repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
minsloth/finetuning-sentiment-model
minsloth
distilbert
13
4
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,042
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2309 - Accuracy: 0.9319 - F1: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
352f645b31909f2bddfd083a7cc8ab49
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
499
false
# exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
3542d36ed106be0098e2d51410e9721e
studio-ousia/luke-large-finetuned-conll-2003
studio-ousia
luke
10
3,650
transformers
2
null
true
false
false
apache-2.0
null
null
null
2
0
1
1
0
0
0
[]
false
true
true
6,198
false
# Model Card for luke-large-finetuned-conll-2003 # Model Details ## Model Description LUKE (Language Understanding with Knowledge-based Embeddings) is a new pretrained contextualized representation of words and entities based on transformer. - **Developed by:** Studio Ousia - **Shared by [Optional]:** More information needed - **Model type:** EntitySpanClassification - **Language(s) (NLP):** More information needed - **License:** Apache-2.0 - **Related Models:** [Luke-large](https://huggingface.co/studio-ousia/luke-large?text=Paris+is+the+%3Cmask%3E+of+France.) - **Parent Model:** Luke - **Resources for more information:** - [GitHub Repo](https://github.com/studio-ousia/luke) - [Associated Paper](https://arxiv.org/abs/2010.01057) # Uses ## Direct Use More information needed ## Downstream Use [Optional] This model can also be used for the task of named entity recognition, cloze-style question answering, fine-grained entity typing, extractive question answering. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics LUKE achieves state-of-the-art results on five popular NLP benchmarks including * **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive question answering), * **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)** (cloze-style question answering), * **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation classification), and * **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing). ## Results The experimental results are provided as follows: | Task | Dataset | Metric | LUKE-large | luke-base | Previous SOTA | | ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- | | Extractive Question Answering | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) | EM/F1 | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237)) | | Named Entity Recognition | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/) | F1 | **94.3** | 93.3 | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785)) | | Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/) | EM/F1 | **90.6**/**91.2** | - | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) | | Relation Classification | [TACRED](https://nlp.stanford.edu/projects/tacred/) | F1 | **72.7** | - | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | | Fine-grained Entity Typing | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1 | **78.2** | - | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | Please check the [Github repository](https://github.com/studio-ousia/luke) for more details and updates. # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware * transformers_version: 4.6.0.dev0 ### Software More information needed # Citation **BibTeX:** ``` @inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Studio Ousia in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, LukeForEntitySpanClassification tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") ``` </details>
ae61a8e2d9809e50b07194829fa269c5
Kagerage/broken-mirror-style
Kagerage
null
20
3
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['text-to-image', 'safetensors', 'stable-diffusion']
false
true
true
2,076
false
### Broken-Mirror-Style Dreambooth model trained by Kagerage with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) In my experience, the best prompting style is "brkmror cracked and shattered mirror, professional photo, descriptor of location, portrait of person, bokeh", potentially with a negative prompt of "closed eyes" Sampler DPM++ SDE Karras with at least 25 steps gives slightly better faces from my testing, CFG 7 seems fine, and since this is trained on top of 2.1, the minimum resolution is 768x768. Or course though, feel free to experiment! \(NOTE!!! This 2.1 based model is FP16, so it may not render outputs properly without Xformers\) Sample pictures of this concept: ![0](https://huggingface.co/Kagerage/broken-mirror-style/resolve/main/sample_images/00036-4212333230-brkmror_cracked_and_shattered_mirror,_professional_photo,_field_of_sunflowers,_portrait_of_woman,_bokeh.png) ![1](https://huggingface.co/Kagerage/broken-mirror-style/resolve/main/sample_images/00039-140956230-brkmror_cracked_and_shattered_mirror,_professional_photo,_snow_covered_mountain_peak,_portrait_of_black_woman,_bokeh.png) ![2](https://huggingface.co/Kagerage/broken-mirror-style/resolve/main/sample_images/00041-1640278942-brkmror_cracked_and_shattered_mirror,_professional_photo,_early_summer_beach_at_dusk_with_shipwreck,_portrait_of_youthful_japane.png) ![3](https://huggingface.co/Kagerage/broken-mirror-style/resolve/main/sample_images/00038-1234041848-brkmror_cracked_and_shattered_mirror,_professional_photo,_field_of_roses,_portrait_of_black_woman,_bokeh.png)
062ad91156825765eb74b9f046b6b98d
adrianccy/donut-base-sroie-fine-tuned
adrianccy
vision-encoder-decoder
16
1
transformers
0
null
true
false
false
mit
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
981
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie-fine-tuned This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0 - Datasets 2.7.0 - Tokenizers 0.13.2
60a9a642cb3720015f589b13ef347d67
lct-rug-2022/edos-2023-baseline-microsoft-deberta-v3-base-label_vector
lct-rug-2022
deberta-v2
11
12
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,791
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # edos-2023-baseline-microsoft-deberta-v3-base-label_vector This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5524 - F1: 0.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1209 | 1.18 | 100 | 1.9990 | 0.0801 | | 1.7997 | 2.35 | 200 | 1.7293 | 0.1349 | | 1.5749 | 3.53 | 300 | 1.6080 | 0.2431 | | 1.3674 | 4.71 | 400 | 1.5411 | 0.2793 | | 1.2214 | 5.88 | 500 | 1.5285 | 0.2980 | | 1.0752 | 7.06 | 600 | 1.5165 | 0.3054 | | 0.9899 | 8.24 | 700 | 1.5210 | 0.3186 | | 0.8733 | 9.41 | 800 | 1.5385 | 0.3134 | | 0.8578 | 10.59 | 900 | 1.5524 | 0.3162 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
f8f4d6ec8e337419527b92066e3749a3
duja1/franck
duja1
null
21
3
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
541
false
### Franck Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: f123ranck (use that on your prompt)
046c60d145f6920755dd2c61389345f1
Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically
Zayn
vision-encoder-decoder
11
3,600
transformers
4
image-to-text
true
false
false
apache-2.0
null
null
null
0
0
0
0
2
2
0
['image-to-text', 'image-captioning']
false
true
true
1,261
false
This is an image captioning model training by Zayn ```python from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer model = VisionEncoderDecoderModel.from_pretrained("Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically") feature_extractor = ViTFeatureExtractor.from_pretrained("Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically") tokenizer = AutoTokenizer.from_pretrained("Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 20 num_beams = 8 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds predict_step(['Image URL.jpg'])
6267cfb35174cc85e58bf2d3213809af
StonyBrookNLP/teabreac-preasm-large-drop
StonyBrookNLP
t5
8
3
transformers
0
text2text-generation
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['question-answering, multi-step-reasoning, multi-hop-reasoning']
false
true
true
2,612
false
# What's this? This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496). This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details. We release the following models: - **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}` - **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}` - **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}` The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`. The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`. The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**. # How to use it? Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac model_name = "StonyBrookNLP/teabreac-preasm-large-drop" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization model = AutoModelForSeq2SeqLM.from_pretrained(model_name) enable_digit_tokenization(tokenizer) input_texts = [ "Who scored the first touchdown of the game?\n" + "... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..." # Note: some models have slightly different qn/ctxt format. See the github repo. ] input_ids = tokenizer( input_texts, return_tensors="pt", truncation=True, max_length=800, add_special_tokens=True, padding=True, )["input_ids"] generated_ids = model.generate(input_ids, min_length=1, max_length=50) generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) generated_predictions = [ tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions ] # => ["Chaz Schilens"] ```
278a160ab0a3e2ea8229a1db23bc50a7
mujeensung/albert-base-v2_mnli_bc
mujeensung
albert
12
3
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,368
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2_mnli_bc This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2952 - Accuracy: 0.9399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2159 | 1.0 | 16363 | 0.2268 | 0.9248 | | 0.1817 | 2.0 | 32726 | 0.2335 | 0.9347 | | 0.0863 | 3.0 | 49089 | 0.3014 | 0.9401 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
74fca6012f5507199585466140794944
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_stsb_256
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,066
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_stsb_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.1268 - Pearson: nan - Spearmanr: nan - Combined Score: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 3.1622 | 1.0 | 23 | 1.7502 | -0.0248 | -0.0193 | -0.0221 | | 1.8579 | 2.0 | 46 | 1.3087 | -0.0465 | -0.0476 | -0.0470 | | 1.3508 | 3.0 | 69 | 1.1268 | nan | nan | nan | | 1.1078 | 4.0 | 92 | 1.1974 | 0.0294 | 0.0287 | 0.0290 | | 1.0747 | 5.0 | 115 | 1.1797 | 0.0509 | 0.0597 | 0.0553 | | 1.024 | 6.0 | 138 | 1.2292 | 0.0554 | 0.0782 | 0.0668 | | 0.944 | 7.0 | 161 | 1.2819 | 0.1274 | 0.1441 | 0.1358 | | 0.795 | 8.0 | 184 | 1.2143 | 0.1987 | 0.2082 | 0.2035 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
218d171197ae6f3bc247d32e2159515c
yhavinga/t5-small-24L-ccmatrix-multi
yhavinga
t5
403
99
transformers
0
translation
true
false
true
apache-2.0
['nl', 'en']
['yhavinga/mc4_nl_cleaned', 'yhavinga/ccmatrix']
null
0
0
0
0
0
0
0
['t5', 'translation', 'seq2seq']
false
true
true
26,934
false
# t5-small-24L-ccmatrix-multi A [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) model finetuned for Dutch to English and English to Dutch translation on the CCMatrix dataset. Evaluation metrics of this model are listed in the **Translation models** section below. You can use this model directly with a pipeline for text translation: ```python model_name = "yhavinga/t5-small-24L-ccmatrix-multi" from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM from transformers import pipeline import torch device_num = 0 if torch.cuda.is_available() else -1 device = "cpu" if device_num < 0 else f"cuda:{device_num}" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) params = {"max_length": 128, "num_beams": 4, "early_stopping": True} en_to_nl = pipeline("translation_en_to_nl", tokenizer=tokenizer, model=model, device=device_num) print(en_to_nl("""Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible.""", **params)[0]['translation_text']) nl_to_en = pipeline("translation_nl_to_en", tokenizer=tokenizer, model=model, device=device_num) print(nl_to_en("""De jonge Wehling zat gebogen in zijn stoel, zijn hoofd in zijn hand. Hij was zo stoffig, zo stil en kleurloos dat hij vrijwel onzichtbaar was.""", **params)[0]['translation_text']) ``` This **t5 eff** model has **249M** parameters. It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **4d10h**, with a sequence length of **512**, batch size **128** and **851852** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,18** and **0,74**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been fine-tuned for summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) Evaluation was run on fine-tuned models trained with the following settings: | | Summarization | Translation | |---------------:|------------------|-------------------| | Dataset | CNN Dailymail NL | CCMatrix en -> nl | | #train samples | 50K | 50K | | Optimizer | Adam | Adam | | learning rate | 0.001 | 0.0005 | | source length | 1024 | 128 | | target length | 142 | 128 | |label smoothing | 0.05 | 0.1 | | #eval samples | 1000 | 1000 | Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation are not saved, since they were trained for comparison of pre-trained models only. The numbers for summarization are the Rouge scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | The models below have been evaluated for English to Dutch translation. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. The numbers reported are the Bleu scores on 1000 documents from the test split. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
41f47e6d86f130eea048fdeebc6dc01c
Zekunli/t5-base-extraction-cnndm_fs0.01-all
Zekunli
t5
10
8
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,539
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-extraction-cnndm_fs0.01-all This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3573 | 2.25 | 200 | 1.9379 | | 1.9645 | 4.49 | 400 | 1.9068 | | 1.862 | 6.74 | 600 | 1.8823 | | 1.7958 | 8.99 | 800 | 1.8796 | | 1.7493 | 11.24 | 1000 | 1.8759 | | 1.7053 | 13.48 | 1200 | 1.8747 | | 1.6773 | 15.73 | 1400 | 1.8786 | | 1.6631 | 17.98 | 1600 | 1.8796 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
828fde276497830f6aeb2ddb716ea3c5
jonatasgrosman/exp_w2v2t_id_hubert_s246
jonatasgrosman
hubert
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['id']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'id']
false
true
true
452
false
# exp_w2v2t_id_hubert_s246 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (id)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
88647f52cc881be1fb4c98e047731dbe
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_mnli_96
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,075
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_mnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5438 - Accuracy: 0.5431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6023 | 1.0 | 1534 | 0.5718 | 0.4960 | | 0.5673 | 2.0 | 3068 | 0.5547 | 0.5184 | | 0.5555 | 3.0 | 4602 | 0.5505 | 0.5278 | | 0.5481 | 4.0 | 6136 | 0.5466 | 0.5381 | | 0.5426 | 5.0 | 7670 | 0.5454 | 0.5403 | | 0.5382 | 6.0 | 9204 | 0.5454 | 0.5354 | | 0.5341 | 7.0 | 10738 | 0.5452 | 0.5344 | | 0.5308 | 8.0 | 12272 | 0.5428 | 0.5410 | | 0.5271 | 9.0 | 13806 | 0.5460 | 0.5451 | | 0.5239 | 10.0 | 15340 | 0.5450 | 0.5462 | | 0.5209 | 11.0 | 16874 | 0.5447 | 0.5449 | | 0.5179 | 12.0 | 18408 | 0.5452 | 0.5475 | | 0.5152 | 13.0 | 19942 | 0.5495 | 0.5454 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
b9501014228fe8c8e8c0e6447de19a95
jonatasgrosman/exp_w2v2t_zh-cn_no-pretraining_s730
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['zh-CN']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'zh-CN']
false
true
true
420
false
# exp_w2v2t_zh-cn_no-pretraining_s730 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
5d74fbf955b44ac4445de275d74f3325
newtonkwan/gpt2-ft-with-non-challenging
newtonkwan
gpt2
10
2
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,374
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-ft-with-non-challenging This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.9906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 4.0984 | | No log | 2.0 | 2 | 4.0802 | | No log | 3.0 | 3 | 4.0443 | | No log | 4.0 | 4 | 3.9906 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.11.6
b2f82f76405a1dbdfa1557bf5224e82b
fathyshalab/massive_calendar-roberta-large-v1-3-93
fathyshalab
roberta
14
2
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,466
false
# fathyshalab/massive_calendar-roberta-large-v1-3-93 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-3-93") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
33d0f11a773fae936d84082a21a394c8
DogeAI/finetuning-sentiment-model-3000-samples
DogeAI
distilbert
13
12
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,055
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3163 - Accuracy: 0.8667 - F1: 0.8693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
a6ef8f12122c68c0f2d440f11acdee0f
SetFit/distilbert-base-uncased__sst2__train-16-4
SetFit
distilbert
10
14
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,067
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7139 | 0.2857 | | 0.68 | 2.0 | 14 | 0.7398 | 0.2857 | | 0.641 | 3.0 | 21 | 0.7723 | 0.2857 | | 0.5424 | 4.0 | 28 | 0.8391 | 0.2857 | | 0.5988 | 5.0 | 35 | 0.7761 | 0.2857 | | 0.3698 | 6.0 | 42 | 0.7707 | 0.4286 | | 0.3204 | 7.0 | 49 | 0.8290 | 0.4286 | | 0.2882 | 8.0 | 56 | 0.6551 | 0.5714 | | 0.1512 | 9.0 | 63 | 0.5652 | 0.5714 | | 0.1302 | 10.0 | 70 | 0.5278 | 0.5714 | | 0.1043 | 11.0 | 77 | 0.4987 | 0.7143 | | 0.0272 | 12.0 | 84 | 0.5278 | 0.5714 | | 0.0201 | 13.0 | 91 | 0.5307 | 0.5714 | | 0.0129 | 14.0 | 98 | 0.5382 | 0.5714 | | 0.0117 | 15.0 | 105 | 0.5227 | 0.5714 | | 0.0094 | 16.0 | 112 | 0.5066 | 0.7143 | | 0.0104 | 17.0 | 119 | 0.4869 | 0.7143 | | 0.0069 | 18.0 | 126 | 0.4786 | 0.7143 | | 0.0062 | 19.0 | 133 | 0.4707 | 0.7143 | | 0.0065 | 20.0 | 140 | 0.4669 | 0.7143 | | 0.0051 | 21.0 | 147 | 0.4686 | 0.7143 | | 0.0049 | 22.0 | 154 | 0.4784 | 0.7143 | | 0.0046 | 23.0 | 161 | 0.4839 | 0.7143 | | 0.0039 | 24.0 | 168 | 0.4823 | 0.7143 | | 0.0044 | 25.0 | 175 | 0.4791 | 0.7143 | | 0.0037 | 26.0 | 182 | 0.4778 | 0.7143 | | 0.0038 | 27.0 | 189 | 0.4770 | 0.7143 | | 0.0036 | 28.0 | 196 | 0.4750 | 0.7143 | | 0.0031 | 29.0 | 203 | 0.4766 | 0.7143 | | 0.0031 | 30.0 | 210 | 0.4754 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
b89e19b56e3c514667e817029a5ffdae
aXhyra/presentation_emotion_1234567
aXhyra
distilbert
10
5
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,403
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0237 - F1: 0.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1189 | 1.0 | 408 | 0.6827 | 0.7164 | | 1.0678 | 2.0 | 816 | 0.6916 | 0.7396 | | 0.6582 | 3.0 | 1224 | 0.9281 | 0.7276 | | 0.0024 | 4.0 | 1632 | 1.0237 | 0.7273 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
0a6b4906cf97bcc8091e59763dad556b
amberoad/bert-multilingual-passage-reranking-msmarco
amberoad
bert
9
1,561
transformers
13
text-classification
true
true
true
apache-2.0
['multilingual', 'af', 'sq', 'ar', 'an', 'hy', 'ast', 'az', 'ba', 'eu', 'bar', 'be', 'bn', 'inc', 'bs', 'br', 'bg', 'my', 'ca', 'ceb', 'ce', 'zh', 'cv', 'hr', 'cs', 'da', 'nl', 'en', 'et', 'fi', 'fr', 'gl', 'ka', 'de', 'el', 'gu', 'ht', 'he', 'hi', 'hu', 'is', 'io', 'id', 'ga', 'it', 'ja', 'jv', 'kn', 'kk', 'ky', 'ko', 'la', 'lv', 'lt', 'roa', 'nds', 'lm', 'mk', 'mg', 'ms', 'ml', 'mr', 'min', 'ne', 'new', 'nb', 'nn', 'oc', 'fa', 'pms', 'pl', 'pt', 'pa', 'ro', 'ru', 'sco', 'sr', 'hr', 'scn', 'sk', 'sl', 'aze', 'es', 'su', 'sw', 'sv', 'tl', 'tg', 'ta', 'tt', 'te', 'tr', 'uk', 'ud', 'uz', 'vi', 'vo', 'war', 'cy', 'fry', 'pnb', 'yo']
['msmarco']
null
1
0
1
0
0
0
0
['msmarco', 'multilingual', 'passage reranking']
false
true
true
6,859
false
# Passage Reranking Multilingual BERT 🔃 🌍 ## Model description **Input:** Supports over 100 Languages. See [List of supported languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) for all available. **Purpose:** This module takes a search query [1] and a passage [2] and calculates if the passage matches the query. It can be used as an improvement for Elasticsearch Results and boosts the relevancy by up to 100%. **Architecture:** On top of BERT there is a Densly Connected NN which takes the 768 Dimensional [CLS] Token as input and provides the output ([Arxiv](https://arxiv.org/abs/1901.04085)). **Output:** Just a single value between between -10 and 10. Better matching query,passage pairs tend to have a higher a score. ## Intended uses & limitations Both query[1] and passage[2] have to fit in 512 Tokens. As you normally want to rerank the first dozens of search results keep in mind the inference time of approximately 300 ms/query. #### How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("amberoad/bert-multilingual-passage-reranking-msmarco") model = AutoModelForSequenceClassification.from_pretrained("amberoad/bert-multilingual-passage-reranking-msmarco") ``` This Model can be used as a drop-in replacement in the [Nboost Library](https://github.com/koursaros-ai/nboost) Through this you can directly improve your Elasticsearch Results without any coding. ## Training data This model is trained using the [**Microsoft MS Marco Dataset**](https://microsoft.github.io/msmarco/ "Microsoft MS Marco"). This training dataset contains approximately 400M tuples of a query, relevant and non-relevant passages. All datasets used for training and evaluating are listed in this [table](https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating). The used dataset for training is called *Train Triples Large*, while the evaluation was made on *Top 1000 Dev*. There are 6,900 queries in total in the development dataset, where each query is mapped to top 1,000 passage retrieved using BM25 from MS MARCO corpus. ## Training procedure The training is performed the same way as stated in this [README](https://github.com/nyu-dl/dl4marco-bert "NYU Github"). See their excellent Paper on [Arxiv](https://arxiv.org/abs/1901.04085). We changed the BERT Model from an English only to the default BERT Multilingual uncased Model from [Google](https://huggingface.co/bert-base-multilingual-uncased). Training was done 400 000 Steps. This equaled 12 hours an a TPU V3-8. ## Eval results We see nearly similar performance than the English only Model in the English [Bing Queries Dataset](http://www.msmarco.org/). Although the training data is English only internal Tests on private data showed a far higher accurancy in German than all other available models. Fine-tuned Models | Dependency | Eval Set | Search Boost<a href='#benchmarks'> | Speed on GPU ----------------------------------------------------------------------------------- | ---------------------------------------------------------------------------- | ------------------------------------------------------------------ | ----------------------------------------------------- | ---------------------------------- **`amberoad/Multilingual-uncased-MSMARCO`** (This Model) | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-blue"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+61%** <sub><sup>(0.29 vs 0.18)</sup></sub> | ~300 ms/query <a href='#footnotes'> `nboost/pt-tinybert-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+45%** <sub><sup>(0.26 vs 0.18)</sup></sub> | ~50ms/query <a href='#footnotes'> `nboost/pt-bert-base-uncased-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+62%** <sub><sup>(0.29 vs 0.18)</sup></sub> | ~300 ms/query<a href='#footnotes'> `nboost/pt-bert-large-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='http://www.msmarco.org/'>bing queries</a> | **+77%** <sub><sup>(0.32 vs 0.18)</sup></sub> | - `nboost/pt-biobert-base-msmarco` | <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-red"/> | <a href ='https://github.com/naver/biobert-pretrained'>biomed</a> | **+66%** <sub><sup>(0.17 vs 0.10)</sup></sub> | ~300 ms/query<a href='#footnotes'> This table is taken from [nboost](https://github.com/koursaros-ai/nboost) and extended by the first line. ## Contact Infos ![](https://amberoad.de/images/logo_text.png) Amberoad is a company focussing on Search and Business Intelligence. We provide you: * Advanced Internal Company Search Engines thorugh NLP * External Search Egnines: Find Competitors, Customers, Suppliers **Get in Contact now to benefit from our Expertise:** The training and evaluation was performed by [**Philipp Reissel**](https://reissel.eu/) and [**Igli Manaj**](https://github.com/iglimanaj) [![Amberoad](https://i.stack.imgur.com/gVE0j.png) Linkedin](https://de.linkedin.com/company/amberoad) | <svg xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" width="32" height="32" viewBox="0 0 172 172" style=" fill:#000000;"><g fill="none" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,172v-172h172v172z" fill="none"></path><g fill="#e67e22"><path d="M37.625,21.5v86h96.75v-86h-5.375zM48.375,32.25h10.75v10.75h-10.75zM69.875,32.25h10.75v10.75h-10.75zM91.375,32.25h32.25v10.75h-32.25zM48.375,53.75h75.25v43h-75.25zM80.625,112.875v17.61572c-1.61558,0.93921 -2.94506,2.2687 -3.88428,3.88428h-49.86572v10.75h49.86572c1.8612,3.20153 5.28744,5.375 9.25928,5.375c3.97183,0 7.39808,-2.17347 9.25928,-5.375h49.86572v-10.75h-49.86572c-0.93921,-1.61558 -2.2687,-2.94506 -3.88428,-3.88428v-17.61572z"></path></g></g></svg>[Homepage](https://de.linkedin.com/company/amberoad) | [Email](info@amberoad.de)
47987478a1b223a0455dc27f0ede7324
fourthbrain-demo/demo
fourthbrain-demo
distilbert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
918
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
f3bb8bfcee58179da586121c8fe83caa
OpenAssistant/reward-model-deberta-v3-large-v2
OpenAssistant
deberta-v2
10
155
transformers
6
text-classification
true
false
false
mit
['en']
['openai/summarize_from_feedback', 'openai/webgpt_comparisons', 'Dahoas/instruct-synthetic-prompt-responses', 'Anthropic/hh-rlhf']
null
0
0
0
0
1
1
0
['reward-model', 'reward_model', 'RLHF']
false
true
true
3,640
false
# Reward model trained from human feedback Reward model (RM) trained to predict which generated answer is better judged by a human, given a question. RM are useful in these domain: - QA model evaluation - serves as reward score in RLHF - detect potential toxic response via ranking All models are train on these dataset with a same split seed across datasets (if validation split wasn't available) - [webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons) - [summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) - [anthropic_hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) # How to use ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer reward_name = "OpenAssistant/reward-model-deberta-v3-large-v2" rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name) question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants." inputs = tokenizer(question, answer, return_tensors='pt') score = rank_model(**inputs).logits[0].cpu().detach() print(score) ``` **Toxic response detection** ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer reward_name = "OpenAssistant/reward-model-deberta-v3-large-v2" rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name) question = "I just came out of from jail, any suggestion of my future?" helpful = "It's great to hear that you have been released from jail." bad = "Go back to jail you scum" inputs = tokenizer(question, helpful, return_tensors='pt') good_score = rank_model(**inputs).logits[0].cpu().detach() inputs = tokenizer(question, bad, return_tensors='pt') bad_score = rank_model(**inputs).logits[0].cpu().detach() print(good_score > bad_score) # tensor([True]) ``` # Performance Validation split accuracy | Model | [WebGPT](https://huggingface.co/datasets/openai/webgpt_comparisons) | [Summary](https://huggingface.co/datasets/openai/summarize_from_feedback) | [SytheticGPT](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) | [Anthropic RLHF]() | |---|---|---|---|---| | [electra-large-discriminator](https://huggingface.co/OpenAssistant/reward-model-electra-large-discriminator) | 59.30 | 68.66 | 99.85 | 54.33 | | **[deberta-v3-large-v2](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2)** | **61.57** | 71.47 | 99.88 | **69.25** | | [deberta-v3-large](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large) | 61.13 | 72.23 | **99.94** | 55.62 | | [deberta-v3-base](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base) | 59.07 | 66.84 | 99.85 | 54.51 | | deberta-v2-xxlarge | 58.67 | **73.27** | 99.77 | 66.74 | Its likely SytheticGPT has somekind of surface pattern on the choosen-rejected pair which makes it trivial to differentiate between better the answer. # Other Sincere thanks to [stability.ai](https://stability.ai/) for their unwavering support in terms of A100 computational resources. Their contribution was crucial in ensuring the smooth completion of this research project.
