | | 6.2374 | 5.23 | 13500 | 6.1458 | | 6.2265 | 5.42 | 14000 | 6.1370 | | 6.2222 | 5.62 | 14500 | 6.1511 | | 6.2209 | 5.81 | 15000 | 6.1320 | | 6.2146 | 6.0 | 15500 | 6.1124 | | 6.214 | 6.2 | 16000 | 6.1439 | | 6.1907 | 6.39 | 16500 | 6.0981 | | 6.2119 | 6.58 | 17000 | 6.1465 | | 6.1858 | 6.78 | 17500 | 6.1594 | | 6.1552 | 6.97 | 18000 | 6.0742 | | 6.1926 | 7.16 | 18500 | 6.1176 | | 6.1813 | 7.36 | 19000 | 6.0107 | | 6.1812 | 7.55 | 19500 | 6.0852 | | 6.1852 | 7.75 | 20000 | 6.0845 | | 6.1945 | 7.94 | 20500 | 6.1260 | | 6.1542 | 8.13 | 21000 | 6.1032 | | 6.1685 | 8.33 | 21500 | 6.0650 | | 6.1619 | 8.52 | 22000 | 6.1028 | | 6.1279 | 8.71 | 22500 | 6.1269 | | 6.1575 | 8.91 | 23000 | 6.0793 | | 6.1401 | 9.1 | 23500 | 6.1479 | | 6.159 | 9.3 | 24000 | 6.0319 | | 6.1227 | 9.49 | 24500 | 6.0677 | | 6.1201 | 9.68 | 25000 | 6.0527 | | 6.1473 | 9.88 | 25500 | 6.1305 | | 6.1539 | 10.07 | 26000 | 6.1079 | | 6.091 | 10.26 | 26500 | 6.1219 | | 6.1015 | 10.46 | 27000 | 6.1317 | | 6.1048 | 10.65 | 27500 | 6.1149 | | 6.0955 | 10.84 | 28000 | 6.1216 | | 6.129 | 11.04 | 28500 | 6.0427 | | 6.1007 | 11.23 | 29000 | 6.1289 | | 6.1266 | 11.43 | 29500 | 6.0564 | | 6.1203 | 11.62 | 30000 | 6.1143 | | 6.1038 | 11.81 | 30500 | 6.0957 | | 6.0989 | 12.01 | 31000 | 6.0707 | | 6.0571 | 12.2 | 31500 | 6.0013 | | 6.1017 | 12.39 | 32000 | 6.1356 | | 6.0649 | 12.59 | 32500 | 6.0981 | | 6.0704 | 12.78 | 33000 | 6.0588 | | 6.088 | 12.97 | 33500 | 6.0796 | | 6.1112 | 13.17 | 34000 | 6.0809 | | 6.0888 | 13.36 | 34500 | 6.0776 | | 6.0482 | 13.56 | 35000 | 6.0710 | | 6.0588 | 13.75 | 35500 | 6.0877 | | 6.0517 | 13.94 | 36000 | 6.0650 | | 6.0832 | 14.14 | 36500 | 5.9890 | | 6.0655 | 14.33 | 37000 | 6.0445 | | 6.0705 | 14.52 | 37500 | 6.0037 | | 6.0789 | 14.72 | 38000 | 6.0777 | | 6.0645 | 14.91 | 38500 | 6.0475 | | 6.0347 | 15.1 | 39000 | 6.1148 | | 6.0478 | 15.3 | 39500 | 6.0639 | | 6.0638 | 15.49 | 40000 | 6.0373 | | 6.0377 | 15.69 | 40500 | 6.0116 | | 6.0402 | 15.88 | 41000 | 6.0483 | | 6.0382 | 16.07 | 41500 | 6.1025 | | 6.039 | 16.27 | 42000 | 6.0488 | | 6.0232 | 16.46 | 42500 | 6.0219 | | 5.9946 | 16.65 | 43000 | 6.0541 | | 6.063 | 16.85 | 43500 | 6.0436 | | 6.0141 | 17.04 | 44000 | 6.0609 | | 6.0196 | 17.23 | 44500 | 6.0551 | | 6.0331 | 17.43 | 45000 | 6.0576 | | 6.0174 | 17.62 | 45500 | 6.0498 | | 6.0366 | 17.82 | 46000 | 6.0782 | | 6.0299 | 18.01 | 46500 | 6.0196 | | 6.0009 | 18.2 | 47000 | 6.0262 | | 5.9758 | 18.4 | 47500 | 6.0824 | | 6.0285 | 18.59 | 48000 | 6.0799 | | 6.025 | 18.78 | 48500 | 5.9511 | | 5.9806 | 18.98 | 49000 | 6.0086 | | 5.9915 | 19.17 | 49500 | 6.0089 | | 5.9957 | 19.36 | 50000 | 6.0330 | | 6.0311 | 19.56 | 50500 | 6.0083 | | 5.995 | 19.75 | 51000 | 6.0394 | | 6.0034 | 19.95 | 51500 | 5.9854 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
91622576b181cfdc1af7eb599b733b53
Helsinki-NLP/opus-mt-tl-en
Helsinki-NLP
marian
11
1,126
transformers
0
translation
true
true
false
apache-2.0
['tl', 'en']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
1,996
false
### tgl-eng * source group: Tagalog * target group: English * OPUS readme: [tgl-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tgl-eng/README.md) * model: transformer-align * source language(s): tgl_Latn * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-eng/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-eng/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-eng/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.tgl.eng | 35.0 | 0.542 | ### System Info: - hf_name: tgl-eng - source_languages: tgl - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tgl-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['tl', 'en'] - src_constituents: {'tgl_Latn'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-eng/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-eng/opus-2020-06-17.test.txt - src_alpha3: tgl - tgt_alpha3: eng - short_pair: tl-en - chrF2_score: 0.542 - bleu: 35.0 - brevity_penalty: 0.975 - ref_len: 18168.0 - src_name: Tagalog - tgt_name: English - train_date: 2020-06-17 - src_alpha2: tl - tgt_alpha2: en - prefer_old: False - long_pair: tgl-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
1c69f3e458150fa98263179339725d99
SirVeggie/Aeolian
SirVeggie
null
6
0
null
2
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,547
