pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
null
espnet
## ESPnet2 DIAR model ### `YushiUeda/test` This model was trained by Yushi Ueda using mini_librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 4dfa2be4331d3d68f124aa5fd81f63217a7278a4 pip install -e . cd egs2/mini_librispeech/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model YushiUeda/test ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Wed Aug 25 23:29:07 EDT 2021` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.2a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `19bcd34f9395e01e54a97c4db5ecbcedb429dd92` - Commit date: `Tue Aug 24 19:50:44 2021 -0400` ## `diar_train_diar_raw_max_epoch20` ### DER `dev_clean_2_ns2_beta2_500` |threshold_median_collar|DER| |---|---| |result_th0.3_med1_collar0.0|32.42| |result_th0.3_med11_collar0.0|32.03| |result_th0.4_med1_collar0.0|30.96| |result_th0.4_med11_collar0.0|30.26| |result_th0.5_med1_collar0.0|30.35| |result_th0.5_med11_collar0.0|29.37| |result_th0.6_med1_collar0.0|30.77| |result_th0.6_med11_collar0.0|29.52| |result_th0.7_med1_collar0.0|32.60| |result_th0.7_med11_collar0.0|31.03| ## DIAR config <details><summary>expand</summary> ``` config: conf/train_diar.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_train_diar_raw_max_epoch20 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 20 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 3 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 200000 chunk_shift_ratio: 0.5 num_cache_chunks: 64 train_data_path_and_name_and_type: - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.01 scheduler: noamlr scheduler_conf: warmup_steps: 1000 num_spk: 2 init: xavier_uniform input_size: null model_conf: loss_type: pit use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: linear num_blocks: 2 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} required: - output_dir version: 0.10.2a1 distributed: false ``` </details>
{"license": "cc-by-4.0", "tags": ["espnet", "audio", "diarization"], "datasets": ["mini_librispeech"]}
YushiUeda/test
null
[ "espnet", "audio", "diarization", "dataset:mini_librispeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #espnet #audio #diarization #dataset-mini_librispeech #license-cc-by-4.0 #region-us
ESPnet2 DIAR model ------------------ ### 'YushiUeda/test' This model was trained by Yushi Ueda using mini\_librispeech recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Wed Aug 25 23:29:07 EDT 2021' * python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]' * espnet version: 'espnet 0.10.2a1' * pytorch version: 'pytorch 1.9.0+cu102' * Git hash: '19bcd34f9395e01e54a97c4db5ecbcedb429dd92' + Commit date: 'Tue Aug 24 19:50:44 2021 -0400' 'diar\_train\_diar\_raw\_max\_epoch20' -------------------------------------- ### DER 'dev\_clean\_2\_ns2\_beta2\_500' DIAR config ----------- expand
[ "### 'YushiUeda/test'\n\n\nThis model was trained by Yushi Ueda using mini\\_librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Aug 25 23:29:07 EDT 2021'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.2a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: '19bcd34f9395e01e54a97c4db5ecbcedb429dd92'\n\t+ Commit date: 'Tue Aug 24 19:50:44 2021 -0400'\n\n\n'diar\\_train\\_diar\\_raw\\_max\\_epoch20'\n--------------------------------------", "### DER\n\n\n'dev\\_clean\\_2\\_ns2\\_beta2\\_500'\n\n\n\nDIAR config\n-----------\n\n\nexpand" ]
[ "TAGS\n#espnet #audio #diarization #dataset-mini_librispeech #license-cc-by-4.0 #region-us \n", "### 'YushiUeda/test'\n\n\nThis model was trained by Yushi Ueda using mini\\_librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Aug 25 23:29:07 EDT 2021'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.2a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: '19bcd34f9395e01e54a97c4db5ecbcedb429dd92'\n\t+ Commit date: 'Tue Aug 24 19:50:44 2021 -0400'\n\n\n'diar\\_train\\_diar\\_raw\\_max\\_epoch20'\n--------------------------------------", "### DER\n\n\n'dev\\_clean\\_2\\_ns2\\_beta2\\_500'\n\n\n\nDIAR config\n-----------\n\n\nexpand" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_FANTASY This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_FANTASY", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_FANTASY
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# IFIS_ZORK_AI_FANTASY This model is a fine-tuned version of gpt2 on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
[ "# IFIS_ZORK_AI_FANTASY\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# IFIS_ZORK_AI_FANTASY\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_HORROR This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_HORROR", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_HORROR
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# IFIS_ZORK_AI_HORROR This model is a fine-tuned version of gpt2 on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
[ "# IFIS_ZORK_AI_HORROR\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# IFIS_ZORK_AI_HORROR\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_MODERN This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_MODERN", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_MODERN
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# IFIS_ZORK_AI_MODERN This model is a fine-tuned version of gpt2 on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
[ "# IFIS_ZORK_AI_MODERN\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# IFIS_ZORK_AI_MODERN\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_SCIFI This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_SCIFI", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_SCIFI
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# IFIS_ZORK_AI_SCIFI This model is a fine-tuned version of gpt2 on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
[ "# IFIS_ZORK_AI_SCIFI\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# IFIS_ZORK_AI_SCIFI\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Zork_AI_SciFi This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "Zork_AI_SciFi", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/Zork_AI_SciFi
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Zork_AI_SciFi This model is a fine-tuned version of gpt2 on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
[ "# Zork_AI_SciFi\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Zork_AI_SciFi\n\nThis model is a fine-tuned version of gpt2 on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.9.0+cu102\n- Tokenizers 0.10.3" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - Precision: 0.9370 - Recall: 0.9509 - F1: 0.9439 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 1756 | 0.0633 | 0.9197 | 0.9362 | 0.9279 | 0.9833 | | 0.0386 | 2.0 | 3512 | 0.0572 | 0.9351 | 0.9483 | 0.9417 | 0.9866 | | 0.0214 | 3.0 | 5268 | 0.0598 | 0.9370 | 0.9509 | 0.9439 | 0.9869 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9369817578772802, "name": "Precision"}, {"type": "recall", "value": 0.9508582968697409, "name": "Recall"}, {"type": "f1", "value": 0.9438690277313732, "name": "F1"}, {"type": "accuracy", "value": 0.9868575969859305, "name": "Accuracy"}]}]}]}
Yv/bert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-finetuned-ner ================== This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0598 * Precision: 0.9370 * Recall: 0.9509 * F1: 0.9439 * Accuracy: 0.9869 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/en-de-es-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us
# en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# en-de-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us \n", "# en-de-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/en-de-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us
# en-de-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# en-de-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us \n", "# en-de-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-vi-zh-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/en-de-vi-zh-es-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us
# en-de-vi-zh-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# en-de-vi-zh-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us \n", "# en-de-vi-zh-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-en-de-es-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us
# squad-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-en-de-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us \n", "# squad-en-de-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-en-de-es-vi-zh-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us
# squad-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-en-de-es-vi-zh-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us \n", "# squad-en-de-es-vi-zh-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbart-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbart-model
null
[ "transformers", "pytorch", "mbart", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #mbart #question-answering #endpoints_compatible #region-us
# squad-mbart-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-mbart-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #mbart #question-answering #endpoints_compatible #region-us \n", "# squad-mbart-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-en-de-es-model
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
# squad-mbert-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-mbert-en-de-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n", "# squad-mbert-en-de-es-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-en-de-es-vi-zh-model
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
# squad-mbert-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-mbert-en-de-es-vi-zh-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n", "# squad-mbert-en-de-es-vi-zh-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-model
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
# squad-mbert-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-mbert-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n", "# squad-mbert-model\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model_2 This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-model_2
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
# squad-mbert-model_2 This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
[ "# squad-mbert-model_2\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n", "# squad-mbert-model_2\n\nThis model was trained from scratch on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.7.0\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-squad-trained This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.2026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.988 | 1.0 | 5486 | 1.1790 | | 0.7793 | 2.0 | 10972 | 1.2026 | | 0.8068 | 3.0 | 16458 | 1.2026 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.3
{}
ZYW/test-squad-trained
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us
test-squad-trained ================== This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 1.2026 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.8.1+cu101 * Datasets 1.6.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.8.1+cu101\n* Datasets 1.6.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.8.1+cu101\n* Datasets 1.6.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8631 - Matthews Correlation: 0.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5249 | 1.0 | 535 | 0.5300 | 0.4152 | | 0.3489 | 2.0 | 1070 | 0.5238 | 0.4940 | | 0.2329 | 3.0 | 1605 | 0.6447 | 0.5162 | | 0.1692 | 4.0 | 2140 | 0.7805 | 0.5332 | | 0.1256 | 5.0 | 2675 | 0.8631 | 0.5411 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5410897632107913, "name": "Matthews Correlation"}]}]}]}
ZZDDBBCC/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8631 * Matthews Correlation: 0.5411 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.10.3 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "???", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model = Wav2Vec2ForCTC.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "???", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model = Wav2Vec2ForCTC.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: ??? % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
{"language": "???", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Arabic Egyptian by Zaid", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ???", "type": "common_voice", "args": "???"}, "metrics": [{"type": "wer", "value": "???", "name": "Test WER"}]}]}]}
arbml/wav2vec2-large-xlsr-53-arabic-egyptian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "???" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned facebook/wav2vec2-large-xlsr-53 in Tamil using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. Test Result: ??? % ## Training The Common Voice 'train', 'validation' datasets were used for training. The script used for training can be found ???
