pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
text-to-speech
espnet
## ESPnet2 TTS pretrained model ### `kan-bayashi/tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest` ♻️ Imported from https://zenodo.org/record/5521446/ This model was trained by kan-bayashi using tsukuyomi/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["tsukuyomi"]}
espnet/kan-bayashi_tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest
null
[ "espnet", "audio", "text-to-speech", "ja", "dataset:tsukuyomi", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "ja" ]
TAGS #espnet #audio #text-to-speech #ja #dataset-tsukuyomi #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 TTS pretrained model ### 'kan-bayashi/tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest' ️ Imported from URL This model was trained by kan-bayashi using tsukuyomi/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using tsukuyomi/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #ja #dataset-tsukuyomi #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using tsukuyomi/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## ESPnet2 TTS pretrained model ### `kan-bayashi/vctk_full_band_multi_spk_vits` ♻️ Imported from https://zenodo.org/record/5521431/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_full_band_multi_spk_vits
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 TTS pretrained model ### 'kan-bayashi/vctk_full_band_multi_spk_vits' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_full_band_multi_spk_vits'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_full_band_multi_spk_vits'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_conformer_fastspeech2` ♻️ Imported from https://zenodo.org/record/4036264/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_conformer_fastspeech2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #has_space #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst_conformer_fastspeech2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_conformer_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #has_space #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_conformer_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_fastspeech` ♻️ Imported from https://zenodo.org/record/3986241/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_fastspeech
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst_fastspeech' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_fastspeech'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_fastspeech'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_fastspeech2` ♻️ Imported from https://zenodo.org/record/4036266/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_fastspeech2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst_fastspeech2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_tacotron2` ♻️ Imported from https://zenodo.org/record/3986237/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_tacotron2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst_tacotron2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_tacotron2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_tacotron2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_transformer` ♻️ Imported from https://zenodo.org/record/4037456/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_transformer
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst_transformer' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_transformer'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst_transformer'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst+xvector_conformer_fastspeech2` ♻️ Imported from https://zenodo.org/record/4394608/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_xvector_conformer_fastspeech2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst+xvector_conformer_fastspeech2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst+xvector_conformer_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst+xvector_conformer_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst+xvector_tacotron2` ♻️ Imported from https://zenodo.org/record/4394598/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_xvector_tacotron2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst+xvector_tacotron2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst+xvector_tacotron2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst+xvector_tacotron2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst+xvector_transformer` ♻️ Imported from https://zenodo.org/record/4393277/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_gst_xvector_transformer
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_gst+xvector_transformer' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst+xvector_transformer'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_gst+xvector_transformer'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## ESPnet2 TTS pretrained model ### `kan-bayashi/vctk_multi_spk_vits` ♻️ Imported from https://zenodo.org/record/5500759/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_multi_spk_vits
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 TTS pretrained model ### 'kan-bayashi/vctk_multi_spk_vits' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_multi_spk_vits'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_multi_spk_vits'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## ESPnet2 TTS pretrained model ### `kan-bayashi/vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` ♻️ Imported from https://zenodo.org/record/5521431/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g-truncated-50b003
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 TTS pretrained model ### 'kan-bayashi/vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4036264/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_-truncated-69081b
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4036266/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3986241/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.loss.best
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3986237/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4037456/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst+xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4394608/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_xvector_conformer_fastspeech2_transform-truncated-e051a9
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst+xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst+xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst+xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst+xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4394598/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_gst_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_gst+xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst+xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_gst+xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## ESPnet2 TTS pretrained model ### `kan-bayashi/vctk_tts_train_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` ♻️ Imported from https://zenodo.org/record/5500759/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 TTS pretrained model ### 'kan-bayashi/vctk_tts_train_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_tts_train_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 TTS pretrained model", "### 'kan-bayashi/vctk_tts_train_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4394602/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_xvector_conformer_fastspeech2_transformer_t-truncated-69a657
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_xvector_conformer_fastspeech2_transformer_teacher_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4394600/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4393279/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.URL'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_xvector_conformer_fastspeech2` ♻️ Imported from https://zenodo.org/record/4394602/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_xvector_conformer_fastspeech2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_xvector_conformer_fastspeech2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_xvector_conformer_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_xvector_conformer_fastspeech2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_xvector_tacotron2` ♻️ Imported from https://zenodo.org/record/4394600/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_xvector_tacotron2
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_xvector_tacotron2' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_xvector_tacotron2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_xvector_tacotron2'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/vctk_xvector_transformer` ♻️ Imported from https://zenodo.org/record/4393279/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["vctk"]}
espnet/kan-bayashi_vctk_xvector_transformer
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/vctk_xvector_transformer' ️ Imported from URL This model was trained by kan-bayashi using vctk/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_xvector_transformer'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-vctk #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/vctk_xvector_transformer'\n️ Imported from URL\n\nThis model was trained by kan-bayashi using vctk/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
text-to-speech
espnet
# ESPnet2 ASR pretrained model ## `kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave` ♻️ Imported from <https://zenodo.org/record/4017026#.YN70XJozZH4> This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_conformer_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["ljspeech"], "widget": [{"text": "Hello, how are you doing?"}]}
espnet/kan_bayashi_jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-ljspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
# ESPnet2 ASR pretrained model ## 'kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.URL' ️ Imported from <URL This model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv: ### Training config See full config in 'URL'
[ "# ESPnet2 ASR pretrained model", "## 'kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.URL'\n\n️ Imported from <URL\n\nThis model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-ljspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "# ESPnet2 ASR pretrained model", "## 'kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.URL'\n\n️ Imported from <URL\n\nThis model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char` This model was trained by Pengcheng Guo using wenetspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 5c21f63e45e0961a5d817017c282b0cafd68a3aa pip install -e . cd egs2/wenetspeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Oct 6 15:11:20 CST 2021` - python version: `3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]` - espnet version: `espnet 0.10.2a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_conformer_raw_zh_char ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_asr_model_valid.acc.ave_10best/aishell_test|7176|7176|67.1|32.9|0.0|0.1|33.0|32.9| |decode_asr_rnn_asr_model_valid.acc.ave_10best/dev|13825|16684|32.1|54.1|13.8|0.1|68.0|64.2| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_meeting|8370|8599|13.4|84.6|2.0|0.1|86.7|86.8| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_net|24774|25995|46.2|50.4|3.4|1.1|54.9|52.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_asr_model_valid.acc.ave_10best/aishell_test|7176|104765|96.3|3.6|0.1|0.2|3.9|32.9| |decode_asr_rnn_asr_model_valid.acc.ave_10bestdev|13825|333357|90.7|3.4|5.9|0.4|9.7|64.2| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_meeting|8370|220614|84.6|5.0|10.4|0.5|15.9|86.8| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_net|24774|416968|91.8|5.3|2.9|0.6|8.8|52.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_zh_char ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 8 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 44205 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 30 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 30000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char/train/speech_shape - exp/asr_stats_raw_zh_char/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char/valid/speech_shape - exp/asr_stats_raw_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_l/wav.scp - speech - sound - - dump/raw/train_l/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0015 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - 的 - 我 - 是 - 你 - 了 - 一 - 不 - 这 - 个 - 有 - 就 - 们 - 在 - 他 - 人 - 么 - 来 - 说 - 那 - 要 - 好 - 啊 - 大 - 到 - 上 - 也 - 没 - 都 - 去 - 能 - 子 - 会 - 为 - 得 - 时 - 还 - 可 - 以 - 什 - 家 - 后 - 看 - 呢 - 对 - 事 - 天 - 下 - 过 - 想 - 多 - 小 - 出 - 自 - 儿 - 生 - 给 - 里 - 现 - 着 - 然 - 吧 - 样 - 道 - 吗 - 心 - 跟 - 中 - 很 - 点 - 年 - 和 - 地 - 怎 - 知 - 十 - 老 - 当 - 把 - 话 - 别 - 所 - 之 - 情 - 实 - 开 - 面 - 回 - 行 - 国 - 做 - 己 - 经 - 如 - 真 - 起 - 候 - 些 - 让 - 发 - 她 - 觉 - 但 - 成 - 定 - 意 - 二 - 长 - 最 - 方 - 三 - 前 - 因 - 用 - 呀 - 种 - 只 - 走 - 其 - 问 - 再 - 果 - 而 - 分 - 两 - 打 - 学 - 间 - 您 - 本 - 于 - 明 - 手 - 公 - 听 - 比 - 作 - 女 - 太 - 今 - 从 - 关 - 妈 - 同 - 法 - 动 - 已 - 见 - 才 - 孩 - 感 - 吃 - 常 - 次 - 它 - 进 - 先 - 找 - 身 - 全 - 理 - 又 - 力 - 正 - 主 - 应 - 高 - 被 - 钱 - 快 - 等 - 头 - 重 - 车 - 谢 - 日 - 东 - 放 - 无 - 工 - 咱 - 哪 - 五 - 者 - 像 - 西 - 该 - 干 - 相 - 信 - 机 - 百 - 特 - 业 - 活 - 师 - 边 - 爱 - 友 - 新 - 外 - 位 - 更 - 直 - 几 - 第 - 非 - 四 - 题 - 接 - 少 - 哥 - 死 - 完 - 刚 - 电 - 气 - 安 - 爸 - 白 - 告 - 美 - 解 - 叫 - 月 - 带 - 欢 - 谁 - 体 - 喜 - 部 - 场 - 姐 - 军 - 万 - 结 - 合 - 难 - 八 - 每 - 目 - 亲 - 朋 - 认 - 总 - 加 - 通 - 办 - 马 - 件 - 受 - 任 - 请 - 住 - 王 - 思 - 门 - 名 - 平 - 系 - 文 - 帮 - 路 - 变 - 记 - 水 - 九 - 算 - 将 - 口 - 男 - 度 - 报 - 六 - 张 - 管 - 够 - 性 - 表 - 提 - 何 - 讲 - 期 - 拿 - 保 - 嘛 - 司 - 原 - 始 - 此 - 诉 - 处 - 清 - 内 - 产 - 金 - 晚 - 早 - 交 - 离 - 眼 - 队 - 七 - 入 - 山 - 代 - 市 - 海 - 物 - 零 - 望 - 世 - 婚 - 命 - 越 - 收 - 向 - 花 - 房 - 错 - 节 - 父 - 反 - 战 - 买 - 量 - 或 - 员 - 号 - 千 - 怕 - 底 - 且 - 品 - 民 - 化 - 爷 - 并 - 与 - 服 - 需 - 资 - 求 - 教 - 娘 - 医 - 数 - 院 - 书 - 利 - 往 - 确 - 各 - 单 - 风 - 送 - 必 - 条 - 包 - 准 - 光 - 整 - 病 - 弟 - 嗯 - 计 - 照 - 强 - 务 - 影 - 城 - 夫 - 俩 - 决 - 声 - 连 - 乐 - 息 - 远 - 北 - 至 - 饭 - 留 - 宝 - 神 - 近 - 考 - 备 - 案 - 界 - 容 - 况 - 母 - 较 - 持 - 证 - 选 - 制 - 程 - 喝 - 害 - 字 - 失 - 立 - 台 - 玩 - 查 - 块 - 便 - 挺 - 段 - 周 - 由 - 句 - 紧 - 李 - 据 - 杀 - 南 - 商 - 识 - 网 - 式 - 愿 - 传 - 流 - 消 - 伤 - 根 - 演 - 希 - 故 - 坐 - 建 - 注 - 许 - 调 - 共 - 空 - 半 - 却 - 酒 - 联 - 微 - 言 - 肯 - 赶 - 跑 - 笑 - 区 - 岁 - 红 - 达 - 官 - 轻 - 易 - 火 - 线 - 拉 - 首 - 导 - 团 - 慢 - 指 - 写 - 深 - 论 - 片 - 改 - 啥 - 满 - 步 - 音 - 功 - 聊 - 客 - 未 - 格 - 基 - 睡 - 观 - 份 - 视 - 色 - 价 - 政 - 转 - 终 - 复 - 啦 - 呃 - 阿 - 倒 - 义 - 警 - 林 - 使 - 科 - 运 - 苦 - 待 - 费 - 随 - 救 - 试 - 班 - 敢 - 精 - 及 - 术 - 造 - 续 - 养 - 展 - 答 - 绝 - 众 - 站 - 妹 - 差 - 谈 - 卖 - 播 - 创 - 领 - 象 - 志 - 投 - 习 - 兄 - 元 - 皇 - 专 - 态 - 急 - 局 - 兴 - 楚 - 飞 - 护 - 装 - 热 - 奶 - 取 - 设 - 游 - 读 - 福 - 药 - 担 - 历 - 忙 - 规 - 掉 - 刘 - 切 - 断 - 尽 - 社 - 久 - 支 - 板 - 星 - 姑 - 曾 - 突 - 除 - 华 - 责 - 排 - 京 - 值 - 士 - 统 - 换 - 德 - 衣 - 组 - 示 - 脸 - 刻 - 黑 - 遇 - 虽 - 顾 - 戏 - 怪 - 懂 - 叔 - 夜 - 陈 - 亮 - 江 - 兵 - 负 - 布 - 青 - 落 - 推 - 假 - 类 - 令 - 技 - 英 - 质 - 黄 - 治 - 形 - 助 - 球 - 歌 - 参 - 广 - 继 - 简 - 画 - 奇 - 陪 - 阳 - 险 - 须 - 念 - 迎 - 幸 - 抓 - 破 - 另 - 争 - 竟 - 户 - 律 - 择 - 究 - 龙 - 足 - 店 - 脑 - 斯 - 党 - 权 - 约 - 疑 - 议 - 严 - 密 - 克 - 存 - 穿 - 承 - 校 - 击 - 际 - 标 - 云 - 营 - 察 - 超 - 食 - 集 - 级 - 礼 - 静 - 背 - 武 - 初 - 拍 - 梦 - 验 - 响 - 角 - 石 - 股 - 追 - 怀 - 婆 - 适 - 独 - 忘 - 血 - 醒 - 具 - 罪 - 享 - 毛 - 香 - 状 - 配 - 靠 - 语 - 仅 - 低 - 细 - 米 - 既 - 钟 - 极 - 停 - 味 - 则 - 油 - 器 - 楼 - 菜 - 研 - 互 - 压 - 贵 - 村 - 属 - 派 - 乎 - 坏 - 控 - 显 - 图 - 双 - 职 - 永 - 哈 - 鬼 - 依 - 料 - 按 - 府 - 坚 - 某 - 甚 - 居 - 练 - 顺 - 模 - 即 - 州 - 引 - 乱 - 速 - 庭 - 朝 - 室 - 似 - 付 - 划 - 尔 - 境 - 犯 - 烦 - 环 - 伙 - 巴 - 春 - 古 - 妇 - 势 - 款 - 增 - 财 - 河 - 守 - 虑 - 汉 - 枪 - 妻 - 爹 - 弄 - 委 - 企 - 冲 - 置 - 麻 - 育 - 项 - 防 - 胡 - 杨 - 致 - 辈 - 括 - 毕 - 卫 - 修 - 史 - 型 - 牌 - 嘴 - 苏 - 群 - 举 - 痛 - 座 - 概 - 搞 - 围 - 土 - 毒 - 唱 - 冷 - 累 - 玉 - 获 - 误 - 跳 - 脚 - 雨 - 剧 - 休 - 皮 - 止 - 济 - 肉 - 丽 - 借 - 铁 - 牛 - 哭 - 招 - 闹 - 银 - 优 - 温 - 狗 - 退 - 洗 - 拜 - 否 - 票 - 偷 - 抱 - 博 - 般 - 效 - 套 - 维 - 普 - 康 - 富 - 宫 - 索 - 罗 - 堂 - 智 - 省 - 介 - 孙 - 灵 - 评 - 藏 - 称 - 课 - 货 - 姨 - 艺 - 骗 - 雪 - 赛 - 景 - 昨 - 健 - 鱼 - 激 - 危 - 熟 - 圈 - 闻 - 监 - 替 - 君 - 恋 - 良 - 掌 - 草 - 松 - 供 - 努 - 例 - 短 - 帝 - 姓 - 率 - 族 - 亿 - 赵 - 蛋 - 判 - 预 - 频 - 卡 - 架 - 纪 - 弃 - 秀 - 兰 - 层 - 检 - 伴 - 抗 - 讨 - 源 - 夏 - 咋 - 惊 - 录 - 善 - 补 - 刀 - 充 - 升 - 章 - 午 - 若 - 私 - 吴 - 素 - 旅 - 临 - 挑 - 唐 - 露 - 树 - 斗 - 舞 - 左 - 叶 - 副 - 晓 - 厂 - 弹 - 印 - 秘 - 屋 - 田 - 木 - 困 - 园 - 封 - 逃 - 批 - 馆 - 疼 - 败 - 陆 - 敌 - 散 - 采 - 翻 - 缺 - 胜 - 免 - 销 - 鸡 - 降 - 波 - 测 - 限 - 释 - 忍 - 归 - 床 - 餐 - 茶 - 码 - 宁 - 乡 - 辛 - 彩 - 亚 - 浪 - 漂 - 庆 - 训 - 范 - 烧 - 词 - 吵 - 媳 - 探 - 余 - 恐 - 积 - 农 - 遍 - 舒 - 顶 - 构 - 呼 - 丝 - 执 - 雅 - 惯 - 右 - 脱 - 恩 - 野 - 折 - 趣 - 笔 - 谓 - 盘 - 贝 - 宣 - 绍 - 嘉 - 宋 - 抢 - 嫌 - 尊 - 碰 - 绪 - 丢 - 厉 - 沙 - 轮 - 施 - 织 - 托 - 县 - 策 - 杯 - 逼 - 傻 - 束 - 街 - 疗 - 益 - 骨 - 迷 - 姻 - 恶 - 默 - 寻 - 搜 - 哦 - 材 - 吸 - 劳 - 勇 - 占 - 暴 - 船 - 徐 - 虎 - 融 - 异 - 审 - 攻 - 雷 - 稳 - 呗 - 输 - 睛 - 臣 - 端 - 威 - 秋 - 欧 - 冰 - 韩 - 减 - <space> - 操 - 混 - 汽 - 暗 - 隐 - 嫂 - 沉 - 烟 - 顿 - 凭 - 洋 - 嫁 - 购 - 粉 - 遗 - 杂 - 协 - 尝 - 键 - 亡 - 秦 - 纸 - 拥 - 革 - 猫 - 伯 - 祝 - 签 - 傅 - 牙 - 湖 - 莫 - 杰 - 旁 - 港 - 劲 - 宗 - 偏 - 触 - 唯 - 吓 - 辆 - 沈 - 列 - 梅 - 祖 - 舍 - 尤 - 赚 - 疫 - 腾 - 拼 - 奖 - 刺 - 齐 - 诚 - 媒 - 戴 - 账 - 炸 - 骂 - 避 - 麦 - 爆 - 域 - 烈 - 暖 - 季 - 猜 - 佳 - 净 - 腿 - 磨 - 曲 - 虚 - 阵 - 荣 - 访 - 核 - 鲜 - 阶 - 镇 - 灯 - 估 - 剩 - 硬 - 租 - 敬 - 损 - 惜 - 挂 - 董 - 巨 - 忆 - 登 - 丈 - 帅 - 童 - 耳 - 央 - 软 - 移 - 略 - 额 - 厅 - 挥 - 透 - 络 - 弱 - 珍 - 恨 - 巧 - 丁 - 谋 - 孤 - 豆 - 诗 - 冒 - 狼 - 渐 - 峰 - 售 - 凡 - 聚 - 洞 - 抽 - 劝 - 闭 - 摆 - 冬 - 凶 - 魔 - 灭 - 雄 - 挣 - 搬 - 龄 - 朱 - 编 - 航 - 席 - 驾 - 授 - 鼓 - 握 - 隔 - 猪 - 仙 - 颜 - 镜 - 胖 - 赢 - 仇 - 晨 - 欺 - 刑 - 谷 - 旦 - 亏 - 盖 - 症 - 喊 - 蓝 - 讯 - 殿 - 梁 - 躲 - 旧 - 针 - 箱 - 丰 - 洲 - 鞋 - 征 - 蒙 - 伟 - 袋 - 庄 - 患 - 怨 - 佛 - 稍 - 朵 - 纳 - 吉 - 川 - 典 - 迹 - 瑞 - 废 - 搭 - 涨 - 汤 - 启 - 桌 - 摸 - 赔 - 宜 - 纯 - 贴 - 聪 - 熊 - 延 - 瓶 - 版 - 缘 - 距 - 甜 - 析 - 盛 - 孕 - 彻 - 桥 - 尚 - 染 - 撞 - 途 - 沟 - 疯 - 敏 - 瞧 - 漫 - 胆 - 诺 - 刷 - 饿 - 仍 - 喂 - 辞 - 迟 - 淡 - 郑 - 歉 - 扰 - 宾 - 圆 - 赞 - 肚 - 慧 - 泪 - 吹 - 拖 - 遭 - 穷 - 罚 - 悔 - 绿 - 忽 - 唉 - 毫 - 绩 - 暂 - 射 - 岛 - 拾 - 珠 - 欠 - 忠 - 陷 - 阴 - 尼 - 悲 - 糊 - 撤 - 徒 - 剑 - 币 - 娜 - 违 - 泡 - 仗 - 粮 - 培 - 趟 - 菲 - 拒 - 棒 - 脾 - 赏 - 窗 - 宇 - 闲 - 附 - 踏 - 彼 - 涉 - 锁 - 撒 - 魂 - 羊 - 述 - 屈 - 库 - 滚 - 凉 - 颗 - 寒 - 呐 - 墙 - 娃 - 序 - 迪 - 丹 - 扬 - 瞎 - 递 - 凤 - 碗 - 屁 - 锅 - 奔 - 幅 - 债 - 糖 - 奋 - 汇 - 圣 - 订 - 偶 - 残 - 宽 - 狂 - 鼠 - 狠 - 幕 - 固 - 竞 - 蜜 - 吐 - 摄 - 骑 - 篇 - 毁 - 尾 - 摇 - 奥 - 厚 - 妖 - 禁 - 逐 - 均 - 尸 - 冠 - 阅 - 辑 - 捕 - 载 - 郭 - 俺 - 诊 - 欲 - 扎 - 鸟 - 柔 - 迫 - 豪 - 踪 - 扔 - 碎 - 末 - 娶 - 扫 - 朕 - 励 - 乔 - 闺 - 档 - 厨 - 倍 - 湾 - 郎 - 幼 - 纷 - 奴 - 阻 - 饮 - 怒 - 妙 - 琴 - 曹 - 脏 - 牵 - 瓜 - 滴 - 炮 - 缓 - 含 - 献 - 柜 - 仔 - 艾 - 潜 - 赌 - 震 - 础 - 添 - 兔 - 焦 - 躺 - 森 - 肥 - 洪 - 孝 - 偿 - 悉 - 撑 - 甘 - 桃 - 苹 - 魏 - 鲁 - 池 - 狱 - 厌 - 纠 - 朗 - 贷 - 铺 - 殊 - 坦 - 爬 - 擦 - 酸 - 钢 - 咖 - 瞒 - 蛮 - 谅 - 耐 - 申 - 夸 - 欣 - 诶 - 驶 - 屏 - 烂 - 凌 - 甲 - 胎 - 仪 - 貌 - 番 - 涂 - 抬 - 舅 - 扯 - 鹿 - 摩 - 诸 - 秒 - 泽 - 埋 - 蒋 - 隆 - 赖 - 奸 - 咬 - 恢 - 宿 - 乖 - 邀 - 抵 - 臭 - 闪 - 莉 - 熬 - 链 - 盯 - 侦 - 灾 - 堆 - 灰 - 卷 - 盾 - 障 - 截 - 恰 - 佩 - 戒 - 莲 - 裁 - 芬 - 戚 - 匪 - 滑 - 趁 - 询 - 绑 - 辣 - 挖 - 俗 - 祸 - 符 - 扣 - 插 - 仁 - 壁 - 腰 - 斤 - 燕 - 筑 - 柱 - 夺 - 援 - 映 - 壮 - 杜 - 摔 - 润 - 恭 - 乌 - 慰 - 啡 - 著 - 井 - 跌 - 牢 - 荐 - 拔 - 惹 - 侯 - 玲 - 炎 - 胸 - 旗 - 牲 - 喽 - 涛 - 衡 - 矛 - 伍 - 贤 - 惨 - 糟 - 慌 - 伏 - 醉 - 仓 - 拆 - 乘 - 疾 - 鼻 - 潮 - 予 - 奉 - 伦 - 劫 - 伊 - 怜 - 孟 - 肺 - 忧 - 倾 - 矩 - 荒 - 奏 - 塔 - 塞 - 迅 - 轨 - 瞬 - 丫 - 狐 - 叛 - 繁 - 眠 - 孔 - 谱 - 悄 - 泰 - 姜 - 侵 - 妃 - 冯 - 柳 - 洛 - 岸 - 凯 - 陛 - 幺 - 仿 - 氏 - 窝 - 曼 - 挡 - 浩 - 盟 - 轩 - 牺 - 贫 - 绕 - 谎 - 措 - 扶 - 梯 - 炼 - 勤 - 霸 - 横 - 罢 - 呆 - 税 - 桂 - 哎 - 慕 - 植 - 允 - 荡 - 洁 - 肖 - 耗 - 贼 - 艰 - 贺 - 幻 - 饱 - 胃 - 袭 - 廷 - 泥 - 丧 - 缩 - 砸 - 姥 - 拦 - 扮 - 糕 - 肤 - 猴 - 脆 - 炒 - 耀 - 盗 - 邓 - 扩 - 纵 - 振 - 敲 - 鹏 - 姆 - 湿 - 丑 - 召 - 苗 - 伸 - 惑 - 碍 - 萨 - 瘦 - 闯 - 迁 - 坑 - 弯 - 卑 - 尖 - 遥 - 侠 - 犹 - 押 - 冤 - 钻 - 汗 - 闷 - 邻 - 淘 - 抛 - 妆 - 贾 - 侧 - 傲 - 描 - 耍 - 猛 - 薇 - 裤 - 憾 - 督 - 贸 - 墨 - 勒 - 薄 - 嘞 - 渡 - 紫 - 悟 - 锦 - 溜 - 逆 - 惠 - 辉 - 贪 - 圾 - 垃 - 券 - 燃 - 虫 - 悠 - 伪 - 尿 - 懒 - 俊 - 寄 - 歇 - 盒 - 潘 - 储 - 愈 - 脉 - 粗 - 返 - 昌 - 泉 - 蔡 - 愧 - 赤 - 岳 - 婷 - 猎 - 饼 - 肩 - 勾 - 巡 - 竹 - 催 - 陌 - 踩 - 促 - 扭 - 堵 - 酷 - 芳 - 逛 - 陵 - 耽 - 凑 - 寿 - 缝 - 剪 - 郁 - 宅 - 抚 - 筹 - 沿 - 烤 - 奈 - 挨 - 晋 - 崩 - 浮 - 阁 - 彭 - 裂 - 崇 - 眉 - 桑 - 辩 - 漏 - 稀 - 液 - 汪 - 袁 - 掩 - 浑 - 坡 - 晕 - 缠 - 仰 - 挤 - 睁 - 羽 - 岗 - 捡 - 墓 - 综 - 矿 - 妥 - 厕 - 辱 - 惧 - 逗 - 帽 - 寸 - 搁 - 跨 - 渴 - 饰 - 璃 - 琳 - 爽 - 愤 - 饶 - 卧 - 誓 - 滋 - 鉴 - 腐 - 鸭 - 蛇 - 妮 - 莱 - 哟 - 钥 - 甄 - 肠 - 畅 - 慎 - 悬 - 逻 - 胁 - 辰 - 呈 - 棋 - 寨 - 萌 - 覆 - 姚 - 津 - 笨 - 轰 - 乏 - 匙 - 摊 - 陶 - 恼 - 昏 - 抑 - 姿 - 愁 - 誉 - 椅 - 羞 - 澡 - 踢 - 晶 - 萧 - 箭 - 罩 - 宠 - 羡 - 亦 - 祥 - 串 - 昆 - 煮 - 疏 - 纹 - 泄 - 痕 - 喷 - 册 - 跃 - 卢 - 岩 - 跪 - 兽 - 桶 - 飘 - 漠 - 堪 - 哄 - 寂 - 崔 - 腹 - 癌 - 拳 - 驻 - 霍 - 拨 - 诞 - 捐 - 御 - 榜 - 唤 - 荷 - 径 - 署 - 锋 - 玛 - 匆 - 恒 - 吕 - 邮 - 圳 - 黎 - 掏 - 莎 - 寞 - 佐 - 诈 - 牧 - 盐 - 叹 - 尬 - 匹 - 狸 - 膀 - 谨 - 尘 - 驱 - 乳 - 晒 - 宴 - 辜 - 哲 - 铜 - 薪 - 盆 - 割 - 忌 - 旋 - 翼 - 哀 - 咨 - 遵 - 夹 - 侣 - 译 - 胞 - 浅 - 邦 - 俄 - 弗 - 豫 - 甭 - 乃 - 扛 - 杭 - 瓦 - 槽 - 污 - 尴 - 琢 - 枝 - 详 - 柴 - 佑 - 盼 - 抖 - 惩 - 捷 - 葬 - 贡 - 艳 - 塑 - 茫 - 叨 - 浓 - 拐 - 捉 - 憋 - 稿 - 苍 - 葛 - 扑 - 娱 - 赋 - 杆 - 绘 - 聆 - 肌 - 婴 - 摘 - 岂 - 呵 - 冻 - 泳 - 揭 - 坤 - 盈 - 毅 - 撕 - 娇 - 唠 - 宏 - 吊 - 籍 - 楠 - 肃 - 抹 - 玄 - 湘 - 迈 - 酱 - 骄 - 咐 - 扇 - 幽 - 疲 - 邪 - 吞 - 趋 - 尺 - 玻 - 溃 - 诱 - 翠 - 兼 - 辅 - 岭 - 栏 - 柏 - 址 - 寺 - 逢 - 琪 - 慈 - 愣 - 契 - 渠 - 齿 - 薛 - 拟 - 填 - 坛 - 抄 - 痴 - 绳 - 役 - 擅 - 晃 - 斌 - 愉 - 届 - 悦 - 旨 - 砍 - 弥 - 挽 - 肝 - 鸣 - 庙 - 烫 - 聘 - 皆 - 婶 - 舌 - 枉 - 赫 - 蓉 - 瞅 - 阔 - 俱 - 循 - 鸿 - 彪 - 伺 - 堡 - 谦 - 剂 - 洒 - 赴 - 妨 - 磊 - 嘱 - 蝶 - 兆 - 豹 - 绣 - 篮 - 锻 - 陕 - 霉 - 涵 - 疆 - 丸 - 蠢 - 铃 - 浙 - 庞 - 萝 - 泛 - 芝 - 煤 - 甩 - 氛 - 页 - 逸 - 袖 - 携 - 躁 - 夕 - 匠 - 蹈 - 坊 - 雾 - 蹲 - 颠 - 脂 - 塌 - 棵 - 鹰 - 澳 - 哇 - 筋 - 纽 - 脖 - 棉 - 渣 - 寡 - 践 - 侄 - 披 - 魅 - 虹 - 肿 - 胶 - 霞 - 罐 - 晴 - 拓 - 卿 - 耻 - 砖 - 宪 - 歪 - 兜 - 衰 - 捧 - 歹 - 雕 - 穆 - 栋 - 瑶 - 毙 - 衷 - 膜 - 囊 - 莹 - 垫 - 吻 - 嘟 - 舰 - 虾 - 壳 - 穴 - 勉 - 裙 - 旺 - 柯 - 磕 - 贩 - 腻 - 蹦 - 卜 - 茹 - 驴 - 臂 - 删 - 菌 - 妾 - 蜂 - 祭 - 菊 - 咸 - 淑 - 笼 - 涯 - 碧 - 宙 - 骚 - 皓 - 赐 - 晰 - 腔 - 龟 - 泼 - 鹅 - 啪 - 巾 - 炉 - 沾 - 醋 - 澜 - 朴 - 棍 - 伞 - 雀 - 赠 - 妞 - 淋 - 刮 - 汁 - 椒 - 埃 - 嚷 - 盲 - 窃 - 辽 - 贱 - 滩 - 昭 - 贯 - 珊 - 涌 - 辨 - 捞 - 仲 - 拘 - 碑 - 侍 - 剿 - 搅 - 狮 - 藤 - 旭 - 翅 - 滨 - 禀 - 遮 - 瑟 - 斩 - 攒 - 犬 - 挫 - 僧 - 吩 - 渊 - 蒂 - 萍 - 庸 - 蓄 - 鼎 - 咪 - 姬 - 溪 - 郡 - 镖 - 怡 - 杉 - 畏 - 瓷 - 枚 - 煎 - 劣 - 饺 - 妄 - 卓 - 蔽 - 蒸 - 垂 - 嘲 - 慨 - 谊 - 蹭 - 逮 - 锐 - 钉 - 舟 - 沃 - 凝 - 翔 - 颈 - 靖 - 灌 - 膊 - 崖 - 娟 - 胳 - 铭 - 灿 - 亭 - 粒 - 卸 - 咕 - 坎 - 攀 - 婿 - 奢 - 茂 - 趴 - 耿 - 捏 - 怖 - 浴 - 婉 - 煌 - 霖 - 揍 - 昂 - 驰 - 壶 - 械 - 卦 - 粥 - 尹 - 瘾 - 雇 - 翰 - 肆 - 寇 - 曦 - 厢 - 杠 - 屠 - 芒 - 谣 - 沫 - 掘 - 酬 - 讼 - 乾 - 玫 - 瑰 - 逊 - 惦 - 儒 - 肾 - 粹 - 愚 - 渔 - 暑 - 伐 - 潇 - 喘 - 敦 - 翁 - 斥 - 帖 - 纱 - 梳 - 缴 - 茅 - 谭 - 氧 - 遣 - 履 - 刹 - 枕 - 婢 - 徽 - 轿 - 寓 - 咽 - 叉 - 嗓 - 捣 - 裹 - 览 - 拯 - 疚 - 蜀 - 丛 - 框 - 斑 - 宵 - 郝 - 蛙 - 熙 - 祁 - 哑 - 葱 - 唇 - 韦 - 媛 - 魄 - 锤 - 绵 - 炫 - 吨 - 稻 - 碌 - 刊 - 漆 - 搏 - 讶 - 痒 - 枫 - 妒 - 冥 - 郊 - 爵 - 逝 - 栽 - 叠 - 蚁 - 裕 - 帕 - 剥 - 谐 - 巫 - 颇 - 娥 - 廊 - 蕾 - 丘 - 丞 - 葡 - 坠 - 鸦 - 糗 - 虐 - 唬 - 屎 - 顽 - 巷 - 硅 - 罕 - 殖 - 嘿 - 韵 - 歧 - 垮 - 淮 - 馈 - 昊 - 宰 - 钦 - 霜 - 兑 - 萄 - 塘 - 胀 - 樱 - 枯 - 咳 - 窑 - 募 - 缸 - 昧 - 仑 - 恕 - 氓 - 叮 - 吼 - 坟 - 轴 - 贞 - 赎 - 帆 - 嫩 - 蚂 - 僵 - 颖 - 噜 - 咒 - 琐 - 勃 - 芯 - 绸 - 哼 - 仨 - 挪 - 狡 - 禅 - 粘 - 雯 - 扒 - 恳 - 蔬 - 匈 - 钓 - 桐 - 菇 - 哒 - 稚 - 膏 - 纲 - 狄 - 硕 - 廉 - 衙 - 艘 - 廖 - 腊 - 蟹 - 邱 - 缉 - 曝 - 桩 - 啤 - 嫉 - 棚 - 矮 - 汰 - 衍 - 拽 - 削 - 彤 - 斜 - 揉 - 樊 - 馨 - 钩 - 浦 - 肢 - 敷 - 喻 - 鞭 - 瞪 - 耕 - 掐 - 屡 - 榴 - 勋 - 泊 - 竭 - 鹤 - 溢 - 淳 - 倩 - 驳 - 抠 - 捅 - 筒 - 窄 - 鄙 - 嗦 - 袍 - 劈 - 炖 - 裸 - 贬 - 敞 - 嘎 - 淹 - 耶 - 秩 - 舱 - 厦 - 叙 - 孽 - 筷 - 浇 - 饥 - 噩 - 蚊 - 兮 - 皱 - 侃 - 辟 - 弊 - 袜 - 吾 - 俘 - 芸 - 夷 - 芦 - 囚 - 倡 - 琦 - 哨 - 巢 - 烛 - 帐 - 燥 - 讽 - 俞 - 馅 - 柿 - 墅 - 妍 - 瘤 - 沦 - 衬 - 瑜 - 蒜 - 蛛 - 窟 - 勿 - 沛 - 磁 - 狭 - 栈 - 懵 - 酿 - 戈 - 邵 - 龚 - 衫 - 勺 - 哗 - 叽 - 畜 - 爪 - 惫 - 颁 - 浸 - 摧 - 勘 - 惕 - 蔓 - 馒 - 挠 - 陀 - 豁 - 帘 - 淀 - 藩 - 蜡 - 凳 - 蘑 - 琼 - 棺 - 蝴 - 骆 - 掰 - 枣 - 遂 - 飙 - 咧 - 掀 - 梨 - 杏 - 嗑 - 棠 - 绽 - 捆 - 舆 - 肇 - 葩 - 呦 - 膝 - 鹊 - 揣 - 瓣 - 靓 - 卵 - 鲍 - 炭 - 戳 - 颤 - 禄 - 菩 - 崛 - 驸 - 佣 - 眨 - 聂 - 乙 - 嘻 - 拧 - 喵 - 佟 - 靳 - 阎 - 拢 - 厘 - 凰 - 疤 - 螺 - 淇 - 涩 - 拎 - 嗨 - 魁 - 薯 - 歼 - 沪 - 筛 - 谍 - 揪 - 刁 - 秃 - 谜 - 撇 - 肪 - 绊 - 逞 - 滥 - 寝 - 麟 - 奕 - 侮 - 喉 - 柄 - 荆 - 撼 - 窦 - 姗 - 乞 - 艇 - 竖 - 剖 - 嗽 - 捂 - 腕 - 鸽 - 刃 - 弓 - 辙 - 粤 - 泣 - 梗 - 茄 - 茜 - 驼 - 冈 - 倔 - 啃 - 蹄 - 唧 - 祈 - 腺 - 焰 - 睿 - 崽 - A - 苛 - 窍 - 凿 - 倭 - 骤 - 槛 - 碳 - 诏 - 芽 - 浆 - 隶 - 搂 - 睦 - 彬 - 岔 - 诀 - 嚼 - 掺 - 殷 - 吁 - 啰 - 侈 - 亩 - 纤 - 倦 - 揽 - 媚 - 潭 - 莽 - 赃 - 睹 - 脊 - 逍 - 淼 - 沸 - 峡 - 仆 - 眷 - 屯 - 璐 - 雁 - 澄 - 渗 - 咔 - 啸 - 怂 - 娄 - 惶 - 恍 - 锡 - 秉 - 猾 - 挟 - 舔 - 弦 - 阱 - 俭 - 嚣 - 搓 - 懈 - 诡 - 隙 - 苟 - 倘 - 瘫 - 扁 - 鑫 - 撩 - 蓬 - 铲 - 峥 - 巅 - 葫 - 膳 - 狙 - 晏 - 祠 - 峻 - 尉 - 毯 - 沧 - 熏 - 咯 - 株 - 沐 - 奎 - 锣 - 霄 - 彦 - 叭 - 臻 - 昔 - 灶 - 傍 - 腥 - 屑 - 禾 - 彰 - 冉 - 矫 - 滞 - 瘩 - 匀 - 椎 - 槐 - 岚 - 跷 - 剔 - 倪 - 盏 - 泌 - 灸 - 隧 - 函 - 壤 - 剃 - 蹊 - 葵 - 拌 - 琅 - 炳 - 跋 - 瑾 - 哩 - 蔷 - 鳌 - 莺 - 诵 - 疙 - 吱 - 蓓 - 绎 - 匿 - 铮 - 怼 - 踹 - 嗅 - 焚 - 躯 - 蝇 - 橘 - 祟 - 辖 - 砂 - 韧 - 粪 - 诬 - 擒 - 黏 - 衔 - 溺 - 蜘 - 篷 - 贿 - 闫 - 焕 - 邢 - 兹 - 窖 - 旬 - 铸 - 咚 - 惭 - 佬 - 裴 - 裳 - 犀 - 弘 - 莓 - 钏 - 鄂 - 陋 - 伽 - 鞠 - 氪 - 垒 - 窜 - 橙 - 讳 - 甥 - 淫 - 拱 - 袱 - 坨 - 暧 - 渺 - 蕉 - 晗 - 茬 - 盔 - 妓 - 蚕 - 僻 - 朽 - 呛 - 挚 - 擎 - 绅 - 喇 - 鳄 - 巩 - 蜗 - 遛 - 俯 - 汹 - 猩 - 奠 - 钙 - 悍 - 躬 - 菱 - 翘 - 琉 - 虏 - 凄 - 稼 - 炕 - 皂 - 漱 - 斋 - 撂 - 敛 - 阮 - 芭 - 阀 - 缚 - 懦 - 亨 - 螃 - 侥 - 膨 - 筝 - 惟 - 黛 - 眯 - 茨 - 怠 - 辐 - 捎 - 殴 - 桓 - 瞄 - 冀 - 雍 - 霾 - 酵 - 檬 - 哺 - 裔 - 兢 - 麒 - 烹 - 绒 - 丐 - 娅 - 钞 - 垄 - 笛 - 赣 - 蕊 - 暮 - 噪 - 沮 - 肋 - 庇 - 橡 - 摁 - 痘 - 棘 - 拂 - 绷 - 刨 - 晾 - 蹬 - 鸥 - 璇 - 掠 - 瘟 - 俐 - 糙 - 骏 - 牡 - 撵 - 嘘 - 沥 - 庶 - 赁 - 喧 - 涡 - 瞳 - 迭 - 肘 - 颂 - 珑 - 觅 - 埔 - G - 跤 - 朔 - 詹 - 梭 - 暇 - 惺 - 甸 - 怯 - 聋 - 赦 - 屉 - 闸 - 坝 - 吟 - 凸 - 拴 - 堤 - 矣 - 斧 - 呸 - 啼 - 韬 - 钧 - 坞 - 纺 - 氢 - 嵩 - 镯 - 髓 - 檐 - 涕 - 剁 - 稽 - 烨 - 钮 - 闽 - 仕 - 驯 - 吭 - 漓 - 眸 - 鞅 - 枢 - 煞 - 昕 - 畔 - 疹 - 矶 - 呱 - 熄 - 吏 - 泻 - 拙 - 蛤 - 禽 - 甫 - 厮 - 乍 - 蝉 - 撬 - 嘀 - 衅 - 鲨 - 萱 - 霹 - 旷 - 辫 - 坷 - 眶 - 蟆 - 呜 - 猬 - 嬷 - 萎 - 靶 - 雳 - 煲 - 溯 - 蚀 - 狈 - 滤 - 恙 - 瑛 - 栓 - 嫣 - 碟 - 祷 - 驿 - 犊 - 灼 - 哆 - 宛 - 榨 - 寥 - 翟 - 栗 - 滔 - 馋 - 杖 - 茉 - 饲 - 庐 - 隋 - 旱 - 崎 - 颅 - 焉 - 墩 - 篱 - 晟 - 扳 - 咎 - 竿 - 僚 - 溶 - 俏 - 霆 - 堕 - 冕 - 叩 - 绰 - 洽 - 襄 - 蛊 - 缅 - 侨 - 伶 - 蕴 - 酥 - 坂 - 拇 - 庚 - 卒 - 诛 - 禧 - 瓢 - 锯 - 扉 - 饷 - 诅 - 烘 - 浏 - 痰 - 榆 - 窥 - 鲸 - 捋 - 戎 - 笋 - 璋 - 诫 - 珈 - 癫 - 囤 - 厥 - 癖 - 翩 - 芹 - 匣 - 噬 - 栖 - 蝎 - 锄 - 玺 - 疮 - 缕 - 猥 - 槿 - 蔑 - 汝 - 珂 - 撮 - 坪 - 蒲 - 倚 - 嗷 - 撰 - 荧 - 芙 - 豚 - 筱 - 敖 - 孵 - 猝 - D - 弈 - 徊 - 辗 - 赘 - 徘 - 烙 - 娲 - 嚎 - 迢 - 绥 - 羁 - 屌 - 铅 - 澎 - S - 嬛 - 晦 - 煽 - 逾 - 饵 - 虞 - 筐 - 哧 - 抒 - 醇 - 祀 - 瑕 - 岐 - 潼 - 惚 - C - 苑 - 靡 - 菠 - 赡 - 惰 - 梓 - 铛 - 澈 - 莞 - 呕 - 驭 - 邝 - 砰 - 轼 - 窒 - 慷 - 绞 - 絮 - 虔 - 惮 - 柬 - 嗡 - 拣 - 羲 - 蹋 - 隘 - 帜 - 卤 - 雌 - 唾 - 邹 - 俑 - 碾 - 婪 - 咏 - 粟 - 崭 - 钝 - 彝 - 陡 - 谛 - 秤 - 磅 - 淌 - 炊 - 鲤 - 羹 - 殉 - 曰 - 萤 - 阐 - 鬟 - 拭 - T - 沁 - 滇 - 梧 - 烁 - 瞻 - 淤 - 凹 - 撸 - 棕 - 腌 - 缪 - 祺 - 痊 - 忑 - 柠 - 矜 - 忐 - 讹 - 瀚 - 尧 - 昼 - 芊 - 憨 - 鳞 - 匮 - 鸳 - 鸯 - 湃 - 屿 - 馍 - 沽 - 栾 - 蝠 - 窘 - 绛 - 巍 - 悯 - 焊 - 谴 - 浊 - 娴 - 畴 - 湛 - 螂 - 韭 - 哮 - 拷 - 攥 - 凛 - 颓 - 恺 - 蝙 - 襟 - 粑 - 洼 - 笃 - 渝 - 骁 - 殃 - 酌 - 乒 - 臊 - 疵 - 诧 - 谬 - 锈 - 袄 - 膛 - 瘸 - 嫖 - 梢 - 沼 - 棱 - 嚓 - 耸 - 喳 - 舵 - 橱 - 涮 - 檀 - 瞩 - 腑 - 岑 - 痪 - 墟 - 蔚 - 捍 - 徙 - 棣 - 猖 - 掷 - 恬 - 嫦 - 噔 - 饪 - 掂 - 恤 - 叱 - 芷 - 弩 - 楷 - 镶 - 茧 - 诠 - 咙 - 匡 - 擂 - 亵 - 杞 - 乓 - 渤 - 藉 - 憔 - 渭 - 禹 - 睐 - 趾 - 抉 - 悴 - 忒 - 茸 - 纬 - 懊 - 浚 - 溅 - 遏 - 琛 - 靴 - 戮 - 翎 - 谕 - 濒 - 锵 - 嬉 - 籽 - 殆 - 叼 - 苔 - 灏 - 嗖 - 俪 - 亢 - 冶 - 嗜 - 磋 - 汀 - 讪 - 萃 - 菁 - 镑 - 紊 - 脯 - 缆 - 哉 - 赂 - 婊 - B - 蕃 - 迄 - 蜓 - 舜 - 嚏 - 昱 - 黔 - 犟 - 汐 - 昵 - 嗣 - 唆 - 蛾 - 黯 - 绯 - 瀑 - 憬 - 狩 - 掖 - 崴 - 褪 - 髦 - 酝 - 弧 - 咄 - 吝 - 馄 - 娩 - 窿 - 蜻 - 袒 - 玮 - 阙 - 篡 - 邯 - 朦 - 邑 - 喃 - 粽 - 捶 - 嫔 - 钗 - 穗 - 骼 - 胭 - 寐 - 噎 - M - 碱 - 荤 - 笙 - 矢 - 芥 - 廓 - 扼 - 厄 - 毋 - 糯 - 惋 - 纶 - 碜 - 胧 - 懿 - 偃 - 沏 - 痹 - 慑 - 鹦 - 娠 - 铐 - 绢 - 傀 - 孜 - 饨 - 儡 - 孰 - 焱 - 峭 - 伎 - 幌 - 椰 - 譬 - 藕 - 坍 - 铝 - 鞍 - 蘸 - 貂 - 猿 - 炙 - 琊 - 峙 - 硝 - 幂 - 钰 - 眩 - 亥 - 簇 - 鹉 - 睫 - 斟 - 簧 - 颐 - 薰 - 癞 - 祛 - 燎 - 缎 - 簸 - 咣 - 绚 - 簿 - 邋 - 嵌 - 肮 - 稷 - 辍 - 闵 - 枸 - 撅 - 曙 - 苇 - K - 悼 - 汶 - 匕 - 皖 - 腮 - 琶 - 汲 - 鼹 - 礁 - 颊 - 怔 - 汕 - 喀 - 砌 - 釜 - 畸 - 鹃 - 峨 - 奄 - 骡 - 斐 - 芈 - 莘 - 蟑 - 荔 - 缇 - 犒 - 宓 - 汾 - 沌 - 宦 - 憧 - 咤 - 吆 - 攘 - 漩 - 梵 - 阂 - 吒 - 芜 - 缔 - 秧 - 翊 - 晌 - 剐 - 蜕 - 芋 - 彷 - 牟 - 诲 - 臀 - 徨 - Q - 杵 - 荫 - 榄 - 蹿 - 豌 - 迂 - 琵 - 拗 - 帷 - 楞 - 嘶 - 橄 - 胺 - 圭 - 砚 - 藻 - 凋 - 啄 - 褒 - 嗝 - 殡 - 嫡 - 恃 - 濡 - 缜 - 孺 - 泸 - 妊 - 衩 - 驹 - 榻 - 腆 - 鹂 - 箍 - 璧 - 熔 - 悚 - 遢 - 弛 - 诋 - 羚 - 鹭 - 嘚 - 骸 - 瘪 - 铠 - 瞿 - 屹 - 邸 - 痨 - 辘 - 浒 - 忏 - 钊 - 潦 - 怅 - 肴 - 蚯 - 胚 - 茵 - 蚓 - 戬 - 瘀 - 翡 - 恪 - 卉 - 蝌 - 雏 - 祯 - 谏 - 蚪 - 钵 - 馊 - 嗒 - 犁 - 寅 - V - 锥 - 娼 - 晖 - 啬 - 纣 - 淆 - 丙 - 夯 - 竣 - 褚 - 褥 - 轧 - 氨 - 褂 - 钳 - 轲 - 竺 - 疡 - 淞 - 胤 - 摹 - 鳅 - 珀 - 偕 - 匾 - 觑 - 扈 - 傣 - 绫 - 枷 - 阑 - 柚 - 烊 - 怦 - 腼 - 珺 - 缀 - 裘 - 碉 - 峪 - 俸 - 羯 - 姊 - 疟 - 砺 - 盎 - 嘣 - 釉 - 溥 - 熠 - 垢 - 摞 - 哽 - 槟 - 囧 - 胰 - 遁 - 痞 - 熹 - 忡 - 稠 - 顷 - 瑚 - 卯 - 渎 - 炅 - 褶 - 烽 - 瞑 - 嘈 - 硫 - 壹 - 悖 - 酪 - 跺 - 阜 - 帛 - 漪 - 蝗 - 迦 - 蟒 - 咀 - 谤 - 睬 - 辕 - 绮 - 搀 - 裆 - 鳖 - 囡 - 羔 - 痣 - 滕 - 佘 - 樟 - 韶 - 霓 - 劾 - 赈 - 唏 - 闰 - 脐 - 沓 - 瓮 - 篓 - 笠 - 暄 - 涅 - 诽 - 洱 - 栅 - 蚱 - 囔 - 攸 - 酣 - 阪 - 榕 - 骇 - 婧 - 陨 - 憎 - 沂 - 磷 - 壕 - 醺 - 惬 - 璀 - 璨 - 喋 - P - 炽 - 瘁 - 羿 - 褐 - 簪 - 冽 - 驮 - 芮 - 辄 - 咆 - 渍 - 觐 - 炷 - 蛰 - 驷 - 帚 - 蜷 - O - X - 邂 - 逅 - 缭 - 秽 - 琰 - 龌 - 龊 - 俨 - 涟 - 噼 - 掇 - 哔 - 炬 - 佯 - 粱 - 霁 - 鱿 - 夭 - 擀 - 陇 - 瞥 - 壑 - 盹 - 馁 - 蚌 - 焖 - 蛟 - 囱 - 蚝 - 抿 - 脓 - 蒿 - 飓 - 渲 - 宸 - 酗 - 荻 - 缥 - 弑 - 偎 - 宕 - 耘 - 瞌 - 瘴 - 溉 - 涝 - 咿 - 垛 - 垦 - 缈 - 苞 - 惆 - 汛 - 鹑 - 町 - 抡 - 慵 - 浣 - 耙 - 砥 - 噱 - 孬 - 札 - 弼 - 酋 - 镳 - 萦 - 泾 - 挞 - 钾 - 讷 - 圃 - 舶 - 穹 - 戾 - 汴 - 锂 - 昀 - 镀 - 眺 - 捺 - 猕 - 阚 - 骋 - 悸 - 蜚 - 咩 - 讥 - 篆 - 鸠 - 哐 - 锚 - 幢 - 翱 - 螳 - 徇 - 踞 - 蔗 - 蔼 - 漉 - 衲 - N - 漳 - 枭 - 漾 - 歆 - 烬 - 曳 - 岌 - 孚 - 戛 - 呲 - 箫 - 娓 - 桨 - 涓 - 獭 - 芃 - 摒 - 戍 - 踝 - 轱 - 沱 - 锢 - 堰 - 抨 - 昙 - 鹌 - 蔻 - 迸 - 泯 - 龈 - 痔 - 骛 - 淄 - 泵 - 烯 - 蔫 - F - 胥 - 忱 - 纫 - 搪 - 茎 - 暨 - 泞 - 踵 - 璞 - 佗 - 荃 - 鬓 - 蚣 - 罔 - 臆 - 贻 - 橇 - 麓 - 槌 - 琥 - I - 纥 - 薅 - 樵 - 苓 - 熨 - 钨 - 骞 - 诣 - 涤 - 踊 - 醛 - 碴 - 蹴 - 缤 - 赊 - 岖 - 戊 - 禺 - 坯 - 戟 - 楂 - 隅 - 酶 - 邃 - 蛀 - 皎 - 炯 - 垣 - 锹 - 镰 - 夙 - 甬 - 叵 - 茁 - 珞 - 妲 - 涸 - 兀 - 嘤 - 谙 - 噗 - 榔 - 稣 - 剽 - 奚 - 啕 - 袅 - 讧 - 钠 - 怄 - 晤 - 肛 - 氰 - 迥 - 唰 - 诩 - 籁 - 砒 - 谩 - 诟 - 斓 - 泷 - 幡 - 爻 - 痫 - 眈 - 漕 - 惘 - 挎 - 噶 - 喱 - 氯 - U - 跆 - 嗤 - 锏 - 睽 - 缮 - 蟋 - 蠕 - 扪 - 狞 - 飒 - 吮 - 弋 - 奘 - 蟠 - 梆 - 拈 - 帧 - 蟀 - 胯 - 掳 - 蝈 - 帼 - 瞰 - 嵇 - 阉 - 篝 - 笆 - 亘 - L - 喔 - 愕 - 谚 - 轶 - 岱 - 丕 - 婕 - 羌 - 毡 - 呻 - 鼾 - 蜥 - 偌 - 庵 - 敝 - 蛐 - 麝 - 鞘 - 拮 - 涣 - 葆 - 雹 - 踌 - 蜈 - 馥 - 跻 - 狰 - 桀 - 毗 - 皿 - 缨 - 磐 - 啾 - 牒 - 缰 - 躇 - 踮 - 糠 - 嗲 - 刽 - 咫 - 殇 - 瀛 - 胱 - 炀 - 虱 - 砾 - 獒 - 涎 - 袤 - 鄱 - 瓯 - 锭 - 塾 - 蹉 - 珏 - 豺 - 锌 - 蜿 - 牦 - 瓒 - 莆 - 蜴 - 氮 - 跎 - 咛 - 骜 - 郸 - 搐 - 堑 - 涞 - 寰 - 跛 - 鸵 - 毂 - 妩 - 铤 - 薏 - 烩 - 遐 - 煦 - 仃 - 髅 - 酮 - 榷 - 腋 - 珩 - 臃 - 愫 - 蜒 - 荼 - 侬 - 淬 - 婵 - 偻 - 焯 - 骊 - 恻 - 濮 - 泱 - 庖 - 惴 - 鲫 - 硌 - 肓 - 芪 - 礴 - 磺 - 腱 - 冢 - 谪 - 骷 - 哏 - 腩 - 蓦 - 焙 - 桢 - 阖 - 睾 - 疱 - 郴 - 铿 - 铡 - 祉 - 跄 - 桦 - 椭 - 拄 - 皙 - 膈 - 裱 - 髋 - 伢 - 罹 - 鳍 - 赝 - 嬴 - 痤 - 藿 - 镐 - 铎 - 瘠 - 簌 - 杳 - 铢 - 阡 - 忤 - 舀 - 悻 - 媲 - 茗 - 湍 - 舫 - 瘙 - 瞟 - 擞 - 荀 - 刍 - J - 潍 - 莴 - 斛 - 郦 - 栩 - 绾 - 蕙 - 黜 - 湄 - 藓 - 躏 - 锱 - 捻 - 佼 - 砝 - E - 罡 - 忻 - 鹜 - 滟 - 傥 - 蛳 - W - 铀 - 魇 - 觎 - 蹂 - 佞 - 诃 - 灞 - 镣 - 痱 - 侏 - 峦 - 榛 - 饽 - 龋 - 嗔 - 芍 - 椿 - 璎 - 渥 - 蟾 - 骰 - 吠 - 挛 - 倜 - 鳝 - 糜 - 噢 - 黝 - 藐 - 绡 - 掣 - 鳗 - 璜 - 犷 - 痉 - 膺 - 罄 - 阄 - 纨 - 纭 - 彗 - 嵘 - 埠 - 潢 - 桔 - 耷 - 逵 - 诓 - 怵 - 蚤 - 苯 - 邈 - 谑 - 颌 - 珐 - 踱 - 髻 - 倏 - 啷 - 篑 - 冗 - 蹶 - 荥 - 涧 - 镂 - 踉 - 呷 - 衢 - 荟 - 箴 - 桧 - 恿 - 坳 - 瑙 - 珅 - 莅 - 膘 - 宥 - 氟 - 秆 - 诙 - 蹑 - 茴 - 翳 - 渚 - H - 唁 - 诿 - 窈 - 窕 - 膻 - 荨 - 蛔 - 筵 - 钛 - 獾 - 琏 - 箩 - 栀 - 隼 - 煸 - 罂 - 蛎 - 咂 - 谗 - 颦 - 佝 - 苣 - 搡 - 仄 - 垠 - 濂 - 泗 - 亟 - 蔺 - 蛆 - 霏 - 榈 - 裟 - 瑁 - 酚 - 蝼 - 怆 - 犄 - 沣 - 揖 - 斡 - 刎 - 鲟 - 峒 - 瞭 - 晁 - 袈 - 蓟 - 镁 - 骥 - 掸 - 玳 - 娑 - 馀 - 跚 - 槃 - 缄 - 猢 - 粕 - 隍 - 佃 - 獗 - 唢 - 菏 - 酰 - 腚 - 笈 - 哙 - 孢 - 飕 - 嘹 - 茱 - 蹒 - 殓 - 柩 - 谀 - 姣 - 戌 - 柑 - 粼 - 淅 - 啧 - 盅 - 鼬 - 啜 - 绉 - 咻 - 锲 - 铆 - Y - 螨 - 茯 - 憩 - 臼 - 谄 - 讴 - 濠 - 雎 - 噻 - 淦 - 懋 - 尕 - 氦 - 褛 - 颉 - 喆 - 铬 - 褴 - 燮 - 銮 - 侗 - 蹙 - 煜 - 邺 - 锃 - 麋 - 矗 - 娆 - 匐 - 噌 - 潸 - 碘 - 浔 - 檄 - 皈 - 铂 - 遨 - 炜 - 曜 - 饴 - 舷 - 胫 - 叟 - 祎 - 沅 - 潺 - 楣 - 埂 - 瞠 - 幔 - 稞 - 抻 - 匝 - 幄 - 殒 - 瑭 - 袂 - 囫 - 瓴 - 攫 - 鲈 - 箔 - 哝 - 馗 - 蜍 - 痧 - 脘 - 姘 - 苒 - 缢 - 觞 - 蛹 - 饬 - 胄 - 筏 - 鸾 - 儆 - 痿 - 矬 - 酊 - 纾 - 铖 - 荏 - 掬 - 膑 - 贮 - 觊 - 囵 - 泓 - 搔 - 汞 - 蚩 - 婀 - 谧 - 恣 - 霎 - 饕 - 赅 - 鲶 - 梏 - 獠 - 俶 - 龛 - 桅 - 鹄 - 旌 - 鲲 - 姒 - 蠡 - 繇 - 祜 - 诨 - 汩 - 觥 - 孀 - R - 谥 - 蕨 - 祐 - 榭 - 皑 - 纂 - 獐 - 覃 - 痂 - 孑 - 砧 - 圩 - 桎 - 啵 - 葚 - 嗫 - 浃 - 荠 - 阈 - 遴 - 枇 - 狒 - 秸 - 筠 - 硒 - 卞 - 玷 - 杈 - 狲 - 忿 - 俎 - 拚 - 颍 - 睢 - 颧 - 滦 - 霭 - 雉 - 毽 - 蓑 - 歙 - 鳃 - 鹬 - 墉 - 楔 - 舐 - 绔 - 弭 - 馏 - 挝 - 奂 - 嘭 - 忪 - 箕 - 诌 - 谒 - 颚 - 滂 - 醍 - 洵 - 鹫 - 虢 - 苋 - 玥 - 臾 - 蹩 - Z - 杷 - 痍 - 酉 - 疸 - 鄢 - 垩 - 烷 - 湮 - 钎 - 樽 - 旮 - 葭 - 邬 - 缱 - 糍 - 亳 - 咦 - 苷 - 伉 - 隽 - 伫 - 聒 - 匍 - 飚 - 桠 - 睑 - 脍 - 焘 - 谶 - 赳 - 萸 - 讣 - 疽 - 臧 - 巽 - 毓 - 鸢 - 纰 - 啐 - 噙 - 舛 - 敕 - 醐 - 痢 - 嚯 - 婺 - 勖 - 岷 - 溧 - 骅 - 犸 - 麾 - 嗟 - 诘 - 懑 - 貔 - 貅 - 啉 - 崂 - 鸩 - 镭 - 绻 - 逑 - 煨 - 褓 - 姝 - 藜 - 溟 - 儋 - 谡 - 欸 - 郢 - 荚 - 疝 - 遽 - 陂 - 饯 - 孪 - 巳 - 荞 - 泔 - 岿 - 谆 - 镍 - 洙 - 佻 - 盂 - 睨 - 铄 - 餮 - 酯 - 癣 - 浜 - 酩 - 焗 - 挲 - 鬃 - 鲠 - 仞 - 诰 - 谔 - 胛 - 萼 - 涿 - 莠 - 珲 - 旯 - 蜢 - 黍 - 肽 - 涪 - 髡 - 氙 - 陉 - 鬶 - 侩 - 糅 - 氤 - 芾 - 砷 - 鳕 - 钣 - 锒 - 闱 - 铵 - 镊 - 玑 - 砀 - 癜 - 颔 - 楹 - 螈 - 醚 - 琮 - 铩 - 笄 - 瓤 - 裨 - 潋 - 悌 - 聿 - 祢 - 郜 - 汨 - 棂 - 氲 - 嶙 - 聩 - 菅 - 腧 - 妯 - 龇 - 谲 - 耄 - 耋 - 囿 - 黢 - 揄 - 鲇 - 仝 - 個 - 忖 - 峋 - 揶 - 迩 - 诳 - 踽 - 骐 - 趸 - 颞 - 撺 - 辇 - 猷 - 铉 - 羸 - 徜 - 徉 - 襁 - 镌 - 孱 - 钒 - 铣 - 呤 - 遑 - 俾 - 皋 - 笕 - 笺 - 趔 - 趄 - 辋 - 鄞 - 殚 - 岫 - 跬 - 嘌 - 苻 - 绶 - 郅 - 瑄 - 萋 - 蘼 - 湎 - 砣 - 钜 - 捭 - 喹 - 恹 - 娌 - 螯 - 锰 - 祚 - 阆 - 矾 - 厩 - 龅 - 炝 - 黠 - 妁 - 濑 - 鞑 - 柒 - 滁 - 淖 - 鸬 - 鬣 - 晔 - 恸 - 赓 - 侉 - 溏 - 還 - 珮 - 鸨 - 嚅 - 笤 - 靥 - 啮 - 滓 - 俚 - 唳 - 苜 - 蓿 - 鹚 - 耦 - 莜 - 麸 - 粳 - 綦 - 盱 - 噤 - 遒 - 玟 - 魍 - 魉 - 旖 - 栉 - 锷 - 醴 - 泮 - 恁 - 甾 - 琬 - 丶 - 擤 - 桉 - 踟 - 誊 - 谟 - 澧 - 玖 - 畿 - 顼 - 兖 - 贰 - 茏 - 愎 - 豇 - 旎 - 蹰 - 蜃 - 屐 - 芡 - 鎏 - 癸 - 卅 - 枥 - 陟 - 琨 - 粝 - 掮 - 妪 - 姹 - 鏖 - 捯 - 钴 - 竽 - 恽 - 佰 - 胗 - 崧 - 磴 - 绺 - 鳏 - 槁 - 啖 - 矍 - 徕 - 忾 - 烃 - 喏 - 囹 - 圄 - 砭 - 邕 - 犍 - 鸮 - 剜 - 琚 - 瘢 - 魑 - 眦 - 锉 - 柘 - 痦 - 苕 - 牯 - 湟 - 厝 - 濛 - 赭 - 馐 - 蜇 - 嶂 - 贲 - 靼 - 臬 - 陲 - 潞 - 芩 - 腓 - 锨 - 寮 - 於 - 洇 - 愠 - 疖 - 鹧 - 鸪 - 茕 - 戕 - 壬 - 庾 - 莒 - 鹈 - 鹕 - 蠹 - 勐 - 疥 - 辎 - 耒 - 嗬 - 沔 - 睥 - 邙 - 篾 - 揩 - 肱 - 胍 - 磬 - 菟 - 豢 - 垓 - 唑 - 剌 - 阗 - 汜 - 佤 - 璟 - 麽 - 鬻 - 怏 - 蕤 - 茭 - 睚 - 淙 - 牍 - 榫 - 濯 - 稹 - 媾 - 悱 - 骶 - 蛭 - 鞣 - 椁 - 槊 - 擢 - 滢 - 佚 - 菡 - 沭 - 扦 - 镆 - 闾 - 缛 - 窠 - 疣 - 骠 - 俅 - 喙 - 蹼 - 硼 - 黩 - 腴 - 醮 - 邛 - 漯 - 豉 - 昶 - 刿 - 凇 - 鲅 - 舸 - 邳 - 俟 - 铰 - 翌 - 鳟 - 葳 - 寤 - 碣 - 秭 - 揠 - 熵 - 燧 - 靛 - 嵊 - 窨 - 鹗 - 芎 - 颢 - 佶 - 骢 - 圜 - 岘 - 燊 - 壅 - 畲 - 萘 - 煊 - 粲 - 倌 - 嗳 - 橹 - 椽 - 夔 - 鲑 - 赧 - 殄 - 沆 - 瀣 - 廪 - 舢 - 狍 - 挈 - 鹳 - 蚜 - 彧 - 羟 - 盥 - 镛 - 痈 - 蜊 - 皲 - 篦 - 喑 - 鲢 - 邡 - 蕲 - 僳 - 秣 - 蛉 - 讫 - 祗 - 鹩 - 撷 - 狎 - 郓 - 镕 - 榉 - 鲷 - 娣 - 淝 - 桷 - 镉 - 郫 - 髌 - 醪 - 僭 - 伧 - 嵬 - 苁 - 鹘 - 徭 - 歃 - 阕 - 鸱 - 貉 - 闳 - 坻 - 缙 - 媪 - 莨 - 菪 - 绦 - 恫 - 崆 - 喟 - 葺 - 逶 - 迤 - 骈 - 馔 - 苎 - 溘 - 垭 - 樯 - 诤 - 魃 - 搽 - 绀 - 蚴 - 澶 - 蒺 - 罘 - 眙 - 怍 - 來 - 荪 - 贶 - 亓 - 唻 - 畈 - 谌 - 芨 - 鲀 - 窸 - 窣 - 荜 - 楫 - 衮 - 趵 - 勰 - 髯 - 椴 - 缶 - 荸 - 秫 - 菖 - 甙 - 翦 - 椟 - 峤 - 掼 - 謇 - 洄 - 鄯 - 妗 - 浐 - 颀 - 箸 - 畦 - 痼 - 橛 - 鲛 - 蝾 - 愍 - 蒹 - 嘁 - 韪 - 劭 - 垅 - 暹 - 僮 - 稗 - 筚 - 煅 - 嬅 - 蜉 - 骝 - 碚 - 冼 - 吶 - 洹 - 郧 - 炴 - 绌 - 泠 - 呓 - 簋 - 溴 - 篁 - 仟 - 锟 - 羧 - 鹞 - 嘬 - 渌 - 笸 - 霰 - 稔 - 钡 - 齁 - 胪 - 衾 - 尻 - 洮 - 蘅 - 鲳 - 殂 - 腭 - 涔 - 蝣 - 孳 - 澍 - 钼 - 蒡 - 枳 - 渑 - 茼 - 馕 - 埙 - 珣 - 菘 - 邰 - 樾 - 铱 - 鳐 - 唔 - 篙 - 箜 - 篌 - 耆 - 啫 - 枞 - 杼 - 嵋 - 舂 - 娉 - 铨 - 崃 - 笳 - 邗 - 逡 - 僖 - 泫 - 疴 - 捱 - 醅 - 堇 - 肄 - 荇 - 虬 - 谯 - 酞 - 桡 - 艮 - 膦 - 艹 - 啻 - 滏 - 茆 - 圪 - 磡 - 麼 - 闼 - 郯 - 仡 - 氐 - 贽 - 俦 - 蓖 - 跹 - 帏 - 氅 - 趿 - 暝 - 缟 - 棹 - 滹 - 毖 - 蝰 - 虻 - 缫 - 诮 - 闩 - ○ - 潴 - 樨 - 瘘 - 襦 - 妤 - 郾 - 衿 - 鸷 - 旰 - 镢 - 傈 - 倨 - 笏 - 蒽 - 醌 - 驽 - 浠 - 涠 - 蓁 - 柞 - 钺 - 蜮 - 诂 - 徵 - 锆 - 椋 - 叻 - 廿 - 藁 - 乜 - 摈 - 這 - 茌 - 辊 - 岬 - 郇 - 杓 - 轳 - 酎 - 蟥 - 時 - 镒 - 蚬 - 澹 - 赟 - 後 - 怿 - 箐 - 囍 - 揆 - 蹁 - 鬄 - 苫 - 蕖 - 卺 - 辔 - 偈 - 俳 - 吲 - 哚 - 瘆 - 蕞 - 笞 - 氩 - 嫘 - 墁 - 帔 - 褡 - 裢 - 乩 - 褊 - 颏 - 喒 - 錾 - 皌 - 戗 - 唪 - 啭 - 伥 - 茔 - 斫 - 齉 - 仵 - 赉 - 吡 - 啶 - 蹇 - 螅 - 汊 - 湓 - 凫 - 珙 - 腈 - 洌 - Ω - 憷 - 跶 - 抔 - 濞 - 崤 - 殍 - 浥 - 铳 - 酽 - 馑 - 髂 - 隗 - 韫 - 晷 - 诒 - 埭 - 鹪 - 蕻 - 昃 - 瓠 - 萁 - 癔 - 怩 - 疳 - 跖 - 疔 - 簟 - 汆 - 疠 - 卟 - 墒 - 穰 - 铍 - 珥 - 钤 - 隻 - 樓 - 墎 - 鳜 - 沒 - 岀 - 杪 - 単 - 鲧 - 呋 - 彀 - 祇 - 豸 - 胴 - 唷 - 丨 - 燚 - 麴 - 觇 - 缑 - 橐 - 蚡 - 朊 - 俣 - 垡 - <sos/eos> init: null input_size: null ctc_conf: ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true use_preprocessor_valid: false token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_utt_prefix: null rir_apply_prob: 1.0 noise_scp: null noise_utt_prefix: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.10.2a1 distributed: true ``` </details> ## LM config <details><summary>expand</summary> ``` NONE ``` </details>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["wenetspeech"]}
espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:wenetspeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #espnet #audio #automatic-speech-recognition #zh #dataset-wenetspeech #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/pengcheng\_guo\_wenetspeech\_asr\_train\_asr\_raw\_zh\_char' This model was trained by Pengcheng Guo using wenetspeech recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Wed Oct 6 15:11:20 CST 2021' * python version: '3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]' * espnet version: 'espnet 0.10.2a1' * pytorch version: 'pytorch 1.9.0' * Git hash: '' + Commit date: '' asr\_train\_asr\_conformer\_raw\_zh\_char ----------------------------------------- ### WER ### CER ### TER ASR config ---------- expand LM config --------- expand
[ "### 'espnet/pengcheng\\_guo\\_wenetspeech\\_asr\\_train\\_asr\\_raw\\_zh\\_char'\n\n\nThis model was trained by Pengcheng Guo using wenetspeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Oct 6 15:11:20 CST 2021'\n* python version: '3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.2a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_conformer\\_raw\\_zh\\_char\n-----------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand\n\nLM config\n---------\n\n\nexpand" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #zh #dataset-wenetspeech #license-cc-by-4.0 #region-us \n", "### 'espnet/pengcheng\\_guo\\_wenetspeech\\_asr\\_train\\_asr\\_raw\\_zh\\_char'\n\n\nThis model was trained by Pengcheng Guo using wenetspeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Wed Oct 6 15:11:20 CST 2021'\n* python version: '3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.2a1'\n* pytorch version: 'pytorch 1.9.0'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_conformer\\_raw\\_zh\\_char\n-----------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand\n\nLM config\n---------\n\n\nexpand" ]
null
espnet
## ESPnet2 ASR model ### `espnet/roshansh_how2_asr_raw_ft_sum_valid.acc` This model was trained by roshansh-cmu using how2 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout e6f42a9783a5d9eba0687c19417f933e890722d7 pip install -e . cd egs2/how2/sum1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/roshansh_how2_asr_raw_ft_sum_valid.acc ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Feb 7 15:24:21 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.10.1` - Git hash: `04561cdf3b6c3bc1d51edb04c93b953759ef551d` - Commit date: `Mon Feb 7 09:06:12 2022 -0500` ## asr_raw_ft_sum |dataset|Snt|Wrd|ROUGE-1|ROUGE-2|ROUGE-L|METEOR|BERTScore| |---|---|---|---|---|---|---|---| |decode_sum_asr_model_valid.acc.best/dev5_test_sum|2127|69795|60.72|44.7|56.1|29.36|91.53| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer_vid_lf.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_raw_ft_sum ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 8 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 45875 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 10 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 5000 use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - exp/asr_raw_utt_conformer/valid.acc.ave_10best.pth:::ctc ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 60000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_vid_sum/train/speech_shape - exp/asr_stats_raw_vid_sum/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_vid_sum/valid/speech_shape - exp/asr_stats_raw_vid_sum/valid/text_shape.bpe batch_type: length valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_2000h_sum_trim/wav.scp - speech - sound - - dump/raw/tr_2000h_sum_trim/text - text - text valid_data_path_and_name_and_type: - - dump/raw/cv05_sum_trim/wav.scp - speech - sound - - dump/raw/cv05_sum_trim/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 token_list: - <blank> - <unk> - '[hes]' - S - ▁THE - ▁TO - '''' - ▁AND - ▁YOU - ▁A - ▁IT - T - ▁THAT - ▁OF - ▁I - ▁IS - RE - ▁IN - ING - ▁WE - M - ▁GOING - ▁SO - ▁THIS - ▁YOUR - ▁ON - E - D - ▁BE - ▁CAN - N - Y - O - ER - ▁HAVE - ▁JUST - ▁FOR - ▁WITH - ▁DO - ED - ▁ARE - ▁WANT - ▁UP - R - LL - P - ▁ - L - B - ▁IF - C - ▁ONE - ▁S - ▁OR - A - ▁GO - ▁LIKE - ▁NOW - ▁HERE - VE - LE - U - ▁GET - ▁WHAT - ▁OUT - IN - W - ▁C - ▁LITTLE - ▁THERE - LY - ▁AS - ▁MAKE - I - ▁THEY - ▁MY - K - ▁THEN - ▁BUT - AL - G - ▁ALL - OR - ▁BACK - ▁NOT - ▁ABOUT - ▁RIGHT - ▁OUR - EN - ▁SOME - ▁DOWN - F - ▁WHEN - CH - ▁F - ▁HOW - AR - ▁WILL - ▁RE - CK - ▁G - ES - CE - ▁TAKE - ▁AT - ▁FROM - ▁WAY - TER - ▁SEE - RA - ▁USE - ▁REALLY - RI - TH - ▁TWO - ▁ME - ▁VERY - ▁E - ▁B - AT - ▁THEM - ▁DON - ▁AN - ▁BECAUSE - ▁MORE - RO - H - 'ON' - LI - ▁PUT - ▁ST - IL - ▁BIT - ▁START - ▁NEED - ▁INTO - UR - ▁TIME - ▁OVER - ▁W - ▁DE - ▁LOOK - ▁THESE - ▁LET - ▁GOOD - ▁ALSO - AN - ▁OFF - ▁HE - ▁KIND - ▁SIDE - ▁CO - ▁SURE - ▁AGAIN - ▁MA - ▁KNOW - IT - ▁WOULD - IC - ▁OTHER - LA - ▁P - ▁WHICH - '-' - IR - ▁LA - ▁HAND - EL - ▁LOT - ▁WHERE - ▁THREE - ▁PA - ION - LO - ▁KEEP - ▁SHOW - ▁THING - ▁FIRST - TE - ENT - ATE - ▁COME - AD - ▁GOT - NG - ▁NICE - ▁T - ET - ▁MO - ▁ANY - ▁ACTUALLY - ▁DIFFERENT - ▁SE - GE - ▁WORK - ▁THROUGH - ▁O - KE - V - ▁AROUND - ▁BA - PE - ▁HI - ▁BY - SH - ATION - ▁SU - ▁CA - ▁D - ▁LO - ▁HAS - ▁LI - ▁PLAY - Z - ▁ADD - ▁RO - ▁TA - AS - ▁FOUR - ▁CON - ▁THOSE - MP - NE - ▁SP - UT - ▁GIVE - ▁WELL - ▁BALL - TING - RY - X - ▁HO - INE - IVE - ▁NEXT - ▁PO - ▁STEP - ▁EVEN - TION - ▁MI - MENT - ▁CUT - ▁BO - ▁LINE - ▁MUCH - ▁THINGS - ▁TALK - UN - ▁PART - ▁WAS - ▁FA - ▁SOMETHING - PP - ANCE - ND - DI - ▁RA - AGE - ▁SAME - ▁EXPERT - ▁DOING - ▁LEFT - IST - ▁DI - ▁NO - RU - ME - TA - UL - TI - ▁VILLAGE - DE - ERS - ▁PEOPLE - ▁TURN - VER - ▁FL - ▁LEG - ▁ONCE - ▁COLOR - ▁PULL - ▁USING - VI - ▁WATER - ▁SHE - ▁TOP - ▁OKAY - ▁ANOTHER - ▁THEIR - ▁SAY - URE - ▁HA - ▁IMPORTANT - ▁PIECE - ▁FOOT - ▁TRA - ▁SC - ▁BODY - ▁SET - ▁POINT - ▁HELP - ▁TODAY - ▁BRING - ▁V - ▁END - MA - ▁CH - ▁MOST - ▁K - ▁AHEAD - ▁HER - OL - ▁SA - AM - IES - ▁THINK - ▁NAME - ▁TRY - ▁MOVE - ONE - ▁LE - ▁TOO - TO - UM - ▁PLACE - ▁COULD - ▁FIND - ▁FIVE - ▁ALWAYS - ID - TY - NT - ▁FEEL - ▁HEAD - ▁THAN - NA - ▁EX - ▁EYE - ITY - CI - OP - ▁SHOULD - ▁MIGHT - ▁HOLD - ▁CAR - AND - ▁GREAT - ▁RI - ▁BU - ▁HIGH - ▁OPEN - ▁BEFORE - US - ▁FRONT - ▁LONG - ▁TOGETHER - NI - ▁HAIR - ▁LIGHT - ▁TEN - ▁HIT - EST - OUS - ▁PRETTY - ▁TYPE - IP - CO - ▁FINGER - ▁JO - ▁UN - ▁PRO - ▁STRAIGHT - ▁BEHALF - ▁TI - ▁SIX - ▁CLEAN - ▁DIS - ▁DA - ▁POSITION - IGHT - ACT - ▁CHA - ▁PE - GG - AP - ▁MEAN - ▁COMP - FI - ▁KNEE - ▁CALLED - ▁HANDS - ▁PRE - ▁FORWARD - ▁AREA - ANT - ▁TE - ▁WA - ▁AFTER - ▁SMALL - ▁THROW - ▁EVERY - ▁SHOULDER - NC - PER - ▁MAYBE - ▁ABLE - ▁BASICALLY - ▁AM - ▁READY - ▁BOTTOM - IE - ▁HALF - FF - ▁BIG - ▁EACH - ▁PUSH - ▁EIGHT - ▁NEW - ▁DONE - ▁MAY - ▁GETTING - HO - ▁HIS - ▁HARD - ▁CLOSE - ALLY - ▁SECOND - ▁FEET - ICAL - ▁JA - ▁PAINT - ▁LEARN - ▁SOUND - HE - ▁ROLL - ▁ONLY - ▁DOESN - WA - ▁DRAW - ▁VI - ▁DID - ▁SHA - ▁CENTER - CU - ▁CLIP - ▁PI - ▁CARD - ▁INSIDE - ▁PERSON - ▁STILL - ▁MAKING - 'NO' - ▁EVERYTHING - . - ▁FUN - ARD - ▁REMEMBER - ▁AWAY - ATED - COM - ▁SEVEN - ▁BEEN - ▁MANY - ABLE - ▁DAY - ▁SIT - IZE - ▁REAL - ▁HIP - ▁BASIC - ▁KICK - ▁TU - ATING - ▁STICK - ▁FLAT - ▁WHO - END - HA - ▁EXP - ▁PICK - ▁MIX - ▁TRI - ▁BI - ▁WHOLE - ▁STRETCH - ▁BOTH - ▁PROBABLY - CA - ▁HIM - ▁STRING - ▁EDGE - ▁BASE - ▁COMING - UGH - ▁LIFT - ▁STA - ▁WORKING - ▁MU - ▁QUICK - ▁SOMETIMES - ▁HAPPEN - ▁YOURSELF - ▁TALKING - ▁DR - ▁TELL - ▁ANYTHING - ▁BRA - ▁LOOKING - ▁SLOW - ▁NE - ▁STAND - NER - ▁COMES - ▁GOES - ISE - BE - ▁USED - ▁UNDER - ▁BETWEEN - ▁HU - ▁CREATE - ▁NA - ▁USUALLY - ▁ARM - ▁DRY - ▁RUN - LING - ▁BRUSH - ▁COVER - ▁HEAR - ▁DOES - ▁STAY - ▁EN - ▁FOLD - ▁CHANGE - ▁LAST - ▁EASY - ▁US - ▁PER - ▁FACE - ▁EAR - ▁TIGHT - ▁FE - ▁PIN - ▁MAN - ▁BETTER - ▁CALL - ▁PRI - ▁BEST - ▁KI - ▁COUPLE - ▁WHILE - ▁SHAPE - ▁GAME - IV - ▁SHOT - ▁PAPER - ▁OWN - ▁ALRIGHT - ▁HAD - TIC - ▁BREATH - ▁TOOL - '2' - ▁ENOUGH - ▁COURSE - ▁SKIN - ▁SPIN - ▁VA - ▁ARMS - ▁TEA - ▁BREAK - ▁DOG - ▁1 - QUE - ▁DROP - ▁NUMBER - IG - ▁RED - ▁NOTE - ▁WEIGHT - WARD - ▁PLAYING - ▁FINISH - ▁MINUTE - ▁R - ▁PRESS - ▁EITHER - ▁CHE - ▁PU - BER - ▁FEW - ▁SIZE - ▁MADE - ▁LEAVE - ▁GA - ▁ALREADY - ▁GUY - ▁FAR - ▁HOME - ▁BAR - UP - ▁GRAB - ▁MARK - ▁WHITE - ▁PROPER - ▁CAUSE - ▁OK - ▁ART - HI - ▁SORT - ▁EXERCISE - ▁LOWER - PORT - ▁PLANT - ▁BOARD - ▁CASE - ▁YEAR - CENT - ▁DU - ▁CHECK - ▁WHATEVER - ▁OIL - ▁IDEA - ▁SIMPLE - ▁PRACTICE - ▁FAST - '0' - ▁CONTROL - ▁J - ▁KEY - ▁MIDDLE - ▁FULL - ▁GLASS - ▁OUTSIDE - ▁LOW - ▁REST - ▁STUFF - ▁ACT - ▁UNTIL - ▁BLACK - ▁POP - ▁CLICK - ▁HOLE - ▁Z - ▁COUNT - ▁POT - ▁ALLOW - ▁HAVING - ▁TRYING - ▁MUSCLE - ▁GU - ▁BOX - ▁NOTICE - ▁EXAMPLE - UND - ▁ALONG - FUL - ISH - ▁STORE - ▁LU - ▁FLOOR - ▁MOVING - ▁LARGE - ▁STOP - ▁PH - ▁WALK - '5' - ▁QU - ▁TECHNIQUE - ▁SOFT - ▁GROUND - ▁JUMP - ▁JU - ▁FILL - ▁WHY - ▁BUY - ▁GREEN - ▁WALL - ▁HEEL - NESS - ▁LEVEL - ▁UNDERNEATH - ▁PATTERN - ▁BEHIND - ▁OLD - ▁TIP - ▁COMPLETE - ▁WON - ▁TEACH - ▁FIT - ▁NECK - ▁REMOVE - ▁TRICK - ▁MOVEMENT - ▁TOWARDS - ▁PARTICULAR - ▁CHI - ▁EFFECT - J - ▁FREE - ▁ACROSS - ▁BEND - ▁SAFE - ▁SLIDE - ▁PROBLEM - ▁BLOCK - ▁PAN - ▁NATURAL - ▁TOUCH - ▁CHILD - LINE - ▁CROSS - ▁REASON - '4' - ▁POWER - ▁APPLY - ▁FOLLOW - ▁DESIGN - ▁SPACE - ▁ORDER - ▁WOOD - ▁RID - '3' - ▁COOK - ▁BEGIN - ▁WATCH - ▁STYLE - QUA - ▁PRODUCT - ▁TAKING - ▁PUTTING - ▁EXHALE - ▁THOUGH - ▁DEEP - IAN - ▁REACH - ▁FOOD - ▁ALMOST - ▁COOL - ▁SECTION - ▁SAID - ▁ANGLE - ▁MUSIC - ▁RELAX - ▁CORNER - ▁DARK - ▁CHORD - ▁ESPECIALLY - ▁SCALE - ▁WARM - ▁WITHOUT - ▁WHEEL - ▁SEGMENT - ▁TABLE - ▁BOOK - ▁PASS - ▁ELBOW - ▁ROUND - ▁INHALE - ▁SMOOTH - ▁ROOM - / - ▁NINE - ▁SHORT - ▁MEASURE - ▁LESS - ▁TWIST - ▁BALANCE - ▁PROCESS - ▁SWITCH - ▁GENERAL - ▁CLAY - ▁CERTAIN - ▁NEVER - ▁BLUE - ▁CUP - ▁HOUSE - ▁EXTRA - ▁MOTION - ▁PRESSURE - ▁FIRE - ▁SIMPLY - ▁DOUBLE - ▁TWENTY - ▁CATCH - ▁BECOME - ▁BUILD - ▁SPEED - ▁TRANS - ▁DRUM - ▁CHEST - ▁PICTURE - ▁LENGTH - ▁CONTINUE - ▁COMFORTABLE - ▁FISH - ▁PHOTO - ▁LOOSE - ▁SKI - ▁LIFE - ▁DEGREE - ▁OPTION - ▁WORD - ▁SHARP - ▁SHOOT - ▁FOUND - ▁STRONG - ▁QUITE - ▁THIRD - ▁GLUE - ▁MIND - ▁DEFINITELY - ▁EASIER - GRAPH - ▁HOOK - ▁CLEAR - ▁POSE - ▁BUTTON - ▁CHOOSE - ▁THICK - ▁SYSTEM - ▁PERFECT - ▁BEAUTIFUL - ▁SPOT - ▁GROW - ▁SIGN - ▁ELSE - ▁CONNECT - ▁SELECT - ▁PUNCH - ▁DIRECTION - ▁WRAP - ▁RELEASE - QUI - SIDE - ▁CAREFUL - ▁VIDEO - ▁INSTEAD - ▁CIRCLE - ▁WIRE - ▁NOSE - ▁AMOUNT - ▁FOCUS - ▁NORMAL - ▁MAJOR - ▁WHETHER - ▁SURFACE - ▁THUMB - ▁DRIVE - ▁SCREW - ▁POSSIBLE - ▁OBVIOUSLY - ▁COMMON - ▁REGULAR - ▁ADJUST - ▁WIDE - ▁BLADE - ▁FRET - ▁RECOMMEND - ▁BOWL - BOARD - ▁IMAGE - ▁DEPENDING - ▁PROTECT - ▁CLOTH - ▁HEALTH - ▁WRIST - ▁CLUB - ▁DRINK - ▁SINCE - ▁FRIEND - '00' - ▁RUNNING - ▁ITSELF - ▁RECORD - ▁SWING - ▁DIRECT - ▁MATERIAL - ▁YO - ▁LEAST - ▁EXACTLY - ▁BEGINNING - ▁SLIGHTLY - ▁TREAT - ▁CAMERA - ▁QUARTER - ▁WINDOW - '8' - ▁SOMEBODY - ▁BURN - ▁DEMONSTRATE - ▁DIFFERENCE - ▁COMPUTER - IBLE - ▁SHOE - ▁PERFORM - ▁SQUARE - ▁CONSIDER - ▁DRILL - ▁TEXT - ▁FILE - ▁RUB - ▁FABRIC - ▁HUNDRED - ▁GRIP - ▁CHARACTER - ▁SPECIFIC - ▁KNOT - ▁CURL - ▁STITCH - ▁BLEND - ▁FRAME - ▁THIRTY - '1' - ▁HORSE - ▁ATTACH - ▁GROUP - ▁STROKE - ▁GUITAR - ▁APART - ▁MACHINE - ▁CLASS - ▁COMB - ▁ROOT - ▁HELLO - ▁ENERGY - ▁ATTACK - ▁CORRECT - ▁EXTEND - ▁MINOR - ▁PROFESSIONAL - ▁MONEY - ▁STRIP - ▁FLAVOR - ▁EVERYBODY - ▁RULE - ▁DIFFICULT - ▁PROJECT - ▁DISCUSS - ▁FIGURE - ▁HOWEVER - ▁FINAL - ▁STRENGTH - ▁ENTIRE - ▁FIELD - ▁CONTACT - ▁SUPPORT - ▁PALM - ▁SERIES - ▁ENJOY - '6' - ▁WORLD - ▁DECIDE - ▁SPEAK - ▁SEVERAL - ▁WRITE - ▁PROGRAM - ABILITY - ▁KNIFE - ▁PLASTIC - ▁ORGAN - '7' - ▁UNDERSTAND - ▁FIFTEEN - ▁FLEX - ▁INFORMATION - ▁TWELVE - ▁DETAIL - ▁STRIKE - ▁ACTUAL - ▁SPRAY - ▁LOCAL - ▁MOUTH - ▁NIGHT - ▁VEHICLE - ▁OPPOSITE - ▁SCHOOL - '9' - ▁QUESTION - ▁SPECIAL - ▁BIGGER - ▁DEVELOP - ▁PEPPER - ▁PREFER - Q - '%' - ']' - '[' - '&' - ',' - _ - '#' - '=' - '@' - + - '*' - $ - '~' - <sos/eos> init: null input_size: null ctc_conf: ignore_nan_grad: true model_conf: ctc_weight: 0.0 lsm_weight: 0.15 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram1000/bpe.model non_linguistic_symbols: data/nlsyms cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_vid_sum/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: abs_pos selfattention_layer_type: lf_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 attention_windows: - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 attention_dilation: - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 attention_mode: tvm decoder: transformer decoder_conf: attention_heads: 4 linear_units: 512 num_blocks: 6 dropout_rate: 0.15 positional_dropout_rate: 0.15 self_attention_dropout_rate: 0.15 src_attention_dropout_rate: 0.15 required: - output_dir - token_list version: 0.10.0 distributed: true ``` </details> Please cite the following paper if you use this recipe: ```BibTex @misc{sharma2022speech, title={Speech Summarization using Restricted Self-Attention}, author={Roshan Sharma and Shruti Palaskar and Alan W Black and Florian Metze}, year={2022}, eprint={2110.06263}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title##3={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass{cs.CL} ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-summarization"], "datasets": ["how2"]}
espnet/roshansh_how2_asr_raw_ft_sum_valid.acc