false
# Aeolian stable diffusion model Original artist: WLOP\ Patreon: https://www.patreon.com/wlop/posts An original character created and drawn by WLOP for his webcomic Ghostblade. ## Basic explanation Token and Class words are what guide the AI to produce images similar to the trained style/object/character. Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect. There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one. Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words. 3k models are are more flexible, while 5k models produce images closer to the trained concept. I recommend 2k/3k models for normal use, and 5k/6k models for model merging and use without token/class words. However it can be also very prompt specific. I highly recommend self-experimentation. ## Comparison Aeolian and aeolian_3000 are quite similar with slight differences. Epoch 5 and 6 versions were earlier in the waifu diffusion 1.3 training process, so it is easier to produce more varied, non anime, results. ## aeolian ``` token: m_aeolian class: §¶• base: waifu diffusion 1.2-e5 notes: 2020 step training ``` ## aeolian_3000 ``` token: m_aeolian class: §¶• base: waifu diffusion 1.2-e6 notes: 3000 step training ``` ## aeolian_v2 ``` token: m_concept class: § base: waifu diffusion 1.3 notes: 1.3 model, which may give some benefits over 1.2-e5 ``` ## License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
5568ad1e9e512cbebb0df9783a514218
quadpartisan/ddpm-butterflies-128
quadpartisan
null
11
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,234
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/quadpartisan/ddpm-butterflies-128/tensorboard?#scalars)
c073681e251099deba2fde9a73d0784e
eicu/fastbooth-jsjessy-1200
eicu
null
18
2
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
428
false
### fastbooth-jsjessy-1200 Dreambooth model trained by eicu with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
332e4bafcd18669eecadb72302985226
tj-solergibert/xlm-roberta-base-finetuned-panx-de-fr
tj-solergibert
xlm-roberta
9
4
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
48244f82e9ab71ae36c406f0725457cd
jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s655
jonatasgrosman
unispeech-sat
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'fr']
false
true
true
463
false
# exp_w2v2t_fr_unispeech-sat_s655 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
4ad5354773f5c4e9d2c1116411e49085
north-snocko/donut-base-sroie
north-snocko
vision-encoder-decoder
20
3
transformers
0
null
true
false
false
mit
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
981
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.9.0 - Tokenizers 0.12.1
2a2551f792d4c35cee9b85b42f49a805
jonatasgrosman/exp_w2v2t_ru_vp-es_s664
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ru']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ru']
false
true
true
469
false
# exp_w2v2t_ru_vp-es_s664 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
b8b2ad889e9c5176bfbea4a31a6cc8b8
shed-e/NER
shed-e
bert
12
4
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,518
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0637 - Precision: 0.9335 - Recall: 0.9500 - F1: 0.9417 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0888 | 1.0 | 1756 | 0.0636 | 0.9195 | 0.9366 | 0.9280 | 0.9830 | | 0.0331 | 2.0 | 3512 | 0.0667 | 0.9272 | 0.9490 | 0.9380 | 0.9855 | | 0.0167 | 3.0 | 5268 | 0.0637 | 0.9335 | 0.9500 | 0.9417 | 0.9862 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
8e579641581661e1061ad661339427c7
TestZee/t5-small-finetuned-pytorch-test
TestZee
t5
11
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,624
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-pytorch-test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1006 - Rouge1: 22.0585 - Rouge2: 9.4908 - Rougel: 18.3044 - Rougelsum: 20.9764 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 15 | 2.1859 | 21.551 | 8.7109 | 18.07 | 20.2469 | 19.0 | | No log | 2.0 | 30 | 2.1194 | 22.348 | 9.6498 | 18.7701 | 21.1714 | 19.0 | | No log | 3.0 | 45 | 2.1006 | 22.0585 | 9.4908 | 18.3044 | 20.9764 | 19.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
2354dc2f33b9f373b2350673773ca311
bakhuisdennis/donut-base-mysterybox
bakhuisdennis
vision-encoder-decoder
12
2
transformers
