repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Thanish/wav2vec2-large-xlsr-tamil
Thanish
wav2vec2
9
21
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['ta']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
4,316
false
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 100.00 % ## Training The Common Voice `train`, `validation` were used for training The script used for training can be found [https://colab.research.google.com/drive/1PC2SjxpcWMQ2qmRw21NbP38wtQQUa5os#scrollTo=YKBZdqqJG9Tv](...)
267eb34f08f2b12b97e08fb5a5948c2c
Lvxue/distilled-mt5-small-0.4-0.25
Lvxue
mt5
14
1
transformers
0
text2text-generation
true
false
false
apache-2.0
['en', 'ro']
['wmt16']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,039
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-0.4-0.25 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.8561 - Bleu: 3.2179 - Gen Len: 41.2356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
c907fe4f17818296ae9edd92aee524f7
Mr-Wick/Roberta
Mr-Wick
roberta
9
6
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,095
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16476, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
20e7550dd11e6ed33687da5253a2eccd
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-10
anas-awadalla
roberta
17
6
transformers
0
question-answering
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
984
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
0ad431ac44b1c2daecf9ead45dbd7719
merve/tips5wx_sbh5-tip-regression
merve
null
4
0
sklearn
0
tabular-regression
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['tabular-regression', 'baseline-trainer']
false
true
true
8,010
false
## Baseline Model trained on tips5wx_sbh5 to apply regression on tip **Metrics of the best model:** r2 0.389363 neg_mean_squared_error -1.092356 Name: Ridge(alpha=10), dtype: float64 **See model plot below:** <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless total_bill True False False ... False False False sex False False False ... False False False smoker False False False ... False False False day False False False ... False False False time False False False ... False False False size False False False ... False False False[6 rows x 7 columns])),(&#x27;ridge&#x27;, Ridge(alpha=10))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless total_bill True False False ... False False False sex False False False ... False False False smoker False False False ... False False False day False False False ... False False False time False False False ... False False False size False False False ... False False False[6 rows x 7 columns])),(&#x27;ridge&#x27;, Ridge(alpha=10))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless total_bill True False False ... False False False sex False False False ... False False False smoker False False False ... False False False day False False False ... False False False time False False False ... False False False size False False False ... False False False[6 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">Ridge</label><div class="sk-toggleable__content"><pre>Ridge(alpha=10)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
240c3cc59bd7837f3cf00ca5d6e03deb
anuragshas/en-hi-transliteration
anuragshas
null
7
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,542
false
## Dataset [NEWS2018 DATASET_04, Task ID: M-EnHi](http://workshop.colips.org/news2018/dataset.html) ## Notebooks - `xmltodict.ipynb` contains the code to convert the `xml` files to `json` for training - `training_script.ipynb` contains the code for training and inference. It is a modified version of https://github.com/AI4Bharat/IndianNLP-Transliteration/blob/master/NoteBooks/Xlit_TrainingSetup_condensed.ipynb ## Predictions `pred_test.json` contains top-10 predictions on the validation set of the dataset ## Evaluation Scores on validation set TOP 10 SCORES FOR 1000 SAMPLES |Metrics | Score | |-----------|-----------| |ACC | 0.703000| |Mean F-score| 0.949289| |MRR | 0.486549| |MAP_ref | 0.381000| TOP 5 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC |0.621000| |Mean F-score |0.937985| |MRR |0.475033| |MAP_ref |0.381000| TOP 3 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC |0.560000| |Mean F-score |0.927025| |MRR |0.461333| |MAP_ref |0.381000| TOP 2 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC | 0.502000| |Mean F-score | 0.913697| |MRR | 0.442000| |MAP_ref | 0.381000| TOP 1 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC | 0.382000| |Mean F-score | 0.881272| |MRR | 0.382000| |MAP_ref | 0.380500|
a533088e01e5b4bda5eec6acbb4264e8
jph00/fastdiffusion-models
jph00
null
9
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,993
false
*all models trained with mnist sigma_data, instead of fashion-mnist.* - base: default k-diffusion model - no-t-emb: as base, but no t-embeddings in model - mse-no-t-emb: as no-t-emb, but predicting unscaled noise - mse: unscaled noise prediction with t-embeddings ## base metrics step,fid,kid 5000,23.366962432861328,0.0060024261474609375 10000,21.407773971557617,0.004696846008300781 15000,19.820981979370117,0.003306865692138672 20000,20.4482421875,0.0037620067596435547 25000,19.459041595458984,0.0030574798583984375 30000,18.933385848999023,0.0031194686889648438 35000,18.223621368408203,0.002220630645751953 40000,18.64676284790039,0.0026960372924804688 45000,17.681808471679688,0.0016982555389404297 50000,17.32500457763672,0.001678466796875 55000,17.74714469909668,0.0016117095947265625 60000,18.276540756225586,0.002439737319946289 ## mse-no-t-emb step,fid,kid 5000,28.580364227294922,0.007686138153076172 10000,25.324932098388672,0.0061130523681640625 15000,23.68691635131836,0.005526542663574219 20000,24.05099105834961,0.005819082260131836 25000,22.60521125793457,0.004955768585205078 30000,22.16605567932129,0.0047609806060791016 35000,21.794536590576172,0.0039484500885009766 40000,22.96178436279297,0.005787849426269531 45000,22.641393661499023,0.004763364791870117 50000,20.735567092895508,0.0038640499114990234 55000,21.417423248291016,0.004515647888183594 60000,22.11293601989746,0.0054743289947509766 ## no-t-emb step,fid,kid 5000,53.25414276123047,0.02761554718017578 10000,47.687461853027344,0.023845195770263672 15000,46.045196533203125,0.02205944061279297 20000,44.64243698120117,0.020934104919433594 25000,43.55231857299805,0.020574331283569336 30000,43.493412017822266,0.020569324493408203 35000,42.51478958129883,0.01968073844909668 40000,42.213401794433594,0.01972222328186035 45000,40.9914665222168,0.018793582916259766 50000,42.946231842041016,0.019819974899291992 55000,40.699989318847656,0.018331050872802734 60000,41.737518310546875,0.019069194793701172
f68c987eb6b2be35e6b650acd69a1519
MisbaHF/distilbert-base-uncased-finetuned-cola
MisbaHF
distilbert
13
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,572
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7134 - Matthews Correlation: 0.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5294 | 1.0 | 535 | 0.5082 | 0.4183 | | 0.3483 | 2.0 | 1070 | 0.4969 | 0.5259 | | 0.2355 | 3.0 | 1605 | 0.6260 | 0.5065 | | 0.1733 | 4.0 | 2140 | 0.7134 | 0.5411 | | 0.1238 | 5.0 | 2675 | 0.8516 | 0.5291 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
0d487bc311782289b93c56850c4ed1a2
skr3178/xlm-roberta-base-finetuned-panx-de-fr
skr3178
xlm-roberta
10
5
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,321
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
1d445ad9636da3cc84e677b725130469
stanfordnlp/stanza-sme
stanfordnlp
null
8
3
stanza
0
token-classification
false
false
false
apache-2.0
['sme']
null
null
0
0
0
0
0
0
0
['stanza', 'token-classification']
false
true
true
584
false
# Stanza model for North_Sami (sme) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2022-09-25 02:02:22.878
c6a03ddbbb6c6a01b47868a7c7018755
research-backup/t5-base-subjqa-vanilla-grocery-qg
research-backup
t5
34
3
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qg_subjqa']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
3,969
false
# Model Card of `research-backup/t5-base-subjqa-vanilla-grocery-qg` This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: grocery) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [t5-base](https://huggingface.co/t5-base) - **Language:** en - **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (grocery) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="research-backup/t5-base-subjqa-vanilla-grocery-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "research-backup/t5-base-subjqa-vanilla-grocery-qg") output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/research-backup/t5-base-subjqa-vanilla-grocery-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.grocery.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 78.84 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_1 | 3.05 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_2 | 0.88 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_3 | 0 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_4 | 0 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | METEOR | 2.08 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | MoverScore | 51.78 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | ROUGE_L | 1.33 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_subjqa - dataset_name: grocery - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: ['qg'] - model: t5-base - max_length: 512 - max_length_output: 32 - epoch: 3 - batch: 16 - lr: 1e-05 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/research-backup/t5-base-subjqa-vanilla-grocery-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
860419fc8b6bd195748ccb3d1fa7e741
okite97/xlm-roberta-base-finetuned-panx-en
okite97
xlm-roberta
9
7
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3848 - F1: 0.6994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0435 | 1.0 | 74 | 0.5169 | 0.5532 | | 0.4719 | 2.0 | 148 | 0.4224 | 0.6630 | | 0.3424 | 3.0 | 222 | 0.3848 | 0.6994 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
d43b9cc6b5405c38e6d30a86e42ce475
speechbrain/REAL-M-sisnr-estimator
speechbrain
null
6
33
speechbrain
1
null
true
false
false
apache-2.0
['en']
['REAL-M', 'WHAMR!']
null
0
0
0
0
0
0
0
['audio-source-separation', 'Source Separation', 'Speech Separation', 'WHAM!', 'REAL-M', 'SepFormer', 'Transformer', 'pytorch', 'speechbrain']
false
true
true
4,588
false
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Neural SI-SNR Estimator The Neural SI-SNR Estimator predicts the scale-invariant signal-to-noise ratio (SI-SNR) from the separated signals and the original mixture. The performance estimation is blind (i.e., no targets signals are needed). This model allows a performance estimation on real mixtures, where the targets are not available. This repository provides the SI-SNR estimator model introduced for the REAL-M dataset. The REAL-M dataset can downloaded from [this link](https://sourceseparationresearch.com/static/REAL-M-v0.1.0.tar.gz). The paper for the REAL-M dataset can be found on [this arxiv link](https://arxiv.org/pdf/2110.10812.pdf). | Release | Test-Set (WHAMR!) average l1 error | |:---:|:---:| | 18-10-21 | 1.7 dB | ## Install SpeechBrain First of all, currently you need to install SpeechBrain from the source: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Minimal example for SI-SNR estimation ```python from speechbrain.pretrained import SepformerSeparation as separator from speechbrain.pretrained.interfaces import fetch from speechbrain.pretrained.interfaces import SNREstimator as snrest import torchaudio # 1- Download a test mixture fetch("test_mixture.wav", source="speechbrain/sepformer-wsj02mix", savedir=".", save_filename="test_mixture.wav") # 2- Separate the mixture with a pretrained model (sepformer-whamr in this case) model = separator.from_hparams(source="speechbrain/sepformer-whamr", savedir='pretrained_models/sepformer-whamr') est_sources = model.separate_file(path='test_mixture.wav') # 3- Estimate the performance snr_est_model = snrest.from_hparams(source="speechbrain/REAL-M-sisnr-estimator",savedir='pretrained_models/REAL-M-sisnr-estimator') mix, fs = torchaudio.load('test_mixture.wav') snrhat = snr_est_model.estimate_batch(mix, est_sources) print(snrhat) # Estimates are in dB / 10 (in the range 0-1, e.g., 0 --> 0dB, 1 --> 10dB) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (fc2eabb7). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/REAL-M/sisnr-estimation python train.py hparams/pool_sisnrestimator.yaml --data_folder /yourLibri2Mixpath --base_folder_dm /yourLibriSpeechpath --rir_path /yourpathforwhamrRIRs --dynamic_mixing True --use_whamr_train True --whamr_data_folder /yourpath/whamr --base_folder_dm_whamr /yourpath/wsj0-processed/si_tr_s ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1NGncbjvLeGfbUqmVi6ej-NH9YQn5vBmI). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` #### Referencing REAL-M ```bibtex @misc{subakan2021realm, title={REAL-M: Towards Speech Separation on Real Mixtures}, author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and François Grondin}, year={2021}, eprint={2110.10812}, archivePrefix={arXiv}, primaryClass={eess.AS} } ``` ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
42e050d8bb906071d25ca8fa04715e05
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-evn2-ntsema-colab
ntsema
wav2vec2
13
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['audiofolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,576
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-evn2-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0299 - Wer: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2753 | 6.15 | 400 | 1.6106 | 0.99 | | 0.8472 | 12.3 | 800 | 1.6731 | 0.99 | | 0.4462 | 18.46 | 1200 | 1.8516 | 0.99 | | 0.2556 | 24.61 | 1600 | 2.0299 | 0.9867 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
c70d730fcd2df5cb7cc60d22463e455a
Sultannn/bert-base-ft-pos-xtreme
Sultannn
bert
8
10
