repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
MartinoMensio/racism-models-m-vote-nonstrict-epoch-4
MartinoMensio
bert
4
4
transformers
0
text-classification
true
false
false
mit
['es']
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,101
false
### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9791656136512756}, {'label': 'non-racist', 'score': 0.996966540813446}] ``` For more details, see https://github.com/preyero/neatclass22
359fcdb228b4e3631b68c2c947acd167
Geotrend/distilbert-base-en-zh-hi-cased
Geotrend
distilbert
6
6
transformers
0
fill-mask
true
false
false
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,233
false
# distilbert-base-en-zh-hi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-zh-hi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-zh-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
c3e211936a9a51ceeac86c744f3b6301
alxdfy/noggles-fastdb-4800
alxdfy
null
20
3
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
2
2
0
0
0
0
0
['text-to-image']
false
true
true
1,337
false
### noggles_fastdb_4800 on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by alxdfy This your the Stable Diffusion model fine-tuned the noggles_fastdb_4800 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **test.png** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Sample pictures of this concept: test.png ![test.png 0](https://huggingface.co/alxdfy/noggles-fastdb-4800/resolve/main/concept_images/test.png)
71c96e7c6dbaef6c68247aae2d14b7e0
CLTL/icf-levels-adm
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,304
false
# Regression Model for Respiration Functioning Levels (ICF b440) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing respiration functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about respiration functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with respiration, and/or respiratory rate is normal (EWS: 9-20). 3 | Shortness of breath in exercise (saturation ≥90), and/or respiratory rate is slightly increased (EWS: 21-30). 2 | Shortness of breath in rest (saturation ≥90), and/or respiratory rate is fairly increased (EWS: 31-35). 1 | Needs oxygen at rest or during exercise (saturation <90), and/or respiratory rate >35. 0 | Mechanical ventilation is needed. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-adm', use_cuda=False, ) example = 'Nu sinds 5-6 dagen progressieve benauwdheidsklachten (bij korte stukken lopen al kortademig), terwijl dit eerder niet zo was.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 2.26 ``` The raw outputs look like this: ``` [[2.26074648]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.48 | 0.37 mean squared error | 0.55 | 0.34 root mean squared error | 0.74 | 0.58 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
69d20ea7b372bfd1fdaa54688cbc027b
sd-concepts-library/sd-concepts-library-uma-meme
sd-concepts-library
null
39
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
5,310
false
### sd-concepts-library/uma-meme on Stable Diffusion This is the `<uma-object-full>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<uma-object-full> 0](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_7_.jpg) ![<uma-object-full> 1](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/28.jpg) ![<uma-object-full> 2](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_11_.jpg) ![<uma-object-full> 3](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_12_.jpg) ![<uma-object-full> 4](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_1_.png) ![<uma-object-full> 5](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/22.jpg) ![<uma-object-full> 6](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/10.jpg) ![<uma-object-full> 7](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/KakaoTalk_20220904_015246222.jpg) ![<uma-object-full> 8](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/50.jpg) ![<uma-object-full> 9](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed.png) ![<uma-object-full> 10](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_6_.jpg) ![<uma-object-full> 11](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/21.jpg) ![<uma-object-full> 12](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/FbCVln9WIAA74Z2.png) ![<uma-object-full> 13](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/file.jpg) ![<uma-object-full> 14](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/tt0.png) ![<uma-object-full> 15](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/31.jpg) ![<uma-object-full> 16](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed-1.jpg) ![<uma-object-full> 17](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed.jpg) ![<uma-object-full> 18](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_5_.jpg) ![<uma-object-full> 19](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/3-30-25.png) ![<uma-object-full> 20](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/Fb-Pk97aMAIgbYr.png) ![<uma-object-full> 21](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/2.jpg) ![<uma-object-full> 22](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_2_.png) ![<uma-object-full> 23](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/6.jpg) ![<uma-object-full> 24](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_1_.jpg) ![<uma-object-full> 25](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/FZoyWUcXwAE3k2K.png) ![<uma-object-full> 26](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_4_.jpg) ![<uma-object-full> 27](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/2022-09-14_13-02-28.png) ![<uma-object-full> 28](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/16.jpg) ![<uma-object-full> 29](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_9_.jpg) ![<uma-object-full> 30](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_10_.jpg) ![<uma-object-full> 31](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/4.jpg) ![<uma-object-full> 32](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_3_.jpg) ![<uma-object-full> 33](https://huggingface.co/sd-concepts-library/sd-concepts-library-uma-meme/resolve/main/concept_images/unnamed_8_.jpg)
aadab92496e08f686bab0f49db23524e
dmrau/bow-bert
dmrau
bert
8
1
transformers
0
text-classification
true
false
false
afl-3.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
902
false
<strong>Example on how to load and use BOW-BERT: <strong> ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer # load model model = AutoModelForSequenceClassification.from_pretrained('dmrau/bow-bert') # load tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # tokenize query and passage and concatenate them inp = tokenizer(['this is a query','query a is this'], ['this is a passage', 'passage a is this'], return_tensors='pt') # get estimated score print('score', model(**inp).logits[:, 1]) ### outputs identical scores for different ### word orders as the model is order invariant: # scores: [-2.9463, -2.9463] ``` <strong> Cite us:<strong> ``` @article{rau2022role, title={The Role of Complex NLP in Transformers for Text Ranking?}, author={Rau, David and Kamps, Jaap}, journal={arXiv preprint arXiv:2207.02522}, year={2022} } ```
06b18c2d9c9e5eeec0784bf3e613bf1a
maisam/roberta-base-finetuned-ner
maisam
roberta
14
10
transformers
0
token-classification
true
false
false
mit
null
['conll2003']
null
0
0
0
0
1
1
0
['generated_from_trainer']
true
true
true
1,522
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0497 - Precision: 0.9510 - Recall: 0.9602 - F1: 0.9556 - Accuracy: 0.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2066 | 1.0 | 878 | 0.0699 | 0.9226 | 0.9294 | 0.9260 | 0.9828 | | 0.0486 | 2.0 | 1756 | 0.0569 | 0.9465 | 0.9549 | 0.9507 | 0.9878 | | 0.0254 | 3.0 | 2634 | 0.0497 | 0.9510 | 0.9602 | 0.9556 | 0.9892 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
76482aab9a367e512aa945f0279199b6
Aero/Tsubomi-Haruno
Aero
gpt2
9
3
transformers
0
conversational
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['conversational']
false
true
true
1,252
false
# DialoGPT Trained on the Speech of a Game Character ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Tsubomi: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
0334af403b64731e225aee5f130025f6
mccaffary/finetuning-sentiment-model-3000-samples-DM
mccaffary
distilbert
13
9
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,051
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-DM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3248 - Accuracy: 0.8667 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
e3d6cd5c89d4721ef30997d5643a2c9e
nateraw/yolov6t
nateraw
null
3
0
pytorch
0
object-detection
true
false
false
gpl-3.0
['en']
null
null
2
0
1
1
0
0
0
['object-detection', 'yolo', 'autogenerated-modelcard']
false
true
true
5,657
false
# Model Card for yolov6t <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [@nateraw](https://hf.co/nateraw) - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models:** [yolov6s](https://hf.co/nateraw/yolov6s), [yolov6n](https://hf.co/nateraw/yolov6n) - **Parent Model:** N/A - **Resources for more information:** The [official GitHub Repository](https://github.com/meituan/YOLOv6) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is meant to be used as a general object detector. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> You can fine-tune this model for your specific task ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Don't be evil. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model often classifies objects incorrectly, especially when applied to videos. It does not handle crowds very well. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] Please refer to the [official GitHub Repository](https://github.com/meituan/YOLOv6) # Model Card Authors [optional] [@nateraw](https://hf.co/nateraw) # Model Card Contact [@nateraw](https://hf.co/nateraw) - please leave a note in the discussions tab here # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
33bbe4eeeb0a3135453b5bf841d84a4a
Geotrend/distilbert-base-en-cased
Geotrend
distilbert
6
5
transformers
0
fill-mask
true
false
false
apache-2.0
['en']
['wikipedia']
null
0
0
0
0
0
0
0
[]
false
true
true
1,215
false
# distilbert-base-en-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
5a3f52c932bedb9efea72d023504553f
taikunzhang/distilbert-base-uncased-finetuned-squad
taikunzhang
distilbert
30
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,279
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4419 | 1.0 | 557 | 1.7242 | | 1.2397 | 2.0 | 1114 | 1.6714 | | 0.9066 | 3.0 | 1671 | 1.7375 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
04989a4836909fbb2c809e343d333fb8
aXhyra/demo_sentiment_42
aXhyra
distilbert
10
7
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,388
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_sentiment_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6332 - F1: 0.7114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.62486660723695e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 | | 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 | | 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 | | 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
d12575f3006136965c84a8224d5ac9b4
magitz/distilbert-base-uncased-finetuned-emotion
magitz
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,338
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.9265 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8101 | 1.0 | 250 | 0.3177 | 0.9045 | 0.9010 | | 0.2472 | 2.0 | 500 | 0.2235 | 0.9265 | 0.9268 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.18.3 - Tokenizers 0.11.0
b18f4865fc97d133e7ab3de1c11c2ab7
din0s/t5-base-asqa-ob
din0s
t5
10
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,463
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-asqa-ob This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the [ASQA](https://huggingface.co/datasets/din0s/asqa) dataset. It achieves the following results on the evaluation set: - Loss: 1.7356 - Rougelsum: 12.0879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:| | No log | 1.0 | 355 | 1.8545 | 11.6549 | | 2.4887 | 2.0 | 710 | 1.8050 | 11.7533 | | 1.9581 | 3.0 | 1065 | 1.7843 | 11.8327 | | 1.9581 | 4.0 | 1420 | 1.7722 | 11.9442 | | 1.9252 | 5.0 | 1775 | 1.7648 | 11.9331 | | 1.8853 | 6.0 | 2130 | 1.7567 | 11.9788 | | 1.8853 | 7.0 | 2485 | 1.7519 | 12.0300 | | 1.8512 | 8.0 | 2840 | 1.7483 | 12.0225 | | 1.8328 | 9.0 | 3195 | 1.7451 | 12.0402 | | 1.8115 | 10.0 | 3550 | 1.7436 | 12.0444 | | 1.8115 | 11.0 | 3905 | 1.7419 | 12.0850 | | 1.7878 | 12.0 | 4260 | 1.7408 | 12.1047 | | 1.774 | 13.0 | 4615 | 1.7394 | 12.0839 | | 1.774 | 14.0 | 4970 | 1.7390 | 12.0910 | | 1.7787 | 15.0 | 5325 | 1.7381 | 12.0880 | | 1.7632 | 16.0 | 5680 | 1.7380 | 12.1088 | | 1.7623 | 17.0 | 6035 | 1.7370 | 12.1046 | | 1.7623 | 18.0 | 6390 | 1.7368 | 12.0997 | | 1.7508 | 19.0 | 6745 | 1.7359 | 12.0902 | | 1.7597 | 20.0 | 7100 | 1.7356 | 12.0879 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
97ca1b09e88992320df4000b16b8e04d
ALM/whisper-sk-small-augmented
ALM
whisper
20
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['sk']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,568
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Slovak - Robust This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 sk dataset. It achieves the following results on the evaluation set: - Loss: 0.7397 - Wer: 43.6221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0232 | 14.29 | 1000 | 0.7425 | 51.8801 | | 0.0083 | 28.57 | 2000 | 0.7698 | 48.4888 | | 0.0006 | 42.86 | 3000 | 0.7640 | 47.5964 | | 0.0005 | 57.14 | 4000 | 0.7649 | 44.8953 | | 0.0002 | 71.43 | 5000 | 0.7440 | 44.3598 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
51df8cd7a5106411bdc6849c8d8b9eea
jonatasgrosman/exp_w2v2t_ru_r-wav2vec2_s869
jonatasgrosman
wav2vec2
10
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ru']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ru']
false
true
true
462
false
# exp_w2v2t_ru_r-wav2vec2_s869 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
94dab4ffb43cfc7ea75a6363ed351052
addy88/t5-base-finetuned-sn-to-en
addy88
t5
13
6
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['itihasa']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
949
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-sn-to-en This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the itihasa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
431e00205e520b9a7a82b3feed6deb86
ultra-coder54732/4-way-detection-prop-16-deberta
ultra-coder54732
deberta
13
2
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
942
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 4-way-detection-prop-16-deberta This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ff94186c250675a76bee81be7046c105
russellc/wav2vec2-large-xls-r-300m-tr
russellc
wav2vec2
13
5
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['tr-TR']
['common_voice, common_voice_6_1_0']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'hf-asr-leaderboard']
true
true
true
1,718
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2841 - Wer: 0.2904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 7 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0805 | 4.03 | 1000 | 3.0333 | 1.0 | | 1.5733 | 8.06 | 2000 | 0.5545 | 0.5080 | | 0.6238 | 12.1 | 3000 | 0.3861 | 0.3977 | | 0.4535 | 16.13 | 4000 | 0.3253 | 0.3408 | | 0.3682 | 20.16 | 5000 | 0.3042 | 0.3177 | | 0.3302 | 24.19 | 6000 | 0.2950 | 0.3015 | | 0.2985 | 28.23 | 7000 | 0.2841 | 0.2904 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
b5f0fc803532347cfa60a4c30da91b49
kevinbror/xlmrobertaenepochz
kevinbror
xlm-roberta
4
5
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,829
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xlmrobertaenepochz This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1485 - Train End Logits Accuracy: 0.6933 - Train Start Logits Accuracy: 0.6537 - Validation Loss: 0.9772 - Validation End Logits Accuracy: 0.7275 - Validation Start Logits Accuracy: 0.6976 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5599, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.1485 | 0.6933 | 0.6537 | 0.9772 | 0.7275 | 0.6976 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
d17a1b44e8ae79201be560f7665f08ad
KKHyun/distilbert-base-uncased-finetuned-squad
KKHyun
distilbert
12
0
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2096 | 1.0 | 5533 | 1.1505 | | 0.952 | 2.0 | 11066 | 1.1238 | | 0.7347 | 3.0 | 16599 | 1.1664 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
8f6dbf332fcf8cd7bf714282e633ce9c
twieland/MIX2_en-ja_helsinki
twieland
marian
11
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
12,236
