pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
text2text-generation
transformers
## daT5-large A smaller version of [Google's mt5-large](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-large") model = AutoModel.from_pretrained("emillykkejensen/daT5-large") ``` ## Further reading [Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted (for mt5-base) [Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated) ## Also check out [daT5-base](https://huggingface.co/emillykkejensen/daT5-base)
{"language": ["da"], "license": "apache-2.0"}
emillykkejensen/daT5-large
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "da" ]
TAGS #transformers #pytorch #mt5 #text2text-generation #da #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## daT5-large A smaller version of Google's mt5-large model, where the original model is reduced to only include Danish embeddings. ## How to use ## Further reading Gist showing (in Danish) how the embeddings are extracted (for mt5-base) Article explaining how to do it by David Dale ## Also check out daT5-base
[ "## daT5-large\nA smaller version of Google's mt5-large model, where the original model is reduced to only include Danish embeddings.", "## How to use", "## Further reading\n\nGist showing (in Danish) how the embeddings are extracted (for mt5-base)\n\nArticle explaining how to do it by David Dale", "## Also check out\ndaT5-base" ]
[ "TAGS\n#transformers #pytorch #mt5 #text2text-generation #da #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## daT5-large\nA smaller version of Google's mt5-large model, where the original model is reduced to only include Danish embeddings.", "## How to use", "## Further reading\n\nGist showing (in Danish) how the embeddings are extracted (for mt5-base)\n\nArticle explaining how to do it by David Dale", "## Also check out\ndaT5-base" ]
fill-mask
transformers
# ClinicalBERT - Bio + Clinical BERT Model The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Clinical BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on all MIMIC notes. ## Pretraining Data The `Bio_ClinicalBERT` model was trained on all notes from [MIMIC III](https://www.nature.com/articles/sdata201635), a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see [here](https://mimic.physionet.org/). All notes from the `NOTEEVENTS` table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy (`en core sci md` tokenizer). ### Pretraining Procedures The model was trained using code from [Google's BERT repository](https://github.com/google-research/bert) on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") ``` ## More Information Refer to the original paper, [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the [clinicalBERT repo](https://github.com/EmilyAlsentzer/clinicalBERT) or email emilya@mit.edu with any questions.
{"language": "en", "license": "mit", "tags": ["fill-mask"]}
emilyalsentzer/Bio_ClinicalBERT
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "en", "arxiv:1904.03323", "arxiv:1901.08746", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1904.03323", "1901.08746" ]
[ "en" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #en #arxiv-1904.03323 #arxiv-1901.08746 #license-mit #endpoints_compatible #has_space #region-us
# ClinicalBERT - Bio + Clinical BERT Model The Publicly Available Clinical BERT Embeddings paper contains four unique clinicalBERT models: initialized with BERT-Base ('cased_L-12_H-768_A-12') or BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Clinical BERT model, which was initialized from BioBERT & trained on all MIMIC notes. ## Pretraining Data The 'Bio_ClinicalBERT' model was trained on all notes from MIMIC III, a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see here. All notes from the 'NOTEEVENTS' table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy ('en core sci md' tokenizer). ### Pretraining Procedures The model was trained using code from Google's BERT repository on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K'). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ## More Information Refer to the original paper, Publicly Available Clinical BERT Embeddings (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the clinicalBERT repo or email emilya@URL with any questions.
[ "# ClinicalBERT - Bio + Clinical BERT Model\n\nThe Publicly Available Clinical BERT Embeddings paper contains four unique clinicalBERT models: initialized with BERT-Base ('cased_L-12_H-768_A-12') or BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') & trained on either all MIMIC notes or only discharge summaries. \n\nThis model card describes the Bio+Clinical BERT model, which was initialized from BioBERT & trained on all MIMIC notes.", "## Pretraining Data\nThe 'Bio_ClinicalBERT' model was trained on all notes from MIMIC III, a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see here. All notes from the 'NOTEEVENTS' table were included (~880M words).", "## Model Pretraining", "### Note Preprocessing\nEach note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into \"History of Present Illness\", \"Family History\", \"Brief Hospital Course\", etc. sections). Then each section was split into sentences using SciSpacy ('en core sci md' tokenizer).", "### Pretraining Procedures\nThe model was trained using code from Google's BERT repository on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K').", "### Pretraining Hyperparameters\nWe used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15\nand max predictions per sequence = 20).", "## How to use the model\n\nLoad the model via the transformers library:", "## More Information\n\nRefer to the original paper, Publicly Available Clinical BERT Embeddings (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks.", "## Questions?\n\nPost a Github issue on the clinicalBERT repo or email emilya@URL with any questions." ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #en #arxiv-1904.03323 #arxiv-1901.08746 #license-mit #endpoints_compatible #has_space #region-us \n", "# ClinicalBERT - Bio + Clinical BERT Model\n\nThe Publicly Available Clinical BERT Embeddings paper contains four unique clinicalBERT models: initialized with BERT-Base ('cased_L-12_H-768_A-12') or BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') & trained on either all MIMIC notes or only discharge summaries. \n\nThis model card describes the Bio+Clinical BERT model, which was initialized from BioBERT & trained on all MIMIC notes.", "## Pretraining Data\nThe 'Bio_ClinicalBERT' model was trained on all notes from MIMIC III, a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see here. All notes from the 'NOTEEVENTS' table were included (~880M words).", "## Model Pretraining", "### Note Preprocessing\nEach note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into \"History of Present Illness\", \"Family History\", \"Brief Hospital Course\", etc. sections). Then each section was split into sentences using SciSpacy ('en core sci md' tokenizer).", "### Pretraining Procedures\nThe model was trained using code from Google's BERT repository on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K').", "### Pretraining Hyperparameters\nWe used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15\nand max predictions per sequence = 20).", "## How to use the model\n\nLoad the model via the transformers library:", "## More Information\n\nRefer to the original paper, Publicly Available Clinical BERT Embeddings (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks.", "## Questions?\n\nPost a Github issue on the clinicalBERT repo or email emilya@URL with any questions." ]
fill-mask
transformers
# ClinicalBERT - Bio + Discharge Summary BERT Model The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Discharge Summary BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on only discharge summaries from MIMIC. ## Pretraining Data The `Bio_Discharge_Summary_BERT` model was trained on all discharge summaries from [MIMIC III](https://www.nature.com/articles/sdata201635), a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see [here](https://mimic.physionet.org/). All notes from the `NOTEEVENTS` table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy (`en core sci md` tokenizer). ### Pretraining Procedures The model was trained using code from [Google's BERT repository](https://github.com/google-research/bert) on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_Discharge_Summary_BERT") model = AutoModel.from_pretrained("emilyalsentzer/Bio_Discharge_Summary_BERT") ``` ## More Information Refer to the original paper, [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the [clinicalBERT repo](https://github.com/EmilyAlsentzer/clinicalBERT) or email emilya@mit.edu with any questions.
{"language": "en", "license": "mit", "tags": ["fill-mask"]}
emilyalsentzer/Bio_Discharge_Summary_BERT
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "en", "arxiv:1904.03323", "arxiv:1901.08746", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1904.03323", "1901.08746" ]
[ "en" ]
TAGS #transformers #pytorch #jax #bert #fill-mask #en #arxiv-1904.03323 #arxiv-1901.08746 #license-mit #endpoints_compatible #has_space #region-us
# ClinicalBERT - Bio + Discharge Summary BERT Model The Publicly Available Clinical BERT Embeddings paper contains four unique clinicalBERT models: initialized with BERT-Base ('cased_L-12_H-768_A-12') or BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Discharge Summary BERT model, which was initialized from BioBERT & trained on only discharge summaries from MIMIC. ## Pretraining Data The 'Bio_Discharge_Summary_BERT' model was trained on all discharge summaries from MIMIC III, a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see here. All notes from the 'NOTEEVENTS' table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy ('en core sci md' tokenizer). ### Pretraining Procedures The model was trained using code from Google's BERT repository on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K'). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ## More Information Refer to the original paper, Publicly Available Clinical BERT Embeddings (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the clinicalBERT repo or email emilya@URL with any questions.
[ "# ClinicalBERT - Bio + Discharge Summary BERT Model\n\nThe Publicly Available Clinical BERT Embeddings paper contains four unique clinicalBERT models: initialized with BERT-Base ('cased_L-12_H-768_A-12') or BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') & trained on either all MIMIC notes or only discharge summaries. \n\nThis model card describes the Bio+Discharge Summary BERT model, which was initialized from BioBERT & trained on only discharge summaries from MIMIC.", "## Pretraining Data\nThe 'Bio_Discharge_Summary_BERT' model was trained on all discharge summaries from MIMIC III, a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see here. All notes from the 'NOTEEVENTS' table were included (~880M words).", "## Model Pretraining", "### Note Preprocessing\nEach note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into \"History of Present Illness\", \"Family History\", \"Brief Hospital Course\", etc. sections). Then each section was split into sentences using SciSpacy ('en core sci md' tokenizer).", "### Pretraining Procedures\nThe model was trained using code from Google's BERT repository on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K').", "### Pretraining Hyperparameters\nWe used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15\nand max predictions per sequence = 20).", "## How to use the model\n\nLoad the model via the transformers library:", "## More Information\n\nRefer to the original paper, Publicly Available Clinical BERT Embeddings (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks.", "## Questions?\n\nPost a Github issue on the clinicalBERT repo or email emilya@URL with any questions." ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #en #arxiv-1904.03323 #arxiv-1901.08746 #license-mit #endpoints_compatible #has_space #region-us \n", "# ClinicalBERT - Bio + Discharge Summary BERT Model\n\nThe Publicly Available Clinical BERT Embeddings paper contains four unique clinicalBERT models: initialized with BERT-Base ('cased_L-12_H-768_A-12') or BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K') & trained on either all MIMIC notes or only discharge summaries. \n\nThis model card describes the Bio+Discharge Summary BERT model, which was initialized from BioBERT & trained on only discharge summaries from MIMIC.", "## Pretraining Data\nThe 'Bio_Discharge_Summary_BERT' model was trained on all discharge summaries from MIMIC III, a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see here. All notes from the 'NOTEEVENTS' table were included (~880M words).", "## Model Pretraining", "### Note Preprocessing\nEach note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into \"History of Present Illness\", \"Family History\", \"Brief Hospital Course\", etc. sections). Then each section was split into sentences using SciSpacy ('en core sci md' tokenizer).", "### Pretraining Procedures\nThe model was trained using code from Google's BERT repository on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT ('BioBERT-Base v1.0 + PubMed 200K + PMC 270K').", "### Pretraining Hyperparameters\nWe used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15\nand max predictions per sequence = 20).", "## How to use the model\n\nLoad the model via the transformers library:", "## More Information\n\nRefer to the original paper, Publicly Available Clinical BERT Embeddings (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks.", "## Questions?\n\nPost a Github issue on the clinicalBERT repo or email emilya@URL with any questions." ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `eml914/streaming_transformer_asr_librispeech` This model was trained by Emiru Tsunoo using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 12eb132418a1f69548f7998e53273cd05d989ed9 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model eml914/streaming_transformer_asr_librispeech ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 17 18:18:46 JST 2021` - python version: `3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.4.0` - Git hash: `12eb132418a1f69548f7998e53273cd05d989ed9` - Commit date: `Tue Nov 16 10:12:21 2021 +0900` ## asr_train_asr_streaming_fbank_pitch_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|54402|97.6|2.2|0.3|0.3|2.7|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|50948|93.5|5.8|0.7|0.9|7.4|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|52576|97.5|2.3|0.3|0.3|2.9|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|62|96.8|3.2|0.0|0.0|3.2|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|52343|93.5|5.7|0.8|0.9|7.4|53.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|288456|99.2|0.4|0.4|0.3|1.1|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|265951|97.2|1.6|1.2|0.9|3.7|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|281530|99.2|0.4|0.4|0.3|1.1|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|367|99.5|0.0|0.5|0.8|1.4|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|272758|97.3|1.5|1.3|0.9|3.6|53.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|68010|96.8|2.1|1.1|0.4|3.6|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|63110|91.9|5.9|2.2|1.5|9.6|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|65818|96.7|2.2|1.1|0.4|3.7|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|94|97.9|2.1|0.0|1.1|3.2|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|65101|91.8|5.5|2.7|1.2|9.4|53.7| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_streaming.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_streaming_fbank_pitch_en_bpe5000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 33851 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/speech_shape - exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_fbank_pitch_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_fbank_pitch_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 800 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/fbank_pitch/train_960_sp/feats.scp - speech - kaldi_ark - - dump/fbank_pitch/train_960_sp/text - text - text valid_data_path_and_name_and_type: - - dump/fbank_pitch/dev/feats.scp - speech - kaldi_ark - - dump/fbank_pitch/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ▁I - ▁HE - ▁THAT - ▁WAS - ED - ▁IT - '''' - ▁HIS - ING - ▁YOU - ▁WITH - ▁FOR - ▁HAD - T - ▁AS - ▁HER - ▁IS - ▁BE - ▁BUT - ▁NOT - ▁SHE - D - ▁AT - ▁ON - LY - ▁HIM - ▁THEY - ▁ALL - ▁HAVE - ▁BY - ▁SO - ▁THIS - ▁MY - ▁WHICH - ▁ME - ▁SAID - ▁FROM - ▁ONE - Y - E - ▁WERE - ▁WE - ▁NO - N - ▁THERE - ▁OR - ER - ▁AN - ▁WHEN - ▁ARE - ▁THEIR - ▁WOULD - ▁IF - ▁WHAT - ▁THEM - ▁WHO - ▁OUT - M - ▁DO - ▁WILL - ▁UP - ▁BEEN - P - R - ▁MAN - ▁THEN - ▁COULD - ▁MORE - C - ▁INTO - ▁NOW - ▁VERY - ▁YOUR - ▁SOME - ▁LITTLE - ES - ▁TIME - RE - ▁CAN - ▁LIKE - LL - ▁ABOUT - ▁HAS - ▁THAN - ▁DID - ▁UPON - ▁OVER - IN - ▁ANY - ▁WELL - ▁ONLY - B - ▁SEE - ▁GOOD - ▁OTHER - ▁TWO - L - ▁KNOW - ▁GO - ▁DOWN - ▁BEFORE - A - AL - ▁OUR - ▁OLD - ▁SHOULD - ▁MADE - ▁AFTER - ▁GREAT - ▁DAY - ▁MUST - ▁COME - ▁HOW - ▁SUCH - ▁CAME - LE - ▁WHERE - ▁US - ▁NEVER - ▁THESE - ▁MUCH - ▁DE - ▁MISTER - ▁WAY - G - ▁S - ▁MAY - ATION - ▁LONG - OR - ▁AM - ▁FIRST - ▁BACK - ▁OWN - ▁RE - ▁AGAIN - ▁SAY - ▁MEN - ▁WENT - ▁HIMSELF - ▁HERE - NESS - ▁THINK - V - IC - ▁EVEN - ▁THOUGHT - ▁HAND - ▁JUST - ▁O - ▁UN - VE - ION - ▁ITS - 'ON' - ▁MAKE - ▁MIGHT - ▁TOO - K - ▁AWAY - ▁LIFE - TH - ▁WITHOUT - ST - ▁THROUGH - ▁MOST - ▁TAKE - ▁DON - ▁EVERY - F - O - ▁SHALL - ▁THOSE - ▁EYES - AR - ▁STILL - ▁LAST - ▁HOUSE - ▁HEAD - ABLE - ▁NOTHING - ▁NIGHT - ITY - ▁LET - ▁MANY - ▁OFF - ▁BEING - ▁FOUND - ▁WHILE - EN - ▁SAW - ▁GET - ▁PEOPLE - ▁FACE - ▁YOUNG - CH - ▁UNDER - ▁ONCE - ▁TELL - AN - ▁THREE - ▁PLACE - ▁ROOM - ▁YET - ▁SAME - IL - US - U - ▁FATHER - ▁RIGHT - EL - ▁THOUGH - ▁ANOTHER - LI - RI - ▁HEART - IT - ▁PUT - ▁TOOK - ▁GIVE - ▁EVER - ▁E - ▁PART - ▁WORK - ERS - ▁LOOK - ▁NEW - ▁KING - ▁MISSUS - ▁SIR - ▁LOVE - ▁MIND - ▁LOOKED - W - RY - ▁ASKED - ▁LEFT - ET - ▁LIGHT - CK - ▁DOOR - ▁MOMENT - RO - ▁WORLD - ▁THINGS - ▁HOME - UL - ▁THING - LA - ▁WHY - ▁MOTHER - ▁ALWAYS - ▁FAR - FUL - ▁WATER - CE - IVE - UR - ▁HEARD - ▁SOMETHING - ▁SEEMED - I - LO - ▁BECAUSE - OL - ▁END - ▁TOLD - ▁CON - ▁YES - ▁GOING - ▁GOT - RA - IR - ▁WOMAN - ▁GOD - EST - TED - ▁FIND - ▁KNEW - ▁SOON - ▁EACH - ▁SIDE - H - TON - MENT - ▁OH - NE - Z - LING - ▁AGAINST - TER - ▁NAME - ▁MISS - ▁QUITE - ▁WANT - ▁YEARS - ▁FEW - ▁BETTER - ENT - ▁HALF - ▁DONE - ▁ALSO - ▁BEGAN - ▁HAVING - ▁ENOUGH - IS - ▁LADY - ▁WHOLE - LESS - ▁BOTH - ▁SEEN - ▁SET - ▁WHITE - ▁COURSE - IES - ▁VOICE - ▁CALLED - ▁D - ▁EX - ATE - ▁TURNED - ▁GAVE - ▁C - ▁POOR - MAN - UT - NA - ▁DEAR - ISH - ▁GIRL - ▁MORNING - ▁BETWEEN - LED - ▁NOR - IA - ▁AMONG - MA - ▁ - ▁SMALL - ▁REST - ▁WHOM - ▁FELT - ▁HANDS - ▁MYSELF - ▁HIGH - ▁M - ▁HOWEVER - ▁HERSELF - ▁P - CO - ▁STOOD - ID - ▁KIND - ▁HUNDRED - AS - ▁ROUND - ▁ALMOST - TY - ▁SINCE - ▁G - AM - ▁LA - SE - ▁BOY - ▁MA - ▁PERHAPS - ▁WORDS - ATED - ▁HO - X - ▁MO - ▁SAT - ▁REPLIED - ▁FOUR - ▁ANYTHING - ▁TILL - ▁UNTIL - ▁BLACK - TION - ▁CRIED - RU - TE - ▁FACT - ▁HELP - ▁NEXT - ▁LOOKING - ▁DOES - ▁FRIEND - ▁LAY - ANCE - ▁POWER - ▁BROUGHT - VER - ▁FIRE - ▁KEEP - PO - FF - ▁COUNTRY - ▁SEA - ▁WORD - ▁CAR - ▁DAYS - ▁TOGETHER - ▁IMP - ▁REASON - KE - ▁INDEED - TING - ▁MATTER - ▁FULL - ▁TEN - TIC - ▁LAND - ▁RATHER - ▁AIR - ▁HOPE - ▁DA - ▁OPEN - ▁FEET - ▁EN - ▁FIVE - ▁POINT - ▁CO - OM - ▁LARGE - ▁B - ▁CL - ME - ▁GONE - ▁CHILD - INE - GG - ▁BEST - ▁DIS - UM - ▁HARD - ▁LORD - OUS - ▁WIFE - ▁SURE - ▁FORM - DE - ▁DEATH - ANT - ▁NATURE - ▁BA - ▁CARE - ▁BELIEVE - PP - ▁NEAR - ▁RO - ▁RED - ▁WAR - IE - ▁SPEAK - ▁FEAR - ▁CASE - ▁TAKEN - ▁ALONG - ▁CANNOT - ▁HEAR - ▁THEMSELVES - CI - ▁PRESENT - AD - ▁MASTER - ▁SON - ▁THUS - ▁LI - ▁LESS - ▁SUN - ▁TRUE - IM - IOUS - ▁THOUSAND - ▁MONEY - ▁W - ▁BEHIND - ▁CHILDREN - ▁DOCTOR - AC - ▁TWENTY - ▁WISH - ▁SOUND - ▁WHOSE - ▁LEAVE - ▁ANSWERED - ▁THOU - ▁DUR - ▁HA - ▁CERTAIN - ▁PO - ▁PASSED - GE - TO - ▁ARM - ▁LO - ▁STATE - ▁ALONE - TA - ▁SHOW - ▁NEED - ▁LIVE - ND - ▁DEAD - ENCE - ▁STRONG - ▁PRE - ▁TI - ▁GROUND - SH - TI - ▁SHORT - IAN - UN - ▁PRO - ▁HORSE - MI - ▁PRINCE - ARD - ▁FELL - ▁ORDER - ▁CALL - AT - ▁GIVEN - ▁DARK - ▁THEREFORE - ▁CLOSE - ▁BODY - ▁OTHERS - ▁SENT - ▁SECOND - ▁OFTEN - ▁CA - ▁MANNER - MO - NI - ▁BRING - ▁QUESTION - ▁HOUR - ▁BO - AGE - ▁ST - ▁TURN - ▁TABLE - ▁GENERAL - ▁EARTH - ▁BED - ▁REALLY - ▁SIX - 'NO' - IST - ▁BECOME - ▁USE - ▁READ - ▁SE - ▁VI - ▁COMING - ▁EVERYTHING - ▁EM - ▁ABOVE - ▁EVENING - ▁BEAUTIFUL - ▁FEEL - ▁RAN - ▁LEAST - ▁LAW - ▁ALREADY - ▁MEAN - ▁ROSE - WARD - ▁ITSELF - ▁SOUL - ▁SUDDENLY - ▁AROUND - RED - ▁ANSWER - ICAL - ▁RA - ▁WIND - ▁FINE - ▁WON - ▁WHETHER - ▁KNOWN - BER - NG - ▁TA - ▁CAPTAIN - ▁EYE - ▁PERSON - ▁WOMEN - ▁SORT - ▁ASK - ▁BROTHER - ▁USED - ▁HELD - ▁BIG - ▁RETURNED - ▁STRANGE - ▁BU - ▁PER - ▁FREE - ▁EITHER - ▁WITHIN - ▁DOUBT - ▁YEAR - ▁CLEAR - ▁SIGHT - ▁GRA - ▁LOST - ▁KEPT - ▁F - PE - ▁BAR - ▁TOWN - ▁SLEEP - ARY - ▁HAIR - ▁FRIENDS - ▁DREAM - ▁FELLOW - PER - ▁DEEP - QUE - ▁BECAME - ▁REAL - ▁PAST - ▁MAKING - RING - ▁COMP - ▁ACT - ▁BAD - HO - STER - ▁YE - ▁MEANS - ▁RUN - MEN - ▁DAUGHTER - ▁SENSE - ▁CITY - ▁SOMETIMES - ▁TOWARDS - ▁ROAD - ▁SP - ▁LU - ▁READY - ▁FOOT - ▁COLD - ▁SA - ▁LETTER - ▁ELSE - ▁MAR - ▁STA - BE - ▁TRUTH - ▁LE - BO - ▁BUSINESS - CHE - ▁JOHN - ▁SUBJECT - ▁COURT - ▁IDEA - ILY - ▁RIVER - ATING - ▁FAMILY - HE - ▁DIDN - ▁GLAD - ▁SEVERAL - IAL - ▁UNDERSTAND - ▁SC - ▁POSSIBLE - ▁DIFFERENT - ▁RETURN - ▁ARMS - ▁LOW - ▁HOLD - ▁TALK - ▁RU - ▁WINDOW - ▁INTEREST - ▁SISTER - SON - ▁SH - ▁BLOOD - ▁SAYS - ▁CAP - ▁DI - ▁HUMAN - ▁CAUSE - NCE - ▁THANK - ▁LATE - GO - ▁CUT - ▁ACROSS - ▁STORY - NT - ▁COUNT - ▁ABLE - DY - LEY - ▁NUMBER - ▁STAND - ▁CHURCH - ▁THY - ▁SUPPOSE - LES - BLE - OP - ▁EFFECT - BY - ▁K - ▁NA - ▁SPOKE - ▁MET - ▁GREEN - ▁HUSBAND - ▁RESPECT - ▁PA - ▁FOLLOWED - ▁REMEMBER - ▁LONGER - ▁AGE - ▁TAKING - ▁LINE - ▁SEEM - ▁HAPPY - LAND - EM - ▁STAY - ▁PLAY - ▁COMMON - ▁GA - ▁BOOK - ▁TIMES - ▁OBJECT - ▁SEVEN - QUI - DO - UND - ▁FL - ▁PRETTY - ▁FAIR - WAY - ▁WOOD - ▁REACHED - ▁APPEARED - ▁SWEET - ▁FALL - BA - ▁PASS - ▁SIGN - ▁TREE - IONS - ▁GARDEN - ▁ILL - ▁ART - ▁REMAIN - ▁OPENED - ▁BRIGHT - ▁STREET - ▁TROUBLE - ▁PAIN - ▁CONTINUED - ▁SCHOOL - OUR - ▁CARRIED - ▁SAYING - HA - ▁CHANGE - ▁FOLLOW - ▁GOLD - ▁SW - ▁FEELING - ▁COMMAND - ▁BEAR - ▁CERTAINLY - ▁BLUE - ▁NE - CA - ▁WILD - ▁ACCOUNT - ▁OUGHT - UD - ▁T - ▁BREATH - ▁WANTED - ▁RI - ▁HEAVEN - ▁PURPOSE - ▁CHARACTER - ▁RICH - ▁PE - ▁DRESS - OS - FA - ▁TH - ▁ENGLISH - ▁CHANCE - ▁SHIP - ▁VIEW - ▁TOWARD - AK - ▁JOY - ▁JA - ▁HAR - ▁NEITHER - ▁FORCE - ▁UNCLE - DER - ▁PLAN - ▁PRINCESS - DI - ▁CHIEF - ▁HAT - ▁LIVED - ▁AB - ▁VISIT - ▁MOR - TEN - ▁WALL - UC - ▁MINE - ▁PLEASURE - ▁SMILE - ▁FRONT - ▁HU - ▁DEAL - OW - ▁FURTHER - GED - ▁TRIED - DA - VA - ▁NONE - ▁ENTERED - ▁QUEEN - ▁PAY - ▁EL - ▁EXCEPT - ▁SHA - ▁FORWARD - ▁EIGHT - ▁ADDED - ▁PUBLIC - ▁EIGHTEEN - ▁STAR - ▁HAPPENED - ▁LED - ▁WALKED - ▁ALTHOUGH - ▁LATER - ▁SPIRIT - ▁WALK - ▁BIT - ▁MEET - LIN - ▁FI - LT - ▁MOUTH - ▁WAIT - ▁HOURS - ▁LIVING - ▁YOURSELF - ▁FAST - ▁CHA - ▁HALL - ▁BEYOND - ▁BOAT - ▁SECRET - ENS - ▁CHAIR - RN - ▁RECEIVED - ▁CAT - RESS - ▁DESIRE - ▁GENTLEMAN - UGH - ▁LAID - EVER - ▁OCCASION - ▁WONDER - ▁GU - ▁PARTY - DEN - ▁FISH - ▁SEND - ▁NEARLY - ▁TRY - CON - ▁SEEMS - RS - ▁BELL - ▁BRA - ▁SILENCE - IG - ▁GUARD - ▁DIE - ▁DOING - ▁TU - ▁COR - ▁EARLY - ▁BANK - ▁FIGURE - IF - ▁ENGLAND - ▁MARY - ▁AFRAID - LER - ▁FO - ▁WATCH - ▁FA - ▁VA - ▁GRE - ▁AUNT - PED - ▁SERVICE - ▁JE - ▁PEN - ▁MINUTES - ▁PAN - ▁TREES - NED - ▁GLASS - ▁TONE - ▁PLEASE - ▁FORTH - ▁CROSS - ▁EXCLAIMED - ▁DREW - ▁EAT - ▁AH - ▁GRAVE - ▁CUR - PA - URE - CENT - ▁MILES - ▁SOFT - ▁AGO - ▁POSITION - ▁WARM - ▁LENGTH - ▁NECESSARY - ▁THINKING - ▁PICTURE - ▁PI - SHIP - IBLE - ▁HEAVY - ▁ATTENTION - ▁DOG - ABLY - ▁STANDING - ▁NATURAL - ▁APPEAR - OV - ▁CAUGHT - VO - ISM - ▁SPRING - ▁EXPERIENCE - ▁PAT - OT - ▁STOPPED - ▁REGARD - ▁HARDLY - ▁SELF - ▁STRENGTH - ▁GREW - ▁KNIGHT - ▁OPINION - ▁WIDE - ▁INSTEAD - ▁SOUTH - ▁TRANS - ▁CORNER - ▁LEARN - ▁ISLAND - ▁MI - ▁THIRD - ▁STE - ▁STRAIGHT - ▁TEA - ▁BOUND - ▁SEEING - ▁JU - ▁DINNER - ▁BEAUTY - ▁PEACE - AH - ▁REP - ▁SILENT - ▁CRE - ALLY - RIC - ▁STEP - ▁VER - ▁JO - GER - ▁SITTING - ▁THIRTY - ▁SAVE - ENED - ▁GLANCE - ▁REACH - ▁ACTION - ▁SAL - ▁SAD - ▁STONE - ITIES - ▁FRENCH - ▁STRUCK - ▁PAPER - ▁WHATEVER - ▁SUB - ▁DISTANCE - ▁WRONG - ▁KNOWLEDGE - ▁SAFE - ▁SNOW - ▁MUSIC - ▁FIFTY - RON - ▁ATTEMPT - ▁GOVERNMENT - TU - ▁CROWD - ▁BESIDES - ▁LOVED - ▁BOX - ▁DIRECTION - ▁TRAIN - ▁NORTH - ▁THICK - ▁GETTING - AV - ▁FLOOR - ▁COMPANY - ▁BLOW - ▁PLAIN - TRO - ▁BESIDE - ▁ROCK - ▁IMMEDIATELY - FI - ▁SHADOW - ▁SIT - ORS - ILE - ▁DRINK - ▁SPOT - ▁DANGER - ▁AL - ▁SAINT - ▁SLOWLY - ▁PALACE - IER - ▁RESULT - ▁PETER - ▁FOREST - ▁BELONG - ▁SU - ▁PAR - RIS - ▁TEARS - ▁APPEARANCE - ▁GATE - BU - ITION - ▁QUICKLY - ▁QUIET - ▁LONDON - ▁START - ▁BROWN - TRA - KIN - ▁CONSIDER - ▁BATTLE - ▁ANNE - ▁PIECE - ▁DIED - ▁SUCCESS - ▁LIPS - ▁FILLED - ▁FORGET - ▁POST - IFIED - ▁MARGARET - ▁FOOD - HAM - ▁PLEASANT - ▁FE - ▁EXPRESSION - ▁POCKET - ▁FRESH - ▁WEAR - TRI - ▁BROKEN - ▁LAUGHED - GING - ▁FOLLOWING - WN - IP - ▁TOUCH - ▁YOUTH - ATIVE - ▁LEG - ▁WEEK - ▁REMAINED - ▁EASY - NER - RK - ▁ENTER - ▁FIGHT - ▁PLACED - ▁TRAVEL - ▁SIMPLE - ▁GIRLS - ▁WAITING - ▁STOP - ▁WAVE - AU - ▁WISE - ▁CAMP - TURE - UB - ▁VE - ▁OFFICE - ▁GRAND - ▁FIT - ▁JUDGE - UP - MENTS - ▁QUICK - HI - ▁FLO - RIES - VAL - ▁COMFORT - ▁PARTICULAR - ▁STARTED - ▁SUIT - ▁NI - ▁PALE - ▁IMPOSSIBLE - ▁HOT - ▁CONVERSATION - ▁SCENE - ▁BOYS - ▁WIN - ▁BRE - ▁SOCIETY - ▁OUTSIDE - ▁WRITE - ▁EFFORT - ▁TALKING - ▁FORTUNE - ▁NINE - ▁WA - ▁SINGLE - ▁RULE - ▁PORT - ▁WINTER - ▁CAST - ▁CRA - ▁HAPPEN - ▁CRO - ▁SHUT - NING - ▁GUN - ▁NOBLE - ▁BEGIN - ▁PATH - ▁SKY - ▁WONDERFUL - ▁SUDDEN - ▁ARMY - ▁CHE - ▁WORTH - ▁MOUNTAIN - ▁MIN - AG - ▁FLU - ▁GRACE - ▁CHAPTER - ▁BELOW - ▁RING - ▁TURNING - ▁IRON - ▁TOP - ▁AFTERNOON - ORY - ▁EVIL - ▁TRUST - ▁BOW - ▁TRI - ▁SAIL - ▁CONTENT - ▁HORSES - ITE - ▁SILVER - AP - ▁LAD - ▁RUNNING - ▁HILL - ▁BEGINNING - ▁MAD - ▁HABIT - GRA - ▁CLOTHES - ▁MORROW - ▁CRY - ▁FASHION - ▁PRESENCE - ▁Z - FE - ▁ARRIVED - ▁QUARTER - ▁PERFECT - ▁WO - ▁TRA - ▁USUAL - ▁NECK - ▁MARRIED - ▁SEAT - ▁WI - ▁GAR - ▁SAND - ▁SHORE - ▁GIVING - NY - ▁PROBABLY - ▁MINUTE - ▁EXPECT - ▁DU - ▁SHOT - ▁INSTANT - ▁DEGREE - ▁COLOR - ▁WEST - RT - ▁MARCH - ▁BIRD - ▁SHOWED - ▁GREATER - ▁SERIOUS - ▁CARRY - ▁COVERED - ▁FORMER - ▁LOUD - ▁MOVED - ▁MASS - ▁SEEK - ▁CHO - GEN - ▁ROMAN - IB - ▁MOON - ▁BOARD - ▁STREAM - ▁EASILY - ▁WISHED - ▁SEARCH - ▁COULDN - ▁MONTHS - ▁SICK - LIE - ▁DUTY - ▁TWELVE - ▁FAINT - ▁STRANGER - ▁SURPRISE - ▁KILL - ▁LEAVING - ▁JOURNEY - ▁SCARCELY - ▁RAISED - ▁SPEAKING - ▁TERRIBLE - ▁TOM - ▁FIELD - ▁GAME - ▁QUA - ▁PROMISE - ▁LIE - ▁CONDITION - ▁TRO - ▁PERSONAL - ▁TALL - ▁STICK - ▁THREW - ▁MARRY - ▁VAN - ▁BURN - ▁ACCORDING - ▁RISE - ▁ATTACK - ▁SWORD - ▁GUESS - ▁THOUGHTS - ▁THIN - ▁THROW - ▁CALM - SIDE - ▁VILLAGE - ▁DEN - ▁ANXIOUS - ▁MER - GI - ▁EXPECTED - ▁BALL - ▁ESPECIALLY - ▁CHARGE - ▁MEASURE - ISE - ▁NICE - ▁TRYING - ▁ALLOW - ▁SHARP - ▁BREAD - ▁HONOUR - ▁HONOR - ▁ENTIRELY - ▁BILL - ▁BRI - ▁WRITTEN - ▁AR - ▁BROKE - ▁KILLED - ▁MARK - ▁VEN - ▁LADIES - ▁LEARNED - ▁FLOWERS - PLE - ▁FORTY - ▁OFFER - ▁HAPPINESS - ▁PRAY - ▁CLASS - ▁FER - ▁PRINCIPLE - GU - ▁BOOKS - ▁SHAPE - ▁SUMMER - ▁JACK - ▁DRAW - ▁GOLDEN - ▁DECIDED - ▁LEAD - ▁UNLESS - ▁HARM - ▁LISTEN - HER - ▁SHOOK - ▁INFLUENCE - ▁PERFECTLY - ▁MARRIAGE - ▁BROAD - ▁ESCAPE - ▁STATES - ▁MIDDLE - ▁PLANT - ▁MIL - ▁MOVEMENT - ▁NOISE - ▁ENEMY - ▁HISTORY - ▁BREAK - ROUS - ▁UNDERSTOOD - ▁LATTER - FER - ▁COMES - ▁MERELY - ▁SIMPLY - WI - ▁IMAGINE - ▁LOWER - ▁CONDUCT - ▁BORN - WA - ▁YARD - ▁KA - ▁CLOSED - ▁NOTE - GA - ▁STRA - RAN - ▁EXIST - EV - ▁SPEECH - ▁BITTER - JO - ▁MAKES - ▁GRASS - ▁REPLY - ▁CHANGED - ▁MON - ▁LYING - ▁DANCE - ▁FINALLY - ▁AMERICAN - ▁ENJOY - ▁CONTAIN - ▁MEANT - USE - ▁OBSERVED - THER - ▁LAUGH - ▁AFTERWARDS - ▁BEAT - ▁RACE - ▁EQUAL - ▁RAIN - PS - ▁STEPS - ▁BENEATH - ▁TAIL - ▁TASTE - IO - EY - ▁CHAR - ▁GE - GN - TIN - ▁GROW - ▁TE - IANS - ▁MOVE - ▁REPEATED - ▁DRIVE - TUR - ▁SI - CLOCK - ▁BRAVE - ▁MADAME - ▁LOT - ▁CASTLE - ▁HI - AND - ▁FUTURE - ▁RELATION - ▁SORRY - ▁HEALTH - ▁DICK - ▁R - ▁BUILDING - ▁EDGE - ▁BLESS - ▁SPITE - WE - ▁MIS - ▁PRISONER - ▁ALLOWED - ▁PH - ▁CATCH - MER - ETH - ▁COAT - ▁COMPLETE - ▁WOULDN - ▁CREATURE - ▁YELLOW - ▁IMPORTANT - ▁ADD - ▁PASSING - ▁DARKNESS - ▁CARRIAGE - ▁MILL - ▁FIFTEEN - NCY - ▁HUNG - ▁OB - ▁PLEASED - ▁SPREAD - ▁CURIOUS - ▁WORSE - ▁CIRCUMSTANCES - ▁GI - LAR - ▁CAL - ▁HY - ▁MERE - ▁JANE - ▁EAST - BI - ▁CUP - ▁BLIND - ▁PASSION - ▁DISCOVERED - ▁NOTICE - ▁REPORT - ▁SPACE - ▁PRESENTLY - ▁SORROW - ▁PACK - ▁DIN - CY - ▁DRY - ▁ANCIENT - ▁DRESSED - ▁COVER - ▁VO - ▁EXISTENCE - ▁EXACTLY - ▁BEAST - ▁PROPER - ▁DROPPED - ▁CLEAN - ▁COLOUR - ▁HOST - ▁CHAMBER - ▁FAITH - LET - ▁DETERMINED - ▁PRIEST - ▁STORM - ▁SKIN - ▁DARE - ▁PERSONS - ▁PICK - ▁NARROW - ▁SUPPORT - ▁PRIVATE - ▁SMILED - ▁COUSIN - ▁DRAWING - ▁ATTEND - ▁COOK - ▁PREVENT - ▁VARIOUS - ▁BLA - ▁FIXED - ▁WEAK - THE - ▁HOLE - ▁BOTTOM - ▁NOBODY - ADE - ▁LEGS - ITCH - ▁INDIVIDUAL - ▁EARS - LIKE - ▁ADVANTAGE - ▁FRANCE - ▁BON - ▁WINE - ▁LIVES - OD - ▁WALLS - ▁TIRED - ▁SHOP - ▁ANIMAL - ▁CRU - ▁WROTE - ▁ROYAL - ▁CONSIDERED - ▁MORAL - ▁COMPANION - ▁LOSE - ▁ISN - ▁BAG - ▁LAKE - ▁INTER - ▁COM - ▁LETTERS - ▁LUCK - ▁EAR - ▁GERMAN - ▁PET - ▁SAKE - ▁DROP - ▁PAID - ▁BREAKFAST - ▁LABOR - ▁DESERT - ▁DECLARED - ▁HUM - ▁STUDY - ▁INSTANCE - ONE - ▁SOMEWHAT - ▁CLOTH - ▁SPECIAL - ▁COLONEL - ▁SONG - ▁MAIN - ▁VALUE - ▁PROUD - ▁EXPRESS - ▁NATION - ▁HANDSOME - ▁CONFESS - ▁PU - ▁PASSAGE - ▁PERIOD - ▁CUSTOM - ▁HURT - ▁SHOULDER - ▁CHRIST - ZA - ▁RECEIVE - ▁DIFFICULT - ▁DEPEND - ▁MEETING - ▁CHI - ▁GEN - LIGHT - ▁BELIEVED - ▁SOCIAL - ▁DIFFICULTY - ▁GREATEST - ▁DRAWN - ▁GRANT - ▁BIRDS - ▁ANGRY - ▁HEAT - UFF - ▁DUE - ▁PLACES - ▁SIN - ▁COURAGE - ▁EVIDENTLY - ▁GENTLE - ▁CRUEL - ▁GEORGE - ▁GRI - ▁SERVANT - ▁U - ▁PURE - OOK - ▁KNOWS - ▁KNOWING - LF - ▁WRITING - ▁REMEMBERED - ▁CU - ▁HOLDING - ▁TENDER - ▁QUI - ▁BURST - ▁SURELY - IGN - ▁VALLEY - ▁FU - ▁BUTTER - ▁SPOKEN - ▁STORE - ▁DISC - ▁CHRISTIAN - ▁PARIS - ▁HENRY - ▁FINISHED - ▁PROVE - ▁FOOL - ▁SOLDIERS - ▁LANGUAGE - ▁INSIDE - ▁BAN - ▁FALLEN - ROW - ▁MAL - ▁BABY - ▁SITUATION - ▁WATCHED - ANS - ▁RUIN - ▁GENTLEMEN - ▁FRO - ▁FANCY - ▁ACCEPT - ▁SEASON - ▁OURSELVES - ▁SAN - ▁SPEED - IZED - ▁COOL - ▁SERVE - ▁VESSEL - ▁WILLIAM - ▁OBLIGED - ▁GROUP - FORM - ▁GOES - UOUS - ▁LEAVES - ▁PECULIAR - ▁NEWS - ▁VAIN - ▁EVERYBODY - ▁PIN - UG - ▁FORGOTTEN - ▁FRA - GAN - ▁CAREFULLY - ▁FLASH - UCH - ▁FUR - ▁MURDER - ▁DELIGHT - ▁WAITED - ▁RENDER - ▁PROPERTY - ▁NOTICED - ▁ROLL - ▁KNOCK - ▁EARNEST - KI - ▁HONEST - ▁PROMISED - ▁BAL - AW - ▁WALKING - ANG - ▁SQUARE - ▁QUIETLY - ▁CLOUD - WOOD - ▁FORMED - ▁HIGHER - ▁BUILT - ▁FATE - ▁TEACH - MY - ▁FALSE - ▁YORK - ▁DUST - ▁CLIMB - ▁FOND - ▁GROWN - ▁DESCEND - ▁RAG - ▁FRUIT - ▁GENERALLY - ▁OFFERED - ▁ER - ▁NURSE - POSE - ▁SPENT - ▁JOIN - ▁STATION - ▁MEANING - ▁SMOKE - HOOD - ▁ROUGH - JU - ▁LIKELY - ▁SURFACE - ▁KE - ▁MONTH - ▁POSSESSION - ▁TONGUE - ▁DUKE - ▁NOSE - ▁LAUGHING - ▁WEATHER - ▁WHISPERED - ▁SYSTEM - ▁LAWS - DDLE - ▁TOUCHED - ▁TRADE - LD - ▁SURPRISED - RIN - ▁ARCH - ▁WEALTH - FOR - ▁TEMPER - ▁FRANK - ▁GAL - ▁BARE - ▁OPPORTUNITY - ▁CLAIM - ▁ANIMALS - ▁REV - ▁COST - ▁WASH - ZE - ▁CORN - ▁OPPOSITE - ▁POLICE - ▁IDEAS - LON - ▁KEY - ▁READING - ▁COLLECT - CHED - ▁H - ▁CROWN - ▁TAR - ▁SWIFT - ▁SHOULDERS - ▁ICE - ▁GRAY - ▁SHARE - ▁PREPARED - ▁GRO - ▁UND - ▁TER - ▁EMPTY - CING - ▁SMILING - ▁AVOID - ▁DIFFERENCE - ▁EXPLAIN - ▁POUR - ▁ATTRACT - ▁OPENING - ▁WHEEL - ▁MATERIAL - ▁BREAST - ▁SUFFERING - ▁DISTINCT - ▁BOOT - ▁ROW - ▁FINGERS - HAN - ▁ALTOGETHER - ▁FAT - ▁PAPA - ▁BRAIN - ▁ASLEEP - ▁GREY - ▁SUM - ▁GAS - ▁WINDOWS - ▁ALIVE - ▁PROCEED - ▁FLOWER - ▁LEAP - ▁PUR - ▁PIECES - ▁ALTER - ▁MEMORY - IENT - ▁FILL - ▁CLO - ▁THROWN - ▁KINGDOM - ▁RODE - IUS - ▁MAID - ▁DIM - ▁BAND - ▁VIRTUE - ▁DISH - ▁GUEST - ▁LOSS - ▁CAUSED - ▁MOTION - ▁POT - ▁MILLION - ▁FAULT - ▁LOVELY - ▁HERO - PPING - ▁UNITED - ▁SPI - SOME - BRA - ▁MOUNTAINS - ▁NU - ▁SATISFIED - ▁DOLLARS - ▁LOVER - ▁CONCEAL - ▁VAST - ▁PULL - ▁HATH - ▁RUSH - ▁J - ▁DESPAIR - EX - ▁HEIGHT - ▁CE - ▁BENT - ▁PITY - ▁RISING - ATH - ▁PRIDE - ▁HURRY - KA - ▁SETTLED - ▁JUSTICE - ▁LIFTED - PEN - ▁SOLDIER - ▁FINDING - ▁REMARK - ▁REGULAR - ▁STRUGGLE - ▁MACHINE - ▁SING - ▁HURRIED - ▁SUFFICIENT - ▁REPRESENT - ▁DOUBLE - ▁ALARM - ▁SUPPER - ▁DREADFUL - ▁FORE - ATOR - ▁STOCK - ▁TIN - ▁EXAMPLE - ▁ROOF - ▁FLOW - ▁SUPPOSED - ▁PRESERV - ▁L - ▁LISTENED - OC - ▁STO - ▁SECURE - ▁FRIGHTENED - ▁DISTURB - ▁EMOTION - ▁SERVANTS - ▁YO - ▁BUY - ▁FORCED - ▁KITCHEN - ▁TERROR - ▁STAIRS - ▁SIXTY - KER - ▁ORDINARY - ▁DIRECTLY - ▁HEADS - ▁METHOD - ▁FORGIVE - ▁AWFUL - ▁REFLECT - ▁GREATLY - ▁TALKED - ▁RIDE - STONE - ▁FAVOUR - ▁WELCOME - ▁SEIZED - OU - ▁CONTROL - ▁ORDERED - ▁ANGEL - ▁USUALLY - ▁POET - ▁BOLD - LINE - ▁ADVENTURE - ▁WATCHING - ▁FOLK - ▁MISTRESS - IZE - ▁GROWING - ▁CAVE - ▁EVIDENCE - ▁FINGER - ▁SEVENTEEN - ▁MOVING - EOUS - ▁DOESN - ▁COW - ▁TYPE - ▁BOIL - ▁TALE - ▁DELIVER - ▁FARM - ▁MONSIEUR - ▁GATHERED - ▁FEELINGS - ▁RATE - ▁REMARKED - ▁PUTTING - ▁MAT - ▁CONTRARY - ▁CRIME - ▁PLA - ▁COL - ▁NEARER - TES - ▁CIVIL - ▁SHAME - ▁LOOSE - ▁DISCOVER - ▁FLAT - ▁TWICE - ▁FAIL - VIS - ▁UNC - EA - ▁EUROPE - ▁PATIENT - ▁UNTO - ▁SUFFER - ▁PAIR - ▁TREASURE - OSE - ▁EAGER - ▁FLY - ▁N - ▁VAL - ▁DAN - ▁SALT - ▁BORE - BBE - ▁ARTHUR - ▁AFFAIRS - ▁SLOW - ▁CONSIST - ▁DEVIL - LAN - ▁AFFECTION - ▁ENGAGED - ▁KISS - ▁YA - ▁OFFICER - IFICATION - ▁LAMP - ▁PARTS - HEN - ▁MILK - ▁PROCESS - ▁GIFT - ▁PULLED - ▁HID - ▁RAY - ▁EXCELLENT - ▁IMPRESSION - ▁AUTHORITY - ▁PROVED - ▁TELLING - TTE - ▁TOWER - ▁CONSEQUENCE - ▁FAVOR - ▁FLEW - ▁CHARLES - ISTS - ▁ADDRESS - ▁FAMILIAR - ▁LIMIT - ▁CONFIDENCE - ▁RARE - ▁WEEKS - ▁WOODS - ▁INTENTION - ▁DIRECT - ▁PERFORM - ▁SOLEMN - ▁DISTANT - ▁IMAGE - ▁PRESIDENT - ▁FIRM - ▁INDIAN - ▁RANK - ▁LIKED - ▁AGREE - ▁HOUSES - ▁WIL - ▁MATTERS - ▁PRISON - ▁MODE - ▁MAJOR - ▁WORKING - ▁SLIP - ▁WEIGHT - ▁AWARE - ▁BUSY - ▁LOOKS - ▁WOUND - ▁THOR - ▁BATH - ▁EXERCISE - ▁SIMILAR - ▁WORE - ▁AMOUNT - ▁QUESTIONS - ▁VIOLENT - ▁EXCUSE - ▁ASIDE - ▁TUR - ▁DULL - OF - ▁EMPEROR - ▁NEVERTHELESS - ▁SHOUT - ▁EXPLAINED - ▁SIZE - ▁ACCOMPLISH - FORD - CAN - ▁MISTAKE - ▁INSTANTLY - ▁SMOOTH - ▁STRIKE - ▁BOB - ISED - ▁HORROR - ▁SCIENCE - ▁PROTEST - ▁MANAGE - ▁OBEY - ▁NECESSITY - ▁SPLENDID - ▁PRESS - ▁INTERESTING - ▁RELIGION - ▁UNKNOWN - ▁FIERCE - ▁DISAPPEARED - ▁HOLY - ▁HATE - ▁PLAYED - ▁LIN - ▁NATURALLY - ▁DROVE - ▁LOUIS - TIES - ▁BRAND - INESS - RIE - ▁SHOOT - ▁CONSENT - ▁SEATED - ▁LINES - GUE - ▁AGREED - ▁CIRCLE - ▁STIR - ▁STREETS - ▁TASK - ▁RID - ▁PRODUCED - ▁ACCIDENT - ▁WITNESS - ▁LIBERTY - ▁DETAIL - ▁MINISTER - ▁POWERFUL - ▁SAVAGE - ▁SIXTEEN - ▁PRETEND - ▁COAST - ▁SQU - ▁UTTER - ▁NAMED - ▁CLEVER - ▁ADMIT - ▁COUPLE - ▁WICKED - ▁MESSAGE - ▁TEMPLE - ▁STONES - ▁YESTERDAY - ▁HILLS - DAY - ▁SLIGHT - ▁DIAMOND - ▁POSSIBLY - ▁AFFAIR - ▁ORIGINAL - ▁HEARING - ▁WORTHY - ▁SELL - NEY - ICK - ▁COTTAGE - ▁SACRIFICE - ▁PROGRESS - ▁SHOCK - ▁DESIGN - ▁SOUGHT - ▁PIT - ▁SUNDAY - ▁OTHERWISE - ▁CABIN - ▁PRAYER - ▁DWELL - ▁GAIN - ▁BRIDGE - ▁PARTICULARLY - ▁YIELD - ▁TREAT - RIGHT - ▁OAK - ▁ROPE - WIN - ▁ORDERS - ▁SUSPECT - ▁EDWARD - AB - ▁ELEVEN - ▁TEETH - ▁OCCURRED - DDING - ▁AMERICA - ▁FALLING - ▁LION - ▁DEPART - ▁KEEPING - ▁DEMAND - ▁PAUSED - ▁CEASED - INA - ▁FUN - ▁CHEER - ▁PARDON - ▁NATIVE - LUS - LOW - ▁DOGS - ▁REQUIRED - ILITY - ▁ELECT - ▁ENTERTAIN - ITUDE - ▁HUGE - ▁CARRYING - ▁BLU - ▁INSIST - ▁SATISFACTION - ▁HUNT - ▁COUNTENANCE - ▁UPPER - ▁MAIDEN - ▁FAILED - ▁JAMES - ▁FOREIGN - ▁GATHER - ▁TEST - BOARD - ▁TERMS - ▁SILK - ▁BEG - ▁BROTHERS - ▁PAGE - ▁KNEES - ▁SHOWN - ▁PROFESSOR - ▁MIGHTY - ▁DEFI - ▁CHARM - ▁REQUIRE - ▁LOG - MORE - ▁PROOF - ▁POSSESSED - ▁SOFTLY - ▁UNFORTUNATE - ▁PRICE - ▁SEVERE - ▁SINGING - ▁STAGE - ▁FREEDOM - ▁SHOUTED - ▁FARTHER - ▁MAJESTY - ▁PREVIOUS - ▁GUIDE - ▁MATCH - ▁CHEST - ▁INTENDED - ▁BI - ▁EXCITEMENT - ▁OFFICERS - ▁SUR - ▁SHAKE - ▁SENTIMENT - ▁GENTLY - ▁SUCCEEDED - ▁MENTION - ▁LOCK - ▁ACQUAINTANCE - ▁IMAGINATION - ▁PHYSICAL - ▁LEADING - ▁SLAVE - ▁CART - ▁POINTED - ▁STEAM - ▁SHADE - ▁PIPE - ▁BASE - ▁INVENT - ▁ALAS - ▁WORKED - ▁REGRET - ▁BUR - ▁FAITHFUL - ▁MENTIONED - ▁RECORD - ▁COMPLAIN - ▁SUPERIOR - ▁BAY - ▁PAL - EMENT - UE - ▁SEVENTY - ▁HOTEL - ▁SHEEP - ▁MEAL - ▁ADVICE - ▁HIDDEN - ▁DEMANDED - ▁CONSCIOUS - ▁BROW - ▁POSSESS - ▁FOURTH - ▁EVENTS - ▁FRI - ▁PRAISE - ▁ADVANCED - ▁RESOLVED - ▁STUFF - ▁CHEERFUL - ▁BIRTH - ▁GRIEF - ▁AFFORD - ▁FAIRY - ▁WAKE - ▁SIDES - ▁SUBSTANCE - ▁ARTICLE - ▁LEVEL - ▁MIST - ▁JOINED - ▁PRACTICAL - ▁CLEARLY - ▁TRACE - ▁AWAKE - ▁OBSERVE - ▁BASKET - ▁LACK - VILLE - ▁SPIRITS - ▁EXCITED - ▁ABANDON - ▁SHINING - ▁FULLY - ▁CALLING - ▁CONSIDERABLE - ▁SPRANG - ▁MILE - ▁DOZEN - ▁PEA - ▁DANGEROUS - ▁WIT - ▁JEW - ▁POUNDS - ▁FOX - ▁INFORMATION - ▁LIES - ▁DECK - NNY - ▁PAUL - ▁STARS - ▁ANGER - ▁SETTLE - ▁WILLING - ▁ADAM - ▁FACES - ▁SMITH - ▁IMPORTANCE - ▁STRAIN - WAR - ▁SAM - ▁FEATHER - ▁SERVED - ▁AUTHOR - ▁PERCEIVED - ▁FLAME - ▁DIVINE - ▁TRAIL - ▁ANYBODY - ▁SIGH - ▁DELICATE - KY - ▁FOLD - ▁HAVEN - ▁DESIRED - ▁CURIOSITY - ▁PRACTICE - ▁CONSIDERATION - ▁ABSOLUTELY - ▁CITIZEN - ▁BOTTLE - ▁INTERESTED - ▁MEAT - ▁OCCUPIED - ▁CHOOSE - ▁THROAT - ETTE - ▁CANDLE - ▁DAWN - ▁PROTECT - ▁SENTENCE - IED - ▁ROCKS - ▁PORTION - ▁APPARENTLY - ▁PRESENTED - ▁TIGHT - ▁ACTUALLY - ▁DYING - ▁HAM - ▁DAILY - ▁SUFFERED - ▁POLITICAL - ▁BODIES - ▁MODERN - ▁COMPLETELY - ▁SOONER - TAN - ▁PROP - ▁ADVANCE - ▁REFUSED - ▁FARMER - ▁POLITE - ▁THUNDER - ▁BRIEF - ▁ELSIE - ▁SAILOR - ▁SUGGESTED - ▁PLATE - ▁AID - ▁FLESH - ▁WEEP - ▁BUCK - ▁ANTI - ▁OCEAN - ▁SPEND - WELL - ▁ODD - ▁GOVERNOR - ▁ENTRANCE - ▁SUSPICION - ▁STEPPED - ▁RAPIDLY - ▁CHECK - ▁HIDE - ▁FLIGHT - ▁CLUB - ▁ENTIRE - ▁INDIANS - ASH - ▁CAPITAL - ▁MAMMA - HAR - ▁CORRECT - ▁CRACK - ▁SENSATION - ▁WORST - ▁PACE - ▁MIDST - ▁AUGUST - ▁PROPORTION - ▁INNOCENT - LINESS - ▁REGARDED - ▁DRIVEN - ORD - ▁HASTE - ▁EDUCATION - ▁EMPLOY - ▁TRULY - ▁INSTRUMENT - ▁MAG - ▁FRAME - ▁FOOLISH - ▁TAUGHT - ▁HANG - ▁ARGUMENT - ▁NINETEEN - ▁ELDER - ▁NAY - ▁NEEDED - ▁NEIGHBOR - ▁INSTRUCT - ▁PAPERS - ▁REWARD - ▁EQUALLY - ▁FIELDS - ▁DIG - HIN - ▁CONDITIONS - JA - ▁SPAR - ▁REQUEST - ▁WORN - ▁REMARKABLE - ▁LOAD - ▁WORSHIP - ▁PARK - ▁KI - ▁INTERRUPTED - ▁SKILL - ▁TERM - LAC - ▁CRITIC - ▁DISTRESS - ▁BELIEF - ▁STERN - IGHT - ▁TRACK - ▁HUNTING - ▁JEWEL - ▁GRADUALLY - ▁GLOW - ▁RUSHED - ▁MENTAL - ▁VISITOR - ▁PICKED - ▁BEHOLD - ▁EXPRESSED - ▁RUB - ▁SKI - ARTAGNAN - ▁MOREOVER - ▁OPERATION - ▁CAREFUL - ▁KEEN - ▁ASSERT - ▁WANDER - ▁ENEMIES - ▁MYSTERIOUS - ▁DEPTH - ▁PREFER - ▁CROSSED - ▁CHARMING - ▁DREAD - ▁FLOUR - ▁ROBIN - ▁TRE - ▁RELIEF - ▁INQUIRED - ▁APPLE - ▁HENCE - ▁WINGS - ▁CHOICE - ▁JUD - OO - ▁SPECIES - ▁DELIGHTED - IUM - ▁RAPID - ▁APPEAL - ▁FAMOUS - ▁USEFUL - ▁HELEN - ▁NEWSPAPER - ▁PLENTY - ▁BEARING - ▁NERVOUS - ▁PARA - ▁URGE - ▁ROAR - ▁WOUNDED - ▁CHAIN - ▁PRODUCE - ▁REFLECTION - ▁MERCHANT - ▁QUARREL - ▁GLORY - ▁BEGUN - ▁BARON - CUS - ▁QUEER - ▁MIX - ▁GAZE - ▁WHISPER - ▁BURIED - ▁DIV - ▁CARD - ▁FREQUENTLY - ▁TIP - ▁KNEE - ▁REGION - ▁ROOT - ▁LEST - ▁JEALOUS - CTOR - ▁SAVED - ▁ASKING - ▁TRIP - QUA - ▁UNION - HY - ▁COMPANIONS - ▁SHIPS - ▁HALE - ▁APPROACHED - ▁HARRY - ▁DRUNK - ▁ARRIVAL - ▁SLEPT - ▁FURNISH - HEAD - ▁PIG - ▁ABSENCE - ▁PHIL - ▁HEAP - ▁SHOES - ▁CONSCIOUSNESS - ▁KINDLY - ▁EVIDENT - ▁SCAR - ▁DETERMIN - ▁GRASP - ▁STEAL - ▁OWE - ▁KNIFE - ▁PRECIOUS - ▁ELEMENT - ▁PROCEEDED - ▁FEVER - ▁LEADER - ▁RISK - ▁EASE - ▁GRIM - ▁MOUNT - ▁MEANWHILE - ▁CENTURY - OON - ▁JUDGMENT - ▁AROSE - ▁VISION - ▁SPARE - ▁EXTREME - ▁CONSTANT - ▁OBSERVATION - ▁THRUST - ▁DELAY - ▁CENT - ▁INCLUD - ▁LIFT - ▁ADMIRE - ▁ISSUE - ▁FRIENDSHIP - ▁LESSON - ▁PRINCIPAL - ▁MOURN - ▁ACCEPTED - ▁BURNING - ▁CAPABLE - ▁EXTRAORDINARY - ▁SANG - ▁REMOVED - ▁HOPED - ▁HORN - ▁ALICE - ▁MUD - ▁APARTMENT - ▁FIGHTING - ▁BLAME - ▁TREMBLING - ▁SOMEBODY - ▁ANYONE - ▁BRIDE - ▁READER - ▁ROB - ▁EVERYWHERE - ▁LABOUR - ▁RECALL - ▁BULL - ▁HIT - ▁COUNCIL - ▁POPULAR - ▁CHAP - ▁TRIAL - ▁DUN - ▁WISHES - ▁BRILLIANT - ▁ASSURED - ▁FORGOT - ▁CONTINUE - ▁ACKNOWLEDG - ▁RETREAT - ▁INCREASED - ▁CONTEMPT - ▁GRANDFATHER - ▁SYMPATHY - ▁GHOST - ▁STRETCHED - ▁CREATURES - ▁CAB - ▁HIND - ▁PLAYING - ▁MISERABLE - ▁MEMBERS - ▁KINDNESS - ▁HIGHEST - ▁PRIM - ▁KISSED - ▁DESERVE - ▁HUT - ▁BEGGED - ▁EIGHTY - ▁CLOSELY - ▁WONDERED - ▁MILITARY - ▁REMIND - ▁ACCORDINGLY - ▁LARGER - ▁MAINTAIN - ▁ENGINE - ▁MOTIVE - ▁DESTROY - ▁STRIP - ▁HANS - ▁AHEAD - ▁INFINITE - ▁PROMPT - ▁INFORMED - TTLE - ▁PEER - ▁PRESSED - ▁TRAP - ▁SOMEWHERE - ▁BOUGHT - ▁VISIBLE - ▁ASHAMED - ▁TEAR - ▁NEIGHBOUR - ▁CONSTITUTION - ▁INTELLIGENCE - ▁PROFESSION - ▁HUNGRY - RIDGE - ▁SMELL - ▁STORIES - ▁LISTENING - ▁APPROACH - ▁STRING - ▁EXPLANATION - ▁IMMENSE - ▁RELIGIOUS - ▁THROUGHOUT - ▁HOLLOW - ▁AWAIT - ▁FLYING - ▁SCREAM - ▁ACTIVE - ▁RUM - ▁PRODUCT - ▁UNHAPPY - ▁VAGUE - ARIES - ▁ELIZABETH - ▁STUPID - ▁DIGNITY - ▁ISABEL - GAR - ▁BRO - ▁PITCH - ▁COMRADE - ▁STIFF - ▁RECKON - ▁SOLD - ▁SPARK - ▁STRO - ▁CRYING - ▁MAGIC - ▁REPEAT - PORT - ▁MARKED - ▁COMFORTABLE - ▁PROJECT - ▁BECOMING - ▁PARENTS - ▁SHELTER - ▁STOLE - ▁HINT - ▁NEST - ▁TRICK - ▁THOROUGHLY - ▁HOSPITAL - ▁WEAPON - ▁ROME - ▁STYLE - ▁ADMITTED - ▁SAFETY - FIELD - ▁UNDERSTANDING - ▁TREMBLE - ▁PRINT - ▁SLAVES - ▁WEARY - ▁ARTIST - ▁CREDIT - BURG - ▁CONCLUSION - ▁SELDOM - ▁UNUSUAL - ▁CLOUDS - ▁UNABLE - ▁GAY - ▁HANGING - ▁SCR - ▁BOWED - ▁DAVID - ▁VOL - ▁PUSHED - ▁ESCAPED - MOND - ▁WARN - ▁BETRAY - ▁EGGS - ▁PLAINLY - ▁EXHIBIT - ▁DISPLAY - ▁MEMBER - ▁GRIN - ▁PROSPECT - ▁BRUSH - ▁BID - ▁SUCCESSFUL - ▁EXTENT - ▁PERSUADE - ▁MID - ▁MOOD - ▁ARRANGED - ▁UNIVERSAL - ▁JIM - ▁SIGNAL - ▁WHILST - ▁PHILIP - ▁WOLF - RATE - ▁EAGERLY - ▁BILLY - ▁RETURNING - ▁CONSCIENCE - ▁FORTUNATE - ▁FEMALE - ▁GLEAM - ▁HASTILY - ▁PROVIDED - ▁OBTAIN - ▁INSTINCT - ▁CONCERNED - ▁CONCERNING - ▁SOMEHOW - ▁PINK - ▁RAGE - ▁ACCUSTOMED - ▁UNCONSCIOUS - ▁ADVISE - ▁BRANCHES - ▁TINY - ▁REFUSE - ▁BISHOP - ▁SUPPLY - ▁PEASANT - ▁LAWYER - ▁WASTE - ▁CONNECTION - ▁DEVELOP - ▁CORRESPOND - ▁PLUM - ▁NODDED - ▁SLIPPED - ▁EU - ▁CONSTANTLY - CUM - MMED - ▁FAIRLY - HOUSE - ▁KIT - ▁RANG - ▁FEATURES - ▁PAUSE - ▁PAINFUL - ▁JOE - ▁WHENCE - ▁LAUGHTER - ▁COACH - ▁CHRISTMAS - ▁EATING - ▁WHOLLY - ▁APART - ▁SUPER - ▁REVOLUTION - ▁LONELY - ▁CHEEKS - ▁THRONE - ▁CREW - ▁ATTAIN - ▁ESTABLISHED - TIME - ▁DASH - ▁FRIENDLY - ▁OPERA - ▁EARL - ▁EXHAUST - ▁CLIFF - ▁REVEAL - ▁ADOPT - ▁CENTRE - ▁MERRY - ▁SYLVIA - ▁IDEAL - ▁MISFORTUNE - ▁FEAST - ▁ARAB - ▁NUT - ▁FETCH - ▁FOUGHT - ▁PILE - ▁SETTING - ▁SOURCE - ▁PERSIST - ▁MERCY - ▁BARK - ▁LUC - ▁DEEPLY - ▁COMPARE - ▁ATTITUDE - ▁ENDURE - ▁DELIGHTFUL - ▁BEARD - ▁PATIENCE - ▁LOCAL - ▁UTTERED - ▁VICTORY - ▁TREATED - ▁SEPARATE - ▁WAG - ▁DRAGG - ▁TITLE - ▁TROOPS - ▁TRIUMPH - ▁REAR - ▁GAINED - ▁SINK - ▁DEFEND - ▁TIED - ▁FLED - ▁DARED - ▁INCREASE - ▁POND - ▁CONQUER - ▁FOREHEAD - ▁FAN - ▁ANXIETY - ▁ENCOUNTER - ▁SEX - ▁HALT - ▁SANK - ▁CHEEK - ▁HUMBLE - ▁WRITER - ▁EMPLOYED - ▁DISTINGUISHED - ▁RAISE - ▁WHIP - ▁GIANT - ▁RANGE - ▁OBTAINED - ▁FLAG - ▁MAC - ▁JUMPED - ▁DISCOVERY - ▁NATIONAL - ▁COMMISSION - ▁POSITIVE - ▁LOVING - ▁EXACT - ▁MURMURED - ▁GAZED - ▁REFER - ▁COLLEGE - ▁ENCOURAGE - ▁NOVEL - ▁CLOCK - ▁MORTAL - ▁ROLLED - ▁RAT - IZING - ▁GUILTY - ▁VICTOR - WORTH - ▁PRA - ▁APPROACHING - ▁RELATIVE - ▁ESTATE - ▁UGLY - ▁METAL - ▁ROBERT - ▁TENT - ▁ADMIRATION - ▁FOURTEEN - ▁BARBAR - ▁WITCH - ELLA - ▁CAKE - ▁SHONE - ▁MANAGED - ▁VOLUME - ▁GREEK - ▁DANCING - ▁WRETCHED - ▁CONDEMN - ▁MAGNIFICENT - ▁CONSULT - J - ▁ORGAN - ▁FLEET - ▁ARRANGEMENT - ▁INCIDENT - ▁MISERY - ▁ARROW - ▁STROKE - ▁ASSIST - ▁BUILD - ▁SUCCEED - ▁DESPERATE - ▁WIDOW - UDE - ▁MARKET - ▁WISDOM - ▁PRECISE - ▁CURRENT - ▁SPOIL - ▁BADE - ▁WOODEN - ▁RESIST - ▁OBVIOUS - ▁SENSIBLE - FALL - ▁ADDRESSED - ▁GIL - ▁COUNSEL - ▁PURCHASE - ▁SELECT - ▁USELESS - ▁STARED - ▁ARREST - ▁POISON - ▁FIN - ▁SWALLOW - ▁BLOCK - ▁SLID - ▁NINETY - ▁SPORT - ▁PROVIDE - ▁ANNA - ▁LAMB - ▁INTERVAL - ▁JUMP - ▁DESCRIBED - ▁STRIKING - ▁PROVISION - ▁PROPOSED - ▁MELANCHOLY - ▁WARRIOR - ▁SUGGEST - ▁DEPARTURE - ▁BURDEN - ▁LIMB - ▁TROUBLED - ▁MEADOW - ▁SACRED - ▁SOLID - ▁TRU - ▁LUCY - ▁RECOVER - ▁ENERGY - ▁POWDER - ▁RESUMED - ▁INTENSE - ▁BRITISH - ▁STRAW - ▁AGREEABLE - ▁EVERYONE - ▁CONCERN - ▁VOYAGE - ▁SOUTHERN - ▁BOSOM - ▁UTTERLY - ▁FEED - ▁ESSENTIAL - ▁CONFINE - ▁HOUSEHOLD - ▁EXTREMELY - ▁WONDERING - ▁LIST - ▁PINE - PHA - ▁EXPERIMENT - ▁JOSEPH - ▁MYSTERY - ▁RESTORE - ▁BLUSH - FOLD - ▁CHOSEN - ▁INTELLECT - ▁CURTAIN - OLOGY - ▁MOUNTED - ▁LAP - ▁EPI - ▁PUNISH - ▁WEDDING - ▁RECOGNIZED - ▁DRIFT - ▁PREPARATION - ▁RESOLUTION - ▁OPPRESS - ▁FIX - ▁VICTIM - OGRAPH - ▁SUMMON - ▁JULIA - ▁FLOOD - ▁WAL - ULATION - ▁SLIGHTLY - ▁LODGE - ▁WIRE - ▁CONFUSION - ▁UNEXPECTED - ▁CONCEIVE - ▁PRIZE - ▁JESUS - ▁ADDITION - ▁RUDE - ▁FATAL - ▁CARELESS - ▁PATCH - ▁KO - ▁CATHERINE - ▁PARLIAMENT - ▁PROFOUND - ▁ALOUD - ▁RELIEVE - ▁PUSH - ABILITY - ▁ACCOMPANIED - ▁SOVEREIGN - ▁SINGULAR - ▁ECHO - ▁COMPOSED - ▁SHAKING - ATORY - ▁ASSISTANCE - ▁TEACHER - ▁HORRIBLE - ▁STRICT - ▁VERSE - ▁PUNISHMENT - ▁GOWN - ▁MISTAKEN - ▁VARI - ▁SWEPT - ▁GESTURE - ▁BUSH - ▁STEEL - ▁AFFECTED - ▁DIRECTED - ▁SURROUNDED - ▁ABSURD - ▁SUGAR - ▁SCRAP - ▁IMMEDIATE - ▁SADDLE - ▁TY - ▁ARISE - ▁SIGHED - ▁EXCHANGE - ▁IMPATIENT - ▁SNAP - ▁EMBRACE - ▁DISEASE - ▁PROFIT - ▁RIDING - ▁RECOVERED - ▁GOVERN - ▁STRETCH - ▁CONVINCED - ▁LEANING - ▁DOMESTIC - ▁COMPLEX - ▁MANIFEST - ▁INDULGE - ▁GENIUS - ▁AGENT - ▁VEIL - ▁DESCRIPTION - ▁INCLINED - ▁DECEIVE - ▁DARLING - ▁REIGN - HU - ▁ENORMOUS - ▁RESTRAIN - ▁DUTIES - BURY - TTERED - ▁POLE - ▁ENABLE - ▁EXCEPTION - ▁INTIMATE - ▁COUNTESS - ▁TRIBE - ▁HANDKERCHIEF - ▁MIDNIGHT - ▁PROBLEM - ▁TRAMP - ▁OIL - CAST - ▁CRUSH - ▁DISCUSS - ▁RAM - ▁TROT - ▁UNRE - ▁WHIRL - ▁LOCKED - ▁HORIZON - ▁OFFICIAL - ▁SCHEME - ▁DROWN - ▁PIERRE - ▁PERMITTED - ▁CONNECTED - ▁ASSURE - ▁COCK - ▁UTMOST - ▁DEVOTED - ▁RELI - ▁SUFFICIENTLY - ▁INTELLECTUAL - ▁CARPET - ▁OBJECTION - ▁AFTERWARD - ▁REALITY - ▁NEGRO - ▁RETAIN - ▁ASCEND - ▁CEASE - ▁KATE - ▁MARVEL - KO - ▁BOND - MOST - ▁COAL - GATE - ▁IGNORANT - ▁BREAKING - ▁TWIN - ▁ASTONISHMENT - ▁COFFEE - ▁JAR - ▁CITIES - ▁ORIGIN - ▁EXECUT - ▁FINAL - ▁INHABITANTS - ▁STABLE - ▁CHIN - ▁PARTIES - ▁PLUNGE - ▁GENEROUS - ▁DESCRIBE - ▁ANNOUNCED - ▁MERIT - ▁REVERE - ▁ERE - ACIOUS - ZI - ▁DISAPPOINT - ▁SUGGESTION - ▁DOUBTLESS - ▁TRUNK - ▁STAMP - ▁JOB - ▁APPOINTED - ▁DIVIDED - ▁ACQUAINTED - CHI - ▁ABSOLUTE - ▁FEARFUL - ▁PRIVILEGE - ▁CRAFT - ▁STEEP - ▁HUNTER - ▁FORBID - ▁MODEST - ▁ENDEAVOUR - ▁SWEEP - ▁BEHELD - ▁ABSORB - ▁CONSTRUCT - ▁EMPIRE - ▁EXPEDITION - ▁ERECT - ▁OFFEND - ▁INTEND - ▁PERMIT - ▁DESTROYED - ▁CONTRACT - ▁THIRST - ▁WAGON - ▁EVA - ▁GLOOM - ▁ATMOSPHERE - ▁RESERVE - ▁VOTE - ▁GER - ▁NONSENSE - ▁PREVAIL - ▁QUALITY - ▁CLASP - ▁CONCLUDED - ▁RAP - ▁KATY - ▁ETERNAL - ▁MUTTERED - ▁NEGLECT - ▁SQUIRE - ▁CREEP - LOCK - ▁ELECTRIC - ▁HAY - ▁EXPENSE - ▁SCORN - ▁RETIRED - ▁STOUT - ▁MURMUR - ▁SHARPLY - ▁DISTRICT - ▁LEAF - ▁FAILURE - WICK - ▁JEAN - ▁NUMEROUS - ▁INFANT - ▁REALIZED - ▁TRAVELLER - ▁HUNGER - ▁JUNE - ▁MUN - ▁RECOMMEND - ▁CREP - ZZLE - ▁RICHARD - WORK - ▁MONTE - ▁PREACH - ▁PALM - AVI - ▁ANYWHERE - ▁DISPOSITION - ▁MIRROR - ▁VENTURE - ▁POUND - ▁CIGAR - ▁INVITED - ▁BENCH - ▁PROTECTION - ▁BENEFIT - ▁THOMAS - ▁CLERK - ▁REPROACH - ▁UNIFORM - ▁GENERATION - ▁SEAL - ▁COMPASS - ▁WARNING - ▁EXTENDED - ▁DIFFICULTIES - ▁MAYBE - ▁GROAN - ▁AFFECT - ▁COMB - ▁EARN - ▁WESTERN - ▁IDLE - ▁SCORE - ▁TAP - ▁ASTONISHED - ▁INTRODUCED - ▁LEISURE - ▁LIEUTENANT - ▁VIOLENCE - ▁FIRMLY - ▁MONSTER - ▁UR - ▁PROPERLY - ▁TWIST - ▁PIRATE - ▁ROBBER - ▁BATTER - ▁WEPT - ▁LEANED - ▁FOG - ▁ORNAMENT - ▁ANDREW - ▁BUSHES - ▁REPUBLIC - ▁CONFIDENT - ▁LEAN - ▁DART - ▁STOOP - ▁CURL - ▁COUNTER - ▁NORTHERN - ▁PEARL - ▁NEAREST - ▁FRANCIS - ▁WANDERING - ▁FREQUENT - ▁STARTLED - ▁STATEMENT - ▁OCCUR - ▁BLOOM - ▁NERVE - ▁INSPECT - ▁INDUCE - ▁FLATTER - ▁DATE - ▁AMBITION - ▁SLOPE - ▁MALE - ▁MADAM - ▁MONK - ▁RENT - ▁CONFIRM - ▁INVESTIGAT - ▁RABBIT - ▁REGIMENT - ▁SUBMIT - ▁SPELL - ▁FURIOUS - ▁RAIL - ▁BESTOW - ▁RALPH - ▁SCATTERED - ▁COMPELLED - ▁THREAD - ▁CHILL - ▁DENY - ▁PRONOUNC - ▁MANKIND - ▁CATTLE - ▁EXECUTION - ▁REBEL - ▁SUPREME - ▁VALUABLE - ▁LIKEWISE - ▁CONVEY - ▁TIDE - ▁GLOOMY - ▁COIN - ▁ACTUAL - ▁TAX - ▁PROVINCE - ▁GRATEFUL - ▁SPIRITUAL - ▁VANISHED - ▁DIANA - ▁HAUNT - ▁DRAGON - ▁CRAWL - ▁CHINA - ▁GRATITUDE - ▁NEAT - ▁FINISH - ▁INTENT - ▁FRIGHT - ▁EMBARRASS - ▁THIRTEEN - ▁RUTH - ▁SLIGHTEST - ▁DEVELOPMENT - ▁INTERVIEW - ▁SPECTACLE - ▁BROOK - VIE - ▁WEAKNESS - ▁AUDIENCE - ▁CONSEQUENTLY - ▁ABROAD - ▁ASPECT - ▁PAINTED - ▁RELEASE - ▁INSULT - ▁SOOTH - ▁DISAPPOINTMENT - ▁EMERG - ▁BRIG - ▁ESTEEM - ▁INVITATION - ▁PASSENGER - ▁PUBLISH - ▁PIANO - ▁IRISH - ▁DESK - ▁BEATEN - ▁FIFTH - ▁IMPULSE - ▁SWEAR - ▁EATEN - ▁PURPLE - ▁COMMITTED - ▁COUNTRIES - ▁PERCEIVE - ISON - ▁CELEBRAT - ▁GRANDMOTHER - ▁SHUDDER - ▁SUNSHINE - ▁SPANISH - ▁HITHERTO - ▁MARILLA - ▁SNAKE - ▁MOCK - ▁INTERFERE - ▁WALTER - ▁AMID - ▁MARBLE - ▁MISSION - TERIOR - ▁DRIVING - ▁FURNITURE - ▁STEADY - ▁CIRCUMSTANCE - ▁INTERPRET - ▁ENCHANT - ▁ERROR - ▁CONVICTION - ▁HELPLESS - ▁MEDICINE - ▁QUALITIES - ▁ITALIAN - ▁HASTENED - ▁OCCASIONALLY - ▁PURSUED - ▁HESITATED - ▁INDEPENDENT - ▁OLIVER - ▁LINGER - UX - ▁EXAMINED - ▁REPENT - ▁PHYSICIAN - ▁CHASE - ▁BELOVED - ▁ATTACHED - ▁FLORENCE - ▁HONEY - ▁MOUSE - ▁CRIES - ▁BAKE - ▁POEM - ▁DESTRUCTION - ▁FULFIL - ▁MESSENGER - ▁TRISTRAM - ▁FANCIED - ▁EXCESS - ▁CURSE - ▁CHU - ▁QUANTITY - ▁THORNTON - ▁CREATED - ▁CONTINUALLY - ▁LIGHTNING - ▁BORNE - ▁TOTAL - ▁DISPOSED - ▁RIFLE - ▁POLLY - ▁GOAT - ▁BACKWARD - ▁VIRGINIA - ▁KICK - ▁PERIL - ▁QUO - ▁GLORIOUS - ▁MULTITUDE - ▁LEATHER - ▁ABSENT - ▁DEMON - ▁DEBT - ▁TORTURE - ▁ACCORD - ▁MATE - ▁CATHOLIC - ▁PILL - ▁LIBRARY - ▁PURSUIT - ▁SHIRT - ▁DEAREST - ▁COLLAR - ▁BEACH - ▁ROBE - ▁DECLARE - ▁BRANCH - ▁TEMPT - ▁STEADILY - ▁DISGUST - ▁SILLY - ▁ARRIVE - ▁DRANK - ▁LEVI - ▁COMMUNICAT - ▁RACHEL - ▁WASHINGTON - ▁RESIGN - ▁MEANTIME - ▁LACE - ▁ENGAGEMENT - ▁QUIVER - ▁SEPARATED - ▁DISCUSSION - ▁VENTURED - ▁SURROUNDING - ▁POLISH - ▁NAIL - ▁SWELL - ▁JOKE - ▁LINCOLN - ▁STUDENT - ▁GLITTER - ▁RUSSIAN - ▁READILY - ▁CHRIS - ▁POVERTY - ▁DISGRACE - ▁CHEESE - ▁HEAVILY - ▁SCALE - ▁STAFF - ▁ENTREAT - ▁FAREWELL - ▁LUNCH - ▁PEEP - ▁MULE - ▁SOMEONE - ▁DISAPPEAR - ▁DECISION - ▁PISTOL - ▁PUN - ▁SPUR - ▁ASSUMED - ▁EXTEND - ▁ENTHUSIASM - ▁DEFINITE - ▁UNDERTAKE - ▁COMMITTEE - ▁SIMON - ▁FENCE - ▁APPLIED - ▁RELATED - ▁VICE - ▁UNPLEASANT - ▁PROBABLE - ▁PROCURE - ▁FROWN - ▁CLOAK - ▁HUMANITY - ▁FAMILIES - ▁PHILOSOPHER - ▁DWARF - ▁OVERCOME - ▁DEFEAT - ▁FASTENED - ▁MARSH - ▁CLASSES - ▁TOMB - ▁GRACIOUS - ▁REMOTE - ▁CELL - ▁SHRIEK - ▁RESCUE - ▁POOL - ▁ORGANIZ - ▁CHOSE - ▁CUTTING - ▁COWARD - ▁BORDER - ▁DIRTY - ▁MONKEY - ▁HOOK - ▁CHUCK - ▁EMILY - ▁JEST - ▁PLAC - ▁WEIGH - ▁ASSOCIATE - ▁GLIMPSE - ▁STUCK - ▁BOLT - ▁MURDERER - ▁PONY - ▁DISTINGUISH - ▁INSTITUTION - ▁CUNNING - ▁COMPLIMENT - ▁APPETITE - ▁REPUTATION - ▁FEEBLE - ▁KIN - ▁SERIES - ▁GRACEFUL - ▁PLATFORM - ▁BREEZE - ▁PHRASE - ▁CLAY - MONT - ▁RATTL - ▁OPPOSITION - ▁LANE - ▁BOAST - ▁GROWTH - ▁INCLINATION - ▁BEHAVE - ▁SUSAN - ▁DISTINCTION - ▁DISLIKE - ▁NICHOLAS - ▁SATISFY - ▁DRAMA - ▁ELBOW - ▁GAZING - ▁CONSUM - ▁SPIN - ▁OATH - ▁CHANNEL - ▁CHARACTERISTIC - ▁SPEAR - ▁SLAIN - ▁SAUCE - ▁FROG - ▁CONCEPTION - ▁TIMID - ▁ZEAL - ▁APPARENT - SHIRE - ▁CENTER - ▁VARIETY - ▁DUSK - ▁APT - ▁COLUMN - ▁REVENGE - ▁RIVAL - ▁IMITAT - ▁PASSIONATE - ▁SELFISH - ▁NORMAN - ▁REPAIR - ▁THRILL - ▁TREATMENT - ▁ROSA - ▁MARTIN - ▁INDIFFERENT - ▁THITHER - ▁GALLANT - ▁PEPPER - ▁RECOLLECT - ▁VINE - ▁SCARCE - ▁SHIELD - ▁MINGLED - CLOSE - ▁HARSH - ▁BRICK - ▁HUMOR - ▁MISCHIEF - ▁TREMENDOUS - ▁FUNCTION - ▁SMART - ▁SULTAN - ▁DISMISS - ▁THREATENED - ▁CHEAP - ▁FLOCK - ▁ENDEAVOR - ▁WHISK - ▁ITALY - ▁WAIST - ▁FLUTTER - ▁SMOKING - ▁MONARCH - ▁AFRICA - ▁ACCUSE - ▁HERBERT - ▁REFRESH - ▁REJOICE - ▁PILLOW - ▁EXPECTATION - ▁POETRY - ▁HOPELESS - ▁PERISH - ▁PHILOSOPHY - ▁WHISTLE - ▁BERNARD - ▁LAMENT - ▁IMPROVE - ▁SUP - ▁PERPLEX - ▁FOUNTAIN - ▁LEAGUE - ▁DESPISE - ▁IGNORANCE - ▁REFERENCE - ▁DUCK - ▁GROVE - ▁PURSE - ▁PARTNER - ▁PROPHET - ▁SHIVER - ▁NEIGHBOURHOOD - ▁REPRESENTATIVE - SAIL - ▁WIP - ▁ACQUIRED - ▁CHIMNEY - ▁DOCTRINE - ▁MAXIM - ▁ANGLE - ▁MAJORITY - ▁AUTUMN - ▁CONFUSED - ▁CRISTO - ▁ACHIEVE - ▁DISGUISE - ▁REDUCED - ▁EARLIER - ▁THEATRE - ▁DECIDE - MINATED - OLOGICAL - ▁OCCUPATION - ▁VIGOROUS - ▁CONTINENT - ▁DECLINE - ▁COMMUNITY - ▁MOTIONLESS - ▁HATRED - ▁COMMUNICATION - ▁BOWL - ▁COMMENT - ▁APPROVE - ▁CEREMONY - ▁CRIMINAL - ▁SCIENTIFIC - ▁DUCHESS - ▁VIVID - ▁SHIFT - ▁AVAIL - ▁DAMP - ▁JOHNSON - ▁SLENDER - ▁CONTRAST - ▁AMUSEMENT - ▁PLOT - ▁LYN - ▁ASSOCIATION - ▁SNATCH - ▁UNCERTAIN - ▁PRESSURE - ▁PERCH - ▁APPLY - ▁PLANET - ▁NOTWITHSTANDING - ▁SWUNG - ▁STIRRED - ▁ATTENDANT - ▁ENJOYMENT - ▁WORRY - ▁ALBERT - ▁NAKED - ▁TALENT - ▁MARIAN - ▁REFORM - ▁DELIBERATE - ▁INTELLIGENT - ▁SENSITIVE - ▁YONDER - ▁PUPIL - ▁FRIGHTFUL - ▁DOUBTFUL - ▁STANDARD - ▁MAGISTRATE - ▁SHEPHERD - ▁STOMACH - ▁DEPOSIT - ▁RENEW - ▁HEDGE - ▁FRANCS - ▁POSSIBILITY - ▁RESEMBLE - ▁FATIGUE - ▁PORTRAIT - ▁FAVORITE - ▁CREAM - ▁BURG - ▁SECRETARY - ▁DIVERS - ▁ACTIVITY - ▁SPECULAT - ▁HUMOUR - ▁FITTED - ▁EXTERNAL - ▁CETERA - ▁WRAPPED - ▁WHIT - ▁FRED - ▁EXAMINATION - ▁LODGING - ▁OWING - ▁JAW - ▁CROW - ▁BALANCE - ▁PUFF - ▁TENDERNESS - ▁PORTHOS - ▁ANCHOR - ▁INTERRUPT - ▁NECESSARILY - ▁PERPETUAL - ▁AGONY - ▁POPE - ▁SCHOLAR - ▁SCOTLAND - ▁SUPPRESS - ▁WRATH - ▁WRECK - ▁EXCEED - ▁PERFECTION - ▁INDIA - ▁TRADITION - ▁SECTION - ▁EASTERN - ▁DOORWAY - ▁WIVES - ▁CONVENTION - ▁ANNOUNC - ▁EGYPT - ▁CONTRADICT - ▁SCRATCH - ▁CENTRAL - ▁GLOVE - ▁WAX - ▁PREPARE - ▁ACCOMPANY - ▁INCREASING - ▁LIBERAL - ▁RAISING - ▁ORANGE - ▁SHOE - ▁ATTRIBUTE - ▁LITERATURE - ▁PUZZLED - ▁WITHDRAW - ▁WHITHER - ▁HAWK - ▁MOONLIGHT - ▁EXAMINE - ▁HAPPILY - ▁PRECEDE - ▁DETECTIVE - ▁INCHES - ▁SOLITARY - ▁DUTCH - ▁NAPOLEON - ▁UNEASY - ▁CARDINAL - ▁BLEW - ▁FOWL - ▁DECORAT - ▁CHILDHOOD - ▁TORMENT - ▁LOSING - ▁PERMISSION - ▁BLANK - ▁UPSTAIRS - ▁CAPACITY - ▁TRIFLE - ▁FOLLY - ▁RECOGNIZE - ▁REMOVE - ▁VENGEANCE - ▁ENTERPRISE - ▁BEDROOM - ▁ANYHOW - ▁INQUIRY - ▁ASHES - ▁DRAG - ▁HUSH - ▁AWKWARD - ▁SATURDAY - ▁GENUINE - ▁SURVIV - ▁SKIRT - ▁AFFECTIONATE - ▁TANG - ▁MUTUAL - ▁DISPUTE - ▁EAGLE - ▁INCOME - ▁BIND - ▁FAME - ▁IMPROVEMENT - ROVING - ▁DIFFER - ▁AWOKE - ▁SLEEVE - ▁SOLITUDE - ▁FAVOURITE - JI - ▁DETECT - ▁COMPREHEND - ▁PREPARING - ▁SERPENT - ▁SUMMIT - ▁KNOT - ▁KNIT - ▁COPY - ▁STOPPING - ▁FADED - ▁HIDEOUS - ▁JULIE - STEAD - ▁SHINE - ▁CONFLICT - ▁PROPOSITION - ▁REFUGE - ▁GALLERY - ▁BUNDLE - ▁AXE - ▁SLAVERY - ▁MASK - ▁ALYOSHA - ▁LADDER - ▁DEPARTMENT - ▁DISCHARGE - ▁DEPRESS - ▁GALLOP - ▁SCARLET - ▁KITTY - ▁RECEIVING - ▁SURRENDER - ▁SUSTAIN - ▁TWILIGHT - ▁CONGRESS - ▁IRELAND - ▁FUNNY - ▁LEND - ▁CONSTITUTE - ▁FUNERAL - ▁CRYSTAL - ▁SPAIN - ▁EXCEEDINGLY - ▁DAMN - ▁COMMUN - ▁CIVILIZATION - ▁PREJUDICE - ▁PORCH - ▁ASSISTANT - ▁INDUSTRY - ▁TUMBLE - ▁DEFENCE - ▁HITHER - ▁SMOT - ▁COLONI - ▁AMAZEMENT - ▁MARGUERITE - ▁MIRACLE - ▁INHERIT - ▁BEGGAR - ▁ENVELOPE - ▁INDIGNATION - ▁NATASHA - ▁PROPOSAL - ▁FRAGMENT - ▁ROUSED - ▁ROAST - ENCIES - ▁COMMENCED - ▁RESOURCE - ▁POPULATION - ▁QUOTH - ▁PURSUE - ▁EDUCAT - ▁AFFLICT - ▁CONTACT - ▁CRIMSON - ▁DIVISION - ▁DISORDER - ▁COPPER - ▁SOLICIT - ▁MODERATE - ▁DRUM - ▁SWIM - ▁SALUTE - ▁ASSUME - ▁MUSCLE - ▁OVERWHELM - ▁SHAKESPEARE - ▁STRUGGLING - ▁TRANQUIL - ▁CHICKEN - ▁TREAD - ▁CLAW - ▁BIBLE - ▁RIDGE - ▁THREAT - ▁VELVET - ▁EXPOSED - ▁IDIOT - ▁BARREL - ▁PENNY - ▁TEMPTATION - ▁DANGLARS - ▁CENTURIES - ▁DISTRIBUT - ▁REJECT - ▁RETORTED - ▁CONCENTRAT - ▁CORDIAL - ▁MOTOR - ▁CANNON - KEEP - ▁WRETCH - ▁ASSURANCE - ▁THIEF - ▁SURVEY - ▁VITAL - ▁RAILWAY - ▁JACKSON - ▁CRASH - ▁GROWL - ▁COMBAT - ▁RECOLLECTION - ▁SECURITY - ▁JACOB - ▁CLUTCH - ▁BLANKET - ▁NANCY - ▁CELLAR - ▁CONVENIENT - ▁INDIGNANT - ▁COARSE - ▁WORM - ▁SCREEN - ▁TRANSPORT - ▁BULLET - ▁APPRECIATE - ▁DEVOTION - ▁INVISIBLE - ▁DRIED - ▁MIXTURE - ▁CANDID - ▁PERFORMANCE - ▁RIPE - ▁EXQUISITE - ▁BARGAIN - ▁TOBACCO - ▁LOYAL - ▁MOULD - ▁ATTENTIVE - ▁DOROTHY - ▁BRUTE - ▁ESTABLISHMENT - ▁ABILITY - ▁INHABIT - ▁OBSCURE - ▁BORROW - ▁ESSENCE - ▁DISMAY - ▁FLEE - ▁BLADE - ▁PLUCK - ▁COFFIN - ▁SUNSET - ▁STEPHEN - ▁ECONOMIC - ▁HOLIDAY - ▁MECHANICAL - ▁COTTON - ▁AWAKENED - ▁SEIZE - ▁RIDICULOUS - ▁SANCHO - ▁HESITATION - ▁CORPSE - ▁SAVING - HOLD - FOOT - ▁ELDEST - ▁DESPITE - ▁EDITH - ▁CHERISH - ▁RESISTANCE - ▁WILSON - ▁ARGUE - ▁INQUIRE - ▁APPREHENSION - ▁AVENUE - ▁DRAKE - ▁PROPOSE - HURST - ▁INFERIOR - ▁STAIRCASE - ▁WHEREFORE - ▁CARLYLE - ▁COUCH - ▁ROUTE - ▁POLITICS - ▁TOMORROW - ▁THRONG - ▁NAUGHT - ▁SUNLIGHT - ▁INDIFFERENCE - ▁OBEDIENCE - ▁RECEPTION - ▁VEGETABLE - ▁IMPERFECT - ▁RESIDENCE - ▁TURKEY - ▁VIOLET - ▁SARAH - ▁ALTAR - ▁GRIEVE - ▁JERK - ▁ENSU - ▁MAGICIAN - ▁BLOSSOM - ▁LANTERN - ▁RESOLUTE - ▁THOUGHTFULLY - ▁FORTNIGHT - ▁TRUMPET - ▁VALJEAN - ▁UNWILLING - ▁LECTURE - ▁WHEREUPON - ▁HOLLAND - ▁CHANGING - ▁CREEK - ▁SLICE - ▁NORMAL - ▁ANNIE - ▁ACCENT - ▁FREDERICK - ▁DISAGREEABLE - ▁RUBBED - ▁DUMB - ▁ESTABLISH - ▁IMPORT - ▁AFFIRM - ▁MATTHEW - ▁BRISK - ▁CONVERT - ▁BENDING - ▁IVAN - ▁MADEMOISELLE - ▁MICHAEL - ▁EASIER - ▁JONES - ▁FACING - ▁EXCELLENCY - ▁LITERARY - ▁GOSSIP - ▁DEVOUR - ▁STAGGER - ▁PENCIL - ▁AVERAGE - ▁HAMMER - ▁TRIUMPHANT - ▁PREFERRED - ▁APPLICATION - ▁OCCUPY - ▁AUTHORITIES - BURN - ▁ASCERTAIN - ▁CORRIDOR - ▁DELICIOUS - ▁PRACTISE - ▁UNIVERSE - ▁SHILLING - ▁CONTEST - ▁ASHORE - ▁COMMIT - ▁ADMINISTRATION - ▁STUDIED - ▁RIGID - ▁ADORN - ▁ELSEWHERE - ▁INNOCENCE - ▁JOURNAL - ▁LANDSCAPE - ▁TELEGRAPH - ▁ANGRILY - ▁CAMPAIGN - ▁UNJUST - ▁CHALLENGE - ▁TORRENT - ▁RELATE - ▁ASSEMBLED - ▁IMPRESSED - ▁CANOE - ▁CONCLUD - ▁QUIXOTE - ▁SATISFACTORY - ▁NIECE - ▁DEAF - ▁RAFT - ▁JIMMY - ▁GLID - ▁REGULAT - ▁CHATTER - ▁GLACIER - ▁ENVY - ▁STATUE - ▁BOSTON - ▁RICHMOND - ▁DENIED - ▁FANNY - ▁SOLOMON - ▁VULGAR - ▁STALK - ▁REPLACE - ▁SPOON - ▁BASIN - ▁FEATURE - ▁CONVICT - ▁ARCHITECT - ▁ADMIRAL - ▁RIBBON - ▁PERMANENT - ▁APRIL - ▁JOLLY - ▁NEIGHBORHOOD - ▁IMPART - BOROUGH - CAMP - ▁HORRID - ▁IMMORTAL - ▁PRUDENCE - ▁SPANIARD - ▁SUPPOSING - ▁TELEPHONE - ▁TEMPERATURE - ▁PENETRATE - ▁OYSTER - ▁APPOINTMENT - ▁EGYPTIAN - ▁DWELT - ▁NEPHEW - ▁RAILROAD - ▁SEPTEMBER - ▁DEVICE - ▁WHEAT - ▁GILBERT - ▁ELEGANT - ▁ADVERTISE - ▁RATIONAL - ▁TURTLE - ▁BROOD - ▁ASSEMBLY - ▁CULTIVATE - ▁EDITOR - ▁SPECIMEN - ▁UNDOUBTEDLY - ▁WHALE - ▁DROPPING - ▁BALLOON - ▁MEDICAL - COMB - ▁COMPOSITION - ▁FOOTSTEPS - ▁LAUNCELOT - ▁DISCOURSE - ▁ERRAND - ▁CONVERSE - ▁ADVANCING - ▁DOWNSTAIRS - ▁TUMULT - ▁CORRUPT - ▁SUFFICE - ▁ANGUISH - ▁SHAGGY - ▁RETIRE - ▁TIMBER - ▁BLAZE - ▁ABSTRACT - ▁EMBROIDER - ▁PHOTOGRAPH - ▁PROSPERITY - ▁TERRIBLY - ▁TERRITORY - ▁THRESHOLD - ▁PAVEMENT - ▁INJURED - ▁LIMP - ▁AGITATION - ▁RASCAL - ▁PRESUME - ▁OBSERVING - ▁OBSTACLE - ▁SIMPLICITY - ▁SLUMBER - ▁SUPPLIED - ▁COMBINATION - ▁DRAIN - ▁WILDERNESS - ▁BELIEVING - ▁VILLAIN - ▁RECKLESS - ▁INJURY - ▁CLAPP - ▁FRIDAY - ▁HERCULES - ▁KENNEDY - ▁SYMPTOM - ▁SLEDGE - ▁CEILING - ▁LEMON - ▁PLAGUE - ▁MONDAY - ▁CANVAS - ▁IMPATIENCE - ▁UNCOMFORTABLE - ▁ACCESS - ▁FROZEN - ▁SENATOR - ▁FRANZ - ▁SWIMMING - ▁BARRIER - ▁ADJUST - ▁COMPARISON - ▁PROCLAIM - ▁WRINKL - ▁OVERLOOK - ▁MITYA - ▁GUILT - ▁PERCEPTION - ▁PRECAUTION - ▁SPECTATOR - ▁SURPRISING - ▁DISTRACT - ▁DISDAIN - ▁BONNET - ▁MAGNET - ▁PROFESS - ▁CONFOUND - ▁NARRATIVE - ▁STRUCTURE - ▁SKETCH - ▁ULTIMATE - ▁GLOBE - ▁INSECT - FICIENCY - ▁ORCHARD - ▁AMIABLE - ▁DESCENT - ▁INDEPENDENCE - ▁MANUFACTURE - ▁SPRINKLE - ▁NIGHTINGALE - ▁CUSHION - ▁EMINENT - ▁SCOTT - ▁ARRAY - ▁COSETTE - ▁WAVING - ▁EXTRACT - ▁IRREGULAR - ▁PERSECUT - ▁DERIVED - ▁WITHDREW - ▁CAUTION - ▁SUSPICIOUS - ▁MEMORIES - ▁NOWHERE - ▁SUBTLE - ▁THOROUGH - Q - ▁APPROPRIATE - ▁SLAUGHTER - ▁YOURSELVES - ▁THUMB - ▁TWAS - ▁ABODE - ▁BIDDING - ▁CONSPICUOUS - ▁REBECCA - ▁SERGEANT - ▁APRON - ▁ANTICIPATE - ▁DISCIPLINE - ▁GLANCING - ▁PILGRIM - ▁SULLEN - ▁CONTRIBUTE - ▁PRAIRIE - ▁CARVED - ▁COMMERCE - ▁EXCLAMATION - ▁MUSCULAR - ▁NOVEMBER - ▁PHENOMENA - ▁SYMBOL - ▁UMBRELLA - ▁DIMINISH - ▁PARLOUR - ▁THREATENING - ▁STUMP - ▁EXTENSIVE - ▁PLEASING - ▁REMEMBRANCE - ▁COMBINED - ▁SHERIFF - ▁SHAFT - ▁LAURA - ▁INTERCOURSE - ▁STRICKEN - ▁SUPPLIES - ▁LANDLORD - ▁SHRINK - ▁PRICK - ▁CAESAR - ▁DRUG - ▁BEWILDERED - ▁NAUTILUS - ▁BRUTAL - ▁COMMERCIAL - ▁MAGGIE - ▁SPHERE - ▁VIRGIN - ▁BRETHREN - ▁DESTINY - ▁POLICY - ▁TERRIFIED - ▁HOUSEKEEPER - ▁CRAZY - ▁ARDENT - ▁DISCERN - ▁WRAP - ▁MARQUIS - ▁RUSSIA - MOUTH - ▁BRITAIN - ▁HARBOUR - ▁CONCERT - ▁DONKEY - ▁DAMAGE - ▁SLIM - ABOUT - ▁LUXURY - ▁MONSTROUS - ▁TENDENCY - ▁PARADISE - ▁CULTURE - ▁JULIUS - ▁RAOUL - ▁REMEDY - ▁DECAY - ▁SCOLD - ▁SPLIT - ▁ASSAULT - ▁DECEMBER - ▁MOSCOW - ▁EXPLORE - ▁TROUSERS - ▁WRIST - PIECE - ▁MUSKET - ▁VALENTINE - ▁TYRANT - ▁ABRAHAM - ▁MEDIUM - ▁ARTIFICIAL - ▁FACULTY - ▁OBLIGATION - ▁RESEMBLANCE - ▁INQUIRIES - ▁DETAIN - ▁SWARM - ▁PLEDGE - ▁ADMIRABLE - ▁DEFECT - ▁SUPERINTEND - ▁PATRIOT - ▁CLUNG - ▁DISMAL - ▁RECIT - ▁IGNOR - ▁AMELIA - ▁JUSTIFY - ▁ELEPHANT - ▁ESTIMATE - ▁KNELT - ▁SERVING - ▁WHIM - ▁SHRILL - ▁STUDIO - ▁TEXT - ▁ALEXANDER - ▁WROUGHT - ▁ABUNDANT - ▁SITUATED - ▁REGAIN - ▁FIERY - ▁SNEER - ▁SWEAT - ▁GLARE - ▁NIGH - ▁ESCORT - ▁INEVITABLE - ▁PSMITH - ▁RELUCTANT - ▁PRECEDING - ▁RESORT - ▁OUTRAGE - ▁AMBASSADOR - ▁CONSOLATION - ▁RECOGNITION - ▁REMORSE - ▁BEHALF - ▁FORMIDABLE - ▁GRAVITY - ▁DIVIDE - ▁CONFRONT - ▁GIGANTIC - ▁OCTOBER - ▁FLANK - ▁SLEW - ▁CLARA - ▁FILM - ▁BULK - ▁POMP - ▁ELEANOR - ▁EMPHASIS - ▁JAPANESE - ▁CAVALRY - ▁EXCLUSIVE - ▁PERFUME - ▁BRONZE - ▁FEDERAL - ▁LIQUID - ▁RUBBING - ▁OVEN - DOLPH - ▁CONVULS - ▁DEPRIVED - ▁RESPONSIBILITY - ▁SIGNIFICANT - ▁WAISTCOAT - ▁CLUSTER - ▁MARTHA - ▁REVERSE - ▁ATTORNEY - ▁DROOP - ▁SKILFUL - ▁HABITUAL - ▁PUMP - ▁INTERVEN - ▁OWL - ▁CONJECTURE - ▁FANTASTIC - ▁RESPONSIBLE - ▁DESTINED - ▁DOCUMENT - ▁THEREUPON - ▁GODDESS - ▁PACIFIC - ▁WARRANT - ▁COSTUME - ▁BRIDLE - ▁CALIFORNIA - ▁DEMOCRATIC - ▁EUSTACE - ▁SQUIRREL - ▁UNCOMMON - ▁MARVELLOUS - ▁PLOUGH - ▁TRAGEDY - ▁VAULT - ▁HESITATE - ▁REFRAIN - ▁ADMIRING - ▁CORPORAL - ▁ENTITLED - ▁SHREWD - ▁SQUEEZ - ▁ACCURATE - ▁TEMPEST - ▁MONUMENT - ▁SIEGE - ▁CHINESE - ▁RAVEN - ▁LOUNG - ▁ASSASSIN - ▁INFLICT - ▁AGITATED - ▁DESIRABLE - ▁EARLIEST - ▁LAUNCH - ▁PILOT - ▁PULSE - ▁MUTE - LEIGH - ▁LIQUOR - ▁SCARECROW - ▁SKULL - ▁DESOLATE - ▁SUBLIME - ▁SERENE - ▁RECESS - ▁WAKING - ▁CHARLOTTE - ▁CIRCULAR - ▁INJUSTICE - ▁PINOCCHIO - ▁PRISCILLA - ▁THYSELF - ▁OCCURRENCE - ▁CASUAL - ▁FRANTIC - ▁LEGEND - ▁FERTIL - ▁BACKGROUND - ▁DELICACY - ▁ESTRALLA - ▁MANUSCRIPT - ▁RESPONSE - ▁UNIVERSITY - ▁WOLVES - ▁SCANDAL - ▁STUMBLE - ▁HOARSE - ▁BODILY - ▁CONVENT - ▁EXAMINING - ▁INCAPABLE - ▁PERCEIVING - ▁PHILADELPHIA - ▁SUBSEQUENT - ▁THIEVES - ▁ACCUMULAT - ▁DAMSEL - ▁SCOTCH - ▁UNDERNEATH - ▁NOBILITY - ▁SMASH - ▁REVOLT - ▁ENGAGE - ▁CATHEDRAL - ▁CHAMPION - ▁DESPATCH - ▁ETERNITY - ▁JANUARY - ▁PLEADED - ▁PROBABILITY - ▁JIMMIE - ▁PARALLEL - ▁FISHERMAN - ▁JERRY - ▁SWORE - ▁DRAUGHT - ▁OPPONENT - ▁PRIMITIVE - ▁SIGNIFICANCE - ▁SUBSTANTIAL - ▁AMAZED - ▁DUNBAR - ▁COMMEND - ▁CONTEMPLATE - ▁TESTIMONY - ▁IMPERIAL - ▁ADAPT - ▁JUICE - ▁CALAMIT - CULAR - ▁CHATEAU - ▁PHOENIX - ▁PRUDENT - ▁SOLUTION - ▁VILLEFORT - ▁REACTION - ▁RELAX - ▁YU - ▁PROHIBIT - ▁DISTRUST - ▁PLUNDER - ▁WELFARE - ▁NAVIGAT - ▁PARLOR - ▁LAZY - ▁DETACH - OMETER - ▁PRIV - ▁DISCOURAGE - ▁OBSTINATE - ▁REJOICING - ▁SERMON - ▁VEHICLE - ▁FANCIES - ▁ENLIGHTEN - ▁ACUTE - ▁ILLUSION - ▁ANTHEA - ▁MARTIAN - ▁EXCITE - ▁GENEROSITY - OLOGIST - ▁AMAZING - ▁UNWORTHY - ▁INTERNAL - ▁INCENSE - ▁VIBRAT - ▁ADHERE - ROACH - ▁FEBRUARY - ▁MEXICAN - ▁POTATOES - ▁INCESSANT - ▁INTERPOSED - ▁PARCEL - ▁VEXED - ▁PROMOTE - MIDST - ▁ARISTOCRAT - ▁CYRIL - ▁EMBARK - ▁ABUNDANCE - ▁LITERALLY - ▁SURGEON - ▁TERRACE - ▁ATLANTIC - ▁MARTYR - ▁SPECK - ▁SENATE - ▁LOAF - ▁ADMINISTER - ▁APPREHEND - ▁SUBDUED - ▁TEMPORARY - ▁DOMINION - ▁ELABORATE - ▁DIGNIFIED - ▁ELIZA - ▁SPLASH - ▁CONSEIL - ▁DEXTER - ▁UNSEEN - ▁TRAGIC - VOCATION - ▁GRATIFY - ▁BACHELOR - ▁DEFENSE - ▁EXCURSION - ▁FACULTIES - ▁PROPRIETOR - ▁SYMPATHETIC - ▁UNNECESSARY - ▁RADIANT - ▁VACANT - ▁OUNCE - ▁SCREW - ▁PHENOMENON - ▁PROMINENT - ▁WORRIED - ▁STUDIES - ▁CLIMATE - ▁KEITH - ▁ARAMIS - ▁BLISS - ▁CONTINUAL - ▁SURPASS - ▁HEBREW - ▁IDENTITY - ▁PROVOKE - ▁TEMPERAMENT - ▁CHARIOT - ▁HARBOR - ▁NINTH - ▁PRIOR - ▁DESIROUS - ▁JERUSALEM - ▁UNDERTAKING - ▁EDISON - ▁MIRTH - ▁SCOUT - ▁APPARATUS - ▁ILLUSTRATION - ▁INTELLIGIBLE - ▁INVARIABLY - ▁PIERCED - ▁REVIEW - ▁FLICKER - ▁HAZARD - ▁REVELATION - ▁DIXON - ▁EXCITING - ▁GOSPEL - ▁CONSTANCE - ▁OVERTAKE - ▁GUINEA - ▁ALADDIN - ▁CHICAGO - ▁TULLIVER - ▁HAMILTON - ▁GARRISON - ▁DISCIPLE - ▁INTENSITY - ▁TRAITOR - ▁CHANCELLOR - ▁PROVERB - ▁DAGGER - ▁FORESEE - ▁CONFIDE - ▁GLIMMER - ▁CHAUVELIN - ▁ILLUSTRATE - ▁VOLUNTEER - ▁JUNGLE - ▁STREAK - ▁SUNRISE - ▁DISSOLV - ▁QUEST - ▁AWHILE - ▁FELICITY - ▁LEGISLATURE - ▁LEONORA - ▁MAGAZINE - ▁PITIFUL - ▁COLONY - ▁SHAWL - ▁ARRIVING - ▁FUNDAMENTAL - ▁CARPENTER - ▁OVERFLOW - ▁EXPAND - ▁HARVEST - ▁FEMININE - ▁INNUMERABLE - ▁SCRAMBLE - ▁TWENTIETH - ▁TRIFLING - ▁GHASTL - ▁CONQUEST - ▁DANIEL - ▁FACILIT - ▁FORSAKE - ▁BEHAVIOUR - ▁GORGEOUS - ▁PRODUCING - ▁HAPPIER - ▁PROMISING - ▁RAINBOW - ▁INSTINCTIVELY - ▁DECREE - ▁EYEBROWS - ▁IRRESISTIBLE - ▁PHARAOH - ▁SCROOGE - ▁UNNATURAL - ▁CRUMBS - ▁REFINED - ▁DREARY - ▁TRENCH - ▁CONVINCE - ▁FRINGE - ▁EXTREMITY - ▁INTIMACY - ▁SCOUNDREL - ▁SUFFRAGE - ▁UNEASINESS - ▁BARRICADE - ▁CIRCULAT - ▁SAMUEL - ▁BRUCE - ▁DARCY - <sos/eos> init: xavier_uniform input_size: 83 ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: false model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: null frontend_conf: {} specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: contextual_block_transformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true block_size: 40 hop_size: 16 look_ahead: 16 init_average: true ctx_pos_enc: true decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
eml914/streaming_transformer_asr_librispeech
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'eml914/streaming\_transformer\_asr\_librispeech' This model was trained by Emiru Tsunoo using librispeech recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Wed Nov 17 18:18:46 JST 2021' * python version: '3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]' * espnet version: 'espnet 0.10.5a1' * pytorch version: 'pytorch 1.4.0' * Git hash: '12eb132418a1f69548f7998e53273cd05d989ed9' + Commit date: 'Tue Nov 16 10:12:21 2021 +0900' asr\_train\_asr\_streaming\_fbank\_pitch\_en\_bpe5000\_sp --------------------------------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'eml914/streaming\\_transformer\\_asr\\_librispeech'\n\n\nThis model was trained by Emiru Tsunoo using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Nov 17 18:18:46 JST 2021'\n* python version: '3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.5a1'\n* pytorch version: 'pytorch 1.4.0'\n* Git hash: '12eb132418a1f69548f7998e53273cd05d989ed9'\n\t+ Commit date: 'Tue Nov 16 10:12:21 2021 +0900'\n\n\nasr\\_train\\_asr\\_streaming\\_fbank\\_pitch\\_en\\_bpe5000\\_sp\n---------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'eml914/streaming\\_transformer\\_asr\\_librispeech'\n\n\nThis model was trained by Emiru Tsunoo using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Nov 17 18:18:46 JST 2021'\n* python version: '3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.5a1'\n* pytorch version: 'pytorch 1.4.0'\n* Git hash: '12eb132418a1f69548f7998e53273cd05d989ed9'\n\t+ Commit date: 'Tue Nov 16 10:12:21 2021 +0900'\n\n\nasr\\_train\\_asr\\_streaming\\_fbank\\_pitch\\_en\\_bpe5000\\_sp\n---------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
summarization
transformers
# arxiv27k-t5-abst-title-gen/ This model is a fine-tuned version of mt5-small on the arxiv-abstract-title dataset. It achieves the following results on the evaluation set: - Loss: 1.6002 - Rouge1: 32.8 - Rouge2: 21.9 - Rougel: 34.8 - ## Model description Model has been trained with a colab-pro notebook in 4 hours. ## Intended uses & limitations Can be used for generating journal titles from given abstracts ### Training args model_args = T5Args() model_args.max_seq_length = 256 model_args.train_batch_size = 8 model_args.eval_batch_size = 8 model_args.num_train_epochs = 6 model_args.evaluate_during_training = False model_args.use_multiprocessing = False model_args.fp16 = False model_args.save_steps = 40000 model_args.save_eval_checkpoints = False model_args.save_model_every_epoch = True model_args.output_dir = OUTPUT_DIR model_args.no_cache = True model_args.reprocess_input_data = True model_args.overwrite_output_dir = True model_args.num_return_sequences = 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3 ### Contact detasar@gmail.com Davut Emre Taşar
{"license": "apache-2.0", "tags": ["generated_from_trainer", "summarization"], "metrics": ["rouge"], "model-index": [{"name": "arxiv27k-t5-abst-title-gen/", "results": []}]}
emre/arxiv27k-t5-abst-title-gen
null
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "summarization", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #mt5 #text2text-generation #generated_from_trainer #summarization #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# arxiv27k-t5-abst-title-gen/ This model is a fine-tuned version of mt5-small on the arxiv-abstract-title dataset. It achieves the following results on the evaluation set: - Loss: 1.6002 - Rouge1: 32.8 - Rouge2: 21.9 - Rougel: 34.8 - ## Model description Model has been trained with a colab-pro notebook in 4 hours. ## Intended uses & limitations Can be used for generating journal titles from given abstracts ### Training args model_args = T5Args() model_args.max_seq_length = 256 model_args.train_batch_size = 8 model_args.eval_batch_size = 8 model_args.num_train_epochs = 6 model_args.evaluate_during_training = False model_args.use_multiprocessing = False model_args.fp16 = False model_args.save_steps = 40000 model_args.save_eval_checkpoints = False model_args.save_model_every_epoch = True model_args.output_dir = OUTPUT_DIR model_args.no_cache = True model_args.reprocess_input_data = True model_args.overwrite_output_dir = True model_args.num_return_sequences = 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3 ### Contact detasar@URL Davut Emre Taşar
[ "# arxiv27k-t5-abst-title-gen/\n\nThis model is a fine-tuned version of mt5-small on the arxiv-abstract-title dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.6002\n- Rouge1: 32.8\n- Rouge2: 21.9\n- Rougel: 34.8\n-", "## Model description\n\nModel has been trained with a colab-pro notebook in 4 hours.", "## Intended uses & limitations\n\nCan be used for generating journal titles from given abstracts", "### Training args\nmodel_args = T5Args()\nmodel_args.max_seq_length = 256\nmodel_args.train_batch_size = 8\nmodel_args.eval_batch_size = 8\nmodel_args.num_train_epochs = 6\nmodel_args.evaluate_during_training = False\nmodel_args.use_multiprocessing = False\nmodel_args.fp16 = False\nmodel_args.save_steps = 40000\nmodel_args.save_eval_checkpoints = False\nmodel_args.save_model_every_epoch = True\nmodel_args.output_dir = OUTPUT_DIR\nmodel_args.no_cache = True\nmodel_args.reprocess_input_data = True\nmodel_args.overwrite_output_dir = True\nmodel_args.num_return_sequences = 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3", "### Contact\ndetasar@URL\nDavut Emre Taşar" ]
[ "TAGS\n#transformers #pytorch #safetensors #mt5 #text2text-generation #generated_from_trainer #summarization #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# arxiv27k-t5-abst-title-gen/\n\nThis model is a fine-tuned version of mt5-small on the arxiv-abstract-title dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.6002\n- Rouge1: 32.8\n- Rouge2: 21.9\n- Rougel: 34.8\n-", "## Model description\n\nModel has been trained with a colab-pro notebook in 4 hours.", "## Intended uses & limitations\n\nCan be used for generating journal titles from given abstracts", "### Training args\nmodel_args = T5Args()\nmodel_args.max_seq_length = 256\nmodel_args.train_batch_size = 8\nmodel_args.eval_batch_size = 8\nmodel_args.num_train_epochs = 6\nmodel_args.evaluate_during_training = False\nmodel_args.use_multiprocessing = False\nmodel_args.fp16 = False\nmodel_args.save_steps = 40000\nmodel_args.save_eval_checkpoints = False\nmodel_args.save_model_every_epoch = True\nmodel_args.output_dir = OUTPUT_DIR\nmodel_args.no_cache = True\nmodel_args.reprocess_input_data = True\nmodel_args.overwrite_output_dir = True\nmodel_args.num_return_sequences = 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3", "### Contact\ndetasar@URL\nDavut Emre Taşar" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2256 | 1.0 | 5533 | 1.1620 | | 0.9551 | 2.0 | 11066 | 1.1237 | | 0.7726 | 3.0 | 16599 | 1.1620 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
emre/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.1620 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
question-answering
transformers
# Turkish SQuAD Model : Question Answering Fine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset * Loodos-BERT-base: https://huggingface.co/loodos/bert-base-turkish-uncased * TQuAD dataset: https://github.com/TQuad/turkish-nlp-qa-dataset # Training Code ``` !python3 Turkish-QA.py \ --model_type bert \ --model_name_or_path loodos/bert-base-turkish-uncased --do_train \ --do_eval \ --train_file trainQ.json \ --predict_file dev1.json \ --per_gpu_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --output_dir "./model" ``` # Example Usage > Load Model ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("emre/distilbert-tr-q-a") model = AutoModelForQuestionAnswering.from_pretrained("emre/distilbert-tr-q-a") nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) ``` > Apply the model ``` def ask(question,context): temp = nlp(question=question, context=context) start_idx = temp["start"] end_idx = temp["end"] return context[start_idx:end_idx] izmir="İzmir, Türkiye'de Ege Bölgesi'nde yer alan şehir ve ülkenin 81 ilinden biridir. Ülkenin nüfus bakımından en kalabalık üçüncü şehridir. Ekonomik, tarihi ve sosyo-kültürel açıdan önde gelen şehirlerden biridir. Nüfusu 2021 itibarıyla 4.425.789 kişidir. Yüzölçümü olarak ülkenin yirmi üçüncü büyük ilidir." soru1 = "İzmir'in nüfusu kaçtır?" print(ask(soru1,izmir)) soru2 = "İzmir hangi bölgede bulunur?" print(ask(soru2,izmir)) ```
{"language": "tr", "tags": ["question-answering", "loodos-bert-base", "TQuAD", "tr"], "datasets": ["TQuAD"]}
emre/distilbert-tr-q-a
null
[ "transformers", "pytorch", "bert", "question-answering", "loodos-bert-base", "TQuAD", "tr", "dataset:TQuAD", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #bert #question-answering #loodos-bert-base #TQuAD #tr #dataset-TQuAD #endpoints_compatible #has_space #region-us
# Turkish SQuAD Model : Question Answering Fine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset * Loodos-BERT-base: URL * TQuAD dataset: URL # Training Code # Example Usage > Load Model > Apply the model
[ "# Turkish SQuAD Model : Question Answering\n\nFine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset\n* Loodos-BERT-base: URL\n* TQuAD dataset: URL", "# Training Code", "# Example Usage\n\n> Load Model\n\n\n> Apply the model" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #loodos-bert-base #TQuAD #tr #dataset-TQuAD #endpoints_compatible #has_space #region-us \n", "# Turkish SQuAD Model : Question Answering\n\nFine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset\n* Loodos-BERT-base: URL\n* TQuAD dataset: URL", "# Training Code", "# Example Usage\n\n> Load Model\n\n\n> Apply the model" ]
null
transformers
# jurisprudence-textgen-gpt-2 Pretrained model on Turkish language using a causal language modeling (CLM) objective. ## Model description of Original GPT-2 GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Model description of jurisprudence-textgen-gpt-2 Jurisprudence-textgen-gpt-2 is a transformers model for tensorflow pretrained with 18950 Turkish court Jurisprudence text data which has been obtained from [Bilirkisi GITHUB REPO TRAIN DATA] (https://github.com/Bilirkisi/Bilirkisi/tree/main/train) with 5 epochs. Model Training results are: Epoch 1/5 4986/4986 - 2770s 552ms/step - loss: 4.0122 - output_1_loss: 4.0122 - output_1_accuracy: 0.4544 Epoch 2/5 4986/4986 - 2753s 552ms/step - loss: 2.7074 - output_1_loss: 2.7074 - output_1_accuracy: 0.5843 Epoch 3/5 4986/4986 - 2754s 552ms/step - loss: 2.3411 - output_1_loss: 2.3411 - output_1_accuracy: 0.6214 Epoch 4/5 4986/4986 - 2754s 552ms/step - loss: 2.1241 - output_1_loss: 2.1241 - output_1_accuracy: 0.6431 Epoch 5/5 4986/4986 - 2754s 552ms/step - loss: 1.9647 - output_1_loss: 1.9647 - output_1_accuracy: 0.6597 ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a turkish law included downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Here is how to use this model to get the features of a given text in Tensorflow: ```python >>> from transformers import GPT2Tokenizer , TFGPT2LMHeadModel >>> tokenizer = GPT2Tokenizer.from_pretrained('emre/jurisprudence-textgen-gpt-2') >>> model = TFGPT2LMHeadModel.from_pretrained('emre/jurisprudence-textgen-gpt-2') >>> text = "Tarafların karşılıklı iddia ve savunmalarına," #Translation: "Mutual claims and defenses of the parties," >>> # encoding the input text >>> input_ids = tokenizer.encode(text, return_tensors='tf') >>> # getting out output >>> beam_output = model.generate( >>> input_ids, >>> max_length = 250, >>> num_beams = 5, >>> temperature = 0.7, >>> no_repeat_ngram_size=2, >>> num_return_sequences=5 >>> ) >>> for i in range(5): >>> print(tokenizer.decode(beam_output[i])) [{'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 13.10 YTL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 25.12.2007 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz itirazlarının reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 15,60 TL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 30/12/2009 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 15,60 TL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 30/12/2009 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 13.10 YTL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 25/12/2007 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 13.10 YTL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 27/12/2007 gününde oybirliğiyle karar verildi."}] ``` ### BibTeX entry and citation info soon will be defined..
{"language": "tr", "license": "mit"}
