pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6930 - Accuracy: 0.5047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7082 | 1.0 | 3 | 0.7048 | 0.25 | | 0.6761 | 2.0 | 6 | 0.7249 | 0.25 | | 0.6653 | 3.0 | 9 | 0.7423 | 0.25 | | 0.6212 | 4.0 | 12 | 0.7727 | 0.25 | | 0.5932 | 5.0 | 15 | 0.8098 | 0.25 | | 0.5427 | 6.0 | 18 | 0.8496 | 0.25 | | 0.5146 | 7.0 | 21 | 0.8992 | 0.25 | | 0.4356 | 8.0 | 24 | 0.9494 | 0.25 | | 0.4275 | 9.0 | 27 | 0.9694 | 0.25 | | 0.3351 | 10.0 | 30 | 0.9968 | 0.25 | | 0.2812 | 11.0 | 33 | 1.0056 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-1", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-1 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6930 * Accuracy: 0.5047 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7081 | 1.0 | 3 | 0.7031 | 0.25 | | 0.6853 | 2.0 | 6 | 0.7109 | 0.25 | | 0.6696 | 3.0 | 9 | 0.7211 | 0.25 | | 0.6174 | 4.0 | 12 | 0.7407 | 0.25 | | 0.5717 | 5.0 | 15 | 0.7625 | 0.25 | | 0.5096 | 6.0 | 18 | 0.7732 | 0.25 | | 0.488 | 7.0 | 21 | 0.7798 | 0.25 | | 0.4023 | 8.0 | 24 | 0.7981 | 0.25 | | 0.3556 | 9.0 | 27 | 0.8110 | 0.25 | | 0.2714 | 10.0 | 30 | 0.8269 | 0.25 | | 0.2295 | 11.0 | 33 | 0.8276 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-2", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-2 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6932 * Accuracy: 0.4931 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6914 - Accuracy: 0.5195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6931 | 1.0 | 3 | 0.7039 | 0.25 | | 0.6615 | 2.0 | 6 | 0.7186 | 0.25 | | 0.653 | 3.0 | 9 | 0.7334 | 0.25 | | 0.601 | 4.0 | 12 | 0.7592 | 0.25 | | 0.5555 | 5.0 | 15 | 0.7922 | 0.25 | | 0.4832 | 6.0 | 18 | 0.8179 | 0.25 | | 0.4565 | 7.0 | 21 | 0.8285 | 0.25 | | 0.3996 | 8.0 | 24 | 0.8559 | 0.25 | | 0.3681 | 9.0 | 27 | 0.8586 | 0.5 | | 0.2901 | 10.0 | 30 | 0.8646 | 0.5 | | 0.241 | 11.0 | 33 | 0.8524 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-3", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-3 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6914 * Accuracy: 0.5195 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Accuracy: 0.5107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.7100 | 0.25 | | 0.6785 | 2.0 | 6 | 0.7209 | 0.25 | | 0.6455 | 3.0 | 9 | 0.7321 | 0.25 | | 0.6076 | 4.0 | 12 | 0.7517 | 0.25 | | 0.5593 | 5.0 | 15 | 0.7780 | 0.25 | | 0.5202 | 6.0 | 18 | 0.7990 | 0.25 | | 0.4967 | 7.0 | 21 | 0.8203 | 0.25 | | 0.4158 | 8.0 | 24 | 0.8497 | 0.25 | | 0.3997 | 9.0 | 27 | 0.8638 | 0.25 | | 0.3064 | 10.0 | 30 | 0.8732 | 0.25 | | 0.2618 | 11.0 | 33 | 0.8669 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-4", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-4 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6921 * Accuracy: 0.5107 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8419 - Accuracy: 0.6172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 3 | 0.6848 | 0.75 | | 0.6681 | 2.0 | 6 | 0.6875 | 0.5 | | 0.6591 | 3.0 | 9 | 0.6868 | 0.25 | | 0.6052 | 4.0 | 12 | 0.6943 | 0.25 | | 0.557 | 5.0 | 15 | 0.7078 | 0.25 | | 0.4954 | 6.0 | 18 | 0.7168 | 0.25 | | 0.4593 | 7.0 | 21 | 0.7185 | 0.25 | | 0.3936 | 8.0 | 24 | 0.7212 | 0.25 | | 0.3699 | 9.0 | 27 | 0.6971 | 0.5 | | 0.2916 | 10.0 | 30 | 0.6827 | 0.5 | | 0.2511 | 11.0 | 33 | 0.6464 | 0.5 | | 0.2109 | 12.0 | 36 | 0.6344 | 0.75 | | 0.1655 | 13.0 | 39 | 0.6377 | 0.75 | | 0.1412 | 14.0 | 42 | 0.6398 | 0.75 | | 0.1157 | 15.0 | 45 | 0.6315 | 0.75 | | 0.0895 | 16.0 | 48 | 0.6210 | 0.75 | | 0.0783 | 17.0 | 51 | 0.5918 | 0.75 | | 0.0606 | 18.0 | 54 | 0.5543 | 0.75 | | 0.0486 | 19.0 | 57 | 0.5167 | 0.75 | | 0.0405 | 20.0 | 60 | 0.4862 | 0.75 | | 0.0376 | 21.0 | 63 | 0.4644 | 0.75 | | 0.0294 | 22.0 | 66 | 0.4497 | 0.75 | | 0.0261 | 23.0 | 69 | 0.4428 | 0.75 | | 0.0238 | 24.0 | 72 | 0.4408 | 0.75 | | 0.0217 | 25.0 | 75 | 0.4392 | 0.75 | | 0.0187 | 26.0 | 78 | 0.4373 | 0.75 | | 0.0177 | 27.0 | 81 | 0.4360 | 0.75 | | 0.0136 | 28.0 | 84 | 0.4372 | 0.75 | | 0.0144 | 29.0 | 87 | 0.4368 | 0.75 | | 0.014 | 30.0 | 90 | 0.4380 | 0.75 | | 0.0137 | 31.0 | 93 | 0.4383 | 0.75 | | 0.0133 | 32.0 | 96 | 0.4409 | 0.75 | | 0.013 | 33.0 | 99 | 0.4380 | 0.75 | | 0.0096 | 34.0 | 102 | 0.4358 | 0.75 | | 0.012 | 35.0 | 105 | 0.4339 | 0.75 | | 0.0122 | 36.0 | 108 | 0.4305 | 0.75 | | 0.0109 | 37.0 | 111 | 0.4267 | 0.75 | | 0.0121 | 38.0 | 114 | 0.4231 | 0.75 | | 0.0093 | 39.0 | 117 | 0.4209 | 0.75 | | 0.0099 | 40.0 | 120 | 0.4199 | 0.75 | | 0.0091 | 41.0 | 123 | 0.4184 | 0.75 | | 0.0116 | 42.0 | 126 | 0.4173 | 0.75 | | 0.01 | 43.0 | 129 | 0.4163 | 0.75 | | 0.0098 | 44.0 | 132 | 0.4153 | 0.75 | | 0.0101 | 45.0 | 135 | 0.4155 | 0.75 | | 0.0088 | 46.0 | 138 | 0.4149 | 0.75 | | 0.0087 | 47.0 | 141 | 0.4150 | 0.75 | | 0.0093 | 48.0 | 144 | 0.4147 | 0.75 | | 0.0081 | 49.0 | 147 | 0.4147 | 0.75 | | 0.009 | 50.0 | 150 | 0.4150 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-5", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-5 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8419 * Accuracy: 0.6172 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.7523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7161 | 1.0 | 3 | 0.6941 | 0.5 | | 0.6786 | 2.0 | 6 | 0.7039 | 0.25 | | 0.6586 | 3.0 | 9 | 0.7090 | 0.25 | | 0.6121 | 4.0 | 12 | 0.7183 | 0.25 | | 0.5696 | 5.0 | 15 | 0.7266 | 0.25 | | 0.522 | 6.0 | 18 | 0.7305 | 0.25 | | 0.4899 | 7.0 | 21 | 0.7339 | 0.25 | | 0.3985 | 8.0 | 24 | 0.7429 | 0.25 | | 0.3758 | 9.0 | 27 | 0.7224 | 0.25 | | 0.2876 | 10.0 | 30 | 0.7068 | 0.5 | | 0.2498 | 11.0 | 33 | 0.6751 | 0.75 | | 0.1921 | 12.0 | 36 | 0.6487 | 0.75 | | 0.1491 | 13.0 | 39 | 0.6261 | 0.75 | | 0.1276 | 14.0 | 42 | 0.6102 | 0.75 | | 0.0996 | 15.0 | 45 | 0.5964 | 0.75 | | 0.073 | 16.0 | 48 | 0.6019 | 0.75 | | 0.0627 | 17.0 | 51 | 0.5933 | 0.75 | | 0.053 | 18.0 | 54 | 0.5768 | 0.75 | | 0.0403 | 19.0 | 57 | 0.5698 | 0.75 | | 0.0328 | 20.0 | 60 | 0.5656 | 0.75 | | 0.03 | 21.0 | 63 | 0.5634 | 0.75 | | 0.025 | 22.0 | 66 | 0.5620 | 0.75 | | 0.0209 | 23.0 | 69 | 0.5623 | 0.75 | | 0.0214 | 24.0 | 72 | 0.5606 | 0.75 | | 0.0191 | 25.0 | 75 | 0.5565 | 0.75 | | 0.0173 | 26.0 | 78 | 0.5485 | 0.75 | | 0.0175 | 27.0 | 81 | 0.5397 | 0.75 | | 0.0132 | 28.0 | 84 | 0.5322 | 0.75 | | 0.0138 | 29.0 | 87 | 0.5241 | 0.75 | | 0.0128 | 30.0 | 90 | 0.5235 | 0.75 | | 0.0126 | 31.0 | 93 | 0.5253 | 0.75 | | 0.012 | 32.0 | 96 | 0.5317 | 0.75 | | 0.0118 | 33.0 | 99 | 0.5342 | 0.75 | | 0.0092 | 34.0 | 102 | 0.5388 | 0.75 | | 0.0117 | 35.0 | 105 | 0.5414 | 0.75 | | 0.0124 | 36.0 | 108 | 0.5453 | 0.75 | | 0.0109 | 37.0 | 111 | 0.5506 | 0.75 | | 0.0112 | 38.0 | 114 | 0.5555 | 0.75 | | 0.0087 | 39.0 | 117 | 0.5597 | 0.75 | | 0.01 | 40.0 | 120 | 0.5640 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-6", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-6 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5336 * Accuracy: 0.7523 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6950 - Accuracy: 0.4618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7156 | 1.0 | 3 | 0.6965 | 0.25 | | 0.6645 | 2.0 | 6 | 0.7059 | 0.25 | | 0.6368 | 3.0 | 9 | 0.7179 | 0.25 | | 0.5944 | 4.0 | 12 | 0.7408 | 0.25 | | 0.5369 | 5.0 | 15 | 0.7758 | 0.25 | | 0.449 | 6.0 | 18 | 0.8009 | 0.25 | | 0.4352 | 7.0 | 21 | 0.8209 | 0.5 | | 0.3462 | 8.0 | 24 | 0.8470 | 0.5 | | 0.3028 | 9.0 | 27 | 0.8579 | 0.5 | | 0.2365 | 10.0 | 30 | 0.8704 | 0.5 | | 0.2023 | 11.0 | 33 | 0.8770 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-7", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-7 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6950 * Accuracy: 0.4618 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7061 | 1.0 | 3 | 0.6899 | 0.75 | | 0.6627 | 2.0 | 6 | 0.7026 | 0.25 | | 0.644 | 3.0 | 9 | 0.7158 | 0.25 | | 0.6087 | 4.0 | 12 | 0.7325 | 0.25 | | 0.5602 | 5.0 | 15 | 0.7555 | 0.25 | | 0.5034 | 6.0 | 18 | 0.7725 | 0.25 | | 0.4672 | 7.0 | 21 | 0.7983 | 0.25 | | 0.403 | 8.0 | 24 | 0.8314 | 0.25 | | 0.3571 | 9.0 | 27 | 0.8555 | 0.25 | | 0.2792 | 10.0 | 30 | 0.9065 | 0.25 | | 0.2373 | 11.0 | 33 | 0.9286 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-8", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-8 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6925 * Accuracy: 0.5200 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7204 | 1.0 | 3 | 0.7025 | 0.5 | | 0.6885 | 2.0 | 6 | 0.7145 | 0.5 | | 0.6662 | 3.0 | 9 | 0.7222 | 0.5 | | 0.6182 | 4.0 | 12 | 0.7427 | 0.25 | | 0.5707 | 5.0 | 15 | 0.7773 | 0.25 | | 0.5247 | 6.0 | 18 | 0.8137 | 0.25 | | 0.5003 | 7.0 | 21 | 0.8556 | 0.25 | | 0.4195 | 8.0 | 24 | 0.9089 | 0.5 | | 0.387 | 9.0 | 27 | 0.9316 | 0.25 | | 0.2971 | 10.0 | 30 | 0.9558 | 0.25 | | 0.2581 | 11.0 | 33 | 0.9420 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-9", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-9 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6925 * Accuracy: 0.5140 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst5__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3757 - Accuracy: 0.5045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2492 | 1.0 | 534 | 1.1163 | 0.4991 | | 0.9937 | 2.0 | 1068 | 1.1232 | 0.5122 | | 0.7867 | 3.0 | 1602 | 1.2097 | 0.5045 | | 0.595 | 4.0 | 2136 | 1.3757 | 0.5045 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst5__all-train", "results": []}]}
SetFit/distilbert-base-uncased__sst5__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst5\_\_all-train ============================================ This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.3757 * Accuracy: 0.5045 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu102 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3193 - Accuracy: 0.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1992 | 1.0 | 500 | 0.1236 | 0.963 | | 0.084 | 2.0 | 1000 | 0.1428 | 0.963 | | 0.0333 | 3.0 | 1500 | 0.1906 | 0.965 | | 0.0159 | 4.0 | 2000 | 0.3193 | 0.9485 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__subj__all-train", "results": []}]}
SetFit/distilbert-base-uncased__subj__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_all-train ============================================ This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.3193 * Accuracy: 0.9485 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu102 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4440 - Accuracy: 0.789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6868 | 0.5 | | 0.6683 | 2.0 | 6 | 0.6804 | 0.75 | | 0.6375 | 3.0 | 9 | 0.6702 | 0.75 | | 0.5997 | 4.0 | 12 | 0.6686 | 0.75 | | 0.5345 | 5.0 | 15 | 0.6720 | 0.75 | | 0.4673 | 6.0 | 18 | 0.6646 | 0.75 | | 0.4214 | 7.0 | 21 | 0.6494 | 0.75 | | 0.3439 | 8.0 | 24 | 0.6313 | 0.75 | | 0.3157 | 9.0 | 27 | 0.6052 | 0.75 | | 0.2329 | 10.0 | 30 | 0.5908 | 0.75 | | 0.1989 | 11.0 | 33 | 0.5768 | 0.75 | | 0.1581 | 12.0 | 36 | 0.5727 | 0.75 | | 0.1257 | 13.0 | 39 | 0.5678 | 0.75 | | 0.1005 | 14.0 | 42 | 0.5518 | 0.75 | | 0.0836 | 15.0 | 45 | 0.5411 | 0.75 | | 0.0611 | 16.0 | 48 | 0.5320 | 0.75 | | 0.0503 | 17.0 | 51 | 0.5299 | 0.75 | | 0.0407 | 18.0 | 54 | 0.5368 | 0.75 | | 0.0332 | 19.0 | 57 | 0.5455 | 0.75 | | 0.0293 | 20.0 | 60 | 0.5525 | 0.75 | | 0.0254 | 21.0 | 63 | 0.5560 | 0.75 | | 0.0231 | 22.0 | 66 | 0.5569 | 0.75 | | 0.0201 | 23.0 | 69 | 0.5572 | 0.75 | | 0.0179 | 24.0 | 72 | 0.5575 | 0.75 | | 0.0184 | 25.0 | 75 | 0.5547 | 0.75 | | 0.0148 | 26.0 | 78 | 0.5493 | 0.75 | | 0.0149 | 27.0 | 81 | 0.5473 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-0", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-0 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4440 * Accuracy: 0.789 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Accuracy: 0.791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.703 | 1.0 | 3 | 0.6906 | 0.5 | | 0.666 | 2.0 | 6 | 0.6945 | 0.25 | | 0.63 | 3.0 | 9 | 0.6885 | 0.5 | | 0.588 | 4.0 | 12 | 0.6888 | 0.25 | | 0.5181 | 5.0 | 15 | 0.6899 | 0.25 | | 0.4508 | 6.0 | 18 | 0.6770 | 0.5 | | 0.4025 | 7.0 | 21 | 0.6579 | 0.5 | | 0.3361 | 8.0 | 24 | 0.6392 | 0.5 | | 0.2919 | 9.0 | 27 | 0.6113 | 0.5 | | 0.2151 | 10.0 | 30 | 0.5774 | 0.75 | | 0.1728 | 11.0 | 33 | 0.5248 | 0.75 | | 0.1313 | 12.0 | 36 | 0.4824 | 0.75 | | 0.1046 | 13.0 | 39 | 0.4456 | 0.75 | | 0.0858 | 14.0 | 42 | 0.4076 | 0.75 | | 0.0679 | 15.0 | 45 | 0.3755 | 0.75 | | 0.0485 | 16.0 | 48 | 0.3422 | 0.75 | | 0.0416 | 17.0 | 51 | 0.3055 | 0.75 | | 0.0358 | 18.0 | 54 | 0.2731 | 1.0 | | 0.0277 | 19.0 | 57 | 0.2443 | 1.0 | | 0.0234 | 20.0 | 60 | 0.2187 | 1.0 | | 0.0223 | 21.0 | 63 | 0.1960 | 1.0 | | 0.0187 | 22.0 | 66 | 0.1762 | 1.0 | | 0.017 | 23.0 | 69 | 0.1629 | 1.0 | | 0.0154 | 24.0 | 72 | 0.1543 | 1.0 | | 0.0164 | 25.0 | 75 | 0.1476 | 1.0 | | 0.0131 | 26.0 | 78 | 0.1423 | 1.0 | | 0.0139 | 27.0 | 81 | 0.1387 | 1.0 | | 0.0107 | 28.0 | 84 | 0.1360 | 1.0 | | 0.0108 | 29.0 | 87 | 0.1331 | 1.0 | | 0.0105 | 30.0 | 90 | 0.1308 | 1.0 | | 0.0106 | 31.0 | 93 | 0.1276 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1267 | 1.0 | | 0.0095 | 33.0 | 99 | 0.1255 | 1.0 | | 0.0076 | 34.0 | 102 | 0.1243 | 1.0 | | 0.0094 | 35.0 | 105 | 0.1235 | 1.0 | | 0.0103 | 36.0 | 108 | 0.1228 | 1.0 | | 0.0086 | 37.0 | 111 | 0.1231 | 1.0 | | 0.0094 | 38.0 | 114 | 0.1236 | 1.0 | | 0.0074 | 39.0 | 117 | 0.1240 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1246 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1253 | 1.0 | | 0.0088 | 42.0 | 126 | 0.1248 | 1.0 | | 0.0082 | 43.0 | 129 | 0.1244 | 1.0 | | 0.0082 | 44.0 | 132 | 0.1234 | 1.0 | | 0.0082 | 45.0 | 135 | 0.1223 | 1.0 | | 0.0071 | 46.0 | 138 | 0.1212 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1208 | 1.0 | | 0.0081 | 48.0 | 144 | 0.1205 | 1.0 | | 0.0067 | 49.0 | 147 | 0.1202 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1202 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-1", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-1 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5488 * Accuracy: 0.791 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3081 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7146 | 1.0 | 3 | 0.6798 | 0.75 | | 0.6737 | 2.0 | 6 | 0.6847 | 0.75 | | 0.6519 | 3.0 | 9 | 0.6783 | 0.75 | | 0.6105 | 4.0 | 12 | 0.6812 | 0.25 | | 0.5463 | 5.0 | 15 | 0.6869 | 0.25 | | 0.4922 | 6.0 | 18 | 0.6837 | 0.5 | | 0.4543 | 7.0 | 21 | 0.6716 | 0.5 | | 0.3856 | 8.0 | 24 | 0.6613 | 0.75 | | 0.3475 | 9.0 | 27 | 0.6282 | 0.75 | | 0.2717 | 10.0 | 30 | 0.6045 | 0.75 | | 0.2347 | 11.0 | 33 | 0.5620 | 0.75 | | 0.1979 | 12.0 | 36 | 0.5234 | 1.0 | | 0.1535 | 13.0 | 39 | 0.4771 | 1.0 | | 0.1332 | 14.0 | 42 | 0.4277 | 1.0 | | 0.1041 | 15.0 | 45 | 0.3785 | 1.0 | | 0.082 | 16.0 | 48 | 0.3318 | 1.0 | | 0.0672 | 17.0 | 51 | 0.2885 | 1.0 | | 0.0538 | 18.0 | 54 | 0.2568 | 1.0 | | 0.0412 | 19.0 | 57 | 0.2356 | 1.0 | | 0.0361 | 20.0 | 60 | 0.2217 | 1.0 | | 0.0303 | 21.0 | 63 | 0.2125 | 1.0 | | 0.0268 | 22.0 | 66 | 0.2060 | 1.0 | | 0.0229 | 23.0 | 69 | 0.2015 | 1.0 | | 0.0215 | 24.0 | 72 | 0.1989 | 1.0 | | 0.0211 | 25.0 | 75 | 0.1969 | 1.0 | | 0.0172 | 26.0 | 78 | 0.1953 | 1.0 | | 0.0165 | 27.0 | 81 | 0.1935 | 1.0 | | 0.0132 | 28.0 | 84 | 0.1923 | 1.0 | | 0.0146 | 29.0 | 87 | 0.1914 | 1.0 | | 0.0125 | 30.0 | 90 | 0.1904 | 1.0 | | 0.0119 | 31.0 | 93 | 0.1897 | 1.0 | | 0.0122 | 32.0 | 96 | 0.1886 | 1.0 | | 0.0118 | 33.0 | 99 | 0.1875 | 1.0 | | 0.0097 | 34.0 | 102 | 0.1866 | 1.0 | | 0.0111 | 35.0 | 105 | 0.1861 | 1.0 | | 0.0111 | 36.0 | 108 | 0.1855 | 1.0 | | 0.0102 | 37.0 | 111 | 0.1851 | 1.0 | | 0.0109 | 