repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Satyamatury/wav2vec2-large-xls-r-300m-turkish-colab
Satyamatury
wav2vec2
19
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,066
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
7dcd310acccd5cea3233102df87df749
jonaskoenig/xtremedistil-l6-h384-uncased-future-time-references
jonaskoenig
bert
8
3
transformers
0
text-classification
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,706
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h384-uncased-future-time-references This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0279 - Train Binary Crossentropy: 0.4809 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Binary Crossentropy | Epoch | |:----------:|:-------------------------:|:-----:| | 0.0487 | 0.6401 | 0 | | 0.0348 | 0.5925 | 1 | | 0.0319 | 0.5393 | 2 | | 0.0306 | 0.5168 | 3 | | 0.0298 | 0.5045 | 4 | | 0.0292 | 0.4970 | 5 | | 0.0288 | 0.4916 | 6 | | 0.0284 | 0.4878 | 7 | | 0.0282 | 0.4836 | 8 | | 0.0279 | 0.4809 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
5997fb1cdff5b84a59c4465d736c5200
adsabs/astroBERT
adsabs
bert
12
140
transformers
0
fill-mask
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,368
false
# ***astroBERT: a language model for astrophysics*** This public repository contains the work of the [NASA/ADS](https://ui.adsabs.harvard.edu/) on building an NLP language model tailored to astrophysics, along with tutorials and miscellaneous related files. This model is **cased** (it treats `ads` and `ADS` differently). ## astroBERT models 0. **Base model**: Pretrained model on English language using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in [this paper at ADASS 2021](https://arxiv.org/abs/2112.00590) and made public at ADASS 2022. 1. **NER-DEAL model**: This model adds a token classification head to the base model finetuned on the [DEAL@WIESP2022 named entity recognition](https://ui.adsabs.harvard.edu/WIESP/2022/SharedTasks) task. Must be loaded from the `revision='NER-DEAL'` branch (see tutorial 2). ### Tutorials 0. [generate text embedding (for downstream tasks)](https://nbviewer.org/urls/huggingface.co/adsabs/astroBERT/raw/main/Tutorials/0_Embeddings.ipynb) 1. [use astroBERT for the Fill-Mask task](https://nbviewer.org/urls/huggingface.co/adsabs/astroBERT/raw/main/Tutorials/1_Fill-Mask.ipynb) 2. [make NER-DEAL predictions](https://nbviewer.org/urls/huggingface.co/adsabs/astroBERT/raw/main/Tutorials/2_NER_DEAL.ipynb) ### BibTeX ```bibtex @ARTICLE{2021arXiv211200590G, author = {{Grezes}, Felix and {Blanco-Cuaresma}, Sergi and {Accomazzi}, Alberto and {Kurtz}, Michael J. and {Shapurian}, Golnaz and {Henneken}, Edwin and {Grant}, Carolyn S. and {Thompson}, Donna M. and {Chyla}, Roman and {McDonald}, Stephen and {Hostetler}, Timothy W. and {Templeton}, Matthew R. and {Lockhart}, Kelly E. and {Martinovic}, Nemanja and {Chen}, Shinyi and {Tanner}, Chris and {Protopapas}, Pavlos}, title = "{Building astroBERT, a language model for Astronomy \& Astrophysics}", journal = {arXiv e-prints}, keywords = {Computer Science - Computation and Language, Astrophysics - Instrumentation and Methods for Astrophysics}, year = 2021, month = dec, eid = {arXiv:2112.00590}, pages = {arXiv:2112.00590}, archivePrefix = {arXiv}, eprint = {2112.00590}, primaryClass = {cs.CL}, adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv211200590G}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} } ```
0a57a838e39f4a51be3ddf20a2d0c15d
Imene/vit-base-patch16-384-wi5
Imene
vit
6
2
transformers
0
image-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,950
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi5 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4102 - Train Accuracy: 0.9755 - Train Top-3-accuracy: 0.9960 - Validation Loss: 1.9021 - Validation Accuracy: 0.4912 - Validation Top-3-accuracy: 0.7302 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3180, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 4.2945 | 0.0568 | 0.1328 | 3.6233 | 0.1387 | 0.2916 | 0 | | 3.1234 | 0.2437 | 0.4585 | 2.8657 | 0.3041 | 0.5330 | 1 | | 2.4383 | 0.4182 | 0.6638 | 2.5499 | 0.3534 | 0.6048 | 2 | | 1.9258 | 0.5698 | 0.7913 | 2.3046 | 0.4202 | 0.6583 | 3 | | 1.4919 | 0.6963 | 0.8758 | 2.1349 | 0.4553 | 0.6784 | 4 | | 1.1127 | 0.7992 | 0.9395 | 2.0878 | 0.4595 | 0.6809 | 5 | | 0.8092 | 0.8889 | 0.9720 | 1.9460 | 0.4962 | 0.7210 | 6 | | 0.5794 | 0.9419 | 0.9883 | 1.9478 | 0.4979 | 0.7201 | 7 | | 0.4102 | 0.9755 | 0.9960 | 1.9021 | 0.4912 | 0.7302 | 8 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
28acba3e9aa746ec209a0e1fef94c3cc
furusu/umamusume-classifier
furusu
vit
5
30
transformers
0
image-classification
true
false
false
apache-2.0
null
null
null
1
0
1
0
0
0
0
[]
false
true
true
695
false
finetuned from https://huggingface.co/google/vit-base-patch16-224-in21k dataset:26k images (train:21k valid:5k) accuracy of validation dataset is 95% ```Python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image path = 'image_path' image = Image.open(path) feature_extractor = ViTFeatureExtractor.from_pretrained('furusu/umamusume-classifier') model = ViTForImageClassification.from_pretrained('furusu/umamusume-classifier') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) predicted_class_idx = outputs.logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
ebc17430d7c805b25267733abf2df9b8
lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli
lighteternal
bert
13
355
transformers
3
text-classification
true
false
false
mit
['en']
['mnli']
null
0
0
0
0
1
1
0
['textual-entailment', 'nli', 'pytorch']
false
true
true
2,047
false
# BiomedNLP-PubMedBERT finetuned on textual entailment (NLI) The [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext?text=%5BMASK%5D+is+a+tumor+suppressor+gene) finetuned on the MNLI dataset. It should be useful in textual entailment tasks involving biomedical corpora. ## Usage Given two sentences (a premise and a hypothesis), the model outputs the logits of entailment, neutral or contradiction. You can test the model using the HuggingFace model widget on the side: - Input two sentences (premise and hypothesis) one after the other. - The model returns the probabilities of 3 labels: entailment(LABEL:0), neutral(LABEL:1) and contradiction(LABEL:2) respectively. To use the model locally on your machine: ```python # import torch # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli") model = AutoModelForSequenceClassification.from_pretrained("lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli") premise = 'EpCAM is overexpressed in breast cancer' hypothesis = 'EpCAM is downregulated in breast cancer.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = model(x)[0] probs = logits.softmax(dim=1) print('Probabilities for entailment, neutral, contradiction \n', np.around(probs.cpu(). detach().numpy(),3)) # Probabilities for entailment, neutral, contradiction # 0.001 0.001 0.998 ``` ## Metrics Evaluation on classification accuracy (entailment, contradiction, neutral) on MNLI test set: | Metric | Value | | --- | --- | | Accuracy | 0.8338| See Training Metrics tab for detailed info.
95225240b0a8ca541daf60a08563fe52
heyyai/austinmichaelcraig0
heyyai
null
20
2
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
2
2
0
0
0
0
0
['text-to-image']
false
true
true
1,423
false
### austinmichaelcraig0 on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by cormacncheese This your the Stable Diffusion model fine-tuned the austinmichaelcraig0 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **austinmichaelcraig0(0).jpg** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Sample pictures of this concept: austinmichaelcraig0(0).jpg ![austinmichaelcraig0(0).jpg 0](https://huggingface.co/cormacncheese/austinmichaelcraig0/resolve/main/concept_images/austinmichaelcraig0(0).jpg)
a4778363d46e3f747429462a28744ff0
shripadbhat/whisper-tiny-hi-1000steps
shripadbhat
whisper
15
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['hi']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,904
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny Hindi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Wer: 41.5453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7718 | 0.73 | 100 | 0.8130 | 55.6890 | | 0.5169 | 1.47 | 200 | 0.6515 | 48.2517 | | 0.3986 | 2.21 | 300 | 0.6001 | 44.9931 | | 0.3824 | 2.94 | 400 | 0.5720 | 43.5171 | | 0.3328 | 3.67 | 500 | 0.5632 | 42.5112 | | 0.2919 | 4.41 | 600 | 0.5594 | 42.7863 | | 0.2654 | 5.15 | 700 | 0.5552 | 41.6428 | | 0.2618 | 5.88 | 800 | 0.5530 | 41.8893 | | 0.2442 | 6.62 | 900 | 0.5539 | 41.5740 | | 0.238 | 7.35 | 1000 | 0.5538 | 41.5453 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
7c22c8009ba10ad8dbc348929a65a7ee
deepset/xlm-roberta-base-squad2-distilled
deepset
xlm-roberta
8
4,534
transformers
4
question-answering
true
false
false
mit
['multilingual']
['squad_v2']
null
3
2
0
1
1
1
0
['exbert']
false
true
true
4,241
false
# deepset/xlm-roberta-base-squad2-distilled - haystack's distillation feature was used for training. deepset/xlm-roberta-large-squad2 was used as the teacher model. ## Overview **Language model:** deepset/xlm-roberta-base-squad2-distilled **Language:** Multilingual **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 1x Tesla v100 ## Hyperparameters ``` batch_size = 56 n_epochs = 4 max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 3 distillation_loss_weight = 0.75 ``` ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled") # or reader = TransformersReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled",tokenizer="deepset/xlm-roberta-base-squad2-distilled") ``` For a complete example of ``deepset/xlm-roberta-base-squad2-distilled`` being used for [question answering], check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/xlm-roberta-base-squad2-distilled" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set ``` "exact": 74.06721131980123% "f1": 76.39919553344667% ``` ## Authors **Timo Möller:** timo.moeller@deepset.ai **Julian Risch:** julian.risch@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Michel Bartels:** michel.bartels@deepset.ai ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
67ad8aa6f3251354a306fe2336fd20b8
paola-md/distil-is
paola-md
roberta
6
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,577
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-is This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6082 - Rmse: 0.7799 - Mse: 0.6082 - Mae: 0.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.6881 | 1.0 | 492 | 0.6534 | 0.8084 | 0.6534 | 0.5857 | | 0.5923 | 2.0 | 984 | 0.6508 | 0.8067 | 0.6508 | 0.5852 | | 0.5865 | 3.0 | 1476 | 0.6088 | 0.7803 | 0.6088 | 0.6096 | | 0.5899 | 4.0 | 1968 | 0.6279 | 0.7924 | 0.6279 | 0.5853 | | 0.5852 | 5.0 | 2460 | 0.6082 | 0.7799 | 0.6082 | 0.6023 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
a8a4429344f2a845dd3caedb2d9f27e1
NickKolok/meryl-stryfe-20230101-0500-4800-steps_1
NickKolok
null
15
2
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
7,619
false
### Meryl_Stryfe_20230101_0500_+4800_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Meryl_Stryfe_20230101_0500_+4800_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face29_tanning_by_ajd_262_d5pj4la.png) ![image 1](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face32_not_as_easy_as_thought_by_ajd_262_d4hjpjc.png) ![image 2](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist3.png) ![image 3](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist4.png) ![image 4](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face6.png) ![image 5](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face8.png) ![image 6](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face25_welcoming_bed_by_ajd_262_d6k0igt.png) ![image 7](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist9.png) ![image 8](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist5.png) ![image 9](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face18_meryl_lingerie_by_ajd_262_d4j6vf4.png) ![image 10](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face16.png) ![image 11](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face5.png) ![image 12](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face1.png) ![image 13](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face15.png) ![image 14](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist7.png) ![image 15](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face27_um__maybe_by_ajd_262_d87z6f3.png) ![image 16](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face22_when_we_drink__its_kuroneko__by_ajd_262_d3bdcic.png) ![image 17](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face30_showing_by_ajd_262_d9tec76.png) ![image 18](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face17_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 19](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face7.png) ![image 20](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/shoulders1.png) ![image 21](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist1.png) ![image 22](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face19_meryl_x_knives_by_ajd_262_d9lp35g.png) ![image 23](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face13.png) ![image 24](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face28_things_are_looking__down_by_ajd_262_d5iyga3.png) ![image 25](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/knees2.png) ![image 26](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face2.png) ![image 27](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face14.png) ![image 28](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist2.png) ![image 29](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face24_we_ll_find_him_by_ajd_262_d33a43c.png) ![image 30](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist8.png) ![image 31](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face11.png) ![image 32](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face9.png) ![image 33](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face23_what____no_way_____by_ajd_262_d3dk752.png) ![image 34](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/knees3.png) ![image 35](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/shoulders2.png) ![image 36](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face31_playing_dress_up_by_ajd_262_d7o83mn.png) ![image 37](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/waist6.png) ![image 38](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face10.png) ![image 39](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face21_wondering_v2_by_ajd_262_d37r0af.png) ![image 40](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/knees4.png) ![image 41](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face3.png) ![image 42](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face20_merylxvash_by_ajd_262_d3bofm7.png) ![image 43](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/knees1.png) ![image 44](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face26_un_huh_by_ajd_262_d4m6jlk.png) ![image 45](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/knees5_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 46](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face4.png) ![image 47](https://huggingface.co/NickKolok/meryl-stryfe-20230101-0500-4800-steps_1/resolve/main/concept_images/face12.png)
3e9855778807e68198a33f8c6e810b2b