emre/jurisprudence-textgen-gpt-2
null
[ "transformers", "tf", "gpt2", "tr", "license:mit", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #tf #gpt2 #tr #license-mit #endpoints_compatible #text-generation-inference #region-us
# jurisprudence-textgen-gpt-2 Pretrained model on Turkish language using a causal language modeling (CLM) objective. ## Model description of Original GPT-2 GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Model description of jurisprudence-textgen-gpt-2 Jurisprudence-textgen-gpt-2 is a transformers model for tensorflow pretrained with 18950 Turkish court Jurisprudence text data which has been obtained from [Bilirkisi GITHUB REPO TRAIN DATA] (URL with 5 epochs. Model Training results are: Epoch 1/5 4986/4986 - 2770s 552ms/step - loss: 4.0122 - output_1_loss: 4.0122 - output_1_accuracy: 0.4544 Epoch 2/5 4986/4986 - 2753s 552ms/step - loss: 2.7074 - output_1_loss: 2.7074 - output_1_accuracy: 0.5843 Epoch 3/5 4986/4986 - 2754s 552ms/step - loss: 2.3411 - output_1_loss: 2.3411 - output_1_accuracy: 0.6214 Epoch 4/5 4986/4986 - 2754s 552ms/step - loss: 2.1241 - output_1_loss: 2.1241 - output_1_accuracy: 0.6431 Epoch 5/5 4986/4986 - 2754s 552ms/step - loss: 1.9647 - output_1_loss: 1.9647 - output_1_accuracy: 0.6597 ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a turkish law included downstream task. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Here is how to use this model to get the features of a given text in Tensorflow: ### BibTeX entry and citation info soon will be defined..
[ "# jurisprudence-textgen-gpt-2\n\nPretrained model on Turkish language using a causal language modeling (CLM) objective.", "## Model description of Original GPT-2\nGPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.\n\nMore precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens.\n\nThis way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.", "## Model description of jurisprudence-textgen-gpt-2\nJurisprudence-textgen-gpt-2 is a transformers model for tensorflow pretrained with 18950 Turkish court Jurisprudence text data which has been obtained from [Bilirkisi GITHUB REPO TRAIN DATA] (URL with 5 epochs. \nModel Training results are:\n\nEpoch 1/5\n4986/4986 - 2770s 552ms/step - loss: 4.0122 - output_1_loss: 4.0122 - output_1_accuracy: 0.4544 \n\nEpoch 2/5\n4986/4986 - 2753s 552ms/step - loss: 2.7074 - output_1_loss: 2.7074 - output_1_accuracy: 0.5843 \n\nEpoch 3/5\n4986/4986 - 2754s 552ms/step - loss: 2.3411 - output_1_loss: 2.3411 - output_1_accuracy: 0.6214 \n\nEpoch 4/5\n4986/4986 - 2754s 552ms/step - loss: 2.1241 - output_1_loss: 2.1241 - output_1_accuracy: 0.6431 \n\nEpoch 5/5\n4986/4986 - 2754s 552ms/step - loss: 1.9647 - output_1_loss: 1.9647 - output_1_accuracy: 0.6597", "## Intended uses & limitations\nYou can use the raw model for text generation or fine-tune it to a turkish law included downstream task. See the\nmodel hub to look for fine-tuned versions on a task that interests you.", "### How to use\nYou can use this model directly with a pipeline for text generation.\nHere is how to use this model to get the features of a given text in Tensorflow:", "### BibTeX entry and citation info\nsoon will be defined.." ]
[ "TAGS\n#transformers #tf #gpt2 #tr #license-mit #endpoints_compatible #text-generation-inference #region-us \n", "# jurisprudence-textgen-gpt-2\n\nPretrained model on Turkish language using a causal language modeling (CLM) objective.", "## Model description of Original GPT-2\nGPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.\n\nMore precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens.\n\nThis way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.", "## Model description of jurisprudence-textgen-gpt-2\nJurisprudence-textgen-gpt-2 is a transformers model for tensorflow pretrained with 18950 Turkish court Jurisprudence text data which has been obtained from [Bilirkisi GITHUB REPO TRAIN DATA] (URL with 5 epochs. \nModel Training results are:\n\nEpoch 1/5\n4986/4986 - 2770s 552ms/step - loss: 4.0122 - output_1_loss: 4.0122 - output_1_accuracy: 0.4544 \n\nEpoch 2/5\n4986/4986 - 2753s 552ms/step - loss: 2.7074 - output_1_loss: 2.7074 - output_1_accuracy: 0.5843 \n\nEpoch 3/5\n4986/4986 - 2754s 552ms/step - loss: 2.3411 - output_1_loss: 2.3411 - output_1_accuracy: 0.6214 \n\nEpoch 4/5\n4986/4986 - 2754s 552ms/step - loss: 2.1241 - output_1_loss: 2.1241 - output_1_accuracy: 0.6431 \n\nEpoch 5/5\n4986/4986 - 2754s 552ms/step - loss: 1.9647 - output_1_loss: 1.9647 - output_1_accuracy: 0.6597", "## Intended uses & limitations\nYou can use the raw model for text generation or fine-tune it to a turkish law included downstream task. See the\nmodel hub to look for fine-tuned versions on a task that interests you.", "### How to use\nYou can use this model directly with a pipeline for text generation.\nHere is how to use this model to get the features of a given text in Tensorflow:", "### BibTeX entry and citation info\nsoon will be defined.." ]
automatic-speech-recognition
transformers
# wav2vec-tr-lite-AG ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG") model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG") resampler = torchaudio.transforms.Resample(48_000, 16_000) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4388 | 3.7 | 400 | 1.366 | 0.9701 | | 0.3766 | 7.4 | 800 | 0.4914 | 0.5374 | | 0.2295 | 11.11 | 1200 | 0.3934 | 0.4125 | | 0.1121 | 14.81 | 1600 | 0.3264 | 0.2904 | | 0.1473 | 18.51 | 2000 | 0.3103 | 0.2671 | | 0.1013 | 22.22 | 2400 | 0.2589 | 0.2324 | | 0.0704 | 25.92 | 2800 | 0.2826 | 0.2339 | | 0.0537 | 29.63 | 3200 | 0.2704 | 0.2309 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice"], "metrics": ["wer"]}
emre/wav2vec-tr-lite-AG
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec-tr-lite-AG ================== Usage ----- The model can be used directly (without a language model) as follows: '''python import torch import torchaudio from datasets import load\_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test\_dataset = load\_dataset("common\_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from\_pretrained("emre/wav2vec-tr-lite-AG") model = Wav2Vec2ForCTC.from\_pretrained("emre/wav2vec-tr-lite-AG") resampler = torchaudio.transforms.Resample(48\_000, 16\_000) ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.00005 * train\_batch\_size: 2 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 2 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 32 * total\_eval\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.8.1 * Datasets 1.14.1.dev0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.00005\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.8.1\n* Datasets 1.14.1.dev0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.00005\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.8.1\n* Datasets 1.14.1.dev0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.2224 - Wer: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.8222 | 0.64 | 500 | 3.5026 | 1.0 | | 3.2136 | 1.28 | 1000 | 3.0593 | 1.0000 | | 2.8882 | 1.91 | 1500 | 2.4670 | 0.9939 | | 2.3743 | 2.55 | 2000 | 1.1844 | 0.8657 | | 1.9456 | 3.19 | 2500 | 0.8228 | 0.7397 | | 1.7781 | 3.83 | 3000 | 0.6826 | 0.6753 | | 1.6848 | 4.46 | 3500 | 0.5885 | 0.6140 | | 1.6228 | 5.1 | 4000 | 0.5274 | 0.5789 | | 1.5768 | 5.74 | 4500 | 0.4900 | 0.5519 | | 1.5431 | 6.38 | 5000 | 0.4508 | 0.5238 | | 1.5019 | 7.02 | 5500 | 0.4248 | 0.5021 | | 1.4684 | 7.65 | 6000 | 0.4009 | 0.4827 | | 1.4635 | 8.29 | 6500 | 0.3830 | 0.4700 | | 1.4291 | 8.93 | 7000 | 0.3707 | 0.4595 | | 1.4271 | 9.57 | 7500 | 0.3570 | 0.4514 | | 1.3938 | 10.2 | 8000 | 0.3479 | 0.4378 | | 1.3914 | 10.84 | 8500 | 0.3396 | 0.4368 | | 1.3767 | 11.48 | 9000 | 0.3253 | 0.4262 | | 1.3641 | 12.12 | 9500 | 0.3251 | 0.4178 | | 1.355 | 12.76 | 10000 | 0.3138 | 0.4136 | | 1.336 | 13.39 | 10500 | 0.3121 | 0.4069 | | 1.3292 | 14.03 | 11000 | 0.3041 | 0.4014 | | 1.3249 | 14.67 | 11500 | 0.3014 | 0.3931 | | 1.3156 | 15.31 | 12000 | 0.3014 | 0.3929 | | 1.313 | 15.94 | 12500 | 0.2969 | 0.3968 | | 1.3068 | 16.58 | 13000 | 0.2965 | 0.3966 | | 1.2785 | 17.22 | 13500 | 0.2943 | 0.3850 | | 1.2867 | 17.86 | 14000 | 0.2912 | 0.3782 | | 1.2714 | 18.49 | 14500 | 0.2819 | 0.3747 | | 1.2844 | 19.13 | 15000 | 0.2840 | 0.3740 | | 1.2684 | 19.77 | 15500 | 0.2913 | 0.3828 | | 1.26 | 20.41 | 16000 | 0.2739 | 0.3674 | | 1.2543 | 21.05 | 16500 | 0.2740 | 0.3691 | | 1.2532 | 21.68 | 17000 | 0.2709 | 0.3756 | | 1.2409 | 22.32 | 17500 | 0.2669 | 0.3593 | | 1.2404 | 22.96 | 18000 | 0.2673 | 0.3576 | | 1.2347 | 23.6 | 18500 | 0.2678 | 0.3643 | | 1.2351 | 24.23 | 19000 | 0.2715 | 0.3650 | | 1.2409 | 24.87 | 19500 | 0.2637 | 0.3571 | | 1.2152 | 25.51 | 20000 | 0.2785 | 0.3609 | | 1.2046 | 26.15 | 20500 | 0.2610 | 0.3508 | | 1.2082 | 26.79 | 21000 | 0.2619 | 0.3461 | | 1.2109 | 27.42 | 21500 | 0.2597 | 0.3502 | | 1.2014 | 28.06 | 22000 | 0.2608 | 0.3468 | | 1.1948 | 28.7 | 22500 | 0.2573 | 0.3457 | | 1.205 | 29.34 | 23000 | 0.2619 | 0.3464 | | 1.2019 | 29.97 | 23500 | 0.2559 | 0.3474 | | 1.1917 | 30.61 | 24000 | 0.2601 | 0.3462 | | 1.1939 | 31.25 | 24500 | 0.2575 | 0.3387 | | 1.1882 | 31.89 | 25000 | 0.2535 | 0.3368 | | 1.191 | 32.53 | 25500 | 0.2489 | 0.3365 | | 1.1767 | 33.16 | 26000 | 0.2501 | 0.3347 | | 1.167 | 33.8 | 26500 | 0.2504 | 0.3347 | | 1.1678 | 34.44 | 27000 | 0.2480 | 0.3378 | | 1.1803 | 35.08 | 27500 | 0.2487 | 0.3345 | | 1.167 | 35.71 | 28000 | 0.2442 | 0.3319 | | 1.1661 | 36.35 | 28500 | 0.2495 | 0.3334 | | 1.164 | 36.99 | 29000 | 0.2472 | 0.3292 | | 1.1578 | 37.63 | 29500 | 0.2442 | 0.3242 | | 1.1584 | 38.27 | 30000 | 0.2431 | 0.3314 | | 1.1526 | 38.9 | 30500 | 0.2441 | 0.3347 | | 1.1542 | 39.54 | 31000 | 0.2437 | 0.3330 | | 1.1508 | 40.18 | 31500 | 0.2433 | 0.3294 | | 1.1406 | 40.82 | 32000 | 0.2434 | 0.3271 | | 1.1514 | 41.45 | 32500 | 0.2426 | 0.3255 | | 1.1418 | 42.09 | 33000 | 0.2432 | 0.3233 | | 1.1365 | 42.73 | 33500 | 0.2436 | 0.3240 | | 1.1348 | 43.37 | 34000 | 0.2483 | 0.3257 | | 1.1301 | 44.01 | 34500 | 0.2420 | 0.3271 | | 1.1268 | 44.64 | 35000 | 0.2472 | 0.3225 | | 1.1224 | 45.28 | 35500 | 0.2382 | 0.3205 | | 1.1224 | 45.92 | 36000 | 0.2388 | 0.3184 | | 1.1198 | 46.56 | 36500 | 0.2382 | 0.3202 | | 1.1274 | 47.19 | 37000 | 0.2404 | 0.3172 | | 1.1147 | 47.83 | 37500 | 0.2394 | 0.3164 | | 1.121 | 48.47 | 38000 | 0.2406 | 0.3202 | | 1.1109 | 49.11 | 38500 | 0.2384 | 0.3154 | | 1.1164 | 49.74 | 39000 | 0.2375 | 0.3169 | | 1.1105 | 50.38 | 39500 | 0.2387 | 0.3173 | | 1.1054 | 51.02 | 40000 | 0.2362 | 0.3120 | | 1.0893 | 51.66 | 40500 | 0.2399 | 0.3130 | | 1.0913 | 52.3 | 41000 | 0.2357 | 0.3088 | | 1.1017 | 52.93 | 41500 | 0.2345 | 0.3084 | | 1.0937 | 53.57 | 42000 | 0.2330 | 0.3140 | | 1.0945 | 54.21 | 42500 | 0.2399 | 0.3107 | | 1.0933 | 54.85 | 43000 | 0.2383 | 0.3134 | | 1.0912 | 55.48 | 43500 | 0.2372 | 0.3077 | | 1.0898 | 56.12 | 44000 | 0.2339 | 0.3083 | | 1.0903 | 56.76 | 44500 | 0.2367 | 0.3065 | | 1.0947 | 57.4 | 45000 | 0.2352 | 0.3104 | | 1.0751 | 58.04 | 45500 | 0.2334 | 0.3084 | | 1.09 | 58.67 | 46000 | 0.2328 | 0.3100 | | 1.0876 | 59.31 | 46500 | 0.2276 | 0.3050 | | 1.076 | 59.95 | 47000 | 0.2309 | 0.3047 | | 1.086 | 60.59 | 47500 | 0.2293 | 0.3047 | | 1.082 | 61.22 | 48000 | 0.2328 | 0.3027 | | 1.0714 | 61.86 | 48500 | 0.2290 | 0.3020 | | 1.0746 | 62.5 | 49000 | 0.2313 | 0.3059 | | 1.076 | 63.14 | 49500 | 0.2342 | 0.3050 | | 1.0648 | 63.78 | 50000 | 0.2286 | 0.3025 | | 1.0586 | 64.41 | 50500 | 0.2338 | 0.3044 | | 1.0753 | 65.05 | 51000 | 0.2308 | 0.3045 | | 1.0664 | 65.69 | 51500 | 0.2273 | 0.3009 | | 1.0739 | 66.33 | 52000 | 0.2298 | 0.3027 | | 1.0695 | 66.96 | 52500 | 0.2247 | 0.2996 | | 1.06 | 67.6 | 53000 | 0.2276 | 0.3015 | | 1.0742 | 68.24 | 53500 | 0.2280 | 0.2974 | | 1.0618 | 68.88 | 54000 | 0.2291 | 0.2989 | | 1.062 | 69.52 | 54500 | 0.2302 | 0.2971 | | 1.0572 | 70.15 | 55000 | 0.2280 | 0.2990 | | 1.055 | 70.79 | 55500 | 0.2278 | 0.2983 | | 1.0553 | 71.43 | 56000 | 0.2282 | 0.2991 | | 1.0509 | 72.07 | 56500 | 0.2261 | 0.2959 | | 1.0469 | 72.7 | 57000 | 0.2216 | 0.2919 | | 1.0476 | 73.34 | 57500 | 0.2267 | 0.2989 | | 1.0494 | 73.98 | 58000 | 0.2260 | 0.2960 | | 1.0517 | 74.62 | 58500 | 0.2297 | 0.2989 | | 1.0458 | 75.26 | 59000 | 0.2246 | 0.2923 | | 1.0382 | 75.89 | 59500 | 0.2255 | 0.2922 | | 1.0462 | 76.53 | 60000 | 0.2258 | 0.2954 | | 1.0375 | 77.17 | 60500 | 0.2251 | 0.2929 | | 1.0332 | 77.81 | 61000 | 0.2277 | 0.2940 | | 1.0423 | 78.44 | 61500 | 0.2243 | 0.2896 | | 1.0379 | 79.08 | 62000 | 0.2274 | 0.2928 | | 1.0398 | 79.72 | 62500 | 0.2237 | 0.2928 | | 1.0395 | 80.36 | 63000 | 0.2265 | 0.2956 | | 1.0397 | 80.99 | 63500 | 0.2240 | 0.2920 | | 1.0262 | 81.63 | 64000 | 0.2244 | 0.2934 | | 1.0335 | 82.27 | 64500 | 0.2265 | 0.2936 | | 1.0385 | 82.91 | 65000 | 0.2238 | 0.2928 | | 1.0289 | 83.55 | 65500 | 0.2219 | 0.2912 | | 1.0372 | 84.18 | 66000 | 0.2236 | 0.2898 | | 1.0279 | 84.82 | 66500 | 0.2219 | 0.2902 | | 1.0325 | 85.46 | 67000 | 0.2240 | 0.2908 | | 1.0202 | 86.1 | 67500 | 0.2206 | 0.2886 | | 1.0166 | 86.73 | 68000 | 0.2219 | 0.2886 | | 1.0259 | 87.37 | 68500 | 0.2235 | 0.2897 | | 1.0337 | 88.01 | 69000 | 0.2210 | 0.2873 | | 1.0264 | 88.65 | 69500 | 0.2216 | 0.2882 | | 1.0231 | 89.29 | 70000 | 0.2223 | 0.2899 | | 1.0281 | 89.92 | 70500 | 0.2214 | 0.2872 | | 1.0135 | 90.56 | 71000 | 0.2218 | 0.2868 | | 1.0291 | 91.2 | 71500 | 0.2209 | 0.2863 | | 1.0321 | 91.84 | 72000 | 0.2199 | 0.2876 | | 1.028 | 92.47 | 72500 | 0.2214 | 0.2858 | | 1.0213 | 93.11 | 73000 | 0.2219 | 0.2875 | | 1.0261 | 93.75 | 73500 | 0.2232 | 0.2869 | | 1.0197 | 94.39 | 74000 | 0.2227 | 0.2866 | | 1.0298 | 95.03 | 74500 | 0.2228 | 0.2868 | | 1.0192 | 95.66 | 75000 | 0.2230 | 0.2865 | | 1.0156 | 96.3 | 75500 | 0.2220 | 0.2869 | | 1.0075 | 96.94 | 76000 | 0.2223 | 0.2866 | | 1.0201 | 97.58 | 76500 | 0.2219 | 0.2866 | | 1.0159 | 98.21 | 77000 | 0.2219 | 0.2876 | | 1.0087 | 98.85 | 77500 | 0.2219 | 0.2873 | | 1.0159 | 99.49 | 78000 | 0.2223 | 0.2867 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": "tr", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "base_model": "facebook/wav2vec2-xls-r-300m", "model-index": [{"name": "wav2vec2-large-xls-r-300m-tr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice_8_0", "args": "tr"}, "metrics": [{"type": "wer", "value": 28.69, "name": "Test WER"}]}]}]}
emre/wav2vec2-large-xls-r-300m-tr
null
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_8_0", "base_model:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #tr #dataset-mozilla-foundation/common_voice_8_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-tr ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.2224 * Wer: 0.2869 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 100.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #tr #dataset-mozilla-foundation/common_voice_8_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4714 - Wer: 0.5316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2446 | 1.17 | 400 | 3.2621 | 1.0 | | 1.739 | 2.35 | 800 | 0.5832 | 0.7688 | | 0.4718 | 3.52 | 1200 | 0.4785 | 0.6824 | | 0.3574 | 4.69 | 1600 | 0.4814 | 0.6792 | | 0.2946 | 5.86 | 2000 | 0.4484 | 0.6506 | | 0.2674 | 7.04 | 2400 | 0.4612 | 0.6225 | | 0.2349 | 8.21 | 2800 | 0.4600 | 0.6050 | | 0.2206 | 9.38 | 3200 | 0.4772 | 0.6048 | | 0.2072 | 10.56 | 3600 | 0.4676 | 0.6106 | | 0.1984 | 11.73 | 4000 | 0.4816 | 0.6079 | | 0.1793 | 12.9 | 4400 | 0.4616 | 0.5836 | | 0.172 | 14.08 | 4800 | 0.4808 | 0.5860 | | 0.1624 | 15.25 | 5200 | 0.4854 | 0.5820 | | 0.156 | 16.42 | 5600 | 0.4609 | 0.5656 | | 0.1448 | 17.59 | 6000 | 0.4926 | 0.5817 | | 0.1406 | 18.77 | 6400 | 0.4638 | 0.5654 | | 0.1337 | 19.94 | 6800 | 0.4731 | 0.5652 | | 0.1317 | 21.11 | 7200 | 0.4861 | 0.5639 | | 0.1179 | 22.29 | 7600 | 0.4766 | 0.5521 | | 0.1197 | 23.46 | 8000 | 0.4824 | 0.5584 | | 0.1096 | 24.63 | 8400 | 0.5006 | 0.5559 | | 0.1038 | 25.81 | 8800 | 0.4994 | 0.5440 | | 0.0992 | 26.98 | 9200 | 0.4867 | 0.5405 | | 0.0984 | 28.15 | 9600 | 0.4798 | 0.5361 | | 0.0943 | 29.33 | 10000 | 0.4714 | 0.5316 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": "tt", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tt"], "datasets": ["common_voice"], "base_model": "facebook/wav2vec2-large-xlsr-53", "model-index": [{"name": "wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "tt"}, "metrics": [{"type": "wer", "value": 53.16, "name": "Test WER"}]}]}]}
emre/wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tt", "dataset:common_voice", "base_model:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tt" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tt #dataset-common_voice #base_model-facebook/wav2vec2-large-xlsr-53 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL ======================================= This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4714 * Wer: 0.5316 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tt #dataset-common_voice #base_model-facebook/wav2vec2-large-xlsr-53 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-W2V2-TR-MED This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Wer: 0.4598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1343 | 4.21 | 400 | 2.3674 | 1.0372 | | 0.8075 | 8.42 | 800 | 0.4583 | 0.6308 | | 0.3209 | 12.63 | 1200 | 0.4291 | 0.5531 | | 0.2273 | 16.84 | 1600 | 0.4348 | 0.5378 | | 0.1764 | 21.05 | 2000 | 0.4550 | 0.5326 | | 0.148 | 25.26 | 2400 | 0.4839 | 0.5319 | | 0.1268 | 29.47 | 2800 | 0.4515 | 0.5070 | | 0.1113 | 33.68 | 3200 | 0.4590 | 0.4930 | | 0.1025 | 37.89 | 3600 | 0.4546 | 0.4888 | | 0.0922 | 42.11 | 4000 | 0.4782 | 0.4852 | | 0.082 | 46.32 | 4400 | 0.4605 | 0.4752 | | 0.0751 | 50.53 | 4800 | 0.4358 | 0.4689 | | 0.0699 | 54.74 | 5200 | 0.4359 | 0.4629 | | 0.0633 | 58.95 | 5600 | 0.4467 | 0.4598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-W2V2-TR-MED", "results": []}]}
emre/wav2vec2-large-xlsr-53-W2V2-TR-MED
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xlsr-53-W2V2-TR-MED ================================== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4467 * Wer: 0.4598 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 60 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3966 - Wer: 0.4834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1516 | 4.21 | 400 | 2.7673 | 1.0 | | 0.9134 | 8.42 | 800 | 0.4618 | 0.6418 | | 0.3273 | 12.63 | 1200 | 0.4188 | 0.5535 | | 0.2252 | 16.84 | 1600 | 0.4144 | 0.5232 | | 0.1692 | 21.05 | 2000 | 0.3995 | 0.5030 | | 0.1355 | 25.26 | 2400 | 0.4073 | 0.4920 | | 0.1172 | 29.47 | 2800 | 0.3966 | 0.4834 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-demo-colab", "results": []}]}
emre/wav2vec2-large-xlsr-53-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xlsr-53-demo-colab ================================= This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.3966 * Wer: 0.4834 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-sah-CV8 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5089 - Wer: 0.5606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6849 | 16.67 | 500 | 1.1135 | 0.9344 | | 0.8223 | 33.33 | 1000 | 0.5148 | 0.5686 | | 0.5477 | 50.0 | 1500 | 0.5089 | 0.5606 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "sah", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-sah-CV8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 56.06, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "sah"}, "metrics": [{"type": "wer", "value": 43.75, "name": "Test WER"}]}]}]}
emre/wav2vec2-large-xlsr-53-sah-CV8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "sah" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xlsr-53-sah-CV8 ============================== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.5089 * Wer: 0.5606 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
# wav2vec2-xls-r-300m-Br-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Wer: 0.6675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7464 | 2.79 | 400 | 1.7474 | 1.1018 | | 1.1117 | 5.59 | 800 | 0.9434 | 0.8697 | | 0.6481 | 8.39 | 1200 | 0.9251 | 0.7910 | | 0.4754 | 11.19 | 1600 | 0.9208 | 0.7412 | | 0.3602 | 13.98 | 2000 | 0.9284 | 0.7232 | | 0.2873 | 16.78 | 2400 | 0.9299 | 0.6940 | | 0.2386 | 19.58 | 2800 | 1.0182 | 0.6927 | | 0.1971 | 22.38 | 3200 | 1.0456 | 0.6898 | | 0.1749 | 25.17 | 3600 | 1.0208 | 0.6769 | | 0.1487 | 27.97 | 4000 | 1.0573 | 0.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": "br", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Br-small", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice br", "type": "common_voice", "args": "br"}, "metrics": [{"type": "wer", "value": 66.75, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-Br-small
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "br" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Br-small ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.0573 * Wer: 0.6675 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Russian-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Wer: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.512 | 1.32 | 400 | 3.2207 | 1.0 | | 3.1562 | 2.65 | 800 | 3.0166 | 1.0 | | 1.5211 | 3.97 | 1200 | 0.7134 | 0.8275 | | 0.6724 | 5.3 | 1600 | 0.4713 | 0.6402 | | 0.4693 | 6.62 | 2000 | 0.3904 | 0.5668 | | 0.3693 | 7.95 | 2400 | 0.3609 | 0.5121 | | 0.3004 | 9.27 | 2800 | 0.3514 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": ["ru"], "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Russian-small", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ru", "type": "common_voice", "args": "ru"}, "metrics": [{"type": "wer", "value": 48.38, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ru"}, "metrics": [{"type": "wer", "value": 58.25, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ru"}, "metrics": [{"type": "wer", "value": 56.83, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-Russian-small
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ru", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #ru #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Russian-small ================================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.3514 * Wer: 0.4838 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #ru #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8 This model is a fine-tuned version of [emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8](https://huggingface.co/emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 - Wer: 0.5010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0402 | 0.67 | 500 | 0.3354 | 0.5681 | | 0.7265 | 1.33 | 1000 | 0.3181 | 0.5444 | | 0.6858 | 2.0 | 1500 | 0.3044 | 0.5322 | | 0.6537 | 2.66 | 2000 | 0.2911 | 0.5217 | | 0.6337 | 3.33 | 2500 | 0.2874 | 0.5164 | | 0.6111 | 3.99 | 3000 | 0.2758 | 0.5059 | | 0.5815 | 4.66 | 3500 | 0.2708 | 0.5010 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8", "results": []}]}
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8 =========================================================== This model is a fine-tuned version of emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8 on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.2708 * Wer: 0.5010 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Wer: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4876 | 6.66 | 5000 | 0.3252 | 0.5784 | | 0.6919 | 13.32 | 10000 | 0.2720 | 0.5172 | | 0.5919 | 19.97 | 15000 | 0.2556 | 0.4914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "tr", "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Tr-med-CommonVoice8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 49.14, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Tr-med-CommonVoice8 ======================================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.2556 * Wer: 0.4914 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 20 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #tr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-med This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4727 - Wer: 0.4677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8093 | 4.21 | 400 | 2.7831 | 1.0 | | 0.9881 | 8.42 | 800 | 0.5088 | 0.6681 | | 0.3519 | 12.63 | 1200 | 0.4496 | 0.6007 | | 0.2436 | 16.84 | 1600 | 0.4993 | 0.5654 | | 0.1874 | 21.05 | 2000 | 0.4793 | 0.5530 | | 0.1561 | 25.26 | 2400 | 0.5187 | 0.5589 | | 0.1336 | 29.47 | 2800 | 0.5135 | 0.5311 | | 0.1163 | 33.68 | 3200 | 0.4960 | 0.5143 | | 0.1056 | 37.89 | 3600 | 0.4795 | 0.5045 | | 0.0959 | 42.11 | 4000 | 0.4883 | 0.4987 | | 0.0819 | 46.32 | 4400 | 0.4799 | 0.4903 | | 0.0756 | 50.53 | 4800 | 0.4822 | 0.4831 | | 0.0692 | 54.74 | 5200 | 0.4621 | 0.4762 | | 0.062 | 58.95 | 5600 | 0.4727 | 0.4677 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Turkish-Tr-med", "results": []}]}
emre/wav2vec2-xls-r-300m-Turkish-Tr-med
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Turkish-Tr-med ================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4727 * Wer: 0.4677 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 60 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4813 - Wer: 0.7207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2 | 0.53 | 400 | 3.1949 | 0.9964 | | 2.9387 | 1.07 | 800 | 2.5015 | 1.0337 | | 1.5975 | 1.6 | 1200 | 1.0928 | 0.9945 | | 1.0688 | 2.13 | 1600 | 0.8388 | 0.9390 | | 0.8977 | 2.66 | 2000 | 0.7106 | 0.8889 | | 0.789 | 3.2 | 2400 | 0.6051 | 0.8273 | | 0.7116 | 3.73 | 2800 | 0.5580 | 0.7855 | | 0.6576 | 4.26 | 3200 | 0.5033 | 0.7433 | | 0.6002 | 4.79 | 3600 | 0.4813 | 0.7207 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8", "results": []}]}
emre/wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 ================================================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4813 * Wer: 0.7207 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4375 - Wer: 0.5050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8735 | 4.21 | 400 | 2.8173 | 1.0002 | | 1.0073 | 8.42 | 800 | 0.4981 | 0.6717 | | 0.3395 | 12.63 | 1200 | 0.4470 | 0.5866 | | 0.2254 | 16.84 | 1600 | 0.4349 | 0.5491 | | 0.1648 | 21.05 | 2000 | 0.4454 | 0.5284 | | 0.1325 | 25.26 | 2400 | 0.4552 | 0.5131 | | 0.1102 | 29.47 | 2800 | 0.4375 | 0.5050 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Turkish-Tr-small", "results": []}]}
emre/wav2vec2-xls-r-300m-Turkish-Tr-small
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-300m-Turkish-Tr-small ==================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4375 * Wer: 0.5050 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9068 - Wer: 0.7900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6926 | 19.05 | 400 | 2.7538 | 1.0 | | 0.7031 | 38.1 | 800 | 0.9068 | 0.7900 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": "sah", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 79.0, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "sah" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL ============================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.9068 * Wer: 0.7900 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
# wav2vec2-xls-r-300m-ab-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Wer: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 | | 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 | | 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 | | 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 | | 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 | | 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 | | 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 | | 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 | | 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 | | 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 | | 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 | | 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 | | 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 | | 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 | | 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 | | 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 | | 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 | | 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 | | 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 | | 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 | | 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 | | 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 | | 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "ab", "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-ab-CV8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ab"}, "metrics": [{"type": "wer", "value": 44.9, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-ab-CV8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ab", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ab" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #ab #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-ab-CV8 ========================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.2105 * Wer: 0.5474 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 15 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #ab #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-as-CV8-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "as", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-as-CV8-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "as"}, "metrics": [{"type": "wer", "value": 100.0, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-as-CV8-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "as", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "as" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-xls-r-300m-as-CV8-v1 This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
[ "# wav2vec2-xls-r-300m-as-CV8-v1\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 300\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-xls-r-300m-as-CV8-v1\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 300\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bas-CV8-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6121 - Wer: 0.5697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5211 | 16.13 | 500 | 1.2661 | 0.9153 | | 0.7026 | 32.25 | 1000 | 0.6245 | 0.6516 | | 0.3752 | 48.38 | 1500 | 0.6039 | 0.6148 | | 0.2752 | 64.51 | 2000 | 0.6080 | 0.5808 | | 0.2155 | 80.63 | 2500 | 0.6121 | 0.5697 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "bas", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer", "bas", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-bas-CV8-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bas"}, "metrics": [{"type": "wer", "value": 56.97, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-bas-CV8-v2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "bas", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "bas" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #bas #robust-speech-event #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-bas-CV8-v2 ============================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.6121 * Wer: 0.5697 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 90 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 90\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #bas #robust-speech-event #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 90\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "gl", "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-gl-CV8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice gl", "type": "common_voice", "args": "gl"}, "metrics": [{"type": "wer", "value": 0.208, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "gl"}, "metrics": [{"type": "wer", "value": 22.94, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "gl"}, "metrics": [{"type": "wer", "value": 47.82, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "gl"}, "metrics": [{"type": "wer", "value": 50.8, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-gl-CV8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "gl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "gl" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #gl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-300m-gl-CV8 ========================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.2151 * Wer: 0.2080 --- Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 15 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #gl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-hy-AM-CV8-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9145 - Wer: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 170 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7132 | 83.31 | 500 | 1.9274 | 1.0523 | | 1.017 | 166.62 | 1000 | 0.9145 | 0.9598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-hy-AM-CV8-v1", "results": []}]}
emre/wav2vec2-xls-r-300m-hy-AM-CV8-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-300m-hy-AM-CV8-v1 ================================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.9145 * Wer: 0.9598 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 170 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 170\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 170\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased_allnli_tr This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6144 - Accuracy: 0.7662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8623 | 0.03 | 1000 | 0.9076 | 0.5917 | | 0.7528 | 0.07 | 2000 | 0.8587 | 0.6119 | | 0.7074 | 0.1 | 3000 | 0.7867 | 0.6647 | | 0.6949 | 0.14 | 4000 | 0.7474 | 0.6772 | | 0.6681 | 0.17 | 5000 | 0.7661 | 0.6814 | | 0.6597 | 0.2 | 6000 | 0.7264 | 0.6943 | | 0.6495 | 0.24 | 7000 | 0.7841 | 0.6781 | | 0.6323 | 0.27 | 8000 | 0.7256 | 0.6952 | | 0.6308 | 0.31 | 9000 | 0.7319 | 0.6958 | | 0.6254 | 0.34 | 10000 | 0.7054 | 0.7004 | | 0.6233 | 0.37 | 11000 | 0.7069 | 0.7085 | | 0.6165 | 0.41 | 12000 | 0.6880 | 0.7181 | | 0.6033 | 0.44 | 13000 | 0.6844 | 0.7197 | | 0.6014 | 0.48 | 14000 | 0.6753 | 0.7129 | | 0.5947 | 0.51 | 15000 | 0.7000 | 0.7039 | | 0.5965 | 0.54 | 16000 | 0.6708 | 0.7263 | | 0.5979 | 0.58 | 17000 | 0.6562 | 0.7285 | | 0.5787 | 0.61 | 18000 | 0.6554 | 0.7297 | | 0.58 | 0.65 | 19000 | 0.6544 | 0.7315 | | 0.574 | 0.68 | 20000 | 0.6549 | 0.7339 | | 0.5751 | 0.71 | 21000 | 0.6545 | 0.7289 | | 0.5659 | 0.75 | 22000 | 0.6467 | 0.7371 | | 0.5732 | 0.78 | 23000 | 0.6448 | 0.7362 | | 0.5637 | 0.82 | 24000 | 0.6520 | 0.7355 | | 0.5648 | 0.85 | 25000 | 0.6412 | 0.7345 | | 0.5622 | 0.88 | 26000 | 0.6350 | 0.7358 | | 0.5579 | 0.92 | 27000 | 0.6347 | 0.7393 | | 0.5518 | 0.95 | 28000 | 0.6417 | 0.7392 | | 0.5547 | 0.99 | 29000 | 0.6321 | 0.7437 | | 0.524 | 1.02 | 30000 | 0.6430 | 0.7412 | | 0.4982 | 1.05 | 31000 | 0.6253 | 0.7458 | | 0.5002 | 1.09 | 32000 | 0.6316 | 0.7418 | | 0.4993 | 1.12 | 33000 | 0.6197 | 0.7487 | | 0.4963 | 1.15 | 34000 | 0.6307 | 0.7462 | | 0.504 | 1.19 | 35000 | 0.6272 | 0.7480 | | 0.4922 | 1.22 | 36000 | 0.6410 | 0.7433 | | 0.5016 | 1.26 | 37000 | 0.6295 | 0.7461 | | 0.4957 | 1.29 | 38000 | 0.6183 | 0.7506 | | 0.4883 | 1.32 | 39000 | 0.6261 | 0.7502 | | 0.4985 | 1.36 | 40000 | 0.6315 | 0.7496 | | 0.4885 | 1.39 | 41000 | 0.6189 | 0.7529 | | 0.4909 | 1.43 | 42000 | 0.6189 | 0.7473 | | 0.4894 | 1.46 | 43000 | 0.6314 | 0.7433 | | 0.4912 | 1.49 | 44000 | 0.6184 | 0.7446 | | 0.4851 | 1.53 | 45000 | 0.6258 | 0.7461 | | 0.4879 | 1.56 | 46000 | 0.6286 | 0.7480 | | 0.4907 | 1.6 | 47000 | 0.6196 | 0.7512 | | 0.4884 | 1.63 | 48000 | 0.6157 | 0.7526 | | 0.4755 | 1.66 | 49000 | 0.6056 | 0.7591 | | 0.4811 | 1.7 | 50000 | 0.5977 | 0.7582 | | 0.4787 | 1.73 | 51000 | 0.5915 | 0.7621 | | 0.4779 | 1.77 | 52000 | 0.6014 | 0.7583 | | 0.4767 | 1.8 | 53000 | 0.6041 | 0.7623 | | 0.4737 | 1.83 | 54000 | 0.6093 | 0.7563 | | 0.4836 | 1.87 | 55000 | 0.6001 | 0.7568 | | 0.4765 | 1.9 | 56000 | 0.6109 | 0.7601 | | 0.4776 | 1.94 | 57000 | 0.6046 | 0.7599 | | 0.4769 | 1.97 | 58000 | 0.5970 | 0.7568 | | 0.4654 | 2.0 | 59000 | 0.6147 | 0.7614 | | 0.4144 | 2.04 | 60000 | 0.6439 | 0.7566 | | 0.4101 | 2.07 | 61000 | 0.6373 | 0.7527 | | 0.4192 | 2.11 | 62000 | 0.6136 | 0.7575 | | 0.4128 | 2.14 | 63000 | 0.6283 | 0.7560 | | 0.4204 | 2.17 | 64000 | 0.6187 | 0.7625 | | 0.4114 | 2.21 | 65000 | 0.6127 | 0.7621 | | 0.4097 | 2.24 | 66000 | 0.6188 | 0.7626 | | 0.4129 | 2.28 | 67000 | 0.6156 | 0.7639 | | 0.4085 | 2.31 | 68000 | 0.6232 | 0.7616 | | 0.4074 | 2.34 | 69000 | 0.6240 | 0.7605 | | 0.409 | 2.38 | 70000 | 0.6153 | 0.7591 | | 0.4046 | 2.41 | 71000 | 0.6375 | 0.7587 | | 0.4117 | 2.45 | 72000 | 0.6145 | 0.7629 | | 0.4002 | 2.48 | 73000 | 0.6279 | 0.7610 | | 0.4042 | 2.51 | 74000 | 0.6176 | 0.7646 | | 0.4055 | 2.55 | 75000 | 0.6277 | 0.7643 | | 0.4021 | 2.58 | 76000 | 0.6196 | 0.7642 | | 0.4081 | 2.62 | 77000 | 0.6127 | 0.7659 | | 0.408 | 2.65 | 78000 | 0.6237 | 0.7638 | | 0.3997 | 2.68 | 79000 | 0.6190 | 0.7636 | | 0.4093 | 2.72 | 80000 | 0.6152 | 0.7648 | | 0.4095 | 2.75 | 81000 | 0.6155 | 0.7627 | | 0.4088 | 2.79 | 82000 | 0.6130 | 0.7641 | | 0.4063 | 2.82 | 83000 | 0.6072 | 0.7646 | | 0.3978 | 2.85 | 84000 | 0.6128 | 0.7662 | | 0.4034 | 2.89 | 85000 | 0.6157 | 0.7627 | | 0.4044 | 2.92 | 86000 | 0.6127 | 0.7661 | | 0.403 | 2.96 | 87000 | 0.6126 | 0.7664 | | 0.4033 | 2.99 | 88000 | 0.6144 | 0.7662 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "mit", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-multilingual-cased-allnli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #bert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