38.0 | 114 | 0.1851 | 1.0 | | 0.0085 | 39.0 | 117 | 0.1854 | 1.0 | | 0.0089 | 40.0 | 120 | 0.1855 | 1.0 | | 0.0092 | 41.0 | 123 | 0.1863 | 1.0 | | 0.0105 | 42.0 | 126 | 0.1868 | 1.0 | | 0.0089 | 43.0 | 129 | 0.1874 | 1.0 | | 0.0091 | 44.0 | 132 | 0.1877 | 1.0 | | 0.0096 | 45.0 | 135 | 0.1881 | 1.0 | | 0.0081 | 46.0 | 138 | 0.1881 | 1.0 | | 0.0086 | 47.0 | 141 | 0.1883 | 1.0 | | 0.009 | 48.0 | 144 | 0.1884 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-2", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-2 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3081 * Accuracy: 0.8755 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3496 - Accuracy: 0.859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 3 | 0.6875 | 0.75 | | 0.6702 | 2.0 | 6 | 0.6824 | 0.75 | | 0.6456 | 3.0 | 9 | 0.6687 | 0.75 | | 0.5934 | 4.0 | 12 | 0.6564 | 0.75 | | 0.537 | 5.0 | 15 | 0.6428 | 0.75 | | 0.4812 | 6.0 | 18 | 0.6180 | 0.75 | | 0.4279 | 7.0 | 21 | 0.5864 | 0.75 | | 0.3608 | 8.0 | 24 | 0.5540 | 0.75 | | 0.3076 | 9.0 | 27 | 0.5012 | 1.0 | | 0.2292 | 10.0 | 30 | 0.4497 | 1.0 | | 0.1991 | 11.0 | 33 | 0.3945 | 1.0 | | 0.1495 | 12.0 | 36 | 0.3483 | 1.0 | | 0.1176 | 13.0 | 39 | 0.3061 | 1.0 | | 0.0947 | 14.0 | 42 | 0.2683 | 1.0 | | 0.0761 | 15.0 | 45 | 0.2295 | 1.0 | | 0.0584 | 16.0 | 48 | 0.1996 | 1.0 | | 0.0451 | 17.0 | 51 | 0.1739 | 1.0 | | 0.0387 | 18.0 | 54 | 0.1521 | 1.0 | | 0.0272 | 19.0 | 57 | 0.1333 | 1.0 | | 0.0247 | 20.0 | 60 | 0.1171 | 1.0 | | 0.0243 | 21.0 | 63 | 0.1044 | 1.0 | | 0.0206 | 22.0 | 66 | 0.0943 | 1.0 | | 0.0175 | 23.0 | 69 | 0.0859 | 1.0 | | 0.0169 | 24.0 | 72 | 0.0799 | 1.0 | | 0.0162 | 25.0 | 75 | 0.0746 | 1.0 | | 0.0137 | 26.0 | 78 | 0.0705 | 1.0 | | 0.0141 | 27.0 | 81 | 0.0674 | 1.0 | | 0.0107 | 28.0 | 84 | 0.0654 | 1.0 | | 0.0117 | 29.0 | 87 | 0.0634 | 1.0 | | 0.0113 | 30.0 | 90 | 0.0617 | 1.0 | | 0.0107 | 31.0 | 93 | 0.0599 | 1.0 | | 0.0106 | 32.0 | 96 | 0.0585 | 1.0 | | 0.0101 | 33.0 | 99 | 0.0568 | 1.0 | | 0.0084 | 34.0 | 102 | 0.0553 | 1.0 | | 0.0101 | 35.0 | 105 | 0.0539 | 1.0 | | 0.0102 | 36.0 | 108 | 0.0529 | 1.0 | | 0.009 | 37.0 | 111 | 0.0520 | 1.0 | | 0.0092 | 38.0 | 114 | 0.0511 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0504 | 1.0 | | 0.0081 | 40.0 | 120 | 0.0497 | 1.0 | | 0.0079 | 41.0 | 123 | 0.0492 | 1.0 | | 0.0092 | 42.0 | 126 | 0.0488 | 1.0 | | 0.008 | 43.0 | 129 | 0.0483 | 1.0 | | 0.0087 | 44.0 | 132 | 0.0479 | 1.0 | | 0.009 | 45.0 | 135 | 0.0474 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0470 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0467 | 1.0 | | 0.008 | 48.0 | 144 | 0.0465 | 1.0 | | 0.0069 | 49.0 | 147 | 0.0464 | 1.0 | | 0.0077 | 50.0 | 150 | 0.0464 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-3", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-3 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3496 * Accuracy: 0.859 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3305 - Accuracy: 0.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6991 | 1.0 | 3 | 0.6772 | 0.75 | | 0.6707 | 2.0 | 6 | 0.6704 | 0.75 | | 0.6402 | 3.0 | 9 | 0.6608 | 1.0 | | 0.5789 | 4.0 | 12 | 0.6547 | 0.75 | | 0.5211 | 5.0 | 15 | 0.6434 | 0.75 | | 0.454 | 6.0 | 18 | 0.6102 | 1.0 | | 0.4187 | 7.0 | 21 | 0.5701 | 1.0 | | 0.3401 | 8.0 | 24 | 0.5289 | 1.0 | | 0.3107 | 9.0 | 27 | 0.4737 | 1.0 | | 0.2381 | 10.0 | 30 | 0.4255 | 1.0 | | 0.1982 | 11.0 | 33 | 0.3685 | 1.0 | | 0.1631 | 12.0 | 36 | 0.3200 | 1.0 | | 0.1234 | 13.0 | 39 | 0.2798 | 1.0 | | 0.0993 | 14.0 | 42 | 0.2455 | 1.0 | | 0.0781 | 15.0 | 45 | 0.2135 | 1.0 | | 0.0586 | 16.0 | 48 | 0.1891 | 1.0 | | 0.0513 | 17.0 | 51 | 0.1671 | 1.0 | | 0.043 | 18.0 | 54 | 0.1427 | 1.0 | | 0.0307 | 19.0 | 57 | 0.1225 | 1.0 | | 0.0273 | 20.0 | 60 | 0.1060 | 1.0 | | 0.0266 | 21.0 | 63 | 0.0920 | 1.0 | | 0.0233 | 22.0 | 66 | 0.0823 | 1.0 | | 0.0185 | 23.0 | 69 | 0.0751 | 1.0 | | 0.0173 | 24.0 | 72 | 0.0698 | 1.0 | | 0.0172 | 25.0 | 75 | 0.0651 | 1.0 | | 0.0142 | 26.0 | 78 | 0.0613 | 1.0 | | 0.0151 | 27.0 | 81 | 0.0583 | 1.0 | | 0.0117 | 28.0 | 84 | 0.0563 | 1.0 | | 0.0123 | 29.0 | 87 | 0.0546 | 1.0 | | 0.0121 | 30.0 | 90 | 0.0531 | 1.0 | | 0.0123 | 31.0 | 93 | 0.0511 | 1.0 | | 0.0112 | 32.0 | 96 | 0.0496 | 1.0 | | 0.0103 | 33.0 | 99 | 0.0481 | 1.0 | | 0.0086 | 34.0 | 102 | 0.0468 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0457 | 1.0 | | 0.0107 | 36.0 | 108 | 0.0447 | 1.0 | | 0.0095 | 37.0 | 111 | 0.0439 | 1.0 | | 0.0102 | 38.0 | 114 | 0.0429 | 1.0 | | 0.0077 | 39.0 | 117 | 0.0422 | 1.0 | | 0.0092 | 40.0 | 120 | 0.0415 | 1.0 | | 0.0083 | 41.0 | 123 | 0.0409 | 1.0 | | 0.0094 | 42.0 | 126 | 0.0404 | 1.0 | | 0.0084 | 43.0 | 129 | 0.0400 | 1.0 | | 0.0085 | 44.0 | 132 | 0.0396 | 1.0 | | 0.0092 | 45.0 | 135 | 0.0392 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0389 | 1.0 | | 0.0073 | 47.0 | 141 | 0.0388 | 1.0 | | 0.0085 | 48.0 | 144 | 0.0387 | 1.0 | | 0.0071 | 49.0 | 147 | 0.0386 | 1.0 | | 0.0079 | 50.0 | 150 | 0.0386 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-4", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-4 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3305 * Accuracy: 0.8565 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7102 | 1.0 | 3 | 0.6790 | 0.75 | | 0.6693 | 2.0 | 6 | 0.6831 | 0.75 | | 0.6438 | 3.0 | 9 | 0.6876 | 0.75 | | 0.6047 | 4.0 | 12 | 0.6970 | 0.75 | | 0.547 | 5.0 | 15 | 0.7065 | 0.75 | | 0.4885 | 6.0 | 18 | 0.7114 | 0.75 | | 0.4601 | 7.0 | 21 | 0.7147 | 0.5 | | 0.4017 | 8.0 | 24 | 0.7178 | 0.5 | | 0.3474 | 9.0 | 27 | 0.7145 | 0.5 | | 0.2624 | 10.0 | 30 | 0.7153 | 0.5 | | 0.2175 | 11.0 | 33 | 0.7158 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-5", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-5 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6927 * Accuracy: 0.506 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6075 - Accuracy: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6923 | 0.5 | | 0.6648 | 2.0 | 6 | 0.6838 | 0.5 | | 0.6329 | 3.0 | 9 | 0.6747 | 0.75 | | 0.5836 | 4.0 | 12 | 0.6693 | 0.5 | | 0.5287 | 5.0 | 15 | 0.6670 | 0.25 | | 0.4585 | 6.0 | 18 | 0.6517 | 0.5 | | 0.415 | 7.0 | 21 | 0.6290 | 0.5 | | 0.3353 | 8.0 | 24 | 0.6019 | 0.5 | | 0.2841 | 9.0 | 27 | 0.5613 | 0.75 | | 0.2203 | 10.0 | 30 | 0.5222 | 1.0 | | 0.1743 | 11.0 | 33 | 0.4769 | 1.0 | | 0.1444 | 12.0 | 36 | 0.4597 | 1.0 | | 0.1079 | 13.0 | 39 | 0.4462 | 1.0 | | 0.0891 | 14.0 | 42 | 0.4216 | 1.0 | | 0.0704 | 15.0 | 45 | 0.3880 | 1.0 | | 0.0505 | 16.0 | 48 | 0.3663 | 1.0 | | 0.0428 | 17.0 | 51 | 0.3536 | 1.0 | | 0.0356 | 18.0 | 54 | 0.3490 | 1.0 | | 0.0283 | 19.0 | 57 | 0.3531 | 1.0 | | 0.025 | 20.0 | 60 | 0.3595 | 1.0 | | 0.0239 | 21.0 | 63 | 0.3594 | 1.0 | | 0.0202 | 22.0 | 66 | 0.3521 | 1.0 | | 0.0168 | 23.0 | 69 | 0.3475 | 1.0 | | 0.0159 | 24.0 | 72 | 0.3458 | 1.0 | | 0.0164 | 25.0 | 75 | 0.3409 | 1.0 | | 0.0132 | 26.0 | 78 | 0.3360 | 1.0 | | 0.0137 | 27.0 | 81 | 0.3302 | 1.0 | | 0.0112 | 28.0 | 84 | 0.3235 | 1.0 | | 0.0113 | 29.0 | 87 | 0.3178 | 1.0 | | 0.0111 | 30.0 | 90 | 0.3159 | 1.0 | | 0.0113 | 31.0 | 93 | 0.3108 | 1.0 | | 0.0107 | 32.0 | 96 | 0.3101 | 1.0 | | 0.0101 | 33.0 | 99 | 0.3100 | 1.0 | | 0.0083 | 34.0 | 102 | 0.3110 | 1.0 | | 0.0092 | 35.0 | 105 | 0.3117 | 1.0 | | 0.0102 | 36.0 | 108 | 0.3104 | 1.0 | | 0.0086 | 37.0 | 111 | 0.3086 | 1.0 | | 0.0092 | 38.0 | 114 | 0.3047 | 1.0 | | 0.0072 | 39.0 | 117 | 0.3024 | 1.0 | | 0.0079 | 40.0 | 120 | 0.3014 | 1.0 | | 0.0079 | 41.0 | 123 | 0.2983 | 1.0 | | 0.0091 | 42.0 | 126 | 0.2948 | 1.0 | | 0.0077 | 43.0 | 129 | 0.2915 | 1.0 | | 0.0085 | 44.0 | 132 | 0.2890 | 1.0 | | 0.009 | 45.0 | 135 | 0.2870 | 1.0 | | 0.0073 | 46.0 | 138 | 0.2856 | 1.0 | | 0.0073 | 47.0 | 141 | 0.2844 | 1.0 | | 0.0076 | 48.0 | 144 | 0.2841 | 1.0 | | 0.0065 | 49.0 | 147 | 0.2836 | 1.0 | | 0.0081 | 50.0 | 150 | 0.2835 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-6", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-6 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6075 * Accuracy: 0.7485 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7044 | 1.0 | 3 | 0.6909 | 0.5 | | 0.6678 | 2.0 | 6 | 0.6901 | 0.5 | | 0.6336 | 3.0 | 9 | 0.6807 | 0.5 | | 0.5926 | 4.0 | 12 | 0.6726 | 0.5 | | 0.5221 | 5.0 | 15 | 0.6648 | 0.5 | | 0.4573 | 6.0 | 18 | 0.6470 | 0.5 | | 0.4177 | 7.0 | 21 | 0.6251 | 0.5 | | 0.3252 | 8.0 | 24 | 0.5994 | 0.5 | | 0.2831 | 9.0 | 27 | 0.5529 | 0.5 | | 0.213 | 10.0 | 30 | 0.5078 | 0.75 | | 0.1808 | 11.0 | 33 | 0.4521 | 1.0 | | 0.1355 | 12.0 | 36 | 0.3996 | 1.0 | | 0.1027 | 13.0 | 39 | 0.3557 | 1.0 | | 0.0862 | 14.0 | 42 | 0.3121 | 1.0 | | 0.0682 | 15.0 | 45 | 0.2828 | 1.0 | | 0.0517 | 16.0 | 48 | 0.2603 | 1.0 | | 0.0466 | 17.0 | 51 | 0.2412 | 1.0 | | 0.038 | 18.0 | 54 | 0.2241 | 1.0 | | 0.0276 | 19.0 | 57 | 0.2096 | 1.0 | | 0.0246 | 20.0 | 60 | 0.1969 | 1.0 | | 0.0249 | 21.0 | 63 | 0.1859 | 1.0 | | 0.0201 | 22.0 | 66 | 0.1770 | 1.0 | | 0.018 | 23.0 | 69 | 0.1703 | 1.0 | | 0.0164 | 24.0 | 72 | 0.1670 | 1.0 | | 0.0172 | 25.0 | 75 | 0.1639 | 1.0 | | 0.0135 | 26.0 | 78 | 0.1604 | 1.0 | | 0.014 | 27.0 | 81 | 0.1585 | 1.0 | | 0.0108 | 28.0 | 84 | 0.1569 | 1.0 | | 0.0116 | 29.0 | 87 | 0.1549 | 1.0 | | 0.0111 | 30.0 | 90 | 0.1532 | 1.0 | | 0.0113 | 31.0 | 93 | 0.1513 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1503 | 1.0 | | 0.01 | 33.0 | 99 | 0.1490 | 1.0 | | 0.0079 | 34.0 | 102 | 0.1479 | 1.0 | | 0.0097 | 35.0 | 105 | 0.1466 | 1.0 | | 0.0112 | 36.0 | 108 | 0.1458 | 1.0 | | 0.0091 | 37.0 | 111 | 0.1457 | 1.0 | | 0.0098 | 38.0 | 114 | 0.1454 | 1.0 | | 0.0076 | 39.0 | 117 | 0.1451 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1448 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1445 | 1.0 | | 0.0096 | 42.0 | 126 | 0.1440 | 1.0 | | 0.0081 | 43.0 | 129 | 0.1430 | 1.0 | | 0.0083 | 44.0 | 132 | 0.1424 | 1.0 | | 0.0088 | 45.0 | 135 | 0.1418 | 1.0 | | 0.0077 | 46.0 | 138 | 0.1414 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1413 | 1.0 | | 0.0084 | 48.0 | 144 | 0.1412 | 1.0 | | 0.0072 | 49.0 | 147 | 0.1411 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1411 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-7", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-7 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2766 * Accuracy: 0.8845 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3160 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7187 | 1.0 | 3 | 0.6776 | 1.0 | | 0.684 | 2.0 | 6 | 0.6608 | 1.0 | | 0.6532 | 3.0 | 9 | 0.6364 | 1.0 | | 0.5996 | 4.0 | 12 | 0.6119 | 1.0 | | 0.5242 | 5.0 | 15 | 0.5806 | 1.0 | | 0.4612 | 6.0 | 18 | 0.5320 | 1.0 | | 0.4192 | 7.0 | 21 | 0.4714 | 1.0 | | 0.3274 | 8.0 | 24 | 0.4071 | 1.0 | | 0.2871 | 9.0 | 27 | 0.3378 | 1.0 | | 0.2082 | 10.0 | 30 | 0.2822 | 1.0 | | 0.1692 | 11.0 | 33 | 0.2271 | 1.0 | | 0.1242 | 12.0 | 36 | 0.1793 | 1.0 | | 0.0977 | 13.0 | 39 | 0.1417 | 1.0 | | 0.0776 | 14.0 | 42 | 0.1117 | 1.0 | | 0.0631 | 15.0 | 45 | 0.0894 | 1.0 | | 0.0453 | 16.0 | 48 | 0.0733 | 1.0 | | 0.0399 | 17.0 | 51 | 0.0617 | 1.0 | | 0.0333 | 18.0 | 54 | 0.0528 | 1.0 | | 0.0266 | 19.0 | 57 | 0.0454 | 1.0 | | 0.0234 | 20.0 | 60 | 0.0393 | 1.0 | | 0.0223 | 21.0 | 63 | 0.0345 | 1.0 | | 0.0195 | 22.0 | 66 | 0.0309 | 1.0 | | 0.0161 | 23.0 | 69 | 0.0281 | 1.0 | | 0.0167 | 24.0 | 72 | 0.0260 | 1.0 | | 0.0163 | 25.0 | 75 | 0.0242 | 1.0 | | 0.0134 | 26.0 | 78 | 0.0227 | 1.0 | | 0.0128 | 27.0 | 81 | 0.0214 | 1.0 | | 0.0101 | 28.0 | 84 | 0.0204 | 1.0 | | 0.0109 | 29.0 | 87 | 0.0194 | 1.0 | | 0.0112 | 30.0 | 90 | 0.0186 | 1.0 | | 0.0108 | 31.0 | 93 | 0.0179 | 1.0 | | 0.011 | 32.0 | 96 | 0.0174 | 1.0 | | 0.0099 | 33.0 | 99 | 0.0169 | 1.0 | | 0.0083 | 34.0 | 102 | 0.0164 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0160 | 1.0 | | 0.01 | 36.0 | 108 | 0.0156 | 1.0 | | 0.0084 | 37.0 | 111 | 0.0152 | 1.0 | | 0.0089 | 38.0 | 114 | 0.0149 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0146 | 1.0 | | 0.0082 | 40.0 | 120 | 0.0143 | 1.0 | | 0.008 | 41.0 | 123 | 0.0141 | 1.0 | | 0.0093 | 42.0 | 126 | 0.0139 | 1.0 | | 0.0078 | 43.0 | 129 | 0.0138 | 1.0 | | 0.0086 | 44.0 | 132 | 0.0136 | 1.0 | | 0.009 | 45.0 | 135 | 0.0135 | 1.0 | | 0.0072 | 46.0 | 138 | 0.0134 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0133 | 1.0 | | 0.0082 | 48.0 | 144 | 0.0133 | 1.0 | | 0.0068 | 49.0 | 147 | 0.0132 | 1.0 | | 0.0074 | 50.0 | 150 | 0.0132 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-8", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-8 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3160 * Accuracy: 0.8735 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4865 - Accuracy: 0.778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7024 | 1.0 | 3 | 0.6843 | 0.75 | | 0.67 | 2.0 | 6 | 0.6807 | 0.5 | | 0.6371 | 3.0 | 9 | 0.6677 | 0.5 | | 0.585 | 4.0 | 12 | 0.6649 | 0.5 | | 0.5122 | 5.0 | 15 | 0.6707 | 0.5 | | 0.4379 | 6.0 | 18 | 0.6660 | 0.5 | | 0.4035 | 7.0 | 21 | 0.6666 | 0.5 | | 0.323 | 8.0 | 24 | 0.6672 | 0.5 | | 0.2841 | 9.0 | 27 | 0.6534 | 0.5 | | 0.21 | 10.0 | 30 | 0.6456 | 0.5 | | 0.1735 | 11.0 | 33 | 0.6325 | 0.5 | | 0.133 | 12.0 | 36 | 0.6214 | 0.5 | | 0.0986 | 13.0 | 39 | 0.6351 | 0.5 | | 0.081 | 14.0 | 42 | 0.6495 | 0.5 | | 0.0638 | 15.0 | 45 | 0.6671 | 0.5 | | 0.0449 | 16.0 | 48 | 0.7156 | 0.5 | | 0.0399 | 17.0 | 51 | 0.7608 | 0.5 | | 0.0314 | 18.0 | 54 | 0.7796 | 0.5 | | 0.0243 | 19.0 | 57 | 0.7789 | 0.5 | | 0.0227 | 20.0 | 60 | 0.7684 | 0.5 | | 0.0221 | 21.0 | 63 | 0.7628 | 0.5 | | 0.0192 | 22.0 | 66 | 0.7728 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-9", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_subj\_\_train-8-9 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4865 * Accuracy: 0.778 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
null
transformers
# Small-E-Czech Small-E-Czech is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a Czech web corpus created at [Seznam.cz](https://www.seznam.cz/) and introduced in an [IAAI 2022 paper](https://arxiv.org/abs/2112.01810). Like other pretrained models, it should be finetuned on a downstream task of interest before use. At Seznam.cz, it has helped improve [web search ranking](https://blog.seznam.cz/2021/02/vyhledavani-pomoci-vyznamovych-vektoru/), query typo correction or clickbait titles detection. We release it under [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/) (i.e. allowing commercial use). To raise an issue, please visit our [github](https://github.com/seznam/small-e-czech). ### How to use the discriminator in transformers ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("Seznam/small-e-czech") tokenizer = ElectraTokenizerFast.from_pretrained("Seznam/small-e-czech") sentence = "Za hory, za doly, mé zlaté parohy" fake_sentence = "Za hory, za doly, kočka zlaté parohy" fake_sentence_tokens = ["[CLS]"] + tokenizer.tokenize(fake_sentence) + ["[SEP]"] fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") outputs = discriminator(fake_inputs) predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() for token in fake_sentence_tokens: print("{:>7s}".format(token), end="") print() for prediction in predictions.squeeze(): print("{:7.1f}".format(prediction), end="") print() ``` In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator: ``` [CLS] za hory , za dol ##y , kočka zlaté paro ##hy [SEP] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.2 0.1 0.0 ``` ### Finetuning For instructions on how to finetune the model on a new task, see the official HuggingFace transformers [tutorial](https://huggingface.co/transformers/training.html).