ghatgetanuj/distilbert-base-uncased_cls_sst2
ghatgetanuj
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,537
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_cls_sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5999 - Accuracy: 0.8933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 433 | 0.2928 | 0.8773 | | 0.4178 | 2.0 | 866 | 0.3301 | 0.8922 | | 0.2046 | 3.0 | 1299 | 0.5088 | 0.8853 | | 0.0805 | 4.0 | 1732 | 0.5780 | 0.8888 | | 0.0159 | 5.0 | 2165 | 0.5999 | 0.8933 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
917a150a42b4fae0144a677bb024ce24
lmqg/mt5-small-ruquad-qag
lmqg
mt5
13
33
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['ru']
['lmqg/qag_ruquad']
null
0
0
0
0
0
0
0
['questions and answers generation']
true
true
true
4,038
false
# Model Card of `lmqg/mt5-small-ruquad-qag` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question & answer pair generation task on the [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** ru - **Training data:** [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ru", model="lmqg/mt5-small-ruquad-qag") # model prediction question_answer_pairs = model.generate_qa("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-ruquad-qag") output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.") ``` ## Evaluation - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-ruquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_ruquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 52.95 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | | QAAlignedF1Score (MoverScore) | 38.59 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | | QAAlignedPrecision (BERTScore) | 52.86 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | | QAAlignedPrecision (MoverScore) | 38.57 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | | QAAlignedRecall (BERTScore) | 53.06 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | | QAAlignedRecall (MoverScore) | 38.62 | default | [lmqg/qag_ruquad](https://huggingface.co/datasets/lmqg/qag_ruquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_ruquad - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 256 - epoch: 12 - batch: 8 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 16 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-ruquad-qag/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
f24db018a4880ea31c5abf065529a79b
hkoll2/distilbert-base-uncased-finetuned-ner
hkoll2
distilbert
13
3
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,555
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.9225 - Recall: 0.9340 - F1: 0.9282 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2356 | 1.0 | 878 | 0.0704 | 0.9138 | 0.9187 | 0.9162 | 0.9807 | | 0.054 | 2.0 | 1756 | 0.0620 | 0.9209 | 0.9329 | 0.9269 | 0.9827 | | 0.0306 | 3.0 | 2634 | 0.0629 | 0.9225 | 0.9340 | 0.9282 | 0.9834 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
27222624910123096bd0b63638a009b0
ConvLab/t5-small-goal2dialogue-multiwoz21
ConvLab
t5
7
3
transformers
0
text2text-generation
true
false
false
apache-2.0
['en']
['ConvLab/multiwoz21']
null
0
0
0
0
0
0
0
['t5-small', 'text2text-generation', 'dialogue generation', 'conversational system', 'task-oriented dialog']
true
true
true
745
false
# t5-small-goal2dialogue-multiwoz21 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21). Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
b54b28761bbdc3859100e6e02b14665a
yanaiela/roberta-base-epoch_2
yanaiela
roberta
9
3
transformers
0
fill-mask
true
false
false
mit
['en']
['wikipedia', 'bookcorpus']
null
0
0
0
0
0
0
0
['roberta-base', 'roberta-base-epoch_2']
false
true
true
2,100
false
# RoBERTa, Intermediate Checkpoint - Epoch 2 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_2. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
6690a6fe0c54290683069c2712438f2a
weikunt/finetuned-ner
weikunt
deberta-v2
11
9
transformers
0
token-classification
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,215
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ner This model is a fine-tuned version of [deepset/deberta-v3-base-squad2](https://huggingface.co/deepset/deberta-v3-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4783 - Precision: 0.3264 - Recall: 0.3591 - F1: 0.3420 - Accuracy: 0.8925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.05 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 39.8167 | 1.0 | 760 | 0.3957 | 0.1844 | 0.2909 | 0.2257 | 0.8499 | | 21.7333 | 2.0 | 1520 | 0.3853 | 0.2118 | 0.3273 | 0.2571 | 0.8546 | | 13.8859 | 3.0 | 2280 | 0.3631 | 0.2443 | 0.2909 | 0.2656 | 0.8789 | | 20.6586 | 4.0 | 3040 | 0.3961 | 0.2946 | 0.3455 | 0.3180 | 0.8753 | | 13.8654 | 5.0 | 3800 | 0.3821 | 0.2791 | 0.3273 | 0.3013 | 0.8877 | | 12.6942 | 6.0 | 4560 | 0.4393 | 0.3122 | 0.3364 | 0.3239 | 0.8909 | | 25.0549 | 7.0 | 5320 | 0.4542 | 0.3106 | 0.3727 | 0.3388 | 0.8824 | | 5.6816 | 8.0 | 6080 | 0.4432 | 0.2820 | 0.3409 | 0.3086 | 0.8774 | | 13.1296 | 9.0 | 6840 | 0.4509 | 0.2884 | 0.35 | 0.3162 | 0.8824 | | 7.7173 | 10.0 | 7600 | 0.4265 | 0.3170 | 0.3818 | 0.3464 | 0.8919 | | 6.7922 | 11.0 | 8360 | 0.4749 | 0.3320 | 0.3818 | 0.3552 | 0.8892 | | 5.4287 | 12.0 | 9120 | 0.4564 | 0.2917 | 0.3818 | 0.3307 | 0.8805 | | 7.4153 | 13.0 | 9880 | 0.4735 | 0.2963 | 0.3273 | 0.3110 | 0.8871 | | 9.1154 | 14.0 | 10640 | 0.4553 | 0.3416 | 0.3773 | 0.3585 | 0.8894 | | 5.999 | 15.0 | 11400 | 0.4489 | 0.3203 | 0.4091 | 0.3593 | 0.8880 | | 9.5128 | 16.0 | 12160 | 0.4947 | 0.3164 | 0.3682 | 0.3403 | 0.8883 | | 5.6713 | 17.0 | 12920 | 0.4705 | 0.3527 | 0.3864 | 0.3688 | 0.8919 | | 12.2119 | 18.0 | 13680 | 0.4617 | 0.3123 | 0.3591 | 0.3340 | 0.8857 | | 8.5658 | 19.0 | 14440 | 0.4764 | 0.3092 | 0.35 | 0.3284 | 0.8944 | | 11.0664 | 20.0 | 15200 | 0.4557 | 0.3187 | 0.3636 | 0.3397 | 0.8905 | | 6.7161 | 21.0 | 15960 | 0.4468 | 0.3210 | 0.3955 | 0.3544 | 0.8956 | | 9.0448 | 22.0 | 16720 | 0.5120 | 0.2872 | 0.3682 | 0.3227 | 0.8792 | | 6.573 | 23.0 | 17480 | 0.4990 | 0.3307 | 0.3773 | 0.3524 | 0.8869 | | 5.0543 | 24.0 | 18240 | 0.4763 | 0.3028 | 0.3455 | 0.3227 | 0.8899 | | 6.8797 | 25.0 | 19000 | 0.4814 | 0.2780 | 0.3273 | 0.3006 | 0.8913 | | 7.7544 | 26.0 | 19760 | 0.4695 | 0.3024 | 0.3409 | 0.3205 | 0.8946 | | 4.8346 | 27.0 | 20520 | 0.4849 | 0.3154 | 0.3455 | 0.3297 | 0.8931 | | 4.4766 | 28.0 | 21280 | 0.4809 | 0.2925 | 0.3364 | 0.3129 | 0.8913 | | 7.9149 | 29.0 | 22040 | 0.4756 | 0.3238 | 0.3591 | 0.3405 | 0.8930 | | 7.3033 | 30.0 | 22800 | 0.4783 | 0.3264 | 0.3591 | 0.3420 | 0.8925 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1 - Datasets 2.8.0 - Tokenizers 0.13.2
eaf80c8ab459bee2dc141dcd28f9f78e
fanzru/t5-small-finetuned-xlsum-10-epoch
fanzru
t5
9
1
transformers
1
text2text-generation
true
false
false
apache-2.0
null
['xlsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,380
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum-10-epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2204 - Rouge1: 31.6534 - Rouge2: 10.0563 - Rougel: 24.8104 - Rougelsum: 24.8732 - Gen Len: 18.7913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.6512 | 1.0 | 19158 | 2.3745 | 29.756 | 8.4006 | 22.9753 | 23.0287 | 18.8245 | | 2.6012 | 2.0 | 38316 | 2.3183 | 30.5327 | 9.0206 | 23.7263 | 23.7805 | 18.813 | | 2.5679 | 3.0 | 57474 | 2.2853 | 30.9771 | 9.4156 | 24.1555 | 24.2127 | 18.7905 | | 2.5371 | 4.0 | 76632 | 2.2660 | 31.0578 | 9.5592 | 24.2983 | 24.3587 | 18.7941 | | 2.5133 | 5.0 | 95790 | 2.2498 | 31.3756 | 9.7889 | 24.5317 | 24.5922 | 18.7971 | | 2.4795 | 6.0 | 114948 | 2.2378 | 31.4961 | 9.8935 | 24.6648 | 24.7218 | 18.7929 | | 2.4967 | 7.0 | 134106 | 2.2307 | 31.44 | 9.9125 | 24.6298 | 24.6824 | 18.8221 | | 2.4678 | 8.0 | 153264 | 2.2250 | 31.5875 | 10.004 | 24.7581 | 24.8125 | 18.7809 | | 2.46 | 9.0 | 172422 | 2.2217 | 31.6413 | 10.0311 | 24.8063 | 24.8641 | 18.7951 | | 2.4494 | 10.0 | 191580 | 2.2204 | 31.6534 | 10.0563 | 24.8104 | 24.8732 | 18.7913 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.1+cpu - Datasets 2.8.0 - Tokenizers 0.10.3
57a55ec9458b4ab81efe1ac9a287edd8
FOFer/distilbert-base-uncased-finetuned-squad
FOFer
distilbert
12
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad_v2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,288
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2169 | 1.0 | 8235 | 1.1950 | | 0.9396 | 2.0 | 16470 | 1.2540 | | 0.7567 | 3.0 | 24705 | 1.4306 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
3407e41b67638c1762090980abbabe29
sd-concepts-library/chucky
sd-concepts-library
null
10
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,076
false
### Chucky on Stable Diffusion This is the `<merc>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<merc> 0](https://huggingface.co/sd-concepts-library/chucky/resolve/main/concept_images/3.jpeg) ![<merc> 1](https://huggingface.co/sd-concepts-library/chucky/resolve/main/concept_images/0.jpeg) ![<merc> 2](https://huggingface.co/sd-concepts-library/chucky/resolve/main/concept_images/2.jpeg) ![<merc> 3](https://huggingface.co/sd-concepts-library/chucky/resolve/main/concept_images/1.jpeg) ![<merc> 4](https://huggingface.co/sd-concepts-library/chucky/resolve/main/concept_images/4.jpeg)
f28de1ede5e71b17fb776d049eacc45f
NDugar/v3-Large-mnli
NDugar
deberta-v2
12
6
transformers
1
zero-shot-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['deberta-v1', 'deberta-mnli']
false
true
true
925
false
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4103 - Accuracy: 0.9175 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3631 | 1.0 | 49088 | 0.3129 | 0.9130 | | 0.2267 | 2.0 | 98176 | 0.4157 | 0.9153 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
bdaf98efccd4798fa413019de34739d9
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_qqp
gokuls
mobilebert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,455
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_qqp This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.8079 - Accuracy: 0.7570 - F1: 0.6049 - Combined Score: 0.6810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:--------------------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 1.2837 | 1.0 | 2843 | 1.2201 | 0.6318 | 0.0 | 0.3159 | | 1.076 | 2.0 | 5686 | 0.8477 | 0.7443 | 0.5855 | 0.6649 | | 0.866 | 3.0 | 8529 | 0.8217 | 0.7518 | 0.5924 | 0.6721 | | 0.8317 | 4.0 | 11372 | 0.8136 | 0.7565 | 0.6243 | 0.6904 | | 0.8122 | 5.0 | 14215 | 0.8126 | 0.7588 | 0.6352 | 0.6970 | | 0.799 | 6.0 | 17058 | 0.8079 | 0.7570 | 0.6049 | 0.6810 | | 386581134871678353408.0000 | 7.0 | 19901 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 8.0 | 22744 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 9.0 | 25587 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 10.0 | 28430 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 11.0 | 31273 | nan | 0.6318 | 0.0 | 0.3159 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
05ffd594bb36c9bef20c9e70c363b544
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter7
4m1g0
wav2vec2
13
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,325
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-53m-gl-jupyter7 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1000 - Wer: 0.0639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8697 | 3.36 | 400 | 0.2631 | 0.2756 | | 0.1569 | 6.72 | 800 | 0.1243 | 0.1300 | | 0.0663 | 10.08 | 1200 | 0.1124 | 0.1153 | | 0.0468 | 13.44 | 1600 | 0.1118 | 0.1037 | | 0.0356 | 16.8 | 2000 | 0.1102 | 0.0978 | | 0.0306 | 20.17 | 2400 | 0.1095 | 0.0935 | | 0.0244 | 23.53 | 2800 | 0.1072 | 0.0844 | | 0.0228 | 26.89 | 3200 | 0.1014 | 0.0874 | | 0.0192 | 30.25 | 3600 | 0.1084 | 0.0831 | | 0.0174 | 33.61 | 4000 | 0.1048 | 0.0772 | | 0.0142 | 36.97 | 4400 | 0.1063 | 0.0764 | | 0.0131 | 40.33 | 4800 | 0.1046 | 0.0770 | | 0.0116 | 43.69 | 5200 | 0.0999 | 0.0716 | | 0.0095 | 47.06 | 5600 | 0.1044 | 0.0729 | | 0.0077 | 50.42 | 6000 | 0.1024 | 0.0670 | | 0.0071 | 53.78 | 6400 | 0.0968 | 0.0631 | | 0.0064 | 57.14 | 6800 | 0.1000 | 0.0639 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
31957f16d56213ef70c44aba2416abd3
sd-concepts-library/axe-tattoo
sd-concepts-library
null
14
0
transformers
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,226
false