null
[ "espnet", "audio", "automatic-speech-summarization", "en", "dataset:how2", "arxiv:2110.06263", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2110.06263", "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-summarization #en #dataset-how2 #arxiv-2110.06263 #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/roshansh\_how2\_asr\_raw\_ft\_sum\_valid.acc' This model was trained by roshansh-cmu using how2 recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Mon Feb 7 15:24:21 EST 2022' * python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]' * espnet version: 'espnet 0.10.6a1' * pytorch version: 'pytorch 1.10.1' * Git hash: '04561cdf3b6c3bc1d51edb04c93b953759ef551d' + Commit date: 'Mon Feb 7 09:06:12 2022 -0500' asr\_raw\_ft\_sum ----------------- ASR config ---------- expand Please cite the following paper if you use this recipe: ### Citing ESPnet or arXiv:
[ "### 'espnet/roshansh\\_how2\\_asr\\_raw\\_ft\\_sum\\_valid.acc'\n\n\nThis model was trained by roshansh-cmu using how2 recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Mon Feb 7 15:24:21 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.10.1'\n* Git hash: '04561cdf3b6c3bc1d51edb04c93b953759ef551d'\n\t+ Commit date: 'Mon Feb 7 09:06:12 2022 -0500'\n\n\nasr\\_raw\\_ft\\_sum\n-----------------\n\n\n\nASR config\n----------\n\n\nexpand\n\nPlease cite the following paper if you use this recipe:", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-summarization #en #dataset-how2 #arxiv-2110.06263 #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/roshansh\\_how2\\_asr\\_raw\\_ft\\_sum\\_valid.acc'\n\n\nThis model was trained by roshansh-cmu using how2 recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Mon Feb 7 15:24:21 EST 2022'\n* python version: '3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.6a1'\n* pytorch version: 'pytorch 1.10.1'\n* Git hash: '04561cdf3b6c3bc1d51edb04c93b953759ef551d'\n\t+ Commit date: 'Mon Feb 7 09:06:12 2022 -0500'\n\n\nasr\\_raw\\_ft\\_sum\n-----------------\n\n\n\nASR config\n----------\n\n\nexpand\n\nPlease cite the following paper if you use this recipe:", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
# ESPnet2 ASR pretrained model ## `Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best, fs=16k, lang=en` ♻️ Imported from <https://zenodo.org/record/3966501#.YOAOUZozZH5> This model was trained by Shinji Watanabe using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Tue Jul 21 07:58:39 EDT 2020` - python version: `3.7.3 (default, Mar 27 2019, 22:11:17) [GCC 7.3.0]` - espnet version: `espnet 0.8.0` - pytorch version: `pytorch 1.4.0` - Git hash: `75db853dd26a40d3d4dd979b2ff2457fbbb0cd69` - Commit date: `Mon Jul 20 10:49:12 2020 -0400` ## asr_train_asr_transformer_e18_raw_bpe_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_dev_clean_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2703|54402|97.9|1.8|0.2|0.2|2.3|28.2| |decode_dev_clean_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2703|54402|97.9|1.9|0.2|0.3|2.4|29.5| |decode_dev_other_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2864|50948|94.6|4.7|0.7|0.7|6.0|46.6| |decode_dev_other_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2864|50948|94.4|5.0|0.5|0.8|6.3|47.5| |decode_test_clean_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2620|52576|97.7|2.0|0.3|0.3|2.6|30.4| |decode_test_clean_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2620|52576|97.7|2.0|0.2|0.3|2.6|30.1| |decode_test_other_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2939|52343|94.5|4.8|0.7|0.7|6.2|49.7| |decode_test_other_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2939|52343|94.3|5.1|0.6|0.8|6.5|50.3| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_dev_clean_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2703|288456|99.3|0.3|0.3|0.2|0.9|28.2| |decode_dev_clean_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2703|288456|99.3|0.4|0.3|0.2|0.9|29.5| |decode_dev_other_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2864|265951|97.7|1.2|1.1|0.6|2.9|46.6| |decode_dev_other_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2864|265951|97.7|1.3|1.0|0.8|3.0|47.5| |decode_test_clean_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2620|281530|99.3|0.3|0.4|0.3|1.0|30.4| |decode_test_clean_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2620|281530|99.4|0.3|0.3|0.3|0.9|30.1| |decode_test_other_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2939|272758|97.8|1.1|1.1|0.7|2.9|49.7| |decode_test_other_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2939|272758|97.9|1.2|0.9|0.8|2.9|50.3| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_dev_clean_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2703|69307|97.2|1.8|1.0|0.4|3.2|28.2| |decode_dev_clean_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2703|69307|97.2|1.9|1.0|0.5|3.3|29.5| |decode_dev_other_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2864|64239|93.3|4.4|2.2|1.2|7.9|46.6| |decode_dev_other_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2864|64239|93.2|4.9|1.9|1.5|8.3|47.5| |decode_test_clean_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2620|66712|97.0|1.9|1.1|0.4|3.3|30.4| |decode_test_clean_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2620|66712|97.1|1.9|1.0|0.5|3.3|30.1| |decode_test_other_decode_asr_beam_size20_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2939|66329|93.1|4.5|2.4|1.0|7.9|49.7| |decode_test_other_decode_asr_beam_size5_lm_train_lm_adam_bpe_valid.loss.best_asr_model_valid.acc.best|2939|66329|93.1|4.8|2.1|1.4|8.3|50.3| ``` ### Training config See full config in [`config.yaml`](./exp/asr_train_asr_transformer_e18_raw_bpe_sp/config.yaml) ```yaml config: conf/tuning/train_asr_transformer_e18.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_e18_raw_bpe_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 3 local_rank: 3 dist_master_addr: localhost dist_master_port: 33643 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"], "inference": false}
espnet/shinji-watanabe-librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #license-cc-by-4.0 #region-us
# ESPnet2 ASR pretrained model ## 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL, fs=16k, lang=en' ️ Imported from <URL This model was trained by Shinji Watanabe using librispeech recipe in espnet. ### Python API ### Evaluate in the recipe ### Results ### Training config See full config in 'URL'
[ "# ESPnet2 ASR pretrained model", "## 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL, fs=16k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #license-cc-by-4.0 #region-us \n", "# ESPnet2 ASR pretrained model", "## 'Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.URL, fs=16k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by Shinji Watanabe using librispeech recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
automatic-speech-recognition
espnet
## ESPnet2 SLU pretrained model ### `siddhana/fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best` ♻️ Imported from https://zenodo.org/record/5590204 This model was trained by siddhana using fsc/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["fsc"]}
espnet/siddhana_fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:fsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-fsc #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 SLU pretrained model ### 'siddhana/fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best' ️ Imported from URL This model was trained by siddhana using fsc/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 SLU pretrained model", "### 'siddhana/fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-fsc #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 SLU pretrained model", "### 'siddhana/fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `siddhana/fsc_challenge_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best` ♻️ Imported from https://zenodo.org/record/5656007 This model was trained by siddhana using fsc_challenge/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["fsc_challenge"]}
espnet/siddhana_fsc_challenge_asr_train_asr_hubert_transformer_adam_specaug_r-truncated-36174d
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:fsc_challenge", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-fsc_challenge #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'siddhana/fsc_challenge_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best' ️ Imported from URL This model was trained by siddhana using fsc_challenge/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'siddhana/fsc_challenge_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc_challenge/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-fsc_challenge #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'siddhana/fsc_challenge_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc_challenge/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `siddhana/fsc_unseen_asr_train_asr_hubert_transformer_adam_specaug_finetune_raw_en_word_valid.acc.ave_5best` ♻️ Imported from https://zenodo.org/record/5655832 This model was trained by siddhana using fsc_unseen/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["fsc_unseen"]}
espnet/siddhana_fsc_unseen_asr_train_asr_hubert_transformer_adam_specaug_fine-truncated-ef9dab
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:fsc_unseen", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-fsc_unseen #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'siddhana/fsc_unseen_asr_train_asr_hubert_transformer_adam_specaug_finetune_raw_en_word_valid.acc.ave_5best' ️ Imported from URL This model was trained by siddhana using fsc_unseen/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'siddhana/fsc_unseen_asr_train_asr_hubert_transformer_adam_specaug_finetune_raw_en_word_valid.acc.ave_5best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc_unseen/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-fsc_unseen #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'siddhana/fsc_unseen_asr_train_asr_hubert_transformer_adam_specaug_finetune_raw_en_word_valid.acc.ave_5best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc_unseen/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/siddhana_slue_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best` This model was trained by Siddhant using slue-voxceleb recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 17758ad804fd7c4b6f88ef5601f475a241dc4605 pip install -e . cd egs2/slue-voxceleb/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/siddhana_slue_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Dec 28 12:28:28 EST 2021` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a2` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `6bf3c2a4f138d35331634d2e879bbc5c32a5266e` - Commit date: `Mon Dec 22 15:41:32 EST 2021` ## Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with intent - ASR config: [conf/train_asr.yaml](conf/tuning/train_asr_conformer.yaml) - token_type: word |dataset|Snt|Intent Classification Accuracy (%)|Intent Classification Macro F1 (%)| |---|---|---|---| |inference_asr_model_valid.acc.ave_10best/devel|955|80.2|29.7| ### Detailed Classification Report |dataset|Label|Snt|Prec|Recall|F1| |---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_10best/devel|Neutral|784|85|93|89| |inference_asr_model_valid.acc.ave_10best/devel|Positive|167|40|24|30| |inference_asr_model_valid.acc.ave_10best/devel|Negative|3|0|0|0| |inference_asr_model_valid.acc.ave_10best/devel|Mixed|1|0|0|0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/devel/wav.scp - speech - sound - - dump/raw/devel/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁i - s - ▁and - '''' - ▁the - ▁a - ▁to - ▁it - Neutral - ▁you - ▁that - ▁of - t - ing - ▁in - ▁was - ed - ▁uh - ▁know - e - m - ▁he - y - er - ▁so - ▁we - re - a - o - d - ▁um - i - ▁s - c - ▁like - n - ▁is - ▁be - ▁f - ▁but - ▁c - Positive - en - l - ve - ▁just - ▁m - st - ▁they - le - an - ▁on - ▁p - u - ▁my - ar - p - ▁this - ▁for - ▁b - ▁think - in - ▁with - g - or - ▁h - r - ly - w - ▁me - ▁d - ▁e - ▁have - ▁she - it - ▁t - ▁what - b - ▁st - al - es - ▁there - ▁really - ic - ▁g - ▁as - ▁w - ▁l - ▁do - ll - v - ▁all - at - 'on' - as - ▁about - h - ▁not - ▁re - ▁o - ▁at - k - ▁don - ▁had - ▁when - ou - ent - is - ra - ▁who - ri - ▁go - se - f - ▁out - ▁get - ▁an - ▁people - nd - ▁kind - ▁very - ce - ▁because - ▁are - ion - ▁some - et - ▁can - ge - ▁or - me - ▁up - ▁n - ▁if - ▁no - ▁one - ▁were - ct - ▁mean - ad - ▁time - ▁ch - ▁then - ro - ▁ex - ▁mo - ▁her - ▁every - ▁would - ▁co - ▁work - ir - ▁sh - ay - ▁se - ol - ver - ▁su - ▁got - ▁k - th - ▁love - ▁from - ld - ation - ▁him - ▁said - ▁how - ▁well - ▁lot - ▁show - ch - ard - ie - ▁pro - ▁de - ▁gonna - ▁bo - ▁say - ▁see - ▁li - one - ▁his - ther - ▁been - ur - ▁any - ▁great - ▁ - ▁yeah - pe - ▁which - ▁come - ▁them - ot - ▁play - ab - ite - ▁way - ally - id - gh - ▁r - ▁sc - our - x - mp - ers - ong - ate - ▁your - ss - ast - ▁did - ▁sort - ▁am - am - and - ▁make - ant - ▁thing - ▁ha - ▁te - ▁has - ess - ▁v - ▁something - ▁back - ▁where - ▁things - red - ▁al - ut - el - ight - ment - un - ive - ▁th - ▁le - il - ▁j - op - ▁more - ▁ro - ill - ▁fi - ies - ▁much - ck - ▁ne - ▁wh - ▁always - ▁act - ine - pp - z - ▁now - ▁con - thing - ▁us - body - ▁want - ▁other - ort - ice - ▁doing - ▁sa - ▁feel - ow - ▁int - ne - ▁these - ▁could - ▁good - ▁cause - Negative - ▁actually - ▁wr - ▁little - ain - ▁being - ▁look - ▁into - ere - ul - ▁our - ▁guy - ▁first - ud - ▁by - ▁fun - ▁qu - ▁didn - us - ity - ▁jo - od - ▁u - ▁part - ▁off - ▁pre - ▁right - ▁film - ▁start - ok - ▁two - ving - ▁never - pt - um - te - ▁movie - ▁going - ff - nder - ke - ▁ag - ▁en - ▁try - ful - im - ays - ▁life - ▁different - ach - are - ▁di - ist - ▁oh - au - ▁po - nt - ▁com - all - ▁lo - om - ▁real - ▁y - ame - ▁went - ry - ber - ▁even - ci - ▁ho - ▁years - ▁their - ▁happen - ure - self - per - ▁pl - ▁those - ble - 'no' - ▁day - ▁take - ▁does - ien - ▁br - be - wn - ▁thought - ▁fe - ght - ▁tr - ▁story - ty - ▁down - ous - ish - ▁wom - ▁wanna - ▁put - ▁through - ide - ▁ab - ▁new - ▁also - ▁big - ▁call - ▁around - ▁character - ▁read - iz - ▁came - act - ily - ath - ag - ree - ▁per - ▁will - ▁mu - ▁talk - ▁over - ▁friend - atch - ▁bl - ade - ▁world - ▁many - ▁sp - sic - ▁cl - ▁bit - ▁man - ace - ▁person - ft - ip - ▁than - ▁wanted - ▁may - ven - ick - ious - ▁mar - ▁before - ▁rel - j - ting - ▁set - sh - ep - ▁un - ue - ▁aw - ▁find - ▁kid - tain - ▁such - ter - ▁end - ▁tw - ind - aking - ▁after - ▁fam - ars - ig - ore - ▁bec - ak - art - reat - ust - rou - ack - ▁ye - ould - ime - itt - ▁gu - qu - ose - fe - ▁wor - lf - alk - ▁charact - ▁mov - out - ich - ▁happ - ▁thou - ith - <mixed> - rom - ake - ▁diff - ▁char - na - round - ory - ink - ually - ▁gon - ▁pe - right - ody - ah - rie - riend - now - so - ause - ▁fil - ▁pers - fore - very - ▁differe - rough - q - ▁fir - anna - ways - ':' - '&' - fter - <sos/eos> transcript_token_list: null init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 postdecoder: null postdecoder_conf: {} required: - output_dir - token_list version: 0.10.3a2 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["slue-voxceleb"]}
espnet/siddhana_slue_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:slue-voxceleb", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-slue-voxceleb #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/siddhana\_slue\_asr\_train\_asr\_conformer\_raw\_en\_word\_valid.acc.ave\_10best' This model was trained by Siddhant using slue-voxceleb recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Tue Dec 28 12:28:28 EST 2021' * python version: '3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]' * espnet version: 'espnet 0.10.3a2' * pytorch version: 'pytorch 1.8.1+cu102' * Git hash: '6bf3c2a4f138d35331634d2e879bbc5c32a5266e' + Commit date: 'Mon Dec 22 15:41:32 EST 2021' Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with intent ---------------------------------------------------------------------------------------------------------------------------------- * ASR config: conf/train\_asr.yaml * token\_type: word ### Detailed Classification Report ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/siddhana\\_slue\\_asr\\_train\\_asr\\_conformer\\_raw\\_en\\_word\\_valid.acc.ave\\_10best'\n\n\nThis model was trained by Siddhant using slue-voxceleb recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Dec 28 12:28:28 EST 2021'\n* python version: '3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.3a2'\n* pytorch version: 'pytorch 1.8.1+cu102'\n* Git hash: '6bf3c2a4f138d35331634d2e879bbc5c32a5266e'\n\t+ Commit date: 'Mon Dec 22 15:41:32 EST 2021'\n\n\nUsing Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with intent\n----------------------------------------------------------------------------------------------------------------------------------\n\n\n* ASR config: conf/train\\_asr.yaml\n* token\\_type: word", "### Detailed Classification Report\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-slue-voxceleb #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/siddhana\\_slue\\_asr\\_train\\_asr\\_conformer\\_raw\\_en\\_word\\_valid.acc.ave\\_10best'\n\n\nThis model was trained by Siddhant using slue-voxceleb recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Dec 28 12:28:28 EST 2021'\n* python version: '3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.3a2'\n* pytorch version: 'pytorch 1.8.1+cu102'\n* Git hash: '6bf3c2a4f138d35331634d2e879bbc5c32a5266e'\n\t+ Commit date: 'Mon Dec 22 15:41:32 EST 2021'\n\n\nUsing Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with intent\n----------------------------------------------------------------------------------------------------------------------------------\n\n\n* ASR config: conf/train\\_asr.yaml\n* token\\_type: word", "### Detailed Classification Report\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 SLU (Entity Classification) pretrained model ### `siddhana/slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best` ♻️ Imported from https://zenodo.org/record/5590204 This model was trained by siddhana using fsc/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["fsc"]}
espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:fsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-fsc #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 SLU (Entity Classification) pretrained model ### 'siddhana/slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best' ️ Imported from URL This model was trained by siddhana using fsc/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 SLU (Entity Classification) pretrained model", "### 'siddhana/slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-fsc #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 SLU (Entity Classification) pretrained model", "### 'siddhana/slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best'\n️ Imported from URL\n\nThis model was trained by siddhana using fsc/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 SLU pretrained model ### `siddhana/slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best` ♻️ Imported from https://zenodo.org/record/5590384 This model was trained by siddhana using slurp/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["slurp"]}
espnet/siddhana_slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:slurp", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-slurp #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 SLU pretrained model ### 'siddhana/slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best' ️ Imported from URL This model was trained by siddhana using slurp/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 SLU pretrained model", "### 'siddhana/slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best'\n️ Imported from URL\n\nThis model was trained by siddhana using slurp/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-slurp #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 SLU pretrained model", "### 'siddhana/slurp_new_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best'\n️ Imported from URL\n\nThis model was trained by siddhana using slurp/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp` This model was trained by simpleoier using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout b0ff60946ada6753af79423a2e6063984bec2926 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp ``` ## ASR config <details><summary>expand</summary> ``` ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR model ### 'espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp' This model was trained by simpleoier using librispeech recipe in espnet. ### Demo: How to use in ESPnet2 ## ASR config <details><summary>expand</summary> </details> ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR model", "### 'espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp'\n\nThis model was trained by simpleoier using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "## ASR config\n\n<details><summary>expand</summary>\n\n\n\n</details>", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR model", "### 'espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp'\n\nThis model was trained by simpleoier using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "## ASR config\n\n<details><summary>expand</summary>\n\n\n\n</details>", "### Citing ESPnet\n\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp` This model was trained by simpleoier using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout b0ff60946ada6753af79423a2e6063984bec2926 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp ``` ## ASR config <details><summary>expand</summary> ``` ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR model ### 'espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp' This model was trained by simpleoier using librispeech recipe in espnet. ### Demo: How to use in ESPnet2 ## ASR config <details><summary>expand</summary> </details> ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR model", "### 'espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp'\n\nThis model was trained by simpleoier using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "## ASR config\n\n<details><summary>expand</summary>\n\n\n\n</details>", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR model", "### 'espnet/simpleoier_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp'\n\nThis model was trained by simpleoier using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2", "## ASR config\n\n<details><summary>expand</summary>\n\n\n\n</details>", "### Citing ESPnet\n\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp` This model was trained by simpleoier using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout b0ff60946ada6753af79423a2e6063984bec2926 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Jan 4 20:52:48 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.8.1` - Git hash: `` - Commit date: `` ## asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|54402|98.4|1.4|0.1|0.2|1.7|23.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|50948|96.7|3.0|0.3|0.3|3.6|35.5| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|52576|98.4|1.5|0.1|0.2|1.8|23.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|52343|96.7|3.0|0.3|0.4|3.7|37.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|288456|99.7|0.2|0.2|0.2|0.5|23.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|265951|98.9|0.6|0.4|0.4|1.5|35.5| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|281530|99.6|0.2|0.2|0.2|0.6|23.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|272758|99.1|0.5|0.4|0.4|1.3|37.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|68010|98.2|1.4|0.4|0.3|2.1|23.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|63110|96.0|3.1|0.9|0.9|4.9|35.5| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|65818|98.1|1.4|0.5|0.4|2.3|23.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|65101|96.1|2.9|1.0|0.8|4.7|37.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer7_wavlm_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 num_targets: 1 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 45342 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 35 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 3 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 40000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/train/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_960_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_960_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0025 scheduler: warmuplr scheduler_conf: warmup_steps: 40000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ▁I - ▁HE - ▁THAT - ▁WAS - ED - ▁IT - '''' - ▁HIS - ING - ▁YOU - ▁WITH - ▁FOR - ▁HAD - T - ▁AS - ▁HER - ▁IS - ▁BE - ▁BUT - ▁NOT - ▁SHE - D - ▁AT - ▁ON - LY - ▁HIM - ▁THEY - ▁ALL - ▁HAVE - ▁BY - ▁SO - ▁THIS - ▁MY - ▁WHICH - ▁ME - ▁SAID - ▁FROM - ▁ONE - Y - E - ▁WERE - ▁WE - ▁NO - N - ▁THERE - ▁OR - ER - ▁AN - ▁WHEN - ▁ARE - ▁THEIR - ▁WOULD - ▁IF - ▁WHAT - ▁THEM - ▁WHO - ▁OUT - M - ▁DO - ▁WILL - ▁UP - ▁BEEN - P - R - ▁MAN - ▁THEN - ▁COULD - ▁MORE - C - ▁INTO - ▁NOW - ▁VERY - ▁YOUR - ▁SOME - ▁LITTLE - ES - ▁TIME - RE - ▁CAN - ▁LIKE - LL - ▁ABOUT - ▁HAS - ▁THAN - ▁DID - ▁UPON - ▁OVER - IN - ▁ANY - ▁WELL - ▁ONLY - B - ▁SEE - ▁GOOD - ▁OTHER - ▁TWO - L - ▁KNOW - ▁GO - ▁DOWN - ▁BEFORE - A - AL - ▁OUR - ▁OLD - ▁SHOULD - ▁MADE - ▁AFTER - ▁GREAT - ▁DAY - ▁MUST - ▁COME - ▁HOW - ▁SUCH - ▁CAME - LE - ▁WHERE - ▁US - ▁NEVER - ▁THESE - ▁MUCH - ▁DE - ▁MISTER - ▁WAY - G - ▁S - ▁MAY - ATION - ▁LONG - OR - ▁AM - ▁FIRST - ▁BACK - ▁OWN - ▁RE - ▁AGAIN - ▁SAY - ▁MEN - ▁WENT - ▁HIMSELF - ▁HERE - NESS - ▁THINK - V - IC - ▁EVEN - ▁THOUGHT - ▁HAND - ▁JUST - ▁O - ▁UN - VE - ION - ▁ITS - 'ON' - ▁MAKE - ▁MIGHT - ▁TOO - K - ▁AWAY - ▁LIFE - TH - ▁WITHOUT - ST - ▁THROUGH - ▁MOST - ▁TAKE - ▁DON - ▁EVERY - F - O - ▁SHALL - ▁THOSE - ▁EYES - AR - ▁STILL - ▁LAST - ▁HOUSE - ▁HEAD - ABLE - ▁NOTHING - ▁NIGHT - ITY - ▁LET - ▁MANY - ▁OFF - ▁BEING - ▁FOUND - ▁WHILE - EN - ▁SAW - ▁GET - ▁PEOPLE - ▁FACE - ▁YOUNG - CH - ▁UNDER - ▁ONCE - ▁TELL - AN - ▁THREE - ▁PLACE - ▁ROOM - ▁YET - ▁SAME - IL - US - U - ▁FATHER - ▁RIGHT - EL - ▁THOUGH - ▁ANOTHER - LI - RI - ▁HEART - IT - ▁PUT - ▁TOOK - ▁GIVE - ▁EVER - ▁E - ▁PART - ▁WORK - ERS - ▁LOOK - ▁NEW - ▁KING - ▁MISSUS - ▁SIR - ▁LOVE - ▁MIND - ▁LOOKED - W - RY - ▁ASKED - ▁LEFT - ET - ▁LIGHT - CK - ▁DOOR - ▁MOMENT - RO - ▁WORLD - ▁THINGS - ▁HOME - UL - ▁THING - LA - ▁WHY - ▁MOTHER - ▁ALWAYS - ▁FAR - FUL - ▁WATER - CE - IVE - UR - ▁HEARD - ▁SOMETHING - ▁SEEMED - I - LO - ▁BECAUSE - OL - ▁END - ▁TOLD - ▁CON - ▁YES - ▁GOING - ▁GOT - RA - IR - ▁WOMAN - ▁GOD - EST - TED - ▁FIND - ▁KNEW - ▁SOON - ▁EACH - ▁SIDE - H - TON - MENT - ▁OH - NE - Z - LING - ▁AGAINST - TER - ▁NAME - ▁MISS - ▁QUITE - ▁WANT - ▁YEARS - ▁FEW - ▁BETTER - ENT - ▁HALF - ▁DONE - ▁ALSO - ▁BEGAN - ▁HAVING - ▁ENOUGH - IS - ▁LADY - ▁WHOLE - LESS - ▁BOTH - ▁SEEN - ▁SET - ▁WHITE - ▁COURSE - IES - ▁VOICE - ▁CALLED - ▁D - ▁EX - ATE - ▁TURNED - ▁GAVE - ▁C - ▁POOR - MAN - UT - NA - ▁DEAR - ISH - ▁GIRL - ▁MORNING - ▁BETWEEN - LED - ▁NOR - IA - ▁AMONG - MA - ▁ - ▁SMALL - ▁REST - ▁WHOM - ▁FELT - ▁HANDS - ▁MYSELF - ▁HIGH - ▁M - ▁HOWEVER - ▁HERSELF - ▁P - CO - ▁STOOD - ID - ▁KIND - ▁HUNDRED - AS - ▁ROUND - ▁ALMOST - TY - ▁SINCE - ▁G - AM - ▁LA - SE - ▁BOY - ▁MA - ▁PERHAPS - ▁WORDS - ATED - ▁HO - X - ▁MO - ▁SAT - ▁REPLIED - ▁FOUR - ▁ANYTHING - ▁TILL - ▁UNTIL - ▁BLACK - TION - ▁CRIED - RU - TE - ▁FACT - ▁HELP - ▁NEXT - ▁LOOKING - ▁DOES - ▁FRIEND - ▁LAY - ANCE - ▁POWER - ▁BROUGHT - VER - ▁FIRE - ▁KEEP - PO - FF - ▁COUNTRY - ▁SEA - ▁WORD - ▁CAR - ▁DAYS - ▁TOGETHER - ▁IMP - ▁REASON - KE - ▁INDEED - TING - ▁MATTER - ▁FULL - ▁TEN - TIC - ▁LAND - ▁RATHER - ▁AIR - ▁HOPE - ▁DA - ▁OPEN - ▁FEET - ▁EN - ▁FIVE - ▁POINT - ▁CO - OM - ▁LARGE - ▁B - ▁CL - ME - ▁GONE - ▁CHILD - INE - GG - ▁BEST - ▁DIS - UM - ▁HARD - ▁LORD - OUS - ▁WIFE - ▁SURE - ▁FORM - DE - ▁DEATH - ANT - ▁NATURE - ▁BA - ▁CARE - ▁BELIEVE - PP - ▁NEAR - ▁RO - ▁RED - ▁WAR - IE - ▁SPEAK - ▁FEAR - ▁CASE - ▁TAKEN - ▁ALONG - ▁CANNOT - ▁HEAR - ▁THEMSELVES - CI - ▁PRESENT - AD - ▁MASTER - ▁SON - ▁THUS - ▁LI - ▁LESS - ▁SUN - ▁TRUE - IM - IOUS - ▁THOUSAND - ▁MONEY - ▁W - ▁BEHIND - ▁CHILDREN - ▁DOCTOR - AC - ▁TWENTY - ▁WISH - ▁SOUND - ▁WHOSE - ▁LEAVE - ▁ANSWERED - ▁THOU - ▁DUR - ▁HA - ▁CERTAIN - ▁PO - ▁PASSED - GE - TO - ▁ARM - ▁LO - ▁STATE - ▁ALONE - TA - ▁SHOW - ▁NEED - ▁LIVE - ND - ▁DEAD - ENCE - ▁STRONG - ▁PRE - ▁TI - ▁GROUND - SH - TI - ▁SHORT - IAN - UN - ▁PRO - ▁HORSE - MI - ▁PRINCE - ARD - ▁FELL - ▁ORDER - ▁CALL - AT - ▁GIVEN - ▁DARK - ▁THEREFORE - ▁CLOSE - ▁BODY - ▁OTHERS - ▁SENT - ▁SECOND - ▁OFTEN - ▁CA - ▁MANNER - MO - NI - ▁BRING - ▁QUESTION - ▁HOUR - ▁BO - AGE - ▁ST - ▁TURN - ▁TABLE - ▁GENERAL - ▁EARTH - ▁BED - ▁REALLY - ▁SIX - 'NO' - IST - ▁BECOME - ▁USE - ▁READ - ▁SE - ▁VI - ▁COMING - ▁EVERYTHING - ▁EM - ▁ABOVE - ▁EVENING - ▁BEAUTIFUL - ▁FEEL - ▁RAN - ▁LEAST - ▁LAW - ▁ALREADY - ▁MEAN - ▁ROSE - WARD - ▁ITSELF - ▁SOUL - ▁SUDDENLY - ▁AROUND - RED - ▁ANSWER - ICAL - ▁RA - ▁WIND - ▁FINE - ▁WON - ▁WHETHER - ▁KNOWN - BER - NG - ▁TA - ▁CAPTAIN - ▁EYE - ▁PERSON - ▁WOMEN - ▁SORT - ▁ASK - ▁BROTHER - ▁USED - ▁HELD - ▁BIG - ▁RETURNED - ▁STRANGE - ▁BU - ▁PER - ▁FREE - ▁EITHER - ▁WITHIN - ▁DOUBT - ▁YEAR - ▁CLEAR - ▁SIGHT - ▁GRA - ▁LOST - ▁KEPT - ▁F - PE - ▁BAR - ▁TOWN - ▁SLEEP - ARY - ▁HAIR - ▁FRIENDS - ▁DREAM - ▁FELLOW - PER - ▁DEEP - QUE - ▁BECAME - ▁REAL - ▁PAST - ▁MAKING - RING - ▁COMP - ▁ACT - ▁BAD - HO - STER - ▁YE - ▁MEANS - ▁RUN - MEN - ▁DAUGHTER - ▁SENSE - ▁CITY - ▁SOMETIMES - ▁TOWARDS - ▁ROAD - ▁SP - ▁LU - ▁READY - ▁FOOT - ▁COLD - ▁SA - ▁LETTER - ▁ELSE - ▁MAR - ▁STA - BE - ▁TRUTH - ▁LE - BO - ▁BUSINESS - CHE - ▁JOHN - ▁SUBJECT - ▁COURT - ▁IDEA - ILY - ▁RIVER - ATING - ▁FAMILY - HE - ▁DIDN - ▁GLAD - ▁SEVERAL - IAL - ▁UNDERSTAND - ▁SC - ▁POSSIBLE - ▁DIFFERENT - ▁RETURN - ▁ARMS - ▁LOW - ▁HOLD - ▁TALK - ▁RU - ▁WINDOW - ▁INTEREST - ▁SISTER - SON - ▁SH - ▁BLOOD - ▁SAYS - ▁CAP - ▁DI - ▁HUMAN - ▁CAUSE - NCE - ▁THANK - ▁LATE - GO - ▁CUT - ▁ACROSS - ▁STORY - NT - ▁COUNT - ▁ABLE - DY - LEY - ▁NUMBER - ▁STAND - ▁CHURCH - ▁THY - ▁SUPPOSE - LES - BLE - OP - ▁EFFECT - BY - ▁K - ▁NA - ▁SPOKE - ▁MET - ▁GREEN - ▁HUSBAND - ▁RESPECT - ▁PA - ▁FOLLOWED - ▁REMEMBER - ▁LONGER - ▁AGE - ▁TAKING - ▁LINE - ▁SEEM - ▁HAPPY - LAND - EM - ▁STAY - ▁PLAY - ▁COMMON - ▁GA - ▁BOOK - ▁TIMES - ▁OBJECT - ▁SEVEN - QUI - DO - UND - ▁FL - ▁PRETTY - ▁FAIR - WAY - ▁WOOD - ▁REACHED - ▁APPEARED - ▁SWEET - ▁FALL - BA - ▁PASS - ▁SIGN - ▁TREE - IONS - ▁GARDEN - ▁ILL - ▁ART - ▁REMAIN - ▁OPENED - ▁BRIGHT - ▁STREET - ▁TROUBLE - ▁PAIN - ▁CONTINUED - ▁SCHOOL - OUR - ▁CARRIED - ▁SAYING - HA - ▁CHANGE - ▁FOLLOW - ▁GOLD - ▁SW - ▁FEELING - ▁COMMAND - ▁BEAR - ▁CERTAINLY - ▁BLUE - ▁NE - CA - ▁WILD - ▁ACCOUNT - ▁OUGHT - UD - ▁T - ▁BREATH - ▁WANTED - ▁RI - ▁HEAVEN - ▁PURPOSE - ▁CHARACTER - ▁RICH - ▁PE - ▁DRESS - OS - FA - ▁TH - ▁ENGLISH - ▁CHANCE - ▁SHIP - ▁VIEW - ▁TOWARD - AK - ▁JOY - ▁JA - ▁HAR - ▁NEITHER - ▁FORCE - ▁UNCLE - DER - ▁PLAN - ▁PRINCESS - DI - ▁CHIEF - ▁HAT - ▁LIVED - ▁AB - ▁VISIT - ▁MOR - TEN - ▁WALL - UC - ▁MINE - ▁PLEASURE - ▁SMILE - ▁FRONT - ▁HU - ▁DEAL - OW - ▁FURTHER - GED - ▁TRIED - DA - VA - ▁NONE - ▁ENTERED - ▁QUEEN - ▁PAY - ▁EL - ▁EXCEPT - ▁SHA - ▁FORWARD - ▁EIGHT - ▁ADDED - ▁PUBLIC - ▁EIGHTEEN - ▁STAR - ▁HAPPENED - ▁LED - ▁WALKED - ▁ALTHOUGH - ▁LATER - ▁SPIRIT - ▁WALK - ▁BIT - ▁MEET - LIN - ▁FI - LT - ▁MOUTH - ▁WAIT - ▁HOURS - ▁LIVING - ▁YOURSELF - ▁FAST - ▁CHA - ▁HALL - ▁BEYOND - ▁BOAT - ▁SECRET - ENS - ▁CHAIR - RN - ▁RECEIVED - ▁CAT - RESS - ▁DESIRE - ▁GENTLEMAN - UGH - ▁LAID - EVER - ▁OCCASION - ▁WONDER - ▁GU - ▁PARTY - DEN - ▁FISH - ▁SEND - ▁NEARLY - ▁TRY - CON - ▁SEEMS - RS - ▁BELL - ▁BRA - ▁SILENCE - IG - ▁GUARD - ▁DIE - ▁DOING - ▁TU - ▁COR - ▁EARLY - ▁BANK - ▁FIGURE - IF - ▁ENGLAND - ▁MARY - ▁AFRAID - LER - ▁FO - ▁WATCH - ▁FA - ▁VA - ▁GRE - ▁AUNT - PED - ▁SERVICE - ▁JE - ▁PEN - ▁MINUTES - ▁PAN - ▁TREES - NED - ▁GLASS - ▁TONE - ▁PLEASE - ▁FORTH - ▁CROSS - ▁EXCLAIMED - ▁DREW - ▁EAT - ▁AH - ▁GRAVE - ▁CUR - PA - URE - CENT - ▁MILES - ▁SOFT - ▁AGO - ▁POSITION - ▁WARM - ▁LENGTH - ▁NECESSARY - ▁THINKING - ▁PICTURE - ▁PI - SHIP - IBLE - ▁HEAVY - ▁ATTENTION - ▁DOG - ABLY - ▁STANDING - ▁NATURAL - ▁APPEAR - OV - ▁CAUGHT - VO - ISM - ▁SPRING - ▁EXPERIENCE - ▁PAT - OT - ▁STOPPED - ▁REGARD - ▁HARDLY - ▁SELF - ▁STRENGTH - ▁GREW - ▁KNIGHT - ▁OPINION - ▁WIDE - ▁INSTEAD - ▁SOUTH - ▁TRANS - ▁CORNER - ▁LEARN - ▁ISLAND - ▁MI - ▁THIRD - ▁STE - ▁STRAIGHT - ▁TEA - ▁BOUND - ▁SEEING - ▁JU - ▁DINNER - ▁BEAUTY - ▁PEACE - AH - ▁REP - ▁SILENT - ▁CRE - ALLY - RIC - ▁STEP - ▁VER - ▁JO - GER - ▁SITTING - ▁THIRTY - ▁SAVE - ENED - ▁GLANCE - ▁REACH - ▁ACTION - ▁SAL - ▁SAD - ▁STONE - ITIES - ▁FRENCH - ▁STRUCK - ▁PAPER - ▁WHATEVER - ▁SUB - ▁DISTANCE - ▁WRONG - ▁KNOWLEDGE - ▁SAFE - ▁SNOW - ▁MUSIC - ▁FIFTY - RON - ▁ATTEMPT - ▁GOVERNMENT - TU - ▁CROWD - ▁BESIDES - ▁LOVED - ▁BOX - ▁DIRECTION - ▁TRAIN - ▁NORTH - ▁THICK - ▁GETTING - AV - ▁FLOOR - ▁COMPANY - ▁BLOW - ▁PLAIN - TRO - ▁BESIDE - ▁ROCK - ▁IMMEDIATELY - FI - ▁SHADOW - ▁SIT - ORS - ILE - ▁DRINK - ▁SPOT - ▁DANGER - ▁AL - ▁SAINT - ▁SLOWLY - ▁PALACE - IER - ▁RESULT - ▁PETER - ▁FOREST - ▁BELONG - ▁SU - ▁PAR - RIS - ▁TEARS - ▁APPEARANCE - ▁GATE - BU - ITION - ▁QUICKLY - ▁QUIET - ▁LONDON - ▁START - ▁BROWN - TRA - KIN - ▁CONSIDER - ▁BATTLE - ▁ANNE - ▁PIECE - ▁DIED - ▁SUCCESS - ▁LIPS - ▁FILLED - ▁FORGET - ▁POST - IFIED - ▁MARGARET - ▁FOOD - HAM - ▁PLEASANT - ▁FE - ▁EXPRESSION - ▁POCKET - ▁FRESH - ▁WEAR - TRI - ▁BROKEN - ▁LAUGHED - GING - ▁FOLLOWING - WN - IP - ▁TOUCH - ▁YOUTH - ATIVE - ▁LEG - ▁WEEK - ▁REMAINED - ▁EASY - NER - RK - ▁ENTER - ▁FIGHT - ▁PLACED - ▁TRAVEL - ▁SIMPLE - ▁GIRLS - ▁WAITING - ▁STOP - ▁WAVE - AU - ▁WISE - ▁CAMP - TURE - UB - ▁VE - ▁OFFICE - ▁GRAND - ▁FIT - ▁JUDGE - UP - MENTS - ▁QUICK - HI - ▁FLO - RIES - VAL - ▁COMFORT - ▁PARTICULAR - ▁STARTED - ▁SUIT - ▁NI - ▁PALE - ▁IMPOSSIBLE - ▁HOT - ▁CONVERSATION - ▁SCENE - ▁BOYS - ▁WIN - ▁BRE - ▁SOCIETY - ▁OUTSIDE - ▁WRITE - ▁EFFORT - ▁TALKING - ▁FORTUNE - ▁NINE - ▁WA - ▁SINGLE - ▁RULE - ▁PORT - ▁WINTER - ▁CAST - ▁CRA - ▁HAPPEN - ▁CRO - ▁SHUT - NING - ▁GUN - ▁NOBLE - ▁BEGIN - ▁PATH - ▁SKY - ▁WONDERFUL - ▁SUDDEN - ▁ARMY - ▁CHE - ▁WORTH - ▁MOUNTAIN - ▁MIN - AG - ▁FLU - ▁GRACE - ▁CHAPTER - ▁BELOW - ▁RING - ▁TURNING - ▁IRON - ▁TOP - ▁AFTERNOON - ORY - ▁EVIL - ▁TRUST - ▁BOW - ▁TRI - ▁SAIL - ▁CONTENT - ▁HORSES - ITE - ▁SILVER - AP - ▁LAD - ▁RUNNING - ▁HILL - ▁BEGINNING - ▁MAD - ▁HABIT - GRA - ▁CLOTHES - ▁MORROW - ▁CRY - ▁FASHION - ▁PRESENCE - ▁Z - FE - ▁ARRIVED - ▁QUARTER - ▁PERFECT - ▁WO - ▁TRA - ▁USUAL - ▁NECK - ▁MARRIED - ▁SEAT - ▁WI - ▁GAR - ▁SAND - ▁SHORE - ▁GIVING - NY - ▁PROBABLY - ▁MINUTE - ▁EXPECT - ▁DU - ▁SHOT - ▁INSTANT - ▁DEGREE - ▁COLOR - ▁WEST - RT - ▁MARCH - ▁BIRD - ▁SHOWED - ▁GREATER - ▁SERIOUS - ▁CARRY - ▁COVERED - ▁FORMER - ▁LOUD - ▁MOVED - ▁MASS - ▁SEEK - ▁CHO - GEN - ▁ROMAN - IB - ▁MOON - ▁BOARD - ▁STREAM - ▁EASILY - ▁WISHED - ▁SEARCH - ▁COULDN - ▁MONTHS - ▁SICK - LIE - ▁DUTY - ▁TWELVE - ▁FAINT - ▁STRANGER - ▁SURPRISE - ▁KILL - ▁LEAVING - ▁JOURNEY - ▁SCARCELY - ▁RAISED - ▁SPEAKING - ▁TERRIBLE - ▁TOM - ▁FIELD - ▁GAME - ▁QUA - ▁PROMISE - ▁LIE - ▁CONDITION - ▁TRO - ▁PERSONAL - ▁TALL - ▁STICK - ▁THREW - ▁MARRY - ▁VAN - ▁BURN - ▁ACCORDING - ▁RISE - ▁ATTACK - ▁SWORD - ▁GUESS - ▁THOUGHTS - ▁THIN - ▁THROW - ▁CALM - SIDE - ▁VILLAGE - ▁DEN - ▁ANXIOUS - ▁MER - GI - ▁EXPECTED - ▁BALL - ▁ESPECIALLY - ▁CHARGE - ▁MEASURE - ISE - ▁NICE - ▁TRYING - ▁ALLOW - ▁SHARP - ▁BREAD - ▁HONOUR - ▁HONOR - ▁ENTIRELY - ▁BILL - ▁BRI - ▁WRITTEN - ▁AR - ▁BROKE - ▁KILLED - ▁MARK - ▁VEN - ▁LADIES - ▁LEARNED - ▁FLOWERS - PLE - ▁FORTY - ▁OFFER - ▁HAPPINESS - ▁PRAY - ▁CLASS - ▁FER - ▁PRINCIPLE - GU - ▁BOOKS - ▁SHAPE - ▁SUMMER - ▁JACK - ▁DRAW - ▁GOLDEN - ▁DECIDED - ▁LEAD - ▁UNLESS - ▁HARM - ▁LISTEN - HER - ▁SHOOK - ▁INFLUENCE - ▁PERFECTLY - ▁MARRIAGE - ▁BROAD - ▁ESCAPE - ▁STATES - ▁MIDDLE - ▁PLANT - ▁MIL - ▁MOVEMENT - ▁NOISE - ▁ENEMY - ▁HISTORY - ▁BREAK - ROUS - ▁UNDERSTOOD - ▁LATTER - FER - ▁COMES - ▁MERELY - ▁SIMPLY - WI - ▁IMAGINE - ▁LOWER - ▁CONDUCT - ▁BORN - WA - ▁YARD - ▁KA - ▁CLOSED - ▁NOTE - GA - ▁STRA - RAN - ▁EXIST - EV - ▁SPEECH - ▁BITTER - JO - ▁MAKES - ▁GRASS - ▁REPLY - ▁CHANGED - ▁MON - ▁LYING - ▁DANCE - ▁FINALLY - ▁AMERICAN - ▁ENJOY - ▁CONTAIN - ▁MEANT - USE - ▁OBSERVED - THER - ▁LAUGH - ▁AFTERWARDS - ▁BEAT - ▁RACE - ▁EQUAL - ▁RAIN - PS - ▁STEPS - ▁BENEATH - ▁TAIL - ▁TASTE - IO - EY - ▁CHAR - ▁GE - GN - TIN - ▁GROW - ▁TE - IANS - ▁MOVE - ▁REPEATED - ▁DRIVE - TUR - ▁SI - CLOCK - ▁BRAVE - ▁MADAME - ▁LOT - ▁CASTLE - ▁HI - AND - ▁FUTURE - ▁RELATION - ▁SORRY - ▁HEALTH - ▁DICK - ▁R - ▁BUILDING - ▁EDGE - ▁BLESS - ▁SPITE - WE - ▁MIS - ▁PRISONER - ▁ALLOWED - ▁PH - ▁CATCH - MER - ETH - ▁COAT - ▁COMPLETE - ▁WOULDN - ▁CREATURE - ▁YELLOW - ▁IMPORTANT - ▁ADD - ▁PASSING - ▁DARKNESS - ▁CARRIAGE - ▁MILL - ▁FIFTEEN - NCY - ▁HUNG - ▁OB - ▁PLEASED - ▁SPREAD - ▁CURIOUS - ▁WORSE - ▁CIRCUMSTANCES - ▁GI - LAR - ▁CAL - ▁HY - ▁MERE - ▁JANE - ▁EAST - BI - ▁CUP - ▁BLIND - ▁PASSION - ▁DISCOVERED - ▁NOTICE - ▁REPORT - ▁SPACE - ▁PRESENTLY - ▁SORROW - ▁PACK - ▁DIN - CY - ▁DRY - ▁ANCIENT - ▁DRESSED - ▁COVER - ▁VO - ▁EXISTENCE - ▁EXACTLY - ▁BEAST - ▁PROPER - ▁DROPPED - ▁CLEAN - ▁COLOUR - ▁HOST - ▁CHAMBER - ▁FAITH - LET - ▁DETERMINED - ▁PRIEST - ▁STORM - ▁SKIN - ▁DARE - ▁PERSONS - ▁PICK - ▁NARROW - ▁SUPPORT - ▁PRIVATE - ▁SMILED - ▁COUSIN - ▁DRAWING - ▁ATTEND - ▁COOK - ▁PREVENT - ▁VARIOUS - ▁BLA - ▁FIXED - ▁WEAK - THE - ▁HOLE - ▁BOTTOM - ▁NOBODY - ADE - ▁LEGS - ITCH - ▁INDIVIDUAL - ▁EARS - LIKE - ▁ADVANTAGE - ▁FRANCE - ▁BON - ▁WINE - ▁LIVES - OD - ▁WALLS - ▁TIRED - ▁SHOP - ▁ANIMAL - ▁CRU - ▁WROTE - ▁ROYAL - ▁CONSIDERED - ▁MORAL - ▁COMPANION - ▁LOSE - ▁ISN - ▁BAG - ▁LAKE - ▁INTER - ▁COM - ▁LETTERS - ▁LUCK - ▁EAR - ▁GERMAN - ▁PET - ▁SAKE - ▁DROP - ▁PAID - ▁BREAKFAST - ▁LABOR - ▁DESERT - ▁DECLARED - ▁HUM - ▁STUDY - ▁INSTANCE - ONE - ▁SOMEWHAT - ▁CLOTH - ▁SPECIAL - ▁COLONEL - ▁SONG - ▁MAIN - ▁VALUE - ▁PROUD - ▁EXPRESS - ▁NATION - ▁HANDSOME - ▁CONFESS - ▁PU - ▁PASSAGE - ▁PERIOD - ▁CUSTOM - ▁HURT - ▁SHOULDER - ▁CHRIST - ZA - ▁RECEIVE - ▁DIFFICULT - ▁DEPEND - ▁MEETING - ▁CHI - ▁GEN - LIGHT - ▁BELIEVED - ▁SOCIAL - ▁DIFFICULTY - ▁GREATEST - ▁DRAWN - ▁GRANT - ▁BIRDS - ▁ANGRY - ▁HEAT - UFF - ▁DUE - ▁PLACES - ▁SIN - ▁COURAGE - ▁EVIDENTLY - ▁GENTLE - ▁CRUEL - ▁GEORGE - ▁GRI - ▁SERVANT - ▁U - ▁PURE - OOK - ▁KNOWS - ▁KNOWING - LF - ▁WRITING - ▁REMEMBERED - ▁CU - ▁HOLDING - ▁TENDER - ▁QUI - ▁BURST - ▁SURELY - IGN - ▁VALLEY - ▁FU - ▁BUTTER - ▁SPOKEN - ▁STORE - ▁DISC - ▁CHRISTIAN - ▁PARIS - ▁HENRY - ▁FINISHED - ▁PROVE - ▁FOOL - ▁SOLDIERS - ▁LANGUAGE - ▁INSIDE - ▁BAN - ▁FALLEN - ROW - ▁MAL - ▁BABY - ▁SITUATION - ▁WATCHED - ANS - ▁RUIN - ▁GENTLEMEN - ▁FRO - ▁FANCY - ▁ACCEPT - ▁SEASON - ▁OURSELVES - ▁SAN - ▁SPEED - IZED - ▁COOL - ▁SERVE - ▁VESSEL - ▁WILLIAM - ▁OBLIGED - ▁GROUP - FORM - ▁GOES - UOUS - ▁LEAVES - ▁PECULIAR - ▁NEWS - ▁VAIN - ▁EVERYBODY - ▁PIN - UG - ▁FORGOTTEN - ▁FRA - GAN - ▁CAREFULLY - ▁FLASH - UCH - ▁FUR - ▁MURDER - ▁DELIGHT - ▁WAITED - ▁RENDER - ▁PROPERTY - ▁NOTICED - ▁ROLL - ▁KNOCK - ▁EARNEST - KI - ▁HONEST - ▁PROMISED - ▁BAL - AW - ▁WALKING - ANG - ▁SQUARE - ▁QUIETLY - ▁CLOUD - WOOD - ▁FORMED - ▁HIGHER - ▁BUILT - ▁FATE - ▁TEACH - MY - ▁FALSE - ▁YORK - ▁DUST - ▁CLIMB - ▁FOND - ▁GROWN - ▁DESCEND - ▁RAG - ▁FRUIT - ▁GENERALLY - ▁OFFERED - ▁ER - ▁NURSE - POSE - ▁SPENT - ▁JOIN - ▁STATION - ▁MEANING - ▁SMOKE - HOOD - ▁ROUGH - JU - ▁LIKELY - ▁SURFACE - ▁KE - ▁MONTH - ▁POSSESSION - ▁TONGUE - ▁DUKE - ▁NOSE - ▁LAUGHING - ▁WEATHER - ▁WHISPERED - ▁SYSTEM - ▁LAWS - DDLE - ▁TOUCHED - ▁TRADE - LD - ▁SURPRISED - RIN - ▁ARCH - ▁WEALTH - FOR - ▁TEMPER - ▁FRANK - ▁GAL - ▁BARE - ▁OPPORTUNITY - ▁CLAIM - ▁ANIMALS - ▁REV - ▁COST - ▁WASH - ZE - ▁CORN - ▁OPPOSITE - ▁POLICE - ▁IDEAS - LON - ▁KEY - ▁READING - ▁COLLECT - CHED - ▁H - ▁CROWN - ▁TAR - ▁SWIFT - ▁SHOULDERS - ▁ICE - ▁GRAY - ▁SHARE - ▁PREPARED - ▁GRO - ▁UND - ▁TER - ▁EMPTY - CING - ▁SMILING - ▁AVOID - ▁DIFFERENCE - ▁EXPLAIN - ▁POUR - ▁ATTRACT - ▁OPENING - ▁WHEEL - ▁MATERIAL - ▁BREAST - ▁SUFFERING - ▁DISTINCT - ▁BOOT - ▁ROW - ▁FINGERS - HAN - ▁ALTOGETHER - ▁FAT - ▁PAPA - ▁BRAIN - ▁ASLEEP - ▁GREY - ▁SUM - ▁GAS - ▁WINDOWS - ▁ALIVE - ▁PROCEED - ▁FLOWER - ▁LEAP - ▁PUR - ▁PIECES - ▁ALTER - ▁MEMORY - IENT - ▁FILL - ▁CLO - ▁THROWN - ▁KINGDOM - ▁RODE - IUS - ▁MAID - ▁DIM - ▁BAND - ▁VIRTUE - ▁DISH - ▁GUEST - ▁LOSS - ▁CAUSED - ▁MOTION - ▁POT - ▁MILLION - ▁FAULT - ▁LOVELY - ▁HERO - PPING - ▁UNITED - ▁SPI - SOME - BRA - ▁MOUNTAINS - ▁NU - ▁SATISFIED - ▁DOLLARS - ▁LOVER - ▁CONCEAL - ▁VAST - ▁PULL - ▁HATH - ▁RUSH - ▁J - ▁DESPAIR - EX - ▁HEIGHT - ▁CE - ▁BENT - ▁PITY - ▁RISING - ATH - ▁PRIDE - ▁HURRY - KA - ▁SETTLED - ▁JUSTICE - ▁LIFTED - PEN - ▁SOLDIER - ▁FINDING - ▁REMARK - ▁REGULAR - ▁STRUGGLE - ▁MACHINE - ▁SING - ▁HURRIED - ▁SUFFICIENT - ▁REPRESENT - ▁DOUBLE - ▁ALARM - ▁SUPPER - ▁DREADFUL - ▁FORE - ATOR - ▁STOCK - ▁TIN - ▁EXAMPLE - ▁ROOF - ▁FLOW - ▁SUPPOSED - ▁PRESERV - ▁L - ▁LISTENED - OC - ▁STO - ▁SECURE - ▁FRIGHTENED - ▁DISTURB - ▁EMOTION - ▁SERVANTS - ▁YO - ▁BUY - ▁FORCED - ▁KITCHEN - ▁TERROR - ▁STAIRS - ▁SIXTY - KER - ▁ORDINARY - ▁DIRECTLY - ▁HEADS - ▁METHOD - ▁FORGIVE - ▁AWFUL - ▁REFLECT - ▁GREATLY - ▁TALKED - ▁RIDE - STONE - ▁FAVOUR - ▁WELCOME - ▁SEIZED - OU - ▁CONTROL - ▁ORDERED - ▁ANGEL - ▁USUALLY - ▁POET - ▁BOLD - LINE - ▁ADVENTURE - ▁WATCHING - ▁FOLK - ▁MISTRESS - IZE - ▁GROWING - ▁CAVE - ▁EVIDENCE - ▁FINGER - ▁SEVENTEEN - ▁MOVING - EOUS - ▁DOESN - ▁COW - ▁TYPE - ▁BOIL - ▁TALE - ▁DELIVER - ▁FARM - ▁MONSIEUR - ▁GATHERED - ▁FEELINGS - ▁RATE - ▁REMARKED - ▁PUTTING - ▁MAT - ▁CONTRARY - ▁CRIME - ▁PLA - ▁COL - ▁NEARER - TES - ▁CIVIL - ▁SHAME - ▁LOOSE - ▁DISCOVER - ▁FLAT - ▁TWICE - ▁FAIL - VIS - ▁UNC - EA - ▁EUROPE - ▁PATIENT - ▁UNTO - ▁SUFFER - ▁PAIR - ▁TREASURE - OSE - ▁EAGER - ▁FLY - ▁N - ▁VAL - ▁DAN - ▁SALT - ▁BORE - BBE - ▁ARTHUR - ▁AFFAIRS - ▁SLOW - ▁CONSIST - ▁DEVIL - LAN - ▁AFFECTION - ▁ENGAGED - ▁KISS - ▁YA - ▁OFFICER - IFICATION - ▁LAMP - ▁PARTS - HEN - ▁MILK - ▁PROCESS - ▁GIFT - ▁PULLED - ▁HID - ▁RAY - ▁EXCELLENT - ▁IMPRESSION - ▁AUTHORITY - ▁PROVED - ▁TELLING - TTE - ▁TOWER - ▁CONSEQUENCE - ▁FAVOR - ▁FLEW - ▁CHARLES - ISTS - ▁ADDRESS - ▁FAMILIAR - ▁LIMIT - ▁CONFIDENCE - ▁RARE - ▁WEEKS - ▁WOODS - ▁INTENTION - ▁DIRECT - ▁PERFORM - ▁SOLEMN - ▁DISTANT - ▁IMAGE - ▁PRESIDENT - ▁FIRM - ▁INDIAN - ▁RANK - ▁LIKED - ▁AGREE - ▁HOUSES - ▁WIL - ▁MATTERS - ▁PRISON - ▁MODE - ▁MAJOR - ▁WORKING - ▁SLIP - ▁WEIGHT - ▁AWARE - ▁BUSY - ▁LOOKS - ▁WOUND - ▁THOR - ▁BATH - ▁EXERCISE - ▁SIMILAR - ▁WORE - ▁AMOUNT - ▁QUESTIONS - ▁VIOLENT - ▁EXCUSE - ▁ASIDE - ▁TUR - ▁DULL - OF - ▁EMPEROR - ▁NEVERTHELESS - ▁SHOUT - ▁EXPLAINED - ▁SIZE - ▁ACCOMPLISH - FORD - CAN - ▁MISTAKE - ▁INSTANTLY - ▁SMOOTH - ▁STRIKE - ▁BOB - ISED - ▁HORROR - ▁SCIENCE - ▁PROTEST - ▁MANAGE - ▁OBEY - ▁NECESSITY - ▁SPLENDID - ▁PRESS - ▁INTERESTING - ▁RELIGION - ▁UNKNOWN - ▁FIERCE - ▁DISAPPEARED - ▁HOLY - ▁HATE - ▁PLAYED - ▁LIN - ▁NATURALLY - ▁DROVE - ▁LOUIS - TIES - ▁BRAND - INESS - RIE - ▁SHOOT - ▁CONSENT - ▁SEATED - ▁LINES - GUE - ▁AGREED - ▁CIRCLE - ▁STIR - ▁STREETS - ▁TASK - ▁RID - ▁PRODUCED - ▁ACCIDENT - ▁WITNESS - ▁LIBERTY - ▁DETAIL - ▁MINISTER - ▁POWERFUL - ▁SAVAGE - ▁SIXTEEN - ▁PRETEND - ▁COAST - ▁SQU - ▁UTTER - ▁NAMED - ▁CLEVER - ▁ADMIT - ▁COUPLE - ▁WICKED - ▁MESSAGE - ▁TEMPLE - ▁STONES - ▁YESTERDAY - ▁HILLS - DAY - ▁SLIGHT - ▁DIAMOND - ▁POSSIBLY - ▁AFFAIR - ▁ORIGINAL - ▁HEARING - ▁WORTHY - ▁SELL - NEY - ICK - ▁COTTAGE - ▁SACRIFICE - ▁PROGRESS - ▁SHOCK - ▁DESIGN - ▁SOUGHT - ▁PIT - ▁SUNDAY - ▁OTHERWISE - ▁CABIN - ▁PRAYER - ▁DWELL - ▁GAIN - ▁BRIDGE - ▁PARTICULARLY - ▁YIELD - ▁TREAT - RIGHT - ▁OAK - ▁ROPE - WIN - ▁ORDERS - ▁SUSPECT - ▁EDWARD - AB - ▁ELEVEN - ▁TEETH - ▁OCCURRED - DDING - ▁AMERICA - ▁FALLING - ▁LION - ▁DEPART - ▁KEEPING - ▁DEMAND - ▁PAUSED - ▁CEASED - INA - ▁FUN - ▁CHEER - ▁PARDON - ▁NATIVE - LUS - LOW - ▁DOGS - ▁REQUIRED - ILITY - ▁ELECT - ▁ENTERTAIN - ITUDE - ▁HUGE - ▁CARRYING - ▁BLU - ▁INSIST - ▁SATISFACTION - ▁HUNT - ▁COUNTENANCE - ▁UPPER - ▁MAIDEN - ▁FAILED - ▁JAMES - ▁FOREIGN - ▁GATHER - ▁TEST - BOARD - ▁TERMS - ▁SILK - ▁BEG - ▁BROTHERS - ▁PAGE - ▁KNEES - ▁SHOWN - ▁PROFESSOR - ▁MIGHTY - ▁DEFI - ▁CHARM - ▁REQUIRE - ▁LOG - MORE - ▁PROOF - ▁POSSESSED - ▁SOFTLY - ▁UNFORTUNATE - ▁PRICE - ▁SEVERE - ▁SINGING - ▁STAGE - ▁FREEDOM - ▁SHOUTED - ▁FARTHER - ▁MAJESTY - ▁PREVIOUS - ▁GUIDE - ▁MATCH - ▁CHEST - ▁INTENDED - ▁BI - ▁EXCITEMENT - ▁OFFICERS - ▁SUR - ▁SHAKE - ▁SENTIMENT - ▁GENTLY - ▁SUCCEEDED - ▁MENTION - ▁LOCK - ▁ACQUAINTANCE - ▁IMAGINATION - ▁PHYSICAL - ▁LEADING - ▁SLAVE - ▁CART - ▁POINTED - ▁STEAM - ▁SHADE - ▁PIPE - ▁BASE - ▁INVENT - ▁ALAS - ▁WORKED - ▁REGRET - ▁BUR - ▁FAITHFUL - ▁MENTIONED - ▁RECORD - ▁COMPLAIN - ▁SUPERIOR - ▁BAY - ▁PAL - EMENT - UE - ▁SEVENTY - ▁HOTEL - ▁SHEEP - ▁MEAL - ▁ADVICE - ▁HIDDEN - ▁DEMANDED - ▁CONSCIOUS - ▁BROW - ▁POSSESS - ▁FOURTH - ▁EVENTS - ▁FRI - ▁PRAISE - ▁ADVANCED - ▁RESOLVED - ▁STUFF - ▁CHEERFUL - ▁BIRTH - ▁GRIEF - ▁AFFORD - ▁FAIRY - ▁WAKE - ▁SIDES - ▁SUBSTANCE - ▁ARTICLE - ▁LEVEL - ▁MIST - ▁JOINED - ▁PRACTICAL - ▁CLEARLY - ▁TRACE - ▁AWAKE - ▁OBSERVE - ▁BASKET - ▁LACK - VILLE - ▁SPIRITS - ▁EXCITED - ▁ABANDON - ▁SHINING - ▁FULLY - ▁CALLING - ▁CONSIDERABLE - ▁SPRANG - ▁MILE - ▁DOZEN - ▁PEA - ▁DANGEROUS - ▁WIT - ▁JEW - ▁POUNDS - ▁FOX - ▁INFORMATION - ▁LIES - ▁DECK - NNY - ▁PAUL - ▁STARS - ▁ANGER - ▁SETTLE - ▁WILLING - ▁ADAM - ▁FACES - ▁SMITH - ▁IMPORTANCE - ▁STRAIN - WAR - ▁SAM - ▁FEATHER - ▁SERVED - ▁AUTHOR - ▁PERCEIVED - ▁FLAME - ▁DIVINE - ▁TRAIL - ▁ANYBODY - ▁SIGH - ▁DELICATE - KY - ▁FOLD - ▁HAVEN - ▁DESIRED - ▁CURIOSITY - ▁PRACTICE - ▁CONSIDERATION - ▁ABSOLUTELY - ▁CITIZEN - ▁BOTTLE - ▁INTERESTED - ▁MEAT - ▁OCCUPIED - ▁CHOOSE - ▁THROAT - ETTE - ▁CANDLE - ▁DAWN - ▁PROTECT - ▁SENTENCE - IED - ▁ROCKS - ▁PORTION - ▁APPARENTLY - ▁PRESENTED - ▁TIGHT - ▁ACTUALLY - ▁DYING - ▁HAM - ▁DAILY - ▁SUFFERED - ▁POLITICAL - ▁BODIES - ▁MODERN - ▁COMPLETELY - ▁SOONER - TAN - ▁PROP - ▁ADVANCE - ▁REFUSED - ▁FARMER - ▁POLITE - ▁THUNDER - ▁BRIEF - ▁ELSIE - ▁SAILOR - ▁SUGGESTED - ▁PLATE - ▁AID - ▁FLESH - ▁WEEP - ▁BUCK - ▁ANTI - ▁OCEAN - ▁SPEND - WELL - ▁ODD - ▁GOVERNOR - ▁ENTRANCE - ▁SUSPICION - ▁STEPPED - ▁RAPIDLY - ▁CHECK - ▁HIDE - ▁FLIGHT - ▁CLUB - ▁ENTIRE - ▁INDIANS - ASH - ▁CAPITAL - ▁MAMMA - HAR - ▁CORRECT - ▁CRACK - ▁SENSATION - ▁WORST - ▁PACE - ▁MIDST - ▁AUGUST - ▁PROPORTION - ▁INNOCENT - LINESS - ▁REGARDED - ▁DRIVEN - ORD - ▁HASTE - ▁EDUCATION - ▁EMPLOY - ▁TRULY - ▁INSTRUMENT - ▁MAG - ▁FRAME - ▁FOOLISH - ▁TAUGHT - ▁HANG - ▁ARGUMENT - ▁NINETEEN - ▁ELDER - ▁NAY - ▁NEEDED - ▁NEIGHBOR - ▁INSTRUCT - ▁PAPERS - ▁REWARD - ▁EQUALLY - ▁FIELDS - ▁DIG - HIN - ▁CONDITIONS - JA - ▁SPAR - ▁REQUEST - ▁WORN - ▁REMARKABLE - ▁LOAD - ▁WORSHIP - ▁PARK - ▁KI - ▁INTERRUPTED - ▁SKILL - ▁TERM - LAC - ▁CRITIC - ▁DISTRESS - ▁BELIEF - ▁STERN - IGHT - ▁TRACK - ▁HUNTING - ▁JEWEL - ▁GRADUALLY - ▁GLOW - ▁RUSHED - ▁MENTAL - ▁VISITOR - ▁PICKED - ▁BEHOLD - ▁EXPRESSED - ▁RUB - ▁SKI - ARTAGNAN - ▁MOREOVER - ▁OPERATION - ▁CAREFUL - ▁KEEN - ▁ASSERT - ▁WANDER - ▁ENEMIES - ▁MYSTERIOUS - ▁DEPTH - ▁PREFER - ▁CROSSED - ▁CHARMING - ▁DREAD - ▁FLOUR - ▁ROBIN - ▁TRE - ▁RELIEF - ▁INQUIRED - ▁APPLE - ▁HENCE - ▁WINGS - ▁CHOICE - ▁JUD - OO - ▁SPECIES - ▁DELIGHTED - IUM - ▁RAPID - ▁APPEAL - ▁FAMOUS - ▁USEFUL - ▁HELEN - ▁NEWSPAPER - ▁PLENTY - ▁BEARING - ▁NERVOUS - ▁PARA - ▁URGE - ▁ROAR - ▁WOUNDED - ▁CHAIN - ▁PRODUCE - ▁REFLECTION - ▁MERCHANT - ▁QUARREL - ▁GLORY - ▁BEGUN - ▁BARON - CUS - ▁QUEER - ▁MIX - ▁GAZE - ▁WHISPER - ▁BURIED - ▁DIV - ▁CARD - ▁FREQUENTLY - ▁TIP - ▁KNEE - ▁REGION - ▁ROOT - ▁LEST - ▁JEALOUS - CTOR - ▁SAVED - ▁ASKING - ▁TRIP - QUA - ▁UNION - HY - ▁COMPANIONS - ▁SHIPS - ▁HALE - ▁APPROACHED - ▁HARRY - ▁DRUNK - ▁ARRIVAL - ▁SLEPT - ▁FURNISH - HEAD - ▁PIG - ▁ABSENCE - ▁PHIL - ▁HEAP - ▁SHOES - ▁CONSCIOUSNESS - ▁KINDLY - ▁EVIDENT - ▁SCAR - ▁DETERMIN - ▁GRASP - ▁STEAL - ▁OWE - ▁KNIFE - ▁PRECIOUS - ▁ELEMENT - ▁PROCEEDED - ▁FEVER - ▁LEADER - ▁RISK - ▁EASE - ▁GRIM - ▁MOUNT - ▁MEANWHILE - ▁CENTURY - OON - ▁JUDGMENT - ▁AROSE - ▁VISION - ▁SPARE - ▁EXTREME - ▁CONSTANT - ▁OBSERVATION - ▁THRUST - ▁DELAY - ▁CENT - ▁INCLUD - ▁LIFT - ▁ADMIRE - ▁ISSUE - ▁FRIENDSHIP - ▁LESSON - ▁PRINCIPAL - ▁MOURN - ▁ACCEPTED - ▁BURNING - ▁CAPABLE - ▁EXTRAORDINARY - ▁SANG - ▁REMOVED - ▁HOPED - ▁HORN - ▁ALICE - ▁MUD - ▁APARTMENT - ▁FIGHTING - ▁BLAME - ▁TREMBLING - ▁SOMEBODY - ▁ANYONE - ▁BRIDE - ▁READER - ▁ROB - ▁EVERYWHERE - ▁LABOUR - ▁RECALL - ▁BULL - ▁HIT - ▁COUNCIL - ▁POPULAR - ▁CHAP - ▁TRIAL - ▁DUN - ▁WISHES - ▁BRILLIANT - ▁ASSURED - ▁FORGOT - ▁CONTINUE - ▁ACKNOWLEDG - ▁RETREAT - ▁INCREASED - ▁CONTEMPT - ▁GRANDFATHER - ▁SYMPATHY - ▁GHOST - ▁STRETCHED - ▁CREATURES - ▁CAB - ▁HIND - ▁PLAYING - ▁MISERABLE - ▁MEMBERS - ▁KINDNESS - ▁HIGHEST - ▁PRIM - ▁KISSED - ▁DESERVE - ▁HUT - ▁BEGGED - ▁EIGHTY - ▁CLOSELY - ▁WONDERED - ▁MILITARY - ▁REMIND - ▁ACCORDINGLY - ▁LARGER - ▁MAINTAIN - ▁ENGINE - ▁MOTIVE - ▁DESTROY - ▁STRIP - ▁HANS - ▁AHEAD - ▁INFINITE - ▁PROMPT - ▁INFORMED - TTLE - ▁PEER - ▁PRESSED - ▁TRAP - ▁SOMEWHERE - ▁BOUGHT - ▁VISIBLE - ▁ASHAMED - ▁TEAR - ▁NEIGHBOUR - ▁CONSTITUTION - ▁INTELLIGENCE - ▁PROFESSION - ▁HUNGRY - RIDGE - ▁SMELL - ▁STORIES - ▁LISTENING - ▁APPROACH - ▁STRING - ▁EXPLANATION - ▁IMMENSE - ▁RELIGIOUS - ▁THROUGHOUT - ▁HOLLOW - ▁AWAIT - ▁FLYING - ▁SCREAM - ▁ACTIVE - ▁RUM - ▁PRODUCT - ▁UNHAPPY - ▁VAGUE - ARIES - ▁ELIZABETH - ▁STUPID - ▁DIGNITY - ▁ISABEL - GAR - ▁BRO - ▁PITCH - ▁COMRADE - ▁STIFF - ▁RECKON - ▁SOLD - ▁SPARK - ▁STRO - ▁CRYING - ▁MAGIC - ▁REPEAT - PORT - ▁MARKED - ▁COMFORTABLE - ▁PROJECT - ▁BECOMING - ▁PARENTS - ▁SHELTER - ▁STOLE - ▁HINT - ▁NEST - ▁TRICK - ▁THOROUGHLY - ▁HOSPITAL - ▁WEAPON - ▁ROME - ▁STYLE - ▁ADMITTED - ▁SAFETY - FIELD - ▁UNDERSTANDING - ▁TREMBLE - ▁PRINT - ▁SLAVES - ▁WEARY - ▁ARTIST - ▁CREDIT - BURG - ▁CONCLUSION - ▁SELDOM - ▁UNUSUAL - ▁CLOUDS - ▁UNABLE - ▁GAY - ▁HANGING - ▁SCR - ▁BOWED - ▁DAVID - ▁VOL - ▁PUSHED - ▁ESCAPED - MOND - ▁WARN - ▁BETRAY - ▁EGGS - ▁PLAINLY - ▁EXHIBIT - ▁DISPLAY - ▁MEMBER - ▁GRIN - ▁PROSPECT - ▁BRUSH - ▁BID - ▁SUCCESSFUL - ▁EXTENT - ▁PERSUADE - ▁MID - ▁MOOD - ▁ARRANGED - ▁UNIVERSAL - ▁JIM - ▁SIGNAL - ▁WHILST - ▁PHILIP - ▁WOLF - RATE - ▁EAGERLY - ▁BILLY - ▁RETURNING - ▁CONSCIENCE - ▁FORTUNATE - ▁FEMALE - ▁GLEAM - ▁HASTILY - ▁PROVIDED - ▁OBTAIN - ▁INSTINCT - ▁CONCERNED - ▁CONCERNING - ▁SOMEHOW - ▁PINK - ▁RAGE - ▁ACCUSTOMED - ▁UNCONSCIOUS - ▁ADVISE - ▁BRANCHES - ▁TINY - ▁REFUSE - ▁BISHOP - ▁SUPPLY - ▁PEASANT - ▁LAWYER - ▁WASTE - ▁CONNECTION - ▁DEVELOP - ▁CORRESPOND - ▁PLUM - ▁NODDED - ▁SLIPPED - ▁EU - ▁CONSTANTLY - CUM - MMED - ▁FAIRLY - HOUSE - ▁KIT - ▁RANG - ▁FEATURES - ▁PAUSE - ▁PAINFUL - ▁JOE - ▁WHENCE - ▁LAUGHTER - ▁COACH - ▁CHRISTMAS - ▁EATING - ▁WHOLLY - ▁APART - ▁SUPER - ▁REVOLUTION - ▁LONELY - ▁CHEEKS - ▁THRONE - ▁CREW - ▁ATTAIN - ▁ESTABLISHED - TIME - ▁DASH - ▁FRIENDLY - ▁OPERA - ▁EARL - ▁EXHAUST - ▁CLIFF - ▁REVEAL - ▁ADOPT - ▁CENTRE - ▁MERRY - ▁SYLVIA - ▁IDEAL - ▁MISFORTUNE - ▁FEAST - ▁ARAB - ▁NUT - ▁FETCH - ▁FOUGHT - ▁PILE - ▁SETTING - ▁SOURCE - ▁PERSIST - ▁MERCY - ▁BARK - ▁LUC - ▁DEEPLY - ▁COMPARE - ▁ATTITUDE - ▁ENDURE - ▁DELIGHTFUL - ▁BEARD - ▁PATIENCE - ▁LOCAL - ▁UTTERED - ▁VICTORY - ▁TREATED - ▁SEPARATE - ▁WAG - ▁DRAGG - ▁TITLE - ▁TROOPS - ▁TRIUMPH - ▁REAR - ▁GAINED - ▁SINK - ▁DEFEND - ▁TIED - ▁FLED - ▁DARED - ▁INCREASE - ▁POND - ▁CONQUER - ▁FOREHEAD - ▁FAN - ▁ANXIETY - ▁ENCOUNTER - ▁SEX - ▁HALT - ▁SANK - ▁CHEEK - ▁HUMBLE - ▁WRITER - ▁EMPLOYED - ▁DISTINGUISHED - ▁RAISE - ▁WHIP - ▁GIANT - ▁RANGE - ▁OBTAINED - ▁FLAG - ▁MAC - ▁JUMPED - ▁DISCOVERY - ▁NATIONAL - ▁COMMISSION - ▁POSITIVE - ▁LOVING - ▁EXACT - ▁MURMURED - ▁GAZED - ▁REFER - ▁COLLEGE - ▁ENCOURAGE - ▁NOVEL - ▁CLOCK - ▁MORTAL - ▁ROLLED - ▁RAT - IZING - ▁GUILTY - ▁VICTOR - WORTH - ▁PRA - ▁APPROACHING - ▁RELATIVE - ▁ESTATE - ▁UGLY - ▁METAL - ▁ROBERT - ▁TENT - ▁ADMIRATION - ▁FOURTEEN - ▁BARBAR - ▁WITCH - ELLA - ▁CAKE - ▁SHONE - ▁MANAGED - ▁VOLUME - ▁GREEK - ▁DANCING - ▁WRETCHED - ▁CONDEMN - ▁MAGNIFICENT - ▁CONSULT - J - ▁ORGAN - ▁FLEET - ▁ARRANGEMENT - ▁INCIDENT - ▁MISERY - ▁ARROW - ▁STROKE - ▁ASSIST - ▁BUILD - ▁SUCCEED - ▁DESPERATE - ▁WIDOW - UDE - ▁MARKET - ▁WISDOM - ▁PRECISE - ▁CURRENT - ▁SPOIL - ▁BADE - ▁WOODEN - ▁RESIST - ▁OBVIOUS - ▁SENSIBLE - FALL - ▁ADDRESSED - ▁GIL - ▁COUNSEL - ▁PURCHASE - ▁SELECT - ▁USELESS - ▁STARED - ▁ARREST - ▁POISON - ▁FIN - ▁SWALLOW - ▁BLOCK - ▁SLID - ▁NINETY - ▁SPORT - ▁PROVIDE - ▁ANNA - ▁LAMB - ▁INTERVAL - ▁JUMP - ▁DESCRIBED - ▁STRIKING - ▁PROVISION - ▁PROPOSED - ▁MELANCHOLY - ▁WARRIOR - ▁SUGGEST - ▁DEPARTURE - ▁BURDEN - ▁LIMB - ▁TROUBLED - ▁MEADOW - ▁SACRED - ▁SOLID - ▁TRU - ▁LUCY - ▁RECOVER - ▁ENERGY - ▁POWDER - ▁RESUMED - ▁INTENSE - ▁BRITISH - ▁STRAW - ▁AGREEABLE - ▁EVERYONE - ▁CONCERN - ▁VOYAGE - ▁SOUTHERN - ▁BOSOM - ▁UTTERLY - ▁FEED - ▁ESSENTIAL - ▁CONFINE - ▁HOUSEHOLD - ▁EXTREMELY - ▁WONDERING - ▁LIST - ▁PINE - PHA - ▁EXPERIMENT - ▁JOSEPH - ▁MYSTERY - ▁RESTORE - ▁BLUSH - FOLD - ▁CHOSEN - ▁INTELLECT - ▁CURTAIN - OLOGY - ▁MOUNTED - ▁LAP - ▁EPI - ▁PUNISH - ▁WEDDING - ▁RECOGNIZED - ▁DRIFT - ▁PREPARATION - ▁RESOLUTION - ▁OPPRESS - ▁FIX - ▁VICTIM - OGRAPH - ▁SUMMON - ▁JULIA - ▁FLOOD - ▁WAL - ULATION - ▁SLIGHTLY - ▁LODGE - ▁WIRE - ▁CONFUSION - ▁UNEXPECTED - ▁CONCEIVE - ▁PRIZE - ▁JESUS - ▁ADDITION - ▁RUDE - ▁FATAL - ▁CARELESS - ▁PATCH - ▁KO - ▁CATHERINE - ▁PARLIAMENT - ▁PROFOUND - ▁ALOUD - ▁RELIEVE - ▁PUSH - ABILITY - ▁ACCOMPANIED - ▁SOVEREIGN - ▁SINGULAR - ▁ECHO - ▁COMPOSED - ▁SHAKING - ATORY - ▁ASSISTANCE - ▁TEACHER - ▁HORRIBLE - ▁STRICT - ▁VERSE - ▁PUNISHMENT - ▁GOWN - ▁MISTAKEN - ▁VARI - ▁SWEPT - ▁GESTURE - ▁BUSH - ▁STEEL - ▁AFFECTED - ▁DIRECTED - ▁SURROUNDED - ▁ABSURD - ▁SUGAR - ▁SCRAP - ▁IMMEDIATE - ▁SADDLE - ▁TY - ▁ARISE - ▁SIGHED - ▁EXCHANGE - ▁IMPATIENT - ▁SNAP - ▁EMBRACE - ▁DISEASE - ▁PROFIT - ▁RIDING - ▁RECOVERED - ▁GOVERN - ▁STRETCH - ▁CONVINCED - ▁LEANING - ▁DOMESTIC - ▁COMPLEX - ▁MANIFEST - ▁INDULGE - ▁GENIUS - ▁AGENT - ▁VEIL - ▁DESCRIPTION - ▁INCLINED - ▁DECEIVE - ▁DARLING - ▁REIGN - HU - ▁ENORMOUS - ▁RESTRAIN - ▁DUTIES - BURY - TTERED - ▁POLE - ▁ENABLE - ▁EXCEPTION - ▁INTIMATE - ▁COUNTESS - ▁TRIBE - ▁HANDKERCHIEF - ▁MIDNIGHT - ▁PROBLEM - ▁TRAMP - ▁OIL - CAST - ▁CRUSH - ▁DISCUSS - ▁RAM - ▁TROT - ▁UNRE - ▁WHIRL - ▁LOCKED - ▁HORIZON - ▁OFFICIAL - ▁SCHEME - ▁DROWN - ▁PIERRE - ▁PERMITTED - ▁CONNECTED - ▁ASSURE - ▁COCK - ▁UTMOST - ▁DEVOTED - ▁RELI - ▁SUFFICIENTLY - ▁INTELLECTUAL - ▁CARPET - ▁OBJECTION - ▁AFTERWARD - ▁REALITY - ▁NEGRO - ▁RETAIN - ▁ASCEND - ▁CEASE - ▁KATE - ▁MARVEL - KO - ▁BOND - MOST - ▁COAL - GATE - ▁IGNORANT - ▁BREAKING - ▁TWIN - ▁ASTONISHMENT - ▁COFFEE - ▁JAR - ▁CITIES - ▁ORIGIN - ▁EXECUT - ▁FINAL - ▁INHABITANTS - ▁STABLE - ▁CHIN - ▁PARTIES - ▁PLUNGE - ▁GENEROUS - ▁DESCRIBE - ▁ANNOUNCED - ▁MERIT - ▁REVERE - ▁ERE - ACIOUS - ZI - ▁DISAPPOINT - ▁SUGGESTION - ▁DOUBTLESS - ▁TRUNK - ▁STAMP - ▁JOB - ▁APPOINTED - ▁DIVIDED - ▁ACQUAINTED - CHI - ▁ABSOLUTE - ▁FEARFUL - ▁PRIVILEGE - ▁CRAFT - ▁STEEP - ▁HUNTER - ▁FORBID - ▁MODEST - ▁ENDEAVOUR - ▁SWEEP - ▁BEHELD - ▁ABSORB - ▁CONSTRUCT - ▁EMPIRE - ▁EXPEDITION - ▁ERECT - ▁OFFEND - ▁INTEND - ▁PERMIT - ▁DESTROYED - ▁CONTRACT - ▁THIRST - ▁WAGON - ▁EVA - ▁GLOOM - ▁ATMOSPHERE - ▁RESERVE - ▁VOTE - ▁GER - ▁NONSENSE - ▁PREVAIL - ▁QUALITY - ▁CLASP - ▁CONCLUDED - ▁RAP - ▁KATY - ▁ETERNAL - ▁MUTTERED - ▁NEGLECT - ▁SQUIRE - ▁CREEP - LOCK - ▁ELECTRIC - ▁HAY - ▁EXPENSE - ▁SCORN - ▁RETIRED - ▁STOUT - ▁MURMUR - ▁SHARPLY - ▁DISTRICT - ▁LEAF - ▁FAILURE - WICK - ▁JEAN - ▁NUMEROUS - ▁INFANT - ▁REALIZED - ▁TRAVELLER - ▁HUNGER - ▁JUNE - ▁MUN - ▁RECOMMEND - ▁CREP - ZZLE - ▁RICHARD - WORK - ▁MONTE - ▁PREACH - ▁PALM - AVI - ▁ANYWHERE - ▁DISPOSITION - ▁MIRROR - ▁VENTURE - ▁POUND - ▁CIGAR - ▁INVITED - ▁BENCH - ▁PROTECTION - ▁BENEFIT - ▁THOMAS - ▁CLERK - ▁REPROACH - ▁UNIFORM - ▁GENERATION - ▁SEAL - ▁COMPASS - ▁WARNING - ▁EXTENDED - ▁DIFFICULTIES - ▁MAYBE - ▁GROAN - ▁AFFECT - ▁COMB - ▁EARN - ▁WESTERN - ▁IDLE - ▁SCORE - ▁TAP - ▁ASTONISHED - ▁INTRODUCED - ▁LEISURE - ▁LIEUTENANT - ▁VIOLENCE - ▁FIRMLY - ▁MONSTER - ▁UR - ▁PROPERLY - ▁TWIST - ▁PIRATE - ▁ROBBER - ▁BATTER - ▁WEPT - ▁LEANED - ▁FOG - ▁ORNAMENT - ▁ANDREW - ▁BUSHES - ▁REPUBLIC - ▁CONFIDENT - ▁LEAN - ▁DART - ▁STOOP - ▁CURL - ▁COUNTER - ▁NORTHERN - ▁PEARL - ▁NEAREST - ▁FRANCIS - ▁WANDERING - ▁FREQUENT - ▁STARTLED - ▁STATEMENT - ▁OCCUR - ▁BLOOM - ▁NERVE - ▁INSPECT - ▁INDUCE - ▁FLATTER - ▁DATE - ▁AMBITION - ▁SLOPE - ▁MALE - ▁MADAM - ▁MONK - ▁RENT - ▁CONFIRM - ▁INVESTIGAT - ▁RABBIT - ▁REGIMENT - ▁SUBMIT - ▁SPELL - ▁FURIOUS - ▁RAIL - ▁BESTOW - ▁RALPH - ▁SCATTERED - ▁COMPELLED - ▁THREAD - ▁CHILL - ▁DENY - ▁PRONOUNC - ▁MANKIND - ▁CATTLE - ▁EXECUTION - ▁REBEL - ▁SUPREME - ▁VALUABLE - ▁LIKEWISE - ▁CONVEY - ▁TIDE - ▁GLOOMY - ▁COIN - ▁ACTUAL - ▁TAX - ▁PROVINCE - ▁GRATEFUL - ▁SPIRITUAL - ▁VANISHED - ▁DIANA - ▁HAUNT - ▁DRAGON - ▁CRAWL - ▁CHINA - ▁GRATITUDE - ▁NEAT - ▁FINISH - ▁INTENT - ▁FRIGHT - ▁EMBARRASS - ▁THIRTEEN - ▁RUTH - ▁SLIGHTEST - ▁DEVELOPMENT - ▁INTERVIEW - ▁SPECTACLE - ▁BROOK - VIE - ▁WEAKNESS - ▁AUDIENCE - ▁CONSEQUENTLY - ▁ABROAD - ▁ASPECT - ▁PAINTED - ▁RELEASE - ▁INSULT - ▁SOOTH - ▁DISAPPOINTMENT - ▁EMERG - ▁BRIG - ▁ESTEEM - ▁INVITATION - ▁PASSENGER - ▁PUBLISH - ▁PIANO - ▁IRISH - ▁DESK - ▁BEATEN - ▁FIFTH - ▁IMPULSE - ▁SWEAR - ▁EATEN - ▁PURPLE - ▁COMMITTED - ▁COUNTRIES - ▁PERCEIVE - ISON - ▁CELEBRAT - ▁GRANDMOTHER - ▁SHUDDER - ▁SUNSHINE - ▁SPANISH - ▁HITHERTO - ▁MARILLA - ▁SNAKE - ▁MOCK - ▁INTERFERE - ▁WALTER - ▁AMID - ▁MARBLE - ▁MISSION - TERIOR - ▁DRIVING - ▁FURNITURE - ▁STEADY - ▁CIRCUMSTANCE - ▁INTERPRET - ▁ENCHANT - ▁ERROR - ▁CONVICTION - ▁HELPLESS - ▁MEDICINE - ▁QUALITIES - ▁ITALIAN - ▁HASTENED - ▁OCCASIONALLY - ▁PURSUED - ▁HESITATED - ▁INDEPENDENT - ▁OLIVER - ▁LINGER - UX - ▁EXAMINED - ▁REPENT - ▁PHYSICIAN - ▁CHASE - ▁BELOVED - ▁ATTACHED - ▁FLORENCE - ▁HONEY - ▁MOUSE - ▁CRIES - ▁BAKE - ▁POEM - ▁DESTRUCTION - ▁FULFIL - ▁MESSENGER - ▁TRISTRAM - ▁FANCIED - ▁EXCESS - ▁CURSE - ▁CHU - ▁QUANTITY - ▁THORNTON - ▁CREATED - ▁CONTINUALLY - ▁LIGHTNING - ▁BORNE - ▁TOTAL - ▁DISPOSED - ▁RIFLE - ▁POLLY - ▁GOAT - ▁BACKWARD - ▁VIRGINIA - ▁KICK - ▁PERIL - ▁QUO - ▁GLORIOUS - ▁MULTITUDE - ▁LEATHER - ▁ABSENT - ▁DEMON - ▁DEBT - ▁TORTURE - ▁ACCORD - ▁MATE - ▁CATHOLIC - ▁PILL - ▁LIBRARY - ▁PURSUIT - ▁SHIRT - ▁DEAREST - ▁COLLAR - ▁BEACH - ▁ROBE - ▁DECLARE - ▁BRANCH - ▁TEMPT - ▁STEADILY - ▁DISGUST - ▁SILLY - ▁ARRIVE - ▁DRANK - ▁LEVI - ▁COMMUNICAT - ▁RACHEL - ▁WASHINGTON - ▁RESIGN - ▁MEANTIME - ▁LACE - ▁ENGAGEMENT - ▁QUIVER - ▁SEPARATED - ▁DISCUSSION - ▁VENTURED - ▁SURROUNDING - ▁POLISH - ▁NAIL - ▁SWELL - ▁JOKE - ▁LINCOLN - ▁STUDENT - ▁GLITTER - ▁RUSSIAN - ▁READILY - ▁CHRIS - ▁POVERTY - ▁DISGRACE - ▁CHEESE - ▁HEAVILY - ▁SCALE - ▁STAFF - ▁ENTREAT - ▁FAREWELL - ▁LUNCH - ▁PEEP - ▁MULE - ▁SOMEONE - ▁DISAPPEAR - ▁DECISION - ▁PISTOL - ▁PUN - ▁SPUR - ▁ASSUMED - ▁EXTEND - ▁ENTHUSIASM - ▁DEFINITE - ▁UNDERTAKE - ▁COMMITTEE - ▁SIMON - ▁FENCE - ▁APPLIED - ▁RELATED - ▁VICE - ▁UNPLEASANT - ▁PROBABLE - ▁PROCURE - ▁FROWN - ▁CLOAK - ▁HUMANITY - ▁FAMILIES - ▁PHILOSOPHER - ▁DWARF - ▁OVERCOME - ▁DEFEAT - ▁FASTENED - ▁MARSH - ▁CLASSES - ▁TOMB - ▁GRACIOUS - ▁REMOTE - ▁CELL - ▁SHRIEK - ▁RESCUE - ▁POOL - ▁ORGANIZ - ▁CHOSE - ▁CUTTING - ▁COWARD - ▁BORDER - ▁DIRTY - ▁MONKEY - ▁HOOK - ▁CHUCK - ▁EMILY - ▁JEST - ▁PLAC - ▁WEIGH - ▁ASSOCIATE - ▁GLIMPSE - ▁STUCK - ▁BOLT - ▁MURDERER - ▁PONY - ▁DISTINGUISH - ▁INSTITUTION - ▁CUNNING - ▁COMPLIMENT - ▁APPETITE - ▁REPUTATION - ▁FEEBLE - ▁KIN - ▁SERIES - ▁GRACEFUL - ▁PLATFORM - ▁BREEZE - ▁PHRASE - ▁CLAY - MONT - ▁RATTL - ▁OPPOSITION - ▁LANE - ▁BOAST - ▁GROWTH - ▁INCLINATION - ▁BEHAVE - ▁SUSAN - ▁DISTINCTION - ▁DISLIKE - ▁NICHOLAS - ▁SATISFY - ▁DRAMA - ▁ELBOW - ▁GAZING - ▁CONSUM - ▁SPIN - ▁OATH - ▁CHANNEL - ▁CHARACTERISTIC - ▁SPEAR - ▁SLAIN - ▁SAUCE - ▁FROG - ▁CONCEPTION - ▁TIMID - ▁ZEAL - ▁APPARENT - SHIRE - ▁CENTER - ▁VARIETY - ▁DUSK - ▁APT - ▁COLUMN - ▁REVENGE - ▁RIVAL - ▁IMITAT - ▁PASSIONATE - ▁SELFISH - ▁NORMAN - ▁REPAIR - ▁THRILL - ▁TREATMENT - ▁ROSA - ▁MARTIN - ▁INDIFFERENT - ▁THITHER - ▁GALLANT - ▁PEPPER - ▁RECOLLECT - ▁VINE - ▁SCARCE - ▁SHIELD - ▁MINGLED - CLOSE - ▁HARSH - ▁BRICK - ▁HUMOR - ▁MISCHIEF - ▁TREMENDOUS - ▁FUNCTION - ▁SMART - ▁SULTAN - ▁DISMISS - ▁THREATENED - ▁CHEAP - ▁FLOCK - ▁ENDEAVOR - ▁WHISK - ▁ITALY - ▁WAIST - ▁FLUTTER - ▁SMOKING - ▁MONARCH - ▁AFRICA - ▁ACCUSE - ▁HERBERT - ▁REFRESH - ▁REJOICE - ▁PILLOW - ▁EXPECTATION - ▁POETRY - ▁HOPELESS - ▁PERISH - ▁PHILOSOPHY - ▁WHISTLE - ▁BERNARD - ▁LAMENT - ▁IMPROVE - ▁SUP - ▁PERPLEX - ▁FOUNTAIN - ▁LEAGUE - ▁DESPISE - ▁IGNORANCE - ▁REFERENCE - ▁DUCK - ▁GROVE - ▁PURSE - ▁PARTNER - ▁PROPHET - ▁SHIVER - ▁NEIGHBOURHOOD - ▁REPRESENTATIVE - SAIL - ▁WIP - ▁ACQUIRED - ▁CHIMNEY - ▁DOCTRINE - ▁MAXIM - ▁ANGLE - ▁MAJORITY - ▁AUTUMN - ▁CONFUSED - ▁CRISTO - ▁ACHIEVE - ▁DISGUISE - ▁REDUCED - ▁EARLIER - ▁THEATRE - ▁DECIDE - MINATED - OLOGICAL - ▁OCCUPATION - ▁VIGOROUS - ▁CONTINENT - ▁DECLINE - ▁COMMUNITY - ▁MOTIONLESS - ▁HATRED - ▁COMMUNICATION - ▁BOWL - ▁COMMENT - ▁APPROVE - ▁CEREMONY - ▁CRIMINAL - ▁SCIENTIFIC - ▁DUCHESS - ▁VIVID - ▁SHIFT - ▁AVAIL - ▁DAMP - ▁JOHNSON - ▁SLENDER - ▁CONTRAST - ▁AMUSEMENT - ▁PLOT - ▁LYN - ▁ASSOCIATION - ▁SNATCH - ▁UNCERTAIN - ▁PRESSURE - ▁PERCH - ▁APPLY - ▁PLANET - ▁NOTWITHSTANDING - ▁SWUNG - ▁STIRRED - ▁ATTENDANT - ▁ENJOYMENT - ▁WORRY - ▁ALBERT - ▁NAKED - ▁TALENT - ▁MARIAN - ▁REFORM - ▁DELIBERATE - ▁INTELLIGENT - ▁SENSITIVE - ▁YONDER - ▁PUPIL - ▁FRIGHTFUL - ▁DOUBTFUL - ▁STANDARD - ▁MAGISTRATE - ▁SHEPHERD - ▁STOMACH - ▁DEPOSIT - ▁RENEW - ▁HEDGE - ▁FRANCS - ▁POSSIBILITY - ▁RESEMBLE - ▁FATIGUE - ▁PORTRAIT - ▁FAVORITE - ▁CREAM - ▁BURG - ▁SECRETARY - ▁DIVERS - ▁ACTIVITY - ▁SPECULAT - ▁HUMOUR - ▁FITTED - ▁EXTERNAL - ▁CETERA - ▁WRAPPED - ▁WHIT - ▁FRED - ▁EXAMINATION - ▁LODGING - ▁OWING - ▁JAW - ▁CROW - ▁BALANCE - ▁PUFF - ▁TENDERNESS - ▁PORTHOS - ▁ANCHOR - ▁INTERRUPT - ▁NECESSARILY - ▁PERPETUAL - ▁AGONY - ▁POPE - ▁SCHOLAR - ▁SCOTLAND - ▁SUPPRESS - ▁WRATH - ▁WRECK - ▁EXCEED - ▁PERFECTION - ▁INDIA - ▁TRADITION - ▁SECTION - ▁EASTERN - ▁DOORWAY - ▁WIVES - ▁CONVENTION - ▁ANNOUNC - ▁EGYPT - ▁CONTRADICT - ▁SCRATCH - ▁CENTRAL - ▁GLOVE - ▁WAX - ▁PREPARE - ▁ACCOMPANY - ▁INCREASING - ▁LIBERAL - ▁RAISING - ▁ORANGE - ▁SHOE - ▁ATTRIBUTE - ▁LITERATURE - ▁PUZZLED - ▁WITHDRAW - ▁WHITHER - ▁HAWK - ▁MOONLIGHT - ▁EXAMINE - ▁HAPPILY - ▁PRECEDE - ▁DETECTIVE - ▁INCHES - ▁SOLITARY - ▁DUTCH - ▁NAPOLEON - ▁UNEASY - ▁CARDINAL - ▁BLEW - ▁FOWL - ▁DECORAT - ▁CHILDHOOD - ▁TORMENT - ▁LOSING - ▁PERMISSION - ▁BLANK - ▁UPSTAIRS - ▁CAPACITY - ▁TRIFLE - ▁FOLLY - ▁RECOGNIZE - ▁REMOVE - ▁VENGEANCE - ▁ENTERPRISE - ▁BEDROOM - ▁ANYHOW - ▁INQUIRY - ▁ASHES - ▁DRAG - ▁HUSH - ▁AWKWARD - ▁SATURDAY - ▁GENUINE - ▁SURVIV - ▁SKIRT - ▁AFFECTIONATE - ▁TANG - ▁MUTUAL - ▁DISPUTE - ▁EAGLE - ▁INCOME - ▁BIND - ▁FAME - ▁IMPROVEMENT - ROVING - ▁DIFFER - ▁AWOKE - ▁SLEEVE - ▁SOLITUDE - ▁FAVOURITE - JI - ▁DETECT - ▁COMPREHEND - ▁PREPARING - ▁SERPENT - ▁SUMMIT - ▁KNOT - ▁KNIT - ▁COPY - ▁STOPPING - ▁FADED - ▁HIDEOUS - ▁JULIE - STEAD - ▁SHINE - ▁CONFLICT - ▁PROPOSITION - ▁REFUGE - ▁GALLERY - ▁BUNDLE - ▁AXE - ▁SLAVERY - ▁MASK - ▁ALYOSHA - ▁LADDER - ▁DEPARTMENT - ▁DISCHARGE - ▁DEPRESS - ▁GALLOP - ▁SCARLET - ▁KITTY - ▁RECEIVING - ▁SURRENDER - ▁SUSTAIN - ▁TWILIGHT - ▁CONGRESS - ▁IRELAND - ▁FUNNY - ▁LEND - ▁CONSTITUTE - ▁FUNERAL - ▁CRYSTAL - ▁SPAIN - ▁EXCEEDINGLY - ▁DAMN - ▁COMMUN - ▁CIVILIZATION - ▁PREJUDICE - ▁PORCH - ▁ASSISTANT - ▁INDUSTRY - ▁TUMBLE - ▁DEFENCE - ▁HITHER - ▁SMOT - ▁COLONI - ▁AMAZEMENT - ▁MARGUERITE - ▁MIRACLE - ▁INHERIT - ▁BEGGAR - ▁ENVELOPE - ▁INDIGNATION - ▁NATASHA - ▁PROPOSAL - ▁FRAGMENT - ▁ROUSED - ▁ROAST - ENCIES - ▁COMMENCED - ▁RESOURCE - ▁POPULATION - ▁QUOTH - ▁PURSUE - ▁EDUCAT - ▁AFFLICT - ▁CONTACT - ▁CRIMSON - ▁DIVISION - ▁DISORDER - ▁COPPER - ▁SOLICIT - ▁MODERATE - ▁DRUM - ▁SWIM - ▁SALUTE - ▁ASSUME - ▁MUSCLE - ▁OVERWHELM - ▁SHAKESPEARE - ▁STRUGGLING - ▁TRANQUIL - ▁CHICKEN - ▁TREAD - ▁CLAW - ▁BIBLE - ▁RIDGE - ▁THREAT - ▁VELVET - ▁EXPOSED - ▁IDIOT - ▁BARREL - ▁PENNY - ▁TEMPTATION - ▁DANGLARS - ▁CENTURIES - ▁DISTRIBUT - ▁REJECT - ▁RETORTED - ▁CONCENTRAT - ▁CORDIAL - ▁MOTOR - ▁CANNON - KEEP - ▁WRETCH - ▁ASSURANCE - ▁THIEF - ▁SURVEY - ▁VITAL - ▁RAILWAY - ▁JACKSON - ▁CRASH - ▁GROWL - ▁COMBAT - ▁RECOLLECTION - ▁SECURITY - ▁JACOB - ▁CLUTCH - ▁BLANKET - ▁NANCY - ▁CELLAR - ▁CONVENIENT - ▁INDIGNANT - ▁COARSE - ▁WORM - ▁SCREEN - ▁TRANSPORT - ▁BULLET - ▁APPRECIATE - ▁DEVOTION - ▁INVISIBLE - ▁DRIED - ▁MIXTURE - ▁CANDID - ▁PERFORMANCE - ▁RIPE - ▁EXQUISITE - ▁BARGAIN - ▁TOBACCO - ▁LOYAL - ▁MOULD - ▁ATTENTIVE - ▁DOROTHY - ▁BRUTE - ▁ESTABLISHMENT - ▁ABILITY - ▁INHABIT - ▁OBSCURE - ▁BORROW - ▁ESSENCE - ▁DISMAY - ▁FLEE - ▁BLADE - ▁PLUCK - ▁COFFIN - ▁SUNSET - ▁STEPHEN - ▁ECONOMIC - ▁HOLIDAY - ▁MECHANICAL - ▁COTTON - ▁AWAKENED - ▁SEIZE - ▁RIDICULOUS - ▁SANCHO - ▁HESITATION - ▁CORPSE - ▁SAVING - HOLD - FOOT - ▁ELDEST - ▁DESPITE - ▁EDITH - ▁CHERISH - ▁RESISTANCE - ▁WILSON - ▁ARGUE - ▁INQUIRE - ▁APPREHENSION - ▁AVENUE - ▁DRAKE - ▁PROPOSE - HURST - ▁INFERIOR - ▁STAIRCASE - ▁WHEREFORE - ▁CARLYLE - ▁COUCH - ▁ROUTE - ▁POLITICS - ▁TOMORROW - ▁THRONG - ▁NAUGHT - ▁SUNLIGHT - ▁INDIFFERENCE - ▁OBEDIENCE - ▁RECEPTION - ▁VEGETABLE - ▁IMPERFECT - ▁RESIDENCE - ▁TURKEY - ▁VIOLET - ▁SARAH - ▁ALTAR - ▁GRIEVE - ▁JERK - ▁ENSU - ▁MAGICIAN - ▁BLOSSOM - ▁LANTERN - ▁RESOLUTE - ▁THOUGHTFULLY - ▁FORTNIGHT - ▁TRUMPET - ▁VALJEAN - ▁UNWILLING - ▁LECTURE - ▁WHEREUPON - ▁HOLLAND - ▁CHANGING - ▁CREEK - ▁SLICE - ▁NORMAL - ▁ANNIE - ▁ACCENT - ▁FREDERICK - ▁DISAGREEABLE - ▁RUBBED - ▁DUMB - ▁ESTABLISH - ▁IMPORT - ▁AFFIRM - ▁MATTHEW - ▁BRISK - ▁CONVERT - ▁BENDING - ▁IVAN - ▁MADEMOISELLE - ▁MICHAEL - ▁EASIER - ▁JONES - ▁FACING - ▁EXCELLENCY - ▁LITERARY - ▁GOSSIP - ▁DEVOUR - ▁STAGGER - ▁PENCIL - ▁AVERAGE - ▁HAMMER - ▁TRIUMPHANT - ▁PREFERRED - ▁APPLICATION - ▁OCCUPY - ▁AUTHORITIES - BURN - ▁ASCERTAIN - ▁CORRIDOR - ▁DELICIOUS - ▁PRACTISE - ▁UNIVERSE - ▁SHILLING - ▁CONTEST - ▁ASHORE - ▁COMMIT - ▁ADMINISTRATION - ▁STUDIED - ▁RIGID - ▁ADORN - ▁ELSEWHERE - ▁INNOCENCE - ▁JOURNAL - ▁LANDSCAPE - ▁TELEGRAPH - ▁ANGRILY - ▁CAMPAIGN - ▁UNJUST - ▁CHALLENGE - ▁TORRENT - ▁RELATE - ▁ASSEMBLED - ▁IMPRESSED - ▁CANOE - ▁CONCLUD - ▁QUIXOTE - ▁SATISFACTORY - ▁NIECE - ▁DEAF - ▁RAFT - ▁JIMMY - ▁GLID - ▁REGULAT - ▁CHATTER - ▁GLACIER - ▁ENVY - ▁STATUE - ▁BOSTON - ▁RICHMOND - ▁DENIED - ▁FANNY - ▁SOLOMON - ▁VULGAR - ▁STALK - ▁REPLACE - ▁SPOON - ▁BASIN - ▁FEATURE - ▁CONVICT - ▁ARCHITECT - ▁ADMIRAL - ▁RIBBON - ▁PERMANENT - ▁APRIL - ▁JOLLY - ▁NEIGHBORHOOD - ▁IMPART - BOROUGH - CAMP - ▁HORRID - ▁IMMORTAL - ▁PRUDENCE - ▁SPANIARD - ▁SUPPOSING - ▁TELEPHONE - ▁TEMPERATURE - ▁PENETRATE - ▁OYSTER - ▁APPOINTMENT - ▁EGYPTIAN - ▁DWELT - ▁NEPHEW - ▁RAILROAD - ▁SEPTEMBER - ▁DEVICE - ▁WHEAT - ▁GILBERT - ▁ELEGANT - ▁ADVERTISE - ▁RATIONAL - ▁TURTLE - ▁BROOD - ▁ASSEMBLY - ▁CULTIVATE - ▁EDITOR - ▁SPECIMEN - ▁UNDOUBTEDLY - ▁WHALE - ▁DROPPING - ▁BALLOON - ▁MEDICAL - COMB - ▁COMPOSITION - ▁FOOTSTEPS - ▁LAUNCELOT - ▁DISCOURSE - ▁ERRAND - ▁CONVERSE - ▁ADVANCING - ▁DOWNSTAIRS - ▁TUMULT - ▁CORRUPT - ▁SUFFICE - ▁ANGUISH - ▁SHAGGY - ▁RETIRE - ▁TIMBER - ▁BLAZE - ▁ABSTRACT - ▁EMBROIDER - ▁PHOTOGRAPH - ▁PROSPERITY - ▁TERRIBLY - ▁TERRITORY - ▁THRESHOLD - ▁PAVEMENT - ▁INJURED - ▁LIMP - ▁AGITATION - ▁RASCAL - ▁PRESUME - ▁OBSERVING - ▁OBSTACLE - ▁SIMPLICITY - ▁SLUMBER - ▁SUPPLIED - ▁COMBINATION - ▁DRAIN - ▁WILDERNESS - ▁BELIEVING - ▁VILLAIN - ▁RECKLESS - ▁INJURY - ▁CLAPP - ▁FRIDAY - ▁HERCULES - ▁KENNEDY - ▁SYMPTOM - ▁SLEDGE - ▁CEILING - ▁LEMON - ▁PLAGUE - ▁MONDAY - ▁CANVAS - ▁IMPATIENCE - ▁UNCOMFORTABLE - ▁ACCESS - ▁FROZEN - ▁SENATOR - ▁FRANZ - ▁SWIMMING - ▁BARRIER - ▁ADJUST - ▁COMPARISON - ▁PROCLAIM - ▁WRINKL - ▁OVERLOOK - ▁MITYA - ▁GUILT - ▁PERCEPTION - ▁PRECAUTION - ▁SPECTATOR - ▁SURPRISING - ▁DISTRACT - ▁DISDAIN - ▁BONNET - ▁MAGNET - ▁PROFESS - ▁CONFOUND - ▁NARRATIVE - ▁STRUCTURE - ▁SKETCH - ▁ULTIMATE - ▁GLOBE - ▁INSECT - FICIENCY - ▁ORCHARD - ▁AMIABLE - ▁DESCENT - ▁INDEPENDENCE - ▁MANUFACTURE - ▁SPRINKLE - ▁NIGHTINGALE - ▁CUSHION - ▁EMINENT - ▁SCOTT - ▁ARRAY - ▁COSETTE - ▁WAVING - ▁EXTRACT - ▁IRREGULAR - ▁PERSECUT - ▁DERIVED - ▁WITHDREW - ▁CAUTION - ▁SUSPICIOUS - ▁MEMORIES - ▁NOWHERE - ▁SUBTLE - ▁THOROUGH - Q - ▁APPROPRIATE - ▁SLAUGHTER - ▁YOURSELVES - ▁THUMB - ▁TWAS - ▁ABODE - ▁BIDDING - ▁CONSPICUOUS - ▁REBECCA - ▁SERGEANT - ▁APRON - ▁ANTICIPATE - ▁DISCIPLINE - ▁GLANCING - ▁PILGRIM - ▁SULLEN - ▁CONTRIBUTE - ▁PRAIRIE - ▁CARVED - ▁COMMERCE - ▁EXCLAMATION - ▁MUSCULAR - ▁NOVEMBER - ▁PHENOMENA - ▁SYMBOL - ▁UMBRELLA - ▁DIMINISH - ▁PARLOUR - ▁THREATENING - ▁STUMP - ▁EXTENSIVE - ▁PLEASING - ▁REMEMBRANCE - ▁COMBINED - ▁SHERIFF - ▁SHAFT - ▁LAURA - ▁INTERCOURSE - ▁STRICKEN - ▁SUPPLIES - ▁LANDLORD - ▁SHRINK - ▁PRICK - ▁CAESAR - ▁DRUG - ▁BEWILDERED - ▁NAUTILUS - ▁BRUTAL - ▁COMMERCIAL - ▁MAGGIE - ▁SPHERE - ▁VIRGIN - ▁BRETHREN - ▁DESTINY - ▁POLICY - ▁TERRIFIED - ▁HOUSEKEEPER - ▁CRAZY - ▁ARDENT - ▁DISCERN - ▁WRAP - ▁MARQUIS - ▁RUSSIA - MOUTH - ▁BRITAIN - ▁HARBOUR - ▁CONCERT - ▁DONKEY - ▁DAMAGE - ▁SLIM - ABOUT - ▁LUXURY - ▁MONSTROUS - ▁TENDENCY - ▁PARADISE - ▁CULTURE - ▁JULIUS - ▁RAOUL - ▁REMEDY - ▁DECAY - ▁SCOLD - ▁SPLIT - ▁ASSAULT - ▁DECEMBER - ▁MOSCOW - ▁EXPLORE - ▁TROUSERS - ▁WRIST - PIECE - ▁MUSKET - ▁VALENTINE - ▁TYRANT - ▁ABRAHAM - ▁MEDIUM - ▁ARTIFICIAL - ▁FACULTY - ▁OBLIGATION - ▁RESEMBLANCE - ▁INQUIRIES - ▁DETAIN - ▁SWARM - ▁PLEDGE - ▁ADMIRABLE - ▁DEFECT - ▁SUPERINTEND - ▁PATRIOT - ▁CLUNG - ▁DISMAL - ▁RECIT - ▁IGNOR - ▁AMELIA - ▁JUSTIFY - ▁ELEPHANT - ▁ESTIMATE - ▁KNELT - ▁SERVING - ▁WHIM - ▁SHRILL - ▁STUDIO - ▁TEXT - ▁ALEXANDER - ▁WROUGHT - ▁ABUNDANT - ▁SITUATED - ▁REGAIN - ▁FIERY - ▁SNEER - ▁SWEAT - ▁GLARE - ▁NIGH - ▁ESCORT - ▁INEVITABLE - ▁PSMITH - ▁RELUCTANT - ▁PRECEDING - ▁RESORT - ▁OUTRAGE - ▁AMBASSADOR - ▁CONSOLATION - ▁RECOGNITION - ▁REMORSE - ▁BEHALF - ▁FORMIDABLE - ▁GRAVITY - ▁DIVIDE - ▁CONFRONT - ▁GIGANTIC - ▁OCTOBER - ▁FLANK - ▁SLEW - ▁CLARA - ▁FILM - ▁BULK - ▁POMP - ▁ELEANOR - ▁EMPHASIS - ▁JAPANESE - ▁CAVALRY - ▁EXCLUSIVE - ▁PERFUME - ▁BRONZE - ▁FEDERAL - ▁LIQUID - ▁RUBBING - ▁OVEN - DOLPH - ▁CONVULS - ▁DEPRIVED - ▁RESPONSIBILITY - ▁SIGNIFICANT - ▁WAISTCOAT - ▁CLUSTER - ▁MARTHA - ▁REVERSE - ▁ATTORNEY - ▁DROOP - ▁SKILFUL - ▁HABITUAL - ▁PUMP - ▁INTERVEN - ▁OWL - ▁CONJECTURE - ▁FANTASTIC - ▁RESPONSIBLE - ▁DESTINED - ▁DOCUMENT - ▁THEREUPON - ▁GODDESS - ▁PACIFIC - ▁WARRANT - ▁COSTUME - ▁BRIDLE - ▁CALIFORNIA - ▁DEMOCRATIC - ▁EUSTACE - ▁SQUIRREL - ▁UNCOMMON - ▁MARVELLOUS - ▁PLOUGH - ▁TRAGEDY - ▁VAULT - ▁HESITATE - ▁REFRAIN - ▁ADMIRING - ▁CORPORAL - ▁ENTITLED - ▁SHREWD - ▁SQUEEZ - ▁ACCURATE - ▁TEMPEST - ▁MONUMENT - ▁SIEGE - ▁CHINESE - ▁RAVEN - ▁LOUNG - ▁ASSASSIN - ▁INFLICT - ▁AGITATED - ▁DESIRABLE - ▁EARLIEST - ▁LAUNCH - ▁PILOT - ▁PULSE - ▁MUTE - LEIGH - ▁LIQUOR - ▁SCARECROW - ▁SKULL - ▁DESOLATE - ▁SUBLIME - ▁SERENE - ▁RECESS - ▁WAKING - ▁CHARLOTTE - ▁CIRCULAR - ▁INJUSTICE - ▁PINOCCHIO - ▁PRISCILLA - ▁THYSELF - ▁OCCURRENCE - ▁CASUAL - ▁FRANTIC - ▁LEGEND - ▁FERTIL - ▁BACKGROUND - ▁DELICACY - ▁ESTRALLA - ▁MANUSCRIPT - ▁RESPONSE - ▁UNIVERSITY - ▁WOLVES - ▁SCANDAL - ▁STUMBLE - ▁HOARSE - ▁BODILY - ▁CONVENT - ▁EXAMINING - ▁INCAPABLE - ▁PERCEIVING - ▁PHILADELPHIA - ▁SUBSEQUENT - ▁THIEVES - ▁ACCUMULAT - ▁DAMSEL - ▁SCOTCH - ▁UNDERNEATH - ▁NOBILITY - ▁SMASH - ▁REVOLT - ▁ENGAGE - ▁CATHEDRAL - ▁CHAMPION - ▁DESPATCH - ▁ETERNITY - ▁JANUARY - ▁PLEADED - ▁PROBABILITY - ▁JIMMIE - ▁PARALLEL - ▁FISHERMAN - ▁JERRY - ▁SWORE - ▁DRAUGHT - ▁OPPONENT - ▁PRIMITIVE - ▁SIGNIFICANCE - ▁SUBSTANTIAL - ▁AMAZED - ▁DUNBAR - ▁COMMEND - ▁CONTEMPLATE - ▁TESTIMONY - ▁IMPERIAL - ▁ADAPT - ▁JUICE - ▁CALAMIT - CULAR - ▁CHATEAU - ▁PHOENIX - ▁PRUDENT - ▁SOLUTION - ▁VILLEFORT - ▁REACTION - ▁RELAX - ▁YU - ▁PROHIBIT - ▁DISTRUST - ▁PLUNDER - ▁WELFARE - ▁NAVIGAT - ▁PARLOR - ▁LAZY - ▁DETACH - OMETER - ▁PRIV - ▁DISCOURAGE - ▁OBSTINATE - ▁REJOICING - ▁SERMON - ▁VEHICLE - ▁FANCIES - ▁ENLIGHTEN - ▁ACUTE - ▁ILLUSION - ▁ANTHEA - ▁MARTIAN - ▁EXCITE - ▁GENEROSITY - OLOGIST - ▁AMAZING - ▁UNWORTHY - ▁INTERNAL - ▁INCENSE - ▁VIBRAT - ▁ADHERE - ROACH - ▁FEBRUARY - ▁MEXICAN - ▁POTATOES - ▁INCESSANT - ▁INTERPOSED - ▁PARCEL - ▁VEXED - ▁PROMOTE - MIDST - ▁ARISTOCRAT - ▁CYRIL - ▁EMBARK - ▁ABUNDANCE - ▁LITERALLY - ▁SURGEON - ▁TERRACE - ▁ATLANTIC - ▁MARTYR - ▁SPECK - ▁SENATE - ▁LOAF - ▁ADMINISTER - ▁APPREHEND - ▁SUBDUED - ▁TEMPORARY - ▁DOMINION - ▁ELABORATE - ▁DIGNIFIED - ▁ELIZA - ▁SPLASH - ▁CONSEIL - ▁DEXTER - ▁UNSEEN - ▁TRAGIC - VOCATION - ▁GRATIFY - ▁BACHELOR - ▁DEFENSE - ▁EXCURSION - ▁FACULTIES - ▁PROPRIETOR - ▁SYMPATHETIC - ▁UNNECESSARY - ▁RADIANT - ▁VACANT - ▁OUNCE - ▁SCREW - ▁PHENOMENON - ▁PROMINENT - ▁WORRIED - ▁STUDIES - ▁CLIMATE - ▁KEITH - ▁ARAMIS - ▁BLISS - ▁CONTINUAL - ▁SURPASS - ▁HEBREW - ▁IDENTITY - ▁PROVOKE - ▁TEMPERAMENT - ▁CHARIOT - ▁HARBOR - ▁NINTH - ▁PRIOR - ▁DESIROUS - ▁JERUSALEM - ▁UNDERTAKING - ▁EDISON - ▁MIRTH - ▁SCOUT - ▁APPARATUS - ▁ILLUSTRATION - ▁INTELLIGIBLE - ▁INVARIABLY - ▁PIERCED - ▁REVIEW - ▁FLICKER - ▁HAZARD - ▁REVELATION - ▁DIXON - ▁EXCITING - ▁GOSPEL - ▁CONSTANCE - ▁OVERTAKE - ▁GUINEA - ▁ALADDIN - ▁CHICAGO - ▁TULLIVER - ▁HAMILTON - ▁GARRISON - ▁DISCIPLE - ▁INTENSITY - ▁TRAITOR - ▁CHANCELLOR - ▁PROVERB - ▁DAGGER - ▁FORESEE - ▁CONFIDE - ▁GLIMMER - ▁CHAUVELIN - ▁ILLUSTRATE - ▁VOLUNTEER - ▁JUNGLE - ▁STREAK - ▁SUNRISE - ▁DISSOLV - ▁QUEST - ▁AWHILE - ▁FELICITY - ▁LEGISLATURE - ▁LEONORA - ▁MAGAZINE - ▁PITIFUL - ▁COLONY - ▁SHAWL - ▁ARRIVING - ▁FUNDAMENTAL - ▁CARPENTER - ▁OVERFLOW - ▁EXPAND - ▁HARVEST - ▁FEMININE - ▁INNUMERABLE - ▁SCRAMBLE - ▁TWENTIETH - ▁TRIFLING - ▁GHASTL - ▁CONQUEST - ▁DANIEL - ▁FACILIT - ▁FORSAKE - ▁BEHAVIOUR - ▁GORGEOUS - ▁PRODUCING - ▁HAPPIER - ▁PROMISING - ▁RAINBOW - ▁INSTINCTIVELY - ▁DECREE - ▁EYEBROWS - ▁IRRESISTIBLE - ▁PHARAOH - ▁SCROOGE - ▁UNNATURAL - ▁CRUMBS - ▁REFINED - ▁DREARY - ▁TRENCH - ▁CONVINCE - ▁FRINGE - ▁EXTREMITY - ▁INTIMACY - ▁SCOUNDREL - ▁SUFFRAGE - ▁UNEASINESS - ▁BARRICADE - ▁CIRCULAT - ▁SAMUEL - ▁BRUCE - ▁DARCY - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_large download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.5a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/simpleoier\_librispeech\_asr\_train\_asr\_conformer7\_wavlm\_large\_raw\_en\_bpe5000\_sp' This model was trained by simpleoier using librispeech recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Tue Jan 4 20:52:48 EST 2022' * python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]' * espnet version: 'espnet 0.10.5a1' * pytorch version: 'pytorch 1.8.1' * Git hash: '' + Commit date: '' asr\_train\_asr\_conformer7\_wavlm\_large\_raw\_en\_bpe5000\_sp --------------------------------------------------------------- ### WER ### CER ### TER ASR config ---------- expand ### Citing ESPnet or arXiv:
[ "### 'espnet/simpleoier\\_librispeech\\_asr\\_train\\_asr\\_conformer7\\_wavlm\\_large\\_raw\\_en\\_bpe5000\\_sp'\n\n\nThis model was trained by simpleoier using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Jan 4 20:52:48 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.5a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_conformer7\\_wavlm\\_large\\_raw\\_en\\_bpe5000\\_sp\n---------------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "### 'espnet/simpleoier\\_librispeech\\_asr\\_train\\_asr\\_conformer7\\_wavlm\\_large\\_raw\\_en\\_bpe5000\\_sp'\n\n\nThis model was trained by simpleoier using librispeech recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Tue Jan 4 20:52:48 EST 2022'\n* python version: '3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.5a1'\n* pytorch version: 'pytorch 1.8.1'\n* Git hash: ''\n\t+ Commit date: ''\n\n\nasr\\_train\\_asr\\_conformer7\\_wavlm\\_large\\_raw\\_en\\_bpe5000\\_sp\n---------------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand", "### Citing ESPnet\n\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `su_openslr36` ♻️ Imported from https://zenodo.org/record/5090135/ This model was trained by su_openslr36 using su_openslr36/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "su", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["su_openslr36"]}
espnet/su_openslr36
null
[ "espnet", "audio", "automatic-speech-recognition", "su", "dataset:su_openslr36", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "su" ]
TAGS #espnet #audio #automatic-speech-recognition #su #dataset-su_openslr36 #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'su_openslr36' ️ Imported from URL This model was trained by su_openslr36 using su_openslr36/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'su_openslr36'\n️ Imported from URL\n\nThis model was trained by su_openslr36 using su_openslr36/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #su #dataset-su_openslr36 #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'su_openslr36'\n️ Imported from URL\n\nThis model was trained by su_openslr36 using su_openslr36/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/sujay_catslu_map` This model was trained by Sujay S Kumar using catslu recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout e31965d55993766461f0964216a0bb9aea3cfb7a pip install -e . cd egs2/catslu/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/sujay_catslu_map ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Oct 3 12:53:16 EDT 2021` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a3` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `b41391336042a4876e30d9fe5c66afb4e4be404c` - Commit date: `Wed Sep 22 10:02:03 2021 -0400` ## asr_train_asr_smaller_aishell_xlsr_raw_zh_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_5best/test|1577|11441|46.1|30.1|23.7|2.5|56.4|81.3| |inference_asr_model_valid.acc.ave_5best/valid|921|6438|49.4|29.2|21.4|2.7|53.4|79.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_5best/test|1577|45924|74.4|13.0|12.5|3.2|28.8|81.3| |inference_asr_model_valid.acc.ave_5best/valid|921|26110|77.0|11.9|11.1|2.7|25.7|79.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_smaller_aishell_xlsr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp_train_asr_smaller_aishell_xlsr/asr_train_asr_smaller_aishell_xlsr_raw_zh_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: 5 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/train/speech_shape - exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/train/text_shape.word valid_shape_file: - exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/valid/speech_shape - exp_train_asr_smaller_aishell_xlsr/asr_stats_raw_zh_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 2500 token_list: - <blank> - <unk> - 航 - 导 - inform_操作_none - inform_终点名称_none - 去 - none_none_none - 我 - 到 - inform_poi名称_none - unknown - 要 - 市 - side - 一 - 个 - 路 - 区 - 第 - 大 - 县 - 你 - inform_序列号_none - 小 - 城 - 站 - 家 - 南 - 中 - 山 - 州 - 好 - 镇 - 场 - 的 - 院 - 西 - 店 - 东 - 车 - 阳 - 学 - 北 - 园 - dialect - 安 - 新 - 海 - 回 - 公 - 医 - 二 - 不 - 三 - 广 - 天 - 村 - 有 - 闭 - 开 - 酒 - 下 - 江 - 消 - 人 - 帮 - 金 - 是 - 取 - 花 - 近 - 政 - 民 - 口 - 十 - 里 - 河 - 府 - 请 - 关 - 国 - 了 - 华 - 那 - 高 - robot - 出 - 平 - 湖 - 在 - 省 - 定 - 号 - 门 - 想 - 街 - 四 - 道 - 水 - 龙 - 京 - 啊 - 地 - 行 - 么 - 五 - 都 - 桥 - 上 - 给 - 明 - 业 - 哪 - 附 - 八 - 宁 - 心 - 长 - 馆 - 百 - 这 - 汽 - 机 - 工 - 庄 - 方 - 商 - 司 - 石 - 确 - 兴 - 火 - 走 - 乡 - 万 - 通 - 加 - 银 - 青 - 发 - 校 - 速 - 交 - 退 - 德 - 际 - 电 - 楼 - 宾 - 找 - 苑 - 和 - 嗯 - 油 - 林 - 乐 - 景 - 打 - 达 - 来 - 七 - 川 - inform_请求类型_none - 最 - noise - 兰 - 湾 - 台 - 所 - 保 - 什 - 福 - 建 - 说 - 就 - 沙 - 页 - 宝 - 子 - 厂 - 科 - 尔 - 光 - inform_页码_none - 六 - 费 - 环 - 成 - 昌 - 吗 - 汉 - 白 - 黄 - 限 - 局 - 泉 - 怎 - 云 - 武 - 源 - 吃 - 前 - 点 - 收 - 物 - 滨 - 溪 - 马 - 贵 - 务 - 世 - 岛 - 没 - 生 - 常 - 理 - 会 - 们 - 重 - 浦 - 名 - 合 - 运 - 顺 - 美 - 儿 - 头 - 乌 - 设 - 厦 - 化 - 郑 - 时 - inform_poi目标_none - 现 - 农 - 港 - 泰 - 停 - 宜 - 昆 - 九 - 对 - 管 - 看 - 界 - 张 - 庆 - 文 - 博 - 嘉 - 零 - 苏 - 能 - 面 - 客 - 红 - 搜 - 远 - 古 - 津 - 始 - 王 - 呃 - 用 - 瑞 - 后 - 雅 - 带 - 流 - 木 - 之 - 汇 - 夏 - 他 - 还 - 清 - 临 - 服 - 渡 - 日 - 幺 - 济 - 田 - 锦 - 吉 - 呀 - 利 - 神 - 饭 - 香 - 太 - 双 - 永 - 图 - 洲 - 集 - 特 - 吧 - request_位置_none - 技 - 把 - 寺 - 爱 - 丰 - 春 - 盛 - 罗 - 队 - 也 - 亚 - 线 - 玉 - 哦 - 贸 - 果 - 连 - 正 - 结 - 与 - 米 - 鲁 - 警 - 信 - 捷 - 样 - 温 - 岭 - 丽 - 育 - 凤 - 位 - 听 - 动 - 可 - 原 - 年 - 经 - 纪 - 齐 - 索 - inform_对象_none - 义 - 多 - 叫 - 况 - 气 - 老 - 派 - 池 - 曲 - 营 - 返 - 置 - 品 - 程 - 同 - 辉 - 批 - 音 - 康 - 威 - 幼 - 斯 - 库 - 拉 - 星 - 团 - 风 - 岗 - 话 - 放 - 泽 - 晋 - 部 - 知 - 外 - 塔 - 沈 - 奇 - 卫 - 月 - 庭 - 眼 - 总 - 梅 - 房 - 千 - 哈 - 自 - 字 - 呢 - 豪 - 直 - 盘 - 屯 - 超 - 祥 - 佳 - 恒 - 过 - 以 - 两 - 蓝 - 修 - 入 - 松 - 铁 - 职 - 珠 - 凯 - 快 - 丹 - 体 - 书 - 游 - 转 - 莱 - 寨 - 克 - 当 - 李 - 钱 - s - 货 - 惠 - 格 - 岳 - 淮 - 束 - 社 - 莞 - 森 - 堵 - 内 - 蒙 - 分 - 柏 - 富 - 碧 - 凰 - 陵 - 桐 - 边 - 坡 - 胶 - 得 - 力 - 滚 - 喀 - 旗 - 料 - 歌 - 块 - 滩 - 查 - 虹 - 续 - 为 - 驾 - 许 - 峰 - 问 - 真 - 视 - 选 - 接 - 语 - 洪 - 众 - 全 - 徽 - 鄂 - 实 - 未 - 杭 - 尚 - 胜 - 塘 - 产 - 鱼 - 叉 - 岸 - 洛 - 随 - 哎 - 配 - 丁 - 继 - 迪 - 牛 - 坪 - 无 - 深 - 圳 - 韩 - 法 - 灵 - 迁 - 间 - 逼 - 步 - 咸 - 期 - 菜 - 紫 - 邢 - 赣 - 横 - 播 - 鼎 - 进 - 止 - 铜 - 便 - 鸡 - 巴 - 仁 - 财 - 佛 - 桂 - 官 - 英 - 绵 - 奥 - 矿 - 波 - 治 - 元 - 首 - 钟 - 计 - 飞 - 坊 - 阿 - 代 - 周 - 朝 - 固 - 错 - 向 - 潭 - 隆 - 装 - 纳 - 伊 - 将 - 军 - 师 - 途 - 影 - 怀 - 择 - 药 - 术 - 手 - 于 - 离 - 族 - 莲 - 布 - 呼 - 峡 - 迈 - 委 - 叮 - 咚 - 阴 - 宏 - 郡 - 健 - 本 - 洋 - 再 - 支 - 划 - 郊 - 绿 - 妈 - 旅 - 堰 - 肥 - 玛 - 左 - 网 - inform_途经点名称_none - 拜 - 材 - inform_终点修饰_none - 辽 - 煤 - 谢 - 则 - 土 - 草 - 埠 - 伦 - 堂 - 卡 - 肉 - 底 - 灯 - 树 - 寻 - 掉 - 展 - 庙 - 赵 - 余 - 见 - 望 - 故 - 事 - 相 - 杨 - inform_终点目标_none - 馨 - 税 - 属 - 资 - 井 - 艺 - 越 - 微 - 包 - 阜 - 记 - 窗 - 维 - 甲 - 鑫 - 休 - 啥 - 锡 - 渝 - 岩 - 彩 - 少 - 处 - 往 - 从 - 封 - 联 - 觉 - 验 - 容 - 萨 - 普 - 弄 - 干 - 强 - 鲜 - 柳 - 衡 - 规 - request_路况_none - 靖 - 沃 - 板 - 防 - 约 - 球 - 居 - 至 - 坝 - 翠 - 持 - 具 - 烟 - 榆 - 枫 - 照 - 意 - 目 - t - 凌 - 邦 - 报 - 码 - 轻 - 欣 - 复 - 买 - 玻 - 璃 - 住 - 恩 - 女 - 嘴 - 级 - 振 - 邵 - 浴 - 茂 - 黔 - 您 - 比 - 显 - 渭 - 钢 - 妇 - 易 - 党 - 版 - 介 - 姐 - 才 - 览 - k - 崇 - 桃 - 厅 - 虎 - 皮 - 仪 - 赤 - 寓 - 洞 - 绍 - 饰 - 很 - 病 - 度 - 胡 - 像 - 邮 - 又 - 充 - 贤 - 御 - 然 - 潍 - 基 - 启 - 聊 - 驶 - inform_路线偏好_none - 澄 - 几 - 等 - 塑 - 监 - 办 - 沧 - 亭 - 观 - 螺 - 领 - 秀 - 咋 - 坨 - 奎 - 优 - 半 - 贡 - 唐 - 写 - 今 - 慢 - 傻 - 反 - 次 - 甘 - 肃 - 它 - 泗 - 贺 - 拍 - 咱 - 留 - ktv - 察 - 顶 - 啦 - 别 - 润 - 谷 - 仙 - 慧 - 朱 - 靠 - 座 - 锅 - 麦 - 雁 - 羊 - 共 - 邓 - 荣 - 食 - 陕 - 邑 - 右 - 铺 - 梁 - 宣 - 幸 - 哥 - 士 - 员 - 招 - 番 - 徐 - 检 - 巷 - 私 - 堡 - 跟 - 器 - 峪 - 立 - 氏 - 教 - 圣 - 购 - 印 - 黑 - 完 - 条 - 唉 - 燕 - 屿 - 闸 - 茶 - 任 - 种 - 蛋 - 荆 - 岔 - inform_value_none - 黎 - 奉 - 准 - 熟 - 薛 - 朔 - 范 - 械 - 菲 - 雪 - 腾 - 备 - 琼 - 尹 - 垣 - 吴 - 示 - 嫖 - 宫 - 冲 - 毛 - 绘 - 菏 - 嘞 - 浙 - 遵 - 各 - 饶 - 嗷 - 简 - 施 - 俱 - 岚 - 豆 - 栋 - 险 - 岘 - 滇 - 叶 - 卓 - 荔 - 刘 - 滕 - 系 - 统 - e - 做 - 巡 - 坐 - 研 - 究 - 盐 - 冀 - 象 - 斗 - 娄 - 先 - 陆 - deny_操作_none - 户 - 额 - 价 - 更 - 拆 - 溧 - 量 - 帝 - 断 - 态 - 智 - 蜀 - 庐 - 舟 - 摄 - 泡 - 洗 - 历 - 咖 - 啡 - 湘 - 甸 - 泾 - 卖 - 朗 - 芜 - 棠 - 凉 - 嵩 - 焦 - 让 - 夫 - 吐 - 童 - 薇 - 旺 - 浩 - 息 - 裕 - 禄 - 睡 - 狮 - 质 - 樱 - 递 - 鸣 - 句 - 韶 - 色 - 典 - 厉 - 测 - 应 - 尉 - 汤 - 己 - 宸 - 漳 - 证 - 沟 - 巩 - 扬 - 笨 - 旁 - 湟 - 主 - 浪 - 殡 - request_前方路况_none - 竹 - 列 - 季 - 唱 - 冠 - 泥 - 懂 - 秋 - 君 - 祁 - 声 - 拥 - 曹 - 嘛 - 静 - 嗨 - 起 - 刚 - 墨 - 宿 - 络 - 襄 - 葫 - 芦 - 漫 - 峨 - 需 - 眉 - 瓦 - 如 - 根 - 域 - 式 - 何 - 鞍 - 饺 - 票 - 冶 - 喷 - 映 - 组 - 昭 - 延 - 萌 - 角 - 解 - 玲 - 蟹 - 晃 - 瀑 - 纽 - 逸 - 些 - 猪 - 蹄 - 亲 - 野 - 蒋 - 喂 - 荷 - 窝 - 锁 - 试 - 桑 - 沥 - 非 - 制 - 督 - 贝 - 址 - 识 - 侬 - 烧 - 翡 - 堤 - 伟 - 驼 - 昊 - 牌 - 陶 - 室 - 轩 - 鹰 - 钉 - 空 - 着 - 蛳 - 已 - 砖 - 姓 - 顿 - 麓 - 亿 - 售 - 功 - 淄 - 澳 - 斜 - 击 - 活 - 缴 - 输 - 雍 - 鄄 - 降 - 革 - 恢 - 卸 - 承 - 箬 - 澧 - 栈 - 疗 - 传 - 媒 - 血 - 战 - 舞 - 姨 - 婆 - 辆 - 蚌 - 鹅 - 剧 - 湛 - 亳 - b - 敦 - 煌 - 迎 - 味 - 数 - 妞 - 嫂 - 厚 - hi - 邹 - 摁 - 榄 - 梨 - 亮 - 纺 - 婚 - 培 - 训 - inform_起点名称_none - 护 - 霍 - 升 - 考 - m - 呗 - 摩 - 送 - 段 - 悦 - 餐 - 早 - 议 - 互 - 助 - 抚 - 慈 - 按 - 调 - 杰 - 份 - 兵 - 粥 - 邻 - 墅 - 鬃 - 泳 - 朋 - 良 - 缘 - 鼓 - 赛 - 枝 - 藏 - 鸿 - 冷 - 匀 - 征 - 欢 - 闯 - 汝 - 讲 - 肤 - 响 - 浮 - 录 - 冰 - 圆 - 算 - 思 - 储 - 蓄 - 苗 - 聚 - 湿 - 肇 - 阆 - 拿 - 沣 - 渔 - 铝 - 植 - 托 - 盟 - 宇 - 但 - 渠 - 告 - 丘 - 拓 - 陇 - 鹤 - 操 - 珙 - deny_poi名称_none - 询 - 攀 - 寿 - 副 - 或 - 假 - 焰 - 夜 - 妓 - 而 - 漆 - 濮 - 胥 - 密 - 志 - 苹 - 彭 - 陪 - 添 - 满 - 章 - 骨 - 栖 - 呦 - 善 - 乖 - 姑 - 爷 - 鸟 - 璧 - 专 - 洧 - 依 - 仔 - 晨 - 沂 - 券 - 晓 - 压 - 涨 - 闻 - 男 - 诊 - 融 - 怡 - 蓬 - 廊 - 殖 - 益 - 必 - 靓 - 蒲 - beyond - i - love - you - 旋 - 尖 - 驿 - 貂 - 蝉 - 足 - 迹 - 翰 - 杏 - 牡 - 帅 - 雨 - 呈 - 迷 - 哟 - 召 - 娼 - 辛 - 顾 - 殷 - 闵 - 潮 - 脑 - 彗 - 枣 - 杆 - 洁 - 画 - 片 - 认 - 灰 - 鞋 - 宠 - 劫 - 潘 - 烤 - 破 - 隶 - 搞 - 忠 - 仕 - 郴 - 梧 - 酌 - 涵 - 醍 - 候 - 俩 - 馈 - 磨 - 骤 - 翔 - 莘 - 希 - 娅 - 剑 - 权 - 壹 - 冕 - 蛟 - 拨 - 诶 - 盖 - 楠 - 只 - 编 - 虾 - 尽 - 尧 - 晚 - 珍 - 因 - 捆 - 绑 - 端 - 盱 - 眙 - 贩 - 卷 - 养 - 陂 - 晟 - 巧 - 椿 - 毕 - 沭 - 供 - 秒 - 眠 - 状 - 璟 - 受 - 伤 - 萍 - 奔 - 效 - 禽 - 玫 - 瑰 - request_剩余距离_none - 序 - 鹃 - 齿 - 厕 - 厨 - 忻 - 埔 - 茅 - 芳 - 雕 - 刻 - 蜜 - 筝 - g - 橄 - 畜 - 牧 - 仑 - 臣 - 溆 - 纱 - 卉 - 群 - 痛 - 疼 - 仟 - 赶 - 紧 - 闫 - 嘶 - 潼 - 烽 - 勾 - 驰 - 麻 - 烦 - 遍 - 樟 - 浜 - 极 - 酷 - 晶 - 穿 - 芽 - 害 - 钓 - 棍 - 核 - 橙 - 琴 - 滋 - 柯 - 箐 - 株 - 陌 - 坤 - 炳 - 槐 - 协 - 湄 - 滏 - 旦 - 策 - 虞 - 陈 - 情 - 潞 - 藁 - 豹 - 若 - 垃 - 圾 - 舰 - 造 - 珥 - 董 - 泼 - 乾 - 瑶 - 龚 - 撤 - 钛 - 责 - 吶 - 喜 - 隔 - 碗 - 倒 - 椰 - 冬 - 伯 - 乳 - 隐 - 尼 - 境 - 圩 - 卧 - 抱 - 使 - 玩 - 饮 - 峤 - 炉 - 终 - 霸 - 晴 - 糕 - 疫 - 弥 - 萧 - 围 - 邬 - 贞 - 逊 - 祠 - 泛 - 逯 - 侯 - 距 - 织 - 谋 - 嵋 - 楚 - 瑜 - 妹 - 误 - 念 - 镜 - 粮 - 涮 - 值 - 鹿 - 捞 - 沅 - 移 - 涉 - 模 - 饿 - 佩 - 汀 - 朐 - 魔 - 细 - 者 - 暖 - 汕 - 谛 - 棣 - 敖 - 此 - 背 - 鲅 - 圈 - 逻 - 绕 - 锋 - 班 - 珲 - 汾 - 著 - 参 - 且 - 摇 - 宕 - 缅 - 柔 - 脂 - 肪 - 变 - 谱 - 积 - 礼 - 凡 - 落 - 羽 - 歇 - 仰 - 聋 - 雷 - 磊 - 繁 - 吭 - 皇 - 晖 - 粤 - 腊 - 习 - 题 - 绅 - 畔 - 啤 - 弋 - 匹 - 订 - 单 - ok - 灶 - 描 - 婺 - 沿 - 莉 - 弘 - 茵 - 换 - 屏 - 瞎 - 较 - 岁 - 湫 - 塞 - 疏 - 勒 - 涟 - 巫 - 违 - 戈 - 吾 - 脏 - 葛 - 轮 - 胎 - 霞 - 鹭 - 废 - 稍 - 谨 - 慎 - 淡 - 注 - 每 - 既 - 删 - 喝 - 付 - 诸 - 暨 - 戴 - 綦 - 伍 - 诚 - 坦 - 兜 - 残 - 韵 - 喽 - 廖 - 麒 - 麟 - n - 感 - 籍 - 难 - 死 - 笑 - 哭 - 孩 - 频 - 舍 - 溶 - 垸 - 淀 - 奸 - 改 - 藤 - 狭 - 隧 - 翁 - 陀 - 扎 - 肯 - 揭 - 壁 - 件 - 刷 - 牙 - 节 - 恋 - 淹 - 桦 - 幢 - 棉 - 俺 - 屎 - 彬 - 牟 - 亩 - 傣 - 裴 - 翼 - 辰 - 剪 - 挡 - 凹 - 投 - 碣 - 妆 - 荡 - 驻 - 颍 - 狐 - 享 - 恐 - 汶 - 寅 - 仍 - 睿 - 搁 - 尊 - 泊 - 仲 - 午 - 枞 - 仓 - 卞 - 瀚 - 佰 - 暮 - 拐 - 崔 - 榭 - 棵 - 孕 - 潜 - 俏 - 葡 - 萄 - 采 - 摘 - 癜 - 屑 - 芙 - 蓉 - 咏 - 忙 - 漂 - 父 - 母 - 差 - 彻 - 魏 - 绥 - 闲 - 遥 - 棕 - 榈 - 壶 - 疆 - 苍 - 磁 - 辅 - 泸 - 淅 - a - 呐 - 燃 - 沱 - 禺 - 宛 - 友 - 俊 - 筑 - 贾 - 宋 - 梯 - 吨 - inform_poi修饰_none - 础 - 碑 - request_剩余路程_none - 创 - 孙 - 枢 - 翟 - 浑 - 糖 - 舜 - 橱 - 柜 - 浠 - 莒 - 乔 - 幕 - 磅 - 嘿 - 曼 - 昔 - 衣 - 铭 - 浏 - 喆 - 垦 - 墓 - 戍 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 4 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.10.3a3 distributed: false ``` </details> ## LM config <details><summary>expand</summary> ``` NONE ``` </details>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["catslu"]}