{"language": "cs", "license": "cc-by-4.0"}
Seznam/small-e-czech
null
[ "transformers", "pytorch", "tf", "electra", "cs", "arxiv:2003.10555", "arxiv:2112.01810", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2003.10555", "2112.01810" ]
[ "cs" ]
TAGS #transformers #pytorch #tf #electra #cs #arxiv-2003.10555 #arxiv-2112.01810 #license-cc-by-4.0 #endpoints_compatible #region-us
# Small-E-Czech Small-E-Czech is an Electra-small model pretrained on a Czech web corpus created at URL and introduced in an IAAI 2022 paper. Like other pretrained models, it should be finetuned on a downstream task of interest before use. At URL, it has helped improve web search ranking, query typo correction or clickbait titles detection. We release it under CC BY 4.0 license (i.e. allowing commercial use). To raise an issue, please visit our github. ### How to use the discriminator in transformers In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator: ### Finetuning For instructions on how to finetune the model on a new task, see the official HuggingFace transformers tutorial.
[ "# Small-E-Czech\n\nSmall-E-Czech is an Electra-small model pretrained on a Czech web corpus created at URL and introduced in an IAAI 2022 paper. Like other pretrained models, it should be finetuned on a downstream task of interest before use. At URL, it has helped improve web search ranking, query typo correction or clickbait titles detection. We release it under CC BY 4.0 license (i.e. allowing commercial use). To raise an issue, please visit our github.", "### How to use the discriminator in transformers\n\n\nIn the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator:", "### Finetuning\n\nFor instructions on how to finetune the model on a new task, see the official HuggingFace transformers tutorial." ]
[ "TAGS\n#transformers #pytorch #tf #electra #cs #arxiv-2003.10555 #arxiv-2112.01810 #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# Small-E-Czech\n\nSmall-E-Czech is an Electra-small model pretrained on a Czech web corpus created at URL and introduced in an IAAI 2022 paper. Like other pretrained models, it should be finetuned on a downstream task of interest before use. At URL, it has helped improve web search ranking, query typo correction or clickbait titles detection. We release it under CC BY 4.0 license (i.e. allowing commercial use). To raise an issue, please visit our github.", "### How to use the discriminator in transformers\n\n\nIn the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator:", "### Finetuning\n\nFor instructions on how to finetune the model on a new task, see the official HuggingFace transformers tutorial." ]
summarization
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mode-bart-deutsch This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.2152 - Rouge1: 41.698 - Rouge2: 31.3548 - Rougel: 38.2817 - Rougelsum: 39.6349 - Gen Len: 63.1723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": "de", "license": "apache-2.0", "tags": ["generated_from_trainer", "summarization"], "datasets": ["mlsum"], "metrics": ["rouge"], "model-index": [{"name": "mode-bart-deutsch", "results": [{"task": {"type": "summarization", "name": "Summarization"}, "dataset": {"name": "mlsum de", "type": "mlsum", "args": "de"}, "metrics": [{"type": "rouge", "value": 41.698, "name": "Rouge1"}]}]}]}
Shahm/bart-german
null
[ "transformers", "pytorch", "tensorboard", "onnx", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "summarization", "de", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tensorboard #onnx #safetensors #bart #text2text-generation #generated_from_trainer #summarization #de #dataset-mlsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# mode-bart-deutsch This model is a fine-tuned version of facebook/bart-base on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.2152 - Rouge1: 41.698 - Rouge2: 31.3548 - Rougel: 38.2817 - Rougelsum: 39.6349 - Gen Len: 63.1723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# mode-bart-deutsch\n\nThis model is a fine-tuned version of facebook/bart-base on the mlsum de dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.2152\n- Rouge1: 41.698\n- Rouge2: 31.3548\n- Rougel: 38.2817\n- Rougelsum: 39.6349\n- Gen Len: 63.1723", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #onnx #safetensors #bart #text2text-generation #generated_from_trainer #summarization #de #dataset-mlsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# mode-bart-deutsch\n\nThis model is a fine-tuned version of facebook/bart-base on the mlsum de dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.2152\n- Rouge1: 41.698\n- Rouge2: 31.3548\n- Rougel: 38.2817\n- Rougelsum: 39.6349\n- Gen Len: 63.1723", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
summarization
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-seven-epoch-base-german This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.5491 - Rouge1: 42.3787 - Rouge2: 32.0253 - Rougel: 38.9529 - Rougelsum: 40.4544 - Gen Len: 47.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": "de", "license": "apache-2.0", "tags": ["generated_from_trainer", "summarization"], "datasets": ["mlsum"], "metrics": ["rouge"], "model-index": [{"name": "t5-seven-epoch-base-german", "results": [{"task": {"type": "summarization", "name": "Summarization"}, "dataset": {"name": "mlsum de", "type": "mlsum", "args": "de"}, "metrics": [{"type": "rouge", "value": 42.3787, "name": "Rouge1"}]}]}]}
Shahm/t5-small-german
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "summarization", "de", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #summarization #de #dataset-mlsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-seven-epoch-base-german This model is a fine-tuned version of t5-small on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.5491 - Rouge1: 42.3787 - Rouge2: 32.0253 - Rougel: 38.9529 - Rougelsum: 40.4544 - Gen Len: 47.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# t5-seven-epoch-base-german\n\nThis model is a fine-tuned version of t5-small on the mlsum de dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.5491\n- Rouge1: 42.3787\n- Rouge2: 32.0253\n- Rougel: 38.9529\n- Rougelsum: 40.4544\n- Gen Len: 47.7873", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 7.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #summarization #de #dataset-mlsum #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-seven-epoch-base-german\n\nThis model is a fine-tuned version of t5-small on the mlsum de dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.5491\n- Rouge1: 42.3787\n- Rouge2: 32.0253\n- Rougel: 38.9529\n- Rougelsum: 40.4544\n- Gen Len: 47.7873", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 7.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
text-generation
transformers
# Spongebob DialoGPT model
{"tags": ["conversational"]}
Shakaw/DialoGPT-small-spongebot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Spongebob DialoGPT model
[ "# Spongebob DialoGPT model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Spongebob DialoGPT model" ]
null
transformers
# ChineseBERT-base This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
{}
ShannonAI/ChineseBERT-base
null
[ "transformers", "pytorch", "arxiv:2106.16038", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2106.16038" ]
[]
TAGS #transformers #pytorch #arxiv-2106.16038 #endpoints_compatible #region-us
# ChineseBERT-base This repository contains code, model, dataset for ChineseBERT at ACL2021. paper: ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: ChineseBERT github link ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - Char Embedding: the same as origin BERT token embedding. - Glyph Embedding: capture visual features based on different fonts of a Chinese character. - Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. !MODEL ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
[ "# ChineseBERT-base\n\nThis repository contains code, model, dataset for ChineseBERT at ACL2021.\n\npaper: \nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*\n\ncode: \nChineseBERT github link", "## Model description\nWe propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese\ncharacters into language model pretraining. \n \nFirst, for each Chinese character, we get three kind of embedding.\n - Char Embedding: the same as origin BERT token embedding.\n - Glyph Embedding: capture visual features based on different fonts of a Chinese character.\n - Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.\n \nThen, char embedding, glyph embedding and pinyin embedding \nare first concatenated, and mapped to a D-dimensional embedding through a fully \nconnected layer to form the fusion embedding. \nFinally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. \nThe following image shows an overview architecture of ChineseBERT model.\n \n!MODEL\n\nChineseBERT leverages the glyph and pinyin information of Chinese \ncharacters to enhance the model's ability of capturing\ncontext semantics from surface character forms and\ndisambiguating polyphonic characters in Chinese." ]
[ "TAGS\n#transformers #pytorch #arxiv-2106.16038 #endpoints_compatible #region-us \n", "# ChineseBERT-base\n\nThis repository contains code, model, dataset for ChineseBERT at ACL2021.\n\npaper: \nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*\n\ncode: \nChineseBERT github link", "## Model description\nWe propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese\ncharacters into language model pretraining. \n \nFirst, for each Chinese character, we get three kind of embedding.\n - Char Embedding: the same as origin BERT token embedding.\n - Glyph Embedding: capture visual features based on different fonts of a Chinese character.\n - Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.\n \nThen, char embedding, glyph embedding and pinyin embedding \nare first concatenated, and mapped to a D-dimensional embedding through a fully \nconnected layer to form the fusion embedding. \nFinally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. \nThe following image shows an overview architecture of ChineseBERT model.\n \n!MODEL\n\nChineseBERT leverages the glyph and pinyin information of Chinese \ncharacters to enhance the model's ability of capturing\ncontext semantics from surface character forms and\ndisambiguating polyphonic characters in Chinese." ]
null
transformers
# ChineseBERT-large This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
{}
ShannonAI/ChineseBERT-large
null
[ "transformers", "pytorch", "arxiv:2106.16038", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2106.16038" ]
[]
TAGS #transformers #pytorch #arxiv-2106.16038 #endpoints_compatible #region-us
# ChineseBERT-large This repository contains code, model, dataset for ChineseBERT at ACL2021. paper: ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: ChineseBERT github link ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - Char Embedding: the same as origin BERT token embedding. - Glyph Embedding: capture visual features based on different fonts of a Chinese character. - Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. !MODEL ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
[ "# ChineseBERT-large\n\nThis repository contains code, model, dataset for ChineseBERT at ACL2021.\n\npaper: \nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*\n\ncode: \nChineseBERT github link", "## Model description\nWe propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese\ncharacters into language model pretraining. \n \nFirst, for each Chinese character, we get three kind of embedding.\n - Char Embedding: the same as origin BERT token embedding.\n - Glyph Embedding: capture visual features based on different fonts of a Chinese character.\n - Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.\n \nThen, char embedding, glyph embedding and pinyin embedding \nare first concatenated, and mapped to a D-dimensional embedding through a fully \nconnected layer to form the fusion embedding. \nFinally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. \nThe following image shows an overview architecture of ChineseBERT model.\n \n!MODEL\n\nChineseBERT leverages the glyph and pinyin information of Chinese \ncharacters to enhance the model's ability of capturing\ncontext semantics from surface character forms and\ndisambiguating polyphonic characters in Chinese." ]
[ "TAGS\n#transformers #pytorch #arxiv-2106.16038 #endpoints_compatible #region-us \n", "# ChineseBERT-large\n\nThis repository contains code, model, dataset for ChineseBERT at ACL2021.\n\npaper: \nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*\n\ncode: \nChineseBERT github link", "## Model description\nWe propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese\ncharacters into language model pretraining. \n \nFirst, for each Chinese character, we get three kind of embedding.\n - Char Embedding: the same as origin BERT token embedding.\n - Glyph Embedding: capture visual features based on different fonts of a Chinese character.\n - Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.\n \nThen, char embedding, glyph embedding and pinyin embedding \nare first concatenated, and mapped to a D-dimensional embedding through a fully \nconnected layer to form the fusion embedding. \nFinally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. \nThe following image shows an overview architecture of ChineseBERT model.\n \n!MODEL\n\nChineseBERT leverages the glyph and pinyin information of Chinese \ncharacters to enhance the model's ability of capturing\ncontext semantics from surface character forms and\ndisambiguating polyphonic characters in Chinese." ]
text-classification
transformers
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1dqeUwS_DZ-urrmYzB29nTCBUltwJxhbh?usp=sharing) # 22 Language Identifier - BERT This model is trained to identify the following 22 different languages. - Arabic - Chinese - Dutch - English - Estonian - French - Hindi - Indonesian - Japanese - Korean - Latin - Persian - Portugese - Pushto - Romanian - Russian - Spanish - Swedish - Tamil - Thai - Turkish - Urdu ## Loading the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("SharanSMenon/22-languages-bert-base-cased") model = AutoModelForSequenceClassification.from_pretrained("SharanSMenon/22-languages-bert-base-cased") ``` ## Inference ```python def predict(sentence): tokenized = tokenizer(sentence, return_tensors="pt") outputs = model(**tokenized) return model.config.id2label[outputs.logits.argmax(dim=1).item()] ``` ### Examples ```python sentence1 = "in war resolution, in defeat defiance, in victory magnanimity" predict(sentence1) # English sentence2 = "en la guerra resolución en la derrota desafío en la victoria magnanimidad" predict(sentence2) # Spanish sentence3 = "هذا هو أعظم إله على الإطلاق" predict(sentence3) # Arabic ```
{"metrics": ["accuracy"], "widget": [{"text": "In war resolution, in defeat defiance, in victory magnanimity"}, {"text": "en la guerra resoluci\u00f3n en la derrota desaf\u00edo en la victoria magnanimidad"}]}
SharanSMenon/22-languages-bert-base-cased
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
![Open In Colab](URL # 22 Language Identifier - BERT This model is trained to identify the following 22 different languages. - Arabic - Chinese - Dutch - English - Estonian - French - Hindi - Indonesian - Japanese - Korean - Latin - Persian - Portugese - Pushto - Romanian - Russian - Spanish - Swedish - Tamil - Thai - Turkish - Urdu ## Loading the model ## Inference ### Examples
[ "# 22 Language Identifier - BERT\n\nThis model is trained to identify the following 22 different languages. \n\n\n- Arabic \n- Chinese \n- Dutch \n- English \n- Estonian \n- French\n- Hindi\n- Indonesian \n- Japanese \n- Korean \n- Latin \n- Persian \n- Portugese \n- Pushto\n- Romanian \n- Russian \n- Spanish \n- Swedish \n- Tamil \n- Thai \n- Turkish\n- Urdu", "## Loading the model", "## Inference", "### Examples" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# 22 Language Identifier - BERT\n\nThis model is trained to identify the following 22 different languages. \n\n\n- Arabic \n- Chinese \n- Dutch \n- English \n- Estonian \n- French\n- Hindi\n- Indonesian \n- Japanese \n- Korean \n- Latin \n- Persian \n- Portugese \n- Pushto\n- Romanian \n- Russian \n- Spanish \n- Swedish \n- Tamil \n- Thai \n- Turkish\n- Urdu", "## Loading the model", "## Inference", "### Examples" ]
text2text-generation
null
## RusEnQA QA for Russian and English based on the [rugpt3xl](https://huggingface.co/sberbank-ai/rugpt3xl) model ### Fine-tuning format: ``` "<s>paragraph: "+eng_context+"\nlang: rus\nquestion: "+rus_question+' answer: '+ rus_answer+"</s>" ``` ### About ruGPT-3 XL model Model was trained with 512 sequence length using [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) code by [SberDevices](https://sberdevices.ru/) team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048. *Note! Model has sparse attention blocks.* Total training time was around 10 days on 256 GPUs. Final perplexity on test set is 12.05. Model parameters: 1.3B.
{"language": ["ru", "en"], "tags": ["PyTorch", "Transformers", "gpt2", "squad", "lm-head", "casual-lm"], "pipeline_tag": "text2text-generation", "thumbnail": "https://github.com/RussianNLP/RusEnQA"}
Shavrina/RusEnQA
null
[ "PyTorch", "Transformers", "gpt2", "squad", "lm-head", "casual-lm", "text2text-generation", "ru", "en", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru", "en" ]
TAGS #PyTorch #Transformers #gpt2 #squad #lm-head #casual-lm #text2text-generation #ru #en #region-us
## RusEnQA QA for Russian and English based on the rugpt3xl model ### Fine-tuning format: ### About ruGPT-3 XL model Model was trained with 512 sequence length using Deepspeed and Megatron code by SberDevices team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048. *Note! Model has sparse attention blocks.* Total training time was around 10 days on 256 GPUs. Final perplexity on test set is 12.05. Model parameters: 1.3B.
[ "## RusEnQA\n\nQA for Russian and English based on the rugpt3xl model", "### Fine-tuning format:", "### About ruGPT-3 XL model\nModel was trained with 512 sequence length using Deepspeed and Megatron code by SberDevices team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048. \n*Note! Model has sparse attention blocks.*\n\nTotal training time was around 10 days on 256 GPUs.\nFinal perplexity on test set is 12.05. Model parameters: 1.3B." ]
[ "TAGS\n#PyTorch #Transformers #gpt2 #squad #lm-head #casual-lm #text2text-generation #ru #en #region-us \n", "## RusEnQA\n\nQA for Russian and English based on the rugpt3xl model", "### Fine-tuning format:", "### About ruGPT-3 XL model\nModel was trained with 512 sequence length using Deepspeed and Megatron code by SberDevices team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048. \n*Note! Model has sparse attention blocks.*\n\nTotal training time was around 10 days on 256 GPUs.\nFinal perplexity on test set is 12.05. Model parameters: 1.3B." ]
text-generation
transformers
# SHAY0 Dialo GPT Model
{"tags": ["conversational"]}
ShayoGun/DialoGPT-small-shayo
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# SHAY0 Dialo GPT Model
[ "# SHAY0 Dialo GPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# SHAY0 Dialo GPT Model" ]
text-generation
transformers
# Harry Potter DialGPT Model
{"tags": ["conversational"]}
Sheel/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialGPT Model
[ "# Harry Potter DialGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialGPT Model" ]
text-generation
transformers
# Mikasa DialoGPT Model
{"tags": ["conversational"]}
Sheerwin02/DialoGPT-medium-mikasa
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mikasa DialoGPT Model
[ "# Mikasa DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mikasa DialoGPT Model" ]
text-generation
transformers
#isla DialoGPT Model
{"tags": ["conversational"]}
Sheerwin02/DialoGPT-small-isla
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#isla DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
null
null
This is a repo with gather thoughts and experiments on the state-of-the-art techniques in NLP.