### axe_tattoo on Stable Diffusion This is the `<axe-tattoo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/axe-tattoo/resolve/main/concept_images/1.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/axe-tattoo/resolve/main/concept_images/5.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/axe-tattoo/resolve/main/concept_images/0.jpeg) ![<cat-toy> 3](https://huggingface.co/sd-concepts-library/axe-tattoo/resolve/main/concept_images/4.jpeg) ![<cat-toy> 4](https://huggingface.co/sd-concepts-library/axe-tattoo/resolve/main/concept_images/2.jpeg) ![<cat-toy> 5](https://huggingface.co/sd-concepts-library/axe-tattoo/resolve/main/concept_images/3.jpeg)
9448fab08a6323d5520376d0ad20a9eb
Jeffsun/LSPV3
Jeffsun
null
30
0
diffusers
0
null
false
false
false
openrail
['en']
['Gustavosta/Stable-Diffusion-Prompts']
null
0
0
0
0
0
0
0
[]
false
true
true
952
false
prompt should contain: best quality, masterpiece, highrer,1girl, beautiful face recommand: DPM++2M Karras nagative prompt (simple is better):(((simple background))),monochrome ,lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, lowres, bad anatomy, bad hands, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ugly,pregnant,vore,duplicate,morbid,mut ilated,tran nsexual, hermaphrodite,long neck,mutated hands,poorly drawn hands,poorly drawn face,mutation,deformed,blurry,bad anatomy,bad proportions,malformed limbs,extra limbs,cloned face,disfigured,gross proportions, (((missing arms))),(((missing legs))), (((extra arms))),(((extra legs))),pubic hair, plump,bad legs,error legs,username,blurry,bad feet
be2f6753eddf2a47b42eb6ca8897543d
gokuls/bert-base-uncased-stsb
gokuls
bert
17
72
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,719
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-stsb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Pearson: 0.8901 - Spearmanr: 0.8872 - Combined Score: 0.8887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.3939 | 1.0 | 45 | 0.7358 | 0.8686 | 0.8653 | 0.8669 | | 0.5084 | 2.0 | 90 | 0.4959 | 0.8835 | 0.8799 | 0.8817 | | 0.3332 | 3.0 | 135 | 0.5002 | 0.8846 | 0.8815 | 0.8830 | | 0.2202 | 4.0 | 180 | 0.4962 | 0.8854 | 0.8827 | 0.8840 | | 0.1642 | 5.0 | 225 | 0.4848 | 0.8864 | 0.8839 | 0.8852 | | 0.1312 | 6.0 | 270 | 0.4987 | 0.8872 | 0.8866 | 0.8869 | | 0.1057 | 7.0 | 315 | 0.4840 | 0.8895 | 0.8848 | 0.8871 | | 0.0935 | 8.0 | 360 | 0.4753 | 0.8887 | 0.8840 | 0.8863 | | 0.0835 | 9.0 | 405 | 0.4676 | 0.8901 | 0.8872 | 0.8887 | | 0.0749 | 10.0 | 450 | 0.4808 | 0.8901 | 0.8867 | 0.8884 | | 0.0625 | 11.0 | 495 | 0.4760 | 0.8893 | 0.8857 | 0.8875 | | 0.0607 | 12.0 | 540 | 0.5113 | 0.8899 | 0.8859 | 0.8879 | | 0.0564 | 13.0 | 585 | 0.4918 | 0.8900 | 0.8860 | 0.8880 | | 0.0495 | 14.0 | 630 | 0.4749 | 0.8905 | 0.8868 | 0.8887 | | 0.0446 | 15.0 | 675 | 0.4889 | 0.8888 | 0.8856 | 0.8872 | | 0.045 | 16.0 | 720 | 0.4680 | 0.8918 | 0.8889 | 0.8904 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
e6474110bd8d039ef1c1d52f532f430e
jonatasgrosman/exp_w2v2t_pl_vp-it_s474
jonatasgrosman
wav2vec2
10
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pl']
false
true
true
469
false
# exp_w2v2t_pl_vp-it_s474 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
b06ab4a11a893416724ba819cf07f3f9
marccgrau/whisper-small-allSNR-v8
marccgrau
whisper
13
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['marccgrau/sbbdata_allSNR']
null
0
0
0
0
0
0
0
['sbb-asr', 'generated_from_trainer']
true
true
true
1,599
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small German SBB all SNR - v8 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset. It achieves the following results on the evaluation set: - Loss: 0.0246 - Wer: 0.0235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.3694 | 0.36 | 100 | 0.2304 | 0.0495 | | 0.0696 | 0.71 | 200 | 0.0311 | 0.0209 | | 0.0324 | 1.07 | 300 | 0.0337 | 0.0298 | | 0.0215 | 1.42 | 400 | 0.0254 | 0.0184 | | 0.016 | 1.78 | 500 | 0.0279 | 0.0209 | | 0.0113 | 2.14 | 600 | 0.0246 | 0.0235 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.12.1
198d46b0949ab678ad9f87f27625dfd0
dbmdz/bert-base-german-europeana-uncased
dbmdz
bert
8
22
transformers
0
null
true
true
true
mit
['de']
null
null
0
0
0
0
0
0
0
['historic german']
false
true
true
2,334
false
# 🤗 + 📚 dbmdz BERT models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources German Europeana BERT models 🎉 # German Europeana BERT We use the open source [Europeana newspapers](http://www.europeana-newspapers.eu/) that were provided by *The European Library*. The final training corpus has a size of 51GB and consists of 8,035,986,369 tokens. Detailed information about the data and pretraining steps can be found in [this repository](https://github.com/stefan-it/europeana-bert). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ------------------------------------------ | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-german-europeana-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/vocab.txt) ## Results For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert). ## Usage With Transformers >= 2.3 our German Europeana BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-europeana-uncased") model = AutoModel.from_pretrained("dbmdz/bert-base-german-europeana-uncased") ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
d0a4f951f0e70942ef7e38a75f083280
liyijing024/swin-base-patch4-window7-224-in22k-Chinese-finetuned
liyijing024
swin
9
13
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,513
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-in22k-Chinese-finetuned This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0121 | 0.99 | 140 | 0.0001 | 1.0 | | 0.0103 | 1.99 | 280 | 0.0001 | 1.0 | | 0.0049 | 2.99 | 420 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.0+cu111 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
0b8799d352c6bd138d5e37e419af2a58
husnu/xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-9
husnu
bert
12
5
transformers
0
question-answering
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,647
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-9 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the Turkish squad dataset. It achieves the following results on the evaluation set: - Loss: 2.2340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5236 | 1.0 | 1050 | 3.0042 | | 2.8489 | 2.0 | 2100 | 2.5866 | | 2.5485 | 3.0 | 3150 | 2.3526 | | 2.4067 | 4.0 | 4200 | 2.3535 | | 2.3091 | 5.0 | 5250 | 2.2862 | | 2.2401 | 6.0 | 6300 | 2.3989 | | 2.1715 | 7.0 | 7350 | 2.2284 | | 2.1414 | 8.0 | 8400 | 2.2298 | | 2.1221 | 9.0 | 9450 | 2.2340 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
eb15609aca5593c9cfb92aae5c8c58e5
kejian/final-mle
kejian
gpt2
49
4
transformers
0
null
true
false
false
apache-2.0
['en']
['kejian/codeparrot-train-more-filter-3.3b-cleaned']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,159
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/final-mle This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/final-mle', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5000, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1oqdxrdb
9de0a29b9059262a3f37aeffb45bb1e3
ashesicsis1/xlsr-english
ashesicsis1
wav2vec2
13
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['librispeech_asr']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,006
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr-english This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.3098 - Wer: 0.1451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2453 | 2.37 | 400 | 0.5789 | 0.4447 | | 0.3736 | 4.73 | 800 | 0.3737 | 0.2850 | | 0.1712 | 7.1 | 1200 | 0.3038 | 0.2136 | | 0.117 | 9.47 | 1600 | 0.3016 | 0.2072 | | 0.0897 | 11.83 | 2000 | 0.3158 | 0.1920 | | 0.074 | 14.2 | 2400 | 0.3137 | 0.1831 | | 0.0595 | 16.57 | 2800 | 0.2967 | 0.1745 | | 0.0493 | 18.93 | 3200 | 0.3192 | 0.1670 | | 0.0413 | 21.3 | 3600 | 0.3176 | 0.1644 | | 0.0322 | 23.67 | 4000 | 0.3079 | 0.1598 | | 0.0296 | 26.04 | 4400 | 0.2978 | 0.1511 | | 0.0235 | 28.4 | 4800 | 0.3098 | 0.1451 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
0cdbd6b5460b8087e04537fcefd94239
sd-concepts-library/party-girl
sd-concepts-library
null
11
0
null
6
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,246
false
### Party girl on Stable Diffusion This is the `<party-girl>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<party-girl> 0](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/5.jpeg) ![<party-girl> 1](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/4.jpeg) ![<party-girl> 2](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/1.jpeg) ![<party-girl> 3](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/2.jpeg) ![<party-girl> 4](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/3.jpeg) ![<party-girl> 5](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/0.jpeg)
bdee394b426176f65c70fb5707a0c536
LisanneH/AgeEstimation
LisanneH
null
2
0
null
2
null
false
false
false
unknown
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,719
false
# Age estimation in supermarkets The model analyzed in this card estimates someone's age. This project has been done for the master Applied Artificial Intelligence and is about estimating ages in supermarkets when a person wants to buy alcohol. This model's goal is to only estimate ages in an image. It will not cover ethnicities or gender. ## Model description **Used dataset:** UTKFace images - This dataset contains roughly 24K face images. - The age of a person on the picture is labeled in the filename of that image. - Since we do not have use for baby images, we decided to cut these out of the dataset, so there are 21K images left. **Model input:** Facial images **Model output:** For a face in a picture, the model will return the estimated age of that person. The model output also gives a confidence score for the estimation. **Model architecture:** A Convolutional Neural Network. This CNN will perform a regression analysis to estimates the ages. ## Performance To determine the performance of the model, the following metrics have been used: - MSE, this metric measures how close the regression line is to the data points. <br> &ensp; - *Our model's MSE:* 60.9 - RMSE, this metric measures the mean error that can be made. <br> &ensp; - *Our model's RMSE:* 7.8 - MAE, this is a measure for model accuracy. The MAE is the average error that the model's predictions have in comparison with their corresponding actual targets. <br> &ensp; - *Our model's MAE:* 5.2 Ideally, the RMSE and the MAE should be close to each other. When there is a big difference in these two numbers, it is an indication of variance in the individually errors. Our results show that the prediction model can be around 8 years off of the actual age of a person. We also looked at how the model performs in different age, gender and race classes. It seemed the model predicted the ages of people between 20 and 30 better than the rest. The model could also predict the ages of females better than males. The race that the model can predict the best is East Asian. ## Limitations - **Lighting** <br> When the lighting is poor, the age estimation can be poor as well - **Occlusion** <br> Partially hidden or obstructed faces might not be detected. (e.g. face masks) - **UTKFace** <br> The ages in this dataset are in itself estimation from a previous model. Since we do not know the exact ages of the people in the images, our model will not be the most reliable. ## Training and evaluation data Train data: 70% Test data: 30% Our model has been made by trial and error. The following architecture is the outcome: - Hidden layers: 7 - Batch size: 128 - Epochs: 65 - Optimizer: adam - Activation: ReLu & Linear
c430d3b78cc3054ceaef8c80ff51558c
facebook/wav2vec2-conformer-rope-large
facebook
wav2vec2-conformer
5
3
transformers
1
null
true
false
false
apache-2.0
['en']
['librispeech_asr']
null
0
0
0
0
0
0
0
['speech']
false
true
true
1,241
false
# Wav2Vec2-Conformer-Large with Rotary Position Embeddings Wav2Vec2 Conformer with rotary position embeddings, pretrained on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. **Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) **Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171). The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
d926e0a25eabb887bda498a01057e91a
julius-br/gottbert-base-finetuned-fbi-german
julius-br
roberta
10
1
transformers
0
text-classification
true
false
false
mit
['de']
null
null
0
0
0
0
0
0
0
['roberta', 'gottbert']
false
true
true
589
false
# Fine-tuned gottbert-base to detect Feature Requests & Bug Reports in German App Store Reviews ## Overview **Language model:** uklfr/gottbert-base **Language:** German **Training & Eval data:** [GARFAB2022Weighted](https://huggingface.co/datasets/julius-br/GARFAB) <br> **Published**: September 21th, 2022 <br> **Author**: Julius Breiholz ## Performance | Label | Precision | Recall | F1-Score | | --- | --- | --- | --- | | Irrelevant | 0,95 | 0,91 | 0,93 | | Bug Report | 0,82 | 0,91 | 0,86 | | Feature Request | 0,87 | 0,82 | 0,85 | | all classes (avg.) | 0,88 | 0,88 | 0,88 |
3328e54192629acc80e6d83489c3a185
jzju/whisper-medium-nst
jzju
whisper
15
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['sv']
['jzju/nst']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
3,048
false