[ "# Wav2Vec2-Large-XLSR-53-Tamil\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Tamil using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\n\n\nTest Result: ??? %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training.\n\nThe script used for training can be found ???" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Tamil\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Tamil using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\n\n\nTest Result: ??? %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training.\n\nThe script used for training can be found ???" ]
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Zane/Ricky") model = AutoModelWithLMHead.from_pretrained("Zane/Ricky") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Zane/Ricky
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on the Speech of a Game Character This is an instance of microsoft/DialoGPT-small trained on a game character, Neku Sakuraba from The World Ends With You. The data comes from a Kaggle game script dataset. Chat with the model:
[ "# DialoGPT Trained on the Speech of a Game Character\n\nThis is an instance of microsoft/DialoGPT-small trained on a game character, Neku Sakuraba from The World Ends With You. The data comes from a Kaggle game script dataset.\n\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on the Speech of a Game Character\n\nThis is an instance of microsoft/DialoGPT-small trained on a game character, Neku Sakuraba from The World Ends With You. The data comes from a Kaggle game script dataset.\n\nChat with the model:" ]
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-small-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-small-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Zane/Ricky3
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on the Speech of a Game Character This is an instance of microsoft/DialoGPT-small trained on a game character, Neku Sakuraba from The World Ends With You. The data comes from a Kaggle game script dataset. Chat with the model:
[ "# DialoGPT Trained on the Speech of a Game Character\n\nThis is an instance of microsoft/DialoGPT-small trained on a game character, Neku Sakuraba from The World Ends With You. The data comes from a Kaggle game script dataset.\n\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on the Speech of a Game Character\n\nThis is an instance of microsoft/DialoGPT-small trained on a game character, Neku Sakuraba from The World Ends With You. The data comes from a Kaggle game script dataset.\n\nChat with the model:" ]
fill-mask
transformers
More information: [github](https://github.com/TanHM-1211/viRoberta-l6-h384-cased) ```python from underthesea import word_tokenize from transformers import RobertaTokenizer, RobertaModel model_name = 'Zayt/viRoberta-l6-h384-word-cased' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMaskedLM.from_pretrained(model_name) text = word_tokenize("Xin chào, tôi không còn là sinh viên đại học Bách Khoa.", format='text') output = model(**tokenizer(text, return_tensors='pt)) output ```
{}
Zayt/viRoberta-l6-h384-word-cased
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
More information: github
[]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-generation
transformers
# ZerO DialoGTP Model
{"tags": ["conversational"]}
Zeer0/DialoGPT-small-ZerO
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# ZerO DialoGTP Model
[ "# ZerO DialoGTP Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# ZerO DialoGTP Model" ]
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
Zen1/test1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
Zeph/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick DialoGPT Model
[ "# Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick DialoGPT Model" ]
text-generation
transformers
# Chrombot
{"tags": ["conversational"]}
Zephaus/Chromrepo
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Chrombot
[ "# Chrombot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Chrombot" ]
text2text-generation
transformers
# T5-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self, model_dir=None): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer: str, context: str): input_text = '<answer> %s <context> %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True ) return {'question': question, 'answer': answer, 'context': context} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5 on SQuAD dataset for question generation? ```
{"language": "en", "tags": ["Question Generation"], "datasets": ["squad"], "widget": [{"text": "<answer> T5 <context> Cheng fine-tuned T5 on SQuAD for question generation.", "example_title": "Example 1"}, {"text": "<answer> SQuAD <context> Cheng fine-tuned T5 on SQuAD dataset for question generation.", "example_title": "Example 2"}, {"text": "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio.", "example_title": "Example 3"}]}
ZhangCheng/T5-Base-finetuned-for-Question-Generation
null
[ "transformers", "pytorch", "tf", "safetensors", "t5", "text2text-generation", "Question Generation", "en", "dataset:squad", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tf #safetensors #t5 #text2text-generation #Question Generation #en #dataset-squad #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# T5-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action:
[ "# T5-Base Fine-Tuned on SQuAD for Question Generation", "### Model in Action:" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #t5 #text2text-generation #Question Generation #en #dataset-squad #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# T5-Base Fine-Tuned on SQuAD for Question Generation", "### Model in Action:" ]
text2text-generation
transformers
# T5v1.1-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer:str, context:str): input_text = '<answer> %s <context> %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) outputs = self.model.generate( input_ids = input_ids, attention_mask = attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens = True, clean_up_tokenization_spaces = True ) return {'question': question, 'answer': answer} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5v1.1 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5v1.1 on SQuAD? ```
{"language": "en", "tags": ["Question Generation"], "datasets": ["squad"], "widget": [{"text": "<answer> T5v1.1 <context> Cheng fine-tuned T5v1.1 on SQuAD for question generation.", "example_title": "Example 1"}, {"text": "<answer> SQuAD <context> Cheng fine-tuned T5v1.1 on SQuAD dataset for question generation.", "example_title": "Example 2"}, {"text": "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio.", "example_title": "Example 3"}]}
ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation
null
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "Question Generation", "en", "dataset:squad", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #t5 #text2text-generation #Question Generation #en #dataset-squad #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# T5v1.1-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action:
[ "# T5v1.1-Base Fine-Tuned on SQuAD for Question Generation", "### Model in Action:" ]
[ "TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #Question Generation #en #dataset-squad #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# T5v1.1-Base Fine-Tuned on SQuAD for Question Generation", "### Model in Action:" ]
null
transformers
# SpERT SpERT is the Relation Extraction model [(SpERT)Span-based Entity and Relation Transformer](https://github.com/lavis-nlp/spert).This is the model trained with CoNLL04 Dataset. ## Use ## References ``` Markus Eberts, Adrian Ulges. Span-based Joint Entity and Relation Extraction with Transformer Pre-training. 24th European Conference on Artificial Intelligence, 2020. ```
{}
Zichuu/spert
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #endpoints_compatible #region-us
# SpERT SpERT is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer.This is the model trained with CoNLL04 Dataset. ## Use ## References
[ "# SpERT\nSpERT is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer.This is the model trained with CoNLL04 Dataset.", "## Use", "## References" ]
[ "TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n", "# SpERT\nSpERT is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer.This is the model trained with CoNLL04 Dataset.", "## Use", "## References" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
Zirk/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-base-timit-demo-colab This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
[ "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.01\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.01\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
text-generation
transformers
#BDBot2
{"tags": ["conversational"]}
Zixtrauce/BDBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#BDBot2
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#BrandonBot4Epochs
{"tags": ["conversational"]}
Zixtrauce/BDBot4Epoch
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#BrandonBot4Epochs
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#BaekBot
{"tags": ["conversational"]}