transformers
0
token-classification
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,677
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sultannn/bert-base-ft-pos-xtreme This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1518 - Validation Loss: 0.2837 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 3e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1008, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 500, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.9615 | 0.3139 | 0 | | 0.3181 | 0.2758 | 1 | | 0.2173 | 0.2774 | 2 | | 0.1518 | 0.2837 | 3 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
fedd57fd4444b7f1e8821bdf1e766253
sd-concepts-library/maurice-quentin-de-la-tour-style
sd-concepts-library
null
9
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,124
false
### Maurice-Quentin- de-la-Tour-style on Stable Diffusion This is the `<maurice>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<maurice> 0](https://huggingface.co/sd-concepts-library/maurice-quentin-de-la-tour-style/resolve/main/concept_images/3.jpeg) ![<maurice> 1](https://huggingface.co/sd-concepts-library/maurice-quentin-de-la-tour-style/resolve/main/concept_images/0.jpeg) ![<maurice> 2](https://huggingface.co/sd-concepts-library/maurice-quentin-de-la-tour-style/resolve/main/concept_images/2.jpeg) ![<maurice> 3](https://huggingface.co/sd-concepts-library/maurice-quentin-de-la-tour-style/resolve/main/concept_images/1.jpeg)
4de1b8be905948362ba344a97add8b40
DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
DrishtiSharma
wav2vec2
11
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['mt']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'generated_from_trainer', 'hf-asr-leaderboard', 'model_for_talk', 'mozilla-foundation/common_voice_8_0', 'mt', 'robust-speech-event']
false
true
true
2,153
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 0.2781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0174 | 9.01 | 1000 | 3.0552 | 1.0 | | 1.0446 | 18.02 | 2000 | 0.6708 | 0.7577 | | 0.7995 | 27.03 | 3000 | 0.4202 | 0.4770 | | 0.6978 | 36.04 | 4000 | 0.3054 | 0.3494 | | 0.6189 | 45.05 | 5000 | 0.2878 | 0.3154 | | 0.5667 | 54.05 | 6000 | 0.3114 | 0.3286 | | 0.5173 | 63.06 | 7000 | 0.3085 | 0.3021 | | 0.4682 | 72.07 | 8000 | 0.3058 | 0.2969 | | 0.451 | 81.08 | 9000 | 0.3146 | 0.2907 | | 0.4213 | 90.09 | 10000 | 0.3030 | 0.2881 | | 0.4005 | 99.1 | 11000 | 0.3001 | 0.2789 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Script !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese \ --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs
84bd0bd7545883fb9def73f4f255581b
juanarturovargas/mt5-small-finetuned-amazon-en-es
juanarturovargas
mt5
14
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,996
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0283 - Rouge1: 17.6736 - Rouge2: 8.5399 - Rougel: 17.4107 - Rougelsum: 17.3637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.7032 | 1.0 | 1209 | 3.1958 | 16.1227 | 7.4852 | 15.2662 | 15.3552 | | 3.6502 | 2.0 | 2418 | 3.1103 | 17.2284 | 8.1626 | 16.757 | 16.6583 | | 3.4365 | 3.0 | 3627 | 3.0698 | 17.2326 | 8.7096 | 17.0961 | 16.9705 | | 3.312 | 4.0 | 4836 | 3.0324 | 16.9472 | 8.1386 | 16.6025 | 16.6126 | | 3.2343 | 5.0 | 6045 | 3.0385 | 17.8752 | 8.0578 | 17.4985 | 17.5298 | | 3.1661 | 6.0 | 7254 | 3.0334 | 17.8822 | 8.5243 | 17.5825 | 17.5242 | | 3.1305 | 7.0 | 8463 | 3.0289 | 17.8187 | 8.124 | 17.4815 | 17.4688 | | 3.1039 | 8.0 | 9672 | 3.0283 | 17.6736 | 8.5399 | 17.4107 | 17.3637 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
a3091645540c1794b2f041772e01640b
S2312dal/M6_MLM_cross
S2312dal
bert
47
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,457
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M6_MLM_cross This model is a fine-tuned version of [S2312dal/M6_MLM](https://huggingface.co/S2312dal/M6_MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0197 - Pearson: 0.9680 - Spearmanr: 0.9098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8.0 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0723 | 1.0 | 131 | 0.0646 | 0.8674 | 0.8449 | | 0.0433 | 2.0 | 262 | 0.0322 | 0.9475 | 0.9020 | | 0.0015 | 3.0 | 393 | 0.0197 | 0.9680 | 0.9098 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
567c227b49f0fb9d9fa4c9f3af963f8e
Apel/LoRa
Apel
null
26
0
null
7
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,070
false
# LoRAs You will need to install this extension https://github.com/kohya-ss/sd-webui-additional-networks in order to use it in the Web UI. Follow the "How to use" section on that page. # Social Media [Twitter](https://twitter.com/kumisudang) [Pixiv](https://www.pixiv.net/en/users/89129423) ## Characters ### Shinobu Kochou (Demon Slayer) [Download .safetensors](https://huggingface.co/Apel/LoRa/tree/main/Characters/Demon%20Slayer%3A%20Kimetsu%20no%20Yaiba/Shinobu%20Kochou) Relevant full-character prompt: ``` masterpiece, best quality, ultra-detailed, illustration, 1girl, solo, kochou shinobu, multicolored hair, no bangs, hair intakes, purple eyes, forehead, wisteria, black shirt, black pants, haori, butterfly, standing waist-deep in the crystal clear water of a tranquil pond, peaceful expression, surrounded by lush green foliage and wildflowers, falling petals, falling leaves, large breasts, cowboy shot, buttons, belt, light smile, ``` ![Shinobu Kochou (Demon Slayer)](Characters/Demon%20Slayer%3A%20Kimetsu%20no%20Yaiba/Shinobu%20Kochou/Example.png)
2dc6df5bdef5b29fd2925e550e16c8de
tomekkorbak/amazing_shannon
tomekkorbak
gpt2
23
2
transformers
0
null
true
false
false
mit
['en']
['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
8,755
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazing_shannon This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'amazing_shannon', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3u44exkw
54e4f4ab8a695fa8e88117e7c905bbf4
Kushala/wav2vec2-large-xls-r-300m-kushala_wave2vec_trails
Kushala
wav2vec2
16
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,067
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kushala_wave2vec_trails This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cpu - Datasets 1.18.3 - Tokenizers 0.12.1
19d43b718f9186540c4f5b14d3c06d84
yip-i/wav2vec2-demo-M02-2
yip-i
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,203
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo-M02-2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2709 - Wer: 1.0860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.4917 | 0.91 | 500 | 3.2945 | 1.0 | | 3.4102 | 1.81 | 1000 | 3.1814 | 1.0 | | 2.9438 | 2.72 | 1500 | 2.7858 | 1.0 | | 2.6698 | 3.62 | 2000 | 2.4745 | 1.0035 | | 1.9542 | 4.53 | 2500 | 1.8675 | 1.3745 | | 1.2737 | 5.43 | 3000 | 1.6459 | 1.3703 | | 0.9748 | 6.34 | 3500 | 1.8406 | 1.3037 | | 0.7696 | 7.25 | 4000 | 1.5086 | 1.2476 | | 0.6396 | 8.15 | 4500 | 1.8280 | 1.2476 | | 0.558 | 9.06 | 5000 | 1.7680 | 1.2247 | | 0.4865 | 9.96 | 5500 | 1.8210 | 1.2309 | | 0.4244 | 10.87 | 6000 | 1.7910 | 1.1775 | | 0.3898 | 11.78 | 6500 | 1.8021 | 1.1831 | | 0.3456 | 12.68 | 7000 | 1.7746 | 1.1456 | | 0.3349 | 13.59 | 7500 | 1.8969 | 1.1519 | | 0.3233 | 14.49 | 8000 | 1.7402 | 1.1234 | | 0.3046 | 15.4 | 8500 | 1.8585 | 1.1429 | | 0.2622 | 16.3 | 9000 | 1.6687 | 1.0950 | | 0.2593 | 17.21 | 9500 | 1.8192 | 1.1144 | | 0.2541 | 18.12 | 10000 | 1.8665 | 1.1110 | | 0.2098 | 19.02 | 10500 | 1.9996 | 1.1186 | | 0.2192 | 19.93 | 11000 | 2.0346 | 1.1040 | | 0.1934 | 20.83 | 11500 | 2.1924 | 1.1012 | | 0.2034 | 21.74 | 12000 | 1.8060 | 1.0929 | | 0.1857 | 22.64 | 12500 | 2.0334 | 1.0798 | | 0.1819 | 23.55 | 13000 | 2.1223 | 1.1040 | | 0.1621 | 24.46 | 13500 | 2.1795 | 1.0957 | | 0.1548 | 25.36 | 14000 | 2.1545 | 1.1089 | | 0.1512 | 26.27 | 14500 | 2.2707 | 1.1186 | | 0.1472 | 27.17 | 15000 | 2.1698 | 1.0888 | | 0.1296 | 28.08 | 15500 | 2.2496 | 1.0867 | | 0.1312 | 28.99 | 16000 | 2.2969 | 1.0881 | | 0.1331 | 29.89 | 16500 | 2.2709 | 1.0860 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
6ddc06ce2390b90eff83c6118f7e85e4
ml6team/keyphrase-generation-keybart-inspec
ml6team
bart
10
281
transformers
1
text2text-generation
true
false
false
mit
['en']
['midas/inspec']
null
0
0
0
0
2
2
0
['keyphrase-generation']
true
true
true
8,935
false
# 🔑 Keyphrase Generation Model: KeyBART-inspec Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. Here is where Artificial Intelligence 🤖 comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. ## 📓 Model Description This model uses [KeyBART](https://huggingface.co/bloomberg/KeyBART) as its base model and fine-tunes it on the [Inspec dataset](https://huggingface.co/datasets/midas/inspec). KeyBART focuses on learning a better representation of keyphrases in a generative setting. It produces the keyphrases associated with the input document from a corrupted input. The input is changed by token masking, keyphrase masking and keyphrase replacement. This model can already be used without any fine-tuning, but can be fine-tuned if needed. You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547). Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021). ## ✋ Intended Uses & Limitations ### 🛑 Limitations * This keyphrase generation model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out. * Only works for English documents. ### ❓ How To Use ```python # Model parameters from transformers import ( Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, AutoTokenizer, ) class KeyphraseGenerationPipeline(Text2TextGenerationPipeline): def __init__(self, model, keyphrase_sep_token=";", *args, **kwargs): super().__init__( model=AutoModelForSeq2SeqLM.from_pretrained(model), tokenizer=AutoTokenizer.from_pretrained(model), *args, **kwargs ) self.keyphrase_sep_token = keyphrase_sep_token def postprocess(self, model_outputs): results = super().postprocess( model_outputs=model_outputs ) return [[keyphrase.strip() for keyphrase in result.get("generated_text").split(self.keyphrase_sep_token) if keyphrase != ""] for result in results] ``` ```python # Load pipeline model_name = "ml6team/keyphrase-generation-keybart-inspec" generator = KeyphraseGenerationPipeline(model=model_name) ```python # Inference text = """ Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. """.replace("\n", " ") keyphrases = generator(text) print(keyphrases) ``` ``` # Output [['keyphrase extraction', 'text analysis', 'keyphrases', 'human annotators', 'artificial']] ``` ## 📚 Training Dataset [Inspec](https://huggingface.co/datasets/midas/inspec) is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors. You can find more information in the [paper](https://dl.acm.org/doi/10.3115/1119355.1119383). ## 👷‍♂️ Training Procedure ### Training Parameters | Parameter | Value | | --------- | ------| | Learning Rate | 5e-5 | | Epochs | 15 | | Early Stopping Patience | 1 | ### Preprocessing The documents in the dataset are already preprocessed into list of words with the corresponding keyphrases. The only thing that must be done is tokenization and joining all keyphrases into one string with a certain seperator of choice( ```;``` ). ```python from datasets import load_dataset from transformers import AutoTokenizer # Tokenizer tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART", add_prefix_space=True) # Dataset parameters dataset_full_name = "midas/inspec" dataset_subset = "raw" dataset_document_column = "document" keyphrase_sep_token = ";" def preprocess_keyphrases(text_ids, kp_list): kp_order_list = [] kp_set = set(kp_list) text = tokenizer.decode( text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) text = text.lower() for kp in kp_set: kp = kp.strip() kp_index = text.find(kp.lower()) kp_order_list.append((kp_index, kp)) kp_order_list.sort() present_kp, absent_kp = [], [] for kp_index, kp in kp_order_list: if kp_index < 0: absent_kp.append(kp) else: present_kp.append(kp) return present_kp, absent_kp def preprocess_fuction(samples): processed_samples = {"input_ids": [], "attention_mask": [], "labels": []} for i, sample in enumerate(samples[dataset_document_column]): input_text = " ".join(sample) inputs = tokenizer( input_text, padding="max_length", truncation=True, ) present_kp, absent_kp = preprocess_keyphrases( text_ids=inputs["input_ids"], kp_list=samples["extractive_keyphrases"][i] + samples["abstractive_keyphrases"][i], ) keyphrases = present_kp keyphrases += absent_kp target_text = f" {keyphrase_sep_token} ".join(keyphrases) with tokenizer.as_target_tokenizer(): targets = tokenizer( target_text, max_length=40, padding="max_length", truncation=True ) targets["input_ids"] = [ (t if t != tokenizer.pad_token_id else -100) for t in targets["input_ids"] ] for key in inputs.keys(): processed_samples[key].append(inputs[key]) processed_samples["labels"].append(targets["input_ids"]) return processed_samples # Load dataset dataset = load_dataset(dataset_full_name, dataset_subset) # Preprocess dataset tokenized_dataset = dataset.map(preprocess_fuction, batched=True) ``` ### Postprocessing For the post-processing, you will need to split the string based on the keyphrase separator. ```python def extract_keyphrases(examples): return [example.split(keyphrase_sep_token) for example in examples] ``` ## 📝 Evaluation results Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. In keyphrase generation you also look at F1@O where O stands for the number of ground truth keyphrases. The model achieves the following results on the Inspec test set: ### Extractive Keyphrases | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O | |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:| | Inspec Test Set | 0.40 | 0.37 | 0.35 | 0.20 | 0.37 | 0.24 | 0.42 | 0.37 | 0.36 | 0.33 | 0.33 | 0.33 | ### Abstractive Keyphrases | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O | |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:| | Inspec Test Set | 0.07 | 0.12 | 0.08 | 0.03 | 0.12 | 0.05 | 0.08 | 0.12 | 0.08 | 0.08 | 0.12 | 0.08 | ## 🚨 Issues Please feel free to start discussions in the Community Tab.