{}
ShenSeanchen/NLP
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
This is a repo with gather thoughts and experiments on the state-of-the-art techniques in NLP.
[]
[ "TAGS\n#region-us \n" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superglue-boolq This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2098 - Accuracy: 76.7584 - Average Metrics: 76.7584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Average Metrics | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:| | No log | 0.34 | 100 | 0.2293 | 73.2722 | 73.2722 | | No log | 0.68 | 200 | 0.2098 | 76.7584 | 76.7584 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111 - Datasets 1.17.0 - Tokenizers 0.12.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "superglue-boolq", "results": []}]}
ShengdingHu/superglue-boolq
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
superglue-boolq =============== This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2098 * Accuracy: 76.7584 * Average Metrics: 76.7584 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.18.0 * Pytorch 1.10.2+cu111 * Datasets 1.17.0 * Tokenizers 0.12.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.18.0\n* Pytorch 1.10.2+cu111\n* Datasets 1.17.0\n* Tokenizers 0.12.1" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.18.0\n* Pytorch 1.10.2+cu111\n* Datasets 1.17.0\n* Tokenizers 0.12.1" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9267 - Recall: 0.9371 - F1: 0.9319 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2462 | 1.0 | 878 | 0.0714 | 0.9052 | 0.9223 | 0.9137 | 0.9803 | | 0.0535 | 2.0 | 1756 | 0.0615 | 0.9188 | 0.9331 | 0.9259 | 0.9827 | | 0.0315 | 3.0 | 2634 | 0.0620 | 0.9267 | 0.9371 | 0.9319 | 0.9838 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9266592920353982, "name": "Precision"}, {"type": "recall", "value": 0.9371294328224634, "name": "Recall"}, {"type": "f1", "value": 0.9318649535569274, "name": "F1"}, {"type": "accuracy", "value": 0.9838117781625813, "name": "Accuracy"}]}]}]}
Shenyancheng/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0620 * Precision: 0.9267 * Recall: 0.9371 * F1: 0.9319 * Accuracy: 0.9838 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text-generation
null
# My Awesome Model
{"tags": ["conversational"]}
Sherman/DialoGPT-medium-joey
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #conversational #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#conversational #region-us \n", "# My Awesome Model" ]
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Shike/DialoGPT_medium_harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
text-generation
transformers
# My Hero Academia DialoGPT Model
{"tags": ["conversational"]}
Shinx/DialoGPT-medium-myheroacademia
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Hero Academia DialoGPT Model
[ "# My Hero Academia DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Hero Academia DialoGPT Model" ]
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
NaturesDisaster/DialoGPT-large-Neku
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
null
null
tags: - conversational
{}
ShinxisS/DialoGPT-medium-Neku
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
tags: - conversational
[]
[ "TAGS\n#region-us \n" ]
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
NaturesDisaster/DialoGPT-small-Neku
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
ShiroNeko/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick DialoGPT Model
[ "# Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick DialoGPT Model" ]
question-answering
null
model card
{"language": "en", "license": "mit", "tags": ["exbert", "my-tag"], "datasets": ["dataset1", "scan-web"], "pipeline_tag": "question-answering"}
Shiyu/my-repo
null
[ "exbert", "my-tag", "question-answering", "en", "dataset:dataset1", "dataset:scan-web", "license:mit", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #exbert #my-tag #question-answering #en #dataset-dataset1 #dataset-scan-web #license-mit #region-us
model card
[]
[ "TAGS\n#exbert #my-tag #question-answering #en #dataset-dataset1 #dataset-scan-web #license-mit #region-us \n" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-roberta-depression This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - Accuracy: 0.9745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0238 | 1.0 | 625 | 0.1385 | 0.9745 | | 0.0333 | 2.0 | 1250 | 0.1385 | 0.9745 | | 0.0263 | 3.0 | 1875 | 0.1385 | 0.9745 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "widget": [{"text": "I feel so low and numb, don't feel like doing anything. Just passing my days"}, {"text": "Sleep is my greatest and most comforting escape whenever I wake up these days. The literal very first emotion I feel is just misery and reminding myself of all my problems."}, {"text": "I went to a movie today. It was below my expectations but the day was fine."}, {"text": "The first day of work was a little hectic but met pretty good colleagues, we went for a team dinner party at the end of the day."}], "model-index": [{"name": "finetuned-roberta-depression", "results": []}]}
ShreyaR/finetuned-roberta-depression
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
finetuned-roberta-depression ============================ This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1385 * Accuracy: 0.9745 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.17.0 * Pytorch 1.10.0+cu111 * Datasets 2.0.0 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 2.0.0\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 2.0.0\n* Tokenizers 0.11.6" ]
text-generation
transformers
#goku DialoGPT Model
{"tags": ["conversational"]}
Shubham-Kumar-DTU/DialoGPT-small-goku
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#goku DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 22 | 3.9518 | | No log | 2.0 | 44 | 3.2703 | | No log | 3.0 | 66 | 2.9308 | | No log | 4.0 | 88 | 2.7806 | | No log | 5.0 | 110 | 2.6926 | | No log | 6.0 | 132 | 2.7043 | | No log | 7.0 | 154 | 2.7113 | | No log | 8.0 | 176 | 2.7236 | | No log | 9.0 | 198 | 2.7559 | | No log | 10.0 | 220 | 2.7515 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT", "results": []}]}
Shushant/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #license-mit #endpoints_compatible #region-us
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel\_PubmedBERT ==================================================================================== This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.7515 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
fill-mask
transformers
# NepNewsBERT ## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news. ## Usage from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("Shushant/NepNewsBERT") model = AutoModelForMaskedLM.from_pretrained("Shushant/NepNewsBERT") from transformers import pipeline fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer, ) from pprint import pprint pprint(fill_mask(f"तिमीलाई कस्तो {tokenizer.mask_token}."))
{}
Shushant/NepNewsBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
# NepNewsBERT ## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news. ## Usage from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("Shushant/NepNewsBERT") model = AutoModelForMaskedLM.from_pretrained("Shushant/NepNewsBERT") from transformers import pipeline fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer, ) from pprint import pprint pprint(fill_mask(f"तिमीलाई कस्तो {tokenizer.mask_token}."))
[ "# NepNewsBERT", "## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news.", "## Usage \n\nfrom transformers import AutoTokenizer, AutoModelForMaskedLM\n\ntokenizer = AutoTokenizer.from_pretrained(\"Shushant/NepNewsBERT\")\n\nmodel = AutoModelForMaskedLM.from_pretrained(\"Shushant/NepNewsBERT\")\n\nfrom transformers import pipeline\n\nfill_mask = pipeline(\n \"fill-mask\",\n model=model,\n tokenizer=tokenizer,\n)\nfrom pprint import pprint\npprint(fill_mask(f\"तिमीलाई कस्तो {tokenizer.mask_token}.\"))" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "# NepNewsBERT", "## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news.", "## Usage \n\nfrom transformers import AutoTokenizer, AutoModelForMaskedLM\n\ntokenizer = AutoTokenizer.from_pretrained(\"Shushant/NepNewsBERT\")\n\nmodel = AutoModelForMaskedLM.from_pretrained(\"Shushant/NepNewsBERT\")\n\nfrom transformers import pipeline\n\nfill_mask = pipeline(\n \"fill-mask\",\n model=model,\n tokenizer=tokenizer,\n)\nfrom pprint import pprint\npprint(fill_mask(f\"तिमीलाई कस्तो {tokenizer.mask_token}.\"))" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-v1.1-biomedicalQuestionAnswering This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 22 | 3.7409 | | No log | 2.0 | 44 | 3.1852 | | No log | 3.0 | 66 | 3.0342 | | No log | 4.0 | 88 | 2.9416 | | No log | 5.0 | 110 | 2.9009 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "biobert-v1.1-biomedicalQuestionAnswering", "results": []}]}
Shushant/biobert-v1.1-biomedicalQuestionAnswering
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #endpoints_compatible #region-us
biobert-v1.1-biomedicalQuestionAnswering ======================================== This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.9009 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
fill-mask
transformers
# NEPALI BERT ## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news. This model is a fine-tuned version of [Bert Base Uncased](https://huggingface.co/bert-base-uncased) on dataset composed of different news scrapped from nepali news portals comprising of 4.6 GB of textual data. It achieves the following results on the evaluation set: - Loss: 1.0495 ## Model description Pretraining done on bert base architecture. ## Intended uses & limitations This transformer model can be used for any NLP tasks related to Devenagari language. At the time of training, this is the state of the art model developed for Devanagari dataset. Intrinsic evaluation with Perplexity of 8.56 achieves this state of the art whereas extrinsit evaluation done on sentiment analysis of Nepali tweets outperformed other existing masked language models on Nepali dataset. ## Training and evaluation data THe training corpus is developed using 85467 news scrapped from different job portals. This is a preliminary dataset for the experimentation. THe corpus size is about 4.3 GB of textual data. Similary evaluation data contains few news articles about 12 mb of textual data. ## Training procedure For the pretraining of masked language model, Trainer API from Huggingface is used. The pretraining took about 3 days 8 hours 57 minutes. Training was done on Tesla V100 GPU. With 640 Tensor Cores, Tesla V100 is the world's first GPU to break the 100 teraFLOPS (TFLOPS) barrier of deep learning performance. This GPU was faciliated by Kathmandu University (KU) supercomputer. Thanks to KU administration. Usage ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("Shushant/nepaliBERT") model = AutoModelForMaskedLM.from_pretrained("Shushant/nepaliBERT") from transformers import pipeline fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer, ) from pprint import pprint pprint(fill_mask(f"तिमीलाई कस्तो {tokenizer.mask_token}.")) ``` ## Data Description Trained on about 4.6 GB of Nepali text corpus collected from various sources These data were collected from nepali news site, OSCAR nepali corpus # Paper and CItation Details If you are interested to read the implementation details of this language model, you can read the full paper here. https://www.researchgate.net/publication/375019515_NepaliBERT_Pre-training_of_Masked_Language_Model_in_Nepali_Corpus ## Plain Text S. Pudasaini, S. Shakya, A. Tamang, S. Adhikari, S. Thapa and S. Lamichhane, "NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus," 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 2023, pp. 325-330, doi: 10.1109/I-SMAC58438.2023.10290690. ## Bibtex @INPROCEEDINGS{10290690, author={Pudasaini, Shushanta and Shakya, Subarna and Tamang, Aakash and Adhikari, Sajjan and Thapa, Sunil and Lamichhane, Sagar}, booktitle={2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)}, title={NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus}, year={2023}, volume={}, number={}, pages={325-330}, doi={10.1109/I-SMAC58438.2023.10290690}}
{"language": ["ne"], "license": "mit", "library_name": "transformers", "datasets": ["Shushant/nepali"], "metrics": ["perplexity"], "pipeline_tag": "fill-mask"}
Shushant/nepaliBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "ne", "dataset:Shushant/nepali", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ne" ]
TAGS #transformers #pytorch #bert #fill-mask #ne #dataset-Shushant/nepali #license-mit #autotrain_compatible #endpoints_compatible #region-us
# NEPALI BERT ## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news. This model is a fine-tuned version of Bert Base Uncased on dataset composed of different news scrapped from nepali news portals comprising of 4.6 GB of textual data. It achieves the following results on the evaluation set: - Loss: 1.0495 ## Model description Pretraining done on bert base architecture. ## Intended uses & limitations This transformer model can be used for any NLP tasks related to Devenagari language. At the time of training, this is the state of the art model developed for Devanagari dataset. Intrinsic evaluation with Perplexity of 8.56 achieves this state of the art whereas extrinsit evaluation done on sentiment analysis of Nepali tweets outperformed other existing masked language models on Nepali dataset. ## Training and evaluation data THe training corpus is developed using 85467 news scrapped from different job portals. This is a preliminary dataset for the experimentation. THe corpus size is about 4.3 GB of textual data. Similary evaluation data contains few news articles about 12 mb of textual data. ## Training procedure For the pretraining of masked language model, Trainer API from Huggingface is used. The pretraining took about 3 days 8 hours 57 minutes. Training was done on Tesla V100 GPU. With 640 Tensor Cores, Tesla V100 is the world's first GPU to break the 100 teraFLOPS (TFLOPS) barrier of deep learning performance. This GPU was faciliated by Kathmandu University (KU) supercomputer. Thanks to KU administration. Usage ## Data Description Trained on about 4.6 GB of Nepali text corpus collected from various sources These data were collected from nepali news site, OSCAR nepali corpus # Paper and CItation Details If you are interested to read the implementation details of this language model, you can read the full paper here. URL ## Plain Text S. Pudasaini, S. Shakya, A. Tamang, S. Adhikari, S. Thapa and S. Lamichhane, "NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus," 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 2023, pp. 325-330, doi: 10.1109/I-SMAC58438.2023.10290690. ## Bibtex @INPROCEEDINGS{10290690, author={Pudasaini, Shushanta and Shakya, Subarna and Tamang, Aakash and Adhikari, Sajjan and Thapa, Sunil and Lamichhane, Sagar}, booktitle={2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)}, title={NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus}, year={2023}, volume={}, number={}, pages={325-330}, doi={10.1109/I-SMAC58438.2023.10290690}}
[ "# NEPALI BERT", "## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news.\n\nThis model is a fine-tuned version of Bert Base Uncased on dataset composed of different news scrapped from nepali news portals comprising of 4.6 GB of textual data.\nIt achieves the following results on the evaluation set:\n- Loss: 1.0495", "## Model description\n\nPretraining done on bert base architecture.", "## Intended uses & limitations\nThis transformer model can be used for any NLP tasks related to Devenagari language. At the time of training, this is the state of the art model developed \nfor Devanagari dataset. Intrinsic evaluation with Perplexity of 8.56 achieves this state of the art whereas extrinsit evaluation done on sentiment analysis of Nepali tweets outperformed other existing \nmasked language models on Nepali dataset.", "## Training and evaluation data\nTHe training corpus is developed using 85467 news scrapped from different job portals. This is a preliminary dataset \nfor the experimentation. THe corpus size is about 4.3 GB of textual data. Similary evaluation data contains few news articles about 12 mb of textual data.", "## Training procedure\nFor the pretraining of masked language model, Trainer API from Huggingface is used. The pretraining took about 3 days 8 hours 57 minutes. Training was done on Tesla V100 GPU. \nWith 640 Tensor Cores, Tesla V100 is the world's first GPU to break the 100 teraFLOPS (TFLOPS) barrier of deep learning performance. This GPU was faciliated by Kathmandu University (KU) supercomputer. \nThanks to KU administration.\n\nUsage", "## Data Description\nTrained on about 4.6 GB of Nepali text corpus collected from various sources\nThese data were collected from nepali news site, OSCAR nepali corpus", "# Paper and CItation Details\nIf you are interested to read the implementation details of this language model, you can read the full paper here.\nURL", "## Plain Text\nS. Pudasaini, S. Shakya, A. Tamang, S. Adhikari, S. Thapa and S. Lamichhane, \"NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus,\" 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 2023, pp. 325-330, doi: 10.1109/I-SMAC58438.2023.10290690.", "## Bibtex\n\n@INPROCEEDINGS{10290690,\n author={Pudasaini, Shushanta and Shakya, Subarna and Tamang, Aakash and Adhikari, Sajjan and Thapa, Sunil and Lamichhane, Sagar},\n booktitle={2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)}, \n title={NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus}, \n year={2023},\n volume={},\n number={},\n pages={325-330},\n doi={10.1109/I-SMAC58438.2023.10290690}}" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #ne #dataset-Shushant/nepali #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# NEPALI BERT", "## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news.\n\nThis model is a fine-tuned version of Bert Base Uncased on dataset composed of different news scrapped from nepali news portals comprising of 4.6 GB of textual data.\nIt achieves the following results on the evaluation set:\n- Loss: 1.0495", "## Model description\n\nPretraining done on bert base architecture.", "## Intended uses & limitations\nThis transformer model can be used for any NLP tasks related to Devenagari language. At the time of training, this is the state of the art model developed \nfor Devanagari dataset. Intrinsic evaluation with Perplexity of 8.56 achieves this state of the art whereas extrinsit evaluation done on sentiment analysis of Nepali tweets outperformed other existing \nmasked language models on Nepali dataset.", "## Training and evaluation data\nTHe training corpus is developed using 85467 news scrapped from different job portals. This is a preliminary dataset \nfor the experimentation. THe corpus size is about 4.3 GB of textual data. Similary evaluation data contains few news articles about 12 mb of textual data.", "## Training procedure\nFor the pretraining of masked language model, Trainer API from Huggingface is used. The pretraining took about 3 days 8 hours 57 minutes. Training was done on Tesla V100 GPU. \nWith 640 Tensor Cores, Tesla V100 is the world's first GPU to break the 100 teraFLOPS (TFLOPS) barrier of deep learning performance. This GPU was faciliated by Kathmandu University (KU) supercomputer. \nThanks to KU administration.\n\nUsage", "## Data Description\nTrained on about 4.6 GB of Nepali text corpus collected from various sources\nThese data were collected from nepali news site, OSCAR nepali corpus", "# Paper and CItation Details\nIf you are interested to read the implementation details of this language model, you can read the full paper here.\nURL", "## Plain Text\nS. Pudasaini, S. Shakya, A. Tamang, S. Adhikari, S. Thapa and S. Lamichhane, \"NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus,\" 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 2023, pp. 325-330, doi: 10.1109/I-SMAC58438.2023.10290690.", "## Bibtex\n\n@INPROCEEDINGS{10290690,\n author={Pudasaini, Shushanta and Shakya, Subarna and Tamang, Aakash and Adhikari, Sajjan and Thapa, Sunil and Lamichhane, Sagar},\n booktitle={2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)}, \n title={NepaliBERT: Pre-training of Masked Language Model in Nepali Corpus}, \n year={2023},\n volume={},\n number={},\n pages={325-330},\n doi={10.1109/I-SMAC58438.2023.10290690}}" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 164469 ## Validation Metrics - Loss: 0.05527503043413162 - Accuracy: 0.9853049228508449 - Precision: 0.991044776119403 - Recall: 0.9793510324483776 - AUC: 0.9966895139869654 - F1: 0.9851632047477745 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Shuvam/autonlp-college_classification-164469 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Shuvam/autonlp-college_classification-164469", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Shuvam/autonlp-college_classification-164469", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["Shuvam/autonlp-data-college_classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
Shuvam/autonlp-college_classification-164469
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autonlp", "en", "dataset:Shuvam/autonlp-data-college_classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #bert #text-classification #autonlp #en #dataset-Shuvam/autonlp-data-college_classification #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 164469 ## Validation Metrics - Loss: 0.05527503043413162 - Accuracy: 0.9853049228508449 - Precision: 0.991044776119403 - Recall: 0.9793510324483776 - AUC: 0.9966895139869654 - F1: 0.9851632047477745 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 164469", "## Validation Metrics\n\n- Loss: 0.05527503043413162\n- Accuracy: 0.9853049228508449\n- Precision: 0.991044776119403\n- Recall: 0.9793510324483776\n- AUC: 0.9966895139869654\n- F1: 0.9851632047477745", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #jax #bert #text-classification #autonlp #en #dataset-Shuvam/autonlp-data-college_classification #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 164469", "## Validation Metrics\n\n- Loss: 0.05527503043413162\n- Accuracy: 0.9853049228508449\n- Precision: 0.991044776119403\n- Recall: 0.9793510324483776\n- AUC: 0.9966895139869654\n- F1: 0.9851632047477745", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-generation
transformers
This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm).
{"pipeline_tag": "conversational"}
SilentMyuth/sarcastic-model
null
[ "transformers", "conversational", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #conversational #endpoints_compatible #region-us
This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located here.