Zixtrauce/BaekBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#BaekBot
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#BrandonBot
{"tags": ["conversational"]}
Zixtrauce/BrandonBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#BrandonBot
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#BrandonBot2
{"tags": ["conversational"]}
Zixtrauce/BrandonBot2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#BrandonBot2
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#JohnBot
{"tags": ["conversational"]}
Zixtrauce/JohnBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
#JohnBot
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
text-generation
transformers
#SelfAwareness
{"tags": ["conversational"]}
Zixtrauce/SelfAwareness
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#SelfAwareness
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-restaurant-reviews This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a subset of the Yelp restaurant reviews dataset. It achieves the following results on the evaluation set: - Loss: 3.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6331 | 1.0 | 2536 | 3.5280 | | 3.5676 | 2.0 | 5072 | 3.4793 | | 3.5438 | 3.0 | 7608 | 3.4668 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-restaurant-reviews", "results": []}]}
Zohar/distilgpt2-finetuned-restaurant-reviews
null
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
distilgpt2-finetuned-restaurant-reviews ======================================= This model is a fine-tuned version of distilgpt2 on a subset of the Yelp restaurant reviews dataset. It achieves the following results on the evaluation set: * Loss: 3.4668 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
text-generation
transformers
# Gandalf DialoGPT Model
{"tags": ["conversational"]}
Zuha/DialoGPT-small-gandalf
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Gandalf DialoGPT Model
[ "# Gandalf DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Gandalf DialoGPT Model" ]
question-answering
transformers
# BART-LARGE finetuned on SQuADv2 This is bart-large model finetuned on SQuADv2 dataset for question answering task ## Model details BART was propsed in the [paper](https://arxiv.org/abs/1910.13461) **BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension**. BART is a seq2seq model intended for both NLG and NLU tasks. To use BART for question answering tasks, we feed the complete document into the encoder and decoder, and use the top hidden state of the decoder as a representation for each word. This representation is used to classify the token. As given in the paper bart-large achives comparable to ROBERTa on SQuAD. Another notable thing about BART is that it can handle sequences with upto 1024 tokens. | Param | #Value | |---------------------|--------| | encoder layers | 12 | | decoder layers | 12 | | hidden size | 4096 | | num attetion heads | 16 | | on disk size | 1.63GB | ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'doc_stride': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 8, 'num_train_epochs': 2, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 32, 'fp16_opt_level': 'O2', } ``` [You can even train your own model using this colab notebook](https://colab.research.google.com/drive/1I5cK1M_0dLaf5xoewh6swcm5nAInfwHy?usp=sharing) ## Results ```{"correct": 6832, "similar": 4409, "incorrect": 632, "eval_loss": -14.950117511952177}``` ## Model in Action 🚀 ```python3 from transformers import BartTokenizer, BartForQuestionAnswering import torch tokenizer = BartTokenizer.from_pretrained('a-ware/bart-squadv2') model = BartForQuestionAnswering.from_pretrained('a-ware/bart-squadv2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
{"datasets": ["squad_v2"]}
aware-ai/bart-squadv2
null
[ "transformers", "pytorch", "safetensors", "bart", "question-answering", "dataset:squad_v2", "arxiv:1910.13461", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1910.13461" ]
[]
TAGS #transformers #pytorch #safetensors #bart #question-answering #dataset-squad_v2 #arxiv-1910.13461 #endpoints_compatible #has_space #region-us
BART-LARGE finetuned on SQuADv2 =============================== This is bart-large model finetuned on SQuADv2 dataset for question answering task Model details ------------- BART was propsed in the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. BART is a seq2seq model intended for both NLG and NLU tasks. To use BART for question answering tasks, we feed the complete document into the encoder and decoder, and use the top hidden state of the decoder as a representation for each word. This representation is used to classify the token. As given in the paper bart-large achives comparable to ROBERTa on SQuAD. Another notable thing about BART is that it can handle sequences with upto 1024 tokens. Model training -------------- This model was trained with following parameters using simpletransformers wrapper: You can even train your own model using this colab notebook Results ------- Model in Action --------------- > > Created with ️ by A-ware UG ![Github icon](URL > > >
[]
[ "TAGS\n#transformers #pytorch #safetensors #bart #question-answering #dataset-squad_v2 #arxiv-1910.13461 #endpoints_compatible #has_space #region-us \n" ]
question-answering
transformers
# Mobile-Bert fine-tuned on Squad V2 dataset This is based on mobile bert architecture suitable for handy devices or device with low resources. ## usage using transformers library first load model and Tokenizer ``` from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "aware-ai/mobilebert-squadv2" model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` use question answering pipeline ``` qa_engine = pipeline('question-answering', model=model, tokenizer=tokenizer) QA_input = { 'question': 'your question?', 'context': '. your context ................ ' } res = qa_engine (QA_input) ```
{"language": ["en"], "library_name": "transformers", "datasets": ["squad_v2"], "pipeline_tag": "question-answering"}
aware-ai/mobilebert-squadv2
null
[ "transformers", "pytorch", "safetensors", "mobilebert", "question-answering", "en", "dataset:squad_v2", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #mobilebert #question-answering #en #dataset-squad_v2 #endpoints_compatible #has_space #region-us
# Mobile-Bert fine-tuned on Squad V2 dataset This is based on mobile bert architecture suitable for handy devices or device with low resources. ## usage using transformers library first load model and Tokenizer use question answering pipeline
[ "# Mobile-Bert fine-tuned on Squad V2 dataset\n\nThis is based on mobile bert architecture suitable for handy devices or device with low resources.", "## usage \n\nusing transformers library first load model and Tokenizer\n\nuse question answering pipeline" ]
[ "TAGS\n#transformers #pytorch #safetensors #mobilebert #question-answering #en #dataset-squad_v2 #endpoints_compatible #has_space #region-us \n", "# Mobile-Bert fine-tuned on Squad V2 dataset\n\nThis is based on mobile bert architecture suitable for handy devices or device with low resources.", "## usage \n\nusing transformers library first load model and Tokenizer\n\nuse question answering pipeline" ]
text-classification
transformers
# Roberta-LARGE finetuned on SQuADv2 This is roberta-large model finetuned on SQuADv2 dataset for question answering answerability classification ## Model details This model is simply an Sequenceclassification model with two inputs (context and question) in a list. The result is either [1] for answerable or [0] if it is not answerable. It was trained over 4 epochs on squadv2 dataset and can be used to filter out which context is good to give into the QA model to avoid bad answers. ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 4, 'num_train_epochs': 4, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 8, 'fp16_opt_level': 'O2', } ``` ## Results ```{"accuracy": 90.48%}``` ## Model in Action 🚀 ```python3 from simpletransformers.classification import ClassificationModel model = ClassificationModel('roberta', 'a-ware/roberta-large-squadv2', num_labels=2, args=train_args) predictions, raw_outputs = model.predict([["my dog is an year old. he loves to go into the rain", "how old is my dog ?"]]) print(predictions) ==> [1] ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
{"datasets": ["squad_v2"]}
aware-ai/roberta-large-squad-classification
null
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "text-classification", "dataset:squad_v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #safetensors #roberta #text-classification #dataset-squad_v2 #autotrain_compatible #endpoints_compatible #region-us