22eff5e5720a8ce2cdfc4f4b44910d4d
alea31415/bocchi-the-rock-character
alea31415
null
27
0
null
42
null
false
false
false
creativeml-openrail-m
null
null
null
5
0
5
0
1
1
0
[]
false
true
true
5,767
false
--- license: creativeml-openrail-m --- This is a low-quality bocchi-the-rock (ぼっち・ざ・ろっく!) character model. Similar to my [yama-no-susume model](https://huggingface.co/alea31415/yama-no-susume), this model is capable of generating **multi-character scenes** beyond images of a single character. Of course, the result is still hit-or-miss, but I with some chance you can get the entire Kessoku Band right in one shot, and otherwise, you can always rely on inpainting. Here are two examples: With inpainting ![4265343062-1047638199](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/with_inpaint/4265343062-1047638199.png) Without inpainting ![4265343086-2648280139](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343086-2648280139.png) ### Characters The model knows 12 characters from bocchi the rock. The ressemblance with a character can be improved by a better description of their appearance (for example by adding long wavy hair to ShimizuEliza). ![xy_grid-0028-24](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/grids/xy_grid-0028-24.jpg) ![xy_grid-0029-24](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/grids/xy_grid-0029-24.jpg) ![xy_grid-0030-24](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/grids/xy_grid-0030-24.jpg) ### Dataset description The dataset contains around 27K images with the following composition - 7024 anime screenshots - 1630 fan arts - 18519 customized regularization images The model is trained with a specific weighting scheme to balance between different concepts. For example, the above three categories have weights respectively 0.3, 0.25, and 0.45. Each category is itself split into many sub-categories in a hierarchical way. For more details on the data preparation process please refer to https://github.com/cyber-meow/anime_screenshot_pipeline ### Training Details #### Trainer The model is trained using [EveryDream1](https://github.com/victorchall/EveryDream-trainer) as EveryDream seems to be the only trainer out there that supports sample weighting (through the use of `multiply.txt`). Note that for future training it makes sense to migrate to [EveryDream2](https://github.com/victorchall/EveryDream2trainer). #### Hardware and cost The model is trained on runpod using 3090 and cost me around 15 dollors. #### Hyperparameter specification The model is trained for 50000 steps, at batch size 4, lr 1e-6, resolution 512, and conditional dropping rate of 10%. Note that as a consequence of the weighting scheme which translates into a number of different multiply for each image, the count of repeat and epoch has a quite different meaning here. For example, depending on the weighting, I have around 300K images (some images are used multiple times) in an epoch, and therefore I did not even finish an entire epoch with the 50000 steps at batch size 4. ### Failures - For the first 24000 steps I use the trigger words `Bfan1` and `Bfan2` for the two fans of Bocchi. However, these two words are too similar and the model fails to different characters for these. Therefore I changed Bfan2 to Bofa2 at step 24000. This seemed to solve the problem. - Character blending is always an issue. - When prompting the four characters of Kessoku Band we often get side shots. I think this is because of some overfitting to a particular image. ### More Example Generations With inpainting ![4265343068-2420755431](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/with_inpaint/4265343068-2420755431.png) ![4265343066-3979275255](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/with_inpaint/4265343066-3979275255.png) ![4265343022-3534836762](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/with_inpaint/4265343022-3534836762.png) Without inpainting ![4265343092-803155289](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343092-803155289.png) ![4265343053-918713189](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343053-918713189.png) ![4265343054-2839948768](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343054-2839948768.png) ![4265343096-399054050](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343096-399054050.png) ![4265343100-3858388158](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343100-3858388158.png) ![4265343016-2842516738](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343016-2842516738.png) ![4265343084-3548261345](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343084-3548261345.png) ![4265343083-1372779456](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/without_inpaint/4265343083-1372779456.png) Some failure cases ![4265343089-2940163958](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/failure/4265343089-2940163958.png) ![4265343091-129639375](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/failure/4265343091-129639375.png) ![4265343048-2869643584](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/failure/4265343048-2869643584.png) ![4265343039-1470057774](https://huggingface.co/alea31415/bocchi-the-rock-character/resolve/main/examples/failure/4265343039-1470057774.png)
391ba204b1556f4dd62697d66eab7c09
Rhuan288/whisper-test-medium
Rhuan288
null
6
0
generic
0
automatic-speech-recognition
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'endpoints-template']
false
true
true
2,248
false
# OpenAI [Whisper](https://github.com/openai/whisper) Inference Endpoint example > Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. For more information about the model, license and limitations check the original repository at [openai/whisper](https://github.com/openai/whisper). --- This repository implements a custom `handler` task for `automatic-speech-recognition` for 🤗 Inference Endpoints using OpenAIs new Whisper model. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/handler.py). There is also a [notebook](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ### Request The endpoint expects a binary audio file. Below is a cURL example and a Python example using the `requests` library. **curl** ```bash # load audio file wget https://cdn-media.huggingface.co/speech_samples/sample1.flac # run request curl --request POST \ --url https://{ENDPOINT}/ \ --header 'Content-Type: audio/x-flac' \ --header 'Authorization: Bearer {HF_TOKEN}' \ --data-binary '@sample1.flac' ``` **Python** ```python import json from typing import List import requests as r import base64 import mimetypes ENDPOINT_URL="" HF_TOKEN="" def predict(path_to_audio:str=None): # read audio file with open(path_to_audio, "rb") as i: b = i.read() # get mimetype content_type= mimetypes.guess_type(path_to_audio)[0] headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": content_type } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_audio="sample1.flac") prediction ``` expected output ```json {"text": " going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards."} ```
19c97ea5b11c66949dacc7e6f99d384a
kobe/vit-base-beans
kobe
vit
11
3
transformers
0
image-classification
true
false
false
apache-2.0
null
['beans']
null
0
0
0
0
0
0
0
['image-classification', 'vision', 'generated_from_trainer']
true
true
true
1,478
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0866 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2501 | 1.0 | 130 | 0.2281 | 0.9624 | | 0.2895 | 2.0 | 260 | 0.1138 | 0.9925 | | 0.1549 | 3.0 | 390 | 0.1065 | 0.9774 | | 0.0952 | 4.0 | 520 | 0.0866 | 0.9850 | | 0.1511 | 5.0 | 650 | 0.0875 | 0.9774 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
77516f234fecde783bfc970e5623509d
sd-concepts-library/durer-style
sd-concepts-library
null
10
0
null
6
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,136
false
### durer style on Stable Diffusion This is the `<drr-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<drr-style> 0](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/3.jpeg) ![<drr-style> 1](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/0.jpeg) ![<drr-style> 2](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/1.jpeg) ![<drr-style> 3](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/2.jpeg) ![<drr-style> 4](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/4.jpeg)
5d280ba53b61a5a442626f1ada8894ab
jamesesguerra/distilbart-cnn-12-6-finetuned-1.3.0
jamesesguerra
bart
14
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,478
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-1.3.0 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7396 - Rouge1: 50.4996 - Rouge2: 23.7554 - Rougel: 35.3613 - Rougelsum: 45.8275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0871 | 1.0 | 982 | 1.8224 | 49.5261 | 23.1091 | 34.3266 | 44.7491 | | 1.5334 | 2.0 | 1964 | 1.7396 | 50.4996 | 23.7554 | 35.3613 | 45.8275 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ac4c81e2a6e292dd32051409fa7838a2
Sleoruiz/distilbert-base-uncased-finetuned-cola
Sleoruiz
distilbert
26
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7663 - Matthews Correlation: 0.5396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5281 | 1.0 | 535 | 0.5268 | 0.4071 | | 0.3503 | 2.0 | 1070 | 0.5074 | 0.5126 | | 0.2399 | 3.0 | 1605 | 0.6440 | 0.4977 | | 0.1807 | 4.0 | 2140 | 0.7663 | 0.5396 | | 0.1299 | 5.0 | 2675 | 0.8786 | 0.5192 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
c8ee04c6087faf9afd7be55cb0e6337c
google/bit-50
google
bit
5
210
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['vision', 'image-classification']
false
true
true
3,419
false
# Big Transfer (BiT) The BiT model was proposed in [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. BiT is a simple recipe for scaling up pre-training of [ResNet](resnet)-like architectures (specifically, ResNetv2). The method results in significant improvements for transfer learning. Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The abstract from the paper is the following: *Transfer of pre-trained representations improves sample efficiency and simplifies hyperparameter tuning when training deep neural networks for vision. We revisit the paradigm of pre-training on large supervised datasets and fine-tuning the model on a target task. We scale up pre-training, and propose a simple recipe that we call Big Transfer (BiT). By combining a few carefully selected components, and transferring using a simple heuristic, we achieve strong performance on over 20 datasets. BiT performs well across a surprisingly wide range of data regimes -- from 1 example per class to 1M total examples. BiT achieves 87.5% top-1 accuracy on ILSVRC-2012, 99.4% on CIFAR-10, and 76.3% on the 19 task Visual Task Adaptation Benchmark (VTAB). On small datasets, BiT attains 76.8% on ILSVRC-2012 with 10 examples per class, and 97.0% on CIFAR-10 with 10 examples per class. We conduct detailed analysis of the main components that lead to high transfer performance.* ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=bit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import BitImageProcessor, BitForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = BitImageProcessor.from_pretrained("google/bit-50") model = BitForImageClassification.from_pretrained("google/bit-50") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label >>> tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/bit). ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.1912.11370, doi = {10.48550/ARXIV.1912.11370}, url = {https://arxiv.org/abs/1912.11370}, author = {Kolesnikov, Alexander and Beyer, Lucas and Zhai, Xiaohua and Puigcerver, Joan and Yung, Jessica and Gelly, Sylvain and Houlsby, Neil}, keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Big Transfer (BiT): General Visual Representation Learning}, publisher = {arXiv}, year = {2019}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
431e0b0c4369a65329ec81694eba5521
FrostAura/gpt-neox-20b-fiction-novel-generation
FrostAura
gpt_neox
55
44
transformers
7
text-generation
true
false
false
mit
['en']
null
null
3
0
3
0
0
0
0
['text-generation', 'novel-generation', 'fiction', 'gpt-neo-x', 'pytorch']
false
true
true
1,535
false
<p align="center"> <img src="https://github.com/faGH/fa.creative/blob/master/Icons/FrostAura/FA%20Logo/FrostAura.Logo.Complex.png?raw=true" width="75" title="hover text"> </p> # fa.intelligence.models.generative.novels.fiction ## Description This FrostAura Intelligence model is a fine-tuned version of [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) for fictional text content generation. ## Getting Started ### PIP Installation ``` pip install -U --no-cache-dir transformers ``` ### Usage ``` from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast model_name = 'FrostAura/gpt-neox-20b-fiction-novel-generation' model = GPTNeoXForCausalLM.from_pretrained(model_name) tokenizer = GPTNeoXTokenizerFast.from_pretrained(model_name) prompt = 'GPTNeoX20B is a 20B-parameter autoregressive Transformer model developed by EleutherAI.' input_ids = tokenizer(prompt, return_tensors="pt").input_ids gen_tokens = model.generate( input_ids, do_sample=True, temperature=0.9, max_length=100, ) gen_text = tokenizer.batch_decode(gen_tokens)[0] print(f'Result: {gen_text}') ``` ## Further Fine-Tuning `in development` ## Support If you enjoy FrostAura open-source content and would like to support us in continuous delivery, please consider a donation via a platform of your choice. | Supported Platforms | Link | | ------------------- | ---- | | PayPal | [Donate via Paypal](https://www.paypal.com/donate/?hosted_button_id=SVEXJC9HFBJ72) | For any queries, contact dean.martin@frostaura.net.