bert-base-multilingual-cased\_allnli\_tr ======================================== This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6144 * Accuracy: 0.7662 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-turkish-cased_allnli_tr This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5771 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8559 | 0.03 | 1000 | 0.7577 | 0.6798 | | 0.6612 | 0.07 | 2000 | 0.7263 | 0.6958 | | 0.6115 | 0.1 | 3000 | 0.6431 | 0.7364 | | 0.5916 | 0.14 | 4000 | 0.6347 | 0.7407 | | 0.5719 | 0.17 | 5000 | 0.6317 | 0.7483 | | 0.5575 | 0.2 | 6000 | 0.6034 | 0.7544 | | 0.5521 | 0.24 | 7000 | 0.6148 | 0.7568 | | 0.5393 | 0.27 | 8000 | 0.5931 | 0.7610 | | 0.5382 | 0.31 | 9000 | 0.5866 | 0.7665 | | 0.5306 | 0.34 | 10000 | 0.5881 | 0.7594 | | 0.5295 | 0.37 | 11000 | 0.6120 | 0.7632 | | 0.5225 | 0.41 | 12000 | 0.5620 | 0.7759 | | 0.5112 | 0.44 | 13000 | 0.5641 | 0.7769 | | 0.5133 | 0.48 | 14000 | 0.5571 | 0.7798 | | 0.5023 | 0.51 | 15000 | 0.5719 | 0.7722 | | 0.5017 | 0.54 | 16000 | 0.5482 | 0.7844 | | 0.5111 | 0.58 | 17000 | 0.5503 | 0.7800 | | 0.4929 | 0.61 | 18000 | 0.5502 | 0.7836 | | 0.4923 | 0.65 | 19000 | 0.5424 | 0.7843 | | 0.4894 | 0.68 | 20000 | 0.5417 | 0.7851 | | 0.4877 | 0.71 | 21000 | 0.5514 | 0.7841 | | 0.4818 | 0.75 | 22000 | 0.5494 | 0.7848 | | 0.4898 | 0.78 | 23000 | 0.5450 | 0.7859 | | 0.4823 | 0.82 | 24000 | 0.5417 | 0.7878 | | 0.4806 | 0.85 | 25000 | 0.5354 | 0.7875 | | 0.4779 | 0.88 | 26000 | 0.5338 | 0.7848 | | 0.4744 | 0.92 | 27000 | 0.5277 | 0.7934 | | 0.4678 | 0.95 | 28000 | 0.5507 | 0.7871 | | 0.4727 | 0.99 | 29000 | 0.5603 | 0.7789 | | 0.4243 | 1.02 | 30000 | 0.5626 | 0.7894 | | 0.3955 | 1.05 | 31000 | 0.5324 | 0.7939 | | 0.4022 | 1.09 | 32000 | 0.5322 | 0.7925 | | 0.3976 | 1.12 | 33000 | 0.5450 | 0.7920 | | 0.3913 | 1.15 | 34000 | 0.5464 | 0.7948 | | 0.406 | 1.19 | 35000 | 0.5406 | 0.7958 | | 0.3875 | 1.22 | 36000 | 0.5489 | 0.7878 | | 0.4024 | 1.26 | 37000 | 0.5427 | 0.7925 | | 0.3988 | 1.29 | 38000 | 0.5335 | 0.7904 | | 0.393 | 1.32 | 39000 | 0.5415 | 0.7923 | | 0.3988 | 1.36 | 40000 | 0.5385 | 0.7962 | | 0.3912 | 1.39 | 41000 | 0.5383 | 0.7950 | | 0.3949 | 1.43 | 42000 | 0.5415 | 0.7931 | | 0.3902 | 1.46 | 43000 | 0.5438 | 0.7893 | | 0.3948 | 1.49 | 44000 | 0.5348 | 0.7906 | | 0.3921 | 1.53 | 45000 | 0.5361 | 0.7890 | | 0.3944 | 1.56 | 46000 | 0.5419 | 0.7953 | | 0.3959 | 1.6 | 47000 | 0.5402 | 0.7967 | | 0.3926 | 1.63 | 48000 | 0.5429 | 0.7925 | | 0.3854 | 1.66 | 49000 | 0.5346 | 0.7959 | | 0.3864 | 1.7 | 50000 | 0.5241 | 0.7979 | | 0.385 | 1.73 | 51000 | 0.5149 | 0.8002 | | 0.3871 | 1.77 | 52000 | 0.5325 | 0.8002 | | 0.3819 | 1.8 | 53000 | 0.5332 | 0.8022 | | 0.384 | 1.83 | 54000 | 0.5419 | 0.7873 | | 0.3899 | 1.87 | 55000 | 0.5225 | 0.7974 | | 0.3894 | 1.9 | 56000 | 0.5358 | 0.7977 | | 0.3838 | 1.94 | 57000 | 0.5264 | 0.7988 | | 0.3881 | 1.97 | 58000 | 0.5280 | 0.7956 | | 0.3756 | 2.0 | 59000 | 0.5601 | 0.7969 | | 0.3156 | 2.04 | 60000 | 0.5936 | 0.7925 | | 0.3125 | 2.07 | 61000 | 0.5898 | 0.7938 | | 0.3179 | 2.11 | 62000 | 0.5591 | 0.7981 | | 0.315 | 2.14 | 63000 | 0.5853 | 0.7970 | | 0.3122 | 2.17 | 64000 | 0.5802 | 0.7979 | | 0.3105 | 2.21 | 65000 | 0.5758 | 0.7979 | | 0.3076 | 2.24 | 66000 | 0.5685 | 0.7980 | | 0.3117 | 2.28 | 67000 | 0.5799 | 0.7944 | | 0.3108 | 2.31 | 68000 | 0.5742 | 0.7988 | | 0.3047 | 2.34 | 69000 | 0.5907 | 0.7921 | | 0.3114 | 2.38 | 70000 | 0.5723 | 0.7937 | | 0.3035 | 2.41 | 71000 | 0.5944 | 0.7955 | | 0.3129 | 2.45 | 72000 | 0.5838 | 0.7928 | | 0.3071 | 2.48 | 73000 | 0.5929 | 0.7949 | | 0.3061 | 2.51 | 74000 | 0.5794 | 0.7967 | | 0.3068 | 2.55 | 75000 | 0.5892 | 0.7954 | | 0.3053 | 2.58 | 76000 | 0.5796 | 0.7962 | | 0.3117 | 2.62 | 77000 | 0.5763 | 0.7981 | | 0.3062 | 2.65 | 78000 | 0.5852 | 0.7964 | | 0.3004 | 2.68 | 79000 | 0.5793 | 0.7966 | | 0.3146 | 2.72 | 80000 | 0.5693 | 0.7985 | | 0.3146 | 2.75 | 81000 | 0.5788 | 0.7982 | | 0.3079 | 2.79 | 82000 | 0.5726 | 0.7978 | | 0.3058 | 2.82 | 83000 | 0.5677 | 0.7988 | | 0.3055 | 2.85 | 84000 | 0.5701 | 0.7982 | | 0.3049 | 2.89 | 85000 | 0.5809 | 0.7970 | | 0.3044 | 2.92 | 86000 | 0.5741 | 0.7986 | | 0.3057 | 2.96 | 87000 | 0.5743 | 0.7980 | | 0.3081 | 2.99 | 88000 | 0.5771 | 0.7978 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "mit", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-turkish-cased-allnli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #bert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
bert-base-turkish-cased\_allnli\_tr =================================== This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5771 * Accuracy: 0.7978 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
sentence-similarity
sentence-transformers
# emrecan/bert-base-turkish-cased-mean-nli-stsb-tr This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on Turkish machine translated versions of [NLI](https://huggingface.co/datasets/nli_tr) and [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) datasets, using example [training scripts]( https://github.com/UKPLab/sentence-transformers/tree/master/examples/training) from sentence-transformers GitHub repository. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"] model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr') model = AutoModel.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results Evaluation results on test and development sets are given below: | Split | Epoch | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman | |------------|-------|----------------|-----------------|-------------------|--------------------|-------------------|--------------------|-------------|--------------| | test | - | 0.834 | 0.830 | 0.820 | 0.819 | 0.819 | 0.818 | 0.799 | 0.789 | | validation | 1 | 0.850 | 0.848 | 0.831 | 0.835 | 0.83 | 0.83 | 0.80 | 0.806 | | validation | 2 | 0.857 | 0.857 | 0.844 | 0.848 | 0.844 | 0.848 | 0.813 | 0.810 | | validation | 3 | 0.860 | 0.859 | 0.846 | 0.851 | 0.846 | 0.850 | 0.825 | 0.822 | | validation | 4 | 0.859 | 0.860 | 0.846 | 0.851 | 0.846 | 0.851 | 0.825 | 0.823 | ## Training Training scripts [`training_nli_v2.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/nli/training_nli_v2.py) and [`training_stsbenchmark_continue_training.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) were used to train the model. The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 200, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"language": ["tr"], "license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "datasets": ["nli_tr", "emrecan/stsb-mt-turkish"], "pipeline_tag": "sentence-similarity", "widget": {"source_sentence": "Bu \u00e7ok mutlu bir ki\u015fi", "sentences": ["Bu mutlu bir k\u00f6pek", "Bu sevincinden havalara u\u00e7an bir insan", "\u00c7ok kar ya\u011f\u0131yor"]}}
emrecan/bert-base-turkish-cased-mean-nli-stsb-tr
null
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "tr", "dataset:nli_tr", "dataset:emrecan/stsb-mt-turkish", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #tr #dataset-nli_tr #dataset-emrecan/stsb-mt-turkish #license-apache-2.0 #endpoints_compatible #has_space #region-us
emrecan/bert-base-turkish-cased-mean-nli-stsb-tr ================================================ This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on Turkish machine translated versions of NLI and STS-b datasets, using example training scripts from sentence-transformers GitHub repository. Usage (Sentence-Transformers) ----------------------------- Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: Usage (HuggingFace Transformers) -------------------------------- Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. Evaluation Results ------------------ Evaluation results on test and development sets are given below: Training -------- Training scripts 'training\_nli\_v2.py' and 'training\_stsbenchmark\_continue\_training.py' were used to train the model. The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 360 with parameters: Loss: 'sentence\_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss' Parameters of the fit()-Method: Full Model Architecture ----------------------- Citing & Authors ----------------
[]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #tr #dataset-nli_tr #dataset-emrecan/stsb-mt-turkish #license-apache-2.0 #endpoints_compatible #has_space #region-us \n" ]
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convbert-base-turkish-mc4-cased_allnli_tr This model is a fine-tuned version of [dbmdz/convbert-base-turkish-mc4-cased](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5541 - Accuracy: 0.8111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7338 | 0.03 | 1000 | 0.6722 | 0.7236 | | 0.603 | 0.07 | 2000 | 0.6465 | 0.7399 | | 0.5605 | 0.1 | 3000 | 0.5801 | 0.7728 | | 0.55 | 0.14 | 4000 | 0.5994 | 0.7626 | | 0.529 | 0.17 | 5000 | 0.5720 | 0.7697 | | 0.5196 | 0.2 | 6000 | 0.5692 | 0.7769 | | 0.5117 | 0.24 | 7000 | 0.5725 | 0.7785 | | 0.5044 | 0.27 | 8000 | 0.5532 | 0.7787 | | 0.5016 | 0.31 | 9000 | 0.5546 | 0.7812 | | 0.5031 | 0.34 | 10000 | 0.5461 | 0.7870 | | 0.4949 | 0.37 | 11000 | 0.5725 | 0.7826 | | 0.4894 | 0.41 | 12000 | 0.5419 | 0.7933 | | 0.4796 | 0.44 | 13000 | 0.5278 | 0.7914 | | 0.4795 | 0.48 | 14000 | 0.5193 | 0.7953 | | 0.4713 | 0.51 | 15000 | 0.5534 | 0.7771 | | 0.4738 | 0.54 | 16000 | 0.5098 | 0.8039 | | 0.481 | 0.58 | 17000 | 0.5244 | 0.7958 | | 0.4634 | 0.61 | 18000 | 0.5215 | 0.7972 | | 0.465 | 0.65 | 19000 | 0.5129 | 0.7985 | | 0.4624 | 0.68 | 20000 | 0.5062 | 0.8047 | | 0.4597 | 0.71 | 21000 | 0.5114 | 0.8029 | | 0.4571 | 0.75 | 22000 | 0.5070 | 0.8073 | | 0.4602 | 0.78 | 23000 | 0.5115 | 0.7993 | | 0.4552 | 0.82 | 24000 | 0.5085 | 0.8052 | | 0.4538 | 0.85 | 25000 | 0.5118 | 0.7974 | | 0.4517 | 0.88 | 26000 | 0.5036 | 0.8044 | | 0.4517 | 0.92 | 27000 | 0.4930 | 0.8062 | | 0.4413 | 0.95 | 28000 | 0.5307 | 0.7964 | | 0.4483 | 0.99 | 29000 | 0.5195 | 0.7938 | | 0.4036 | 1.02 | 30000 | 0.5238 | 0.8029 | | 0.3724 | 1.05 | 31000 | 0.5125 | 0.8082 | | 0.3777 | 1.09 | 32000 | 0.5099 | 0.8075 | | 0.3753 | 1.12 | 33000 | 0.5172 | 0.8053 | | 0.367 | 1.15 | 34000 | 0.5188 | 0.8053 | | 0.3819 | 1.19 | 35000 | 0.5218 | 0.8046 | | 0.363 | 1.22 | 36000 | 0.5202 | 0.7993 | | 0.3794 | 1.26 | 37000 | 0.5240 | 0.8048 | | 0.3749 | 1.29 | 38000 | 0.5026 | 0.8054 | | 0.367 | 1.32 | 39000 | 0.5198 | 0.8075 | | 0.3759 | 1.36 | 40000 | 0.5298 | 0.7993 | | 0.3701 | 1.39 | 41000 | 0.5072 | 0.8091 | | 0.3742 | 1.43 | 42000 | 0.5071 | 0.8098 | | 0.3706 | 1.46 | 43000 | 0.5317 | 0.8037 | | 0.3716 | 1.49 | 44000 | 0.5034 | 0.8052 | | 0.3717 | 1.53 | 45000 | 0.5258 | 0.8012 | | 0.3714 | 1.56 | 46000 | 0.5195 | 0.8050 | | 0.3781 | 1.6 | 47000 | 0.5004 | 0.8104 | | 0.3725 | 1.63 | 48000 | 0.5124 | 0.8113 | | 0.3624 | 1.66 | 49000 | 0.5040 | 0.8094 | | 0.3657 | 1.7 | 50000 | 0.4979 | 0.8111 | | 0.3669 | 1.73 | 51000 | 0.4968 | 0.8100 | | 0.3636 | 1.77 | 52000 | 0.5075 | 0.8079 | | 0.36 | 1.8 | 53000 | 0.4985 | 0.8110 | | 0.3624 | 1.83 | 54000 | 0.5125 | 0.8070 | | 0.366 | 1.87 | 55000 | 0.4918 | 0.8117 | | 0.3655 | 1.9 | 56000 | 0.5051 | 0.8109 | | 0.3609 | 1.94 | 57000 | 0.5083 | 0.8105 | | 0.3672 | 1.97 | 58000 | 0.5129 | 0.8085 | | 0.3545 | 2.0 | 59000 | 0.5467 | 0.8109 | | 0.2938 | 2.04 | 60000 | 0.5635 | 0.8049 | | 0.29 | 2.07 | 61000 | 0.5781 | 0.8041 | | 0.2992 | 2.11 | 62000 | 0.5470 | 0.8077 | | 0.2957 | 2.14 | 63000 | 0.5765 | 0.8073 | | 0.292 | 2.17 | 64000 | 0.5472 | 0.8106 | | 0.2893 | 2.21 | 65000 | 0.5590 | 0.8085 | | 0.2883 | 2.24 | 66000 | 0.5535 | 0.8064 | | 0.2923 | 2.28 | 67000 | 0.5508 | 0.8095 | | 0.2868 | 2.31 | 68000 | 0.5679 | 0.8098 | | 0.2892 | 2.34 | 69000 | 0.5660 | 0.8057 | | 0.292 | 2.38 | 70000 | 0.5494 | 0.8088 | | 0.286 | 2.41 | 71000 | 0.5653 | 0.8085 | | 0.2939 | 2.45 | 72000 | 0.5673 | 0.8070 | | 0.286 | 2.48 | 73000 | 0.5600 | 0.8092 | | 0.2844 | 2.51 | 74000 | 0.5508 | 0.8095 | | 0.2913 | 2.55 | 75000 | 0.5645 | 0.8088 | | 0.2859 | 2.58 | 76000 | 0.5677 | 0.8095 | | 0.2892 | 2.62 | 77000 | 0.5598 | 0.8113 | | 0.2898 | 2.65 | 78000 | 0.5618 | 0.8096 | | 0.2814 | 2.68 | 79000 | 0.5664 | 0.8103 | | 0.2917 | 2.72 | 80000 | 0.5484 | 0.8122 | | 0.2907 | 2.75 | 81000 | 0.5522 | 0.8116 | | 0.2896 | 2.79 | 82000 | 0.5540 | 0.8093 | | 0.2907 | 2.82 | 83000 | 0.5469 | 0.8104 | | 0.2882 | 2.85 | 84000 | 0.5471 | 0.8122 | | 0.2878 | 2.89 | 85000 | 0.5532 | 0.8108 | | 0.2858 | 2.92 | 86000 | 0.5511 | 0.8115 | | 0.288 | 2.96 | 87000 | 0.5491 | 0.8111 | | 0.2834 | 2.99 | 88000 | 0.5541 | 0.8111 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/convbert-base-turkish-mc4-cased-allnli_tr
null
[ "transformers", "pytorch", "convbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #convbert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
convbert-base-turkish-mc4-cased\_allnli\_tr =========================================== This model is a fine-tuned version of dbmdz/convbert-base-turkish-mc4-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5541 * Accuracy: 0.8111 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #convbert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-turkish-cased_allnli_tr This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6481 - Accuracy: 0.7381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.94 | 0.03 | 1000 | 0.9074 | 0.5813 | | 0.8102 | 0.07 | 2000 | 0.8802 | 0.5949 | | 0.7737 | 0.1 | 3000 | 0.8491 | 0.6155 | | 0.7576 | 0.14 | 4000 | 0.8283 | 0.6261 | | 0.7286 | 0.17 | 5000 | 0.8150 | 0.6362 | | 0.7162 | 0.2 | 6000 | 0.7998 | 0.6400 | | 0.7092 | 0.24 | 7000 | 0.7830 | 0.6565 | | 0.6962 | 0.27 | 8000 | 0.7653 | 0.6629 | | 0.6876 | 0.31 | 9000 | 0.7630 | 0.6687 | | 0.6778 | 0.34 | 10000 | 0.7475 | 0.6739 | | 0.6737 | 0.37 | 11000 | 0.7495 | 0.6781 | | 0.6712 | 0.41 | 12000 | 0.7350 | 0.6826 | | 0.6559 | 0.44 | 13000 | 0.7274 | 0.6897 | | 0.6493 | 0.48 | 14000 | 0.7248 | 0.6902 | | 0.6483 | 0.51 | 15000 | 0.7263 | 0.6858 | | 0.6445 | 0.54 | 16000 | 0.7070 | 0.6978 | | 0.6467 | 0.58 | 17000 | 0.7083 | 0.6981 | | 0.6332 | 0.61 | 18000 | 0.6996 | 0.7004 | | 0.6288 | 0.65 | 19000 | 0.6979 | 0.6978 | | 0.6308 | 0.68 | 20000 | 0.6912 | 0.7040 | | 0.622 | 0.71 | 21000 | 0.6904 | 0.7092 | | 0.615 | 0.75 | 22000 | 0.6872 | 0.7094 | | 0.6186 | 0.78 | 23000 | 0.6877 | 0.7075 | | 0.6183 | 0.82 | 24000 | 0.6818 | 0.7111 | | 0.6115 | 0.85 | 25000 | 0.6856 | 0.7122 | | 0.608 | 0.88 | 26000 | 0.6697 | 0.7179 | | 0.6071 | 0.92 | 27000 | 0.6727 | 0.7181 | | 0.601 | 0.95 | 28000 | 0.6798 | 0.7118 | | 0.6018 | 0.99 | 29000 | 0.6854 | 0.7071 | | 0.5762 | 1.02 | 30000 | 0.6697 | 0.7214 | | 0.5507 | 1.05 | 31000 | 0.6710 | 0.7185 | | 0.5575 | 1.09 | 32000 | 0.6709 | 0.7226 | | 0.5493 | 1.12 | 33000 | 0.6659 | 0.7191 | | 0.5464 | 1.15 | 34000 | 0.6709 | 0.7232 | | 0.5595 | 1.19 | 35000 | 0.6642 | 0.7220 | | 0.5446 | 1.22 | 36000 | 0.6709 | 0.7202 | | 0.5524 | 1.26 | 37000 | 0.6751 | 0.7148 | | 0.5473 | 1.29 | 38000 | 0.6642 | 0.7209 | | 0.5477 | 1.32 | 39000 | 0.6662 | 0.7223 | | 0.5522 | 1.36 | 40000 | 0.6586 | 0.7227 | | 0.5406 | 1.39 | 41000 | 0.6602 | 0.7258 | | 0.54 | 1.43 | 42000 | 0.6564 | 0.7273 | | 0.5458 | 1.46 | 43000 | 0.6780 | 0.7213 | | 0.5448 | 1.49 | 44000 | 0.6561 | 0.7235 | | 0.5418 | 1.53 | 45000 | 0.6600 | 0.7253 | | 0.5408 | 1.56 | 46000 | 0.6616 | 0.7274 | | 0.5451 | 1.6 | 47000 | 0.6557 | 0.7283 | | 0.5385 | 1.63 | 48000 | 0.6583 | 0.7295 | | 0.5261 | 1.66 | 49000 | 0.6468 | 0.7325 | | 0.5364 | 1.7 | 50000 | 0.6447 | 0.7329 | | 0.5294 | 1.73 | 51000 | 0.6429 | 0.7320 | | 0.5332 | 1.77 | 52000 | 0.6508 | 0.7272 | | 0.5274 | 1.8 | 53000 | 0.6492 | 0.7326 | | 0.5286 | 1.83 | 54000 | 0.6470 | 0.7318 | | 0.5359 | 1.87 | 55000 | 0.6393 | 0.7354 | | 0.5366 | 1.9 | 56000 | 0.6445 | 0.7367 | | 0.5296 | 1.94 | 57000 | 0.6413 | 0.7313 | | 0.5346 | 1.97 | 58000 | 0.6393 | 0.7315 | | 0.5264 | 2.0 | 59000 | 0.6448 | 0.7357 | | 0.4857 | 2.04 | 60000 | 0.6640 | 0.7335 | | 0.4888 | 2.07 | 61000 | 0.6612 | 0.7318 | | 0.4964 | 2.11 | 62000 | 0.6516 | 0.7337 | | 0.493 | 2.14 | 63000 | 0.6503 | 0.7356 | | 0.4961 | 2.17 | 64000 | 0.6519 | 0.7348 | | 0.4847 | 2.21 | 65000 | 0.6517 | 0.7327 | | 0.483 | 2.24 | 66000 | 0.6555 | 0.7310 | | 0.4857 | 2.28 | 67000 | 0.6525 | 0.7312 | | 0.484 | 2.31 | 68000 | 0.6444 | 0.7342 | | 0.4792 | 2.34 | 69000 | 0.6508 | 0.7330 | | 0.488 | 2.38 | 70000 | 0.6513 | 0.7344 | | 0.472 | 2.41 | 71000 | 0.6547 | 0.7346 | | 0.4872 | 2.45 | 72000 | 0.6500 | 0.7342 | | 0.4782 | 2.48 | 73000 | 0.6585 | 0.7358 | | 0.481 | 2.51 | 74000 | 0.6477 | 0.7356 | | 0.4822 | 2.55 | 75000 | 0.6587 | 0.7346 | | 0.4728 | 2.58 | 76000 | 0.6572 | 0.7340 | | 0.4841 | 2.62 | 77000 | 0.6443 | 0.7374 | | 0.4885 | 2.65 | 78000 | 0.6494 | 0.7362 | | 0.4752 | 2.68 | 79000 | 0.6509 | 0.7382 | | 0.4883 | 2.72 | 80000 | 0.6457 | 0.7371 | | 0.4888 | 2.75 | 81000 | 0.6497 | 0.7364 | | 0.4844 | 2.79 | 82000 | 0.6481 | 0.7376 | | 0.4833 | 2.82 | 83000 | 0.6451 | 0.7389 | | 0.48 | 2.85 | 84000 | 0.6423 | 0.7373 | | 0.4832 | 2.89 | 85000 | 0.6477 | 0.7357 | | 0.4805 | 2.92 | 86000 | 0.6464 | 0.7379 | | 0.4775 | 2.96 | 87000 | 0.6477 | 0.7380 | | 0.4843 | 2.99 | 88000 | 0.6481 | 0.7381 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/distilbert-base-turkish-cased-allnli_tr
null
[ "transformers", "pytorch", "distilbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #distilbert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
distilbert-base-turkish-cased\_allnli\_tr ========================================= This model is a fine-tuned version of dbmdz/distilbert-base-turkish-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6481 * Accuracy: 0.7381 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.10.0+cu102 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #zero-shot-classification #nli #tr #dataset-nli_tr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu102\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2065 | 1.0 | 5577 | 1.1289 | | 0.9226 | 2.0 | 11154 | 1.1019 | | 0.7411 | 3.0 | 16731 | 1.1453 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
en/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.1453 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
feature-extraction
transformers
# Model description The model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question. It is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models. The question part has to be encoded with the corresponding [question encoder](https://huggingface.co/enelpol/czywiesz-question). The model was created by fine-tuning [Herbert base cased](https://huggingface.co/allegro/herbert-base-cased) on "Czywiesz" dataset. [Czywiesz](https://clarin-pl.eu/dspace/handle/11321/39) dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia. # Usage It is the easiest to use the model with the [Haystack framework](https://haystack.deepset.ai/overview/intro). ```python from haystack.document_stores import FAISSDocumentStore from haystack.retriever import DensePassageRetriever document_store = FAISSDocumentStore(faiss_index_factory_str="Flat") retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="enelpol/czywiesz-question", passage_embedding_model="enelpol/czywiesz-context" ) for document in documents: document_store.write_documents([document]) document_store.update_embeddings(retriever) document_store.save("contexts.faiss") ```
{"language": "pl", "datasets": ["enelpol/czywiesz"]}
enelpol/czywiesz-context
null
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pl" ]
TAGS #transformers #pytorch #bert #feature-extraction #pl #dataset-enelpol/czywiesz #endpoints_compatible #region-us
# Model description The model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question. It is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models. The question part has to be encoded with the corresponding question encoder. The model was created by fine-tuning Herbert base cased on "Czywiesz" dataset. Czywiesz dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia. # Usage It is the easiest to use the model with the Haystack framework.
[ "# Model description\n\nThe model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question.\n\nIt is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models.\nThe question part has to be encoded with the corresponding question encoder.\n\nThe model was created by fine-tuning Herbert base cased on \"Czywiesz\" dataset. \nCzywiesz dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia.", "# Usage\n\nIt is the easiest to use the model with the Haystack framework." ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #pl #dataset-enelpol/czywiesz #endpoints_compatible #region-us \n", "# Model description\n\nThe model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question.\n\nIt is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models.\nThe question part has to be encoded with the corresponding question encoder.\n\nThe model was created by fine-tuning Herbert base cased on \"Czywiesz\" dataset. \nCzywiesz dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia.", "# Usage\n\nIt is the easiest to use the model with the Haystack framework." ]
feature-extraction
transformers
## Model description This is the question encoder for the Polish DPR question answering model. The full model consists of two encoders. Please read [context encoder documentation](https://huggingface.co/enelpol/czywiesz-context) to get the details of the model.
{"language": "pl", "datasets": ["enelpol/czywiesz"], "task_categories": ["question_answering"], "task_ids": ["open-domain-qa"], "multilinguality": ["monolingual"], "size_categories": ["1k<n<10K"]}
enelpol/czywiesz-question
null
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pl" ]
TAGS #transformers #pytorch #bert #feature-extraction #pl #dataset-enelpol/czywiesz #endpoints_compatible #region-us
## Model description This is the question encoder for the Polish DPR question answering model. The full model consists of two encoders. Please read context encoder documentation to get the details of the model.
[ "## Model description\n\nThis is the question encoder for the Polish DPR question answering model. The full model consists of two encoders.\nPlease read context encoder documentation to get the details of the model." ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #pl #dataset-enelpol/czywiesz #endpoints_compatible #region-us \n", "## Model description\n\nThis is the question encoder for the Polish DPR question answering model. The full model consists of two encoders.\nPlease read context encoder documentation to get the details of the model." ]
text2text-generation
transformers
Trained with prefix `ocr: `.
{}
enelpol/poleval2021-task3
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Trained with prefix 'ocr: '.
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
This is fine-tuned model on Bhagvad Gita and creates text based on prompts. Example of usage: ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("epsil/bhagvad_gita") model = AutoModelForCausalLM.from_pretrained("epsil/bhagvad_gita") ``` Input ``` from transformers import pipeline pipeline = pipeline('text-generation',model=model, tokenizer=tokenizer) result = samples('Krishna show me the right path')[0]['generated_text'] print(result) ``` Output ``` Krishna show me the right path, and I also to remember the lessons, and to remember them right. Sama! in His Day, and by Thy own Eternal Grace. A man like that who shall come to us ``` > Created by [Saurabh Mishra](https://www.linkedin.com/in/saurabh-mishra-12b5a1216/) > Made with <span style="color: #e25555;">&hearts;</span> in India
{}
epsil/bhagvad_gita
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is fine-tuned model on Bhagvad Gita and creates text based on prompts. Example of usage: Input Output > Created by Saurabh Mishra > Made with <span style="color: #e25555;">&hearts;</span> in India
[]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text2text-generation
transformers
# Persian-t5-formality-transfer This is a formality style transfer model for the Persian language to convert colloquial text into a formal one. It is based on [the monolingual T5 model for Persian.](https://huggingface.co/Ahmad/parsT5-base) and [Persian T5 paraphraser](https://huggingface.co/erfan226/persian-t5-paraphraser) Note: This model is still in development and therefore its outputs might not be very good. However, you can experiment with different values for the decoder to get better results. For more info check this [link.](https://huggingface.co/blog/how-to-generate) ## Usage ```python >>> pip install transformers >>> from transformers import (T5ForConditionalGeneration, AutoTokenizer, pipeline) >>> import torch model_path = 'erfan226/persian-t5-formality-transfer' model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) pipe = pipeline(task='text2text-generation', model=model, tokenizer=tokenizer) def paraphrase(text): for j in range(3): out = pipe(text, encoder_no_repeat_ngram_size=4, do_sample=True, num_beams=5, max_length=128)[0]['generated_text'] print("Paraphrase:", out) text = "من با دوستام میرم بازی" print("Original:", text) paraphrase(text) # Original: من با دوستام میرم بازی # Paraphrase: دوست دارم با دوستانم بازی کنم. # Paraphrase: من با دوستانم میرم... # Paraphrase: من با دوستام بازی می کنم. ``` ## Training data TBD
{"language": "fa", "tags": ["Style transfer", "Formality style transfer"], "widget": [{"text": "\u0645\u0646 \u0628\u0627 \u062f\u0648\u0633\u062a\u0627\u0645 \u0645\u06cc\u0631\u0645 \u0628\u0627\u0632\u06cc."}, {"text": "\u0645\u0646 \u0628\u0647 \u062e\u0648\u0646\u0647 \u062f\u0648\u0633\u062a\u0645 \u0631\u0641\u062a\u0645."}]}
erfan226/persian-t5-formality-transfer
null
[ "transformers", "pytorch", "t5", "text2text-generation", "Style transfer", "Formality style transfer", "fa", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #t5 #text2text-generation #Style transfer #Formality style transfer #fa #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Persian-t5-formality-transfer This is a formality style transfer model for the Persian language to convert colloquial text into a formal one. It is based on the monolingual T5 model for Persian. and Persian T5 paraphraser Note: This model is still in development and therefore its outputs might not be very good. However, you can experiment with different values for the decoder to get better results. For more info check this link. ## Usage ## Training data TBD
[ "# Persian-t5-formality-transfer\n\nThis is a formality style transfer model for the Persian language to convert colloquial text into a formal one. It is based on the monolingual T5 model for Persian. and Persian T5 paraphraser\n\nNote: This model is still in development and therefore its outputs might not be very good. However, you can experiment with different values for the decoder to get better results. For more info check this link.", "## Usage", "## Training data\nTBD" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #Style transfer #Formality style transfer #fa #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Persian-t5-formality-transfer\n\nThis is a formality style transfer model for the Persian language to convert colloquial text into a formal one. It is based on the monolingual T5 model for Persian. and Persian T5 paraphraser\n\nNote: This model is still in development and therefore its outputs might not be very good. However, you can experiment with different values for the decoder to get better results. For more info check this link.", "## Usage", "## Training data\nTBD" ]
text2text-generation
transformers
# Persian-t5-paraphraser This is a paraphrasing model for the Persian language. It is based on [the monolingual T5 model for Persian.](https://huggingface.co/Ahmad/parsT5-base) ## Usage ```python >>> pip install transformers >>> from transformers import (T5ForConditionalGeneration, AutoTokenizer, pipeline) >>> import torch model_path = 'erfan226/persian-t5-paraphraser' model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) pipe = pipeline(task='text2text-generation', model=model, tokenizer=tokenizer) def paraphrase(text): for j in range(5): out = pipe(text, encoder_no_repeat_ngram_size=5, do_sample=True, num_beams=5, max_length=128)[0]['generated_text'] print("Paraphrase:", out) text = "این یک مقالهٔ خرد آلمان است. می‌توانید با گسترش آن به ویکی‌پدیا کمک کنید." print("Original:", text) paraphrase(text) # Original: این یک مقالهٔ خرد آلمان است. می‌توانید با گسترش آن به ویکی‌پدیا کمک کنید. # Paraphrase: این یک مقالهٔ کوچک است. # Paraphrase: این یک مقالهٔ کوچک است. # Paraphrase: شما می توانید با گسترش این مقاله، به کسب و کار خود کمک کنید. # Paraphrase: می توانید با گسترش این مقالهٔ خرد آلمان کمک کنید. # Paraphrase: شما می توانید با گسترش این مقالهٔ خرد، به گسترش آن کمک کنید. ``` ## Training data This model was trained on the Persian subset of the [Tapaco dataset](https://huggingface.co/datasets/tapaco). It should be noted that this model was trained on a very small dataset and therefore the performance might not be as expected, for now.
{"language": "fa", "tags": ["paraphrasing"], "datasets": ["tapaco"], "widget": [{"text": "\u0627\u06cc\u0646 \u06cc\u06a9 \u0645\u0642\u0627\u0644\u0647\u0654 \u062e\u0631\u062f \u0622\u0644\u0645\u0627\u0646 \u0627\u0633\u062a. \u0645\u06cc\u200c\u062a\u0648\u0627\u0646\u06cc\u062f \u0628\u0627 \u06af\u0633\u062a\u0631\u0634 \u0622\u0646 \u0628\u0647 \u0648\u06cc\u06a9\u06cc\u200c\u067e\u062f\u06cc\u0627 \u06a9\u0645\u06a9 \u06a9\u0646\u06cc\u062f."}, {"text": "\u0628\u0631\u0627\u06cc \u062e\u0631\u06cc\u062f \u06cc\u06a9 \u06a9\u062a\u0627\u0628 \u0628\u0627\u06cc\u062f \u0627\u0632 \u0641\u0631\u0648\u0634\u06af\u0627\u0647 \u0627\u06cc\u0646\u062a\u0631\u0646\u062a\u06cc \u0627\u0633\u062a\u0641\u0627\u062f\u0647 \u06a9\u0646\u06cc\u062f."}]}
erfan226/persian-t5-paraphraser
null
[ "transformers", "pytorch", "t5", "text2text-generation", "paraphrasing", "fa", "dataset:tapaco", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "fa" ]
TAGS #transformers #pytorch #t5 #text2text-generation #paraphrasing #fa #dataset-tapaco #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Persian-t5-paraphraser This is a paraphrasing model for the Persian language. It is based on the monolingual T5 model for Persian. ## Usage ## Training data This model was trained on the Persian subset of the Tapaco dataset. It should be noted that this model was trained on a very small dataset and therefore the performance might not be as expected, for now.
[ "# Persian-t5-paraphraser\n\nThis is a paraphrasing model for the Persian language. It is based on the monolingual T5 model for Persian.", "## Usage", "## Training data\nThis model was trained on the Persian subset of the Tapaco dataset. It should be noted that this model was trained on a very small dataset and therefore the performance might not be as expected, for now." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #paraphrasing #fa #dataset-tapaco #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Persian-t5-paraphraser\n\nThis is a paraphrasing model for the Persian language. It is based on the monolingual T5 model for Persian.", "## Usage", "## Training data\nThis model was trained on the Persian subset of the Tapaco dataset. It should be noted that this model was trained on a very small dataset and therefore the performance might not be as expected, for now." ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.0178 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 8.013245033112582, F1: 15.9706088498649 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.3602 | 1.0 | 5533 | 4.3460 | | 4.0995 | 2.0 | 11066 | 4.0787 | | 4.0302 | 3.0 | 16599 | 4.0178 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/bert-base-uncased-finetuned-squad-frozen-v1
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-squad ================================= This model is a fine-tuned version of bert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 4.0178 Model description ----------------- Base model weights were frozen leaving only to finetune the last layer (qa outputs). Training and evaluation data ---------------------------- Achieved EM: 8.013245033112582, F1: 15.9706088498649 Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4571 ## Model description Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. ## Training and evaluation data Achieved EM: 76.77388836329234, F1: 85.41893520501723 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.2944 | 1.0 | 44262 | 1.3432 | | 1.0152 | 2.0 | 88524 | 1.3450 | | 1.0062 | 3.0 | 132786 | 1.4571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/bert-base-uncased-finetuned-squad-frozen-v2
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-squad ================================= This model is a fine-tuned version of bert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.4571 Model description ----------------- Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. Training and evaluation data ---------------------------- Achieved EM: 76.77388836329234, F1: 85.41893520501723 Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.3629 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 4.7776726584673606, F1: 11.440882287905591 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.679 | 1.0 | 5533 | 4.6713 | | 4.4171 | 2.0 | 11066 | 4.4218 | | 4.3464 | 3.0 | 16599 | 4.3629 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v1
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 4.3629 Model description ----------------- Base model weights were frozen leaving only to finetune the last layer (qa outputs). Training and evaluation data ---------------------------- Achieved EM: 4.7776726584673606, F1: 11.440882287905591 Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2104 ## Model description Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. ## Training and evaluation data Achieved EM: 73.519394512772, F1: 82.71779517079237 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3937 | 1.0 | 5533 | 1.2915 | | 1.1522 | 2.0 | 11066 | 1.2227 | | 1.0055 | 3.0 | 16599 | 1.2104 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v2
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.2104 Model description ----------------- Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. Training and evaluation data ---------------------------- Achieved EM: 73.519394512772, F1: 82.71779517079237 Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
ericklasco/DialoGPT-small-erickHarryPotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
text-generation
transformers
# Rick
{"tags": ["conversational"]}
ericzhou/DialoGPT-Medium-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick
[ "# Rick" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick" ]
text-generation
transformers
# rick
{"tags": ["conversational"]}
ericzhou/DialoGPT-Medium-Rick_v2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# rick
[ "# rick" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# rick" ]
text-generation
transformers
# elon
{"tags": ["conversational"]}
ericzhou/DialoGPT-medium-elon
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# elon
[ "# elon" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# elon" ]
text-generation
transformers
# GPT2 Keyword Based Lecture Generator ## Model description GPT2 fine-tuned on the TED Talks Dataset (published under the Creative Commons BY-NC-ND license). ## Intended uses Used to generate spoken-word lectures. ### How to use Input text: <BOS> title <|SEP|> Some keywords <|SEP|> Keyword Format: "Main Topic"."Subtopic1","Subtopic2","Subtopic3" Code Example: ``` prompt = <BOS> + title + \\ <|SEP|> + keywords + <|SEP|> generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) model.eval(); ```
{}
erikinfo/gpt2TEDlectures
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT2 Keyword Based Lecture Generator ## Model description GPT2 fine-tuned on the TED Talks Dataset (published under the Creative Commons BY-NC-ND license). ## Intended uses Used to generate spoken-word lectures. ### How to use Input text: <BOS> title <|SEP|> Some keywords <|SEP|> Keyword Format: "Main Topic"."Subtopic1","Subtopic2","Subtopic3" Code Example:
[ "# GPT2 Keyword Based Lecture Generator", "## Model description\n\nGPT2 fine-tuned on the TED Talks Dataset (published under the Creative Commons BY-NC-ND license).", "## Intended uses\n\nUsed to generate spoken-word lectures.", "### How to use\n\nInput text: \n\n <BOS> title <|SEP|> Some keywords <|SEP|>\n\nKeyword Format: \"Main Topic\".\"Subtopic1\",\"Subtopic2\",\"Subtopic3\"\n\nCode Example:" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 Keyword Based Lecture Generator", "## Model description\n\nGPT2 fine-tuned on the TED Talks Dataset (published under the Creative Commons BY-NC-ND license).", "## Intended uses\n\nUsed to generate spoken-word lectures.", "### How to use\n\nInput text: \n\n <BOS> title <|SEP|> Some keywords <|SEP|>\n\nKeyword Format: \"Main Topic\".\"Subtopic1\",\"Subtopic2\",\"Subtopic3\"\n\nCode Example:" ]
text-classification
transformers
# Classifying Text into DB07 Codes This model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) fine-tuned to classify Danish descriptions of activities into [Dansk Branchekode DB07](https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07) codes. ## Data Approximately 2.5 million business names and descriptions of activities from Norwegian and Danish businesses were used to fine-tune the model. The Norwegian descriptions were translated into Danish and the Norwegian SN 2007 codes were translated into Danish DB07 codes. Activity descriptions and business names were concatenated but separated by the separator token `</s>`. Thus, the model was trained on input texts in the format `f"{description_of_activity}</s>{business_name}"`. ## Quick Start ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("erst/xlm-roberta-base-finetuned-db07") model = AutoModelForSequenceClassification.from_pretrained("erst/xlm-roberta-base-finetuned-db07") pl = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=False, ) pl("Vi sælger sko") pl("We sell clothes</s>Clothing ApS") ``` ## License This model is released under the MIT License.
{}
erst/xlm-roberta-base-finetuned-db07
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us
# Classifying Text into DB07 Codes This model is xlm-roberta-base fine-tuned to classify Danish descriptions of activities into Dansk Branchekode DB07 codes. ## Data Approximately 2.5 million business names and descriptions of activities from Norwegian and Danish businesses were used to fine-tune the model. The Norwegian descriptions were translated into Danish and the Norwegian SN 2007 codes were translated into Danish DB07 codes. Activity descriptions and business names were concatenated but separated by the separator token '</s>'. Thus, the model was trained on input texts in the format 'f"{description_of_activity}</s>{business_name}"'. ## Quick Start ## License This model is released under the MIT License.