# Roberta-LARGE finetuned on SQuADv2 This is roberta-large model finetuned on SQuADv2 dataset for question answering answerability classification ## Model details This model is simply an Sequenceclassification model with two inputs (context and question) in a list. The result is either [1] for answerable or [0] if it is not answerable. It was trained over 4 epochs on squadv2 dataset and can be used to filter out which context is good to give into the QA model to avoid bad answers. ## Model training This model was trained with following parameters using simpletransformers wrapper: ## Results ## Model in Action > Created with ️ by A-ware UG ![Github icon](URL
[ "# Roberta-LARGE finetuned on SQuADv2\n\nThis is roberta-large model finetuned on SQuADv2 dataset for question answering answerability classification", "## Model details\nThis model is simply an Sequenceclassification model with two inputs (context and question) in a list.\nThe result is either [1] for answerable or [0] if it is not answerable.\nIt was trained over 4 epochs on squadv2 dataset and can be used to filter out which context is good to give into the QA model to avoid bad answers.", "## Model training\nThis model was trained with following parameters using simpletransformers wrapper:", "## Results", "## Model in Action \n\n\n> Created with ️ by A-ware UG ![Github icon](URL" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #roberta #text-classification #dataset-squad_v2 #autotrain_compatible #endpoints_compatible #region-us \n", "# Roberta-LARGE finetuned on SQuADv2\n\nThis is roberta-large model finetuned on SQuADv2 dataset for question answering answerability classification", "## Model details\nThis model is simply an Sequenceclassification model with two inputs (context and question) in a list.\nThe result is either [1] for answerable or [0] if it is not answerable.\nIt was trained over 4 epochs on squadv2 dataset and can be used to filter out which context is good to give into the QA model to avoid bad answers.", "## Model training\nThis model was trained with following parameters using simpletransformers wrapper:", "## Results", "## Model in Action \n\n\n> Created with ️ by A-ware UG ![Github icon](URL" ]
question-answering
transformers
# XLM-ROBERTA-LARGE finetuned on SQuADv2 This is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task ## Model details XLM-Roberta was propsed in the [paper](https://arxiv.org/pdf/1911.02116.pdf) **XLM-R: State-of-the-art cross-lingual understanding through self-supervision ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'doc_stride': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 8, 'num_train_epochs': 2, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 32, 'fp16_opt_level': 'O2', } ``` ## Results ```{"correct": 6961, "similar": 4359, "incorrect": 553, "eval_loss": -12.177856394381962}``` ## Model in Action 🚀 ```python3 from transformers import XLMRobertaTokenizer, XLMRobertaForQuestionAnswering import torch tokenizer = XLMRobertaTokenizer.from_pretrained('a-ware/xlmroberta-squadv2') model = XLMRobertaForQuestionAnswering.from_pretrained('a-ware/xlmroberta-squadv2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
{"datasets": ["squad_v2"]}
aware-ai/xlmroberta-squadv2
null
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "question-answering", "dataset:squad_v2", "arxiv:1911.02116", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1911.02116" ]
[]
TAGS #transformers #pytorch #safetensors #xlm-roberta #question-answering #dataset-squad_v2 #arxiv-1911.02116 #endpoints_compatible #region-us
# XLM-ROBERTA-LARGE finetuned on SQuADv2 This is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task ## Model details XLM-Roberta was propsed in the paper XLM-R: State-of-the-art cross-lingual understanding through self-supervision ## Model training This model was trained with following parameters using simpletransformers wrapper: ## Results ## Model in Action > Created with ️ by A-ware UG ![Github icon](URL
[ "# XLM-ROBERTA-LARGE finetuned on SQuADv2\n\nThis is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task", "## Model details\nXLM-Roberta was propsed in the paper XLM-R: State-of-the-art cross-lingual understanding through self-supervision", "## Model training\nThis model was trained with following parameters using simpletransformers wrapper:", "## Results", "## Model in Action \n\n\n> Created with ️ by A-ware UG ![Github icon](URL" ]
[ "TAGS\n#transformers #pytorch #safetensors #xlm-roberta #question-answering #dataset-squad_v2 #arxiv-1911.02116 #endpoints_compatible #region-us \n", "# XLM-ROBERTA-LARGE finetuned on SQuADv2\n\nThis is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task", "## Model details\nXLM-Roberta was propsed in the paper XLM-R: State-of-the-art cross-lingual understanding through self-supervision", "## Model training\nThis model was trained with following parameters using simpletransformers wrapper:", "## Results", "## Model in Action \n\n\n> Created with ️ by A-ware UG ![Github icon](URL" ]
text-generation
transformers
# DialoGPT model fine tuned to conservative muslim discord messages
{"tags": ["conversational"]}
a01709042/DialoGPT-medium
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT model fine tuned to conservative muslim discord messages
[ "# DialoGPT model fine tuned to conservative muslim discord messages" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT model fine tuned to conservative muslim discord messages" ]
null
null
from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
{}
a1fadog13/DialoGPT-small-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = URL(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = URL([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(URL(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
[ "# Let's chat for 4 lines\nfor step in range(4):\n # encode the new user input, add the eos_token and return a tensor in Pytorch\n new_user_input_ids = URL(input(\">> User:\") + tokenizer.eos_token, return_tensors='pt')\n # print(new_user_input_ids)\n\n # append the new user input tokens to the chat history\n bot_input_ids = URL([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids\n\n # generated a response while limiting the total chat history to 1000 tokens, \n chat_history_ids = model.generate(\n bot_input_ids, max_length=200,\n pad_token_id=tokenizer.eos_token_id, \n no_repeat_ngram_size=3, \n do_sample=True, \n top_k=100, \n top_p=0.7,\n temperature=0.8\n )\n\n # pretty print last ouput tokens from bot\n print(\"JoshuaBot: {}\".format(URL(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))" ]
[ "TAGS\n#region-us \n", "# Let's chat for 4 lines\nfor step in range(4):\n # encode the new user input, add the eos_token and return a tensor in Pytorch\n new_user_input_ids = URL(input(\">> User:\") + tokenizer.eos_token, return_tensors='pt')\n # print(new_user_input_ids)\n\n # append the new user input tokens to the chat history\n bot_input_ids = URL([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids\n\n # generated a response while limiting the total chat history to 1000 tokens, \n chat_history_ids = model.generate(\n bot_input_ids, max_length=200,\n pad_token_id=tokenizer.eos_token_id, \n no_repeat_ngram_size=3, \n do_sample=True, \n top_k=100, \n top_p=0.7,\n temperature=0.8\n )\n\n # pretty print last ouput tokens from bot\n print(\"JoshuaBot: {}\".format(URL(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))" ]
summarization
transformers
# BART for Gigaword - This model was created by fine-tuning the `facebook/bart-large-cnn` weights (also on HuggingFace) for the Gigaword dataset. The model was fine-tuned on the Gigaword training set for 3 epochs, and the model with the highest ROUGE-1 score on the training set batches was kept. - The BART Tokenizer for CNN-Dailymail was used in the fine-tuning process and that is the tokenizer that will be loaded automatically when doing: ``` from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("a1noack/bart-large-gigaword") ``` # Summary generation - This model achieves ROUGE-1 / ROUGE-2 / ROUGE-L of 37.28 / 18.58 / 34.53 on the Gigaword test set; this is pretty good when compared to PEGASUS, `google/pegasus-gigaword`, which achieves 39.12 / 19.86 / 36.24. - To achieve these results, generate text using the code below. `text_list` is a list of input text string. ``` input_ids_list = tokenizer(text_list, truncation=True, max_length=128, return_tensors='pt', padding=True)['input_ids'] output_ids_list = model.generate(input_ids_list, min_length=0) outputs_list = tokenizer.batch_decode(output_ids_list, skip_special_tokens=True, clean_up_tokenization_spaces=False) ```
{"license": "mit", "tags": ["summarization"], "datasets": ["gigaword"], "thumbnail": "https://en.wikipedia.org/wiki/Bart_Simpson#/media/File:Bart_Simpson_200px.png"}
a1noack/bart-large-gigaword
null
[ "transformers", "pytorch", "bart", "summarization", "dataset:gigaword", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #summarization #dataset-gigaword #license-mit #endpoints_compatible #region-us
# BART for Gigaword - This model was created by fine-tuning the 'facebook/bart-large-cnn' weights (also on HuggingFace) for the Gigaword dataset. The model was fine-tuned on the Gigaword training set for 3 epochs, and the model with the highest ROUGE-1 score on the training set batches was kept. - The BART Tokenizer for CNN-Dailymail was used in the fine-tuning process and that is the tokenizer that will be loaded automatically when doing: # Summary generation - This model achieves ROUGE-1 / ROUGE-2 / ROUGE-L of 37.28 / 18.58 / 34.53 on the Gigaword test set; this is pretty good when compared to PEGASUS, 'google/pegasus-gigaword', which achieves 39.12 / 19.86 / 36.24. - To achieve these results, generate text using the code below. 'text_list' is a list of input text string.