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the NST dataset. Aborted after 6000 steps / 0.4 epochs as it wasen't promising when manualy evaluated on an SVT broadcast. The punctation, capitalization and entities like Norge seems worse than original so probably need to fix dataset before more training. Re-split the test dataset to contain a thousand samples so evaluate didn't take hours. ### Training results | Step | Wer | |:----:|:----:| | 1000 | 9.42 | | 2000 | 8.13 | | 3000 | 7.27 | | 4000 | 7.05 | | 5000 | 6.60 | | 6000 | 6.49 | Source audio: https://www.youtube.com/watch?v=9XLHas6oD_E This model: ``` [00:00:00.000 --> 00:00:03.040] Ta nu ett djupt andetag för er kan inte alla göra. [00:00:03.040 --> 00:00:11.840] För de allra flesta så är det en självklarhet att kunna andas utan större problem, men har man lomsjukdomens hysterisk fibrås är det inte så. [00:00:11.840 --> 00:00:16.240] Nu finns en ny medicin, men den är inte subventionerad i Sverige. [00:00:16.240 --> 00:00:22.960] Nej, om man vill kunna andas i sverige så får man söka sig till svarta marknaden i mindre noggräknade länder som är norrje. [00:00:22.960 --> 00:00:39.360] Nu ska vi åka till norrje och så ska vi möta upp då en person som ska jag köpa då kafttrio av honom som han får då gratis från norska staten och som han då säljer vidare. [00:00:39.360 --> 00:00:54.560] Okej, i norrje delar läkarna ut medicin i kafttri och gratis till vilken jävla gud som helst och det är bra för nu kan helen andas ut och in.Det ser okej bra att hon får hosta upp inte bara slemme utan även tjugosex tusen i kontanter. [00:00:54.560 --> 00:01:00.320] Jag fattar inte, sverige är ju världsbäst på subventioner, i alla fall i södra sverige, ja när det gäller äl. ``` Whisper medium: ``` [00:00:00.000 --> 00:00:03.080] Ta ett djupt antal, för det kan inte alla göra. [00:00:03.080 --> 00:00:08.000] För de flesta är det självklar att kunna andas utan problem. [00:00:08.000 --> 00:00:12.120] Men har man Lundsjukdomens fibros, är det inte så. [00:00:12.120 --> 00:00:16.200] Nu finns en ny medicin, men den är inte subventionerad i Sverige. [00:00:16.200 --> 00:00:20.160] Om man vill andas i Sverige, så får man söka sig till svarta marknaden- [00:00:20.160 --> 00:00:22.920] -i mindre noggräknade länder som Norge. [00:00:22.920 --> 00:00:29.840] Nu ska vi åka till Norge och möta upp en person som jag ska köpa. [00:00:29.840 --> 00:00:37.480] Ja, kaffetrio av honom. Som han får gratis från Norska staten. [00:00:37.480 --> 00:00:40.200] -Och som han säljer vidare. -Okej. [00:00:40.200 --> 00:00:44.560] I Norge delar läkarna ut medicinen kaffetrio gratis till vilken gud som helst. [00:00:44.560 --> 00:00:49.360] Det är bra, för nu kan Helen andas ut och in. [00:00:49.360 --> 00:00:54.280] Det är inte bara att hon får rosta upp, utan även 26 000 kontanter. [00:00:54.280 --> 00:00:59.320] Sverige är världsbäst på subventioner, i alla fall i södra Sverige. ```
1149e67c6d32762c2102f24b19c960d1
hassnain/wav2vec2-base-timit-demo-colab647
hassnain
wav2vec2
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,463
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab647 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5534 - Wer: 0.4799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2072 | 7.04 | 500 | 3.7757 | 1.0 | | 1.2053 | 14.08 | 1000 | 0.6128 | 0.5648 | | 0.3922 | 21.13 | 1500 | 0.5547 | 0.5035 | | 0.2157 | 28.17 | 2000 | 0.5534 | 0.4799 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
f09579a889d0aea4206469cf9738691d
lmqg/bart-base-subjqa-books-qg
lmqg
bart
35
1
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qg_subjqa']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
3,900
false
# Model Card of `lmqg/bart-base-subjqa-books-qg` This model is fine-tuned version of [lmqg/bart-base-squad](https://huggingface.co/lmqg/bart-base-squad) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: books) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [lmqg/bart-base-squad](https://huggingface.co/lmqg/bart-base-squad) - **Language:** en - **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (books) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/bart-base-subjqa-books-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/bart-base-subjqa-books-qg") output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-base-subjqa-books-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json) | | Score | Type | Dataset | |:-----------|--------:|:-------|:-----------------------------------------------------------------| | BERTScore | 92.96 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_1 | 22.47 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_2 | 13.03 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_3 | 4.52 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | Bleu_4 | 2.03 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | METEOR | 20.57 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | MoverScore | 62.85 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | | ROUGE_L | 23.24 | books | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_subjqa - dataset_name: books - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: None - model: lmqg/bart-base-squad - max_length: 512 - max_length_output: 32 - epoch: 2 - batch: 32 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-subjqa-books-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
c242404da2d69a4575245cbd96379620
Helsinki-NLP/opus-mt-fr-sv
Helsinki-NLP
marian
10
51
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
770
false
### opus-mt-fr-sv * source languages: fr * target languages: sv * OPUS readme: [fr-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-sv/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sv/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sv/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fr.sv | 60.1 | 0.744 |
4a6d4b8ad79c2ddb118fcf30cedbb568
RayK/distilbert-base-uncased-finetuned-cola
RayK
distilbert
47
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,565
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6949 - Matthews Correlation: 0.5410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5241 | 1.0 | 535 | 0.5322 | 0.3973 | | 0.356 | 2.0 | 1070 | 0.5199 | 0.4836 | | 0.2402 | 3.0 | 1605 | 0.6086 | 0.5238 | | 0.166 | 4.0 | 2140 | 0.6949 | 0.5410 | | 0.134 | 5.0 | 2675 | 0.8254 | 0.5253 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.12.1
4ad38f5cde43bad51586cd3ddf61d96b
jonatasgrosman/exp_w2v2t_it_vp-es_s496
jonatasgrosman
wav2vec2
10
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['it']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'it']
false
true
true
469
false
# exp_w2v2t_it_vp-es_s496 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
28246c66c3bf79605592881894d581a8
Fedeya/federico-minaya
Fedeya
null
24
2
diffusers
0
null
false
false
false
mit
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,428
false
### federico minaya on Stable Diffusion via Dreambooth #### model by Fedeya This your the Stable Diffusion model fine-tuned the federico minaya concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a photo of sks federicominaya** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/Fedeya/federico-minaya/resolve/main/concept_images/1.jpeg) ![image 1](https://huggingface.co/Fedeya/federico-minaya/resolve/main/concept_images/4.jpeg) ![image 2](https://huggingface.co/Fedeya/federico-minaya/resolve/main/concept_images/2.jpeg) ![image 3](https://huggingface.co/Fedeya/federico-minaya/resolve/main/concept_images/0.jpeg) ![image 4](https://huggingface.co/Fedeya/federico-minaya/resolve/main/concept_images/3.jpeg) ![image 5](https://huggingface.co/Fedeya/federico-minaya/resolve/main/concept_images/5.jpeg)
4d3598be1373be84b635917181f4f131
jjjj-j/distilbert-base-uncased-response-finetuned-cola
jjjj-j
distilbert
13
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,953
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-response-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9774 - Matthews Correlation: 0.3330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 23 | 1.0662 | 0.0 | | No log | 2.0 | 46 | 1.0175 | 0.0 | | No log | 3.0 | 69 | 1.0001 | 0.0 | | No log | 4.0 | 92 | 0.9852 | 0.1196 | | No log | 5.0 | 115 | 0.9836 | 0.2326 | | No log | 6.0 | 138 | 0.9680 | 0.1808 | | No log | 7.0 | 161 | 0.9774 | 0.3330 | | No log | 8.0 | 184 | 0.9786 | 0.2881 | | No log | 9.0 | 207 | 0.9974 | 0.2235 | | No log | 10.0 | 230 | 0.9957 | 0.2031 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
d637b9cc436feda778dad1393c6cd53c
jonatasgrosman/exp_w2v2t_it_wav2vec2_s211
jonatasgrosman
wav2vec2
10
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['it']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'it']
false
true
true
456
false
# exp_w2v2t_it_wav2vec2_s211 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
58fd2468cbc094544e01b3499ae76d8c
TransQuest/monotransquest-hter-en_lv-it-nmt
TransQuest
xlm-roberta
8
5
transformers
0
text-classification
true
false
false
apache-2.0
['en-lv']
null
null
1
1
0
0
0
0
0
['Quality Estimation', 'monotransquest', 'hter']
false
true
true
5,312
false
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_lv-it-nmt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
88bfd1f4c6aa961c56b5a1b5819d832e
nielsr/segformer-trainer-test
nielsr
segformer
22
2
transformers
0
image-segmentation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['image-segmentation', 'vision', 'generated_from_trainer']
true
true
true
1,086
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-trainer-test This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 1.3886 - Mean Iou: 0.1391 - Mean Accuracy: 0.1905 - Overall Accuracy: 0.7192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
f12ce73f948a781e34f1a24e06351e0f
firqaaa/indo-sentence-bert-base
firqaaa
bert
12
98
sentence-transformers
1
sentence-similarity
true
false
false
apache-2.0
['id']
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,932
false
# indo-sentence-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Ibukota Perancis adalah Paris", "Menara Eifel terletak di Paris, Perancis", "Pizza adalah makanan khas Italia", "Saya kuliah di Carneige Mellon University"] model = SentenceTransformer('firqaaa/indo-sentence-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Ibukota Perancis adalah Paris", "Menara Eifel terletak di Paris, Perancis", "Pizza adalah makanan khas Italia", "Saya kuliah di Carneige Mellon University"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('firqaaa/indo-sentence-bert-base') model = AutoModel.from_pretrained('firqaaa/indo-sentence-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 19644 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9930, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
3b5cec164032a02e8270aefaca998ea4
muhtasham/mini-mlm-imdb-target-tweet
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,543
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-mlm-imdb-target-tweet This model is a fine-tuned version of [muhtasham/mini-mlm-imdb](https://huggingface.co/muhtasham/mini-mlm-imdb) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.3042 - Accuracy: 0.7674 - F1: 0.7669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8543 | 4.9 | 500 | 0.6920 | 0.7674 | 0.7571 | | 0.3797 | 9.8 | 1000 | 0.7231 | 0.7727 | 0.7709 | | 0.1668 | 14.71 | 1500 | 0.9171 | 0.7594 | 0.7583 | | 0.068 | 19.61 | 2000 | 1.1558 | 0.7647 | 0.7642 | | 0.0409 | 24.51 | 2500 | 1.3042 | 0.7674 | 0.7669 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
5d4e728ebb846c802f6f7318eec60c41
chanind/frame-semantic-transformer-base
chanind
t5
7
306
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,151
false
Fine-tuned T5 base model for use as a frame semantic parser in the [Frame Semantic Transformer](https://github.com/chanind/frame-semantic-transformer) project. This model is trained on data from [FrameNet 1.7](https://framenet2.icsi.berkeley.edu/). ### Usage This is meant to be used a part of [Frame Semantic Transformer](https://github.com/chanind/frame-semantic-transformer). See that project for usage instructions. ### Tasks This model is trained to perform 3 tasks related to semantic frame parsing: 1. Identify frame trigger locations in the text 2. Classify the frame given a trigger location 3. Extract frame elements in the sentence ### Performance This model is trained and evaluated using the same train/dev/test splits from FrameNet 1.7 annotated corpora as used by [Open Sesame](https://github.com/swabhs/open-sesame). | Task | F1 Score (Dev) | F1 Score (Test) | | ---------------------- | -------------- | --------------- | | Trigger identification | 0.78 | 0.71 | | Frame Classification | 0.89 | 0.87 | | Argument Extraction | 0.74 | 0.72 |
e93b5e49fadffb2eacd5114a8de63bcd
Nhat1904/mis_515_bert
Nhat1904
bert
8
14
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,249
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mis_515_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3636 - Accuracy: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4773 | 1.0 | 1125 | 0.3741 | 0.8777 | | 0.2705 | 2.0 | 2250 | 0.3636 | 0.9073 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
2de79ee88061da8ae3afb5d87e4a8e8f
ParkSaeroyi/distilroberta-base-finetuned-wikitext2
ParkSaeroyi
roberta
9
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,272
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.3687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 8.8622 | | No log | 2.0 | 12 | 8.4576 | | No log | 3.0 | 18 | 8.4412 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
d93149c4a526fc2753135a7f7b517417
muhtasham/bert-base-mlm-finetuned-emotion
muhtasham
bert
6
6
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,400
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-mlm-finetuned-emotion This model is a fine-tuned version of [google/bert_uncased_L-12_H-768_A-12](https://huggingface.co/google/bert_uncased_L-12_H-768_A-12) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4247 | 5.75 | 500 | 2.3526 | | 2.1825 | 11.49 | 1000 | 2.2778 | | 2.0578 | 17.24 | 1500 | 2.3802 | | 1.9059 | 22.99 | 2000 | 2.3358 | | 1.7966 | 28.74 | 2500 | 2.3374 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
b1047df9fa82a2e2557fbc12b96908cb
muhtasham/bert-small-finetuned-wnut17-ner-longer6
muhtasham
bert
12
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['wnut_17']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,589
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-wnut17-ner-longer6 This model is a fine-tuned version of [muhtasham/bert-small-finetuned-wnut17-ner](https://huggingface.co/muhtasham/bert-small-finetuned-wnut17-ner) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.4037 - Precision: 0.5667 - Recall: 0.4270 - F1: 0.4870 - Accuracy: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 425 | 0.3744 | 0.5626 | 0.4139 | 0.4769 | 0.9248 | | 0.085 | 2.0 | 850 | 0.3914 | 0.5814 | 0.4270 | 0.4924 | 0.9271 | | 0.0652 | 3.0 | 1275 | 0.4037 | 0.5667 | 0.4270 | 0.4870 | 0.9268 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