[ "# Classifying Text into DB07 Codes\n\nThis model is xlm-roberta-base fine-tuned to classify Danish descriptions of activities into Dansk Branchekode DB07 codes.", "## Data\nApproximately 2.5 million business names and descriptions of activities from Norwegian and Danish businesses were used to fine-tune the model. The Norwegian descriptions were translated into Danish and the Norwegian SN 2007 codes were translated into Danish DB07 codes.\n\nActivity descriptions and business names were concatenated but separated by the separator token '</s>'. Thus, the model was trained on input texts in the format 'f\"{description_of_activity}</s>{business_name}\"'.", "## Quick Start", "## License\n\nThis model is released under the MIT License." ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# Classifying Text into DB07 Codes\n\nThis model is xlm-roberta-base fine-tuned to classify Danish descriptions of activities into Dansk Branchekode DB07 codes.", "## Data\nApproximately 2.5 million business names and descriptions of activities from Norwegian and Danish businesses were used to fine-tune the model. The Norwegian descriptions were translated into Danish and the Norwegian SN 2007 codes were translated into Danish DB07 codes.\n\nActivity descriptions and business names were concatenated but separated by the separator token '</s>'. Thus, the model was trained on input texts in the format 'f\"{description_of_activity}</s>{business_name}\"'.", "## Quick Start", "## License\n\nThis model is released under the MIT License." ]
text-classification
transformers
# Classifying Text into NACE Codes This model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) fine-tuned to classify descriptions of activities into [NACE Rev. 2](https://ec.europa.eu/eurostat/web/nace-rev2) codes. ## Data The data used to fine-tune the model consist of 2.5 million descriptions of activities from Norwegian and Danish businesses. To improve the model's multilingual performance, random samples of the Norwegian and Danish descriptions were machine translated into the following languages: - English - German - Spanish - French - Finnish - Polish ## Quick Start ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("erst/xlm-roberta-base-finetuned-nace") model = AutoModelForSequenceClassification.from_pretrained("erst/xlm-roberta-base-finetuned-nace") pl = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=False, ) pl("The purpose of our company is to build houses") ``` ## License This model is released under the MIT License
{}
erst/xlm-roberta-base-finetuned-nace
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us
# Classifying Text into NACE Codes This model is xlm-roberta-base fine-tuned to classify descriptions of activities into NACE Rev. 2 codes. ## Data The data used to fine-tune the model consist of 2.5 million descriptions of activities from Norwegian and Danish businesses. To improve the model's multilingual performance, random samples of the Norwegian and Danish descriptions were machine translated into the following languages: - English - German - Spanish - French - Finnish - Polish ## Quick Start ## License This model is released under the MIT License
[ "# Classifying Text into NACE Codes\n\nThis model is xlm-roberta-base fine-tuned to classify descriptions of activities into NACE Rev. 2 codes.", "## Data\nThe data used to fine-tune the model consist of 2.5 million descriptions of activities from Norwegian and Danish businesses. To improve the model's multilingual performance, random samples of the Norwegian and Danish descriptions were machine translated into the following languages:\n- English\n- German\n- Spanish\n- French\n- Finnish\n- Polish", "## Quick Start", "## License\n\nThis model is released under the MIT License" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# Classifying Text into NACE Codes\n\nThis model is xlm-roberta-base fine-tuned to classify descriptions of activities into NACE Rev. 2 codes.", "## Data\nThe data used to fine-tune the model consist of 2.5 million descriptions of activities from Norwegian and Danish businesses. To improve the model's multilingual performance, random samples of the Norwegian and Danish descriptions were machine translated into the following languages:\n- English\n- German\n- Spanish\n- French\n- Finnish\n- Polish", "## Quick Start", "## License\n\nThis model is released under the MIT License" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-cocktails_recipe-base This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "t5-base", "model-index": [{"name": "t5-cocktails_recipe-base", "results": []}]}
erwanlc/t5-cocktails_recipe-base
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# t5-cocktails_recipe-base This model is a fine-tuned version of t5-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# t5-cocktails_recipe-base\n\nThis model is a fine-tuned version of t5-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# t5-cocktails_recipe-base\n\nThis model is a fine-tuned version of t5-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-cocktails_recipe-small This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "t5-base", "model-index": [{"name": "t5-cocktails_recipe-small", "results": []}]}
erwanlc/t5-cocktails_recipe-small
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-cocktails_recipe-small This model is a fine-tuned version of t5-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# t5-cocktails_recipe-small\n\nThis model is a fine-tuned version of t5-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-cocktails_recipe-small\n\nThis model is a fine-tuned version of t5-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-coktails_recipe-base This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/t5-v1_1-base", "model-index": [{"name": "t5-coktails_recipe-base", "results": []}]}
erwanlc/t5-coktails_recipe-base
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/t5-v1_1-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #base_model-google/t5-v1_1-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-coktails_recipe-base This model is a fine-tuned version of google/t5-v1_1-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# t5-coktails_recipe-base\n\nThis model is a fine-tuned version of google/t5-v1_1-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #base_model-google/t5-v1_1-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-coktails_recipe-base\n\nThis model is a fine-tuned version of google/t5-v1_1-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-coktails_recipe-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-coktails_recipe-small", "results": []}]}
erwanlc/t5-coktails_recipe-small
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-coktails_recipe-small This model is a fine-tuned version of t5-small on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# t5-coktails_recipe-small\n\nThis model is a fine-tuned version of t5-small on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-coktails_recipe-small\n\nThis model is a fine-tuned version of t5-small on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
image-classification
fastai
## Pet breeds classification model Finetuned model on The Oxford-IIIT Pet Dataset. It was introduced in [this paper](https://www.robots.ox.ac.uk/~vgg/publications/2012/parkhi12a/) and first released in [this webpage](https://www.robots.ox.ac.uk/~vgg/data/pets/). The pretrained model was trained on the ImageNet dataset, a dataset that has 100,000+ images across 200 different classes. It was introduced in [this paper](https://image-net.org/static_files/papers/imagenet_cvpr09.pdf) and available [in this webpage](https://image-net.org/download.php) Disclaimer: The model was fine-tuned after [Chapter 5](https://github.com/fastai/fastbook/blob/master/05_pet_breeds.ipynb) of [Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020)](https://github.com/fastai/fastbook) written by Jeremy Howard and Sylvain Gugger. ## Model description The model was finetuned using the `cnn_learner` method of the fastai library suing a Resnet 34 backbone pretrained on the ImageNet dataset. The fastai library uses PyTorch for the undelying operations. `cnn_learner` automatically gets a pretrained model from a given architecture with a custom head that is suitable for the target data. Resnet34 is a 34 layer convolutional neural network. It takes residuals from each layer and uses them in the subsequent connected layers. Advantages of a resnet arquitecture ([Neurohive, 2019](https://neurohive.io/en/popular-networks/resnet/)): - Are easy to optimize, but the “plain” networks (that simply stack layers) shows higher training error when the depth increases. - Can easily gain accuracy from greatly increased depth, producing results which are better than previous networks. Please refer to the original paper '[Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf)' written by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Specifically, the model was obtained: ``` learn = cnn_learner(dls, resnet34, metrics=error_rate) learn.fine_tune(2) ``` ## How to use Download the model this way: ```python from huggingface_hub import hf_hub_download from fastai.learner import load_learner model = load_learner( hf_hub_download('espejelomar/fastai-pet-breeds-classification', filename="model.pkl") ) ``` Then you can use your downloaded fastai model in any way you want. For example, if the input is a PIL Image, with the following code you can obtain the resulting outputs for each class: ```python _, _, preds = self.model.predict(np.array(inputs)) ``` ## Training data The Resnet34 model was pretrained on [ImageNet](https://image-net.org/static_files/papers/imagenet_cvpr09.pdf), a dataset that has 100,000+ images across 200 different classes, and fine-tuned on [The Oxford-IIIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/). ## Preprocessing For more detailed information on the preprocessing procedure, refer to the [Chapter 5](https://github.com/fastai/fastbook/blob/master/05_pet_breeds.ipynb) of [Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020)](https://github.com/fastai/fastbook). Two main strategies are followed to presizing the images: - Resize images to relatively "large" dimensions—that is, dimensions significantly larger than the target training dimensions. - Compose all of the common augmentation operations (including a resize to the final target size) into one, and perform the combined operation on the GPU only once at the end of processing, rather than performing the operations individually and interpolating multiple times. "The first step, the resize, creates images large enough that they have spare margin to allow further augmentation transforms on their inner regions without creating empty zones. This transformation works by resizing to a square, using a large crop size. On the training set, the crop area is chosen randomly, and the size of the crop is selected to cover the entire width or height of the image, whichever is smaller. In the second step, the GPU is used for all data augmentation, and all of the potentially destructive operations are done together, with a single interpolation at the end." ([Howard and Gugger, 2020](https://github.com/fastai/fastbook)) Specifically, the following code is used for preprocessing: ```python #hide_input #id interpolations #caption A comparison of fastai's data augmentation strategy (left) and the traditional approach (right). dblock1 = DataBlock(blocks=(ImageBlock(), CategoryBlock()), get_y=parent_label, item_tfms=Resize(460)) # Place an image in the 'images/grizzly.jpg' subfolder where this notebook is located before running this dls1 = dblock1.dataloaders([(Path.cwd()/'images'/'grizzly.jpg')]*100, bs=8) dls1.train.get_idxs = lambda: Inf.ones x,y = dls1.valid.one_batch() _,axs = subplots(1, 2) x1 = TensorImage(x.clone()) x1 = x1.affine_coord(sz=224) x1 = x1.rotate(draw=30, p=1.) x1 = x1.zoom(draw=1.2, p=1.) x1 = x1.warp(draw_x=-0.2, draw_y=0.2, p=1.) tfms = setup_aug_tfms([Rotate(draw=30, p=1, size=224), Zoom(draw=1.2, p=1., size=224), Warp(draw_x=-0.2, draw_y=0.2, p=1., size=224)]) x = Pipeline(tfms)(x) #x.affine_coord(coord_tfm=coord_tfm, sz=size, mode=mode, pad_mode=pad_mode) TensorImage(x[0]).show(ctx=axs[0]) TensorImage(x1[0]).show(ctx=axs[1]); ``` ### BibTeX entry and citation info ```bibtex @book{howard2020deep, author = {Howard, J. and Gugger, S.}, title = {Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD}, isbn = {9781492045526}, year = {2020}, url = {https://books.google.no/books?id=xd6LxgEACAAJ}, publisher = {O'Reilly Media, Incorporated}, } ```
{"library_name": "fastai", "tags": ["image-classification", "fastai"], "datasets": ["Oxford-IIIT Pet Dataset", "ImageNet"]}
espejelomar/fastai-pet-breeds-classification
null
[ "fastai", "image-classification", "arxiv:1512.03385", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1512.03385" ]
[]
TAGS #fastai #image-classification #arxiv-1512.03385 #has_space #region-us
## Pet breeds classification model Finetuned model on The Oxford-IIIT Pet Dataset. It was introduced in this paper and first released in this webpage. The pretrained model was trained on the ImageNet dataset, a dataset that has 100,000+ images across 200 different classes. It was introduced in this paper and available in this webpage Disclaimer: The model was fine-tuned after Chapter 5 of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020) written by Jeremy Howard and Sylvain Gugger. ## Model description The model was finetuned using the 'cnn_learner' method of the fastai library suing a Resnet 34 backbone pretrained on the ImageNet dataset. The fastai library uses PyTorch for the undelying operations. 'cnn_learner' automatically gets a pretrained model from a given architecture with a custom head that is suitable for the target data. Resnet34 is a 34 layer convolutional neural network. It takes residuals from each layer and uses them in the subsequent connected layers. Advantages of a resnet arquitecture (Neurohive, 2019): - Are easy to optimize, but the “plain” networks (that simply stack layers) shows higher training error when the depth increases. - Can easily gain accuracy from greatly increased depth, producing results which are better than previous networks. Please refer to the original paper 'Deep Residual Learning for Image Recognition' written by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Specifically, the model was obtained: ## How to use Download the model this way: Then you can use your downloaded fastai model in any way you want. For example, if the input is a PIL Image, with the following code you can obtain the resulting outputs for each class: ## Training data The Resnet34 model was pretrained on ImageNet, a dataset that has 100,000+ images across 200 different classes, and fine-tuned on The Oxford-IIIT Pet Dataset. ## Preprocessing For more detailed information on the preprocessing procedure, refer to the Chapter 5 of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020). Two main strategies are followed to presizing the images: - Resize images to relatively "large" dimensions—that is, dimensions significantly larger than the target training dimensions. - Compose all of the common augmentation operations (including a resize to the final target size) into one, and perform the combined operation on the GPU only once at the end of processing, rather than performing the operations individually and interpolating multiple times. "The first step, the resize, creates images large enough that they have spare margin to allow further augmentation transforms on their inner regions without creating empty zones. This transformation works by resizing to a square, using a large crop size. On the training set, the crop area is chosen randomly, and the size of the crop is selected to cover the entire width or height of the image, whichever is smaller. In the second step, the GPU is used for all data augmentation, and all of the potentially destructive operations are done together, with a single interpolation at the end." (Howard and Gugger, 2020) Specifically, the following code is used for preprocessing: ### BibTeX entry and citation info
[ "## Pet breeds classification model\n\nFinetuned model on The Oxford-IIIT Pet Dataset. It was introduced in\nthis paper and first released in\nthis webpage.\n\nThe pretrained model was trained on the ImageNet dataset, a dataset that has 100,000+ images across 200 different classes. It was introduced in this paper and available in this webpage\n\nDisclaimer: The model was fine-tuned after Chapter 5 of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020) written by Jeremy Howard and Sylvain Gugger.", "## Model description\n\nThe model was finetuned using the 'cnn_learner' method of the fastai library suing a Resnet 34 backbone pretrained on the ImageNet dataset. The fastai library uses PyTorch for the undelying operations. 'cnn_learner' automatically gets a pretrained model from a given architecture with a custom head that is suitable for the target data.\n\nResnet34 is a 34 layer convolutional neural network. It takes residuals from each layer and uses them in the subsequent connected layers. Advantages of a resnet arquitecture (Neurohive, 2019):\n- Are easy to optimize, but the “plain” networks (that simply stack layers) shows higher training error when the depth increases.\n- Can easily gain accuracy from greatly increased depth, producing results which are better than previous networks.\n\n Please refer to the original paper 'Deep Residual Learning for Image Recognition' written by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.\n\nSpecifically, the model was obtained:", "## How to use\n\nDownload the model this way:\n\n\nThen you can use your downloaded fastai model in any way you want. For example, if the input is a PIL Image, with the following code you can obtain the resulting outputs for each class:", "## Training data\n\nThe Resnet34 model was pretrained on ImageNet, a dataset that has 100,000+ images across 200 different classes, and fine-tuned on The Oxford-IIIT Pet Dataset.", "## Preprocessing\n\nFor more detailed information on the preprocessing procedure, refer to the Chapter 5 of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020).\n\nTwo main strategies are followed to presizing the images:\n\n- Resize images to relatively \"large\" dimensions—that is, dimensions significantly larger than the target training dimensions.\n- Compose all of the common augmentation operations (including a resize to the final target size) into one, and perform the combined operation on the GPU only once at the end of processing, rather than performing the operations individually and interpolating multiple times.\n\n\"The first step, the resize, creates images large enough that they have spare margin to allow further augmentation transforms on their inner regions without creating empty zones. This transformation works by resizing to a square, using a large crop size. On the training set, the crop area is chosen randomly, and the size of the crop is selected to cover the entire width or height of the image, whichever is smaller.\n\nIn the second step, the GPU is used for all data augmentation, and all of the potentially destructive operations are done together, with a single interpolation at the end.\" (Howard and Gugger, 2020)\n\nSpecifically, the following code is used for preprocessing:", "### BibTeX entry and citation info" ]
[ "TAGS\n#fastai #image-classification #arxiv-1512.03385 #has_space #region-us \n", "## Pet breeds classification model\n\nFinetuned model on The Oxford-IIIT Pet Dataset. It was introduced in\nthis paper and first released in\nthis webpage.\n\nThe pretrained model was trained on the ImageNet dataset, a dataset that has 100,000+ images across 200 different classes. It was introduced in this paper and available in this webpage\n\nDisclaimer: The model was fine-tuned after Chapter 5 of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020) written by Jeremy Howard and Sylvain Gugger.", "## Model description\n\nThe model was finetuned using the 'cnn_learner' method of the fastai library suing a Resnet 34 backbone pretrained on the ImageNet dataset. The fastai library uses PyTorch for the undelying operations. 'cnn_learner' automatically gets a pretrained model from a given architecture with a custom head that is suitable for the target data.\n\nResnet34 is a 34 layer convolutional neural network. It takes residuals from each layer and uses them in the subsequent connected layers. Advantages of a resnet arquitecture (Neurohive, 2019):\n- Are easy to optimize, but the “plain” networks (that simply stack layers) shows higher training error when the depth increases.\n- Can easily gain accuracy from greatly increased depth, producing results which are better than previous networks.\n\n Please refer to the original paper 'Deep Residual Learning for Image Recognition' written by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.\n\nSpecifically, the model was obtained:", "## How to use\n\nDownload the model this way:\n\n\nThen you can use your downloaded fastai model in any way you want. For example, if the input is a PIL Image, with the following code you can obtain the resulting outputs for each class:", "## Training data\n\nThe Resnet34 model was pretrained on ImageNet, a dataset that has 100,000+ images across 200 different classes, and fine-tuned on The Oxford-IIIT Pet Dataset.", "## Preprocessing\n\nFor more detailed information on the preprocessing procedure, refer to the Chapter 5 of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020).\n\nTwo main strategies are followed to presizing the images:\n\n- Resize images to relatively \"large\" dimensions—that is, dimensions significantly larger than the target training dimensions.\n- Compose all of the common augmentation operations (including a resize to the final target size) into one, and perform the combined operation on the GPU only once at the end of processing, rather than performing the operations individually and interpolating multiple times.\n\n\"The first step, the resize, creates images large enough that they have spare margin to allow further augmentation transforms on their inner regions without creating empty zones. This transformation works by resizing to a square, using a large crop size. On the training set, the crop area is chosen randomly, and the size of the crop is selected to cover the entire width or height of the image, whichever is smaller.\n\nIn the second step, the GPU is used for all data augmentation, and all of the potentially destructive operations are done together, with a single interpolation at the end.\" (Howard and Gugger, 2020)\n\nSpecifically, the following code is used for preprocessing:", "### BibTeX entry and citation info" ]
audio-to-audio
espnet
## Example ESPnet2 ENH model ### `Chenda_Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave` ♻️ Imported from https://zenodo.org/record/4498562/ This model was trained by Chenda Li using wsj0_2mix/enh1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-enhancement", "audio-to-audio"], "datasets": ["wsj0_2mix"]}
espnet/Chenda_Li_wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave
null
[ "espnet", "audio", "speech-enhancement", "audio-to-audio", "en", "dataset:wsj0_2mix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #speech-enhancement #audio-to-audio #en #dataset-wsj0_2mix #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ENH model ### 'Chenda_Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave' ️ Imported from URL This model was trained by Chenda Li using wsj0_2mix/enh1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ENH model", "### 'Chenda_Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave'\n️ Imported from URL\n\nThis model was trained by Chenda Li using wsj0_2mix/enh1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #speech-enhancement #audio-to-audio #en #dataset-wsj0_2mix #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ENH model", "### 'Chenda_Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave'\n️ Imported from URL\n\nThis model was trained by Chenda Li using wsj0_2mix/enh1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
audio-to-audio
espnet
## Example ESPnet2 ENH model ### `Chenda_Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave` ♻️ Imported from https://zenodo.org/record/4498554/ This model was trained by Chenda Li using wsj0_2mix/enh1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-enhancement", "audio-to-audio"], "datasets": ["wsj0_2mix"]}
espnet/Chenda_Li_wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave
null
[ "espnet", "audio", "speech-enhancement", "audio-to-audio", "en", "dataset:wsj0_2mix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #speech-enhancement #audio-to-audio #en #dataset-wsj0_2mix #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ENH model ### 'Chenda_Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave' ️ Imported from URL This model was trained by Chenda Li using wsj0_2mix/enh1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ENH model", "### 'Chenda_Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave'\n️ Imported from URL\n\nThis model was trained by Chenda Li using wsj0_2mix/enh1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #speech-enhancement #audio-to-audio #en #dataset-wsj0_2mix #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ENH model", "### 'Chenda_Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave'\n️ Imported from URL\n\nThis model was trained by Chenda Li using wsj0_2mix/enh1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `Dan_Berrebbi_aishell4_asr` This model was trained by dan_berrebbi using aishell4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout da1a26652f7d5a019cc24ad1e0e6e844f2b57e1b pip install -e . cd egs2/aishell4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model Dan_Berrebbi_aishell4_asr ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Sep 21 09:36:01 EDT 2021` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a1` - pytorch version: `pytorch 1.9.0` - Git hash: `7887faeabbc2299922267928e190ed89cb032a36` - Commit date: `Mon Sep 20 16:25:02 2021 -0400` ## asr_fine_tune5_100ep ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|601|6.8|92.7|0.5|0.0|93.2|93.2| |decode_transformer_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|601|6.8|92.8|0.3|0.0|93.2|93.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|15936|66.9|25.6|7.5|9.8|42.9|93.2| |decode_transformer_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|15936|64.7|27.6|7.7|11.0|46.3|93.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer5.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_fine_tune5_100ep ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 3 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char/train/speech_shape - exp/asr_stats_raw_zh_char/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char/valid/speech_shape - exp/asr_stats_raw_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev/wav.scp - speech - sound - - dump/raw/train_nodev/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 4.0 scheduler: noamlr scheduler_conf: model_size: 256 warmup_steps: 25000 token_list: - <blank> - <unk> - , - 的 - 是 - 个 - 这 - 一 - 。 - 就 - 儿 - 嗯 - 们 - 呃 - 我 - 有 - <sil> - 那 - 说 - 不 - 些 - 也 - 他 - 你 - 要 - 后 - 以 - 咱 - 在 - 啊 - 了 - 然 - 家 - 都 - 来 - 还 - 可 - 子 - 下 - 上 - 时 - 比 - 话 - 孩 - 呢 - 去 - 人 - 好 - 对 - 能 - 么 - 吧 - 学 - 多 - 到 - 看 - 为 - 进 - 把 - 大 - 做 - 生 - 种 - 品 - 给 - 没 - 行 - 现 - 小 - 会 - 作 - 较 - 方 - 块 - 业 - 让 - 点 - 定 - 因 - 什 - 长 - 面 - 如 - 安 - 客 - 问 - 过 - 车 - 出 - 啦 - 边 - 候 - 主 - 所 - 题 - 买 - 销 - 天 - 意 - 自 - 全 - 动 - 工 - '&' - 老 - 或 - 者 - 年 - 着 - 实 - 活 - 理 - 包 - 样 - 再 - 区 - 用 - 呀 - 零 - 员 - 发 - 先 - 部 - 放 - 门 - 情 - 像 - 分 - 售 - 很 - 开 - 己 - 十 - 括 - 跟 - 事 - 需 - 更 - 其 - 装 - 市 - 成 - 里 - 物 - 别 - 间 - 第 - 次 - 中 - 提 - 超 - 顾 - 保 - 感 - 加 - 量 - 二 - 和 - 各 - 嘛 - 新 - 每 - 完 - 力 - 消 - 得 - 店 - 本 - 通 - 习 - 觉 - 道 - 心 - 校 - 菜 - 交 - 哪 - 产 - 于 - 位 - 电 - 想 - 三 - 况 - 度 - 期 - 应 - 但 - 教 - 体 - 常 - 师 - 它 - 高 - 前 - 之 - 西 - 特 - 商 - 果 - 场 - 重 - 防 - 管 - 起 - 地 - 该 - 东 - 少 - 打 - 费 - 当 - 带 - 服 - 口 - 购 - 知 - 回 - 同 - 钱 - 外 - 户 - 注 - 促 - 价 - 解 - <#> - 水 - 百 - 今 - 太 - 最 - 报 - 怎 - 才 - 等 - 及 - 关 - <-> - 肯 - 火 - 机 - 流 - 制 - 送 - 手 - 确 - 法 - 写 - 玩 - 传 - 路 - 班 - 查 - 招 - 卖 - 几 - 正 - 合 - 够 - 五 - 引 - 容 - 只 - 男 - 日 - 四 - 宣 - 反 - 两 - 清 - 处 - 周 - 单 - 首 - 课 - 衣 - 便 - 身 - 气 - 针 - 奶 - 六 - 经 - 接 - 女 - 育 - 鲜 - 赠 - 试 - 停 - 晚 - 类 - 故 - 入 - 性 - 增 - 食 - 满 - 格 - 基 - 备 - 洗 - 培 - 质 - 美 - 明 - 整 - 化 - 公 - 案 - 哎 - 吸 - 原 - 易 - 幺 - 总 - 尽 - 优 - 而 - 建 - 责 - 啥 - 干 - 月 - 使 - 找 - 季 - 望 - 器 - 目 - 识 - 低 - 听 - 烟 - 相 - 早 - 检 - 护 - 摆 - 住 - 直 - 从 - 务 - 希 - 导 - 内 - 八 - 持 - 近 - 配 - 叫 - 见 - 设 - 吗 - 非 - 调 - 程 - 拿 - 训 - <%> - 结 - 标 - 挺 - 花 - <$> - 受 - 式 - 求 - 平 - 换 - 具 - 愿 - 货 - 牌 - 专 - 轻 - 推 - 妈 - 司 - 辆 - 存 - 名 - 且 - 欢 - 喜 - 吃 - 数 - 段 - 议 - 控 - 往 - 礼 - 决 - 走 - 养 - 免 - 惠 - 园 - 档 - 谁 - 真 - 快 - 置 - 幼 - 乐 - 证 - 向 - 厂 - 简 - 声 - 视 - 划 - 绩 - 适 - 集 - 搞 - 办 - 规 - 灾 - 造 - 准 - 必 - 任 - 险 - 响 - 毕 - 群 - 鞋 - 九 - 嘞 - 信 - 库 - 计 - 认 - 奖 - 表 - 无 - 影 - 头 - 卡 - 告 - 考 - 抽 - 竟 - 选 - 帮 - 何 - 修 - 酒 - 尤 - 线 - 穿 - 讲 - 光 - 留 - 讨 - 随 - 请 - 卫 - 系 - 队 - 失 - 双 - 庭 - 强 - 微 - 折 - 色 - 半 - 否 - 立 - 差 - 沟 - 冬 - 批 - 害 - 已 - 危 - 白 - 爆 - 节 - 参 - 逛 - 搭 - 风 - 朋 - 友 - 环 - 验 - 评 - 严 - 般 - 效 - 舞 - 饭 - 境 - 负 - 又 - 底 - 术 - 刚 - 件 - 罚 - 助 - 态 - 状 - 室 - 房 - 游 - 息 - 领 - 难 - 警 - 按 - 级 - 错 - 利 - 与 - 餐 - 陪 - 蹈 - 论 - 记 - 许 - 马 - 算 - 楼 - 型 - 排 - 广 - 值 - 油 - 糕 - 楚 - 步 - 至 - 拉 - 紧 - 灯 - 升 - 七 - 共 - 努 - 除 - 展 - 形 - 元 - 网 - 宜 - 营 - 兴 - 互 - 蛋 - 燃 - 冷 - 条 - 思 - 巡 - 净 - 须 - 遇 - 落 - 禁 - 科 - 款 - 哦 - 止 - 采 - 材 - 介 - 套 - 围 - 维 - 旦 - 切 - 显 - 汇 - 损 - 速 - 越 - 模 - 假 - 精 - 稍 - 书 - 绍 - 父 - 积 - 策 - 示 - 骑 - 改 - 跑 - 运 - 变 - 洁 - 仓 - 鱼 - <space> - 绝 - 诶 - 伤 - 细 - 职 - 离 - 慢 - 素 - 料 - 睡 - 趣 - 爱 - 母 - 眼 - 味 - 列 - 督 - 张 - 率 - 被 - 域 - 语 - 坏 - 资 - 红 - 减 - 励 - 择 - 预 - 层 - 陈 - 根 - 休 - 毒 - 球 - 爸 - 登 - 足 - 取 - 指 - 柜 - 限 - 降 - 概 - 院 - 供 - 支 - 额 - 源 - 始 - 盘 - 饮 - 项 - 液 - 童 - 爷 - 号 - 抓 - 台 - 转 - 观 - 金 - 照 - 滑 - 岁 - 致 - 文 - 她 - 弄 - 站 - 酸 - 音 - 胎 - 投 - 疏 - 乱 - 临 - 允 - 狗 - 疫 - 询 - 、 - 象 - 占 - 坐 - 倒 - 争 - 午 - 亲 - 读 - 演 - 退 - 惯 - 贵 - 达 - 监 - 志 - 绿 - 醒 - 急 - 驾 - 违 - 诉 - 片 - 空 - 势 - 极 - 豆 - 独 - 钟 - 代 - 瓶 - 纸 - 并 - 企 - 映 - 统 - 属 - 省 - 夜 - 障 - 谈 - 避 - 由 - 终 - 频 - 掉 - 估 - 激 - 仅 - 布 - 谢 - 灭 - 忙 - 码 - 伙 - 缺 - 叶 - 功 - 析 - 赖 - 架 - 范 - 签 - D - 待 - 神 - 龄 - 画 - 券 - 居 - 杜 - 堵 - 您 - 勤 - 扫 - 技 - 财 - 隐 - 患 - 例 - 乘 - 摩 - 戏 - 鼓 - 份 - 杂 - 散 - 热 - 铺 - 据 - 肤 - 怕 - 依 - 拖 - 充 - 智 - 偷 - 远 - 挂 - 盗 - 附 - 梯 - 冰 - 联 - 借 - 蹭 - 异 - 蔬 - 绑 - 堂 - 将 - 厨 - 帽 - 破 - 戴 - 皮 - 粉 - 氛 - 仪 - 国 - 益 - 闯 - 惩 - 逃 - 刻 - 突 - 申 - 略 - 顿 - 毛 - 召 - 海 - 黄 - 青 - 士 - 移 - 喝 - 板 - 练 - 歌 - 千 - 床 - 享 - 磨 - 构 - 收 - 万 - 摸 - 圈 - 亮 - 刹 - 逆 - 驶 - 赶 - 松 - 呐 - 压 - 拥 - 辅 - 协 - 托 - 断 - 轮 - 善 - 哈 - 捆 - 座 - 病 - 健 - 牛 - 草 - 释 - 似 - 土 - 补 - 俩 - 堆 - 即 - 密 - 背 - 言 - 街 - 尚 - 窗 - C - 艺 - 纠 - 纷 - 忽 - 句 - 另 - 施 - 政 - 温 - 某 - 翻 - 章 - 守 - 熟 - 民 - 续 - 良 - 挤 - 础 - 字 - 瓜 - 乎 - 竞 - 距 - 际 - 暖 - 凭 - 董 - 碗 - 短 - 渠 - 康 - 藏 - 香 - 虽 - 露 - 厉 - 忘 - 误 - 冒 - 窃 - 络 - 淡 - 腐 - 颜 - 播 - 默 - 锻 - 炼 - 宝 - 组 - 淘 - 则 - 逻 - 垃 - 圾 - 复 - 贴 - 靠 - 潜 - 察 - 晨 - 碰 - 剩 - 峰 - 深 - 偏 - 虑 - 念 - 初 - 闹 - 幸 - 跳 - 米 - 旧 - 蛤 - 虾 - 汽 - 苦 - 螃 - 蟹 - 冲 - 固 - 隔 - 懂 - 卷 - 镜 - 罩 - 暴 - 闭 - 野 - 玻 - 璃 - 义 - B - 煤 - 富 - 踩 - 途 - 闲 - 紫 - 北 - 欲 - 曲 - 榜 - 垒 - 伴 - 累 - 判 - 搜 - 困 - 租 - 键 - 肥 - 社 - 弯 - 角 - 纪 - 律 - 详 - 右 - 刮 - 继 - 撤 - 输 - 普 - 未 - 稳 - 摔 - 访 - 扩 - 扣 - 末 - 票 - 承 - 担 - 丢 - 涉 - 欠 - 创 - 获 - 摊 - 疑 - 蓝 - 答 - 霜 - 录 - 齐 - 烦 - 治 - 粗 - 叛 - 污 - 址 - 若 - 染 - 含 - 药 - 雨 - 此 - 陌 - 研 - 催 - 拨 - 页 - 磕 - 呆 - 脸 - 墙 - 夫 - A - 棉 - 袜 - 填 - 死 - 懒 - 植 - 扇 - 捡 - 遍 - 操 - 摄 - 箱 - ? - 繁 - 城 - 咯 - 左 - 拐 - 悉 - 犯 - 宽 - 伞 - 余 - 糊 - 巧 - 透 - 贪 - 顺 - 局 - 妇 - 私 - 浪 - 岗 - 棋 - 序 - 辛 - V - 握 - 擦 - 扔 - 斤 - 付 - 剐 - 锁 - 麻 - 敢 - 桶 - 佩 - 坠 - 封 - 替 - 塞 - 斗 - 攀 - 爽 - 沉 - 混 - 滋 - 刺 - 潮 - 皿 - 端 - 刷 - 刀 - 巾 - 烫 - 木 - 漏 - 迅 - 织 - 救 - 吹 - 仔 - 称 - 返 - 景 - 聚 - 阶 - 秀 - 涨 - P - 颈 - 肩 - 泥 - I - 侣 - 尔 - 伍 - 甚 - 皂 - 蒙 - 世 - 界 - 嘻 - 辈 - Q - 审 - 尾 - 浇 - 遛 - 馨 - 措 - 邻 - 撒 - 挥 - 遵 - 予 - 击 - 鉴 - 殊 - 哇 - 载 - 添 - 盈 - 盯 - 惊 - 喷 - 荷 - 怠 - 抢 - 喂 - 饱 - 谅 - 团 - 龙 - 冻 - 图 - 掺 - 扑 - 刊 - 葱 - 薄 - 萝 - 卜 - 麦 - 苹 - 触 - 飞 - 艳 - 畅 - 鸡 - 权 - 趟 - 连 - 哭 - 旁 - 漂 - 焊 - 敞 - 叉 - 钢 - 氧 - 溺 - 聊 - 巢 - 衡 - 淀 - 劣 - 虫 - 符 - 均 - 辨 - 菌 - 彻 - 烂 - 厅 - 皱 - 妥 - 拾 - 插 - 携 - 竹 - 碍 - 湿 - 灵 - 忌 - 旅 - 勿 - 宿 - 迷 - 探 - 春 - 劵 - 星 - 耐 - 裤 - 颖 - 韩 - 艾 - 灸 - 邀 - 婚 - 乳 - 芽 - 挑 - 摘 - 阿 - 姨 - 伊 - 慕 - 纯 - 貌 - 嘴 - 偶 - 睛 - 献 - 坚 - 账 - 典 - 唱 - L - E - 贡 - 寒 - 唧 - Y - 尝 - 抹 - 汰 - 腾 - 哼 - 仿 - 英 - 舒 - 扰 - 拒 - 剪 - 夏 - 宠 - 咬 - 派 - 委 - 婉 - 执 - 呗 - 悄 - 搬 - 雪 - 盐 - 暂 - 奸 - 耍 - 僻 - 却 - 署 - 寻 - 串 - 援 - 亏 - 烈 - 印 - 捎 - 幅 - 绘 - 锈 - 闸 - 罪 - 嫌 - 俗 - 歹 - 劳 - 兜 - 喽 - 谓 - 鹤 - 舍 - 克 - 徇 - 倍 - 敏 - 丝 - 纺 - 拭 - 融 - 蔫 - 掂 - 测 - T - 众 - 卸 - 暗 - 赔 - 偿 - 举 - 劲 - 篮 - 储 - 乙 - 炔 - 软 - 侵 - 诱 - 浊 - 蚀 - 秽 - 炸 - 泽 - 闻 - 鼻 - 甜 - 澈 - 脏 - 官 - 凝 - 芳 - 灰 - 卵 - 农 - 烧 - 肉 - 桌 - 椅 - 垫 - 硬 - 叠 - 瓷 - 碎 - 柄 - 屉 - 拳 - 撞 - 铝 - 歇 - 遗 - 炮 - 掌 - 妨 - 静 - 浸 - 涂 - 凉 - 炫 - 耀 - 姓 - 究 - 奏 - 缆 - 脚 - 酿 - 抄 - 慌 - 戚 - 燥 - 毯 - 挽 - 诺 - 济 - 旺 - 抖 - 郊 - 疗 - 巴 - 痧 - 脊 - 膜 - 晒 - 润 - 掏 - 笔 - 鞭 - 博 - 捧 - 函 - 胡 - 锅 - 雾 - 疯 - 狂 - 趋 - 膏 - 妆 - 尘 - 袋 - 贝 - 俺 - 耽 - 怀 - 恐 - 赋 - 脑 - 焉 - 愣 - 呵 - 噼 - 啪 - 虚 - 河 - 归 - 绊 - 械 - 扬 - 筒 - 靴 - 束 - 彩 - 荐 - 沙 - 迎 - 荡 - 凌 - 昂 - 碑 - 蹦 - 扉 - 泼 - 丰 - 滴 - 沾 - 亭 - 粘 - 奇 - 饼 - 牙 - 娃 - 杯 - 踢 - 嘿 - 抛 - 枯 - 剔 - 苗 - 纹 - 永 - 津 - 唉 - 趁 - 屡 - 逮 - 戒 - 肃 - 仁 - 肇 - 醉 - 糟 - 馈 - 横 - 扭 - 盔 - 侧 - 鲁 - 莽 - 飙 - 稿 - 逐 - 谋 - 京 - 苏 - 宁 - 驻 - 咨 - 旷 - 拓 - 杆 - 秤 - 叮 - 嘱 - 咋 - 炊 - 怪 - 婆 - 阎 - 王 - 饿 - 鬼 - 惨 - 渡 - 坎 - 囤 - 甲 - 蛙 - 鲤 - 桂 - 石 - 玉 - 溪 - 华 - 窝 - 截 - 秩 - 嗨 - 芹 - 梨 - 蕉 - S - 煲 - 汤 - 鲫 - 揽 - 挡 - 柚 - 瑞 - 匹 - '2' - 踹 - 吵 - 凶 - 矩 - 迟 - 脾 - 纳 - 朵 - 墨 - 袖 - 链 - 钩 - 笼 - 熄 - 盆 - 殴 - 欺 - 诈 - 厕 - 娱 - 爬 - 威 - 胁 - 阅 - 赌 - 拢 - 症 - 伪 - 脂 - 堪 - 盛 - 蚊 - 蝇 - 煎 - 晰 - 柔 - 涩 - 汁 - 腹 - 胃 - 痉 - 挛 - 颗 - 粒 - 匀 - 败 - 历 - 佳 - 乏 - 寄 - 残 - 杀 - 剂 - 疾 - 衍 - 溅 - 倘 - 褶 - 席 - 启 - 遮 - 槽 - 递 - 橱 - 迹 - 镁 - 泄 - 阀 - 柴 - 阻 - 恋 - 盲 - 浓 - 捂 - 腰 - 姿 - 缝 - 肿 - 焦 - 骗 - 伺 - 嘘 - 掩 - 褥 - 帘 - 籍 - 锥 - 锋 - 尖 - 锐 - 祸 - 秒 - 李 - 伸 - 浏 - 览 - 航 - 讯 - 谨 - 慎 - 匪 - 劫 - 医 - 族 - 忧 - 孤 - 拜 - 窄 - 唯 - 搁 - 朝 - 尺 - 盟 - 波 - 隆 - 词 - 村 - 娶 - 媳 - 县 - 聘 - 醇 - 泡 - 坨 - 淋 - 延 - 柱 - 肾 - 蒸 - 槛 - 赚 - 凡 - 恩 - 厚 - 赞 - 茎 - 蒜 - 苔 - 甘 - 菠 - 涮 - 霾 - 仍 - 云 - 追 - 丽 - 盖 - 欧 - 莱 - 雅 - 婴 - 孕 - 敲 - 约 - 惰 - 谱 - 射 - 惑 - 睹 - 奉 - 诚 - 惶 - 卓 - 勉 - 聪 - 疼 - 弃 - 奴 - 隶 - 嚷 - 眠 - 躺 - 乒 - 乓 - 琴 - 挖 - 掘 - 阵 - 浆 - 索 - 呼 - 古 - 弥 - 熔 - 抱 - 怨 - 猫 - 笑 - 挣 - 黑 - 猛 - 令 - 核 - 磊 - 橙 - 吨 - 吊 - 蘸 - 氮 - 罐 - 战 - 懈 - 渐 - 胜 - 命 - 抬 - 缘 - 睦 - 扮 - 珠 - 颁 - 蔼 - 凳 - 饰 - 缤 - 晶 - 抵 - 遥 - 腿 - 拍 - 妻 - 羽 - 绒 - 梳 - 袄 - 述 - 跆 - 屈 - 脱 - 朗 - 劝 - 胆 - 腔 - 圆 - 亚 - 宴 - 编 - 肢 - 壶 - 暑 - 怒 - 描 - 绕 - 悦 - 忆 - 嗓 - 胖 - 疙 - 瘩 - 哒 - 碴 - 棱 - 炒 - 井 - 漫 - 烘 - 焙 - 涤 - 船 - 纱 - 君 - 茉 - 莉 - 钙 - 瞩 - <_> - 塌 - 嗷 - 屁 - 股 - 绪 - 勇 - 奋 - 荣 - 诲 - 卑 - 挫 - 昧 - 疲 - 惫 - 册 - 呈 - 僵 - 熬 - 敬 - 呦 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: /ocean/projects/cis210027p/berrebbi/espnet/egs2/aishell4/asr1/data/nlsyms.txt cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a1 distributed: false ``` </details> ## LM config <details><summary>expand</summary> ``` config: conf/train_lm_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/lm_nuit ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 2000000 valid_batch_bins: null train_shape_file: - exp/lm_stats_zh_char/train/text_shape.char valid_shape_file: - exp/lm_stats_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/lm_train.txt - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.005 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - , - 的 - 是 - 个 - 这 - 一 - 。 - 就 - 儿 - 嗯 - 们 - 呃 - 我 - 有 - <sil> - 那 - 说 - 不 - 些 - 也 - 他 - 你 - 要 - 后 - 以 - 咱 - 在 - 啊 - 了 - 然 - 家 - 都 - 来 - 还 - 可 - 子 - 下 - 上 - 时 - 比 - 话 - 孩 - 呢 - 去 - 人 - 好 - 对 - 能 - 么 - 吧 - 学 - 多 - 到 - 看 - 为 - 进 - 把 - 大 - 做 - 生 - 种 - 品 - 给 - 没 - 行 - 现 - 小 - 会 - 作 - 较 - 方 - 块 - 业 - 让 - 点 - 定 - 因 - 什 - 长 - 面 - 如 - 安 - 客 - 问 - 过 - 车 - 出 - 啦 - 边 - 候 - 主 - 所 - 题 - 买 - 销 - 天 - 意 - 自 - 全 - 动 - 工 - '&' - 老 - 或 - 者 - 年 - 着 - 实 - 活 - 理 - 包 - 样 - 再 - 区 - 用 - 呀 - 零 - 员 - 发 - 先 - 部 - 放 - 门 - 情 - 像 - 分 - 售 - 很 - 开 - 己 - 十 - 括 - 跟 - 事 - 需 - 更 - 其 - 装 - 市 - 成 - 里 - 物 - 别 - 间 - 第 - 次 - 中 - 提 - 超 - 顾 - 保 - 感 - 加 - 量 - 二 - 和 - 各 - 嘛 - 新 - 每 - 完 - 力 - 消 - 得 - 店 - 本 - 通 - 习 - 觉 - 道 - 心 - 校 - 菜 - 交 - 哪 - 产 - 于 - 位 - 电 - 想 - 三 - 况 - 度 - 期 - 应 - 但 - 教 - 体 - 常 - 师 - 它 - 高 - 前 - 之 - 西 - 特 - 商 - 果 - 场 - 重 - 防 - 管 - 起 - 地 - 该 - 东 - 少 - 打 - 费 - 当 - 带 - 服 - 口 - 购 - 知 - 回 - 同 - 钱 - 外 - 户 - 注 - 促 - 价 - 解 - <#> - 水 - 百 - 今 - 太 - 最 - 报 - 怎 - 才 - 等 - 及 - 关 - <-> - 肯 - 火 - 机 - 流 - 制 - 送 - 手 - 确 - 法 - 写 - 玩 - 传 - 路 - 班 - 查 - 招 - 卖 - 几 - 正 - 合 - 够 - 五 - 引 - 容 - 只 - 男 - 日 - 四 - 宣 - 反 - 两 - 清 - 处 - 周 - 单 - 首 - 课 - 衣 - 便 - 身 - 气 - 针 - 奶 - 六 - 经 - 接 - 女 - 育 - 鲜 - 赠 - 试 - 停 - 晚 - 类 - 故 - 入 - 性 - 增 - 食 - 满 - 格 - 基 - 备 - 洗 - 培 - 质 - 美 - 明 - 整 - 化 - 公 - 案 - 哎 - 吸 - 原 - 易 - 幺 - 总 - 尽 - 优 - 而 - 建 - 责 - 啥 - 干 - 月 - 使 - 找 - 季 - 望 - 器 - 目 - 识 - 低 - 听 - 烟 - 相 - 早 - 检 - 护 - 摆 - 住 - 直 - 从 - 务 - 希 - 导 - 内 - 八 - 持 - 近 - 配 - 叫 - 见 - 设 - 吗 - 非 - 调 - 程 - 拿 - 训 - <%> - 结 - 标 - 挺 - 花 - <$> - 受 - 式 - 求 - 平 - 换 - 具 - 愿 - 货 - 牌 - 专 - 轻 - 推 - 妈 - 司 - 辆 - 存 - 名 - 且 - 欢 - 喜 - 吃 - 数 - 段 - 议 - 控 - 往 - 礼 - 决 - 走 - 养 - 免 - 惠 - 园 - 档 - 谁 - 真 - 快 - 置 - 幼 - 乐 - 证 - 向 - 厂 - 简 - 声 - 视 - 划 - 绩 - 适 - 集 - 搞 - 办 - 规 - 灾 - 造 - 准 - 必 - 任 - 险 - 响 - 毕 - 群 - 鞋 - 九 - 嘞 - 信 - 库 - 计 - 认 - 奖 - 表 - 无 - 影 - 头 - 卡 - 告 - 考 - 抽 - 竟 - 选 - 帮 - 何 - 修 - 酒 - 尤 - 线 - 穿 - 讲 - 光 - 留 - 讨 - 随 - 请 - 卫 - 系 - 队 - 失 - 双 - 庭 - 强 - 微 - 折 - 色 - 半 - 否 - 立 - 差 - 沟 - 冬 - 批 - 害 - 已 - 危 - 白 - 爆 - 节 - 参 - 逛 - 搭 - 风 - 朋 - 友 - 环 - 验 - 评 - 严 - 般 - 效 - 舞 - 饭 - 境 - 负 - 又 - 底 - 术 - 刚 - 件 - 罚 - 助 - 态 - 状 - 室 - 房 - 游 - 息 - 领 - 难 - 警 - 按 - 级 - 错 - 利 - 与 - 餐 - 陪 - 蹈 - 论 - 记 - 许 - 马 - 算 - 楼 - 型 - 排 - 广 - 值 - 油 - 糕 - 楚 - 步 - 至 - 拉 - 紧 - 灯 - 升 - 七 - 共 - 努 - 除 - 展 - 形 - 元 - 网 - 宜 - 营 - 兴 - 互 - 蛋 - 燃 - 冷 - 条 - 思 - 巡 - 净 - 须 - 遇 - 落 - 禁 - 科 - 款 - 哦 - 止 - 采 - 材 - 介 - 套 - 围 - 维 - 旦 - 切 - 显 - 汇 - 损 - 速 - 越 - 模 - 假 - 精 - 稍 - 书 - 绍 - 父 - 积 - 策 - 示 - 骑 - 改 - 跑 - 运 - 变 - 洁 - 仓 - 鱼 - <space> - 绝 - 诶 - 伤 - 细 - 职 - 离 - 慢 - 素 - 料 - 睡 - 趣 - 爱 - 母 - 眼 - 味 - 列 - 督 - 张 - 率 - 被 - 域 - 语 - 坏 - 资 - 红 - 减 - 励 - 择 - 预 - 层 - 陈 - 根 - 休 - 毒 - 球 - 爸 - 登 - 足 - 取 - 指 - 柜 - 限 - 降 - 概 - 院 - 供 - 支 - 额 - 源 - 始 - 盘 - 饮 - 项 - 液 - 童 - 爷 - 号 - 抓 - 台 - 转 - 观 - 金 - 照 - 滑 - 岁 - 致 - 文 - 她 - 弄 - 站 - 酸 - 音 - 胎 - 投 - 疏 - 乱 - 临 - 允 - 狗 - 疫 - 询 - 、 - 象 - 占 - 坐 - 倒 - 争 - 午 - 亲 - 读 - 演 - 退 - 惯 - 贵 - 达 - 监 - 志 - 绿 - 醒 - 急 - 驾 - 违 - 诉 - 片 - 空 - 势 - 极 - 豆 - 独 - 钟 - 代 - 瓶 - 纸 - 并 - 企 - 映 - 统 - 属 - 省 - 夜 - 障 - 谈 - 避 - 由 - 终 - 频 - 掉 - 估 - 激 - 仅 - 布 - 谢 - 灭 - 忙 - 码 - 伙 - 缺 - 叶 - 功 - 析 - 赖 - 架 - 范 - 签 - D - 待 - 神 - 龄 - 画 - 券 - 居 - 杜 - 堵 - 您 - 勤 - 扫 - 技 - 财 - 隐 - 患 - 例 - 乘 - 摩 - 戏 - 鼓 - 份 - 杂 - 散 - 热 - 铺 - 据 - 肤 - 怕 - 依 - 拖 - 充 - 智 - 偷 - 远 - 挂 - 盗 - 附 - 梯 - 冰 - 联 - 借 - 蹭 - 异 - 蔬 - 绑 - 堂 - 将 - 厨 - 帽 - 破 - 戴 - 皮 - 粉 - 氛 - 仪 - 国 - 益 - 闯 - 惩 - 逃 - 刻 - 突 - 申 - 略 - 顿 - 毛 - 召 - 海 - 黄 - 青 - 士 - 移 - 喝 - 板 - 练 - 歌 - 千 - 床 - 享 - 磨 - 构 - 收 - 万 - 摸 - 圈 - 亮 - 刹 - 逆 - 驶 - 赶 - 松 - 呐 - 压 - 拥 - 辅 - 协 - 托 - 断 - 轮 - 善 - 哈 - 捆 - 座 - 病 - 健 - 牛 - 草 - 释 - 似 - 土 - 补 - 俩 - 堆 - 即 - 密 - 背 - 言 - 街 - 尚 - 窗 - C - 艺 - 纠 - 纷 - 忽 - 句 - 另 - 施 - 政 - 温 - 某 - 翻 - 章 - 守 - 熟 - 民 - 续 - 良 - 挤 - 础 - 字 - 瓜 - 乎 - 竞 - 距 - 际 - 暖 - 凭 - 董 - 碗 - 短 - 渠 - 康 - 藏 - 香 - 虽 - 露 - 厉 - 忘 - 误 - 冒 - 窃 - 络 - 淡 - 腐 - 颜 - 播 - 默 - 锻 - 炼 - 宝 - 组 - 淘 - 则 - 逻 - 垃 - 圾 - 复 - 贴 - 靠 - 潜 - 察 - 晨 - 碰 - 剩 - 峰 - 深 - 偏 - 虑 - 念 - 初 - 闹 - 幸 - 跳 - 米 - 旧 - 蛤 - 虾 - 汽 - 苦 - 螃 - 蟹 - 冲 - 固 - 隔 - 懂 - 卷 - 镜 - 罩 - 暴 - 闭 - 野 - 玻 - 璃 - 义 - B - 煤 - 富 - 踩 - 途 - 闲 - 紫 - 北 - 欲 - 曲 - 榜 - 垒 - 伴 - 累 - 判 - 搜 - 困 - 租 - 键 - 肥 - 社 - 弯 - 角 - 纪 - 律 - 详 - 右 - 刮 - 继 - 撤 - 输 - 普 - 未 - 稳 - 摔 - 访 - 扩 - 扣 - 末 - 票 - 承 - 担 - 丢 - 涉 - 欠 - 创 - 获 - 摊 - 疑 - 蓝 - 答 - 霜 - 录 - 齐 - 烦 - 治 - 粗 - 叛 - 污 - 址 - 若 - 染 - 含 - 药 - 雨 - 此 - 陌 - 研 - 催 - 拨 - 页 - 磕 - 呆 - 脸 - 墙 - 夫 - A - 棉 - 袜 - 填 - 死 - 懒 - 植 - 扇 - 捡 - 遍 - 操 - 摄 - 箱 - ? - 繁 - 城 - 咯 - 左 - 拐 - 悉 - 犯 - 宽 - 伞 - 余 - 糊 - 巧 - 透 - 贪 - 顺 - 局 - 妇 - 私 - 浪 - 岗 - 棋 - 序 - 辛 - V - 握 - 擦 - 扔 - 斤 - 付 - 剐 - 锁 - 麻 - 敢 - 桶 - 佩 - 坠 - 封 - 替 - 塞 - 斗 - 攀 - 爽 - 沉 - 混 - 滋 - 刺 - 潮 - 皿 - 端 - 刷 - 刀 - 巾 - 烫 - 木 - 漏 - 迅 - 织 - 救 - 吹 - 仔 - 称 - 返 - 景 - 聚 - 阶 - 秀 - 涨 - P - 颈 - 肩 - 泥 - I - 侣 - 尔 - 伍 - 甚 - 皂 - 蒙 - 世 - 界 - 嘻 - 辈 - Q - 审 - 尾 - 浇 - 遛 - 馨 - 措 - 邻 - 撒 - 挥 - 遵 - 予 - 击 - 鉴 - 殊 - 哇 - 载 - 添 - 盈 - 盯 - 惊 - 喷 - 荷 - 怠 - 抢 - 喂 - 饱 - 谅 - 团 - 龙 - 冻 - 图 - 掺 - 扑 - 刊 - 葱 - 薄 - 萝 - 卜 - 麦 - 苹 - 触 - 飞 - 艳 - 畅 - 鸡 - 权 - 趟 - 连 - 哭 - 旁 - 漂 - 焊 - 敞 - 叉 - 钢 - 氧 - 溺 - 聊 - 巢 - 衡 - 淀 - 劣 - 虫 - 符 - 均 - 辨 - 菌 - 彻 - 烂 - 厅 - 皱 - 妥 - 拾 - 插 - 携 - 竹 - 碍 - 湿 - 灵 - 忌 - 旅 - 勿 - 宿 - 迷 - 探 - 春 - 劵 - 星 - 耐 - 裤 - 颖 - 韩 - 艾 - 灸 - 邀 - 婚 - 乳 - 芽 - 挑 - 摘 - 阿 - 姨 - 伊 - 慕 - 纯 - 貌 - 嘴 - 偶 - 睛 - 献 - 坚 - 账 - 典 - 唱 - L - E - 贡 - 寒 - 唧 - Y - 尝 - 抹 - 汰 - 腾 - 哼 - 仿 - 英 - 舒 - 扰 - 拒 - 剪 - 夏 - 宠 - 咬 - 派 - 委 - 婉 - 执 - 呗 - 悄 - 搬 - 雪 - 盐 - 暂 - 奸 - 耍 - 僻 - 却 - 署 - 寻 - 串 - 援 - 亏 - 烈 - 印 - 捎 - 幅 - 绘 - 锈 - 闸 - 罪 - 嫌 - 俗 - 歹 - 劳 - 兜 - 喽 - 谓 - 鹤 - 舍 - 克 - 徇 - 倍 - 敏 - 丝 - 纺 - 拭 - 融 - 蔫 - 掂 - 测 - T - 众 - 卸 - 暗 - 赔 - 偿 - 举 - 劲 - 篮 - 储 - 乙 - 炔 - 软 - 侵 - 诱 - 浊 - 蚀 - 秽 - 炸 - 泽 - 闻 - 鼻 - 甜 - 澈 - 脏 - 官 - 凝 - 芳 - 灰 - 卵 - 农 - 烧 - 肉 - 桌 - 椅 - 垫 - 硬 - 叠 - 瓷 - 碎 - 柄 - 屉 - 拳 - 撞 - 铝 - 歇 - 遗 - 炮 - 掌 - 妨 - 静 - 浸 - 涂 - 凉 - 炫 - 耀 - 姓 - 究 - 奏 - 缆 - 脚 - 酿 - 抄 - 慌 - 戚 - 燥 - 毯 - 挽 - 诺 - 济 - 旺 - 抖 - 郊 - 疗 - 巴 - 痧 - 脊 - 膜 - 晒 - 润 - 掏 - 笔 - 鞭 - 博 - 捧 - 函 - 胡 - 锅 - 雾 - 疯 - 狂 - 趋 - 膏 - 妆 - 尘 - 袋 - 贝 - 俺 - 耽 - 怀 - 恐 - 赋 - 脑 - 焉 - 愣 - 呵 - 噼 - 啪 - 虚 - 河 - 归 - 绊 - 械 - 扬 - 筒 - 靴 - 束 - 彩 - 荐 - 沙 - 迎 - 荡 - 凌 - 昂 - 碑 - 蹦 - 扉 - 泼 - 丰 - 滴 - 沾 - 亭 - 粘 - 奇 - 饼 - 牙 - 娃 - 杯 - 踢 - 嘿 - 抛 - 枯 - 剔 - 苗 - 纹 - 永 - 津 - 唉 - 趁 - 屡 - 逮 - 戒 - 肃 - 仁 - 肇 - 醉 - 糟 - 馈 - 横 - 扭 - 盔 - 侧 - 鲁 - 莽 - 飙 - 稿 - 逐 - 谋 - 京 - 苏 - 宁 - 驻 - 咨 - 旷 - 拓 - 杆 - 秤 - 叮 - 嘱 - 咋 - 炊 - 怪 - 婆 - 阎 - 王 - 饿 - 鬼 - 惨 - 渡 - 坎 - 囤 - 甲 - 蛙 - 鲤 - 桂 - 石 - 玉 - 溪 - 华 - 窝 - 截 - 秩 - 嗨 - 芹 - 梨 - 蕉 - S - 煲 - 汤 - 鲫 - 揽 - 挡 - 柚 - 瑞 - 匹 - '2' - 踹 - 吵 - 凶 - 矩 - 迟 - 脾 - 纳 - 朵 - 墨 - 袖 - 链 - 钩 - 笼 - 熄 - 盆 - 殴 - 欺 - 诈 - 厕 - 娱 - 爬 - 威 - 胁 - 阅 - 赌 - 拢 - 症 - 伪 - 脂 - 堪 - 盛 - 蚊 - 蝇 - 煎 - 晰 - 柔 - 涩 - 汁 - 腹 - 胃 - 痉 - 挛 - 颗 - 粒 - 匀 - 败 - 历 - 佳 - 乏 - 寄 - 残 - 杀 - 剂 - 疾 - 衍 - 溅 - 倘 - 褶 - 席 - 启 - 遮 - 槽 - 递 - 橱 - 迹 - 镁 - 泄 - 阀 - 柴 - 阻 - 恋 - 盲 - 浓 - 捂 - 腰 - 姿 - 缝 - 肿 - 焦 - 骗 - 伺 - 嘘 - 掩 - 褥 - 帘 - 籍 - 锥 - 锋 - 尖 - 锐 - 祸 - 秒 - 李 - 伸 - 浏 - 览 - 航 - 讯 - 谨 - 慎 - 匪 - 劫 - 医 - 族 - 忧 - 孤 - 拜 - 窄 - 唯 - 搁 - 朝 - 尺 - 盟 - 波 - 隆 - 词 - 村 - 娶 - 媳 - 县 - 聘 - 醇 - 泡 - 坨 - 淋 - 延 - 柱 - 肾 - 蒸 - 槛 - 赚 - 凡 - 恩 - 厚 - 赞 - 茎 - 蒜 - 苔 - 甘 - 菠 - 涮 - 霾 - 仍 - 云 - 追 - 丽 - 盖 - 欧 - 莱 - 雅 - 婴 - 孕 - 敲 - 约 - 惰 - 谱 - 射 - 惑 - 睹 - 奉 - 诚 - 惶 - 卓 - 勉 - 聪 - 疼 - 弃 - 奴 - 隶 - 嚷 - 眠 - 躺 - 乒 - 乓 - 琴 - 挖 - 掘 - 阵 - 浆 - 索 - 呼 - 古 - 弥 - 熔 - 抱 - 怨 - 猫 - 笑 - 挣 - 黑 - 猛 - 令 - 核 - 磊 - 橙 - 吨 - 吊 - 蘸 - 氮 - 罐 - 战 - 懈 - 渐 - 胜 - 命 - 抬 - 缘 - 睦 - 扮 - 珠 - 颁 - 蔼 - 凳 - 饰 - 缤 - 晶 - 抵 - 遥 - 腿 - 拍 - 妻 - 羽 - 绒 - 梳 - 袄 - 述 - 跆 - 屈 - 脱 - 朗 - 劝 - 胆 - 腔 - 圆 - 亚 - 宴 - 编 - 肢 - 壶 - 暑 - 怒 - 描 - 绕 - 悦 - 忆 - 嗓 - 胖 - 疙 - 瘩 - 哒 - 碴 - 棱 - 炒 - 井 - 漫 - 烘 - 焙 - 涤 - 船 - 纱 - 君 - 茉 - 莉 - 钙 - 瞩 - <_> - 塌 - 嗷 - 屁 - 股 - 绪 - 勇 - 奋 - 荣 - 诲 - 卑 - 挫 - 昧 - 疲 - 惫 - 册 - 呈 - 僵 - 熬 - 敬 - 呦 - <sos/eos> init: null model_conf: ignore_id: 0 use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: /ocean/projects/cis210027p/berrebbi/espnet/egs2/aishell4/asr1/data/nlsyms.txt cleaner: null g2p: null lm: transformer lm_conf: pos_enc: null embed_unit: 128 att_unit: 512 head: 8 unit: 2048 layer: 16 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a1 distributed: false ``` </details>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["aishell4"]}
espnet/Dan_Berrebbi_aishell4_asr
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell4", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #espnet #audio #automatic-speech-recognition #zh #dataset-aishell4 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'Dan\_Berrebbi\_aishell4\_asr' This model was trained by dan\_berrebbi using aishell4 recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Tue Sep 21 09:36:01 EDT 2021' * python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]' * espnet version: 'espnet 0.10.3a1' * pytorch version: 'pytorch 1.9.0' * Git hash: '7887faeabbc2299922267928e190ed89cb032a36' + Commit date: 'Mon Sep 20 16:25:02 2021 -0400' asr\_fine\_tune5\_100ep ----------------------- ### WER ### CER ### TER ASR config ---------- expand ## LM config expand
[ "### 'Dan\\_Berrebbi\\_aishell4\\_asr'\n\n\nThis model was trained by dan\\_berrebbi using aishell4 recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Sep 21 09:36:01 EDT 2021'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.3a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: '7887faeabbc2299922267928e190ed89cb032a36'\n\t+ Commit date: 'Mon Sep 20 16:25:02 2021 -0400'\n\n\nasr\\_fine\\_tune5\\_100ep\n-----------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "## LM config\nexpand" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #zh #dataset-aishell4 #license-cc-by-4.0 #region-us \n", "### 'Dan\\_Berrebbi\\_aishell4\\_asr'\n\n\nThis model was trained by dan\\_berrebbi using aishell4 recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Sep 21 09:36:01 EDT 2021'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.3a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: '7887faeabbc2299922267928e190ed89cb032a36'\n\t+ Commit date: 'Mon Sep 20 16:25:02 2021 -0400'\n\n\nasr\\_fine\\_tune5\\_100ep\n-----------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "## LM config\nexpand" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Emiru_Tsunoo/aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4604023/ This model was trained by Emiru Tsunoo using aishell/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["aishell"]}
espnet/Emiru_Tsunoo_aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "zh" ]
TAGS #espnet #audio #automatic-speech-recognition #zh #dataset-aishell #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Emiru_Tsunoo/aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.URL' ️ Imported from URL This model was trained by Emiru Tsunoo using aishell/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Emiru_Tsunoo/aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Emiru Tsunoo using aishell/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #zh #dataset-aishell #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Emiru_Tsunoo/aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Emiru Tsunoo using aishell/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Hoon_Chung/jsut_asr_train_asr_conformer8_raw_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4292742/ This model was trained by Hoon Chung using jsut/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["jsut"]}
espnet/Hoon_Chung_jsut_asr_train_asr_conformer8_raw_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "ja" ]
TAGS #espnet #audio #automatic-speech-recognition #ja #dataset-jsut #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Hoon_Chung/jsut_asr_train_asr_conformer8_raw_char_sp_valid.URL' ️ Imported from URL This model was trained by Hoon Chung using jsut/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Hoon_Chung/jsut_asr_train_asr_conformer8_raw_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Hoon Chung using jsut/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #ja #dataset-jsut #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Hoon_Chung/jsut_asr_train_asr_conformer8_raw_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Hoon Chung using jsut/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Hoon_Chung/zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4014588/ This model was trained by Hoon Chung using zeroth_korean/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "kr", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["zeroth_korean"]}
espnet/Hoon_Chung_zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "kr", "dataset:zeroth_korean", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "kr" ]
TAGS #espnet #audio #automatic-speech-recognition #kr #dataset-zeroth_korean #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Hoon_Chung/zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.URL' ️ Imported from URL This model was trained by Hoon Chung using zeroth_korean/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Hoon_Chung/zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.URL'\n️ Imported from URL\n\nThis model was trained by Hoon Chung using zeroth_korean/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #kr #dataset-zeroth_korean #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Hoon_Chung/zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.URL'\n️ Imported from URL\n\nThis model was trained by Hoon Chung using zeroth_korean/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/) ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["sinhala"]}
espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer
null
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #tensorboard #audio #automatic-speech-recognition #en #dataset-sinhala #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer' This model was trained by Karthik using DSTC2/asr1 recipe in espnet ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer'\n\nThis model was trained by Karthik using DSTC2/asr1 recipe in espnet", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #tensorboard #audio #automatic-speech-recognition #en #dataset-sinhala #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer'\n\nThis model was trained by Karthik using DSTC2/asr1 recipe in espnet", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_transformer` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["sinhala"]}