[ "# BART for Gigaword\n - This model was created by fine-tuning the 'facebook/bart-large-cnn' weights (also on HuggingFace) for the Gigaword dataset. The model was fine-tuned on the Gigaword training set for 3 epochs, and the model with the highest ROUGE-1 score on the training set batches was kept.\n - The BART Tokenizer for CNN-Dailymail was used in the fine-tuning process and that is the tokenizer that will be loaded automatically when doing:", "# Summary generation\n - This model achieves ROUGE-1 / ROUGE-2 / ROUGE-L of 37.28 / 18.58 / 34.53 on the Gigaword test set; this is pretty good when compared to PEGASUS, 'google/pegasus-gigaword', which achieves 39.12 / 19.86 / 36.24.\n - To achieve these results, generate text using the code below. 'text_list' is a list of input text string." ]
[ "TAGS\n#transformers #pytorch #bart #summarization #dataset-gigaword #license-mit #endpoints_compatible #region-us \n", "# BART for Gigaword\n - This model was created by fine-tuning the 'facebook/bart-large-cnn' weights (also on HuggingFace) for the Gigaword dataset. The model was fine-tuned on the Gigaword training set for 3 epochs, and the model with the highest ROUGE-1 score on the training set batches was kept.\n - The BART Tokenizer for CNN-Dailymail was used in the fine-tuning process and that is the tokenizer that will be loaded automatically when doing:", "# Summary generation\n - This model achieves ROUGE-1 / ROUGE-2 / ROUGE-L of 37.28 / 18.58 / 34.53 on the Gigaword test set; this is pretty good when compared to PEGASUS, 'google/pegasus-gigaword', which achieves 39.12 / 19.86 / 36.24.\n - To achieve these results, generate text using the code below. 'text_list' is a list of input text string." ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_emotion_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9818 - F1: 0.7348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.551070618629693e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.7431 | 0.6530 | | No log | 2.0 | 408 | 0.6943 | 0.7333 | | 0.5176 | 3.0 | 612 | 0.8456 | 0.7326 | | 0.5176 | 4.0 | 816 | 0.9818 | 0.7348 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_emotion_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7348035780583043, "name": "F1"}]}]}]}
aXhyra/demo_emotion_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_emotion\_1234567 ====================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9818 * F1: 0.7348 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.551070618629693e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.551070618629693e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.551070618629693e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_emotion_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9818 - F1: 0.7348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.551070618629693e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.7431 | 0.6530 | | No log | 2.0 | 408 | 0.6943 | 0.7333 | | 0.5176 | 3.0 | 612 | 0.8456 | 0.7326 | | 0.5176 | 4.0 | 816 | 0.9818 | 0.7348 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_emotion_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7348035780583043, "name": "F1"}]}]}]}
aXhyra/demo_emotion_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_emotion\_31415 ==================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9818 * F1: 0.7348 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.551070618629693e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.551070618629693e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.551070618629693e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_emotion_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9818 - F1: 0.7348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.551070618629693e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.7431 | 0.6530 | | No log | 2.0 | 408 | 0.6943 | 0.7333 | | 0.5176 | 3.0 | 612 | 0.8456 | 0.7326 | | 0.5176 | 4.0 | 816 | 0.9818 | 0.7348 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_emotion_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7348035780583043, "name": "F1"}]}]}]}
aXhyra/demo_emotion_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_emotion\_42 ================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9818 * F1: 0.7348 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.551070618629693e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.551070618629693e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.551070618629693e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_hate_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.320702985778492e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 282 | 0.4850 | 0.7645 | | 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 | | 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 | | 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_hate_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7772939485986298, "name": "F1"}]}]}]}
aXhyra/demo_hate_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_hate\_1234567 =================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8697 * F1: 0.7773 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.320702985778492e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.320702985778492e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.320702985778492e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_hate_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.320702985778492e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 282 | 0.4850 | 0.7645 | | 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 | | 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 | | 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_hate_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7772939485986298, "name": "F1"}]}]}]}
aXhyra/demo_hate_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_hate\_31415 ================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8697 * F1: 0.7773 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.320702985778492e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.320702985778492e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.320702985778492e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_hate_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.320702985778492e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 282 | 0.4850 | 0.7645 | | 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 | | 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 | | 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_hate_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7772939485986298, "name": "F1"}]}]}]}
aXhyra/demo_hate_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_hate\_42 ============== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8697 * F1: 0.7773 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.320702985778492e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.320702985778492e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.320702985778492e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_irony_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2905 - F1: 0.6858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7735294032820418e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 358 | 0.5872 | 0.6786 | | 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 | | 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 | | 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_irony_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.685764300192161, "name": "F1"}]}]}]}
aXhyra/demo_irony_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_irony\_1234567 ==================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.2905 * F1: 0.6858 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.7735294032820418e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7735294032820418e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7735294032820418e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_irony_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2905 - F1: 0.6858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7735294032820418e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 358 | 0.5872 | 0.6786 | | 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 | | 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 | | 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_irony_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.685764300192161, "name": "F1"}]}]}]}
aXhyra/demo_irony_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_irony\_31415 ================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.2905 * F1: 0.6858 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.7735294032820418e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7735294032820418e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7735294032820418e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_irony_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2905 - F1: 0.6858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7735294032820418e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 358 | 0.5872 | 0.6786 | | 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 | | 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 | | 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_irony_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.685764300192161, "name": "F1"}]}]}]}
aXhyra/demo_irony_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_irony\_42 =============== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.2905 * F1: 0.6858 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.7735294032820418e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7735294032820418e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7735294032820418e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_sentiment_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6332 - F1: 0.7114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.62486660723695e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 | | 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 | | 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 | | 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_sentiment_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7113620044371958, "name": "F1"}]}]}]}
aXhyra/demo_sentiment_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_sentiment\_1234567 ======================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.6332 * F1: 0.7114 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8.62486660723695e-06 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8.62486660723695e-06\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8.62486660723695e-06\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_sentiment_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6332 - F1: 0.7114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.62486660723695e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 | | 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 | | 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 | | 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_sentiment_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7113620044371958, "name": "F1"}]}]}]}
aXhyra/demo_sentiment_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_sentiment\_31415 ====================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.6332 * F1: 0.7114 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8.62486660723695e-06 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8.62486660723695e-06\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8.62486660723695e-06\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_sentiment_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6332 - F1: 0.7114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.62486660723695e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 | | 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 | | 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 | | 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "demo_sentiment_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7113620044371958, "name": "F1"}]}]}]}
aXhyra/demo_sentiment_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
demo\_sentiment\_42 =================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.6332 * F1: 0.7114 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8.62486660723695e-06 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8.62486660723695e-06\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8.62486660723695e-06\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9051 - F1: 0.7302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6480 | 0.7231 | | No log | 2.0 | 408 | 0.6114 | 0.7403 | | 0.5045 | 3.0 | 612 | 0.7592 | 0.7311 | | 0.5045 | 4.0 | 816 | 0.9051 | 0.7302 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "emotion_trained_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7301562209701973, "name": "F1"}]}]}]}
aXhyra/emotion_trained_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
emotion\_trained\_1234567 ========================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9051 * F1: 0.7302 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6.961635072722524e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.961635072722524e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.961635072722524e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9274 - F1: 0.7198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6177 | 0.7137 | | No log | 2.0 | 408 | 0.7489 | 0.6761 | | 0.5082 | 3.0 | 612 | 0.8233 | 0.7283 | | 0.5082 | 4.0 | 816 | 0.9274 | 0.7198 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "emotion_trained_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.719757533529152, "name": "F1"}]}]}]}
aXhyra/emotion_trained_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
emotion\_trained\_31415 ======================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9274 * F1: 0.7198 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6.961635072722524e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.961635072722524e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.961635072722524e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9012 - F1: 0.7361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6131 | 0.6955 | | No log | 2.0 | 408 | 0.5816 | 0.7297 | | 0.5148 | 3.0 | 612 | 0.8942 | 0.7199 | | 0.5148 | 4.0 | 816 | 0.9012 | 0.7361 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "emotion_trained_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7361210540311689, "name": "F1"}]}]}]}