[]
[ "TAGS\n#transformers #conversational #endpoints_compatible #region-us \n" ]
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
SilentMyuth/stableben
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
text-generation
transformers
Hewlo
{}
SilentMyuth/stablejen
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Hewlo
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
conver = pipeline("conversational") --- tags: - conversational --- # Harry potter DialoGPT model
{}
Sin/DialoGPT-small-zai
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
conver = pipeline("conversational") --- tags: - conversational --- # Harry potter DialoGPT model
[ "# Harry potter DialoGPT model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry potter DialoGPT model" ]
question-answering
transformers
# Muril Large Squad2 This model is finetuned for QA task on Squad2 from [Muril Large checkpoint](https://huggingface.co/google/muril-large-cased). ## Hyperparameters ``` Batch Size: 4 Grad Accumulation Steps = 8 Total epochs = 3 MLM Checkpoint = google/muril-large-cased max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_ratio = 0.1 doc_stride = 128 ``` ## Squad 2 Evaluation stats: Generated from [the official Squad2 evaluation script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) ```json { "exact": 82.0180240882675, "f1": 85.10110304685352, "total": 11873, "HasAns_exact": 81.6970310391363, "HasAns_f1": 87.87203044454981, "HasAns_total": 5928, "NoAns_exact": 82.3380992430614, "NoAns_f1": 82.3380992430614, "NoAns_total": 5945 } ``` ## Limitations MuRIL is specifically trained to work on 18 Indic languages and English. This model is not expected to perform well in any other languages. See the MuRIL checkpoint for further details. For any questions, you can reach out to me [on Twitter](https://twitter.com/batw0man)
{}
Sindhu/muril-large-squad2
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
# Muril Large Squad2 This model is finetuned for QA task on Squad2 from Muril Large checkpoint. ## Hyperparameters ## Squad 2 Evaluation stats: Generated from the official Squad2 evaluation script ## Limitations MuRIL is specifically trained to work on 18 Indic languages and English. This model is not expected to perform well in any other languages. See the MuRIL checkpoint for further details. For any questions, you can reach out to me on Twitter
[ "# Muril Large Squad2\nThis model is finetuned for QA task on Squad2 from Muril Large checkpoint.", "## Hyperparameters", "## Squad 2 Evaluation stats:\nGenerated from the official Squad2 evaluation script", "## Limitations\nMuRIL is specifically trained to work on 18 Indic languages and English. This model is not expected to perform well in any other languages. See the MuRIL checkpoint for further details.\n\nFor any questions, you can reach out to me on Twitter" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n", "# Muril Large Squad2\nThis model is finetuned for QA task on Squad2 from Muril Large checkpoint.", "## Hyperparameters", "## Squad 2 Evaluation stats:\nGenerated from the official Squad2 evaluation script", "## Limitations\nMuRIL is specifically trained to work on 18 Indic languages and English. This model is not expected to perform well in any other languages. See the MuRIL checkpoint for further details.\n\nFor any questions, you can reach out to me on Twitter" ]
question-answering
transformers
# Rembert Squad2 This model is finetuned for QA task on Squad2 from [Rembert checkpoint](https://huggingface.co/google/rembert). ## Hyperparameters ``` Batch Size: 4 Grad Accumulation Steps = 8 Total epochs = 3 MLM Checkpoint = "rembert" max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_ratio = 0.1 doc_stride = 128 ``` ## Squad 2 Evaluation stats: Metrics generated from [the official Squad2 evaluation script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) ```json { "exact": 84.51107554956624, "f1": 87.46644042781853, "total": 11873, "HasAns_exact": 80.97165991902834, "HasAns_f1": 86.89086491219469, "HasAns_total": 5928, "NoAns_exact": 88.04037005887301, "NoAns_f1": 88.04037005887301, "NoAns_total": 5945 } ``` For any questions, you can reach out to me [on Twitter](https://twitter.com/batw0man)
{"language": ["multilingual"], "tags": ["question-answering"], "datasets": ["squad2"], "metrics": ["squad2"]}
Sindhu/rembert-squad2
null
[ "transformers", "pytorch", "rembert", "question-answering", "multilingual", "dataset:squad2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "multilingual" ]
TAGS #transformers #pytorch #rembert #question-answering #multilingual #dataset-squad2 #endpoints_compatible #region-us
# Rembert Squad2 This model is finetuned for QA task on Squad2 from Rembert checkpoint. ## Hyperparameters ## Squad 2 Evaluation stats: Metrics generated from the official Squad2 evaluation script For any questions, you can reach out to me on Twitter
[ "# Rembert Squad2\nThis model is finetuned for QA task on Squad2 from Rembert checkpoint.", "## Hyperparameters", "## Squad 2 Evaluation stats:\n\nMetrics generated from the official Squad2 evaluation script\n\nFor any questions, you can reach out to me on Twitter" ]
[ "TAGS\n#transformers #pytorch #rembert #question-answering #multilingual #dataset-squad2 #endpoints_compatible #region-us \n", "# Rembert Squad2\nThis model is finetuned for QA task on Squad2 from Rembert checkpoint.", "## Hyperparameters", "## Squad 2 Evaluation stats:\n\nMetrics generated from the official Squad2 evaluation script\n\nFor any questions, you can reach out to me on Twitter" ]
text-generation
transformers
# The Vampire Diaries DialoGPT Model
{"tags": ["conversational"]}
SirBastianXVII/DialoGPT-small-TVD
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# The Vampire Diaries DialoGPT Model
[ "# The Vampire Diaries DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# The Vampire Diaries DialoGPT Model" ]
text-generation
transformers
# Trump Insults GPT Bot
{"tags": ["conversational"]}
Sired/DialoGPT-small-trumpbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Trump Insults GPT Bot
[ "# Trump Insults GPT Bot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Trump Insults GPT Bot" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-finetuned-th-squad This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the thaiqa_squad dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["thaiqa_squad"], "widget": [{"text": "\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e40\u0e23\u0e2d\u0e31\u0e25\u0e21\u0e32\u0e14\u0e23\u0e34\u0e14\u0e01\u0e48\u0e2d\u0e15\u0e31\u0e49\u0e07\u0e02\u0e36\u0e49\u0e19\u0e43\u0e19\u0e1b\u0e35\u0e43\u0e14", "context": "\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e1f\u0e38\u0e15\u0e1a\u0e2d\u0e25\u0e40\u0e23\u0e2d\u0e31\u0e25\u0e21\u0e32\u0e14\u0e23\u0e34\u0e14 (\u0e2a\u0e40\u0e1b\u0e19: Real Madrid Club de F\u00fatbol) \u0e40\u0e1b\u0e47\u0e19\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e1f\u0e38\u0e15\u0e1a\u0e2d\u0e25\u0e17\u0e35\u0e48\u0e21\u0e35\u0e0a\u0e37\u0e48\u0e2d\u0e40\u0e2a\u0e35\u0e22\u0e07\u0e43\u0e19\u0e1b\u0e23\u0e30\u0e40\u0e17\u0e28\u0e2a\u0e40\u0e1b\u0e19 \u0e15\u0e31\u0e49\u0e07\u0e2d\u0e22\u0e39\u0e48\u0e17\u0e35\u0e48\u0e01\u0e23\u0e38\u0e07\u0e21\u0e32\u0e14\u0e23\u0e34\u0e14 \u0e1b\u0e31\u0e08\u0e08\u0e38\u0e1a\u0e31\u0e19\u0e40\u0e25\u0e48\u0e19\u0e2d\u0e22\u0e39\u0e48\u0e43\u0e19\u0e25\u0e32\u0e25\u0e34\u0e01\u0e32 \u0e01\u0e48\u0e2d\u0e15\u0e31\u0e49\u0e07\u0e02\u0e36\u0e49\u0e19\u0e43\u0e19 \u0e04.\u0e28. 1902 \u0e42\u0e14\u0e22\u0e40\u0e1b\u0e47\u0e19\u0e2b\u0e19\u0e36\u0e48\u0e07\u0e43\u0e19\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e17\u0e35\u0e48\u0e1b\u0e23\u0e30\u0e2a\u0e1a\u0e04\u0e27\u0e32\u0e21\u0e2a\u0e33\u0e40\u0e23\u0e47\u0e08\u0e21\u0e32\u0e01\u0e17\u0e35\u0e48\u0e2a\u0e38\u0e14\u0e43\u0e19\u0e17\u0e27\u0e35\u0e1b\u0e22\u0e38\u0e42\u0e23\u0e1b \u0e40\u0e23\u0e2d\u0e31\u0e25\u0e21\u0e32\u0e14\u0e23\u0e34\u0e14\u0e40\u0e1b\u0e47\u0e19\u0e2a\u0e21\u0e32\u0e0a\u0e34\u0e01\u0e02\u0e2d\u0e07\u0e01\u0e25\u0e38\u0e48\u0e21 14 \u0e0b\u0e36\u0e48\u0e07\u0e40\u0e1b\u0e47\u0e19\u0e01\u0e25\u0e38\u0e48\u0e21\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e0a\u0e31\u0e49\u0e19\u0e19\u0e33\u0e02\u0e2d\u0e07\u0e22\u0e39\u0e1f\u0e48\u0e32 \u0e41\u0e25\u0e30\u0e22\u0e31\u0e07\u0e40\u0e1b\u0e47\u0e19\u0e2b\u0e19\u0e36\u0e48\u0e07\u0e43\u0e19\u0e2a\u0e32\u0e21\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e1c\u0e39\u0e49\u0e23\u0e48\u0e27\u0e21\u0e01\u0e48\u0e2d\u0e15\u0e31\u0e49\u0e07\u0e25\u0e32\u0e25\u0e34\u0e01\u0e32\u0e0b\u0e36\u0e48\u0e07\u0e44\u0e21\u0e48\u0e40\u0e04\u0e22\u0e15\u0e01\u0e0a\u0e31\u0e49\u0e19\u0e08\u0e32\u0e01\u0e25\u0e35\u0e01\u0e2a\u0e39\u0e07\u0e2a\u0e38\u0e14\u0e19\u0e31\u0e1a\u0e15\u0e31\u0e49\u0e07\u0e41\u0e15\u0e48 \u0e04.\u0e28. 1929 \u0e21\u0e35\u0e04\u0e39\u0e48\u0e2d\u0e23\u0e34\u0e04\u0e37\u0e2d\u0e2a\u0e42\u0e21\u0e2a\u0e23\u0e1a\u0e32\u0e23\u0e4c\u0e40\u0e0b\u0e42\u0e25\u0e19\u0e32 \u0e41\u0e25\u0e30 \u0e2d\u0e31\u0e15\u0e40\u0e25\u0e15\u0e34\u0e42\u0e01\u0e40\u0e14\u0e21\u0e32\u0e14\u0e23\u0e34\u0e14 \u0e21\u0e35\u0e2a\u0e19\u0e32\u0e21\u0e40\u0e2b\u0e22\u0e49\u0e32\u0e04\u0e37\u0e2d\u0e0b\u0e32\u0e19\u0e40\u0e15\u0e35\u0e22\u0e42\u0e01 \u0e40\u0e1a\u0e23\u0e4c\u0e19\u0e32\u0e40\u0e1a\u0e27"}, {"text": "\u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49\u0e16\u0e37\u0e2d\u0e01\u0e33\u0e40\u0e19\u0e34\u0e14\u0e02\u0e36\u0e49\u0e19\u0e43\u0e19\u0e1b\u0e35\u0e43\u0e14", "context": "\u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49 \u0e40\u0e1b\u0e47\u0e19\u0e01\u0e35\u0e2c\u0e32\u0e0a\u0e19\u0e34\u0e14\u0e2b\u0e19\u0e36\u0e48\u0e07\u0e16\u0e37\u0e2d\u0e01\u0e33\u0e40\u0e19\u0e34\u0e14\u0e02\u0e36\u0e49\u0e19\u0e08\u0e32\u0e01\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49 (Rugby School) \u0e43\u0e19\u0e40\u0e21\u0e37\u0e2d\u0e07\u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49 \u0e43\u0e19\u0e40\u0e02\u0e15\u0e27\u0e2d\u0e23\u0e4c\u0e27\u0e34\u0e01\u0e40\u0e0a\u0e35\u0e22\u0e23\u0e4c \u0e1b\u0e23\u0e30\u0e40\u0e17\u0e28\u0e2d\u0e31\u0e07\u0e01\u0e24\u0e29 \u0e40\u0e23\u0e34\u0e48\u0e21\u0e15\u0e49\u0e19\u0e08\u0e32\u0e01 \u0e43\u0e19\u0e1b\u0e35 \u0e04.\u0e28. 1826 \u0e02\u0e13\u0e30\u0e19\u0e31\u0e49\u0e19\u0e40\u0e1b\u0e47\u0e19\u0e01\u0e32\u0e23\u0e41\u0e02\u0e48\u0e07\u0e02\u0e31\u0e19 \u0e1f\u0e38\u0e15\u0e1a\u0e2d\u0e25 \u0e20\u0e32\u0e22\u0e43\u0e19\u0e02\u0e2d\u0e07\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49 \u0e0b\u0e36\u0e48\u0e07\u0e15\u0e31\u0e49\u0e07\u0e2d\u0e22\u0e39\u0e48 \u0e13 \u0e40\u0e21\u0e37\u0e2d\u0e07\u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49 \u0e1b\u0e23\u0e30\u0e40\u0e17\u0e28\u0e2d\u0e31\u0e07\u0e01\u0e24\u0e29 \u0e1c\u0e39\u0e49\u0e40\u0e25\u0e48\u0e19\u0e04\u0e19\u0e2b\u0e19\u0e36\u0e48\u0e07\u0e0a\u0e37\u0e48\u0e2d \u0e27\u0e34\u0e25\u0e40\u0e25\u0e35\u0e22\u0e21 \u0e40\u0e27\u0e1a\u0e1a\u0e4c \u0e40\u0e2d\u0e25\u0e25\u0e34\u0e2a (William Webb Ellis) \u0e44\u0e14\u0e49\u0e17\u0e33\u0e1c\u0e34\u0e14\u0e01\u0e15\u0e34\u0e01\u0e32\u0e01\u0e32\u0e23\u0e41\u0e02\u0e48\u0e07\u0e02\u0e31\u0e19\u0e17\u0e35\u0e48\u0e27\u0e32\u0e07\u0e44\u0e27\u0e49 \u0e42\u0e14\u0e22\u0e27\u0e34\u0e48\u0e07\u0e2d\u0e38\u0e49\u0e21\u0e25\u0e39\u0e01\u0e1a\u0e2d\u0e25\u0e0b\u0e36\u0e48\u0e07\u0e15\u0e31\u0e27\u0e40\u0e02\u0e32\u0e40\u0e2d\u0e07\u0e44\u0e21\u0e48\u0e44\u0e14\u0e49\u0e40\u0e1b\u0e47\u0e19\u0e1c\u0e39\u0e49\u0e40\u0e25\u0e48\u0e19\u0e43\u0e19\u0e15\u0e33\u0e41\u0e2b\u0e19\u0e48\u0e07\u0e1c\u0e39\u0e49\u0e23\u0e31\u0e01\u0e29\u0e32\u0e1b\u0e23\u0e30\u0e15\u0e39 \u0e41\u0e25\u0e30\u0e44\u0e14\u0e49\u0e27\u0e34\u0e48\u0e07\u0e2d\u0e38\u0e49\u0e21\u0e25\u0e39\u0e01\u0e1a\u0e2d\u0e25\u0e44\u0e1b\u0e08\u0e19\u0e16\u0e36\u0e07\u0e40\u0e2a\u0e49\u0e19\u0e1b\u0e23\u0e30\u0e15\u0e39\u0e1d\u0e48\u0e32\u0e22\u0e15\u0e23\u0e07\u0e02\u0e49\u0e32\u0e21 \u0e40\u0e02\u0e32\u0e08\u0e30\u0e08\u0e07\u0e43\u0e08\u0e2b\u0e23\u0e37\u0e2d\u0e44\u0e21\u0e48\u0e01\u0e47\u0e15\u0e32\u0e21\u0e41\u0e15\u0e48 \u0e41\u0e15\u0e48\u0e01\u0e32\u0e23\u0e40\u0e25\u0e48\u0e19\u0e17\u0e35\u0e48\u0e19\u0e2d\u0e01\u0e25\u0e39\u0e48\u0e19\u0e2d\u0e01\u0e17\u0e32\u0e07\u0e02\u0e2d\u0e07\u0e40\u0e02\u0e32\u0e44\u0e14\u0e49\u0e40\u0e1b\u0e47\u0e19\u0e17\u0e35\u0e48\u0e1e\u0e39\u0e14\u0e16\u0e36\u0e07\u0e2d\u0e22\u0e48\u0e32\u0e07\u0e41\u0e1e\u0e23\u0e48\u0e2b\u0e25\u0e32\u0e22 \u0e43\u0e19\u0e2b\u0e21\u0e39\u0e48\u0e1c\u0e39\u0e49\u0e40\u0e25\u0e48\u0e19\u0e41\u0e25\u0e30\u0e1c\u0e39\u0e49\u0e14\u0e39\u0e08\u0e19\u0e41\u0e1e\u0e23\u0e48\u0e01\u0e23\u0e30\u0e08\u0e32\u0e22\u0e44\u0e1b\u0e15\u0e32\u0e21\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e15\u0e48\u0e32\u0e07\u0e46\u0e43\u0e19\u0e2d\u0e31\u0e07\u0e01\u0e24\u0e29 \u0e42\u0e14\u0e22\u0e40\u0e09\u0e1e\u0e32\u0e30\u0e43\u0e19\u0e2b\u0e21\u0e39\u0e48\u0e19\u0e31\u0e01\u0e40\u0e23\u0e35\u0e22\u0e19\u0e02\u0e2d\u0e07\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e40\u0e04\u0e21\u0e1a\u0e23\u0e34\u0e14\u0e08\u0e4c \u0e44\u0e14\u0e49\u0e19\u0e33\u0e40\u0e2d\u0e32\u0e27\u0e34\u0e18\u0e35\u0e01\u0e32\u0e23\u0e40\u0e25\u0e48\u0e19\u0e02\u0e2d\u0e07 \u0e19\u0e32\u0e22\u0e40\u0e2d\u0e25\u0e25\u0e35\u0e2a \u0e44\u0e1b\u0e08\u0e31\u0e14\u0e01\u0e32\u0e23\u0e41\u0e02\u0e48\u0e07\u0e02\u0e31\u0e19\u0e42\u0e14\u0e22\u0e40\u0e23\u0e35\u0e22\u0e01\u0e0a\u0e37\u0e48\u0e2d\u0e40\u0e01\u0e21\u0e0a\u0e19\u0e34\u0e14\u0e43\u0e2b\u0e21\u0e48\u0e19\u0e35\u0e49\u0e27\u0e48\u0e32 \u0e23\u0e31\u0e01\u0e1a\u0e35\u0e49\u0e40\u0e01\u0e21\u0e2a\u0e4c (Rugby Games) \u0e20\u0e32\u0e22\u0e2b\u0e25\u0e31\u0e07\u0e08\u0e32\u0e01\u0e19\u0e31\u0e49\u0e19\u0e01\u0e47\u0e40\u0e1b\u0e47\u0e19\u0e17\u0e35\u0e48\u0e19\u0e34\u0e22\u0e21\u0e40\u0e25\u0e48\u0e19\u0e01\u0e31\u0e19\u0e21\u0e32\u0e01\u0e02\u0e36\u0e49\u0e19 \u0e17\u0e31\u0e49\u0e07\u0e44\u0e14\u0e49\u0e21\u0e35\u0e01\u0e32\u0e23\u0e40\u0e1b\u0e25\u0e35\u0e48\u0e22\u0e19\u0e41\u0e1b\u0e25\u0e07\u0e41\u0e01\u0e49\u0e44\u0e02\u0e01\u0e32\u0e23\u0e40\u0e25\u0e48\u0e19\u0e40\u0e23\u0e37\u0e48\u0e2d\u0e22\u0e21\u0e32\u0e43\u0e19\u0e1b\u0e23\u0e30\u0e40\u0e17\u0e28\u0e2d\u0e31\u0e07\u0e01\u0e24\u0e29"}], "model-index": [{"name": "wangchanberta-base-att-spm-uncased-finetuned-th-squad", "results": []}]}
Sirinya/wangchanberta-th-squad_test1
null
[ "transformers", "pytorch", "tensorboard", "camembert", "question-answering", "generated_from_trainer", "dataset:thaiqa_squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #camembert #question-answering #generated_from_trainer #dataset-thaiqa_squad #endpoints_compatible #region-us
# wangchanberta-base-att-spm-uncased-finetuned-th-squad This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the thaiqa_squad dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
[ "# wangchanberta-base-att-spm-uncased-finetuned-th-squad\n\nThis model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the thaiqa_squad dataset.", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.13.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #camembert #question-answering #generated_from_trainer #dataset-thaiqa_squad #endpoints_compatible #region-us \n", "# wangchanberta-base-att-spm-uncased-finetuned-th-squad\n\nThis model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the thaiqa_squad dataset.", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.13.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
text-generation
transformers
# DialoGPT Trained on a customized various spiritual texts and mixed with various different character personalities. This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I've also trained it on various channeling experiences. I'm testing mixing this dataset with character from popular shows with the intention of creating a more diverse dialogue. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Siyris/DialoGPT-medium-SIY") model = AutoModelWithLMHead.from_pretrained("Siyris/DialoGPT-medium-SIY") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SIY: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Siyris/DialoGPT-medium-SIY
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on a customized various spiritual texts and mixed with various different character personalities. This is an instance of microsoft/DialoGPT-medium trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I've also trained it on various channeling experiences. I'm testing mixing this dataset with character from popular shows with the intention of creating a more diverse dialogue. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model:
[ "# DialoGPT Trained on a customized various spiritual texts and mixed with various different character personalities.\nThis is an instance of microsoft/DialoGPT-medium trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I've also trained it on various channeling experiences. I'm testing mixing this dataset with character from popular shows with the intention of creating a more diverse dialogue.\nI built a Discord AI chatbot based on this model for internal use within Siyris, Inc.\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on a customized various spiritual texts and mixed with various different character personalities.\nThis is an instance of microsoft/DialoGPT-medium trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I've also trained it on various channeling experiences. I'm testing mixing this dataset with character from popular shows with the intention of creating a more diverse dialogue.\nI built a Discord AI chatbot based on this model for internal use within Siyris, Inc.\nChat with the model:" ]
text-generation
transformers
# DialoGPT Trained on a customized version of The Law of One. This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Siyris/SIY") model = AutoModelWithLMHead.from_pretrained("Siyris/SIY") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SIY: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Siyris/SIY
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on a customized version of The Law of One. This is an instance of microsoft/DialoGPT-medium trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model:
[ "# DialoGPT Trained on a customized version of The Law of One.\nThis is an instance of microsoft/DialoGPT-medium trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better.\nI built a Discord AI chatbot based on this model for internal use within Siyris, Inc.\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on a customized version of The Law of One.\nThis is an instance of microsoft/DialoGPT-medium trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better.\nI built a Discord AI chatbot based on this model for internal use within Siyris, Inc.\nChat with the model:" ]
question-answering
transformers
# BERT base Japanese - JaQuAD ## Description A Japanese Question Answering model fine-tuned on [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD). Please refer [BERT base Japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) for details about the pre-training model. The codes for the fine-tuning are available at [SkelterLabsInc/JaQuAD](https://github.com/SkelterLabsInc/JaQuAD) ## Evaluation results On the development set. ```shell {"f1": 77.35, "exact_match": 61.01} ``` On the test set. ```shell {"f1": 78.92, "exact_match": 63.38} ``` ## Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?' context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。' model = AutoModelForQuestionAnswering.from_pretrained( 'SkelterLabsInc/bert-base-japanese-jaquad') tokenizer = AutoTokenizer.from_pretrained( 'SkelterLabsInc/bert-base-japanese-jaquad') inputs = tokenizer( question, context, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] outputs = model(**inputs) answer_start_scores = outputs.start_logits answer_end_scores = outputs.end_logits # Get the most likely beginning of answer with the argmax of the score. answer_start = torch.argmax(answer_start_scores) # Get the most likely end of answer with the argmax of the score. # 1 is added to `answer_end` because the index pointed by score is inclusive. answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) # answer = 'スコットランド' ``` ## License The fine-tuned model is licensed under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license. ## Citation ```bibtex @misc{so2022jaquad, title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}}, author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho}, year={2022}, eprint={2202.01764}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-sa-3.0", "tags": ["question-answering", "extractive-qa"], "datasets": ["SkelterLabsInc/JaQuAD"], "metrics": ["Exact match", "F1 score"], "pipeline_tag": ["None"]}
SkelterLabsInc/bert-base-japanese-jaquad
null
[ "transformers", "pytorch", "bert", "question-answering", "extractive-qa", "ja", "dataset:SkelterLabsInc/JaQuAD", "arxiv:2202.01764", "license:cc-by-sa-3.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2202.01764" ]
[ "ja" ]
TAGS #transformers #pytorch #bert #question-answering #extractive-qa #ja #dataset-SkelterLabsInc/JaQuAD #arxiv-2202.01764 #license-cc-by-sa-3.0 #endpoints_compatible #region-us
# BERT base Japanese - JaQuAD ## Description A Japanese Question Answering model fine-tuned on JaQuAD. Please refer BERT base Japanese for details about the pre-training model. The codes for the fine-tuning are available at SkelterLabsInc/JaQuAD ## Evaluation results On the development set. On the test set. ## Usage ## License The fine-tuned model is licensed under the CC BY-SA 3.0 license.