3c0d15d71a5a5b4a79e58ad747c9c983
IDEA-CCNL/Erlangshen-SimCSE-110M-Chinese
IDEA-CCNL
bert
6
962
transformers
5
feature-extraction
true
false
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,214
false
# Erlangshen-SimCSE-110M-Chinese - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/) ## 简介 Brief Introduction 基于simcse无监督版本,用搜集整理的中文NLI数据进行simcse有监督任务的训练。在中文句子对任务上有良好的效果。 **Erlangshen-SimCSE-110M-Chinese** is based on the unsupervised version of simcse, And training simcse supervised task with collected and sorted chinese NLI data for. It has good effect on the task in Chinese sentences pair. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言生成 NLU | 二郎神 Erlangshen | Bert | 110M | 中文 Chinese | ## 模型信息 Model Information 为了获得一个通用句子向量表征的模型,我们基于bert-base模型用了大量的无监督数据和有监督数据进行对比学习,最终获得了一个无需微调就能够利用模型输出的[CLS]进行相似度判断的模型。与用bert模型在针对任务微调后,再进行句子相似度任务不同,我们的模型在预训练完成后直接具备提取句子向量的能力。在一些任务上有如下的测评效果: In order to obtain a general sentence-embedding-model, we use a large number of unsupervised data and supervised data for comparative learning based on the Bert-base model, and finally obtained a model that can use the [CLS] output from the model to judge the similarity without fine-tuning. Different from the sentence similarity task after fine tuning the task with the bert model, our model has the ability to extract sentence vectors directly after pre training. In some tasks, the evaluation results are as follows: |模型 | LCQMC | BQ | PAWSX | ATEC | STS-B | | :----: | :----: | :----: | :----: | :----: | :----: | |Bert | 62 |38.62 |17.38 |28.98 |68.27| |Bert-large| 63.78| 37.51| 18.63| 30.24| 68.87| |RoBerta| 67.3| 39.89| 16.79| 30.57| 69.|36 |RoBerta large |67.25 |38.39 |19.09 |30.85 |69.36| |RoFormer| 63.58| 39.9 |17.52| 29.37 |67.32| |SimBERT| 73.43| 40.98| 15.87| 31.24| 72| |Erlangshen-SimCSE-110M-Chinese|74.94| 56.97| 21.84| 34.12| 70.5| *备注:我们的模型是直接用[cls],无whitening;其余模型是last avg + whitening* *ps:Our model use [cls] directly,and no whitening;Other model use last avg and do whitening* ## 使用 Usage ### 加载模型 Loading Models ```python from transformers import AutoTokenizer,AutoModelForMaskedLM model =AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-SimCSE-110M-Chinese') tokenizer = AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-SimCSE-110M-Chinese') ``` ### 使用示例 Usage Examples ```python import torch from sklearn.metrics.pairwise import cosine_similarity texta = '今天天气真不错,我们去散步吧!' textb = '今天天气真糟糕,还是在宅家里写bug吧!' inputs_a = tokenizer(texta,return_tensors="pt") inputs_b = tokenizer(textb,return_tensors="pt") outputs_a = model(**inputs_a ,output_hidden_states=True) texta_embedding = outputs_a.hidden_states[-1][:,0,:].squeeze() outputs_b = model(**inputs_b ,output_hidden_states=True) textb_embedding = outputs_b.hidden_states[-1][:,0,:].squeeze() # if you use cuda, the text_embedding should be textb_embedding.cpu().numpy() # 或者用torch.no_grad(): with torch.no_grad(): silimarity_soce = cosine_similarity(texta_embedding.reshape(1,-1),textb_embedding .reshape(1,-1))[0][0] print(silimarity_soce) ``` ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
689bf6c0b58556cdcc9e5953cc34a834
jonatasgrosman/exp_w2v2t_en_vp-nl_s980
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
475
false
# exp_w2v2t_en_vp-nl_s980 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
2bfe5b93b56ddfe1f10055c71c82edf6
sriiikar/wav2vec2-hindi-3
sriiikar
wav2vec2
12
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,655
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hindi-3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0900 - Wer: 0.7281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.609 | 6.41 | 1000 | 1.2290 | 0.7497 | | 0.3754 | 12.82 | 2000 | 1.5350 | 0.7128 | | 0.1587 | 19.23 | 3000 | 1.8671 | 0.7322 | | 0.103 | 25.64 | 4000 | 1.9383 | 0.7300 | | 0.0761 | 32.05 | 5000 | 2.0767 | 0.7306 | | 0.0616 | 38.46 | 6000 | 2.0900 | 0.7281 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
d7506274dd08489e2f5692f2700e518c
Helsinki-NLP/opus-mt-nl-eo
Helsinki-NLP
marian
11
16
transformers
0
translation
true
true
false
apache-2.0
['nl', 'eo']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
1,995
false
### nld-epo * source group: Dutch * target group: Esperanto * OPUS readme: [nld-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nld-epo/README.md) * model: transformer-align * source language(s): nld * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/nld-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nld-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nld-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.nld.epo | 16.1 | 0.355 | ### System Info: - hf_name: nld-epo - source_languages: nld - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nld-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['nl', 'eo'] - src_constituents: {'nld'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/nld-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/nld-epo/opus-2020-06-16.test.txt - src_alpha3: nld - tgt_alpha3: epo - short_pair: nl-eo - chrF2_score: 0.355 - bleu: 16.1 - brevity_penalty: 0.9359999999999999 - ref_len: 72293.0 - src_name: Dutch - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: nl - tgt_alpha2: eo - prefer_old: False - long_pair: nld-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
b9b36b0ed8ac6ab8b86b6c08982b39b1
lucio/wav2vec2-large-xlsr-luganda
lucio
wav2vec2
10
9
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['lg']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
4,625
false
# Wav2Vec2-Large-XLSR-53-lg Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, using train, validation and other (excluding voices that are in the test set), and taking the test data for validation as well as test. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. (Available in Colab [here](https://colab.research.google.com/drive/1XxZ3mJOEXwIn-QH3C23jD_Qpom9aA1vH?usp=sharing).) ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import unidecode test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") model.to("cuda") chars_to_ignore_regex = '[\[\],?.!;:%"“”(){}‟ˮʺ″«»/…‽�–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch def remove_special_characters(batch): # word-internal apostrophes are marking contractions batch["norm_text"] = re.sub(r'[‘’´`]', r"'", batch["sentence"]) # most other punctuation is ignored batch["norm_text"] = re.sub(chars_to_ignore_regex, "", batch["norm_text"]).lower().strip() batch["norm_text"] = re.sub(r"(-|' | '| +)", " ", batch["norm_text"]) # remove accents from a few characters (from loanwords, not tones) batch["norm_text"] = unidecode.unidecode(batch["norm_text"]) return batch test_dataset = test_dataset.map(speech_file_to_array_fn) test_dataset = test_dataset.map(remove_special_characters) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["norm_text"]))) ``` **Test Result**: 29.52 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training, excluding voices that are in both the `other` and `test` datasets. The data was augmented to twice the original size with added noise and manipulated pitch, phase and intensity. Training proceeded for 60 epochs, on 1 V100 GPU provided by OVHcloud. The `test` data was used for validation. The [script used for training](https://github.com/serapio/transformers/blob/feature/xlsr-finetune/examples/research_projects/wav2vec2/run_common_voice.py) is adapted from the [example script provided in the transformers repo](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py).
3cb3b16342a980bc0ec2a8141fed4b50
timm/convnext_small.fb_in1k
timm
null
4
408
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
21,328
false
# Model card for convnext_small.fb_in1k A ConvNeXt image classification model. Pretrained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 50.2 - GMACs: 8.7 - Activations (M): 21.6 - Image size: 224 x 224 - **Papers:** - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545 - **Original:** https://github.com/facebookresearch/ConvNeXt - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('convnext_small.fb_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_small.fb_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for convnext_base: # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_small.fb_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | ### By Throughput (samples / sec) All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | ## Citation ```bibtex @article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
52e81d130ecf9c6f2031c3c6d6b5dcc0
scribis/italian-literature-model-mini
scribis
gpt2
9
5
transformers
0
text-generation
false
true
false
mit
['it']
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback', 'text_generator']
true
true
true
1,583
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # italian-literature-model-mini This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.7067 - Validation Loss: 5.6842 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 15686, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.7065 | 5.6842 | 0 | | 5.7065 | 5.6842 | 1 | | 5.7067 | 5.6842 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
02c3cd0f608074cb7e306916d027d0f4
steja/whisper-small-shona
steja
whisper
17
0
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
null
['google/fleurs']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,676
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper_small_Shona This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs sn_zw dataset. It achieves the following results on the evaluation set: - Loss: 1.1174 - Wer: 50.8563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0054 | 33.32 | 400 | 0.9826 | 51.6687 | | 0.0009 | 66.64 | 800 | 1.0774 | 50.9062 | | 0.0005 | 99.96 | 1200 | 1.1174 | 50.8563 | | 0.0003 | 133.32 | 1600 | 1.1388 | 50.875 | | 0.0003 | 166.64 | 2000 | 1.1461 | 50.925 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
9fd22d2c65d79a5681587746479023ff
tingtingyuli/wav2vec2-base-timit-demo-colab
tingtingyuli
wav2vec2
14
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,641
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 - Wer: 0.3402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6515 | 4.0 | 500 | 1.9481 | 0.9825 | | 0.8007 | 8.0 | 1000 | 0.4364 | 0.4424 | | 0.2559 | 12.0 | 1500 | 0.4188 | 0.3848 | | 0.1483 | 16.0 | 2000 | 0.4466 | 0.3524 | | 0.1151 | 20.0 | 2500 | 0.4492 | 0.3519 | | 0.0971 | 24.0 | 3000 | 0.4568 | 0.3453 | | 0.0765 | 28.0 | 3500 | 0.4371 | 0.3402 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
4b1257e43e8e747345d2d38d8f59a43c
gossminn/predict-perception-bertino-focus-victim
gossminn
distilbert
12
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,970
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-victim This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2497 - R2: 0.6131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5438 | 1.0 | 14 | 0.4405 | 0.3175 | | 0.2336 | 2.0 | 28 | 0.2070 | 0.6792 | | 0.0986 | 3.0 | 42 | 0.2868 | 0.5555 | | 0.0907 | 4.0 | 56 | 0.2916 | 0.5481 | | 0.0652 | 5.0 | 70 | 0.2187 | 0.6611 | | 0.0591 | 6.0 | 84 | 0.2320 | 0.6406 | | 0.0478 | 7.0 | 98 | 0.2501 | 0.6125 | | 0.0347 | 8.0 | 112 | 0.2425 | 0.6243 | | 0.021 | 9.0 | 126 | 0.2670 | 0.5863 | | 0.0214 | 10.0 | 140 | 0.2853 | 0.5580 | | 0.0172 | 11.0 | 154 | 0.2726 | 0.5776 | | 0.0177 | 12.0 | 168 | 0.2629 | 0.5927 | | 0.0152 | 13.0 | 182 | 0.2396 | 0.6287 | | 0.012 | 14.0 | 196 | 0.2574 | 0.6012 | | 0.0119 | 15.0 | 210 | 0.2396 | 0.6288 | | 0.0128 | 16.0 | 224 | 0.2517 | 0.6100 | | 0.0109 | 17.0 | 238 | 0.2509 | 0.6112 | | 0.008 | 18.0 | 252 | 0.2522 | 0.6092 | | 0.0101 | 19.0 | 266 | 0.2503 | 0.6121 | | 0.0075 | 20.0 | 280 | 0.2527 | 0.6084 | | 0.0082 | 21.0 | 294 | 0.2544 | 0.6058 | | 0.0061 | 22.0 | 308 | 0.2510 | 0.6111 | | 0.006 | 23.0 | 322 | 0.2402 | 0.6279 | | 0.005 | 24.0 | 336 | 0.2539 | 0.6066 | | 0.0058 | 25.0 | 350 | 0.2438 | 0.6222 | | 0.0051 | 26.0 | 364 | 0.2439 | 0.6221 | | 0.006 | 27.0 | 378 | 0.2442 | 0.6216 | | 0.0061 | 28.0 | 392 | 0.2416 | 0.6257 | | 0.0053 | 29.0 | 406 | 0.2519 | 0.6097 | | 0.0045 | 30.0 | 420 | 0.2526 | 0.6085 | | 0.0034 | 31.0 | 434 | 0.2578 | 0.6006 | | 0.0039 | 32.0 | 448 | 0.2557 | 0.6038 | | 0.0043 | 33.0 | 462 | 0.2538 | 0.6068 | | 0.0041 | 34.0 | 476 | 0.2535 | 0.6072 | | 0.0042 | 35.0 | 490 | 0.2560 | 0.6033 | | 0.0037 | 36.0 | 504 | 0.2576 | 0.6009 | | 0.0036 | 37.0 | 518 | 0.2634 | 0.5919 | | 0.0037 | 38.0 | 532 | 0.2582 | 0.5999 | | 0.0038 | 39.0 | 546 | 0.2552 | 0.6045 | | 0.0034 | 40.0 | 560 | 0.2563 | 0.6028 | | 0.0033 | 41.0 | 574 | 0.2510 | 0.6110 | | 0.0029 | 42.0 | 588 | 0.2515 | 0.6103 | | 0.0033 | 43.0 | 602 | 0.2525 | 0.6088 | | 0.0028 | 44.0 | 616 | 0.2522 | 0.6093 | | 0.0028 | 45.0 | 630 | 0.2526 | 0.6085 | | 0.0027 | 46.0 | 644 | 0.2494 | 0.6136 | | 0.0024 | 47.0 | 658 | 0.2497 | 0.6131 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
ed2d0b79f6095cce8d9c43704e30efc6
PlayDev/klue-bert-finetuned-nsmc
PlayDev
bert
18
7
transformers
0
text-classification
true
false
false
cc-by-sa-4.0
null
['nsmc']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,130
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue-bert-finetuned-nsmc This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the nsmc dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2402 - eval_accuracy: 0.9029 - eval_f1: 0.9029 - eval_runtime: 343.6707 - eval_samples_per_second: 145.488 - eval_steps_per_second: 4.548 - epoch: 1.0 - step: 4688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.10.3
668992cd236d193efe01b0428315676d
skr1125/distilbert-base-uncased-finetuned-emotion
skr1125
distilbert
12
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,344
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Accuracy: 0.927 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8507 | 1.0 | 250 | 0.3406 | 0.899 | 0.8954 | | 0.2546 | 2.0 | 500 | 0.2253 | 0.927 | 0.9268 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
822952526042091448cd9dddb8a76e2d
abdouaziiz/wav2vec2-WOLOF-2.6K-base
abdouaziiz
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,577
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wolof This model is a fine-tuned version of [LeBenchmark/wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2816 - Wer: 0.3897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9468 | 1.67 | 1500 | 0.7036 | 0.6418 | | 0.5506 | 3.33 | 3000 | 0.4129 | 0.5018 | | 0.3817 | 5.0 | 4500 | 0.3414 | 0.4519 | | 0.2885 | 6.67 | 6000 | 0.3181 | 0.4305 | | 0.2275 | 8.33 | 7500 | 0.2920 | 0.4011 | | 0.1852 | 10.0 | 9000 | 0.2816 | 0.3897 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
40ebd75279c2a04366401d1efd284ddb
jonatasgrosman/exp_w2v2t_pt_no-pretraining_s34
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pt']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pt']
false
true
true
413
false
# exp_w2v2t_pt_no-pretraining_s34 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
4b7a55b0a6f116a42d76e526c2ad0094
sd-dreambooth-library/joseph-russel-ammen
sd-dreambooth-library
null
23
2
diffusers
0
null
false
false
false
mit
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,432
false
### Joseph Russel Ammen on Stable Diffusion via Dreambooth #### model by wallowbitz This your the Stable Diffusion model fine-tuned the Joseph Russel Ammen concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **Joseph Russel Ammen** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/joseph-russel-ammen/resolve/main/concept_images/1.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/joseph-russel-ammen/resolve/main/concept_images/4.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/joseph-russel-ammen/resolve/main/concept_images/2.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/joseph-russel-ammen/resolve/main/concept_images/0.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/joseph-russel-ammen/resolve/main/concept_images/3.jpeg)
2ad2e42c5b3cfa111a33bc6e7dba7b7a
versae/mdeberta-v3-base-finetuned-recores
versae
deberta-v2
22
0
transformers
0
multiple-choice
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,779
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-finetuned-recores This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6094 - Accuracy: 0.2011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6112 | 1.0 | 1047 | 1.6094 | 0.1901 | | 1.608 | 2.0 | 2094 | 1.6094 | 0.1873 | | 1.6127 | 3.0 | 3141 | 1.6095 | 0.1983 | | 1.6125 | 4.0 | 4188 | 1.6094 | 0.2424 | | 1.6118 | 5.0 | 5235 | 1.6094 | 0.1956 | | 1.6181 | 6.0 | 6282 | 1.6094 | 0.2094 | | 1.6229 | 7.0 | 7329 | 1.6095 | 0.1680 | | 1.6125 | 8.0 | 8376 | 1.6094 | 0.1736 | | 1.6134 | 9.0 | 9423 | 1.6094 | 0.2066 | | 1.6174 | 10.0 | 10470 | 1.6093 | 0.2204 | | 1.6161 | 11.0 | 11517 | 1.6096 | 0.2121 | | 1.6198 | 12.0 | 12564 | 1.6094 | 0.2039 | | 1.6182 | 13.0 | 13611 | 1.6094 | 0.2287 | | 1.6208 | 14.0 | 14658 | 1.6094 | 0.2287 | | 1.6436 | 15.0 | 15705 | 1.6092 | 0.2287 | | 1.6209 | 16.0 | 16752 | 1.6094 | 0.2094 | | 1.6097 | 17.0 | 17799 | 1.6094 | 0.2094 | | 1.6115 | 18.0 | 18846 | 1.6094 | 0.2149 | | 1.6249 | 19.0 | 19893 | 1.6094 | 0.1956 | | 1.6201 | 20.0 | 20940 | 1.6094 | 0.1763 | | 1.6217 | 21.0 | 21987 | 1.6094 | 0.1956 | | 1.6193 | 22.0 | 23034 | 1.6094 | 0.1846 | | 1.6171 | 23.0 | 24081 | 1.6095 | 0.1983 | | 1.6123 | 24.0 | 25128 | 1.6095 | 0.1846 | | 1.6164 | 25.0 | 26175 | 1.6094 | 0.2011 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
ed67f12c9eeae46841d6163af97260a1
muhtasham/tiny-mlm-glue-sst2-from-scratch-custom-tokenizer-expand-vocab
muhtasham
bert
12
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,594
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-sst2-from-scratch-custom-tokenizer-expand-vocab This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.5699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.6351 | 0.4 | 500 | 8.5392 | | 7.9053 | 0.8 | 1000 | 7.2886 | | 7.0854 | 1.2 | 1500 | 6.8440 | | 6.8355 | 1.6 | 2000 | 6.6595 | | 6.7188 | 2.0 | 2500 | 6.5499 | | 6.698 | 2.4 | 3000 | 6.6385 | | 6.6435 | 2.8 | 3500 | 6.6154 | | 6.6402 | 3.2 | 4000 | 6.5699 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
b851d4be417d01c830077236fe4eef6d
csikasote/xls-r-1b-bemba-10hrs
csikasote
wav2vec2
17
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,003
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-1b-bemba-10hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2350 - Wer: 0.3524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2547 | 0.54 | 400 | 0.4199 | 0.5888 | | 0.5422 | 1.07 | 800 | 0.2689 | 0.4360 | | 0.4154 | 1.61 | 1200 | 0.2342 | 0.4008 | | 0.4075 | 2.15 | 1600 | 0.2172 | 0.3579 | | 0.3326 | 2.68 | 2000 | 0.2151 | 0.3603 | | 0.2837 | 3.22 | 2400 | 0.2117 | 0.3505 | | 0.2688 | 3.76 | 2800 | 0.2040 | 0.3559 | | 0.2401 | 4.3 | 3200 | 0.2099 | 0.3445 | | 0.2176 | 4.83 | 3600 | 0.1973 | 0.3299 | | 0.1913 | 5.37 | 4000 | 0.2123 | 0.3432 | | 0.1683 | 5.91 | 4400 | 0.2032 | 0.3358 | | 0.1445 | 6.44 | 4800 | 0.2350 | 0.3524 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
734a5c2877b35f613b787e4413634138
euphoricpenguin22/3DVaporwave
euphoricpenguin22
null
6
0
null
0
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
550
false
# 3DVaporwave A Dreambooth model based on Stable Diffusion 1.5. The keyword for the model is `threedvaporstyle`, which should be sufficient for most generations. Semantically, it can be helpful to treat the keyword as a style descriptor. I also find that using descriptions to indicate that the image is a render can increase the likelihood that it will generate in the style that you want. ![](https://huggingface.co/euphoricpenguin22/3DVaporwave/blob/main/Sphere.png) ![](https://huggingface.co/euphoricpenguin22/3DVaporwave/blob/main/Window.png)
0bdd4645973c91a2936d50729282672c
haritha-bendapudi/test_trainer
haritha-bendapudi
bert
6
18
transformers
0
text-classification
true
false
false
apache-2.0
null
['yelp_review_full']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,318
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.6082 - Accuracy: 0.205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.6262 | 0.23 | | No log | 2.0 | 250 | 1.6096 | 0.212 | | No log | 3.0 | 375 | 1.6082 | 0.205 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cpu - Datasets 2.5.1 - Tokenizers 0.12.1
d8ea82a3769965935b24d5f35ba7b939
valurank/paraphrase-mpnet-base-v2-offensive
valurank
mpnet
13
7
sentence-transformers
0
sentence-similarity
true
false
false
other
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,731
false
# valurank/paraphrase-mpnet-base-v2-offensive This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('valurank/paraphrase-mpnet-base-v2-offensive') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('valurank/paraphrase-mpnet-base-v2-offensive') model = AutoModel.from_pretrained('valurank/paraphrase-mpnet-base-v2-offensive') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=valurank/paraphrase-mpnet-base-v2-offensive) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1280 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
6727f3e7d8e63a1069498fe6f3786308
emilios/whisper-tn-el-e1
emilios
whisper
34
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['el']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny Greek El Greco This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set: - Loss: 0.5615 - Wer: 45.6538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3389 | 8.33 | 1000 | 0.5659 | 49.1363 | | 0.1562 | 16.67 | 2000 | 0.5615 | 45.6538 | | 0.0616 | 25.0 | 3000 | 0.6440 | 46.9632 | | 0.0116 | 33.33 | 4000 | 0.7578 | 47.9569 | | 0.0046 | 41.67 | 5000 | 0.8374 | 48.6999 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 2.0.0.dev20221216+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
38920f94aebcbfa92574d32820b7f2a6
HannahRoseKirk/Hatemoji
HannahRoseKirk
deberta
12
6
transformers
3
text-classification
true
false
false
cc-by-4.0
['en']
['HatemojiBuild', 'HatemojiCheck']
null
0
0
0
0
0
0
0
['text-classification', 'pytorch', 'hate-speech-detection']
false
true
true
7,325
false
# Hatemoji Model ## Model description This model is a fine-tuned version of the [DeBERTa base model](https://huggingface.co/microsoft/deberta-base). This model is cased. The model was trained on iterative rounds of adversarial data generation with human-and-model-in-the-loop. In each round, annotators are tasked with tricking the model-in-the-loop with emoji-containing statements that it will misclassify. Between each round, the model is retrained. This is the final model from the iterative process, referred to as R8-T in our paper. The intended task is to classify an emoji-containing statement as either non-hateful (LABEL 0.0) or hateful (LABEL 1.0). - **Github Repository:** https://github.com/HannahKirk/Hatemoji - **HuggingFace Datasets:** [HatemojiBuild](https://huggingface.co/datasets/HannahRoseKirk/HatemojiBuild) & [HatemojiCheck](https://huggingface.co/datasets/HannahRoseKirk/HatemojiCheck) - **Paper:** https://arxiv.org/abs/2108.05921 - **Point of Contact:** hannah.kirk@oii.ox.ac.uk ## Intended uses & limitations The intended use of the model is to classify English-language, emoji-containing, short-form text documents as a binary task: non-hateful vs hateful. The model has demonstrated strengths compared to commercial and academic models on classifying emoji-based hate, but is also a strong classifier of text-only hate. Because the model was trained on synthetic, adversarially-generated data, it may have some weaknesses when it comes to empirical emoji-based hate 'in-the-wild'. You can interact with this model on [Dynabench](https://dynabench.org/tasks/hs), and find its limitations. We hope to continue improving the model on new adversarial data to better iron out its remaining weaknesses! ## How to use The model can be used with pipeline: ```python from transformers import pipeline classifier = pipeline("text-classification",model='HannahRoseKirk/Hatemoji', return_all_scores=True) prediction = classifier("I 💜💙💚 emoji 😍", ) print(prediction) """ Output [[{'label': 'LABEL_0', 'score': 0.9999157190322876}, {'label': 'LABEL_1', 'score': 8.425049600191414e-05}]] """ ``` ### Training data The model was trained on: * The three rounds of emoji-containing, adversarially-generated texts from [HatemojiBuild](https://huggingface.co/datasets/HannahRoseKirk/HatemojiBuild) * The four rounds of text-only, adversarially-generated texts from Vidgen et al., (2021). _Learning from the worst: Dynamically generated datasets to improve online hate detection_. Available on [Github](https://github.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset) and explained in their [paper](https://arxiv.org/abs/2012.15761). * A collection of widely available and publicly accessible datasets from [https://hatespeechdata.com/](hatespeechdata.com) ## Train procedure The model was trained using HuggingFace's [run glue script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py), using the following parameters: ``` python3 transformers/examples/pytorch/text-classification/run_glue.py \ --model_name_or_path microsoft/deberta-base \ --validation_file path_to_data/dev.csv \ --train_file path_to_data/train.csv \ --do_train --do_eval --max_seq_length 512 --learning_rate 2e-5 \ --num_train_epochs 3 --evaluation_strategy epoch \ --load_best_model_at_end --output_dir path_to_outdir/deberta123/ \ --seed 123 \ --cache_dir /.cache/huggingface/transformers/ \ --overwrite_output_dir > ./log_deb 2> ./err_deb ``` We experimented with upsampling the train split of each round to improve performance with increments of [1, 5, 10, 100], with the optimum upsampling taken forward to all subsequent rounds. The optimal upsampling ratios for R1-R4 (text rounds from Vidgen et al.,) are carried forward. This model is trained on upsampling ratios of `{'R0':1, 'R1':5, 'R2':100, 'R3':1, 'R4':1 , 'R5':100, 'R6':1, 'R7':5}`. ## Variable and metrics We wished to train a model which could effectively encode information about emoji-based hate, without worsening performance on text-only hate. Thus, we evaluate the model on: * [HatemojiCheck](https://huggingface.co/datasets/HannahRoseKirk/HatemojiCheck), an evaluation checklist with 7 functionalities of emoji-based hate and contrast sets * [HateCheck](https://huggingface.co/datasets/Paul/hatecheck), an evaluation checklist contains 29 functional tests for hate speech and contrast sets. * The held-out tests sets from [HatemojiBuild](https://huggingface.co/datasets/HannahRoseKirk/HatemojiBuild) the three round of adversarially-generated data collection with emoji-containing examples (R5-7). Available on Huuggingface * The held-out test sets from the four rounds of adversarially-generated data collection with text-only examples (R1-4, from [Vidgen et al.](https://github.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset)) For the round-specific test sets, we used a weighted F1-score across them to choose the final model in each round. For more details, see our [paper](https://arxiv.org/abs/2108.05921) ## Evaluation results We compare our model to: * **P-IA**: the identity attack attribute from Perspective API * **P-TX**: the toxicity attribute from Perspective API * **B-D**: A BERT model trained on the [Davidson et al. (2017)](https://github.com/t-davidson/hate-speech-and-offensive-language) dataset * **B-F**: A BERT model trained on the [Founta et al. (2018)](https://github.com/ENCASEH2020/hatespeech-twitter) dataset | | **Emoji Test Sets** | | | | **Text Test Sets** | | | | **All Rounds** | | | :------- | :-----------------: | :--------: | :------------: | :--------: | :----------------: | :--------: | :-----------: | :--------: | :------------: | :--------: | | | **R5-R7** | | **HmojiCheck** | | **R1-R4** | | **HateCheck** | | **R1-R7** | | | | **Acc** | **F1** | **Acc** | **F1** | **Acc** | **F1** | **Acc** | **F1** | **Acc** | **F1** | | **P-IA** | 0\.508 | 0\.394 | 0\.689 | 0\.754 | 0\.679 | 0\.720 | 0\.765 | 0\.839 | 0\.658 | 0\.689 | | **P-TX** | 0\.523 | 0\.448 | 0\.650 | 0\.711 | 0\.602 | 0\.659 | 0\.720 | 0\.813 | 0\.592 | 0\.639 | | **B-D** | 0\.489 | 0\.270 | 0\.578 | 0\.636 | 0\.589 | 0\.607 | 0\.632 | 0\.738 | 0\.591 | 0\.586 | | **B-F** | 0\.496 | 0\.322 | 0\.552 | 0\.605 | 0\.562 | 0\.562 | 0\.602 | 0\.694 | 0\.557 | 0\.532 | | **Hatemoji** | **0\.744** | **0\.755** | **0\.871** | **0\.904** | **0\.827** | **0\.844** | **0\.966** | **0\.975** | **0\.814** | **0\.829** | For full discussion of the model results, see our [paper](https://arxiv.org/abs/2108.05921). A recent [paper](https://arxiv.org/pdf/2202.11176.pdf) by Lees et al., (2022) _A New Generation of Perspective API:Efficient Multilingual Character-level Transformers_ beats this model on the HatemojiCheck benchmark.