0
null
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,007
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-mysterybox This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
dc04f1556d017d0c72f0f1c9699bd258
Narshion/bert-base-multilingual-cased-mwach
Narshion
null
13
2
null
0
null
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,004
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-mlm This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
5f6e980cb1b9e3022b30c72ae51aa45b
EleutherAI/pythia-160m
EleutherAI
gpt_neox
7
43,164
transformers
3
text-generation
true
false
false
apache-2.0
['en']
['the_pile']
null
1
0
1
0
0
0
0
['pytorch', 'causal-lm', 'pythia']
false
true
true
10,803
false
The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/EleutherAI). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models match or exceed the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were re-named in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact model parameter counts. ## Pythia-160M ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change over the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-160M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-160M as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product, and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-160M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “understand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most “accurate” text. Never rely on Pythia-160M to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model. For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). The Pile was **not** deduplicated before being used to train Pythia-160M. #### Training procedure Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 “actual” steps). See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json). February 2023 note: select evaluations and comparison with OPT and BLOOM models will be added here at a later date. ### Naming convention and parameter count *Pythia* models were re-named in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
699004d674b94498745ea849e2b212d1
pcuenq/wav2vec2-large-xlsr-53-eu
pcuenq
wav2vec2
8
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['eu']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,865
false
# Wav2Vec2-Large-XLSR-53-EU Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Basque using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu") model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") model_name = "pcuenq/wav2vec2-large-xlsr-53-eu" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) model.to("cuda") ## Text pre-processing chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]' chars_to_ignore_pattern = re.compile(chars_to_ignore_regex) def remove_special_characters(batch): batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " " return batch ## Audio pre-processing import librosa def speech_file_to_array_fn(batch): speech_array, sample_rate = torchaudio.load(batch["path"]) batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000) return batch # Text transformation and audio resampling def cv_prepare(batch): batch = remove_special_characters(batch) batch = speech_file_to_array_fn(batch) return batch # Number of CPUs or None num_proc = 16 test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) # WER Metric computation print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 15.34 % ## Training The Common Voice `train` and `validation` datasets were used for training. Training was performed for 22 + 20 epochs with the following parameters: - Batch size 16, 2 gradient accumulation steps. - Learning rate: 2.5e-4 - Activation dropout: 0.05 - Attention dropout: 0.1 - Hidden dropout: 0.05 - Feature proj. dropout: 0.05 - Mask time probability: 0.08 - Layer dropout: 0.05
736713c4f5a62e5d3233829999b3c364
coreml/coreml-elldreths-og-4060-mix
coreml
null
3
0
null
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['coreml', 'stable-diffusion', 'text-to-image']
false
true
true
1,175
false