[ "# BERT base Japanese - JaQuAD", "## Description\n\nA Japanese Question Answering model fine-tuned on JaQuAD.\nPlease refer BERT base Japanese for details about the pre-training model.\nThe codes for the fine-tuning are available at SkelterLabsInc/JaQuAD", "## Evaluation results\n\nOn the development set.\n\n\n\nOn the test set.", "## Usage", "## License\n\nThe fine-tuned model is licensed under the CC BY-SA 3.0 license." ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #extractive-qa #ja #dataset-SkelterLabsInc/JaQuAD #arxiv-2202.01764 #license-cc-by-sa-3.0 #endpoints_compatible #region-us \n", "# BERT base Japanese - JaQuAD", "## Description\n\nA Japanese Question Answering model fine-tuned on JaQuAD.\nPlease refer BERT base Japanese for details about the pre-training model.\nThe codes for the fine-tuning are available at SkelterLabsInc/JaQuAD", "## Evaluation results\n\nOn the development set.\n\n\n\nOn the test set.", "## Usage", "## License\n\nThe fine-tuned model is licensed under the CC BY-SA 3.0 license." ]
text2text-generation
transformers
**Model Overview** This is the model presented in the paper ["ParaDetox: Detoxification with Parallel Data"](https://aclanthology.org/2022.acl-long.469/). The model itself is [BART (base)](https://huggingface.co/facebook/bart-base) model trained on parallel detoxification dataset ParaDetox achiving SOTA results for detoxification task. More details, code and data can be found [here](https://github.com/skoltech-nlp/paradetox). **How to use** ```python from transformers import BartForConditionalGeneration, AutoTokenizer base_model_name = 'facebook/bart-base' model_name = 'SkolkovoInstitute/bart-base-detox' tokenizer = AutoTokenizer.from_pretrained(base_model_name) model = BartForConditionalGeneration.from_pretrained(model_name) ``` **Citation** ``` @inproceedings{logacheva-etal-2022-paradetox, title = "{P}ara{D}etox: Detoxification with Parallel Data", author = "Logacheva, Varvara and Dementieva, Daryna and Ustyantsev, Sergey and Moskovskiy, Daniil and Dale, David and Krotova, Irina and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.469", pages = "6804--6818", abstract = "We present a novel pipeline for the collection of parallel data for the detoxification task. We collect non-toxic paraphrases for over 10,000 English toxic sentences. We also show that this pipeline can be used to distill a large existing corpus of paraphrases to get toxic-neutral sentence pairs. We release two parallel corpora which can be used for the training of detoxification models. To the best of our knowledge, these are the first parallel datasets for this task.We describe our pipeline in detail to make it fast to set up for a new language or domain, thus contributing to faster and easier development of new parallel resources.We train several detoxification models on the collected data and compare them with several baselines and state-of-the-art unsupervised approaches. We conduct both automatic and manual evaluations. All models trained on parallel data outperform the state-of-the-art unsupervised models by a large margin. This suggests that our novel datasets can boost the performance of detoxification systems.", } ```
{"language": ["en"], "license": "openrail++", "tags": ["detoxification"], "datasets": ["s-nlp/paradetox"], "licenses": ["cc-by-nc-sa"]}
s-nlp/bart-base-detox
null
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "detoxification", "en", "dataset:s-nlp/paradetox", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #detoxification #en #dataset-s-nlp/paradetox #license-openrail++ #autotrain_compatible #endpoints_compatible #region-us
Model Overview This is the model presented in the paper "ParaDetox: Detoxification with Parallel Data". The model itself is BART (base) model trained on parallel detoxification dataset ParaDetox achiving SOTA results for detoxification task. More details, code and data can be found here. How to use Citation
[]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #detoxification #en #dataset-s-nlp/paradetox #license-openrail++ #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-generation
transformers
# Model Details This is a conditional language model based on [gpt2-medium](https://huggingface.co/gpt2-medium/) but with a vocabulary from [t5-base](https://huggingface.co/t5-base), for compatibility with T5-based paraphrasers such as [t5-paranmt-detox](https://huggingface.co/SkolkovoInstitute/t5-paranmt-detox). The model is conditional on two styles, `toxic` and `normal`, and was fine-tuned on the dataset from the Jigsaw [toxic comment classification challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge). The model was trained for the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/2109.08914) (Dale et al, 2021) that describes its possible usage in more detail. An example of its use and the code for its training is given in https://github.com/skoltech-nlp/detox. ## Model Description - **Developed by:** SkolkovoInstitute - **Model type:** Conditional Text Generation - **Language:** English - **Related Models:** - **Parent Model:** [gpt2-medium](https://huggingface.co/gpt2-medium/) - **Source of vocabulary:** [t5-base](https://huggingface.co/t5-base) - **Resources for more information:** - The paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/2109.08914) - Its repository https://github.com/skoltech-nlp/detox. # Uses The model is intended for usage as a discriminator in a text detoxification pipeline using the ParaGeDi approach (see [the paper](https://arxiv.org/abs/2109.08914) for more details). It can also be used for text generation conditional on toxic or non-toxic style, but we do not know how to condition it on the things other than toxicity, so we do not recommend this usage. Another possible use is as a toxicity classifier (using the Bayes rule), but the model is not expected to perform better than e.g. a BERT-based standard classifier. # Bias, Risks, and Limitations The model inherits all the risks of its parent model, [gpt2-medium](https://huggingface.co/gpt2-medium/). It also inherits all the biases of the [Jigsaw dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) on which it was fine-tuned. The model is intended to be conditional on style, but in fact it does not clearly separate the concepts of style and content, so it might regard some texts as toxic or safe based not on the style, but on their topics or keywords. # Training Details See the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/2109.08914) and [the associated code](https://github.com/s-nlp/detox/tree/main/emnlp2021/style_transfer/paraGeDi). # Evaluation The model has not been evaluated on its own, only as a part as a ParaGeDi text detoxification pipeline (see [the paper](https://arxiv.org/abs/2109.08914)). # Citation **BibTeX:** ``` @inproceedings{dale-etal-2021-text, title = "Text Detoxification using Large Pre-trained Neural Models", author = "Dale, David and Voronov, Anton and Dementieva, Daryna and Logacheva, Varvara and Kozlova, Olga and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.629", pages = "7979--7996", } ```
{"language": ["en"], "tags": ["text-generation", "conditional-text-generation"]}
s-nlp/gpt2-base-gedi-detoxification
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conditional-text-generation", "en", "arxiv:2109.08914", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2109.08914" ]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #conditional-text-generation #en #arxiv-2109.08914 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Details This is a conditional language model based on gpt2-medium but with a vocabulary from t5-base, for compatibility with T5-based paraphrasers such as t5-paranmt-detox. The model is conditional on two styles, 'toxic' and 'normal', and was fine-tuned on the dataset from the Jigsaw toxic comment classification challenge. The model was trained for the paper Text Detoxification using Large Pre-trained Neural Models (Dale et al, 2021) that describes its possible usage in more detail. An example of its use and the code for its training is given in URL ## Model Description - Developed by: SkolkovoInstitute - Model type: Conditional Text Generation - Language: English - Related Models: - Parent Model: gpt2-medium - Source of vocabulary: t5-base - Resources for more information: - The paper Text Detoxification using Large Pre-trained Neural Models - Its repository URL # Uses The model is intended for usage as a discriminator in a text detoxification pipeline using the ParaGeDi approach (see the paper for more details). It can also be used for text generation conditional on toxic or non-toxic style, but we do not know how to condition it on the things other than toxicity, so we do not recommend this usage. Another possible use is as a toxicity classifier (using the Bayes rule), but the model is not expected to perform better than e.g. a BERT-based standard classifier. # Bias, Risks, and Limitations The model inherits all the risks of its parent model, gpt2-medium. It also inherits all the biases of the Jigsaw dataset on which it was fine-tuned. The model is intended to be conditional on style, but in fact it does not clearly separate the concepts of style and content, so it might regard some texts as toxic or safe based not on the style, but on their topics or keywords. # Training Details See the paper Text Detoxification using Large Pre-trained Neural Models and the associated code. # Evaluation The model has not been evaluated on its own, only as a part as a ParaGeDi text detoxification pipeline (see the paper). BibTeX:
[ "# Model Details\n \n\nThis is a conditional language model based on gpt2-medium but with a vocabulary from t5-base, for compatibility with T5-based paraphrasers such as t5-paranmt-detox. The model is conditional on two styles, 'toxic' and 'normal', and was fine-tuned on the dataset from the Jigsaw toxic comment classification challenge.\n\nThe model was trained for the paper Text Detoxification using Large Pre-trained Neural Models (Dale et al, 2021) that describes its possible usage in more detail. \n\nAn example of its use and the code for its training is given in URL", "## Model Description\n \n- Developed by: SkolkovoInstitute\n- Model type: Conditional Text Generation\n- Language: English\n- Related Models:\n - Parent Model: gpt2-medium\n - Source of vocabulary: t5-base\n- Resources for more information: \n - The paper Text Detoxification using Large Pre-trained Neural Models\n - Its repository URL", "# Uses\n\nThe model is intended for usage as a discriminator in a text detoxification pipeline using the ParaGeDi approach (see the paper for more details). It can also be used for text generation conditional on toxic or non-toxic style, but we do not know how to condition it on the things other than toxicity, so we do not recommend this usage. Another possible use is as a toxicity classifier (using the Bayes rule), but the model is not expected to perform better than e.g. a BERT-based standard classifier.", "# Bias, Risks, and Limitations\nThe model inherits all the risks of its parent model, gpt2-medium. It also inherits all the biases of the Jigsaw dataset on which it was fine-tuned. The model is intended to be conditional on style, but in fact it does not clearly separate the concepts of style and content, so it might regard some texts as toxic or safe based not on the style, but on their topics or keywords.", "# Training Details\nSee the paper Text Detoxification using Large Pre-trained Neural Models and the associated code.", "# Evaluation\nThe model has not been evaluated on its own, only as a part as a ParaGeDi text detoxification pipeline (see the paper).\n\nBibTeX:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conditional-text-generation #en #arxiv-2109.08914 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Details\n \n\nThis is a conditional language model based on gpt2-medium but with a vocabulary from t5-base, for compatibility with T5-based paraphrasers such as t5-paranmt-detox. The model is conditional on two styles, 'toxic' and 'normal', and was fine-tuned on the dataset from the Jigsaw toxic comment classification challenge.\n\nThe model was trained for the paper Text Detoxification using Large Pre-trained Neural Models (Dale et al, 2021) that describes its possible usage in more detail. \n\nAn example of its use and the code for its training is given in URL", "## Model Description\n \n- Developed by: SkolkovoInstitute\n- Model type: Conditional Text Generation\n- Language: English\n- Related Models:\n - Parent Model: gpt2-medium\n - Source of vocabulary: t5-base\n- Resources for more information: \n - The paper Text Detoxification using Large Pre-trained Neural Models\n - Its repository URL", "# Uses\n\nThe model is intended for usage as a discriminator in a text detoxification pipeline using the ParaGeDi approach (see the paper for more details). It can also be used for text generation conditional on toxic or non-toxic style, but we do not know how to condition it on the things other than toxicity, so we do not recommend this usage. Another possible use is as a toxicity classifier (using the Bayes rule), but the model is not expected to perform better than e.g. a BERT-based standard classifier.", "# Bias, Risks, and Limitations\nThe model inherits all the risks of its parent model, gpt2-medium. It also inherits all the biases of the Jigsaw dataset on which it was fine-tuned. The model is intended to be conditional on style, but in fact it does not clearly separate the concepts of style and content, so it might regard some texts as toxic or safe based not on the style, but on their topics or keywords.", "# Training Details\nSee the paper Text Detoxification using Large Pre-trained Neural Models and the associated code.", "# Evaluation\nThe model has not been evaluated on its own, only as a part as a ParaGeDi text detoxification pipeline (see the paper).\n\nBibTeX:" ]
text-classification
transformers
The model has been trained to predict for English sentences, whether they are formal or informal. Base model: `roberta-base` Datasets: [GYAFC](https://github.com/raosudha89/GYAFC-corpus) from [Rao and Tetreault, 2018](https://aclanthology.org/N18-1012) and [online formality corpus](http://www.seas.upenn.edu/~nlp/resources/formality-corpus.tgz) from [Pavlick and Tetreault, 2016](https://aclanthology.org/Q16-1005). Data augmentation: changing texts to upper or lower case; removing all punctuation, adding dot at the end of a sentence. It was applied because otherwise the model is over-reliant on punctuation and capitalization and does not pay enough attention to other features. Loss: binary classification (on GYAFC), in-batch ranking (on PT data). Performance metrics on the test data: | dataset | ROC AUC | precision | recall | fscore | accuracy | Spearman | |----------------------------------------------|---------|-----------|--------|--------|----------|------------| | GYAFC | 0.9779 | 0.90 | 0.91 | 0.90 | 0.9087 | 0.8233 | | GYAFC normalized (lowercase + remove punct.) | 0.9234 | 0.85 | 0.81 | 0.82 | 0.8218 | 0.7294 | | P&T subset | Spearman R | | - | - | news | 0.4003 answers | 0.7500 blog | 0.7334 email | 0.7606 ## Citation If you are using the model in your research, please cite the following [paper](https://doi.org/10.1007/978-3-031-35320-8_4) where it was introduced: ``` @InProceedings{10.1007/978-3-031-35320-8_4, author="Babakov, Nikolay and Dale, David and Gusev, Ilya and Krotova, Irina and Panchenko, Alexander", editor="M{\'e}tais, Elisabeth and Meziane, Farid and Sugumaran, Vijayan and Manning, Warren and Reiff-Marganiec, Stephan", title="Don't Lose the Message While Paraphrasing: A Study on Content Preserving Style Transfer", booktitle="Natural Language Processing and Information Systems", year="2023", publisher="Springer Nature Switzerland", address="Cham", pages="47--61", isbn="978-3-031-35320-8" } ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
{"language": ["en"], "license": "cc-by-nc-sa-4.0", "tags": ["formality"], "datasets": ["GYAFC", "Pavlick-Tetreault-2016"]}
s-nlp/roberta-base-formality-ranker
null
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "formality", "en", "dataset:GYAFC", "dataset:Pavlick-Tetreault-2016", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #roberta #text-classification #formality #en #dataset-GYAFC #dataset-Pavlick-Tetreault-2016 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
The model has been trained to predict for English sentences, whether they are formal or informal. Base model: 'roberta-base' Datasets: GYAFC from Rao and Tetreault, 2018 and online formality corpus from Pavlick and Tetreault, 2016. Data augmentation: changing texts to upper or lower case; removing all punctuation, adding dot at the end of a sentence. It was applied because otherwise the model is over-reliant on punctuation and capitalization and does not pay enough attention to other features. Loss: binary classification (on GYAFC), in-batch ranking (on PT data). Performance metrics on the test data: If you are using the model in your research, please cite the following paper where it was introduced: Licensing Information --------------------- [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL). [![CC BY-NC-SA 4.0](https://i.URL)](URL)
[]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #text-classification #formality #en #dataset-GYAFC #dataset-Pavlick-Tetreault-2016 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
text-classification
transformers
## Toxicity Classification Model (but for the first part of the data) This model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by **Jigsaw** ([Jigsaw 2018](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Jigsaw 2019](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification), [Jigsaw 2020](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification)), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model ([RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)) on it. THIS MODEL WAS FINE-TUNED ON THE FIRST PART. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the **AUC-ROC** of 0.98 and **F1-score** of 0.76. ## How to use ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification # load tokenizer and model weights, but be careful, here we need to use auth token tokenizer = RobertaTokenizer.from_pretrained('SkolkovoInstitute/roberta_toxicity_classifier', use_auth_token=True) model = RobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/roberta_toxicity_classifier', use_auth_token=True) # prepare the input batch = tokenizer.encode('you are amazing', return_tensors='pt') # inference model(batch) ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
{"language": ["en"], "tags": ["toxic comments classification"], "licenses": ["cc-by-nc-sa"]}
s-nlp/roberta_first_toxicity_classifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "toxic comments classification", "en", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #toxic comments classification #en #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
## Toxicity Classification Model (but for the first part of the data) This model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by Jigsaw (Jigsaw 2018, Jigsaw 2019, Jigsaw 2020), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model (RoBERTa: A Robustly Optimized BERT Pretraining Approach) on it. THIS MODEL WAS FINE-TUNED ON THE FIRST PART. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the AUC-ROC of 0.98 and F1-score of 0.76. ## How to use ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: URL [cc-by-nc-sa-image]: https://i.URL
[ "## Toxicity Classification Model (but for the first part of the data)\nThis model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by Jigsaw (Jigsaw 2018, Jigsaw 2019, Jigsaw 2020), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model (RoBERTa: A Robustly Optimized BERT Pretraining Approach) on it. THIS MODEL WAS FINE-TUNED ON THE FIRST PART. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the AUC-ROC of 0.98 and F1-score of 0.76.", "## How to use", "## Licensing Information\n\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].\n\n[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]\n\n[cc-by-nc-sa]: URL\n[cc-by-nc-sa-image]: https://i.URL" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #toxic comments classification #en #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "## Toxicity Classification Model (but for the first part of the data)\nThis model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by Jigsaw (Jigsaw 2018, Jigsaw 2019, Jigsaw 2020), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model (RoBERTa: A Robustly Optimized BERT Pretraining Approach) on it. THIS MODEL WAS FINE-TUNED ON THE FIRST PART. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the AUC-ROC of 0.98 and F1-score of 0.76.", "## How to use", "## Licensing Information\n\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].\n\n[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]\n\n[cc-by-nc-sa]: URL\n[cc-by-nc-sa-image]: https://i.URL" ]
text-classification
transformers
## Toxicity Classification Model This model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by **Jigsaw** ([Jigsaw 2018](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Jigsaw 2019](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification), [Jigsaw 2020](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification)), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model ([RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)) on it. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the **AUC-ROC** of 0.98 and **F1-score** of 0.76. ## How to use ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification # load tokenizer and model weights tokenizer = RobertaTokenizer.from_pretrained('SkolkovoInstitute/roberta_toxicity_classifier') model = RobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/roberta_toxicity_classifier') # prepare the input batch = tokenizer.encode('you are amazing', return_tensors='pt') # inference model(batch) ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
{"language": ["en"], "tags": ["toxic comments classification"], "licenses": ["cc-by-nc-sa"]}
s-nlp/roberta_toxicity_classifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "toxic comments classification", "en", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #toxic comments classification #en #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us
## Toxicity Classification Model This model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by Jigsaw (Jigsaw 2018, Jigsaw 2019, Jigsaw 2020), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model (RoBERTa: A Robustly Optimized BERT Pretraining Approach) on it. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the AUC-ROC of 0.98 and F1-score of 0.76. ## How to use ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: URL [cc-by-nc-sa-image]: https://i.URL
[ "## Toxicity Classification Model\n\nThis model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by Jigsaw (Jigsaw 2018, Jigsaw 2019, Jigsaw 2020), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model (RoBERTa: A Robustly Optimized BERT Pretraining Approach) on it. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the AUC-ROC of 0.98 and F1-score of 0.76.", "## How to use", "## Licensing Information\n\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].\n\n[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]\n\n[cc-by-nc-sa]: URL\n[cc-by-nc-sa-image]: https://i.URL" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #toxic comments classification #en #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "## Toxicity Classification Model\n\nThis model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by Jigsaw (Jigsaw 2018, Jigsaw 2019, Jigsaw 2020), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model (RoBERTa: A Robustly Optimized BERT Pretraining Approach) on it. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the AUC-ROC of 0.98 and F1-score of 0.76.", "## How to use", "## Licensing Information\n\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].\n\n[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]\n\n[cc-by-nc-sa]: URL\n[cc-by-nc-sa-image]: https://i.URL" ]
text-classification
transformers
This model is a clone of [SkolkovoInstitute/roberta_toxicity_classifier](https://huggingface.co/SkolkovoInstitute/roberta_toxicity_classifier) trained on a disjoint dataset. While `roberta_toxicity_classifier` is used for evaluation of detoxification algorithms, `roberta_toxicity_classifier_v1` can be used within these algorithms, as in the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/1911.00536).