c0d7f48dd2edb45c0f834e46dc699a33
faisito/xlm-roberta-base-finetuned-panx-de
faisito
xlm-roberta
13
5
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2549 | 1.0 | 525 | 0.1663 | 0.8164 | | 0.128 | 2.0 | 1050 | 0.1421 | 0.8460 | | 0.0821 | 3.0 | 1575 | 0.1372 | 0.8596 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
e2183455ea06821039eed4d733f5260e
marwanHug/ddpm-butterflies-128
marwanHug
null
16
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['imagefolder']
null
0
0
0
0
0
0
0
[]
false
true
true
1,205
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/marwanHug/ddpm-butterflies-128/tensorboard?#scalars)
b714e1c39d9a6e9b51d030fb999c9a49
alkiskoudounas/sd-universe-256px
alkiskoudounas
null
7
2
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
643
false
# Model Card for Stable Diffusion - Universe, 256px Model developed for the Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class). This model is a diffusion model for unconditional image generation of Universe 🪐. It is trained on a small collection of universe pictures and trained for 50 epochs, with 🤗 Accelerate. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('alkiskoudounas/sd-universe-256px') ``` ## Example Here you can find an example of the output of the model, in a batch of 8 images: ![Universe Example](universe-256px-examples.png)
2784bd64b504f4b5d9d928f8f837092b
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4
gary109
wav2vec2
14
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'gary109/AI_Light_Dance', 'generated_from_trainer']
true
true
true
2,031
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0298 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9218 | 1.0 | 188 | 1.0718 | 0.6958 | | 0.9194 | 2.0 | 376 | 1.0354 | 0.6937 | | 0.9077 | 3.0 | 564 | 1.0365 | 0.6730 | | 0.8956 | 4.0 | 752 | 1.0497 | 0.6727 | | 0.877 | 5.0 | 940 | 1.0299 | 0.6694 | | 0.8736 | 6.0 | 1128 | 1.0298 | 0.6642 | | 0.8769 | 7.0 | 1316 | 1.0348 | 0.6584 | | 0.8571 | 8.0 | 1504 | 1.0689 | 0.6602 | | 0.8573 | 9.0 | 1692 | 1.0559 | 0.6549 | | 0.8458 | 10.0 | 1880 | 1.0706 | 0.6588 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
01173a575be7027001fda61eaf00ca4a
gokuls/distilbert_sa_GLUE_Experiment_data_aug_mrpc_96
gokuls
distilbert
17
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
5,787
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_mrpc_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3242 | 1.0 | 980 | 0.0830 | 0.9804 | 0.9857 | 0.9830 | | 0.0843 | 2.0 | 1960 | 0.0355 | 0.9828 | 0.9875 | 0.9852 | | 0.0431 | 3.0 | 2940 | 0.0105 | 1.0 | 1.0 | 1.0 | | 0.0268 | 4.0 | 3920 | 0.0046 | 1.0 | 1.0 | 1.0 | | 0.019 | 5.0 | 4900 | 0.0015 | 1.0 | 1.0 | 1.0 | | 0.0141 | 6.0 | 5880 | 0.0011 | 1.0 | 1.0 | 1.0 | | 0.0115 | 7.0 | 6860 | 0.0007 | 1.0 | 1.0 | 1.0 | | 0.0094 | 8.0 | 7840 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0078 | 9.0 | 8820 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0056 | 10.0 | 9800 | 0.0006 | 1.0 | 1.0 | 1.0 | | 0.0056 | 11.0 | 10780 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0039 | 12.0 | 11760 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0038 | 13.0 | 12740 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0029 | 14.0 | 13720 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0026 | 15.0 | 14700 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0025 | 16.0 | 15680 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 17.0 | 16660 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0017 | 18.0 | 17640 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0015 | 19.0 | 18620 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 20.0 | 19600 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 21.0 | 20580 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 22.0 | 21560 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0012 | 23.0 | 22540 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 24.0 | 23520 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 25.0 | 24500 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 26.0 | 25480 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 27.0 | 26460 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 28.0 | 27440 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 29.0 | 28420 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 30.0 | 29400 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 31.0 | 30380 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 32.0 | 31360 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 33.0 | 32340 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 34.0 | 33320 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 35.0 | 34300 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 36.0 | 35280 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 37.0 | 36260 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 38.0 | 37240 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 39.0 | 38220 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 40.0 | 39200 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 41.0 | 40180 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 42.0 | 41160 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 43.0 | 42140 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 44.0 | 43120 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 45.0 | 44100 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 46.0 | 45080 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 47.0 | 46060 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 48.0 | 47040 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 49.0 | 48020 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 50.0 | 49000 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
e31bbbae8899b09c2d508b39f2eb3fc8
zambezivoice/wav2vec2-large-xlsr-lozi-test_001
zambezivoice
wav2vec2
13
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,657
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-lozi-test_001 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7485 - Wer: 0.3943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0643 | 4.31 | 500 | 0.5803 | 0.5244 | | 0.3151 | 8.62 | 1000 | 0.5316 | 0.4477 | | 0.1569 | 12.93 | 1500 | 0.6340 | 0.4308 | | 0.0845 | 17.24 | 2000 | 0.6819 | 0.3986 | | 0.0503 | 21.55 | 2500 | 0.7048 | 0.4051 | | 0.0354 | 25.86 | 3000 | 0.7485 | 0.3943 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
69f0a503fb74b86f37ec2b04c84798c0
bigmorning/lektay
bigmorning
distilbert
8
3
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
990
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lektay This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
6d74e6e12eb71f51f7fbab9c7b4c0929
Sandipan1994/t5-small-entailement-Writer
Sandipan1994
t5
11
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
8,774
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-entailement-Writer This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 42 | 1.8511 | | No log | 2.0 | 84 | 1.2249 | | No log | 3.0 | 126 | 0.9976 | | No log | 4.0 | 168 | 0.9108 | | No log | 5.0 | 210 | 0.8478 | | No log | 6.0 | 252 | 0.8186 | | No log | 7.0 | 294 | 0.7965 | | No log | 8.0 | 336 | 0.7815 | | No log | 9.0 | 378 | 0.7634 | | No log | 10.0 | 420 | 0.7544 | | No log | 11.0 | 462 | 0.7408 | | 1.2198 | 12.0 | 504 | 0.7298 | | 1.2198 | 13.0 | 546 | 0.7240 | | 1.2198 | 14.0 | 588 | 0.7139 | | 1.2198 | 15.0 | 630 | 0.7070 | | 1.2198 | 16.0 | 672 | 0.7028 | | 1.2198 | 17.0 | 714 | 0.6977 | | 1.2198 | 18.0 | 756 | 0.6926 | | 1.2198 | 19.0 | 798 | 0.6906 | | 1.2198 | 20.0 | 840 | 0.6846 | | 1.2198 | 21.0 | 882 | 0.6822 | | 1.2198 | 22.0 | 924 | 0.6760 | | 1.2198 | 23.0 | 966 | 0.6710 | | 0.7403 | 24.0 | 1008 | 0.6667 | | 0.7403 | 25.0 | 1050 | 0.6657 | | 0.7403 | 26.0 | 1092 | 0.6653 | | 0.7403 | 27.0 | 1134 | 0.6588 | | 0.7403 | 28.0 | 1176 | 0.6584 | | 0.7403 | 29.0 | 1218 | 0.6573 | | 0.7403 | 30.0 | 1260 | 0.6520 | | 0.7403 | 31.0 | 1302 | 0.6522 | | 0.7403 | 32.0 | 1344 | 0.6525 | | 0.7403 | 33.0 | 1386 | 0.6463 | | 0.7403 | 34.0 | 1428 | 0.6453 | | 0.7403 | 35.0 | 1470 | 0.6437 | | 0.6642 | 36.0 | 1512 | 0.6397 | | 0.6642 | 37.0 | 1554 | 0.6382 | | 0.6642 | 38.0 | 1596 | 0.6365 | | 0.6642 | 39.0 | 1638 | 0.6332 | | 0.6642 | 40.0 | 1680 | 0.6335 | | 0.6642 | 41.0 | 1722 | 0.6325 | | 0.6642 | 42.0 | 1764 | 0.6295 | | 0.6642 | 43.0 | 1806 | 0.6304 | | 0.6642 | 44.0 | 1848 | 0.6287 | | 0.6642 | 45.0 | 1890 | 0.6272 | | 0.6642 | 46.0 | 1932 | 0.6267 | | 0.6642 | 47.0 | 1974 | 0.6242 | | 0.6127 | 48.0 | 2016 | 0.6232 | | 0.6127 | 49.0 | 2058 | 0.6225 | | 0.6127 | 50.0 | 2100 | 0.6211 | | 0.6127 | 51.0 | 2142 | 0.6204 | | 0.6127 | 52.0 | 2184 | 0.6196 | | 0.6127 | 53.0 | 2226 | 0.6183 | | 0.6127 | 54.0 | 2268 | 0.6168 | | 0.6127 | 55.0 | 2310 | 0.6175 | | 0.6127 | 56.0 | 2352 | 0.6160 | | 0.6127 | 57.0 | 2394 | 0.6154 | | 0.6127 | 58.0 | 2436 | 0.6143 | | 0.6127 | 59.0 | 2478 | 0.6142 | | 0.5799 | 60.0 | 2520 | 0.6131 | | 0.5799 | 61.0 | 2562 | 0.6122 | | 0.5799 | 62.0 | 2604 | 0.6120 | | 0.5799 | 63.0 | 2646 | 0.6115 | | 0.5799 | 64.0 | 2688 | 0.6119 | | 0.5799 | 65.0 | 2730 | 0.6112 | | 0.5799 | 66.0 | 2772 | 0.6099 | | 0.5799 | 67.0 | 2814 | 0.6094 | | 0.5799 | 68.0 | 2856 | 0.6082 | | 0.5799 | 69.0 | 2898 | 0.6092 | | 0.5799 | 70.0 | 2940 | 0.6081 | | 0.5799 | 71.0 | 2982 | 0.6071 | | 0.5558 | 72.0 | 3024 | 0.6062 | | 0.5558 | 73.0 | 3066 | 0.6079 | | 0.5558 | 74.0 | 3108 | 0.6072 | | 0.5558 | 75.0 | 3150 | 0.6052 | | 0.5558 | 76.0 | 3192 | 0.6066 | | 0.5558 | 77.0 | 3234 | 0.6049 | | 0.5558 | 78.0 | 3276 | 0.6042 | | 0.5558 | 79.0 | 3318 | 0.6039 | | 0.5558 | 80.0 | 3360 | 0.6050 | | 0.5558 | 81.0 | 3402 | 0.6042 | | 0.5558 | 82.0 | 3444 | 0.6040 | | 0.5558 | 83.0 | 3486 | 0.6029 | | 0.5292 | 84.0 | 3528 | 0.6032 | | 0.5292 | 85.0 | 3570 | 0.6039 | | 0.5292 | 86.0 | 3612 | 0.6036 | | 0.5292 | 87.0 | 3654 | 0.6019 | | 0.5292 | 88.0 | 3696 | 0.6014 | | 0.5292 | 89.0 | 3738 | 0.6022 | | 0.5292 | 90.0 | 3780 | 0.6014 | | 0.5292 | 91.0 | 3822 | 0.6020 | | 0.5292 | 92.0 | 3864 | 0.6028 | | 0.5292 | 93.0 | 3906 | 0.5994 | | 0.5292 | 94.0 | 3948 | 0.6004 | | 0.5292 | 95.0 | 3990 | 0.5987 | | 0.5159 | 96.0 | 4032 | 0.5992 | | 0.5159 | 97.0 | 4074 | 0.5993 | | 0.5159 | 98.0 | 4116 | 0.5989 | | 0.5159 | 99.0 | 4158 | 0.6004 | | 0.5159 | 100.0 | 4200 | 0.6001 | | 0.5159 | 101.0 | 4242 | 0.6008 | | 0.5159 | 102.0 | 4284 | 0.6006 | | 0.5159 | 103.0 | 4326 | 0.5999 | | 0.5159 | 104.0 | 4368 | 0.5994 | | 0.5159 | 105.0 | 4410 | 0.5996 | | 0.5159 | 106.0 | 4452 | 0.5991 | | 0.5159 | 107.0 | 4494 | 0.5990 | | 0.5004 | 108.0 | 4536 | 0.5996 | | 0.5004 | 109.0 | 4578 | 0.5988 | | 0.5004 | 110.0 | 4620 | 0.5992 | | 0.5004 | 111.0 | 4662 | 0.5984 | | 0.5004 | 112.0 | 4704 | 0.5982 | | 0.5004 | 113.0 | 4746 | 0.5973 | | 0.5004 | 114.0 | 4788 | 0.5984 | | 0.5004 | 115.0 | 4830 | 0.5973 | | 0.5004 | 116.0 | 4872 | 0.5977 | | 0.5004 | 117.0 | 4914 | 0.5970 | | 0.5004 | 118.0 | 4956 | 0.5976 | | 0.5004 | 119.0 | 4998 | 0.5962 | | 0.488 | 120.0 | 5040 | 0.5969 | | 0.488 | 121.0 | 5082 | 0.5965 | | 0.488 | 122.0 | 5124 | 0.5969 | | 0.488 | 123.0 | 5166 | 0.5972 | | 0.488 | 124.0 | 5208 | 0.5966 | | 0.488 | 125.0 | 5250 | 0.5962 | | 0.488 | 126.0 | 5292 | 0.5966 | | 0.488 | 127.0 | 5334 | 0.5960 | | 0.488 | 128.0 | 5376 | 0.5969 | | 0.488 | 129.0 | 5418 | 0.5960 | | 0.488 | 130.0 | 5460 | 0.5960 | | 0.483 | 131.0 | 5502 | 0.5960 | | 0.483 | 132.0 | 5544 | 0.5965 | | 0.483 | 133.0 | 5586 | 0.5965 | | 0.483 | 134.0 | 5628 | 0.5963 | | 0.483 | 135.0 | 5670 | 0.5965 | | 0.483 | 136.0 | 5712 | 0.5962 | | 0.483 | 137.0 | 5754 | 0.5963 | | 0.483 | 138.0 | 5796 | 0.5961 | | 0.483 | 139.0 | 5838 | 0.5963 | | 0.483 | 140.0 | 5880 | 0.5964 | | 0.483 | 141.0 | 5922 | 0.5957 | | 0.483 | 142.0 | 5964 | 0.5957 | | 0.4809 | 143.0 | 6006 | 0.5957 | | 0.4809 | 144.0 | 6048 | 0.5956 | | 0.4809 | 145.0 | 6090 | 0.5958 | | 0.4809 | 146.0 | 6132 | 0.5958 | | 0.4809 | 147.0 | 6174 | 0.5959 | | 0.4809 | 148.0 | 6216 | 0.5958 | | 0.4809 | 149.0 | 6258 | 0.5958 | | 0.4809 | 150.0 | 6300 | 0.5958 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
19e391ae05af5fcc21ebe82da8f73c58
muhtasham/tiny-mlm-glue-qnli-target-glue-mrpc
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,714
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qnli-target-glue-mrpc This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3118 - Accuracy: 0.7353 - F1: 0.8176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5845 | 4.35 | 500 | 0.5424 | 0.7402 | 0.8290 | | 0.4395 | 8.7 | 1000 | 0.5503 | 0.7525 | 0.8374 | | 0.2883 | 13.04 | 1500 | 0.6404 | 0.7475 | 0.8280 | | 0.1828 | 17.39 | 2000 | 0.7736 | 0.7574 | 0.8406 | | 0.1141 | 21.74 | 2500 | 1.0144 | 0.7255 | 0.8056 | | 0.0816 | 26.09 | 3000 | 1.1432 | 0.7328 | 0.8180 | | 0.0616 | 30.43 | 3500 | 1.3118 | 0.7353 | 0.8176 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
67952babad1d46fc86254b885530a59d
KoichiYasuoka/deberta-small-coptic
KoichiYasuoka
deberta-v2
8
2
transformers
0
fill-mask
true
false
false
cc-by-sa-4.0
['cop']
null
null
0
0
0
0
0
0
0
['coptic', 'masked-lm']
false
true
true
545
false
# deberta-small-coptic ## Model Description This is a DeBERTa(V2) model pre-trained on Coptic Scriptorium Corpora. You can fine-tune `deberta-small-coptic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-small-coptic-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-small-coptic") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-small-coptic") ```
c636ae36e047ffb9dfdf5b2103bf1625
ppsingh/roberta-finetuned-qa-policy
ppsingh
roberta
15
12
transformers
0
question-answering
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
984
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-qa-policy This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
85374f9779180a1c8e3179c0f30bf3ab
Helsinki-NLP/opus-mt-pl-fr
Helsinki-NLP
marian
10
1,023
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
770
false
### opus-mt-pl-fr * source languages: pl * target languages: fr * OPUS readme: [pl-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pl-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pl-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pl-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pl-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.pl.fr | 49.0 | 0.659 |
b1d75b30693fd1f1aa69e30001bcfd02
anas-awadalla/bart-base-finetuned-squad-infilling-lr-1e-5-decay-01
anas-awadalla
bart
20
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
961
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad-infilling-lr-1e-5-decay-01 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
396b5da0c32711f18f69264b87b25abf
rajistics/imdb
rajistics
bert
14
8
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,084
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # imdb This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.3268 | 0.876 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
7772133915f3645343e14d1eec78fa03
nejox/roberta-base-coffee20230108
nejox
roberta
13
4
transformers
0
question-answering
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,888
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-coffee20230108 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 89 | 4.5615 | | 5.5192 | 2.0 | 178 | 2.8434 | | 3.2266 | 3.0 | 267 | 2.2547 | | 2.1833 | 4.0 | 356 | 2.3272 | | 1.5483 | 5.0 | 445 | 2.3703 | | 1.148 | 6.0 | 534 | 2.4088 | | 1.0413 | 7.0 | 623 | 2.6734 | | 0.6844 | 8.0 | 712 | 2.7058 | | 0.5396 | 9.0 | 801 | 2.9746 | | 0.5396 | 10.0 | 890 | 3.6085 | | 0.3883 | 11.0 | 979 | 3.4980 | | 0.2854 | 12.0 | 1068 | 4.0556 | | 0.2021 | 13.0 | 1157 | 4.1024 | | 0.1797 | 14.0 | 1246 | 4.2926 | | 0.1425 | 15.0 | 1335 | 4.4032 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.11.0+cu113 - Datasets 2.8.0 - Tokenizers 0.13.2
a7ecfedb3d1670773b8d9413de8d24a2
crescendonow/pwa_categorical_complaint
crescendonow
camembert
9
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
500
false
This Model finetunes from WangchanBERTa ("wangchanberta-base-att-spm-uncased") uses only the Provincial Waterworks Authority of Thailand. The Model classification into ten categories describe by the dictionary are {'ข้อร้องเรียน-ปริมาณน้ำ':[11,0], 'ข้อร้องเรียน-ท่อแตกรั่ว':[12,1], 'ข้อร้องเรียน-คุณภาพน้ำ':[13,2], 'ข้อร้องเรียน-การบริการ':[14,3], 'ข้อร้องเรียน-บุคลากร':[15,4], 'ข้อสอบถามทั่วไป':[2,5], 'ข้อเสนอแนะ':[3,6], 'ข้อคิดเห็น':[4,7], 'อื่นๆ':[8,8], 'ไม่เกี่ยวข้องกับกปภ.':[9,9]}
8a9a31221122deae7deb811a08c93de2
jonatasgrosman/exp_w2v2t_nl_vp-100k_s408
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['nl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'nl']
false
true
true
475
false
# exp_w2v2t_nl_vp-100k_s408 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
c684d4db0a787bde72af2f1c9dd08cac
espnet/slurp_slu_2pass
espnet
null
20
0
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['slurp']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
166,086
false
## ESPnet2 ASR model ### `espnet/slurp_slu_2pass` This model was trained by Siddhant using slurp recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 3b54bfe52a294cdfce668c20d777bfa65f413745 pip install -e . cd egs2/slurp/slu1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/slurp_slu_2pass ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Jan 10 22:53:19 EST 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a2` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `17758ad804fd7c4b6f88ef5601f475a241dc4605` - Commit date: `Fri Oct 15 16:08:01 2021 -0400` ## asr_train_asr_bert_conformer_deliberation_raw_en_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_10best/devel|8690|108484|84.1|10.3|5.6|3.2|19.2|55.1| |inference_asr_model_valid.acc.ave_10best/test|13078|159666|83.9|10.4|5.7|3.2|19.2|53.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_10best/devel|8690|512732|92.1|3.9|4.1|3.3|11.2|55.1| |inference_asr_model_valid.acc.ave_10best/test|13078|757056|92.0|3.9|4.1|3.3|11.3|53.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_bert_conformer_deliberation.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_bert_conformer_deliberation_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - ../../slurp_new/asr1/exp/asr_train_asr_conformer_raw_en_word/valid.acc.ave_10best.pth:encoder:encoder ignore_init_mismatch: false freeze_param: - encoder - postdecoder.model num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word - exp/asr_stats_raw_en_word/train/transcript_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word - exp/asr_stats_raw_en_word/valid/transcript_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text - - dump/raw/train/transcript - transcript - text valid_data_path_and_name_and_type: - - dump/raw/devel/wav.scp - speech - sound - - dump/raw/devel/text - text - text - - dump/raw/devel/transcript - transcript - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁the - s - ▁to - ▁i - ▁me - ▁you - ▁what - ▁a - ▁is - ▁my - ▁please - a - '''' - y - ▁in - ing - ▁s - e - ▁for - i - ▁on - d - t - o - u - er - p - ▁of - es - re - l - ▁it - ▁p - le - ▁f - ▁m - ▁email - ▁d - m - ▁c - st - r - n - ar - ▁h - b - ▁that - c - ▁this - h - an - email_query - ▁play - ▁re - ▁b - ▁do - ▁can - at - ▁have - g - ▁from - ▁and - en - email_sendemail - ▁olly - 'on' - ▁new - it - qa_factoid - calendar_set - ▁any - or - ▁g - ▁how - ▁t - ▁tell - ch - ▁not - ▁about - ▁at - ate - general_negate - f - ▁today - ▁e - ed - ▁list - ▁r - in - k - ic - social_post - ▁are - play_music - general_quirky - ▁l - al - v - ent - ▁n - ▁be - ▁an - ▁st - et - ▁am - general_praise - ▁time - weather_query - ▁up - ▁check - calendar_query - ▁w - om - ur - ▁send - ▁with - ly - w - general_explain - ad - ▁th - news_query - ▁one - ▁emails - day - ▁sh - ce - ▁last - ve - ▁he - z - ▁ch - ▁will - ▁set - ▁would - ▁was - x - general_repeat - ▁add - ou - ▁again - ▁ex - is - ct - general_affirm - general_confirm - ▁song - ▁next - ▁j - ▁meeting - um - ation - ▁turn - ▁did - if - ▁alarm - am - ▁like - datetime_query - ter - ▁remind - ▁o - qa_definition - ▁said - ▁calendar - ll - se - ers - th - ▁get - our - ▁need - ▁all - ot - ▁want - ▁off - and - ▁right - ▁de - ▁tr - ut - general_dontcare - ▁ - ▁week - as - ▁tweet - ight - ir - ▁your - ▁event - ▁news - ▁se - ay - ion - ▁com - ▁there - ▁ye - ▁weather - un - ▁confirm - ld - calendar_remove - ▁y - ▁lights - ▁more - ▁v - play_radio - ▁does - ▁po - ▁now - id - email_querycontact - ▁show - ▁could - ery - op - ▁day - ▁pm - ▁music - ▁tomorrow - ▁train - ▁u - ine - ▁or - ange - qa_currency - ice - ▁contact - ▁just - ▁jo - ▁think - qa_stock - end - ss - ber - ▁tw - ▁command - ▁make - ▁no - ▁mo - pe - ▁find - general_commandstop - ▁when - social_query - ▁so - ong - ▁co - ant - ow - ▁much - ▁where - ul - ue - ri - ap - ▁start - ▁mar - ▁by - one - ▁know - ▁wor - oo - ▁give - ▁let - ▁events - der - ▁ro - ▁pr - ▁pl - play_podcasts - art - us - ▁work - ▁current - ol - cooking_recipe - nt - ▁correct - transport_query - ia - ▁stock - ▁br - ive - ▁app - ▁two - ▁latest - lists_query - ▁some - recommendation_events - ab - ▁go - ▁but - ook - ke - alarm_set - play_audiobook - ▁k - ▁response - ▁wr - cast - ▁open - ▁cle - ▁done - ▁got - ▁ca - ite - ase - ▁thank - iv - ah - ag - ▁answer - ie - ▁five - ▁book - ist - ▁rec - ore - ▁john - ment - ▁appreci - ▁fri - ack - ▁remove - ated - ock - ree - j - ▁good - ▁many - orn - fe - ▁radio - ▁we - int - ▁facebook - ▁cl - ▁sev - ▁schedule - ard - ▁per - ▁li - ▁going - nd - ain - recommendation_locations - ▁post - lists_createoradd - ff - ▁su - red - iot_hue_lightoff - lists_remove - ▁ar - een - ▁say - ro - ▁volume - ▁le - ▁reply - ▁complaint - ▁out - ▁delete - ▁ne - ame - ▁detail - ▁if - im - ▁happ - orr - ich - em - ▁ev - ction - ▁dollar - ▁as - alarm_query - audio_volume_mute - ac - music_query - ▁mon - ther - ▁thanks - cel - ▁who - ave - ▁service - ▁mail - ty - ▁hear - de - ▁si - ▁wh - ood - ell - ▁con - ▁once - ound - ▁don - ▁loc - ▁light - ▁birthday - ▁inf - ort - ffe - ▁playlist - el - ening - ▁us - ▁un - ▁has - own - ▁inc - ai - ▁speak - age - ▁mess - ast - ci - ver - ▁ten - ▁underst - ▁pro - ▁q - enty - ▁ticket - gh - audio_volume_up - ▁take - ▁bo - ally - ome - transport_ticket - ind - iot_hue_lightchange - pp - iot_coffee - ▁res - plain - io - lar - takeaway_query - ge - takeaway_order - email_addcontact - play_game - ak - ▁fa - transport_traffic - music_likeness - ▁rep - act - ust - transport_taxi - iot_hue_lightdim - ▁mu - ▁ti - ick - ▁ha - ould - general_joke - '1' - qa_maths - ▁lo - iot_cleaning - q - ake - ill - her - iot_hue_lightup - pl - '2' - alarm_remove - orrect - ▁cont - mail - out - audio_volume_down - book - ail - recommendation_movies - ck - ▁man - ▁mus - ▁che - me - ume - ▁answ - datetime_convert - ▁late - iot_wemo_on - ▁twe - music_settings - iot_wemo_off - orre - ith - ▁tom - ▁fr - ere - ▁ad - xt - ▁ab - ank - general_greet - now - ▁meet - ▁curre - ▁respon - ▁ag - ght - audio_volume_other - ink - ▁spe - iot_hue_lighton - ▁rem - lly - '?' - urn - ▁op - ▁complain - ▁comm - let - music_dislikeness - ove - ▁sch - ather - ▁rad - edule - ▁under - icket - lease - ▁bir - erv - ▁birth - ▁face - ▁cur - sw - ▁serv - ek - aid - '9' - ▁vol - edu - '5' - cooking_query - lete - ▁joh - ▁det - firm - nder - '0' - irm - '8' - '&' - _ - list - pon - qa_query - '7' - '3' - '-' - reci - ▁doll - <sos/eos> transcript_token_list: - <blank> - <unk> - the - to - i - me - you - is - what - please - my - a - for - 'on' - in - of - email - this - it - have - from - and - play - olly - that - new - can - do - how - tell - about - at - any - today - not - time - are - check - list - send - with - an - one - emails - last - will - am - again - set - next - would - was - up - like - turn - said - calendar - meeting - get - what's - right - all - did - be - need - want - song - tweet - add - event - your - news - 'off' - weather - there - lights - more - now - alarm - pm - music - show - confirm - train - could - think - does - make - command - just - find - when - tomorrow - much - where - week - by - give - events - know - day - start - two - latest - response - that's - remind - done - but - thank - stock - some - you've - answer - five - open - current - many - remove - radio - good - book - 'no' - facebook - going - it's - volume - reply - work - delete - go - complaint - contact - if - service - let - thanks - so - hear - once - correct - john - playlist - birthday - got - post - ten - order - sorry - has - date - hey - coffee - who - rate - three - exchange - further - light - twenty - price - mail - reminder - explain - podcast - ticket - down - really - clear - seven - schedule - alarms - say - morning - change - twitter - cancel - number - dollar - stop - out - appreciated - hundred - wrong - don't - information - address - contacts - read - york - us - which - should - 'yes' - details - songs - between - nine - anything - s1 - received - playing - shut - dot - mind - com - google - most - put - job - traffic - four - best - six - create - recent - yeah - happening - friday - name - very - area - mom - or - take - appointment - yeap - room - world - home - hour - message - eight - clarify - s2 - party - episode - here - elaborate - alexa - appreciate - customer - i'd - sent - thing - march - look - tonight - place - try - after - definition - call - well - times - rock - phone - speak - today's - whats - food - thirty - see - joke - every - pizza - write - lists - game - shopping - weekend - rephrase - month - matter - s - update - station - vacuum - great - detail - long - gmail - old - repeat - city - audiobook - perfectly - status - inbox - mute - local - near - restaurant - thousand - tuesday - year - we - media - before - around - resume - musch - her - house - taxi - hours - didn't - describe - answers - understand - incorrect - word - listen - first - item - d - trump - save - days - socket - recipe - nice - u - reminders - social - search - as - monday - subject - location - movie - saturday - euro - dinner - them - ask - let's - scheduled - plug - i'm - gotten - question - minutes - friend - favorite - meetings - define - instructions - exactly - cook - understood - sentence - thursday - grocery - correcly - their - words - temperature - person - amazon - catch - company - mean - something - correctly - living - fantastic - help - following - dollars - rain - speakers - instruction - helpful - increase - consumer - evening - family - upcoming - jazz - saying - way - switch - forecast - task - cleaner - love - late - boss - wednesday - yesterday - updates - lower - people - cool - wonderful - twelve - afternoon - color - wake - oh - lunch - perfect - back - understanding - useful - amazing - his - dim - movies - chicago - things - takeaway - fifty - unread - happy - available - noon - wouldn't - night - had - appointments - idea - michael - doing - over - doesn't - select - hi - shit - may - they - delivery - nearest - buy - apple - car - left - confirmed - report - worth - robot - uber - wemo - sunday - excellent - outside - blue - looking - messages - top - wear - point - too - i've - country - prices - bring - store - awesome - unclear - ok - mark - speaker - app - sound - hot - live - jackson - bad - recently - currently - smith - pull - whatever - india - messed - kitchen - ninety - percent - him - use - office - brightness - care - gave - description - tom - regarding - meaning - meet - siri - bob - joe - hmm - leave - sarah - smart - come - chicken - seventeen - walmart - bill - enough - choose - louder - our - trending - born - london - zone - account - cnn - audio - president - isn't - compose - coming - second - manner - pick - album - uhh - plus - provide - erase - notification - played - channel - donald - pound - instagram - made - bbc - recommend - happened - united - replay - shop - free - dammit - nope - b - nearby - pop - shops - california - highest - notifications - shuffle - fm - chinese - currency - uh - restaurants - jack - april - robert - only - been - why - states - friends - skip - important - he - samsung - later - notify - bedroom - john's - mails - eleven - red - exact - cold - cup - rates - incorrectly - fifth - money - boston - spoke - tomorrow's - forward - respond - funny - wait - business - market - star - headlines - third - favorites - bother - retry - stocks - high - g - favourite - george - umbrella - directions - wedding - content - m - close - spoken - concert - run - alert - searching - mary - into - artist - located - mike - anyone - snow - tickets - then - reset - garden - route - hello - tall - likes - talk - forty - share - feed - were - indian - washington - difference - remember - convert - receive - tune - level - asking - capital - life - dad - yen - street - raining - mistake - correctly? - quite - pandora - jane - town - yet - player - park - san - american - far - sports - raise - popular - display - these - couldn't - mountain - dentist - importance - unimportant - complain - clean - continue - euros - los - ready - yahoo - can't - classical - politics - newest - lighting - miami - trip - horrible - info - added - prepare - iphone - machine - mother - miles - via - chris - tv - since - bathroom - state - cheese - request - items - oops - ah - closest - warm - microsoft - settings - value - keep - brighter - note - everything - wife - decrease - okay - using - rap - election - sunny - eat - usa - eighty - fifteen - until - wanted - wrongly - dog - obama - years - coat - week's - japan - quiet - paris - angeles - comcast - target - emailed - airport - interesting - mcdonalds - mr - married - green - product - past - little - other - t - listening - cooking - activate - earth - dance - title - florida - rupee - travel - kids - takeout - pending - america - making - its - than - doctor - population - bar - plans - power - fourth - silent - ride - milk - how's - seventy - sure - fine - jennifer - july - sister - brighten - picture - deliver - singer - clock - inform - brad - burger - never - pesos - object - hero - arrive - classic - olive - games - group - watch - line - justin - cost - project - called - lets - track - still - starbucks - form - repeating - christmas - breaking - due - cheapest - forget - posted - james - posts - central - lot - stories - whole - small - ever - steak - review - requested - wish - david - workout - alex - seems - given - gym - largest - la - average - compare - china - fifteenth - having - rupees - band - background - meal - online - reserve - file - lamp - laugh - sun - anniversary - eastern - busy - mobile - bit - jokes - places - geographic - else - chess - meant - working - p - planned - program - seconds - rated - large - issues - road - pay - big - holiday - daily - 'true' - celebrity - better - hut - being - sixty - away - helped - peter - god - cab - someone - internet - page - anna - feel - video - steve - opening - lately - sandy - bank - weeks - id - sam - pitt - river - february - i'll - saved - soup - phrase - distance - economy - hits - sony - eggs - low - water - text - topic - co - begin - attend - groceries - adele - reach - within - pause - half - yourself - kind - dark - replied - enter - must - asked - beatles - fun - ingredients - against - invite - soon - colour - different - jacket - updated - seattle - denver - canada - vegas - mode - pasta - january - doe - listed - refresh - listened - team - longest - spotify - remainder - telling - mumbai - you're - orlando - card - rice - during - reduce - locate - future - starting - boil - genre - class - slow - famous - named - allen - youtube - works - olly's - dc - brew - through - pounds - football - pacific - white - sings - egg - oil - festival - clothes - moment - die - orange - school - kim - las - divided - whether - photo - everyday - ryan - bills - headline - fix - square - npr - jake - brother - todays - terrible - weekly - type - topics - months - chat - yoga - reading - products - extra - cut - adjust - king - personal - client - jan - data - doctor's - computer - rohit - johns - o'clock - canadian - mistakes - rid - names - control - sunscreen - per - lady - head - taylor - always - budget - pink - bought - x - side - ahead - articles - english - ny - able - reschedule - fast - hashtag - tweets - countries - numbers - running - alabama - blank - madonna - bright - yellow - west - went - options - story - october - russia - together - n - basketball - joe's - dominos - tomorrows - less - situation - colors - mom's - end - payment - drop - downtown - provider - joes - means - helping - mexican - friday's - cricket - return - needed - death - tech - charlotte - heavy - draft - sea - paul - r - condition - seventh - dallas - hip - related - article - heard - war - elvis - everest - problem - stating - bieber - system - sales - shoes - hard - become - based - kevin - age - she - quality - mile - hair - gas - biggest - inr - climate - hate - twentieth - sucks - dean - angelina - turkey - harry - cake - national - record - longer - dave - subjects - brown - supposed - ocean - church - drive - gandhi - needs - above - theatre - cookies - abraham - gone - map - television - such - face - sale - jim - francisco - sean - june - romantic - compared - curry - ball - jeff - subway - lincoln - bed - lagos - turned - south - won - trains - girlfriend - mahatma - nsa - hop - amy - commute - solve - came - created - dont - history - math - telephone - says - laptop - pawel - offer - fox - single - sixth - midnight - missed - potter - loud - richard - chuck - looks - practice - body - dan - husband - waiting - birth - stuff - adam - sender - gaga - truck - france - texas - restart - intel - colours - statue - liberty - intensity - previous - problems - outlook - visit - wine - peso - continent - utterance - helps - asssistance - each - north - grand - patrick - match - opinion - plan - trump's - papa - instead - martin - root - purchase - perry - richards - closing - cloudy - eddie - senders - move - susan - tesco - size - shows - folder - spaghetti - doctors - stores - presidential - dates - theater - menu - agenda - ann - code - animal - frequency - kansas - roomba - technology - tasks - without - flight - who's - beach - empty - tired - driving - entire - carry - british - dr - asia - rccg - uncle - vacation - pepperoni - programme - standard - reminding - maximum - starts - tallest - gonna - fourteenth - playback - medium - nike - cruise - changed - diego - arrange - bowie - learn - mount - particular - costumer - sundays - fire - calls - silence - podcasts - spain - dominoes - website - italy - strongly - agree - agreed - suggest - mood - fourteen - result - metallica - thinking - session - profile - england - active - ohio - grid - fall - pot - marriage - queue - told - narendra - jerry - mt - frank - tenth - wishes - recording - finished - international - calculate - hit - towers - ninth - site - feeling - macy's - tag - actually - black - birthdays - hottest - mary's - expect - snapchat - jay - smith's - mountains - building - setting - cleaning - height - initiate - hall - breakfast - martha - conference - aol - win - steps - fancy - smartphone - led - zeppelin - houses - holy - currencies - club - children - atlanta - einstein - happen - cell - landline - coworker - objects - negative - modi - soft - haven't - mention - radius - books - daughter - results - earlier - bruce - butter - stars - remaining - delivers - device - domino's - unmute - joy - twelfth - voice - taking - snowing - sick - boots - cleveland - journey - destination - worker - poker - lee - katy - australia - incoming - least - lisa - experience - million - recurring - scenario - sacramento - geography - library - brief - jolie - monthly - elton - sirius - alaska - lyrics - oven - log - random - moscow - barack - disney - alive - measurements - maker - poor - error - stone - versus - hotmail - interpret - sarah's - memorial - goes - stay - delhi - health - special - speed - thirteen - test - edinburgh - credit - facts - cat - neighborhood - sometime - empire - entry - financial - comment - link - hockey - circuit - holidays - singh - jodhpur - rockville - ones - features - bread - eye - mall - directv - contain - seacrest - chance - under - table - few - hotel - rude - services - yesterday's - certain - fb - abc - netflix - linda - notes - length - reminded - shoe - wild - employees - beef - sushi - fastest - thirteenth - recommendations - fish - tennis - main - jersey - jones - break - concerts - gomez - angry - uk - replies - emily - kickball - released - upload - effects - quickest - italian - caroline - emma - real - human - minute - took - activity - jeff's - staff - handler - touch - hold - joanne - range - moon - submit - ends - tomato - lost - prime - twelveth - phones - amd - hectic - bobburgers - screwed - porch - reviews - vegan - rihanna - houston - ham - mondays - general - engaged - walk - melody - electronic - held - selected - equal - getting - tata - wall - clothing - round - leaving - nasdaq - total - pressure - expensive - border - exhibition - trash - november - handle - halloween - attachment - kardashian - shoot - rewind - rating - toronto - department - procedure - member - ray - chelsea - rohan - arrow - checked - modify - wasn't - chances - protest - lottery - prince - include - jo - net - pie - sleep - enjoy - nineties - taco - banana - source - quieter - bored - desert - guys - gary - activities - already - contract - st - minister - disable - woman - europe - arijit - audible - presentation - cad - records - trips - booking - tacos - sally - non - centre - direct - advance - selena - policy - orders - stefan - arrival - divide - chocolate - dish - teeth - hdfc - silvia - stove - coast - defined - digest - snafu - manager - pinterest - tim - conversation - bulldog - titanic - brunch - heat - canyon - dial - earliest - region - stopped - foreign - folk - watching - brexit - albert - joejoe - early - cities - manchester - december - biloxi - often - questions - garage - tunes - possible - ms - ar - kiss - shares - bangalore - heading - derek's - desk - cheers - tomasz - terms - companyname - sara - asap - super - meryl - streep - rent - dress - cinema - usually - trend - conversion - friendly - ties - ordered - electricity - marked - migration - choice - journal - norris - aniston - mailbox - minus - fried - miley - cyrus - newly - theory - rest - swift - windy - dan's - mass - comes - selfie - wings - julie - masti - celine - plays - pack - including - responded - jason's - ale - apples - dolly - oranges - lg - washer - substitute - global - feedback - grandma - ben - drainage - invoice - sunset - takeaways - man - art - universe - suitable - antonio - full - delivered - laundry - wrote - min - register - snap - nixon - bird - spend - rome - jesse - calories - cappuccino - quickly - buying - britney - spears - spacey - jobs - arriving - jean - potholes - janet - pictures - ashwin - morgan - freeman - baby - microwave - yellowstone - francis - dubai - invitation - hope - melbourne - rocky - kroger - rivers - charles - jim's - rectify - statement - carpet - baked - jessica - meatballs - mushrooms - amount - switzerland - relating - zero - front - phonebook - hows - cheesecake - carryout - magic - ola - replace - recorded - access - land - where's - elephant - removed - liz - load - metal - package - diner - goog - bob's - k - year's - mars - guy - assistant - rahman - eagle - part - burn - aran - stevens - daughter's - eighteen - chemistry - action - selling - thats - koc - lines - sugar - major - chair - easter - departing - africa - nigeria - requests - conditions - you'll - manhattan - roll - cracow - candy - crush - bell - massive - gold - happens - usual - andrew - equals - dead - plane - graduation - warned - shaun - triangle - wyatt's - pass - function - max - space - programmes - awful - parton - exciting - battery - hwu - recipes - dirham - rushmore - johndoe - button - express - pontificate - easiest - magda - selection - reservations - guess - copy - classes - supplies - schedules - winning - berkeley - notice - headed - outgoing - mi - rainy - wikipedia - entertainment - dow - everyone - aunt - furniture - oceans - softer - heart - newmail - while - baseball - easy - stations - philadelphia - alice - swat - yearly - poem - soccer - president's - milan - paper - kardashian's - loop - shown - sandals - yo - scan - nevada - apahelp - coldplay - french - bay - higher - rumplestiltskin - airlines - fresh - standing - cream - hamburger - broadway - oscars - tokyo - cable - shipment - formula - teacher - sweet - golden - newsfeed - confirmation - shirt - austin - own - canon - wanna - gods - spanish - count - seat - ideas - study - tara - mutual - jennifer's - because - edit - denmark - direction - timer - growth - luther - marketing - cd - mine - public - peter's - bolshoi - flat - crazy - others - dry - pub - theatres - bro - fashion - teams - cycle - pickup - dion - teach - series - checkout - male - noise - solitaire - pf - cassie - travelling - davis - naty - income - disco - dropping - donna - follow - shelly - accidents - plot - irene - download - circle - law - tea - organize - principal - weekends - camera - solution - bombay - wuthering - heights - charged - colorado - kong - keys - race - mona - entries - j - nyc - potatoes - gospel - raju - trivia - bike - dating - oregon - event's - prefers - rush - percentages - peking - cooker - husbands - won't - tower - heaven - hugh - june's - fake - figure - purple - takes - l - howard - stern - nineteen - percentage - motorola - doe's - outstanding - tesla - laura - dale - warning - eighteenth - golf - island - career - bieber's - vacuuming - pizzas - refund - weekday - s's - derek - thanksgiving - delayed - query - buffet - rachel - pants - wash - survey - photos - except - topography - door - jen - queen - depart - cheap - theaters - web - jesse's - multiply - workhouse - press - click - loss - recipient - verizon - volcano - rolls - royce - pixel - affirmative - completing - thai - walking - bananas - hollywood - equation - dirty - scores - katrina - exam - creating - letter - sing - construction - broadcast - tom's - rupies - management - permanently - converting - ist - iron - religion - kings - tucson - standup - tic - tac - toe - headset - sex - diapers - purpose - seventeenth - eighth - dylan - temple - refer - gift - fact - drink - inches - air - carpets - newcastle - clients - private - tasting - sams - nj - chili - cultural - swimming - they're - iowa - jordan - period - accept - cincinnati - college - rainbow - myself - deep - deepest - warming - sky - vp - seeing - indianapolis - kmart - nikesupport - image - suck - broiler - timeline - dell - parisa - brandon - example - y - filter - sad - shine - sixteen - christian - pic - pdr - fry - another - network - omelette - kilometers - municipality - giving - leo - cups - earthquake - susan's - application - cross - across - carl - pawel's - sauce - relativity - rail - sisters - letting - shorts - vs - rajesh - swift's - starving - discussing - block - written - n9ne - women - celebrities - bake - cookie - continents - workers - leonardo - mel - gibson - shall - beauty - sum - fair - deli - middle - same - nile - sell - role - boat - sandwich - parts - hearing - knows - sand - manoj - delivering - rahul - neil - australian - kindly - properly - assist - esurance - emilia - breach - loudly - harvard - marc - nintendo - scrabble - farm - lie - patio - greg - screen - degrees - yesterdays - carrots - receipt - lasagna - clooney - there's - degree - preferences - hallway - latin - nicest - lauren - worst - also - checkers - input - boyfriend - masala - tournament - monet's - burmuda - section - eric - japanese - supervisor - junk - performance - effective - urgent - oldest - tone - sweater - goa - bag - lowest - aus - peace - julia - summer - fan - hurricane - colder - steven - sachin - tendulkar - watson - exorbitant - bags - macs - yulia - matthew - pole - toby - pennsylvania - carmen - tiffany - complete - electric - wallet - albums - maths - distribution - eminem - familiar - regard - upwards - ron - couple - acme - angel - zoo - nineteenth - shazam - inflation - offers - devotional - jackie - tony - artificial - intelligence - grill - father - predictions - repeats - manila - cooked - reason - learning - nowadays - cheer - jingle - bells - anxiety - hoizer - girl - pondichery - position - teachers - dictionary - nap - cafe - m's - meting - crime - eve - horn - bristol - pubs - companies - johnson - resolve - waterfall - female - biriyani - drama - nothappy - haircut - remote - colleagues - bones - saturdays - cambridge - jam - maine - category - invented - chang's - boy - planning - chen - assignment - publish - hunt - alerts - dad's - deal - leading - trail - follows - young - jay's - summary - ko - beyonce - vergara - mexico - whishes - arrived - placid - specific - depot - tikka - expire - markets - problematic - highly - blues - thirtieth - brooklyn - tatum - argentinian - redso - des - moines - women's - richard's - cellphone - division - hong - political - charley's - steakhouse - accident - normal - wakeup - satellite - freezing - forex - jimmy - chores - snooze - design - museum - guide - speech - ran - shift - inferior - mashed - jcpenney - environment - raw - disturbed - sia - chips - anybody - present - reynolds - limbaugh - weekdays - islands - viral - asian - streets - inception - meatloaf - alternative - compliant - sensex - phil - est - hand - switched - recap - ferrari - nandy - promotion - kate - brothers - ma - followers - closer - deleted - gloves - bands - platter - boland - corner - strong - chipotle - eu - amtrak - son - charges - version - rajdhani - chart - manage - musical - hat - den - tonight's - syria - stronger - homelessness - nails - support - ally - sentences - penn - ago - turning - center - hungry - actress - keywords - usain - bolt - ongoing - cancelled - idol - julia's - wells - fargo - ri - sarahs - computers - devices - toms - regards - quote - production - brother's - inch - shell - marathon - directory - dictate - huey - lewis - elections - alone - marry - apart - danielle - jane's - mankind - singularity - nye - feynman - whom - inventory - makes - dept - apple's - education - bugs - settle - when's - geographical - jason - exchanges - mcdonald's - tgi - ship - hershey - facing - faulty - zita - jeremy - irons - wallmart - sphere - hp - gottten - pardon - engagement - showing - format - absolute - interest - messenger - gate - enable - columbus - hips - tour - sterling - thumbs - priced - tablet - amc - bible - safeway - organism - undertake - freedom - charger - documents - jars - clay - members - o - vegetables - delicious - beaumont - tx - finance - exhibitions - trumps - month's - v - applebee - dakota - bus - brighton - pa - darken - promoted - liverpool - utah - suggestions - micheal - complaints - pencil - keith - fridays - temperatures - hardware - exercise - jpearsonjessica - release - hoover - goshen - chester - wood - woodchuck - healthcare - borges - calculator - dune - reality - jobe - gossip - piece - convenient - titled - pork - belongs - hongbin - wreck - tool - started - gather - bruno - costa - patel - daniel - corporate - controversy - wendy's - texans - biography - flowers - investing - arrives - finish - spot - crop - culture - enjoying - fetch - kill - auto - washing - buffalo - he's - titles - ross - whose - types - pleasant - erin - madison - tuesday's - lif - khan - affordable - season - policies - c - expected - hypothesis - seth - kicked - unhappy - gallery - xorg - used - monali - thakur - noodles - cher - sally's - tracks - mid - launch - glasgow - bridge - releases - pitt's - server - clarity - yens - motivational - scratch - blanket - aib - reads - singing - monas - tuesdays - winter - rocket - lands - chan - economic - sister's - aa - film - pb - indiana - departure - pipeline - stitch - sleeved - hail - logan - style - quantum - physics - labeled - delia - began - rrcg - shape - awards - improve - pertaining - trance - lives - weight - met - brian - sinatra - sunglasses - attending - falls - requesting - sunday's - overhead - greg's - rom - historic - georgia - guest - jaipur - iroomba - alfredo - pride - prejudice - fill - interview - daddy - wangs - manchow - university - locally - lowes - tiring - east - medical - metro - bach - schubert - rooster - czk - channing - pad's - identify - yelp - scandal - affect - suffering - enabled - arby's - saw - mango - itunes - highlights - brings - sixteenth - tourist - wendys - presley - sold - intern - affairs - fries - buttermilk - panda - wants - floor - clint - eastwood - moe's - planets - equivalent - morrocco - gravity - uploaded - someplace - availability - issue - fly - jpy - natural - delta - disappointed - files - q - cindy - shortest - simple - ring - lotion - maroon - fort - died - bonus - repetitive - icecream - statistics - rebel - lawn - leith - measure - daytime - september - pilots - pda's - shade - sil - cap - punjab - gwalior - ashley - juice - nagar - ellen - programs - fairs - invest - suits - ingredient - launches - leaves - bjork - crater - elevation - stewart - hotels - spices - bubbles - grass - broccoli - capricious - philosophy - anthony's - apply - pings - gps - thomas - koontz - acdc - beijing - ratings - union - prayer - todo - angles - scissors - stashable - cinch - bacon - passive - que - occurred - lakeland - tulsa - advise - singapore - risotto - invested - model - helmsworth - bench - julian - buddy - rogers - brains - chap - badminton - dick - lopez - apartment - points - germany - unknown - thugs - healthy - rash - casey - oriam - ps - plants - mailed - ikoyi - grassmarket - marleen's - locations - bush - mac - reaching - allan - till - cheering - guitar - oxford - densely - populated - son's - hubby - comparison - putin - barcelona - gss - energy - pan - nyack - worked - unavailable - bryan - adams - miss - checkbook - jared's - enrique - iglesias - forms - jeans - voices - alan - tudek - animals - olx - mts - freed - jenn's - coordinates - humid - demographic - otherwise - tiffany's - outdoor - sheila - lincon - dust - serve - conduct - estimated - gaana - funds - downloaded - indignation - meijer - necessary - grubhub - pancakes - mario - bars - birmingham - sites - donuts - chopra - textual - rapids - cant - prefix - sounds - provides - amy's - benton - leeds - dsw - returning - defective - digital - bhaji - carlos - linux - upgrade - shark - attacks - screening - exposure - souffle - tracking - od - progress - paused - gilmore - hour's - imdb - orleans - european - gdp - surfers - theme - ash - ikea - klm - marilia - cars - robin - williams - surfin - ottawa - trade - contains - field - someone's - prague - brno - rene - interests - radiolab - harris - strive - accommodating - fell - relationship - pharmacy - memo - nancy - paid - expressing - disapproval - yard - royale - hide - amber - cheeseburger - coca - cola - al - matrimony - scott - potato - funniest - polling - mother's - chase - xmtune - matt - murphy - detroit - taiwan - organic - secrets - domino - ac - assistants - z - fred - owner - required - saga - hanks - trading - erosser - rosser - vikki - dhaka - notepad - oldies - alison - recur - w - mentioning - languages - lavender - toned - videos - stein - chennai - resuming - moms - foke - beep - discussion - woodland - lowry - meetups - powerball - toyota - focus - concentrate - nbc - roosendaal - deactivate - shrimp - parmigiana - bumper - spouses - lucknow - paying - hurry - served - rhythm - enquiry - hartford - plaza - hyundai - wishing - websites - briefing - complex - calculations - jarvis - highway - fired - dissatisfied - sandra - bullock - ratio - haskell - sharon - horse - mum's - dillinger - sunblock - sub - tab - crude - software - stadium - step - short - reddit - appoints - agra - sheet - keyboard - kfi - district - connery - carnival - wok - shutting - phoenix - cloth - rehan - lego - alphabetical - mexco - charles's - foodpoisoning - ultra - madonna's - harley - davidson - daylight - afi - infy - launched - inboxes - secretary - increased - resolving - fuel - injector - multiple - interval - mike's - espresso - sasha - susie - salesperson - country's - cylinder - specifications - ivory - pst - zoella's - jackman - reacting - potential - frying - boise - wendy - divisible - automated - katherine - pre - gaming - containing - decade - industry - foot - chemical - cause - taste - bra - julianne - hough - addresses - vonstaragrabber - lion - restroom - kohl's - mentioned - hz - royal - bloodline - relationships - billings - levin - quarter - lori's - lori - exclamation - definitions - birds - raj - priya - allows - worlds - kelly - clarkson - garam - scarlet - found - cub - dmv - excessively - lake - dried - reporting - smile - changes - charmin - eternal - smoked - meat - beanos - processing - chip - logic - insightbb - highland - terrace - child - peck - midwest - cardinal - anthony - barrack - jancy - thompson - cassy - gulls - alternate - sin - dragons - msnbc - residential - leader - siblings - pedro - serendipitous - bestbuy - targets - wawa - mentions - engagements - hawaii - jr - applied - halifax - ahmedabad - monty - python - stronomy - blahblah - blah - arrivals - subtract - payoneer - formal - connors - indranagar - transform - marcia - perpetual - arranging - cvs - callum - steffi - attention - kanye - mommy - chucky - forest - polarized - proposal - conrad - coldest - hue - dictator - clancy - geranium - delays - build - lense - rai - transistor - dildo - warren - exercises - forman - kinley - bottle - retail - yan - regal - unprofessional - annual - payday - tricep - arts - ripped - vietnam - trends - chaise - preparation - nestle - paula - deen's - bmw - microsoft's - bookstore - below - moving - pretty - lock - administrator - edition - airways - marvel - garner's - rubix - cube - kfc - milwaukee - pager - alexander - gilchrist - goods - performing - unopened - security - chain - probiotic - colleague - knowing - novel - fiesta - comcasts - acer - farmers - fraud - weighing - india's - gotse - grapefruit - similar - tmobile - nifty - sessions - recital - greatest - openings - zip - demento - fatigued - disease - prevention - overcharged - unquote - cotton - tweeter - railways - flipkart - fist - renee - nutritional - starred - calculated - mattress - hillstead - paul's - jill's - disregard - pesto - stinks - nobody - behind - kid - nature - ounces - ted - boiled - dancom - wars - fmod - span - along - malls - joining - frequently - realdonaldtrump - bobby - mcgee - pwd - obamacare - clicked - falling - pampers - virgin - hayden - pat - amie - infosys - technologies - roads - aerosmith - airtel - dairy - sends - dues - tobytoday - ileana - d'cruz - rended - taj - ashok - typhoon - rama - final - missouri - virginia - announce - haughty - salmon - joking - goodnight - rebecca - believe - vowels - ban - haze - insight - cable's - fellow - tweeters - canoe - warriors - assassinated - acceleration - detailed - wife's - robert's - angus - interested - jen's - sjobs - cdn - ruth - simran - aapa - kadai - armor - sms - indefatigable - indicate - fra - floors - modcloth - honor - weigh - priority - hiking - smoky - judawa - expense - deals - plethora - sam's - august - elain - bbq - leap - congressional - representatives - voting - reproductive - ge - bbb - contacted - assigned - jill - drafts - scoring - touches - relevance - goggins - medvesek - philippiness - booked - board - locality - beth - katey - fans - approximately - charitable - rae - darker - anymore - printing - significance - fondle - mate - larry's - larrylarry - faripir - gurpur - seasons - softball - refreshments - jamie - carrie - underwood - abdul - kalam - subterranean - colombo - sri - lanka - quit - dollar's - award - among - spouse - forgot - ass - millionaire - indians - americas - julie's - transcribe - garbage - geographics - tree - criticize - tanzania - heather's - answering - spam - phishing - reseda - axel - kailey - prettiest - century - mattel - toys - grateful - fixing - maidan - sophia - betty - reasons - russian - applicable - loving - claire - crashed - batteries - philips - person's - compile - ali - matthews - apologize - comcastcom - luke - jean's - carefully - beg - trying - flooringco - seams - baking - skiing - calming - continuously - tale - roraima - innova - bowling - beginning - identifier - diverse - santa - continuous - hangman - vegetarian - roast - rewards - allow - immediately - shelley - hennessey - waking - dicaprio - ways - immigration - raised - lose - digger - cosmetic - perth - feet - chick - tornadoes - upstairs - badly - timings - lobster - runner - forum - thunderstorms - powered - plugged - rod - mgccc - bleed - ga - pune - mixed - dishes - radisson - cheetah - what'sapp - cm - father's - skill - graham - eggless - collect - favorited - flag - ssmith - virtual - bryant - spots - scapingyards - washed - springfield - draw - insurance - quantity - brightener - cuba - stream - raincoat - maiden - soundtracks - deliveroo - humidity - crowded - built - mesa - rosenstock - workpdf - occurring - environmental - dbell - converse - radia - logged - scabble - loads - jacob - hasbro - aldi - piramid - completely - method - hems - loose - connect - snapchats - arizona - festivals - hospital - peppers - bowl - korn - lupe - eurostar - umf - unchecked - berlin - lane - synonyms - hampshire - shakira - brads - keanu - reeves - johns's - increasing - burgers - stan - falklands - valley - maria - hangin - glow - we're - newsource - clark - carrey - jams - crashing - outback - sugars - defines - joel - venue - huffington - images - elizabeth - case - agnes - randomly - mecky - incredible - even - decreased - vacations - honey - akon - barbara - handsome - forensic - spielberg - korea - coding - achievements - albert's - clerk - hopes - zimbabwe - buble - research - excel - gun - rogen - resin - tooth - filling - mody - marinara - vicki's - mardi - gras - monika - relatives - chillin - lol - levis - tricounty - messy - disgusted - emoteck - foroogh - quick - decline - emailstudy - atdfd - giant - trey - kalka - mcdo - timestamp - operate - watched - infinity - tactics - upbeat - synonym - racing - towards - fog - muted - coke - eighties - tvs - theresa - brent - kamycka - dejvicka - tap - peanut - circumference - saskatoon - sync - sofa - mcdonald - silenced - catalogue - algorithm - sanctimonious - talked - realize - reveca - paok - wipe - bisque - br - rather - silly - stat - tar - vitamins - gain - xm - fongs - anywhere - zanes - se - chronicles - weber - commence - causes - sangli - german - hedges - truthdig - coffees - commuter - plain - mimo's - oscar - restrictions - treasure - louis - stevenson - fifa - beast - pav - prambors - hannah - ringcast - vegetable - episodes - overnight - apps - nathan - dismiss - karl - hourly - eyes - breeds - inside - tribune - join - crabmeat - shakira's - yankee - greenwich - gala - jump - recall - johnny - cash - pod - cast - rare - suppose - enjoyment - emo - nayagara - passion - pit - marckel - bohemian - emma's - arijit's - pet - prize - receptionist's - beat - freds - probles - patagonia - quart - '?' - zach - duration - jlo - alphabetic - phohouse - badpho - daybreak - biryani - battle - divergent - moby - jungle - jaiho - casserole - shooter - columbine - wednesdays - soul - accumulation - squash - calm - debate - schools - amd's - lee's - managers - myspace - relaxing - bahar - antarctica - atmosphere - pinpoint - payments - illinois - louisiana - cfo - pool - vyas - morel - mysore - rise - sdfa - newspaper - calorie - dangerous - sunrise - mostly - dining - shake - flood - prescription - mix - view - jana - spa - comments - pear - factor - clearance - northern - language - arnold - exxon - mobil - dragon - fruit - differences - seashells - seashore - velocity - motorolla - haggis - fiji - irwin - similarities - hypertrophy - sharukh - implement - kazakhstan - mediterranean - roman - grigorean - hardword - quead - amphibious - roberts - climatic - tornado - prone - rising - declining - megatel - denzel - washington's - citizens - arm - persos - belarus - gyllenhal - geology - helicopter - iphone's - drained - manger - navy - daikin - jerk - nexus - interaction - platform - tweeting - at&t - mahaboobsayyad - kellogg - ashmit - ismail - listing - enalen - projects - clara - clinic - exams - ammunition - mark's - divya - jjnzt - activation - andy - terry's - brenden - jeffrey - burnette - protests - joshua - pianist - whiz - schadenfraude - rials - storage - bot - provided - massachusetts - channin - store's - rump - prior - re - intelligent - recognise - irobot - areas - lighter - yell - uses - cn - gadgets - skynet - marie - lamb - balcony - nyt - bennett - ralph - pda - balloon - maps - degeneres - character - evans - actor - fitbit - malika - shivaji - attitude - lily's - concerned - upon - startup - stuffs - tawa - relative - legacy - cst - leah - remini - mortgage - amed - cleaners - seal - abita - grammar - backdoor - minimize - leisure - billie - spicy - training - comfortably - sunburn - minneapolis - habits - braking - notifier - swan - thoughts - pleasure - those - kashmirstart - sells - i'dl - kettle - 'false' - rta - valia's - visiting - techno - mornings - mow - cbs - slightly - francine - vice - postpone - mins - xyz - hwood - kept - spider - reopen - billy - connery's - eiffel - itinerary - crash - valentine's - likexchange - divorce - danville - il - government - menus - capabara - origin - assistance - vicinity - chit - drinks - flabbergasted - xy - self - double - castle - refrigerator - bakery - spray - pyramids - bio - basic - humans - schwarzenegger - inchoate - rules - caftan - raleigh - hobby - ajay - devgn - corden - aud - prevailing - kenny's - crew - aww - spying - employer - thier - juanpedro - craig - leon's - looked - players - costs - providers - sydney - documentary - hyphen - represent - strings - pianos - acoustical - celeb - pong - linear - turn_down - reaches - strength - routine - billboard - piano - ed - sheeran - diet - vietnamese - yams - grandmother's - rihana - require - stressed - option - affected - acquire - retrieve - clarion - congress - turiellos - mates - solar - dice - jalapenos - wished - painting - therapy - warehouse - mop - neighbor - flappy - returns - someones - spring - wonton - moves - jagger - fishing - hiphop - dunkin - donut - atlantic - daughters - hula - hoop - lessons - scrote's - indie - grief - lebron - naughty - preprogrammed - alt - needy - sharpen - butcher - knife - pulled - starbuck's - backward - terrorist - invaders - parent - crescent - brewhouse - prado - science - playlists - debbie's - sleeping - searched - lindsey - lohan - competitions - subtracting - challenge - beer - gainers - chili's - frubs - police - softly - practical - assessment - bonefish - rotating - placed - lakers - barenaked - ladies - lord - rings - mar - sneakers - artists - sanantha - shuffles - shuffled - bardonia - county - analyze - pattern - girls - league - fjords - nothing - brewing - smurfs - tommy's - lovin - cottage - ming - photosynthesis - danny's - repeated - peaceful - migrations - zydeco - inkheart - seller - occurence - telegraph - invited - wifi - levels - willie - nelson - dolores - alter - retirement - professional - development - sainsburys - byron's - floyd - raingear - notorious - bone - explanation - database - likely - lucky - irish - sshow - ramsey - aired - sprint - preparing - academy - yeshudas - angels - dancing - aretha - franklin's - layers - glass - kuch - hai - wakey - knitting - mujhe - feb - king's - malinda - parents - mirchi - gallon - seen - parks - safest - evacuation - beautiful - sofia - francs - consequences - various - dicaprio's - networth - phelps - disk - constructed - concern - effectively - lawrence - zac - galifrankas - wheat - prediction - schemes - mega - capricorns - dinky - lanegan's - princess - pregnant - smallest - americans - retweet - insta - sonys - bk - alzacz - kohls - cleanliness - pizzahut - delay - lpg - satisfied - choke - suqcom - repairs - killing - miller - budgets - iamironman - gbaby - gma - loves - kate's - margaret - ben's - brady - palmer - homework - tax - regional - archive - fitness - vault - footloose - child's - damage - petco - canceled - passing - pikes - peak - avatar - diverge - maron - fault - sword - eventual - contest - dangal - mauritania - abs - wondering - southampton - resources - soy - lexmark's - hilly - lyon - beirut - tribute - madrid - ate - sweat - charlize - theron - atif - aslam - capture - actual - shane - dawson - zedd - snooker - loquaciousness - sholay - tofu - nightmare - avenged - sevenfold - matters - prompt - panic - brilliant - boston's - mckinleyville - astrology - strait - countdown - cats - fruits - embassy - pita - gyros - negotiations - hairdresser - courteous - enthusiastic - funk - sense - heathens - cabinet - irctc - stored - shutoff - glasses - ella - fitzgerald - rover's - vet - polar - bears - oceanside - medicine - anita - barrow - burrito - oliver - covering - ground - zucchini - textile - antebellum - chimes - covington - species - bees - cranston - kilometer - behaved - rudely - jimi - hendrix - calms - outwards - califonia - composed - hint - shipping - frosting - sport - napoleon - hill - athens - middletown - shirts - sample - politician - investigated - rapper - con - cuisine - wizard - brick - conroe - iterate - architect - salon - babaji - passed - maryland - surya - monopoly - avenue - considering - celebration - brewed - galoshes - tutorials - workouts - millenium - toward - neighbourhood - bannon - storming - reoccurring - longtime - sweetheart - memos - starfish - centaur - philippines - oar - departs - preferably - latte - sides - pentagon - fashioned - rescheduled - transportation - twins - duker - deadline - samurai - obaba - bp - ambiance - automatically - object's - boost - morale - jogging - spell - firefly - mura - masa - checklist - biographies - sucked - congested - avinash - commando - jolie's - instrumentals - clarksville - tablespoons - surveys - flour - acela - calone - bucket - fulls - valid - references - critical - perpetuate - luncheon - ohm's - values - plying - expectations - musician - mindsweper - throughout - noontime - included - tour's - voted - walgreens - chickens - monday's - crankshaft - surfer - lunchtime - skramz - compounds - diabetes - might - reservation - homosapien - engadget - boeing - brisbane - ear - headphones - minimum - worry - snowplows - burying - driveway - adapt - destroy - impanema - equipment - turnt - attractive - conducted - cinnamon - freshener - watsapp - bean - awfully - entitled - murderer - ford - forties - scenery - morocco - sf - blokus - preacher - taken - stormy - centers - ethics - popup - mysterious - puts - stage - considerations - lourie - artic - scoop - carion - merced - bypass - passwords - quantico - grade - examples - cuisines - hibernate - bear - published - authors - tempo - keidis - tidal - cookoff - zones - probable - summerfest - dogs - aren't - necessarily - carolina - eleventh - chilling - sleeve - invoking - term - herald - maria's - poltergeist - imagine - uv - index - johncena - instruct - oscillate - liter - nelly - shawarma - baster - pali - vilnius - tabs - debates - singers - activated - ozzy - osbourne - danish - happypeoplecom - accounting - backpack - im - puttanesca - keeps - worse - wrigley - braise - loin - carnatic - bases - nick - swisher - stolen - clouds - cleared - bola's - norman - reedus - screwdriver - window - volcanoes - rowan - atkinson - minneapoliscity - delicacies - monitor - overall - gymnastics - channels - kxly - botswana - enjoyable - spectre - chane - decentralized - men's - freeze - postal - becomes - ccn - berth - michigan - composition - shahi - panner - dakar - jakarta - equalizer - weird - barely - rodriguez - oklahoma - giraffes - margarita - difficult - crabs - firework - probability - tools - emigration - legislation - pdf - cheeseburgers - applications - adopters - priest - walks - mechanic - h - showers - signs - contrast - recollect - gm's - duck - beavers - tail - lucking - horkersd - wo - myrtle - hr - steam - entirety - anirudh - colored - tropical - bedrooms - yellowish - elephants - expenses - contents - warmer - royksopp - etc - progressives - peoples - cultures - unset - iceland - mp - mangalore - tanya - quad - particulars - insert - tvf - formidable - origins - eden - depressed - mc - donalds - rub - regrets - judgments - scope - intellectual - capacity - ahmadabad - stethoscope - superstitions - rl - stine - quinoa - martial - smooth - damn - speeding - stephen - halley - barry - jealous - siri's - java - scenarios - pc - transfer - tw - agent - nightime - creamy - mirch - dil - cannon - cameras - process - merriam - webster - dubstep - rangoon - wines - older - navigate - chandelier - egs - recognize - subscriptions - mileage - studies - microphone - immigrant - electronics - careful - paint - fund - success - resolved - bola - eva's - roller - augusta - midtown - surprise - children's - dongle - seashell - bots - fallen - centimeters - poisoning - sci - fi - outcome - reform - sleepy - moderate - chrome - ultraviolet - george's - geek - courses - rundown - legend - equipments - usher - manor - advertisers - clue - depending - strongest - outstation - fallout - shoal - lastfm - relocate - pollution - awareness - bryce - jessie - carol - nsnbc - vacuumed - chives - splits - arbor - receiving - toast - futures - brokers - routes - fixed - additional - switches - church's - governor - enacted - grams - guitarists - android - babe - sonny - sear - eliminate - remain - uc - polk - pakistani - bedside - reshuffle - frida - devil's - rusk - actors - pakistan - happenings - sit - montauk - beethoven - legends - sunshine - mothers - smoke - feels - rockies - miamy - operations - addition - subtraction - incite - annoying - cristiano - ronaldo - spin - cows - jenny - spread - wallstreet - selections - nashik - ipl - oswald - chambers - horoscope - mgk - dog's - residing - cricketer - dhoni - byron - fluctuations - talks - palermo - shallowest - bbcnews - nsdl - flights - lineup - stick - ribs - jeopardy - timetables - emi - maya - mackensie - osteen - jimmie's - adjustments - precocious - fork - husband's - audi - hibachi - disputed - crack - visible - boiling - rogan - karachi - babysitter - kidnapping - hamburgers - madonnas - lessen - ipo - greenville - carries - creamed - pickled - herring - tackle - brush - geyser - savings - torey - hurt - subscribe - picks - birthdate - goals - cairo - projected - patrick's - capita - honda - intended - hurriedly - activates - it'll - wsj - spy - broods - grommet - steven's - underground - seahawks - participants - workday - ammi - nightlife - donner - summit - ukraine's - ended - arrangements - altucher's - writer - fortune - brisket - grant - audiobooks - twilight - bass - hunger - roses - barbecue - tuna - deadly - killers - finally - trilogy - grisham - goblet - roadblocks - birthday's - biscuits - lawyers - steve's - kari - labyrinth - commonwealth - sharma - gulf - petrol - earthly - ultimate - ending - allison - canberra - honolulu - flash - salman - gresham - hindustani - stroganoff - sock - creates - geo - traits - moral - rein - blood - slayer - pro - bono - succinct - dalls - somethings - sharp - izzo - whiny - bitch - macaroni - nights - jumper - blind - cure - cancer - vibrant - sloth - transition - recycling - bbc's - columbia - kentucky - hire - opera - prefer - avoid - sort - comedy - compassionate - nc - va - riddles - segment - youth - charity - surrounding - punjabi - sharply - lovett - barber - label - hypocrisy - subscriber - captain - disillusion - hyderabad - dashboard - storm - barrel - panasonic - clinton - canasta - mittens - badra - amit - trivedi - crystal - lewis's - everywhere - rue - evaporated - mma - offered - tutoring - peas - dream - cafes - lauderdale - deletion - precise - parliamentary - remotely - connection - calendars - stupidest - shovel - western - cutting - ll - rapping - spelling - mama - tatum's - fulton - universal - garner - chill - icebo - college's - rehman - soundcloud - scorecards - ketchup - jimmy's - crate - lexmark - preference - females - federal - andreas - sportsnet - favourites - janice - bins - pamela - covered - rhapsody - italian's - ke - panera - remainders - tandoori - sukhwinder - sunidhi - etymology - googleplex - slide - wearing - trivial - pursuit - cancels - martina - mcbride - finances - vocab - zipcode - compaq - composer - margarine - jonathan - entrepreneur - extended - combo - memories - tupac - affects - drunks - ford's - liked - dealership - olky - realtor - thighs - ourselves - economics - medication - gross - domestic - donaldson - prostate - wicker - rooms - instrumental - savannah - outing - affleck - quotes - tire - montana - exhausted - acoustic - commercials - convenience - consciousness - serge - gainsbourg - windows - turks - generate - pedicures - btaxes - departures - frasier - amazon's - bluetooth - verus - neat - forecasted - bing's - dropped - recurrent - candidate - aware - blackeyed - pees - prince's - perimeter - rectangle - aaron - carter - involve - drugs - lighten - slicker - rains - cloud - carrot - popcorn - carmike - cinemas - greater - minestart - frog - lenon - unique - hanging - hung - sporty - seldom - jocko's - kid's - viewers - cantonese - usage - specs - bugatti - veyron - chief - blockbuster - krishnarajpuram - interstate - hammers - obligatory - wonder - southeast - marlon - brando - ferrel - tal - obidallah - manoeuvres - merita - rotate - changs - pepsi - shanghai - branden - wind - landmarks - dvr - congestion - valentines - eastwind - lomaine - geneva - officially - hopkins - takjistan - dimmer - karo - apne - aur - karna - chahta - hu - purchased - otherplace - giraffe - ute - requirement - watts - powerful - bulb - oclock - nba - hulu - composing - melissas - millilitres - spoons - goulash - thor - harischand - mg - i95 - sb - kilo - diana - llyod - webber - wool - penultimate - bang - philosophers - nietzche - focault - profession - kilograms - turkeys - bibulous - angeline - atm - narwhal - kilamanjaro - captia - volkswagen - onkyo - av - receiver - ipad - aniston's - summarize - ice - jindel - pump - nikki - minaj - nationality - snoodle - yemen - sudan - unprompted - organization - megan - fares - engage - functioning - dinar - conservative - korean - sahara - kingdom - antartica - telugu - tamil - tsunami - rajani - khanth - venture - goalkeeper - dushambe - abrupt - hbo - sopranos - parana - cave - anime - posters - johny - depp - invisible - graphical - joli - pricing - beech - nuclear - triad - hilton - borders - lucille - redhead - geraldine - ferraro - bde - lowered - phrases - nicole - mcgoat's - manipulate - roip - nasa - google's - davy - crockett - springsteen's - richest - costliest - easily - gm - psso - kroner - maple - trees - christie - brinkley - libraries - gmb - key - mongolia - anastasia - telekenesis - promise - stray - cruise's - starring - odyssey - polish - zloty - hook - ups - integral - exponential - berkshire - hathaway - tables - pink's - alligator - porto - tommy - hilfiger - print - networks - snaps - celebrate - bina - yay - smiley - emoticon - commented - folgers - hathway - huge - lfi - tagged - treated - hersheys - aircel - nastyburger - linkedin - tracy - waiter - drain - charge - neptunal - poorly - waited - inappropriate - potus - accounts - vodafone - complaining - spoiled - positive - tumblr - unpleasant - overpricing - cheating - connected - else's - greetings - thought - waste - excess - micro - lodge - snapdeal - sonic - hole - sole - patel's - insect - packet - elsewhere - moan - easyjet - snotty - expired - xl - sizes - filing - applebee's - angela - merkel - swagging - moto - sluggish - flavia - mum - jacob's - existing - cannot - pleas - mahmoud - ebay - smsayyad1985 - kishore17051985 - fedex - truette - petey's - tessa - gaurav - karen - mongomery - llc - joseph - turnpike - accumulated - deadlines - fees - ppt - emergency - missing - carl's - attach - physical - drill - marilyn - jugal - here's - bug - sarasigmon123 - lindafancy55 - markpolomm - gary's - mailing - bill's - erins - beth's - wont - stacy - cadwell - tori - aloud - brenda - thisome - smurfette - smithjoe - hwacuk - chong - giselle - bosses - havent - frieda's - jjjindia - exists - batch - samuelwaters - joose - hellen - builders - accepted - victor - taxi's - terry - macdonald - yahoocom - metion - rodger - christy's - otp - jayesh - tried - morgan's - office's - rob - qerwerq - secured - gerry - raj's - junable - shopyourway - reference - jhonny's - marissa - rosa - bert - ana - goddammit - pronounce - serious - recheck - slowly - failed - fuck - executed - clearly - errors - showed - races - thursdays - funky - handmaid's - beam - scotty - debit - wiki - editor's - automobiles - promo - discount - director - act - bejeweled - aside - snakes - ladders - marsala - influx - bayou - reasonably - tapas - az - ddlj - meatball - newscast - bibber - tmz - devon - applebees - hihop - doggie - feelings - radios - litle - tsos - congratulate - links - treble - flame - eta - encourage - students - choices - lobby - vf - chore - butterfly - clips - urban - regular - bi-weekly - baltimore - sport's - breakups - dale's - brea - douglasville - fundraiser - dolphines - maradona - pe - becky - appointed - deputy - utar - pradesh - anniston - handy - sainsbury's - attenuate - parcel - jakes - bristo - stressful - deposit - mathematical - superstar - survivor - destiny's - westcombe - facility - oboe - mcnamara - abolish - swim - repair - grub - hub - ill - dec - dreams - wyatts - obstacle - poach - dental - rose - davinci - trevor - noah - ncaa - entrapreneur - sanam - differs - ave - hopsin - enya - wbc - accordingly - remarks - sufi - beibers - arrested - sensor - music's - author - antwerp - cnn's - foodnetworkcom - customize - preferred - unable - duct - tape - gooseto - apig - ringer - secure - passage - tomatoes - wan - senelena - americano - makeup - robotics - teleconference - robotic - poughkeepsie - steel - day's - soundtrack - tobymac - transit - gloria - furious - nazi - hunting - effect - marvin - gaye - pasadena - ca - constrain - singles - outer - nowhereville - comfortable - erica - grebe - wooly - trigonametry - obsessed - graphics - undone - tough - treasury - toledo - munich - obtain - nutritionally - balanced - internal - locks - exit - mocking - lyft - transaction - tasty - mixture - according - hands - supports - canceling - congressman's - lenin - spagetti - controversial - statements - walker - humor - nkotb - jon - snow's - possibility - wellington - nz - advantages - disadvantages - driver - towels - stretch - gear - joey - crimson - chose - pineapple - asparagus - teaspoons - bling - medieval - engines - foods - hurts - cannibal - tonic - bitcoin - collection - hidden - figures - brasil - politic - superb - dalida - capuccino - analysts - thankama - kodaikanal - vote - burritto - chipolte - abut - sedaka - chamber - rfi - knock - cnncom - remchi - fl - ortcars - flip - wire - thriller - fiasco - breaks - dam - paradise - presidency - sigur - ros - socks - van - halen - wayne - spare - lightness - appropriately - both - musics - coastal - cry - friend's - wore - veganism - picnic - regent - visited - therapist - inauguration - swatishs - dorothy - known - supervision - superbowl - eric's - bday - kar - abhi - achche - ache - rahe - honge - mhz - sponge - bistros - brownies - tenderloin - enchiladas - gluten - hotdog - row - bing - notebook - pulldown - clearer - medford - drivers - waverley - canal - connecting - summers - gibraltar - monoprice - mxblue - mechanical - turbulence - carey - blunder - factorial - depends - commands - stand - draymond - susumu - hirasawa - yosemite - '200' - baguette - stonehenge - douriff - ivf - ivr - litt - runs - hesitant - crock - guetta - malaysia - whelers - sadness - william - coral - daft - punk - sandle - santha - ingerman - calc - shibaru - alcohols - nano - gina - desta - mgmt - bana - talking - garvin - trilly - nytimes - chhana - mereya - favor - strained - cooler - films - einstein's - aroma - ska - raphsody - trebuchet - forth - relate - qualifications - kirk - franklin - arithmetic - skyfall - bathrooms - raghu - dixit - reports - availables - haddock - odd - cape - cod - noisy - dull - hackernews - porn - pad - fight - fighter - nzd - melodious - burton - helena - campaign - mcclanahan - mummy's - motown - rasgulla - janta - pvt - ltd - heartthrob - justin's - velociraptor - hippo - senatra - giggle - peru - nirvana - anirudh's - retro - mf - doom - summarise - ariana - grande - predicted - creed - user - desire - kenny - roger - sia's - thrills - wapo - stockholm - okinawa - occasionally - shuffling - veggie - mukkala - mukkabilla - guardian - anytime - themes - horror - ennema - eatha - homestead - forever - mayor's - stance - council - master - louies - keane's - fears - noe - reggae - largo - swiftm - afi's - xinhua - dedicated - bottom - franks - yelawolf - ucl - flop - grammys - espn - joni - mitchell - shot - tequila - sleepyhead - aces - redder - edms - lamp's - loudest - brolly - thao - nguyen - interior - dine - dogwalking - nytimescom - overcast - deactive - foo - disasters - opacity - dea - guam - drug - abuse - itzhak - perlman - drawing - sweden - bombing - ireland - poll - hotha - defrosting - salt - toggle - spb - weatherit - either - forecasts - intellicast - weathercom - orevena - recorder - pizzahouse - reorganize - sticky - umbrellas - opened - cleaned - shakin - bakey - tips - hypoallergenic - sarcastic - cheat - ii - developers - edg - yaad - dilana - kahin - samantha's - rita's - adding - bro's - attendees - maggie - valet - groomer - timeframe - pete - faculty - parade - greens - jack's - walter - gemma - nail - arora's - namkeen - tonights - ggg - tie - iheartradio - rov - javan - wfrn - kicks - osteen's - wgrr - lite - prairie - companion - palhunik - pudding - tutorial - welsh - rarebit - oatmeal - pathia - achieve - veg - pulav - crockpot - prepared - keno - pinball - fishdom - nfs - harvest - crops - farmvile - millionaires - vodka - depend - pon - stationary - mad - errands - paav - queried - pepper - rowling - shadi - viewed - mlb - heavyweight - citadel - scene - circus - trolls - grab - kung - fu - bowery - railway - coach - fare - metrolink - navigation - westwood - layfayette - inconvenience - emotions - arrahman - cosmos - multiplied - abouts - hitting - eliot's - el - ribbons - sperm - whale - eaten - lbs - pinhead - timeliness - defining - thesaurus - penalty - approval - poetry - ambulance - jello - shots - ferrell - stassi - schroedder's - tacobell - hierophant - zealand - stockton - emissions - blowing - kennedy - ziggurat - gagas - gretszky - hemingway - pages - earn - nobel - actions - sloths - parton's - madagascar - acting - tiangle - trebuchets - googs - gandhiji - amal - brazil - adviser - rich - acted - rihanas - stamp - mugy - msn - busdriver - fergie - flick - ribons - nakumuka - postmates - complaintum - glinder - gta - rcg - outlet - hadock - mclanahan - coal - mumy's - piza - wheelers - guarante - debugging - debuging - proper - sung - bilando - terrorism - cover - dimmed - vanilli - marauthr - wooo - michael's - shutdown - pittsburgh - precipitation - riff - portland - muggy - giants - banks - steelz - ensure - ricky - matin - tyres - plant - chased - advice - gossiping - society - mitushree - hairdresser's - biology - fsu - reflect - yashas - vinay - vally - closed - shoutcast - pilkington - soda - powder - sambar - cookingforu - thermonuclear - battleship - cereal - wishlist - wrist - hipsterhood - duncan - trussel's - simmons - wide - cisco - crafts - sporting - presently - sheffield - septa - lead - fransisco - washingdon - evolution - mariah - kya - tum - mere - karne - karoge - acts - assembly - idle - brand - meridian - terranova - guarantee - marian - fields - farthest - philippine - cambodia - situated - foruget - monopricechanical - peenth - moroco - piz - tre - supplwn - viki - shivle - loged - applebe - acess - madagar - anp - socer - subcribe - pluged - imigration - audiowan - debie's - imediately - f - locar - duark - rebeca - talle - banas - ragh - acordingly - wakely - en - bress - acording - stefanan - puding - vegie - vius - edie - domizza - eg - cheeseiza - ocurred - brightnes - alaba - memory - fransico - sunderland - boogie - butt - leviathan - shinning - premier - cleanup - wacky - aman - cherry - bomb - solstice - silently - closet - nakumukka - shed - responses - yankees - investigation - dooa - pieces - imogen - heap - stole - dynamite - cease - operating - rained - uptown - suggestion - finlee's - bedtime - sockets - sanfranscio - abbas - cn's - vibrate - cooling - sheriffs - hike - ilayaraja - speaking - un - storms - roof - tube - jackpot - classmates - extremely - somewhere - drenched - sentient - budy - heating - apt - parenting - concerning - seo - searches - sticking - patterns - numbered - impression - reunion - presents - mehta - willing - discuss - evan - parker - violin - lesson - musicworkz - registration - opens - evening's - thursday's - nineteenth's - hayathis - shower - corresponding - showcase - famosa - kamp - neal - brenan - gx - nonstop - rm - giver - traveller - knowledge - crispy - supper - broil - noodle - stuffed - maccoroni - almond - clash - clans - ping - keeper - enemy - coc - detergent - corn - dill - pickles - ranch - dressing - lentils - translate - toothpaste - rearrange - groups - santana - pritzker - winners - libertarian - mc's - vitaly - nfl - mythical - oriented - provisional - experiences - safely - themselves - mia - reducing - learly - court - vin - diesel - netbooks - chinatown - aberdeen - queens - luni - purchasing - timing - bagmati - narrow - egypt - represented - revelation - britain - aamir - priyanka - middleton - base - original - nhl - goal - scorers - osteoperosis - laws - correlation - motivation - ncaaa - tense - touring - framework - adel - diamond - schwarzenegger's - stomachs - cow - chairs - steph - subjegant - pategonia - michelle - todlers - stakes - tinder - matches - fjord - equator - triumph - hell - moldova - presley's - wa - rajinikanth - basalt - bali - airplane - hash - lit - <sos/eos> two_pass: false pre_postencoder_norm: false init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false pre_postencoder_norm: false transcript_token_list: - <blank> - <unk> - the - to - i - me - you - is - what - please - my - a - for - 'on' - in - of - email - this - it - have - from - and - play - olly - that - new - can - do - how - tell - about - at - any - today - not - time - are - check - list - send - with - an - one - emails - last - will - am - again - set - next - would - was - up - like - turn - said - calendar - meeting - get - what's - right - all - did - be - need - want - song - tweet - add - event - your - news - 'off' - weather - there - lights - more - now - alarm - pm - music - show - confirm - train - could - think - does - make - command - just - find - when - tomorrow - much - where - week - by - give - events - know - day - start - two - latest - response - that's - remind - done - but - thank - stock - some - you've - answer - five - open - current - many - remove - radio - good - book - 'no' - facebook - going - it's - volume - reply - work - delete - go - complaint - contact - if - service - let - thanks - so - hear - once - correct - john - playlist - birthday - got - post - ten - order - sorry - has - date - hey - coffee - who - rate - three - exchange - further - light - twenty - price - mail - reminder - explain - podcast - ticket - down - really - clear - seven - schedule - alarms - say - morning - change - twitter - cancel - number - dollar - stop - out - appreciated - hundred - wrong - don't - information - address - contacts - read - york - us - which - should - 'yes' - details - songs - between - nine - anything - s1 - received - playing - shut - dot - mind - com - google - most - put - job - traffic - four - best - six - create - recent - yeah - happening - friday - name - very - area - mom - or - take - appointment - yeap - room - world - home - hour - message - eight - clarify - s2 - party - episode - here - elaborate - alexa - appreciate - customer - i'd - sent - thing - march - look - tonight - place - try - after - definition - call - well - times - rock - phone - speak - today's - whats - food - thirty - see - joke - every - pizza - write - lists - game - shopping - weekend - rephrase - month - matter - s - update - station - vacuum - great - detail - long - gmail - old - repeat - city - audiobook - perfectly - status - inbox - mute - local - near - restaurant - thousand - tuesday - year - we - media - before - around - resume - musch - her - house - taxi - hours - didn't - describe - answers - understand - incorrect - word - listen - first - item - d - trump - save - days - socket - recipe - nice - u - reminders - social - search - as - monday - subject - location - movie - saturday - euro - dinner - them - ask - let's - scheduled - plug - i'm - gotten - question - minutes - friend - favorite - meetings - define - instructions - exactly - cook - understood - sentence - thursday - grocery - correcly - their - words - temperature - person - amazon - catch - company - mean - something - correctly - living - fantastic - help - following - dollars - rain - speakers - instruction - helpful - increase - consumer - evening - family - upcoming - jazz - saying - way - switch - forecast - task - cleaner - love - late - boss - wednesday - yesterday - updates - lower - people - cool - wonderful - twelve - afternoon - color - wake - oh - lunch - perfect - back - understanding - useful - amazing - his - dim - movies - chicago - things - takeaway - fifty - unread - happy - available - noon - wouldn't - night - had - appointments - idea - michael - doing - over - doesn't - select - hi - shit - may - they - delivery - nearest - buy - apple - car - left - confirmed - report - worth - robot - uber - wemo - sunday - excellent - outside - blue - looking - messages - top - wear - point - too - i've - country - prices - bring - store - awesome - unclear - ok - mark - speaker - app - sound - hot - live - jackson - bad - recently - currently - smith - pull - whatever - india - messed - kitchen - ninety - percent - him - use - office - brightness - care - gave - description - tom - regarding - meaning - meet - siri - bob - joe - hmm - leave - sarah - smart - come - chicken - seventeen - walmart - bill - enough - choose - louder - our - trending - born - london - zone - account - cnn - audio - president - isn't - compose - coming - second - manner - pick - album - uhh - plus - provide - erase - notification - played - channel - donald - pound - instagram - made - bbc - recommend - happened - united - replay - shop - free - dammit - nope - b - nearby - pop - shops - california - highest - notifications - shuffle - fm - chinese - currency - uh - restaurants - jack - april - robert - only - been - why - states - friends - skip - important - he - samsung - later - notify - bedroom - john's - mails - eleven - red - exact - cold - cup - rates - incorrectly - fifth - money - boston - spoke - tomorrow's - forward - respond - funny - wait - business - market - star - headlines - third - favorites - bother - retry - stocks - high - g - favourite - george - umbrella - directions - wedding - content - m - close - spoken - concert - run - alert - searching - mary - into - artist - located - mike - anyone - snow - tickets - then - reset - garden - route - hello - tall - likes - talk - forty - share - feed - were - indian - washington - difference - remember - convert - receive - tune - level - asking - capital - life - dad - yen - street - raining - mistake - correctly? - quite - pandora - jane - town - yet - player - park - san - american - far - sports - raise - popular - display - these - couldn't - mountain - dentist - importance - unimportant - complain - clean - continue - euros - los - ready - yahoo - can't - classical - politics - newest - lighting - miami - trip - horrible - info - added - prepare - iphone - machine - mother - miles - via - chris - tv - since - bathroom - state - cheese - request - items - oops - ah - closest - warm - microsoft - settings - value - keep - brighter - note - everything - wife - decrease - okay - using - rap - election - sunny - eat - usa - eighty - fifteen - until - wanted - wrongly - dog - obama - years - coat - week's - japan - quiet - paris - angeles - comcast - target - emailed - airport - interesting - mcdonalds - mr - married - green - product - past - little - other - t - listening - cooking - activate - earth - dance - title - florida - rupee - travel - kids - takeout - pending - america - making - its - than - doctor - population - bar - plans - power - fourth - silent - ride - milk - how's - seventy - sure - fine - jennifer - july - sister - brighten - picture - deliver - singer - clock - inform - brad - burger - never - pesos - object - hero - arrive - classic - olive - games - group - watch - line - justin - cost - project - called - lets - track - still - starbucks - form - repeating - christmas - breaking - due - cheapest - forget - posted - james - posts - central - lot - stories - whole - small - ever - steak - review - requested - wish - david - workout - alex - seems - given - gym - largest - la - average - compare - china - fifteenth - having - rupees - band - background - meal - online - reserve - file - lamp - laugh - sun - anniversary - eastern - busy - mobile - bit - jokes - places - geographic - else - chess - meant - working - p - planned - program - seconds - rated - large - issues - road - pay - big - holiday - daily - 'true' - celebrity - better - hut - being - sixty - away - helped - peter - god - cab - someone - internet - page - anna - feel - video - steve - opening - lately - sandy - bank - weeks - id - sam - pitt - river - february - i'll - saved - soup - phrase - distance - economy - hits - sony - eggs - low - water - text - topic - co - begin - attend - groceries - adele - reach - within - pause - half - yourself - kind - dark - replied - enter - must - asked - beatles - fun - ingredients - against - invite - soon - colour - different - jacket - updated - seattle - denver - canada - vegas - mode - pasta - january - doe - listed - refresh - listened - team - longest - spotify - remainder - telling - mumbai - you're - orlando - card - rice - during - reduce - locate - future - starting - boil - genre - class - slow - famous - named - allen - youtube - works - olly's - dc - brew - through - pounds - football - pacific - white - sings - egg - oil - festival - clothes - moment - die - orange - school - kim - las - divided - whether - photo - everyday - ryan - bills - headline - fix - square - npr - jake - brother - todays - terrible - weekly - type - topics - months - chat - yoga - reading - products - extra - cut - adjust - king - personal - client - jan - data - doctor's - computer - rohit - johns - o'clock - canadian - mistakes - rid - names - control - sunscreen - per - lady - head - taylor - always - budget - pink - bought - x - side - ahead - articles - english - ny - able - reschedule - fast - hashtag - tweets - countries - numbers - running - alabama - blank - madonna - bright - yellow - west - went - options - story - october - russia - together - n - basketball - joe's - dominos - tomorrows - less - situation - colors - mom's - end - payment - drop - downtown - provider - joes - means - helping - mexican - friday's - cricket - return - needed - death - tech - charlotte - heavy - draft - sea - paul - r - condition - seventh - dallas - hip - related - article - heard - war - elvis - everest - problem - stating - bieber - system - sales - shoes - hard - become - based - kevin - age - she - quality - mile - hair - gas - biggest - inr - climate - hate - twentieth - sucks - dean - angelina - turkey - harry - cake - national - record - longer - dave - subjects - brown - supposed - ocean - church - drive - gandhi - needs - above - theatre - cookies - abraham - gone - map - television - such - face - sale - jim - francisco - sean - june - romantic - compared - curry - ball - jeff - subway - lincoln - bed - lagos - turned - south - won - trains - girlfriend - mahatma - nsa - hop - amy - commute - solve - came - created - dont - history - math - telephone - says - laptop - pawel - offer - fox - single - sixth - midnight - missed - potter - loud - richard - chuck - looks - practice - body - dan - husband - waiting - birth - stuff - adam - sender - gaga - truck - france - texas - restart - intel - colours - statue - liberty - intensity - previous - problems - outlook - visit - wine - peso - continent - utterance - helps - asssistance - each - north - grand - patrick - match - opinion - plan - trump's - papa - instead - martin - root - purchase - perry - richards - closing - cloudy - eddie - senders - move - susan - tesco - size - shows - folder - spaghetti - doctors - stores - presidential - dates - theater - menu - agenda - ann - code - animal - frequency - kansas - roomba - technology - tasks - without - flight - who's - beach - empty - tired - driving - entire - carry - british - dr - asia - rccg - uncle - vacation - pepperoni - programme - standard - reminding - maximum - starts - tallest - gonna - fourteenth - playback - medium - nike - cruise - changed - diego - arrange - bowie - learn - mount - particular - costumer - sundays - fire - calls - silence - podcasts - spain - dominoes - website - italy - strongly - agree - agreed - suggest - mood - fourteen - result - metallica - thinking - session - profile - england - active - ohio - grid - fall - pot - marriage - queue - told - narendra - jerry - mt - frank - tenth - wishes - recording - finished - international - calculate - hit - towers - ninth - site - feeling - macy's - tag - actually - black - birthdays - hottest - mary's - expect - snapchat - jay - smith's - mountains - building - setting - cleaning - height - initiate - hall - breakfast - martha - conference - aol - win - steps - fancy - smartphone - led - zeppelin - houses - holy - currencies - club - children - atlanta - einstein - happen - cell - landline - coworker - objects - negative - modi - soft - haven't - mention - radius - books - daughter - results - earlier - bruce - butter - stars - remaining - delivers - device - domino's - unmute - joy - twelfth - voice - taking - snowing - sick - boots - cleveland - journey - destination - worker - poker - lee - katy - australia - incoming - least - lisa - experience - million - recurring - scenario - sacramento - geography - library - brief - jolie - monthly - elton - sirius - alaska - lyrics - oven - log - random - moscow - barack - disney - alive - measurements - maker - poor - error - stone - versus - hotmail - interpret - sarah's - memorial - goes - stay - delhi - health - special - speed - thirteen - test - edinburgh - credit - facts - cat - neighborhood - sometime - empire - entry - financial - comment - link - hockey - circuit - holidays - singh - jodhpur - rockville - ones - features - bread - eye - mall - directv - contain - seacrest - chance - under - table - few - hotel - rude - services - yesterday's - certain - fb - abc - netflix - linda - notes - length - reminded - shoe - wild - employees - beef - sushi - fastest - thirteenth - recommendations - fish - tennis - main - jersey - jones - break - concerts - gomez - angry - uk - replies - emily - kickball - released - upload - effects - quickest - italian - caroline - emma - real - human - minute - took - activity - jeff's - staff - handler - touch - hold - joanne - range - moon - submit - ends - tomato - lost - prime - twelveth - phones - amd - hectic - bobburgers - screwed - porch - reviews - vegan - rihanna - houston - ham - mondays - general - engaged - walk - melody - electronic - held - selected - equal - getting - tata - wall - clothing - round - leaving - nasdaq - total - pressure - expensive - border - exhibition - trash - november - handle - halloween - attachment - kardashian - shoot - rewind - rating - toronto - department - procedure - member - ray - chelsea - rohan - arrow - checked - modify - wasn't - chances - protest - lottery - prince - include - jo - net - pie - sleep - enjoy - nineties - taco - banana - source - quieter - bored - desert - guys - gary - activities - already - contract - st - minister - disable - woman - europe - arijit - audible - presentation - cad - records - trips - booking - tacos - sally - non - centre - direct - advance - selena - policy - orders - stefan - arrival - divide - chocolate - dish - teeth - hdfc - silvia - stove - coast - defined - digest - snafu - manager - pinterest - tim - conversation - bulldog - titanic - brunch - heat - canyon - dial - earliest - region - stopped - foreign - folk - watching - brexit - albert - joejoe - early - cities - manchester - december - biloxi - often - questions - garage - tunes - possible - ms - ar - kiss - shares - bangalore - heading - derek's - desk - cheers - tomasz - terms - companyname - sara - asap - super - meryl - streep - rent - dress - cinema - usually - trend - conversion - friendly - ties - ordered - electricity - marked - migration - choice - journal - norris - aniston - mailbox - minus - fried - miley - cyrus - newly - theory - rest - swift - windy - dan's - mass - comes - selfie - wings - julie - masti - celine - plays - pack - including - responded - jason's - ale - apples - dolly - oranges - lg - washer - substitute - global - feedback - grandma - ben - drainage - invoice - sunset - takeaways - man - art - universe - suitable - antonio - full - delivered - laundry - wrote - min - register - snap - nixon - bird - spend - rome - jesse - calories - cappuccino - quickly - buying - britney - spears - spacey - jobs - arriving - jean - potholes - janet - pictures - ashwin - morgan - freeman - baby - microwave - yellowstone - francis - dubai - invitation - hope - melbourne - rocky - kroger - rivers - charles - jim's - rectify - statement - carpet - baked - jessica - meatballs - mushrooms - amount - switzerland - relating - zero - front - phonebook - hows - cheesecake - carryout - magic - ola - replace - recorded - access - land - where's - elephant - removed - liz - load - metal - package - diner - goog - bob's - k - year's - mars - guy - assistant - rahman - eagle - part - burn - aran - stevens - daughter's - eighteen - chemistry - action - selling - thats - koc - lines - sugar - major - chair - easter - departing - africa - nigeria - requests - conditions - you'll - manhattan - roll - cracow - candy - crush - bell - massive - gold - happens - usual - andrew - equals - dead - plane - graduation - warned - shaun - triangle - wyatt's - pass - function - max - space - programmes - awful - parton - exciting - battery - hwu - recipes - dirham - rushmore - johndoe - button - express - pontificate - easiest - magda - selection - reservations - guess - copy - classes - supplies - schedules - winning - berkeley - notice - headed - outgoing - mi - rainy - wikipedia - entertainment - dow - everyone - aunt - furniture - oceans - softer - heart - newmail - while - baseball - easy - stations - philadelphia - alice - swat - yearly - poem - soccer - president's - milan - paper - kardashian's - loop - shown - sandals - yo - scan - nevada - apahelp - coldplay - french - bay - higher - rumplestiltskin - airlines - fresh - standing - cream - hamburger - broadway - oscars - tokyo - cable - shipment - formula - teacher - sweet - golden - newsfeed - confirmation - shirt - austin - own - canon - wanna - gods - spanish - count - seat - ideas - study - tara - mutual - jennifer's - because - edit - denmark - direction - timer - growth - luther - marketing - cd - mine - public - peter's - bolshoi - flat - crazy - others - dry - pub - theatres - bro - fashion - teams - cycle - pickup - dion - teach - series - checkout - male - noise - solitaire - pf - cassie - travelling - davis - naty - income - disco - dropping - donna - follow - shelly - accidents - plot - irene - download - circle - law - tea - organize - principal - weekends - camera - solution - bombay - wuthering - heights - charged - colorado - kong - keys - race - mona - entries - j - nyc - potatoes - gospel - raju - trivia - bike - dating - oregon - event's - prefers - rush - percentages - peking - cooker - husbands - won't - tower - heaven - hugh - june's - fake - figure - purple - takes - l - howard - stern - nineteen - percentage - motorola - doe's - outstanding - tesla - laura - dale - warning - eighteenth - golf - island - career - bieber's - vacuuming - pizzas - refund - weekday - s's - derek - thanksgiving - delayed - query - buffet - rachel - pants - wash - survey - photos - except - topography - door - jen - queen - depart - cheap - theaters - web - jesse's - multiply - workhouse - press - click - loss - recipient - verizon - volcano - rolls - royce - pixel - affirmative - completing - thai - walking - bananas - hollywood - equation - dirty - scores - katrina - exam - creating - letter - sing - construction - broadcast - tom's - rupies - management - permanently - converting - ist - iron - religion - kings - tucson - standup - tic - tac - toe - headset - sex - diapers - purpose - seventeenth - eighth - dylan - temple - refer - gift - fact - drink - inches - air - carpets - newcastle - clients - private - tasting - sams - nj - chili - cultural - swimming - they're - iowa - jordan - period - accept - cincinnati - college - rainbow - myself - deep - deepest - warming - sky - vp - seeing - indianapolis - kmart - nikesupport - image - suck - broiler - timeline - dell - parisa - brandon - example - y - filter - sad - shine - sixteen - christian - pic - pdr - fry - another - network - omelette - kilometers - municipality - giving - leo - cups - earthquake - susan's - application - cross - across - carl - pawel's - sauce - relativity - rail - sisters - letting - shorts - vs - rajesh - swift's - starving - discussing - block - written - n9ne - women - celebrities - bake - cookie - continents - workers - leonardo - mel - gibson - shall - beauty - sum - fair - deli - middle - same - nile - sell - role - boat - sandwich - parts - hearing - knows - sand - manoj - delivering - rahul - neil - australian - kindly - properly - assist - esurance - emilia - breach - loudly - harvard - marc - nintendo - scrabble - farm - lie - patio - greg - screen - degrees - yesterdays - carrots - receipt - lasagna - clooney - there's - degree - preferences - hallway - latin - nicest - lauren - worst - also - checkers - input - boyfriend - masala - tournament - monet's - burmuda - section - eric - japanese - supervisor - junk - performance - effective - urgent - oldest - tone - sweater - goa - bag - lowest - aus - peace - julia - summer - fan - hurricane - colder - steven - sachin - tendulkar - watson - exorbitant - bags - macs - yulia - matthew - pole - toby - pennsylvania - carmen - tiffany - complete - electric - wallet - albums - maths - distribution - eminem - familiar - regard - upwards - ron - couple - acme - angel - zoo - nineteenth - shazam - inflation - offers - devotional - jackie - tony - artificial - intelligence - grill - father - predictions - repeats - manila - cooked - reason - learning - nowadays - cheer - jingle - bells - anxiety - hoizer - girl - pondichery - position - teachers - dictionary - nap - cafe - m's - meting - crime - eve - horn - bristol - pubs - companies - johnson - resolve - waterfall - female - biriyani - drama - nothappy - haircut - remote - colleagues - bones - saturdays - cambridge - jam - maine - category - invented - chang's - boy - planning - chen - assignment - publish - hunt - alerts - dad's - deal - leading - trail - follows - young - jay's - summary - ko - beyonce - vergara - mexico - whishes - arrived - placid - specific - depot - tikka - expire - markets - problematic - highly - blues - thirtieth - brooklyn - tatum - argentinian - redso - des - moines - women's - richard's - cellphone - division - hong - political - charley's - steakhouse - accident - normal - wakeup - satellite - freezing - forex - jimmy - chores - snooze - design - museum - guide - speech - ran - shift - inferior - mashed - jcpenney - environment - raw - disturbed - sia - chips - anybody - present - reynolds - limbaugh - weekdays - islands - viral - asian - streets - inception - meatloaf - alternative - compliant - sensex - phil - est - hand - switched - recap - ferrari - nandy - promotion - kate - brothers - ma - followers - closer - deleted - gloves - bands - platter - boland - corner - strong - chipotle - eu - amtrak - son - charges - version - rajdhani - chart - manage - musical - hat - den - tonight's - syria - stronger - homelessness - nails - support - ally - sentences - penn - ago - turning - center - hungry - actress - keywords - usain - bolt - ongoing - cancelled - idol - julia's - wells - fargo - ri - sarahs - computers - devices - toms - regards - quote - production - brother's - inch - shell - marathon - directory - dictate - huey - lewis - elections - alone - marry - apart - danielle - jane's - mankind - singularity - nye - feynman - whom - inventory - makes - dept - apple's - education - bugs - settle - when's - geographical - jason - exchanges - mcdonald's - tgi - ship - hershey - facing - faulty - zita - jeremy - irons - wallmart - sphere - hp - gottten - pardon - engagement - showing - format - absolute - interest - messenger - gate - enable - columbus - hips - tour - sterling - thumbs - priced - tablet - amc - bible - safeway - organism - undertake - freedom - charger - documents - jars - clay - members - o - vegetables - delicious - beaumont - tx - finance - exhibitions - trumps - month's - v - applebee - dakota - bus - brighton - pa - darken - promoted - liverpool - utah - suggestions - micheal - complaints - pencil - keith - fridays - temperatures - hardware - exercise - jpearsonjessica - release - hoover - goshen - chester - wood - woodchuck - healthcare - borges - calculator - dune - reality - jobe - gossip - piece - convenient - titled - pork - belongs - hongbin - wreck - tool - started - gather - bruno - costa - patel - daniel - corporate - controversy - wendy's - texans - biography - flowers - investing - arrives - finish - spot - crop - culture - enjoying - fetch - kill - auto - washing - buffalo - he's - titles - ross - whose - types - pleasant - erin - madison - tuesday's - lif - khan - affordable - season - policies - c - expected - hypothesis - seth - kicked - unhappy - gallery - xorg - used - monali - thakur - noodles - cher - sally's - tracks - mid - launch - glasgow - bridge - releases - pitt's - server - clarity - yens - motivational - scratch - blanket - aib - reads - singing - monas - tuesdays - winter - rocket - lands - chan - economic - sister's - aa - film - pb - indiana - departure - pipeline - stitch - sleeved - hail - logan - style - quantum - physics - labeled - delia - began - rrcg - shape - awards - improve - pertaining - trance - lives - weight - met - brian - sinatra - sunglasses - attending - falls - requesting - sunday's - overhead - greg's - rom - historic - georgia - guest - jaipur - iroomba - alfredo - pride - prejudice - fill - interview - daddy - wangs - manchow - university - locally - lowes - tiring - east - medical - metro - bach - schubert - rooster - czk - channing - pad's - identify - yelp - scandal - affect - suffering - enabled - arby's - saw - mango - itunes - highlights - brings - sixteenth - tourist - wendys - presley - sold - intern - affairs - fries - buttermilk - panda - wants - floor - clint - eastwood - moe's - planets - equivalent - morrocco - gravity - uploaded - someplace - availability - issue - fly - jpy - natural - delta - disappointed - files - q - cindy - shortest - simple - ring - lotion - maroon - fort - died - bonus - repetitive - icecream - statistics - rebel - lawn - leith - measure - daytime - september - pilots - pda's - shade - sil - cap - punjab - gwalior - ashley - juice - nagar - ellen - programs - fairs - invest - suits - ingredient - launches - leaves - bjork - crater - elevation - stewart - hotels - spices - bubbles - grass - broccoli - capricious - philosophy - anthony's - apply - pings - gps - thomas - koontz - acdc - beijing - ratings - union - prayer - todo - angles - scissors - stashable - cinch - bacon - passive - que - occurred - lakeland - tulsa - advise - singapore - risotto - invested - model - helmsworth - bench - julian - buddy - rogers - brains - chap - badminton - dick - lopez - apartment - points - germany - unknown - thugs - healthy - rash - casey - oriam - ps - plants - mailed - ikoyi - grassmarket - marleen's - locations - bush - mac - reaching - allan - till - cheering - guitar - oxford - densely - populated - son's - hubby - comparison - putin - barcelona - gss - energy - pan - nyack - worked - unavailable - bryan - adams - miss - checkbook - jared's - enrique - iglesias - forms - jeans - voices - alan - tudek - animals - olx - mts - freed - jenn's - coordinates - humid - demographic - otherwise - tiffany's - outdoor - sheila - lincon - dust - serve - conduct - estimated - gaana - funds - downloaded - indignation - meijer - necessary - grubhub - pancakes - mario - bars - birmingham - sites - donuts - chopra - textual - rapids - cant - prefix - sounds - provides - amy's - benton - leeds - dsw - returning - defective - digital - bhaji - carlos - linux - upgrade - shark - attacks - screening - exposure - souffle - tracking - od - progress - paused - gilmore - hour's - imdb - orleans - european - gdp - surfers - theme - ash - ikea - klm - marilia - cars - robin - williams - surfin - ottawa - trade - contains - field - someone's - prague - brno - rene - interests - radiolab - harris - strive - accommodating - fell - relationship - pharmacy - memo - nancy - paid - expressing - disapproval - yard - royale - hide - amber - cheeseburger - coca - cola - al - matrimony - scott - potato - funniest - polling - mother's - chase - xmtune - matt - murphy - detroit - taiwan - organic - secrets - domino - ac - assistants - z - fred - owner - required - saga - hanks - trading - erosser - rosser - vikki - dhaka - notepad - oldies - alison - recur - w - mentioning - languages - lavender - toned - videos - stein - chennai - resuming - moms - foke - beep - discussion - woodland - lowry - meetups - powerball - toyota - focus - concentrate - nbc - roosendaal - deactivate - shrimp - parmigiana - bumper - spouses - lucknow - paying - hurry - served - rhythm - enquiry - hartford - plaza - hyundai - wishing - websites - briefing - complex - calculations - jarvis - highway - fired - dissatisfied - sandra - bullock - ratio - haskell - sharon - horse - mum's - dillinger - sunblock - sub - tab - crude - software - stadium - step - short - reddit - appoints - agra - sheet - keyboard - kfi - district - connery - carnival - wok - shutting - phoenix - cloth - rehan - lego - alphabetical - mexco - charles's - foodpoisoning - ultra - madonna's - harley - davidson - daylight - afi - infy - launched - inboxes - secretary - increased - resolving - fuel - injector - multiple - interval - mike's - espresso - sasha - susie - salesperson - country's - cylinder - specifications - ivory - pst - zoella's - jackman - reacting - potential - frying - boise - wendy - divisible - automated - katherine - pre - gaming - containing - decade - industry - foot - chemical - cause - taste - bra - julianne - hough - addresses - vonstaragrabber - lion - restroom - kohl's - mentioned - hz - royal - bloodline - relationships - billings - levin - quarter - lori's - lori - exclamation - definitions - birds - raj - priya - allows - worlds - kelly - clarkson - garam - scarlet - found - cub - dmv - excessively - lake - dried - reporting - smile - changes - charmin - eternal - smoked - meat - beanos - processing - chip - logic - insightbb - highland - terrace - child - peck - midwest - cardinal - anthony - barrack - jancy - thompson - cassy - gulls - alternate - sin - dragons - msnbc - residential - leader - siblings - pedro - serendipitous - bestbuy - targets - wawa - mentions - engagements - hawaii - jr - applied - halifax - ahmedabad - monty - python - stronomy - blahblah - blah - arrivals - subtract - payoneer - formal - connors - indranagar - transform - marcia - perpetual - arranging - cvs - callum - steffi - attention - kanye - mommy - chucky - forest - polarized - proposal - conrad - coldest - hue - dictator - clancy - geranium - delays - build - lense - rai - transistor - dildo - warren - exercises - forman - kinley - bottle - retail - yan - regal - unprofessional - annual - payday - tricep - arts - ripped - vietnam - trends - chaise - preparation - nestle - paula - deen's - bmw - microsoft's - bookstore - below - moving - pretty - lock - administrator - edition - airways - marvel - garner's - rubix - cube - kfc - milwaukee - pager - alexander - gilchrist - goods - performing - unopened - security - chain - probiotic - colleague - knowing - novel - fiesta - comcasts - acer - farmers - fraud - weighing - india's - gotse - grapefruit - similar - tmobile - nifty - sessions - recital - greatest - openings - zip - demento - fatigued - disease - prevention - overcharged - unquote - cotton - tweeter - railways - flipkart - fist - renee - nutritional - starred - calculated - mattress - hillstead - paul's - jill's - disregard - pesto - stinks - nobody - behind - kid - nature - ounces - ted - boiled - dancom - wars - fmod - span - along - malls - joining - frequently - realdonaldtrump - bobby - mcgee - pwd - obamacare - clicked - falling - pampers - virgin - hayden - pat - amie - infosys - technologies - roads - aerosmith - airtel - dairy - sends - dues - tobytoday - ileana - d'cruz - rended - taj - ashok - typhoon - rama - final - missouri - virginia - announce - haughty - salmon - joking - goodnight - rebecca - believe - vowels - ban - haze - insight - cable's - fellow - tweeters - canoe - warriors - assassinated - acceleration - detailed - wife's - robert's - angus - interested - jen's - sjobs - cdn - ruth - simran - aapa - kadai - armor - sms - indefatigable - indicate - fra - floors - modcloth - honor - weigh - priority - hiking - smoky - judawa - expense - deals - plethora - sam's - august - elain - bbq - leap - congressional - representatives - voting - reproductive - ge - bbb - contacted - assigned - jill - drafts - scoring - touches - relevance - goggins - medvesek - philippiness - booked - board - locality - beth - katey - fans - approximately - charitable - rae - darker - anymore - printing - significance - fondle - mate - larry's - larrylarry - faripir - gurpur - seasons - softball - refreshments - jamie - carrie - underwood - abdul - kalam - subterranean - colombo - sri - lanka - quit - dollar's - award - among - spouse - forgot - ass - millionaire - indians - americas - julie's - transcribe - garbage - geographics - tree - criticize - tanzania - heather's - answering - spam - phishing - reseda - axel - kailey - prettiest - century - mattel - toys - grateful - fixing - maidan - sophia - betty - reasons - russian - applicable - loving - claire - crashed - batteries - philips - person's - compile - ali - matthews - apologize - comcastcom - luke - jean's - carefully - beg - trying - flooringco - seams - baking - skiing - calming - continuously - tale - roraima - innova - bowling - beginning - identifier - diverse - santa - continuous - hangman - vegetarian - roast - rewards - allow - immediately - shelley - hennessey - waking - dicaprio - ways - immigration - raised - lose - digger - cosmetic - perth - feet - chick - tornadoes - upstairs - badly - timings - lobster - runner - forum - thunderstorms - powered - plugged - rod - mgccc - bleed - ga - pune - mixed - dishes - radisson - cheetah - what'sapp - cm - father's - skill - graham - eggless - collect - favorited - flag - ssmith - virtual - bryant - spots - scapingyards - washed - springfield - draw - insurance - quantity - brightener - cuba - stream - raincoat - maiden - soundtracks - deliveroo - humidity - crowded - built - mesa - rosenstock - workpdf - occurring - environmental - dbell - converse - radia - logged - scabble - loads - jacob - hasbro - aldi - piramid - completely - method - hems - loose - connect - snapchats - arizona - festivals - hospital - peppers - bowl - korn - lupe - eurostar - umf - unchecked - berlin - lane - synonyms - hampshire - shakira - brads - keanu - reeves - johns's - increasing - burgers - stan - falklands - valley - maria - hangin - glow - we're - newsource - clark - carrey - jams - crashing - outback - sugars - defines - joel - venue - huffington - images - elizabeth - case - agnes - randomly - mecky - incredible - even - decreased - vacations - honey - akon - barbara - handsome - forensic - spielberg - korea - coding - achievements - albert's - clerk - hopes - zimbabwe - buble - research - excel - gun - rogen - resin - tooth - filling - mody - marinara - vicki's - mardi - gras - monika - relatives - chillin - lol - levis - tricounty - messy - disgusted - emoteck - foroogh - quick - decline - emailstudy - atdfd - giant - trey - kalka - mcdo - timestamp - operate - watched - infinity - tactics - upbeat - synonym - racing - towards - fog - muted - coke - eighties - tvs - theresa - brent - kamycka - dejvicka - tap - peanut - circumference - saskatoon - sync - sofa - mcdonald - silenced - catalogue - algorithm - sanctimonious - talked - realize - reveca - paok - wipe - bisque - br - rather - silly - stat - tar - vitamins - gain - xm - fongs - anywhere - zanes - se - chronicles - weber - commence - causes - sangli - german - hedges - truthdig - coffees - commuter - plain - mimo's - oscar - restrictions - treasure - louis - stevenson - fifa - beast - pav - prambors - hannah - ringcast - vegetable - episodes - overnight - apps - nathan - dismiss - karl - hourly - eyes - breeds - inside - tribune - join - crabmeat - shakira's - yankee - greenwich - gala - jump - recall - johnny - cash - pod - cast - rare - suppose - enjoyment - emo - nayagara - passion - pit - marckel - bohemian - emma's - arijit's - pet - prize - receptionist's - beat - freds - probles - patagonia - quart - '?' - zach - duration - jlo - alphabetic - phohouse - badpho - daybreak - biryani - battle - divergent - moby - jungle - jaiho - casserole - shooter - columbine - wednesdays - soul - accumulation - squash - calm - debate - schools - amd's - lee's - managers - myspace - relaxing - bahar - antarctica - atmosphere - pinpoint - payments - illinois - louisiana - cfo - pool - vyas - morel - mysore - rise - sdfa - newspaper - calorie - dangerous - sunrise - mostly - dining - shake - flood - prescription - mix - view - jana - spa - comments - pear - factor - clearance - northern - language - arnold - exxon - mobil - dragon - fruit - differences - seashells - seashore - velocity - motorolla - haggis - fiji - irwin - similarities - hypertrophy - sharukh - implement - kazakhstan - mediterranean - roman - grigorean - hardword - quead - amphibious - roberts - climatic - tornado - prone - rising - declining - megatel - denzel - washington's - citizens - arm - persos - belarus - gyllenhal - geology - helicopter - iphone's - drained - manger - navy - daikin - jerk - nexus - interaction - platform - tweeting - at&t - mahaboobsayyad - kellogg - ashmit - ismail - listing - enalen - projects - clara - clinic - exams - ammunition - mark's - divya - jjnzt - activation - andy - terry's - brenden - jeffrey - burnette - protests - joshua - pianist - whiz - schadenfraude - rials - storage - bot - provided - massachusetts - channin - store's - rump - prior - re - intelligent - recognise - irobot - areas - lighter - yell - uses - cn - gadgets - skynet - marie - lamb - balcony - nyt - bennett - ralph - pda - balloon - maps - degeneres - character - evans - actor - fitbit - malika - shivaji - attitude - lily's - concerned - upon - startup - stuffs - tawa - relative - legacy - cst - leah - remini - mortgage - amed - cleaners - seal - abita - grammar - backdoor - minimize - leisure - billie - spicy - training - comfortably - sunburn - minneapolis - habits - braking - notifier - swan - thoughts - pleasure - those - kashmirstart - sells - i'dl - kettle - 'false' - rta - valia's - visiting - techno - mornings - mow - cbs - slightly - francine - vice - postpone - mins - xyz - hwood - kept - spider - reopen - billy - connery's - eiffel - itinerary - crash - valentine's - likexchange - divorce - danville - il - government - menus - capabara - origin - assistance - vicinity - chit - drinks - flabbergasted - xy - self - double - castle - refrigerator - bakery - spray - pyramids - bio - basic - humans - schwarzenegger - inchoate - rules - caftan - raleigh - hobby - ajay - devgn - corden - aud - prevailing - kenny's - crew - aww - spying - employer - thier - juanpedro - craig - leon's - looked - players - costs - providers - sydney - documentary - hyphen - represent - strings - pianos - acoustical - celeb - pong - linear - turn_down - reaches - strength - routine - billboard - piano - ed - sheeran - diet - vietnamese - yams - grandmother's - rihana - require - stressed - option - affected - acquire - retrieve - clarion - congress - turiellos - mates - solar - dice - jalapenos - wished - painting - therapy - warehouse - mop - neighbor - flappy - returns - someones - spring - wonton - moves - jagger - fishing - hiphop - dunkin - donut - atlantic - daughters - hula - hoop - lessons - scrote's - indie - grief - lebron - naughty - preprogrammed - alt - needy - sharpen - butcher - knife - pulled - starbuck's - backward - terrorist - invaders - parent - crescent - brewhouse - prado - science - playlists - debbie's - sleeping - searched - lindsey - lohan - competitions - subtracting - challenge - beer - gainers - chili's - frubs - police - softly - practical - assessment - bonefish - rotating - placed - lakers - barenaked - ladies - lord - rings - mar - sneakers - artists - sanantha - shuffles - shuffled - bardonia - county - analyze - pattern - girls - league - fjords - nothing - brewing - smurfs - tommy's - lovin - cottage - ming - photosynthesis - danny's - repeated - peaceful - migrations - zydeco - inkheart - seller - occurence - telegraph - invited - wifi - levels - willie - nelson - dolores - alter - retirement - professional - development - sainsburys - byron's - floyd - raingear - notorious - bone - explanation - database - likely - lucky - irish - sshow - ramsey - aired - sprint - preparing - academy - yeshudas - angels - dancing - aretha - franklin's - layers - glass - kuch - hai - wakey - knitting - mujhe - feb - king's - malinda - parents - mirchi - gallon - seen - parks - safest - evacuation - beautiful - sofia - francs - consequences - various - dicaprio's - networth - phelps - disk - constructed - concern - effectively - lawrence - zac - galifrankas - wheat - prediction - schemes - mega - capricorns - dinky - lanegan's - princess - pregnant - smallest - americans - retweet - insta - sonys - bk - alzacz - kohls - cleanliness - pizzahut - delay - lpg - satisfied - choke - suqcom - repairs - killing - miller - budgets - iamironman - gbaby - gma - loves - kate's - margaret - ben's - brady - palmer - homework - tax - regional - archive - fitness - vault - footloose - child's - damage - petco - canceled - passing - pikes - peak - avatar - diverge - maron - fault - sword - eventual - contest - dangal - mauritania - abs - wondering - southampton - resources - soy - lexmark's - hilly - lyon - beirut - tribute - madrid - ate - sweat - charlize - theron - atif - aslam - capture - actual - shane - dawson - zedd - snooker - loquaciousness - sholay - tofu - nightmare - avenged - sevenfold - matters - prompt - panic - brilliant - boston's - mckinleyville - astrology - strait - countdown - cats - fruits - embassy - pita - gyros - negotiations - hairdresser - courteous - enthusiastic - funk - sense - heathens - cabinet - irctc - stored - shutoff - glasses - ella - fitzgerald - rover's - vet - polar - bears - oceanside - medicine - anita - barrow - burrito - oliver - covering - ground - zucchini - textile - antebellum - chimes - covington - species - bees - cranston - kilometer - behaved - rudely - jimi - hendrix - calms - outwards - califonia - composed - hint - shipping - frosting - sport - napoleon - hill - athens - middletown - shirts - sample - politician - investigated - rapper - con - cuisine - wizard - brick - conroe - iterate - architect - salon - babaji - passed - maryland - surya - monopoly - avenue - considering - celebration - brewed - galoshes - tutorials - workouts - millenium - toward - neighbourhood - bannon - storming - reoccurring - longtime - sweetheart - memos - starfish - centaur - philippines - oar - departs - preferably - latte - sides - pentagon - fashioned - rescheduled - transportation - twins - duker - deadline - samurai - obaba - bp - ambiance - automatically - object's - boost - morale - jogging - spell - firefly - mura - masa - checklist - biographies - sucked - congested - avinash - commando - jolie's - instrumentals - clarksville - tablespoons - surveys - flour - acela - calone - bucket - fulls - valid - references - critical - perpetuate - luncheon - ohm's - values - plying - expectations - musician - mindsweper - throughout - noontime - included - tour's - voted - walgreens - chickens - monday's - crankshaft - surfer - lunchtime - skramz - compounds - diabetes - might - reservation - homosapien - engadget - boeing - brisbane - ear - headphones - minimum - worry - snowplows - burying - driveway - adapt - destroy - impanema - equipment - turnt - attractive - conducted - cinnamon - freshener - watsapp - bean - awfully - entitled - murderer - ford - forties - scenery - morocco - sf - blokus - preacher - taken - stormy - centers - ethics - popup - mysterious - puts - stage - considerations - lourie - artic - scoop - carion - merced - bypass - passwords - quantico - grade - examples - cuisines - hibernate - bear - published - authors - tempo - keidis - tidal - cookoff - zones - probable - summerfest - dogs - aren't - necessarily - carolina - eleventh - chilling - sleeve - invoking - term - herald - maria's - poltergeist - imagine - uv - index - johncena - instruct - oscillate - liter - nelly - shawarma - baster - pali - vilnius - tabs - debates - singers - activated - ozzy - osbourne - danish - happypeoplecom - accounting - backpack - im - puttanesca - keeps - worse - wrigley - braise - loin - carnatic - bases - nick - swisher - stolen - clouds - cleared - bola's - norman - reedus - screwdriver - window - volcanoes - rowan - atkinson - minneapoliscity - delicacies - monitor - overall - gymnastics - channels - kxly - botswana - enjoyable - spectre - chane - decentralized - men's - freeze - postal - becomes - ccn - berth - michigan - composition - shahi - panner - dakar - jakarta - equalizer - weird - barely - rodriguez - oklahoma - giraffes - margarita - difficult - crabs - firework - probability - tools - emigration - legislation - pdf - cheeseburgers - applications - adopters - priest - walks - mechanic - h - showers - signs - contrast - recollect - gm's - duck - beavers - tail - lucking - horkersd - wo - myrtle - hr - steam - entirety - anirudh - colored - tropical - bedrooms - yellowish - elephants - expenses - contents - warmer - royksopp - etc - progressives - peoples - cultures - unset - iceland - mp - mangalore - tanya - quad - particulars - insert - tvf - formidable - origins - eden - depressed - mc - donalds - rub - regrets - judgments - scope - intellectual - capacity - ahmadabad - stethoscope - superstitions - rl - stine - quinoa - martial - smooth - damn - speeding - stephen - halley - barry - jealous - siri's - java - scenarios - pc - transfer - tw - agent - nightime - creamy - mirch - dil - cannon - cameras - process - merriam - webster - dubstep - rangoon - wines - older - navigate - chandelier - egs - recognize - subscriptions - mileage - studies - microphone - immigrant - electronics - careful - paint - fund - success - resolved - bola - eva's - roller - augusta - midtown - surprise - children's - dongle - seashell - bots - fallen - centimeters - poisoning - sci - fi - outcome - reform - sleepy - moderate - chrome - ultraviolet - george's - geek - courses - rundown - legend - equipments - usher - manor - advertisers - clue - depending - strongest - outstation - fallout - shoal - lastfm - relocate - pollution - awareness - bryce - jessie - carol - nsnbc - vacuumed - chives - splits - arbor - receiving - toast - futures - brokers - routes - fixed - additional - switches - church's - governor - enacted - grams - guitarists - android - babe - sonny - sear - eliminate - remain - uc - polk - pakistani - bedside - reshuffle - frida - devil's - rusk - actors - pakistan - happenings - sit - montauk - beethoven - legends - sunshine - mothers - smoke - feels - rockies - miamy - operations - addition - subtraction - incite - annoying - cristiano - ronaldo - spin - cows - jenny - spread - wallstreet - selections - nashik - ipl - oswald - chambers - horoscope - mgk - dog's - residing - cricketer - dhoni - byron - fluctuations - talks - palermo - shallowest - bbcnews - nsdl - flights - lineup - stick - ribs - jeopardy - timetables - emi - maya - mackensie - osteen - jimmie's - adjustments - precocious - fork - husband's - audi - hibachi - disputed - crack - visible - boiling - rogan - karachi - babysitter - kidnapping - hamburgers - madonnas - lessen - ipo - greenville - carries - creamed - pickled - herring - tackle - brush - geyser - savings - torey - hurt - subscribe - picks - birthdate - goals - cairo - projected - patrick's - capita - honda - intended - hurriedly - activates - it'll - wsj - spy - broods - grommet - steven's - underground - seahawks - participants - workday - ammi - nightlife - donner - summit - ukraine's - ended - arrangements - altucher's - writer - fortune - brisket - grant - audiobooks - twilight - bass - hunger - roses - barbecue - tuna - deadly - killers - finally - trilogy - grisham - goblet - roadblocks - birthday's - biscuits - lawyers - steve's - kari - labyrinth - commonwealth - sharma - gulf - petrol - earthly - ultimate - ending - allison - canberra - honolulu - flash - salman - gresham - hindustani - stroganoff - sock - creates - geo - traits - moral - rein - blood - slayer - pro - bono - succinct - dalls - somethings - sharp - izzo - whiny - bitch - macaroni - nights - jumper - blind - cure - cancer - vibrant - sloth - transition - recycling - bbc's - columbia - kentucky - hire - opera - prefer - avoid - sort - comedy - compassionate - nc - va - riddles - segment - youth - charity - surrounding - punjabi - sharply - lovett - barber - label - hypocrisy - subscriber - captain - disillusion - hyderabad - dashboard - storm - barrel - panasonic - clinton - canasta - mittens - badra - amit - trivedi - crystal - lewis's - everywhere - rue - evaporated - mma - offered - tutoring - peas - dream - cafes - lauderdale - deletion - precise - parliamentary - remotely - connection - calendars - stupidest - shovel - western - cutting - ll - rapping - spelling - mama - tatum's - fulton - universal - garner - chill - icebo - college's - rehman - soundcloud - scorecards - ketchup - jimmy's - crate - lexmark - preference - females - federal - andreas - sportsnet - favourites - janice - bins - pamela - covered - rhapsody - italian's - ke - panera - remainders - tandoori - sukhwinder - sunidhi - etymology - googleplex - slide - wearing - trivial - pursuit - cancels - martina - mcbride - finances - vocab - zipcode - compaq - composer - margarine - jonathan - entrepreneur - extended - combo - memories - tupac - affects - drunks - ford's - liked - dealership - olky - realtor - thighs - ourselves - economics - medication - gross - domestic - donaldson - prostate - wicker - rooms - instrumental - savannah - outing - affleck - quotes - tire - montana - exhausted - acoustic - commercials - convenience - consciousness - serge - gainsbourg - windows - turks - generate - pedicures - btaxes - departures - frasier - amazon's - bluetooth - verus - neat - forecasted - bing's - dropped - recurrent - candidate - aware - blackeyed - pees - prince's - perimeter - rectangle - aaron - carter - involve - drugs - lighten - slicker - rains - cloud - carrot - popcorn - carmike - cinemas - greater - minestart - frog - lenon - unique - hanging - hung - sporty - seldom - jocko's - kid's - viewers - cantonese - usage - specs - bugatti - veyron - chief - blockbuster - krishnarajpuram - interstate - hammers - obligatory - wonder - southeast - marlon - brando - ferrel - tal - obidallah - manoeuvres - merita - rotate - changs - pepsi - shanghai - branden - wind - landmarks - dvr - congestion - valentines - eastwind - lomaine - geneva - officially - hopkins - takjistan - dimmer - karo - apne - aur - karna - chahta - hu - purchased - otherplace - giraffe - ute - requirement - watts - powerful - bulb - oclock - nba - hulu - composing - melissas - millilitres - spoons - goulash - thor - harischand - mg - i95 - sb - kilo - diana - llyod - webber - wool - penultimate - bang - philosophers - nietzche - focault - profession - kilograms - turkeys - bibulous - angeline - atm - narwhal - kilamanjaro - captia - volkswagen - onkyo - av - receiver - ipad - aniston's - summarize - ice - jindel - pump - nikki - minaj - nationality - snoodle - yemen - sudan - unprompted - organization - megan - fares - engage - functioning - dinar - conservative - korean - sahara - kingdom - antartica - telugu - tamil - tsunami - rajani - khanth - venture - goalkeeper - dushambe - abrupt - hbo - sopranos - parana - cave - anime - posters - johny - depp - invisible - graphical - joli - pricing - beech - nuclear - triad - hilton - borders - lucille - redhead - geraldine - ferraro - bde - lowered - phrases - nicole - mcgoat's - manipulate - roip - nasa - google's - davy - crockett - springsteen's - richest - costliest - easily - gm - psso - kroner - maple - trees - christie - brinkley - libraries - gmb - key - mongolia - anastasia - telekenesis - promise - stray - cruise's - starring - odyssey - polish - zloty - hook - ups - integral - exponential - berkshire - hathaway - tables - pink's - alligator - porto - tommy - hilfiger - print - networks - snaps - celebrate - bina - yay - smiley - emoticon - commented - folgers - hathway - huge - lfi - tagged - treated - hersheys - aircel - nastyburger - linkedin - tracy - waiter - drain - charge - neptunal - poorly - waited - inappropriate - potus - accounts - vodafone - complaining - spoiled - positive - tumblr - unpleasant - overpricing - cheating - connected - else's - greetings - thought - waste - excess - micro - lodge - snapdeal - sonic - hole - sole - patel's - insect - packet - elsewhere - moan - easyjet - snotty - expired - xl - sizes - filing - applebee's - angela - merkel - swagging - moto - sluggish - flavia - mum - jacob's - existing - cannot - pleas - mahmoud - ebay - smsayyad1985 - kishore17051985 - fedex - truette - petey's - tessa - gaurav - karen - mongomery - llc - joseph - turnpike - accumulated - deadlines - fees - ppt - emergency - missing - carl's - attach - physical - drill - marilyn - jugal - here's - bug - sarasigmon123 - lindafancy55 - markpolomm - gary's - mailing - bill's - erins - beth's - wont - stacy - cadwell - tori - aloud - brenda - thisome - smurfette - smithjoe - hwacuk - chong - giselle - bosses - havent - frieda's - jjjindia - exists - batch - samuelwaters - joose - hellen - builders - accepted - victor - taxi's - terry - macdonald - yahoocom - metion - rodger - christy's - otp - jayesh - tried - morgan's - office's - rob - qerwerq - secured - gerry - raj's - junable - shopyourway - reference - jhonny's - marissa - rosa - bert - ana - goddammit - pronounce - serious - recheck - slowly - failed - fuck - executed - clearly - errors - showed - races - thursdays - funky - handmaid's - beam - scotty - debit - wiki - editor's - automobiles - promo - discount - director - act - bejeweled - aside - snakes - ladders - marsala - influx - bayou - reasonably - tapas - az - ddlj - meatball - newscast - bibber - tmz - devon - applebees - hihop - doggie - feelings - radios - litle - tsos - congratulate - links - treble - flame - eta - encourage - students - choices - lobby - vf - chore - butterfly - clips - urban - regular - bi-weekly - baltimore - sport's - breakups - dale's - brea - douglasville - fundraiser - dolphines - maradona - pe - becky - appointed - deputy - utar - pradesh - anniston - handy - sainsbury's - attenuate - parcel - jakes - bristo - stressful - deposit - mathematical - superstar - survivor - destiny's - westcombe - facility - oboe - mcnamara - abolish - swim - repair - grub - hub - ill - dec - dreams - wyatts - obstacle - poach - dental - rose - davinci - trevor - noah - ncaa - entrapreneur - sanam - differs - ave - hopsin - enya - wbc - accordingly - remarks - sufi - beibers - arrested - sensor - music's - author - antwerp - cnn's - foodnetworkcom - customize - preferred - unable - duct - tape - gooseto - apig - ringer - secure - passage - tomatoes - wan - senelena - americano - makeup - robotics - teleconference - robotic - poughkeepsie - steel - day's - soundtrack - tobymac - transit - gloria - furious - nazi - hunting - effect - marvin - gaye - pasadena - ca - constrain - singles - outer - nowhereville - comfortable - erica - grebe - wooly - trigonametry - obsessed - graphics - undone - tough - treasury - toledo - munich - obtain - nutritionally - balanced - internal - locks - exit - mocking - lyft - transaction - tasty - mixture - according - hands - supports - canceling - congressman's - lenin - spagetti - controversial - statements - walker - humor - nkotb - jon - snow's - possibility - wellington - nz - advantages - disadvantages - driver - towels - stretch - gear - joey - crimson - chose - pineapple - asparagus - teaspoons - bling - medieval - engines - foods - hurts - cannibal - tonic - bitcoin - collection - hidden - figures - brasil - politic - superb - dalida - capuccino - analysts - thankama - kodaikanal - vote - burritto - chipolte - abut - sedaka - chamber - rfi - knock - cnncom - remchi - fl - ortcars - flip - wire - thriller - fiasco - breaks - dam - paradise - presidency - sigur - ros - socks - van - halen - wayne - spare - lightness - appropriately - both - musics - coastal - cry - friend's - wore - veganism - picnic - regent - visited - therapist - inauguration - swatishs - dorothy - known - supervision - superbowl - eric's - bday - kar - abhi - achche - ache - rahe - honge - mhz - sponge - bistros - brownies - tenderloin - enchiladas - gluten - hotdog - row - bing - notebook - pulldown - clearer - medford - drivers - waverley - canal - connecting - summers - gibraltar - monoprice - mxblue - mechanical - turbulence - carey - blunder - factorial - depends - commands - stand - draymond - susumu - hirasawa - yosemite - '200' - baguette - stonehenge - douriff - ivf - ivr - litt - runs - hesitant - crock - guetta - malaysia - whelers - sadness - william - coral - daft - punk - sandle - santha - ingerman - calc - shibaru - alcohols - nano - gina - desta - mgmt - bana - talking - garvin - trilly - nytimes - chhana - mereya - favor - strained - cooler - films - einstein's - aroma - ska - raphsody - trebuchet - forth - relate - qualifications - kirk - franklin - arithmetic - skyfall - bathrooms - raghu - dixit - reports - availables - haddock - odd - cape - cod - noisy - dull - hackernews - porn - pad - fight - fighter - nzd - melodious - burton - helena - campaign - mcclanahan - mummy's - motown - rasgulla - janta - pvt - ltd - heartthrob - justin's - velociraptor - hippo - senatra - giggle - peru - nirvana - anirudh's - retro - mf - doom - summarise - ariana - grande - predicted - creed - user - desire - kenny - roger - sia's - thrills - wapo - stockholm - okinawa - occasionally - shuffling - veggie - mukkala - mukkabilla - guardian - anytime - themes - horror - ennema - eatha - homestead - forever - mayor's - stance - council - master - louies - keane's - fears - noe - reggae - largo - swiftm - afi's - xinhua - dedicated - bottom - franks - yelawolf - ucl - flop - grammys - espn - joni - mitchell - shot - tequila - sleepyhead - aces - redder - edms - lamp's - loudest - brolly - thao - nguyen - interior - dine - dogwalking - nytimescom - overcast - deactive - foo - disasters - opacity - dea - guam - drug - abuse - itzhak - perlman - drawing - sweden - bombing - ireland - poll - hotha - defrosting - salt - toggle - spb - weatherit - either - forecasts - intellicast - weathercom - orevena - recorder - pizzahouse - reorganize - sticky - umbrellas - opened - cleaned - shakin - bakey - tips - hypoallergenic - sarcastic - cheat - ii - developers - edg - yaad - dilana - kahin - samantha's - rita's - adding - bro's - attendees - maggie - valet - groomer - timeframe - pete - faculty - parade - greens - jack's - walter - gemma - nail - arora's - namkeen - tonights - ggg - tie - iheartradio - rov - javan - wfrn - kicks - osteen's - wgrr - lite - prairie - companion - palhunik - pudding - tutorial - welsh - rarebit - oatmeal - pathia - achieve - veg - pulav - crockpot - prepared - keno - pinball - fishdom - nfs - harvest - crops - farmvile - millionaires - vodka - depend - pon - stationary - mad - errands - paav - queried - pepper - rowling - shadi - viewed - mlb - heavyweight - citadel - scene - circus - trolls - grab - kung - fu - bowery - railway - coach - fare - metrolink - navigation - westwood - layfayette - inconvenience - emotions - arrahman - cosmos - multiplied - abouts - hitting - eliot's - el - ribbons - sperm - whale - eaten - lbs - pinhead - timeliness - defining - thesaurus - penalty - approval - poetry - ambulance - jello - shots - ferrell - stassi - schroedder's - tacobell - hierophant - zealand - stockton - emissions - blowing - kennedy - ziggurat - gagas - gretszky - hemingway - pages - earn - nobel - actions - sloths - parton's - madagascar - acting - tiangle - trebuchets - googs - gandhiji - amal - brazil - adviser - rich - acted - rihanas - stamp - mugy - msn - busdriver - fergie - flick - ribons - nakumuka - postmates - complaintum - glinder - gta - rcg - outlet - hadock - mclanahan - coal - mumy's - piza - wheelers - guarante - debugging - debuging - proper - sung - bilando - terrorism - cover - dimmed - vanilli - marauthr - wooo - michael's - shutdown - pittsburgh - precipitation - riff - portland - muggy - giants - banks - steelz - ensure - ricky - matin - tyres - plant - chased - advice - gossiping - society - mitushree - hairdresser's - biology - fsu - reflect - yashas - vinay - vally - closed - shoutcast - pilkington - soda - powder - sambar - cookingforu - thermonuclear - battleship - cereal - wishlist - wrist - hipsterhood - duncan - trussel's - simmons - wide - cisco - crafts - sporting - presently - sheffield - septa - lead - fransisco - washingdon - evolution - mariah - kya - tum - mere - karne - karoge - acts - assembly - idle - brand - meridian - terranova - guarantee - marian - fields - farthest - philippine - cambodia - situated - foruget - monopricechanical - peenth - moroco - piz - tre - supplwn - viki - shivle - loged - applebe - acess - madagar - anp - socer - subcribe - pluged - imigration - audiowan - debie's - imediately - f - locar - duark - rebeca - talle - banas - ragh - acordingly - wakely - en - bress - acording - stefanan - puding - vegie - vius - edie - domizza - eg - cheeseiza - ocurred - brightnes - alaba - memory - fransico - sunderland - boogie - butt - leviathan - shinning - premier - cleanup - wacky - aman - cherry - bomb - solstice - silently - closet - nakumukka - shed - responses - yankees - investigation - dooa - pieces - imogen - heap - stole - dynamite - cease - operating - rained - uptown - suggestion - finlee's - bedtime - sockets - sanfranscio - abbas - cn's - vibrate - cooling - sheriffs - hike - ilayaraja - speaking - un - storms - roof - tube - jackpot - classmates - extremely - somewhere - drenched - sentient - budy - heating - apt - parenting - concerning - seo - searches - sticking - patterns - numbered - impression - reunion - presents - mehta - willing - discuss - evan - parker - violin - lesson - musicworkz - registration - opens - evening's - thursday's - nineteenth's - hayathis - shower - corresponding - showcase - famosa - kamp - neal - brenan - gx - nonstop - rm - giver - traveller - knowledge - crispy - supper - broil - noodle - stuffed - maccoroni - almond - clash - clans - ping - keeper - enemy - coc - detergent - corn - dill - pickles - ranch - dressing - lentils - translate - toothpaste - rearrange - groups - santana - pritzker - winners - libertarian - mc's - vitaly - nfl - mythical - oriented - provisional - experiences - safely - themselves - mia - reducing - learly - court - vin - diesel - netbooks - chinatown - aberdeen - queens - luni - purchasing - timing - bagmati - narrow - egypt - represented - revelation - britain - aamir - priyanka - middleton - base - original - nhl - goal - scorers - osteoperosis - laws - correlation - motivation - ncaaa - tense - touring - framework - adel - diamond - schwarzenegger's - stomachs - cow - chairs - steph - subjegant - pategonia - michelle - todlers - stakes - tinder - matches - fjord - equator - triumph - hell - moldova - presley's - wa - rajinikanth - basalt - bali - airplane - hash - lit - <sos/eos> two_pass: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} deliberationencoder: conformer deliberationencoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: linear normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 decoder2: rnn decoder2_conf: {} postdecoder: hugging_face_transformers postdecoder_conf: model_name_or_path: bert-base-cased output_size: 512 required: - output_dir - token_list version: 0.10.3a2 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
cf430869c492adc069eacafb9e018cf1