f7b06844cf3ec2480169c1cd72d1004b
SergenK/nes-cover-art-image-generator
SergenK
null
23
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
932
false
### nes-cover-art-image-generator Dreambooth model trained by SergenK with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00009-799444158.png) ![1](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00011-2687893221.png) ![2](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00004-238860550.png) ![3](https://huggingface.co/SergenK/nes-cover-art-image-generator/resolve/main/sample_images/00013-1488226353.png)
b6f9af6a357dae3ef05d08c417ddd608
GItaf/gpt2-gpt2-mc-weight1-epoch2
GItaf
gpt2
17
2
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
869
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight1-epoch2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
a3be2214fc0477df4e99b5ccca67937e
jw4169/wav2vec2-large-xls-r-300m-kr-jw4169
jw4169
wav2vec2
11
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['fleurs']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,525
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kr-jw4169 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.9752 - Wer: 0.5196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 35.084 | 1.39 | 200 | 6.8536 | 1.0 | | 4.853 | 2.78 | 400 | 4.6246 | 1.0 | | 4.5491 | 4.17 | 600 | 4.3815 | 1.0 | | 2.799 | 5.55 | 800 | 1.7402 | 0.8642 | | 1.3872 | 6.94 | 1000 | 1.2019 | 0.7448 | | 0.9599 | 8.33 | 1200 | 1.0594 | 0.7134 | | 0.675 | 9.72 | 1400 | 0.9321 | 0.6404 | | 0.4775 | 11.11 | 1600 | 0.9088 | 0.5911 | | 0.3479 | 12.5 | 1800 | 0.9430 | 0.6010 | | 0.2712 | 13.89 | 2000 | 0.8948 | 0.5854 | | 0.2283 | 15.28 | 2200 | 0.9009 | 0.5495 | | 0.1825 | 16.67 | 2400 | 0.9079 | 0.5501 | | 0.161 | 18.06 | 2600 | 0.9518 | 0.5390 | | 0.1394 | 19.44 | 2800 | 0.9529 | 0.5399 | | 0.1266 | 20.83 | 3000 | 0.9505 | 0.5283 | | 0.1102 | 22.22 | 3200 | 0.9748 | 0.5328 | | 0.101 | 23.61 | 3400 | 0.9593 | 0.5316 | | 0.0907 | 25.0 | 3600 | 0.9832 | 0.5292 | | 0.0833 | 26.39 | 3800 | 0.9773 | 0.5181 | | 0.0781 | 27.78 | 4000 | 0.9736 | 0.5163 | | 0.0744 | 29.17 | 4200 | 0.9752 | 0.5196 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
574f2e659f5175e01aab32115b6fb6e4
DunnBC22/distilbert-base-uncased-Regression-Edmunds_Car_Reviews-Non_European_Imports
DunnBC22
distilbert
10
1
transformers
1
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,486
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-Regression-Edmunds_Car_Reviews-Non_European_Imports This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2240 - Mae: 0.3140 - Mse: 0.2240 - Rmse: 0.4733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.6594 | 1.0 | 715 | 0.2436 | 0.3319 | 0.2436 | 0.4935 | | 0.2324 | 2.0 | 1430 | 0.2274 | 0.3210 | 0.2274 | 0.4769 | | 0.1975 | 3.0 | 2145 | 0.2303 | 0.3198 | 0.2303 | 0.4799 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.12.1
a476ea460bf001c2634eefacc48a1819
ViktorDo/DistilBERT-POWO_MGH_Epiphyte_Finetuned
ViktorDo
distilbert
12
5
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,316
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_MGH_Epiphyte_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0824 | 1.0 | 1931 | 0.0807 | | 0.0768 | 2.0 | 3862 | 0.0747 | | 0.0664 | 3.0 | 5793 | 0.0749 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
d855fc2bc306d00cff2054ed84835570
gonzpen/gbert-large-ft-edu-redux
gonzpen
bert
12
1
transformers
0
text-classification
true
false
false
mit
['de']
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,262
false
# German BERT large fine-tuned to predict educational requirements This is a fine-tuned version of the German BERT large language model [deepset/gbert-large](https://huggingface.co/deepset/gbert-large). The multilabel task this model was trained on was to predict education requirements from job ad texts. The dataset used for training is not available to the public. The 7 labels in the task are (in the classification head order): - `'Bachelor'` - `'Berufsausbildung'` - `'Doktorat oder äquivalent'` - `'Höhere Berufsausbildung'` - `'Master'` - `'Sonstiges'` - `'keine Ausbildungserfordernisse'` The number of representatives of these labels in each of the splits (train/test/val) of the dataset is summarized in the following table: | Label name | All data | Training | Validation | Test | |------------|----------|----------|------------|------| | Bachelor | 521 | 365 | 52 | 104 | | Berufsausbildung | 1854 | 1298 | 185 | 371 | | Doktorat oder äquivalent | 38 | 27 | 4 | 7 | | Höhere Berufsausbildung | 564 | 395 | 56 | 113 | | Master | 245 | 171 | 25 | 49 | | Sonstiges | 819 | 573 | 82 | 164 | | keine Ausbildungserfordernisse | 176 | 123 | 18 | 35 | ## Performance Training consisted of [minimizing the binary cross-entropy (BCE)](https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_minimization) loss between the model's predictions and the actual labels in the training set. During training, a weighted version of the [label ranking average precision (LRAP)](https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision) was tracked for the testing set. LRAP measures what fraction of higher-ranked labels produced by the model were true labels. To account for the label imbalance, the rankings were weighted so that improperly ranked rare labels are penalized more than their more frequent counterparts. After training was complete, the model with highest weighted LRAP was saved. ``` LRAP: 0.96 ``` # See also: - [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) - [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) - [gonzpen/gbert-base-ft-edu-redux](https://huggingface.co/gonzpen/gbert-base-ft-edu-redux) ## Authors Rodrigo C. G. Pena: `rodrigocgp [at] gmail.com`
54ddf6c08ad218b8e71615a9c1900b03
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping
theojolliffe
bart
15
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,790
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8347 - Rouge1: 53.9049 - Rouge2: 35.5953 - Rougel: 39.788 - Rougelsum: 51.4101 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 0.31 | 125 | 1.0240 | 52.5632 | 32.977 | 34.672 | 49.9905 | 142.0 | | No log | 0.63 | 250 | 1.0056 | 52.5508 | 32.4826 | 34.6851 | 49.835 | 141.6852 | | No log | 0.94 | 375 | 0.8609 | 53.0475 | 32.9384 | 35.3322 | 50.272 | 141.6481 | | 0.8255 | 1.26 | 500 | 0.9022 | 52.2493 | 31.5622 | 33.389 | 49.6612 | 142.0 | | 0.8255 | 1.57 | 625 | 0.8706 | 53.3568 | 33.2533 | 35.7531 | 50.4568 | 141.8889 | | 0.8255 | 1.88 | 750 | 0.8186 | 52.7375 | 33.4439 | 37.1094 | 50.5323 | 142.0 | | 0.8255 | 2.2 | 875 | 0.8041 | 53.4992 | 34.6929 | 37.9614 | 51.091 | 142.0 | | 0.5295 | 2.51 | 1000 | 0.7907 | 52.6185 | 33.8053 | 37.1725 | 50.4881 | 142.0 | | 0.5295 | 2.83 | 1125 | 0.7740 | 52.7107 | 33.1023 | 36.0865 | 50.0365 | 142.0 | | 0.5295 | 3.14 | 1250 | 0.8200 | 52.5607 | 33.7948 | 37.2312 | 50.3345 | 142.0 | | 0.5295 | 3.45 | 1375 | 0.8188 | 53.9233 | 34.446 | 36.7566 | 51.3135 | 142.0 | | 0.351 | 3.77 | 1500 | 0.8071 | 53.9096 | 35.5977 | 38.6832 | 51.4986 | 142.0 | | 0.351 | 4.08 | 1625 | 0.8347 | 53.9049 | 35.5953 | 39.788 | 51.4101 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
2fd90661a2db69074d45b1bd637c4f10
l3cube-pune/hing-roberta
l3cube-pune
xlm-roberta
7
41
transformers
0
fill-mask
true
false
false
cc-by-4.0
['hi', 'en', 'multilingual']
['L3Cube-HingCorpus']
null
1
0
1
0
0
0
0
['hi', 'en', 'codemix']
false
true
true
894
false
## HingRoBERTa HingRoBERTa is a Hindi-English code-mixed RoBERTa model trained on roman text. It is an xlm-RoBERTa model fine-tuned on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) ``` @inproceedings{nayak-joshi-2022-l3cube, title = "{L}3{C}ube-{H}ing{C}orpus and {H}ing{BERT}: A Code Mixed {H}indi-{E}nglish Dataset and {BERT} Language Models", author = "Nayak, Ravindra and Joshi, Raviraj", booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.wildre-1.2", pages = "7--12", } ```
f69aa14d96efb70a30db7853bdb44442
qwant/fralbert-base
qwant
albert
8
316
transformers
2
fill-mask
true
false
false
apache-2.0
['fr']
['wikipedia']
null
0
0
0
0
0
0
0
[]
false
true
true
6,195
false
# FrALBERT Base Pretrained model on French language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1909.11942) and first released in [this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference between french and French. ## Model description FrALBERT is a transformers model pretrained on 4Go of French Wikipedia in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Sentence Ordering Prediction (SOP): FrALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the FrALBERT model as inputs. FrALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. This is the first version of the base model. This model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=fralbert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='qwant/fralbert-base') >>> unmasker("Paris est la capitale de la [MASK] .") [ { "sequence": "paris est la capitale de la france.", "score": 0.6231236457824707, "token": 3043, "token_str": "france" }, { "sequence": "paris est la capitale de la region.", "score": 0.2993471622467041, "token": 10531, "token_str": "region" }, { "sequence": "paris est la capitale de la societe.", "score": 0.02028230018913746, "token": 24622, "token_str": "societe" }, { "sequence": "paris est la capitale de la bretagne.", "score": 0.012089950032532215, "token": 24987, "token_str": "bretagne" }, { "sequence": "paris est la capitale de la chine.", "score": 0.010002839379012585, "token": 14860, "token_str": "chine" } ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, AlbertModel tokenizer = AlbertTokenizer.from_pretrained('qwant/fralbert-base') model = AlbertModel.from_pretrained("qwant/fralbert-base") text = "Remplacez-moi par le texte en français que vous souhaitez." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFAlbertModel tokenizer = AlbertTokenizer.from_pretrained('qwant/fralbert-base') model = TFAlbertModel.from_pretrained("qwant/fralbert-base") text = "Remplacez-moi par le texte en français que vous souhaitez." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The FrALBERT model was pretrained on 4go of [French Wikipedia](https://fr.wikipedia.org/wiki/French_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` ### Training The FrALBERT procedure follows the BERT setup. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ## Evaluation results When fine-tuned on downstream tasks, the ALBERT models achieve the following results: | | FQuAD1.0 | PIAF_dev |----------------|----------|---------- |frALBERT-base |72.6/55.1 |61.0 / 38.9 ### BibTeX entry and citation info ```bibtex @inproceedings{cattan2021fralbert, author = {Oralie Cattan and Christophe Servan and Sophie Rosset}, booktitle = {Recent Advances in Natural Language Processing, RANLP 2021}, title = {{On the Usability of Transformers-based models for a French Question-Answering task}}, year = {2021}, address = {Online}, month = sep, } ``` Link to the paper: [PDF](https://hal.archives-ouvertes.fr/hal-03336060)
e6b5a3b077556e2603abe7f14adda925
pranay-j/whisper-small-hy
pranay-j
whisper
17
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['hy']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,603
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small hy This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6376 - Wer: 116.0855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7891 | 0.2 | 10 | 0.9031 | 184.375 | | 0.6573 | 0.4 | 20 | 0.7425 | 149.0789 | | 0.647 | 0.6 | 30 | 0.6797 | 138.125 | | 0.551 | 0.8 | 40 | 0.6483 | 127.5329 | | 0.5477 | 1.0 | 50 | 0.6376 | 116.0855 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1
af17104d350dff941a2cf6ccb8bce15a
vinhood/chefberto-italian-cased
vinhood
bert
7
13
transformers
0
fill-mask
true
false
false
mit
['it']
null
null
0
0
0
0
0
0
0
[]
false
true
true
969
false
# ChefBERTo 👨‍🍳 **chefberto-italian-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on Italian cooking recipes, approximately 50k sentences (2.6M words). **Author:** Cristiano De Nobili ([@denocris](https://twitter.com/denocris) on Twitter, [LinkedIn](https://www.linkedin.com/in/cristiano-de-nobili/)) for [VINHOOD](https://www.vinhood.com/en/). <p> <img src="https://drive.google.com/uc?export=view&id=1u5aY2wKu-X5DAzbOq7rsgGFW5_lGUAQn" width="400"> </br> </p> # Perplexity Test set: 9k sentences about food. | Model | Perplexity | | ------ | ------ | | chefberto-italian-cased | **1.84** | | bert-base-italian-xxl-cased | 2.85 | # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "vinhood/chefberto-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
c6aa5d55159adf77c9449900e9e4947b
Amalq/roberta-base-finetuned-schizophreniaReddit2
Amalq
roberta
9
2
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,361
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-schizophreniaReddit2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 490 | 1.8093 | | 1.9343 | 2.0 | 980 | 1.7996 | | 1.8856 | 3.0 | 1470 | 1.7966 | | 1.8552 | 4.0 | 1960 | 1.7844 | | 1.8267 | 5.0 | 2450 | 1.7839 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
c41f95471d6422f02366c0332d567ab1
sbcBI/sentiment_analysis_model
sbcBI
distilbert
9
41,120
transformers
1
text-classification
true
false
false
apache-2.0
['en']
['Confidential']
null
0
0
0
0
0
0
0
['exbert']
false
true
true
2,134
false
# BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model description [sbcBI/sentiment_analysis] This is a fine-tuned downstream version of the bert-base-uncased model for sentiment analysis, this model is not intended for further downstream fine-tuning for any other tasks. This model is trained on a classified dataset for text-classification.