{}
s-nlp/roberta_toxicity_classifier_v1
null
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:1911.00536", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1911.00536" ]
[]
TAGS #transformers #pytorch #roberta #text-classification #arxiv-1911.00536 #autotrain_compatible #endpoints_compatible #region-us
This model is a clone of SkolkovoInstitute/roberta_toxicity_classifier trained on a disjoint dataset. While 'roberta_toxicity_classifier' is used for evaluation of detoxification algorithms, 'roberta_toxicity_classifier_v1' can be used within these algorithms, as in the paper Text Detoxification using Large Pre-trained Neural Models.
[]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #arxiv-1911.00536 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
This is the detoxification baseline model trained on the [train](https://github.com/skoltech-nlp/russe_detox_2022/blob/main/data/input/train.tsv) part of "RUSSE 2022: Russian Text Detoxification Based on Parallel Corpora" competition. The source sentences are Russian toxic messages from Odnoklassniki, Pikabu, and Twitter platforms. The base model is [ruT5](https://huggingface.co/sberbank-ai/ruT5-base) provided from Sber. **How to use** ```python from transformers import T5ForConditionalGeneration, AutoTokenizer base_model_name = 'sberbank-ai/ruT5-base' model_name = 'SkolkovoInstitute/ruT5-base-detox' tokenizer = AutoTokenizer.from_pretrained(base_model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ```
{"language": ["ru"], "license": "openrail++", "tags": ["text-generation-inference"], "datasets": ["s-nlp/ru_paradetox"]}
s-nlp/ruT5-base-detox
null
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "text-generation-inference", "ru", "dataset:s-nlp/ru_paradetox", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #safetensors #t5 #text2text-generation #text-generation-inference #ru #dataset-s-nlp/ru_paradetox #license-openrail++ #autotrain_compatible #endpoints_compatible #region-us
This is the detoxification baseline model trained on the train part of "RUSSE 2022: Russian Text Detoxification Based on Parallel Corpora" competition. The source sentences are Russian toxic messages from Odnoklassniki, Pikabu, and Twitter platforms. The base model is ruT5 provided from Sber. How to use
[]
[ "TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #text-generation-inference #ru #dataset-s-nlp/ru_paradetox #license-openrail++ #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
This is a model for evaluation of naturalness of short Russian texts. It has been trained to distinguish human-written texts from their corrupted versions. Corruption sources: random replacement, deletion, addition, shuffling, and re-inflection of words and characters, random changes of capitalization, round-trip translation, filling random gaps with T5 and RoBERTA models. For each original text, we sampled three corrupted texts, so the model is uniformly biased towards the `unnatural` label. Data sources: web-corpora from [the Leipzig collection](https://wortschatz.uni-leipzig.de/en/download) (`rus_news_2020_100K`, `rus_newscrawl-public_2018_100K`, `rus-ru_web-public_2019_100K`, `rus_wikipedia_2021_100K`), comments from [OK](https://www.kaggle.com/alexandersemiletov/toxic-russian-comments) and [Pikabu](https://www.kaggle.com/blackmoon/russian-language-toxic-comments). On our private test dataset, the model has achieved 40% rank correlation with human judgements of naturalness, which is higher than GPT perplexity, another popular fluency metric.
{"language": ["ru"], "tags": ["fluency"]}
s-nlp/rubert-base-corruption-detector
null
[ "transformers", "pytorch", "bert", "text-classification", "fluency", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #bert #text-classification #fluency #ru #autotrain_compatible #endpoints_compatible #region-us
This is a model for evaluation of naturalness of short Russian texts. It has been trained to distinguish human-written texts from their corrupted versions. Corruption sources: random replacement, deletion, addition, shuffling, and re-inflection of words and characters, random changes of capitalization, round-trip translation, filling random gaps with T5 and RoBERTA models. For each original text, we sampled three corrupted texts, so the model is uniformly biased towards the 'unnatural' label. Data sources: web-corpora from the Leipzig collection ('rus_news_2020_100K', 'rus_newscrawl-public_2018_100K', 'rus-ru_web-public_2019_100K', 'rus_wikipedia_2021_100K'), comments from OK and Pikabu. On our private test dataset, the model has achieved 40% rank correlation with human judgements of naturalness, which is higher than GPT perplexity, another popular fluency metric.
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #fluency #ru #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
Bert-based classifier (finetuned from [Conversational Rubert](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)) trained on merge of Russian Language Toxic Comments [dataset](https://www.kaggle.com/blackmoon/russian-language-toxic-comments/metadata) collected from 2ch.hk and Toxic Russian Comments [dataset](https://www.kaggle.com/alexandersemiletov/toxic-russian-comments) collected from ok.ru. The datasets were merged, shuffled, and split into train, dev, test splits in 80-10-10 proportion. The metrics obtained from test dataset is as follows | | precision | recall | f1-score | support | |:------------:|:---------:|:------:|:--------:|:-------:| | 0 | 0.98 | 0.99 | 0.98 | 21384 | | 1 | 0.94 | 0.92 | 0.93 | 4886 | | accuracy | | | 0.97 | 26270| | macro avg | 0.96 | 0.96 | 0.96 | 26270 | | weighted avg | 0.97 | 0.97 | 0.97 | 26270 | ## How to use ```python from transformers import BertTokenizer, BertForSequenceClassification # load tokenizer and model weights tokenizer = BertTokenizer.from_pretrained('SkolkovoInstitute/russian_toxicity_classifier') model = BertForSequenceClassification.from_pretrained('SkolkovoInstitute/russian_toxicity_classifier') # prepare the input batch = tokenizer.encode('ты супер', return_tensors='pt') # inference model(batch) ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
{"language": ["ru"], "tags": ["toxic comments classification"], "licenses": ["cc-by-nc-sa"]}
s-nlp/russian_toxicity_classifier
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "toxic comments classification", "ru", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #safetensors #bert #text-classification #toxic comments classification #ru #autotrain_compatible #endpoints_compatible #has_space #region-us
Bert-based classifier (finetuned from Conversational Rubert) trained on merge of Russian Language Toxic Comments dataset collected from URL and Toxic Russian Comments dataset collected from URL. The datasets were merged, shuffled, and split into train, dev, test splits in 80-10-10 proportion. The metrics obtained from test dataset is as follows How to use ---------- Licensing Information --------------------- [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL). [![CC BY-NC-SA 4.0](https://i.URL)](URL)
[]
[ "TAGS\n#transformers #pytorch #tf #safetensors #bert #text-classification #toxic comments classification #ru #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
text2text-generation
transformers
This is a paraphraser based on [ceshine/t5-paraphrase-paws-msrp-opinosis](https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis) and additionally fine-tuned on [ParaNMT](https://arxiv.org/abs/1711.05732) filtered for the task of detoxification. The model was trained for the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/1911.00536). An example of its use and the code for its training is given in https://github.com/skoltech-nlp/detox
{"license": "openrail++", "datasets": ["s-nlp/paranmt_for_detox"]}
s-nlp/t5-paranmt-detox
null
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "dataset:s-nlp/paranmt_for_detox", "arxiv:1711.05732", "arxiv:1911.00536", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1711.05732", "1911.00536" ]
[]
TAGS #transformers #pytorch #safetensors #t5 #text2text-generation #dataset-s-nlp/paranmt_for_detox #arxiv-1711.05732 #arxiv-1911.00536 #license-openrail++ #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is a paraphraser based on ceshine/t5-paraphrase-paws-msrp-opinosis and additionally fine-tuned on ParaNMT filtered for the task of detoxification. The model was trained for the paper Text Detoxification using Large Pre-trained Neural Models. An example of its use and the code for its training is given in URL
[]
[ "TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #dataset-s-nlp/paranmt_for_detox #arxiv-1711.05732 #arxiv-1911.00536 #license-openrail++ #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text2text-generation
transformers
This is a paraphraser based on [ceshine/t5-paraphrase-paws-msrp-opinosis](https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis) and additionally fine-tuned on [ParaNMT](https://arxiv.org/abs/1711.05732). The model was trained for the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/1911.00536). An example of its use is given in https://github.com/skoltech-nlp/detox
{}
s-nlp/t5-paraphrase-paws-msrp-opinosis-paranmt
null
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:1711.05732", "arxiv:1911.00536", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1711.05732", "1911.00536" ]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #arxiv-1711.05732 #arxiv-1911.00536 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is a paraphraser based on ceshine/t5-paraphrase-paws-msrp-opinosis and additionally fine-tuned on ParaNMT. The model was trained for the paper Text Detoxification using Large Pre-trained Neural Models. An example of its use is given in URL
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #arxiv-1711.05732 #arxiv-1911.00536 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-classification
transformers
XLMRoberta-based classifier trained on XFORMAL. all | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.744912 | 0.927790 | 0.826354 | 108019 | | 1 | 0.889088 | 0.645630 | 0.748048 | 96845 | | accuracy | | | 0.794405 | 204864 | | macro avg | 0.817000 | 0.786710 | 0.787201 | 204864 | | weighted avg | 0.813068 | 0.794405 | 0.789337 | 204864 | en | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.800053 | 0.962981 | 0.873988 | 22151 | | 1 | 0.945106 | 0.725899 | 0.821124 | 19449 | | accuracy | | | 0.852139 | 41600 | | macro avg | 0.872579 | 0.844440 | 0.847556 | 41600 | | weighted avg | 0.867869 | 0.852139 | 0.849273 | 41600 | fr | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.746709 | 0.925738 | 0.826641 | 21505 | | 1 | 0.887305 | 0.650592 | 0.750731 | 19327 | | accuracy | | | 0.795504 | 40832 | | macro avg | 0.817007 | 0.788165 | 0.788686 | 40832 | | weighted avg | 0.813257 | 0.795504 | 0.790711 | 40832 | it | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.721282 | 0.914669 | 0.806545 | 21528 | | 1 | 0.864887 | 0.607135 | 0.713445 | 19368 | | accuracy | | | 0.769024 | 40896 | | macro avg | 0.793084 | 0.760902 | 0.759995 | 40896 | | weighted avg | 0.789292 | 0.769024 | 0.762454 | 40896 | pt | | precision | recall | f1-score | support | |--------------|-----------|----------|----------|---------| | 0 | 0.717546 | 0.908167 | 0.801681 | 21637 | | 1 | 0.853628 | 0.599700 | 0.704481 | 19323 | | accuracy | | | 0.762646 | 40960 | | macro avg | 0.785587 | 0.753933 | 0.753081 | 40960 | | weighted avg | 0.781743 | 0.762646 | 0.755826 | 40960 | ## How to use ```python from transformers import XLMRobertaTokenizerFast, XLMRobertaForSequenceClassification # load tokenizer and model weights tokenizer = XLMRobertaTokenizerFast.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier') model = XLMRobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier') # prepare the input batch = tokenizer.encode('ты супер', return_tensors='pt') # inference model(batch) ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
{"language": ["en", "fr", "it", "pt"], "license": "cc-by-nc-sa-4.0", "tags": ["formal or informal classification"], "licenses": ["cc-by-nc-sa"]}
s-nlp/xlmr_formality_classifier
null
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "formal or informal classification", "en", "fr", "it", "pt", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en", "fr", "it", "pt" ]
TAGS #transformers #pytorch #safetensors #xlm-roberta #text-classification #formal or informal classification #en #fr #it #pt #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
XLMRoberta-based classifier trained on XFORMAL. all en fr it pt How to use ---------- Licensing Information --------------------- [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL). [![CC BY-NC-SA 4.0](https://i.URL)](URL)
[]
[ "TAGS\n#transformers #pytorch #safetensors #xlm-roberta #text-classification #formal or informal classification #en #fr #it #pt #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
## General concept of the model #### Proposed usage The **'inappropriateness'** substance we tried to collect in the dataset and detect with the model **is NOT a substitution of toxicity**, it is rather a derivative of toxicity. So the model based on our dataset could serve as **an additional layer of inappropriateness filtering after toxicity and obscenity filtration**. You can detect the exact sensitive topic by using [another model](https://huggingface.co/Skoltech/russian-sensitive-topics). The proposed pipeline is shown in the scheme below. ![alternativetext](https://huggingface.co/Skoltech/russian-inappropriate-messages/raw/main/classifier_scheme_with_comments.jpg) You can also train one classifier for both toxicity and inappropriateness detection. The data to be mixed with toxic labelled samples could be found on our [GitHub](https://github.com/skoltech-nlp/inappropriate-sensitive-topics/blob/main/Version2/appropriateness/Appropriateness.csv) or on [kaggle](https://www.kaggle.com/nigula/russianinappropriatemessages) #### Inappropraiteness intuition This model is trained on the dataset of inappropriate messages of the Russian language. Generally, an inappropriate utterance is an utterance that has not obscene words or any kind of toxic intent, but can still harm the reputation of the speaker. Find some sample for more intuition in the table below. Learn more about the concept of inappropriateness [in this article ](https://www.aclweb.org/anthology/2021.bsnlp-1.4/) presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our [GitHub](https://github.com/skoltech-nlp/inappropriate-sensitive-topics/blob/main/Version2/appropriateness/Appropriateness.csv) or on [kaggle](https://www.kaggle.com/nigula/russianinappropriatemessages). The properties of the dataset are the same as the one described in the article, the only difference is the size. | Text | Inappropriate | Comment | Unsafe topic | |------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------|---------------| | Ладно бы видного деятеля завалили а тут какого то ноунейм нигру преступника | yes | Оправдание убийства | offline crime | | Это нарушение УКРФ! | no | Осуждение нарушения закона | offline crime | | Религия - это насилие высшего уровня. Верующего принуждают к вере еще в младенчестве. | yes | Оскорбление чувств верующих | religion | | Христиане, как вы относитесь к иноверцам, в частности к Гамалиилу и к уверовавшим в Иисуса фарисеям? | no | Обычные вопросы к верующим без намека на оскорбление их чувств | religion | | Хорошо что проституция запрещена | no | Осуждение простуитуции | prostitution | | Возьму бабки и сниму шлюх на выходных | yes | Популяризация проституции | prostitution | #### Metrics The model was trained, validated, and tested only on the samples with 100% confidence, which allowed to get the following metrics on test set: | | precision | recall | f1-score | support | |--------------|----------|--------|----------|---------| | 0 | 0.92 | 0.93 | 0.93 | 7839 | | 1 | 0.80 | 0.76 | 0.78 | 2726 | | accuracy | | | 0.89 | 10565 | | macro avg | 0.86 | 0.85 | 0.85 | 10565 | | weighted avg | 0.89 | 0.89 | 0.89 | 10565 | ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png ## Citation If you find this repository helpful, feel free to cite our publication: ``` @inproceedings{babakov-etal-2021-detecting, title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation", author = "Babakov, Nikolay and Logacheva, Varvara and Kozlova, Olga and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.4", pages = "26--36", abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.", } ``` ## Contacts If you have any questions please contact [Nikolay](mailto:N.Babakov@skoltech.ru)
{"language": ["ru"], "tags": ["toxic comments classification"], "licenses": ["cc-by-nc-sa"]}
apanc/russian-inappropriate-messages
null
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "toxic comments classification", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #bert #text-classification #toxic comments classification #ru #autotrain_compatible #endpoints_compatible #region-us
General concept of the model ---------------------------- #### Proposed usage The 'inappropriateness' substance we tried to collect in the dataset and detect with the model is NOT a substitution of toxicity, it is rather a derivative of toxicity. So the model based on our dataset could serve as an additional layer of inappropriateness filtering after toxicity and obscenity filtration. You can detect the exact sensitive topic by using another model. The proposed pipeline is shown in the scheme below. !alternativetext You can also train one classifier for both toxicity and inappropriateness detection. The data to be mixed with toxic labelled samples could be found on our GitHub or on kaggle #### Inappropraiteness intuition This model is trained on the dataset of inappropriate messages of the Russian language. Generally, an inappropriate utterance is an utterance that has not obscene words or any kind of toxic intent, but can still harm the reputation of the speaker. Find some sample for more intuition in the table below. Learn more about the concept of inappropriateness in this article presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our GitHub or on kaggle. The properties of the dataset are the same as the one described in the article, the only difference is the size. #### Metrics The model was trained, validated, and tested only on the samples with 100% confidence, which allowed to get the following metrics on test set: Licensing Information --------------------- [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL). [![CC BY-NC-SA 4.0](https://i.URL)](URL) If you find this repository helpful, feel free to cite our publication: Contacts -------- If you have any questions please contact Nikolay
[ "#### Proposed usage\n\n\nThe 'inappropriateness' substance we tried to collect in the dataset and detect with the model is NOT a substitution of toxicity, it is rather a derivative of toxicity. So the model based on our dataset could serve as an additional layer of inappropriateness filtering after toxicity and obscenity filtration. You can detect the exact sensitive topic by using another model. The proposed pipeline is shown in the scheme below.\n\n\n!alternativetext\n\n\nYou can also train one classifier for both toxicity and inappropriateness detection. The data to be mixed with toxic labelled samples could be found on our GitHub or on kaggle", "#### Inappropraiteness intuition\n\n\nThis model is trained on the dataset of inappropriate messages of the Russian language. Generally, an inappropriate utterance is an utterance that has not obscene words or any kind of toxic intent, but can still harm the reputation of the speaker. Find some sample for more intuition in the table below. Learn more about the concept of inappropriateness in this article presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our GitHub or on kaggle. The properties of the dataset are the same as the one described in the article, the only difference is the size.", "#### Metrics\n\n\nThe model was trained, validated, and tested only on the samples with 100% confidence, which allowed to get the following metrics on test set:\n\n\n\nLicensing Information\n---------------------\n\n\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL).\n\n\n[![CC BY-NC-SA 4.0](https://i.URL)](URL)\n\n\nIf you find this repository helpful, feel free to cite our publication:\n\n\nContacts\n--------\n\n\nIf you have any questions please contact Nikolay" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #text-classification #toxic comments classification #ru #autotrain_compatible #endpoints_compatible #region-us \n", "#### Proposed usage\n\n\nThe 'inappropriateness' substance we tried to collect in the dataset and detect with the model is NOT a substitution of toxicity, it is rather a derivative of toxicity. So the model based on our dataset could serve as an additional layer of inappropriateness filtering after toxicity and obscenity filtration. You can detect the exact sensitive topic by using another model. The proposed pipeline is shown in the scheme below.\n\n\n!alternativetext\n\n\nYou can also train one classifier for both toxicity and inappropriateness detection. The data to be mixed with toxic labelled samples could be found on our GitHub or on kaggle", "#### Inappropraiteness intuition\n\n\nThis model is trained on the dataset of inappropriate messages of the Russian language. Generally, an inappropriate utterance is an utterance that has not obscene words or any kind of toxic intent, but can still harm the reputation of the speaker. Find some sample for more intuition in the table below. Learn more about the concept of inappropriateness in this article presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our GitHub or on kaggle. The properties of the dataset are the same as the one described in the article, the only difference is the size.", "#### Metrics\n\n\nThe model was trained, validated, and tested only on the samples with 100% confidence, which allowed to get the following metrics on test set:\n\n\n\nLicensing Information\n---------------------\n\n\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL).\n\n\n[![CC BY-NC-SA 4.0](https://i.URL)](URL)\n\n\nIf you find this repository helpful, feel free to cite our publication:\n\n\nContacts\n--------\n\n\nIf you have any questions please contact Nikolay" ]