aXhyra/emotion_trained_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
emotion\_trained\_42 ==================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9012 * F1: 0.7361 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6.961635072722524e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.961635072722524e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.961635072722524e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9349 - F1: 0.7469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.502523631581398e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9013 | 1.0 | 815 | 0.7822 | 0.6470 | | 0.5008 | 2.0 | 1630 | 0.7142 | 0.7419 | | 0.3684 | 3.0 | 2445 | 0.8621 | 0.7443 | | 0.2182 | 4.0 | 3260 | 0.9349 | 0.7469 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "emotion_trained_final", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7469065445487402, "name": "F1"}]}]}]}
aXhyra/emotion_trained_final
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
emotion\_trained\_final ======================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9349 * F1: 0.7469 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1.502523631581398e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.502523631581398e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.502523631581398e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.7912 - F1: 0.7751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7272339744854407e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4835 | 1.0 | 563 | 0.4881 | 0.7534 | | 0.3236 | 2.0 | 1126 | 0.5294 | 0.7610 | | 0.219 | 3.0 | 1689 | 0.6095 | 0.7717 | | 0.1409 | 4.0 | 2252 | 0.7912 | 0.7751 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "hate_trained_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7750768993843997, "name": "F1"}]}]}]}
aXhyra/hate_trained_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
hate\_trained\_1234567 ====================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.7912 * F1: 0.7751 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.7272339744854407e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7272339744854407e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7272339744854407e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8568 - F1: 0.7729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7272339744854407e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.482 | 1.0 | 563 | 0.4973 | 0.7672 | | 0.3316 | 2.0 | 1126 | 0.4931 | 0.7794 | | 0.2308 | 3.0 | 1689 | 0.7073 | 0.7593 | | 0.1444 | 4.0 | 2252 | 0.8568 | 0.7729 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "hate_trained_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7729447444817463, "name": "F1"}]}]}]}
aXhyra/hate_trained_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
hate\_trained\_31415 ==================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8568 * F1: 0.7729 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.7272339744854407e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7272339744854407e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7272339744854407e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8994 - F1: 0.7712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7272339744854407e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4835 | 1.0 | 563 | 0.4855 | 0.7556 | | 0.3277 | 2.0 | 1126 | 0.5354 | 0.7704 | | 0.2112 | 3.0 | 1689 | 0.6870 | 0.7751 | | 0.1384 | 4.0 | 2252 | 0.8994 | 0.7712 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "hate_trained_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7712319060633668, "name": "F1"}]}]}]}
aXhyra/hate_trained_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
hate\_trained\_42 ================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8994 * F1: 0.7712 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.7272339744854407e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7272339744854407e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.7272339744854407e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5543 - F1: 0.7698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.460503761236833e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.463 | 1.0 | 1125 | 0.5213 | 0.7384 | | 0.3943 | 2.0 | 2250 | 0.5134 | 0.7534 | | 0.3407 | 3.0 | 3375 | 0.5400 | 0.7666 | | 0.3121 | 4.0 | 4500 | 0.5543 | 0.7698 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "hate_trained_final", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7697890540753396, "name": "F1"}]}]}]}
aXhyra/hate_trained_final
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
hate\_trained\_final ==================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.5543 * F1: 0.7698 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.460503761236833e-06 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.460503761236833e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.460503761236833e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.6471 - F1: 0.6851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6774391860025942e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6589 | 1.0 | 716 | 0.6187 | 0.6646 | | 0.5494 | 2.0 | 1432 | 0.9314 | 0.6793 | | 0.3369 | 3.0 | 2148 | 1.3468 | 0.6833 | | 0.2129 | 4.0 | 2864 | 1.6471 | 0.6851 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "irony_trained", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6851011633121422, "name": "F1"}]}]}]}
aXhyra/irony_trained
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
irony\_trained ============== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.6471 * F1: 0.6851 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.6774391860025942e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.6580 - F1: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6774391860025942e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6608 | 1.0 | 716 | 0.6057 | 0.6704 | | 0.5329 | 2.0 | 1432 | 0.8935 | 0.6621 | | 0.3042 | 3.0 | 2148 | 1.3871 | 0.6822 | | 0.1769 | 4.0 | 2864 | 1.6580 | 0.6766 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "irony_trained_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6765645067647214, "name": "F1"}]}]}]}
aXhyra/irony_trained_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
irony\_trained\_1234567 ======================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.6580 * F1: 0.6766 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.6774391860025942e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.6608 - F1: 0.6690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6774391860025942e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6547 | 1.0 | 716 | 0.6173 | 0.6508 | | 0.57 | 2.0 | 1432 | 0.8629 | 0.6577 | | 0.2955 | 3.0 | 2148 | 1.4836 | 0.6722 | | 0.1903 | 4.0 | 2864 | 1.6608 | 0.6690 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "irony_trained_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6690050628690761, "name": "F1"}]}]}]}
aXhyra/irony_trained_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
irony\_trained\_31415 ===================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.6608 * F1: 0.6690 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.6774391860025942e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.5669 - F1: 0.6786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6774391860025942e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6669 | 1.0 | 716 | 0.6291 | 0.6198 | | 0.5655 | 2.0 | 1432 | 0.7332 | 0.6771 | | 0.3764 | 3.0 | 2148 | 1.4193 | 0.6554 | | 0.229 | 4.0 | 2864 | 1.5669 | 0.6786 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "irony_trained_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6785912258473235, "name": "F1"}]}]}]}
aXhyra/irony_trained_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
irony\_trained\_42 ================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.5669 * F1: 0.6786 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.6774391860025942e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.6774391860025942e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.4770 - F1: 0.6879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.842398023893579e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6852 | 1.0 | 716 | 0.6488 | 0.6530 | | 0.6263 | 2.0 | 1432 | 0.7647 | 0.6511 | | 0.4511 | 3.0 | 2148 | 1.2251 | 0.6764 | | 0.2578 | 4.0 | 2864 | 1.4770 | 0.6879 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "irony_trained_final", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6879413493337545, "name": "F1"}]}]}]}
aXhyra/irony_trained_final
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
irony\_trained\_final ===================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.4770 * F1: 0.6879 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4.842398023893579e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4.842398023893579e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4.842398023893579e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0237 - F1: 0.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1189 | 1.0 | 408 | 0.6827 | 0.7164 | | 1.0678 | 2.0 | 816 | 0.6916 | 0.7396 | | 0.6582 | 3.0 | 1224 | 0.9281 | 0.7276 | | 0.0024 | 4.0 | 1632 | 1.0237 | 0.7273 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_emotion_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7272977042723248, "name": "F1"}]}]}]}
aXhyra/presentation_emotion_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_emotion\_1234567 ============================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.0237 * F1: 0.7273 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.18796906442746e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.18796906442746e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.18796906442746e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1243 - F1: 0.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.73 | 1.0 | 408 | 0.8206 | 0.6491 | | 0.3868 | 2.0 | 816 | 0.7733 | 0.7230 | | 0.0639 | 3.0 | 1224 | 0.9962 | 0.7101 | | 0.0507 | 4.0 | 1632 | 1.1243 | 0.7149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_emotion_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7148501877297316, "name": "F1"}]}]}]}
aXhyra/presentation_emotion_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_emotion\_31415 ============================ This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.1243 * F1: 0.7149 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.18796906442746e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.18796906442746e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.18796906442746e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0989 - F1: 0.7329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3703 | 1.0 | 408 | 0.6624 | 0.7029 | | 0.2122 | 2.0 | 816 | 0.6684 | 0.7258 | | 0.9452 | 3.0 | 1224 | 1.0001 | 0.7041 | | 0.0023 | 4.0 | 1632 | 1.0989 | 0.7329 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_emotion_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.732897530282475, "name": "F1"}]}]}]}
aXhyra/presentation_emotion_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_emotion\_42 ========================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.0989 * F1: 0.7329 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.18796906442746e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.18796906442746e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.18796906442746e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8438 - F1: 0.7680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6027 | 1.0 | 282 | 0.5186 | 0.7209 | | 0.3537 | 2.0 | 564 | 0.4989 | 0.7619 | | 0.0969 | 3.0 | 846 | 0.6405 | 0.7697 | | 0.0514 | 4.0 | 1128 | 0.8438 | 0.7680 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_hate_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7679568806891273, "name": "F1"}]}]}]}
aXhyra/presentation_hate_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_hate\_1234567 =========================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8438 * F1: 0.7680 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.436235805743952e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.436235805743952e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.436235805743952e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8632 - F1: 0.7730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.363 | 1.0 | 282 | 0.4997 | 0.7401 | | 0.2145 | 2.0 | 564 | 0.5071 | 0.7773 | | 0.1327 | 3.0 | 846 | 0.7109 | 0.7645 | | 0.0157 | 4.0 | 1128 | 0.8632 | 0.7730 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_hate_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7729508817074093, "name": "F1"}]}]}]}
aXhyra/presentation_hate_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_hate\_31415 ========================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8632 * F1: 0.7730 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.436235805743952e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.436235805743952e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.436235805743952e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8711 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5207 | 1.0 | 282 | 0.4815 | 0.7513 | | 0.3047 | 2.0 | 564 | 0.5557 | 0.7510 | | 0.2335 | 3.0 | 846 | 0.6627 | 0.7585 | | 0.0056 | 4.0 | 1128 | 0.8711 | 0.7692 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_hate_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7692074096568478, "name": "F1"}]}]}]}
aXhyra/presentation_hate_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_hate\_42 ====================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.8711 * F1: 0.7692 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.436235805743952e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.436235805743952e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.436235805743952e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_irony_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9493 - F1: 0.6746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.1637764704815665e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5514 | 1.0 | 90 | 0.5917 | 0.6767 | | 0.6107 | 2.0 | 180 | 0.6123 | 0.6730 | | 0.1327 | 3.0 | 270 | 0.7463 | 0.6970 | | 0.1068 | 4.0 | 360 | 0.9493 | 0.6746 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_irony_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.674604535422547, "name": "F1"}]}]}]}