espnet/sujay_catslu_map
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:catslu", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #espnet #audio #automatic-speech-recognition #zh #dataset-catslu #license-cc-by-4.0 #region-us
ESPnet2 ASR model ----------------- ### 'espnet/sujay\_catslu\_map' This model was trained by Sujay S Kumar using catslu recipe in espnet. ### Demo: How to use in ESPnet2 RESULTS ======= Environments ------------ * date: 'Sun Oct 3 12:53:16 EDT 2021' * python version: '3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]' * espnet version: 'espnet 0.10.3a3' * pytorch version: 'pytorch 1.8.1+cu102' * Git hash: 'b41391336042a4876e30d9fe5c66afb4e4be404c' + Commit date: 'Wed Sep 22 10:02:03 2021 -0400' asr\_train\_asr\_smaller\_aishell\_xlsr\_raw\_zh\_word ------------------------------------------------------ ### WER ### CER ### TER ASR config ---------- expand LM config --------- expand
[ "### 'espnet/sujay\\_catslu\\_map'\n\n\nThis model was trained by Sujay S Kumar using catslu recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sun Oct 3 12:53:16 EDT 2021'\n* python version: '3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.3a3'\n* pytorch version: 'pytorch 1.8.1+cu102'\n* Git hash: 'b41391336042a4876e30d9fe5c66afb4e4be404c'\n\t+ Commit date: 'Wed Sep 22 10:02:03 2021 -0400'\n\n\nasr\\_train\\_asr\\_smaller\\_aishell\\_xlsr\\_raw\\_zh\\_word\n------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand\n\nLM config\n---------\n\n\nexpand" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #zh #dataset-catslu #license-cc-by-4.0 #region-us \n", "### 'espnet/sujay\\_catslu\\_map'\n\n\nThis model was trained by Sujay S Kumar using catslu recipe in espnet.", "### Demo: How to use in ESPnet2\n\n\nRESULTS\n=======\n\n\nEnvironments\n------------\n\n\n* date: 'Sun Oct 3 12:53:16 EDT 2021'\n* python version: '3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]'\n* espnet version: 'espnet 0.10.3a3'\n* pytorch version: 'pytorch 1.8.1+cu102'\n* Git hash: 'b41391336042a4876e30d9fe5c66afb4e4be404c'\n\t+ Commit date: 'Wed Sep 22 10:02:03 2021 -0400'\n\n\nasr\\_train\\_asr\\_smaller\\_aishell\\_xlsr\\_raw\\_zh\\_word\n------------------------------------------------------", "### WER", "### CER", "### TER\n\n\n\nASR config\n----------\n\n\nexpand\n\nLM config\n---------\n\n\nexpand" ]
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `https://zenodo.org/record/5845307/files/asr_conformer_ar_valid.acc.ave.zip?download=1` ♻️ Imported from https://zenodo.org/record/5845307/files/asr_conformer_ar_valid.acc.ave.zip?download=1 This model was trained by vectominist using seame/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["en", "zh", "multilingual"], "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["seame"]}
espnet/vectominist_seame_asr_conformer_bpe5626
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "zh", "multilingual", "dataset:seame", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en", "zh", "multilingual" ]
TAGS #espnet #audio #automatic-speech-recognition #en #zh #multilingual #dataset-seame #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 ASR pretrained model ### 'URL ️ Imported from URL This model was trained by vectominist using seame/asr1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 ASR pretrained model", "### 'URL\n️ Imported from URL\n\nThis model was trained by vectominist using seame/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #zh #multilingual #dataset-seame #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 ASR pretrained model", "### 'URL\n️ Imported from URL\n\nThis model was trained by vectominist using seame/asr1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\nor arXiv:" ]
automatic-speech-recognition
espnet
# ESPnet2 ASR pretrained model ## `Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch, fs=16k, lang=en` This model was trained by Takashi Maekaku using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Fri Aug 6 11:44:39 JST 2021` - python version: `3.7.9 (default, Apr 23 2021, 13:48:31) [GCC 5.5.0 20171010]` - espnet version: `espnet 0.9.9` - pytorch version: `pytorch 1.7.0` - Git hash: `0f7558a716ab830d0c29da8785840124f358d47b` - Commit date: `Tue Jun 8 15:33:49 2021 -0400` ## asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|54402|98.5|1.3|0.2|0.2|1.7|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|50948|96.8|2.8|0.4|0.3|3.4|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|52576|98.4|1.4|0.2|0.2|1.8|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|52343|96.8|2.8|0.4|0.4|3.6|36.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|288456|99.6|0.2|0.2|0.2|0.6|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|265951|98.8|0.6|0.6|0.3|1.5|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|281530|99.6|0.2|0.2|0.2|0.6|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|272758|98.9|0.5|0.5|0.4|1.4|36.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|68010|98.2|1.3|0.5|0.4|2.2|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|63110|96.0|2.8|1.2|0.6|4.6|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|65818|98.1|1.3|0.6|0.4|2.3|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|65101|96.0|2.7|1.3|0.6|4.6|36.0| ``` ### Training config See full config in [`config.yaml`](./exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp/config.yaml) ```yaml config: conf/tuning/train_asr_conformer7_hubert_960hr_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ngpu: 3 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 3 local_rank: 3 dist_master_addr: localhost dist_master_port: 33643 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"], "inference": false}
espnet/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #license-cc-by-4.0 #region-us
# ESPnet2 ASR pretrained model ## 'Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch, fs=16k, lang=en' This model was trained by Takashi Maekaku using librispeech recipe in espnet. ### Python API ### Evaluate in the recipe ### Results ### Training config See full config in 'URL'
[ "# ESPnet2 ASR pretrained model", "## 'Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch, fs=16k, lang=en'\n\nThis model was trained by Takashi Maekaku using librispeech recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #license-cc-by-4.0 #region-us \n", "# ESPnet2 ASR pretrained model", "## 'Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch, fs=16k, lang=en'\n\nThis model was trained by Takashi Maekaku using librispeech recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
automatic-speech-recognition
espnet
# ESPnet2 ASR pretrained model ## `Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp_25epoch, fs=16k, lang=en` This model was trained by Takashi Maekaku using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Sat Jul 3 23:10:19 JST 2021` - python version: `3.7.9 (default, Apr 23 2021, 13:48:31) [GCC 5.5.0 20171010]` - espnet version: `espnet 0.9.9` - pytorch version: `pytorch 1.7.0` - Git hash: `0f7558a716ab830d0c29da8785840124f358d47b` - Commit date: `Tue Jun 8 15:33:49 2021 -0400` ## asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|54402|98.3|1.6|0.2|0.2|1.9|24.9| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|50948|95.1|4.3|0.6|0.4|5.4|42.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|52576|98.1|1.7|0.2|0.2|2.2|26.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|52343|95.3|4.1|0.6|0.5|5.2|45.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|288456|99.5|0.2|0.2|0.2|0.6|24.9| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|265951|98.1|1.0|0.9|0.5|2.4|42.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|281530|99.5|0.2|0.3|0.2|0.7|26.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|272758|98.3|0.8|0.9|0.5|2.3|45.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|68010|97.8|1.6|0.6|0.4|2.6|24.9| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|63110|94.1|4.3|1.6|1.1|7.0|42.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|65818|97.6|1.6|0.8|0.4|2.8|26.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|65101|94.3|4.0|1.8|1.0|6.7|45.8| ``` ### Training config See full config in [`config.yaml`](./exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp/config.yaml) ```yaml config: conf/tuning/train_asr_conformer7_hubert_960hr_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ngpu: 3 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 3 local_rank: 3 dist_master_addr: localhost dist_master_port: 33643 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"], "inference": false}
espnet/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_larg-truncated-5b94d9
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-librispeech #license-cc-by-4.0 #region-us
# ESPnet2 ASR pretrained model ## 'Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp_25epoch, fs=16k, lang=en' This model was trained by Takashi Maekaku using librispeech recipe in espnet. ### Python API ### Evaluate in the recipe ### Results ### Training config See full config in 'URL'
[ "# ESPnet2 ASR pretrained model", "## 'Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp_25epoch, fs=16k, lang=en'\n\nThis model was trained by Takashi Maekaku using librispeech recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-librispeech #license-cc-by-4.0 #region-us \n", "# ESPnet2 ASR pretrained model", "## 'Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp_25epoch, fs=16k, lang=en'\n\nThis model was trained by Takashi Maekaku using librispeech recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
audio-to-audio
espnet
# ESPnet2 ENH pretrained model ## `neillu23/dns_ins20_enh_train_enh_blstm_tf_raw_valid.loss.best, fs=16k, lang=en` ♻️ Imported from <https://zenodo.org/record/4923697#.YOAOIpozZH4>. This model was trained by neillu23 using dns_ins20 recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Wed Jun 9 09:49:34 CST 2021` - python version: `3.8.10 (default, May 19 2021, 18:05:58) [GCC 7.3.0]` - espnet version: `espnet 0.9.9` - pytorch version: `pytorch 1.4.0` - Git hash: `c1dfefb98bf59f654e0907b9681668eaca8ddfcc` - Commit date: `Tue Jun 8 17:23:26 2021 +0800` ## enh_train_enh_blstm_tf_raw config: ./conf/tuning/train_enh_blstm_tf.yaml |dataset|STOI|SAR|SDR|SIR| |---|---|---|---|---| |enhanced_cv_synthetic|0.98|23.87|23.87|0.00| |enhanced_tt_synthetic_no_reverb|0.96|15.94|15.94|0.00| |enhanced_tt_synthetic_with_reverb|0.84|11.86|11.86|0.00| ``` ### Training config See full config in [`config.yaml`](./exp/enh_train_enh_blstm_tf_raw/config.yaml) ```yaml config: ./conf/tuning/train_enh_blstm_tf.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_blstm_tf_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 45398 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "audio-source-separation", "audio-to-audio"], "datasets": ["dns_ins20"], "inference": false}
espnet/yen-ju-lu-dns_ins20_enh_train_enh_blstm_tf_raw_valid.loss.best
null
[ "espnet", "audio", "audio-source-separation", "audio-to-audio", "en", "dataset:dns_ins20", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #espnet #audio #audio-source-separation #audio-to-audio #en #dataset-dns_ins20 #license-cc-by-4.0 #region-us
# ESPnet2 ENH pretrained model ## 'neillu23/dns_ins20_enh_train_enh_blstm_tf_raw_valid.URL, fs=16k, lang=en' ️ Imported from <URL This model was trained by neillu23 using dns_ins20 recipe in espnet. ### Python API ### Evaluate in the recipe ### Results ### Training config See full config in 'URL'
[ "# ESPnet2 ENH pretrained model", "## 'neillu23/dns_ins20_enh_train_enh_blstm_tf_raw_valid.URL, fs=16k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by neillu23 using dns_ins20 recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #audio-source-separation #audio-to-audio #en #dataset-dns_ins20 #license-cc-by-4.0 #region-us \n", "# ESPnet2 ENH pretrained model", "## 'neillu23/dns_ins20_enh_train_enh_blstm_tf_raw_valid.URL, fs=16k, lang=en'\n\n️ Imported from <URL\n\nThis model was trained by neillu23 using dns_ins20 recipe in espnet.", "### Python API", "### Evaluate in the recipe", "### Results", "### Training config\n\nSee full config in 'URL'" ]
text-generation
null
# Bot Edan
{"tags": ["conversational"]}
estehpanas/pascalbot
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #conversational #region-us
# Bot Edan
[ "# Bot Edan" ]
[ "TAGS\n#conversational #region-us \n", "# Bot Edan" ]
question-answering
transformers
# camembert-base-squadFR-fquad-piaf ## Description Question-answering French model, using base [CamemBERT](https://camembert-model.fr/) fine-tuned on a combo of three French Q&A datasets: 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/) 2. [FQuADv1.0](https://fquad.illuin.tech/) 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD) ## Training hyperparameters ```shell python run_squad.py \ --model_type camembert \ --model_name_or_path camembert-base \ --do_train --do_eval \ --train_file data/SQuAD+fquad+piaf.json \ --predict_file data/fquad_valid.json \ --per_gpu_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 10000 ``` ## Evaluation results ### FQuAD v1.0 Evaluation ```shell {"f1": 79.81, "exact_match": 55.14} ``` ### SQuAD-FR Evaluation ```shell {"f1": 80.61, "exact_match": 59.54} ``` ## Usage ```python from transformers import pipeline nlp = pipeline('question-answering', model='etalab-ia/camembert-base-squadFR-fquad-piaf', tokenizer='etalab-ia/camembert-base-squadFR-fquad-piaf') nlp({ 'question': "Qui est Claude Monet?", 'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme." }) ``` ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). ## Citations ### PIAF ``` @inproceedings{KeraronLBAMSSS20, author = {Rachel Keraron and Guillaume Lancrenon and Mathilde Bras and Fr{\'{e}}d{\'{e}}ric Allary and Gilles Moyse and Thomas Scialom and Edmundo{-}Pavel Soriano{-}Morales and Jacopo Staiano}, title = {Project {PIAF:} Building a Native French Question-Answering Dataset}, booktitle = {{LREC}}, pages = {5481--5490}, publisher = {European Language Resources Association}, year = {2020} } ``` ### FQuAD ``` @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ``` ### SQuAD-FR ``` @MISC{kabbadj2018, author = "Kabbadj, Ali", title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ", editor = "linkedin.com", month = "November", year = "2018", url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}", note = "[Online; posted 11-November-2018]", } ``` ### CamemBERT HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base) ``` @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
{"language": "fr", "datasets": ["piaf", "FQuAD", "SQuAD-FR"], "widget": [{"text": "Comment s'appelle le portail open data du gouvernement ?", "context": "Etalab est une administration publique fran\u00e7aise qui fait notamment office de Chief Data Officer de l'\u00c9tat et coordonne la conception et la mise en \u0153uvre de sa strat\u00e9gie dans le domaine de la donn\u00e9e (ouverture et partage des donn\u00e9es publiques ou open data, exploitation des donn\u00e9es et intelligence artificielle...). Ainsi, Etalab d\u00e9veloppe et maintient le portail des donn\u00e9es ouvertes du gouvernement fran\u00e7ais data.gouv.fr. Etalab promeut \u00e9galement une plus grande ouverture l'administration sur la soci\u00e9t\u00e9 (gouvernement ouvert) : transparence de l'action publique, innovation ouverte, participation citoyenne... elle promeut l\u2019innovation, l\u2019exp\u00e9rimentation, les m\u00e9thodes de travail ouvertes, agiles et it\u00e9ratives, ainsi que les synergies avec la soci\u00e9t\u00e9 civile pour d\u00e9cloisonner l\u2019administration et favoriser l\u2019adoption des meilleures pratiques professionnelles dans le domaine du num\u00e9rique. \u00c0 ce titre elle \u00e9tudie notamment l\u2019opportunit\u00e9 de recourir \u00e0 des technologies en voie de maturation issues du monde de la recherche. Cette entit\u00e9 charg\u00e9e de l'innovation au sein de l'administration doit contribuer \u00e0 l'am\u00e9lioration du service public gr\u00e2ce au num\u00e9rique. Elle est rattach\u00e9e \u00e0 la Direction interminist\u00e9rielle du num\u00e9rique, dont les missions et l\u2019organisation ont \u00e9t\u00e9 fix\u00e9es par le d\u00e9cret du 30 octobre 2019.\u2009 Dirig\u00e9 par Laure Lucchesi depuis 2016, elle rassemble une \u00e9quipe pluridisciplinaire d'une trentaine de personnes."}]}
AgentPublic/camembert-base-squadFR-fquad-piaf
null
[ "transformers", "pytorch", "tf", "safetensors", "camembert", "question-answering", "fr", "dataset:piaf", "dataset:FQuAD", "dataset:SQuAD-FR", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #tf #safetensors #camembert #question-answering #fr #dataset-piaf #dataset-FQuAD #dataset-SQuAD-FR #endpoints_compatible #region-us
# camembert-base-squadFR-fquad-piaf ## Description Question-answering French model, using base CamemBERT fine-tuned on a combo of three French Q&A datasets: 1. PIAFv1.1 2. FQuADv1.0 3. SQuAD-FR (SQuAD automatically translated to French) ## Training hyperparameters ## Evaluation results ### FQuAD v1.0 Evaluation ### SQuAD-FR Evaluation ## Usage ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). s ### PIAF ### FQuAD ### SQuAD-FR ### CamemBERT HF model card : URL
[ "# camembert-base-squadFR-fquad-piaf", "## Description\n\nQuestion-answering French model, using base CamemBERT fine-tuned on a combo of three French Q&A datasets:\n\n1. PIAFv1.1\n2. FQuADv1.0\n3. SQuAD-FR (SQuAD automatically translated to French)", "## Training hyperparameters", "## Evaluation results", "### FQuAD v1.0 Evaluation", "### SQuAD-FR Evaluation", "## Usage", "## Acknowledgments\n\nThis work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). \n\ns", "### PIAF", "### FQuAD", "### SQuAD-FR", "### CamemBERT\nHF model card : URL" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #camembert #question-answering #fr #dataset-piaf #dataset-FQuAD #dataset-SQuAD-FR #endpoints_compatible #region-us \n", "# camembert-base-squadFR-fquad-piaf", "## Description\n\nQuestion-answering French model, using base CamemBERT fine-tuned on a combo of three French Q&A datasets:\n\n1. PIAFv1.1\n2. FQuADv1.0\n3. SQuAD-FR (SQuAD automatically translated to French)", "## Training hyperparameters", "## Evaluation results", "### FQuAD v1.0 Evaluation", "### SQuAD-FR Evaluation", "## Usage", "## Acknowledgments\n\nThis work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). \n\ns", "### PIAF", "### FQuAD", "### SQuAD-FR", "### CamemBERT\nHF model card : URL" ]
null
transformers
# dpr-ctx_encoder-fr_qa-camembert ## Description French [DPR model](https://arxiv.org/abs/2004.04906) using [CamemBERT](https://arxiv.org/abs/1911.03894) as base and then fine-tuned on a combo of three French Q&A ## Data ### French Q&A We use a combination of three French Q&A datasets: 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/) 2. [FQuADv1.0](https://fquad.illuin.tech/) 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD) ### Training We are using 90 562 random questions for `train` and 22 391 for `dev`. No question in `train` exists in `dev`. For each question, we have a single `positive_context` (the paragraph where the answer to this question is found) and around 30 `hard_negtive_contexts`. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates **that do not contain the answer**. The files are over [here](https://drive.google.com/file/d/1W5Jm3sqqWlsWsx2sFpA39Ewn33PaLQ7U/view?usp=sharing). ### Evaluation We use FQuADv1.0 and French-SQuAD evaluation sets. ## Training Script We use the official [Facebook DPR implentation](https://github.com/facebookresearch/DPR) with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found [over here](https://github.com/psorianom/DPR). ### Hyperparameters ```shell python -m torch.distributed.launch --nproc_per_node=8 train_dense_encoder.py \ --max_grad_norm 2.0 \ --encoder_model_type fairseq_roberta \ --pretrained_file data/camembert-base \ --seed 12345 \ --sequence_length 256 \ --warmup_steps 1237 \ --batch_size 16 \ --do_lower_case \ --train_file ./data/DPR_FR_train.json \ --dev_file ./data/DPR_FR_dev.json \ --output_dir ./output/ \ --learning_rate 2e-05 \ --num_train_epochs 35 \ --dev_batch_size 16 \ --val_av_rank_start_epoch 30 \ --pretrained_model_cfg ./data/camembert-base/ ``` ### ## Evaluation results We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use [haystack's evaluation script](https://github.com/deepset-ai/haystack/blob/db4151bbc026f27c6d709fefef1088cd3f1e18b9/tutorials/Tutorial5_Evaluation.py) (**we report Retrieval results only**). ### DPR #### FQuAD v1.0 Evaluation ```shell For 2764 out of 3184 questions (86.81%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.87 Retriever Mean Avg Precision: 0.57 ``` #### SQuAD-FR Evaluation ```shell For 8945 out of 10018 questions (89.29%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.89 Retriever Mean Avg Precision: 0.63 ``` ### BM25 For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25. #### FQuAD v1.0 Evaluation ```shell For 2966 out of 3184 questions (93.15%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.74 ``` #### SQuAD-FR Evaluation ```shell For 9353 out of 10018 questions (93.36%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.77 ``` ## Usage The results reported here are obtained with the `haystack` library. To get to similar embeddings using exclusively HF `transformers` library, you can do the following: ```python from transformers import AutoTokenizer, AutoModel query = "Salut, mon chien est-il mignon ?" tokenizer = AutoTokenizer.from_pretrained("etalab-ia/dpr-ctx_encoder-fr_qa-camembert", do_lower_case=True) input_ids = tokenizer(query, return_tensors='pt')["input_ids"] model = AutoModel.from_pretrained("etalab-ia/dpr-ctx_encoder-fr_qa-camembert", return_dict=True) embeddings = model.forward(input_ids).pooler_output print(embeddings) ``` And with `haystack`, we use it as a retriever: ``` retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="etalab-ia/dpr-question_encoder-fr_qa-camembert", passage_embedding_model="etalab-ia/dpr-ctx_encoder-fr_qa-camembert", model_version=dpr_model_tag, infer_tokenizer_classes=True, ) ``` ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). ## Citations ### Datasets #### PIAF ``` @inproceedings{KeraronLBAMSSS20, author = {Rachel Keraron and Guillaume Lancrenon and Mathilde Bras and Fr{\'{e}}d{\'{e}}ric Allary and Gilles Moyse and Thomas Scialom and Edmundo{-}Pavel Soriano{-}Morales and Jacopo Staiano}, title = {Project {PIAF:} Building a Native French Question-Answering Dataset}, booktitle = {{LREC}}, pages = {5481--5490}, publisher = {European Language Resources Association}, year = {2020} } ``` #### FQuAD ``` @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ``` #### SQuAD-FR ``` @MISC{kabbadj2018, author = "Kabbadj, Ali", title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ", editor = "linkedin.com", month = "November", year = "2018", url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}", note = "[Online; posted 11-November-2018]", } ``` ### Models #### CamemBERT HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base) ``` @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ``` #### DPR ``` @misc{karpukhin2020dense, title={Dense Passage Retrieval for Open-Domain Question Answering}, author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih}, year={2020}, eprint={2004.04906}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "fr", "datasets": ["piaf", "FQuAD", "SQuAD-FR"]}
AgentPublic/dpr-ctx_encoder-fr_qa-camembert
null
[ "transformers", "pytorch", "camembert", "fr", "dataset:piaf", "dataset:FQuAD", "dataset:SQuAD-FR", "arxiv:2004.04906", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2004.04906", "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fr #dataset-piaf #dataset-FQuAD #dataset-SQuAD-FR #arxiv-2004.04906 #arxiv-1911.03894 #endpoints_compatible #region-us
# dpr-ctx_encoder-fr_qa-camembert ## Description French DPR model using CamemBERT as base and then fine-tuned on a combo of three French Q&A ## Data ### French Q&A We use a combination of three French Q&A datasets: 1. PIAFv1.1 2. FQuADv1.0 3. SQuAD-FR (SQuAD automatically translated to French) ### Training We are using 90 562 random questions for 'train' and 22 391 for 'dev'. No question in 'train' exists in 'dev'. For each question, we have a single 'positive_context' (the paragraph where the answer to this question is found) and around 30 'hard_negtive_contexts'. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates that do not contain the answer. The files are over here. ### Evaluation We use FQuADv1.0 and French-SQuAD evaluation sets. ## Training Script We use the official Facebook DPR implentation with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found over here. ### Hyperparameters ### ## Evaluation results We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use haystack's evaluation script (we report Retrieval results only). ### DPR #### FQuAD v1.0 Evaluation #### SQuAD-FR Evaluation ### BM25 For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25. #### FQuAD v1.0 Evaluation #### SQuAD-FR Evaluation ## Usage The results reported here are obtained with the 'haystack' library. To get to similar embeddings using exclusively HF 'transformers' library, you can do the following: And with 'haystack', we use it as a retriever: ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). s ### Datasets #### PIAF #### FQuAD #### SQuAD-FR ### Models #### CamemBERT HF model card : URL #### DPR
[ "# dpr-ctx_encoder-fr_qa-camembert", "## Description\n\nFrench DPR model using CamemBERT as base and then fine-tuned on a combo of three French Q&A", "## Data", "### French Q&A \nWe use a combination of three French Q&A datasets: \n\n1. PIAFv1.1\n2. FQuADv1.0\n3. SQuAD-FR (SQuAD automatically translated to French)", "### Training\n\n\nWe are using 90 562 random questions for 'train' and 22 391 for 'dev'. No question in 'train' exists in 'dev'. For each question, we have a single 'positive_context' (the paragraph where the answer to this question is found) and around 30 'hard_negtive_contexts'. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates that do not contain the answer. \n\nThe files are over here.", "### Evaluation\n\n\nWe use FQuADv1.0 and French-SQuAD evaluation sets.", "## Training Script\nWe use the official Facebook DPR implentation with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found over here.", "### Hyperparameters", "###", "## Evaluation results\nWe obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use haystack's evaluation script (we report Retrieval results only).", "### DPR", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "### BM25\n\n\nFor reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25.", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "## Usage\n\nThe results reported here are obtained with the 'haystack' library. To get to similar embeddings using exclusively HF 'transformers' library, you can do the following:\n\n\n\nAnd with 'haystack', we use it as a retriever:", "## Acknowledgments\n\nThis work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). \n\n\ns", "### Datasets", "#### PIAF", "#### FQuAD", "#### SQuAD-FR", "### Models", "#### CamemBERT\nHF model card : URL", "#### DPR" ]
[ "TAGS\n#transformers #pytorch #camembert #fr #dataset-piaf #dataset-FQuAD #dataset-SQuAD-FR #arxiv-2004.04906 #arxiv-1911.03894 #endpoints_compatible #region-us \n", "# dpr-ctx_encoder-fr_qa-camembert", "## Description\n\nFrench DPR model using CamemBERT as base and then fine-tuned on a combo of three French Q&A", "## Data", "### French Q&A \nWe use a combination of three French Q&A datasets: \n\n1. PIAFv1.1\n2. FQuADv1.0\n3. SQuAD-FR (SQuAD automatically translated to French)", "### Training\n\n\nWe are using 90 562 random questions for 'train' and 22 391 for 'dev'. No question in 'train' exists in 'dev'. For each question, we have a single 'positive_context' (the paragraph where the answer to this question is found) and around 30 'hard_negtive_contexts'. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates that do not contain the answer. \n\nThe files are over here.", "### Evaluation\n\n\nWe use FQuADv1.0 and French-SQuAD evaluation sets.", "## Training Script\nWe use the official Facebook DPR implentation with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found over here.", "### Hyperparameters", "###", "## Evaluation results\nWe obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use haystack's evaluation script (we report Retrieval results only).", "### DPR", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "### BM25\n\n\nFor reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25.", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "## Usage\n\nThe results reported here are obtained with the 'haystack' library. To get to similar embeddings using exclusively HF 'transformers' library, you can do the following:\n\n\n\nAnd with 'haystack', we use it as a retriever:", "## Acknowledgments\n\nThis work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). \n\n\ns", "### Datasets", "#### PIAF", "#### FQuAD", "#### SQuAD-FR", "### Models", "#### CamemBERT\nHF model card : URL", "#### DPR" ]
feature-extraction
transformers
# dpr-question_encoder-fr_qa-camembert ## Description French [DPR model](https://arxiv.org/abs/2004.04906) using [CamemBERT](https://arxiv.org/abs/1911.03894) as base and then fine-tuned on a combo of three French Q&A ## Data ### French Q&A We use a combination of three French Q&A datasets: 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/) 2. [FQuADv1.0](https://fquad.illuin.tech/) 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD) ### Training We are using 90 562 random questions for `train` and 22 391 for `dev`. No question in `train` exists in `dev`. For each question, we have a single `positive_context` (the paragraph where the answer to this question is found) and around 30 `hard_negtive_contexts`. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates **that do not contain the answer**. The files are over [here](https://drive.google.com/file/d/1W5Jm3sqqWlsWsx2sFpA39Ewn33PaLQ7U/view?usp=sharing). ### Evaluation We use FQuADv1.0 and French-SQuAD evaluation sets. ## Training Script We use the official [Facebook DPR implentation](https://github.com/facebookresearch/DPR) with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found [over here](https://github.com/psorianom/DPR). ### Hyperparameters ```shell python -m torch.distributed.launch --nproc_per_node=8 train_dense_encoder.py \ --max_grad_norm 2.0 --encoder_model_type hf_bert --pretrained_file data/bert-base-multilingual-uncased \ --seed 12345 --sequence_length 256 --warmup_steps 1237 --batch_size 16 --do_lower_case \ --train_file DPR_FR_train.json \ --dev_file ./data/100_hard_neg_ctxs/DPR_FR_dev.json \ --output_dir ./output/bert --learning_rate 2e-05 --num_train_epochs 35 \ --dev_batch_size 16 --val_av_rank_start_epoch 25 \ --pretrained_model_cfg ./data/bert-base-multilingual-uncased ``` ### ## Evaluation results We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use [haystack's evaluation script](https://github.com/deepset-ai/haystack/blob/db4151bbc026f27c6d709fefef1088cd3f1e18b9/tutorials/Tutorial5_Evaluation.py) (**we report Retrieval results only**). ### DPR #### FQuAD v1.0 Evaluation ```shell For 2764 out of 3184 questions (86.81%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.87 Retriever Mean Avg Precision: 0.57 ``` #### SQuAD-FR Evaluation ```shell For 8945 out of 10018 questions (89.29%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.89 Retriever Mean Avg Precision: 0.63 ``` ### BM25 For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25. #### FQuAD v1.0 Evaluation ```shell For 2966 out of 3184 questions (93.15%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.74 ``` #### SQuAD-FR Evaluation ```shell For 9353 out of 10018 questions (93.36%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.77 ``` ## Usage The results reported here are obtained with the `haystack` library. To get to similar embeddings using exclusively HF `transformers` library, you can do the following: ```python from transformers import AutoTokenizer, AutoModel query = "Salut, mon chien est-il mignon ?" tokenizer = AutoTokenizer.from_pretrained("etalab-ia/dpr-question_encoder-fr_qa-camembert", do_lower_case=True) input_ids = tokenizer(query, return_tensors='pt')["input_ids"] model = AutoModel.from_pretrained("etalab-ia/dpr-question_encoder-fr_qa-camembert", return_dict=True) embeddings = model.forward(input_ids).pooler_output print(embeddings) ``` And with `haystack`, we use it as a retriever: ``` retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="etalab-ia/dpr-question_encoder-fr_qa-camembert", passage_embedding_model="etalab-ia/dpr-ctx_encoder-fr_qa-camembert", model_version=dpr_model_tag, infer_tokenizer_classes=True, ) ``` ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). ## Citations ### Datasets #### PIAF ``` @inproceedings{KeraronLBAMSSS20, author = {Rachel Keraron and Guillaume Lancrenon and Mathilde Bras and Fr{\'{e}}d{\'{e}}ric Allary and Gilles Moyse and Thomas Scialom and Edmundo{-}Pavel Soriano{-}Morales and Jacopo Staiano}, title = {Project {PIAF:} Building a Native French Question-Answering Dataset}, booktitle = {{LREC}}, pages = {5481--5490}, publisher = {European Language Resources Association}, year = {2020} } ``` #### FQuAD ``` @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ``` #### SQuAD-FR ``` @MISC{kabbadj2018, author = "Kabbadj, Ali", title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ", editor = "linkedin.com", month = "November", year = "2018", url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}", note = "[Online; posted 11-November-2018]", } ``` ### Models #### CamemBERT HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base) ``` @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ``` #### DPR ``` @misc{karpukhin2020dense, title={Dense Passage Retrieval for Open-Domain Question Answering}, author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih}, year={2020}, eprint={2004.04906}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "fr", "datasets": ["piaf", "FQuAD", "SQuAD-FR"]}
AgentPublic/dpr-question_encoder-fr_qa-camembert
null
[ "transformers", "pytorch", "camembert", "feature-extraction", "fr", "dataset:piaf", "dataset:FQuAD", "dataset:SQuAD-FR", "arxiv:2004.04906", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2004.04906", "1911.03894" ]
[ "fr" ]
TAGS #transformers #pytorch #camembert #feature-extraction #fr #dataset-piaf #dataset-FQuAD #dataset-SQuAD-FR #arxiv-2004.04906 #arxiv-1911.03894 #endpoints_compatible #region-us
# dpr-question_encoder-fr_qa-camembert ## Description French DPR model using CamemBERT as base and then fine-tuned on a combo of three French Q&A ## Data ### French Q&A We use a combination of three French Q&A datasets: 1. PIAFv1.1 2. FQuADv1.0 3. SQuAD-FR (SQuAD automatically translated to French) ### Training We are using 90 562 random questions for 'train' and 22 391 for 'dev'. No question in 'train' exists in 'dev'. For each question, we have a single 'positive_context' (the paragraph where the answer to this question is found) and around 30 'hard_negtive_contexts'. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates that do not contain the answer. The files are over here. ### Evaluation We use FQuADv1.0 and French-SQuAD evaluation sets. ## Training Script We use the official Facebook DPR implentation with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found over here. ### Hyperparameters ### ## Evaluation results We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use haystack's evaluation script (we report Retrieval results only). ### DPR #### FQuAD v1.0 Evaluation #### SQuAD-FR Evaluation ### BM25 For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25. #### FQuAD v1.0 Evaluation #### SQuAD-FR Evaluation ## Usage The results reported here are obtained with the 'haystack' library. To get to similar embeddings using exclusively HF 'transformers' library, you can do the following: And with 'haystack', we use it as a retriever: ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). s ### Datasets #### PIAF #### FQuAD #### SQuAD-FR ### Models #### CamemBERT HF model card : URL #### DPR
[ "# dpr-question_encoder-fr_qa-camembert", "## Description\n\nFrench DPR model using CamemBERT as base and then fine-tuned on a combo of three French Q&A", "## Data", "### French Q&A \nWe use a combination of three French Q&A datasets: \n\n1. PIAFv1.1\n2. FQuADv1.0\n3. SQuAD-FR (SQuAD automatically translated to French)", "### Training\n\n\nWe are using 90 562 random questions for 'train' and 22 391 for 'dev'. No question in 'train' exists in 'dev'. For each question, we have a single 'positive_context' (the paragraph where the answer to this question is found) and around 30 'hard_negtive_contexts'. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates that do not contain the answer. \n\nThe files are over here.", "### Evaluation\n\n\nWe use FQuADv1.0 and French-SQuAD evaluation sets.", "## Training Script\nWe use the official Facebook DPR implentation with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found over here.", "### Hyperparameters", "###", "## Evaluation results\nWe obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use haystack's evaluation script (we report Retrieval results only).", "### DPR", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "### BM25\n\n\nFor reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25.", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "## Usage\n\nThe results reported here are obtained with the 'haystack' library. To get to similar embeddings using exclusively HF 'transformers' library, you can do the following:\n\n\n\nAnd with 'haystack', we use it as a retriever:", "## Acknowledgments\n\nThis work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). \n\n\ns", "### Datasets", "#### PIAF", "#### FQuAD", "#### SQuAD-FR", "### Models", "#### CamemBERT\nHF model card : URL", "#### DPR" ]
[ "TAGS\n#transformers #pytorch #camembert #feature-extraction #fr #dataset-piaf #dataset-FQuAD #dataset-SQuAD-FR #arxiv-2004.04906 #arxiv-1911.03894 #endpoints_compatible #region-us \n", "# dpr-question_encoder-fr_qa-camembert", "## Description\n\nFrench DPR model using CamemBERT as base and then fine-tuned on a combo of three French Q&A", "## Data", "### French Q&A \nWe use a combination of three French Q&A datasets: \n\n1. PIAFv1.1\n2. FQuADv1.0\n3. SQuAD-FR (SQuAD automatically translated to French)", "### Training\n\n\nWe are using 90 562 random questions for 'train' and 22 391 for 'dev'. No question in 'train' exists in 'dev'. For each question, we have a single 'positive_context' (the paragraph where the answer to this question is found) and around 30 'hard_negtive_contexts'. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates that do not contain the answer. \n\nThe files are over here.", "### Evaluation\n\n\nWe use FQuADv1.0 and French-SQuAD evaluation sets.", "## Training Script\nWe use the official Facebook DPR implentation with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found over here.", "### Hyperparameters", "###", "## Evaluation results\nWe obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use haystack's evaluation script (we report Retrieval results only).", "### DPR", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "### BM25\n\n\nFor reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25.", "#### FQuAD v1.0 Evaluation", "#### SQuAD-FR Evaluation", "## Usage\n\nThe results reported here are obtained with the 'haystack' library. To get to similar embeddings using exclusively HF 'transformers' library, you can do the following:\n\n\n\nAnd with 'haystack', we use it as a retriever:", "## Acknowledgments\n\nThis work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). \n\n\ns", "### Datasets", "#### PIAF", "#### FQuAD", "#### SQuAD-FR", "### Models", "#### CamemBERT\nHF model card : URL", "#### DPR" ]