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX2_en-ja_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-jap](https://huggingface.co/Helsinki-NLP/opus-mt-en-jap) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.5357 | 0.02 | 4000 | 2.9519 | | 2.8601 | 0.04 | 8000 | 2.6962 | | 2.6183 | 0.06 | 12000 | 2.5156 | | 2.4731 | 0.08 | 16000 | 2.4312 | | 2.3731 | 0.1 | 20000 | 2.3575 | | 2.2964 | 0.11 | 24000 | 2.3319 | | 2.238 | 0.13 | 28000 | 2.2802 | | 2.1919 | 0.15 | 32000 | 2.2552 | | 2.1479 | 0.17 | 36000 | 2.2354 | | 2.1104 | 0.19 | 40000 | 2.2210 | | 2.0788 | 0.21 | 44000 | 2.1835 | | 2.0552 | 0.23 | 48000 | 2.1391 | | 2.0228 | 0.25 | 52000 | 2.1338 | | 2.0062 | 0.27 | 56000 | 2.1115 | | 1.9868 | 0.29 | 60000 | 2.1025 | | 1.9628 | 0.31 | 64000 | 2.1334 | | 1.9474 | 0.32 | 68000 | 2.0935 | | 1.9318 | 0.34 | 72000 | 2.1030 | | 1.9187 | 0.36 | 76000 | 2.0605 | | 1.9019 | 0.38 | 80000 | 2.0388 | | 1.8916 | 0.4 | 84000 | 2.0360 | | 1.8775 | 0.42 | 88000 | 2.0356 | | 1.8689 | 0.44 | 92000 | 2.0315 | | 1.8558 | 0.46 | 96000 | 2.0169 | | 1.8431 | 0.48 | 100000 | 2.0213 | | 1.8373 | 0.5 | 104000 | 2.0071 | | 1.8224 | 0.52 | 108000 | 2.0093 | | 1.8181 | 0.53 | 112000 | 1.9952 | | 1.8087 | 0.55 | 116000 | 1.9927 | | 1.7998 | 0.57 | 120000 | 1.9726 | | 1.7947 | 0.59 | 124000 | 1.9817 | | 1.7874 | 0.61 | 128000 | 1.9650 | | 1.7781 | 0.63 | 132000 | 1.9688 | | 1.7712 | 0.65 | 136000 | 1.9655 | | 1.7631 | 0.67 | 140000 | 1.9561 | | 1.7577 | 0.69 | 144000 | 1.9529 | | 1.7528 | 0.71 | 148000 | 1.9447 | | 1.746 | 0.73 | 152000 | 1.9700 | | 1.7386 | 0.74 | 156000 | 1.9413 | | 1.7329 | 0.76 | 160000 | 1.9329 | | 1.7285 | 0.78 | 164000 | 1.9289 | | 1.7227 | 0.8 | 168000 | 1.9337 | | 1.7186 | 0.82 | 172000 | 1.9263 | | 1.7116 | 0.84 | 176000 | 1.9407 | | 1.7072 | 0.86 | 180000 | 1.9059 | | 1.7032 | 0.88 | 184000 | 1.9380 | | 1.6932 | 0.9 | 188000 | 1.9183 | | 1.6921 | 0.92 | 192000 | 1.9131 | | 1.6875 | 0.94 | 196000 | 1.9180 | | 1.6846 | 0.96 | 200000 | 1.9040 | | 1.6797 | 0.97 | 204000 | 1.9089 | | 1.6725 | 0.99 | 208000 | 1.9024 | | 1.6589 | 1.01 | 212000 | 1.8909 | | 1.6507 | 1.03 | 216000 | 1.8837 | | 1.6441 | 1.05 | 220000 | 1.8906 | | 1.6445 | 1.07 | 224000 | 1.8914 | | 1.6394 | 1.09 | 228000 | 1.8833 | | 1.6382 | 1.11 | 232000 | 1.8837 | | 1.6376 | 1.13 | 236000 | 1.8869 | | 1.6329 | 1.15 | 240000 | 1.8829 | | 1.6294 | 1.17 | 244000 | 1.8845 | | 1.6273 | 1.18 | 248000 | 1.8888 | | 1.6243 | 1.2 | 252000 | 1.8709 | | 1.6226 | 1.22 | 256000 | 1.8418 | | 1.6177 | 1.24 | 260000 | 1.8587 | | 1.6151 | 1.26 | 264000 | 1.8526 | | 1.6111 | 1.28 | 268000 | 1.8494 | | 1.6084 | 1.3 | 272000 | 1.8781 | | 1.6043 | 1.32 | 276000 | 1.8390 | | 1.6011 | 1.34 | 280000 | 1.8603 | | 1.5999 | 1.36 | 284000 | 1.8515 | | 1.5954 | 1.38 | 288000 | 1.8356 | | 1.5936 | 1.39 | 292000 | 1.8530 | | 1.5916 | 1.41 | 296000 | 1.8475 | | 1.5886 | 1.43 | 300000 | 1.8410 | | 1.5883 | 1.45 | 304000 | 1.8153 | | 1.5828 | 1.47 | 308000 | 1.8254 | | 1.582 | 1.49 | 312000 | 1.8139 | | 1.578 | 1.51 | 316000 | 1.8366 | | 1.5723 | 1.53 | 320000 | 1.8353 | | 1.5705 | 1.55 | 324000 | 1.8230 | | 1.5691 | 1.57 | 328000 | 1.8194 | | 1.5656 | 1.59 | 332000 | 1.8069 | | 1.566 | 1.6 | 336000 | 1.8204 | | 1.5604 | 1.62 | 340000 | 1.8307 | | 1.5573 | 1.64 | 344000 | 1.8209 | | 1.5547 | 1.66 | 348000 | 1.8320 | | 1.5545 | 1.68 | 352000 | 1.8179 | | 1.5519 | 1.7 | 356000 | 1.8323 | | 1.545 | 1.72 | 360000 | 1.8005 | | 1.5483 | 1.74 | 364000 | 1.8034 | | 1.5454 | 1.76 | 368000 | 1.7997 | | 1.5393 | 1.78 | 372000 | 1.8078 | | 1.5381 | 1.8 | 376000 | 1.8204 | | 1.5347 | 1.81 | 380000 | 1.8071 | | 1.5327 | 1.83 | 384000 | 1.7997 | | 1.529 | 1.85 | 388000 | 1.8012 | | 1.5287 | 1.87 | 392000 | 1.8028 | | 1.5273 | 1.89 | 396000 | 1.8103 | | 1.5194 | 1.91 | 400000 | 1.8008 | | 1.5197 | 1.93 | 404000 | 1.8004 | | 1.5218 | 1.95 | 408000 | 1.8024 | | 1.514 | 1.97 | 412000 | 1.7852 | | 1.5146 | 1.99 | 416000 | 1.7908 | | 1.5045 | 2.01 | 420000 | 1.7864 | | 1.4876 | 2.02 | 424000 | 1.7813 | | 1.4846 | 2.04 | 428000 | 1.7822 | | 1.4865 | 2.06 | 432000 | 1.7737 | | 1.4857 | 2.08 | 436000 | 1.7668 | | 1.4825 | 2.1 | 440000 | 1.7681 | | 1.4828 | 2.12 | 444000 | 1.7685 | | 1.4821 | 2.14 | 448000 | 1.7636 | | 1.4778 | 2.16 | 452000 | 1.7778 | | 1.4803 | 2.18 | 456000 | 1.7834 | | 1.4766 | 2.2 | 460000 | 1.7801 | | 1.4741 | 2.22 | 464000 | 1.7601 | | 1.4705 | 2.23 | 468000 | 1.7665 | | 1.4739 | 2.25 | 472000 | 1.7604 | | 1.4694 | 2.27 | 476000 | 1.7803 | | 1.4665 | 2.29 | 480000 | 1.7835 | | 1.4668 | 2.31 | 484000 | 1.7670 | | 1.4605 | 2.33 | 488000 | 1.7629 | | 1.4626 | 2.35 | 492000 | 1.7612 | | 1.4627 | 2.37 | 496000 | 1.7612 | | 1.4569 | 2.39 | 500000 | 1.7557 | | 1.455 | 2.41 | 504000 | 1.7599 | | 1.4547 | 2.43 | 508000 | 1.7569 | | 1.453 | 2.44 | 512000 | 1.7589 | | 1.4515 | 2.46 | 516000 | 1.7679 | | 1.4501 | 2.48 | 520000 | 1.7574 | | 1.4446 | 2.5 | 524000 | 1.7526 | | 1.4456 | 2.52 | 528000 | 1.7506 | | 1.4445 | 2.54 | 532000 | 1.7484 | | 1.4428 | 2.56 | 536000 | 1.7447 | | 1.439 | 2.58 | 540000 | 1.7468 | | 1.441 | 2.6 | 544000 | 1.7609 | | 1.4358 | 2.62 | 548000 | 1.7498 | | 1.4318 | 2.64 | 552000 | 1.7592 | | 1.4276 | 2.65 | 556000 | 1.7452 | | 1.4317 | 2.67 | 560000 | 1.7500 | | 1.4277 | 2.69 | 564000 | 1.7392 | | 1.4259 | 2.71 | 568000 | 1.7351 | | 1.4239 | 2.73 | 572000 | 1.7385 | | 1.4191 | 2.75 | 576000 | 1.7487 | | 1.4204 | 2.77 | 580000 | 1.7392 | | 1.4176 | 2.79 | 584000 | 1.7372 | | 1.4147 | 2.81 | 588000 | 1.7347 | | 1.4154 | 2.83 | 592000 | 1.7085 | | 1.4134 | 2.85 | 596000 | 1.7103 | | 1.4091 | 2.87 | 600000 | 1.7124 | | 1.4091 | 2.88 | 604000 | 1.7369 | | 1.406 | 2.9 | 608000 | 1.7142 | | 1.4028 | 2.92 | 612000 | 1.7376 | | 1.4019 | 2.94 | 616000 | 1.7201 | | 1.4018 | 2.96 | 620000 | 1.7230 | | 1.3959 | 2.98 | 624000 | 1.7206 | | 1.3985 | 3.0 | 628000 | 1.7183 | | 1.3681 | 3.02 | 632000 | 1.7283 | | 1.3668 | 3.04 | 636000 | 1.7330 | | 1.3687 | 3.06 | 640000 | 1.7187 | | 1.3681 | 3.08 | 644000 | 1.7163 | | 1.3687 | 3.09 | 648000 | 1.7249 | | 1.364 | 3.11 | 652000 | 1.7283 | | 1.364 | 3.13 | 656000 | 1.7091 | | 1.3652 | 3.15 | 660000 | 1.7030 | | 1.3623 | 3.17 | 664000 | 1.7058 | | 1.3604 | 3.19 | 668000 | 1.7101 | | 1.3598 | 3.21 | 672000 | 1.7104 | | 1.3577 | 3.23 | 676000 | 1.7028 | | 1.3574 | 3.25 | 680000 | 1.7023 | | 1.3546 | 3.27 | 684000 | 1.7197 | | 1.3549 | 3.29 | 688000 | 1.7045 | | 1.3534 | 3.3 | 692000 | 1.6990 | | 1.3511 | 3.32 | 696000 | 1.6971 | | 1.3504 | 3.34 | 700000 | 1.6894 | | 1.346 | 3.36 | 704000 | 1.6820 | | 1.3467 | 3.38 | 708000 | 1.6920 | | 1.3461 | 3.4 | 712000 | 1.6897 | | 1.3425 | 3.42 | 716000 | 1.6962 | | 1.34 | 3.44 | 720000 | 1.6864 | | 1.3408 | 3.46 | 724000 | 1.6860 | | 1.3387 | 3.48 | 728000 | 1.6924 | | 1.3377 | 3.5 | 732000 | 1.6919 | | 1.3378 | 3.51 | 736000 | 1.6858 | | 1.334 | 3.53 | 740000 | 1.6816 | | 1.3347 | 3.55 | 744000 | 1.6867 | | 1.3307 | 3.57 | 748000 | 1.6859 | | 1.3316 | 3.59 | 752000 | 1.6896 | | 1.3257 | 3.61 | 756000 | 1.6824 | | 1.3222 | 3.63 | 760000 | 1.6819 | | 1.3247 | 3.65 | 764000 | 1.6809 | | 1.3207 | 3.67 | 768000 | 1.6775 | | 1.3227 | 3.69 | 772000 | 1.6807 | | 1.3203 | 3.71 | 776000 | 1.6750 | | 1.3203 | 3.72 | 780000 | 1.6758 | | 1.316 | 3.74 | 784000 | 1.6787 | | 1.3147 | 3.76 | 788000 | 1.6747 | | 1.3146 | 3.78 | 792000 | 1.6718 | | 1.3137 | 3.8 | 796000 | 1.6744 | | 1.3143 | 3.82 | 800000 | 1.6733 | | 1.3123 | 3.84 | 804000 | 1.6754 | | 1.3069 | 3.86 | 808000 | 1.6734 | | 1.3122 | 3.88 | 812000 | 1.6742 | | 1.3074 | 3.9 | 816000 | 1.6742 | | 1.3006 | 3.92 | 820000 | 1.6709 | | 1.308 | 3.93 | 824000 | 1.6714 | | 1.3063 | 3.95 | 828000 | 1.6727 | | 1.3036 | 3.97 | 832000 | 1.6711 | | 1.3048 | 3.99 | 836000 | 1.6703 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
f6a44ea9a0ca3fdb4a8388e7425eedaa
cyrilzhang/gpt2-numfix
cyrilzhang
null
6
1
transformers
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
819
false
## GPT-2 Tokenizer with unmerged digits A fork of the GPT-2 tokenizer, which **removes multi-digit tokens**: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('cyrilzhang/gpt2-numfix') tokenizer('123.45') # [16, 17, 18, 13, 19, 20] gpt2_tokenizer('123.45') # [10163, 13, 2231] ``` Backward-compatible: ```python tokenizer.decode([10163, 46387]) # '<unused123> pigeon' gpt2_tokenizer.decode([10163, 46387]) # '123 pigeon' ``` - This is for my investigations into the arithmetic capabilities of large language models. There is no model here, only a tokenizer. - [PaLM](https://arxiv.org/abs/2204.02311) does this. I think it's very reasonable. - Many models (illustriously, [GPT-3](https://arxiv.org/abs/2005.14165)) don't do this, because they use the GPT-2 tokenizer.
8de770c5de49fc72812f37e2d5c28042
elopezlopez/xlnet-base-cased_fold_3_binary_v1
elopezlopez
xlnet
12
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,637
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased_fold_3_binary_v1 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8649 - F1: 0.8044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.4483 | 0.8000 | | 0.4228 | 2.0 | 578 | 0.4264 | 0.8040 | | 0.4228 | 3.0 | 867 | 0.5341 | 0.8056 | | 0.2409 | 4.0 | 1156 | 0.9077 | 0.8103 | | 0.2409 | 5.0 | 1445 | 1.1069 | 0.7889 | | 0.1386 | 6.0 | 1734 | 1.0288 | 0.8093 | | 0.0817 | 7.0 | 2023 | 1.2477 | 0.8049 | | 0.0817 | 8.0 | 2312 | 1.5915 | 0.7872 | | 0.0465 | 9.0 | 2601 | 1.5323 | 0.8035 | | 0.0465 | 10.0 | 2890 | 1.4351 | 0.7989 | | 0.0376 | 11.0 | 3179 | 1.4639 | 0.7916 | | 0.0376 | 12.0 | 3468 | 1.6027 | 0.7956 | | 0.0234 | 13.0 | 3757 | 1.7860 | 0.7931 | | 0.0109 | 14.0 | 4046 | 1.8567 | 0.7934 | | 0.0109 | 15.0 | 4335 | 1.8294 | 0.8053 | | 0.0115 | 16.0 | 4624 | 1.7799 | 0.7971 | | 0.0115 | 17.0 | 4913 | 1.5935 | 0.8000 | | 0.0142 | 18.0 | 5202 | 1.8136 | 0.8066 | | 0.0142 | 19.0 | 5491 | 1.7718 | 0.8063 | | 0.0124 | 20.0 | 5780 | 1.8581 | 0.8053 | | 0.0083 | 21.0 | 6069 | 1.8523 | 0.8056 | | 0.0083 | 22.0 | 6358 | 1.8408 | 0.8035 | | 0.0045 | 23.0 | 6647 | 1.8347 | 0.8040 | | 0.0045 | 24.0 | 6936 | 1.8683 | 0.8067 | | 0.0005 | 25.0 | 7225 | 1.8649 | 0.8044 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
2037dd0c53298570c9ae05c4fd019c80
Fhrozen/voc_hifigan_multilingual
Fhrozen
null
4
0
espnet
1
audio-to-audio
false
false
false
cc-by-4.0
['multilingual']
['libritts', 'csj', 'css10', 'aishell3', 'jvs', 'jsss', 'jsut']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'audio-to-audio', 'vocoder']
false
true
true
579
false
## Vocoder model - HifiGAN - Multilingual **No support given.** ### Details ``` batch_size: 64 discriminator_params: follow_official_norm: true period_discriminator_params: bias: true channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 in_channels: 1 kernel_sizes: - 5 - 3 max_downsample_channels: 1024 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 out_channels: 1 use_spectral_norm: false use_weight_norm: true periods: - 2 - 3 - 5 - 7 - 11 ```
e7ba85ddf3286b9938f8e43dd291de73
Helsinki-NLP/opus-mt-nso-es
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-nso-es * source languages: nso * target languages: es * OPUS readme: [nso-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nso-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nso-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nso.es | 29.5 | 0.485 |
0e2dc387a63805aa88cf4d35dee617e2
autoevaluate/binary-classification-not-evaluated
autoevaluate
distilbert
15
5
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,211
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binary-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.175 | 1.0 | 4210 | 0.3009 | 0.8968 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
967eb53754bea5d064d12a9c15fafd33
DTAI-KULeuven/robbert-2022-dutch-base
DTAI-KULeuven
roberta
9
1,078
transformers
5
fill-mask
true
false
false
mit
['nl']
['oscar', 'dbrd', 'lassy-ud', 'europarl-mono', 'conll2002']
null
0
0
0
0
0
0
0
['Dutch', 'Flemish', 'RoBERTa', 'RobBERT']
false
true
true
9,632
false
<p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_2022_logo_with_name.png" alt="RobBERT-2022: Updating a Dutch Language Model to Account for Evolving Language Use" width="75%"> </p> # RobBERT-2022: Updating a Dutch Language Model to Account for Evolving Language Use. RobBERT-2022 is the latest release of the [Dutch RobBERT model](https://pieter.ai/robbert/). It further pretrained the original [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) model on the 2022 version of the OSCAR version. Thanks to this more recent dataset, this [DTAI-KULeuven/robbert-2022-dutch-base](https://huggingface.co/DTAI-KULeuven/robbert-2022-dutch-base) model shows increased performance on several tasks related to recent events, e.g. COVID-19-related tasks. We also found that for some tasks that do not contain more recent information than 2019, the original [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) RobBERT model can still outperform this newer one. The original RobBERT model was released in January 2020. Dutch has evolved a lot since then, for example the COVID-19 pandemic introduced a wide range of new words that were suddenly used daily. Also, many other world facts that the original model considered true have also changed. To account for this and other changes in usage, we release a new Dutch BERT model trained on data from 2022: RobBERT 2022. More in-depth information about RobBERT-2022 can be found in our [blog post](https://pieter.ai/robbert-2022/), [our paper](http://arxiv.org/abs/2211.08192), [the original RobBERT paper](https://arxiv.org/abs/2001.06286) and [the RobBERT Github repository](https://github.com/iPieter/RobBERT). ## How to use RobBERT-2022 and RobBERT both use the [RoBERTa](https://arxiv.org/abs/1907.11692) architecture and pre-training but with a Dutch tokenizer and training data. RoBERTa is the robustly optimized English BERT model, making it even more powerful than the original BERT model. Given this same architecture, RobBERT can easily be finetuned and inferenced using [code to finetune RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html) models and most code used for BERT models, e.g. as provided by [HuggingFace Transformers](https://huggingface.co/transformers/) library. By default, RobBERT-2022 has the masked language model head used in training. This can be used as a zero-shot way to fill masks in sentences. It can be tested out for free on [RobBERT's Hosted infererence API of Huggingface](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=De+hoofdstad+van+Belgi%C3%AB+is+%3Cmask%3E.). You can also create a new prediction head for your own task by using any of HuggingFace's [RoBERTa-runners](https://huggingface.co/transformers/v2.7.0/examples.html#language-model-training), [their fine-tuning notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) by changing the model name to `DTAI-KULeuven/robbert-2022-dutch-base`. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("DTAI-KULeuven/robbert-2022-dutch-base") model = AutoModelForSequenceClassification.from_pretrained("DTAI-KULeuven/robbert-2022-dutch-base") ``` You can then use most of [HuggingFace's BERT-based notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) for finetuning RobBERT-2022 on your type of Dutch language dataset. ## Comparison of Available Dutch BERT models There is a wide variety of Dutch BERT-based models available for fine-tuning on your tasks. Here's a quick summary to find the one that suits your need: - [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base): The RobBERT model has for years been the best performing BERT-like model for most language tasks. It is trained on a large Dutch webcrawled dataset (OSCAR) and uses the superior [RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta) architecture, which robustly optimized the original [BERT model](https://huggingface.co/docs/transformers/model_doc/bert). - [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-mergedRobBERTje): The RobBERTje model is a distilled version of RobBERT and about half the size and four times faster to perform inference on. This can help deploy more scalable language models for your language task - [DTAI-KULeuven/robbert-2022-dutch-base](https://huggingface.co/DTAI-KULeuven/robbert-2022-dutch-base): The RobBERT-2022 is a further pre-trained RobBERT model on the OSCAR2022 dataset. It is helpful for tasks that rely on words and/or information about more recent events. There's also the [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) "BERTje" model. This model uses the outdated basic BERT model, and is trained on a smaller corpus of clean Dutch texts. Thanks to RobBERT's more recent architecture as well as its larger and more real-world-like training corpus, most researchers and practitioners seem to achieve higher performance on their language tasks with the RobBERT model. ## Technical Details From The Paper ### Our Performance Evaluation Results All experiments are described in more detail in our [paper](https://arxiv.org/abs/2001.06286), with the code in [our GitHub repository](https://github.com/iPieter/RobBERT). ### Sentiment analysis Predicting whether a review is positive or negative using the [Dutch Book Reviews Dataset](https://github.com/benjaminvdb/110kDBRD). | Model | Accuracy [%] | |-------------------|--------------------------| | ULMFiT | 93.8 | | BERTje | 93.0 | | RobBERT v2 | 94.4 | | RobBERT 2022 | **95.1** | ### Die/Dat (coreference resolution) We measured how well the models are able to do coreference resolution by predicting whether "die" or "dat" should be filled into a sentence. For this, we used the [EuroParl corpus](https://www.statmt.org/europarl/). #### Finetuning on whole dataset | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | [Baseline](https://arxiv.org/abs/2001.02943) (LSTM) | | 75.03 | | mBERT | 98.285 | 98.033 | | BERTje | 98.268 | 98.014 | | RobBERT v2 | **99.232** | **99.121** | | RobBERT 2022 | 97.8 | | #### Finetuning on 10K examples We also measured the performance using only 10K training examples. This experiment clearly illustrates that RobBERT outperforms other models when there is little data available. | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | mBERT | 92.157 | 90.898 | | BERTje | 93.096 | 91.279 | | RobBERT v2 | **97.816** | **97.514** | #### Using zero-shot word masking task Since BERT models are pre-trained using the word masking task, we can use this to predict whether "die" or "dat" is more likely. This experiment shows that RobBERT has internalised more information about Dutch than other models. | Model | Accuracy [%] | |-------------------|--------------------------| | ZeroR | 66.70 | | mBERT | 90.21 | | BERTje | 94.94 | | RobBERT v2 | **98.75** | ### Part-of-Speech Tagging. Using the [Lassy UD dataset](https://universaldependencies.org/treebanks/nl_lassysmall/index.html). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 91.7 | | mBERT | **96.5** | | BERTje | 96.3 | | RobBERT v2 | 96.4 | | RobBERT 2022 | 96.1 | ## Credits and citation This project is created by [Pieter Delobelle](https://people.cs.kuleuven.be/~pieter.delobelle), [Thomas Winters](https://thomaswinters.be) and [Bettina Berendt](https://people.cs.kuleuven.be/~bettina.berendt/). If you would like to cite our paper or model, you can use the following BibTeX: ``` @inproceedings{delobelle2022robbert2022, doi = {10.48550/ARXIV.2211.08192}, url = {https://arxiv.org/abs/2211.08192}, author = {Delobelle, Pieter and Winters, Thomas and Berendt, Bettina}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {RobBERT-2022: Updating a Dutch Language Model to Account for Evolving Language Use}, venue = {arXiv}, year = {2022}, } @inproceedings{delobelle2020robbert, title = "{R}ob{BERT}: a {D}utch {R}o{BERT}a-based {L}anguage {M}odel", author = "Delobelle, Pieter and Winters, Thomas and Berendt, Bettina", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.292", doi = "10.18653/v1/2020.findings-emnlp.292", pages = "3255--3265" } ```
9f1f6ae4ee99c934084b193f297a9f71
birdaz/nagisa
birdaz
null
19
6
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
414
false
### nagisa Dreambooth model trained by birdaz with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
6093e73d930d4725252048cf1bcc8ac0
KoichiYasuoka/deberta-large-japanese-aozora-ud-head
KoichiYasuoka
deberta-v2
20
8
transformers
1
question-answering
true
false
false
cc-by-sa-4.0
['ja']
['universal_dependencies']
null
0
0
0
0
0
0
0
['japanese', 'question-answering', 'dependency-parsing']
false
true
true
3,868
false
# deberta-large-japanese-aozora-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-aozora) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-aozora-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-aozora-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False) print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵>が用いられている")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.utils import cached_file c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json")) d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json")) t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/deberta-large-japanese-aozora-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
82aa721ab5b3fee4a6525aa519b9a8fc
Helsinki-NLP/opus-mt-fi-yap
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-fi-yap * source languages: fi * target languages: yap * OPUS readme: [fi-yap](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-yap/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-yap/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-yap/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-yap/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.yap | 25.4 | 0.445 |
d2255ce359fb5b9db77020e11a790b88
Graphcore/roberta-base-squad2
Graphcore
roberta
19
6
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad_v2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,188
false
# Graphcore/roberta-base-squad2 Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description RoBERTa is based on BERT pretraining approach and improves on it by carefully evaluating a number of design decisions of BERT pretraining which it found to cause the model to be undertrained. It suggested a way to improve the performance by training the model longer, with bigger batches over more data, removing the next sentence prediction objectives, training on longer sequences and dynamically changing the mask pattern applied to the training data. As a result, it achieved state-of-the-art results on GLUE, RACE and SQuAD. Paper link : [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/pdf/1907.11692.pdf) ## Intended uses & limitations This model is a fine-tuned version of [HuggingFace/roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. ## Training and evaluation data Trained and evaluated on the SQuAD v2 dataset: - [HuggingFace/squad_v2](https://huggingface.co/datasets/squad_v2). ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/question-answering/run_qa.py \ --ipu_config_name Graphcore/roberta-base-ipu \ --model_name_or_path roberta-base \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 2 \ --pod_type pod16 \ --learning_rate 7e-5 \ --max_seq_length 384 \ --doc_stride 128 \ --seed 1984 \ --lr_scheduler_type linear \ --loss_scaling 64 \ --weight_decay 0.01 \ --warmup_ratio 0.2 \ --logging_steps 1 \ --save_steps -1 \ --dataloader_num_workers 64 \ --output_dir roberta-base-squad2 \ --overwrite_output_dir \ --push_to_hub ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 1984 - distributed_type: IPU - total_train_batch_size: 256 - total_eval_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** epoch = 3.0 train_loss = 0.9982 train_runtime = 0:04:44.21 train_samples = 131823 train_samples_per_second = 1391.43 train_steps_per_second = 5.425 ***** eval metrics ***** epoch = 3.0 eval_HasAns_exact = 78.1208 eval_HasAns_f1 = 84.6569 eval_HasAns_total = 5928 eval_NoAns_exact = 82.0353 eval_NoAns_f1 = 82.0353 eval_NoAns_total = 5945 eval_best_exact = 80.0809 eval_best_exact_thresh = 0.0 eval_best_f1 = 83.3442 eval_best_f1_thresh = 0.0 eval_exact = 80.0809 eval_f1 = 83.3442 eval_samples = 12165 eval_total = 11873 ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
e83459dad80df2ecd74583964b5caf00
danurahul/wav2vec2-large-xlsr-pa-IN
danurahul
wav2vec2
9
6
transformers
1
automatic-speech-recognition
true
false
true
apache-2.0
['pa-IN']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,679
false
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 100 % ## Training The Common Voice `train`, `validation` was used for training as well as validation and testing # The script used for training can be found https://github.com/rahul-art/huggingface_wav2vec2_punjabi/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Punjabi_ASR_with_%F0%9F%A4%97_Transformers.ipynb
4025ef0833027b7839229134b01c8404
Someman/bird-danphe
Someman
null
17
7
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'wildcard']
false
true
true
714
false
# DreamBooth model for the bird concept trained by Someman on the Someman/danphe dataset. This is a Stable Diffusion model fine-tuned on the bird concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of bird danphe** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `danphe` images for the wildcard theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('Someman/bird-danphe') image = pipeline().images[0] image ```
cd1c242d1c3b341e9795e1055267187e
google/tapas-small
google
tapas
8
5
transformers
0
feature-extraction
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['tapas', 'TapasModel']
false
true
true
4,610
false
# TAPAS small model This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_inter_masklm_small_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training. It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `revision="no_reset"`, which corresponds to `tapas_inter_masklm_small` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding one or more classification heads on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on a downstream task. ## Intended uses & limitations You can use the raw model for getting hidden representatons about table-question pairs, but it's mostly intended to be fine-tuned on a downstream task such as question answering or sequence classification. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Pre-training The model was pre-trained on 32 Cloud TPU v3 cores for 1,000,000 steps with maximum sequence length 512 and batch size of 512. In this setup, pre-training on MLM only takes around 3 days. Aditionally, the model has been further pre-trained on a second task (table entailment). See the original TAPAS [paper](https://www.aclweb.org/anthology/2020.acl-main.398/) and the [follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27/) for more details. The optimizer used is Adam with a learning rate of 5e-5, and a warmup ratio of 0.01. ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
e2ceac0d75c51fd46581960140607381
HuggingFaceM4/opt-1.3b-bf16-8b-samples
HuggingFaceM4
opt
11
2
transformers
0
text-generation
true
false
false
openrail
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,345
false
This model is an outcome of an experiment of training from scratch https://huggingface.co/facebook/opt-1.3b for just 8B tokens in fp16, fp32 and bf16 which would allow comparing the resulting models when they are used to train a multimodal model. But, of course, it can be used for any other purpose, just be aware that these models are very undertrained. Most language models are trained for about 300B tokens, this one was just 8B. The 3 repositories are: - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp16-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-fp32-8b-samples - https://huggingface.co/HuggingFaceM4/opt-1.3b-bf16-8b-samples ## The training get transformers: ``` git clone https://github.com/huggingface/transformers cd transformers ``` Prepare an initialized opt-1.3 model: ``` cat << EOT > prep-bf16.py from transformers import AutoConfig, AutoModel, AutoTokenizer import torch mname = "facebook/opt-1.3b" config = AutoConfig.from_pretrained(mname) model = AutoModel.from_config(config, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(mname) path = "opt-1.3b-bf16" model.save_pretrained(path) tokenizer.save_pretrained(path) EOT ``` Run: ``` python prep-bf16.py ``` Train from scratch on a single 8x 80GB A100 node on `realnewslike` subset of https://huggingface.co/datasets/c4: ``` git clone https://github.com/huggingface/transformers cd transformers PYTHONPATH="src" python -m torch.distributed.run \ --nproc_per_node=8 \ --nnode=1 \ --node_rank=0 \ --master_addr=127.0.0.1 \ --master_port=9901 \ examples/pytorch/language-modeling/run_clm.py \ --bf16 \ --tf32 1 \ --seed 42 \ --dataset_name c4 \ --dataset_config_name realnewslike \ --model_name_or_path opt-1.3b-bf16 \ --per_device_train_batch_size 6 \ --per_device_eval_batch_size 6 \ --gradient_accumulation_steps 2 \ --do_train \ --logging_steps 5 \ --save_steps 1000 \ --eval_steps 1000 \ --weight_decay 0.1 \ --num_train_epochs 1 \ --adam_beta1 0.9 \ --adam_beta2 0.95 \ --learning_rate 0.0002 \ --lr_scheduler_type linear \ --warmup_steps 1000 \ --report_to tensorboard \ --output_dir saved \ --logging_dir tb \ --log_level warning \ --preprocessing_num_workers 32 ``` The training took about 40h.
99a703c01f69211c035ca8affdce11e7
zoha/wav2vec2-base-common-voice-fa-demo-colab
zoha
wav2vec2
22
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,734
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-common-voice-fa-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0558 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.1626 | 0.3 | 100 | 4.0692 | 1.0 | | 5.1776 | 0.6 | 200 | 3.6640 | 1.0 | | 3.6628 | 0.9 | 300 | 3.3832 | 1.0 | | 3.2022 | 1.2 | 400 | 3.3492 | 1.0 | | 3.1714 | 1.5 | 500 | 3.3215 | 1.0 | | 3.0689 | 1.8 | 600 | 3.0806 | 1.0 | | 3.1478 | 2.1 | 700 | 3.0624 | 1.0 | | 3.1818 | 2.4 | 800 | 3.0777 | 1.0 | | 3.159 | 2.7 | 900 | 3.0558 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
06c99f75854eb94f29b9d9f6aecd3dd7
jonatasgrosman/exp_w2v2r_de_vp-100k_age_teens-10_sixties-0_s362
jonatasgrosman
wav2vec2
10
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'de']
false
true
true
498
false
# exp_w2v2r_de_vp-100k_age_teens-10_sixties-0_s362 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
073905c38449aaf9d9b08e86345e64c7
Helsinki-NLP/opus-mt-war-en
Helsinki-NLP
marian
11
80
transformers
0
translation
true
true
false
apache-2.0
['war', 'en']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,007
false
### war-eng * source group: Waray (Philippines) * target group: English * OPUS readme: [war-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/war-eng/README.md) * model: transformer-align * source language(s): war * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.war.eng | 12.3 | 0.308 | ### System Info: - hf_name: war-eng - source_languages: war - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/war-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['war', 'en'] - src_constituents: {'war'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.test.txt - src_alpha3: war - tgt_alpha3: eng - short_pair: war-en - chrF2_score: 0.308 - bleu: 12.3 - brevity_penalty: 1.0 - ref_len: 11345.0 - src_name: Waray (Philippines) - tgt_name: English - train_date: 2020-06-16 - src_alpha2: war - tgt_alpha2: en - prefer_old: False - long_pair: war-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
10e4b8324e537ad376b0069b4a22ffed
anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-2
anas-awadalla
t5
17
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
961
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-128-finetuned-squad-seed-2 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
ff9ae7041d43f150a7aa123c81c77166
proxima/darkvictorian_artstyle
proxima
null
21
66
diffusers
41
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
4
0
3
1
1
0
1
['stable-diffusion', 'text-to-image']
false
true
true
1,675
false
# finetuned on dark, moody, "victorian" imagery (ノ◕ヮ◕)ノ*:・゚✧ [<img src="https://colab.research.google.com/assets/colab-badge.svg">](https://colab.research.google.com/drive/13E3i6_Z1BWd3e6f71-TNd5bk8eGqaeZf?usp=sharing) ![1](https://i.im.ge/2022/11/16/S1gs6P.darkvictorian-2.jpg) v1 was trained on SD 1.4, v2 on SD 1.5. check the pdf for examples with different prompts & settings. comparisons.zip has steps vs cfg scale x/y plots for euler_a and lms. use the tokens "darkvictorian artstyle" in your prompt to use the style. ## random samples: ![samples](https://i.im.ge/2022/11/16/S1gaV1.samples.jpg) <a href='https://ko-fi.com/S6S6FUYKY' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi3.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
e3c8e6758ecfb0eca863ac396d5bd2d6
AndyChiang/cdgp-csg-roberta-cloth
AndyChiang
roberta
9
6
transformers
0
fill-mask
true
false
false
mit
['en']
['cloth']
null
0
0
0
0
0
0
0
['roberta', 'cloze', 'distractor', 'generation']
false
true
true
3,678
false