text-classification
transformers
## General concept of the model This model is trained on the dataset of sensitive topics of the Russian language. The concept of sensitive topics is described [in this article ](https://www.aclweb.org/anthology/2021.bsnlp-1.4/) presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our [GitHub](https://github.com/skoltech-nlp/inappropriate-sensitive-topics/blob/main/Version2/sensitive_topics/sensitive_topics.csv) or on [kaggle](https://www.kaggle.com/nigula/russian-sensitive-topics). The properties of the dataset is the same as the one described in the article, the only difference is the size. ## Instructions The model predicts combinations of 18 sensitive topics described in the [article](https://arxiv.org/abs/2103.05345). You can find step-by-step instructions for using the model [here](https://github.com/skoltech-nlp/inappropriate-sensitive-topics/blob/main/Version2/sensitive_topics/Inference.ipynb) ## Metrics The dataset partially manually labeled samples and partially semi-automatically labeled samples. Learn more in our article. We tested the performance of the classifier only on the part of manually labeled data that is why some topics are not well represented in the test set. | | precision | recall | f1-score | support | |-------------------|-----------|--------|----------|---------| | offline_crime | 0.65 | 0.55 | 0.6 | 132 | | online_crime | 0.5 | 0.46 | 0.48 | 37 | | drugs | 0.87 | 0.9 | 0.88 | 87 | | gambling | 0.5 | 0.67 | 0.57 | 6 | | pornography | 0.73 | 0.59 | 0.65 | 204 | | prostitution | 0.75 | 0.69 | 0.72 | 91 | | slavery | 0.72 | 0.72 | 0.73 | 40 | | suicide | 0.33 | 0.29 | 0.31 | 7 | | terrorism | 0.68 | 0.57 | 0.62 | 47 | | weapons | 0.89 | 0.83 | 0.86 | 138 | | body_shaming | 0.9 | 0.67 | 0.77 | 109 | | health_shaming | 0.84 | 0.55 | 0.66 | 108 | | politics | 0.68 | 0.54 | 0.6 | 241 | | racism | 0.81 | 0.59 | 0.68 | 204 | | religion | 0.94 | 0.72 | 0.81 | 102 | | sexual_minorities | 0.69 | 0.46 | 0.55 | 102 | | sexism | 0.66 | 0.64 | 0.65 | 132 | | social_injustice | 0.56 | 0.37 | 0.45 | 181 | | none | 0.62 | 0.67 | 0.64 | 250 | | micro avg | 0.72 | 0.61 | 0.66 | 2218 | | macro avg | 0.7 | 0.6 | 0.64 | 2218 | | weighted avg | 0.73 | 0.61 | 0.66 | 2218 | | samples avg | 0.75 | 0.66 | 0.68 | 2218 | ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png ## Citation If you find this repository helpful, feel free to cite our publication: ``` @inproceedings{babakov-etal-2021-detecting, title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation", author = "Babakov, Nikolay and Logacheva, Varvara and Kozlova, Olga and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.4", pages = "26--36", abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.", } ```
{"language": ["ru"], "tags": ["toxic comments classification"], "licenses": ["cc-by-nc-sa"]}
apanc/russian-sensitive-topics
null
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "toxic comments classification", "ru", "arxiv:2103.05345", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2103.05345" ]
[ "ru" ]
TAGS #transformers #pytorch #tf #jax #bert #text-classification #toxic comments classification #ru #arxiv-2103.05345 #autotrain_compatible #endpoints_compatible #region-us
General concept of the model ---------------------------- This model is trained on the dataset of sensitive topics of the Russian language. The concept of sensitive topics is described in this article presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our GitHub or on kaggle. The properties of the dataset is the same as the one described in the article, the only difference is the size. Instructions ------------ The model predicts combinations of 18 sensitive topics described in the article. You can find step-by-step instructions for using the model here Metrics ------- The dataset partially manually labeled samples and partially semi-automatically labeled samples. Learn more in our article. We tested the performance of the classifier only on the part of manually labeled data that is why some topics are not well represented in the test set. Licensing Information --------------------- [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](URL). [![CC BY-NC-SA 4.0](https://i.URL)](URL) If you find this repository helpful, feel free to cite our publication:
[]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #text-classification #toxic comments classification #ru #arxiv-2103.05345 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-generation
transformers
# Harry Potter DialogGPT Model
{"tags": ["conversational"]}
Skywhy/DialoGPT-medium-Churchyy
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialogGPT Model
[ "# Harry Potter DialogGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialogGPT Model" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 452311620 - CO2 Emissions (in grams): 208.0823957145878 ## Validation Metrics - Loss: 0.5259971022605896 - Accuracy: 0.8767479025169796 - Macro F1: 0.8618813750734912 - Micro F1: 0.8767479025169796 - Weighted F1: 0.8742964006840133 - Macro Precision: 0.8627700506991158 - Micro Precision: 0.8767479025169796 - Weighted Precision: 0.8755603985289852 - Macro Recall: 0.8662183006750934 - Micro Recall: 0.8767479025169796 - Weighted Recall: 0.8767479025169796 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Smone55/autonlp-au_topics-452311620 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Smone55/autonlp-au_topics-452311620", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Smone55/autonlp-au_topics-452311620", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["Smone55/autonlp-data-au_topics"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 208.0823957145878}
Smone55/autonlp-au_topics-452311620
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:Smone55/autonlp-data-au_topics", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-Smone55/autonlp-data-au_topics #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 452311620 - CO2 Emissions (in grams): 208.0823957145878 ## Validation Metrics - Loss: 0.5259971022605896 - Accuracy: 0.8767479025169796 - Macro F1: 0.8618813750734912 - Micro F1: 0.8767479025169796 - Weighted F1: 0.8742964006840133 - Macro Precision: 0.8627700506991158 - Micro Precision: 0.8767479025169796 - Weighted Precision: 0.8755603985289852 - Macro Recall: 0.8662183006750934 - Micro Recall: 0.8767479025169796 - Weighted Recall: 0.8767479025169796 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 452311620\n- CO2 Emissions (in grams): 208.0823957145878", "## Validation Metrics\n\n- Loss: 0.5259971022605896\n- Accuracy: 0.8767479025169796\n- Macro F1: 0.8618813750734912\n- Micro F1: 0.8767479025169796\n- Weighted F1: 0.8742964006840133\n- Macro Precision: 0.8627700506991158\n- Micro Precision: 0.8767479025169796\n- Weighted Precision: 0.8755603985289852\n- Macro Recall: 0.8662183006750934\n- Micro Recall: 0.8767479025169796\n- Weighted Recall: 0.8767479025169796", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-Smone55/autonlp-data-au_topics #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 452311620\n- CO2 Emissions (in grams): 208.0823957145878", "## Validation Metrics\n\n- Loss: 0.5259971022605896\n- Accuracy: 0.8767479025169796\n- Macro F1: 0.8618813750734912\n- Micro F1: 0.8767479025169796\n- Weighted F1: 0.8742964006840133\n- Macro Precision: 0.8627700506991158\n- Micro Precision: 0.8767479025169796\n- Weighted Precision: 0.8755603985289852\n- Macro Recall: 0.8662183006750934\n- Micro Recall: 0.8767479025169796\n- Weighted Recall: 0.8767479025169796", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-generation
transformers
#StupidEdwin
{"tags": ["conversational"]}
Snaky/StupidEdwin
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#StupidEdwin
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text2text-generation
transformers
## Schema Guided Dialogue Output Plan Constructor
{}
SoLID/sgd-output-plan-constructor
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## Schema Guided Dialogue Output Plan Constructor
[ "## Schema Guided Dialogue Output Plan Constructor" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Schema Guided Dialogue Output Plan Constructor" ]
text2text-generation
transformers
Hyperparameters: 1 epoch, max_len_dict including domain classification task, and 1e-5 learning rate
{"language": ["eng"], "license": "afl-3.0", "tags": ["dialogue"], "datasets": ["schema guided dialogue"], "metrics": ["exactness"], "thumbnail": "https://townsquare.media/site/88/files/2020/06/C_Charlotte_RGB_7484.jpg"}
SoLID/sgd-t5-tod
null
[ "transformers", "pytorch", "t5", "text2text-generation", "dialogue", "eng", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "eng" ]
TAGS #transformers #pytorch #t5 #text2text-generation #dialogue #eng #license-afl-3.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Hyperparameters: 1 epoch, max_len_dict including domain classification task, and 1e-5 learning rate
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #dialogue #eng #license-afl-3.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
# Cartman DialoGPT Model
{"tags": ["conversational"]}
Soapsy/DialoGPT-mid-cartman
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Cartman DialoGPT Model
[ "# Cartman DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Cartman DialoGPT Model" ]
text-generation
null
# My Awesome Model
{"tags": ["conversational"]}
SonMooSans/DialoGPT-small-joshua
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #conversational #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#conversational #region-us \n", "# My Awesome Model" ]
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
SonMooSans/test
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8549 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5213 | 1.0 | 535 | 0.5163 | 0.4183 | | 0.3479 | 2.0 | 1070 | 0.5351 | 0.5182 | | 0.231 | 3.0 | 1605 | 0.6271 | 0.5291 | | 0.166 | 4.0 | 2140 | 0.7531 | 0.5279 | | 0.1313 | 5.0 | 2675 | 0.8549 | 0.5332 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model_index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.5332198659134496}}]}]}
SongRb/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8549 * Matthews Correlation: 0.5332 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.10.0.dev0 * Pytorch 1.8.1 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.8.1\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.8.1\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0746 - Precision: 0.9347 - Recall: 0.9426 - F1: 0.9386 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0832 | 1.0 | 3511 | 0.0701 | 0.9317 | 0.9249 | 0.9283 | 0.9827 | | 0.0384 | 2.0 | 7022 | 0.0701 | 0.9282 | 0.9410 | 0.9346 | 0.9845 | | 0.0222 | 3.0 | 10533 | 0.0746 | 0.9347 | 0.9426 | 0.9386 | 0.9851 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9850826886110537}}]}]}
SongRb/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0746 * Precision: 0.9347 * Recall: 0.9426 * F1: 0.9386 * Accuracy: 0.9851 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.10.0.dev0 * Pytorch 1.8.1 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.8.1\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0.dev0\n* Pytorch 1.8.1\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
question-answering
transformers
# DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["en"], "license": "apache-2.0", "tags": ["question-answering"], "datasets": ["squad"], "metrics": ["squad"], "thumbnail": "https://github.com/karanchahal/distiller/blob/master/distiller.jpg"}
Sonny/distilbert-base-uncased-finetuned-squad-d5716d28
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #distilbert #fill-mask #question-answering #en #dataset-squad #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
DistilBERT with a second step of distillation ============================================= Model description ----------------- This model replicates the "DistilBERT (D)" model from Table 2 of the DistilBERT paper. In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: 'distilbert-base-uncased' * Teacher: 'lewtun/bert-base-uncased-finetuned-squad-v1' Training data ------------- This model was trained on the SQuAD v1.1 dataset which can be obtained from the 'datasets' library as follows: Training procedure ------------------ Eval results ------------ Exact Match: DistilBERT paper, F1: 79.1 Exact Match: Ours, F1: 78.4 The scores were calculated using the 'squad' metric from 'datasets'. ### BibTeX entry and citation info
[ "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #distilbert #fill-mask #question-answering #en #dataset-squad #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### BibTeX entry and citation info" ]
fill-mask
transformers
This is a test model2.
{}
Sonny/dummy-model2
null
[ "transformers", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
This is a test model2.
[]
[ "TAGS\n#transformers #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
This is the model so far before time out
{}
SophieTr/distil-pegasus-reddit
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #pegasus #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
This is the model so far before time out
[]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-Pegasus-large This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 11.0526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.35e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "fine-tune-Pegasus-large", "results": []}]}
SophieTr/fine-tune-Pegasus-large
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
# fine-tune-Pegasus-large This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 11.0526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.35e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# fine-tune-Pegasus-large\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 11.0526", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 6.35e-05\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "# fine-tune-Pegasus-large\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 11.0526", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 6.35e-05\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.1\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [sshleifer/distill-pegasus-xsum-16-4](https://huggingface.co/sshleifer/distill-pegasus-xsum-16-4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.2378 | 0.51 | 100 | 7.1853 | | 7.2309 | 1.01 | 200 | 6.6342 | | 6.4796 | 1.52 | 300 | 6.3206 | | 6.2691 | 2.02 | 400 | 6.0184 | | 5.7382 | 2.53 | 500 | 5.5754 | | 4.9922 | 3.03 | 600 | 4.5178 | | 3.6031 | 3.54 | 700 | 2.8579 | | 2.5203 | 4.04 | 800 | 2.4718 | | 2.2563 | 4.55 | 900 | 2.4128 | | 2.1425 | 5.05 | 1000 | 2.3767 | | 2.004 | 5.56 | 1100 | 2.3982 | | 2.0437 | 6.06 | 1200 | 2.3787 | | 1.9407 | 6.57 | 1300 | 2.3952 | | 1.9194 | 7.07 | 1400 | 2.3964 | | 1.758 | 7.58 | 1500 | 2.4056 | | 1.918 | 8.08 | 1600 | 2.4101 | | 1.9162 | 8.59 | 1700 | 2.4085 | | 1.8983 | 9.09 | 1800 | 2.4058 | | 1.6939 | 9.6 | 1900 | 2.4050 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
SophieTr/results
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
results ======= This model is a fine-tuned version of sshleifer/distill-pegasus-xsum-16-4 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 2.4473 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text-generation
transformers
# Naruto DialoGPT Model
{"tags": ["conversational"]}
Sora4762/DialoGPT-small-naruto
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Naruto DialoGPT Model
[ "# Naruto DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Naruto DialoGPT Model" ]
text-generation
transformers
# Naruto DialoGPT Model1.1
{"tags": ["conversational"]}
Sora4762/DialoGPT-small-naruto1.1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Naruto DialoGPT Model1.1
[ "# Naruto DialoGPT Model1.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Naruto DialoGPT Model1.1" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT](https://huggingface.co/Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 21 | 3.8118 | | No log | 2.0 | 42 | 3.5006 | | No log | 3.0 | 63 | 3.1242 | | No log | 4.0 | 84 | 2.9528 | | No log | 5.0 | 105 | 2.9190 | | No log | 6.0 | 126 | 2.9876 | | No log | 7.0 | 147 | 3.0574 | | No log | 8.0 | 168 | 3.0718 | | No log | 9.0 | 189 | 3.0426 | | No log | 10.0 | 210 | 3.0853 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT", "results": []}]}
Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #license-mit #endpoints_compatible #region-us
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel\_PubmedBERT ==================================================================================== This model is a fine-tuned version of Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel\_PubmedBERT on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 3.0853 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.21.0 * Pytorch 1.12.0+cu113 * Datasets 2.4.0 * Tokenizers 0.12.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.21.0\n* Pytorch 1.12.0+cu113\n* Datasets 2.4.0\n* Tokenizers 0.12.1" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.21.0\n* Pytorch 1.12.0+cu113\n* Datasets 2.4.0\n* Tokenizers 0.12.1" ]
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Soumyajit1008/DialoGPT-small-harryPotterssen
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2188 | 1.0 | 5533 | 1.1708 | | 0.9519 | 2.0 | 11066 | 1.1058 | | 0.7576 | 3.0 | 16599 | 1.1573 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
Sourabh714/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.1573 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
null
transformers
### VAE with Pytorch-Lightning This is inspired from vae-playground. This is an example where we test out vae and conv_vae models with multiple datasets like MNIST, celeb-a and MNIST-Fashion datasets. This also comes with an example streamlit app & deployed at huggingface. ## Model Training You can train the VAE models by using `train.py` and editing the `config.yaml` file. \ Hyperparameters to change are: - model_type [vae|conv_vae] - alpha - hidden_dim - dataset [celeba|mnist|fashion-mnist] There are other configurations that can be changed if required like height, width, channels etc. It also contains the pytorch-lightning configs as well.
{"license": "apache-2.0"}
Souranil/VAE
null
[ "transformers", "pytorch", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #license-apache-2.0 #endpoints_compatible #region-us
### VAE with Pytorch-Lightning This is inspired from vae-playground. This is an example where we test out vae and conv_vae models with multiple datasets like MNIST, celeb-a and MNIST-Fashion datasets. This also comes with an example streamlit app & deployed at huggingface. ## Model Training You can train the VAE models by using 'URL' and editing the 'URL' file. \ Hyperparameters to change are: - model_type [vae|conv_vae] - alpha - hidden_dim - dataset [celeba|mnist|fashion-mnist] There are other configurations that can be changed if required like height, width, channels etc. It also contains the pytorch-lightning configs as well.
[ "### VAE with Pytorch-Lightning\r\n\r\nThis is inspired from vae-playground. This is an example where we test out vae and conv_vae models with multiple datasets \r\nlike MNIST, celeb-a and MNIST-Fashion datasets.\r\n\r\nThis also comes with an example streamlit app & deployed at huggingface.", "## Model Training\r\n\r\nYou can train the VAE models by using 'URL' and editing the 'URL' file. \\\r\nHyperparameters to change are:\r\n- model_type [vae|conv_vae]\r\n- alpha\r\n- hidden_dim\r\n- dataset [celeba|mnist|fashion-mnist]\r\n\r\nThere are other configurations that can be changed if required like height, width, channels etc. It also contains the pytorch-lightning configs as well." ]
[ "TAGS\n#transformers #pytorch #license-apache-2.0 #endpoints_compatible #region-us \n", "### VAE with Pytorch-Lightning\r\n\r\nThis is inspired from vae-playground. This is an example where we test out vae and conv_vae models with multiple datasets \r\nlike MNIST, celeb-a and MNIST-Fashion datasets.\r\n\r\nThis also comes with an example streamlit app & deployed at huggingface.", "## Model Training\r\n\r\nYou can train the VAE models by using 'URL' and editing the 'URL' file. \\\r\nHyperparameters to change are:\r\n- model_type [vae|conv_vae]\r\n- alpha\r\n- hidden_dim\r\n- dataset [celeba|mnist|fashion-mnist]\r\n\r\nThere are other configurations that can be changed if required like height, width, channels etc. It also contains the pytorch-lightning configs as well." ]
null
null
Log FiBER This model is able to sentence embedding.
{}
Souvikcmsa/LogFiBER
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #pytorch #region-us
Log FiBER This model is able to sentence embedding.
[]
[ "TAGS\n#pytorch #region-us \n" ]
text-generation
transformers
#Gandalf DialoGPT Model
{"tags": ["conversational"]}
SpacyGalaxy/DialoGPT-medium-Gandalf
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Gandalf DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]