text-classification
transformers
# Guwen CLS A Classical Chinese Text Classifier. See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch", "text classificatio"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "text-classification", "widget": [{"text": "\u5b50\u66f0\uff1a\u201c\u5f1f\u5b50\u5165\u5219\u5b5d\uff0c\u51fa\u5219\u608c\uff0c\u8c28\u800c\u4fe1\uff0c\u6cdb\u7231\u4f17\uff0c\u800c\u4eb2\u4ec1\u3002\u884c\u6709\u9980\u529b\uff0c\u5219\u4ee5\u5b66\u6587\u3002\u201d"}]}
ethanyt/guwen-cls
null
[ "transformers", "pytorch", "roberta", "text-classification", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "text classificatio", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roberta #text-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #text classificatio #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Guwen CLS A Classical Chinese Text Classifier. See also: <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a>
[ "# Guwen CLS\n\nA Classical Chinese Text Classifier.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #text classificatio #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Guwen CLS\n\nA Classical Chinese Text Classifier.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
token-classification
transformers
# Guwen NER A Classical Chinese Named Entity Recognizer. Note: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to [Guwen Models](https://github.com/ethan-yt/guwen-models). See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "token-classification", "widget": [{"text": "\u53ca\u79e6\u59cb\u7687\uff0c\u706d\u5148\u4ee3\u5178\u7c4d\uff0c\u711a\u4e66\u5751\u5112\uff0c\u5929\u4e0b\u5b66\u58eb\u9003\u96be\u89e3\u6563\uff0c\u6211\u5148\u4eba\u7528\u85cf\u5176\u5bb6\u4e66\u4e8e\u5c4b\u58c1\u3002\u6c49\u5ba4\u9f99\u5174\uff0c\u5f00\u8bbe\u5b66\u6821\uff0c\u65c1\u6c42\u5112\u96c5\uff0c\u4ee5\u9610\u5927\u7337\u3002\u6d4e\u5357\u4f0f\u751f\uff0c\u5e74\u8fc7\u4e5d\u5341\uff0c\u5931\u5176\u672c\u7ecf\uff0c\u53e3\u4ee5\u4f20\u6388\uff0c\u88c1\u4e8c\u5341\u9980\u7bc7\uff0c\u4ee5\u5176\u4e0a\u53e4\u4e4b\u4e66\uff0c\u8c13\u4e4b\u5c1a\u4e66\u3002\u767e\u7bc7\u4e4b\u4e49\uff0c\u4e16\u83ab\u5f97\u95fb\u3002"}]}
ethanyt/guwen-ner
null
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #jax #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Guwen NER A Classical Chinese Named Entity Recognizer. Note: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to Guwen Models. See also: <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a>
[ "# Guwen NER\n\nA Classical Chinese Named Entity Recognizer.\n\nNote: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to\nGuwen Models.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Guwen NER\n\nA Classical Chinese Named Entity Recognizer.\n\nNote: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to\nGuwen Models.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
token-classification
transformers
# Guwen Punc A Classical Chinese Punctuation Marker. See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch", "punctuation marker"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "token-classification", "widget": [{"text": "\u53ca\u79e6\u59cb\u7687\u706d\u5148\u4ee3\u5178\u7c4d\u711a\u4e66\u5751\u5112\u5929\u4e0b\u5b66\u58eb\u9003\u96be\u89e3\u6563\u6211\u5148\u4eba\u7528\u85cf\u5176\u5bb6\u4e66\u4e8e\u5c4b\u58c1\u6c49\u5ba4\u9f99\u5174\u5f00\u8bbe\u5b66\u6821\u65c1\u6c42\u5112\u96c5\u4ee5\u9610\u5927\u7337\u6d4e\u5357\u4f0f\u751f\u5e74\u8fc7\u4e5d\u5341\u5931\u5176\u672c\u7ecf\u53e3\u4ee5\u4f20\u6388\u88c1\u4e8c\u5341\u9980\u7bc7\u4ee5\u5176\u4e0a\u53e4\u4e4b\u4e66\u8c13\u4e4b\u5c1a\u4e66\u767e\u7bc7\u4e4b\u4e49\u4e16\u83ab\u5f97\u95fb"}]}
ethanyt/guwen-punc
null
[ "transformers", "pytorch", "roberta", "token-classification", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "punctuation marker", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #punctuation marker #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Guwen Punc A Classical Chinese Punctuation Marker. See also: <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a>
[ "# Guwen Punc\n\nA Classical Chinese Punctuation Marker.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
[ "TAGS\n#transformers #pytorch #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #punctuation marker #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Guwen Punc\n\nA Classical Chinese Punctuation Marker.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
token-classification
transformers
# Guwen Quote A Classical Chinese Quotation Detector. Note: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to [Guwen Models](https://github.com/ethan-yt/guwen-models). See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch", "quotation detection"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b66\u800c\u65f6\u4e60\u4e4b\u4e0d\u4ea6\u8bf4\u4e4e\u6709\u670b\u81ea\u8fdc\u65b9\u6765\u4e0d\u4ea6\u4e50\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u6120\u4e0d\u4ea6\u541b\u5b50\u4e4e\u6709\u5b50\u66f0\u5176\u4e3a\u4eba\u4e5f\u5b5d\u5f1f\u800c\u597d\u72af\u4e0a\u8005\u9c9c\u77e3\u4e0d\u597d\u72af\u4e0a\u800c\u597d\u4f5c\u4e71\u8005\u672a\u4e4b\u6709\u4e5f\u541b\u5b50\u52a1\u672c\u672c\u7acb\u800c\u9053\u751f\u5b5d\u5f1f\u4e5f\u8005\u5176\u4e3a\u4ec1\u4e4b\u672c\u4e0e\u5b50\u66f0\u5de7\u8a00\u4ee4\u8272\u9c9c\u77e3\u4ec1\u66fe\u5b50\u66f0\u543e\u65e5\u4e09\u7701\u543e\u8eab\u4e3a\u4eba\u8c0b\u800c\u4e0d\u5fe0\u4e4e\u4e0e\u670b\u53cb\u4ea4\u800c\u4e0d\u4fe1\u4e4e\u4f20\u4e0d\u4e60\u4e4e\u5b50\u66f0\u9053\u5343\u4e58\u4e4b\u56fd\u656c\u4e8b\u800c\u4fe1\u8282\u7528\u800c\u7231\u4eba\u4f7f\u6c11\u4ee5\u65f6"}]}
ethanyt/guwen-quote
null
[ "transformers", "pytorch", "roberta", "token-classification", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "quotation detection", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #quotation detection #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Guwen Quote A Classical Chinese Quotation Detector. Note: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to Guwen Models. See also: <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a>
[ "# Guwen Quote\n\nA Classical Chinese Quotation Detector.\n\nNote: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to\nGuwen Models.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
[ "TAGS\n#transformers #pytorch #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #quotation detection #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Guwen Quote\n\nA Classical Chinese Quotation Detector.\n\nNote: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to\nGuwen Models.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
token-classification
transformers
# Guwen Seg A Classical Chinese Sentence Segmenter. See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch", "sentence segmentation"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "token-classification", "widget": [{"text": "\u53ca\u79e6\u59cb\u7687\u706d\u5148\u4ee3\u5178\u7c4d\u711a\u4e66\u5751\u5112\u5929\u4e0b\u5b66\u58eb\u9003\u96be\u89e3\u6563\u6211\u5148\u4eba\u7528\u85cf\u5176\u5bb6\u4e66\u4e8e\u5c4b\u58c1\u6c49\u5ba4\u9f99\u5174\u5f00\u8bbe\u5b66\u6821\u65c1\u6c42\u5112\u96c5\u4ee5\u9610\u5927\u7337\u6d4e\u5357\u4f0f\u751f\u5e74\u8fc7\u4e5d\u5341\u5931\u5176\u672c\u7ecf\u53e3\u4ee5\u4f20\u6388\u88c1\u4e8c\u5341\u9980\u7bc7\u4ee5\u5176\u4e0a\u53e4\u4e4b\u4e66\u8c13\u4e4b\u5c1a\u4e66\u767e\u7bc7\u4e4b\u4e49\u4e16\u83ab\u5f97\u95fb"}]}
ethanyt/guwen-seg
null
[ "transformers", "pytorch", "roberta", "token-classification", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "sentence segmentation", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #sentence segmentation #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Guwen Seg A Classical Chinese Sentence Segmenter. See also: <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a>
[ "# Guwen Seg\n\nA Classical Chinese Sentence Segmenter.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
[ "TAGS\n#transformers #pytorch #roberta #token-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #sentence segmentation #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Guwen Seg\n\nA Classical Chinese Sentence Segmenter.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
text-classification
transformers
# Guwen Sent A Classical Chinese Poem Sentiment Classifier. See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch", "sentiment classificatio"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "text-classification", "widget": [{"text": "\u6eda\u6eda\u957f\u6c5f\u4e1c\u901d\u6c34\uff0c\u6d6a\u82b1\u6dd8\u5c3d\u82f1\u96c4"}, {"text": "\u5bfb\u5bfb\u89c5\u89c5\uff0c\u51b7\u51b7\u6e05\u6e05\uff0c\u51c4\u51c4\u60e8\u60e8\u621a\u621a"}, {"text": "\u6267\u624b\u76f8\u770b\u6cea\u773c\uff0c\u7adf\u65e0\u8bed\u51dd\u564e\uff0c\u5ff5\u53bb\u53bb\uff0c\u5343\u91cc\u70df\u6ce2\uff0c\u66ae\u972d\u6c89\u6c89\u695a\u5929\u9614\u3002"}, {"text": "\u5ffd\u5982\u4e00\u591c\u6625\u98ce\u6765\uff0c\u5e72\u6811\u4e07\u6811\u68a8\u82b1\u5f00"}]}
ethanyt/guwen-sent
null
[ "transformers", "pytorch", "roberta", "text-classification", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "sentiment classificatio", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roberta #text-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #sentiment classificatio #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Guwen Sent A Classical Chinese Poem Sentiment Classifier. See also: <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a> <a href="URL <img align="center" width="400" src="URL /> </a>
[ "# Guwen Sent\n\nA Classical Chinese Poem Sentiment Classifier.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #chinese #classical chinese #literary chinese #ancient chinese #bert #sentiment classificatio #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Guwen Sent\n\nA Classical Chinese Poem Sentiment Classifier.\n\nSee also: \n\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>\n<a href=\"URL\n <img align=\"center\" width=\"400\" src=\"URL />\n</a>" ]
fill-mask
transformers
# GuwenBERT ## Model description ![GuwenBERT](https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png) This is a RoBERTa model pre-trained on Classical Chinese. You can fine-tune GuwenBERT for downstream tasks, such as sentence breaking, punctuation, named entity recognition, and so on. For more information about RoBERTa, take a look at the RoBERTa's offical repo. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ethanyt/guwenbert-base") model = AutoModel.from_pretrained("ethanyt/guwenbert-base") ``` ## Training data The training data is daizhige dataset (殆知阁古代文献) which is contains of 15,694 books in Classical Chinese, covering Buddhism, Confucianism, Medicine, History, Zi, Yi, Yizang, Shizang, Taoism, and Jizang. 76% of them are punctuated. The total number of characters is 1.7B (1,743,337,673). All traditional Characters are converted to simplified characters. The vocabulary is constructed from this data set and the size is 23,292. ## Training procedure The models are initialized with `hfl/chinese-roberta-wwm-ext` and then pre-trained with a 2-step strategy. In the first step, the model learns MLM with only word embeddings updated during training, until convergence. In the second step, all parameters are updated during training. The models are trained on 4 V100 GPUs for 120K steps (20K for step#1, 100K for step#2) with a batch size of 2,048 and a sequence length of 512. The optimizer used is Adam with a learning rate of 2e-4, adam-betas of (0.9,0.98), adam-eps of 1e-6, a weight decay of 0.01, learning rate warmup for 5K steps, and linear decay of learning rate after. ## Eval results ### "Gulian Cup" Ancient Books Named Entity Recognition Evaluation Second place in the competition. Detailed test results: | NE Type | Precision | Recall | F1 | |:----------:|:-----------:|:------:|:-----:| | Book Name | 77.50 | 73.73 | 75.57 | | Other Name | 85.85 | 89.32 | 87.55 | | Micro Avg. | 83.88 | 85.39 | 84.63 | ## About Us We are from [Datahammer](https://datahammer.net), Beijing Institute of Technology. For more cooperation, please contact email: ethanyt [at] qq.com > Created with ❤️ by Tan Yan [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/Ethan-yt) and Zewen Chi [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/CZWin32768)
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "[MASK]\u592a\u5143\u4e2d\uff0c\u6b66\u9675\u4eba\u6355\u9c7c\u4e3a\u4e1a\u3002"}, {"text": "\u95ee\u5f81\u592b\u4ee5\u524d\u8def\uff0c\u6068\u6668\u5149\u4e4b[MASK]\u5fae\u3002"}, {"text": "\u6d54\u9633\u6c5f\u5934\u591c\u9001\u5ba2\uff0c\u67ab\u53f6[MASK]\u82b1\u79cb\u745f\u745f\u3002"}]}
ethanyt/guwenbert-base
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #jax #roberta #fill-mask #chinese #classical chinese #literary chinese #ancient chinese #bert #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
GuwenBERT ========= Model description ----------------- !GuwenBERT This is a RoBERTa model pre-trained on Classical Chinese. You can fine-tune GuwenBERT for downstream tasks, such as sentence breaking, punctuation, named entity recognition, and so on. For more information about RoBERTa, take a look at the RoBERTa's offical repo. How to use ---------- Training data ------------- The training data is daizhige dataset (殆知阁古代文献) which is contains of 15,694 books in Classical Chinese, covering Buddhism, Confucianism, Medicine, History, Zi, Yi, Yizang, Shizang, Taoism, and Jizang. 76% of them are punctuated. The total number of characters is 1.7B (1,743,337,673). All traditional Characters are converted to simplified characters. The vocabulary is constructed from this data set and the size is 23,292. Training procedure ------------------ The models are initialized with 'hfl/chinese-roberta-wwm-ext' and then pre-trained with a 2-step strategy. In the first step, the model learns MLM with only word embeddings updated during training, until convergence. In the second step, all parameters are updated during training. The models are trained on 4 V100 GPUs for 120K steps (20K for step#1, 100K for step#2) with a batch size of 2,048 and a sequence length of 512. The optimizer used is Adam with a learning rate of 2e-4, adam-betas of (0.9,0.98), adam-eps of 1e-6, a weight decay of 0.01, learning rate warmup for 5K steps, and linear decay of learning rate after. Eval results ------------ ### "Gulian Cup" Ancient Books Named Entity Recognition Evaluation Second place in the competition. Detailed test results: About Us -------- We are from Datahammer, Beijing Institute of Technology. For more cooperation, please contact email: ethanyt [at] URL > > Created with ️ by Tan Yan ![Github icon](URL and Zewen Chi ![Github icon](URL > > >
[ "### \"Gulian Cup\" Ancient Books Named Entity Recognition Evaluation\n\n\nSecond place in the competition. Detailed test results:\n\n\n\nAbout Us\n--------\n\n\nWe are from Datahammer, Beijing Institute of Technology.\nFor more cooperation, please contact email: ethanyt [at] URL\n\n\n\n> \n> Created with ️ by Tan Yan ![Github icon](URL and Zewen Chi ![Github icon](URL\n> \n> \n>" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #chinese #classical chinese #literary chinese #ancient chinese #bert #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### \"Gulian Cup\" Ancient Books Named Entity Recognition Evaluation\n\n\nSecond place in the competition. Detailed test results:\n\n\n\nAbout Us\n--------\n\n\nWe are from Datahammer, Beijing Institute of Technology.\nFor more cooperation, please contact email: ethanyt [at] URL\n\n\n\n> \n> Created with ️ by Tan Yan ![Github icon](URL and Zewen Chi ![Github icon](URL\n> \n> \n>" ]
fill-mask
transformers
# GuwenBERT ## Model description ![GuwenBERT](https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png) This is a RoBERTa model pre-trained on Classical Chinese. You can fine-tune GuwenBERT for downstream tasks, such as sentence breaking, punctuation, named entity recognition, and so on. For more information about RoBERTa, take a look at the RoBERTa's offical repo. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ethanyt/guwenbert-large") model = AutoModel.from_pretrained("ethanyt/guwenbert-large") ``` ## Training data The training data is daizhige dataset (殆知阁古代文献) which is contains of 15,694 books in Classical Chinese, covering Buddhism, Confucianism, Medicine, History, Zi, Yi, Yizang, Shizang, Taoism, and Jizang. 76% of them are punctuated. The total number of characters is 1.7B (1,743,337,673). All traditional Characters are converted to simplified characters. The vocabulary is constructed from this data set and the size is 23,292. ## Training procedure The models are initialized with `hfl/chinese-roberta-wwm-ext-large` and then pre-trained with a 2-step strategy. In the first step, the model learns MLM with only word embeddings updated during training, until convergence. In the second step, all parameters are updated during training. The models are trained on 4 V100 GPUs for 120K steps (20K for step#1, 100K for step#2) with a batch size of 2,048 and a sequence length of 512. The optimizer used is Adam with a learning rate of 1e-4, adam-betas of (0.9,0.98), adam-eps of 1e-6, a weight decay of 0.01, learning rate warmup for 5K steps, and linear decay of learning rate after. ## Eval results ### "Gulian Cup" Ancient Books Named Entity Recognition Evaluation Second place in the competition. Detailed test results: | NE Type | Precision | Recall | F1 | |:----------:|:-----------:|:------:|:-----:| | Book Name | 77.50 | 73.73 | 75.57 | | Other Name | 85.85 | 89.32 | 87.55 | | Micro Avg. | 83.88 | 85.39 | 84.63 | ## About Us We are from [Datahammer](https://datahammer.net), Beijing Institute of Technology. For more cooperation, please contact email: ethanyt [at] qq.com > Created with ❤️ by Tan Yan [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/Ethan-yt) and Zewen Chi [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/CZWin32768)
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "pytorch"], "thumbnail": "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png", "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "[MASK]\u592a\u5143\u4e2d\uff0c\u6b66\u9675\u4eba\u6355\u9c7c\u4e3a\u4e1a\u3002"}, {"text": "\u95ee\u5f81\u592b\u4ee5\u524d\u8def\uff0c\u6068\u6668\u5149\u4e4b[MASK]\u5fae\u3002"}, {"text": "\u6d54\u9633\u6c5f\u5934\u591c\u9001\u5ba2\uff0c\u67ab\u53f6[MASK]\u82b1\u79cb\u745f\u745f\u3002"}]}
ethanyt/guwenbert-large
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "chinese", "classical chinese", "literary chinese", "ancient chinese", "bert", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #jax #roberta #fill-mask #chinese #classical chinese #literary chinese #ancient chinese #bert #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
GuwenBERT ========= Model description ----------------- !GuwenBERT This is a RoBERTa model pre-trained on Classical Chinese. You can fine-tune GuwenBERT for downstream tasks, such as sentence breaking, punctuation, named entity recognition, and so on. For more information about RoBERTa, take a look at the RoBERTa's offical repo. How to use ---------- Training data ------------- The training data is daizhige dataset (殆知阁古代文献) which is contains of 15,694 books in Classical Chinese, covering Buddhism, Confucianism, Medicine, History, Zi, Yi, Yizang, Shizang, Taoism, and Jizang. 76% of them are punctuated. The total number of characters is 1.7B (1,743,337,673). All traditional Characters are converted to simplified characters. The vocabulary is constructed from this data set and the size is 23,292. Training procedure ------------------ The models are initialized with 'hfl/chinese-roberta-wwm-ext-large' and then pre-trained with a 2-step strategy. In the first step, the model learns MLM with only word embeddings updated during training, until convergence. In the second step, all parameters are updated during training. The models are trained on 4 V100 GPUs for 120K steps (20K for step#1, 100K for step#2) with a batch size of 2,048 and a sequence length of 512. The optimizer used is Adam with a learning rate of 1e-4, adam-betas of (0.9,0.98), adam-eps of 1e-6, a weight decay of 0.01, learning rate warmup for 5K steps, and linear decay of learning rate after. Eval results ------------ ### "Gulian Cup" Ancient Books Named Entity Recognition Evaluation Second place in the competition. Detailed test results: About Us -------- We are from Datahammer, Beijing Institute of Technology. For more cooperation, please contact email: ethanyt [at] URL > > Created with ️ by Tan Yan ![Github icon](URL and Zewen Chi ![Github icon](URL > > >
[ "### \"Gulian Cup\" Ancient Books Named Entity Recognition Evaluation\n\n\nSecond place in the competition. Detailed test results:\n\n\n\nAbout Us\n--------\n\n\nWe are from Datahammer, Beijing Institute of Technology.\nFor more cooperation, please contact email: ethanyt [at] URL\n\n\n\n> \n> Created with ️ by Tan Yan ![Github icon](URL and Zewen Chi ![Github icon](URL\n> \n> \n>" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #chinese #classical chinese #literary chinese #ancient chinese #bert #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### \"Gulian Cup\" Ancient Books Named Entity Recognition Evaluation\n\n\nSecond place in the competition. Detailed test results:\n\n\n\nAbout Us\n--------\n\n\nWe are from Datahammer, Beijing Institute of Technology.\nFor more cooperation, please contact email: ethanyt [at] URL\n\n\n\n> \n> Created with ️ by Tan Yan ![Github icon](URL and Zewen Chi ![Github icon](URL\n> \n> \n>" ]
text-generation
transformers
# ai-msgbot GPT2-L + daily dialogues _NOTE: this model card is a WIP_ GPT2-L (774M parameters) fine-tuned on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using `aitextgen`. This model was then subsequently further fine-tuned on the [Daily Dialogues](http://yanran.li/dailydialog) dataset for an additional 40k steps, this time with **35** of 36 layers frozen. Designed for use with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` to the **end** of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ### Example prompt: ``` do you like to eat beans? person beta: ``` ### Resulting output ``` do you like to eat beans? person beta: no, i don't like ``` ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
{}
ethzanalytics/ai-msgbot-gpt2-L-dialogue
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# ai-msgbot GPT2-L + daily dialogues _NOTE: this model card is a WIP_ GPT2-L (774M parameters) fine-tuned on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using 'aitextgen'. This model was then subsequently further fine-tuned on the Daily Dialogues dataset for an additional 40k steps, this time with 35 of 36 layers frozen. Designed for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. 'script_speaker_name' = 'person alpha' 'script_responder_name' = 'person beta' ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ### Example prompt: ### Resulting output ## citations
[ "# ai-msgbot GPT2-L + daily dialogues\n\n_NOTE: this model card is a WIP_\n\nGPT2-L (774M parameters) fine-tuned on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using 'aitextgen'. This model was then subsequently further fine-tuned on the Daily Dialogues dataset for an additional 40k steps, this time with 35 of 36 layers frozen.\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits).", "### Example prompt:", "### Resulting output", "## citations" ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# ai-msgbot GPT2-L + daily dialogues\n\n_NOTE: this model card is a WIP_\n\nGPT2-L (774M parameters) fine-tuned on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using 'aitextgen'. This model was then subsequently further fine-tuned on the Daily Dialogues dataset for an additional 40k steps, this time with 35 of 36 layers frozen.\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits).", "### Example prompt:", "### Resulting output", "## citations" ]
text-generation
transformers
# ai-msgbot GPT2-L _NOTE: model card is WIP_ GPT2-L (774M parameters) trained on [the Wizard of Wikipedia dataset](https://parl.ai/projects/wizard_of_wikipedia/) for 40k steps with 34/36 layers frozen using `aitextgen`. Designed for use with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create an open-ended chatbot (of course, if other use cases arise have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` to the **end** of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
{}
ethzanalytics/ai-msgbot-gpt2-L
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# ai-msgbot GPT2-L _NOTE: model card is WIP_ GPT2-L (774M parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using 'aitextgen'. Designed for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses. 'script_speaker_name' = 'person alpha' 'script_responder_name' = 'person beta' ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ## citations
[ "# ai-msgbot GPT2-L\n\n_NOTE: model card is WIP_\n\nGPT2-L (774M parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using 'aitextgen'. \n\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits).", "## citations" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# ai-msgbot GPT2-L\n\n_NOTE: model card is WIP_\n\nGPT2-L (774M parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 34/36 layers frozen using 'aitextgen'. \n\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits).", "## citations" ]
text-generation
transformers
# ai-msgbot GPT-2 M Conversational A GPT-2 M 355M parameter model for usage with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create a chatbot-like tool. This model was fine-tuned on a parsed version of [the Wizard of Wikipedia dataset](https://parl.ai/projects/wizard_of_wikipedia/) for 10,000 steps. 20/24 layers were frozen for the fine-tuning process. ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## usage ### in ai-msgbot ``` python ai_single_response.py --model GPT2_conversational_355M_WoW10k --prompt "hi! what are your hobbies?" ... generating... finished! 'i like to read.' ``` ### examples with Inference API The model training (and the ai-msgbot scripts) "force" GPT-2 to generate text in a chat-like structure. If you want non-garbage outputs, these need to be specified manually: ``` person alpha: hi! what are your hobbies? ``` then model will respond, ideally with person beta: "response text" --- - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` to the **end** of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
{}
ethzanalytics/ai-msgbot-gpt2-M
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# ai-msgbot GPT-2 M Conversational A GPT-2 M 355M parameter model for usage with ai-msgbot to create a chatbot-like tool. This model was fine-tuned on a parsed version of the Wizard of Wikipedia dataset for 10,000 steps. 20/24 layers were frozen for the fine-tuning process. ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses. 'script_speaker_name' = 'person alpha' 'script_responder_name' = 'person beta' ## usage ### in ai-msgbot ### examples with Inference API The model training (and the ai-msgbot scripts) "force" GPT-2 to generate text in a chat-like structure. If you want non-garbage outputs, these need to be specified manually: then model will respond, ideally with person beta: "response text" --- - the default inference API examples should work _okay_ - an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ## citations
[ "# ai-msgbot GPT-2 M Conversational\n\nA GPT-2 M 355M parameter model for usage with ai-msgbot to create a chatbot-like tool.\n\nThis model was fine-tuned on a parsed version of the Wizard of Wikipedia dataset for 10,000 steps. 20/24 layers were frozen for the fine-tuning process.", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## usage", "### in ai-msgbot", "### examples with Inference API\nThe model training (and the ai-msgbot scripts) \"force\" GPT-2 to generate text in a chat-like structure. If you want non-garbage outputs, these need to be specified manually:\n\n\n\nthen model will respond, ideally with person beta: \"response text\"\n\n---\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits).", "## citations" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# ai-msgbot GPT-2 M Conversational\n\nA GPT-2 M 355M parameter model for usage with ai-msgbot to create a chatbot-like tool.\n\nThis model was fine-tuned on a parsed version of the Wizard of Wikipedia dataset for 10,000 steps. 20/24 layers were frozen for the fine-tuning process.", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## usage", "### in ai-msgbot", "### examples with Inference API\nThe model training (and the ai-msgbot scripts) \"force\" GPT-2 to generate text in a chat-like structure. If you want non-garbage outputs, these need to be specified manually:\n\n\n\nthen model will respond, ideally with person beta: \"response text\"\n\n---\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' to the end of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits).", "## citations" ]
text-generation
transformers
# ai-msgbot: GPT2-XL-dialogue GPT2-XL (~1.5 B parameters) trained on [the Wizard of Wikipedia dataset](https://parl.ai/projects/wizard_of_wikipedia/) for 40k steps with **33**/36 layers frozen using `aitextgen`. The resulting model was then **further fine-tuned** on the [Daily Dialogues](http://yanran.li/dailydialog) for 40k steps, with **34**/36 layers frozen. Designed for use with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` into the prompt text the model is forced to respond to instead of adding onto the entered prompt. ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
{"language": ["en"], "license": "mit", "tags": ["text-generation", "gpt2", "gpt"], "datasets": ["natural_questions"], "widget": [{"text": "Do you like my new haircut?\nperson beta:\n\n", "example_title": "haircut"}, {"text": "I love to learn new things.. are you willing to teach me something?\nperson beta:\n\n", "example_title": "teaching"}, {"text": "What's your favorite animal? Mine is the dog? \nperson beta:\n\n", "example_title": "favorite"}, {"text": "how much does it cost?\nperson beta:\n\n", "example_title": "money"}], "inference": {"parameters": {"min_length": 2, "max_length": 64, "length_penalty": 0.6, "no_repeat_ngram_size": 3, "do_sample": true, "top_p": 0.85, "top_k": 10, "repetition_penalty": 2.1}}}
ethzanalytics/ai-msgbot-gpt2-XL-dialogue
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "gpt", "en", "dataset:natural_questions", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #gpt #en #dataset-natural_questions #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# ai-msgbot: GPT2-XL-dialogue GPT2-XL (~1.5 B parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 33/36 layers frozen using 'aitextgen'. The resulting model was then further fine-tuned on the Daily Dialogues for 40k steps, with 34/36 layers frozen. Designed for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. 'script_speaker_name' = 'person alpha' 'script_responder_name' = 'person beta' ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding 'person beta' into the prompt text the model is forced to respond to instead of adding onto the entered prompt. ## citations
[ "# ai-msgbot: GPT2-XL-dialogue\n\n\nGPT2-XL (~1.5 B parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 33/36 layers frozen using 'aitextgen'. The resulting model was then further fine-tuned on the Daily Dialogues for 40k steps, with 34/36 layers frozen.\n\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' into the prompt text the model is forced to respond to instead of adding onto the entered prompt.", "## citations" ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #gpt #en #dataset-natural_questions #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# ai-msgbot: GPT2-XL-dialogue\n\n\nGPT2-XL (~1.5 B parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 33/36 layers frozen using 'aitextgen'. The resulting model was then further fine-tuned on the Daily Dialogues for 40k steps, with 34/36 layers frozen.\n\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' into the prompt text the model is forced to respond to instead of adding onto the entered prompt.", "## citations" ]
text-generation
transformers
# ai-msgbot GPT2-XL _NOTE: model card is WIP_ GPT2-XL (~1.5 B parameters) trained on [the Wizard of Wikipedia dataset](https://parl.ai/projects/wizard_of_wikipedia/) for 40k steps with **33**/36 layers frozen using `aitextgen`. Designed for use with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` into the prompt text the model is forced to respond to instead of adding onto the entered prompt. ### Example prompt: ``` do you like to eat beans? person beta: ``` ### Resulting output ``` do you like to eat beans?person beta: yes, i like fried beans. person alpha: i wonder when the first beans were cultivated and how they were processed. person beta: nitrogenic bacteria (in ``` _Note: the Inference API cuts off generation due to length, if run elsewhere you would see what comes after "(in"_ ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
{"language": ["en"], "license": "mit", "tags": ["text-generation", "gpt2", "gpt"], "datasets": ["natural questions"], "widget": [{"text": "Do you like my new haircut?\nperson beta:\n\n", "example_title": "haircut"}, {"text": "I love to learn new things.. are you willing to teach me something?\nperson beta:\n\n", "example_title": "teaching"}, {"text": "What's your favorite animal? Mine is the dog? \nperson beta:\n\n", "example_title": "favorite"}, {"text": "how much does it cost?\nperson beta:\n\n", "example_title": "money"}], "inference": {"parameters": {"min_length": 2, "max_length": 64, "length_penalty": 0.6, "no_repeat_ngram_size": 3, "do_sample": true, "top_p": 0.85, "top_k": 10, "repetition_penalty": 2.1}}}
ethzanalytics/ai-msgbot-gpt2-XL
null
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #gpt #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# ai-msgbot GPT2-XL _NOTE: model card is WIP_ GPT2-XL (~1.5 B parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 33/36 layers frozen using 'aitextgen'. Designed for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. 'script_speaker_name' = 'person alpha' 'script_responder_name' = 'person beta' ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding 'person beta' into the prompt text the model is forced to respond to instead of adding onto the entered prompt. ### Example prompt: ### Resulting output _Note: the Inference API cuts off generation due to length, if run elsewhere you would see what comes after "(in"_ ## citations
[ "# ai-msgbot GPT2-XL\n\n_NOTE: model card is WIP_\n\nGPT2-XL (~1.5 B parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 33/36 layers frozen using 'aitextgen'. \n\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' into the prompt text the model is forced to respond to instead of adding onto the entered prompt.", "### Example prompt:", "### Resulting output\n\n\n\n_Note: the Inference API cuts off generation due to length, if run elsewhere you would see what comes after \"(in\"_", "## citations" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #gpt #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# ai-msgbot GPT2-XL\n\n_NOTE: model card is WIP_\n\nGPT2-XL (~1.5 B parameters) trained on the Wizard of Wikipedia dataset for 40k steps with 33/36 layers frozen using 'aitextgen'. \n\n\nDesigned for use with ai-msgbot to create an open-ended chatbot (of course, if other use cases arise, have at it).", "## conversation data\n\nThe dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses.\n\n'script_speaker_name' = 'person alpha'\n\n'script_responder_name' = 'person beta'", "## examples\n\n- the default inference API examples should work _okay_\n- an ideal test would be explicitly adding 'person beta' into the prompt text the model is forced to respond to instead of adding onto the entered prompt.", "### Example prompt:", "### Resulting output\n\n\n\n_Note: the Inference API cuts off generation due to length, if run elsewhere you would see what comes after \"(in\"_", "## citations" ]
text-generation
transformers
# distilgpt2-tiny-conversational This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a parsed version of Wizard of Wikipedia. Persona alpha/beta framework designed for use with [ai-msgbot](https://github.com/pszemraj/ai-msgbot). It achieves the following results on the evaluation set: - Loss: 2.2461 ## Model description - a basic dialogue model for conversation. It can be used as a chatbot. - check out a [simple demo here](https://huggingface.co/spaces/ethzanalytics/dialogue-demo) ## Intended uses & limitations - usage is designed for integrating with this repo: [ai-msgbot](https://github.com/pszemraj/ai-msgbot) - the main specific information to know is that the model generates whole conversations between two entities, `person alpha` and `person beta`. These entity names are used functionally as custom `<bos>` tokens to extract when one response ends and another begins. ## Training and evaluation data - [wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia/) parsed, from parlAI ## Training procedure - deepspeed + huggingface trainer, an example notebook is in [ai-msgbot](https://github.com/pszemraj/ai-msgbot) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 418 | 2.7793 | | 2.9952 | 2.0 | 836 | 2.6914 | | 2.7684 | 3.0 | 1254 | 2.6348 | | 2.685 | 4.0 | 1672 | 2.5938 | | 2.6243 | 5.0 | 2090 | 2.5625 | | 2.5816 | 6.0 | 2508 | 2.5332 | | 2.5816 | 7.0 | 2926 | 2.5098 | | 2.545 | 8.0 | 3344 | 2.4902 | | 2.5083 | 9.0 | 3762 | 2.4707 | | 2.4793 | 10.0 | 4180 | 2.4551 | | 2.4531 | 11.0 | 4598 | 2.4395 | | 2.4269 | 12.0 | 5016 | 2.4238 | | 2.4269 | 13.0 | 5434 | 2.4102 | | 2.4051 | 14.0 | 5852 | 2.3945 | | 2.3777 | 15.0 | 6270 | 2.3848 | | 2.3603 | 16.0 | 6688 | 2.3711 | | 2.3394 | 17.0 | 7106 | 2.3613 | | 2.3206 | 18.0 | 7524 | 2.3516 | | 2.3206 | 19.0 | 7942 | 2.3398 | | 2.3026 | 20.0 | 8360 | 2.3301 | | 2.2823 | 21.0 | 8778 | 2.3203 | | 2.2669 | 22.0 | 9196 | 2.3105 | | 2.2493 | 23.0 | 9614 | 2.3027 | | 2.2334 | 24.0 | 10032 | 2.2930 | | 2.2334 | 25.0 | 10450 | 2.2852 | | 2.2194 | 26.0 | 10868 | 2.2754 | | 2.2014 | 27.0 | 11286 | 2.2695 | | 2.1868 | 28.0 | 11704 | 2.2598 | | 2.171 | 29.0 | 12122 | 2.2539 | | 2.1597 | 30.0 | 12540 | 2.2461 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["text-generation", "chatbot", "dialogue", "distilgpt2", "gpt2", "ai-msgbot"], "widget": [{"text": "I know you're tired, but can we go for another walk this evening?\nperson beta:\n\n", "example_title": "walk"}, {"text": "Have you done anything exciting lately?\nperson beta:\n\n", "example_title": "activities"}, {"text": "hey - do you have a favorite grocery store around here?\nperson beta:\n\n", "example_title": "grocery"}, {"text": "Can you take me for dinner somewhere nice this time?\nperson beta:\n\n", "example_title": "dinner"}, {"text": "What's your favorite form of social media?\nperson beta:\n\n", "example_title": "social media"}, {"text": "Hi, how are you?\nperson beta:\n\n", "example_title": "greeting"}, {"text": "I am the best; my sister is the worst. What am I?\nperson beta:\n\n", "example_title": "sister"}, {"text": "What do you call an alligator who's just had surgery to remove his left arm?\nperson beta:\n\n", "example_title": "alligator"}, {"text": "A man walks into a bar and asks for a drink. The bartender asks for $10, and he pays him $1. What did he pay him with?\nperson beta:\n\n", "example_title": "dollar"}, {"text": "What did I say was in the mailbox when it was actually in the cabinet?\nperson beta:\n\n", "example_title": "mailbox"}, {"text": "My friend says that she knows every language, but she doesn't speak any of them.. what's wrong with her?\nperson beta:\n\n", "example_title": "language"}], "inference": {"parameters": {"min_length": 2, "max_length": 64, "length_penalty": 0.7, "no_repeat_ngram_size": 2, "do_sample": true, "top_p": 0.95, "top_k": 20, "temperature": 0.3, "repetition_penalty": 3.5}}}
ethzanalytics/distilgpt2-tiny-conversational
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "chatbot", "dialogue", "distilgpt2", "ai-msgbot", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #chatbot #dialogue #distilgpt2 #ai-msgbot #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
distilgpt2-tiny-conversational ============================== This model is a fine-tuned version of distilgpt2 on a parsed version of Wizard of Wikipedia. Persona alpha/beta framework designed for use with ai-msgbot. It achieves the following results on the evaluation set: * Loss: 2.2461 Model description ----------------- * a basic dialogue model for conversation. It can be used as a chatbot. * check out a simple demo here Intended uses & limitations --------------------------- * usage is designed for integrating with this repo: ai-msgbot * the main specific information to know is that the model generates whole conversations between two entities, 'person alpha' and 'person beta'. These entity names are used functionally as custom '' tokens to extract when one response ends and another begins. Training and evaluation data ---------------------------- * wizard of Wikipedia parsed, from parlAI Training procedure ------------------ * deepspeed + huggingface trainer, an example notebook is in ai-msgbot ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * distributed\_type: multi-GPU * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.05 * num\_epochs: 30 ### Training results ### Framework versions * Transformers 4.16.1 * Pytorch 1.10.0+cu111 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #chatbot #dialogue #distilgpt2 #ai-msgbot #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.11.0" ]
text-generation
transformers
#blabla
{"tags": ["conversational"]}
ethzhou/newJooby
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#blabla
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
null
transformers