01d39a524362ab8e59f0f4faf3e066e0
jonatasgrosman/exp_w2v2t_ja_xlsr-53_s781
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ja']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ja']
false
true
true
461
false
# exp_w2v2t_ja_xlsr-53_s781 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
4adbae9a327a3e1643f4cf5cff12718f
EldritchAdam/classipeint
EldritchAdam
null
3
0
null
19
null
false
false
false
cc0-1.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,186
false
You want more than a digital style - you want to feel brush strokes and see the built-up paint of an oil painting. You love physical objects and want your AI-generated art to fool you that you're looking at a photograph of something analog, hanging on a wall somewhere. This is the embedding for you. Download the the 'classipeint.pt' file and trigger it in your prompt "art by classipeint" or "painted by classipeint" or simply "by classipeint" <strong>Interested in generating your own embeddings? <a href="https://docs.google.com/document/d/1JvlM0phnok4pghVBAMsMq_-Z18_ip_GXvHYE0mITdFE/edit?usp=sharing" target="_blank">My Google doc walkthrough might help</a></strong> It is reasonably flexible - I find I can prompt for fantasy elements, classic scenes, modern architecture ... it does sometimes take a little finessing but except for bad anatomy, I am using surprisingly few negative prompts. You can rename the file and use that filename as the prompt. Just be sure your filename is unique and not something that may be an existing token that Stable Diffusion is trained on. ![01642-2869083623-portrait of a___.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672646629219-63169de2f5e32157c5226974.jpeg) ![01639-2347037953-Mexican count___.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358818-63169de2f5e32157c5226974.jpeg) ![01636-63647559-extremely detai___.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358846-63169de2f5e32157c5226974.jpeg) ![01634-850899942-painting of a____.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358820-63169de2f5e32157c5226974.jpeg) ![01632-3303150612-North end of____.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358826-63169de2f5e32157c5226974.jpeg) ![01631-2009822381-African busin___.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358823-63169de2f5e32157c5226974.jpeg) ![01630-4016756398-a diminutive____.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358844-63169de2f5e32157c5226974.jpeg) ![01629-4016756396-a diminutive____.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672645358842-63169de2f5e32157c5226974.jpeg)
886635b83ff1bf55fc4162c7845757f0
floriancaro/my_awesome_billsum_model
floriancaro
t5
12
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['billsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,707
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4612 - Rouge1: 0.1424 - Rouge2: 0.0506 - Rougel: 0.1186 - Rougelsum: 0.1185 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7438 | 0.1291 | 0.0351 | 0.1081 | 0.1083 | 19.0 | | No log | 2.0 | 124 | 2.5394 | 0.1366 | 0.0457 | 0.1129 | 0.1128 | 19.0 | | No log | 3.0 | 186 | 2.4761 | 0.1405 | 0.0482 | 0.1166 | 0.1166 | 19.0 | | No log | 4.0 | 248 | 2.4612 | 0.1424 | 0.0506 | 0.1186 | 0.1185 | 19.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
3c220f3369c264eacf73a20b055a7933
Helsinki-NLP/opus-mt-lt-es
Helsinki-NLP
marian
11
17
transformers
1
translation
true
true
false
apache-2.0
['lt', 'es']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
1,990
false
### lit-spa * source group: Lithuanian * target group: Spanish * OPUS readme: [lit-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-spa/README.md) * model: transformer-align * source language(s): lit * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.lit.spa | 50.5 | 0.680 | ### System Info: - hf_name: lit-spa - source_languages: lit - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lt', 'es'] - src_constituents: {'lit'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.test.txt - src_alpha3: lit - tgt_alpha3: spa - short_pair: lt-es - chrF2_score: 0.68 - bleu: 50.5 - brevity_penalty: 0.963 - ref_len: 2738.0 - src_name: Lithuanian - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: lt - tgt_alpha2: es - prefer_old: False - long_pair: lit-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
b7f63065dc350268295faf6c6f15ce54
pfloyd/opus-mt-es-en-finetuned-es-to-en
pfloyd
marian
26
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,548
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-es-en-finetuned-es-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-en](https://huggingface.co/Helsinki-NLP/opus-mt-es-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5851 - Bleu: 71.1382 - Gen Len: 10.3225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 112 | 0.5693 | 71.7823 | 10.3676 | | No log | 2.0 | 224 | 0.5744 | 69.5504 | 10.6739 | | No log | 3.0 | 336 | 0.5784 | 71.6553 | 10.3117 | | No log | 4.0 | 448 | 0.5826 | 71.0576 | 10.3261 | | 0.2666 | 5.0 | 560 | 0.5851 | 71.1382 | 10.3225 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
cb8f75b915102d84a5c5a2f2e192e048
Nadav/bert-base-historic-english-cased-squad-en
Nadav
bert
10
7
transformers
0
question-answering
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,292
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-historic-english-cased-squad-en This model is a fine-tuned version of [dbmdz/bert-base-historic-english-cased](https://huggingface.co/dbmdz/bert-base-historic-english-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2943 | 1.0 | 4686 | 1.9503 | | 2.0811 | 2.0 | 9372 | 1.7739 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
ae1f1e039a8756230382604cf91d7ecc
StonyBrookNLP/teabreac-preasm-large-iirc-gold
StonyBrookNLP
t5
8
3
transformers
0
text2text-generation
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['question-answering, multi-step-reasoning, multi-hop-reasoning']
false
true
true
2,617
false
# What's this? This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496). This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details. We release the following models: - **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}` - **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}` - **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}` The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`. The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`. The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**. # How to use it? Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac model_name = "StonyBrookNLP/teabreac-preasm-large-iirc-gold" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization model = AutoModelForSeq2SeqLM.from_pretrained(model_name) enable_digit_tokenization(tokenizer) input_texts = [ "Who scored the first touchdown of the game?\n" + "... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..." # Note: some models have slightly different qn/ctxt format. See the github repo. ] input_ids = tokenizer( input_texts, return_tensors="pt", truncation=True, max_length=800, add_special_tokens=True, padding=True, )["input_ids"] generated_ids = model.generate(input_ids, min_length=1, max_length=50) generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) generated_predictions = [ tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions ] # => ["Chaz Schilens"] ```
fb205ddb4a08bfd2797cf27286f8b2bf
gokuls/distilbert_sa_GLUE_Experiment_mnli_96
gokuls
distilbert
17
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,192
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9288 - Accuracy: 0.5545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0498 | 1.0 | 1534 | 0.9988 | 0.5084 | | 0.9757 | 2.0 | 3068 | 0.9532 | 0.5303 | | 0.9458 | 3.0 | 4602 | 0.9435 | 0.5377 | | 0.9272 | 4.0 | 6136 | 0.9306 | 0.5456 | | 0.9122 | 5.0 | 7670 | 0.9305 | 0.5474 | | 0.8992 | 6.0 | 9204 | 0.9294 | 0.5489 | | 0.8867 | 7.0 | 10738 | 0.9260 | 0.5522 | | 0.8752 | 8.0 | 12272 | 0.9319 | 0.5559 | | 0.8645 | 9.0 | 13806 | 0.9336 | 0.5604 | | 0.8545 | 10.0 | 15340 | 0.9200 | 0.5629 | | 0.8443 | 11.0 | 16874 | 0.9200 | 0.5664 | | 0.8338 | 12.0 | 18408 | 0.9298 | 0.5672 | | 0.8252 | 13.0 | 19942 | 0.9383 | 0.5647 | | 0.8168 | 14.0 | 21476 | 0.9428 | 0.5691 | | 0.8084 | 15.0 | 23010 | 0.9325 | 0.5730 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
b976f46227a7035d764ef661bd751674
Helsinki-NLP/opus-mt-en-CELTIC
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
1,067
false
### opus-mt-en-INSULAR_CELTIC * source languages: en * target languages: ga,cy,br,gd,kw,gv * OPUS readme: [en-ga+cy+br+gd+kw+gv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ga+cy+br+gd+kw+gv/README.md) * dataset: opus+techiaith+bt * model: transformer-align * pre-processing: normalization + SentencePiece * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus+techiaith+bt-2020-04-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ga+cy+br+gd+kw+gv/opus+techiaith+bt-2020-04-24.zip) * test set translations: [opus+techiaith+bt-2020-04-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ga+cy+br+gd+kw+gv/opus+techiaith+bt-2020-04-24.test.txt) * test set scores: [opus+techiaith+bt-2020-04-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ga+cy+br+gd+kw+gv/opus+techiaith+bt-2020-04-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.ga | 22.8 | 0.404 |
2c6c4f6094de6cf2ab7a2839ccb59da7
DeividasM/finetuning-sentiment-model-3000-samples
DeividasM
distilbert
13
9
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,055
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3275 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
cf4bea4deebe3fe84449af1b06724d8b
ghatgetanuj/roberta-large_cls_CR
ghatgetanuj
roberta
13
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,505
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large_cls_CR This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3325 - Accuracy: 0.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 213 | 0.4001 | 0.875 | | No log | 2.0 | 426 | 0.4547 | 0.8324 | | 0.499 | 3.0 | 639 | 0.3161 | 0.8963 | | 0.499 | 4.0 | 852 | 0.3219 | 0.9069 | | 0.2904 | 5.0 | 1065 | 0.3325 | 0.9043 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
d9e4b794b7707d20b158d3501e5678e9
lmqg/t5-large-subjqa-electronics-qg
lmqg
t5
34
1
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qg_subjqa']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
4,015
false
# Model Card of `lmqg/t5-large-subjqa-electronics-qg` This model is fine-tuned version of [lmqg/t5-large-squad](https://huggingface.co/lmqg/t5-large-squad) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: electronics) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [lmqg/t5-large-squad](https://huggingface.co/lmqg/t5-large-squad) - **Language:** en - **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (electronics) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/t5-large-subjqa-electronics-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/t5-large-subjqa-electronics-qg") output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-large-subjqa-electronics-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.electronics.json) | | Score | Type | Dataset | |:-----------|--------:|:------------|:-----------------------------------------------------------------| | BERTScore | 94.27 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_1 | 29.72 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_2 | 21.47 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_3 | 10.86 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_4 | 4.57 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | METEOR | 27.56 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | MoverScore | 68.8 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | ROUGE_L | 30.55 | electronics | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_subjqa - dataset_name: electronics - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: ['qg'] - model: lmqg/t5-large-squad - max_length: 512 - max_length_output: 32 - epoch: 3 - batch: 16 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-large-subjqa-electronics-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
c2bd740221e2dcf5fc1d8513450814a4
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned
ajtamayoh
bert
12
14
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,962
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0537 - Precision: 0.8585 - Recall: 0.7101 - F1: 0.7773 - Accuracy: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0693 | 1.0 | 514 | 0.0416 | 0.9485 | 0.6492 | 0.7708 | 0.9884 | | 0.0367 | 2.0 | 1028 | 0.0396 | 0.9391 | 0.6710 | 0.7827 | 0.9892 | | 0.0283 | 3.0 | 1542 | 0.0385 | 0.9388 | 0.6889 | 0.7947 | 0.9899 | | 0.0222 | 4.0 | 2056 | 0.0422 | 0.9456 | 0.6790 | 0.7904 | 0.9898 | | 0.0182 | 5.0 | 2570 | 0.0457 | 0.9349 | 0.6925 | 0.7956 | 0.9901 | | 0.013 | 6.0 | 3084 | 0.0484 | 0.8947 | 0.7062 | 0.7894 | 0.9899 | | 0.0084 | 7.0 | 3598 | 0.0537 | 0.8585 | 0.7101 | 0.7773 | 0.9893 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
de84cbf93d26a99b8433b0c3ecaec1b6
anrilombard/distilbert-base-uncased-finetuned-imdb
anrilombard
distilbert
8
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,118
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 2.8413 - eval_runtime: 304.6965 - eval_samples_per_second: 3.282 - eval_steps_per_second: 0.053 - epoch: 0.01 - step: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
9bcaf0a11878d3ae2d665597e220bca0
ychenNLP/arabic-relation-extraction
ychenNLP
bert
15
7
transformers
2
text-classification
true
true
false
mit
['ar', 'en']
['ACE2005']
null
1
0
1
0
1
1
0
['BERT', 'Text Classification', 'relation']
false
true
true
4,795
false