6ead02c313b9c278515e39346c8e9638
sgangireddy/whisper-medium-highLR-tr
sgangireddy
whisper
22
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['tr']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,452
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper medium Turkish CV 3K This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 tr dataset. It achieves the following results on the evaluation set: - Loss: 0.3611 - Wer: 15.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0856 | 3.02 | 1000 | 0.3732 | 20.6764 | | 0.0119 | 6.03 | 2000 | 0.3684 | 17.5353 | | 0.001 | 9.05 | 3000 | 0.3611 | 15.9012 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
78a47c0813ce5751cb73e64883957ae7
eormeno12/platzi_vit_model
eormeno12
vit
25
2
transformers
0
image-classification
true
false
false
apache-2.0
null
['beans']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,225
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi_vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0328 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1427 | 3.85 | 500 | 0.0328 | 0.9925 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
129729ce51aea17deac2c3e9f00ea991
dreambooth-hackathon/glxy-galaxy
dreambooth-hackathon
null
17
29
diffusers
1
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'science']
false
true
true
644
false
# DreamBooth model for glxy trained by lewtun on the lewtun/galaxies dataset. This your the Stable Diffusion model fine-tuned the glxy concept taught to Stable Diffusion with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of glxy galaxy** This model was created as part of the DreamBooth Hackathon. Visit the organisation page for instructions on how to take part! ## Description Describe your model and concept here. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('dreambooth-hackathon/glxy-galaxy') image = pipeline().images[0] image ```
79bd4d48227835673b83a78b2ec6f150
Lvxue/distilled-mt5-small-0.6-1
Lvxue
mt5
14
1
transformers
0
text2text-generation
true
false
false
apache-2.0
['en', 'ro']
['wmt16']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,036
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-0.6-1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8345 - Bleu: 6.7165 - Gen Len: 46.3377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
e5d36eeaf866a96a6a48fb57a0590985
GItaf/gpt2-gpt2-TF-weight1-epoch10
GItaf
gpt2
17
4
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
871
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight1-epoch10 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
fa63ef9e7af89eef61899ccc2d18369a
Pablo94/roberta-base-bne-finetuned-detests
Pablo94
roberta
27
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,786
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-detests This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0716 - Accuracy: 0.8396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2972 | 1.0 | 153 | 0.3359 | 0.8462 | | 0.2924 | 2.0 | 306 | 0.4509 | 0.8249 | | 0.0663 | 3.0 | 459 | 0.7186 | 0.8527 | | 0.0018 | 4.0 | 612 | 0.8081 | 0.8314 | | 0.0004 | 5.0 | 765 | 0.8861 | 0.8560 | | 0.0003 | 6.0 | 918 | 0.9940 | 0.8380 | | 0.0002 | 7.0 | 1071 | 1.0330 | 0.8396 | | 0.0002 | 8.0 | 1224 | 1.0545 | 0.8396 | | 0.0002 | 9.0 | 1377 | 1.0673 | 0.8396 | | 0.0002 | 10.0 | 1530 | 1.0716 | 0.8396 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
4ed524afeca948bbdc5a7baa06a3b6d8
gchhablani/fnet-base-finetuned-qqp
gchhablani
fnet
45
3
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'fnet-bert-base-comparison']
true
true
true
2,389
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-qqp This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3686 - Accuracy: 0.8847 - F1: 0.8466 - Combined Score: 0.8657 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name qqp \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-qqp \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3484 | 1.0 | 22741 | 0.3014 | 0.8676 | 0.8297 | 0.8487 | | 0.2387 | 2.0 | 45482 | 0.3011 | 0.8801 | 0.8429 | 0.8615 | | 0.1739 | 3.0 | 68223 | 0.3686 | 0.8847 | 0.8466 | 0.8657 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
6c2bf609733f351d17a384fa0b4f228a
Geotrend/distilbert-base-en-ro-cased
Geotrend
distilbert
6
6
transformers
0
fill-mask
true
false
false
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,224
false
# distilbert-base-en-ro-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-ro-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
6bac5157e1463e5f261b019c7670473a
anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol-finetuned-nl-to-fol-version2
anki08
t5
14
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
8,500
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol-finetuned-nl-to-fol-version2 This model is a fine-tuned version of [anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol](https://huggingface.co/anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0069 - Bleu: 28.1311 - Gen Len: 18.7412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 22 | 0.0692 | 27.4908 | 18.7353 | | No log | 2.0 | 44 | 0.0631 | 27.554 | 18.7294 | | No log | 3.0 | 66 | 0.0533 | 27.6007 | 18.7294 | | No log | 4.0 | 88 | 0.0484 | 27.6446 | 18.7294 | | No log | 5.0 | 110 | 0.0439 | 27.6401 | 18.7294 | | No log | 6.0 | 132 | 0.0404 | 27.5117 | 18.7294 | | No log | 7.0 | 154 | 0.0389 | 27.6358 | 18.7294 | | No log | 8.0 | 176 | 0.0362 | 27.6358 | 18.7294 | | No log | 9.0 | 198 | 0.0339 | 27.5731 | 18.7294 | | No log | 10.0 | 220 | 0.0319 | 27.2326 | 18.6882 | | No log | 11.0 | 242 | 0.0298 | 27.2326 | 18.6882 | | No log | 12.0 | 264 | 0.0293 | 27.5498 | 18.7294 | | No log | 13.0 | 286 | 0.0276 | 27.6566 | 18.7294 | | No log | 14.0 | 308 | 0.0268 | 27.6566 | 18.7294 | | No log | 15.0 | 330 | 0.0251 | 27.6107 | 18.7294 | | No log | 16.0 | 352 | 0.0239 | 27.7096 | 18.7294 | | No log | 17.0 | 374 | 0.0228 | 27.6716 | 18.7294 | | No log | 18.0 | 396 | 0.0231 | 27.8083 | 18.7294 | | No log | 19.0 | 418 | 0.0218 | 27.4838 | 18.6882 | | No log | 20.0 | 440 | 0.0212 | 27.4712 | 18.6882 | | No log | 21.0 | 462 | 0.0197 | 27.8787 | 18.7353 | | No log | 22.0 | 484 | 0.0207 | 27.6899 | 18.6941 | | 0.1026 | 23.0 | 506 | 0.0186 | 27.6376 | 18.6941 | | 0.1026 | 24.0 | 528 | 0.0202 | 27.6672 | 18.6941 | | 0.1026 | 25.0 | 550 | 0.0174 | 28.0172 | 18.7412 | | 0.1026 | 26.0 | 572 | 0.0170 | 27.8714 | 18.7412 | | 0.1026 | 27.0 | 594 | 0.0164 | 27.7423 | 18.7412 | | 0.1026 | 28.0 | 616 | 0.0164 | 27.8278 | 18.7412 | | 0.1026 | 29.0 | 638 | 0.0163 | 27.8278 | 18.7412 | | 0.1026 | 30.0 | 660 | 0.0158 | 27.907 | 18.7412 | | 0.1026 | 31.0 | 682 | 0.0165 | 27.7752 | 18.7412 | | 0.1026 | 32.0 | 704 | 0.0147 | 27.8284 | 18.7412 | | 0.1026 | 33.0 | 726 | 0.0150 | 27.8862 | 18.7412 | | 0.1026 | 34.0 | 748 | 0.0148 | 27.8402 | 18.7412 | | 0.1026 | 35.0 | 770 | 0.0141 | 27.8353 | 18.7412 | | 0.1026 | 36.0 | 792 | 0.0142 | 27.858 | 18.7412 | | 0.1026 | 37.0 | 814 | 0.0143 | 27.858 | 18.7412 | | 0.1026 | 38.0 | 836 | 0.0158 | 27.8353 | 18.7412 | | 0.1026 | 39.0 | 858 | 0.0125 | 27.8913 | 18.7412 | | 0.1026 | 40.0 | 880 | 0.0121 | 27.9167 | 18.7412 | | 0.1026 | 41.0 | 902 | 0.0122 | 27.9569 | 18.7412 | | 0.1026 | 42.0 | 924 | 0.0126 | 27.9569 | 18.7412 | | 0.1026 | 43.0 | 946 | 0.0120 | 28.001 | 18.7412 | | 0.1026 | 44.0 | 968 | 0.0125 | 28.0079 | 18.7412 | | 0.1026 | 45.0 | 990 | 0.0115 | 28.0079 | 18.7412 | | 0.072 | 46.0 | 1012 | 0.0113 | 27.9851 | 18.7412 | | 0.072 | 47.0 | 1034 | 0.0113 | 28.0184 | 18.7412 | | 0.072 | 48.0 | 1056 | 0.0110 | 28.0184 | 18.7412 | | 0.072 | 49.0 | 1078 | 0.0108 | 28.0184 | 18.7412 | | 0.072 | 50.0 | 1100 | 0.0107 | 28.0184 | 18.7412 | | 0.072 | 51.0 | 1122 | 0.0101 | 28.0184 | 18.7412 | | 0.072 | 52.0 | 1144 | 0.0102 | 28.0184 | 18.7412 | | 0.072 | 53.0 | 1166 | 0.0099 | 28.0184 | 18.7412 | | 0.072 | 54.0 | 1188 | 0.0100 | 28.0184 | 18.7412 | | 0.072 | 55.0 | 1210 | 0.0102 | 28.0184 | 18.7412 | | 0.072 | 56.0 | 1232 | 0.0095 | 28.0184 | 18.7412 | | 0.072 | 57.0 | 1254 | 0.0098 | 28.0184 | 18.7412 | | 0.072 | 58.0 | 1276 | 0.0092 | 28.0184 | 18.7412 | | 0.072 | 59.0 | 1298 | 0.0090 | 28.0184 | 18.7412 | | 0.072 | 60.0 | 1320 | 0.0095 | 28.0184 | 18.7412 | | 0.072 | 61.0 | 1342 | 0.0092 | 27.9674 | 18.7412 | | 0.072 | 62.0 | 1364 | 0.0091 | 27.9419 | 18.7412 | | 0.072 | 63.0 | 1386 | 0.0100 | 27.9419 | 18.7412 | | 0.072 | 64.0 | 1408 | 0.0084 | 28.0752 | 18.7412 | | 0.072 | 65.0 | 1430 | 0.0086 | 28.0192 | 18.7412 | | 0.072 | 66.0 | 1452 | 0.0084 | 28.0192 | 18.7412 | | 0.072 | 67.0 | 1474 | 0.0085 | 28.0192 | 18.7412 | | 0.072 | 68.0 | 1496 | 0.0087 | 28.0192 | 18.7412 | | 0.0575 | 69.0 | 1518 | 0.0084 | 28.0192 | 18.7412 | | 0.0575 | 70.0 | 1540 | 0.0080 | 28.0192 | 18.7412 | | 0.0575 | 71.0 | 1562 | 0.0082 | 28.0192 | 18.7412 | | 0.0575 | 72.0 | 1584 | 0.0080 | 28.0192 | 18.7412 | | 0.0575 | 73.0 | 1606 | 0.0075 | 28.0192 | 18.7412 | | 0.0575 | 74.0 | 1628 | 0.0079 | 28.0192 | 18.7412 | | 0.0575 | 75.0 | 1650 | 0.0078 | 28.0752 | 18.7412 | | 0.0575 | 76.0 | 1672 | 0.0076 | 28.1311 | 18.7412 | | 0.0575 | 77.0 | 1694 | 0.0073 | 28.1311 | 18.7412 | | 0.0575 | 78.0 | 1716 | 0.0074 | 28.1311 | 18.7412 | | 0.0575 | 79.0 | 1738 | 0.0072 | 28.1311 | 18.7412 | | 0.0575 | 80.0 | 1760 | 0.0078 | 28.1311 | 18.7412 | | 0.0575 | 81.0 | 1782 | 0.0077 | 28.1311 | 18.7412 | | 0.0575 | 82.0 | 1804 | 0.0071 | 28.1311 | 18.7412 | | 0.0575 | 83.0 | 1826 | 0.0072 | 28.1311 | 18.7412 | | 0.0575 | 84.0 | 1848 | 0.0075 | 28.1311 | 18.7412 | | 0.0575 | 85.0 | 1870 | 0.0071 | 28.1311 | 18.7412 | | 0.0575 | 86.0 | 1892 | 0.0070 | 28.1311 | 18.7412 | | 0.0575 | 87.0 | 1914 | 0.0069 | 28.1311 | 18.7412 | | 0.0575 | 88.0 | 1936 | 0.0069 | 28.1311 | 18.7412 | | 0.0575 | 89.0 | 1958 | 0.0069 | 28.1311 | 18.7412 | | 0.0575 | 90.0 | 1980 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 91.0 | 2002 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 92.0 | 2024 | 0.0070 | 28.1311 | 18.7412 | | 0.0509 | 93.0 | 2046 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 94.0 | 2068 | 0.0070 | 28.1311 | 18.7412 | | 0.0509 | 95.0 | 2090 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 96.0 | 2112 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 97.0 | 2134 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 98.0 | 2156 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 99.0 | 2178 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 100.0 | 2200 | 0.0069 | 28.1311 | 18.7412 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
178c346615cbe9652ed42cd8622ae8ef
jonatasgrosman/exp_w2v2t_ru_wav2vec2_s847
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ru']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'ru']
false
true
true
456
false
# exp_w2v2t_ru_wav2vec2_s847 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
a476d4b47cd1e512d21958f3b8646911
groar/gpt-neo-1.3B-finetuned-escape3
groar
gpt_neo
8
13
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
918
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape3 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
5e1e1475cec8f00a143bad00258543ef
MeshalAlamr/wav2vec2-base-finetuned-ks
MeshalAlamr
wav2vec2
7
3
transformers
0
audio-classification
true
false
false
apache-2.0
null
['superb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,553
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0862 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.668 | 1.0 | 399 | 0.5462 | 0.9588 | | 0.2728 | 2.0 | 798 | 0.1750 | 0.9766 | | 0.1846 | 3.0 | 1197 | 0.1166 | 0.9785 | | 0.1642 | 4.0 | 1596 | 0.0930 | 0.9813 | | 0.1522 | 5.0 | 1995 | 0.0862 | 0.9828 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
4bd2ba4848825b869382c18063c3cf45
uaritm/ukrt5-base
uaritm
t5
7
3
transformers
0
text2text-generation
true
false
false
mit
['uk', 'en', 'multilingual']
null
null
1
1
0
0
0
0
0
['ukrainian', 'english']
false
true
true
492
false
This is a variant of the [google/mt5-base](https://huggingface.co/google/mt5-base) model, in which Ukrainian and 9% English words remain. This model has 252M parameters - 43% of the original size. Special thanks for the practical example and inspiration: [cointegrated ](https://huggingface.co/cointegrated) ## Citing & Authors ``` @misc{Uaritm, title={SetFit: Classification of medical texts}, author={Vitaliy Ostashko}, year={2022}, url={https://esemi.org} } ```
cfc54dfe12d8d19a4e3473584b480cc7
nlp-en-es/roberta-base-bne-finetuned-sqac
nlp-en-es
roberta
9
5
transformers
1
question-answering
true
false
false
apache-2.0
['es']
['sqac']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,274
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.2111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9971 | 1.0 | 1196 | 0.8646 | | 0.482 | 2.0 | 2392 | 0.9334 | | 0.1652 | 3.0 | 3588 | 1.2111 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
dbeef53b4dda6808383199234bd2c2ac
facebook/mask2former-swin-small-coco-panoptic
facebook
mask2former
5
9
transformers
0
image-segmentation
true
false
false
other
null
['coco']
null
1
0
1
0
0
0
0
['vision', 'image-segmentation']
false
true
true
2,939
false