# Attention in Attention Network for Image Super-Resolution (A2N) A2N model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Attention in Attention Network for Image Super-Resolution](https://arxiv.org/abs/2104.09497) by Chen et al. (2021) and first released in [this repository](https://github.com/haoyuc/A2N). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4](images/a2n_4_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4") ## Model description The A2N model proposes an attention in attention network (A2N) for highly accurate image SR. Specifically, the A2N consists of a non-attention branch and a coupling attention branch. Attention dropout module is proposed to generate dynamic attention weights for these two branches based on input features that can suppress unwanted attention adjustments. This allows attention modules to specialize to beneficial examples without otherwise penalties and thus greatly improve the capacity of the attention network with little parameter overhead. More importantly the model is lightweight and fast to train (~1.5m parameters, ~4mb). ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import A2nModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = A2nModel.from_pretrained('eugenesiow/a2n', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, A2nModel, A2nConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = A2nConfig( scale=4, # train a model to upscale 4x ) model = A2nModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |A2N | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.87/0.9602** | |Set5 |3x |30.39/0.8678 |**34.8/0.9387** | |Set5 |4x |28.42/0.8101 |**32.07/0.8933** | |Set14 |2x |30.22/0.8683 |**33.45/0.9162** | |Set14 |3x |27.53/0.7737 |**30.94/0.8568** | |Set14 |4x |25.99/0.7023 |**28.56/0.7801** | |BSD100 |2x |29.55/0.8425 |**32.11/0.8987** | |BSD100 |3x |27.20/0.7382 |**29.56/0.8173** | |BSD100 |4x |25.96/0.6672 |**27.54/0.7342** | |Urban100 |2x |26.66/0.8408 |**31.71/0.9240** | |Urban100 |3x | |**28.95/0.8671** | |Urban100 |4x |23.14/0.6573 |**25.89/0.7787** | ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2](images/a2n_2_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{chen2021attention, title={Attention in Attention Network for Image Super-Resolution}, author={Haoyu Chen and Jinjin Gu and Zhi Zhang}, year={2021}, eprint={2104.09497}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/a2n
null
[ "transformers", "A2N", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2104.09497", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09497", "2104.07566" ]
[]
TAGS #transformers #A2N #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2104.09497 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Attention in Attention Network for Image Super-Resolution (A2N) =============================================================== A2N model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Attention in Attention Network for Image Super-Resolution by Chen et al. (2021) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. !Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4 Model description ----------------- The A2N model proposes an attention in attention network (A2N) for highly accurate image SR. Specifically, the A2N consists of a non-attention branch and a coupling attention branch. Attention dropout module is proposed to generate dynamic attention weights for these two branches based on input features that can suppress unwanted attention adjustments. This allows attention modules to specialize to beneficial examples without otherwise penalties and thus greatly improve the capacity of the attention network with little parameter overhead. More importantly the model is lightweight and fast to train (~1.5m parameters, ~4mb). Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #A2N #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2104.09497 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
null
# AniCharaGAN: Anime Character Generation with StyleGAN2 [![GitHub Repo stars](https://img.shields.io/github/stars/eugenesiow/practical-ml?style=social)](https://github.com/eugenesiow/practical-ml) This model uses the awesome lucidrains’s [stylegan2-pytorch](https://github.com/lucidrains/stylegan2-pytorch) library to train a model on a private anime character dataset to generate full-body 256x256 female anime characters. Here are some samples: ![Samples of anime characters and styles generated by the model](images/samples1.jpg "Samples of anime characters and styles generated by the model") ## Model description The model generates 256x256, square, white background, full-body anime characters. It is trained using [stylegan2-pytorch](https://github.com/lucidrains/stylegan2-pytorch). It is trained to 150 epochs. ## Intended uses & limitations You can use the model for generating anime characters and than use a super resolution library like [super_image](https://github.com/eugenesiow/super-image) to upscale. ### How to use [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/practical-ml/blob/master/notebooks/Anime_Character_Generation_with_StyleGAN2.ipynb "Open in Colab") Install the dependencies: ```bash pip install -q stylegan2_pytorch==1.5.10 ``` Here is how to generate images: ```python import torch from torchvision.utils import save_image from stylegan2_pytorch import ModelLoader from pathlib import Path Path('./models/ani-chara-gan/').mkdir(parents=True, exist_ok=True) torch.hub.download_url_to_file('https://huggingface.co/eugenesiow/ani-chara-gan/resolve/main/model.pt', './models/ani-chara-gan/model_150.pt') torch.hub.download_url_to_file('https://huggingface.co/eugenesiow/ani-chara-gan/resolve/main/.config.json', './models/ani-chara-gan/.config.json') loader = ModelLoader( base_dir = './', name = 'ani-chara-gan' ) noise = torch.randn(1, 256).cuda() # noise styles = loader.noise_to_styles(noise, trunc_psi = 0.7) # pass through mapping network images = loader.styles_to_images(styles) # call the generator on intermediate style vectors save_image(images, './sample.jpg') ``` ## BibTeX entry and citation info The model is part of the [practical-ml](https://github.com/eugenesiow/practical-ml) repository. [![GitHub Repo stars](https://img.shields.io/github/stars/eugenesiow/practical-ml?style=social)](https://github.com/eugenesiow/practical-ml)
{"license": "apache-2.0", "tags": ["stylegan2", "image-generation"]}
eugenesiow/ani-chara-gan
null
[ "stylegan2", "image-generation", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #stylegan2 #image-generation #license-apache-2.0 #region-us
# AniCharaGAN: Anime Character Generation with StyleGAN2 ![GitHub Repo stars](URL This model uses the awesome lucidrains’s stylegan2-pytorch library to train a model on a private anime character dataset to generate full-body 256x256 female anime characters. Here are some samples: !Samples of anime characters and styles generated by the model ## Model description The model generates 256x256, square, white background, full-body anime characters. It is trained using stylegan2-pytorch. It is trained to 150 epochs. ## Intended uses & limitations You can use the model for generating anime characters and than use a super resolution library like super_image to upscale. ### How to use ![Open In Colab](URL "Open in Colab") Install the dependencies: Here is how to generate images: ## BibTeX entry and citation info The model is part of the practical-ml repository. ![GitHub Repo stars](URL
[ "# AniCharaGAN: Anime Character Generation with StyleGAN2\n\n![GitHub Repo stars](URL\n\nThis model uses the awesome lucidrains’s stylegan2-pytorch library to train a model on a private anime character dataset to generate full-body 256x256 female anime characters.\n\nHere are some samples:\n\n!Samples of anime characters and styles generated by the model", "## Model description\nThe model generates 256x256, square, white background, full-body anime characters. It is trained using stylegan2-pytorch. It is trained to 150 epochs.", "## Intended uses & limitations\nYou can use the model for generating anime characters and than use a super resolution library like super_image to upscale.", "### How to use\n\n![Open In Colab](URL \"Open in Colab\")\n\nInstall the dependencies:\n\nHere is how to generate images:", "## BibTeX entry and citation info\n\nThe model is part of the practical-ml repository.\n\n![GitHub Repo stars](URL" ]
[ "TAGS\n#stylegan2 #image-generation #license-apache-2.0 #region-us \n", "# AniCharaGAN: Anime Character Generation with StyleGAN2\n\n![GitHub Repo stars](URL\n\nThis model uses the awesome lucidrains’s stylegan2-pytorch library to train a model on a private anime character dataset to generate full-body 256x256 female anime characters.\n\nHere are some samples:\n\n!Samples of anime characters and styles generated by the model", "## Model description\nThe model generates 256x256, square, white background, full-body anime characters. It is trained using stylegan2-pytorch. It is trained to 150 epochs.", "## Intended uses & limitations\nYou can use the model for generating anime characters and than use a super resolution library like super_image to upscale.", "### How to use\n\n![Open In Colab](URL \"Open in Colab\")\n\nInstall the dependencies:\n\nHere is how to generate images:", "## BibTeX entry and citation info\n\nThe model is part of the practical-ml repository.\n\n![GitHub Repo stars](URL" ]
null
transformers
# Lightweight Image Super-Resolution with Adaptive Weighted Learning Network (AWSRN) AWSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Lightweight Image Super-Resolution with Adaptive Weighted Learning Network](https://arxiv.org/abs/1904.02358) by Wang et al. (2019) and first released in [this repository](https://github.com/ChaofWang/AWSRN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/awsrn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Deep learning has been successfully applied to the single-image super-resolution (SISR) task with great performance in recent years. However, most convolutional neural network based SR models require heavy computation, which limit their real-world applications. In this work, a lightweight SR network, named Adaptive Weighted Super-Resolution Network (AWSRN), is proposed for SISR to address this issue. A novel local fusion block (LFB) is designed in AWSRN for efficient residual learning, which consists of stacked adaptive weighted residual units (AWRU) and a local residual fusion unit (LRFU). Moreover, an adaptive weighted multi-scale (AWMS) module is proposed to make full use of features in reconstruction layer. AWMS consists of several different scale convolutions, and the redundancy scale branch can be removed according to the contribution of adaptive weights in AWMS for lightweight network. The experimental results on the commonly used datasets show that the proposed lightweight AWSRN achieves superior performance on ×2, ×3, ×4, and ×8 scale factors to state-of-the-art methods with similar parameters and computational overhead. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import AwsrnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = AwsrnModel.from_pretrained('eugenesiow/awsrn-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, AwsrnModel, AwsrnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = AwsrnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = AwsrnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |awsrn-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.99/0.9606** | |Set5 |3x |30.39/0.8678 |**35.05/0.9403** | |Set5 |4x |28.42/0.8101 |**32.13/0.8947** | |Set14 |2x |30.22/0.8683 |**33.66/0.918** | |Set14 |3x |27.53/0.7737 |**31.01/0.8581** | |Set14 |4x |25.99/0.7023 |**28.75/0.7851** | |BSD100 |2x |29.55/0.8425 |**33.76/0.9253** | |BSD100 |3x |27.20/0.7382 |**29.63/0.8188** | |BSD100 |4x |25.96/0.6672 |**28.51/0.7647** | |Urban100 |2x |26.66/0.8408 |**31.95/0.9265** | |Urban100 |3x | |**29.14/0.871** | |Urban100 |4x |23.14/0.6573 |**26.03/0.7838** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/awsrn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @article{wang2019lightweight, title={Lightweight Image Super-Resolution with Adaptive Weighted Learning Network}, author={Wang, Chaofeng and Li, Zhen and Shi, Jun}, journal={arXiv preprint arXiv:1904.02358}, year={2019 } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/awsrn-bam
null
[ "transformers", "AWSRN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1904.02358", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1904.02358", "2104.07566" ]
[]
TAGS #transformers #AWSRN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1904.02358 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Lightweight Image Super-Resolution with Adaptive Weighted Learning Network (AWSRN) ================================================================================== AWSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Lightweight Image Super-Resolution with Adaptive Weighted Learning Network by Wang et al. (2019) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- Deep learning has been successfully applied to the single-image super-resolution (SISR) task with great performance in recent years. However, most convolutional neural network based SR models require heavy computation, which limit their real-world applications. In this work, a lightweight SR network, named Adaptive Weighted Super-Resolution Network (AWSRN), is proposed for SISR to address this issue. A novel local fusion block (LFB) is designed in AWSRN for efficient residual learning, which consists of stacked adaptive weighted residual units (AWRU) and a local residual fusion unit (LRFU). Moreover, an adaptive weighted multi-scale (AWMS) module is proposed to make full use of features in reconstruction layer. AWMS consists of several different scale convolutions, and the redundancy scale branch can be removed according to the contribution of adaptive weights in AWMS for lightweight network. The experimental results on the commonly used datasets show that the proposed lightweight AWSRN achieves superior performance on ×2, ×3, ×4, and ×8 scale factors to state-of-the-art methods with similar parameters and computational overhead. This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #AWSRN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1904.02358 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
text2text-generation
transformers
# BART Paraphrase Model (Large) A large BART seq2seq (text2text generation) model fine-tuned on 3 paraphrase datasets. ## Model description The BART model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. (2019). - Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). - The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. - BART is particularly effective when fine tuned for text generation. This model is fine-tuned on 3 paraphrase datasets (Quora, PAWS and MSR paraphrase corpus). The original BART code is from this [repository](https://github.com/pytorch/fairseq/tree/master/examples/bart). ## Intended uses & limitations You can use the pre-trained model for paraphrasing an input sentence. ### How to use ```python import torch from transformers import BartForConditionalGeneration, BartTokenizer input_sentence = "They were there to enjoy us and they were there to pray for us." model = BartForConditionalGeneration.from_pretrained('eugenesiow/bart-paraphrase') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) tokenizer = BartTokenizer.from_pretrained('eugenesiow/bart-paraphrase') batch = tokenizer(input_sentence, return_tensors='pt') generated_ids = model.generate(batch['input_ids']) generated_sentence = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(generated_sentence) ``` ### Output ``` ['They were there to enjoy us and to pray for us.'] ``` ## Training data The model was fine-tuned on a pretrained [`facebook/bart-large`](https://huggingface.co/facebook/bart-large), using the [Quora](https://huggingface.co/datasets/quora), [PAWS](https://huggingface.co/datasets/paws) and [MSR paraphrase corpus](https://www.microsoft.com/en-us/download/details.aspx?id=52398). ## Training procedure We follow the training procedure provided in the [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers) seq2seq [example](https://github.com/ThilinaRajapakse/simpletransformers/blob/master/examples/seq2seq/paraphrasing/train.py). ## BibTeX entry and citation info ```bibtex @misc{lewis2019bart, title={BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, author={Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Ves Stoyanov and Luke Zettlemoyer}, year={2019}, eprint={1910.13461}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "apache-2.0", "tags": ["transformers", "bart", "paraphrase", "seq2seq"], "datasets": ["quora", "paws"]}
eugenesiow/bart-paraphrase
null
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "paraphrase", "seq2seq", "en", "dataset:quora", "dataset:paws", "arxiv:1910.13461", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1910.13461" ]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #paraphrase #seq2seq #en #dataset-quora #dataset-paws #arxiv-1910.13461 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# BART Paraphrase Model (Large) A large BART seq2seq (text2text generation) model fine-tuned on 3 paraphrase datasets. ## Model description The BART model was proposed in BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al. (2019). - Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). - The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. - BART is particularly effective when fine tuned for text generation. This model is fine-tuned on 3 paraphrase datasets (Quora, PAWS and MSR paraphrase corpus). The original BART code is from this repository. ## Intended uses & limitations You can use the pre-trained model for paraphrasing an input sentence. ### How to use ### Output ## Training data The model was fine-tuned on a pretrained 'facebook/bart-large', using the Quora, PAWS and MSR paraphrase corpus. ## Training procedure We follow the training procedure provided in the simpletransformers seq2seq example. ## BibTeX entry and citation info
[ "# BART Paraphrase Model (Large)\nA large BART seq2seq (text2text generation) model fine-tuned on 3 paraphrase datasets.", "## Model description\nThe BART model was proposed in BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al. (2019).\n\n- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n- BART is particularly effective when fine tuned for text generation. This model is fine-tuned on 3 paraphrase datasets (Quora, PAWS and MSR paraphrase corpus).\n\nThe original BART code is from this repository.", "## Intended uses & limitations\nYou can use the pre-trained model for paraphrasing an input sentence.", "### How to use", "### Output", "## Training data\nThe model was fine-tuned on a pretrained 'facebook/bart-large', using the Quora, PAWS and MSR paraphrase corpus.", "## Training procedure\n\nWe follow the training procedure provided in the simpletransformers seq2seq example.", "## BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #paraphrase #seq2seq #en #dataset-quora #dataset-paws #arxiv-1910.13461 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# BART Paraphrase Model (Large)\nA large BART seq2seq (text2text generation) model fine-tuned on 3 paraphrase datasets.", "## Model description\nThe BART model was proposed in BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al. (2019).\n\n- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).\n- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.\n- BART is particularly effective when fine tuned for text generation. This model is fine-tuned on 3 paraphrase datasets (Quora, PAWS and MSR paraphrase corpus).\n\nThe original BART code is from this repository.", "## Intended uses & limitations\nYou can use the pre-trained model for paraphrasing an input sentence.", "### How to use", "### Output", "## Training data\nThe model was fine-tuned on a pretrained 'facebook/bart-large', using the Quora, PAWS and MSR paraphrase corpus.", "## Training procedure\n\nWe follow the training procedure provided in the simpletransformers seq2seq example.", "## BibTeX entry and citation info" ]
null
transformers
# Cascading Residual Network (CARN) CARN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network](https://arxiv.org/abs/1803.08664) by Ahn et al. (2018) and first released in [this repository](https://github.com/nmhkahn/CARN-pytorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/carn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The CARN model proposes an architecture that implements a cascading mechanism upon a residual network for accurate and lightweight image super-resolution. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import CarnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = CarnModel.from_pretrained('eugenesiow/carn-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, CarnModel, CarnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = CarnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = CarnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |carn-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.83/0.96** | |Set5 |3x |30.39/0.8678 |**34.82/0.9385** | |Set5 |4x |28.42/0.8101 |**32.0/0.8923** | |Set14 |2x |30.22/0.8683 |**33.51/0.9166** | |Set14 |3x |27.53/0.7737 |**30.9/0.8558** | |Set14 |4x |25.99/0.7023 |**28.62/0.7822** | |BSD100 |2x |29.55/0.8425 |**33.64/0.924** | |BSD100 |3x |27.20/0.7382 |**29.54/0.8166** | |BSD100 |4x |25.96/0.6672 |**28.41/0.7614** | |Urban100 |2x |26.66/0.8408 |**31.53/0.922** | |Urban100 |3x | |**28.84/0.8648** | |Urban100 |4x |23.14/0.6573 |**25.77/0.7741** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/carn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/carn-bam
null
[ "transformers", "CARN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1803.08664", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1803.08664", "2104.07566" ]
[]
TAGS #transformers #CARN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1803.08664 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Cascading Residual Network (CARN) ================================= CARN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network by Ahn et al. (2018) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The CARN model proposes an architecture that implements a cascading mechanism upon a residual network for accurate and lightweight image super-resolution. This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #CARN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1803.08664 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Cascading Residual Network (CARN) CARN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network](https://arxiv.org/abs/1803.08664) by Ahn et al. (2018) and first released in [this repository](https://github.com/nmhkahn/CARN-pytorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/carn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The CARN model proposes an architecture that implements a cascading mechanism upon a residual network for accurate and lightweight image super-resolution. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import CarnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = CarnModel.from_pretrained('eugenesiow/carn', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, CarnModel, CarnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = CarnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = CarnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |carn | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.89/0.9602** | |Set5 |3x |30.39/0.8678 |**34.88/0.9391** | |Set5 |4x |28.42/0.8101 |**32.05/0.8931** | |Set14 |2x |30.22/0.8683 |**33.53/0.9173** | |Set14 |3x |27.53/0.7737 |**30.93/0.8566** | |Set14 |4x |25.99/0.7023 |**28.67/0.7828** | |BSD100 |2x |29.55/0.8425 |**33.66/0.9242** | |BSD100 |3x |27.20/0.7382 |**29.56/0.8173** | |BSD100 |4x |25.96/0.6672 |**28.44/0.7625** | |Urban100 |2x |26.66/0.8408 |**31.62/0.9229** | |Urban100 |3x | |**28.95/0.867** | |Urban100 |4x |23.14/0.6573 |**25.85/0.7768** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/carn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/carn
null
[ "transformers", "CARN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1803.08664", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1803.08664", "2104.07566" ]
[]
TAGS #transformers #CARN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1803.08664 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Cascading Residual Network (CARN) ================================= CARN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network by Ahn et al. (2018) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The CARN model proposes an architecture that implements a cascading mechanism upon a residual network for accurate and lightweight image super-resolution. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #CARN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1803.08664 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Densely Residual Laplacian Super-Resolution (DRLN) DRLN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Densely Residual Laplacian Super-resolution](https://arxiv.org/abs/1906.12021) by Anwar et al. (2020) and first released in [this repository](https://github.com/saeed-anwar/DRLN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/drln_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import DrlnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = DrlnModel.from_pretrained('eugenesiow/drln-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, DrlnModel, DrlnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = DrlnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = DrlnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |drln-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.23/0.9614** | |Set5 |3x |30.39/0.8678 |**35.3/0.9422** | |Set5 |4x |28.42/0.8101 |**32.49/0.8986** | |Set14 |2x |30.22/0.8683 |**33.95/0.9206** | |Set14 |3x |27.53/0.7737 |**31.27/0.8624** | |Set14 |4x |25.99/0.7023 |**28.94/0.7899** | |BSD100 |2x |29.55/0.8425 |**33.95/0.9269** | |BSD100 |3x |27.20/0.7382 |**29.78/0.8224** | |BSD100 |4x |25.96/0.6672 |**28.63/0.7686** | |Urban100 |2x |26.66/0.8408 |**32.81/0.9339** | |Urban100 |3x | |**29.82/0.8828** | |Urban100 |4x |23.14/0.6573 |**26.53/0.7991** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/drln_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @misc{anwar2019densely, title={Densely Residual Laplacian Super-Resolution}, author={Saeed Anwar and Nick Barnes}, year={2019}, eprint={1906.12021}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/drln-bam
null
[ "transformers", "DRLN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1906.12021", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1906.12021", "2104.07566" ]
[]
TAGS #transformers #DRLN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1906.12021 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us
Densely Residual Laplacian Super-Resolution (DRLN) ================================================== DRLN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Densely Residual Laplacian Super-resolution by Anwar et al. (2020) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately. This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #DRLN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1906.12021 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Densely Residual Laplacian Super-Resolution (DRLN) DRLN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Densely Residual Laplacian Super-resolution](https://arxiv.org/abs/1906.12021) by Anwar et al. (2020) and first released in [this repository](https://github.com/saeed-anwar/DRLN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/drln_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import DrlnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = DrlnModel.from_pretrained('eugenesiow/drln', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, DrlnModel, DrlnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = DrlnConfig( scale=4, # train a model to upscale 4x ) model = DrlnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |drln | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.22/0.9614** | |Set5 |3x |30.39/0.8678 |**35.31/0.9423** | |Set5 |4x |28.42/0.8101 |**32.55/0.899** | |Set14 |2x |30.22/0.8683 |**34.01/0.9211** | |Set14 |3x |27.53/0.7737 |**31.21/0.8619** | |Set14 |4x |25.99/0.7023 |**28.96/0.7901** | |BSD100 |2x |29.55/0.8425 |**33.93/0.9269** | |BSD100 |3x |27.20/0.7382 |**29.77/0.8223** | |BSD100 |4x |25.96/0.6672 |**28.65/0.7692** | |Urban100 |2x |26.66/0.8408 |**32.82/0.934** | |Urban100 |3x | |**29.79/0.8825** | |Urban100 |4x |23.14/0.6573 |**26.56/0.7998** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/drln_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{anwar2019densely, title={Densely Residual Laplacian Super-Resolution}, author={Saeed Anwar and Nick Barnes}, year={2019}, eprint={1906.12021}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/drln
null
[ "transformers", "DRLN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1906.12021", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1906.12021", "2104.07566" ]
[]
TAGS #transformers #DRLN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1906.12021 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Densely Residual Laplacian Super-Resolution (DRLN) ================================================== DRLN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Densely Residual Laplacian Super-resolution by Anwar et al. (2020) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #DRLN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1906.12021 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) EDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and EDSR upscaling x2. ![Comparing Bicubic upscaling against EDSR x2 upscaling on Set5 Image 4](images/Set5_4_compare.png "Comparing Bicubic upscaling against EDSR x2 upscaling on Set5 Image 4") ## Model description EDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This is a base model (~5mb vs ~100mb) that includes just 16 ResBlocks and 64 channels. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import EdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, EdsrModel, EdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = EdsrConfig( scale=4, # train a model to upscale 4x ) model = EdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |edsr-base | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.02/0.9607** | |Set5 |3x |30.39/0.8678 |**35.04/0.9403** | |Set5 |4x |28.42/0.8101 |**32.12/0.8947** | |Set14 |2x |30.22/0.8683 |**33.57/0.9172** | |Set14 |3x |27.53/0.7737 |**30.93/0.8567** | |Set14 |4x |25.99/0.7023 |**28.60/0.7815** | |BSD100 |2x |29.55/0.8425 |**32.21/0.8999** | |BSD100 |3x |27.20/0.7382 |**29.65/0.8204** | |BSD100 |4x |25.96/0.6672 |**27.61/0.7363** | |Urban100 |2x |26.66/0.8408 |**32.04/0.9276** | |Urban100 |3x | |**29.23/0.8723** | |Urban100 |4x |23.14/0.6573 |**26.02/0.7832** | ![Comparing Bicubic upscaling against x2 upscaling on Set5 Image 2](images/Set5_2_compare.png "Comparing Bicubic upscaling against x2 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @InProceedings{Lim_2017_CVPR_Workshops, author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu}, title = {Enhanced Deep Residual Networks for Single Image Super-Resolution}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {July}, year = {2017} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/edsr-base
null
[ "transformers", "EDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1707.02921", "2104.07566" ]
[]
TAGS #transformers #EDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) ======================================================================== EDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Enhanced Deep Residual Networks for Single Image Super-Resolution by Lim et al. (2017) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and EDSR upscaling x2. !Comparing Bicubic upscaling against EDSR x2 upscaling on Set5 Image 4 Model description ----------------- EDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This is a base model (~5mb vs ~100mb) that includes just 16 ResBlocks and 64 channels. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against x2 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against x2 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #EDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against x2 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) EDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and EDSR upscaling x2. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/edsr_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description EDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This is a base model (~5mb vs ~100mb) that includes just 16 ResBlocks and 64 channels. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import EdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = EdsrModel.from_pretrained('eugenesiow/edsr', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, EdsrModel, EdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = EdsrConfig( scale=4, # train a model to upscale 4x ) model = EdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |edsr | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.19/0.9612** | |Set5 |3x |30.39/0.8678 |**35.31/0.9421** | |Set5 |4x |28.42/0.8101 |**32.5/0.8986** | |Set14 |2x |30.22/0.8683 |**33.99/0.9215** | |Set14 |3x |27.53/0.7737 |**31.18/0.862** | |Set14 |4x |25.99/0.7023 |**28.92/0.7899** | |BSD100 |2x |29.55/0.8425 |**33.89/0.9266** | |BSD100 |3x |27.20/0.7382 |**29.77/0.8224** | |BSD100 |4x |25.96/0.6672 |**28.62/0.7689** | |Urban100 |2x |26.66/0.8408 |**32.68/0.9331** | |Urban100 |3x | |**29.75/0.8825** | |Urban100 |4x |23.14/0.6573 |**26.53/0.7995** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/edsr_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @InProceedings{Lim_2017_CVPR_Workshops, author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu}, title = {Enhanced Deep Residual Networks for Single Image Super-Resolution}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {July}, year = {2017} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/edsr
null
[ "transformers", "EDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1707.02921", "2104.07566" ]
[]
TAGS #transformers #EDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) ======================================================================== EDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Enhanced Deep Residual Networks for Single Image Super-Resolution by Lim et al. (2017) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and EDSR upscaling x2. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- EDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This is a base model (~5mb vs ~100mb) that includes just 16 ResBlocks and 64 channels. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #EDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Holistic Attention Network (HAN) HAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Single Image Super-Resolution via a Holistic Attention Network](https://arxiv.org/abs/2008.08767) by Niu et al. (2020) and first released in [this repository](https://github.com/wwlCape/HAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/han_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super- resolution approaches. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import HanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = HanModel.from_pretrained('eugenesiow/han', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, HanModel, HanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = HanConfig( scale=4, # train a model to upscale 4x ) model = HanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |han | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**** | |Set5 |3x |30.39/0.8678 |**** | |Set5 |4x |28.42/0.8101 |**31.21/0.8778** | |Set14 |2x |30.22/0.8683 |**** | |Set14 |3x |27.53/0.7737 |**** | |Set14 |4x |25.99/0.7023 |**28.18/0.7712** | |BSD100 |2x |29.55/0.8425 |**** | |BSD100 |3x |27.20/0.7382 |**** | |BSD100 |4x |25.96/0.6672 |**28.09/0.7533** | |Urban100 |2x |26.66/0.8408 |**** | |Urban100 |3x | |**** | |Urban100 |4x |23.14/0.6573 |**25.1/0.7497** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/han_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{niu2020single, title={Single Image Super-Resolution via a Holistic Attention Network}, author={Ben Niu and Weilei Wen and Wenqi Ren and Xiangde Zhang and Lianping Yang and Shuzhen Wang and Kaihao Zhang and Xiaochun Cao and Haifeng Shen}, year={2020}, eprint={2008.08767}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/han
null
[ "transformers", "HAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2008.08767", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2008.08767", "2104.07566" ]
[]
TAGS #transformers #HAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2008.08767 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Holistic Attention Network (HAN) ================================ HAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Single Image Super-Resolution via a Holistic Attention Network by Niu et al. (2020) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super- resolution approaches. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #HAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2008.08767 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Multi-Scale Deep Super-Resolution System (MDSR) MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/mdsr_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MdsrModel.from_pretrained('eugenesiow/mdsr-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MdsrModel, MdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MdsrConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = MdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |mdsr-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38/0.9607** | |Set5 |3x |30.39/0.8678 |**35.07/0.9402** | |Set5 |4x |28.42/0.8101 |**32.19/0.8949** | |Set14 |2x |30.22/0.8683 |**33.68/0.9182** | |Set14 |3x |27.53/0.7737 |**31.04/0.8582** | |Set14 |4x |25.99/0.7023 |**28.73/0.7847** | |BSD100 |2x |29.55/0.8425 |**33.77/0.9253** | |BSD100 |3x |27.20/0.7382 |**29.62/0.8188** | |BSD100 |4x |25.96/0.6672 |**28.5/0.7645** | |Urban100 |2x |26.66/0.8408 |**32.04/0.9272** | |Urban100 |3x | |**29.16/0.8717** | |Urban100 |4x |23.14/0.6573 |**26.02/0.7834** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/mdsr_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/mdsr-bam
null
[ "transformers", "MDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1707.02921", "2104.07566" ]
[]
TAGS #transformers #MDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us
Multi-Scale Deep Super-Resolution System (MDSR) =============================================== MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Enhanced Deep Residual Networks for Single Image Super-Resolution by Lim et al. (2017) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #MDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Multi-Scale Deep Super-Resolution System (MDSR) MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/mdsr_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MdsrModel.from_pretrained('eugenesiow/mdsr', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MdsrModel, MdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MdsrConfig( scale=4, # train a model to upscale 4x ) model = MdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |mdsr | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.04/0.9608** | |Set5 |3x |30.39/0.8678 |**35.11/0.9406** | |Set5 |4x |28.42/0.8101 |**32.26/0.8953** | |Set14 |2x |30.22/0.8683 |**33.71/0.9184** | |Set14 |3x |27.53/0.7737 |**31.06/0.8593** | |Set14 |4x |25.99/0.7023 |**28.77/0.7856** | |BSD100 |2x |29.55/0.8425 |**33.79/0.9256** | |BSD100 |3x |27.20/0.7382 |**29.66/0.8196** | |BSD100 |4x |25.96/0.6672 |**28.53/0.7653** | |Urban100 |2x |26.66/0.8408 |**32.14/0.9283** | |Urban100 |3x | |**29.29/0.8738** | |Urban100 |4x |23.14/0.6573 |**26.07/0.7851** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/mdsr_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/mdsr
null
[ "transformers", "MDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1707.02921", "2104.07566" ]
[]
TAGS #transformers #MDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Multi-Scale Deep Super-Resolution System (MDSR) =============================================== MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Enhanced Deep Residual Networks for Single Image Super-Resolution by Lim et al. (2017) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #MDSR #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1707.02921 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Multi-scale Residual Network for Image Super-Resolution (MSRN) MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Multi-scale Residual Network for Image Super-Resolution](https://openaccess.thecvf.com/content_ECCV_2018/html/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.html) by Li et al. (2018) and first released in [this repository](https://github.com/MIVRC/MSRN-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/msrn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image". This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MsrnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MsrnModel.from_pretrained('eugenesiow/msrn-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MsrnModel, MsrnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MsrnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = MsrnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |msrn-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.02/0.9608** | |Set5 |3x |30.39/0.8678 |**35.13/0.9408** | |Set5 |4x |28.42/0.8101 |**32.26/0.8955** | |Set14 |2x |30.22/0.8683 |**33.73/0.9186** | |Set14 |3x |27.53/0.7737 |**31.06/0.8588** | |Set14 |4x |25.99/0.7023 |**28.78/0.7859** | |BSD100 |2x |29.55/0.8425 |**33.78/0.9253** | |BSD100 |3x |27.20/0.7382 |**29.65/0.8196** | |BSD100 |4x |25.96/0.6672 |**28.51/0.7651** | |Urban100 |2x |26.66/0.8408 |**32.08/0.9276** | |Urban100 |3x | |**29.26/0.8736** | |Urban100 |4x |23.14/0.6573 |**26.10/0.7857** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/msrn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @InProceedings{Li_2018_ECCV, author = {Li, Juncheng and Fang, Faming and Mei, Kangfu and Zhang, Guixu}, title = {Multi-scale Residual Network for Image Super-Resolution}, booktitle = {The European Conference on Computer Vision (ECCV)}, month = {September}, year = {2018} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/msrn-bam
null
[ "transformers", "MSRN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.07566" ]
[]
TAGS #transformers #MSRN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us