aXhyra/presentation_irony_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_irony\_1234567 ============================ This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9493 * F1: 0.6746 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.1637764704815665e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.1637764704815665e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.1637764704815665e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_irony_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9694 - F1: 0.6754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.1637764704815665e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6601 | 1.0 | 90 | 0.6298 | 0.6230 | | 0.4887 | 2.0 | 180 | 0.6039 | 0.6816 | | 0.2543 | 3.0 | 270 | 0.7362 | 0.6803 | | 0.1472 | 4.0 | 360 | 0.9694 | 0.6754 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_irony_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6753923142373446, "name": "F1"}]}]}]}
aXhyra/presentation_irony_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_irony\_31415 ========================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9694 * F1: 0.6754 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.1637764704815665e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.1637764704815665e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.1637764704815665e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_irony_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9344 - F1: 0.6745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.1637764704815665e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6675 | 1.0 | 90 | 0.5988 | 0.6684 | | 0.5872 | 2.0 | 180 | 0.6039 | 0.6742 | | 0.3953 | 3.0 | 270 | 0.8549 | 0.6557 | | 0.0355 | 4.0 | 360 | 0.9344 | 0.6745 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_irony_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6745358521762839, "name": "F1"}]}]}]}
aXhyra/presentation_irony_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_irony\_42 ======================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.9344 * F1: 0.6745 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.1637764704815665e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.1637764704815665e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.1637764704815665e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_sentiment_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0860 - F1: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.2792011721188e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3747 | 1.0 | 11404 | 0.6515 | 0.7045 | | 0.6511 | 2.0 | 22808 | 0.7334 | 0.7188 | | 0.0362 | 3.0 | 34212 | 0.9498 | 0.7195 | | 1.0576 | 4.0 | 45616 | 1.0860 | 0.7183 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_sentiment_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.71829420028644, "name": "F1"}]}]}]}
aXhyra/presentation_sentiment_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_sentiment\_1234567 ================================ This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.0860 * F1: 0.7183 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.2792011721188e-06 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.2792011721188e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.2792011721188e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_sentiment_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0860 - F1: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.2792011721188e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3747 | 1.0 | 11404 | 0.6515 | 0.7045 | | 0.6511 | 2.0 | 22808 | 0.7334 | 0.7188 | | 0.0362 | 3.0 | 34212 | 0.9498 | 0.7195 | | 1.0576 | 4.0 | 45616 | 1.0860 | 0.7183 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_sentiment_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.71829420028644, "name": "F1"}]}]}]}
aXhyra/presentation_sentiment_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_sentiment\_31415 ============================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.0860 * F1: 0.7183 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.2792011721188e-06 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.2792011721188e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.2792011721188e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_sentiment_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6491 - F1: 0.7176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.923967812567773e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4391 | 1.0 | 2851 | 0.6591 | 0.6953 | | 0.6288 | 2.0 | 5702 | 0.6265 | 0.7158 | | 0.4071 | 3.0 | 8553 | 0.6401 | 0.7179 | | 0.6532 | 4.0 | 11404 | 0.6491 | 0.7176 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "presentation_sentiment_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7175864613336908, "name": "F1"}]}]}]}
aXhyra/presentation_sentiment_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
presentation\_sentiment\_42 =========================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.6491 * F1: 0.7176 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6.923967812567773e-06 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.923967812567773e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6.923967812567773e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2671 - F1: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6647 | 1.0 | 11404 | 0.6424 | 0.7189 | | 0.6018 | 2.0 | 22808 | 0.7947 | 0.7170 | | 0.5004 | 3.0 | 34212 | 1.0811 | 0.7200 | | 0.3761 | 4.0 | 45616 | 1.2671 | 0.7253 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "sentiment_trained", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7253452834090693, "name": "F1"}]}]}]}
aXhyra/sentiment_trained
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
sentiment\_trained ================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.2671 * F1: 0.7253 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1.2140338797769864e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2854 - F1: 0.7165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6603 | 1.0 | 11404 | 0.7020 | 0.6992 | | 0.5978 | 2.0 | 22808 | 0.8024 | 0.7151 | | 0.5495 | 3.0 | 34212 | 1.0837 | 0.7139 | | 0.4026 | 4.0 | 45616 | 1.2854 | 0.7165 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "sentiment_trained_1234567", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7165064254565859, "name": "F1"}]}]}]}
aXhyra/sentiment_trained_1234567
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
sentiment\_trained\_1234567 =========================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.2854 * F1: 0.7165 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1.2140338797769864e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 1234567 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 1234567\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2481 - F1: 0.7188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.651 | 1.0 | 11404 | 0.6669 | 0.7141 | | 0.6066 | 2.0 | 22808 | 0.8160 | 0.7198 | | 0.503 | 3.0 | 34212 | 1.0659 | 0.7182 | | 0.386 | 4.0 | 45616 | 1.2481 | 0.7188 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "sentiment_trained_31415", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7188262432133108, "name": "F1"}]}]}]}
aXhyra/sentiment_trained_31415
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
sentiment\_trained\_31415 ========================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.2481 * F1: 0.7188 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1.2140338797769864e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 31415 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 31415\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.3194 - F1: 0.7132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6405 | 1.0 | 11404 | 0.6631 | 0.7046 | | 0.5998 | 2.0 | 22808 | 0.8429 | 0.7102 | | 0.5118 | 3.0 | 34212 | 1.0906 | 0.7155 | | 0.3745 | 4.0 | 45616 | 1.3194 | 0.7132 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "sentiment_trained_42", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "sentiment"}, "metrics": [{"type": "f1", "value": 0.7131935389791447, "name": "F1"}]}]}]}
aXhyra/sentiment_trained_42
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
sentiment\_trained\_42 ====================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.3194 * F1: 0.7132 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1.2140338797769864e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.2140338797769864e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_emotion_trained_test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5866 - F1: 0.7015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.458132814624325e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 51 | 0.7877 | 0.5569 | | No log | 2.0 | 102 | 0.6188 | 0.6937 | | No log | 3.0 | 153 | 0.5969 | 0.7068 | | No log | 4.0 | 204 | 0.5866 | 0.7015 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "test_emotion_trained_test", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "emotion"}, "metrics": [{"type": "f1", "value": 0.7014611518188594, "name": "F1"}]}]}]}
aXhyra/test_emotion_trained_test
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
test\_emotion\_trained\_test ============================ This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.5866 * F1: 0.7015 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2.458132814624325e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.458132814624325e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2.458132814624325e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_hate_trained_test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1807 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.257754679724796e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4362 | 1.0 | 1125 | 0.5282 | 0.7369 | | 0.3193 | 2.0 | 2250 | 0.6364 | 0.7571 | | 0.1834 | 3.0 | 3375 | 1.0346 | 0.7625 | | 0.0776 | 4.0 | 4500 | 1.1807 | 0.7692 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "test_hate_trained_test", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "hate"}, "metrics": [{"type": "f1", "value": 0.7691585677255204, "name": "F1"}]}]}]}
aXhyra/test_hate_trained_test
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
test\_hate\_trained\_test ========================= This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 1.1807 * F1: 0.7692 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5.257754679724796e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.257754679724796e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.257754679724796e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_irony_trained_test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.7674 - F1: 0.6680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.207906329883037e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 358 | 0.6655 | 0.5924 | | 0.684 | 2.0 | 716 | 0.6889 | 0.6024 | | 0.5826 | 3.0 | 1074 | 0.7085 | 0.6488 | | 0.5826 | 4.0 | 1432 | 0.7674 | 0.6680 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tweet_eval"], "metrics": ["f1"], "model-index": [{"name": "test_irony_trained_test", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "args": "irony"}, "metrics": [{"type": "f1", "value": 0.6680395323922843, "name": "F1"}]}]}]}
aXhyra/test_irony_trained_test
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
test\_irony\_trained\_test ========================== This model is a fine-tuned version of distilbert-base-uncased on the tweet\_eval dataset. It achieves the following results on the evaluation set: * Loss: 0.7674 * F1: 0.6680 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 9.207906329883037e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.207906329883037e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-tweet_eval #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.207906329883037e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-generation
transformers
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
{}
aadelucia/GPT2_medium_narrative_finetuned_large
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Please visit the repo for training details. URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
{}
aadelucia/GPT2_medium_narrative_finetuned_medium
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Please visit the repo for training details. URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
{}
aadelucia/GPT2_small_narrative_finetuned_medium
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Please visit the repo for training details. URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
# Chandler friends DialogGPT Modal
{"tags": ["conversational"]}
aadilhassan/Chandlerbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Chandler friends DialogGPT Modal
[ "# Chandler friends DialogGPT Modal" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Chandler friends DialogGPT Modal" ]
automatic-speech-recognition
transformers
# NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) and [Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm) # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10 Finnish](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.378771 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training as well as `CSS10 Finnish` and `Finnish parliament session 2` datasets. The script used for training can be found from [Google Colab](https://colab.research.google.com/drive/1vnEGC9BnNRmVyIHj-0UsVulh_cUYSGWA?usp=sharing)
{"language": "fi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Finnish by Aapo Tanskanen", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fi", "type": "common_voice", "args": "fi"}, "metrics": [{"type": "wer", "value": 32.378771, "name": "Test WER"}]}]}]}
aapot/wav2vec2-large-xlsr-53-finnish
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "fi" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 and Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 Finnish and Finnish parliament session 2 datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. Test Result: 32.378771 % ## Training The Common Voice 'train', 'validation' and 'other' datasets were used for training as well as 'CSS10 Finnish' and 'Finnish parliament session 2' datasets. The script used for training can be found from Google Colab