# cdgp-csg-roberta-cloth ## Model description This model is a Candidate Set Generator in **"CDGP: Automatic Cloze Distractor Generation based on Pre-trained Language Model", Findings of EMNLP 2022**. Its input are stem and answer, and output is candidate set of distractors. It is fine-tuned by [**CLOTH**](https://www.cs.cmu.edu/~glai1/data/cloth/) dataset based on [**roberta-base**](https://huggingface.co/roberta-base) model. For more details, you can see our **paper** or [**GitHub**](https://github.com/AndyChiangSH/CDGP). ## How to use? 1. Download the model by hugging face transformers. ```python from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline tokenizer = RobertaTokenizer.from_pretrained("AndyChiang/cdgp-csg-roberta-cloth") csg_model = RobertaForMaskedLM.from_pretrained("AndyChiang/cdgp-csg-roberta-cloth") ``` 2. Create a unmasker. ```python unmasker = pipeline("fill-mask", tokenizer=tokenizer, model=csg_model, top_k=10) ``` 3. Use the unmasker to generate the candidate set of distractors. ```python sent = "I feel <mask> now. </s> happy" cs = unmasker(sent) print(cs) ``` ## Dataset This model is fine-tuned by [CLOTH](https://www.cs.cmu.edu/~glai1/data/cloth/) dataset, which is a collection of nearly 100,000 cloze questions from middle school and high school English exams. The detail of CLOTH dataset is shown below. | Number of questions | Train | Valid | Test | | ------------------- | ----- | ----- | ----- | | Middle school | 22056 | 3273 | 3198 | | High school | 54794 | 7794 | 8318 | | Total | 76850 | 11067 | 11516 | You can also use the [dataset](https://huggingface.co/datasets/AndyChiang/cloth) we have already cleaned. ## Training We use a special way to fine-tune model, which is called **"Answer-Relating Fine-Tune"**. More detail is in our paper. ### Training hyperparameters The following hyperparameters were used during training: - Pre-train language model: [roberta-base](https://huggingface.co/roberta-base) - Optimizer: adam - Learning rate: 0.0001 - Max length of input: 64 - Batch size: 64 - Epoch: 1 - Device: NVIDIA® Tesla T4 in Google Colab ## Testing The evaluations of this model as a Candidate Set Generator in CDGP is as follows: | P@1 | F1@3 | F1@10 | MRR | NDCG@10 | | ----- | ---- | ----- | ----- | ------- | | 10.50 | 9.83 | 10.25 | 20.42 | 28.17 | ## Other models ### Candidate Set Generator | Models | CLOTH | DGen | | ----------- | ----------------------------------------------------------------------------------- | -------------------------------------------------------------------------------- | | **BERT** | [cdgp-csg-bert-cloth](https://huggingface.co/AndyChiang/cdgp-csg-bert-cloth) | [cdgp-csg-bert-dgen](https://huggingface.co/AndyChiang/cdgp-csg-bert-dgen) | | **SciBERT** | [cdgp-csg-scibert-cloth](https://huggingface.co/AndyChiang/cdgp-csg-scibert-cloth) | [cdgp-csg-scibert-dgen](https://huggingface.co/AndyChiang/cdgp-csg-scibert-dgen) | | **RoBERTa** | [*cdgp-csg-roberta-cloth*](https://huggingface.co/AndyChiang/cdgp-csg-roberta-cloth) | [cdgp-csg-roberta-dgen](https://huggingface.co/AndyChiang/cdgp-csg-roberta-dgen) | | **BART** | [cdgp-csg-bart-cloth](https://huggingface.co/AndyChiang/cdgp-csg-bart-cloth) | [cdgp-csg-bart-dgen](https://huggingface.co/AndyChiang/cdgp-csg-bart-dgen) | ### Distractor Selector **fastText**: [cdgp-ds-fasttext](https://huggingface.co/AndyChiang/cdgp-ds-fasttext) ## Citation None
494053be485f7d48fbf4099a625d8bcd
hfl/chinese-legal-electra-small-discriminator
hfl
electra
9
1
transformers
1
null
true
true
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,881
false
# This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
7cce1888f9b096a1f4732e5972bc4bcf
tucan9389/distilbert-base-uncased-finetuned-cola
tucan9389
distilbert
13
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7501 - Matthews Correlation: 0.5309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5286 | 1.0 | 535 | 0.5067 | 0.4301 | | 0.3469 | 2.0 | 1070 | 0.5216 | 0.4802 | | 0.2343 | 3.0 | 1605 | 0.6431 | 0.5002 | | 0.1753 | 4.0 | 2140 | 0.7501 | 0.5309 | | 0.1251 | 5.0 | 2675 | 0.8695 | 0.5222 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
c03b272121b9552029cc938369cf83cc
KFlash/bert-finetuned-squad
KFlash
bert
14
3
transformers
0
question-answering
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
938
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
add72244449d6be7c32078cf935804cb
fathyshalab/all-roberta-large-v1-work-7-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,509
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-work-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3586 - Accuracy: 0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8058 | 1.0 | 1 | 2.6169 | 0.2356 | | 2.3524 | 2.0 | 2 | 2.5215 | 0.2978 | | 1.9543 | 3.0 | 3 | 2.4427 | 0.3422 | | 1.5539 | 4.0 | 4 | 2.3874 | 0.36 | | 1.4133 | 5.0 | 5 | 2.3586 | 0.3689 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
8bf80d3b983d99fec433799a3f00d6c4
Helsinki-NLP/opus-mt-fr-tll
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-fr-tll * source languages: fr * target languages: tll * OPUS readme: [fr-tll](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-tll/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-tll/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tll/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tll/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.tll | 24.6 | 0.467 |
50efa12cf7a12f6b0ff157dbe42b24f8
DOOGLAK/Article_100v5_NER_Model_3Epochs_UNAUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['article100v5_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,561
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_100v5_NER_Model_3Epochs_UNAUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article100v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.5958 - Precision: 0.0241 - Recall: 0.0005 - F1: 0.0010 - Accuracy: 0.7822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.7298 | 0.0 | 0.0 | 0.0 | 0.7816 | | No log | 2.0 | 26 | 0.6272 | 0.0 | 0.0 | 0.0 | 0.7816 | | No log | 3.0 | 39 | 0.5958 | 0.0241 | 0.0005 | 0.0010 | 0.7822 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
451603474a8739b2d0c1d4b3c88b040f
KoichiYasuoka/roberta-large-japanese-aozora-ud-goeswith
KoichiYasuoka
roberta
10
7
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
['ja']
['universal_dependencies']
null
0
0
0
0
0
0
0
['japanese', 'pos', 'dependency-parsing']
false
true
true
2,862
false
# roberta-large-japanese-aozora-ud-goeswith ## Model Description This is a RoBERTa model pretrained on 青空文庫 texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). ## How to Use ```py class UDgoeswith(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=self.tokenizer(text,return_offsets_mapping=True) v=w["input_ids"] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" v=[(s,e) for s,e in w["offset_mapping"] if s<e] for i,(s,e) in enumerate(v,1): q=self.model.config.id2label[p[i,h[i]]].split("|") u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=UDgoeswith("KoichiYasuoka/roberta-large-japanese-aozora-ud-goeswith") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/). Or without ufal.chu-liu-edmonds: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-large-japanese-aozora-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ```
df864b5d031440191e7ffe28da6ef1d7
asaduas/deberta-v3-xsmall-indonesia-squadv2
asaduas
deberta-v2
13
13
transformers
0
question-answering
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,649
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-indonesia-squadv2 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4182 ## Model description Deberta-V3-Xsmall from Microsft with model parameter: Backbone Parameters 22M, 384 Hidden Size, 12 Layers Based Deberta-V3 ## Intended uses & limitations More information needed ## Training and evaluation data Training and evaluation data using Indonesia SQuAD V2, source from https://github.com/Wikidepia/SQuAD-id ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6078 | 1.0 | 13505 | 1.5331 | | 1.4216 | 2.0 | 27010 | 1.4344 | | 1.2017 | 3.0 | 40515 | 1.4182 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2 ### Evaluation Results ``` {'exact': 55.34646711872568, 'f1': 67.22757187614371, 'total': 24923, 'HasAns_exact': 55.34646711872568, 'HasAns_f1': 67.22757187614371, 'HasAns_total': 24923, 'best_exact': 55.34646711872568, 'best_exact_thresh': 0.0, 'best_f1': 67.22757187614371, 'best_f1_thresh': 0.0} ``` ### Simple Usage ``` from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="asaduas/deberta-v3-xsmall-indonesia-squadv2", tokenizer="asaduas/deberta-v3-xsmall-indonesia-squadv2" ) qa_pipeline( { 'context': "Pada tahun 1512 juga Afonso de Albuquerque mengirim Antonio Albreu dan Franscisco Serrao untuk memimpin armadanya mencari jalan ke tempat asal rempah-rempah di Maluku. Sepanjang perjalanan, mereka singgah di Madura, Bali, dan Lombok. Dengan menggunakan nakhoda-nakhoda Jawa, armada itu tiba di Kepulauan Banda, terus menuju Aibku Utara sampai tiba di Ternate.", 'question': "Siapa yang dikirim oleh Afonso de Albuquerque Pada tahun 1512?" } ) ``` ### Output ``` [ {'score': 0.8919295072555542, 'start': 51, 'end': 88, 'answer': ' Antonio Albreu dan Franscisco Serrao'} ] ```
a9142f8d338c80e5f756aed1da1e6446
spoiled/t5_large_epoch_1_comve_triple
spoiled
t5
20
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,190
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large_epoch_1_comve_triple This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 4.1923 | | No log | 2.0 | 8 | 3.5605 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1
496f6ed325642ea3ca22b939bd532049
osanseviero/my-helsinki-duplicate
osanseviero
marian
10
5
transformers
0
translation
true
false
false
apache-2.0
['zh', 'en']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,496
false
### zho-eng * source group: Chinese * target group: English * OPUS readme: [zho-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md) * model: transformer * source language(s): cjy_Hans cjy_Hant cmn cmn_Hans cmn_Hant gan lzh lzh_Hans nan wuu yue yue_Hans yue_Hant * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip) * test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt) * test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.eng | 36.1 | 0.548 | ### System Info: - hf_name: zho-eng - source_languages: zho - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'en'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt - src_alpha3: zho - tgt_alpha3: eng - short_pair: zh-en - chrF2_score: 0.5479999999999999 - bleu: 36.1 - brevity_penalty: 0.948 - ref_len: 82826.0 - src_name: Chinese - tgt_name: English - train_date: 2020-07-17 - src_alpha2: zh - tgt_alpha2: en - prefer_old: False - long_pair: zho-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
7a02a2d02a67679f629f46b15783e4f1
yugkha3/avatar
yugkha3
null
18
78
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
434
false
### Avatar Dreambooth model trained by yugkha3 with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept:
c7d3a0d6348d145c020b112e1f81bb77
sd-dreambooth-library/abstract-patterns-in-nature
sd-dreambooth-library
null
18
5
diffusers
4
null
false
false
false
mit
null
null
null
3
0
3
0
0
0
0
[]
false
true
true
1,438
false
### abstract_patterns_in_nature on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by apurik-parv This your the Stable Diffusion model fine-tuned the abstract_patterns_in_nature concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **abnapa** #### This is an attempt to teach symmetry and its scales to stable diffusion model. This first version was trained on abstract patterns from nature and it markedly produces different images from the original model sometime better sometimes no so better or even worse at times it even seems to correct the lighting and shadows. Users please give your comments after usage so that we can really understand what this model does. You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
76bdea258d2324a07450623a7b78d016
Helsinki-NLP/opus-mt-aed-es
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-aed-es * source languages: aed * target languages: es * OPUS readme: [aed-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/aed-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/aed-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/aed-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/aed-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.aed.es | 89.1 | 0.915 |
528f327c15909705209c31368c3ab9f2
zhas/distilbert-base-uncased-finetuned-tweet_eval-just
zhas
distilbert
12
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
922
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-tweet_eval-just This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
e4b9dbecc3a136ce16fdabb140d3f881
HuyenNguyen/Vin8-P3
HuyenNguyen
whisper
15
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,385
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vin8-P3 This model is a fine-tuned version of [HuyenNguyen/Vin7-P3](https://huggingface.co/HuyenNguyen/Vin7-P3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2177 - Wer: 11.8695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2704 | 0.51 | 200 | 0.2188 | 11.3771 | | 0.225 | 1.03 | 400 | 0.2184 | 11.5308 | | 0.1854 | 1.54 | 600 | 0.2177 | 11.8695 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
ac787fe3e8dd30acde5757fa73ed6802
arjunpatel/distilgpt2-finetuned-wikitext2
arjunpatel
gpt2
12
2
transformers
0
text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,179
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # arjunpatel/distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.7979 - Validation Loss: 3.6723 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.7979 | 3.6723 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
eb126a4af959dc5b8cba52cb34e3780d
tfshaman/distilbert-base-uncased-distilled-clinc
tfshaman
distilbert
10
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['clinc_oos']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,356
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 1.5565 - Accuracy: 0.8265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2743 | 1.0 | 318 | 2.5809 | 0.7310 | | 2.2148 | 2.0 | 636 | 1.7909 | 0.8071 | | 1.7065 | 3.0 | 954 | 1.5565 | 0.8265 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
ae68e201f071dacd6bb86085d4d8aef5
jonatasgrosman/exp_w2v2t_ar_unispeech_s574
jonatasgrosman
unispeech
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ar']
false
true
true
469
false
# exp_w2v2t_ar_unispeech_s574 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ar)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
7c9e547ab00bdb7de6a661b9dd3b6688
rinna/japanese-gpt2-small
rinna
gpt2
9
6,017
transformers
10
text-generation
true
true
false
mit
['ja']
['cc100', 'wikipedia']
null
0
0
0
0
0
0
0
['ja', 'japanese', 'gpt2', 'text-generation', 'lm', 'nlp']
false
true
true
1,364
false
# japanese-gpt2-small ![rinna-icon](./rinna.png) This repository provides a small-sized Japanese GPT-2 model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. ~~~~ from transformers import T5Tokenizer, GPT2LMHeadModel tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt2-small") tokenizer.do_lower_case = True # due to some bug of tokenizer config loading model = GPT2LMHeadModel.from_pretrained("rinna/japanese-gpt2-small") ~~~~ # Model architecture A 12-layer, 768-hidden-size transformer-based language model. # Training The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 15 days. It reaches around 21 perplexity on a chosen validation set from CC-100. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script. # Licenese [The MIT license](https://opensource.org/licenses/MIT)
4be89a5c09dc9e0b9f9b6721e3239ef7
jonatasgrosman/exp_w2v2r_fr_xls-r_gender_male-5_female-5_s916
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'fr']
false
true
true
476
false
# exp_w2v2r_fr_xls-r_gender_male-5_female-5_s916 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
fe975da5d92e95e64c505442be8c9884
MultiBertGunjanPatrick/multiberts-seed-19
MultiBertGunjanPatrick
bert
7
2
transformers
0
null
true
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert', 'multiberts']
false
true
true
6,323
false
# MultiBERTs Seed 19 (uncased) Seed 19 MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-19') model = BertModel.from_pretrained("multiberts-seed-19") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
166c2f50ca2676e1d033afd79a756d6d
gokceuludogan/WarmMolGenOne
gokceuludogan
encoder-decoder
7
3
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['molecule-generation', 'cheminformatics', 'targeted-drug-design', 'biochemical-language-models']
false
true
true
2,632
false