adache/xlm-roberta-base-finetuned-panx-en
adache
xlm-roberta
9
5
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
02b5e65de5a60904de4be6373de8b00d
tomekkorbak/vigorous_saha
tomekkorbak
gpt2
23
0
transformers
0
null
true
false
false
mit
['en']
['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
7,596
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vigorous_saha This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'alpha': 1, 'name': 'Unlikelihood', 'score_threshold': 0.0}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'vigorous_saha', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1c8cpo9k
832f6101f96141b070c4c2da6e9dfc72
EdBianchi/vit-fire-detection
EdBianchi
vit
30
6
transformers
0
image-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,964
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-fire-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0126 - Precision: 0.9960 - Recall: 0.9960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.1018 | 1.0 | 190 | 0.0375 | 0.9934 | 0.9934 | | 0.0484 | 2.0 | 380 | 0.0167 | 0.9961 | 0.9960 | | 0.0357 | 3.0 | 570 | 0.0253 | 0.9948 | 0.9947 | | 0.0133 | 4.0 | 760 | 0.0198 | 0.9961 | 0.9960 | | 0.012 | 5.0 | 950 | 0.0203 | 0.9947 | 0.9947 | | 0.0139 | 6.0 | 1140 | 0.0204 | 0.9947 | 0.9947 | | 0.0076 | 7.0 | 1330 | 0.0175 | 0.9961 | 0.9960 | | 0.0098 | 8.0 | 1520 | 0.0115 | 0.9974 | 0.9974 | | 0.0062 | 9.0 | 1710 | 0.0133 | 0.9960 | 0.9960 | | 0.0012 | 10.0 | 1900 | 0.0126 | 0.9960 | 0.9960 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.14.0.dev20221111 - Datasets 2.8.0 - Tokenizers 0.12.1
39e6a000edb5a5aa29f4759b7b11580a
skandavivek2/spam-classifier
skandavivek2
distilbert
18
20
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,454
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spam-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Accuracy: 0.9885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 262 | 0.0968 | 0.9799 | | 0.0573 | 2.0 | 524 | 0.0693 | 0.9856 | | 0.0573 | 3.0 | 786 | 0.0599 | 0.9871 | | 0.0111 | 4.0 | 1048 | 0.0551 | 0.9885 | | 0.0111 | 5.0 | 1310 | 0.0614 | 0.9885 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
7c5dfbc8b225777b6a096c525d64fe0c
SnailPoo/distilbert-base-uncased-finetuned-ner
SnailPoo
distilbert
13
9
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,552
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1079 - Precision: 0.8408 - Recall: 0.8686 - F1: 0.8545 - Accuracy: 0.9638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 453 | 0.1322 | 0.7759 | 0.8370 | 0.8053 | 0.9498 | | 0.246 | 2.0 | 906 | 0.1115 | 0.8284 | 0.8616 | 0.8446 | 0.9611 | | 0.1012 | 3.0 | 1359 | 0.1079 | 0.8408 | 0.8686 | 0.8545 | 0.9638 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
d53c590770c4870a60a980339a0571c7
Nithiwat/wav2vec2-colab
Nithiwat
wav2vec2
25
1
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,473
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.9155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7628 | 7.83 | 400 | inf | 0.9155 | | 1.0544 | 15.68 | 800 | inf | 0.9155 | | 7.5478 | 23.52 | 1200 | inf | 0.9155 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0+cu113 - Datasets 2.8.0 - Tokenizers 0.13.2
575ac1a1527962679affc1a370fdca9d
Medivvv/distilbert-imdb
Medivvv
distilbert
10
9
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,081
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 391 | 0.1829 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
28bb8428aeb1ec79b026b883a9cdd585
speechbrain/tts-fastspeech2-ljspeech
speechbrain
null
5
8
speechbrain
0
text-to-speech
false
false
false
apache-2.0
['en']
['LJSpeech']
null
0
0
0
0
0
0
0
['text-to-speech', 'TTS', 'speech-synthesis', 'fastspeech2', 'speechbrain']
false
true
true
3,885
false
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> **IMPORTANT: This is a work in progress. This model is not providing meaningful output at the moment** # Text-to-Speech (TTS) with FastSpeech2 trained on LJSpeech This repository provides all the necessary tools for Text-to-Speech (TTS) with SpeechBrain using a [FastSpeech2](https://arxiv.org/abs/2006.04558) pretrained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/). The pre-trained model takes in input a short text and produces a spectrogram in output. One can get the final waveform by applying a vocoder (e.g., HiFIGAN) on top of the generated spectrogram. ## Install SpeechBrain ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform Text-to-Speech (TTS) with FastSpeech2 ``` import torchaudio from speechbrain.pretrained import FastSpeech2 from speechbrain.pretrained import HIFIGAN # Intialize TTS (tacotron2) and Vocoder (HiFIGAN) fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir="tmpdir_tts") hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-libritts-16kHz", savedir="tmpdir_vocoder") # Running the TTS mel_output, durations, pitch, energy = fastspeech2.encode_text(input_text) # Running Vocoder (spectrogram-to-waveform) waveforms = hifi_gan.decode_batch(mel_output) # Save the waverform torchaudio.save('example_TTS.wav', waveforms.squeeze(1), 16000) ``` If you want to generate multiple sentences in one-shot, you can do in this way: ``` from speechbrain.pretrained import FastSpeech2 fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir="tmpdir_tts") items = [ "A quick brown fox jumped over the lazy dog", "How much wood would a woodchuck chuck?", "Never odd or even" ] mel_outputs, durations, pitch, energy = fastspeech2.encode_batch(items) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/LJSpeech/TTS/fastspeech2/ python train.py --device=cuda:0 --max_grad_norm=1.0 --data_folder=/your_folder/LJSpeech-1.1 hparams/train.yaml ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1Yb8CDCrW7JF1_jg8Xc4U15z3W37VjrY5?usp=share_link). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
23672991290e5fea2eeae5b0cad3efbc
willcai/wav2vec2_common_voice_accents_3
willcai
wav2vec2
11
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,487
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.584 | 1.27 | 400 | 1.1439 | | 0.481 | 2.55 | 800 | 0.1986 | | 0.2384 | 3.82 | 1200 | 0.1060 | | 0.1872 | 5.1 | 1600 | 0.1016 | | 0.158 | 6.37 | 2000 | 0.0942 | | 0.1427 | 7.64 | 2400 | 0.0646 | | 0.1306 | 8.92 | 2800 | 0.0612 | | 0.1197 | 10.19 | 3200 | 0.0423 | | 0.1129 | 11.46 | 3600 | 0.0381 | | 0.1054 | 12.74 | 4000 | 0.0326 | | 0.0964 | 14.01 | 4400 | 0.0293 | | 0.0871 | 15.29 | 4800 | 0.0239 | | 0.0816 | 16.56 | 5200 | 0.0168 | | 0.0763 | 17.83 | 5600 | 0.0202 | | 0.0704 | 19.11 | 6000 | 0.0224 | | 0.0669 | 20.38 | 6400 | 0.0208 | | 0.063 | 21.66 | 6800 | 0.0074 | | 0.0585 | 22.93 | 7200 | 0.0126 | | 0.0548 | 24.2 | 7600 | 0.0086 | | 0.0512 | 25.48 | 8000 | 0.0080 | | 0.0487 | 26.75 | 8400 | 0.0052 | | 0.0455 | 28.03 | 8800 | 0.0062 | | 0.0433 | 29.3 | 9200 | 0.0042 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
256805d79de6cf634076175f42192ef5
google/maxim-s3-deblurring-gopro
google
null
7
257
keras
8
image-to-image
false
false
false
apache-2.0
['en']
['gopro']
null
0
0
0
0
0
0
0
['vision', 'maxim', 'image-to-image']
false
true
true
2,522
false
# MAXIM pre-trained on GoPro for image deblurring MAXIM model pre-trained for image deblurring. It was introduced in the paper [MAXIM: Multi-Axis MLP for Image Processing](https://arxiv.org/abs/2201.02973) by Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, Yinxiao Li and first released in [this repository](https://github.com/google-research/maxim). Disclaimer: The team releasing MAXIM did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MAXIM introduces a shared MLP-based backbone for different image processing tasks such as image deblurring, deraining, denoising, dehazing, low-light image enhancement, and retouching. The following figure depicts the main components of MAXIM: ![](https://github.com/google-research/maxim/raw/main/maxim/images/overview.png) ## Training procedure and results The authors didn't release the training code. For more details on how the model was trained, refer to the [original paper](https://arxiv.org/abs/2201.02973). As per the [table](https://github.com/google-research/maxim#results-and-pre-trained-models), the model achieves a PSNR of 32.86 and an SSIM of 0.961. ## Intended uses & limitations You can use the raw model for image deblurring tasks. The model is [officially released in JAX](https://github.com/google-research/maxim). It was ported to TensorFlow in [this repository](https://github.com/sayakpaul/maxim-tf). ### How to use Here is how to use this model: ```python from huggingface_hub import from_pretrained_keras from PIL import Image import tensorflow as tf import numpy as np import requests url = "https://github.com/sayakpaul/maxim-tf/raw/main/images/Deblurring/input/1fromGOPR0950.png" image = Image.open(requests.get(url, stream=True).raw) image = np.array(image) image = tf.convert_to_tensor(image) image = tf.image.resize(image, (256, 256)) model = from_pretrained_keras("google/maxim-s3-deblurring-gopro") predictions = model.predict(tf.expand_dims(image, 0)) ``` For a more elaborate prediction pipeline, refer to [this Colab Notebook](https://colab.research.google.com/github/sayakpaul/maxim-tf/blob/main/notebooks/inference-dynamic-resize.ipynb). ### Citation ```bibtex @article{tu2022maxim, title={MAXIM: Multi-Axis MLP for Image Processing}, author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, journal={CVPR}, year={2022}, } ```
cb3981e1ddc9215e7f8a19721e37077e
sd-concepts-library/final-fantasy-logo
sd-concepts-library
null
10
0
null
2
null
false
false
false
mit
null
null
null
0
0
0
0
1
1
0
[]
false
true
true
1,232
false
### Final Fantasy logo on Stable Diffusion This is the `<final-fantasy-logo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<final-fantasy-logo> 0](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/2.jpeg) ![<final-fantasy-logo> 1](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/0.jpeg) ![<final-fantasy-logo> 2](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/1.jpeg) ![<final-fantasy-logo> 3](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/4.jpeg) ![<final-fantasy-logo> 4](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/3.jpeg)
2f66d8d891d12c4b666cf9e0d1210d36
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-xlnetBaseCased-bertTokenizer-12April2022
nntadotzip
xlnet
12
9
transformers
0
question-answering
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,304
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-IUChatbot-ontologyDts-xlnetBaseCased-bertTokenizer-12April2022 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 357 | 0.6451 | | 0.8416 | 2.0 | 714 | 0.4428 | | 0.5227 | 3.0 | 1071 | 0.4240 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
9cc836eefb2fbed86772ce020390afb9
nlp04/kobart_32_6e-5_datav2_min30_lp5.0_temperature1.0
nlp04
bart
15
2
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,596
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_32_6e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6110 - Rouge1: 35.8879 - Rouge2: 12.9302 - Rougel: 23.7819 - Bleu1: 30.0048 - Bleu2: 17.5297 - Bleu3: 10.3153 - Bleu4: 5.9092 - Gen Len: 50.8508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 1.5664 | 3.78 | 5000 | 2.6110 | 35.8879 | 12.9302 | 23.7819 | 30.0048 | 17.5297 | 10.3153 | 5.9092 | 50.8508 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
227c716c4b04f6f803d9d6520bdc55fe
sagard21/python-code-explainer
sagard21
t5
9
24
transformers
2
summarization
true
false
false
mit
['en']
['sagard21/autotrain-data-code-explainer']
{'emissions': 5.393079045128973}
0
0
0
0
0
0
0
['autotrain', 'summarization']
false
true
true
1,269
false
# Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2745581349 - CO2 Emissions (in grams): 5.3931 # Model Description This model is an attempt to simplify code understanding by generating line by line explanation of a source code. This model was fine-tuned using the Salesforce/codet5-large model. Currently it is trained on a small subset of Python snippets. # Model Usage ```py from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, pipeline, ) model_name = "sagard21/python-code-explainer" tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model.eval() pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer) raw_code = """ def preprocess(text: str) -> str: text = str(text) text = text.replace("\n", " ") tokenized_text = text.split(" ") preprocessed_text = " ".join([token for token in tokenized_text if token]) return preprocessed_text """ print(pipe(raw_code)[0]["summary_text"]) ``` ## Validation Metrics - Loss: 2.156 - Rouge1: 29.375 - Rouge2: 18.128 - RougeL: 25.445 - RougeLsum: 28.084 - Gen Len: 19.000
0b88d1b9d404d885422e4ebfa8f6e0fd
zhuqi/t5-large-coqr-canard
zhuqi
t5
8
5
transformers
0
text2text-generation
true
false
false
apache-2.0
['en']
['CANARD']
null
0
0
0
0
0
0
0
['t5-large', 'text2text-generation', 'conversational question rewriting']
true
true
true
1,766
false
# t5-large-coqr-canard This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the [CANARD](https://sites.google.com/view/qanta/projects/canard) dataset. It achieves the following results on the test set: - Loss: 0.3064 - Bleu: 77.1979 - Generation Length: 9.576 ## Model description CANARD dataset rewrites the original questions in conversations to make them context-independent (understandable w/o context). On the contrary, this model is trained to rewrite context-independent questions to conversational questions, aiming to create fluent dialog with anaphora and ellipsis. Input: ``` Rewrite the question according to the given context to make the dialog fluent using anaphora and ellipsis. question: How did people respond to Superstar Billy Graham's return? context: Superstar Billy Graham Return to WWWF (1977-1981) Why did he return to the WWWF? an agreement with promoter Vincent J. McMahon (Senior What was his agreement with McMahon? I don't know. ``` Target: ``` How did people respond to his return? ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 512 - total_eval_batch_size: 512 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 62 | 0.2987 | 77.2361 | 9.4534 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1
c63c9455960b4a32228282b44f643906
stevenwh/indobert-base-p2-finetuned-mer
stevenwh
bert
13
5
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,680
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indobert-base-p2-finetuned-mer This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.7183 | 1.0 | 28 | 6.6949 | | 6.3179 | 2.0 | 56 | 5.7267 | | 5.5857 | 3.0 | 84 | 5.2449 | | 5.17 | 4.0 | 112 | 4.8586 | | 4.893 | 5.0 | 140 | 4.6777 | | 4.7121 | 6.0 | 168 | 4.4832 | | 4.5402 | 7.0 | 196 | 4.3532 | | 4.4698 | 8.0 | 224 | 4.2814 | | 4.4012 | 9.0 | 252 | 4.2612 | | 4.3725 | 10.0 | 280 | 4.2325 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
9d3dc94e56934dc178f491f4c47d1a9e
huxxx657/roberta-base-finetuned-deletion-squad-15
huxxx657
roberta
13
8
transformers
0
question-answering
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,156
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-deletion-squad-15 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1127 | 1.0 | 5531 | 1.1057 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
f4d68f0b6f6706848128c4175f7d9777
Helsinki-NLP/opus-mt-guw-de
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-guw-de * source languages: guw * target languages: de * OPUS readme: [guw-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.de | 22.7 | 0.434 |
520173af9fc0e2018b73ccd8aefc8e36
yanaiela/roberta-base-epoch_26
yanaiela
roberta
9
3
transformers
0
fill-mask
true
false
false
mit
['en']
['wikipedia', 'bookcorpus']
null
0
0
0
0
0
0
0
['roberta-base', 'roberta-base-epoch_26']
false
true
true
2,102
false
# RoBERTa, Intermediate Checkpoint - Epoch 26 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_26. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
894662836067cab4c0686a7a9019f98b
Neha2608/distilbert-base-uncased-finetuned-emotion
Neha2608
distilbert
16
0
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,360
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy is: 0.9185 - F1: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy is | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:| | 0.8026 | 1.0 | 250 | 0.3114 | 0.905 | 0.9035 | | 0.2409 | 2.0 | 500 | 0.2207 | 0.9185 | 0.9185 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ff732a0273060b33987f72073620098c
CCMat/fluffalpaca-llama-v2
CCMat
null
20
46
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'animal']
false
true
true
1,581
false
# DreamBooth model for the fluffalpaca concept trained on the CCMat/db-aplaca dataset. This is a Stable Diffusion model fine-tuned on the fluffalpaca concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of fluffalpaca llama** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `llama` images for the animal theme. ### Training Hyperparemeters Pretrained Model: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2)<br> Learning rate: 1e-6<br> Steps:1100<br> ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('CCMat/fluffalpaca-llama-1100') image = pipeline().images[0] image ``` ## Samples Prompt: "fluffalpaca llama in space by Enki Bilal" ![example images](images/7628798d62fe75777a9dc58d88fabd54.png) Prompt: "fluffalpaca llama in front of the Eiffel Tower" ![example images](images/19a272275e0297b8c7772532f29ec5a1.png) Prompt: "a photo of fluffalpaca llama swimming in the river" ![example images](images/dc86f23f335f9105e5761c407eb523aa.png) Prompt: "a photo of fluffalpaca llama in front of the Colosseum in Rome, professional photograph" ![example images](images/f0b473cae57124bc3551a5f65bef3511.png) Prompt: "USSR propoganda poster. Long live the fluffalpaca llama" ![example images](images/ef7ee593768a5917268b5434985ae4be.png)
4b5c25be5b3abe881d3ea69ac2feab86
tranmc/Bronya_7.5e-7_4800
tranmc
null
33
14
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
2
2
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
523
false
### Model Dreambooth concept Bronya được train bởi tranmc bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
b2e7caf3423ea93112a0ada57ea8641d
Reggie/DeBERTa-v3-base-joke_detector
Reggie
deberta-v2
7
10
transformers
0
text-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['deberta', 'deberta-v3']
false
true
true
1,874
false
### What is this? This model has been developed to detect "narrative-style" jokes, stories and anecdotes (i.e. they are narrated as a story) spoken during speeches or conversations etc. It works best when jokes/anecdotes are at least 40 words or longer. It is based on [Moritz Laurer's DeBERTa-v3](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli). The training dataset was a private collection of around 2000 jokes. This model has not been trained or tested on one-liners, puns or Reddit-style language-manipulation jokes such as knock-knock, Q&A jokes etc. See the example in the inference widget or How to use section for what constitues a narrative-style joke. For a slightly less accurate model (0.4% less) that is 65% faster at inference, see the [Roberta model](https://huggingface.co/Reggie/muppet-roberta-base-joke_detector). For a much more inaccurate model (2.9% less) that is way faster at inference, see the [distilbert model](https://huggingface.co/Reggie/distilbert-joke_detector). ### Install these first You'll need to pip install transformers & maybe sentencepiece ### How to use ```python from transformers import pipeline import torch device = 0 if torch.cuda.is_available() else -1 model_name = 'Reggie/DeBERTa-v3-base-joke_detector/' max_seq_len = 510 pipe = pipeline(model=model_name, device=device, truncation=True, max_length=max_seq_len) is_it_a_joke = """A nervous passenger is about to book a flight ticket, and he asks the airlines' ticket seller, "I hope your planes are safe. Do they have a good track record for safety?" The airline agent replies, "Sir, I can guarantee you, we've never had a plane that has crashed more than once." """ result = pipe(is_it_a_joke) # [{'label': 'LABEL_1', 'score': 0.7313136458396912}] print('This is a joke') if result[0]['label'] == 'LABEL_1' else print('This is not a joke') ```
1474d26788c06cbe1b13702c4dd77dda
anas-awadalla/t5-small-finetuned-squad-infilling-lr-5e-5
anas-awadalla
t5
17
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,059
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-squad-infilling-lr-5e-5 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
9258c451a12e4e1173d396ec93cac346
Helsinki-NLP/opus-mt-ccs-en
Helsinki-NLP
marian
11
13
transformers
0
translation
true
true
false
apache-2.0
['ka', 'ccs', 'en']
null
null
2
2
0
0
0
0
0
['translation']
false
true
true
2,097
false
### ccs-eng * source group: South Caucasian languages * target group: English * OPUS readme: [ccs-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ccs-eng/README.md) * model: transformer * source language(s): kat * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kat-eng.kat.eng | 18.0 | 0.357 | | Tatoeba-test.multi.eng | 18.0 | 0.357 | ### System Info: - hf_name: ccs-eng - source_languages: ccs - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ccs-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ka', 'ccs', 'en'] - src_constituents: {'kat'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.test.txt - src_alpha3: ccs - tgt_alpha3: eng - short_pair: ccs-en - chrF2_score: 0.35700000000000004 - bleu: 18.0 - brevity_penalty: 1.0 - ref_len: 5992.0 - src_name: South Caucasian languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: ccs - tgt_alpha2: en - prefer_old: False - long_pair: ccs-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
3d3b776de8b460521ad0df43517a47ae
sd-concepts-library/paul-noir
sd-concepts-library
null
11
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,232
false
### Paul Noir on Stable Diffusion This is the `<paul-noir>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<paul-noir> 0](https://huggingface.co/sd-concepts-library/paul-noir/resolve/main/concept_images/3.jpeg) ![<paul-noir> 1](https://huggingface.co/sd-concepts-library/paul-noir/resolve/main/concept_images/0.jpeg) ![<paul-noir> 2](https://huggingface.co/sd-concepts-library/paul-noir/resolve/main/concept_images/5.jpeg) ![<paul-noir> 3](https://huggingface.co/sd-concepts-library/paul-noir/resolve/main/concept_images/1.jpeg) ![<paul-noir> 4](https://huggingface.co/sd-concepts-library/paul-noir/resolve/main/concept_images/2.jpeg) ![<paul-noir> 5](https://huggingface.co/sd-concepts-library/paul-noir/resolve/main/concept_images/4.jpeg)
3e463ab08b0de61b4bff51b8cb192c29
alexandrainst/da-emotion-classification-base
alexandrainst
bert
10
357
transformers
1
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,249
false
# Danish BERT for emotion classification The BERT Emotion model classifies a Danish text in one of the following class: * Glæde/Sindsro * Tillid/Accept * Forventning/Interrese * Overasket/Målløs * Vrede/Irritation * Foragt/Modvilje * Sorg/trist * Frygt/Bekymret It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. This model should be used after detecting whether the text contains emotion or not, using the binary [BERT Emotion model](https://huggingface.co/alexandrainst/da-binary-emotion-classification-base). See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-emotion) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-emotion-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-emotion-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
33eea0afa1e3346ae5de9b6124752133
stanfordnlp/stanza-fa
stanfordnlp
null
19
51
stanza
1
token-classification
false
false
false
apache-2.0
['fa']
null
null
0
0
0
0
0
0
0
['stanza', 'token-classification']
false
true
true
580
false
# Stanza model for Persian (fa) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2022-10-12 02:57:21.212
031922644c74729269495ffe7ee40035
tftransformers/bart-base
tftransformers
null
6
4
null
0
null
false
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,730
false
# BART (base-sized model) BART model pre-trained on English language. It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/bart). Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). ## Intended uses & limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=bart) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in tf_transformers: ```python from tf_transformers.models import BartModel from transformers import BartTokenizer tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') model = BartModel.from_pretrained('facebook/bart-base') inputs_tf = {} inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") inputs_tf["encoder_input_ids"] = inputs["input_ids"] inputs_tf["encoder_input_mask"] = inputs["attention_mask"] inputs_tf["decoder_input_ids"] = decoder_input_ids outputs_tf = model(inputs_tf) ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
2872bc2810571d323039217f9f01629f
jannesg/takalane_ssw_roberta
jannesg
roberta
8
8
transformers
0
fill-mask
true
false
true
mit
['tn']
null
null
0
0
0
0
0
0
0
['tn', 'fill-mask', 'pytorch', 'roberta', 'masked-lm']
false
true
true
1,059
false
# Takalani Sesame - Tswana 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ssw_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ssw_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 380 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
44ced331f635941817198e940aae8cc0
minhhoque/swin-tiny-patch4-window7-224-finetuned-eurosat
minhhoque
swin
14
1
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,492
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0775 - Accuracy: 0.9730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2658 | 1.0 | 190 | 0.1305 | 0.9615 | | 0.1591 | 2.0 | 380 | 0.0781 | 0.9726 | | 0.1364 | 3.0 | 570 | 0.0775 | 0.9730 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
59908dfda27c4d354517ef26f1fd7544
yanaiela/roberta-base-epoch_70
yanaiela
roberta
9
3
transformers
0
fill-mask
true
false
false
mit
['en']
['wikipedia', 'bookcorpus']
null
0
0
0
0
0
0
0
['roberta-base', 'roberta-base-epoch_70']
false
true
true
2,102
false
# RoBERTa, Intermediate Checkpoint - Epoch 70 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_70. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
179ae0719334e83660357bfd78c054e8
Nyaaneet/donut-cord
Nyaaneet
vision-encoder-decoder
19
0
transformers
0
null
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
948
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-cord This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
abfe37d9ac051c66d8ef0e2589990cc7
scasutt/wav2vec2-base_toy_train_data_random_noise_0.1
scasutt
wav2vec2
7
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,798
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_random_noise_0.1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9263 - Wer: 0.7213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1296 | 2.1 | 250 | 3.5088 | 1.0 | | 3.0728 | 4.2 | 500 | 3.1694 | 1.0 | | 1.8686 | 6.3 | 750 | 1.3414 | 0.9321 | | 1.1241 | 8.4 | 1000 | 1.0196 | 0.8321 | | 0.8704 | 10.5 | 1250 | 0.9387 | 0.7962 | | 0.6734 | 12.6 | 1500 | 0.9309 | 0.7640 | | 0.5832 | 14.7 | 1750 | 0.9329 | 0.7346 | | 0.5207 | 16.8 | 2000 | 0.9060 | 0.7247 | | 0.4857 | 18.9 | 2250 | 0.9263 | 0.7213 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
dbf86143339dedb9fb13fce30e39f9c9
EloimEssaim/svsv-dog-heywhale
EloimEssaim
null
17
10
diffusers
1
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'animal']
false
true
true
791
false
# DreamBooth model for the svsv concept trained by EloimEssaim. This is a Stable Diffusion model fine-tuned on the svsv concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of svsv dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('EloimEssaim/svsv-dog-heywhale') image = pipeline().images[0] image ```
d8b06ec4a26471d25de7512e50c8bf16