# Arabic Relation Extraction Model - [Github repo](https://github.com/edchengg/GigaBERT) - Relation Extraction model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English). - Model detail: mark two entities in the sentence with special markers (e.g., ```XXXX <PER> entity1 </PER> XXXXXXX <ORG> entity2 </ORG> XXXXX```). Then we use the BERT [CLS] representation to make a prediction. - ACE2005 Training data: Arabic - [Relation tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/arabic-relations-guidelines-v6.5.pdf) including: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact, Gen-Affiliation ## Hyperparameters - learning_rate=2e-5 - num_train_epochs=10 - weight_decay=0.01 ## How to use Workflow of a relation extraction model: 1. Input --> NER model --> Entities 2. Input sentence + Entity 1 + Entity 2 --> Relation Classification Model --> Relation Type ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AuotoModelForSequenceClassification >>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) >>> re_model = AutoModelForSequenceClassification.from_pretrained("ychenNLP/arabic-relation-extraction") >>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction") >>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer) def process_ner_output(entity_mention, inputs): re_input = [] for idx1 in range(len(entity_mention) - 1): for idx2 in range(idx1 + 1, len(entity_mention)): ent_1 = entity_mention[idx1] ent_2 = entity_mention[idx2] ent_1_type = ent_1['entity_group'] ent_2_type = ent_2['entity_group'] ent_1_s = ent_1['start'] ent_1_e = ent_1['end'] ent_2_s = ent_2['start'] ent_2_e = ent_2['end'] new_re_input = "" for c_idx, c in enumerate(inputs): if c_idx == ent_1_s: new_re_input += "<{}>".format(ent_1_type) elif c_idx == ent_1_e: new_re_input += "</{}>".format(ent_1_type) elif c_idx == ent_2_s: new_re_input += "<{}>".format(ent_2_type) elif c_idx == ent_2_e: new_re_input += "</{}>".format(ent_2_type) new_re_input += c re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs}) return re_input def post_process_re_output(re_output, text_input, ner_output): final_output = [] for idx, out in enumerate(re_output): if out["label"] != 'O': tmp = re_input[idx] tmp['relation_type'] = out tmp.pop('re_input', None) final_output.append(tmp) template = {"input": text_input, "entity": ner_output, "relation": final_output} return template text_input = """ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد.""" ner_output = ner_pip(text_input) # inference NER tags re_input = process_ner_output(ner_output, text_input) # prepare a pair of entity and predict relation type re_output = [] for idx in range(len(re_input)): tmp_re_output = re_pip(re_input[idx]["re_input"]) # for each pair of entity, predict relation re_output.append(tmp_re_output[0]) re_ner_output = post_process_re_output(re_output, text_input, ner_output) # post process NER and relation predictions print("Sentence: ",re_ner_output["input"]) print('====Entity====') for ent in re_ner_output["entity"]: print('{}--{}'.format(ent["word"], ent["entity_group"])) print('====Relation====') for rel in re_ner_output["relation"]: print('{}--{}:{}'.format(rel['arg1']['word'], rel['arg2']['word'], rel['relation_type']['label'])) Sentence: ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد. ====Entity==== بايدن--PER قادة--PER الدول--GPE الناتو--ORG العاصمة--GPE الاسبانية--GPE مدريد--GPE ====Relation==== قادة--الدول:ORG-AFF الدول--الناتو:ORG-AFF العاصمة--الاسبانية:PART-WHOLE ``` ### BibTeX entry and citation info ```bibtex @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ```
74ca011545adfa3be93fdfcf5310ab74
din0s/t5-base-finetuned-en-to-it-lrs
din0s
t5
10
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,075
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-en-to-it-lrs This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4687 - Bleu: 22.9793 - Gen Len: 49.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.4378 | 1.0 | 1125 | 1.9365 | 12.0299 | 55.7007 | | 1.229 | 2.0 | 2250 | 1.8493 | 15.9175 | 51.6293 | | 1.0996 | 3.0 | 3375 | 1.7781 | 17.5103 | 51.666 | | 0.9979 | 4.0 | 4500 | 1.7309 | 18.8603 | 50.8587 | | 0.9421 | 5.0 | 5625 | 1.6839 | 19.8188 | 50.4767 | | 0.9181 | 6.0 | 6750 | 1.6602 | 20.5693 | 50.272 | | 0.8882 | 7.0 | 7875 | 1.6386 | 20.9771 | 50.3833 | | 0.8498 | 8.0 | 9000 | 1.6252 | 21.2237 | 50.5093 | | 0.8356 | 9.0 | 10125 | 1.6079 | 21.3987 | 50.31 | | 0.8164 | 10.0 | 11250 | 1.5698 | 21.5409 | 50.388 | | 0.8001 | 11.0 | 12375 | 1.5779 | 21.7354 | 49.822 | | 0.7805 | 12.0 | 13500 | 1.5637 | 21.9649 | 49.8213 | | 0.764 | 13.0 | 14625 | 1.5540 | 22.1342 | 50.2 | | 0.7594 | 14.0 | 15750 | 1.5456 | 22.2318 | 50.0147 | | 0.7355 | 15.0 | 16875 | 1.5309 | 22.2936 | 49.7693 | | 0.7343 | 16.0 | 18000 | 1.5247 | 22.5065 | 49.7607 | | 0.7231 | 17.0 | 19125 | 1.5231 | 22.3902 | 49.7733 | | 0.7183 | 18.0 | 20250 | 1.5211 | 22.3672 | 49.8313 | | 0.7068 | 19.0 | 21375 | 1.5075 | 22.5519 | 49.7433 | | 0.7087 | 20.0 | 22500 | 1.5006 | 22.4827 | 49.5 | | 0.6965 | 21.0 | 23625 | 1.4978 | 22.5907 | 49.6833 | | 0.6896 | 22.0 | 24750 | 1.4955 | 22.6286 | 49.836 | | 0.689 | 23.0 | 25875 | 1.4924 | 22.7052 | 49.7267 | | 0.6793 | 24.0 | 27000 | 1.4890 | 22.7444 | 49.8393 | | 0.6708 | 25.0 | 28125 | 1.4889 | 22.6821 | 49.8673 | | 0.6671 | 26.0 | 29250 | 1.4835 | 22.7866 | 49.676 | | 0.6652 | 27.0 | 30375 | 1.4853 | 22.7691 | 49.7107 | | 0.6578 | 28.0 | 31500 | 1.4787 | 22.8173 | 49.738 | | 0.6556 | 29.0 | 32625 | 1.4777 | 22.7408 | 49.6687 | | 0.6592 | 30.0 | 33750 | 1.4772 | 22.8371 | 49.7307 | | 0.6546 | 31.0 | 34875 | 1.4819 | 22.8398 | 49.6053 | | 0.6465 | 32.0 | 36000 | 1.4741 | 22.8379 | 49.658 | | 0.6381 | 33.0 | 37125 | 1.4691 | 22.9108 | 49.8113 | | 0.6429 | 34.0 | 38250 | 1.4660 | 22.9405 | 49.7933 | | 0.6381 | 35.0 | 39375 | 1.4701 | 22.8777 | 49.7467 | | 0.6454 | 36.0 | 40500 | 1.4692 | 22.9225 | 49.7227 | | 0.635 | 37.0 | 41625 | 1.4683 | 22.9914 | 49.6767 | | 0.6389 | 38.0 | 42750 | 1.4691 | 22.9904 | 49.7133 | | 0.6368 | 39.0 | 43875 | 1.4679 | 22.9962 | 49.8273 | | 0.6345 | 40.0 | 45000 | 1.4687 | 22.9793 | 49.8367 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
913e0ab0320e6c567ddb071ee9cd2bea
soschuetze/disilbert-blm-tweets-binary
soschuetze
distilbert
4
4
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,628
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # disilbert-blm-tweets-binary This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1159 - Train Accuracy: 0.9556 - Validation Loss: 0.5772 - Validation Accuracy: 0.7965 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5941 | 0.6905 | 0.5159 | 0.7168 | 0 | | 0.4041 | 0.8212 | 0.4589 | 0.8142 | 1 | | 0.2491 | 0.9026 | 0.6014 | 0.7876 | 2 | | 0.1011 | 0.9692 | 0.7181 | 0.8053 | 3 | | 0.1159 | 0.9556 | 0.5772 | 0.7965 | 4 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Tokenizers 0.13.2
aeb9668017f00504d5b7d81f832da211
Kurapka/ciasto
Kurapka
null
18
19
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
415
false
### ciasto Dreambooth model trained by Kurapka with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
398c6f50f25b62e08e3ac1fc21be4c79
Kevin123/distilbert-base-uncased-finetuned-cola
Kevin123
distilbert
10
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8663 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5248 | 1.0 | 535 | 0.5171 | 0.4210 | | 0.3418 | 2.0 | 1070 | 0.4971 | 0.5236 | | 0.2289 | 3.0 | 1605 | 0.6874 | 0.5023 | | 0.1722 | 4.0 | 2140 | 0.7680 | 0.5392 | | 0.118 | 5.0 | 2675 | 0.8663 | 0.5475 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
16067de0ff4b160ba4435d4a88e3b0e6
anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
t5
17
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
961
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
b1f038da5055669fc9c8b1530d36b1e2
sgugger/glue-mrpc
sgugger
bert
18
33
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
2
1
1
0
0
0
0
['generated_from_trainer']
true
true
true
1,052
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6566 - Accuracy: 0.8554 - F1: 0.8974 - Combined Score: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
76f766f627f6c487e5020130fbca21b6
jinlmsft/t5-large-multiwoz
jinlmsft
t5
26
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,850
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-multiwoz This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0064 - Acc: 1.0 - True Num: 56671 - Num: 56776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | True Num | Num | |:-------------:|:-----:|:----:|:---------------:|:----:|:--------:|:-----:| | 0.1261 | 1.13 | 1000 | 0.0933 | 0.98 | 55574 | 56776 | | 0.0951 | 2.25 | 2000 | 0.0655 | 0.98 | 55867 | 56776 | | 0.0774 | 3.38 | 3000 | 0.0480 | 0.99 | 56047 | 56776 | | 0.0584 | 4.51 | 4000 | 0.0334 | 0.99 | 56252 | 56776 | | 0.042 | 5.64 | 5000 | 0.0222 | 0.99 | 56411 | 56776 | | 0.0329 | 6.76 | 6000 | 0.0139 | 1.0 | 56502 | 56776 | | 0.0254 | 7.89 | 7000 | 0.0094 | 1.0 | 56626 | 56776 | | 0.0214 | 9.02 | 8000 | 0.0070 | 1.0 | 56659 | 56776 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
cf4cb9bfdfb3bf99a7d7eb87a5c3716d
naver-clova-ix/donut-base
naver-clova-ix
vision-encoder-decoder
11
12,125
transformers
31
image-to-text
true
false
false
mit
null
null
null
1
0
1
0
3
2
1
['donut', 'image-to-text', 'vision']
false
true
true
2,137
false
# Donut (base-sized model, pre-trained only) Donut model pre-trained-only. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) ## Intended uses & limitations This model is meant to be fine-tuned on a downstream task, like document image classification or document parsing. See the [model hub](https://huggingface.co/models?search=donut) to look for fine-tuned versions on a task that interests you. ### How to use We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-15664, author = {Geewook Kim and Teakgyu Hong and Moonbin Yim and Jinyoung Park and Jinyeong Yim and Wonseok Hwang and Sangdoo Yun and Dongyoon Han and Seunghyun Park}, title = {Donut: Document Understanding Transformer without {OCR}}, journal = {CoRR}, volume = {abs/2111.15664}, year = {2021}, url = {https://arxiv.org/abs/2111.15664}, eprinttype = {arXiv}, eprint = {2111.15664}, timestamp = {Thu, 02 Dec 2021 10:50:44 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-15664.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
554f7f9ced98b620531bdaced5b698f2
sd-concepts-library/art-brut
sd-concepts-library
null
9
0
null
3
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,008
false
### art brut on Stable Diffusion This is the `<art-brut>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<art-brut> 0](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/1.jpeg) ![<art-brut> 1](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/2.jpeg) ![<art-brut> 2](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/3.jpeg) ![<art-brut> 3](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/0.jpeg)
0ee978dc3930cfdd6a43322da792063f
stanfordnlp/stanza-lv
stanfordnlp
null
8
67
stanza
1
token-classification
false
false
false
apache-2.0
['lv']
null
null
0
0
0
0
0
0
0
['stanza', 'token-classification']
false
true
true
580
false
# Stanza model for Latvian (lv) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2022-09-25 01:45:24.599
bcc442ab1cfd8afe4dc40210a0c7fe0a
pyronear/resnet34
pyronear
null
5
3
transformers
0
image-classification
true
false
false
apache-2.0
null
['pyronear/openfire']
null
0
0
0
0
0
0
0
['image-classification', 'pytorch', 'onnx']
false
true
true
2,712
false
# ResNet-34 model Pretrained on a dataset for wildfire binary classification (soon to be shared). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
524bfa1dd9204124f58fa2346276c4e5
DOOGLAK/Article_250v4_NER_Model_3Epochs_UNAUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['article250v4_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,561
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_250v4_NER_Model_3Epochs_UNAUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article250v4_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3243 - Precision: 0.4027 - Recall: 0.4337 - F1: 0.4176 - Accuracy: 0.8775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 28 | 0.5309 | 0.0816 | 0.0144 | 0.0245 | 0.7931 | | No log | 2.0 | 56 | 0.3620 | 0.3795 | 0.3674 | 0.3733 | 0.8623 | | No log | 3.0 | 84 | 0.3243 | 0.4027 | 0.4337 | 0.4176 | 0.8775 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
e90a44584ded64e64ac6d89bebf0d4ae
Helsinki-NLP/opus-mt-rw-es
Helsinki-NLP
marian
10
37
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-rw-es * source languages: rw * target languages: es * OPUS readme: [rw-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/rw-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/rw-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/rw-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/rw-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.rw.es | 26.2 | 0.445 |
765e9198c7f0467b96c79f73caab5059
rkbulk/bart-base-finetuned-poems
rkbulk
bart
10
1
transformers
0
summarization
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,181
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-poems This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.1970 - eval_rouge1: 16.9107 - eval_rouge2: 8.1464 - eval_rougeL: 16.5554 - eval_rougeLsum: 16.7396 - eval_runtime: 487.5616 - eval_samples_per_second: 0.41 - eval_steps_per_second: 0.051 - epoch: 2.0 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
6584036f057ae006a5ce9b4274433bac
bnriiitb/whisper-small-te-4k
bnriiitb
whisper
29
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['te']
['IndicSUPERB_train_validation_splits']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
3,183