espnet/Karthik_DSTC2_asr_train_asr_transformer
null
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #tensorboard #audio #automatic-speech-recognition #en #dataset-sinhala #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'espnet/Karthik_DSTC2_asr_train_asr_transformer' This model was trained by Karthik using DSTC2/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'espnet/Karthik_DSTC2_asr_train_asr_transformer'\n\nThis model was trained by Karthik using DSTC2/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #tensorboard #audio #automatic-speech-recognition #en #dataset-sinhala #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'espnet/Karthik_DSTC2_asr_train_asr_transformer'\n\nThis model was trained by Karthik using DSTC2/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `espnet/Karthik_sinhala_asr_train_asr_transformer` This model was trained by Karthik using sinhala/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["sinhala"]}
espnet/Karthik_sinhala_asr_train_asr_transformer
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-sinhala #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'espnet/Karthik_sinhala_asr_train_asr_transformer' This model was trained by Karthik using sinhala/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'espnet/Karthik_sinhala_asr_train_asr_transformer'\n\nThis model was trained by Karthik using sinhala/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-sinhala #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'espnet/Karthik_sinhala_asr_train_asr_transformer'\n\nThis model was trained by Karthik using sinhala/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4304245/ This model was trained by Shinji Watanabe using laborotv/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["laborotv"]}
espnet/Shinji_Watanabe_laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "ja", "dataset:laborotv", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "ja" ]
TAGS #espnet #audio #automatic-speech-recognition #ja #dataset-laborotv #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Shinji_Watanabe/laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using laborotv/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using laborotv/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #ja #dataset-laborotv #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using laborotv/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best` ♻️ Imported from https://zenodo.org/record/4030677/ This model was trained by Shinji Watanabe using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/Shinji_Watanabe_librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Shinji_Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using librispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `Shinji Watanabe/open_li52_asr_train_asr_raw_bpe7000_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4630406/ This model was trained by Shinji Watanabe using gigaspeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["gigaspeech"]}
espnet/Shinji_Watanabe_open_li52_asr_train_asr_raw_bpe7000_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:gigaspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-gigaspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'Shinji Watanabe/open_li52_asr_train_asr_raw_bpe7000_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using gigaspeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'Shinji Watanabe/open_li52_asr_train_asr_raw_bpe7000_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using gigaspeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-gigaspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'Shinji Watanabe/open_li52_asr_train_asr_raw_bpe7000_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using gigaspeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4585546/ This model was trained by Shinji Watanabe using spgispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["spgispeech"]}
espnet/Shinji_Watanabe_spgispeech_asr_train_asr_conformer6_n_fft512_hop_lengt-truncated-f1ac86
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:spgispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-spgispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using spgispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using spgispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-spgispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using spgispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4585558/ This model was trained by Shinji Watanabe using spgispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en_unnorm", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["spgispeech"]}
espnet/Shinji_Watanabe_spgispeech_asr_train_asr_conformer6_n_fft512_hop_lengt-truncated-a013d0
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:spgispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en_unnorm" ]
TAGS #espnet #audio #automatic-speech-recognition #dataset-spgispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000_valid.URL' ️ Imported from URL This model was trained by Shinji Watanabe using spgispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using spgispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #dataset-spgispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000_valid.URL'\n️ Imported from URL\n\nThis model was trained by Shinji Watanabe using spgispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
audio-to-audio
espnet
## ESPnet2 ENH model ### `espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw` This model was trained by Wangyou Zhang using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/chime4/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw ``` ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_beamformer_mvdr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_beamformer_mvdr_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 35841 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 70 patience: 4 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape - exp/enh_stats_16k/train/noise_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape - exp/enh_stats_16k/valid/noise_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/tr05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dt05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/dt05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 init: xavier_uniform model_conf: loss_type: mask_mse mask_type: PSM^2 use_preprocessor: false encoder: stft encoder_conf: n_fft: 512 hop_length: 128 separator: wpe_beamformer separator_conf: num_spk: 1 loss_type: mask_mse use_wpe: false wnet_type: blstmp wlayers: 3 wunits: 300 wprojs: 320 wdropout_rate: 0.0 taps: 5 delay: 3 use_dnn_mask_for_wpe: true use_beamformer: true bnet_type: blstmp blayers: 3 bunits: 512 bprojs: 512 badim: 320 ref_channel: 3 use_noise_mask: true beamformer_type: mvdr_souden bdropout_rate: 0.0 decoder: stft decoder_conf: n_fft: 512 hop_length: 128 required: - output_dir version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, booktitle={Proc. IEEE Spoken Language Technology Workshop (SLT)}, pages={785--792}, year={2021}, } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, year={2020}, eprint={2011.03706}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
{"license": "cc-by-4.0", "tags": ["espnet", "audio", "audio-to-audio"], "datasets": ["chime4"]}
espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw
null
[ "espnet", "audio", "audio-to-audio", "dataset:chime4", "arxiv:1804.00015", "arxiv:2011.03706", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015", "2011.03706" ]
[]
TAGS #espnet #audio #audio-to-audio #dataset-chime4 #arxiv-1804.00015 #arxiv-2011.03706 #license-cc-by-4.0 #region-us
## ESPnet2 ENH model ### 'espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw' This model was trained by Wangyou Zhang using chime4 recipe in espnet. ### Demo: How to use in ESPnet2 ## ENH config <details><summary>expand</summary> </details> ### Citing ESPnet or arXiv:
[ "## ESPnet2 ENH model", "### 'espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw'\n\nThis model was trained by Wangyou Zhang using chime4 recipe in espnet.", "### Demo: How to use in ESPnet2", "## ENH config\n\n<details><summary>expand</summary>\n\n\n\n</details>", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #audio-to-audio #dataset-chime4 #arxiv-1804.00015 #arxiv-2011.03706 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ENH model", "### 'espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw'\n\nThis model was trained by Wangyou Zhang using chime4 recipe in espnet.", "### Demo: How to use in ESPnet2", "## ENH config\n\n<details><summary>expand</summary>\n\n\n\n</details>", "### Citing ESPnet\n\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer` This model was trained by Yushi Ueda using iemocap recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout dfa2868243a897c2a6c34b7407eaea5e4b5508a5 pip install -e . cd egs2/iemocap/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Feb 17 11:25:22 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `f6cde1c419c814a14ccd40abe557a780508cbcdf` - Commit date: `Fri Feb 11 12:25:33 2022 -0500` ## Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with sentiment - ASR config: [conf/tuning/train_asr_conformer.yaml](conf/tuning/train_asr_conformer.yaml) - token_type: word - labels: Positive, Neutral, Negative |dataset|Snt|Intent Classification Macro F1 (%)| Weighted F1 (%)| Micro F1 (%)| |---|---|---|---|---| |decode_asr_model_valid.acc.ave_10best/valid|754|53.9|65.7|66.4| |decode_asr_model_valid.acc.ave_10best/test|1650|50.3|54.5|55.7| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 5000 token_list: - <blank> - <unk> - i - you - Negative - to - it - '''s' - the - '''t' - that - and - Neutral - Positive - a - know - what - of - like - we - don - just - is - do - this - '''m' - me - have - can - in - for - 'no' - so - not - '''re' - my - but - mean - be - going - all - was - they - well - want - yeah - right - get - 'on' - there - he - oh - here - go - out - with - your - if - okay - are - she - at - '''ll' - '''ve' - got - think - about - up - see - then - why - how - time - really - one - now - or - as - back - look - her - him - been - because - 'yes' - would - didn - little - did - good - some - them - something - need - maybe - never - um - come - take - god - had - could - will - uh - am - people - thing - when - very - let - much - sorry - from - again - long - give - anything - too - make - fish - years - where - isn - three - said - things - nothing - help - work - tell - guess - over - 'off' - business - even - sir - any - his - around - were - way - who - new - kind - '''d' - our - everything - more - came - an - should - down - understand - only - great - else - man - line - us - ask - last - doing - say - waiting - other - lot - job - feel - yourself - point - thought - day - whole - away - coming - better - marry - always - these - still - wrong - two - sure - care - phone - probably - remember - annie - life - year - believe - gonna - supposed - went - first - talk - listen - alright - before - thinking - after - stuff - happy - ever - turn - thank - home - fine - into - than - call - money - stay - actually - every - hope - love - huh - married - wait - somewhere - has - being - father - larry - hell - wanted - trying - getting - guys - name - saying - bag - hear - girl - hey - flashlight - beach - put - leave - dollars - mind - augie - does - won - fifty - excited - hate - four - done - through - their - keep - car - lost - doesn - happen - wouldn - school - big - calm - night - '''cause' - id - another - though - myself - nobody - somebody - best - might - same - form - mom - nice - matter - spot - stop - told - by - shut - enough - five - joe - hard - find - course - chris - drunk - snap - luggage - rather - standing - someone - laugh - took - those - please - live - six - ridiculous - minute - looking - bring - show - start - brought - days - must - pretty - sort - talking - sand - child - working - send - next - hundred - whatever - many - moon - moment - champagne - s - problem - end - real - dear - happened - person - place - fill - awesome - house - such - cool - c - haven - knew - die - finally - glasses - stupid - least - dad - supervisor - totally - each - try - waited - idea - u - party - asked - anymore - sick - evening - license - kid - wow - flight - felt - pay - since - single - miss - without - different - mmhmm - free - sometimes - yet - couldn - view - hour - knows - drive - themselves - swim - ah - brandy - fact - ma - '''am' - already - part - sit - thanks - comes - check - everyone - started - kiss - weren - hotel - own - beast - bad - above - run - worst - grunions - darling - seem - baby - turned - gone - shouldn - exactly - reason - full - both - crazy - pack - bit - swimming - liquor - seemed - serious - cause - peter - burden - gosh - forgot - happens - alone - pass - letters - heard - manager - hours - baggage - card - number - argue - seen - walk - forget - kids - family - blanket - honey - open - quite - gotta - forms - mother - old - needs - times - airline - which - once - service - week - together - twenty - stand - made - fun - dead - sake - men - kate - today - plane - most - carla - driving - deal - information - wanna - definitely - while - yea - certificate - particular - lots - calling - fortune - write - entire - found - trouble - use - forever - woman - enjoy - room - damn - war - meaning - longer - jacket - ticket - twice - sent - wonder - small - amanda - cannot - able - half - ha - saw - bus - ago - hmm - hi - kidding - giving - gave - move - women - ahead - york - guy - suppose - company - incredible - either - minutes - tonight - shoes - utterly - wasn - filled - gets - amazing - beautiful - hello - birth - prove - choice - friend - expect - says - blue - anywhere - died - weird - umm - blood - d - face - body - alive - diagram - goes - read - far - race - wind - fly - interested - california - coast - news - past - charles - floor - idiotic - indeed - absolutely - softball - answer - somehow - having - campus - completely - file - everybody - given - fair - front - telling - tried - sign - helping - dollar - used - takes - hair - behind - head - also - question - pull - brother - nonsense - kill - pocket - cold - mine - watching - shall - divorce - driver - m - makes - cried - security - suitcase - seems - control - set - letter - realized - paper - weeks - address - sweet - lose - huge - death - ones - living - glad - bed - until - thinks - wedding - pieces - parents - ready - almost - forgive - kissed - silver - during - forty - lives - grow - arrive - eyes - putting - quiet - poor - presents - sting - tired - row - anyhow - window - v - thousand - watch - ashamed - figure - vacation - application - left - certainly - calls - months - student - close - helpful - called - welcome - major - match - morning - fit - reach - door - wife - faith - noticed - several - killed - accident - rat - flop - hands - ear - dancing - hairs - bugging - dinner - bills - worked - bored - conversation - tunis - overbearing - grand - nine - amusing - vile - tempered - obviously - tomorrow - taken - eight - venice - worth - boy - realize - midnight - evil - sixteen - gotten - paying - bottle - smart - cindy - excuse - along - seven - children - figured - jobs - joke - charge - memorial - sitting - hardly - young - story - feels - pronouncing - insane - forgotten - fast - inspire - grub - tough - arguing - air - toss - instance - raining - pair - dry - socks - selfish - included - yours - mystery - mindedness - urgency - pure - urge - insulting - ideas - herself - period - missed - backwards - dance - worms - pop - except - perfect - blow - funny - listening - sadistic - bully - cruel - 'true' - second - acting - lucky - handle - loved - hit - shaking - destroyed - changed - book - eleven - animals - ice - cream - brings - frustrating - otherwise - onto - pregnant - operator - baltimore - san - diego - contract - brown - friends - pictures - internet - piece - high - anyone - tickets - inconvenience - gift - usually - green - city - couple - chuck - growing - pick - throw - yay - walking - grave - considerate - inspired - looked - mistake - believes - avoid - sucker - rock - strangers - missing - hide - geez - imagination - overseas - command - earth - monument - difference - zipped - kansas - reservations - ahh - formed - barefoot - shower - running - garage - knickerbocker - locker - wasting - roses - peaches - rosy - mention - shh - behave - exquisitely - beautifully - rolling - biting - scratching - panthers - suddenly - ought - dreadfully - pity - eye - world - making - bark - roll - hoops - insufferable - weak - upstairs - insist - boorish - conceited - impossible - torment - brute - perfectly - wicked - crawling - top - wish - wants - bank - plan - soon - plenty - bags - congratulations - play - carry - ignore - sudden - refrigerator - loot - fight - lights - swallows - goose - bumps - keeps - fighting - massive - celebration - sex - human - ours - light - minded - social - needed - anyway - words - problems - claim - reimburse - checked - airport - meet - e - responsibility - grunion - knees - thousands - important - shows - goddamn - strong - law - sara - brent - passport - aren - month - romantic - leaving - random - applied - interesting - regular - taking - harder - hurt - movie - freaking - record - airlines - responsible - honestly - grew - proud - hang - mrs - fellow - terrible - contradict - infuriate - throws - afraid - suffer - bloody - settled - thrash - may - son - faithful - moments - act - sleep - detroit - planning - yard - particularly - natural - phenomenon - highlight - flopping - laying - eggs - mating - orgy - magic - unexplainable - instincts - seaweed - instinctual - firecracker - spent - clasped - intimate - special - wishes - seriously - refreshments - ooh - pinpoint - marge - dishes - fat - ring - later - shivers - spine - sillier - poise - trumpets - squeakers - sockets - allure - contrary - violently - glass - temperamental - fiend - loathe - adder - riotous - mentioned - intemperate - tots - downstairs - mad - loose - lived - yelling - happening - promise - known - exciting - finish - college - atlanta - searching - fired - drinking - jesus - lock - plans - hole - santa - kitchen - invite - believing - ann - landing - eats - panties - sore - throat - unmistakable - capistrano - lemmings - cliffs - invitation - map - heaven - carpet - poodle - suicide - pact - turns - court - dies - mustn - vampire - identification - places - danger - hand - middle - situation - option - willing - paid - horrible - pain - anybody - paperwork - difficult - dream - sakes - matters - toes - become - habit - hold - survive - break - babe - shit - contact - land - water - transfer - backersen - desk - wallet - stolen - credit - cards - clearly - appreciate - complicated - uhuh - bucks - win - theatre - resume - riding - helps - less - planes - means - future - ran - red - wrote - loans - spend - dreaming - proof - shooting - crack - cracked - dares - invited - breaks - embarrassed - wondering - aw - style - granted - embarrassing - mixed - su - spawning - stubbed - toe - bodies - expectantly - meant - beginning - traumatized - freda - sooner - applies - philosophers - rots - trivial - torture - stiff - venom - fangs - wake - bended - voice - build - unbelievable - hiring - resumes - eventually - aggressive - awhile - especially - further - mass - pointless - claus - neither - mmm - cannes - figures - burnt - debate - exception - busy - safe - possible - spring - starting - buy - rest - office - complaint - accepted - ten - area - seats - foam - vibrations - drives - popped - slightly - exaggerated - scientific - proposed - bathroom - awful - scene - adders - afford - packet - forward - customer - brand - yellow - fifteen - brian - asking - percent - girlfriend - acceptance - patient - patience - dishonest - cheese - restaurant - t - sixty - direct - holiday - inn - refund - hmmm - receiving - sim - browns - unacceptable - northwest - dorky - putt - change - filling - z - x - simple - mail - request - raise - town - hadn - played - pennies - visa - visit - loves - list - environment - frustrated - ride - imagine - flew - nash - replace - paris - personal - issue - flights - track - angry - headstone - cemetery - cancer - poetry - palm - l - dropped - bunch - p - chair - broke - o - allow - nights - talent - ignoring - center - lovely - sneaking - whose - es - naturally - stays - wide - bought - arm - exact - curtsy - wiggle - superficial - paint - naked - vendome - rouser - younger - jealous - fascinating - duty - photographer - studio - cad - restraint - ill - knee - applying - questions - picture - fake - apartment - cash - drink - upset - sending - flying - speak - details - wherever - unfortunate - education - leaves - basically - hospital - messed - sounds - pinch - malibu - drop - team - professional - till - ambiguous - seeing - ugh - wet - heading - release - fire - inside - pr - includes - rub - ludicrous - wriggle - flippancy - acid - sweetness - curling - dressing - gown - broach - enjoyable - original - '''em' - early - ok - daughter - age - steps - rejected - starts - competitive - hired - worse - itself - nowhere - unfortunately - process - fault - decision - package - easy - transferred - straight - suckers - none - returning - throwing - cork - softest - breathe - road - catch - threw - canal - comb - towels - sacred - savor - delight - needn - late - web - website - rough - daddy - talked - feeling - talented - interview - food - looks - misplaced - theft - likely - stuck - tags - cult - everywhere - menu - choose - press - lady - bill - department - online - immediately - miles - notice - vote - heavens - yell - anna - tables - hasn - stole - losing - unfair - positive - boston - celebrate - system - turning - newspapers - pays - dare - jokes - swine - demand - building - finished - staying - cheap - anyways - okey - lobster - wonderful - harvard - engineering - summer - lawyer - mr - lax - delta - funeral - report - property - whoever - corporate - miso - soup - holy - olivia - camera - power - sold - testing - greens - explain - agreement - undecided - access - babies - street - vegas - slot - honeymoon - husband - penny - slots - wheel - cat - citizenship - england - fan - spending - craig - services - monster - baloney - saving - necessarily - carousel - cameras - airplane - sentimental - value - incredibly - shopping - jet - clothes - apologize - allowed - amount - candy - redlands - sprinklers - whenever - brain - park - holding - memorized - surgery - audience - joy - scholarships - commuting - h - ruined - mm - bet - neighborhood - sticking - woo - teach - class - confused - clock - foolish - ocean - distinctly - whispered - wishing - white - elliott - strange - quest - ultimate - truth - shan - word - disagreeable - wench - birthday - national - thin - rent - colors - citizen - account - '''til' - hire - short - fuse - america - audition - sponge - language - arriving - reimbursement - computer - cover - ass - dealing - quick - freaks - pitch - hitting - housing - force - scholarship - dirty - depends - helicopter - wild - sport - games - streets - although - mi - trust - cracker - curtsey - bicker - irons - besides - splendid - born - weekends - letting - tear - apart - touch - flipped - hot - outside - flowers - candles - approve - surprised - lead - ends - worthless - apparently - worker - annoy - belongings - disappeared - under - case - checking - admit - risk - agreed - yesterday - country - financial - aid - within - automated - systems - specific - rate - star - aisle - afternoon - maui - machine - waste - available - confirmed - thinkin - liked - kicked - intermittently - burned - desire - fade - passion - laughable - cunning - mirrors - painted - wooden - snake - suspicious - nosey - silly - wonders - order - standard - site - sense - dangerous - cute - whether - considering - opinion - f - few - guarantee - possessions - claims - sue - easier - cared - expected - trip - europe - its - circles - large - store - macy - rotary - instead - showed - hundreds - planned - someplace - sensitive - popping - opened - backrub - fantasy - damned - sheet - cut - purchase - amy - quit - clapping - onstage - eighteen - auditioning - rejection - prepared - thirty - master - kelly - natalie - pants - isabella - verizon - goodbye - fucking - challenge - slept - created - checkbook - argument - uhh - perhaps - loath - complete - sad - priorities - between - moving - song - temporary - pulling - smith - receptionist - extra - lodging - eh - la - cost - boss - peanuts - doctor - production - downtown - april - contracts - incompetent - realtor - fix - payphone - verify - electrical - outage - symptoms - nature - pilot - hook - realizes - bother - trade - event - meadow - faint - blues - bananas - overnight - station - attention - purchasing - terms - taser - excellent - counsel - sorority - golfing - library - dork - taco - branch - separate - sacrifices - mothers - kicking - videotape - stream - sitters - moved - computers - machines - bride - cruise - likes - tabs - plays - giant - renamed - brenda - lumber - janet - state - quarters - costs - escort - reliable - board - posting - trail - following - fantastic - mighty - recommending - generally - outline - affords - save - carpool - frustration - refuse - anger - fourth - lines - fourteen - mileage - candid - packed - replaced - expensive - lawsuit - cruising - bruising - president - mistakenly - behalf - listed - liable - held - sean - badge - employee - impression - cemeteries - urban - oasis - wandering - hers - pathetic - ground - stones - tumors - heather - built - prospect - garden - section - parties - feet - poems - curly - tree - crown - john - dunn - begin - wheelchair - reciting - envelope - grants - mold - minds - mess - rapper - ho - masters - teacher - dash - popular - seasoning - messing - ruin - woke - darkest - beating - bush - porch - fresh - rooms - sweetest - pets - cheeked - brooch - however - jones - voices - berating - christmas - shame - bunker - guard - spread - companies - shipping - shock - group - dual - unattached - engagement - sock - dude - lucked - blush - beige - loaded - craziest - offered - spoke - english - accent - illegal - jail - caught - hardcore - tropical - bahamas - tahiti - wealthy - royalty - removed - attitude - extremely - hostile - cutting - sentence - jumping - produce - field - shake - across - soaked - dying - georgia - educated - boarding - attendance - seat - offer - publicize - abuse - insinuating - smug - mouth - tossing - hanky - black - wheels - easily - overhead - compartment - data - collecting - lip - coffee - smoking - cigarettes - union - differently - numb - sickness - boom - mortality - affecting - slow - books - per - diem - victorian - houses - west - sider - commute - practice - neon - softballs - glow - co - ed - nationally - ranked - ping - pong - denigrate - rookie - donuts - recently - pitcher - hitter - mostly - shortstop - ex - trojans - sports - nicer - monica - player - type - helipad - fell - literally - doubt - cares - mustache - papers - crying - floorboards - sorted - everyday - seas - bringing - sacrifice - guilty - opening - return - jumped - distinctively - direction - tiny - action - passed - cheeks - darn - urgh - restrain - self - centered - registration - lunch - documents - identifications - deadline - carries - official - documentation - government - wireless - crucial - pulls - kinda - girly - radiant - ya - shine - invitations - response - mcdonald - level - member - pavement - indicators - prejudice - against - applications - hating - physically - amateur - crawl - dumber - cases - etiquette - bug - opinions - magically - irresponsible - carrousel - contents - main - liability - provides - shops - reimbursed - investigate - provide - uncommon - johnny - conscious - stories - africa - image - hurts - goout - gradual - impact - subside - heals - parts - football - recognizable - accomplished - prestige - load - worrying - decide - tour - friendly - ivy - walls - collegiate - g - choices - math - prestigious - departments - orientation - graduate - shiloh - valued - customers - previous - purchases - scheduling - highly - discounted - uses - corporation - hotels - rated - aisles - switch - fortunately - allows - spare - shuttle - appropriate - traveling - deals - shuttles - sleeps - gee - futile - moralists - unbearable - flippant - shibboleths - rush - madly - piazza - iron - dri - counter - applica - lonely - disappear - video - definitive - magazine - boyfriend - stage - golly - concert - crew - freak - guaranteed - nervous - hah - persistence - factors - types - male - female - consideration - cooking - reconsidering - uhm - retirement - foot - persistent - table - skewed - painting - outer - employment - unlucky - planet - normal - peoples - reading - difficulties - loading - mishap - cart - shipped - tracking - reim - tight - error - continue - 'false' - compensate - policy - gifts - nobodies - tag - originally - shoe - core - memories - kathy - lasted - gary - closed - surreal - troops - loving - los - angeles - schools - kinds - secrets - explore - rip - nuts - champions - leaning - towards - communications - broad - confined - ropes - recording - depending - leads - bypass - zero - pleasant - ebay - bye - steve - hint - asks - tone - pretend - protection - rid - submit - print - regarding - grievance - sites - protected - processed - careful - secure - unreliable - trash - kept - spotting - certain - specifically - pushing - headed - ears - watched - sends - ceaseless - wear - often - pleasure - sonya - promoted - nurses - mommy - va - videotaped - cousin - postpone - performance - swear - cast - spotlight - microphone - tripped - surprise - scored - points - members - loser - marrying - weddings - carats - lousy - chaperone - drowsy - deserve - cry - tears - happiness - marriage - commercials - refection - financially - studied - passing - russel - crowe - pooling - funds - owe - learning - role - auditions - denny - tip - teaching - oof - france - steal - keys - laughing - rosenkrantz - thingy - bopper - limit - whoa - ways - suffered - disease - handsome - gifted - parent - ripped - uveny - tricia - chemo - baseball - benny - nat - nation - bread - eat - beer - dorm - sometime - mattresses - reserved - grauman - scale - whooooo - acti - film - art - academy - films - fuck - ethiopia - cuddle - profanity - provider - satellites - average - compensating - unbeknownst - satellite - exaggerate - advising - addressed - fax - dumb - fritz - incoming - million - grown - fella - shootin - travel - sat - instinct - goosebumps - arms - danced - intimately - spart - strumpets - bristling - diamonds - taste - portion - side - stairs - condescending - copy - proceed - remove - missy - behaving - sweetie - deploy - specialist - increase - triple - promotion - retire - quiets - faster - career - lame - drew - barrymore - nasty - mouse - cheesy - jane - tarzan - engaged - esmeralda - hitched - spontaneous - character - conga - dim - pulled - chucky - sarah - guiding - graduated - apply - colleges - energy - busing - clerk - excuses - qualified - chang - investment - banking - deloitte - touche - temp - degrading - smarter - astronaut - biomedical - internship - plus - breaking - evicting - typing - shoot - degree - science - club - joking - doomed - maryland - cooperate - emergency - pounds - urn - deduction - sherlock - holmes - vessel - burst - caption - therefore - placed - firing - lobby - fastest - ibm - misplace - count - hanging - explanation - follow - footsteps - overboard - paralyzed - coma - fucked - studying - countries - goal - met - greatest - hopefully - mmmm - cinema - chapter - professionals - sipping - martinis - sushi - vat - assistance - starve - south - central - firm - police - officer - viacom - digits - speaking - network - charging - connect - outages - hurricane - katrina - chose - maam - proven - failing - receive - cuts - using - flip - writing - ms - fall - older - game - orange - pink - goodies - battling - sees - flat - stronger - acted - deserves - hats - shore - pokes - nah - paul - boats - dammit - enjoys - bound - harm - pleasured - lure - devil - rile - topic - initialed - lets - correctly - spelled - signed - shitty - timing - susie - tours - emotionally - bullshit - enlist - lie - traditional - church - cabins - flowery - naturey - midsummer - excitement - hoping - attacked - bears - trim - cooler - dog - tanish - contrast - cake - buffet - fried - chicken - mashed - potatoes - happier - thrilled - ecstatic - rushed - pressure - interviews - favors - bite - excessive - unemployed - cab - gas - possibly - extreme - trained - presentable - quote - buck - chugging - engine - realm - minimum - wage - fry - flipper - bottom - clear - affect - cle - dressed - shave - legs - presentation - eighty - success - position - training - mcdonalds - tv - rainbow - colored - crap - safely - destination - percoes - equivalent - amends - courtesy - inconveniencing - near - communicate - conditions - frequently - current - expecting - pissed - honor - grandmother - condition - inevitable - peace - general - mace - present - knife - puny - underwater - basket - weaving - lying - decided - works - worried - occasion - cruisers - vibe - greek - lessons - suck - celebrating - crush - throughout - test - waters - movies - vermont - cruiser - abused - frat - boys - dorms - dell - requests - fixed - dealt - worries - refunded - situa - relevant - ordered - orders - others - incorrectly - tomatoes - del - cents - attached - cuz - hoped - opportunity - rushing - goods - skipped - breath - kleenex - alaska - bearing - hated - holes - calf - witch - whore - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 ignore_id: -1 lsm_weight: 0.0 length_normalized_loss: false report_cer: true report_wer: true sym_space: <space> sym_blank: <blank> extract_feats_in_collect_stats: true use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["iemocap"]}
espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:iemocap", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-iemocap #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/YushiUeda\_iemocap\_sentiment\_asr\_train\_asr\_conformer' This model was trained by Yushi Ueda using iemocap recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Thu Feb 17 11:25:22 EST 2022' * python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]' * espnet version: 'espnet 0.10.7a1' * pytorch version: 'pytorch 1.9.0+cu102' * Git hash: 'f6cde1c419c814a14ccd40abe557a780508cbcdf' + Commit date: 'Fri Feb 11 12:25:33 2022 -0500' Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with sentiment ------------------------------------------------------------------------------------------------------------------------------------- * ASR config: conf/tuning/train\_asr\_conformer.yaml * token\_type: word * labels: Positive, Neutral, Negative ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/YushiUeda\\_iemocap\\_sentiment\\_asr\\_train\\_asr\\_conformer'\n\n\nThis model was trained by Yushi Ueda using iemocap recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Thu Feb 17 11:25:22 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: 'f6cde1c419c814a14ccd40abe557a780508cbcdf'\n\t+ Commit date: 'Fri Feb 11 12:25:33 2022 -0500'\n\n\nUsing Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with sentiment\n-------------------------------------------------------------------------------------------------------------------------------------\n\n\n* ASR config: conf/tuning/train\\_asr\\_conformer.yaml\n* token\\_type: word\n* labels: Positive, Neutral, Negative\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-iemocap #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/YushiUeda\\_iemocap\\_sentiment\\_asr\\_train\\_asr\\_conformer'\n\n\nThis model was trained by Yushi Ueda using iemocap recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Thu Feb 17 11:25:22 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: 'f6cde1c419c814a14ccd40abe557a780508cbcdf'\n\t+ Commit date: 'Fri Feb 11 12:25:33 2022 -0500'\n\n\nUsing Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with sentiment\n-------------------------------------------------------------------------------------------------------------------------------------\n\n\n* ASR config: conf/tuning/train\\_asr\\_conformer.yaml\n* token\\_type: word\n* labels: Positive, Neutral, Negative\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert` This model was trained by Yushi Ueda using iemocap recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout dfa2868243a897c2a6c34b7407eaea5e4b5508a5 pip install -e . cd egs2/iemocap/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Feb 12 23:11:32 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `f6cde1c419c814a14ccd40abe557a780508cbcdf` - Commit date: `Fri Feb 11 12:25:33 2022 -0500` ## Using Conformer based encoder, Transformer based decoder, and self-supervised learning features with spectral augmentation and predicting transcript along with sentiment - ASR config: [conf/tuning/train_asr_conformer_hubert.yaml](conf/tuning/train_asr_conformer_hubert.yaml) - token_type: word - Sentiment Labels: Positive, Neutral, Negative |dataset|Snt|Intent Classification Macro F1 (%)| Weighted F1 (%)| Micro F1 (%)| |---|---|---|---|---| |decode_asr_model_valid.acc.ave_10best/valid|754|66.5|76.4|75.7| |decode_asr_model_valid.acc.ave_10best/test|1650|62.0|65.5|65.8| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_hubert.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_hubert_sentiment ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - i - you - Negative - to - it - '''s' - the - '''t' - that - and - Neutral - Positive - a - know - what - of - like - we - don - just - is - do - this - '''m' - me - have - can - in - for - 'no' - so - not - '''re' - my - but - mean - be - going - all - was - they - well - want - yeah - right - get - 'on' - there - he - oh - here - go - out - with - your - if - okay - are - she - at - '''ll' - '''ve' - got - think - about - up - see - then - why - how - time - really - one - now - or - as - back - look - her - him - been - because - 'yes' - would - didn - little - did - good - some - them - something - need - maybe - never - um - come - take - god - had - could - will - uh - am - people - thing - when - very - let - much - sorry - from - again - long - give - anything - too - make - fish - years - where - isn - three - said - things - nothing - help - work - tell - guess - over - 'off' - business - even - sir - any - his - around - were - way - who - new - kind - '''d' - our - everything - more - came - an - should - down - understand - only - great - else - man - line - us - ask - last - doing - say - waiting - other - lot - job - feel - yourself - point - thought - day - whole - away - coming - better - marry - always - these - still - wrong - two - sure - care - phone - probably - remember - annie - life - year - believe - gonna - supposed - went - first - talk - listen - alright - before - thinking - after - stuff - happy - ever - turn - thank - home - fine - into - than - call - money - stay - actually - every - hope - love - huh - married - wait - somewhere - has - being - father - larry - hell - wanted - trying - getting - guys - name - saying - bag - hear - girl - hey - flashlight - beach - put - leave - dollars - mind - augie - does - won - fifty - excited - hate - four - done - through - their - keep - car - lost - doesn - happen - wouldn - school - big - calm - night - '''cause' - id - another - though - myself - nobody - somebody - best - might - same - form - mom - nice - matter - spot - stop - told - by - shut - enough - five - joe - hard - find - course - chris - drunk - snap - luggage - rather - standing - someone - laugh - took - those - please - live - six - ridiculous - minute - looking - bring - show - start - brought - days - must - pretty - sort - talking - sand - child - working - send - next - hundred - whatever - many - moon - moment - champagne - s - problem - end - real - dear - happened - person - place - fill - awesome - house - such - cool - c - haven - knew - die - finally - glasses - stupid - least - dad - supervisor - totally - each - try - waited - idea - u - party - asked - anymore - sick - evening - license - kid - wow - flight - felt - pay - since - single - miss - without - different - mmhmm - free - sometimes - yet - couldn - view - hour - knows - drive - themselves - swim - ah - brandy - fact - ma - '''am' - already - part - sit - thanks - comes - check - everyone - started - kiss - weren - hotel - own - beast - bad - above - run - worst - grunions - darling - seem - baby - turned - gone - shouldn - exactly - reason - full - both - crazy - pack - bit - swimming - liquor - seemed - serious - cause - peter - burden - gosh - forgot - happens - alone - pass - letters - heard - manager - hours - baggage - card - number - argue - seen - walk - forget - kids - family - blanket - honey - open - quite - gotta - forms - mother - old - needs - times - airline - which - once - service - week - together - twenty - stand - made - fun - dead - sake - men - kate - today - plane - most - carla - driving - deal - information - wanna - definitely - while - yea - certificate - particular - lots - calling - fortune - write - entire - found - trouble - use - forever - woman - enjoy - room - damn - war - meaning - longer - jacket - ticket - twice - sent - wonder - small - amanda - cannot - able - half - ha - saw - bus - ago - hmm - hi - kidding - giving - gave - move - women - ahead - york - guy - suppose - company - incredible - either - minutes - tonight - shoes - utterly - wasn - filled - gets - amazing - beautiful - hello - birth - prove - choice - friend - expect - says - blue - anywhere - died - weird - umm - blood - d - face - body - alive - diagram - goes - read - far - race - wind - fly - interested - california - coast - news - past - charles - floor - idiotic - indeed - absolutely - softball - answer - somehow - having - campus - completely - file - everybody - given - fair - front - telling - tried - sign - helping - dollar - used - takes - hair - behind - head - also - question - pull - brother - nonsense - kill - pocket - cold - mine - watching - shall - divorce - driver - m - makes - cried - security - suitcase - seems - control - set - letter - realized - paper - weeks - address - sweet - lose - huge - death - ones - living - glad - bed - until - thinks - wedding - pieces - parents - ready - almost - forgive - kissed - silver - during - forty - lives - grow - arrive - eyes - putting - quiet - poor - presents - sting - tired - row - anyhow - window - v - thousand - watch - ashamed - figure - vacation - application - left - certainly - calls - months - student - close - helpful - called - welcome - major - match - morning - fit - reach - door - wife - faith - noticed - several - killed - accident - rat - flop - hands - ear - dancing - hairs - bugging - dinner - bills - worked - bored - conversation - tunis - overbearing - grand - nine - amusing - vile - tempered - obviously - tomorrow - taken - eight - venice - worth - boy - realize - midnight - evil - sixteen - gotten - paying - bottle - smart - cindy - excuse - along - seven - children - figured - jobs - joke - charge - memorial - sitting - hardly - young - story - feels - pronouncing - insane - forgotten - fast - inspire - grub - tough - arguing - air - toss - instance - raining - pair - dry - socks - selfish - included - yours - mystery - mindedness - urgency - pure - urge - insulting - ideas - herself - period - missed - backwards - dance - worms - pop - except - perfect - blow - funny - listening - sadistic - bully - cruel - 'true' - second - acting - lucky - handle - loved - hit - shaking - destroyed - changed - book - eleven - animals - ice - cream - brings - frustrating - otherwise - onto - pregnant - operator - baltimore - san - diego - contract - brown - friends - pictures - internet - piece - high - anyone - tickets - inconvenience - gift - usually - green - city - couple - chuck - growing - pick - throw - yay - walking - grave - considerate - inspired - looked - mistake - believes - avoid - sucker - rock - strangers - missing - hide - geez - imagination - overseas - command - earth - monument - difference - zipped - kansas - reservations - ahh - formed - barefoot - shower - running - garage - knickerbocker - locker - wasting - roses - peaches - rosy - mention - shh - behave - exquisitely - beautifully - rolling - biting - scratching - panthers - suddenly - ought - dreadfully - pity - eye - world - making - bark - roll - hoops - insufferable - weak - upstairs - insist - boorish - conceited - impossible - torment - brute - perfectly - wicked - crawling - top - wish - wants - bank - plan - soon - plenty - bags - congratulations - play - carry - ignore - sudden - refrigerator - loot - fight - lights - swallows - goose - bumps - keeps - fighting - massive - celebration - sex - human - ours - light - minded - social - needed - anyway - words - problems - claim - reimburse - checked - airport - meet - e - responsibility - grunion - knees - thousands - important - shows - goddamn - strong - law - sara - brent - passport - aren - month - romantic - leaving - random - applied - interesting - regular - taking - harder - hurt - movie - freaking - record - airlines - responsible - honestly - grew - proud - hang - mrs - fellow - terrible - contradict - infuriate - throws - afraid - suffer - bloody - settled - thrash - may - son - faithful - moments - act - sleep - detroit - planning - yard - particularly - natural - phenomenon - highlight - flopping - laying - eggs - mating - orgy - magic - unexplainable - instincts - seaweed - instinctual - firecracker - spent - clasped - intimate - special - wishes - seriously - refreshments - ooh - pinpoint - marge - dishes - fat - ring - later - shivers - spine - sillier - poise - trumpets - squeakers - sockets - allure - contrary - violently - glass - temperamental - fiend - loathe - adder - riotous - mentioned - intemperate - tots - downstairs - mad - loose - lived - yelling - happening - promise - known - exciting - finish - college - atlanta - searching - fired - drinking - jesus - lock - plans - hole - santa - kitchen - invite - believing - ann - landing - eats - panties - sore - throat - unmistakable - capistrano - lemmings - cliffs - invitation - map - heaven - carpet - poodle - suicide - pact - turns - court - dies - mustn - vampire - identification - places - danger - hand - middle - situation - option - willing - paid - horrible - pain - anybody - paperwork - difficult - dream - sakes - matters - toes - become - habit - hold - survive - break - babe - shit - contact - land - water - transfer - backersen - desk - wallet - stolen - credit - cards - clearly - appreciate - complicated - uhuh - bucks - win - theatre - resume - riding - helps - less - planes - means - future - ran - red - wrote - loans - spend - dreaming - proof - shooting - crack - cracked - dares - invited - breaks - embarrassed - wondering - aw - style - granted - embarrassing - mixed - su - spawning - stubbed - toe - bodies - expectantly - meant - beginning - traumatized - freda - sooner - applies - philosophers - rots - trivial - torture - stiff - venom - fangs - wake - bended - voice - build - unbelievable - hiring - resumes - eventually - aggressive - awhile - especially - further - mass - pointless - claus - neither - mmm - cannes - figures - burnt - debate - exception - busy - safe - possible - spring - starting - buy - rest - office - complaint - accepted - ten - area - seats - foam - vibrations - drives - popped - slightly - exaggerated - scientific - proposed - bathroom - awful - scene - adders - afford - packet - forward - customer - brand - yellow - fifteen - brian - asking - percent - girlfriend - acceptance - patient - patience - dishonest - cheese - restaurant - t - sixty - direct - holiday - inn - refund - hmmm - receiving - sim - browns - unacceptable - northwest - dorky - putt - change - filling - z - x - simple - mail - request - raise - town - hadn - played - pennies - visa - visit - loves - list - environment - frustrated - ride - imagine - flew - nash - replace - paris - personal - issue - flights - track - angry - headstone - cemetery - cancer - poetry - palm - l - dropped - bunch - p - chair - broke - o - allow - nights - talent - ignoring - center - lovely - sneaking - whose - es - naturally - stays - wide - bought - arm - exact - curtsy - wiggle - superficial - paint - naked - vendome - rouser - younger - jealous - fascinating - duty - photographer - studio - cad - restraint - ill - knee - applying - questions - picture - fake - apartment - cash - drink - upset - sending - flying - speak - details - wherever - unfortunate - education - leaves - basically - hospital - messed - sounds - pinch - malibu - drop - team - professional - till - ambiguous - seeing - ugh - wet - heading - release - fire - inside - pr - includes - rub - ludicrous - wriggle - flippancy - acid - sweetness - curling - dressing - gown - broach - enjoyable - original - '''em' - early - ok - daughter - age - steps - rejected - starts - competitive - hired - worse - itself - nowhere - unfortunately - process - fault - decision - package - easy - transferred - straight - suckers - none - returning - throwing - cork - softest - breathe - road - catch - threw - canal - comb - towels - sacred - savor - delight - needn - late - web - website - rough - daddy - talked - feeling - talented - interview - food - looks - misplaced - theft - likely - stuck - tags - cult - everywhere - menu - choose - press - lady - bill - department - online - immediately - miles - notice - vote - heavens - yell - anna - tables - hasn - stole - losing - unfair - positive - boston - celebrate - system - turning - newspapers - pays - dare - jokes - swine - demand - building - finished - staying - cheap - anyways - okey - lobster - wonderful - harvard - engineering - summer - lawyer - mr - lax - delta - funeral - report - property - whoever - corporate - miso - soup - holy - olivia - camera - power - sold - testing - greens - explain - agreement - undecided - access - babies - street - vegas - slot - honeymoon - husband - penny - slots - wheel - cat - citizenship - england - fan - spending - craig - services - monster - baloney - saving - necessarily - carousel - cameras - airplane - sentimental - value - incredibly - shopping - jet - clothes - apologize - allowed - amount - candy - redlands - sprinklers - whenever - brain - park - holding - memorized - surgery - audience - joy - scholarships - commuting - h - ruined - mm - bet - neighborhood - sticking - woo - teach - class - confused - clock - foolish - ocean - distinctly - whispered - wishing - white - elliott - strange - quest - ultimate - truth - shan - word - disagreeable - wench - birthday - national - thin - rent - colors - citizen - account - '''til' - hire - short - fuse - america - audition - sponge - language - arriving - reimbursement - computer - cover - ass - dealing - quick - freaks - pitch - hitting - housing - force - scholarship - dirty - depends - helicopter - wild - sport - games - streets - although - mi - trust - cracker - curtsey - bicker - irons - besides - splendid - born - weekends - letting - tear - apart - touch - flipped - hot - outside - flowers - candles - approve - surprised - lead - ends - worthless - apparently - worker - annoy - belongings - disappeared - under - case - checking - admit - risk - agreed - yesterday - country - financial - aid - within - automated - systems - specific - rate - star - aisle - afternoon - maui - machine - waste - available - confirmed - thinkin - liked - kicked - intermittently - burned - desire - fade - passion - laughable - cunning - mirrors - painted - wooden - snake - suspicious - nosey - silly - wonders - order - standard - site - sense - dangerous - cute - whether - considering - opinion - f - few - guarantee - possessions - claims - sue - easier - cared - expected - trip - europe - its - circles - large - store - macy - rotary - instead - showed - hundreds - planned - someplace - sensitive - popping - opened - backrub - fantasy - damned - sheet - cut - purchase - amy - quit - clapping - onstage - eighteen - auditioning - rejection - prepared - thirty - master - kelly - natalie - pants - isabella - verizon - goodbye - fucking - challenge - slept - created - checkbook - argument - uhh - perhaps - loath - complete - sad - priorities - between - moving - song - temporary - pulling - smith - receptionist - extra - lodging - eh - la - cost - boss - peanuts - doctor - production - downtown - april - contracts - incompetent - realtor - fix - payphone - verify - electrical - outage - symptoms - nature - pilot - hook - realizes - bother - trade - event - meadow - faint - blues - bananas - overnight - station - attention - purchasing - terms - taser - excellent - counsel - sorority - golfing - library - dork - taco - branch - separate - sacrifices - mothers - kicking - videotape - stream - sitters - moved - computers - machines - bride - cruise - likes - tabs - plays - giant - renamed - brenda - lumber - janet - state - quarters - costs - escort - reliable - board - posting - trail - following - fantastic - mighty - recommending - generally - outline - affords - save - carpool - frustration - refuse - anger - fourth - lines - fourteen - mileage - candid - packed - replaced - expensive - lawsuit - cruising - bruising - president - mistakenly - behalf - listed - liable - held - sean - badge - employee - impression - cemeteries - urban - oasis - wandering - hers - pathetic - ground - stones - tumors - heather - built - prospect - garden - section - parties - feet - poems - curly - tree - crown - john - dunn - begin - wheelchair - reciting - envelope - grants - mold - minds - mess - rapper - ho - masters - teacher - dash - popular - seasoning - messing - ruin - woke - darkest - beating - bush - porch - fresh - rooms - sweetest - pets - cheeked - brooch - however - jones - voices - berating - christmas - shame - bunker - guard - spread - companies - shipping - shock - group - dual - unattached - engagement - sock - dude - lucked - blush - beige - loaded - craziest - offered - spoke - english - accent - illegal - jail - caught - hardcore - tropical - bahamas - tahiti - wealthy - royalty - removed - attitude - extremely - hostile - cutting - sentence - jumping - produce - field - shake - across - soaked - dying - georgia - educated - boarding - attendance - seat - offer - publicize - abuse - insinuating - smug - mouth - tossing - hanky - black - wheels - easily - overhead - compartment - data - collecting - lip - coffee - smoking - cigarettes - union - differently - numb - sickness - boom - mortality - affecting - slow - books - per - diem - victorian - houses - west - sider - commute - practice - neon - softballs - glow - co - ed - nationally - ranked - ping - pong - denigrate - rookie - donuts - recently - pitcher - hitter - mostly - shortstop - ex - trojans - sports - nicer - monica - player - type - helipad - fell - literally - doubt - cares - mustache - papers - crying - floorboards - sorted - everyday - seas - bringing - sacrifice - guilty - opening - return - jumped - distinctively - direction - tiny - action - passed - cheeks - darn - urgh - restrain - self - centered - registration - lunch - documents - identifications - deadline - carries - official - documentation - government - wireless - crucial - pulls - kinda - girly - radiant - ya - shine - invitations - response - mcdonald - level - member - pavement - indicators - prejudice - against - applications - hating - physically - amateur - crawl - dumber - cases - etiquette - bug - opinions - magically - irresponsible - carrousel - contents - main - liability - provides - shops - reimbursed - investigate - provide - uncommon - johnny - conscious - stories - africa - image - hurts - goout - gradual - impact - subside - heals - parts - football - recognizable - accomplished - prestige - load - worrying - decide - tour - friendly - ivy - walls - collegiate - g - choices - math - prestigious - departments - orientation - graduate - shiloh - valued - customers - previous - purchases - scheduling - highly - discounted - uses - corporation - hotels - rated - aisles - switch - fortunately - allows - spare - shuttle - appropriate - traveling - deals - shuttles - sleeps - gee - futile - moralists - unbearable - flippant - shibboleths - rush - madly - piazza - iron - dri - counter - applica - lonely - disappear - video - definitive - magazine - boyfriend - stage - golly - concert - crew - freak - guaranteed - nervous - hah - persistence - factors - types - male - female - consideration - cooking - reconsidering - uhm - retirement - foot - persistent - table - skewed - painting - outer - employment - unlucky - planet - normal - peoples - reading - difficulties - loading - mishap - cart - shipped - tracking - reim - tight - error - continue - 'false' - compensate - policy - gifts - nobodies - tag - originally - shoe - core - memories - kathy - lasted - gary - closed - surreal - troops - loving - los - angeles - schools - kinds - secrets - explore - rip - nuts - champions - leaning - towards - communications - broad - confined - ropes - recording - depending - leads - bypass - zero - pleasant - ebay - bye - steve - hint - asks - tone - pretend - protection - rid - submit - print - regarding - grievance - sites - protected - processed - careful - secure - unreliable - trash - kept - spotting - certain - specifically - pushing - headed - ears - watched - sends - ceaseless - wear - often - pleasure - sonya - promoted - nurses - mommy - va - videotaped - cousin - postpone - performance - swear - cast - spotlight - microphone - tripped - surprise - scored - points - members - loser - marrying - weddings - carats - lousy - chaperone - drowsy - deserve - cry - tears - happiness - marriage - commercials - refection - financially - studied - passing - russel - crowe - pooling - funds - owe - learning - role - auditions - denny - tip - teaching - oof - france - steal - keys - laughing - rosenkrantz - thingy - bopper - limit - whoa - ways - suffered - disease - handsome - gifted - parent - ripped - uveny - tricia - chemo - baseball - benny - nat - nation - bread - eat - beer - dorm - sometime - mattresses - reserved - grauman - scale - whooooo - acti - film - art - academy - films - fuck - ethiopia - cuddle - profanity - provider - satellites - average - compensating - unbeknownst - satellite - exaggerate - advising - addressed - fax - dumb - fritz - incoming - million - grown - fella - shootin - travel - sat - instinct - goosebumps - arms - danced - intimately - spart - strumpets - bristling - diamonds - taste - portion - side - stairs - condescending - copy - proceed - remove - missy - behaving - sweetie - deploy - specialist - increase - triple - promotion - retire - quiets - faster - career - lame - drew - barrymore - nasty - mouse - cheesy - jane - tarzan - engaged - esmeralda - hitched - spontaneous - character - conga - dim - pulled - chucky - sarah - guiding - graduated - apply - colleges - energy - busing - clerk - excuses - qualified - chang - investment - banking - deloitte - touche - temp - degrading - smarter - astronaut - biomedical - internship - plus - breaking - evicting - typing - shoot - degree - science - club - joking - doomed - maryland - cooperate - emergency - pounds - urn - deduction - sherlock - holmes - vessel - burst - caption - therefore - placed - firing - lobby - fastest - ibm - misplace - count - hanging - explanation - follow - footsteps - overboard - paralyzed - coma - fucked - studying - countries - goal - met - greatest - hopefully - mmmm - cinema - chapter - professionals - sipping - martinis - sushi - vat - assistance - starve - south - central - firm - police - officer - viacom - digits - speaking - network - charging - connect - outages - hurricane - katrina - chose - maam - proven - failing - receive - cuts - using - flip - writing - ms - fall - older - game - orange - pink - goodies - battling - sees - flat - stronger - acted - deserves - hats - shore - pokes - nah - paul - boats - dammit - enjoys - bound - harm - pleasured - lure - devil - rile - topic - initialed - lets - correctly - spelled - signed - shitty - timing - susie - tours - emotionally - bullshit - enlist - lie - traditional - church - cabins - flowery - naturey - midsummer - excitement - hoping - attacked - bears - trim - cooler - dog - tanish - contrast - cake - buffet - fried - chicken - mashed - potatoes - happier - thrilled - ecstatic - rushed - pressure - interviews - favors - bite - excessive - unemployed - cab - gas - possibly - extreme - trained - presentable - quote - buck - chugging - engine - realm - minimum - wage - fry - flipper - bottom - clear - affect - cle - dressed - shave - legs - presentation - eighty - success - position - training - mcdonalds - tv - rainbow - colored - crap - safely - destination - percoes - equivalent - amends - courtesy - inconveniencing - near - communicate - conditions - frequently - current - expecting - pissed - honor - grandmother - condition - inevitable - peace - general - mace - present - knife - puny - underwater - basket - weaving - lying - decided - works - worried - occasion - cruisers - vibe - greek - lessons - suck - celebrating - crush - throughout - test - waters - movies - vermont - cruiser - abused - frat - boys - dorms - dell - requests - fixed - dealt - worries - refunded - situa - relevant - ordered - orders - others - incorrectly - tomatoes - del - cents - attached - cuz - hoped - opportunity - rushing - goods - skipped - breath - kleenex - alaska - bearing - hated - holes - calf - witch - whore - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["iemocap"]}
espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:iemocap", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-iemocap #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/YushiUeda\_iemocap\_sentiment\_asr\_train\_asr\_conformer\_hubert' This model was trained by Yushi Ueda using iemocap recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Sat Feb 12 23:11:32 EST 2022' * python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]' * espnet version: 'espnet 0.10.7a1' * pytorch version: 'pytorch 1.9.0+cu102' * Git hash: 'f6cde1c419c814a14ccd40abe557a780508cbcdf' + Commit date: 'Fri Feb 11 12:25:33 2022 -0500' Using Conformer based encoder, Transformer based decoder, and self-supervised learning features with spectral augmentation and predicting transcript along with sentiment ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- * ASR config: conf/tuning/train\_asr\_conformer\_hubert.yaml * token\_type: word * Sentiment Labels: Positive, Neutral, Negative ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/YushiUeda\\_iemocap\\_sentiment\\_asr\\_train\\_asr\\_conformer\\_hubert'\n\n\nThis model was trained by Yushi Ueda using iemocap recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sat Feb 12 23:11:32 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: 'f6cde1c419c814a14ccd40abe557a780508cbcdf'\n\t+ Commit date: 'Fri Feb 11 12:25:33 2022 -0500'\n\n\nUsing Conformer based encoder, Transformer based decoder, and self-supervised learning features with spectral augmentation and predicting transcript along with sentiment\n-------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n\n\n* ASR config: conf/tuning/train\\_asr\\_conformer\\_hubert.yaml\n* token\\_type: word\n* Sentiment Labels: Positive, Neutral, Negative\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-iemocap #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/YushiUeda\\_iemocap\\_sentiment\\_asr\\_train\\_asr\\_conformer\\_hubert'\n\n\nThis model was trained by Yushi Ueda using iemocap recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sat Feb 12 23:11:32 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: 'f6cde1c419c814a14ccd40abe557a780508cbcdf'\n\t+ Commit date: 'Fri Feb 11 12:25:33 2022 -0500'\n\n\nUsing Conformer based encoder, Transformer based decoder, and self-supervised learning features with spectral augmentation and predicting transcript along with sentiment\n-------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n\n\n* ASR config: conf/tuning/train\\_asr\\_conformer\\_hubert.yaml\n* token\\_type: word\n* Sentiment Labels: Positive, Neutral, Negative\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
null
espnet
## ESPnet2 DIAR model ### `espnet/YushiUeda_mini_librispeech_diar_train_diar_raw_valid.acc.best` This model was trained by YushiUeda using mini_librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 650472b45a67612eaac09c7fbd61dc25f8ff2405 pip install -e . cd egs2/mini_librispeech/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_mini_librispeech_diar_train_diar_raw_valid.acc.best ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Tue Jan 4 16:43:34 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `0b2a6786b6f627f47defaee22911b3c2dc04af2a` - Commit date: `Thu Dec 23 12:22:49 2021 -0500` ## diar_train_diar_raw ### DER dev_clean_2_ns2_beta2_500 |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|32.28| |result_th0.3_med1_collar0.0|32.64| |result_th0.4_med11_collar0.0|30.43| |result_th0.4_med1_collar0.0|31.15| |result_th0.5_med11_collar0.0|29.45| |result_th0.5_med1_collar0.0|30.53| |result_th0.6_med11_collar0.0|29.52| |result_th0.6_med1_collar0.0|30.95| |result_th0.7_med11_collar0.0|30.92| |result_th0.7_med1_collar0.0|32.69| ## DIAR config <details><summary>expand</summary> ``` config: conf/train_diar.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_train_diar_raw ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 33757 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 200000 chunk_shift_ratio: 0.5 num_cache_chunks: 64 train_data_path_and_name_and_type: - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.01 scheduler: noamlr scheduler_conf: warmup_steps: 1000 num_spk: 2 init: xavier_uniform input_size: null model_conf: attractor_weight: 1.0 use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: linear num_blocks: 2 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} attractor: null attractor_conf: {} required: - output_dir version: 0.10.5a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "diarization"], "datasets": ["mini_librispeech"]}
espnet/YushiUeda_mini_librispeech_diar_train_diar_raw_valid.acc.best
null
[ "espnet", "audio", "diarization", "dataset:mini_librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #diarization #dataset-mini_librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 DIAR model ------------------ ### 'espnet/YushiUeda\_mini\_librispeech\_diar\_train\_diar\_raw\_valid.URL' This model was trained by YushiUeda using mini\_librispeech recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Tue Jan 4 16:43:34 EST 2022' * python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]' * espnet version: 'espnet 0.10.5a1' * pytorch version: 'pytorch 1.9.0+cu102' * Git hash: '0b2a6786b6f627f47defaee22911b3c2dc04af2a' + Commit date: 'Thu Dec 23 12:22:49 2021 -0500' diar\_train\_diar\_raw ---------------------- ### DER dev\_clean\_2\_ns2\_beta2\_500 DIAR config ----------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/YushiUeda\\_mini\\_librispeech\\_diar\\_train\\_diar\\_raw\\_valid.URL'\n\n\nThis model was trained by YushiUeda using mini\\_librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Jan 4 16:43:34 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.5a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: '0b2a6786b6f627f47defaee22911b3c2dc04af2a'\n\t+ Commit date: 'Thu Dec 23 12:22:49 2021 -0500'\n\n\ndiar\\_train\\_diar\\_raw\n----------------------", "### DER\n\n\ndev\\_clean\\_2\\_ns2\\_beta2\\_500\n\n\n\nDIAR config\n-----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #diarization #dataset-mini_librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/YushiUeda\\_mini\\_librispeech\\_diar\\_train\\_diar\\_raw\\_valid.URL'\n\n\nThis model was trained by YushiUeda using mini\\_librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Jan 4 16:43:34 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.5a1'\n* pytorch version: 'pytorch 1.9.0+cu102'\n* Git hash: '0b2a6786b6f627f47defaee22911b3c2dc04af2a'\n\t+ Commit date: 'Thu Dec 23 12:22:49 2021 -0500'\n\n\ndiar\\_train\\_diar\\_raw\n----------------------", "### DER\n\n\ndev\\_clean\\_2\\_ns2\\_beta2\\_500\n\n\n\nDIAR config\n-----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `Yushi Ueda/ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256_raw_kr_bpe2309_valid.acc.best` ♻️ Imported from https://zenodo.org/record/5154341/ This model was trained by Yushi Ueda using ksponspeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "kr", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["ksponspeech"]}
espnet/Yushi_Ueda_ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256-truncated-eb42e5
null
[ "espnet", "audio", "automatic-speech-recognition", "kr", "dataset:ksponspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "kr" ]
TAGS #espnet #audio #automatic-speech-recognition #kr #dataset-ksponspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'Yushi Ueda/ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256_raw_kr_bpe2309_valid.URL' ️ Imported from URL This model was trained by Yushi Ueda using ksponspeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'Yushi Ueda/ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256_raw_kr_bpe2309_valid.URL'\n️ Imported from URL\n\nThis model was trained by Yushi Ueda using ksponspeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #kr #dataset-ksponspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'Yushi Ueda/ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256_raw_kr_bpe2309_valid.URL'\n️ Imported from URL\n\nThis model was trained by Yushi Ueda using ksponspeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
null
espnet
## ESPnet2 DIAR pretrained model ### `Yushi Ueda/mini_librispeech_diar_train_diar_raw_max_epoch20_valid.acc.best` ♻️ Imported from https://zenodo.org/record/5264020/ This model was trained by Yushi Ueda using mini_librispeech/diar1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speaker-diarization"], "datasets": ["mini_librispeech"]}
espnet/Yushi_Ueda_mini_librispeech_diar_train_diar_raw_max_epoch20_valid.acc.best
null
[ "espnet", "audio", "speaker-diarization", "en", "dataset:mini_librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #speaker-diarization #en #dataset-mini_librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 DIAR pretrained model ### 'Yushi Ueda/mini_librispeech_diar_train_diar_raw_max_epoch20_valid.URL' ️ Imported from URL This model was trained by Yushi Ueda using mini_librispeech/diar1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 DIAR pretrained model", "### 'Yushi Ueda/mini_librispeech_diar_train_diar_raw_max_epoch20_valid.URL'\n️ Imported from URL\n\nThis model was trained by Yushi Ueda using mini_librispeech/diar1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #speaker-diarization #en #dataset-mini_librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 DIAR pretrained model", "### 'Yushi Ueda/mini_librispeech_diar_train_diar_raw_max_epoch20_valid.URL'\n️ Imported from URL\n\nThis model was trained by Yushi Ueda using mini_librispeech/diar1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `akreal/espnet2_swbd_da_hubert_conformer` This model was trained by Pavel Denisov using swbd_da recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 08c6efbc6299c972301236625f9abafe087c9f9c pip install -e . cd egs2/swbd_da/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/akreal_swbd_da_hubert_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Jan 20 19:31:21 CET 2022` - python version: `3.8.12 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.10.1+cu113` - Git hash: `08c6efbc6299c972301236625f9abafe087c9f9c` - Commit date: `Tue Jan 4 13:40:33 2022 +0100` ## asr_train_asr_raw_en_word_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.loss.ave/test_context3|2379|2379|66.3|33.7|0.0|0.0|33.7|33.7| |decode_asr_asr_model_valid.loss.ave/valid_context3|8116|8116|69.5|30.5|0.0|0.0|30.5|30.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.loss.ave/test_context3|2379|19440|76.1|17.7|6.2|8.1|32.0|33.7| |decode_asr_asr_model_valid.loss.ave/valid_context3|8116|66353|79.5|16.1|4.4|8.0|28.5|30.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_hubert_context3.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_hubert_context3_raw_en_word_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 35 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 7 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 4000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_context3_raw_en_word_sp/train/speech_shape - exp/asr_stats_context3_raw_en_word_sp/train/text_shape.word valid_shape_file: - exp/asr_stats_context3_raw_en_word_sp/valid/speech_shape - exp/asr_stats_context3_raw_en_word_sp/valid/text_shape.word batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_context3_sp/wav.scp - speech - sound - - dump/raw/train_context3_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid_context3/wav.scp - speech - sound - - dump/raw/valid_context3/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - statement - backchannel - opinion - abandon - agree - yn_q - apprec - 'yes' - uninterp - close - wh_q - acknowledge - 'no' - yn_decl_q - hedge - backchannel_q - sum - quote - affirm - other - directive - repeat - open_q - completion - rhet_q - hold - reject - answer - neg - ans_dispref - repeat_q - open - or - commit - maybe - decl_q - third_pty - self_talk - thank - apology - tag_q - downplay - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.0 extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.5a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["swbd_da"]}
espnet/akreal_swbd_da_hubert_conformer
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:swbd_da", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-swbd_da #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'akreal/espnet2\_swbd\_da\_hubert\_conformer' This model was trained by Pavel Denisov using swbd\_da recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Thu Jan 20 19:31:21 CET 2022' * python version: '3.8.12 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)]' * espnet version: 'espnet 0.10.6a1' * pytorch version: 'pytorch 1.10.1+cu113' * Git hash: '08c6efbc6299c972301236625f9abafe087c9f9c' + Commit date: 'Tue Jan 4 13:40:33 2022 +0100' asr\_train\_asr\_raw\_en\_word\_sp ---------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'akreal/espnet2\\_swbd\\_da\\_hubert\\_conformer'\n\n\nThis model was trained by Pavel Denisov using swbd\\_da recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Thu Jan 20 19:31:21 CET 2022'\n* python version: '3.8.12 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.10.1+cu113'\n* Git hash: '08c6efbc6299c972301236625f9abafe087c9f9c'\n\t+ Commit date: 'Tue Jan 4 13:40:33 2022 +0100'\n\n\nasr\\_train\\_asr\\_raw\\_en\\_word\\_sp\n----------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-swbd_da #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'akreal/espnet2\\_swbd\\_da\\_hubert\\_conformer'\n\n\nThis model was trained by Pavel Denisov using swbd\\_da recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Thu Jan 20 19:31:21 CET 2022'\n* python version: '3.8.12 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.10.1+cu113'\n* Git hash: '08c6efbc6299c972301236625f9abafe087c9f9c'\n\t+ Commit date: 'Tue Jan 4 13:40:33 2022 +0100'\n\n\nasr\\_train\\_asr\\_raw\\_en\\_word\\_sp\n----------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
audio-to-audio
espnet
# ESPnet2 ENH pretrained model ## `anogkongda/librimix_enh_train_raw_valid.si_snr.ave` ♻️ Imported from <https://zenodo.org/record/4480771#.YN70WJozZH4> This model was trained by anogkongda using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_conformer_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "audio-source-separation", "audio-to-audio"], "datasets": ["librimix"], "inference": false}
espnet/anogkongda-librimix_enh_train_raw_valid.si_snr.ave
null
[ "espnet", "audio", "audio-source-separation", "audio-to-audio", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #audio-source-separation #audio-to-audio #en #dataset-librimix #arxiv-1804.00015 #license-cc-by-4.0 #region-us
# ESPnet2 ENH pretrained model ## 'anogkongda/librimix_enh_train_raw_valid.si_snr.ave' ️ Imported from <URL This model was trained by anogkongda using librimix recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv: ### Training config See full config in 'URL'
[ "# ESPnet2 ENH pretrained model", "## 'anogkongda/librimix_enh_train_raw_valid.si_snr.ave'\n\n️ Imported from <URL\nThis model was trained by anogkongda using librimix recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #audio-source-separation #audio-to-audio #en #dataset-librimix #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "# ESPnet2 ENH pretrained model", "## 'anogkongda/librimix_enh_train_raw_valid.si_snr.ave'\n\n️ Imported from <URL\nThis model was trained by anogkongda using librimix recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
audio-to-audio
espnet
## Example ESPnet2 ENH model ### `anogkongda/librimix_enh_train_raw_valid.si_snr.ave` ♻️ Imported from https://zenodo.org/record/4480771/ This model was trained by anogkongda using librimix/enh1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-enhancement", "audio-to-audio"], "datasets": ["librimix"]}
espnet/anogkongda_librimix_enh_train_raw_valid.si_snr.ave
null
[ "espnet", "audio", "speech-enhancement", "audio-to-audio", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #speech-enhancement #audio-to-audio #en #dataset-librimix #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ENH model ### 'anogkongda/librimix_enh_train_raw_valid.si_snr.ave' ️ Imported from URL This model was trained by anogkongda using librimix/enh1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ENH model", "### 'anogkongda/librimix_enh_train_raw_valid.si_snr.ave'\n️ Imported from URL\n\nThis model was trained by anogkongda using librimix/enh1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #speech-enhancement #audio-to-audio #en #dataset-librimix #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ENH model", "### 'anogkongda/librimix_enh_train_raw_valid.si_snr.ave'\n️ Imported from URL\n\nThis model was trained by anogkongda using librimix/enh1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
null
espnet
## ESPnet2 ST model ### `espnet/brianyan918_iwslt22_dialect_st_transformer_fisherlike_4gpu_bbins16m_fix` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/st1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_st_transformer_fisherlike_4gpu_bbins16m_fix ``` <!-- Generated by scripts/utils/show_st_results.sh --> # RESULTS ## Environments - date: `Tue Feb 8 13:29:21 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1` - Git hash: `77fce65312877a132bbae01917ad26b74f6e2e14` - Commit date: `Tue Feb 8 10:48:10 2022 -0500` ## st_transformer_fisherlike_4gpu_bbins16m_fix_raw_bpe_tc1000_sp ### BLEU |dataset|bleu_score|verbose_score| |---|---|---| p3_st_model_valid.acc.ave|12.0|37.4/17.3/8.6/4.5 (BP = 0.952 ratio = 0.953 hyp_len = 40192 ref_len = 42181) ## ST config <details><summary>expand</summary> ``` config: conf/tuning/transformer_fisherlike_4gpu_bbins16m_fix.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/st_transformer_fisherlike_4gpu_bbins16m_fix_raw_bpe_tc1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 36641 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 3 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/st_stats_raw_bpe1000_sp/train/speech_shape - exp/st_stats_raw_bpe1000_sp/train/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/train/src_text_shape.bpe valid_shape_file: - exp/st_stats_raw_bpe1000_sp/valid/speech_shape - exp/st_stats_raw_bpe1000_sp/valid/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /scratch/iwslt22dump//raw/train_sp/wav.scp - speech - kaldi_ark - - /scratch/iwslt22dump//raw/train_sp/text.tc.en - text - text - - /scratch/iwslt22dump//raw/train_sp/text.tc.rm.ta - src_text - text valid_data_path_and_name_and_type: - - /scratch/iwslt22dump//raw/dev/wav.scp - speech - kaldi_ark - - /scratch/iwslt22dump//raw/dev/text.tc.en - text - text - - /scratch/iwslt22dump//raw/dev/text.tc.rm.ta - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 12.5 scheduler: noamlr scheduler_conf: model_size: 256 warmup_steps: 25000 token_list: - <blank> - <unk> - s - ▁ - apo - '&' - ; - ▁i - ▁you - t - ▁it - ▁the - ▁and - ▁to - ▁that - ▁a - n - a - ▁he - ▁me - m - d - ▁yes - ▁she - ▁no - ▁in - ▁what - ▁for - ▁we - ing - ll - ▁they - re - ▁are - ▁did - ▁god - ▁is - e - ed - ▁so - ▁her - ▁do - ▁have - ▁of - ▁with - ▁go - ▁know - ▁not - ▁was - ▁on - ▁don - y - ▁him - ▁one - ▁like - ▁there - '%' - ▁pw - ▁be - ▁at - ▁told - ▁good - ▁will - ▁my - ▁all - ▁or - c - er - p - ▁how - ▁ah - r - ▁but - ▁them - ▁see - ▁get - ▁can - i - ▁when - ▁going - ▁about - ▁mean - ▁this - k - ▁your - ▁by - ▁if - u - ▁come - ▁up - ▁tell - g - ▁said - ▁then - ▁now - ▁yeah - o - ▁out - al - ra - ▁because - ▁time - ▁well - ▁would - ▁p - ▁from - h - ar - f - ▁swear - ▁went - b - ▁really - or - ▁want - ri - ▁home - ▁work - ve - ▁take - ▁got - ▁just - l - ▁uh - ▁why - en - ▁even - ▁am - ▁who - ▁make - ▁day - '-' - in - ▁something - ▁some - ou - ▁us - ▁okay - ▁where - ▁does - ▁has - ▁thank - ▁c - ▁his - th - ▁back - ▁fine - ▁today - ly - ▁b - ▁oh - ▁doing - ▁everything - ▁here - le - ▁thing - ▁two - ▁anyway - li - ▁had - ▁still - ▁say - ro - ▁after - ce - ▁hello - ▁ma - ▁call - w - ▁listen - il - ▁should - ▁girl - ▁f - z - ▁too - ▁let - ▁understand - ▁may - ▁much - ▁think - ch - ir - ha - ▁other - ▁tomorrow - ▁were - ▁people - es - ▁year - di - ba - ▁right - el - ▁things - ▁house - v - ▁actually - un - ▁an - ▁give - ▁only - ▁better - pe - ▁need - ▁buy - ▁de - ne - ▁ha - ur - ion - ▁made - la - ▁willing - ▁nothing - ▁called - ▁night - ▁yesterday - se - ▁came - ▁lot - ter - ▁g - po - ▁find - ry - ▁car - ▁over - ic - ▁stay - ▁eat - ent - ▁always - ▁very - 'on' - ▁put - ▁ramadan - ▁those - ▁hear - is - ▁talk - ▁three - ▁anything - ▁mo - ▁little - ▁been - ▁already - fi - ation - ke - ▁first - ▁look - it - ▁won - ▁mom - ▁way - ▁before - ▁ok - ▁last - fa - ▁cook - vi - ▁hi - ▁same - ▁thought - ▁also - um - ate - ▁money - ▁start - ▁place - us - ▁morning - ▁could - ▁ask - ▁bring - ▁bit - ▁lo - ▁leave - ▁man - ▁left - ine - ▁days - ge - ▁la - ▁week - ▁friend - ▁problem - ▁sister - ▁allah - ▁feel - ▁every - ▁more - fe - ▁long - ▁hundred - ▁j - ▁eh - ho - ca - em - ▁talking - ▁exam - ▁next - ▁new - ▁fun - ▁took - ▁alright - co - ▁w - ▁um - ▁eid - ▁brother - ▁our - gh - ow - ▁o - ▁four - ni - wa - ▁else - ▁finish - bo - ▁sleep - ▁bless - ▁dear - ▁since - ▁play - ▁name - hi - ▁coming - ▁many - et - ▁usual - ▁con - ▁maybe - ▁off - bi - ▁than - ▁any - ▁mother - ▁son - om - ▁their - ▁keep - ▁dinner - ▁ten - ▁half - ▁help - ▁bad - and - ▁pass - ▁hot - ▁guy - ▁least - ▁down - ▁bought - ▁dinars - ▁working - ▁around - ▁normal - ▁poor - ▁stuff - ▁hope - ▁used - ▁again - ▁bro - ul - ▁phone - ▁ex - ▁done - ▁six - ▁na - ▁month - ▁tired - ▁check - ▁show - ▁together - oo - ▁later - ▁past - ▁five - ▁watch - ya - ▁coffee - ment - ut - ▁plan - ▁great - ▁daughter - j - ▁another - side - ▁change - ▁yet - ting - ▁until - ▁honestly - ▁whole - ol - ▁care - ▁sure - able - id - ▁big - ▁spend - ▁exactly - ▁boy - ▁course - ▁end - ▁please - ▁started - he - up - ▁found - ▁saw - ▁family - ▁asked - ▁enough - ▁during - ▁rest - ▁which - ▁gave - ▁true - ▁while - ▁job - ▁el - ▁each - ▁away - ▁kids - ▁goes - less - ▁twenty - ▁eight - ▁someone - ▁cha - ▁clothes - ah - ▁myself - ▁nice - ▁late - ▁old - ▁real - age - ant - ▁fast - ▁add - ▁hard - ▁these - ful - im - ▁close - ive - ▁dad - ▁pay - ies - ▁dude - ▁alone - ▁far - ance - ▁dis - ▁seven - ▁isn - ▁pro - our - ▁thousand - ▁break - ▁hour - ▁wait - ▁brought - ▁open - ▁un - ▁wedding - ▁walk - ▁father - ▁ka - ▁second - x - ▁saturday - ▁salad - ▁win - ▁everyone - ▁water - ▁tunis - ▁remember - ity - ▁wake - ▁minute - ▁school - ▁sunday - ▁own - ▁shop - ▁cold - ▁meet - ▁wear - ever - ▁send - ▁early - ▁gra - tic - ▁short - ▁use - ▁sometimes - hou - ▁love - ▁prepare - ▁sea - ▁study - ure - ▁com - qui - ▁hand - ▁both - ja - ▁summer - ▁wrong - ▁wanted - che - ▁miss - ▁try - ▁iftar - ▁yourself - q - ▁live - war - ▁expensive - ▁getting - ▁waiting - ▁once - ▁kh - ▁forgot - ▁nine - ▁anymore - ▁soup - ▁uncle - ▁beach - ▁saying - ▁into - ▁having - ▁brik - ▁room - ▁food - ▁visit - ▁matter - ▁thirty - ▁taking - ▁rain - ▁aunt - ▁never - ▁pick - ▁tunisia - ▁health - ▁head - ▁cut - ▁fasting - ▁sick - ▁friday - ▁forget - ▁monday - ▁become - ▁dress - ated - ▁most - wi - ▁hang - ▁life - ▁fish - ▁happy - ▁delicious - ▁deal - ▁finished - ble - ▁studying - ▁weather - ▁making - ▁cost - ▁bl - ▁stayed - ▁guess - ▁teach - ▁stop - ▁near - ▁watching - ▁without - ▁imagine - ▁seriously - fl - ▁speak - ▁idea - ▁must - ▁normally - ▁turn - ize - ▁clean - ▁tv - ▁meat - ▁woke - ▁example - ▁easy - ▁sent - ▁sell - over - ▁fifty - ▁amazing - ▁beautiful - ▁whatever - ▁enjoy - ▁talked - ▁believe - ▁thinking - ▁count - ▁almost - ▁longer - ▁afternoon - ▁hair - ▁front - ▁earlier - ▁mind - ▁kind - ▁tea - ▁best - ▁rent - ▁picture - ▁cooked - ▁price - ight - ▁soon - ▁woman - ▁otherwise - ▁happened - ▁story - ▁luck - ▁high - ▁happen - ▁arrive - ▁paper - ga - ▁quickly - ▁looking - ub - ▁number - ▁staying - ▁sit - man - ack - ▁important - ▁either - ▁person - ▁small - ▁free - ▁crazy - ▁playing - ▁kept - ▁part - ▁game - law - ▁till - uck - ▁ready - ▁might - ▁gone - ▁full - ▁fix - ▁subject - ▁laugh - ▁doctor - ▁welcome - ▁eleven - ▁sleeping - ▁heat - ▁probably - ▁such - ▁café - ▁fat - ▁sweet - ▁married - ▁drink - ▁move - ▁outside - ▁especially - ▁group - ji - ▁market - ▁through - ▁train - ▁protect - ▁turned - ▁red - ▁busy - ▁light - ▁noise - ▁street - ▁manage - ▁piece - ▁sitting - gue - ▁sake - ▁party - ish - ▁young - ▁case - ▁cool - huh - ▁marwa - ▁drive - ▁pray - clock - ▁couscous - ▁spent - ▁felt - ▁hopefully - ▁everybody - ▁living - ▁pain - line - ▁between - ▁match - ▁prayer - que - ian - ▁facebook - ▁spi - ▁eye - ▁children - ▁tonight - ▁mohamed - ▁understood - ▁black - ▁husband - ▁rid - ▁kitchen - ▁face - ▁swim - ▁kid - ▁invite - ▁cup - ▁grilled - ▁wife - ▁cousin - ▁drop - ▁wow - ▁table - ▁du - ▁bored - ▁neighborhood - ▁agree - ▁bread - ▁hamma - ▁straight - ▁tuesday - ▁anyone - ▁lunch - ade - ▁himself - ▁gather - ▁wish - ▁fifteen - ▁wednesday - ▁die - ▁thursday - ▁color - ▁asleep - ▁different - ▁whether - ▁ago - ▁middle - ▁class - ▁cake - shirt - ▁fight - ▁clear - ▁test - ▁plus - ▁sousse - ▁beginning - ▁result - ▁learn - ▁crowded - ▁slept - ▁shoes - ▁august - ▁pretty - ▁white - ▁apparently - ▁reach - ▁mariem - ▁return - ▁road - ▁million - ▁stand - ▁paid - ▁word - ious - ▁few - ▁breakfast - ▁post - ▁kilo - ▁chicken - ▁grade - ▁read - ▁accept - ▁birthday - ▁exhaust - ▁point - ▁july - ▁patience - ▁studies - ▁trouble - ▁along - ▁worry - ▁follow - ▁hurt - ▁afraid - ▁trip - ▁ahmed - ▁remain - ▁succeed - ▁mercy - ▁difficult - ▁weekend - ▁answer - ▁cheap - ▁repeat - ▁auntie - ▁sign - ▁hold - ▁under - ▁olive - ▁mahdi - ▁sfax - ▁annoy - ▁dishes - ▁message - ▁business - ▁french - ▁serious - ▁travel - ▁office - ▁wonder - ▁student - ▁internship - ▁pepper - ▁knew - ▁kill - ▁sauce - ▁herself - ▁hammamet - ▁damn - ▁mix - ▁suit - ▁medicine - ▁remove - ▁gonna - ▁company - ▁quarter - ▁shopping - ▁correct - ▁throw - ▁grow - ▁voice - ▁series - gotten - ▁taste - ▁driving - ▁hospital - ▁sorry - ▁aziz - ▁milk - ▁green - ▁baccalaureate - ▁running - ▁lord - ▁explain - ▁angry - ▁build - ▁fruit - ▁photo - é - ▁crying - ▁baby - ▁store - ▁project - ▁france - ▁twelve - ▁decide - ▁swimming - ▁world - ▁preparing - ▁special - ▁session - ▁behind - ▁vegetable - ▁strong - ▁fatma - ▁treat - ▁cream - ▁situation - ▁settle - ▁totally - ▁stopped - ▁book - ▁honest - ▁solution - ▁vacation - ▁cheese - ▁ahead - ▁sami - ▁focus - ▁scared - ▁club - ▁consider - ▁final - ▁naturally - ▁barely - ▁issue - ▁floor - ▁birth - ▁almighty - ▁engagement - ▁blue - ▁empty - ▁soccer - ▁prophet - ▁ticket - ▁indeed - ▁write - ▁present - ▁patient - ▁available - ▁holiday - ▁leaving - ▁became - ▁reason - ▁apart - ▁impossible - ▁shame - ▁worried - ▁body - ▁continue - ▁program - ▁stress - ▁arabic - ▁round - ▁taxi - ▁transport - ▁third - ▁certain - ▁downstairs - ▁neighbor - ▁directly - ▁giving - ▁june - ▁mini - ▁upstairs - ▁mistake - ▁period - ▁catch - ▁buddy - ▁success - ▁tajine - ▁excuse - ▁organize - ▁question - ▁suffer - ▁remind - ▁university - ▁downtown - ▁sugar - ▁twice - ▁women - ▁couple - ▁everyday - ▁condition - ▁obvious - ▁nobody - ▁complete - ▁stomach - ▁account - ▁september - ▁choose - ▁bottle - ▁figure - ▁instead - ▁salary - '0' - '1' - '3' - '2' - '5' - '7' - '4' - '9' - '8' - / - ° - '6' - è - $ - ï - <sos/eos> src_token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: asr_weight: 0.3 mt_weight: 0.0 mtlalpha: 1.0 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe src_token_type: bpe bpemodel: data/token_list/tgt_bpe_unigram1000/bpe.model src_bpemodel: data/token_list/src_bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/st_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 extra_asr_decoder: transformer extra_asr_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 extra_mt_decoder: transformer extra_mt_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - src_token_list - token_list version: 0.10.6a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-translation"], "datasets": ["iwslt22_dialect"]}
espnet/brianyan918_iwslt22_dialect_st_transformer_fisherlike_4gpu_bbins16m_fix
null
[ "espnet", "audio", "speech-translation", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #speech-translation #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ST model ---------------- ### 'espnet/brianyan918\_iwslt22\_dialect\_st\_transformer\_fisherlike\_4gpu\_bbins16m\_fix' This model was trained by Brian Yan using iwslt22\_dialect recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Tue Feb 8 13:29:21 EST 2022' * python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]' * espnet version: 'espnet 0.10.7a1' * pytorch version: 'pytorch 1.8.1' * Git hash: '77fce65312877a132bbae01917ad26b74f6e2e14' + Commit date: 'Tue Feb 8 10:48:10 2022 -0500' st\_transformer\_fisherlike\_4gpu\_bbins16m\_fix\_raw\_bpe\_tc1000\_sp ---------------------------------------------------------------------- ### BLEU dataset: p3\_st\_model\_valid.URL, bleu\_score: 12.0, verbose\_score: 37.4/17.3/8.6/4.5 (BP = 0.952 ratio = 0.953 hyp\_len = 40192 ref\_len = 42181) ST config --------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_st\\_transformer\\_fisherlike\\_4gpu\\_bbins16m\\_fix'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Feb 8 13:29:21 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '77fce65312877a132bbae01917ad26b74f6e2e14'\n\t+ Commit date: 'Tue Feb 8 10:48:10 2022 -0500'\n\n\nst\\_transformer\\_fisherlike\\_4gpu\\_bbins16m\\_fix\\_raw\\_bpe\\_tc1000\\_sp\n----------------------------------------------------------------------", "### BLEU\n\n\ndataset: p3\\_st\\_model\\_valid.URL, bleu\\_score: 12.0, verbose\\_score: 37.4/17.3/8.6/4.5 (BP = 0.952 ratio = 0.953 hyp\\_len = 40192 ref\\_len = 42181)\n\n\nST config\n---------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #speech-translation #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_st\\_transformer\\_fisherlike\\_4gpu\\_bbins16m\\_fix'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Feb 8 13:29:21 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '77fce65312877a132bbae01917ad26b74f6e2e14'\n\t+ Commit date: 'Tue Feb 8 10:48:10 2022 -0500'\n\n\nst\\_transformer\\_fisherlike\\_4gpu\\_bbins16m\\_fix\\_raw\\_bpe\\_tc1000\\_sp\n----------------------------------------------------------------------", "### BLEU\n\n\ndataset: p3\\_st\\_model\\_valid.URL, bleu\\_score: 12.0, verbose\\_score: 37.4/17.3/8.6/4.5 (BP = 0.952 ratio = 0.953 hyp\\_len = 40192 ref\\_len = 42181)\n\n\nST config\n---------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/brianyan918_iwslt22_dialect_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Feb 2 05:32:30 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1` - Git hash: `99581e0f5af3ad68851d556645e7292771436df9` - Commit date: `Sat Jan 29 11:32:38 2022 -0500` ## asr_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe1000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|27370|54.7|39.5|5.8|8.8|54.2|87.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|145852|84.1|7.1|8.8|11.5|27.4|87.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|64424|63.8|22.8|13.4|12.2|48.3|87.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 55101 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 80 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe1000_sp/train/speech_shape - exp/asr_stats_raw_bpe1000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe1000_sp/valid/speech_shape - exp/asr_stats_raw_bpe1000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /scratch/iwslt22asrdump/raw/train_sp/wav.scp - speech - kaldi_ark - - /scratch/iwslt22asrdump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - /scratch/iwslt22asrdump/raw/dev/wav.scp - speech - kaldi_ark - - /scratch/iwslt22asrdump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.6a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["iwslt22_dialect"]}
espnet/brianyan918_iwslt22_dialect_train_asr_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #automatic-speech-recognition #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/brianyan918\_iwslt22\_dialect\_train\_asr\_conformer\_ctc0.3\_lr2e-3\_warmup15k\_newspecaug' This model was trained by Brian Yan using iwslt22\_dialect recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Wed Feb 2 05:32:30 EST 2022' * python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]' * espnet version: 'espnet 0.10.6a1' * pytorch version: 'pytorch 1.8.1' * Git hash: '99581e0f5af3ad68851d556645e7292771436df9' + Commit date: 'Sat Jan 29 11:32:38 2022 -0500' asr\_train\_asr\_conformer\_ctc0.3\_lr2e-3\_warmup15k\_newspecaug\_raw\_bpe1000\_sp ----------------------------------------------------------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_train\\_asr\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Feb 2 05:32:30 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '99581e0f5af3ad68851d556645e7292771436df9'\n\t+ Commit date: 'Sat Jan 29 11:32:38 2022 -0500'\n\n\nasr\\_train\\_asr\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug\\_raw\\_bpe1000\\_sp\n-----------------------------------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_train\\_asr\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Feb 2 05:32:30 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '99581e0f5af3ad68851d556645e7292771436df9'\n\t+ Commit date: 'Sat Jan 29 11:32:38 2022 -0500'\n\n\nasr\\_train\\_asr\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug\\_raw\\_bpe1000\\_sp\n-----------------------------------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
null
espnet