[ "# NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 and Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm", "# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 Finnish and Finnish parliament session 2 datasets.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice. \n\n\n\n\nTest Result: 32.378771 %", "## Training\n\nThe Common Voice 'train', 'validation' and 'other' datasets were used for training as well as 'CSS10 Finnish' and 'Finnish parliament session 2' datasets.\n\nThe script used for training can be found from Google Colab" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 and Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm", "# Wav2Vec2-Large-XLSR-53-Finnish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Finnish using the Common Voice, CSS10 Finnish and Finnish parliament session 2 datasets.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Finnish test data of Common Voice. \n\n\n\n\nTest Result: 32.378771 %", "## Training\n\nThe Common Voice 'train', 'validation' and 'other' datasets were used for training as well as 'CSS10 Finnish' and 'Finnish parliament session 2' datasets.\n\nThe script used for training can be found from Google Colab" ]
automatic-speech-recognition
transformers
# Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
{"language": "fi", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer", "cer"], "model-index": [{"name": "wav2vec2-xlsr-1b-finnish-lm-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "fi"}, "metrics": [{"type": "wer", "value": 4.09, "name": "Test WER"}, {"type": "cer", "value": 0.88, "name": "Test CER"}]}]}]}
aapot/wav2vec2-xlsr-1b-finnish-lm-v2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "fi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us
Wav2Vec2 XLS-R for Finnish ASR ============================== This acoustic model is a fine-tuned version of facebook/wav2vec2-xls-r-1b for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in this paper and first released at this page. This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. Note: this model is exactly the same as the Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 model so this model has just been copied/moved to the 'Finnish-NLP' Hugging Face organization. Model description ----------------- Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from this blog and this paper. This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. Intended uses & limitations --------------------------- You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the URL notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post. A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. Training data ------------- This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: Datasets were filtered to include maximum length of 20 seconds long audio samples. Training procedure ------------------ This model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the blog post tutorial provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned Finnish Wikipedia (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 10 * mixed\_precision\_training: Native AMP The pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters: * attention\_dropout: 0.094 * hidden\_dropout: 0.047 * feat\_proj\_dropout: 0.04 * mask\_time\_prob: 0.082 * layerdrop: 0.041 * activation\_dropout: 0.055 * ctc\_loss\_reduction: "mean" ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0 Evaluation results ------------------ Evaluation was done with the Common Voice 7.0 Finnish test split. To evaluate this model, run the 'URL' script in this repository: This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: Team Members ------------ * Aapo Tanskanen, Hugging Face profile, LinkedIn profile * Rasmus Toivanen, Hugging Face profile, LinkedIn profile Feel free to contact us for more details
[ "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nThe Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.\n\n\nFor the KenLM language model training, we followed the blog post tutorial provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned Finnish Wikipedia (August 2021) dataset.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nThe Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.\n\n\nFor the KenLM language model training, we followed the blog post tutorial provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned Finnish Wikipedia (August 2021) dataset.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
automatic-speech-recognition
transformers
# Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
{"language": "fi", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer", "cer"], "model-index": [{"name": "wav2vec2-xlsr-1b-finnish-lm", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "fi"}, "metrics": [{"type": "wer", "value": 5.65, "name": "Test WER"}, {"type": "cer", "value": 1.2, "name": "Test CER"}]}]}]}
aapot/wav2vec2-xlsr-1b-finnish-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "fi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us
Wav2Vec2 XLS-R for Finnish ASR ============================== This acoustic model is a fine-tuned version of facebook/wav2vec2-xls-r-1b for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in this paper and first released at this page. This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. Note: this model is exactly the same as the Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm model so this model has just been copied/moved to the 'Finnish-NLP' Hugging Face organization. Note: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 Model description ----------------- Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from this blog and this paper. This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. Intended uses & limitations --------------------------- You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the URL notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post. A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. Training data ------------- This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: Datasets were filtered to include maximum length of 20 seconds long audio samples. Training procedure ------------------ This model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the blog post tutorial provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 5 * mixed\_precision\_training: Native AMP The pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters: * attention\_dropout: 0.094 * hidden\_dropout: 0.047 * feat\_proj\_dropout: 0.04 * mask\_time\_prob: 0.082 * layerdrop: 0.041 * activation\_dropout: 0.055 * ctc\_loss\_reduction: "mean" ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0 Evaluation results ------------------ Evaluation was done with the Common Voice 7.0 Finnish test split. To evaluate this model, run the 'URL' script in this repository: This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: Team Members ------------ * Aapo Tanskanen, Hugging Face profile, LinkedIn profile * Rasmus Toivanen, Hugging Face profile, LinkedIn profile Feel free to contact us for more details
[ "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nThe Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.\n\n\nFor the KenLM language model training, we followed the blog post tutorial provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nThe Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.\n\n\nFor the KenLM language model training, we followed the blog post tutorial provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
automatic-speech-recognition
transformers
# Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
{"language": "fi", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer", "cer"], "model-index": [{"name": "wav2vec2-xlsr-1b-finnish-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "fi"}, "metrics": [{"type": "wer", "value": 9.73, "name": "Test WER"}, {"type": "cer", "value": 1.65, "name": "Test CER"}]}]}]}
aapot/wav2vec2-xlsr-1b-finnish-v2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "fi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us
Wav2Vec2 XLS-R for Finnish ASR ============================== This acoustic model is a fine-tuned version of facebook/wav2vec2-xls-r-1b for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in this paper and first released at this page. Note: there is a version with KenLM language model used in the decoding phase producing better transcriptions: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 Model description ----------------- Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from this blog and this paper. This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. Intended uses & limitations --------------------------- You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the URL notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post. A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. Training data ------------- This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: Datasets were filtered to include maximum length of 20 seconds long audio samples. Training procedure ------------------ This model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 10 * mixed\_precision\_training: Native AMP The pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters: * attention\_dropout: 0.094 * hidden\_dropout: 0.047 * feat\_proj\_dropout: 0.04 * mask\_time\_prob: 0.082 * layerdrop: 0.041 * activation\_dropout: 0.055 * ctc\_loss\_reduction: "mean" ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0 Evaluation results ------------------ Evaluation was done with the Common Voice 7.0 Finnish test split. To evaluate this model, run the 'URL' script in this repository: This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: Team Members ------------ * Aapo Tanskanen, Hugging Face profile, LinkedIn profile * Rasmus Toivanen, Hugging Face profile, LinkedIn profile Feel free to contact us for more details
[ "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
automatic-speech-recognition
transformers
# Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm) **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
{"language": "fi", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer", "cer"], "model-index": [{"name": "wav2vec2-xlsr-1b-finnish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "fi"}, "metrics": [{"type": "wer", "value": 13.11, "name": "Test WER"}, {"type": "cer", "value": 2.23, "name": "Test CER"}]}]}]}
aapot/wav2vec2-xlsr-1b-finnish
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2111.09296" ]
[ "fi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us
Wav2Vec2 XLS-R for Finnish ASR ============================== This acoustic model is a fine-tuned version of facebook/wav2vec2-xls-r-1b for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in this paper and first released at this page. Note: there is a version with KenLM language model used in the decoding phase producing better transcriptions: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm Note: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 Model description ----------------- Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from this blog and this paper. This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. Intended uses & limitations --------------------------- You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the URL notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post. A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. Training data ------------- This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: Datasets were filtered to include maximum length of 20 seconds long audio samples. Training procedure ------------------ This model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 5 * mixed\_precision\_training: Native AMP The pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters: * attention\_dropout: 0.094 * hidden\_dropout: 0.047 * feat\_proj\_dropout: 0.04 * mask\_time\_prob: 0.082 * layerdrop: 0.041 * activation\_dropout: 0.055 * ctc\_loss\_reduction: "mean" ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0 Evaluation results ------------------ Evaluation was done with the Common Voice 7.0 Finnish test split. To evaluate this model, run the 'URL' script in this repository: This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: Team Members ------------ * Aapo Tanskanen, Hugging Face profile, LinkedIn profile * Rasmus Toivanen, Hugging Face profile, LinkedIn profile Feel free to contact us for more details
[ "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #fi #finnish #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #dataset-mozilla-foundation/common_voice_7_0 #arxiv-2111.09296 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### How to use\n\n\nCheck the URL notebook in this repository for an detailed example on how to use this model.", "### Limitations and bias\n\n\nThis model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in this blog post.\n\n\nA vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example.\n\n\nTraining data\n-------------\n\n\nThis model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets:\n\n\n\nDatasets were filtered to include maximum length of 20 seconds long audio samples.\n\n\nTraining procedure\n------------------\n\n\nThis model was trained during Robust Speech Challenge Event organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud.\n\n\nTraining script was provided by Hugging Face and it is available here. We only modified its data loading for our custom datasets.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: 8-bit Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP\n\n\nThe pretrained 'facebook/wav2vec2-xls-r-1b' model was initialized with following hyperparameters:\n\n\n* attention\\_dropout: 0.094\n* hidden\\_dropout: 0.047\n* feat\\_proj\\_dropout: 0.04\n* mask\\_time\\_prob: 0.082\n* layerdrop: 0.041\n* activation\\_dropout: 0.055\n* ctc\\_loss\\_reduction: \"mean\"", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0\n\n\nEvaluation results\n------------------\n\n\nEvaluation was done with the Common Voice 7.0 Finnish test split.\n\n\nTo evaluate this model, run the 'URL' script in this repository:\n\n\nThis model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models:\n\n\n\nTeam Members\n------------\n\n\n* Aapo Tanskanen, Hugging Face profile, LinkedIn profile\n* Rasmus Toivanen, Hugging Face profile, LinkedIn profile\n\n\nFeel free to contact us for more details" ]