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Telugu - Naga Budigam This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Chai_Bisket_Stories_16-08-2021_14-17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2875 - Wer: 38.1492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2064 | 0.66 | 500 | 0.2053 | 60.1707 | | 0.1399 | 1.33 | 1000 | 0.1535 | 49.3269 | | 0.1093 | 1.99 | 1500 | 0.1365 | 44.5516 | | 0.0771 | 2.66 | 2000 | 0.1316 | 42.1136 | | 0.0508 | 3.32 | 2500 | 0.1395 | 41.1384 | | 0.0498 | 3.99 | 3000 | 0.1386 | 40.5395 | | 0.0302 | 4.65 | 3500 | 0.1529 | 40.9529 | | 0.0157 | 5.32 | 4000 | 0.1719 | 40.6667 | | 0.0183 | 5.98 | 4500 | 0.1723 | 40.3646 | | 0.0083 | 6.65 | 5000 | 0.1911 | 40.4335 | | 0.0061 | 7.31 | 5500 | 0.2109 | 40.4176 | | 0.0055 | 7.98 | 6000 | 0.2075 | 39.7021 | | 0.0039 | 8.64 | 6500 | 0.2186 | 40.2639 | | 0.0026 | 9.31 | 7000 | 0.2254 | 39.1032 | | 0.0035 | 9.97 | 7500 | 0.2289 | 39.2834 | | 0.0016 | 10.64 | 8000 | 0.2332 | 39.1456 | | 0.0016 | 11.3 | 8500 | 0.2395 | 39.4371 | | 0.0016 | 11.97 | 9000 | 0.2447 | 39.2410 | | 0.0009 | 12.63 | 9500 | 0.2548 | 38.7799 | | 0.0008 | 13.3 | 10000 | 0.2551 | 38.7481 | | 0.0008 | 13.96 | 10500 | 0.2621 | 38.8276 | | 0.0007 | 14.63 | 11000 | 0.2633 | 38.6686 | | 0.0003 | 15.29 | 11500 | 0.2711 | 38.4566 | | 0.0005 | 15.96 | 12000 | 0.2772 | 38.7852 | | 0.0001 | 16.62 | 12500 | 0.2771 | 38.2658 | | 0.0001 | 17.29 | 13000 | 0.2808 | 38.2393 | | 0.0001 | 17.95 | 13500 | 0.2815 | 38.1810 | | 0.0 | 18.62 | 14000 | 0.2854 | 38.2022 | | 0.0 | 19.28 | 14500 | 0.2872 | 38.1333 | | 0.0 | 19.95 | 15000 | 0.2875 | 38.1492 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
90dfbb85a3f3d48f72eb301e89530903
Martha-987/whisper-small-Arabic-aar
Martha-987
whisper
16
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,419
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Whisper Small Ar- Martha: This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: Loss: 0.5854 Wer: 70.2071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ## Training hyperparameters The following hyperparameters were used during training: learning_rate: 1e-05 train_batch_size: 16 eval_batch_size: 8 seed: 42 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear lr_scheduler_warmup_steps: 500 training_steps: 500 mixed_precision_training: Native AMP # Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9692 | 0.14 | 125 | 1.3372 | 173.0952| | 0.5716 | 0.29 | 250 | 0.9058 | 148.6795| | 0.3297 | 0.43 | 375 | 0.5825 | 63.6709 | | 0.3083 | 0.57 | 500 | 0.5854 | 70.2071 | ## Framework versions Transformers 4.26.0.dev0 Pytorch 1.13.0+cu116 Datasets 2.7.1 Tokenizers 0.13.2
dd4c7a2dced3b3cc88b585f9d8925e6a
StivenLancheros/mBERT-base-Biomedical-NER
StivenLancheros
bert
13
9
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,816
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-ner-4 #This model is part of a test for creating multilingual BioMedical NER systems. Not intended for proffesional use now. This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the CRAFT+BC4CHEMD+BioNLP09 datasets concatenated. It achieves the following results on the evaluation set: - Loss: 0.1027 - Precision: 0.9830 - Recall: 0.9832 - F1: 0.9831 - Accuracy: 0.9799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0658 | 1.0 | 6128 | 0.0751 | 0.9795 | 0.9795 | 0.9795 | 0.9758 | | 0.0406 | 2.0 | 12256 | 0.0753 | 0.9827 | 0.9815 | 0.9821 | 0.9786 | | 0.0182 | 3.0 | 18384 | 0.0934 | 0.9834 | 0.9825 | 0.9829 | 0.9796 | | 0.011 | 4.0 | 24512 | 0.1027 | 0.9830 | 0.9832 | 0.9831 | 0.9799 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
83b8076c9e32d7a4b40b5af0ef5107a9
jonatasgrosman/exp_w2v2t_pl_hubert_s484
jonatasgrosman
hubert
10
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pl']
false
true
true
452
false
# exp_w2v2t_pl_hubert_s484 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ad40a5735f9decbdcbc41c74c2d90fdd
MyMild/bert-finetuned-squad
MyMild
bert
12
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
955
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
7671090475a51dc0ae5be49b479138fd
adamlin/tmp
adamlin
mt5
16
5
transformers
0
text2text-generation
true
false
false
apache-2.0
['zh_CN', 'zh_CN']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
2,652
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0099 - Gen Len: 3.3917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 1 | nan | 0.0114 | 3.3338 | | No log | 2.0 | 2 | nan | 0.0114 | 3.3338 | | No log | 3.0 | 3 | nan | 0.0114 | 3.3338 | | No log | 4.0 | 4 | nan | 0.0114 | 3.3338 | | No log | 5.0 | 5 | nan | 0.0114 | 3.3338 | | No log | 6.0 | 6 | nan | 0.0114 | 3.3338 | | No log | 7.0 | 7 | nan | 0.0114 | 3.3338 | | No log | 8.0 | 8 | nan | 0.0114 | 3.3338 | | No log | 9.0 | 9 | nan | 0.0114 | 3.3338 | | No log | 10.0 | 10 | nan | 0.0114 | 3.3338 | | No log | 11.0 | 11 | nan | 0.0114 | 3.3338 | | No log | 12.0 | 12 | nan | 0.0114 | 3.3338 | | No log | 13.0 | 13 | nan | 0.0114 | 3.3338 | | No log | 14.0 | 14 | nan | 0.0114 | 3.3338 | | No log | 15.0 | 15 | nan | 0.0114 | 3.3338 | | No log | 16.0 | 16 | nan | 0.0114 | 3.3338 | | No log | 17.0 | 17 | nan | 0.0114 | 3.3338 | | No log | 18.0 | 18 | nan | 0.0114 | 3.3338 | | No log | 19.0 | 19 | nan | 0.0114 | 3.3338 | | No log | 20.0 | 20 | nan | 0.0114 | 3.3338 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.9.0 - Tokenizers 0.10.3
7cb61802ec0c0992f526150ce53e145c
arbml/whisper-small-cv-ar
arbml
whisper
15
27
transformers
3
automatic-speech-recognition
true
false
false
apache-2.0
['ar']
['mozilla-foundation/common_voice_11_0']
null
1
0
1
0
0
0
0
['whisper-event', 'generated_from_trainer', 'hf-asr-leaderboard']
true
true
true
1,547
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small ar - Zaid Alyafeai This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3509 - Wer: 22.3838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2944 | 0.2 | 1000 | 0.4355 | 30.6471 | | 0.2671 | 0.4 | 2000 | 0.3786 | 25.8539 | | 0.172 | 1.08 | 3000 | 0.3520 | 23.4573 | | 0.1043 | 1.28 | 4000 | 0.3542 | 23.3278 | | 0.0991 | 1.48 | 5000 | 0.3509 | 22.3838 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
255aaac12838cedc3b0365baf71366b4
jonatasgrosman/exp_w2v2t_pt_wav2vec2_s859
jonatasgrosman
wav2vec2
10
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pt']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pt']
false
true
true
456
false
# exp_w2v2t_pt_wav2vec2_s859 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
e83bee14cf6cbd86da614bf7b77693bc
rtoguchi/t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001
rtoguchi
t5
12
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['wmt16']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,263
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4943 - Bleu: 4.7258 - Gen Len: 18.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.047 | 1.0 | 7629 | 1.4943 | 4.7258 | 18.7149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
8388c0511052d5b5aed90bb560652c64
sd-concepts-library/eye-of-agamotto
sd-concepts-library
null
39
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,388
false
### Eye of Agamotto on Stable Diffusion This is the `<eye-aga>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<eye-aga> 0](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/30.jpeg) ![<eye-aga> 1](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/24.jpeg) ![<eye-aga> 2](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/19.jpeg) ![<eye-aga> 3](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/5.jpeg) ![<eye-aga> 4](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/6.jpeg) ![<eye-aga> 5](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/15.jpeg) ![<eye-aga> 6](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/20.jpeg) ![<eye-aga> 7](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/14.jpeg) ![<eye-aga> 8](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/9.jpeg) ![<eye-aga> 9](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/3.jpeg) ![<eye-aga> 10](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/0.jpeg) ![<eye-aga> 11](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/33.jpeg) ![<eye-aga> 12](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/17.jpeg) ![<eye-aga> 13](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/12.jpeg) ![<eye-aga> 14](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/13.jpeg) ![<eye-aga> 15](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/2.jpeg) ![<eye-aga> 16](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/16.jpeg) ![<eye-aga> 17](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/25.jpeg) ![<eye-aga> 18](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/18.jpeg) ![<eye-aga> 19](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/22.jpeg) ![<eye-aga> 20](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/10.jpeg) ![<eye-aga> 21](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/31.jpeg) ![<eye-aga> 22](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/7.jpeg) ![<eye-aga> 23](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/1.jpeg) ![<eye-aga> 24](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/27.jpeg) ![<eye-aga> 25](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/32.jpeg) ![<eye-aga> 26](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/26.jpeg) ![<eye-aga> 27](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/21.jpeg) ![<eye-aga> 28](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/23.jpeg) ![<eye-aga> 29](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/29.jpeg) ![<eye-aga> 30](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/11.jpeg) ![<eye-aga> 31](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/28.jpeg) ![<eye-aga> 32](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/4.jpeg) ![<eye-aga> 33](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/8.jpeg)
29ad93244f798aaf16284b2e6bfdda6b
unicamp-dl/mt5-base-en-pt-msmarco-v1
unicamp-dl
mt5
7
3
transformers
0
text2text-generation
true
false
false
mit
['pt']
['msmarco']
null
0
0
0
0
0
0
0
['msmarco', 't5', 'pytorch', 'tensorflow', 'pt', 'pt-br']
false
true
true
1,390
false
# mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v1 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
17fdccf8af3fca67adffb9b021c2a715
Mizuiro-sakura/deberta-v2-base-japanese-finetuned-QA
Mizuiro-sakura
null
4
0
transformers
0
question-answering
true
false
false
mit
['ja']
['wikipedia', 'cc100', 'oscar']
null
0
0
0
0
0
0
0
['pytorch', 'deberta', 'deberta-v2', 'question-answering', 'question answering', 'squad']
false
true
true
2,440
false
# このモデルはdeberta-v2-base-japaneseをファインチューニングしてQAタスクに用いれるようにしたものです。 このモデルはdeberta-v2-base-japaneseを運転ドメインQAデータセット(DDQA)( https://nlp.ist.i.kyoto-u.ac.jp/index.php?Driving%20domain%20QA%20datasets )を用いてファインチューニングしたものです。 Question-Answeringタスク(SQuAD)に用いることができます。 # This model is fine-tuned model for Question-Answering which is based on deberta-v2-base-japanese This model is fine-tuned by using DDQA dataset. You could use this model for Question-Answering tasks. # How to use 使い方 transformersおよびpytorch、sentencepiece、Juman++をインストールしてください。 以下のコードの内どちらか片方のコードを実行することで、Question-Answeringタスクを解かせることができます。(お好きな方をお選びください) please execute either code. ```python import torch from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-base-japanese') model=torch.load('C:\\[.pth modelのあるディレクトリ]\\My_deberta_model_squad.pth') # 学習済みモデルの読み込み text={ 'context':'私の名前はEIMIです。好きな食べ物は苺です。 趣味は皆さんと会話することです。', 'question' :'好きな食べ物は何ですか' } input_ids=tokenizer.encode(text['question'],text['context']) # tokenizerで形態素解析しつつコードに変換する output= model(torch.tensor([input_ids])) # 学習済みモデルを用いて解析 prediction = tokenizer.decode(input_ids[torch.argmax(output.start_logits): torch.argmax(output.end_logits)]) # 答えに該当する部分を抜き取る print(prediction) ``` ```python import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-base-japanese') model=AutoModelForQuestionAnswering.from_pretrained('Mizuiro-sakura/deberta-v2-base-japanese-finetuned-QAe') # 学習済みモデルの読み込み text={ 'context':'私の名前はEIMIです。好きな食べ物は苺です。 趣味は皆さんと会話することです。', 'question' :'好きな食べ物は何ですか' } input_ids=tokenizer.encode(text['question'],text['context']) # tokenizerで形態素解析しつつコードに変換する output= model(torch.tensor([input_ids])) # 学習済みモデルを用いて解析 prediction = tokenizer.decode(input_ids[torch.argmax(output.start_logits): torch.argmax(output.end_logits)]) # 答えに該当する部分を抜き取る print(prediction) ``` # モデルの精度 accuracy of model Exact Match(厳密一致) : 0.8038277511961722 f1 : 0.8959389668095072 # deberta-v2-base-japaneseとは? 日本語Wikipedeia(3.2GB)および、cc100(85GB)、oscar(54GB)を用いて訓練されたモデルです。 京都大学黒橋研究室が公表されました。 # Model description This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR. # Acknowledgments 謝辞 モデルを公開してくださった京都大学黒橋研究室には感謝いたします。 I would like to thank Kurohashi Lab at Kyoto University.
73f88b8fac6fd03fb1a60d7d0d3d64d3
tensorcat/japanese-opt-2.7b
tensorcat
opt
14
7
transformers
0
text-generation
true
false
false
other
null
null
null
0
0
0
0
0
0
0
[]
true
true
true
1,134
false
# Japanese-opt-2.7b Model ***Disclaimer: This model is a work in progress!*** This model is a fine-tuned version of [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) on the japanese wikipedia dataset. ## Quick start ```python from transformers import pipeline generator = pipeline('text-generation', model="tensorcat/japanese-opt-2.7b" , device=0, use_fast=False) generator("今日は", min_length=80, max_length=200, do_sample=True, early_stopping=True, temperature=.98, top_k=50, top_p=1.0) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Pytorch 1.13.0+cu116
a4b5a568d823dd1689af0ce279b030d5
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-4
anas-awadalla
roberta
17
3
transformers
0
question-answering
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
983
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
4a48334f3b875a1822d09e19936aca70
ctu-aic/mt5-base-multilingual-summarization-multilarge-cs
ctu-aic
mt5
9
15
transformers
1
text2text-generation
true
false
false
cc-by-sa-4.0
['cs', 'en', 'de', 'fr', 'tu', 'zh', 'es', 'ru']
['Multilingual_large_dataset_(multilarge)', 'cnc/dm', 'xsum', 'mlsum', 'cnewsum', 'cnc', 'sumeczech']
null
1
1
0
0
0
0
0
['Summarization', 'abstractive summarization', 'mt5-base', 'Czech', 'text2text generation', 'text generation']
false
true
true
5,822
false