# Mask2Former Mask2Former model trained on COCO panoptic segmentation (small-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation ](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/). Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA, [MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png) ## Intended uses & limitations You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python import requests import torch from PIL import Image from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation # load Mask2Former fine-tuned on COCO panoptic segmentation processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-panoptic") model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-coco-panoptic") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs) predicted_panoptic_map = result["segmentation"] ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).
79e5c83a144964448c0ec55b702c7028
kasrahabib/distilbert-base-uncased-trained-on-open-and-closed-source
kasrahabib
distilbert
10
2
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,322
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kasrahabib/distilbert-base-uncased-trained-on-open-and-closed-source This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0039 - Validation Loss: 0.2082 - Train Precision: 0.9374 - Train Recall: 0.9714 - Train F1: 0.9541 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5860, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:-----:| | 0.2472 | 0.1604 | 0.8967 | 0.9771 | 0.9352 | 0 | | 0.0924 | 0.1266 | 0.9330 | 0.9561 | 0.9444 | 1 | | 0.0439 | 0.1281 | 0.9543 | 0.9561 | 0.9552 | 2 | | 0.0258 | 0.2058 | 0.8995 | 0.9905 | 0.9428 | 3 | | 0.0136 | 0.1767 | 0.9418 | 0.9580 | 0.9499 | 4 | | 0.0134 | 0.2637 | 0.8927 | 0.9847 | 0.9365 | 5 | | 0.0074 | 0.2197 | 0.9144 | 0.9790 | 0.9456 | 6 | | 0.0049 | 0.2140 | 0.9355 | 0.9695 | 0.9522 | 7 | | 0.0058 | 0.2117 | 0.9360 | 0.9771 | 0.9561 | 8 | | 0.0039 | 0.2082 | 0.9374 | 0.9714 | 0.9541 | 9 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.8.0 - Tokenizers 0.13.2
f44e45afcb63b6eb4095c48475ea738c
robinhad/ukrainian-qa
robinhad
xlm-roberta
14
45
transformers
2
question-answering
true
false
false
mit
['uk']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,095
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ukrainian-qa This model is a fine-tuned version of [ukr-models/xlm-roberta-base-uk](https://huggingface.co/ukr-models/xlm-roberta-base-uk) on the [UA-SQuAD](https://github.com/fido-ai/ua-datasets/tree/main/ua_datasets/src/question_answering) dataset. Link to training scripts - [https://github.com/robinhad/ukrainian-qa](https://github.com/robinhad/ukrainian-qa) It achieves the following results on the evaluation set: - Loss: 1.4778 ## Model description More information needed ## How to use ```python from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering model_name = "robinhad/ukrainian-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) qa_model = pipeline("question-answering", model=model.to("cpu"), tokenizer=tokenizer) question = "Де ти живеш?" context = "Мене звати Сара і я живу у Лондоні" qa_model(question = question, context = context) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4526 | 1.0 | 650 | 1.3631 | | 1.3317 | 2.0 | 1300 | 1.2229 | | 1.0693 | 3.0 | 1950 | 1.2184 | | 0.6851 | 4.0 | 2600 | 1.3171 | | 0.5594 | 5.0 | 3250 | 1.3893 | | 0.4954 | 6.0 | 3900 | 1.4778 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
17a3963d836f8695df35d57996e73e23
patrickmac110/RankinBass
patrickmac110
null
32
0
null
0
null
false
false
false
cc0-1.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
6,291
false
I created this embedding for SD 2.x 768x768 models, it turns everything into your favorite Christmas classic AniMagic stop motion style as popularized by Rudolf the Red Nosed Reindeer and Santa Claus is Coming to Town among several others produced by the same studio! The Unreleased Christmas Stop Motion Mario Kart Movie! ![messages_0 (9).png](https://s3.amazonaws.com/moonup/production/uploads/1671856643956-632177f5b8fc9e78c2ff68d9.png) Prompt: mario kart toy, (rnknbss16 :1.3), highly textured, figurine Negative prompt: cgi, 3d render, videogame Steps: 34, Sampler: Euler a, CFG scale: 7, Seed: 2737353293, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned, Denoising strength: 0.79, Mask blur: 3, aesthetic_score: 4.9 The Upcoming Stop Action Pikachu Movie! ![05329-459369051-pikachu in the style of rnknbss16.png](https://s3.amazonaws.com/moonup/production/uploads/1671856736417-632177f5b8fc9e78c2ff68d9.png) Prompt: pikachu in the style of rnknbss16 Steps: 30, Sampler: Euler a, CFG scale: 7, Seed: 459369051, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned, aesthetic_score: 5.2 ![05330-4076512951-pikachu in the style of rnknbss16-100.png](https://s3.amazonaws.com/moonup/production/uploads/1671856739194-632177f5b8fc9e78c2ff68d9.png) Prompt: pikachu in the style of rnknbss16-100 Steps: 30, Sampler: Euler a, CFG scale: 7, Seed: 4076512951, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned, aesthetic_score: 5.2 Some 2022 Holiday Ads for the Latest Celebs! Donald Trump ![05356-1397465632-a close up of (donald trump_1.) in the style of (rnknbss16 _1.0).png](https://s3.amazonaws.com/moonup/production/uploads/1671856809340-632177f5b8fc9e78c2ff68d9.png) Prompt: a close up of (donald trump:1.) in the style of (rnknbss16 :1.0) Negative prompt: blurry, text, words Steps: 29, Sampler: Euler a, CFG scale: 7, Seed: 1397465632, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned, aesthetic_score: 5.4 Morgan Freeman ![05372-1868403973-morgan freeman in the style of (rnknbss16 _1.0).png](https://s3.amazonaws.com/moonup/production/uploads/1671856831368-632177f5b8fc9e78c2ff68d9.png) Prompt: morgan freeman in the style of (rnknbss16 :1.0) Steps: 29, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 1868403973, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned, aesthetic_score: 5.7 Barack Obama ![05801-3661737292-barack obama in the style of rnknbss16v2-775.png](https://s3.amazonaws.com/moonup/production/uploads/1671857079900-632177f5b8fc9e78c2ff68d9.png) Prompt: barack obama in the style of rnknbss16v2-775 Steps: 47, Sampler: Euler a, CFG scale: 7, Seed: 3661737292, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned And Lastly, The Remake of A Lifetime, Hogwarts Castle From the New Harry Potter Series ![02340-2909664084-Hogwarts school of witchcraft and wizardry in the style of (rnknbss16 _1.0), highly detailed, intricate.png](https://s3.amazonaws.com/moonup/production/uploads/1671857189186-632177f5b8fc9e78c2ff68d9.png) Prompt: Hogwarts school of witchcraft and wizardry in the style of (rnknbss16 :1.0), highly detailed, intricate Negative prompt: blurry Steps: 60, Sampler: Euler a, CFG scale: 7, Seed: 2909664084, Size: 768x768, Model: SD 2.0_Standard_512-depth-ema, Denoising strength: 0.66, Mask blur: 3, aesthetic_score: 6.2 Notes on the use of these: So I didn't really get a chance to fine-tune them as well as I would have liked, but I wanted to get them out there for people to enjoy so I've included the best of what I have. All of these were trained with 90-ish upscaled screen grabs from high quality DVDs of just the 2 movies mentioned above. I did use some of the letters, and postcards, and packages from the opening credits scenes in hopes to be able to reproduce those or something similar (haven't tried) so you will probably want to include the usual "words, text, letters, logos, watermarks..." in your negative prompts to try to weed those out. I also included some of the limited 2d artwork found in those movies, again in hopes to be able to generate that style as well. but that hasn't seemed to affect much except possibly when generating things that have a lot of 2d variations (i.e. comic book characters) so specifying 3d, or that you want a doll of the thing, or a model, or toy of the thing might help a lot with prompting. Otherwise, just saying " thing in the style of rnknbss16" should do the trick! The Models: They're all 16 vectors. rnknbss16: pretty good but was trained too far and/or fast and tends to make hybrid elf/Santa creatures out of everything and is hard to get it to do anything else, although if your concept is strong or present enough in the model it can do pretty well (i.e. Cinderella's castle which is on EVERYTHING Disney). Models rnknbss16-100 through rnknbss16-150 do much better, however these do less well with people and faces, they're better suited for things, creatures, animals, scenery, places, etc. rnknbss16v2: pretty sure this one is overtrained by a good deal, but you might have success with it. rnknbss16v2-750 and rnknbss16v2-775 are the sweet spot for people and characters with this v2 model, it also tends to get clearer outputs without looking as "fuzzy" or "blurry" and almost as a similar quality as VintageHelper embedding. Which brings me to mixing this with things: Using VingateHelper tends to enhance the "old school" vibes and film grain look as well as thematic props and other elements that may appear in the scene, and PhotoHelper embedding tends to create more "clay" models out of things, like with the Hogwarts castle it made it a wide angle clay diorama model of sorts which was cool and unexpected (see below). ![05345-3448665914-Hogwarts castle in the style of (rnknbss16 _1.2), highly detailed, very textured, intricate, shallow depth of field, photohelper.png](https://s3.amazonaws.com/moonup/production/uploads/1671860648087-632177f5b8fc9e78c2ff68d9.png) Prompt: Hogwarts castle in the style of (rnknbss16 :1.2), highly detailed, very textured, intricate, shallow depth of field, photohelper Negative prompt: blurry, text, words Steps: 50, Sampler: Euler a, CFG scale: 7, Seed: 3448665914, Size: 768x768, Model: SD 2.0_Standard_v2-1_768-ema-pruned, aesthetic_score: 5.6
f30eb5b7ea7143703392b90ba127b30f
jonatasgrosman/exp_w2v2t_nl_xlsr-53_s948
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['nl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'nl']
false
true
true
461
false
# exp_w2v2t_nl_xlsr-53_s948 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
6abcb5323b73aba287811da6f1d3437a
fathyshalab/all-roberta-large-v1-home-8-16-5-oos
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,513
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-8-16-5-oos This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
a96c762ed01a1087af7df566a6dd4967
sd-dreambooth-library/sally-whitemanev
sd-dreambooth-library
null
76
31
diffusers
10
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
3
2
1
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image']
false
true
true
7,580
false
Example result: =============== # Using whitemanedb_step_3500.ckpt ![whitemanedb_step_3500 1](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/tmpez9ubybz.png) # Using dbwhitemane.ckpt ![image1 1](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/tmp45mql4vt.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/01019-2983591336-dbwhitemane%20standing%20at%20a%20rooftop%20looking%20over%20the%20city%2C%20night%2C%20cowboy%20shot%2C%20foggy%2C%20city%20lights%2Cdramatic%20lighting%2C%208k%2C%204k%2C%20(high.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/01068-2365801682-sbwhitemane%20taking%20a%20bath%2C%208k%2C%204k%2C%20(highres_1.1)%2C%20best%20quality%2C%20(masterpiece_1.3)%2C%20(red%20eyes_1.2)%2C%20blush%2C%20embarrassed.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/01095-1501953711-sbwhitemane%20leaning%20forward%2C%20princess%2C%201girl%2C%20solo%2Celf%20in%20forest%20%2C%20leather%20armor%2C%20large%20eyes%2C%20(ice%20green%20eyes_1.1)%2C%20lush%2C%20%20blond.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/01099-3504900055-leaning%20forward%2C%20princess%2C%201girl%2C%20solo%2C%20sbwhitemane%20%20in%20forest%20%2C%20leather%20armor%2C%20large%20eyes%2C%20lush.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/01103-1390776440-leaning%20forward%2C%20princess%2C%201girl%2C%20solo%2C%20sbwhitemane%20%20in%20forest%20%2C%20leather%20armor%2C%20large%20eyes%2C%20lush.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/05248-2547952708-whitemanedb%20in%20a%20forestns_l89cu.