Multi-scale Residual Network for Image Super-Resolution (MSRN) ============================================================== MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Multi-scale Residual Network for Image Super-Resolution by Li et al. (2018) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image". This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #MSRN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Multi-scale Residual Network for Image Super-Resolution (MSRN) MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Multi-scale Residual Network for Image Super-Resolution](https://openaccess.thecvf.com/content_ECCV_2018/html/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.html) by Li et al. (2018) and first released in [this repository](https://github.com/MIVRC/MSRN-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/msrn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image". ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MsrnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MsrnModel.from_pretrained('eugenesiow/msrn', scale=4) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_4x.png') # save the output 4x scaled image to `./scaled_4x.png` ImageLoader.save_compare(inputs, preds, './scaled_4x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MsrnModel, MsrnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MsrnConfig( scale=4, # train a model to upscale 4x ) model = MsrnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |msrn | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.08/0.9609** | |Set5 |3x |30.39/0.8678 |**35.12/0.9409** | |Set5 |4x |28.42/0.8101 |**32.19/0.8951** | |Set14 |2x |30.22/0.8683 |**33.75/0.9183** | |Set14 |3x |27.53/0.7737 |**31.08/0.8593** | |Set14 |4x |25.99/0.7023 |**28.78/0.7862** | |BSD100 |2x |29.55/0.8425 |**33.82/0.9258** | |BSD100 |3x |27.20/0.7382 |**29.67/0.8198** | |BSD100 |4x |25.96/0.6672 |**28.53/0.7657** | |Urban100 |2x |26.66/0.8408 |**32.14/0.9287** | |Urban100 |3x | |**29.31/0.8743** | |Urban100 |4x |23.14/0.6573 |**26.12/0.7866** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/msrn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @InProceedings{Agustsson_2017_CVPR_Workshops, author = {Agustsson, Eirikur and Timofte, Radu}, title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, url = "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-CVPRW-2017.pdf", month = {July}, year = {2017} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/msrn
null
[ "transformers", "MSRN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.07566" ]
[]
TAGS #transformers #MSRN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Multi-scale Residual Network for Image Super-Resolution (MSRN) ============================================================== MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Multi-scale Residual Network for Image Super-Resolution by Li et al. (2018) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image". Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #MSRN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Pixel Attention Network (PAN) PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Zhao et al. (2020) and first released in [this repository](https://github.com/zhaohengyuan1/PAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/pan_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. The model is very lightweight with the model being just 260k to 270k parameters (~1mb). ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import PanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = PanModel.from_pretrained('eugenesiow/pan-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, PanModel, PanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = PanConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = PanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |pan-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.7/0.9596** | |Set5 |3x |30.39/0.8678 |**34.62/0.9371** | |Set5 |4x |28.42/0.8101 |**31.9/0.8911** | |Set14 |2x |30.22/0.8683 |**33.4/0.9161** | |Set14 |3x |27.53/0.7737 |**30.83/0.8545** | |Set14 |4x |25.99/0.7023 |**28.54/0.7795** | |BSD100 |2x |29.55/0.8425 |**33.6/0.9234** | |BSD100 |3x |27.20/0.7382 |**29.47/0.8153** | |BSD100 |4x |25.96/0.6672 |**28.32/0.7591** | |Urban100 |2x |26.66/0.8408 |**31.35/0.92** | |Urban100 |3x | |**28.64/0.861** | |Urban100 |4x |23.14/0.6573 |**25.6/0.7691** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/pan_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @misc{zhao2020efficient, title={Efficient Image Super-Resolution Using Pixel Attention}, author={Hengyuan Zhao and Xiangtao Kong and Jingwen He and Yu Qiao and Chao Dong}, year={2020}, eprint={2010.01073}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/pan-bam
null
[ "transformers", "PAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2010.01073", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2010.01073", "2104.07566" ]
[]
TAGS #transformers #PAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2010.01073 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us
Pixel Attention Network (PAN) ============================= PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Efficient Image Super-Resolution Using Pixel Attention by Zhao et al. (2020) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. The model is very lightweight with the model being just 260k to 270k parameters (~1mb). Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #PAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2010.01073 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Pixel Attention Network (PAN) PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Zhao et al. (2020) and first released in [this repository](https://github.com/zhaohengyuan1/PAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/pan_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. The model is very lightweight with the model being just 260k to 270k parameters (~1mb). ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import PanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = PanModel.from_pretrained('eugenesiow/pan', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, PanModel, PanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = PanConfig( scale=4, # train a model to upscale 4x ) model = PanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |pan | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.77/0.9599** | |Set5 |3x |30.39/0.8678 |**34.64/0.9376** | |Set5 |4x |28.42/0.8101 |**31.92/0.8915** | |Set14 |2x |30.22/0.8683 |**33.42/0.9162** | |Set14 |3x |27.53/0.7737 |**30.8/0.8544** | |Set14 |4x |25.99/0.7023 |**28.57/0.7802** | |BSD100 |2x |29.55/0.8425 |**33.6/0.9235** | |BSD100 |3x |27.20/0.7382 |**29.47/0.815** | |BSD100 |4x |25.96/0.6672 |**28.35/0.7595** | |Urban100 |2x |26.66/0.8408 |**31.31/0.9197** | |Urban100 |3x | |**28.61/0.8603** | |Urban100 |4x |23.14/0.6573 |**25.63/0.7692** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/pan_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{zhao2020efficient, title={Efficient Image Super-Resolution Using Pixel Attention}, author={Hengyuan Zhao and Xiangtao Kong and Jingwen He and Yu Qiao and Chao Dong}, year={2020}, eprint={2010.01073}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/pan
null
[ "transformers", "PAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2010.01073", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2010.01073", "2104.07566" ]
[]
TAGS #transformers #PAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2010.01073 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us
Pixel Attention Network (PAN) ============================= PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Efficient Image Super-Resolution Using Pixel Attention by Zhao et al. (2020) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. The model is very lightweight with the model being just 260k to 270k parameters (~1mb). Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #PAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-2010.01073 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
null
transformers
# Residual Channel Attention Networks (RCAN) RCAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Image Super-Resolution Using Very Deep Residual Channel Attention Networks](https://arxiv.org/abs/1807.02758) by Zhang et al. (2018) and first released in [this repository](https://github.com/yulunzhang/RCAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/rcan_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import RcanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = RcanModel.from_pretrained('eugenesiow/rcan-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, RcanModel, RcanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = RcanConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = RcanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |rcan-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**** | |Set5 |3x |30.39/0.8678 |**** | |Set5 |4x |28.42/0.8101 |**30.8/0.8701** | |Set14 |2x |30.22/0.8683 |**** | |Set14 |3x |27.53/0.7737 |**** | |Set14 |4x |25.99/0.7023 |**27.91/0.7648** | |BSD100 |2x |29.55/0.8425 |**** | |BSD100 |3x |27.20/0.7382 |**** | |BSD100 |4x |25.96/0.6672 |**27.91/0.7477** | |Urban100 |2x |26.66/0.8408 |**** | |Urban100 |3x | |**** | |Urban100 |4x |23.14/0.6573 |**24.75/0.7346** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/rcan_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @misc{zhang2018image, title={Image Super-Resolution Using Very Deep Residual Channel Attention Networks}, author={Yulun Zhang and Kunpeng Li and Kai Li and Lichen Wang and Bineng Zhong and Yun Fu}, year={2018}, eprint={1807.02758}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "apache-2.0", "tags": ["super-image", "image-super-resolution"], "datasets": ["eugenesiow/Div2k", "eugenesiow/Set5", "eugenesiow/Set14", "eugenesiow/BSD100", "eugenesiow/Urban100"], "metrics": ["pnsr", "ssim"]}
eugenesiow/rcan-bam
null
[ "transformers", "RCAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1807.02758", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1807.02758", "2104.07566" ]
[]
TAGS #transformers #RCAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1807.02758 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us
Residual Channel Attention Networks (RCAN) ========================================== RCAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper Image Super-Resolution Using Very Deep Residual Channel Attention Networks by Zhang et al. (2018) and first released in this repository. The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4 Model description ----------------- Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods. This model also applies the balanced attention (BAM) method invented by Wang et al. (2021) to further improve the results. Intended uses & limitations --------------------------- You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the super\_image library: Here is how to use a pre-trained model to upscale your image: ![Open In Colab](URL "Open in Colab") Training data ------------- The models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). Training procedure ------------------ ### Preprocessing We follow the pre-processing and training method of Wang et al.. Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface datasets library to download the data: The following code gets the data and preprocesses/augments the data. ### Pretraining The model was trained on GPU. The training code is provided below: ![Open In Colab](URL "Open in Colab") Evaluation results ------------------ The evaluation metrics include PSNR and SSIM. Evaluation datasets include: * Set5 - Bevilacqua et al. (2012) * Set14 - Zeyde et al. (2010) * BSD100 - Martin et al. (2001) * Urban100 - Huang et al. (2015) The results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline. !Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2 You can find a notebook to easily run evaluation on pretrained models below: ![Open In Colab](URL "Open in Colab") BibTeX entry and citation info ------------------------------
[ "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
[ "TAGS\n#transformers #RCAN #super-image #image-super-resolution #dataset-eugenesiow/Div2k #dataset-eugenesiow/Set5 #dataset-eugenesiow/Set14 #dataset-eugenesiow/BSD100 #dataset-eugenesiow/Urban100 #arxiv-1807.02758 #arxiv-2104.07566 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nThe model can be used with the super\\_image library:\n\n\nHere is how to use a pre-trained model to upscale your image:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nTraining data\n-------------\n\n\nThe models for 2x, 3x and 4x image super resolution were pretrained on DIV2K, a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).\n\n\nTraining procedure\n------------------", "### Preprocessing\n\n\nWe follow the pre-processing and training method of Wang et al..\nLow Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.\nDuring training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.\nData augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.\n\n\nWe need the huggingface datasets library to download the data:\n\n\nThe following code gets the data and preprocesses/augments the data.", "### Pretraining\n\n\nThe model was trained on GPU. The training code is provided below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nEvaluation results\n------------------\n\n\nThe evaluation metrics include PSNR and SSIM.\n\n\nEvaluation datasets include:\n\n\n* Set5 - Bevilacqua et al. (2012)\n* Set14 - Zeyde et al. (2010)\n* BSD100 - Martin et al. (2001)\n* Urban100 - Huang et al. (2015)\n\n\nThe results columns below are represented below as 'PSNR/SSIM'. They are compared against a Bicubic baseline.\n\n\n\n!Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2\n\n\nYou can find a notebook to easily run evaluation on pretrained models below:\n\n\n![Open In Colab](URL \"Open in Colab\")\n\n\nBibTeX entry and citation info\n------------------------------" ]
feature-extraction
transformers
korean Mental Health BERT kcBERT를 아래의 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 문제 해결에 도움이 될만한 데이터셋이라고 판단하여 domain-adaptation하였고, 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 이후 공개될 예정인 더 큰 규모의 데이터셋까지 Dapt할 예정입니다. datasets from AIhub 웰니스 대화 스크립트 데이터셋1 & 2 (중복 제거 약 2만9천개) @inproceedings{lee2020kcbert, title={KcBERT: Korean Comments BERT}, author={Lee, Junbum}, booktitle={Proceedings of the 32nd Annual Conference on Human and Cognitive Language Technology}, pages={437--440}, year={2020} }
{}
eunjin/koMHBERT-kcbert-based-v1
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
korean Mental Health BERT kcBERT를 아래의 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 문제 해결에 도움이 될만한 데이터셋이라고 판단하여 domain-adaptation하였고, 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 이후 공개될 예정인 더 큰 규모의 데이터셋까지 Dapt할 예정입니다. datasets from AIhub 웰니스 대화 스크립트 데이터셋1 & 2 (중복 제거 약 2만9천개) @inproceedings{lee2020kcbert, title={KcBERT: Korean Comments BERT}, author={Lee, Junbum}, booktitle={Proceedings of the 32nd Annual Conference on Human and Cognitive Language Technology}, pages={437--440}, year={2020} }
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
feature-extraction
transformers
korean Mental Health BERT -v2 huggingface에 공개된 kcbert-base BERT를 정신건강의학신문을 크롤링한 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 발화 관련 데이터를 모을 수 없는 상황에서 이를 대체할만한 데이터로 제시합니다. 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 정신건강의학신문: http://www.psychiatricnews.net
{}
eunjin/koMHBERT-kcbert-based-v2
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us
korean Mental Health BERT -v2 huggingface에 공개된 kcbert-base BERT를 정신건강의학신문을 크롤링한 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 발화 관련 데이터를 모을 수 없는 상황에서 이를 대체할만한 데이터로 제시합니다. 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 정신건강의학신문: URL
[]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n" ]
feature-extraction
transformers
korean Mental Health BERT huggingface에 공개된 KR-Medium BERT를 아래의 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 문제 해결에 도움이 될만한 데이터셋이라고 판단하여 domain-adaptation하였고, 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 이후 공개될 예정인 더 큰 규모의 데이터셋까지 Dapt할 예정입니다. datasets from AIhub 웰니스 대화 스크립트 데이터셋1 & 2 (중복 제거 약 2만9천개)
{}
eunjin/koMHBERT-krbert-based-v1
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
korean Mental Health BERT huggingface에 공개된 KR-Medium BERT를 아래의 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 문제 해결에 도움이 될만한 데이터셋이라고 판단하여 domain-adaptation하였고, 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 이후 공개될 예정인 더 큰 규모의 데이터셋까지 Dapt할 예정입니다. datasets from AIhub 웰니스 대화 스크립트 데이터셋1 & 2 (중복 제거 약 2만9천개)
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
feature-extraction
transformers
korean Mental Health BERT -v2 huggingface에 공개된 KR-Medium BERT를 정신건강의학신문을 크롤링한 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 발화 관련 데이터를 모을 수 없는 상황에서 이를 대체할만한 데이터로 제시합니다. 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 정신건강의학신문: http://www.psychiatricnews.net
{}
eunjin/koMHBERT-krbert-based-v2
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us
korean Mental Health BERT -v2 huggingface에 공개된 KR-Medium BERT를 정신건강의학신문을 크롤링한 dataset으로 MLM fine-tuining한 Bert Model입니다. 정신건강 발화 관련 데이터를 모을 수 없는 상황에서 이를 대체할만한 데이터로 제시합니다. 향후 정신건강 관련 감정 및 상태 classification 및 그에 따른 chatbot 구현에 사용할 수 있습니다. 정신건강의학신문: URL
[]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n" ]
text-generation
transformers
* skt/kogpt2-base-v2에 wellness 및 일상챗봇 데이터를 fine-tuning한 모델입니다. * 유사한 정신건강 상담 도메인에서 바로 사용 가능합니다. * 깃허브 사이트를 참조해주세요! https://github.com/eunjiinkim/WellnessChatbot
{}
eunjin/kogpt2-finetuned-wellness
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
* skt/kogpt2-base-v2에 wellness 및 일상챗봇 데이터를 fine-tuning한 모델입니다. * 유사한 정신건강 상담 도메인에서 바로 사용 가능합니다. * 깃허브 사이트를 참조해주세요! URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 417310788 - CO2 Emissions (in grams): 6.826886567147602 ## Validation Metrics - Loss: 0.20949310064315796 - Accuracy: 0.9578392621870883 - Precision: 0.9476190476190476 - Recall: 0.9045454545454545 - AUC: 0.9714032720526227 - F1: 0.9255813953488372 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/evandrodiniz/autonlp-api-boamente-417310788 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("evandrodiniz/autonlp-api-boamente-417310788", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("evandrodiniz/autonlp-api-boamente-417310788", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "unk", "tags": "autonlp", "datasets": ["evandrodiniz/autonlp-data-api-boamente"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 6.826886567147602}
evandrodiniz/autonlp-api-boamente-417310788
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:evandrodiniz/autonlp-data-api-boamente", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "unk" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #unk #dataset-evandrodiniz/autonlp-data-api-boamente #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 417310788 - CO2 Emissions (in grams): 6.826886567147602 ## Validation Metrics - Loss: 0.20949310064315796 - Accuracy: 0.9578392621870883 - Precision: 0.9476190476190476 - Recall: 0.9045454545454545 - AUC: 0.9714032720526227 - F1: 0.9255813953488372 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 417310788\n- CO2 Emissions (in grams): 6.826886567147602", "## Validation Metrics\n\n- Loss: 0.20949310064315796\n- Accuracy: 0.9578392621870883\n- Precision: 0.9476190476190476\n- Recall: 0.9045454545454545\n- AUC: 0.9714032720526227\n- F1: 0.9255813953488372", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #unk #dataset-evandrodiniz/autonlp-data-api-boamente #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 417310788\n- CO2 Emissions (in grams): 6.826886567147602", "## Validation Metrics\n\n- Loss: 0.20949310064315796\n- Accuracy: 0.9578392621870883\n- Precision: 0.9476190476190476\n- Recall: 0.9045454545454545\n- AUC: 0.9714032720526227\n- F1: 0.9255813953488372", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 417310793 - CO2 Emissions (in grams): 9.446754273734577 ## Validation Metrics - Loss: 0.25755178928375244 - Accuracy: 0.9407114624505929 - Precision: 0.8600823045267489 - Recall: 0.95 - AUC: 0.9732501264968797 - F1: 0.9028077753779697 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/evandrodiniz/autonlp-api-boamente-417310793 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("evandrodiniz/autonlp-api-boamente-417310793", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("evandrodiniz/autonlp-api-boamente-417310793", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "unk", "tags": "autonlp", "datasets": ["evandrodiniz/autonlp-data-api-boamente"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 9.446754273734577}
evandrodiniz/autonlp-api-boamente-417310793
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:evandrodiniz/autonlp-data-api-boamente", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "unk" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #unk #dataset-evandrodiniz/autonlp-data-api-boamente #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 417310793 - CO2 Emissions (in grams): 9.446754273734577 ## Validation Metrics - Loss: 0.25755178928375244 - Accuracy: 0.9407114624505929 - Precision: 0.8600823045267489 - Recall: 0.95 - AUC: 0.9732501264968797 - F1: 0.9028077753779697 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 417310793\n- CO2 Emissions (in grams): 9.446754273734577", "## Validation Metrics\n\n- Loss: 0.25755178928375244\n- Accuracy: 0.9407114624505929\n- Precision: 0.8600823045267489\n- Recall: 0.95\n- AUC: 0.9732501264968797\n- F1: 0.9028077753779697", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #unk #dataset-evandrodiniz/autonlp-data-api-boamente #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 417310793\n- CO2 Emissions (in grams): 9.446754273734577", "## Validation Metrics\n\n- Loss: 0.25755178928375244\n- Accuracy: 0.9407114624505929\n- Precision: 0.8600823045267489\n- Recall: 0.95\n- AUC: 0.9732501264968797\n- F1: 0.9028077753779697", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_Afrikaans-AfriBooms | Feature | Description | | --- | --- | | **Name** | `af_udv25_afrikaansafribooms_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (455 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `AOA`, `AOP`, `ASA`, `ASP`, `AVA`, `AVP`, `BO`, `BS`, `BV`, `KN`, `KO`, `LB`, `LO`, `NA`, `NEE`, `NM`, `NME`, `NSE`, `NSED`, `NSM`, `PA`, `PB`, `PDHEB`, `PDHEDP`, `PDHENP`, `PDHEW`, `PDMB`, `PDMP`, `PDMW`, `PDOENP`, `PDOEW`, `PDVEB`, `PDVEDP`, `PDVENP`, `PDVEW`, `PEEB`, `PEEDP`, `PEENP`, `PEMB`, `PEMP`, `PEMW`, `PO`, `PTEB`, `PTEDP`, `PTENP`, `PTEW`, `PTMP`, `PV`, `PW`, `RA`, `RK`, `RL`, `RO`, `RS`, `RSF`, `RV`, `RWD`, `SVS`, `THAB`, `THAO`, `THBB`, `THBO`, `THNB`, `THPB`, `THPO`, `TRAB`, `TRAO`, `TRBB`, `UPB`, `UPD`, `UPI`, `UPO`, `UPS`, `UPV`, `UPW`, `UXD`, `VTHOG`, `VTHOK`, `VTHOO`, `VTHOV`, `VTHSG`, `VTHSO`, `VTUOA`, `VTUOM`, `VTUOP`, `VUOT`, `VVHOG`, `VVHOK`, `VVHOO`, `VVUOM`, `VVUOP`, `ZE`, `ZM`, `ZPL`, `ZPR` | | **`morphologizer`** | `Definite=Def\|POS=DET\|PronType=Art`, `Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP`, `AdjType=Attr\|Case=Nom\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=NOUN`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Cop`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=NUM`, `POS=PART\|PartType=Inf`, `POS=VERB\|Subcat=Tran\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=PRON\|PronType=Rel`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Pas`, `POS=PUNCT`, `POS=CCONJ`, `POS=SCONJ`, `POS=VERB\|Subcat=Intr\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=VERB\|Subcat=Intr\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Pas`, `Degree=Pos\|POS=ADV`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Mod`, `POS=DET\|PronType=Ind`, `POS=X`, `Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Ind`, `POS=PART\|PartType=Neg`, `POS=VERB\|Subcat=Tran\|Tense=Past\|VerbForm=Part`, `AdjType=Pred\|Case=Nom\|Degree=Pos\|POS=ADJ`, `POS=DET\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=SYM`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PART\|PartType=Gen`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|POS=ADV`, `Degree=Dim\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `AdjType=Attr\|Case=Nom\|Degree=Sup\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `AdjType=Pred\|Case=Nom\|Degree=Cmp\|POS=ADJ`, `POS=VERB\|Subcat=Prep\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Aux`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Rcp`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Cop`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `AdjType=Attr\|Case=Nom\|Degree=Cmp\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `AdjType=Pred\|Case=Nom\|Degree=Sup\|POS=ADJ` | | **`parser`** | `ROOT`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `punct`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `8`, `10`, `12`, `14`, `16`, `18`, `21`, `24`, `26`, `28`, `31`, `32`, `34`, `37`, `39`, `40`, `42`, `44`, `46`, `47`, `49`, `51`, `53`, `54`, `56`, `57`, `58`, `59`, `61`, `64`, `66`, `68`, `69`, `72`, `74`, `75`, `77`, `78`, `81`, `83`, `84`, `85`, `86`, `87`, `90`, `92`, `94`, `96`, `99`, `101`, `103`, `105`, `108`, `110`, `113`, `116`, `117`, `118`, `121`, `123`, `124`, `125`, `127`, `128`, `129`, `133`, `136`, `138`, `141`, `143`, `145`, `147`, `151`, `153`, `154`, `156`, `158`, `159`, `160`, `162`, `164`, `165`, `167`, `168`, `170`, `172`, `174`, `176`, `178`, `179`, `180`, `181`, `183`, `185`, `189`, `190`, `191`, `192`, `194`, `195`, `197`, `198`, `201`, `202`, `203`, `204`, `206`, `207`, `209`, `213`, `214`, `216`, `217`, `218`, `220`, `221`, `222`, `223`, `225`, `226`, `228`, `229`, `231`, `233`, `234`, `236`, `238`, `240`, `241`, `244`, `247`, `248`, `249`, `250`, `252`, `253`, `255`, `256`, `257`, `258`, `261`, `262`, `263`, `265`, `267`, `269`, `270`, `271`, `273`, `275`, `276`, `278`, `279`, `281`, `283`, `285`, `287`, `289`, `291`, `294`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `305`, `306`, `307`, `309`, `310`, `311`, `313`, `314`, `315`, `317`, `320`, `321`, `323`, `325`, `326`, `327`, `328`, `329`, `330`, `332`, `333`, `335`, `336`, `337`, `338`, `339`, `340`, `341`, `343`, `344`, `347`, `348`, `349`, `351`, `353`, `355`, `357`, `359`, `360`, `361`, `362`, `365`, `366`, `367`, `369`, `371`, `373`, `374`, `375`, `377`, `379`, `381`, `383`, `386`, `388`, `390`, `392`, `393`, `395`, `397`, `398`, `400`, `401`, `402`, `403`, `405`, `406`, `408`, `409`, `411`, `412`, `414`, `417`, `215`, `418`, `419`, `420`, `421`, `422`, `424`, `425`, `426`, `427`, `429`, `431`, `432`, `433`, `434`, `436`, `438`, `439`, `440`, `442`, `443`, `444`, `447`, `449`, `450`, `452` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.92 | | `TOKEN_P` | 99.89 | | `TOKEN_R` | 99.94 | | `TOKEN_ACC` | 100.00 | | `SENTS_F` | 100.00 | | `SENTS_P` | 100.00 | | `SENTS_R` | 100.00 | | `TAG_ACC` | 96.01 | | `POS_ACC` | 98.52 | | `MORPH_ACC` | 97.52 | | `DEP_UAS` | 90.78 | | `DEP_LAS` | 87.50 | | `LEMMA_ACC` | 97.87 |
{"language": ["af"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/af_udv25_afrikaansafribooms_trf
null
[ "spacy", "token-classification", "af", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "af" ]
TAGS #spacy #token-classification #af #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_Afrikaans-AfriBooms ### Label Scheme View label scheme (455 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (455 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #af #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (455 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_Danish-DDT | Feature | Description | | --- | --- | | **Name** | `da_udv25_danishddt_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (1316 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` | | **`morphologizer`** | `AdpType=Prep\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PROPN`, `Definite=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Definite=Ind\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADJ`, `POS=PRON\|PartType=Inf`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=ADP\|PartType=Inf`, `Degree=Pos\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Inf`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|POS=PRON\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Imp\|POS=VERB`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=ADV\|PartType=Inf`, `Degree=Sup\|POS=ADV`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|POS=PROPN`, `POS=ADP`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Com\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=INTJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=SYM`, `Case=Nom\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Degree=Sup\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Ind\|Style=Arch`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Foreign=Yes\|POS=X`, `POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Int,Rel`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Abbr=Yes\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Abs\|POS=ADJ`, `Definite=Ind\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=NOUN`, `Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Com\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Degree=Abs\|POS=ADV`, `POS=VERB\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|Tense=Pres`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|POS=AUX`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=NOUN`, `Number[psor]=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=NOUN` | | **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:loc`, `obl:tmod`, `punct`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `9`, `11`, `13`, `15`, `17`, `19`, `21`, `23`, `27`, `31`, `33`, `35`, `37`, `39`, `42`, `44`, `45`, `5`, `47`, `49`, `51`, `53`, `55`, `57`, `59`, `63`, `67`, `69`, `73`, `75`, `77`, `79`, `81`, `83`, `85`, `87`, `89`, `91`, `93`, `95`, `97`, `101`, `103`, `104`, `106`, `109`, `113`, `115`, `116`, `117`, `118`, `119`, `122`, `124`, `127`, `130`, `133`, `134`, `135`, `138`, `140`, `141`, `144`, `146`, `148`, `149`, `151`, `153`, `154`, `156`, `157`, `158`, `159`, `160`, `164`, `166`, `169`, `172`, `175`, `177`, `179`, `181`, `183`, `185`, `188`, `6`, `190`, `192`, `195`, `197`, `199`, `201`, `203`, `205`, `207`, `209`, `212`, `214`, `216`, `217`, `220`, `221`, `222`, `224`, `227`, `228`, `229`, `230`, `232`, `234`, `236`, `238`, `239`, `241`, `243`, `244`, `247`, `248`, `249`, `250`, `252`, `253`, `254`, `255`, `257`, `258`, `262`, `264`, `270`, `274`, `277`, `278`, `280`, `282`, `284`, `286`, `289`, `290`, `292`, `293`, `294`, `295`, `296`, `297`, `298`, `301`, `302`, `304`, `305`, `306`, `308`, `310`, `312`, `314`, `315`, `317`, `319`, `323`, `324`, `326`, `328`, `330`, `332`, `334`, `336`, `339`, `341`, `342`, `344`, `345`, `346`, `348`, `350`, `353`, `356`, `357`, `359`, `362`, `363`, `365`, `366`, `368`, `369`, `370`, `372`, `374`, `375`, `376`, `378`, `380`, `381`, `385`, `387`, `388`, `392`, `394`, `398`, `401`, `402`, `403`, `405`, `406`, `407`, `408`, `409`, `410`, `411`, `414`, `415`, `416`, `419`, `422`, `423`, `426`, `430`, `431`, `432`, `433`, `436`, `437`, `438`, `439`, `440`, `441`, `442`, `443`, `445`, `446`, `448`, `449`, `450`, `451`, `452`, `453`, `456`, `457`, `460`, `462`, `468`, `469`, `471`, `472`, `473`, `474`, `476`, `478`, `480`, `481`, `484`, `485`, `486`, `488`, `489`, `491`, `492`, `493`, `494`, `495`, `496`, `498`, `500`, `502`, `505`, `507`, `508`, `510`, `511`, `512`, `514`, `515`, `517`, `519`, `521`, `522`, `524`, `525`, `528`, `530`, `532`, `533`, `535`, `536`, `537`, `539`, `542`, `543`, `546`, `547`, `550`, `551`, `553`, `554`, `556`, `557`, `558`, `561`, `562`, `563`, `564`, `567`, `569`, `570`, `573`, `575`, `576`, `577`, `578`, `579`, `580`, `582`, `583`, `584`, `585`, `587`, `588`, `590`, `591`, `593`, `597`, `598`, `600`, `601`, `602`, `603`, `605`, `606`, `607`, `608`, `609`, `610`, `612`, `614`, `617`, `618`, `621`, `623`, `625`, `626`, `627`, `628`, `629`, `630`, `631`, `633`, `634`, `635`, `636`, `638`, `639`, `640`, `641`, `642`, `643`, `645`, `646`, `647`, `649`, `650`, `651`, `653`, `656`, `657`, `659`, `660`, `661`, `662`, `664`, `665`, `667`, `670`, `671`, `672`, `674`, `675`, `676`, `677`, `678`, `679`, `680`, `681`, `683`, `685`, `686`, `688`, `689`, `690`, `691`, `692`, `693`, `694`, `696`, `697`, `698`, `699`, `701`, `702`, `703`, `704`, `705`, `706`, `707`, `709`, `711`, `714`, `715`, `717`, `720`, `721`, `722`, `723`, `725`, `728`, `730`, `731`, `732`, `734`, `736`, `738`, `740`, `742`, `746`, `747`, `748`, `750`, `752`, `753`, `754`, `758`, `759`, `763`, `764`, `766`, `768`, `769`, `773`, `775`, `776`, `778`, `779`, `780`, `781`, `782`, `785`, `788`, `789`, `790`, `791`, `795`, `796`, `797`, `798`, `800`, `801`, `803`, `805`, `806`, `807`, `808`, `810`, `812`, `813`, `815`, `816`, `818`, `821`, `822`, `823`, `825`, `827`, `830`, `832`, `836`, `837`, `838`, `840`, `841`, `844`, `846`, `848`, `850`, `851`, `852`, `854`, `856`, `858`, `860`, `861`, `863`, `864`, `865`, `866`, `867`, `868`, `870`, `872`, `873`, `874`, `875`, `880`, `882`, `884`, `885`, `886`, `887`, `889`, `891`, `892`, `893`, `894`, `895`, `896`, `898`, `902`, `903`, `905`, `907`, `908`, `909`, `911`, `912`, `913`, `914`, `915`, `917`, `918`, `919`, `920`, `922`, `923`, `924`, `926`, `927`, `928`, `929`, `931`, `934`, `935`, `936`, `938`, `939`, `940`, `941`, `942`, `944`, `945`, `947`, `949`, `951`, `952`, `954`, `955`, `956`, `958`, `960`, `961`, `962`, `969`, `970`, `974`, `975`, `977`, `978`, `979`, `980`, `981`, `983`, `984`, `987`, `988`, `989`, `993`, `995`, `998`, `1000`, `1001`, `1002`, `1004`, `1007`, `1011`, `1012`, `1014`, `1017`, `1018`, `1020`, `1021`, `1022`, `1023`, `1025`, `1026`, `1027`, `1029`, `1030`, `1031`, `1032`, `1033`, `1034`, `1036`, `1037`, `1038`, `1040`, `1042`, `1044`, `1045`, `1048`, `1050`, `1051`, `1053`, `1054`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1064`, `1066`, `1067`, `1069`, `1070`, `1072`, `1073`, `1076`, `1078`, `1080`, `1081`, `1085`, `1086`, `1087`, `1088`, `1089`, `1090`, `1092`, `1093`, `1094`, `1096`, `1097`, `1098`, `1100`, `1101`, `1102`, `1106`, `1109`, `1110`, `1111`, `1113`, `1114`, `1116`, `1117`, `1119`, `1120`, `1122`, `1123`, `1125`, `1127`, `1128`, `1131`, `1132`, `1133`, `1134`, `1135`, `1136`, `1137`, `1138`, `1141`, `831`, `1142`, `1143`, `1144`, `1146`, `1148`, `1150`, `1152`, `1153`, `1155`, `1157`, `1158`, `1160`, `1161`, `1162`, `1163`, `1168`, `1170`, `1171`, `1174`, `1175`, `1176`, `1178`, `1181`, `1182`, `1183`, `1185`, `1186`, `1189`, `1191`, `1192`, `1193`, `1194`, `1195`, `1196`, `1198`, `1199`, `1201`, `1203`, `1204`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1211`, `1212`, `1213`, `1214`, `1215`, `1218`, `1219`, `1220`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1229`, `1231`, `1232`, `1235`, `1236`, `1238`, `1239`, `1242`, `1244`, `1247`, `1248`, `1249`, `1250`, `1251`, `1253`, `1255`, `1257`, `1258`, `1259`, `1261`, `1263`, `1265`, `1266`, `1267`, `1269`, `1271`, `1272`, `1273`, `1274`, `1276`, `1277`, `1278`, `1280`, `1281`, `1282`, `1283`, `1285`, `1286`, `1287`, `1288`, `1289`, `1291`, `1293`, `1294`, `1295`, `1297`, `1298`, `1299`, `1300`, `1303`, `1305`, `1307`, `1309`, `1310`, `1311`, `1312`, `1315`, `1316`, `1318`, `1321`, `1322`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1337`, `1338`, `1339`, `1341`, `1342`, `1343`, `1344`, `1345`, `1346`, `1347`, `1348`, `1349`, `1351`, `1352`, `1353`, `1354`, `1355`, `1357`, `1358`, `1359`, `1360`, `1362`, `1364`, `1365`, `1367`, `1368`, `1369`, `1370`, `1371`, `1372`, `1374`, `1376`, `1377`, `1379`, `1380`, `1382`, `1383`, `1384`, `1386`, `1387`, `1389`, `1390`, `1391`, `1392`, `1394`, `1396`, `1398`, `1399`, `1400`, `1401`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1147`, `1411`, `1413`, `1414`, `1415`, `1418`, `1420`, `1421`, `1422`, `1423`, `1426`, `1427`, `1428`, `1430`, `1431`, `1433`, `1438`, `1439`, `1440`, `1441`, `1442`, `1444`, `1446`, `1448`, `1449`, `1453`, `1454`, `1456`, `1457`, `1459`, `1463`, `1465`, `1466`, `1468`, `1469`, `1470`, `1472`, `1476`, `1478`, `1479`, `1480`, `1481`, `1482`, `1483`, `1485`, `1486`, `1487`, `1488`, `1490`, `1491`, `1493`, `1494`, `1496`, `1498`, `1500`, `1502`, `1503`, `1504`, `1505`, `1506`, `1508`, `1509`, `1511`, `1512`, `1513`, `1514`, `1516`, `1518`, `1519`, `1521`, `1522`, `1524`, `1525`, `1527`, `1533`, `1534`, `1535`, `1536`, `1538`, `1540`, `1541`, `1544`, `1545`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1556`, `1557`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1568`, `1569`, `1571`, `1572`, `1574`, `1577`, `1578`, `1579`, `1580`, `1581`, `1583`, `1585`, `1586`, `1587`, `1588`, `1589`, `1590`, `1591`, `1594`, `1595`, `1596`, `1597`, `1598`, `1599`, `1602`, `1603`, `1605`, `1606`, `1608`, `1610`, `1612`, `1613`, `1614`, `1616`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1626`, `1627`, `1629`, `1630`, `1631`, `1632`, `1634`, `1636`, `1637`, `1638`, `1639`, `1640`, `1641`, `1642`, `1644`, `1645`, `1647`, `1649`, `1651`, `1653`, `1656`, `1657`, `1658`, `1659`, `1660`, `1661`, `1663`, `1665`, `1666`, `1667`, `1668`, `1670`, `1673`, `1674`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1684`, `1685`, `1687`, `1688`, `1689`, `1690`, `1692`, `1693`, `1643`, `1694`, `1695`, `1696`, `1697`, `1699`, `1701`, `1702`, `1704`, `1706`, `1708`, `1710`, `1711`, `1712`, `1714`, `1715`, `1717`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1728`, `1729`, `1730`, `1732`, `1734`, `1735`, `1737`, `1739`, `1741`, `1742`, `1743`, `1745`, `1747`, `1749`, `1750`, `1751`, `1753`, `1754`, `1756`, `1758`, `1759`, `1760`, `1761`, `1762`, `1764`, `1766`, `1768`, `1769`, `1770`, `1771`, `1772`, `1773`, `1774` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.96 | | `TOKEN_P` | 99.95 | | `TOKEN_R` | 99.96 | | `TOKEN_ACC` | 100.00 | | `SENTS_F` | 96.89 | | `SENTS_P` | 97.15 | | `SENTS_R` | 96.63 | | `TAG_ACC` | 98.49 | | `POS_ACC` | 98.48 | | `MORPH_ACC` | 98.20 | | `DEP_UAS` | 89.67 | | `DEP_LAS` | 87.29 | | `LEMMA_ACC` | 97.55 |
{"language": ["da"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/da_udv25_danishddt_trf
null
[ "spacy", "token-classification", "da", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "da" ]
TAGS #spacy #token-classification #da #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_Danish-DDT ### Label Scheme View label scheme (1316 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (1316 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #da #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (1316 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_German-HDT | Feature | Description | | --- | --- | | **Name** | `de_udv25_germanhdt_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (62832 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `PDAT`, `PDS`, `PIAT`, `PIDAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` | | **`morphologizer`** | `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=3`, `Foreign=Yes\|POS=X\|Person=3`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|POS=ADP`, `Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=CCONJ`, `POS=PUNCT\|PunctType=Peri`, `NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Brck`, `POS=PROPN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=ADV`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|POS=ADJ\|Variant=Short`, `POS=ADP\|PartType=Vbp`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART\|Polarity=Neg`, `Degree=Cmp\|POS=ADV`, `ConjType=Comp\|POS=CCONJ`, `Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Aspect=Perf\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3`, `Degree=Sup\|POS=ADJ\|Variant=Short`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Hyph=Yes\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PART\|PartType=Inf`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Inf\|VerbType=Mod`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Dat\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ`, `Degree=Cmp\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Art`, `POS=ADV\|PronType=Int`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `AdpType=Post\|Case=Dat\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|POS=AUX\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ\|Person=3`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|Case=Acc\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `AdpType=Circ\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Nom\|POS=ADP`, `Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=X`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Acc\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person=3`, `NumType=Card\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Sup\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|POS=AUX\|VerbForm=Part\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|POS=NOUN\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=INTJ\|PartType=Res`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Foreign=Yes\|Gender=Neut\|Number=Sing\|POS=X\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Int`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN\|Person=3`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Number=Plur\|POS=DET\|Person=3`, `Case=Nom\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Hyph=Yes\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|POS=PROPN\|Person=3`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Number=Sing\|POS=ADJ\|Person=3`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=PRON\|PronType=Int`, `Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Hyph=Yes\|POS=NOUN\|Person=3`, `Degree=Pos\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|POS=SCONJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Post\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Ind,Neg,Tot`, `Degree=Pos\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `AdpType=Prep\|Case=Acc\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|POS=NOUN\|Person=3`, `Degree=Pos\|POS=VERB\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=SCONJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|POS=DET\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind,Neg,Tot`, `Degree=Sup\|Number=Plur\|POS=DET\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Masc\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Degree=Pos\|Gender=Neut\|POS=ADJ`, `Gender=Fem\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `POS=DET\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:pv`, `flat`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | -- | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 100.00 | | `TOKEN_P` | 100.00 | | `TOKEN_R` | 100.00 | | `TOKEN_ACC` | 100.00 | | `SENTS_F` | 99.75 | | `SENTS_P` | 99.74 | | `SENTS_R` | 99.76 | | `TAG_ACC` | 97.84 | | `POS_ACC` | 97.82 | | `MORPH_ACC` | 78.11 | | `DEP_UAS` | 97.28 | | `DEP_LAS` | 95.88 | | `LEMMA_ACC` | 92.04 |
{"language": ["de"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/de_udv25_germanhdt_trf
null
[ "spacy", "token-classification", "de", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #spacy #token-classification #de #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_German-HDT ### Label Scheme View label scheme (62832 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (62832 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #de #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (62832 labels for 6 components)", "### Accuracy" ]
text-classification
spacy