## WarmMolGenOne A target specific molecule generator model which is warm started (i.e. initialized) from pretrained biochemical language models and trained on interacting protein-compound pairs, viewing targeted molecular generation as a translation task between protein and molecular languages. It was introduced in the paper, "Exploiting pretrained biochemical language models for targeted drug design", which has been accepted for publication in *Bioinformatics* Published by Oxford University Press and first released in [this repository](https://github.com/boun-tabi/biochemical-lms-for-drug-design). WarmMolGenOne is a Transformer-based encoder-decoder model initialized with [Protein RoBERTa](https://github.com/PaccMann/paccmann_proteomics) and [ChemBERTa](https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_450k) checkpoints and trained on interacting protein-compound pairs filtered from [BindingDB](https://www.bindingdb.org/rwd/bind/index.jsp). The model takes a protein sequence as an input and outputs a SMILES sequence. ## How to use ```python from transformers import EncoderDecoderModel, RobertaTokenizer, pipeline protein_tokenizer = RobertaTokenizer.from_pretrained("gokceuludogan/WarmMolGenOne") mol_tokenizer = RobertaTokenizer.from_pretrained("seyonec/PubChem10M_SMILES_BPE_450k") model = EncoderDecoderModel.from_pretrained("gokceuludogan/WarmMolGenOne") inputs = protein_tokenizer("MENTENSVDSKSIKNLEPKIIHGSESMDSGISLDNSYKMDYPEMGLCIIINNKNFHKSTG", >>> return_tensors="pt") outputs = model.generate(**inputs, decoder_start_token_id=mol_tokenizer.bos_token_id, eos_token_id=mol_tokenizer.eos_token_id, pad_token_id=mol_tokenizer.eos_token_id, max_length=128, num_return_sequences=5, do_sample=True, top_p=0.95) mol_tokenizer.batch_decode(outputs, skip_special_tokens=True) # Sample output # ['Cn1cc(nn1)-c1ccccc1NS(=O)(=O)c1ccc2[nH]ccc2c1', # 'CC(C)(C)c1[se]nc2sc(cc12)C(O)=O', # '[O-][N+](=O)c1ccc(CN2CCC(CC2)NC(=O)c2cccc3ccccc23)cc1', # 'OC(=O)CNC(=O)CCC\\C=C\\CN1[C@@H](Cc2cn(nn2)-c2ccccc2)C(=O)N[C@@H](CCCN2C(S)=NC(C)(C2=O)c2ccc(F)cc2)C1=O', # 'OCC1(CCC1)C(=O)NCC1CCN(CC1)c1nc(c(s1)-c1ccc2OCOc2c1)C(O)=O'] ``` ## Citation ```bibtex @article{10.1093/bioinformatics/btac482, author = {Uludoğan, Gökçe and Ozkirimli, Elif and Ulgen, Kutlu O. and Karalı, Nilgün Lütfiye and Özgür, Arzucan}, title = "{Exploiting Pretrained Biochemical Language Models for Targeted Drug Design}", journal = {Bioinformatics}, year = {2022}, doi = {10.1093/bioinformatics/btac482}, url = {https://doi.org/10.1093/bioinformatics/btac482} } ```
37c90b660213cc39f71d55db253f6f57
hysts/TADNE
hysts
null
5
0
null
3
null
false
false
false
cc0-1.0
null
null
null
0
0
0
0
0
0
0
['computer-vision', 'image-generation', 'anime']
false
true
true
8,979
false
# TADNE (This Anime Does Not Exist) model The original TADNE site is https://thisanimedoesnotexist.ai/. ![](samples/sample.jpg) ## Original TensorFlow model The original TADNE model is provided in [this site](https://www.gwern.net/Faces#tadne-download) under CC-0 license. ([Google Drive](https://drive.google.com/file/d/1A-E_E32WAtTHRlOzjhhYhyyBDXLJN9_H)) ## Model Conversion The model in the `models` directory is converted with the following repo: https://github.com/rosinality/stylegan2-pytorch ### Apply patches ```diff --- a/model.py +++ b/model.py @@ -395,6 +395,7 @@ class Generator(nn.Module): style_dim, n_mlp, channel_multiplier=2, + additional_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): @@ -426,6 +427,9 @@ class Generator(nn.Module): 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } + if additional_multiplier > 1: + for k in list(self.channels.keys()): + self.channels[k] *= additional_multiplier self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( @@ -518,7 +522,7 @@ class Generator(nn.Module): getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) ] - if truncation < 1: + if truncation_latent is not None: style_t = [] for style in styles: ``` ```diff --- a/convert_weight.py +++ b/convert_weight.py @@ -221,6 +221,7 @@ if __name__ == "__main__": default=2, help="channel multiplier factor. config-f = 2, else = 1", ) + parser.add_argument("--additional_multiplier", type=int, default=2) parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights") args = parser.parse_args() @@ -243,7 +244,8 @@ if __name__ == "__main__": if layer[0].startswith('Dense'): n_mlp += 1 - g = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) + style_dim = 512 * args.additional_multiplier + g = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier) state_dict = g.state_dict() state_dict = fill_statedict(state_dict, g_ema.vars, size, n_mlp) @@ -254,7 +256,7 @@ if __name__ == "__main__": ckpt = {"g_ema": state_dict, "latent_avg": latent_avg} if args.gen: - g_train = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) + g_train = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier) g_train_state = g_train.state_dict() g_train_state = fill_statedict(g_train_state, generator.vars, size, n_mlp) ckpt["g"] = g_train_state @@ -271,9 +273,12 @@ if __name__ == "__main__": batch_size = {256: 16, 512: 9, 1024: 4} n_sample = batch_size.get(size, 25) + if args.additional_multiplier > 1: + n_sample = 2 + g = g.to(device) - z = np.random.RandomState(0).randn(n_sample, 512).astype("float32") + z = np.random.RandomState(0).randn(n_sample, style_dim).astype("float32") with torch.no_grad(): img_pt, _ = g( ``` ### Build Docker image ```dockerfile FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 ENV DEBIAN_FRONTEND=noninteractive RUN apt-get update -y && \ apt-get install -y --no-install-recommends \ git \ ninja-build \ # pyenv dependencies \ make \ build-essential \ libssl-dev \ zlib1g-dev \ libbz2-dev \ libreadline-dev \ libsqlite3-dev \ wget \ curl \ llvm \ libncursesw5-dev \ xz-utils \ tk-dev \ libxml2-dev \ libxmlsec1-dev \ libffi-dev \ liblzma-dev && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* ARG PYTHON_VERSION=3.7.12 ENV PYENV_ROOT /opt/pyenv ENV PATH ${PYENV_ROOT}/shims:${PYENV_ROOT}/bin:${PATH} RUN curl https://pyenv.run | bash RUN pyenv install ${PYTHON_VERSION} && \ pyenv global ${PYTHON_VERSION} RUN pip install --no-cache-dir -U requests tqdm opencv-python-headless RUN pip install --no-cache-dir -U tensorflow-gpu==1.15.4 RUN pip install --no-cache-dir -U torch==1.10.2+cu102 torchvision==0.11.3+cu102 -f https://download.pytorch.org/whl/torch/ -f https://download.pytorch.org/whl/torchvision/ RUN rm -rf ${HOME}/.cache/pip WORKDIR /work ENV PYTHONPATH /work/:${PYTHONPATH} ``` ```bash docker build . -t stylegan2_pytorch ``` ### Convert ```bash git clone https://github.com/NVLabs/stylegan2 docker run --rm -it -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/work --ipc host --gpus all -w /work -v `pwd`:/work stylegan2_pytorch python convert_weight.py --repo stylegan2 aydao-anime-danbooru2019s-512-5268480.pkl ``` ## Usage ### Apply patch ```diff --- a/generate.py +++ b/generate.py @@ -6,21 +6,25 @@ from model import Generator from tqdm import tqdm -def generate(args, g_ema, device, mean_latent): +def generate(args, g_ema, device, mean_latent, randomize_noise): with torch.no_grad(): g_ema.eval() for i in tqdm(range(args.pics)): - sample_z = torch.randn(args.sample, args.latent, device=device) + samples = [] + for _ in range(args.split): + sample_z = torch.randn(args.sample // args.split, args.latent, device=device) - sample, _ = g_ema( - [sample_z], truncation=args.truncation, truncation_latent=mean_latent - ) + sample, _ = g_ema( + [sample_z], truncation=args.truncation, truncation_latent=mean_latent, + randomize_noise=randomize_noise + ) + samples.extend(sample) utils.save_image( - sample, - f"sample/{str(i).zfill(6)}.png", - nrow=1, + samples, + f"{args.output_dir}/{str(i).zfill(6)}.{args.ext}", + nrow=args.ncol, normalize=True, range=(-1, 1), ) @@ -30,6 +34,8 @@ if __name__ == "__main__": device = "cuda" parser = argparse.ArgumentParser(description="Generate samples from the generator") + parser.add_argument("--seed", type=int, default=0) + parser.add_argument("--output-dir", '-o', type=str, required=True) parser.add_argument( "--size", type=int, default=1024, help="output image size of the generator" @@ -37,11 +43,14 @@ if __name__ == "__main__": parser.add_argument( "--sample", type=int, - default=1, + default=100, help="number of samples to be generated for each image", ) + parser.add_argument("--ncol", type=int, default=10) + parser.add_argument("--split", type=int, default=4) + parser.add_argument("--ext", type=str, default='png') parser.add_argument( - "--pics", type=int, default=20, help="number of images to be generated" + "--pics", type=int, default=1, help="number of images to be generated" ) parser.add_argument("--truncation", type=float, default=1, help="truncation ratio") parser.add_argument( @@ -62,23 +71,31 @@ if __name__ == "__main__": default=2, help="channel multiplier of the generator. config-f = 2, else = 1", ) + parser.add_argument("--additional_multiplier", type=int, default=1) + parser.add_argument("--load_latent_vec", action='store_true') + parser.add_argument("--no-randomize-noise", dest='randomize_noise', action='store_false') + parser.add_argument("--n_mlp", type=int, default=8) args = parser.parse_args() - args.latent = 512 - args.n_mlp = 8 + seed = args.seed + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + args.latent = 512 * args.additional_multiplier g_ema = Generator( - args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier + args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, + additional_multiplier=args.additional_multiplier ).to(device) checkpoint = torch.load(args.ckpt) - g_ema.load_state_dict(checkpoint["g_ema"]) + g_ema.load_state_dict(checkpoint["g_ema"], strict=True) - if args.truncation < 1: + if not args.load_latent_vec: with torch.no_grad(): mean_latent = g_ema.mean_latent(args.truncation_mean) else: - mean_latent = None + mean_latent = checkpoint['latent_avg'].to(device) - generate(args, g_ema, device, mean_latent) + generate(args, g_ema, device, mean_latent, randomize_noise=args.randomize_noise) ``` ### Run ```bash python generate.py --ckpt aydao-anime-danbooru2019s-512-5268480.pt --size 512 --n_mlp 4 --additional_multiplier 2 --load_latent_vec --no-randomize-noise -o out_images --truncation 0.6 --seed 333 --pics 1 --sample 48 --ncol 8 --ext jpg ```
14ad74f4018d853a06d4c85fd2d7dd1a
Helsinki-NLP/opus-mt-bi-en
Helsinki-NLP
marian
10
59
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-bi-en * source languages: bi * target languages: en * OPUS readme: [bi-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bi.en | 30.3 | 0.458 |
d8c05e635c545128b957b3f3e8c2fe74
Helsinki-NLP/opus-mt-en-cpf
Helsinki-NLP
marian
11
11
transformers
0
translation
true
true
false
apache-2.0
['en', 'ht', 'cpf']
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
2,318
false
### eng-cpf * source group: English * target group: Creoles and pidgins, French‑based * OPUS readme: [eng-cpf](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cpf/README.md) * model: transformer * source language(s): eng * target language(s): gcf_Latn hat mfe * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-gcf.eng.gcf | 6.2 | 0.262 | | Tatoeba-test.eng-hat.eng.hat | 25.7 | 0.451 | | Tatoeba-test.eng-mfe.eng.mfe | 80.1 | 0.900 | | Tatoeba-test.eng.multi | 15.9 | 0.354 | ### System Info: - hf_name: eng-cpf - source_languages: eng - target_languages: cpf - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cpf/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'ht', 'cpf'] - src_constituents: {'eng'} - tgt_constituents: {'gcf_Latn', 'hat', 'mfe'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.test.txt - src_alpha3: eng - tgt_alpha3: cpf - short_pair: en-cpf - chrF2_score: 0.354 - bleu: 15.9 - brevity_penalty: 1.0 - ref_len: 1012.0 - src_name: English - tgt_name: Creoles and pidgins, French‑based - train_date: 2020-07-26 - src_alpha2: en - tgt_alpha2: cpf - prefer_old: False - long_pair: eng-cpf - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
56a67509d0b60515f01f3485e469bcc8
jonatasgrosman/wav2vec2-large-xlsr-53-greek
jonatasgrosman
wav2vec2
8
65
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['el']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
7,104
false
# Fine-tuned XLSR-53 large model for speech recognition in Greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Greek using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-greek") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ, ΠΟΥ ΜΟΙΆΖΕΙ ΛΕΟΝΤΑΡΆΚΙ ΚΑΙ ΑΕΤΟΥΔΆΚΙ | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ ΠΟΥ ΜΙΑΣΕ ΛΙΟΝΤΑΡΑΚΉ ΚΑΙ ΑΪΤΟΥΔΆΚΙ | | ΣΥΝΆΜΑ ΞΕΠΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ, ΔΕΞΙΆ, ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ. | ΣΥΝΆΜΑ ΚΑΙ ΤΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ ΔΕΞΙΆ ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ | | ΤΑ ΣΥΣΚΕΥΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΥΝΤΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | ΤΑ ΣΥΣΚΕΦΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΙΔΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | | ΑΚΟΛΟΥΘΉΣΕΤΕ ΜΕ! | ΑΚΟΛΟΥΘΉΣΤΕ ΜΕ | | ΚΑΙ ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΟΝ ΒΡΩ; | Ε ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΙ ΕΒΡΩ | | ΝΑΙ! ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | ΝΑΙ ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ. | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ | | ΉΛΘΕ ΜΉΝΥΜΑ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΙΛΙΆ; | ΉΛΘΑ ΜΕΊΝΕΙ ΜΕ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΊΛΙΑ | | ΠΑΡΑΚΆΤΩ, ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ, ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΝΆ ΧΑΜΌΔΕΝΤΡΑ. | ΠΑΡΑΚΆΤΩ ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΡΆ ΧΑΜΌΔΕΝΤΡΑ | | ΠΡΆΓΜΑΤΙ, ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ΠΡΆΓΜΑΤΗ ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | lighteternal/wav2vec2-large-xlsr-53-greek | **10.13%** | **2.66%** | | jonatasgrosman/wav2vec2-large-xlsr-53-greek | 11.62% | 3.36% | | vasilis/wav2vec2-large-xlsr-53-greek | 19.09% | 5.88% | | PereLluis13/wav2vec2-large-xlsr-53-greek | 20.16% | 5.71% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-greek, title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}reek}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-greek}}, year={2021} } ```
eb8ca6eaeb7df661c59e3595a93c434f
akshaychaudhary/distilbert-base-uncased-finetuned-ner
akshaychaudhary
distilbert
27
7
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,542
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9988 - Precision: 0.3 - Recall: 0.6 - F1: 0.4 - Accuracy: 0.7870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.8399 | 0.2105 | 0.4 | 0.2759 | 0.75 | | No log | 2.0 | 168 | 0.9664 | 0.3 | 0.6 | 0.4 | 0.7870 | | No log | 3.0 | 252 | 0.9988 | 0.3 | 0.6 | 0.4 | 0.7870 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
1b0f198ffb226c7ffa721a0e9470d1b1
Akash7897/gpt2-wikitext2
Akash7897
gpt2
14
2
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,216
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.558 | 1.0 | 2249 | 6.4672 | | 6.1918 | 2.0 | 4498 | 6.1970 | | 6.0019 | 3.0 | 6747 | 6.1079 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
2aeb5b0d382d41164168b4ce9cb52377
jnieus01/bert-emotion
jnieus01
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,455
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.3717 - Precision: 0.6917 - Recall: 0.7048 - Fscore: 0.6955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8838 | 1.0 | 815 | 0.7944 | 0.7238 | 0.6662 | 0.6860 | | 0.5708 | 2.0 | 1630 | 1.0606 | 0.6594 | 0.6139 | 0.6299 | | 0.3045 | 3.0 | 2445 | 1.3717 | 0.6917 | 0.7048 | 0.6955 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
062d6b2b5b385ca4e420702c1fb93064
4ytk3/fakepaperbot_gpt-2
4ytk3
gpt2
12
6
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,015
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [rinna/japanese-gpt2-small](https://huggingface.co/rinna/japanese-gpt2-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4525 - Accuracy: 0.4155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.2
359d0364a22fd9f9cb31a48ac4f11cd5
CLTL/icf-levels-mbw
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,260
false
# Regression Model for Weight Maintenance Functioning Levels (ICF b530) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing weight maintenance functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about weight maintenance functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Healthy weight, no unintentional weight loss or gain, SNAQ 0 or 1. 3 | Some unintentional weight loss or gain, or lost a lot of weight but gained some of it back afterwards. 2 | Moderate unintentional weight loss or gain (more than 3 kg in the last month), SNAQ 2. 1 | Severe unintentional weight loss or gain (more than 6 kg in the last 6 months), SNAQ &ge; 3. 0 | Severe unintentional weight loss or gain (more than 6 kg in the last 6 months) and admitted to ICU. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-mbw', use_cuda=False, ) example = 'Tijdens opname >10 kg afgevallen.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.95 ``` The raw outputs look like this: ``` [[1.95429301]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.81 | 0.60 mean squared error | 0.83 | 0.56 root mean squared error | 0.91 | 0.75 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
585b323f0fb150d335a0d5cafc5f7f9d
muhtasham/tiny-mlm-glue-wnli-target-glue-mnli