# Core ML Converted Model: - This model was converted to Core ML for use on Apple Silicon devices. Instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-files-to-Core-ML).<br> - Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> # Note: This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Elldreth's OG 4060 mix: Source(s): [CivitAI](https://civitai.com/models/1259/elldreths-og-4060-mix) This mixed model is a combination of my all-time favorites. A genuine simple mix of a very popular anime model and the powerful and Zeipher's fantastic f222. What's it good at? Realistic portraits Stylized characters Landscapes Fantasy Sci-Fi Anime Horror It's an all-around easy-to-prompt general purpose semi-realistic to realistic model that cranks out some really nice images. No trigger words required. All models were scanned prior to mixing and totally safe.
221fe9205994302666cbfe23e372b66e
agnesluhtaru/whisper-medium-et
agnesluhtaru
whisper
15
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer', 'whisper-event']
true
true
true
966
false
# whisper-medium-et This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the following datasets: Common Voice 11, VoxPopuli and FLEURS. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Estonian data from Common Voice 11, VoxPopuli and FLEURS corpora as both training and validation sets. Tested on Common Voice 11 test set. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+rocm5.1.1 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
cf85b0ea6a7f9344b59537625e9ccebd
jkhan447/language-detection-Bert-base-uncased
jkhan447
bert
28
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,028
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-Bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2231 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
a36659a1bbf45ebe2dd559cef3a02dc6
lmqg/mt5-small-itquad-qg-ae
lmqg
mt5
40
129
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['it']
['lmqg/qg_itquad']
null
0
0
0
0
0
0
0
['question generation', 'answer extraction']
true
true
true
7,340
false
# Model Card of `lmqg/mt5-small-itquad-qg-ae` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation and answer extraction jointly on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** it - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg-ae") # answer extraction answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.") # question generation question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 80.61 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_1 | 22.53 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_2 | 14.75 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_3 | 10.19 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_4 | 7.25 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | METEOR | 17.5 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | MoverScore | 56.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | ROUGE_L | 21.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 81.81 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedF1Score (MoverScore) | 56.02 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedPrecision (BERTScore) | 81.17 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedPrecision (MoverScore) | 55.76 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedRecall (BERTScore) | 82.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedRecall (MoverScore) | 56.32 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 57.85 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | AnswerF1Score | 72.09 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | BERTScore | 90.24 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_1 | 39.33 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_2 | 33.64 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_3 | 29.59 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_4 | 26.01 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | METEOR | 42.68 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | MoverScore | 81.17 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | ROUGE_L | 45.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_itquad - dataset_name: default - input_types: ['paragraph_answer', 'paragraph_sentence'] - output_types: ['question', 'answer'] - prefix_types: ['qg', 'ae'] - model: google/mt5-small - max_length: 512 - max_length_output: 32 - epoch: 13 - batch: 16 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
58688b89cf9ad1c15e17e3b93a1c305f