## ESPnet2 ST model ### `espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/st1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug ``` <!-- Generated by scripts/utils/show_st_results.sh --> # RESULTS ## Environments - date: `Tue Feb 8 12:54:12 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1` - Git hash: `77fce65312877a132bbae01917ad26b74f6e2e14` - Commit date: `Tue Feb 8 10:48:10 2022 -0500` ## st_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe_tc1000_sp ### BLEU |dataset|bleu_score|verbose_score| |---|---|---| pen2_st_model_valid.acc.ave|13.9|44.0/21.8/11.4/6.2 (BP = 0.859 ratio = 0.868 hyp_len = 36614 ref_len = 42181) ## ST config <details><summary>expand</summary> ``` config: conf/tuning/train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/st_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe_tc1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 80 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: true freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/st_stats_raw_bpe1000_sp/train/speech_shape - exp/st_stats_raw_bpe1000_sp/train/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/train/src_text_shape.bpe valid_shape_file: - exp/st_stats_raw_bpe1000_sp/valid/speech_shape - exp/st_stats_raw_bpe1000_sp/valid/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text.tc.en - text - text - - dump/raw/train_sp/text.tc.rm.ta - src_text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text.tc.en - text - text - - dump/raw/dev/text.tc.rm.ta - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁ - apo - '&' - ; - ▁i - ▁you - t - ▁it - ▁the - ▁and - ▁to - ▁that - ▁a - n - a - ▁he - ▁me - m - d - ▁yes - ▁she - ▁no - ▁in - ▁what - ▁for - ▁we - ing - ll - ▁they - re - ▁are - ▁did - ▁god - ▁is - e - ed - ▁so - ▁her - ▁do - ▁have - ▁of - ▁with - ▁go - ▁know - ▁not - ▁was - ▁on - ▁don - y - ▁him - ▁one - ▁like - ▁there - '%' - ▁pw - ▁be - ▁at - ▁told - ▁good - ▁will - ▁my - ▁all - ▁or - c - er - p - ▁how - ▁ah - r - ▁but - ▁them - ▁see - ▁get - ▁can - i - ▁when - ▁going - ▁about - ▁mean - ▁this - k - ▁your - ▁by - ▁if - u - ▁come - ▁up - ▁tell - g - ▁said - ▁then - ▁now - ▁yeah - o - ▁out - al - ra - ▁because - ▁time - ▁well - ▁would - ▁p - ▁from - h - ar - f - ▁swear - ▁went - b - ▁really - or - ▁want - ri - ▁home - ▁work - ve - ▁take - ▁got - ▁just - l - ▁uh - ▁why - en - ▁even - ▁am - ▁who - ▁make - ▁day - '-' - in - ▁something - ▁some - ou - ▁us - ▁okay - ▁where - ▁does - ▁has - ▁thank - ▁c - ▁his - th - ▁back - ▁fine - ▁today - ly - ▁b - ▁oh - ▁doing - ▁everything - ▁here - le - ▁thing - ▁two - ▁anyway - li - ▁had - ▁still - ▁say - ro - ▁after - ce - ▁hello - ▁ma - ▁call - w - ▁listen - il - ▁should - ▁girl - ▁f - z - ▁too - ▁let - ▁understand - ▁may - ▁much - ▁think - ch - ir - ha - ▁other - ▁tomorrow - ▁were - ▁people - es - ▁year - di - ba - ▁right - el - ▁things - ▁house - v - ▁actually - un - ▁an - ▁give - ▁only - ▁better - pe - ▁need - ▁buy - ▁de - ne - ▁ha - ur - ion - ▁made - la - ▁willing - ▁nothing - ▁called - ▁night - ▁yesterday - se - ▁came - ▁lot - ter - ▁g - po - ▁find - ry - ▁car - ▁over - ic - ▁stay - ▁eat - ent - ▁always - ▁very - 'on' - ▁put - ▁ramadan - ▁those - ▁hear - is - ▁talk - ▁three - ▁anything - ▁mo - ▁little - ▁been - ▁already - fi - ation - ke - ▁first - ▁look - it - ▁won - ▁mom - ▁way - ▁before - ▁ok - ▁last - fa - ▁cook - vi - ▁hi - ▁same - ▁thought - ▁also - um - ate - ▁money - ▁start - ▁place - us - ▁morning - ▁could - ▁ask - ▁bring - ▁bit - ▁lo - ▁leave - ▁man - ▁left - ine - ▁days - ge - ▁la - ▁week - ▁friend - ▁problem - ▁sister - ▁allah - ▁feel - ▁every - ▁more - fe - ▁long - ▁hundred - ▁j - ▁eh - ho - ca - em - ▁talking - ▁exam - ▁next - ▁new - ▁fun - ▁took - ▁alright - co - ▁w - ▁um - ▁eid - ▁brother - ▁our - gh - ow - ▁o - ▁four - ni - wa - ▁else - ▁finish - bo - ▁sleep - ▁bless - ▁dear - ▁since - ▁play - ▁name - hi - ▁coming - ▁many - et - ▁usual - ▁con - ▁maybe - ▁off - bi - ▁than - ▁any - ▁mother - ▁son - om - ▁their - ▁keep - ▁dinner - ▁ten - ▁half - ▁help - ▁bad - and - ▁pass - ▁hot - ▁guy - ▁least - ▁down - ▁bought - ▁dinars - ▁working - ▁around - ▁normal - ▁poor - ▁stuff - ▁hope - ▁used - ▁again - ▁bro - ul - ▁phone - ▁ex - ▁done - ▁six - ▁na - ▁month - ▁tired - ▁check - ▁show - ▁together - oo - ▁later - ▁past - ▁five - ▁watch - ya - ▁coffee - ment - ut - ▁plan - ▁great - ▁daughter - j - ▁another - side - ▁change - ▁yet - ting - ▁until - ▁honestly - ▁whole - ol - ▁care - ▁sure - able - id - ▁big - ▁spend - ▁exactly - ▁boy - ▁course - ▁end - ▁please - ▁started - he - up - ▁found - ▁saw - ▁family - ▁asked - ▁enough - ▁during - ▁rest - ▁which - ▁gave - ▁true - ▁while - ▁job - ▁el - ▁each - ▁away - ▁kids - ▁goes - less - ▁twenty - ▁eight - ▁someone - ▁cha - ▁clothes - ah - ▁myself - ▁nice - ▁late - ▁old - ▁real - age - ant - ▁fast - ▁add - ▁hard - ▁these - ful - im - ▁close - ive - ▁dad - ▁pay - ies - ▁dude - ▁alone - ▁far - ance - ▁dis - ▁seven - ▁isn - ▁pro - our - ▁thousand - ▁break - ▁hour - ▁wait - ▁brought - ▁open - ▁un - ▁wedding - ▁walk - ▁father - ▁ka - ▁second - x - ▁saturday - ▁salad - ▁win - ▁everyone - ▁water - ▁tunis - ▁remember - ity - ▁wake - ▁minute - ▁school - ▁sunday - ▁own - ▁shop - ▁cold - ▁meet - ▁wear - ever - ▁send - ▁early - ▁gra - tic - ▁short - ▁use - ▁sometimes - hou - ▁love - ▁prepare - ▁sea - ▁study - ure - ▁com - qui - ▁hand - ▁both - ja - ▁summer - ▁wrong - ▁wanted - che - ▁miss - ▁try - ▁iftar - ▁yourself - q - ▁live - war - ▁expensive - ▁getting - ▁waiting - ▁once - ▁kh - ▁forgot - ▁nine - ▁anymore - ▁soup - ▁uncle - ▁beach - ▁saying - ▁into - ▁having - ▁brik - ▁room - ▁food - ▁visit - ▁matter - ▁thirty - ▁taking - ▁rain - ▁aunt - ▁never - ▁pick - ▁tunisia - ▁health - ▁head - ▁cut - ▁fasting - ▁sick - ▁friday - ▁forget - ▁monday - ▁become - ▁dress - ated - ▁most - wi - ▁hang - ▁life - ▁fish - ▁happy - ▁delicious - ▁deal - ▁finished - ble - ▁studying - ▁weather - ▁making - ▁cost - ▁bl - ▁stayed - ▁guess - ▁teach - ▁stop - ▁near - ▁watching - ▁without - ▁imagine - ▁seriously - fl - ▁speak - ▁idea - ▁must - ▁normally - ▁turn - ize - ▁clean - ▁tv - ▁meat - ▁woke - ▁example - ▁easy - ▁sent - ▁sell - over - ▁fifty - ▁amazing - ▁beautiful - ▁whatever - ▁enjoy - ▁talked - ▁believe - ▁thinking - ▁count - ▁almost - ▁longer - ▁afternoon - ▁hair - ▁front - ▁earlier - ▁mind - ▁kind - ▁tea - ▁best - ▁rent - ▁picture - ▁cooked - ▁price - ight - ▁soon - ▁woman - ▁otherwise - ▁happened - ▁story - ▁luck - ▁high - ▁happen - ▁arrive - ▁paper - ga - ▁quickly - ▁looking - ub - ▁number - ▁staying - ▁sit - man - ack - ▁important - ▁either - ▁person - ▁small - ▁free - ▁crazy - ▁playing - ▁kept - ▁part - ▁game - law - ▁till - uck - ▁ready - ▁might - ▁gone - ▁full - ▁fix - ▁subject - ▁laugh - ▁doctor - ▁welcome - ▁eleven - ▁sleeping - ▁heat - ▁probably - ▁such - ▁café - ▁fat - ▁sweet - ▁married - ▁drink - ▁move - ▁outside - ▁especially - ▁group - ji - ▁market - ▁through - ▁train - ▁protect - ▁turned - ▁red - ▁busy - ▁light - ▁noise - ▁street - ▁manage - ▁piece - ▁sitting - gue - ▁sake - ▁party - ish - ▁young - ▁case - ▁cool - huh - ▁marwa - ▁drive - ▁pray - clock - ▁couscous - ▁spent - ▁felt - ▁hopefully - ▁everybody - ▁living - ▁pain - line - ▁between - ▁match - ▁prayer - que - ian - ▁facebook - ▁spi - ▁eye - ▁children - ▁tonight - ▁mohamed - ▁understood - ▁black - ▁husband - ▁rid - ▁kitchen - ▁face - ▁swim - ▁kid - ▁invite - ▁cup - ▁grilled - ▁wife - ▁cousin - ▁drop - ▁wow - ▁table - ▁du - ▁bored - ▁neighborhood - ▁agree - ▁bread - ▁hamma - ▁straight - ▁tuesday - ▁anyone - ▁lunch - ade - ▁himself - ▁gather - ▁wish - ▁fifteen - ▁wednesday - ▁die - ▁thursday - ▁color - ▁asleep - ▁different - ▁whether - ▁ago - ▁middle - ▁class - ▁cake - shirt - ▁fight - ▁clear - ▁test - ▁plus - ▁sousse - ▁beginning - ▁result - ▁learn - ▁crowded - ▁slept - ▁shoes - ▁august - ▁pretty - ▁white - ▁apparently - ▁reach - ▁mariem - ▁return - ▁road - ▁million - ▁stand - ▁paid - ▁word - ious - ▁few - ▁breakfast - ▁post - ▁kilo - ▁chicken - ▁grade - ▁read - ▁accept - ▁birthday - ▁exhaust - ▁point - ▁july - ▁patience - ▁studies - ▁trouble - ▁along - ▁worry - ▁follow - ▁hurt - ▁afraid - ▁trip - ▁ahmed - ▁remain - ▁succeed - ▁mercy - ▁difficult - ▁weekend - ▁answer - ▁cheap - ▁repeat - ▁auntie - ▁sign - ▁hold - ▁under - ▁olive - ▁mahdi - ▁sfax - ▁annoy - ▁dishes - ▁message - ▁business - ▁french - ▁serious - ▁travel - ▁office - ▁wonder - ▁student - ▁internship - ▁pepper - ▁knew - ▁kill - ▁sauce - ▁herself - ▁hammamet - ▁damn - ▁mix - ▁suit - ▁medicine - ▁remove - ▁gonna - ▁company - ▁quarter - ▁shopping - ▁correct - ▁throw - ▁grow - ▁voice - ▁series - gotten - ▁taste - ▁driving - ▁hospital - ▁sorry - ▁aziz - ▁milk - ▁green - ▁baccalaureate - ▁running - ▁lord - ▁explain - ▁angry - ▁build - ▁fruit - ▁photo - é - ▁crying - ▁baby - ▁store - ▁project - ▁france - ▁twelve - ▁decide - ▁swimming - ▁world - ▁preparing - ▁special - ▁session - ▁behind - ▁vegetable - ▁strong - ▁fatma - ▁treat - ▁cream - ▁situation - ▁settle - ▁totally - ▁stopped - ▁book - ▁honest - ▁solution - ▁vacation - ▁cheese - ▁ahead - ▁sami - ▁focus - ▁scared - ▁club - ▁consider - ▁final - ▁naturally - ▁barely - ▁issue - ▁floor - ▁birth - ▁almighty - ▁engagement - ▁blue - ▁empty - ▁soccer - ▁prophet - ▁ticket - ▁indeed - ▁write - ▁present - ▁patient - ▁available - ▁holiday - ▁leaving - ▁became - ▁reason - ▁apart - ▁impossible - ▁shame - ▁worried - ▁body - ▁continue - ▁program - ▁stress - ▁arabic - ▁round - ▁taxi - ▁transport - ▁third - ▁certain - ▁downstairs - ▁neighbor - ▁directly - ▁giving - ▁june - ▁mini - ▁upstairs - ▁mistake - ▁period - ▁catch - ▁buddy - ▁success - ▁tajine - ▁excuse - ▁organize - ▁question - ▁suffer - ▁remind - ▁university - ▁downtown - ▁sugar - ▁twice - ▁women - ▁couple - ▁everyday - ▁condition - ▁obvious - ▁nobody - ▁complete - ▁stomach - ▁account - ▁september - ▁choose - ▁bottle - ▁figure - ▁instead - ▁salary - '0' - '1' - '3' - '2' - '5' - '7' - '4' - '9' - '8' - / - ° - '6' - è - $ - ï - <sos/eos> src_token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: asr_weight: 0.3 mt_weight: 0.0 mtlalpha: 1.0 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe src_token_type: bpe bpemodel: data/token_list/tgt_bpe_unigram1000/bpe.model src_bpemodel: data/token_list/src_bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/st_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 extra_asr_decoder: transformer extra_asr_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 extra_mt_decoder: transformer extra_mt_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - src_token_list - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-translation"], "datasets": ["iwslt22_dialect"]}
espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug
null
[ "espnet", "audio", "speech-translation", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #speech-translation #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ST model ---------------- ### 'espnet/brianyan918\_iwslt22\_dialect\_train\_st\_conformer\_ctc0.3\_lr2e-3\_warmup15k\_newspecaug' This model was trained by Brian Yan using iwslt22\_dialect recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Tue Feb 8 12:54:12 EST 2022' * python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]' * espnet version: 'espnet 0.10.7a1' * pytorch version: 'pytorch 1.8.1' * Git hash: '77fce65312877a132bbae01917ad26b74f6e2e14' + Commit date: 'Tue Feb 8 10:48:10 2022 -0500' st\_train\_st\_conformer\_ctc0.3\_lr2e-3\_warmup15k\_newspecaug\_raw\_bpe\_tc1000\_sp ------------------------------------------------------------------------------------- ### BLEU dataset: pen2\_st\_model\_valid.URL, bleu\_score: 13.9, verbose\_score: 44.0/21.8/11.4/6.2 (BP = 0.859 ratio = 0.868 hyp\_len = 36614 ref\_len = 42181) ST config --------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_train\\_st\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Feb 8 12:54:12 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '77fce65312877a132bbae01917ad26b74f6e2e14'\n\t+ Commit date: 'Tue Feb 8 10:48:10 2022 -0500'\n\n\nst\\_train\\_st\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug\\_raw\\_bpe\\_tc1000\\_sp\n-------------------------------------------------------------------------------------", "### BLEU\n\n\ndataset: pen2\\_st\\_model\\_valid.URL, bleu\\_score: 13.9, verbose\\_score: 44.0/21.8/11.4/6.2 (BP = 0.859 ratio = 0.868 hyp\\_len = 36614 ref\\_len = 42181)\n\n\nST config\n---------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #speech-translation #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_train\\_st\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Feb 8 12:54:12 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.7a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '77fce65312877a132bbae01917ad26b74f6e2e14'\n\t+ Commit date: 'Tue Feb 8 10:48:10 2022 -0500'\n\n\nst\\_train\\_st\\_conformer\\_ctc0.3\\_lr2e-3\\_warmup15k\\_newspecaug\\_raw\\_bpe\\_tc1000\\_sp\n-------------------------------------------------------------------------------------", "### BLEU\n\n\ndataset: pen2\\_st\\_model\\_valid.URL, bleu\\_score: 13.9, verbose\\_score: 44.0/21.8/11.4/6.2 (BP = 0.859 ratio = 0.868 hyp\\_len = 36614 ref\\_len = 42181)\n\n\nST config\n---------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/brianyan918_iwslt22_dialect_transformer_fisherlike` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_transformer_fisherlike ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Jan 31 10:15:38 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1` - Git hash: `99581e0f5af3ad68851d556645e7292771436df9` - Commit date: `Sat Jan 29 11:32:38 2022 -0500` ## asr_transformer_fisherlike_4gpu_bbins16m_fix_raw_bpe1000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|27370|53.4|41.1|5.5|9.5|56.1|88.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|145852|83.8|7.5|8.7|12.2|28.4|88.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/test1|4204|64424|62.9|23.9|13.3|13.4|50.5|88.2| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/transformer_fisherlike_4gpu_bbins16m_fix.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_transformer_fisherlike_4gpu_bbins16m_fix_raw_bpe1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 60761 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 3 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe1000_sp/train/speech_shape - exp/asr_stats_raw_bpe1000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe1000_sp/valid/speech_shape - exp/asr_stats_raw_bpe1000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /scratch/iwslt22asrdump/raw/train_sp/wav.scp - speech - kaldi_ark - - /scratch/iwslt22asrdump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - /scratch/iwslt22asrdump/raw/dev/wav.scp - speech - kaldi_ark - - /scratch/iwslt22asrdump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 5.0 scheduler: noamlr scheduler_conf: model_size: 256 warmup_steps: 25000 token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.6a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["iwslt22_dialect"]}
espnet/brianyan918_iwslt22_dialect_transformer_fisherlike
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #automatic-speech-recognition #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/brianyan918\_iwslt22\_dialect\_transformer\_fisherlike' This model was trained by Brian Yan using iwslt22\_dialect recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Mon Jan 31 10:15:38 EST 2022' * python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]' * espnet version: 'espnet 0.10.6a1' * pytorch version: 'pytorch 1.8.1' * Git hash: '99581e0f5af3ad68851d556645e7292771436df9' + Commit date: 'Sat Jan 29 11:32:38 2022 -0500' asr\_transformer\_fisherlike\_4gpu\_bbins16m\_fix\_raw\_bpe1000\_sp ------------------------------------------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_transformer\\_fisherlike'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Mon Jan 31 10:15:38 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '99581e0f5af3ad68851d556645e7292771436df9'\n\t+ Commit date: 'Sat Jan 29 11:32:38 2022 -0500'\n\n\nasr\\_transformer\\_fisherlike\\_4gpu\\_bbins16m\\_fix\\_raw\\_bpe1000\\_sp\n-------------------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #dataset-iwslt22_dialect #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/brianyan918\\_iwslt22\\_dialect\\_transformer\\_fisherlike'\n\n\nThis model was trained by Brian Yan using iwslt22\\_dialect recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Mon Jan 31 10:15:38 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: '99581e0f5af3ad68851d556645e7292771436df9'\n\t+ Commit date: 'Sat Jan 29 11:32:38 2022 -0500'\n\n\nasr\\_transformer\\_fisherlike\\_4gpu\\_bbins16m\\_fix\\_raw\\_bpe1000\\_sp\n-------------------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp` ♻️ Imported from https://huggingface.co/ This model was trained by byan using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/byan_librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_ac-truncated-68a97b
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp' ️ Imported from URL This model was trained by byan using librispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp'\n️ Imported from URL\n\nThis model was trained by byan using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp'\n️ Imported from URL\n\nThis model was trained by byan using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
audio-to-audio
espnet
# ESPnet2 ENH pretrained model ## `Chenda Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave, fs=8k, lang=en` ♻️ Imported from <https://zenodo.org/record/4498562#.YOAOApozZH4>. This model was trained by Chenda Li using wsj0_2mix recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Thu Feb 4 01:16:18 CST 2021` - python version: `3.7.6 (default, Jan 8 2020, 19:59:22) [GCC 7.3.0]` - espnet version: `espnet 0.9.7` - pytorch version: `pytorch 1.5.0` - Git hash: `a3334220b0352931677946d178fade3313cf82bb` - Commit date: `Fri Jan 29 23:35:47 2021 +0800` ## enh_train_enh_conv_tasnet_raw config: ./conf/tuning/train_enh_conv_tasnet.yaml |dataset|STOI|SAR|SDR|SIR| |---|---|---|---|---| |enhanced_cv_min_8k|0.949205|17.3785|16.8028|26.9785| |enhanced_tt_min_8k|0.95349|16.6221|15.9494|25.9032| ``` ### Training config See full config in [`config.yaml`](./exp/enh_train_enh_conv_tasnet_raw/config.yaml) ```yaml config: ./conf/tuning/train_enh_conv_tasnet.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/enh_train_enh_conv_tasnet_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "audio-source-separation", "audio-to-audio"], "datasets": ["wsj0_2mix"], "inference": false}
espnet/chenda-li-wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave
null
[ "espnet", "audio", "audio-source-separation", "audio-to-audio", "en", "dataset:wsj0_2mix", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #espnet #audio #audio-source-separation #audio-to-audio #en #dataset-wsj0_2mix #license-cc-by-4.0 #region-us
# ESPnet2 ENH pretrained model ## 'Chenda Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave, fs=8k, lang=en' ️ Imported from <URL This model was trained by Chenda Li using wsj0_2mix recipe in espnet. ### Python API ### Evaluate in the recipe ### Results ### Training config See full config in 'URL'
[ "# ESPnet2 ENH pretrained model", "## 'Chenda Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave, fs=8k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by Chenda Li using wsj0_2mix recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #audio-source-separation #audio-to-audio #en #dataset-wsj0_2mix #license-cc-by-4.0 #region-us \n", "# ESPnet2 ENH pretrained model", "## 'Chenda Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave, fs=8k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by Chenda Li using wsj0_2mix recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
audio-to-audio
espnet
# ESPnet2 ENH pretrained model ## `Chenda Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave, fs=8k, lang=en` ♻️ Imported from <https://zenodo.org/record/4498554#.YOAOEpozZH4>. This model was trained by Chenda Li using wsj0_2mix recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Thu Feb 4 01:08:19 CST 2021` - python version: `3.7.6 (default, Jan 8 2020, 19:59:22) [GCC 7.3.0]` - espnet version: `espnet 0.9.7` - pytorch version: `pytorch 1.5.0` - Git hash: `a3334220b0352931677946d178fade3313cf82bb` - Commit date: `Fri Jan 29 23:35:47 2021 +0800` ## enh_train_enh_rnn_tf_raw config: conf/tuning/train_enh_rnn_tf.yaml |dataset|STOI|SAR|SDR|SIR| |---|---|---|---|---| |enhanced_cv_min_8k|0.891065|11.556|10.3982|18.0655| |enhanced_tt_min_8k|0.896373|11.4086|10.2433|18.0496| ``` ### Training config See full config in [`config.yaml`](./exp/enh_train_enh_rnn_tf_raw/config.yaml) ```yaml config: conf/tuning/train_enh_rnn_tf.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_rnn_tf_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "audio-source-separation", "audio-to-audio"], "datasets": ["wsj0_2mix"], "inference": false}
espnet/chenda-li-wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave
null
[ "espnet", "audio", "audio-source-separation", "audio-to-audio", "en", "dataset:wsj0_2mix", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #espnet #audio #audio-source-separation #audio-to-audio #en #dataset-wsj0_2mix #license-cc-by-4.0 #region-us
# ESPnet2 ENH pretrained model ## 'Chenda Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave, fs=8k, lang=en' ️ Imported from <URL This model was trained by Chenda Li using wsj0_2mix recipe in espnet. ### Python API ### Evaluate in the recipe ### Results ### Training config See full config in 'URL'
[ "# ESPnet2 ENH pretrained model", "## 'Chenda Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave, fs=8k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by Chenda Li using wsj0_2mix recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #audio-source-separation #audio-to-audio #en #dataset-wsj0_2mix #license-cc-by-4.0 #region-us \n", "# ESPnet2 ENH pretrained model", "## 'Chenda Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave, fs=8k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by Chenda Li using wsj0_2mix recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_puebla_nahuatl_transfer` This model was trained by ftshijt using puebla_nahuatl recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/puebla_nahuatl/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_puebla_nahuatl_transfer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Nov 7 18:16:55 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_hubert_raw_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|10576|90532|77.0|17.0|6.0|3.6|26.6|74.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|10576|590273|92.2|2.1|5.7|3.0|10.8|74.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|10576|242435|86.0|7.3|6.8|3.5|17.5|74.0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_hubert.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_hubert_raw_bpe500_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500_sp/train/speech_shape - exp/asr_stats_raw_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_bpe500_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/jiatong-150390.uytFFbyG/raw/train_sp/wav.scp - speech - kaldi_ark - - /tmp/jiatong-150390.uytFFbyG/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - /tmp/jiatong-150390.uytFFbyG/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/jiatong-150390.uytFFbyG/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ':' - N - ▁A - ▁WA - ▁KE - ▁YO - ▁NE - ▁SE - H - MO - WA - '''' - ▁NO - ▁I - ▁N - S - ▁KI - K - ▁ - MAH - KA - TA - L - ▁POS - PA - ▁KA - ▁TA - ▁MO - T - ▁YEHWA - I - MEH - ▁YA - ▁DE - MA - A - ▁TE - TI - TSI - NI - CHI - ▁PERO - KI - LI - TO - WI - ▁PARA - KO - E - ▁O - ▁IKA - TE - O - W - ▁NEH - ▁NOCHI - CH - ▁TI - ▁TIK - LO - ▁SAH - ▁MAH - NA - LA - ▁OMPA - ▁IHKÓ - YA - ▁NI - ▁PORQUE - ▁MA - YO - ▁TEIN - LIA - ▁E - MPA - ▁NIKA - X - YAH - ▁KWALTSI - SA - TSA - ▁MOCHI - ▁NIK - ▁WE - ▁TO - TSÍ - ▁SEMI - ▁KITA - WAK - KWI - MI - ▁MM - ▁XO - ▁SEKI - JÓ - AH - ▁KOMO - R - NE - ▁OK - ▁KWALI - ▁CHI - ▁YEH - ▁NELI - SE - PO - WAH - PI - ME - KWA - ▁PA - ▁ONKAK - KE - ▁YE - ▁T - LTIK - ▁TEHWA - TAH - ▁TIKI - ▁QUE - ▁NIKI - PE - ▁IWKI - XI - TOK - ▁TAMAN - ▁KO - TSO - LE - RA - SI - WÍ - MAN - ▁TIMO - 'NO' - SO - ▁MIAK - U - ▁TEH - ▁KICHI - ▁XA - WE - ▁KOW - KEH - NÍ - LIK - ▁ITECH - TIH - ▁PE - ▁KIPIA - ▁CUANDO - ▁KWALTIA - ▁HASTA - LOWA - ▁ENTÓ - ▁NA - XO - RO - TIA - ▁NIKITA - CHIHCHI - ▁SEPA - ▁MAHYÁ - ▁PAHTI - ▁K - LIAH - ▁SAYOH - MATI - ▁PI - TS - ▁MÁS - XMATI - KAH - ▁XI - M - ▁ESTE - HKO - KOWIT - MIKI - CHO - ▁TAK - Á - ▁KILIAH - CHIO - ▁KIHTOWA - ▁KITE - NEKI - ▁ME - XA - ▁TEL - B - ▁KOWIT - ▁ATA - TIK - ▁EKINTSI - ▁IMA - ▁KWA - ▁OSO - ▁NEHJÓ - ▁ITEYO - Y - SKEH - ▁ISTA - ▁NIKILIA - LIH - ▁TIKWI - ▁PANÉ - KOWA - ▁OX - TEKI - ▁SA - NTE - ▁KIKWI - TSITSI - NOH - AHSI - ▁IXO - WIA - LTSI - ▁KIMA - C - ▁WEHWEI - ▁TEPITSI - ▁IHK - ▁XIWIT - YI - LIS - ▁CA - XMATTOK - SÁ - ▁MOTA - RE - ▁TIKIHTO - ▁MI - ▁X - D - ▁SAN - WIH - ▁WEHKA - KWE - CHA - ▁SI - KTIK - ▁YETOK - ▁MOKA - NEMI - LILIA - ▁¿ - TIW - ▁KIHTOWAH - LTI - Ó - MASÁ - ▁POR - ▁TIKITA - KETSA - ▁IWA - METS - YOH - ▁TAKWA - HKEH - ▁KIKWIH - ▁KIKWA - NIA - ▁ACHI - ▁KIKWAH - ▁KACHI - ▁PO - ▁IGUAL - NAL - ▁PILI - ▁NIMAN - YE - ▁NIKMATI - WIAH - ▁KIPA - ▁M - J - ▁KWI - ▁WI - WAYA - Z - ▁KITEKI - G - ▁' - ▁IHKO - CE - ▁TONI - ▁TSIKITSI - P - DO - TOKEH - NIK - ▁TIKILIAH - ▁KOWTAH - ▁TAI - ▁TATA - TIAH - CA - PIL - CHOWA - ▁KIMATI - ▁TAMA - XKA - XIWIT - TOS - KILIT - ILWI - SKI - YEH - DA - WAYO - ▁TAPA - ▁NIMO - CHIT - ▁NIMITS - ▁KINA - PAHTI - RI - ▁BUENO - ▁ESKI - WAYAH - PANO - KOW - WEYAK - LPAN - LTIA - ▁KITO - CO - ▁TINE - KIH - JO - ▁KATKA - ▁TIKTA - PAHTIA - ▁XIWTSI - ▁CHIKA - ▁KANAH - ▁KOYO - MPI - ▁IXIWYO - IHTIK - ▁KWE - ▁XIW - WILIA - XTIK - ▁VE - ▁TIKMATI - ▁KOKOLIS - LKWI - ▁AHKO - MEKAT - ▁TIKMA - ▁NIMITSILIA - ▁MITS - XTA - ▁CO - ▁KOMA - ▁KOMOHKÓ - F - ▁OKSEKI - ▁TEISÁ - ▁ESO - ▁IKOWYO - ▁ES - TOHTO - XTI - ▁TSI - ▁TIKO - PIHPI - ▁OKSÉ - ▁WEHKAPAN - KALAKI - ▁WEL - ▁MIGUEL - TEKITI - ▁TOKNI - ROWA - ▁MOSKALTIA - Í - XOKO - ▁TIKCHI - ▁EHE - ▁KWO - LPI - HTOK - TSTI - TÍ - ▁TEIHSÁ - KILO - ▁PUES - SKIA - HTIW - LILIAH - ▁IHWA - ▁KOSTIK - ▁TIKIHTOWAH - ▁CHA - ▁COMO - ▁KIMANA - CU - TAMAN - WITS - ▁KOKO - ILPIA - ▁NIMONO - ▁WELI - ▁NIKWI - WTOK - ▁KINEKI - KOKOH - ▁P - LTIAH - XKO - ▁ONKAYA - TAPOWI - MATTOK - ▁MISMO - ▁NIKIHTO - ▁NIKMATTOK - MESKIA - ▁SOH - KWOWIT - XTIA - WELITA - ▁DESPUÉS - ▁IXWA - ZA - TSAPOT - SKAL - ▁SIEMPRE - TINEMI - Ñ - ▁ESKIA - NELOWA - ▁TZINACAPAN - ▁DI - XIWYO - ▁AHA - ▁AHWIA - É - ▁KIKWIAH - MATTOKEH - ▁ACHTO - XTILIA - TAPAL - ▁KIHTO - TEHTE - ▁PORIN - ▁TSOPE - ▁KAHFE - GU - ▁NIMITSTAHTANI - ▁TAHTA - ▁KOWTATI - ISWAT - ▁TIKPIA - ▁KOMEKAT - TIOWIH - ▁TIMONOHNO - ▁TIEMPO - WEHKA - QUI - ▁TIHTI - ▁XOXOKTIK - ▁TAXKAL - EHE - ▁AJÁ - NANAKAT - NIWKI - ▁CI - ▁ITSMOL - ▁NIKPIA - TEKPA - ▁BO - ▁TASOHKA - Ú - ¡ - '8' - '9' - '0' - '1' - '2' - ¿ - Ò - '4' - À - '7' - '5' - '3' - ́ - V - ̈ - Ï - '6' - Q - Ì - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["puebla_nahuatl"]}
espnet/ftshijt_espnet2_asr_puebla_nahuatl_transfer
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:puebla_nahuatl", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #automatic-speech-recognition #dataset-puebla_nahuatl #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/ftshijt\_espnet2\_asr\_puebla\_nahuatl\_transfer' This model was trained by ftshijt using puebla\_nahuatl recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Sun Nov 7 18:16:55 EST 2021' * python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]' * espnet version: 'espnet 0.10.4a1' * pytorch version: 'pytorch 1.9.0' * Git hash: '' + Commit date: '' asr\_train\_asr\_transformer\_hubert\_raw\_bpe500\_sp ----------------------------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/ftshijt\\_espnet2\\_asr\\_puebla\\_nahuatl\\_transfer'\n\n\nThis model was trained by ftshijt using puebla\\_nahuatl recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sun Nov 7 18:16:55 EST 2021'\n* python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.4a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_transformer\\_hubert\\_raw\\_bpe500\\_sp\n-----------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #dataset-puebla_nahuatl #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/ftshijt\\_espnet2\\_asr\\_puebla\\_nahuatl\\_transfer'\n\n\nThis model was trained by ftshijt using puebla\\_nahuatl recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sun Nov 7 18:16:55 EST 2021'\n* python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.4a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_transformer\\_hubert\\_raw\\_bpe500\\_sp\n-----------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_totonac_transformer` This model was trained by ftshijt using totonac recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/totonac/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_totonac_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Nov 7 09:22:09 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_specaug_raw_bpe250_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe250_valid.loss.ave_asr_model_valid.acc.best/dev|530|3547|59.8|32.9|7.3|6.5|46.7|87.4| |decode_asr_lm_lm_train_bpe250_valid.loss.ave_asr_model_valid.acc.best/test|704|5018|55.5|35.7|8.8|6.1|50.6|92.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe250_valid.loss.ave_asr_model_valid.acc.best/dev|530|22510|88.1|4.4|7.4|3.9|15.8|87.4| |decode_asr_lm_lm_train_bpe250_valid.loss.ave_asr_model_valid.acc.best/test|704|32990|86.9|4.3|8.8|4.0|17.1|92.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe250_valid.loss.ave_asr_model_valid.acc.best/dev|530|9360|70.3|15.8|13.8|4.3|34.0|87.4| |decode_asr_lm_lm_train_bpe250_valid.loss.ave_asr_model_valid.acc.best/test|704|13835|70.5|16.0|13.6|4.4|33.9|92.0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_specaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_specaug_raw_bpe250_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe250_sp/train/speech_shape - exp/asr_stats_raw_bpe250_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe250_sp/valid/speech_shape - exp/asr_stats_raw_bpe250_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/jiatong-7359.okvPvI3Z/raw/train_sp/wav.scp - speech - kaldi_ark - - /tmp/jiatong-7359.okvPvI3Z/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - /tmp/jiatong-7359.okvPvI3Z/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/jiatong-7359.okvPvI3Z/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 4000 token_list: - <blank> - <unk> - ':' - ▁N - NI - N - ▁IYMA - ▁NA - NA - ▁WA - WA - ▁ - '''' - KA - ▁MA - MA - T - ▁XA - TA - NCHU - WI - ▁LI - ▁NI - PA - YI - ▁PUS - K - ▁PI - ▁X - S - ▁TA - YA - ▁LA - Q - QA - TI - ▁KA - QO - W - ▁KAH - ▁PALA - H - X - XA - ▁KI - A - LH - I - LA - ▁CHA - ▁A - ▁XLI - ▁LHI - U - ▁K - KANI - KU - Y - ▁LU - Á - ▁CHU - O - KI - ▁KIWI - NTLA - ▁TLA - M - ▁TAWA - ▁TI - ▁S - WANI - CHA - LHI - LI - ▁TU - ▁PALHA - Í - ▁CHANÁ - ▁KILHWAMPA - KÁN - ▁WAYMA - E - SA - ▁E - ▁LHU - LHA - PU - ▁LHA - ▁PA - ▁LAK - ▁ANTA - ▁KITI - NCHÚ - SI - TLA - PI - ▁KINI - CHI - ▁PEROH - ▁PU - QÓ - QALHCHIWINA - TU - ▁TLHA - ▁WI - NÁ - ▁KAN - ▁NAYI - CH - 'NO' - ▁U - TSA - MÁ - NQO - ▁ANA - ▁LIKWA - ▁XTA - J - ▁QALH - TO - TÁ - ▁USA - ▁PORQUE - ▁MI - L - ▁TAWÁ - XI - LHAQAPASA - P - CHIWI - WÁ - NTI - ▁JKA - Ú - NTLHA - R - TSI - C - STA - ▁LH - LHU - MPI - ▁I - ▁NILH - ▁KATSI - ▁LHAK - MAKLHAKASKI - ▁WANIKÁN - ▁WIXI - ▁TSI - KÚ - NÍ - ▁PAKS - NU - TLHA - YÁ - KUCHAN - XAQATLI - ▁MAX - ▁LAQAPASA - ▁LAQ - QALH - KATSI - Ó - LAQAPASA - ▁J - ▁QAMA - NTU - MI - KIWI - ▁KIN - ▁XANAT - ▁CHI - JA - ▁IY - ▁TSU - MAKLAKAS - ▁MAQA - LÁ - ▁KATSIYA - ▁TLANKA - ▁STAK - ▁XLA - ▁LHIKWA - ▁SQA - ▁P - TAHNA - ▁TLAQ - ▁JKATSI - MAKLAKASKINKA - YÁW - WATIYA - CHÁ - ▁IPORQUEI - ▁AKXNI - TSU - ▁TSINÓ - ▁STAKA - ▁AKXNÍ - LAKATA - KATSÍ - ▁XALHAK - TLAWAYA - SPUT - ▁XATAWA - QALHCHIWI - PÁ - JU - ▁XAXANAT - ▁PÉREZ - ▁AKTSU - ▁JKI - NTÚ - ▁KATSIYÁ - ▁IESTEI - LAQAPASÁ - ▁MASKI - ▁LAQSQATÁ - ▁TLHANKA - ▁WANIKANI - ▁LÓPEZ - MAKLAKASKINKÁN - ▁ANTÁ - ▁TACHIWÍ - ▁SEBAST - ▁CANO - ▁XKUTNI - ▁UKXILH - TANKAH - LAKASKINQO - LAKAPASTAK - ▁XCHACHAT - TAKAWANÍ - ▁TLÁ - ▁TSINOH - KAXTLAWA - ▁NÚÑEZ - ▁XLAKASKINKA - ▁WÁTIYA - ONCE - Z - É - D - Ñ - V - F - G - '1' - B - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram250/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe250_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["totonac"]}
espnet/ftshijt_espnet2_asr_totonac_transformer
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:totonac", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #automatic-speech-recognition #dataset-totonac #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/ftshijt\_espnet2\_asr\_totonac\_transformer' This model was trained by ftshijt using totonac recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Sun Nov 7 09:22:09 EST 2021' * python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]' * espnet version: 'espnet 0.10.4a1' * pytorch version: 'pytorch 1.9.0' * Git hash: '' + Commit date: '' asr\_train\_asr\_transformer\_specaug\_raw\_bpe250\_sp ------------------------------------------------------ ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/ftshijt\\_espnet2\\_asr\\_totonac\\_transformer'\n\n\nThis model was trained by ftshijt using totonac recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sun Nov 7 09:22:09 EST 2021'\n* python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.4a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_transformer\\_specaug\\_raw\\_bpe250\\_sp\n------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #dataset-totonac #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/ftshijt\\_espnet2\\_asr\\_totonac\\_transformer'\n\n\nThis model was trained by ftshijt using totonac recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sun Nov 7 09:22:09 EST 2021'\n* python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.4a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_transformer\\_specaug\\_raw\\_bpe250\\_sp\n------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer` This model was trained by ftshijt using yolo_mixtec recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/yolo_mixtec/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 10 02:59:39 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_specaug_raw_bpe500 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|81348|84.1|11.8|4.1|2.5|18.3|82.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|626187|93.4|2.2|4.4|2.4|9.0|82.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|325684|90.7|5.2|4.1|2.2|11.5|82.5| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_specaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_specaug_raw_bpe500 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500/train/speech_shape - exp/asr_stats_raw_bpe500/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500/valid/speech_shape - exp/asr_stats_raw_bpe500/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/text - text - text valid_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - '4' - '3' - '1' - '2' - A - ▁NDI - '''4' - '''1' - U - ▁BA - O - ▁I - E - 4= - ▁KU - ▁TAN - ▁KA - '''3' - NI - ▁YA - RA - 3= - 2= - IN - NA - ▁TA - AN - ▁KAN - ▁NI - ▁NDA - ▁NA - ▁JI - KAN - CHI - (3)= - I - UN - 1- - ▁SA - (4)= - ▁JA - XI - ▁KO - ▁TI - TA - KU - BI - ▁YU - ▁KWA - KA - XA - 1= - ▁YO - RI - NDO - ▁XA - TU - ▁TU - ▁ÑA - ▁KI - ▁XI - YO - NDU - NDA - ▁CHI - (2)= - ▁BI - ▁NU - KI - (1)= - YU - 3- - ▁MI - 'ON' - ▁A - BA - 4- - KO - ▁NDU - ▁ÑU - ▁NDO - NU - ÑU - '143' - ▁SI - ▁SO - 13- - NDI - ▁AN - ▁SU - TIN - SA - ▁BE - TO - RUN - KWA - KWI - ▁NDE - ▁KWI - XIN - ▁U - SI - SO - ▁TUN - EN - ▁KWE - YA - (4)=2 - NDE - TI - TUN - ▁TIN - MA - ▁SE - ▁XU - SU - ▁LU - ▁KE - ▁ - MI - ▁RAN - (3)=2 - 14- - ▁MA - KUN - LU - N - ▁O - KE - NGA - ▁IS - ▁JU - '=' - ▁LA - ÑA - JA - CHUN - R - TAN - PU - ▁TIEM - LI - LA - CHIU - ▁PA - M - ▁REY - ▁BAN - JI - L - SUN - ▁SEÑOR - ▁JO - ▁TIO - KWE - CHU - S - ▁YE - KIN - XU - BE - ▁CUENTA - ▁SAN - RRU - ▁¿ - CHA - ▁TO - RRA - LO - TE - ▁AMIGU - PA - XAN - ▁C - C - ▁CHA - ▁TE - ▁HIJO - ▁MB - ▁PI - G - ▁ÁNIMA - ▁CHE - ▁P - B - NDIO - SE - ▁SANTU - MU - ▁PADRE - D - JU - Z - ▁TORO - ▁PO - LE - ▁LI - RO - ▁LO - ▁MESA - CA - ▁CHIU - DO - ▁BU - ▁BUTA - JO - T - TRU - RU - ▁MBO - ▁JUAN - ▁MM - ▁CA - ▁M - ▁MAS - ▁DE - V - ▁MAÑA - ▁UTA - DA - ▁MULA - ▁YOLOXÓCHITL - ▁CONSEJU - ▁Y - ▁LE - ÓN - ▁MISA - TIU - ▁CANDELA - ▁PATRÓN - ▁PADRINU - ▁MARCU - ▁V - ▁G - Í - ▁XE - ▁MU - ▁XO - NGUI - ▁CO - ▁HOMBRE - ▁PESU - ▁PE - ▁D - ▁MACHITI - CO - REN - ▁RANCHU - ▁MIS - ▁MACHU - J - ▁PAN - CHO - H - ▁CHU - Y - ▁TON - GA - X - ▁VI - ▁FE - ▁TARRAYA - ▁SANTÍSIMA - ▁N - ▁MAYÓ - ▁CARRU - ▁F - ▁PAPÁ - ▁PALOMA - ▁MARÍA - ▁PEDRU - ▁CAFÉ - ▁COMISARIO - ▁PANELA - ▁PELÓN - É - ▁POZO - ▁CABRÓN - ▁GUACHU - ▁S - RES - ▁COSTUMBRE - ▁SEÑA - QUI - ▁ORO - CH - ▁MAR - SIN - SAN - ▁COSTA - ▁MAMÁ - ▁CINCUENTA - ▁CHO - ▁PEDR - ▁JUNTA - MÚ - ▁TIENDA - ▁JOSÉ - NC - ▁ES - ▁SUERTE - ▁FAMILIA - ▁ZAPATU - NTE - ▁PASTO - ▁CON - Ñ - ▁BOTE - CIÓN - ▁RE - ▁BOLSA - ▁MANGO - ▁JWE - ▁GASTU - ▁T - ▁B - ▁KW - ÍN - ▁HIJA - ▁CUARENT - ▁VAQUERU - ▁NECHITO - ▁NOVIA - ▁NOVIO - JWE - ▁PUENTE - ▁SANDÍA - ▁MALA - Ó - ▁ABONO - ▁JESÚS - ▁CUARTO - ▁EFE - ▁REINA - ▁COMANDANTE - ▁ESCUELA - ▁MANZANA - ▁MÁQUINA - LLA - ▁COR - ▁JERÓNIMO - ▁PISTOLA - NGI - CIO - ▁FRANCISCU - ▁TEODORO - CER - ▁SALUBI - ▁MEZA - ▁MÚSIC - ▁RU - ▁CONSTANTINO - ▁GARCÍA - ▁FRENU - ▁ROSA - ▁CERVEZA - ▁CIGARRU - ▁COMISIÓN - ▁CUNIJO - ▁FRANCISCO - ▁HÍJOLE - ▁NUEVE - ▁MUL - ▁PANTALÓN - ▁CAMISA - ▁CHINGADA - ▁SEMANA - ▁COM - GAR - ▁MARTÍN - ▁SÁBADO - ▁TRABAJO - ▁CINCO - ▁DIE - ▁EST - NDWA - ▁LECHIN - ▁COCO - ILLU - ▁CORRE - ▁MADR - ▁REC - ▁BAUTISTA - ▁VENTANA - ▁CUÑAD - ▁ANTONIU - ▁COPALA - LÍN - ▁SECUND - ▁COHETE - ▁HISTORIA - ▁POLICÍA - ENCIA - ▁CAD - ▁LUIS - ▁DOCTOR - ▁GONZÁLEZ - ▁JUEVE - ▁LIBRU - ▁QUESU - ▁VIAJE - ▁CART - ▁LOCO - ▁BOL - ▁COMPADRE - ▁JWI - ▁METRU - ▁BUENO - ▁TRE - ▁CASTILLO - ▁COMITÉ - ▁ETERNO - ▁LÍQUIDO - ▁MOLE - ▁CAPULCU - ▁DOMING - ▁ROMA - ▁CARAJU - ▁RIATA - ▁TRATU - ▁SEIS - ▁ADÁN - ▁JUANCITO - ▁HOR - '''' - ▁ARRÓ - ▁COCINA - ▁PALACIO - ▁RÓMULO - K - ▁ALFONSO - ▁BARTOLO - ▁FELIPE - ▁HERRER - ▁PAULINO - ▁YEGUA - ▁LISTA - Ú - ▁ABRIL - ▁CUATRO - ▁DICIEMBRE - ▁MARGARITO - ▁MOJONERA - ▁SOLEDAD - ▁VESTIDO - ▁PELOTA - RRET - ▁CAPITÁN - ▁COMUNIÓN - ▁CUCHARA - ▁FERNANDO - ▁GUADALUPE - ▁MIGUEL - ▁PELÚN - ▁SECRETARIU - ▁LENCHU - ▁EVA - ▁SEGUND - ▁CANTOR - ▁CHILPANCINGO - ▁GABRIEL - ▁QUINIENTO - ▁RAÚL - ▁SEVERIAN - ▁TUMBADA - ▁MALINCHI - ▁PRIMU - ▁MORAL - ▁AGOSTO - ▁CENTÍMETRO - ▁FIRMA - ▁HUEHUETÁN - ▁MANGUERA - ▁MEDI - ▁MUERT - ▁SALAZAR - ▁VIERNI - LILL - ▁LL - '-' - ▁CAMPESINO - ▁CIVIL - ▁COMISARIADO - ) - ( - Ã - ‘ - ¿ - Ü - ¡ - Q - F - Á - P - Ÿ - W - Ý - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe500/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 512 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["yolo_mixtec"]}
espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:yolo_mixtec", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "noinfo" ]
TAGS #espnet #audio #automatic-speech-recognition #dataset-yolo_mixtec #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/ftshijt\_espnet2\_asr\_yolo\_mixtec\_transformer' This model was trained by ftshijt using yolo\_mixtec recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Wed Nov 10 02:59:39 EST 2021' * python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]' * espnet version: 'espnet 0.10.4a1' * pytorch version: 'pytorch 1.9.0' * Git hash: '' + Commit date: '' asr\_train\_asr\_transformer\_specaug\_raw\_bpe500 -------------------------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/ftshijt\\_espnet2\\_asr\\_yolo\\_mixtec\\_transformer'\n\n\nThis model was trained by ftshijt using yolo\\_mixtec recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Nov 10 02:59:39 EST 2021'\n* python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.4a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_transformer\\_specaug\\_raw\\_bpe500\n--------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #dataset-yolo_mixtec #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/ftshijt\\_espnet2\\_asr\\_yolo\\_mixtec\\_transformer'\n\n\nThis model was trained by ftshijt using yolo\\_mixtec recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Nov 10 02:59:39 EST 2021'\n* python version: '3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.4a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_transformer\\_specaug\\_raw\\_bpe500\n--------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `ftshijt/mls_asr_transformer_valid.acc.best` ♻️ Imported from https://zenodo.org/record/4458452/ This model was trained by ftshijt using mls/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "es", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["mls"]}
espnet/ftshijt_mls_asr_transformer_valid.acc.best
null
[ "espnet", "audio", "automatic-speech-recognition", "es", "dataset:mls", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "es" ]
TAGS #espnet #audio #automatic-speech-recognition #es #dataset-mls #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'ftshijt/mls_asr_transformer_valid.URL' ️ Imported from URL This model was trained by ftshijt using mls/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'ftshijt/mls_asr_transformer_valid.URL'\n️ Imported from URL\n\nThis model was trained by ftshijt using mls/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #es #dataset-mls #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'ftshijt/mls_asr_transformer_valid.URL'\n️ Imported from URL\n\nThis model was trained by ftshijt using mls/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `jv_openslr35` ♻️ Imported from https://zenodo.org/record/5090139/ This model was trained by jv_openslr35 using jv_openslr35/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "jv", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["jv_openslr35"]}
espnet/jv_openslr35
null
[ "espnet", "audio", "automatic-speech-recognition", "jv", "dataset:jv_openslr35", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "jv" ]
TAGS #espnet #audio #automatic-speech-recognition #jv #dataset-jv_openslr35 #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'jv_openslr35' ️ Imported from URL This model was trained by jv_openslr35 using jv_openslr35/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'jv_openslr35'\n️ Imported from URL\n\nThis model was trained by jv_openslr35 using jv_openslr35/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #jv #dataset-jv_openslr35 #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'jv_openslr35'\n️ Imported from URL\n\nThis model was trained by jv_openslr35 using jv_openslr35/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
# ESPnet2 ASR pretrained model ## `kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best` ♻️ Imported from <https://zenodo.org/record/3957940#.YN7zwJozZH4> This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: null print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_raw_bpe ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["mini-an4"]}
espnet/kamo-naoyuki-mini_an4_asr_train_raw_bpe_valid.acc.best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:mini-an4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-mini-an4 #arxiv-1804.00015 #license-cc-by-4.0 #region-us
# ESPnet2 ASR pretrained model ## 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL' ️ Imported from <URL This model was trained by kan-bayashi using jsut/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv: ### Training config See full config in 'URL'
[ "# ESPnet2 ASR pretrained model", "## 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL'\n\n️ Imported from <URL\nThis model was trained by kan-bayashi using jsut/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-mini-an4 #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "# ESPnet2 ASR pretrained model", "## 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL'\n\n️ Imported from <URL\nThis model was trained by kan-bayashi using jsut/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/aishell_conformer` ♻️ Imported from https://zenodo.org/record/4105763/ This model was trained by kamo-naoyuki using aishell/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["aishell"]}
espnet/kamo-naoyuki_aishell_conformer
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "zh" ]
TAGS #espnet #audio #automatic-speech-recognition #zh #dataset-aishell #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/aishell_conformer' ️ Imported from URL This model was trained by kamo-naoyuki using aishell/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/aishell_conformer'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using aishell/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #zh #dataset-aishell #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/aishell_conformer'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using aishell/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4414883/ This model was trained by kamo-naoyuki using chime4/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["chime4"]}
espnet/kamo-naoyuki_chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-chime4 #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using chime4/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using chime4/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-chime4 #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using chime4/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/dirha_wsj_asr_train_asr_transformer_cmvn_raw_char_rir_scpdatadirha_irwav.scp_noise_db_range10_17_noise_scpdatadirha_noisewav.scp_speech_volume_normalize1.0_num_workers2_rir_apply_prob1._sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4415021/ This model was trained by kamo-naoyuki using dirha_wsj/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["dirha_wsj"]}
espnet/kamo-naoyuki_dirha_wsj_asr_train_asr_transformer_cmvn_raw_char_rir_scp-truncated-2fd1f8
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:dirha_wsj", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-dirha_wsj #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/dirha_wsj_asr_train_asr_transformer_cmvn_raw_char_rir_scpdatadirha_irwav.scp_noise_db_range10_17_noise_scpdatadirha_noisewav.scp_speech_volume_normalize1.0_num_workers2_rir_apply_prob1._sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using dirha_wsj/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/dirha_wsj_asr_train_asr_transformer_cmvn_raw_char_rir_scpdatadirha_irwav.scp_noise_db_range10_17_noise_scpdatadirha_noisewav.scp_speech_volume_normalize1.0_num_workers2_rir_apply_prob1._sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using dirha_wsj/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-dirha_wsj #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/dirha_wsj_asr_train_asr_transformer_cmvn_raw_char_rir_scpdatadirha_irwav.scp_noise_db_range10_17_noise_scpdatadirha_noisewav.scp_speech_volume_normalize1.0_num_workers2_rir_apply_prob1._sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using dirha_wsj/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/hkust_asr_train_asr_transformer2_raw_zh_char_batch_bins20000000_ctc_confignore_nan_gradtrue_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4430974/ This model was trained by kamo-naoyuki using hkust/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["hkust"]}
espnet/kamo-naoyuki_hkust_asr_train_asr_transformer2_raw_zh_char_batch_bins20-truncated-934e17
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:hkust", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "zh" ]
TAGS #espnet #audio #automatic-speech-recognition #zh #dataset-hkust #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/hkust_asr_train_asr_transformer2_raw_zh_char_batch_bins20000000_ctc_confignore_nan_gradtrue_sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using hkust/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/hkust_asr_train_asr_transformer2_raw_zh_char_batch_bins20000000_ctc_confignore_nan_gradtrue_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using hkust/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #zh #dataset-hkust #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/hkust_asr_train_asr_transformer2_raw_zh_char_batch_bins20000000_ctc_confignore_nan_gradtrue_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using hkust/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft400_frontend_confhop_length160_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4543003/ This model was trained by kamo-naoyuki using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/kamo-naoyuki_librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend-truncated-55c091
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft400_frontend_confhop_length160_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft400_frontend_confhop_length160_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft400_frontend_confhop_length160_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft512_frontend_confhop_length256_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4543018/ This model was trained by kamo-naoyuki using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/kamo-naoyuki_librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend-truncated-b76af5
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft512_frontend_confhop_length256_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft512_frontend_confhop_length256_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_frontend_confn_fft512_frontend_confhop_length256_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_accum_grad2_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4541452/ This model was trained by kamo-naoyuki using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/kamo-naoyuki_librispeech_asr_train_asr_conformer5_raw_bpe5000_schedule-truncated-c8e5f9
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_accum_grad2_sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_accum_grad2_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer5_raw_bpe5000_scheduler_confwarmup_steps25000_batch_bins140000000_optim_conflr0.0015_initnone_accum_grad2_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/librispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4604066/ This model was trained by kamo-naoyuki using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/kamo-naoyuki_librispeech_asr_train_asr_conformer6_n_fft512_hop_length2-truncated-a63357
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/librispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/librispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using librispeech/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3957940/ This model was trained by kamo-naoyuki using mini_an4/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["mini_an4"]}
espnet/kamo-naoyuki_mini_an4_asr_train_raw_bpe_valid.acc.best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:mini_an4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-mini_an4 #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using mini_an4/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using mini_an4/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-mini_an4 #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL'\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using mini_an4/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]