# mt5-base-multilingual-summarization-multilarge-cs This model is a fine-tuned checkpoint of [google/mt5-base](https://huggingface.co/google/mt5-base) on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries. ## Task The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: ```'cs': '<extra_id_0>', 'en': '<extra_id_1>','de': '<extra_id_2>', 'es': '<extra_id_3>', 'fr': '<extra_id_4>', 'ru': '<extra_id_5>', 'tu': '<extra_id_6>', 'zh': '<extra_id_7>'``` #Usage ```python ## Configuration of summarization pipeline # def summ_config(): cfg = OrderedDict([ ## summarization model - checkpoint # ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs # ctu-aic/mt5-base-multilingual-summarization-multilarge-cs # ctu-aic/mbart25-multilingual-summarization-multilarge-cs ("model_name", "ctu-aic/mbart25-multilingual-summarization-multilarge-cs"), ## language of summarization task # language : string : cs, en, de, fr, es, tr, ru, zh ("language", "en"), ## generation method parameters in dictionary # ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.95), ("repetition_penalty", 1.23), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 128), ("min_length", 10), ])), #texts to summarize values = (list of strings, string, dataset) ("texts", [ "english text1 to summarize", "english text2 to summarize", ] ), #OPTIONAL: Target summaries values = (list of strings, string, None) ('golds', [ "target english text1", "target english text2", ]), #('golds', None), ]) return cfg cfg = summ_config() mSummarize = MultiSummarizer(**cfg) summaries,scores = mSummarize(**cfg) ``` ## Dataset Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set. ``` Train set: 3 464 563 docs Validation set: 121 260 docs ``` | Stats | fragment | | | avg document length | | avg summary length | | Documents | |-------------|----------|---------------------|--------------------|--------|---------|--------|--------|--------| | __dataset__ |__compression__ | __density__ | __coverage__ | __nsent__ | __nwords__ | __nsent__ | __nwords__ | __count__ | | cnc | 7.388 | 0.303 | 0.088 | 16.121 | 316.912 | 3.272 | 46.805 | 750K | | sumeczech | 11.769 | 0.471 | 0.115 | 27.857 | 415.711 | 2.765 | 38.644 | 1M | | cnndm | 13.688 | 2.983 | 0.538 | 32.783 | 676.026 | 4.134 | 54.036 | 300K | | xsum | 18.378 | 0.479 | 0.194 | 18.607 | 369.134 | 1.000 | 21.127 | 225K| | mlsum/tu | 8.666 | 5.418 | 0.461 | 14.271 | 214.496 | 1.793 | 25.675 | 274K | | mlsum/de | 24.741 | 8.235 | 0.469 | 32.544 | 539.653 | 1.951 | 23.077 | 243K| | mlsum/fr | 24.388 | 2.688 | 0.424 | 24.533 | 612.080 | 1.320 | 26.93 | 425K | | mlsum/es | 36.185 | 3.705 | 0.510 | 31.914 | 746.927 | 1.142 | 21.671 | 291K | | mlsum/ru | 78.909 | 1.194 | 0.246 | 62.141 | 948.079 | 1.012 | 11.976 | 27K| | cnewsum | 20.183 | 0.000 | 0.000 | 16.834 | 438.271 | 1.109 | 21.926 | 304K | #### Tokenization Truncation and padding were set to 512 tokens for the encoder (input text) and 128 for the decoder (summary). ## Training Trained based on cross-entropy loss. ``` Time: 3 days 20 hours Epochs: 1080K steps = 10 (from 10) GPUs: 4x NVIDIA A100-SXM4-40GB eloss: 2.462 - 1.797 tloss: 17.322 - 1.578 ``` ### ROUGE results per individual dataset test set: | ROUGE | ROUGE-1 | | | ROUGE-2 | | | ROUGE-L | | | |-----------|---------|---------|-----------|--------|--------|-----------|--------|--------|---------| | |Precision | Recall | Fscore | Precision | Recall | Fscore | Precision | Recall | Fscore | | cnc | 30.62 | 19.83 | 23.44 | 9.94 | 6.52 | 7.67 | 22.92 | 14.92 | 17.6 | | sumeczech | 27.57 | 17.6 | 20.85 | 8.12 | 5.23 | 6.17 | 20.84 | 13.38 | 15.81 | | cnndm | 43.83 | 37.73 | 39.34 | 20.81 | 17.82 | 18.6 | 31.8 | 27.42 | 28.55 | | xsum | 41.63 | 30.54 | 34.56 | 16.13 | 11.76 | 13.33 | 33.65 | 24.74 | 27.97 | | mlsum-tu- | 54.4 | 43.29 | 46.2 | 38.78 | 31.31 | 33.23 | 48.18 | 38.44 | 41 | | mlsum-de | 47.94 | 44.14 | 45.11 | 36.42 | 35.24 | 35.42 | 44.43 | 41.42 | 42.16 | | mlsum-fr | 35.26 | 25.96 | 28.98 | 16.72 | 12.35 | 13.75 | 28.06 | 20.75 | 23.12 | | mlsum-es | 33.37 | 24.84 | 27.52 | 13.29 | 10.05 | 11.05 | 27.63 | 20.69 | 22.87 | | mlsum-ru | 0.79 | 0.66 | 0.66 | 0.26 | 0.2 | 0.22 | 0.79 | 0.66 | 0.65 | | cnewsum | 24.49 | 24.38 | 23.23 | 6.48 | 6.7 | 6.24 | 24.18 | 24.04 | 22.91 | # USAGE ``` soon ```
11382b78b31d8a9e58327b97fd6de424
EMBEDDIA/sloberta
EMBEDDIA
camembert
9
683
transformers
3
fill-mask
true
false
false
cc-by-sa-4.0
['sl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
943
false
# Usage Load in transformers library with: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("EMBEDDIA/sloberta") model = AutoModelForMaskedLM.from_pretrained("EMBEDDIA/sloberta") ``` # SloBERTa SloBERTa model is a monolingual Slovene BERT-like model. It is closely related to French Camembert model https://camembert-model.fr/. The corpora used for training the model have 3.47 billion tokens in total. The subword vocabulary contains 32,000 tokens. The scripts and programs used for data preparation and training the model are available on https://github.com/clarinsi/Slovene-BERT-Tool SloBERTa was trained for 200,000 iterations or about 98 epochs. ## Corpora The following corpora were used for training the model: * Gigafida 2.0 * Kas 1.0 * Janes 1.0 (only Janes-news, Janes-forum, Janes-blog, Janes-wiki subcorpora) * Slovenian parliamentary corpus siParl 2.0 * slWaC
ca71cd438e312bd4c3ed3c39ec06c47b
elice/ddpm-butterflies-128
elice
null
13
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,227
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/elice/ddpm-butterflies-128/tensorboard?#scalars)
1321c32ba536f697d3248709d18aee78
tamitani/xlm-roberta-base-finetuned-panx-de
tamitani
xlm-roberta
11
0
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
6c7878050bca2de9643b0e81a5c0e646
timm/maxvit_large_tf_384.in1k
timm
null
4
123
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
22,018
false
# Model card for maxvit_large_tf_384.in1k An official MaxViT image classification model. Trained in tensorflow on ImageNet-1k by paper authors. Ported from official Tensorflow implementation (https://github.com/google-research/maxvit) to PyTorch by Ross Wightman. ### Model Variants in [maxxvit.py](https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/maxxvit.py) MaxxViT covers a number of related model architectures that share a common structure including: - CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages. - MaxViT - Uniform blocks across all stages, each containing a MBConv (depthwise-separable) convolution block followed by two self-attention blocks with different partitioning schemes (window followed by grid). - CoAtNeXt - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in CoAtNet. All normalization layers are LayerNorm (no BatchNorm). - MaxxViT - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in MaxViT. All normalization layers are LayerNorm (no BatchNorm). - MaxxViT-V2 - A MaxxViT variation that removes the window block attention leaving only ConvNeXt blocks and grid attention w/ more width to compensate. Aside from the major variants listed above, there are more subtle changes from model to model. Any model name with the string `rw` are `timm` specific configs w/ modelling adjustments made to favour PyTorch eager use. These were created while training initial reproductions of the models so there are variations. All models with the string `tf` are models exactly matching Tensorflow based models by the original paper authors with weights ported to PyTorch. This covers a number of MaxViT models. The official CoAtNet models were never released. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 212.0 - GMACs: 132.6 - Activations (M): 445.8 - Image size: 384 x 384 - **Papers:** - MaxViT: Multi-Axis Vision Transformer: https://arxiv.org/abs/2204.01697 - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('maxvit_large_tf_384.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'maxvit_large_tf_384.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 192, 192]) # torch.Size([1, 128, 96, 96]) # torch.Size([1, 256, 48, 48]) # torch.Size([1, 512, 24, 24]) # torch.Size([1, 1024, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'maxvit_large_tf_384.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| ### By Throughput (samples / sec) |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| ## Citation ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ```bibtex @article{tu2022maxvit, title={MaxViT: Multi-Axis Vision Transformer}, author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, journal={ECCV}, year={2022}, } ``` ```bibtex @article{dai2021coatnet, title={CoAtNet: Marrying Convolution and Attention for All Data Sizes}, author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing}, journal={arXiv preprint arXiv:2106.04803}, year={2021} } ```
e92e4ba3b771ad3d6b60a3fe65e6ca06
bubblecookie/t5-small-finetuned-cnndm_trained
bubblecookie
t5
13
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['cnn_dailymail']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
937
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_trained This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
3e010262e6e050684e82ed28cc81983a
semy/finetuning-sentiment-model-sst
semy
distilbert
10
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
912
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-sst This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.2 - Datasets 2.3.2 - Tokenizers 0.12.1
04dc772730f7c5ec9139adf0d4a02ba4
burakyldrm/wav2vec2-burak-new-300-v2-8
burakyldrm
wav2vec2
13
13
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,269
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2841 - Wer: 0.2120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 151 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0739 | 9.43 | 500 | 3.1506 | 1.0 | | 1.6652 | 18.87 | 1000 | 0.3396 | 0.4136 | | 0.4505 | 28.3 | 1500 | 0.2632 | 0.3138 | | 0.3115 | 37.74 | 2000 | 0.2536 | 0.2849 | | 0.2421 | 47.17 | 2500 | 0.2674 | 0.2588 | | 0.203 | 56.6 | 3000 | 0.2552 | 0.2471 | | 0.181 | 66.04 | 3500 | 0.2636 | 0.2595 | | 0.1581 | 75.47 | 4000 | 0.2527 | 0.2416 | | 0.1453 | 84.91 | 4500 | 0.2773 | 0.2257 | | 0.1305 | 94.34 | 5000 | 0.2825 | 0.2257 | | 0.1244 | 103.77 | 5500 | 0.2754 | 0.2312 | | 0.1127 | 113.21 | 6000 | 0.2772 | 0.2223 | | 0.1094 | 122.64 | 6500 | 0.2720 | 0.2223 | | 0.1033 | 132.08 | 7000 | 0.2863 | 0.2202 | | 0.099 | 141.51 | 7500 | 0.2853 | 0.2140 | | 0.0972 | 150.94 | 8000 | 0.2841 | 0.2120 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
eba294334b174a46417dae77a740f3e9
timm/convnext_base.clip_laion2b_augreg_ft_in1k
timm
null
4
70
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k', 'laion-2b']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
24,134
false
# Model card for convnext_base.clip_laion2b_augreg_ft_in1k A ConvNeXt image classification model. CLIP image tower weights pretrained in [OpenCLIP](https://github.com/mlfoundations/open_clip) on LAION and fine-tuned on ImageNet-1k in `timm` by Ross Wightman. Please see related OpenCLIP model cards for more details on pretrain: * https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg * https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg * https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 88.6 - GMACs: 20.1 - Activations (M): 37.6 - Image size: 256 x 256 - **Papers:** - LAION-5B: An open large-scale dataset for training next generation image-text models: https://arxiv.org/abs/2210.08402 - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545 - Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020 - **Original:** https://github.com/mlfoundations/open_clip - **Pretrain Dataset:** LAION-2B - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('convnext_base.clip_laion2b_augreg_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_base.clip_laion2b_augreg_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for convnext_base: # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_base.clip_laion2b_augreg_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | ### By Throughput (samples / sec) All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | ## Citation ```bibtex @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ```
2ff4f88cfa9d37789e01201bc920f5dd
StonyBrookNLP/bart-large-iirc-retrieved
StonyBrookNLP
bart
9
3
transformers
0
text2text-generation
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['question-answering, multi-step-reasoning, multi-hop-reasoning']
false
true
true
2,629
false
# What's this? This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496). This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details. We release the following models: - **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}` - **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}` - **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}` The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`. The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`. The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**. # How to use it? Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac model_name = "StonyBrookNLP/bart-large-iirc-retrieved" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization model = AutoModelForSeq2SeqLM.from_pretrained(model_name) enable_digit_tokenization(tokenizer) input_texts = [ "answer_me: Who scored the first touchdown of the game?" + "context: ... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..." # Note: some models have slightly different qn/ctxt format. See the github repo. ] input_ids = tokenizer( input_texts, return_tensors="pt", truncation=True, max_length=800, add_special_tokens=True, padding=True, )["input_ids"] generated_ids = model.generate(input_ids, min_length=1, max_length=50) generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) generated_predictions = [ tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions ] # => ["Chaz Schilens"] ```
00bcc631fc29132712efea9a65de01ac
anton-l/wav2vec2-large-xlsr-53-mongolian
anton-l
wav2vec2
9
9
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['mn']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,677
false
# Wav2Vec2-Large-XLSR-53-Mongolian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "mn", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Mongolian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/mn.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/mn/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/mn/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 38.53 % ## Training The Common Voice `train` and `validation` datasets were used for training.