muhtasham
bert
10
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,811
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-wnli-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8534 - Accuracy: 0.6159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0812 | 0.04 | 500 | 1.0475 | 0.4698 | | 1.0185 | 0.08 | 1000 | 0.9640 | 0.5484 | | 0.9627 | 0.12 | 1500 | 0.9279 | 0.5657 | | 0.9401 | 0.16 | 2000 | 0.9181 | 0.5779 | | 0.9307 | 0.2 | 2500 | 0.8954 | 0.5926 | | 0.9249 | 0.24 | 3000 | 0.8846 | 0.5998 | | 0.9083 | 0.29 | 3500 | 0.8752 | 0.6028 | | 0.9022 | 0.33 | 4000 | 0.8636 | 0.6108 | | 0.8841 | 0.37 | 4500 | 0.8628 | 0.6095 | | 0.8857 | 0.41 | 5000 | 0.8534 | 0.6159 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
e7618486424649679dfd3f1cbfe669b6
Helsinki-NLP/opus-mt-fr-crs
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-fr-crs * source languages: fr * target languages: crs * OPUS readme: [fr-crs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-crs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-crs/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-crs/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-crs/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.crs | 31.6 | 0.492 |
4beb33c5bd8e0303b3cac44497838bad
romin23/lilt-form-read
romin23
lilt
15
3
transformers
0
token-classification
true
false
false
mit
null
['funsd-layoutlmv3']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
7,752
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-form-read This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.7208 - Answer: {'precision': 0.8635321100917431, 'recall': 0.9216646266829865, 'f1': 0.8916518650088809, 'number': 817} - Header: {'precision': 0.6813186813186813, 'recall': 0.5210084033613446, 'f1': 0.5904761904761905, 'number': 119} - Question: {'precision': 0.9005424954792043, 'recall': 0.924791086350975, 'f1': 0.9125057260650481, 'number': 1077} - Overall Precision: 0.8753 - Overall Recall: 0.8997 - Overall F1: 0.8873 - Overall Accuracy: 0.8077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4555 | 10.53 | 200 | 0.9514 | {'precision': 0.8207440811724915, 'recall': 0.8910648714810282, 'f1': 0.8544600938967137, 'number': 817} | {'precision': 0.6233766233766234, 'recall': 0.40336134453781514, 'f1': 0.48979591836734687, 'number': 119} | {'precision': 0.8611825192802056, 'recall': 0.9331476323119777, 'f1': 0.8957219251336899, 'number': 1077} | 0.8358 | 0.8847 | 0.8596 | 0.7991 | | 0.0457 | 21.05 | 400 | 1.4096 | {'precision': 0.8654088050314466, 'recall': 0.8421052631578947, 'f1': 0.8535980148883374, 'number': 817} | {'precision': 0.5833333333333334, 'recall': 0.5294117647058824, 'f1': 0.5550660792951542, 'number': 119} | {'precision': 0.8606837606837607, 'recall': 0.9350046425255338, 'f1': 0.8963061860258122, 'number': 1077} | 0.8480 | 0.8733 | 0.8605 | 0.7914 | | 0.0144 | 31.58 | 600 | 1.4435 | {'precision': 0.8720095693779905, 'recall': 0.8922888616891065, 'f1': 0.8820326678765881, 'number': 817} | {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119} | {'precision': 0.8682581786030061, 'recall': 0.9117920148560817, 'f1': 0.8894927536231884, 'number': 1077} | 0.8591 | 0.8813 | 0.8700 | 0.8033 | | 0.008 | 42.11 | 800 | 1.5197 | {'precision': 0.8660287081339713, 'recall': 0.8861689106487148, 'f1': 0.8759830611010284, 'number': 817} | {'precision': 0.5798319327731093, 'recall': 0.5798319327731093, 'f1': 0.5798319327731093, 'number': 119} | {'precision': 0.8838248436103664, 'recall': 0.9182915506035283, 'f1': 0.9007285974499089, 'number': 1077} | 0.8592 | 0.8852 | 0.8720 | 0.7921 | | 0.0039 | 52.63 | 1000 | 1.4373 | {'precision': 0.8733727810650888, 'recall': 0.9033047735618115, 'f1': 0.888086642599278, 'number': 817} | {'precision': 0.6019417475728155, 'recall': 0.5210084033613446, 'f1': 0.5585585585585585, 'number': 119} | {'precision': 0.8854351687388987, 'recall': 0.9257195914577531, 'f1': 0.9051293690422152, 'number': 1077} | 0.8664 | 0.8927 | 0.8794 | 0.8096 | | 0.0028 | 63.16 | 1200 | 1.7146 | {'precision': 0.8490351872871736, 'recall': 0.9155446756425949, 'f1': 0.8810365135453475, 'number': 817} | {'precision': 0.6941176470588235, 'recall': 0.4957983193277311, 'f1': 0.5784313725490197, 'number': 119} | {'precision': 0.8852313167259787, 'recall': 0.9238625812441968, 'f1': 0.9041344843253067, 'number': 1077} | 0.8622 | 0.8952 | 0.8784 | 0.7971 | | 0.0022 | 73.68 | 1400 | 1.5638 | {'precision': 0.8608893956670467, 'recall': 0.9241126070991432, 'f1': 0.8913813459268004, 'number': 817} | {'precision': 0.6565656565656566, 'recall': 0.5462184873949579, 'f1': 0.5963302752293578, 'number': 119} | {'precision': 0.8993536472760849, 'recall': 0.904363974001857, 'f1': 0.9018518518518519, 'number': 1077} | 0.8713 | 0.8912 | 0.8811 | 0.8051 | | 0.0009 | 84.21 | 1600 | 1.7113 | {'precision': 0.8682080924855491, 'recall': 0.9192166462668299, 'f1': 0.8929845422116528, 'number': 817} | {'precision': 0.65625, 'recall': 0.5294117647058824, 'f1': 0.586046511627907, 'number': 119} | {'precision': 0.9085027726432532, 'recall': 0.9127205199628597, 'f1': 0.9106067623899953, 'number': 1077} | 0.8796 | 0.8927 | 0.8861 | 0.8039 | | 0.0009 | 94.74 | 1800 | 1.6397 | {'precision': 0.8767942583732058, 'recall': 0.8971848225214198, 'f1': 0.8868723532970357, 'number': 817} | {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} | {'precision': 0.898458748866727, 'recall': 0.9201485608170845, 'f1': 0.9091743119266055, 'number': 1077} | 0.8760 | 0.8882 | 0.8821 | 0.8042 | | 0.0004 | 105.26 | 2000 | 1.7362 | {'precision': 0.8690614136732329, 'recall': 0.9179926560587516, 'f1': 0.8928571428571428, 'number': 817} | {'precision': 0.6458333333333334, 'recall': 0.5210084033613446, 'f1': 0.5767441860465117, 'number': 119} | {'precision': 0.8928892889288929, 'recall': 0.9210770659238626, 'f1': 0.9067641681901281, 'number': 1077} | 0.8715 | 0.8962 | 0.8837 | 0.8040 | | 0.0003 | 115.79 | 2200 | 1.7208 | {'precision': 0.8635321100917431, 'recall': 0.9216646266829865, 'f1': 0.8916518650088809, 'number': 817} | {'precision': 0.6813186813186813, 'recall': 0.5210084033613446, 'f1': 0.5904761904761905, 'number': 119} | {'precision': 0.9005424954792043, 'recall': 0.924791086350975, 'f1': 0.9125057260650481, 'number': 1077} | 0.8753 | 0.8997 | 0.8873 | 0.8077 | | 0.0002 | 126.32 | 2400 | 1.7281 | {'precision': 0.8819362455726092, 'recall': 0.9143206854345165, 'f1': 0.8978365384615384, 'number': 817} | {'precision': 0.6631578947368421, 'recall': 0.5294117647058824, 'f1': 0.5887850467289719, 'number': 119} | {'precision': 0.8917710196779964, 'recall': 0.9257195914577531, 'f1': 0.9084282460136676, 'number': 1077} | 0.8772 | 0.8977 | 0.8873 | 0.8060 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
129c8cae67970868013f6fcf2da5c807
y-oikawa/Information-triage-for-disaster-tweets
y-oikawa
electra
7
1
transformers
1
text-classification
true
false
false
cc-by-sa-4.0
['ja']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,180
false
# ELECTRA Base Japanese for Information Triage This is an ELECTRA model pretrained on approximately 200M Japanese sentences additionally finetuned for Information Triage. The model was based on [transformers-ud-japanese-electra-base-discriminator](https://huggingface.co/megagonlabs/transformers-ud-japanese-electra-base-discriminator), and later finetuned on a dataset containing disaster tweets. ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{oikawa2022electra-base-triage, title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 情報トリアージモデル (megagon labs ver.)}, author={及川 佑人 and プタシンスキ ミハウ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/y-oikawa/Information-triage-for-disaster-tweets" } ```
d620ec0621f949911cbed8d9d860a4bc
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test
annahaz
xlm-roberta
10
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,328
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-misogyny-sexism-out-of-sample-test This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4319 - Accuracy: 0.6329 - F1: 0.5384 - Precision: 0.6311 - Recall: 0.4694 - Mae: 0.3671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3447 | 1.0 | 2157 | 0.8407 | 0.6264 | 0.4817 | 0.6555 | 0.3808 | 0.3736 | | 0.3105 | 2.0 | 4314 | 0.9660 | 0.6244 | 0.4840 | 0.6480 | 0.3863 | 0.3756 | | 0.3036 | 3.0 | 6471 | 1.0797 | 0.6218 | 0.5499 | 0.6014 | 0.5065 | 0.3782 | | 0.2643 | 4.0 | 8628 | 1.6355 | 0.6301 | 0.4790 | 0.6696 | 0.3728 | 0.3699 | | 0.2591 | 5.0 | 10785 | 1.4902 | 0.6173 | 0.5308 | 0.6020 | 0.4747 | 0.3827 | | 0.2052 | 6.0 | 12942 | 1.6884 | 0.6236 | 0.5166 | 0.6235 | 0.4410 | 0.3764 | | 0.2017 | 7.0 | 15099 | 2.1026 | 0.6323 | 0.5341 | 0.6325 | 0.4622 | 0.3677 | | 0.1715 | 8.0 | 17256 | 2.3440 | 0.6292 | 0.5381 | 0.6229 | 0.4736 | 0.3708 | | 0.1543 | 9.0 | 19413 | 2.2136 | 0.6301 | 0.5411 | 0.6230 | 0.4783 | 0.3699 | | 0.1456 | 10.0 | 21570 | 2.4319 | 0.6329 | 0.5384 | 0.6311 | 0.4694 | 0.3671 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
5e60f1d45a40bfc6e9adc4a7cc0f8ba8
lewtun/minilm-finetuned-emotion
lewtun
bert
12
3
transformers
0
text-classification
true
false
false
mit
null
['emotion']
null
2
2
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,497
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # minilm-finetuned-emotion This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3891 - F1: 0.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.3957 | 1.0 | 250 | 1.0134 | 0.6088 | | 0.8715 | 2.0 | 500 | 0.6892 | 0.8493 | | 0.6085 | 3.0 | 750 | 0.4943 | 0.8920 | | 0.4626 | 4.0 | 1000 | 0.4096 | 0.9078 | | 0.3961 | 5.0 | 1250 | 0.3891 | 0.9118 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.6.0 - Datasets 1.15.1 - Tokenizers 0.10.3
ccf7d8bdc0b5f95867b768f44722eafa
yanaiela/roberta-base-epoch_65
yanaiela
roberta
9
2
transformers
0
fill-mask
true
false
false
mit
['en']
['wikipedia', 'bookcorpus']
null
0
0
0
0
0
0
0
['roberta-base', 'roberta-base-epoch_65']
false
true
true
2,102
false
# RoBERTa, Intermediate Checkpoint - Epoch 65 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_65. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
c4c808fe4e3d1f5c8d2df9f7a98799b6
Eleven/xlm-roberta-base-finetuned-panx-de-fr
Eleven
xlm-roberta
9
7
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ab5a4b1ebacdf5214a12b276f68e5742
Geotrend/bert-base-it-cased
Geotrend
bert
8
10
transformers
0
fill-mask
true
true
true
apache-2.0
['it']
['wikipedia']
null
0
0
0
0
0
0
0
[]
false
true
true
1,283
false
# bert-base-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
f8aa11ddfdca868a124c6d152a44adc8
nlp04/kobart_64x2_3e-5_datav2_min30_lp5.0_temperature1.0
nlp04
bart
15
3
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,098
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_64x2_3e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
6efff11387f9ef3d8316efb1a0ea5a11
Duskfallcrew/duskfall-tarot-card
Duskfallcrew
null
21
28
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
840
false
### Duskfall Tarot Card Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk dsktaro1 (use that on your prompt)
650eb15e6cbb0a7506c9ab07a14ed434
sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
sentence-transformers
xlm-roberta
13
48,680
sentence-transformers
0
sentence-similarity
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,624
false
# sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1') model = AutoModel.from_pretrained('sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
6542029544970387395cbb52cba276b8
henryscheible/eval_stsb
henryscheible
bert
11
1
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
885
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eval_stsb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE STSB dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
0943871084e5612899062b9e045596e8
DucHaiten/DucHaitenDreamWorld
DucHaiten
null
20
155
diffusers
7
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
2
2
0
['stable-diffusion', 'text-to-image', 'image-to-image', 'diffusers']
false
true
true
3,240
false
After many days of not eating well, sleeping 4 hours at night. Finally, version 2.4.1 of the DucHaitenDreamWorld model is also completed, it will be a huge improvement, just looking at the sample image is enough to understand how great it is. At least not as bad as the previous version :) Dream World is my model for art like Disney, Pixar. xformer on, no ave (I haven't tried it with vae so I don't know if it's good or bad) Please support me by becoming a patron: https://www.patreon.com/duchaitenreal ![00359-3360912711-manga, masterpiece, best quality, half body, portrait, night city, 1girl, anime, 3D, Japan, pixar, realistic, teen girl, smiling.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509872-630b58b279d18d5e53e3a5a9.png) ![00365-2331723507-masterpiece, best quality, highly detailed, 1girl, solo, (_3_0.9), animal ear fluff, animal ears, orange hair, fluffy hair, blus.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509926-630b58b279d18d5e53e3a5a9.png) ![00367-4156196163-1girl, pink hair, dark red eyes, smile(teeth), piercings, tattoo, shiny eyes, glowing eyes, character portrait, bare shoulders,.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509920-630b58b279d18d5e53e3a5a9.png) ![00368-3304272309-anime screencap, ((1boy)), backpack, bag, boku no hero academia, freckles, green eyes, green hair, horikoshi kouhei, mask, midor.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509921-630b58b279d18d5e53e3a5a9.png) ![00369-4093112672-cowboy_bebop, Spike_Spiegel _(cowboy bebop_), cowboy_bebop style, spaceship, shrugging, tall, slim, dark green hair and brown ey.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509932-630b58b279d18d5e53e3a5a9.png) ![00373-1713306946-Highly detailed RAW color Photo, Rear Angle, Full Body, of (female space soldier, wearing orange and white space suit, helmet, t.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509893-630b58b279d18d5e53e3a5a9.png) ![00374-1713306947-Highly detailed RAW color Photo, Rear Angle, Full Body, of (female space soldier, wearing orange and white space suit, helmet, t.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509878-630b58b279d18d5e53e3a5a9.png) ![00376-1484770875-[uploaded e621], by Pino Daeni, by Ruan Jia, by Fumiko, by Alayna Lemmer, by Carlo Galli Bibiena, solo female ((Vulpix)) with ((.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509917-630b58b279d18d5e53e3a5a9.png) ![00377-3597223106-1girl, anime screencap, asymmetrical bangs, bangs, blue neckwear, breasts, eating, food, hair ornament, highres, holding, holdin.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509886-630b58b279d18d5e53e3a5a9.png) ![00378-3597223107-1girl, anime screencap, asymmetrical bangs, bangs, blue neckwear, breasts, eating, food, hair ornament, highres, holding, holdin.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509904-630b58b279d18d5e53e3a5a9.png) ![00382-1899761061-masterpiece, best quality, highly detailed, 1girl, solo, (_3_0.9), animal ear fluff, animal ears, orange hair, fluffy hair, blus.png](https://s3.amazonaws.com/moonup/production/uploads/1676126509906-630b58b279d18d5e53e3a5a9.png)
a8ee0fd83cf60c21c57f445aa7319d42
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2
gary109
wav2vec2
20
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'gary109/AI_Light_Dance', 'generated_from_trainer']
true
true
true
31,927