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/05253-2547952705-whitemanedb_in_a_forest28dbdxct.png) ![image2 2](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/05260-2547952708-whitemanedb_in_a_forest4ud2iio1.png) Clip skip comparsion ![clip 1](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/resolve/main/concept_images/xy_grid-0005-3724517679.png) I uploaded for now 3 models (more incoming for whitemane): -[whitemanedb_step_2500.ckpt](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/blob/main/whitemanedb_step_2500.ckpt) -[whitemanedb_step_3500.ckpt](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/blob/main/whitemanedb_step_3500.ckpt) Are trained with 21 images and the trigger is "whitemanedb", this is my first attempts and I didn't get the final file because I ran out of space on drive :\ but model seems to work just fine. The second model is [dbwhitemane.ckpt](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/blob/main/dbwhitemane.ckpt) This one has a total of 39 images used for training that you can find [here](https://huggingface.co/sd-dreambooth-library/sally-whitemanev/tree/main/dataset) **Model is based on AnythingV3 FP16 [38c1ebe3] And so I would recommend to use a VAE from NAI, Anything or WaifuDiffusion** **Also set clip skip to 2 will help because its based on NAI model** # Promt examples This one is for the comparsion on top > whitemanedb , 8k, 4k, (highres:1.1), best quality, (masterpiece:1.3), (red eyes:1.2), blush, embarrassed > Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, deformed face, (poorly drawn face)),((buckteeth)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), 1boy, > Steps: 45, Sampler: Euler a, CFG scale: 7, Seed: 772493513, Size: 512x512, Model hash: 313ad056, Eta: 0.07, Clip skip: 2 > whitemanedb taking a bath, 8k, 4k, (highres:1.1), best quality, (masterpiece:1.3), (red eyes:1.2), nsfw, nude, blush, nipples, > Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, deformed face, (poorly drawn face)),((buckteeth)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), 1boy, > Steps: 45, Sampler: Euler a, CFG scale: 7, Seed: 3450621385, Size: 512x512, Model hash: 313ad056, Eta: 0.07, Clip skip: 2 > whitemanedb in a forest > Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, deformed face > Steps: 35, Sampler: Euler a, CFG scale: 10.0, Seed: 2547952708, Size: 512x512, Model hash: 313ad056, Eta: 0.07, Clip skip: 2 > lying in the ground , princess, 1girl, solo, sbwhitemane in forest , leather armor, red eyes, lush > Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, deformed face, (poorly drawn face)),((buckteeth)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), 1boy, > Steps: 58, Sampler: Euler a, CFG scale: 7, Seed: 1390776440, Size: 512x512, Model hash: 8b1a4378, Clip skip: 2 > sbwhitemane leaning forward, princess, 1girl, solo,elf in forest , leather armor, large eyes, (ice green eyes:1.1), lush, blonde hair, realistic photo > Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, deformed face, (poorly drawn face)),((buckteeth)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), 1boy, > Steps: 45, Sampler: Euler a, CFG scale: 7, Seed: 1501953711, Size: 512x512, Model hash: 8b1a4378, Clip skip: 2 Enjoy, any recommendation or help is welcome, this is my first model and probably a lot of things can be improved!
0455067ea553f738ee64b9bb2486533e
Helsinki-NLP/opus-mt-tc-base-uk-hu
Helsinki-NLP
marian
13
6
transformers
0
translation
true
true
false
cc-by-4.0
['hu', 'uk']
null
null
1
0
1
0
0
0
0
['translation', 'opus-mt-tc']
true
true
true
5,237
false
# opus-mt-tc-base-uk-hu Neural machine translation model for translating from Ukrainian (uk) to Hungarian (hu). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-08 * source language(s): ukr * target language(s): hun * model: transformer-align * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pft_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.zip) * more information released models: [OPUS-MT ukr-hun README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hun/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Я тобі винний 1000 доларів.", "Я п'ю воду." ] model_name = "pytorch-models/opus-mt-tc-base-uk-hu" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # 1000 dollár a te hibád. # Vizet iszom. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-hu") print(pipe("Я тобі винний 1000 доларів.")) # expected output: 1000 dollár a te hibád. ``` ## Benchmarks * test set translations: [opusTCv20210807+pft_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.test.txt) * test set scores: [opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ukr-hun | tatoeba-test-v2021-08-07 | 0.67544 | 44.0 | 473 | 2472 | | ukr-hun | flores101-devtest | 0.51953 | 20.2 | 1012 | 22183 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: f084bad * port time: Wed Mar 23 21:54:12 EET 2022 * port machine: LM0-400-22516.local
2518b7aa9cb7966d8373ec40b2778fe6
fezhou/ddpm-butterflies-128
fezhou
null
13
2
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,228
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/fezhou/ddpm-butterflies-128/tensorboard?#scalars)
96f06bc7c1b803c0b172cc8138391e8e
google/t5-efficient-large-el12
google
t5
12
12
transformers
0
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,258
false
# T5-Efficient-LARGE-EL12 (Deep-Narrow version) T5-Efficient-LARGE-EL12 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-el12** - is of model type **Large** with the following variations: - **el** is **12** It has **586.69** million parameters and thus requires *ca.* **2346.78 MB** of memory in full precision (*fp32*) or **1173.39 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
8db053bfdd3fe01a39e482d008e9d7ab
jonatasgrosman/exp_w2v2t_nl_vp-nl_s158
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['nl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'nl']
false
true
true
469
false
# exp_w2v2t_nl_vp-nl_s158 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
2bcd6b092d660cd13c0b834d169e5322
ChutianTao/distilbert-base-uncased-finetuned-squad-1
ChutianTao
distilbert
12
8
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,281
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9872 | 1.0 | 554 | 1.7933 | | 1.6189 | 2.0 | 1108 | 1.6159 | | 1.3125 | 3.0 | 1662 | 1.6247 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
f6eb85368adf7fde4b052cca391f4796
ukeeba/test1
ukeeba
null
18
5
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
413
false
### test1 Dreambooth model trained by ukeeba with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
2ada32018803501dc9946a9f901ca1d0
mrm8488/ddpm-ema-pokemon-v2-64
mrm8488
null
8
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/pokemon']
null
0
0
0
0
0
0
0
[]
false
true
true
1,342
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-pokemon-v2-64 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/pokemon` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mrm8488/ddpm-ema-pokemon-v2-64/tensorboard?#scalars) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Q Blocks](https://www.qblocks.cloud/)
91fd3bb509da77d60ad6cec88aeae820
jonatasgrosman/exp_w2v2t_pl_xls-r_s287
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pl']
false
true
true
453
false
# exp_w2v2t_pl_xls-r_s287 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
208a9a6e48551fdbfb7fe969f675d146
KoichiYasuoka/roberta-base-thai-char-ud-goeswith
KoichiYasuoka
roberta
10
4
transformers
0
token-classification
true
false
false
apache-2.0
['th']
['universal_dependencies']
null
0
0
0
0
0
0
0
['thai', 'token-classification', 'pos', 'dependency-parsing']
false
true
true
2,744
false
# roberta-base-thai-char-ud-goeswith ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base-thai-char-upos](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-upos). ## How to Use ```py class UDgoeswith(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=self.tokenizer(text,return_offsets_mapping=True) v=w["input_ids"] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" v=[(s,e) for s,e in w["offset_mapping"] if s<e] for i,(s,e) in enumerate(v,1): q=self.model.config.id2label[p[i,h[i]]].split("|") u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=UDgoeswith("KoichiYasuoka/roberta-base-thai-char-ud-goeswith") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/). Or without ufal.chu-liu-edmonds: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-thai-char-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("หลายหัวดีกว่าหัวเดียว")) ```
db11bf27a23aa52b3aaa0fdf353b206f
w11wo/wav2vec2-xls-r-300m-zh-HK-v2
w11wo
wav2vec2
32
10
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['zh-HK']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'generated_from_trainer', 'hf-asr-leaderboard', 'robust-speech-event']
true
true
true
7,897
false
# Wav2Vec2 XLS-R 300M Cantonese (zh-HK) Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------ | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-zh-HK-v2` | 300M | XLS-R | `Common Voice zh-HK` Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | CER | | -------------------------------- | ------ | ------ | | `Common Voice` | 0.8089 | 31.73% | | `Common Voice 7` | N/A | 23.11% | | `Common Voice 8` | N/A | 23.02% | | `Robust Speech Event - Dev Data` | N/A | 56.60% | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 0.0001 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 100.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 | | 6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 | | 6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 | | 6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 | | 5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 | | 5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 | | 5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 | | 5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 | | 4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 | | 3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 | | 3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 | | 3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 | | 3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 | | 3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 | | 3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 | | 2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 | | 2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 | | 2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 | | 2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 | | 2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 | | 2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 | | 2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 | | 2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 | | 2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 | | 2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 | | 2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 | | 2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 | | 2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 | | 2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 | | 2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 | | 1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 | | 1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 | | 1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 | | 1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 | | 1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 | | 1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 | | 1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 | | 1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 | | 1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 | | 1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 | | 1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 | | 1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 | | 1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 | | 1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 | | 1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 | | 1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 | | 1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 | | 1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 | | 1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 | | 1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 | | 1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 | | 1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 | | 1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 | | 1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 | | 1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 | | 1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 | | 1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 | | 1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 | | 1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 | | 1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 | | 1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 | | 1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 | | 1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 | | 1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 | | 1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 | | 1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 | | 1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 | | 0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 | | 1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 | | 1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 | | 1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 | | 0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 | | 0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 | | 1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Cantonese (zh-HK) was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
1834840c64d934b0d2a7fdc019e8569b
aidiary/distilbert-base-uncased-finetuned-emotion
aidiary
distilbert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,344
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2149 - Accuracy: 0.9265 - F1: 0.9266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8307 | 1.0 | 250 | 0.3103 | 0.9065 | 0.9038 | | 0.2461 | 2.0 | 500 | 0.2149 | 0.9265 | 0.9266 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
42e01d3da248d5dcdcf6a630c0488ce8