62fe50ec451be6d775a4b0e41dd4bb3f
Helsinki-NLP/opus-mt-sv-to
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-sv-to * source languages: sv * target languages: to * OPUS readme: [sv-to](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-to/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-to/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-to/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-to/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.to | 41.8 | 0.564 |
7d5f04902a955ee19b176b384451e86a
IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1
IDEA-CCNL
null
23
1,174
diffusers
60
text-to-image
false
false
false
creativeml-openrail-m
['zh']
null
null
4
3
1
0
5
5
0
['stable-diffusion', 'stable diffusion chinese', 'stable-diffusion-diffusers', 'text-to-image', 'Chinese']
false
true
true
5,659
false
# Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1 - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/) # Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/IDEA-CCNL/Taiyi-Stable-Diffusion-Chinese) ## 简介 Brief Introduction 首个开源的中英双语Stable Diffusion模型,基于0.2亿筛选过的中文图文对训练。 The first open source Chinese&English Bilingual Stable diffusion, which was trained on 20M filtered Chinese image-text pairs. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 特殊 Special | 多模态 Multimodal | 太乙 Taiyi | Stable Diffusion | 1B | Chinese and English | ## 模型信息 Model Information 我们将[Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/)数据集(100M)和[Zero](https://zero.so.com/)数据集(23M)用作预训练的数据集,先用[IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese](https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese)对这两个数据集的图文对相似性进行打分,取CLIP Score大于0.2的图文对作为我们的训练集。 我们使用[stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)([论文](https://arxiv.org/abs/2112.10752))模型进行继续训练,其中训练分为两个stage。 第一个stage中冻住模型的其他部分,只训练text encoder,以便保留原始模型的生成能力且实现中文概念的对齐。 第二个stage中将全部模型解冻,一起训练text encoder和diffusion model,以便diffusion model更好的适配中文guidance。 第一个stage我们训练了80小时,第二个stage训练了100小时,两个stage都是用了8 x A100。该版本是一个初步的版本,我们将持续优化模型并开源,欢迎交流! We use [Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/)(100M) 和 [Zero](https://zero.so.com/)(23M) as our dataset, and take the image and text pairs with CLIP Score (based on [IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese](https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese)) greater than 0.2 as our Training set. We finetune the [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)([paper](https://arxiv.org/abs/2112.10752)) model for two stage. Stage 1: To keep the powerful generative capability of stable diffusion and align Chinese concepts with the images, We only train the text encoder and freeze other part of the model in the first stage. Stage 2: We unfreeze both the text encoder and the diffusion model, therefore the diffusion model can have a better compatibility for the Chinese language guidance. It takes 80 hours to train the first stage, 100 hours to train the second stage, both stages are based on 8 x A100. This model is a preliminary version and we will update this model continuously and open sourse. Welcome to exchange! ### Result 小桥流水人家,Van Gogh style。 ![](result_examples/xiaoqiao_vangogh.png) 小桥流水人家,水彩。 ![](result_examples/xiaoqiao_oil_painting.png) 吃过桥米线的猫。 ![](result_examples/cat_eating_guoqiao_noodle.png) 穿着宇航服的哈士奇。 ![](result_examples/huskiy_wearing_space_suit.png) ## 使用 Usage ### 全精度 Full precision ```py from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1").to("cuda") prompt = '小桥流水人家,Van Gogh style' image = pipe(prompt, guidance_scale=10).images[0] image.save("小桥.png") ``` ### 半精度 Half precision FP16 (CUDA) 添加 `torch_dtype=torch.float16` 和 `device_map="auto"` 可以快速加载 FP16 的权重,以加快推理速度。 更多信息见 [the optimization docs](https://huggingface.co/docs/diffusers/main/en/optimization/fp16#half-precision-weights)。 ```py # !pip install git+https://github.com/huggingface/accelerate from diffusers import StableDiffusionPipeline import torch torch.backends.cudnn.benchmark = True pipe = StableDiffusionPipeline.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1", torch_dtype=torch.float16) pipe.to('cuda') prompt = '小桥流水人家,Van Gogh style' image = pipe(prompt, guidance_scale=10.0).images[0] image.save("小桥.png") ``` ### 怎样微调 How to finetune 可以参考 refer https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/finetune_taiyi_stable_diffusion ### webui配置 Configure webui 可以参考 refer https://github.com/IDEA-CCNL/stable-diffusion-webui/blob/master/README.md ### DreamBooth https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/stable_diffusion_dreambooth ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[总论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
d6927fd161a1c9e058e5758307fc88fd
spacy/nb_core_news_lg
spacy
null
30
7
spacy
0
token-classification
false
false
false
mit
['nb']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
11,830
false
### Details: https://spacy.io/models/nb#nb_core_news_lg Norwegian (Bokmål) pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler. | Feature | Description | | --- | --- | | **Name** | `nb_core_news_lg` | | **Version** | `3.5.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` | | **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | [UD Norwegian Bokmaal v2.8](https://github.com/UniversalDependencies/UD_Norwegian-Bokmaal) (Øvrelid, Lilja; Jørgensen, Fredrik; Hohle, Petter)<br />[NorNE: Norwegian Named Entities (commit: bd311de5)](https://github.com/ltgoslo/norne) (Language Technology Group (University of Oslo))<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (249 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=PROPN`, `POS=X`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `NumType=Card\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|POS=PROPN`, `POS=NOUN`, `Gender=Masc\|POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=PROPN`, `POS=PART\|Polarity=Neg`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Abbr=Yes\|Case=Gen\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|POS=ADJ`, `POS=ADJ\|VerbForm=Part`, `Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=ADP`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Pos\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=DET\|Polarity=Neg\|PronType=Neg`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=DET\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Prs`, `POS=SYM`, `Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Def\|NumType=Card\|POS=NUM`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Number=Plur\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Definite=Def\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=SPACE`, `Animacy=Hum\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `POS=INTJ`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Animacy=Hum\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Polarity=Neg\|PronType=Neg`, `Case=Gen\|POS=NOUN`, `Definite=Ind\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Animacy=Hum\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Sup\|POS=ADJ`, `Animacy=Hum\|POS=PRON\|PronType=Int`, `POS=DET\|PronType=Ind`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Number=Plur\|POS=NOUN`, `POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem,Ind`, `Animacy=Hum\|POS=PRON\|Poss=Yes\|PronType=Int`, `Abbr=Yes\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Neut\|Number=Plur,Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Tot`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Plur,Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Gen,Nom\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Abbr=Yes\|Gender=Masc\|POS=NOUN`, `Abbr=Yes\|Case=Gen\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN` | | **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` | | **`ner`** | `DRV`, `EVT`, `GPE_LOC`, `GPE_ORG`, `LOC`, `MISC`, `ORG`, `PER`, `PROD` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.81 | | `TOKEN_P` | 99.71 | | `TOKEN_R` | 99.53 | | `TOKEN_F` | 99.62 | | `POS_ACC` | 97.38 | | `MORPH_ACC` | 96.28 | | `MORPH_MICRO_P` | 97.90 | | `MORPH_MICRO_R` | 97.07 | | `MORPH_MICRO_F` | 97.48 | | `SENTS_P` | 94.18 | | `SENTS_R` | 94.11 | | `SENTS_F` | 94.14 | | `DEP_UAS` | 89.46 | | `DEP_LAS` | 86.42 | | `LEMMA_ACC` | 97.29 | | `TAG_ACC` | 97.38 | | `ENTS_P` | 84.84 | | `ENTS_R` | 84.18 | | `ENTS_F` | 84.51 |
4d51f8d7b9533920f8b77446b13882b7
NbAiLab/nb-roberta-tpu
NbAiLab
xlm-roberta
13
0
transformers
0
fill-mask
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,063
false
# NB-ROBERTA Training Code This is the current training code for the planned nb-roberta models. We are currently planning to run the following experiments: <table> <tr> <td><strong>Name</strong> </td> <td><strong>nb-roberta-base-old (C)</strong> </td> </tr> <tr> <td>Corpus </td> <td>NbAiLab/nb_bert </td> </tr> <tr> <td>Pod size </td> <td>v4-64 </td> </tr> <tr> <td>Batch size </td> <td>62*4*8 = 1984 = 2k </td> </tr> <tr> <td>Learning rate </td> <td>3e-4 (RoBERTa article is using 6e-4 and bs=8k) </td> </tr> <tr> <td>Number of steps </td> <td>250k </td> </tr> </table> <table> <tr> <td><strong>Name</strong> </td> <td><strong>nb-roberta-base-ext (B)</strong> </td> </tr> <tr> <td>Corpus </td> <td>NbAiLab/nbailab_extended </td> </tr> <tr> <td>Pod size </td> <td>v4-64 </td> </tr> <tr> <td>Batch size </td> <td>62*4*8 = 1984 = 2k </td> </tr> <tr> <td>Learning rate </td> <td>3e-4 (RoBERTa article is using 6e-4 and bs=8k) </td> </tr> <tr> <td>Number of steps </td> <td>250k </td> </tr> </table> <table> <tr> <td><strong>Name</strong> </td> <td><strong>nb-roberta-large-ext</strong> </td> </tr> <tr> <td>Corpus </td> <td>NbAiLab/nbailab_extended </td> </tr> <tr> <td>Pod size </td> <td>v4-64 </td> </tr> <tr> <td>Batch size </td> <td>32*4*8 = 2024 = 1k </td> </tr> <tr> <td>Learning rate </td> <td>2-e4 (RoBERTa article is using 4e-4 and bs=8k) </td> </tr> <tr> <td>Number of steps </td> <td>500k </td> </tr> </table> <table> <tr> <td><strong>Name</strong> </td> <td><strong>nb-roberta-base-scandi</strong> </td> </tr> <tr> <td>Corpus </td> <td>NbAiLab/scandinavian </td> </tr> <tr> <td>Pod size </td> <td>v4-64 </td> </tr> <tr> <td>Batch size </td> <td>62*4*8 = 1984 = 2k </td> </tr> <tr> <td>Learning rate </td> <td>3e-4 (RoBERTa article is using 6e-4 and bs=8k) </td> </tr> <tr> <td>Number of steps </td> <td>250k </td> </tr> </table> <table> <tr> <td><strong>Name</strong> </td> <td><strong>nb-roberta-large-scandi</strong> </td> </tr> <tr> <td>Corpus </td> <td>NbAiLab/scandinavian </td> </tr> <tr> <td>Pod size </td> <td>v4-64 </td> </tr> <tr> <td>Batch size </td> <td>32*4*8 = 1024 = 1k </td> </tr> <tr> <td>Learning rate </td> <td>2-e4 (RoBERTa article is using 4e-4 and bs=8k) </td> </tr> <tr> <td>Number of steps </td> <td>500k </td> </tr> </table> ## Calculations Some basic that we used when estimating the number of training steps: * The Scandinavic Corpus is 85GB * The Scandinavic Corpus contains 13B words * With a conversion factor of 2.3, this is estimated to around 30B tokens * 30B tokens / (512 seq length * 3000 batch size) = 20.000 steps
c9fbfb795fbffec635412607676d937b
daqiao202/distilgpt2-finetuned-wikitext2
daqiao202
gpt2
8
2
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
893
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
2e72738a61c5d5d6919bb2e0b537f94a
sgangireddy/whisper-base-cv-lowLR-cs
sgangireddy
whisper
22
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['cs']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,570
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base Czech CV low LR This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set: - Loss: 0.5171 - Wer: 42.9053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6046 | 4.01 | 1000 | 0.6535 | 52.3084 | | 0.4037 | 8.02 | 2000 | 0.5706 | 46.6879 | | 0.3172 | 12.03 | 3000 | 0.5369 | 44.1042 | | 0.3606 | 16.04 | 4000 | 0.5218 | 43.0766 | | 0.3792 | 21.01 | 5000 | 0.5171 | 42.9053 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
f922e50998579398448adf246d3a5c9b
Matthijs/mobilenet_v1_1.0_224
Matthijs
mobilenet_v1
5
12
transformers
0
image-classification
true
false
false
other
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['vision', 'image-classification']
false
true
true
2,397
false
# MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV1FeatureExtractor, MobileNetV1ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV1FeatureExtractor.from_pretrained("Matthijs/mobilenet_v1_1.0_224") model = MobileNetV1ForImageClassification.from_pretrained("Matthijs/mobilenet_v1_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
02aa69f49af2672dcea74eb7be032f95
din0s/bart-pt-asqa-cb
din0s
bart
11
3
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,747
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-pt-asqa-cb This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5362 - Rougelsum: 38.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:| | No log | 1.0 | 273 | 2.5653 | 37.6939 | | 2.6009 | 2.0 | 546 | 2.5295 | 38.2398 | | 2.6009 | 3.0 | 819 | 2.5315 | 38.5946 | | 2.3852 | 4.0 | 1092 | 2.5146 | 38.4771 | | 2.3852 | 5.0 | 1365 | 2.5240 | 38.5706 | | 2.2644 | 6.0 | 1638 | 2.5253 | 38.7506 | | 2.2644 | 7.0 | 1911 | 2.5355 | 38.9004 | | 2.1703 | 8.0 | 2184 | 2.5309 | 38.9528 | | 2.1703 | 9.0 | 2457 | 2.5362 | 38.9467 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
facb26cc969391431f9ff5b3c92fb04e
StonyBrookNLP/t5-3b-iirc-retrieved
StonyBrookNLP
t5
10
3
transformers
0
text2text-generation
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['question-answering, multi-step-reasoning, multi-hop-reasoning']
false
true
true
2,624
false
# What's this? This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496). This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details. We release the following models: - **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}` - **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}` - **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}` The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`. The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`. The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**. # How to use it? Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac model_name = "StonyBrookNLP/t5-3b-iirc-retrieved" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization model = AutoModelForSeq2SeqLM.from_pretrained(model_name) enable_digit_tokenization(tokenizer) input_texts = [ "answer_me: Who scored the first touchdown of the game?" + "context: ... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..." # Note: some models have slightly different qn/ctxt format. See the github repo. ] input_ids = tokenizer( input_texts, return_tensors="pt", truncation=True, max_length=800, add_special_tokens=True, padding=True, )["input_ids"] generated_ids = model.generate(input_ids, min_length=1, max_length=50) generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) generated_predictions = [ tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions ] # => ["Chaz Schilens"] ```
ff54863298d5b17a0a80dde90e49a1f8
ConvLab/t5-small-nlu-all-multiwoz21
ConvLab
t5
7
17
transformers
0
text2text-generation
true
false
false
apache-2.0
['en']
['ConvLab/multiwoz21']
null
0
0
0
0
0
0
0
['t5-small', 'text2text-generation', 'natural language understanding', 'conversational system', 'task-oriented dialog']
true
true
true
741
false
# t5-small-nlu-all-multiwoz21 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) both user and system utterances. Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ee8d17623a0d65c7986e74ac95a6972a
FritzOS/TEdetection_distilBERT_mLM_final
FritzOS
distilbert
4
4
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,356
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_mLM_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208159, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
f7d15088176d31f9995ebfb469f2c18e
cj-mills/xlm-roberta-base-finetuned-panx-de
cj-mills
xlm-roberta
38
5
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,353
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1319 - F1: 0.8576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3264 | 1.0 | 197 | 0.1623 | 0.8139 | | 0.136 | 2.0 | 394 | 0.1331 | 0.8451 | | 0.096 | 3.0 | 591 | 0.1319 | 0.8576 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
5a198111e57a2c33e1bb0f63f02974a7
Amir13/xlm-roberta-base-de-aug-ner
Amir13
xlm-roberta
11
3
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,712
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-de-aug-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3820 - Precision: 0.5214 - Recall: 0.5660 - F1: 0.5428 - Accuracy: 0.8966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 463 | 0.6140 | 0.2884 | 0.2925 | 0.2904 | 0.8438 | | 0.8329 | 2.0 | 926 | 0.4504 | 0.4092 | 0.4423 | 0.4251 | 0.8720 | | 0.4385 | 3.0 | 1389 | 0.4046 | 0.4634 | 0.5042 | 0.4829 | 0.8875 | | 0.3364 | 4.0 | 1852 | 0.3843 | 0.5 | 0.5446 | 0.5213 | 0.8954 | | 0.2919 | 5.0 | 2315 | 0.3820 | 0.5214 | 0.5660 | 0.5428 | 0.8966 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
69b85b6a046419d16da6f247fdb4fe10
fanzru/t5-small-finetuned-xlsum
fanzru
t5
11
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['xlsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,420
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4217 - Rouge1: 29.1774 - Rouge2: 8.0493 - Rougel: 22.5235 - Rougelsum: 22.5715 - Gen Len: 18.8415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7017 | 1.0 | 19158 | 2.4217 | 29.1774 | 8.0493 | 22.5235 | 22.5715 | 18.8415 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.10.3
aefe6fe9d088d09cca1281ba593a1b76