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.4660 - Wer: 0.2274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4528 | 1.0 | 72 | 0.4860 | 0.2236 | | 0.4403 | 2.0 | 144 | 0.4814 | 0.2222 | | 0.4309 | 3.0 | 216 | 0.4952 | 0.2238 | | 0.4193 | 4.0 | 288 | 0.4864 | 0.2190 | | 0.427 | 5.0 | 360 | 0.5071 | 0.2261 | | 0.4342 | 6.0 | 432 | 0.4932 | 0.2218 | | 0.4205 | 7.0 | 504 | 0.4869 | 0.2222 | | 0.437 | 8.0 | 576 | 0.5125 | 0.2224 | | 0.4316 | 9.0 | 648 | 0.5095 | 0.2285 | | 0.4383 | 10.0 | 720 | 0.5398 | 0.2346 | | 0.4431 | 11.0 | 792 | 0.5177 | 0.2259 | | 0.4555 | 12.0 | 864 | 0.5246 | 0.2335 | | 0.4488 | 13.0 | 936 | 0.5248 | 0.2277 | | 0.4449 | 14.0 | 1008 | 0.5196 | 0.2254 | | 0.4629 | 15.0 | 1080 | 0.4933 | 0.2297 | | 0.4565 | 16.0 | 1152 | 0.5469 | 0.2297 | | 0.4396 | 17.0 | 1224 | 0.5356 | 0.2439 | | 0.4452 | 18.0 | 1296 | 0.5298 | 0.2510 | | 0.4449 | 19.0 | 1368 | 0.5024 | 0.2291 | | 0.4437 | 20.0 | 1440 | 0.5288 | 0.2374 | | 0.4572 | 21.0 | 1512 | 0.4954 | 0.2344 | | 0.4633 | 22.0 | 1584 | 0.5043 | 0.2361 | | 0.4486 | 23.0 | 1656 | 0.5076 | 0.2250 | | 0.4386 | 24.0 | 1728 | 0.5564 | 0.2492 | | 0.4478 | 25.0 | 1800 | 0.5299 | 0.2236 | | 0.4654 | 26.0 | 1872 | 0.5076 | 0.2276 | | 0.453 | 27.0 | 1944 | 0.5666 | 0.2395 | | 0.4474 | 28.0 | 2016 | 0.5026 | 0.2254 | | 0.4465 | 29.0 | 2088 | 0.5216 | 0.2352 | | 0.4689 | 30.0 | 2160 | 0.5293 | 0.2370 | | 0.4467 | 31.0 | 2232 | 0.4856 | 0.2303 | | 0.4379 | 32.0 | 2304 | 0.5089 | 0.2240 | | 0.4302 | 33.0 | 2376 | 0.4958 | 0.2173 | | 0.4417 | 34.0 | 2448 | 0.5392 | 0.2337 | | 0.4458 | 35.0 | 2520 | 0.5229 | 0.2416 | | 0.4415 | 36.0 | 2592 | 0.5280 | 0.2344 | | 0.4621 | 37.0 | 2664 | 0.5362 | 0.2459 | | 0.44 | 38.0 | 2736 | 0.5071 | 0.2285 | | 0.4288 | 39.0 | 2808 | 0.5264 | 0.2313 | | 0.4594 | 40.0 | 2880 | 0.5238 | 0.2306 | | 0.4428 | 41.0 | 2952 | 0.5375 | 0.2286 | | 0.4233 | 42.0 | 3024 | 0.5214 | 0.2254 | | 0.4462 | 43.0 | 3096 | 0.5145 | 0.2450 | | 0.4282 | 44.0 | 3168 | 0.5519 | 0.2254 | | 0.454 | 45.0 | 3240 | 0.5401 | 0.2382 | | 0.4494 | 46.0 | 3312 | 0.5117 | 0.2229 | | 0.4292 | 47.0 | 3384 | 0.5295 | 0.2352 | | 0.4321 | 48.0 | 3456 | 0.4953 | 0.2299 | | 0.4145 | 49.0 | 3528 | 0.5233 | 0.2297 | | 0.4278 | 50.0 | 3600 | 0.5151 | 0.2258 | | 0.4395 | 51.0 | 3672 | 0.4660 | 0.2274 | | 0.4298 | 52.0 | 3744 | 0.5083 | 0.2409 | | 0.4279 | 53.0 | 3816 | 0.4855 | 0.2219 | | 0.4164 | 54.0 | 3888 | 0.5074 | 0.2267 | | 0.4386 | 55.0 | 3960 | 0.5016 | 0.2241 | | 0.4497 | 56.0 | 4032 | 0.5378 | 0.2305 | | 0.4267 | 57.0 | 4104 | 0.5199 | 0.2344 | | 0.4083 | 58.0 | 4176 | 0.5134 | 0.2249 | | 0.4163 | 59.0 | 4248 | 0.4975 | 0.2316 | | 0.4271 | 60.0 | 4320 | 0.5298 | 0.2291 | | 0.43 | 61.0 | 4392 | 0.4991 | 0.2289 | | 0.437 | 62.0 | 4464 | 0.5154 | 0.2298 | | 0.415 | 63.0 | 4536 | 0.5167 | 0.2224 | | 0.4308 | 64.0 | 4608 | 0.5324 | 0.2287 | | 0.4247 | 65.0 | 4680 | 0.5396 | 0.2224 | | 0.4076 | 66.0 | 4752 | 0.5354 | 0.2274 | | 0.4196 | 67.0 | 4824 | 0.5523 | 0.2225 | | 0.4216 | 68.0 | 4896 | 0.5180 | 0.2166 | | 0.4132 | 69.0 | 4968 | 0.5111 | 0.2212 | | 0.4306 | 70.0 | 5040 | 0.5534 | 0.2416 | | 0.4327 | 71.0 | 5112 | 0.5628 | 0.2473 | | 0.4301 | 72.0 | 5184 | 0.5216 | 0.2252 | | 0.4328 | 73.0 | 5256 | 0.5154 | 0.2250 | | 0.4021 | 74.0 | 5328 | 0.5686 | 0.2245 | | 0.465 | 75.0 | 5400 | 0.5236 | 0.2419 | | 0.416 | 76.0 | 5472 | 0.5614 | 0.2365 | | 0.4337 | 77.0 | 5544 | 0.5275 | 0.2302 | | 0.4157 | 78.0 | 5616 | 0.5126 | 0.2293 | | 0.4143 | 79.0 | 5688 | 0.5260 | 0.2376 | | 0.4174 | 80.0 | 5760 | 0.5254 | 0.2317 | | 0.4174 | 81.0 | 5832 | 0.4971 | 0.2191 | | 0.4082 | 82.0 | 5904 | 0.5245 | 0.2320 | | 0.4263 | 83.0 | 5976 | 0.5692 | 0.2401 | | 0.4164 | 84.0 | 6048 | 0.5209 | 0.2312 | | 0.4144 | 85.0 | 6120 | 0.5164 | 0.2340 | | 0.4189 | 86.0 | 6192 | 0.5545 | 0.2459 | | 0.4311 | 87.0 | 6264 | 0.5349 | 0.2477 | | 0.4224 | 88.0 | 6336 | 0.5093 | 0.2375 | | 0.4069 | 89.0 | 6408 | 0.5664 | 0.2443 | | 0.4082 | 90.0 | 6480 | 0.5426 | 0.2391 | | 0.411 | 91.0 | 6552 | 0.5219 | 0.2339 | | 0.4085 | 92.0 | 6624 | 0.5468 | 0.2360 | | 0.4012 | 93.0 | 6696 | 0.5514 | 0.2526 | | 0.3863 | 94.0 | 6768 | 0.5440 | 0.2344 | | 0.4098 | 95.0 | 6840 | 0.5355 | 0.2362 | | 0.4136 | 96.0 | 6912 | 0.5400 | 0.2409 | | 0.4066 | 97.0 | 6984 | 0.5117 | 0.2313 | | 0.4131 | 98.0 | 7056 | 0.5365 | 0.2375 | | 0.3852 | 99.0 | 7128 | 0.5172 | 0.2326 | | 0.3935 | 100.0 | 7200 | 0.5085 | 0.2296 | | 0.4093 | 101.0 | 7272 | 0.5650 | 0.2525 | | 0.3938 | 102.0 | 7344 | 0.5246 | 0.2324 | | 0.4016 | 103.0 | 7416 | 0.5084 | 0.2292 | | 0.412 | 104.0 | 7488 | 0.5308 | 0.2211 | | 0.3903 | 105.0 | 7560 | 0.5047 | 0.2201 | | 0.396 | 106.0 | 7632 | 0.5302 | 0.2223 | | 0.3891 | 107.0 | 7704 | 0.5367 | 0.2222 | | 0.3886 | 108.0 | 7776 | 0.5459 | 0.2328 | | 0.379 | 109.0 | 7848 | 0.5486 | 0.2340 | | 0.4009 | 110.0 | 7920 | 0.5080 | 0.2186 | | 0.3967 | 111.0 | 7992 | 0.5389 | 0.2193 | | 0.3988 | 112.0 | 8064 | 0.5488 | 0.2281 | | 0.3952 | 113.0 | 8136 | 0.5409 | 0.2294 | | 0.3884 | 114.0 | 8208 | 0.5304 | 0.2326 | | 0.3939 | 115.0 | 8280 | 0.5542 | 0.2211 | | 0.3927 | 116.0 | 8352 | 0.5676 | 0.2259 | | 0.3944 | 117.0 | 8424 | 0.5221 | 0.2210 | | 0.3941 | 118.0 | 8496 | 0.5474 | 0.2247 | | 0.3912 | 119.0 | 8568 | 0.5451 | 0.2185 | | 0.4209 | 120.0 | 8640 | 0.5282 | 0.2282 | | 0.3882 | 121.0 | 8712 | 0.5263 | 0.2184 | | 0.3891 | 122.0 | 8784 | 0.5301 | 0.2194 | | 0.3964 | 123.0 | 8856 | 0.5608 | 0.2220 | | 0.3918 | 124.0 | 8928 | 0.5233 | 0.2230 | | 0.3834 | 125.0 | 9000 | 0.5286 | 0.2195 | | 0.3952 | 126.0 | 9072 | 0.5410 | 0.2258 | | 0.3812 | 127.0 | 9144 | 0.5183 | 0.2207 | | 0.3904 | 128.0 | 9216 | 0.5393 | 0.2244 | | 0.3797 | 129.0 | 9288 | 0.5213 | 0.2226 | | 0.3802 | 130.0 | 9360 | 0.5470 | 0.2207 | | 0.4097 | 131.0 | 9432 | 0.5206 | 0.2254 | | 0.3771 | 132.0 | 9504 | 0.5075 | 0.2182 | | 0.3732 | 133.0 | 9576 | 0.5153 | 0.2255 | | 0.3727 | 134.0 | 9648 | 0.5107 | 0.2212 | | 0.3751 | 135.0 | 9720 | 0.5147 | 0.2259 | | 0.3858 | 136.0 | 9792 | 0.5519 | 0.2220 | | 0.3889 | 137.0 | 9864 | 0.5606 | 0.2222 | | 0.3916 | 138.0 | 9936 | 0.5401 | 0.2252 | | 0.3775 | 139.0 | 10008 | 0.5393 | 0.2269 | | 0.3963 | 140.0 | 10080 | 0.5504 | 0.2322 | | 0.3941 | 141.0 | 10152 | 0.5338 | 0.2342 | | 0.3801 | 142.0 | 10224 | 0.5115 | 0.2276 | | 0.3809 | 143.0 | 10296 | 0.4966 | 0.2261 | | 0.3751 | 144.0 | 10368 | 0.4910 | 0.2240 | | 0.3827 | 145.0 | 10440 | 0.5291 | 0.2204 | | 0.384 | 146.0 | 10512 | 0.5702 | 0.2278 | | 0.3728 | 147.0 | 10584 | 0.5340 | 0.2283 | | 0.3963 | 148.0 | 10656 | 0.5513 | 0.2286 | | 0.3802 | 149.0 | 10728 | 0.5424 | 0.2264 | | 0.3874 | 150.0 | 10800 | 0.5219 | 0.2200 | | 0.3743 | 151.0 | 10872 | 0.5147 | 0.2161 | | 0.3931 | 152.0 | 10944 | 0.5318 | 0.2324 | | 0.3755 | 153.0 | 11016 | 0.5457 | 0.2252 | | 0.3744 | 154.0 | 11088 | 0.5448 | 0.2260 | | 0.3799 | 155.0 | 11160 | 0.5276 | 0.2171 | | 0.3953 | 156.0 | 11232 | 0.5546 | 0.2263 | | 0.3716 | 157.0 | 11304 | 0.5110 | 0.2246 | | 0.3725 | 158.0 | 11376 | 0.5385 | 0.2193 | | 0.364 | 159.0 | 11448 | 0.5114 | 0.2216 | | 0.3666 | 160.0 | 11520 | 0.5584 | 0.2248 | | 0.3797 | 161.0 | 11592 | 0.5313 | 0.2238 | | 0.3704 | 162.0 | 11664 | 0.5542 | 0.2281 | | 0.362 | 163.0 | 11736 | 0.5674 | 0.2241 | | 0.3551 | 164.0 | 11808 | 0.5484 | 0.2210 | | 0.3765 | 165.0 | 11880 | 0.5380 | 0.2252 | | 0.3821 | 166.0 | 11952 | 0.5441 | 0.2267 | | 0.3608 | 167.0 | 12024 | 0.4983 | 0.2186 | | 0.3595 | 168.0 | 12096 | 0.5065 | 0.2166 | | 0.3652 | 169.0 | 12168 | 0.5211 | 0.2150 | | 0.3635 | 170.0 | 12240 | 0.5341 | 0.2164 | | 0.3614 | 171.0 | 12312 | 0.5059 | 0.2183 | | 0.3522 | 172.0 | 12384 | 0.5530 | 0.2199 | | 0.3522 | 173.0 | 12456 | 0.5581 | 0.2142 | | 0.3503 | 174.0 | 12528 | 0.5394 | 0.2211 | | 0.3583 | 175.0 | 12600 | 0.5460 | 0.2252 | | 0.3562 | 176.0 | 12672 | 0.5199 | 0.2223 | | 0.351 | 177.0 | 12744 | 0.5248 | 0.2146 | | 0.3667 | 178.0 | 12816 | 0.5400 | 0.2169 | | 0.3407 | 179.0 | 12888 | 0.5349 | 0.2095 | | 0.3563 | 180.0 | 12960 | 0.5259 | 0.2116 | | 0.3656 | 181.0 | 13032 | 0.5130 | 0.2115 | | 0.3714 | 182.0 | 13104 | 0.5071 | 0.2151 | | 0.3565 | 183.0 | 13176 | 0.5419 | 0.2205 | | 0.3521 | 184.0 | 13248 | 0.5380 | 0.2250 | | 0.3605 | 185.0 | 13320 | 0.5437 | 0.2230 | | 0.3508 | 186.0 | 13392 | 0.5391 | 0.2225 | | 0.3746 | 187.0 | 13464 | 0.5426 | 0.2274 | | 0.3478 | 188.0 | 13536 | 0.5824 | 0.2247 | | 0.3475 | 189.0 | 13608 | 0.5233 | 0.2103 | | 0.3676 | 190.0 | 13680 | 0.5214 | 0.2122 | | 0.3579 | 191.0 | 13752 | 0.5267 | 0.2124 | | 0.3563 | 192.0 | 13824 | 0.5343 | 0.2132 | | 0.3531 | 193.0 | 13896 | 0.5205 | 0.2205 | | 0.3424 | 194.0 | 13968 | 0.5196 | 0.2196 | | 0.3617 | 195.0 | 14040 | 0.5302 | 0.2222 | | 0.3461 | 196.0 | 14112 | 0.5366 | 0.2204 | | 0.3524 | 197.0 | 14184 | 0.5383 | 0.2212 | | 0.3354 | 198.0 | 14256 | 0.5279 | 0.2166 | | 0.3501 | 199.0 | 14328 | 0.5235 | 0.2165 | | 0.3384 | 200.0 | 14400 | 0.5330 | 0.2152 | | 0.3565 | 201.0 | 14472 | 0.5262 | 0.2211 | | 0.3385 | 202.0 | 14544 | 0.5404 | 0.2173 | | 0.3533 | 203.0 | 14616 | 0.5465 | 0.2209 | | 0.3503 | 204.0 | 14688 | 0.5243 | 0.2223 | | 0.3529 | 205.0 | 14760 | 0.5611 | 0.2276 | | 0.3555 | 206.0 | 14832 | 0.5437 | 0.2209 | | 0.3548 | 207.0 | 14904 | 0.5401 | 0.2249 | | 0.3417 | 208.0 | 14976 | 0.5643 | 0.2304 | | 0.3271 | 209.0 | 15048 | 0.5356 | 0.2183 | | 0.344 | 210.0 | 15120 | 0.5300 | 0.2173 | | 0.3416 | 211.0 | 15192 | 0.5343 | 0.2169 | | 0.3393 | 212.0 | 15264 | 0.5677 | 0.2206 | | 0.3356 | 213.0 | 15336 | 0.5514 | 0.2194 | | 0.3344 | 214.0 | 15408 | 0.5527 | 0.2198 | | 0.3303 | 215.0 | 15480 | 0.5590 | 0.2146 | | 0.3503 | 216.0 | 15552 | 0.5681 | 0.2242 | | 0.339 | 217.0 | 15624 | 0.5318 | 0.2186 | | 0.3361 | 218.0 | 15696 | 0.5369 | 0.2247 | | 0.334 | 219.0 | 15768 | 0.5173 | 0.2152 | | 0.3222 | 220.0 | 15840 | 0.5965 | 0.2236 | | 0.3247 | 221.0 | 15912 | 0.5543 | 0.2165 | | 0.338 | 222.0 | 15984 | 0.5836 | 0.2178 | | 0.3112 | 223.0 | 16056 | 0.5573 | 0.2171 | | 0.3203 | 224.0 | 16128 | 0.5830 | 0.2196 | | 0.3294 | 225.0 | 16200 | 0.5815 | 0.2198 | | 0.3392 | 226.0 | 16272 | 0.5641 | 0.2163 | | 0.3332 | 227.0 | 16344 | 0.5770 | 0.2204 | | 0.3365 | 228.0 | 16416 | 0.5843 | 0.2181 | | 0.3186 | 229.0 | 16488 | 0.5835 | 0.2231 | | 0.3329 | 230.0 | 16560 | 0.5867 | 0.2220 | | 0.3257 | 231.0 | 16632 | 0.6081 | 0.2196 | | 0.3183 | 232.0 | 16704 | 0.5944 | 0.2220 | | 0.3315 | 233.0 | 16776 | 0.6060 | 0.2222 | | 0.3269 | 234.0 | 16848 | 0.6268 | 0.2260 | | 0.3191 | 235.0 | 16920 | 0.5796 | 0.2183 | | 0.3395 | 236.0 | 16992 | 0.6140 | 0.2257 | | 0.3186 | 237.0 | 17064 | 0.6302 | 0.2277 | | 0.3264 | 238.0 | 17136 | 0.5752 | 0.2194 | | 0.3181 | 239.0 | 17208 | 0.6066 | 0.2196 | | 0.3201 | 240.0 | 17280 | 0.6013 | 0.2223 | | 0.3242 | 241.0 | 17352 | 0.5960 | 0.2207 | | 0.3194 | 242.0 | 17424 | 0.6093 | 0.2311 | | 0.3203 | 243.0 | 17496 | 0.6047 | 0.2281 | | 0.3173 | 244.0 | 17568 | 0.6260 | 0.2285 | | 0.3118 | 245.0 | 17640 | 0.5961 | 0.2243 | | 0.3172 | 246.0 | 17712 | 0.6315 | 0.2242 | | 0.332 | 247.0 | 17784 | 0.6413 | 0.2250 | | 0.3315 | 248.0 | 17856 | 0.6260 | 0.2290 | | 0.3222 | 249.0 | 17928 | 0.6175 | 0.2307 | | 0.3291 | 250.0 | 18000 | 0.6005 | 0.2283 | | 0.3321 | 251.0 | 18072 | 0.6299 | 0.2311 | | 0.3338 | 252.0 | 18144 | 0.6011 | 0.2310 | | 0.3274 | 253.0 | 18216 | 0.5662 | 0.2203 | | 0.3148 | 254.0 | 18288 | 0.6139 | 0.2344 | | 0.3295 | 255.0 | 18360 | 0.6183 | 0.2461 | | 0.3169 | 256.0 | 18432 | 0.6136 | 0.2283 | | 0.3431 | 257.0 | 18504 | 0.6445 | 0.2446 | | 0.3209 | 258.0 | 18576 | 0.6124 | 0.2437 | | 0.3405 | 259.0 | 18648 | 0.6210 | 0.2446 | | 0.3317 | 260.0 | 18720 | 0.6088 | 0.2350 | | 0.3265 | 261.0 | 18792 | 0.5792 | 0.2324 | | 0.332 | 262.0 | 18864 | 0.6326 | 0.2427 | | 0.3179 | 263.0 | 18936 | 0.6174 | 0.2256 | | 0.3119 | 264.0 | 19008 | 0.6338 | 0.2277 | | 0.3223 | 265.0 | 19080 | 0.6236 | 0.2213 | | 0.315 | 266.0 | 19152 | 0.6025 | 0.2263 | | 0.3214 | 267.0 | 19224 | 0.5881 | 0.2243 | | 0.3184 | 268.0 | 19296 | 0.5942 | 0.2225 | | 0.3083 | 269.0 | 19368 | 0.5836 | 0.2209 | | 0.3098 | 270.0 | 19440 | 0.5844 | 0.2192 | | 0.2992 | 271.0 | 19512 | 0.5972 | 0.2218 | | 0.3118 | 272.0 | 19584 | 0.5768 | 0.2220 | | 0.3112 | 273.0 | 19656 | 0.5926 | 0.2167 | | 0.2994 | 274.0 | 19728 | 0.6056 | 0.2227 | | 0.3041 | 275.0 | 19800 | 0.5793 | 0.2245 | | 0.3072 | 276.0 | 19872 | 0.6188 | 0.2277 | | 0.3042 | 277.0 | 19944 | 0.5931 | 0.2251 | | 0.3107 | 278.0 | 20016 | 0.6205 | 0.2216 | | 0.3077 | 279.0 | 20088 | 0.6001 | 0.2209 | | 0.2903 | 280.0 | 20160 | 0.6002 | 0.2141 | | 0.3124 | 281.0 | 20232 | 0.5782 | 0.2168 | | 0.3043 | 282.0 | 20304 | 0.6105 | 0.2187 | | 0.3007 | 283.0 | 20376 | 0.6105 | 0.2213 | | 0.3023 | 284.0 | 20448 | 0.6011 | 0.2232 | | 0.3062 | 285.0 | 20520 | 0.5967 | 0.2195 | | 0.3093 | 286.0 | 20592 | 0.6571 | 0.2258 | | 0.3041 | 287.0 | 20664 | 0.5956 | 0.2213 | | 0.3083 | 288.0 | 20736 | 0.5904 | 0.2253 | | 0.3037 | 289.0 | 20808 | 0.6096 | 0.2295 | | 0.3064 | 290.0 | 20880 | 0.5958 | 0.2232 | | 0.3136 | 291.0 | 20952 | 0.6134 | 0.2250 | | 0.3042 | 292.0 | 21024 | 0.6144 | 0.2189 | | 0.2967 | 293.0 | 21096 | 0.6086 | 0.2282 | | 0.2952 | 294.0 | 21168 | 0.6178 | 0.2285 | | 0.301 | 295.0 | 21240 | 0.5924 | 0.2189 | | 0.3058 | 296.0 | 21312 | 0.6032 | 0.2193 | | 0.2983 | 297.0 | 21384 | 0.5823 | 0.2183 | | 0.2793 | 298.0 | 21456 | 0.5930 | 0.2195 | | 0.2936 | 299.0 | 21528 | 0.6166 | 0.2215 | | 0.298 | 300.0 | 21600 | 0.5864 | 0.2159 | | 0.2949 | 301.0 | 21672 | 0.6049 | 0.2160 | | 0.2948 | 302.0 | 21744 | 0.5745 | 0.2173 | | 0.2809 | 303.0 | 21816 | 0.5699 | 0.2173 | | 0.2854 | 304.0 | 21888 | 0.5894 | 0.2243 | | 0.2908 | 305.0 | 21960 | 0.6123 | 0.2229 | | 0.2948 | 306.0 | 22032 | 0.5966 | 0.2162 | | 0.2997 | 307.0 | 22104 | 0.6030 | 0.2180 | | 0.2906 | 308.0 | 22176 | 0.5920 | 0.2185 | | 0.2778 | 309.0 | 22248 | 0.5913 | 0.2121 | | 0.281 | 310.0 | 22320 | 0.6020 | 0.2121 | | 0.2852 | 311.0 | 22392 | 0.5814 | 0.2170 | | 0.278 | 312.0 | 22464 | 0.5931 | 0.2151 | | 0.2743 | 313.0 | 22536 | 0.6073 | 0.2179 | | 0.2757 | 314.0 | 22608 | 0.6174 | 0.2153 | | 0.2907 | 315.0 | 22680 | 0.5729 | 0.2171 | | 0.2801 | 316.0 | 22752 | 0.6014 | 0.2214 | | 0.2908 | 317.0 | 22824 | 0.6098 | 0.2130 | | 0.2824 | 318.0 | 22896 | 0.5942 | 0.2191 | | 0.2799 | 319.0 | 22968 | 0.6374 | 0.2230 | | 0.2725 | 320.0 | 23040 | 0.6424 | 0.2206 | | 0.2821 | 321.0 | 23112 | 0.6465 | 0.2203 | | 0.2795 | 322.0 | 23184 | 0.6163 | 0.2182 | | 0.2764 | 323.0 | 23256 | 0.6257 | 0.2209 | | 0.2739 | 324.0 | 23328 | 0.6374 | 0.2194 | | 0.2712 | 325.0 | 23400 | 0.6228 | 0.2166 | | 0.275 | 326.0 | 23472 | 0.6394 | 0.2214 | | 0.275 | 327.0 | 23544 | 0.6359 | 0.2213 | | 0.2702 | 328.0 | 23616 | 0.6430 | 0.2207 | | 0.2676 | 329.0 | 23688 | 0.6321 | 0.2145 | | 0.2735 | 330.0 | 23760 | 0.6583 | 0.2168 | | 0.2815 | 331.0 | 23832 | 0.6368 | 0.2178 | | 0.2823 | 332.0 | 23904 | 0.6373 | 0.2197 | | 0.2885 | 333.0 | 23976 | 0.6352 | 0.2200 | | 0.2751 | 334.0 | 24048 | 0.6431 | 0.2159 | | 0.2717 | 335.0 | 24120 | 0.6339 | 0.2213 | | 0.286 | 336.0 | 24192 | 0.6566 | 0.2245 | | 0.2678 | 337.0 | 24264 | 0.6443 | 0.2194 | | 0.2692 | 338.0 | 24336 | 0.6352 | 0.2225 | | 0.273 | 339.0 | 24408 | 0.6497 | 0.2187 | | 0.2686 | 340.0 | 24480 | 0.6788 | 0.2214 | | 0.2699 | 341.0 | 24552 | 0.6615 | 0.2198 | | 0.2636 | 342.0 | 24624 | 0.6765 | 0.2196 | | 0.2545 | 343.0 | 24696 | 0.6737 | 0.2202 | | 0.2612 | 344.0 | 24768 | 0.6891 | 0.2240 | | 0.2705 | 345.0 | 24840 | 0.6550 | 0.2204 | | 0.2658 | 346.0 | 24912 | 0.6591 | 0.2200 | | 0.2701 | 347.0 | 24984 | 0.6222 | 0.2216 | | 0.2743 | 348.0 | 25056 | 0.6263 | 0.2186 | | 0.2657 | 349.0 | 25128 | 0.6509 | 0.2186 | | 0.2635 | 350.0 | 25200 | 0.6570 | 0.2207 | | 0.2601 | 351.0 | 25272 | 0.6496 | 0.2155 | | 0.2695 | 352.0 | 25344 | 0.6305 | 0.2169 | | 0.2586 | 353.0 | 25416 | 0.6269 | 0.2223 | | 0.2529 | 354.0 | 25488 | 0.6418 | 0.2204 | | 0.2739 | 355.0 | 25560 | 0.6472 | 0.2175 | | 0.2738 | 356.0 | 25632 | 0.6416 | 0.2187 | | 0.2775 | 357.0 | 25704 | 0.6470 | 0.2208 | | 0.2775 | 358.0 | 25776 | 0.6483 | 0.2201 | | 0.2622 | 359.0 | 25848 | 0.6233 | 0.2164 | | 0.2727 | 360.0 | 25920 | 0.6438 | 0.2178 | | 0.275 | 361.0 | 25992 | 0.6459 | 0.2222 | | 0.2688 | 362.0 | 26064 | 0.6329 | 0.2188 | | 0.2658 | 363.0 | 26136 | 0.6482 | 0.2207 | | 0.2693 | 364.0 | 26208 | 0.6337 | 0.2194 | | 0.2599 | 365.0 | 26280 | 0.6458 | 0.2189 | | 0.2683 | 366.0 | 26352 | 0.6483 | 0.2213 | | 0.2665 | 367.0 | 26424 | 0.6576 | 0.2203 | | 0.2529 | 368.0 | 26496 | 0.6629 | 0.2200 | | 0.2536 | 369.0 | 26568 | 0.6665 | 0.2208 | | 0.2562 | 370.0 | 26640 | 0.6545 | 0.2171 | | 0.2713 | 371.0 | 26712 | 0.6433 | 0.2231 | | 0.2545 | 372.0 | 26784 | 0.6330 | 0.2202 | | 0.2513 | 373.0 | 26856 | 0.6474 | 0.2154 | | 0.2564 | 374.0 | 26928 | 0.6519 | 0.2191 | | 0.266 | 375.0 | 27000 | 0.6577 | 0.2199 | | 0.2623 | 376.0 | 27072 | 0.6508 | 0.2187 | | 0.2666 | 377.0 | 27144 | 0.6358 | 0.2171 | | 0.2503 | 378.0 | 27216 | 0.6515 | 0.2195 | | 0.252 | 379.0 | 27288 | 0.6479 | 0.2221 | | 0.2558 | 380.0 | 27360 | 0.6344 | 0.2203 | | 0.2673 | 381.0 | 27432 | 0.6717 | 0.2196 | | 0.2615 | 382.0 | 27504 | 0.6393 | 0.2178 | | 0.2603 | 383.0 | 27576 | 0.6375 | 0.2167 | | 0.2522 | 384.0 | 27648 | 0.6381 | 0.2195 | | 0.2532 | 385.0 | 27720 | 0.6566 | 0.2209 | | 0.2544 | 386.0 | 27792 | 0.6640 | 0.2231 | | 0.2529 | 387.0 | 27864 | 0.6531 | 0.2207 | | 0.2578 | 388.0 | 27936 | 0.6915 | 0.2202 | | 0.2517 | 389.0 | 28008 | 0.6902 | 0.2238 | | 0.2453 | 390.0 | 28080 | 0.6727 | 0.2249 | | 0.2634 | 391.0 | 28152 | 0.6667 | 0.2235 | | 0.2515 | 392.0 | 28224 | 0.6554 | 0.2212 | | 0.249 | 393.0 | 28296 | 0.6672 | 0.2214 | | 0.2524 | 394.0 | 28368 | 0.6693 | 0.2164 | | 0.2529 | 395.0 | 28440 | 0.6572 | 0.2186 | | 0.256 | 396.0 | 28512 | 0.6420 | 0.2171 | | 0.2498 | 397.0 | 28584 | 0.6712 | 0.2168 | | 0.2565 | 398.0 | 28656 | 0.6890 | 0.2175 | | 0.2477 | 399.0 | 28728 | 0.6905 | 0.2185 | | 0.2486 | 400.0 | 28800 | 0.7010 | 0.2191 | | 0.259 | 401.0 | 28872 | 0.6983 | 0.2169 | | 0.2555 | 402.0 | 28944 | 0.6877 | 0.2189 | | 0.2579 | 403.0 | 29016 | 0.6864 | 0.2188 | | 0.2421 | 404.0 | 29088 | 0.6603 | 0.2175 | | 0.2531 | 405.0 | 29160 | 0.6882 | 0.2223 | | 0.254 | 406.0 | 29232 | 0.6813 | 0.2209 | | 0.2517 | 407.0 | 29304 | 0.6707 | 0.2205 | | 0.2521 | 408.0 | 29376 | 0.6835 | 0.2234 | | 0.2494 | 409.0 | 29448 | 0.6896 | 0.2216 | | 0.2516 | 410.0 | 29520 | 0.6760 | 0.2218 | | 0.2605 | 411.0 | 29592 | 0.7055 | 0.2207 | | 0.2514 | 412.0 | 29664 | 0.6707 | 0.2232 | | 0.242 | 413.0 | 29736 | 0.6853 | 0.2183 | | 0.2505 | 414.0 | 29808 | 0.6869 | 0.2232 | | 0.2398 | 415.0 | 29880 | 0.6732 | 0.2228 | | 0.2549 | 416.0 | 29952 | 0.6559 | 0.2222 | | 0.2496 | 417.0 | 30024 | 0.6675 | 0.2232 | | 0.2538 | 418.0 | 30096 | 0.6695 | 0.2240 | | 0.246 | 419.0 | 30168 | 0.6917 | 0.2268 | | 0.2462 | 420.0 | 30240 | 0.6842 | 0.2288 | | 0.2527 | 421.0 | 30312 | 0.6628 | 0.2207 | | 0.2469 | 422.0 | 30384 | 0.6683 | 0.2225 | | 0.2493 | 423.0 | 30456 | 0.6632 | 0.2189 | | 0.239 | 424.0 | 30528 | 0.6848 | 0.2198 | | 0.2373 | 425.0 | 30600 | 0.6834 | 0.2223 | | 0.245 | 426.0 | 30672 | 0.6902 | 0.2251 | | 0.239 | 427.0 | 30744 | 0.6917 | 0.2223 | | 0.2441 | 428.0 | 30816 | 0.6859 | 0.2232 | | 0.2306 | 429.0 | 30888 | 0.6844 | 0.2208 | | 0.2373 | 430.0 | 30960 | 0.6740 | 0.2185 | | 0.2495 | 431.0 | 31032 | 0.6823 | 0.2214 | | 0.2457 | 432.0 | 31104 | 0.6686 | 0.2219 | | 0.2474 | 433.0 | 31176 | 0.6856 | 0.2215 | | 0.2434 | 434.0 | 31248 | 0.6876 | 0.2199 | | 0.2377 | 435.0 | 31320 | 0.6827 | 0.2234 | | 0.2566 | 436.0 | 31392 | 0.6920 | 0.2213 | | 0.2384 | 437.0 | 31464 | 0.6734 | 0.2234 | | 0.2477 | 438.0 | 31536 | 0.6992 | 0.2242 | | 0.2347 | 439.0 | 31608 | 0.6837 | 0.2217 | | 0.2345 | 440.0 | 31680 | 0.6852 | 0.2222 | | 0.2457 | 441.0 | 31752 | 0.6891 | 0.2230 | | 0.2512 | 442.0 | 31824 | 0.6976 | 0.2263 | | 0.25 | 443.0 | 31896 | 0.6889 | 0.2232 | | 0.2341 | 444.0 | 31968 | 0.6841 | 0.2266 | | 0.252 | 445.0 | 32040 | 0.6981 | 0.2249 | | 0.2486 | 446.0 | 32112 | 0.6958 | 0.2281 | | 0.2402 | 447.0 | 32184 | 0.6826 | 0.2249 | | 0.2477 | 448.0 | 32256 | 0.6867 | 0.2247 | | 0.2304 | 449.0 | 32328 | 0.7022 | 0.2243 | | 0.2376 | 450.0 | 32400 | 0.6948 | 0.2222 | | 0.2388 | 451.0 | 32472 | 0.6771 | 0.2221 | | 0.2544 | 452.0 | 32544 | 0.6841 | 0.2249 | | 0.2428 | 453.0 | 32616 | 0.6886 | 0.2220 | | 0.2438 | 454.0 | 32688 | 0.6903 | 0.2214 | | 0.2463 | 455.0 | 32760 | 0.6781 | 0.2219 | | 0.2355 | 456.0 | 32832 | 0.6784 | 0.2198 | | 0.237 | 457.0 | 32904 | 0.6849 | 0.2231 | | 0.2381 | 458.0 | 32976 | 0.6892 | 0.2220 | | 0.23 | 459.0 | 33048 | 0.6782 | 0.2207 | | 0.2359 | 460.0 | 33120 | 0.6789 | 0.2238 | | 0.2382 | 461.0 | 33192 | 0.6829 | 0.2236 | | 0.2438 | 462.0 | 33264 | 0.6928 | 0.2236 | | 0.233 | 463.0 | 33336 | 0.6860 | 0.2216 | | 0.2358 | 464.0 | 33408 | 0.6857 | 0.2236 | | 0.2226 | 465.0 | 33480 | 0.6818 | 0.2202 | | 0.2478 | 466.0 | 33552 | 0.6801 | 0.2222 | | 0.2274 | 467.0 | 33624 | 0.6797 | 0.2203 | | 0.2339 | 468.0 | 33696 | 0.6915 | 0.2224 | | 0.2259 | 469.0 | 33768 | 0.6919 | 0.2220 | | 0.2327 | 470.0 | 33840 | 0.6877 | 0.2225 | | 0.2341 | 471.0 | 33912 | 0.6892 | 0.2235 | | 0.2502 | 472.0 | 33984 | 0.6900 | 0.2227 | | 0.234 | 473.0 | 34056 | 0.6839 | 0.2242 | | 0.2289 | 474.0 | 34128 | 0.6885 | 0.2243 | | 0.2311 | 475.0 | 34200 | 0.6911 | 0.2231 | | 0.2374 | 476.0 | 34272 | 0.6834 | 0.2234 | | 0.235 | 477.0 | 34344 | 0.6790 | 0.2223 | | 0.2292 | 478.0 | 34416 | 0.6857 | 0.2233 | | 0.2243 | 479.0 | 34488 | 0.6737 | 0.2243 | | 0.235 | 480.0 | 34560 | 0.6831 | 0.2222 | | 0.2337 | 481.0 | 34632 | 0.6769 | 0.2207 | | 0.2258 | 482.0 | 34704 | 0.6784 | 0.2232 | | 0.2276 | 483.0 | 34776 | 0.6917 | 0.2241 | | 0.2379 | 484.0 | 34848 | 0.6806 | 0.2251 | | 0.229 | 485.0 | 34920 | 0.6859 | 0.2232 | | 0.2312 | 486.0 | 34992 | 0.6850 | 0.2236 | | 0.2412 | 487.0 | 35064 | 0.6776 | 0.2221 | | 0.2328 | 488.0 | 35136 | 0.6835 | 0.2230 | | 0.2373 | 489.0 | 35208 | 0.6879 | 0.2222 | | 0.234 | 490.0 | 35280 | 0.6868 | 0.2214 | | 0.2274 | 491.0 | 35352 | 0.6869 | 0.2222 | | 0.2332 | 492.0 | 35424 | 0.6861 | 0.2214 | | 0.2291 | 493.0 | 35496 | 0.6881 | 0.2206 | | 0.2301 | 494.0 | 35568 | 0.6877 | 0.2205 | | 0.2258 | 495.0 | 35640 | 0.6898 | 0.2203 | | 0.2351 | 496.0 | 35712 | 0.6883 | 0.2212 | | 0.2345 | 497.0 | 35784 | 0.6915 | 0.2213 | | 0.23 | 498.0 | 35856 | 0.6922 | 0.2217 | | 0.2257 | 499.0 | 35928 | 0.6925 | 0.2216 | | 0.2273 | 500.0 | 36000 | 0.6914 | 0.2205 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
0f32bfd50c481f5b1be0cf5d16f746a2
pinot/wav2vec2-large-xls-r-300m-j-phoneme-colab-3
pinot
wav2vec2
12
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice_10_0']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,760
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-j-phoneme-colab-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6478 - Wer: 0.3336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.0 | 397 | 1.0586 | 0.9425 | | No log | 2.0 | 794 | 0.5773 | 0.5847 | | 1.9827 | 3.0 | 1191 | 0.5243 | 0.4882 | | 1.9827 | 4.0 | 1588 | 0.4735 | 0.4624 | | 1.9827 | 5.0 | 1985 | 0.4967 | 0.4789 | | 0.6004 | 6.0 | 2382 | 0.4703 | 0.4246 | | 0.6004 | 7.0 | 2779 | 0.4555 | 0.4194 | | 0.4911 | 8.0 | 3176 | 0.4692 | 0.4284 | | 0.4911 | 9.0 | 3573 | 0.4589 | 0.3997 | | 0.4911 | 10.0 | 3970 | 0.4988 | 0.4286 | | 0.4275 | 11.0 | 4367 | 0.4851 | 0.4153 | | 0.4275 | 12.0 | 4764 | 0.5020 | 0.4039 | | 0.3784 | 13.0 | 5161 | 0.5491 | 0.4169 | | 0.3784 | 14.0 | 5558 | 0.5211 | 0.4080 | | 0.3784 | 15.0 | 5955 | 0.5124 | 0.3950 | | 0.3362 | 16.0 | 6352 | 0.5121 | 0.3909 | | 0.3362 | 17.0 | 6749 | 0.5503 | 0.3728 | | 0.3046 | 18.0 | 7146 | 0.5363 | 0.3915 | | 0.3046 | 19.0 | 7543 | 0.6112 | 0.4076 | | 0.3046 | 20.0 | 7940 | 0.5884 | 0.3755 | | 0.2785 | 21.0 | 8337 | 0.5639 | 0.3793 | | 0.2785 | 22.0 | 8734 | 0.6246 | 0.3742 | | 0.2513 | 23.0 | 9131 | 0.6014 | 0.3714 | | 0.2513 | 24.0 | 9528 | 0.6195 | 0.3697 | | 0.2513 | 25.0 | 9925 | 0.6004 | 0.3729 | | 0.2296 | 26.0 | 10322 | 0.5793 | 0.3585 | | 0.2296 | 27.0 | 10719 | 0.6178 | 0.3628 | | 0.2114 | 28.0 | 11116 | 0.5974 | 0.3507 | | 0.2114 | 29.0 | 11513 | 0.6056 | 0.3432 | | 0.2114 | 30.0 | 11910 | 0.6190 | 0.3536 | | 0.1944 | 31.0 | 12307 | 0.6293 | 0.3550 | | 0.1944 | 32.0 | 12704 | 0.6236 | 0.3535 | | 0.1777 | 33.0 | 13101 | 0.6456 | 0.3503 | | 0.1777 | 34.0 | 13498 | 0.6629 | 0.3444 | | 0.1777 | 35.0 | 13895 | 0.6585 | 0.3432 | | 0.1644 | 36.0 | 14292 | 0.6528 | 0.3455 | | 0.1644 | 37.0 | 14689 | 0.6460 | 0.3437 | | 0.1521 | 38.0 | 15086 | 0.6441 | 0.3360 | | 0.1521 | 39.0 | 15483 | 0.6531 | 0.3350 | | 0.1521 | 40.0 | 15880 | 0.6478 | 0.3336 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
09bedccd9222d434f213e6a31fd53266
dipteshkanojia/hing-roberta-CM-run-1
dipteshkanojia
xlm-roberta
9
3
transformers
0
text-classification
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,101
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-roberta-CM-run-1 This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4241 - Accuracy: 0.7787 - Precision: 0.7367 - Recall: 0.7378 - F1: 0.7357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8552 | 1.0 | 497 | 0.6797 | 0.7103 | 0.6657 | 0.6872 | 0.6648 | | 0.5998 | 2.0 | 994 | 0.6946 | 0.7304 | 0.6870 | 0.7108 | 0.6933 | | 0.4146 | 3.0 | 1491 | 0.9422 | 0.7465 | 0.7215 | 0.6734 | 0.6887 | | 0.2592 | 4.0 | 1988 | 1.3122 | 0.7626 | 0.7240 | 0.7130 | 0.7126 | | 0.1644 | 5.0 | 2485 | 1.7526 | 0.7344 | 0.6856 | 0.6901 | 0.6875 | | 0.1022 | 6.0 | 2982 | 1.9479 | 0.7746 | 0.7331 | 0.7317 | 0.7316 | | 0.0764 | 7.0 | 3479 | 2.0772 | 0.7626 | 0.7190 | 0.7214 | 0.7202 | | 0.0468 | 8.0 | 3976 | 2.2799 | 0.7626 | 0.7184 | 0.7044 | 0.7099 | | 0.0472 | 9.0 | 4473 | 2.2257 | 0.7586 | 0.7103 | 0.7176 | 0.7135 | | 0.0306 | 10.0 | 4970 | 2.3307 | 0.7505 | 0.7068 | 0.7081 | 0.7074 | | 0.0351 | 11.0 | 5467 | 2.2555 | 0.7666 | 0.7198 | 0.7254 | 0.7219 | | 0.0328 | 12.0 | 5964 | 2.4425 | 0.7626 | 0.7258 | 0.7124 | 0.7179 | | 0.0225 | 13.0 | 6461 | 2.5229 | 0.7666 | 0.7237 | 0.7138 | 0.7179 | | 0.0232 | 14.0 | 6958 | 2.5717 | 0.7646 | 0.7202 | 0.7115 | 0.7144 | | 0.0191 | 15.0 | 7455 | 2.4027 | 0.7606 | 0.7110 | 0.7202 | 0.7152 | | 0.0175 | 16.0 | 7952 | 2.3918 | 0.7666 | 0.7216 | 0.7241 | 0.7226 | | 0.0087 | 17.0 | 8449 | 2.4176 | 0.7767 | 0.7347 | 0.7365 | 0.7345 | | 0.0077 | 18.0 | 8946 | 2.4231 | 0.7686 | 0.7201 | 0.7265 | 0.7230 | | 0.0095 | 19.0 | 9443 | 2.4162 | 0.7827 | 0.7392 | 0.7436 | 0.7406 | | 0.0063 | 20.0 | 9940 | 2.4241 | 0.7787 | 0.7367 | 0.7378 | 0.7357 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
57ebc98bc5bdc17b48293e7780ac77c9
btjiong/robbert-twitter-sentiment
btjiong
roberta
11
28
transformers
0
text-classification
true
false
false
mit
null
['dutch_social']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,468
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert-twitter-sentiment This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the dutch_social dataset. It achieves the following results on the evaluation set: - Loss: 0.6818 - Accuracy: 0.749 - F1: 0.7492 - Precision: 0.7494 - Recall: 0.749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.7485 | 1.0 | 188 | 0.7670 | 0.692 | 0.6915 | 0.6920 | 0.692 | | 0.5202 | 2.0 | 376 | 0.6818 | 0.749 | 0.7492 | 0.7494 | 0.749 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.0.0 - Tokenizers 0.12.0
70b1c25d1f9d0f86adcfaaf9fd0ee795
cdinh2022/distilbert-base-uncased-finetuned-emotion
cdinh2022
distilbert
14
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,172
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.1 | 25 | 1.4889 | 0.5195 | 0.3976 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
f97ad3a44e5150c9ad1ab7c9f9575c61
fuh990202/distilbert-base-uncased-finetuned-squad
fuh990202
distilbert
12
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,278
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.1634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0874 | 1.0 | 1113 | 1.7948 | | 1.1106 | 2.0 | 2226 | 1.7791 | | 0.4632 | 3.0 | 3339 | 2.1634 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
08eea8d70917f7aba6bb57d6048a981a
google/multiberts-seed_2-step_2000k
google
bert
8
38
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_2', 'multiberts-seed_2-step_2000k']
false
true
true
3,527
false
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
f35ea15bad74fd4e8e669c5f1c3d6186
stanfordnlp/stanza-en
stanfordnlp
null
73
5,899
stanza
6
token-classification
false
false
false
apache-2.0
['en']
null
null
1
0
0
1
0
0
0
['stanza', 'token-classification']
false
true
true
580
false
# Stanza model for English (en) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2022-12-09 20:32:45.956
cf3c13d61df24b537e6d2da44cc4927d
jayanta/google-vit-base-patch16-224-cartoon-face-recognition
jayanta
vit
14
17
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,248
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google-vit-base-patch16-224-cartoon-face-recognition This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3707 - Accuracy: 0.9005 - Precision: 0.9066 - Recall: 0.9005 - F1: 0.8984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.89 | 6 | 0.5459 | 0.8611 | 0.8683 | 0.8611 | 0.8577 | | 0.0812 | 1.89 | 12 | 0.4703 | 0.8796 | 0.8833 | 0.8796 | 0.8764 | | 0.0812 | 2.89 | 18 | 0.4430 | 0.8935 | 0.8969 | 0.8935 | 0.8906 | | 0.0307 | 3.89 | 24 | 0.4045 | 0.8819 | 0.8849 | 0.8819 | 0.8767 | | 0.0091 | 4.89 | 30 | 0.3672 | 0.9005 | 0.9025 | 0.9005 | 0.8980 | | 0.0091 | 5.89 | 36 | 0.3841 | 0.9028 | 0.9125 | 0.9028 | 0.9011 | | 0.0043 | 6.89 | 42 | 0.3926 | 0.9005 | 0.9073 | 0.9005 | 0.8972 | | 0.0043 | 7.89 | 48 | 0.3786 | 0.8958 | 0.9005 | 0.8958 | 0.8931 | | 0.0031 | 8.89 | 54 | 0.3791 | 0.9028 | 0.9091 | 0.9028 | 0.9007 | | 0.002 | 9.89 | 60 | 0.3677 | 0.9028 | 0.9106 | 0.9028 | 0.9001 | | 0.002 | 10.89 | 66 | 0.3740 | 0.9028 | 0.9099 | 0.9028 | 0.9007 | | 0.0027 | 11.89 | 72 | 0.3869 | 0.8981 | 0.9043 | 0.8981 | 0.8956 | | 0.0027 | 12.89 | 78 | 0.3801 | 0.8981 | 0.9021 | 0.8981 | 0.8954 | | 0.004 | 13.89 | 84 | 0.3674 | 0.9051 | 0.9113 | 0.9051 | 0.9028 | | 0.0024 | 14.89 | 90 | 0.3620 | 0.9051 | 0.9096 | 0.9051 | 0.9027 | | 0.0024 | 15.89 | 96 | 0.3670 | 0.9028 | 0.9089 | 0.9028 | 0.9006 | | 0.0021 | 16.89 | 102 | 0.3827 | 0.9005 | 0.9065 | 0.9005 | 0.8980 | | 0.0021 | 17.89 | 108 | 0.3748 | 0.8981 | 0.9049 | 0.8981 | 0.8958 | | 0.0022 | 18.89 | 114 | 0.3825 | 0.9028 | 0.9101 | 0.9028 | 0.9006 | | 0.0019 | 19.89 | 120 | 0.3707 | 0.9005 | 0.9066 | 0.9005 | 0.8984 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
8cf544beae9e00901318d40fae8f150b
itsGanni/Cardinal__Catholicism_-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,860
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Cardinal__Catholicism_-clustered This model is a fine-tuned version of [nandysoham/11-clustered](https://huggingface.co/nandysoham/11-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4076 - Train End Logits Accuracy: 0.8889 - Train Start Logits Accuracy: 0.9132 - Validation Loss: 0.6765 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.75 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4076 | 0.8889 | 0.9132 | 0.6765 | 0.75 | 0.75 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
508597e2205c507b2e9454c5ed342375
s3nh/SegFormer-b4-person-segmentation
s3nh
segformer
4
2
transformers
0
image-segmentation
true
false
false
openrail
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
390,223
false
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> <img src = 'https://images.unsplash.com/photo-1438761681033-6461ffad8d80?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1170&q=80'> ### Description Semantic segmentation is a computer vision technique for assigning a label to each pixel in an image, representing the semantic class of the objects or regions in the image. It's a form of dense prediction because it involves assigning a label to each pixel in an image, instead of just boxes around objects or key points as in object detection or instance segmentation. The goal of semantic segmentation is to recognize and understand the objects and scenes in an image, and partition the image into segments corresponding to different entities. ## Parameters ``` model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b4", num_labels=2, id2label=id2label, label2id=label2id, ) ``` ## Usage ```python from torch import nn import numpy as np import matplotlib.pyplot as plt # Transforms _transform = A.Compose([ A.Resize(height = 512, width=512), ToTensorV2(), ]) trans_image = _transform(image=np.array(image)) outputs = model(trans_image['image'].float().unsqueeze(0)) logits = outputs.logits.cpu() print(logits.shape) # First, rescale logits to original image size upsampled_logits = nn.functional.interpolate(logits, size=image.size[::-1], # (height, width) mode='bilinear', align_corners=False) seg = upsampled_logits.argmax(dim=1)[0] color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 palette = np.array([[0, 0, 0],[255, 255, 255]]) for label, color in enumerate(palette): color_seg[seg == label, :] = color # Convert to BGR color_seg = color_seg[..., ::-1] ``` <img src = ''> #Metric Todo #Note This model was not built by using Huggingface based feature extractor, so automatic api could not work.
620ecfff92e25117c88ed6b24d9acb82
lmqg/t5-small-squad-ae
lmqg
t5
13
66
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qg_squad']
null
0
0
0
0
0
0
0
['answer extraction']
true
true
true
4,290
false
# Model Card of `lmqg/t5-small-squad-ae` This model is fine-tuned version of [t5-small](https://huggingface.co/t5-small) for answer extraction on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [t5-small](https://huggingface.co/t5-small) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/t5-small-squad-ae") # model prediction answers = model.generate_a("William Turner was an English painter who specialised in watercolour landscapes") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/t5-small-squad-ae") output = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.") ``` ## Evaluation - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/t5-small-squad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:---------------------------------------------------------------| | AnswerExactMatch | 56.15 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | AnswerF1Score | 68.06 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | BERTScore | 91.2 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 52.42 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 47.81 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 43.22 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 39.23 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 42.5 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 80.92 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 67.58 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_sentence'] - output_types: ['answer'] - prefix_types: ['ae'] - model: t5-small - max_length: 512 - max_length_output: 32 - epoch: 7 - batch: 64 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 1 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-small-squad-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
6b8fd5c133401d8ebdca8d26df63a09e