# Welcome to Healthsea ✨ Create better access to health with machine learning and natural language processing. This is the trained healthsea pipeline for analyzing user reviews to supplements by extracting their effects on health. This pipeline features a trained NER model and a custom Text Classification model with Clause Segmentation and Blinding capabilities. > Read more in the [blog post](https://explosion.ai/blog/healthsea) and visit the [healthsea repository](https://github.com/explosion/healthsea) for all training workflows, custom components and training data. | Feature | Description | | --- | --- | | **Name** | `en_healthsea` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.0,<3.3.0` | | **Default Pipeline** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Components** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | MIT | | **Author** | [Explosion](explosion.ai) | ### Label Scheme <details> <summary>View label scheme (6 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `BENEFIT`, `CONDITION` | | **`clausecat`** | `POSITIVE`, `NEUTRAL`, `NEGATIVE`, `ANAMNESIS` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 80.34 | | `ENTS_P` | 80.77 | | `ENTS_R` | 79.92 | | `CATS_SCORE` | 74.87 | | `CATS_MICRO_P` | 82.17 | | `CATS_MICRO_R` | 80.85 | | `CATS_MICRO_F` | 81.51 | | `CATS_MACRO_P` | 78.01 | | `CATS_MACRO_R` | 72.41 | | `CATS_MACRO_F` | 74.87 | | `CATS_MACRO_AUC` | 92.76 | | `CATS_LOSS` | 297.22 |
{"language": ["en"], "tags": ["spacy", "token-classification", "text-classification"]}
explosion/en_healthsea
null
[ "spacy", "token-classification", "text-classification", "en", "model-index", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #text-classification #en #model-index #has_space #region-us
Welcome to Healthsea ==================== Create better access to health with machine learning and natural language processing. This is the trained healthsea pipeline for analyzing user reviews to supplements by extracting their effects on health. This pipeline features a trained NER model and a custom Text Classification model with Clause Segmentation and Blinding capabilities. > > Read more in the blog post and visit the healthsea repository for all training workflows, custom components and training data. > > > ### Label Scheme View label scheme (6 labels for 2 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (6 labels for 2 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #text-classification #en #model-index #has_space #region-us \n", "### Label Scheme\n\n\n\nView label scheme (6 labels for 2 components)", "### Accuracy" ]
text-classification
spacy
# 🪐 spaCy Project: Categorization of emotions in Reddit posts (Text Classification) This project uses spaCy to train a text classifier on the [GoEmotions dataset](https://github.com/google-research/google-research/tree/master/goemotions) | Feature | Description | | --- | --- | | **Name** | `en_textcat_goemotions` | | **Version** | `0.0.1` | | **spaCy** | `>=3.1.1,<3.2.0` | | **Default Pipeline** | `transformer`, `textcat_multilabel` | | **Components** | `transformer`, `textcat_multilabel` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [GoEmotions dataset](https://github.com/google-research/google-research/tree/master/goemotions) | | **License** | `MIT` | | **Author** | [Explosion](explosion.ai) | > The dataset that this model is trained on has known flaws described [here](https://github.com/google-research/google-research/tree/master/goemotions#disclaimer) as well as label errors resulting from [annotator disagreement](https://www.youtube.com/watch?v=khZ5-AN-n2Y). Anyone using this model should be aware of these limitations of the dataset. ### Label Scheme <details> <summary>View label scheme (28 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`textcat_multilabel`** | `admiration`, `amusement`, `anger`, `annoyance`, `approval`, `caring`, `confusion`, `curiosity`, `desire`, `disappointment`, `disapproval`, `disgust`, `embarrassment`, `excitement`, `fear`, `gratitude`, `grief`, `joy`, `love`, `nervousness`, `optimism`, `pride`, `realization`, `relief`, `remorse`, `sadness`, `surprise`, `neutral` | </details> ### Accuracy | Type | Score | | --- | --- | | `CATS_SCORE` | 90.22 | | `CATS_MICRO_P` | 66.67 | | `CATS_MICRO_R` | 47.81 | | `CATS_MICRO_F` | 55.68 | | `CATS_MACRO_P` | 55.00 | | `CATS_MACRO_R` | 41.93 | | `CATS_MACRO_F` | 46.29 | | `CATS_MACRO_AUC` | 90.22 | | `CATS_MACRO_AUC_PER_TYPE` | 0.00 | | `TRANSFORMER_LOSS` | 83.51 | | `TEXTCAT_MULTILABEL_LOSS` | 4549.84 |
{"language": ["en"], "license": "mit", "tags": ["spacy", "text-classification"], "model-index": [{"name": "en_textcat_goemotions", "results": []}]}
explosion/en_textcat_goemotions
null
[ "spacy", "text-classification", "en", "license:mit", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #spacy #text-classification #en #license-mit #region-us
spaCy Project: Categorization of emotions in Reddit posts (Text Classification) This project uses spaCy to train a text classifier on the GoEmotions dataset ============================================================================================================================================================ > > The dataset that this model is trained on has known flaws described here as well as label errors resulting from annotator disagreement. Anyone using this model should be aware of these limitations of the dataset. > > > ### Label Scheme View label scheme (28 labels for 1 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (28 labels for 1 components)", "### Accuracy" ]
[ "TAGS\n#spacy #text-classification #en #license-mit #region-us \n", "### Label Scheme\n\n\n\nView label scheme (28 labels for 1 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_English-EWT | Feature | Description | | --- | --- | | **Name** | `en_udv25_englishewt_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (1760 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `GW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`morphologizer`** | `Number=Sing\|POS=PROPN`, `POS=PUNCT`, `Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Def\|POS=DET\|PronType=Art`, `Number=Sing\|POS=NOUN`, `POS=ADP`, `Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=AUX\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `POS=VERB\|VerbForm=Ger`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NUM`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PROPN`, `Degree=Pos\|NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=DET`, `Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADV`, `Degree=Cmp\|POS=ADV`, `Number=Sing\|POS=PRON`, `Degree=Cmp\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV\|PronType=Dem`, `POS=ADV\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Degree=Sup\|POS=ADJ`, `POS=PRON\|PronType=Int`, `NumType=Mult\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=DET\|PronType=Int`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|Poss=Yes\|PronType=Int`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `POS=X`, `POS=PRON\|PronType=Dem`, `Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=ADV\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Sup\|POS=ADV`, `POS=INTJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=X`, `POS=SYM`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=CCONJ`, `POS=SCONJ\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=SYM`, `POS=DET\|Typo=Yes`, `Degree=Pos\|POS=PROPN`, `Abbr=Yes\|POS=ADP`, `POS=ADP\|Typo=Yes`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Abbr=Yes\|POS=PART`, `POS=AUX\|Typo=Yes\|VerbForm=Fin`, `Degree=Pos\|POS=ADJ\|Typo=Yes`, `POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=NOUN\|Typo=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Abbr=Yes\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=NOUN`, `POS=CCONJ\|Typo=Yes`, `Number=Sing\|POS=X`, `Abbr=Yes\|POS=SCONJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|POS=AUX\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `POS=ADV\|Typo=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=NUM`, `POS=PRON\|Poss=Yes\|PronType=Rel`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=INTJ`, `Abbr=Yes\|POS=VERB\|VerbForm=Inf`, `Abbr=Yes\|Number=Sing\|POS=PRON`, `Abbr=Yes\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=PRON\|PronType=Int`, `Abbr=Yes\|POS=AUX\|VerbForm=Fin`, `Abbr=Yes\|POS=ADV`, `Abbr=Yes\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `POS=ADJ`, `Number=Plur\|POS=NOUN\|Typo=Yes`, `POS=DET\|PronType=Rel\|Typo=Yes`, `POS=PART\|Typo=Yes`, `Abbr=Yes\|POS=DET`, `POS=DET\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Degree=Pos\|NumType=Ord\|POS=ADV`, `POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `POS=PRON\|Typo=Yes`, `Number=Plur\|POS=VERB`, `POS=VERB\|Typo=Yes\|VerbForm=Inf`, `Mood=Ind\|POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Mood=Imp\|POS=AUX\|VerbForm=Inf`, `Abbr=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Abbr=Yes\|Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Part`, `Mood=Ind\|POS=AUX\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|Typo=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Abbr=Yes\|POS=PRON`, `Abbr=Yes\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:predet`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nmod:npmod`, `nmod:poss`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:npmod`, `obl:tmod`, `orphan`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `10`, `12`, `13`, `15`, `17`, `19`, `21`, `23`, `26`, `28`, `29`, `30`, `32`, `34`, `36`, `39`, `42`, `43`, `45`, `47`, `49`, `51`, `53`, `55`, `57`, `59`, `61`, `62`, `64`, `67`, `69`, `71`, `73`, `75`, `77`, `79`, `81`, `83`, `85`, `87`, `1`, `89`, `90`, `92`, `94`, `95`, `97`, `99`, `101`, `105`, `106`, `108`, `110`, `111`, `112`, `113`, `115`, `117`, `119`, `121`, `122`, `124`, `125`, `126`, `127`, `128`, `129`, `130`, `132`, `133`, `136`, `137`, `138`, `139`, `142`, `143`, `145`, `150`, `153`, `156`, `157`, `159`, `162`, `163`, `164`, `167`, `169`, `171`, `174`, `176`, `177`, `179`, `182`, `184`, `187`, `189`, `191`, `193`, `194`, `197`, `198`, `201`, `203`, `204`, `208`, `210`, `211`, `213`, `214`, `215`, `217`, `220`, `221`, `224`, `225`, `227`, `229`, `231`, `233`, `235`, `236`, `239`, `241`, `242`, `244`, `246`, `247`, `248`, `249`, `250`, `251`, `252`, `254`, `256`, `258`, `259`, `261`, `263`, `264`, `265`, `266`, `269`, `270`, `272`, `273`, `274`, `276`, `277`, `278`, `281`, `283`, `72`, `285`, `287`, `288`, `291`, `292`, `293`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `304`, `305`, `306`, `307`, `308`, `309`, `310`, `311`, `315`, `316`, `317`, `318`, `319`, `320`, `322`, `88`, `324`, `327`, `328`, `332`, `336`, `337`, `338`, `340`, `341`, `342`, `343`, `344`, `347`, `349`, `350`, `351`, `352`, `353`, `354`, `356`, `357`, `358`, `360`, `361`, `362`, `363`, `364`, `365`, `366`, `367`, `369`, `373`, `375`, `376`, `377`, `378`, `379`, `144`, `381`, `383`, `384`, `386`, `387`, `389`, `390`, `393`, `394`, `396`, `397`, `398`, `399`, `402`, `405`, `407`, `408`, `410`, `411`, `412`, `413`, `414`, `416`, `418`, `419`, `421`, `422`, `423`, `424`, `426`, `428`, `429`, `430`, `432`, `434`, `436`, `437`, `438`, `441`, `442`, `443`, `444`, `445`, `446`, `447`, `260`, `448`, `452`, `453`, `454`, `455`, `456`, `457`, `458`, `460`, `461`, `462`, `463`, `464`, `465`, `466`, `467`, `409`, `468`, `469`, `470`, `471`, `472`, `473`, `476`, `477`, `481`, `484`, `486`, `487`, `488`, `491`, `492`, `493`, `494`, `495`, `496`, `497`, `498`, `499`, `500`, `503`, `504`, `506`, `507`, `508`, `509`, `511`, `512`, `513`, `514`, `515`, `516`, `517`, `518`, `519`, `107`, `520`, `521`, `522`, `523`, `524`, `525`, `526`, `527`, `528`, `529`, `531`, `533`, `534`, `537`, `538`, `542`, `543`, `544`, `545`, `546`, `547`, `548`, `549`, `550`, `553`, `554`, `557`, `558`, `560`, `561`, `564`, `565`, `566`, `567`, `568`, `569`, `570`, `571`, `572`, `573`, `574`, `575`, `576`, `577`, `578`, `579`, `580`, `581`, `582`, `583`, `584`, `586`, `587`, `588`, `589`, `590`, `591`, `592`, `594`, `595`, `76`, `596`, `597`, `598`, `600`, `601`, `602`, `149`, `603`, `604`, `605`, `606`, `607`, `608`, `609`, `490`, `610`, `611`, `96`, `255`, `614`, `617`, `619`, `620`, `621`, `622`, `623`, `624`, `626`, `627`, `628`, `630`, `632`, `633`, `635`, `638`, `639`, `640`, `641`, `644`, `647`, `650`, `654`, `657`, `659`, `173`, `661`, `662`, `663`, `664`, `668`, `669`, `670`, `671`, `673`, `676`, `677`, `678`, `680`, `682`, `158`, `91`, `683`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `691`, `692`, `693`, `695`, `697`, `699`, `700`, `701`, `183`, `702`, `703`, `704`, `706`, `707`, `709`, `711`, `713`, `485`, `714`, `716`, `717`, `718`, `719`, `720`, `721`, `722`, `723`, `724`, `726`, `727`, `728`, `729`, `730`, `731`, `732`, `733`, `734`, `735`, `736`, `737`, `738`, `739`, `741`, `742`, `744`, `745`, `746`, `748`, `749`, `752`, `753`, `754`, `755`, `756`, `757`, `759`, `760`, `762`, `763`, `764`, `765`, `768`, `769`, `772`, `774`, `775`, `776`, `777`, `781`, `782`, `783`, `784`, `785`, `786`, `787`, `788`, `789`, `78`, `791`, `794`, `795`, `796`, `798`, `800`, `801`, `802`, `803`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `814`, `815`, `816`, `817`, `818`, `819`, `820`, `822`, `823`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `131`, `831`, `631`, `832`, `833`, `834`, `838`, `839`, `841`, `842`, `843`, `844`, `845`, `846`, `847`, `849`, `792`, `850`, `851`, `852`, `853`, `856`, `857`, `858`, `859`, `860`, `861`, `862`, `864`, `865`, `715`, `866`, `867`, `868`, `869`, `870`, `871`, `872`, `873`, `877`, `878`, `879`, `881`, `882`, `883`, `885`, `886`, `887`, `888`, `848`, `889`, `890`, `891`, `892`, `893`, `894`, `895`, `896`, `900`, `901`, `902`, `903`, `905`, `907`, `908`, `911`, `912`, `913`, `914`, `918`, `919`, `920`, `923`, `924`, `925`, `926`, `927`, `928`, `929`, `930`, `931`, `932`, `933`, `52`, `934`, `935`, `937`, `939`, `941`, `943`, `944`, `945`, `946`, `947`, `950`, `951`, `952`, `954`, `955`, `956`, `957`, `961`, `962`, `963`, `964`, `965`, `966`, `967`, `968`, `969`, `970`, `971`, `972`, `973`, `974`, `975`, `976`, `977`, `374`, `978`, `979`, `980`, `982`, `983`, `986`, `987`, `988`, `989`, `990`, `991`, `992`, `993`, `994`, `995`, `996`, `998`, `1000`, `1001`, `1002`, `1003`, `1004`, `1005`, `1006`, `1007`, `1008`, `1009`, `1012`, `1016`, `1020`, `1021`, `1023`, `1024`, `1025`, `1031`, `1032`, `1033`, `1034`, `1035`, `1036`, `1037`, `1038`, `1039`, `1041`, `1042`, `1043`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1050`, `1051`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1063`, `1064`, `1065`, `642`, `1066`, `1067`, `1068`, `1069`, `1071`, `1072`, `1073`, `1074`, `1079`, `1080`, `1081`, `1082`, `1083`, `1085`, `1087`, `1088`, `1089`, `1090`, `559`, `1092`, `1093`, `1094`, `1096`, `1097`, `1098`, `1101`, `1102`, `1103`, `1104`, `1105`, `1106`, `1107`, `1109`, `1110`, `1112`, `1113`, `1114`, `1115`, `1116`, `1117`, `1118`, `1119`, `1122`, `1123`, `1124`, `1126`, `1127`, `1128`, `1129`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1141`, `1142`, `1143`, `1144`, `1145`, `1146`, `1147`, `1150`, `1152`, `1161`, `1162`, `1163`, `1164`, `1165`, `1169`, `1170`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1178`, `1181`, `1182`, `1183`, `1186`, `1187`, `1188`, `1190`, `1191`, `1192`, `1111`, `1193`, `1194`, `1195`, `1196`, `1198`, `1200`, `1201`, `1202`, `1203`, `1204`, `1208`, `1211`, `1213`, `1215`, `1216`, `1217`, `1218`, `1219`, `1221`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1230`, `1231`, `1232`, `1234`, `1235`, `1249`, `1250`, `1252`, `1253`, `1254`, `1255`, `1257`, `1258`, `1260`, `1262`, `1263`, `1264`, `1265`, `1266`, `1267`, `1269`, `1272`, `7`, `1274`, `1276`, `1277`, `1278`, `1280`, `1282`, `1283`, `1284`, `1285`, `1286`, `1287`, `1289`, `1290`, `1291`, `1293`, `1295`, `1298`, `1302`, `1303`, `1311`, `1312`, `1313`, `1314`, `1316`, `1318`, `1317`, `1320`, `1322`, `1323`, `192`, `1324`, `1326`, `1327`, `234`, `1329`, `1330`, `1331`, `1332`, `747`, `1333`, `1334`, `1335`, `1336`, `1337`, `1339`, `1340`, `1341`, `1342`, `1344`, `1346`, `1350`, `1351`, `1352`, `1355`, `1357`, `1358`, `1360`, `1361`, `1362`, `1363`, `1364`, `1365`, `1367`, `1369`, `1370`, `1371`, `1372`, `1373`, `1374`, `1375`, `1376`, `1378`, `1380`, `1382`, `1384`, `1385`, `1386`, `1389`, `1390`, `1391`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1399`, `1401`, `1402`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1411`, `1412`, `1413`, `1414`, `1416`, `1418`, `1419`, `1420`, `1421`, `1422`, `188`, `1423`, `1424`, `1425`, `1426`, `1428`, `1429`, `1430`, `1431`, `1432`, `1433`, `1434`, `1435`, `148`, `1436`, `1439`, `1440`, `1441`, `1442`, `1443`, `1444`, `1445`, `1446`, `1447`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1455`, `1456`, `1457`, `1458`, `1459`, `1460`, `1461`, `1462`, `1463`, `1464`, `1466`, `1467`, `1468`, `1469`, `1470`, `1471`, `1472`, `1474`, `1475`, `1478`, `1481`, `1484`, `1486`, `1488`, `1489`, `1473`, `1490`, `1492`, `1493`, `1494`, `1495`, `1496`, `1497`, `1498`, `1499`, `1500`, `1501`, `1502`, `1503`, `1504`, `1505`, `44`, `1506`, `1511`, `1513`, `1515`, `1517`, `1518`, `1522`, `1523`, `1525`, `1528`, `1530`, `1531`, `1532`, `1534`, `1536`, `1537`, `1538`, `1539`, `1540`, `1541`, `1543`, `1546`, `1547`, `1548`, `1549`, `1551`, `1552`, `1555`, `1556`, `1557`, `1558`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1565`, `1566`, `1567`, `1568`, `1569`, `1570`, `1571`, `1572`, `1573`, `1574`, `1575`, `1576`, `1577`, `1578`, `1579`, `1580`, `1581`, `1582`, `1583`, `1584`, `1585`, `1586`, `1588`, `1590`, `1591`, `1592`, `1594`, `1597`, `1598`, `1599`, `1601`, `168`, `1602`, `1603`, `1605`, `1607`, `1608`, `1611`, `1612`, `1613`, `1614`, `1615`, `1616`, `1617`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1629`, `1630`, `1632`, `1554`, `1633`, `1634`, `1635`, `1636`, `1637`, `1638`, `1639`, `1642`, `1647`, `1648`, `1649`, `1651`, `1653`, `1654`, `1655`, `1657`, `1658`, `1659`, `1660`, `1661`, `1662`, `1663`, `1664`, `1665`, `1666`, `1667`, `1668`, `1669`, `1670`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1682`, `1683`, `1684`, `1685`, `1686`, `1687`, `1688`, `1689`, `1690`, `1691`, `1692`, `1693`, `1694`, `1695`, `1696`, `1697`, `1698`, `1699`, `1700`, `1701`, `1702`, `1704`, `1705`, `1706`, `1707`, `1708`, `1709`, `1710`, `1711`, `1712`, `1713`, `1714`, `1715`, `1716`, `1717`, `1718`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1730`, `1732`, `1734`, `1735`, `1736`, `1737`, `1738`, `1740`, `1742`, `1743`, `1744`, `1745`, `1746`, `1747`, `1748`, `1749`, `1750`, `1751`, `1754`, `1755`, `1756`, `1758`, `1760`, `1761`, `1762`, `1763`, `1766`, `1767`, `1768`, `1769`, `1770`, `1772`, `1775`, `1778`, `1779`, `1784`, `1787`, `1788`, `1789`, `1790`, `1791`, `1793`, `1795`, `1796`, `1798`, `1800`, `1804`, `1805`, `1806`, `1807`, `1808`, `1809`, `1810`, `1811`, `1812`, `1813`, `1814`, `1815`, `1816`, `1818`, `1821`, `1822`, `1823`, `1824`, `1825`, `1826`, `1827`, `1828`, `1831`, `1832`, `1833`, `1834`, `1835`, `1836`, `1837`, `1838`, `1839`, `1840`, `1841`, `1842`, `1843`, `1844`, `1846`, `1847`, `1848`, `1849`, `1850`, `1851`, `1852`, `1853`, `1855`, `1857`, `1858`, `1859`, `1860`, `1861`, `1862`, `1863`, `1866`, `1867`, `1868`, `1869`, `1872`, `1873`, `1876`, `1877`, `1878`, `1879`, `1880`, `1881`, `1883`, `1884`, `1886`, `1887`, `1888`, `1893`, `1752`, `1896`, `1897`, `1899`, `1900`, `1901`, `1906`, `1907`, `1908`, `1910`, `1911`, `1912`, `1913`, `1916`, `1917`, `1918`, `1919`, `1920`, `1922`, `1923`, `1925`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1120`, `1934`, `1935`, `1936`, `1937`, `1938`, `1939`, `1940`, `1941`, `1942`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1949`, `1950`, `1951`, `1952`, `1953`, `1954`, `1955`, `1956`, `1957`, `1958`, `1959`, `1961`, `1962`, `1963`, `1964`, `1965`, `1966`, `1967`, `1968`, `1969`, `1970`, `1971`, `1972`, `1973`, `1974`, `1975`, `1976`, `1977`, `1978`, `1979`, `1982`, `1985`, `1987`, `1988`, `1989`, `1990`, `1992`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2000`, `2003`, `2006`, `152`, `2007`, `2009`, `2010`, `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2019`, `2020`, `2021`, `2022`, `2023`, `2024`, `2025`, `2026`, `2029`, `2030`, `2031`, `2032`, `2033`, `2034`, `2035`, `2037`, `2038`, `2039`, `2040`, `2041`, `2042`, `2043`, `2044`, `2045`, `2047` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.15 | | `TOKEN_P` | 99.18 | | `TOKEN_R` | 99.11 | | `TOKEN_ACC` | 99.83 | | `SENTS_F` | 90.62 | | `SENTS_P` | 90.99 | | `SENTS_R` | 90.26 | | `TAG_ACC` | 96.36 | | `POS_ACC` | 96.94 | | `MORPH_ACC` | 96.91 | | `DEP_UAS` | 91.90 | | `DEP_LAS` | 89.42 | | `LEMMA_ACC` | 97.36 |
{"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/en_udv25_englishewt_trf
null
[ "spacy", "token-classification", "en", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #en #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_English-EWT ### Label Scheme View label scheme (1760 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (1760 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #en #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (1760 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_Spanish-AnCora | Feature | Description | | --- | --- | | **Name** | `es_udv25_spanishancora_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `GNU GPL 3.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (2060 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `AUX_PRON`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `PUNCT_VERB_PRON_PUNCT`, `SCONJ`, `SYM`, `VERB`, `VERB_PRON`, `X` | | **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Preppron\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Int,Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=SCONJ`, `POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Comm`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=ADV`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `POS=PRON\|PronType=Ind`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=PUNCT\|PunctType=Quot`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumType=Card\|POS=NUM`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `POS=AUX\|VerbForm=Inf`, `Number=Plur\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc,Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `AdvType=Tim\|POS=NOUN`, `AdpType=Prep\|POS=ADV`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `NumType=Card\|Number=Plur\|POS=NUM`, `AdpType=Preppron\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumForm=Digit\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Dem`, `AdpType=Preppron\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdvType=Tim\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Colo`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `AdpType=Prep\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PUNCT\|PunctType=Dash`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc,Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=NOUN\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=DET\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `AdvType=Tim\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Case=Acc,Dat\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SCONJ\|PronType=Int,Rel`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SYM`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Com\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NOUN\|VerbForm=Fin`, `Case=Acc,Dat\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Number=Sing\|POS=VERB\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `AdpType=Prep\|Degree=Cmp\|POS=ADV`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Fin`, `Case=Acc,Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|PunctType=Quot\|VerbForm=Inf`, `Case=Com\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Case=Dat\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Dem`, `POS=AUX\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `AdvType=Tim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Com\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `POS=X`, `Case=Com\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=ADP`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=AUX\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=NOUN\|PunctType=Comm`, `Degree=Cmp\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=PRON\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Int,Rel` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `5`, `6`, `8`, `10`, `14`, `16`, `18`, `20`, `22`, `24`, `25`, `27`, `29`, `33`, `36`, `38`, `40`, `42`, `45`, `48`, `50`, `54`, `57`, `59`, `60`, `62`, `64`, `66`, `68`, `71`, `73`, `75`, `77`, `81`, `83`, `85`, `87`, `88`, `91`, `93`, `95`, `97`, `99`, `100`, `102`, `104`, `106`, `108`, `110`, `112`, `114`, `115`, `117`, `119`, `120`, `122`, `49`, `125`, `126`, `128`, `130`, `134`, `138`, `140`, `143`, `145`, `146`, `148`, `150`, `151`, `153`, `156`, `158`, `160`, `162`, `164`, `167`, `170`, `171`, `173`, `177`, `178`, `179`, `181`, `182`, `184`, `186`, `187`, `188`, `191`, `193`, `195`, `198`, `201`, `202`, `13`, `204`, `206`, `208`, `210`, `214`, `216`, `218`, `221`, `223`, `224`, `226`, `228`, `230`, `232`, `234`, `235`, `237`, `239`, `241`, `242`, `244`, `248`, `250`, `254`, `257`, `258`, `260`, `261`, `262`, `264`, `265`, `266`, `267`, `269`, `271`, `273`, `277`, `278`, `280`, `284`, `286`, `288`, `289`, `290`, `291`, `293`, `296`, `298`, `300`, `302`, `304`, `306`, `308`, `309`, `313`, `315`, `319`, `321`, `322`, `323`, `324`, `325`, `327`, `328`, `330`, `332`, `336`, `338`, `339`, `341`, `342`, `343`, `345`, `347`, `348`, `350`, `351`, `352`, `354`, `355`, `357`, `359`, `361`, `363`, `365`, `367`, `370`, `372`, `375`, `377`, `379`, `382`, `385`, `389`, `391`, `393`, `395`, `397`, `398`, `400`, `402`, `404`, `408`, `410`, `413`, `415`, `416`, `418`, `419`, `420`, `422`, `424`, `427`, `429`, `431`, `433`, `434`, `435`, `436`, `438`, `440`, `441`, `443`, `445`, `447`, `448`, `450`, `451`, `452`, `454`, `456`, `457`, `458`, `460`, `462`, `463`, `465`, `466`, `468`, `470`, `473`, `477`, `478`, `480`, `481`, `483`, `485`, `489`, `491`, `492`, `494`, `496`, `498`, `500`, `501`, `504`, `505`, `506`, `507`, `509`, `511`, `514`, `516`, `519`, `521`, `522`, `524`, `526`, `528`, `532`, `535`, `538`, `541`, `543`, `545`, `546`, `548`, `550`, `554`, `555`, `557`, `559`, `560`, `561`, `562`, `564`, `565`, `567`, `569`, `571`, `572`, `573`, `575`, `576`, `579`, `582`, `584`, `586`, `589`, `590`, `591`, `592`, `595`, `596`, `597`, `599`, `600`, `601`, `603`, `606`, `607`, `608`, `610`, `615`, `617`, `618`, `622`, `624`, `625`, `626`, `627`, `629`, `631`, `633`, `585`, `634`, `636`, `637`, `638`, `639`, `643`, `644`, `646`, `647`, `648`, `650`, `651`, `653`, `654`, `657`, `658`, `660`, `662`, `663`, `667`, `669`, `671`, `673`, `674`, `678`, `680`, `683`, `684`, `685`, `686`, `688`, `689`, `692`, `693`, `695`, `696`, `697`, `699`, `701`, `702`, `704`, `707`, `709`, `711`, `712`, `714`, `715`, `717`, `718`, `719`, `720`, `722`, `725`, `728`, `730`, `732`, `733`, `734`, `735`, `736`, `738`, `739`, `740`, `741`, `743`, `745`, `748`, `750`, `752`, `753`, `755`, `756`, `759`, `760`, `763`, `764`, `765`, `766`, `768`, `770`, `772`, `773`, `774`, `775`, `776`, `778`, `779`, `780`, `783`, `785`, `786`, `788`, `791`, `793`, `795`, `797`, `798`, `800`, `803`, `804`, `805`, `807`, `808`, `810`, `813`, `816`, `819`, `821`, `823`, `824`, `825`, `826`, `829`, `832`, `833`, `836`, `129`, `837`, `838`, `839`, `843`, `845`, `846`, `848`, `849`, `851`, `852`, `853`, `855`, `856`, `857`, `858`, `862`, `864`, `866`, `868`, `869`, `873`, `875`, `877`, `878`, `879`, `882`, `884`, `886`, `888`, `890`, `891`, `892`, `893`, `895`, `897`, `898`, `900`, `902`, `904`, `906`, `907`, `909`, `910`, `912`, `914`, `915`, `916`, `918`, `920`, `921`, `923`, `924`, `926`, `928`, `930`, `931`, `933`, `935`, `936`, `937`, `939`, `940`, `943`, `944`, `945`, `946`, `947`, `949`, `951`, `952`, `953`, `955`, `956`, `957`, `0`, `959`, `961`, `963`, `965`, `966`, `968`, `969`, `970`, `972`, `973`, `975`, `976`, `978`, `979`, `980`, `982`, `983`, `984`, `986`, `987`, `989`, `990`, `993`, `995`, `996`, `997`, `1000`, `1003`, `1004`, `1006`, `1007`, `1008`, `1010`, `1012`, `1013`, `1014`, `1015`, `1017`, `1018`, `1021`, `1025`, `1027`, `1029`, `1030`, `1032`, `1034`, `1035`, `1036`, `1038`, `1039`, `1041`, `1043`, `1044`, `1045`, `1046`, `1047`, `1049`, `1050`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1060`, `1061`, `1063`, `1065`, `1067`, `1069`, `1070`, `1072`, `1075`, `1076`, `1077`, `1078`, `1079`, `1080`, `1081`, `1082`, `1085`, `1086`, `1088`, `1090`, `1091`, `1092`, `1093`, `1094`, `1096`, `1097`, `1100`, `1101`, `1103`, `1104`, `1106`, `1108`, `1109`, `1111`, `1112`, `1114`, `1115`, `1116`, `598`, `26`, `1117`, `1118`, `1119`, `1121`, `1122`, `1123`, `1124`, `1125`, `1127`, `1128`, `1130`, `1132`, `1133`, `1135`, `1137`, `1139`, `1140`, `1141`, `1142`, `1144`, `1147`, `1151`, `1152`, `1153`, `1155`, `1157`, `1160`, `1162`, `1163`, `1165`, `1166`, `1170`, `1171`, `1173`, `1175`, `1177`, `1179`, `1180`, `1183`, `1185`, `1186`, `1188`, `1189`, `1191`, `1192`, `1193`, `1196`, `65`, `1197`, `1198`, `1202`, `1204`, `1206`, `1208`, `1209`, `1210`, `1213`, `1214`, `1215`, `1218`, `1220`, `1221`, `1223`, `1225`, `1226`, `1228`, `1230`, `1232`, `1233`, `1235`, `1236`, `1237`, `1238`, `1241`, `1242`, `1243`, `1244`, `1248`, `1253`, `1254`, `1256`, `1259`, `1260`, `1262`, `1264`, `1265`, `1266`, `1267`, `1269`, `1272`, `1273`, `1274`, `1275`, `1277`, `1280`, `1283`, `1286`, `1289`, `1291`, `1293`, `1294`, `1295`, `1296`, `1297`, `1298`, `1300`, `1301`, `1303`, `1307`, `1309`, `1311`, `1312`, `1316`, `1317`, `1318`, `1319`, `1321`, `1322`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1338`, `1339`, `1341`, `1342`, `1344`, `1346`, `1347`, `1348`, `1349`, `1350`, `1351`, `1352`, `1354`, `1356`, `1357`, `1359`, `1360`, `1361`, `1363`, `1364`, `1365`, `1369`, `1370`, `1371`, `1372`, `1373`, `1377`, `1378`, `1379`, `1381`, `1382`, `1383`, `1385`, `1386`, `1388`, `1389`, `1390`, `1391`, `1392`, `1394`, `1395`, `1396`, `1398`, `1399`, `1400`, `1402`, `1403`, `1406`, `1408`, `1409`, `1410`, `1413`, `1415`, `1416`, `1417`, `1418`, `1419`, `1421`, `1422`, `1423`, `1425`, `1427`, `1428`, `1431`, `1432`, `1433`, `1434`, `1435`, `1437`, `1438`, `1441`, `1442`, `1443`, `1445`, `1446`, `1447`, `1448`, `1449`, `1450`, `1452`, `1453`, `1454`, `1455`, `1457`, `1458`, `1460`, `1462`, `1463`, `1464`, `1467`, `1468`, `1469`, `1470`, `1472`, `1477`, `1479`, `1481`, `1484`, `1486`, `1488`, `1489`, `1492`, `1494`, `1495`, `1496`, `1498`, `1500`, `1501`, `1503`, `1504`, `1505`, `1507`, `1509`, `1510`, `1512`, `1513`, `1514`, `1516`, `1518`, `1519`, `1520`, `1523`, `1525`, `1526`, `1527`, `1529`, `1531`, `1532`, `1533`, `1535`, `1536`, `1537`, `1538`, `1540`, `1541`, `1542`, `1544`, `1546`, `1547`, `1548`, `124`, `1549`, `1551`, `1553`, `1555`, `1557`, `1560`, `1561`, `1563`, `1564`, `1565`, `1569`, `1571`, `1572`, `1573`, `1574`, `1575`, `1577`, `1579`, `1581`, `1582`, `1583`, `1585`, `1588`, `1589`, `1590`, `1591`, `1592`, `1595`, `1596`, `1597`, `1598`, `1599`, `1600`, `1601`, `1603`, `1605`, `1609`, `1611`, `1613`, `1614`, `1618`, `1619`, `1622`, `1624`, `1626`, `1628`, `1630`, `1631`, `1634`, `1636`, `1637`, `1638`, `1640`, `1642`, `1643`, `1644`, `1645`, `1646`, `1648`, `1649`, `1650`, `1651`, `1652`, `1653`, `1654`, `1656`, `1658`, `1660`, `1662`, `1665`, `1667`, `1668`, `1669`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1678`, `1680`, `1681`, `1682`, `1683`, `1684`, `1685`, `1686`, `1688`, `1689`, `1690`, `1691`, `1692`, `1694`, `1696`, `1697`, `1698`, `1700`, `1701`, `1702`, `1703`, `1704`, `1706`, `1708`, `1709`, `1710`, `1711`, `1712`, `1713`, `1714`, `1715`, `1717`, `1718`, `1719`, `1721`, `1722`, `1724`, `1725`, `1726`, `1728`, `1729`, `1730`, `1731`, `1732`, `1733`, `1735`, `1737`, `1739`, `1741`, `1743`, `1744`, `1745`, `1747`, `1749`, `1750`, `1752`, `1753`, `1756`, `1758`, `1760`, `1761`, `1762`, `1764`, `1765`, `1767`, `1769`, `1772`, `1773`, `1774`, `1775`, `1777`, `1778`, `1781`, `1783`, `1784`, `1786`, `1790`, `1791`, `1792`, `1793`, `1795`, `1796`, `1798`, `1799`, `1801`, `1802`, `1804`, `1805`, `1806`, `1807`, `1809`, `1810`, `1811`, `1814`, `1816`, `1817`, `1818`, `1819`, `1820`, `1822`, `1824`, `1826`, `1827`, `1829`, `1831`, `1832`, `1834`, `1836`, `1838`, `1840`, `1842`, `1843`, `1844`, `1845`, `1847`, `1848`, `1850`, `1851`, `1853`, `1854`, `1856`, `1859`, `1860`, `1861`, `1863`, `1865`, `1866`, `1868`, `1869`, `1870`, `1871`, `1873`, `1875`, `1877`, `1879`, `1881`, `1883`, `1884`, `1887`, `1889`, `1890`, `1892`, `1893`, `1894`, `1895`, `1897`, `1899`, `1902`, `1903`, `1904`, `1906`, `1907`, `1909`, `1910`, `1912`, `1913`, `1914`, `1916`, `1917`, `1918`, `1920`, `1921`, `1923`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1934`, `1935`, `1937`, `1938`, `1939`, `1942`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1949`, `1950`, `1952`, `1953`, `1955`, `1956`, `1957`, `1958`, `1959`, `1961`, `1964`, `1967`, `1969`, `1971`, `1972`, `1974`, `1975`, `1977`, `1978`, `1979`, `1980`, `1981`, `1922`, `1982`, `1983`, `1984`, `1986`, `1988`, `1989`, `1990`, `1992`, `1993`, `1994`, `1995`, `1998`, `1999`, `2000`, `2003`, `2006`, `2007`, `2008`, `2009`, `2011`, `2013`, `2015`, `2016`, `2017`, `2018`, `2020`, `2023`, `2027`, `2028`, `2030`, `2031`, `2032`, `2033`, `2034`, `2035`, `2036`, `2039`, `2042`, `2043`, `2045`, `2047`, `2050`, `2052`, `2053`, `2054`, `2055`, `2056`, `2057`, `2061`, `2062`, `2063`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2070`, `2073`, `2074`, `2075`, `2076`, `2078`, `2079`, `2080`, `2081`, `2082`, `2083`, `2084`, `2089`, `2090`, `2092`, `2093`, `2094`, `2095`, `2096`, `2098`, `2099`, `2100`, `2101`, `2103`, `2104`, `2106`, `2108`, `2109`, `2110`, `2113`, `2116`, `2119`, `2121`, `2124`, `2125`, `2126`, `2127`, `2128`, `2129`, `2132`, `2133`, `2134`, `2136`, `2137`, `2138`, `2139`, `2140`, `2141`, `2142`, `2143`, `2145`, `2146`, `2147`, `2148`, `2149`, `2150`, `2151`, `2152`, `2153`, `2154`, `2155`, `2157`, `2159`, `2160`, `2161`, `2162`, `2163`, `2164`, `2166`, `2167`, `2169`, `2172`, `2173`, `2174`, `2175`, `2178`, `2180`, `2181`, `2184`, `2186`, `2189`, `2190`, `2191`, `2192`, `2194`, `2195`, `2197`, `2199`, `2200`, `2202`, `2203`, `2204`, `2205`, `2210`, `2211`, `2212`, `2214`, `2215`, `2216`, `2217`, `2218`, `2219`, `2220`, `2221`, `2222`, `2223`, `2225`, `2227`, `2228`, `2229`, `2230`, `2231`, `2232`, `2233`, `2234`, `2235`, `2238`, `2239`, `2240`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2250`, `2252`, `2254`, `2255`, `2256`, `2257`, `2258`, `2259`, `2260`, `2262`, `2264`, `2265`, `2266`, `2267`, `2268`, `2269`, `2270`, `2271`, `2272`, `2273`, `2274`, `2275`, `2276`, `2277`, `2278`, `2279`, `2280`, `2281`, `2283`, `2284`, `2285`, `2286`, `2287`, `2288`, `2289`, `2290`, `2291`, `2293`, `2294`, `2295`, `2296`, `2297`, `2298`, `2299`, `2301`, `2303`, `2304`, `2305`, `2306`, `2307`, `2308`, `2309`, `2310`, `2312`, `2313`, `2314`, `2315`, `2317`, `2319`, `2320`, `2321`, `2322`, `2324`, `2325`, `2326`, `2328`, `2329`, `2330`, `2331`, `2332`, `2333`, `2334`, `2335`, `2336`, `2337`, `2338`, `2339`, `2341`, `2342`, `2346`, `2347`, `2352`, `2353`, `2356`, `2358`, `2359`, `2360`, `2361`, `2362`, `2364`, `2365`, `2366`, `2368`, `2371`, `2372`, `2374`, `2375`, `2376`, `2377`, `2378`, `2379`, `2380`, `2382`, `2383`, `2384`, `2386`, `2387`, `2388`, `2389`, `2391`, `2394`, `2395`, `2396`, `2398`, `2399`, `2400`, `2401`, `2403`, `2404`, `2406`, `2409`, `2410`, `2411`, `2415`, `2418`, `2419`, `2420`, `2421`, `2422`, `2423`, `2424`, `2425`, `2427`, `430`, `2428`, `2429`, `2430`, `2431`, `2432`, `2433`, `2434`, `2435`, `2436`, `2437`, `2438`, `2439`, `2440`, `2441`, `2442`, `2444`, `2445`, `2446`, `2447`, `2448`, `2449`, `2450`, `2451`, `2452`, `2453`, `2454`, `2456`, `2457`, `2458`, `2460`, `2461`, `2462`, `2463`, `2464`, `2465`, `2466`, `2467`, `2468`, `2469`, `2472`, `2474`, `2475`, `2476`, `2479`, `2480`, `2481`, `2482`, `2483`, `2484`, `2486`, `2487`, `2488`, `2490`, `2491`, `2493`, `2494`, `2495`, `2496`, `2497`, `2499`, `2500`, `2501`, `2502`, `2503`, `2504`, `2505`, `2506`, `2507`, `2508`, `2509`, `2510`, `2511`, `2512`, `2514`, `2515`, `2516`, `2517`, `2518`, `2519`, `2520`, `2521`, `2522`, `2523`, `2524`, `2525`, `2527`, `2528`, `2529`, `2530`, `2531`, `2532`, `2533`, `2535`, `2536`, `2537`, `2538`, `2539`, `2540`, `2541`, `2542`, `2543`, `2544`, `2545`, `2546`, `2547`, `2548`, `2550`, `2552`, `2554`, `2555`, `2556`, `2557`, `2558`, `2559`, `2560`, `2561`, `2562`, `2563`, `2566`, `2567`, `2568`, `2569`, `2570`, `2572`, `2574`, `2576`, `2577`, `2578`, `2580`, `2582`, `2583`, `2584`, `2585` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.98 | | `TOKEN_P` | 99.98 | | `TOKEN_R` | 99.99 | | `TOKEN_ACC` | 100.00 | | `SENTS_F` | 97.99 | | `SENTS_P` | 97.43 | | `SENTS_R` | 98.55 | | `TAG_ACC` | 98.92 | | `POS_ACC` | 99.03 | | `MORPH_ACC` | 97.96 | | `DEP_UAS` | 93.99 | | `DEP_LAS` | 91.95 | | `LEMMA_ACC` | 98.93 |
{"language": ["es"], "license": "gpl-3.0", "tags": ["spacy", "token-classification"]}
explosion/es_udv25_spanishancora_trf
null
[ "spacy", "token-classification", "es", "license:gpl-3.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "es" ]
TAGS #spacy #token-classification #es #license-gpl-3.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_Spanish-AnCora ### Label Scheme View label scheme (2060 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (2060 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #es #license-gpl-3.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (2060 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_Finnish-TDT | Feature | Description | | --- | --- | | **Name** | `fi_udv25_finnishtdt_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (12912 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `A`, `Adj`, `Adp`, `Adv`, `Adv_V`, `C`, `C_V`, `Foreign`, `Interj`, `N`, `Num`, `Pron`, `Punct`, `Symb`, `V`, `V_Pron` | | **`morphologizer`** | `Case=Nom\|Number=Sing\|POS=NOUN`, `NumType=Ord\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=U\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Par\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `POS=SCONJ`, `Case=Nom\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Abl\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Kin\|POS=ADV`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Ess\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ela\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ine\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Par\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ill\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=All\|Derivation=U\|Number=Sing\|POS=NOUN`, `AdpType=Post\|POS=ADP`, `Case=Nom\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Abl\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Par\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Par\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Tra\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `InfForm=1\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `InfForm=1\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Derivation=Sti\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ine\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=All\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ill\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=All\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Tra\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=All\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Derivation=Ja\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ine\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON`, `Case=Nom\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ade\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Derivation=Ttain\|POS=ADV`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=All\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|Number=Plur\|POS=NOUN`, `Case=Com\|POS=NOUN\|Person[psor]=3`, `Case=Com\|POS=PRON\|Person[psor]=3\|PronType=Ind`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=1`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ill\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=SCONJ\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `AdpType=Post\|POS=ADP\|Person[psor]=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ill\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Abbr=Yes\|Case=Ine\|Number=Sing\|POS=NOUN`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Plur\|POS=NOUN`, `Case=Nom\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Par\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Sing\|POS=PROPN\|Style=Coll`, `Abbr=Yes\|Case=Par\|Number=Sing\|POS=NOUN`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ess\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PROPN`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ill\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ade\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Dem`, `Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Clitic=Ko\|Number=Sing\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Dem`, `Connegative=Yes\|Mood=Cnd\|POS=AUX\|VerbForm=Fin`, `Case=Ela\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel`, `Clitic=Ka\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|POS=ADV`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ade\|Derivation=U\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Case=Ine\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=All\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `POS=ADV\|Typo=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ela\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=All\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Derivation=Vs\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `AdpType=Prep\|POS=ADP`, `Case=Par\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Style=Coll`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `POS=INTJ`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ess\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Par\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abl\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Abl\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Tra\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abe\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Tra\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=All\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Abl\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Clitic=Kin\|Mood=Cnd\|POS=AUX\|VerbForm=Fin\|Voice=Pass`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Ind`, `Abbr=Yes\|Case=Gen\|Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Derivation=Sti\|POS=ADV\|Typo=Yes`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ill\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Tar\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Par\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ade\|Number=Sing\|POS=PROPN`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=NOUN\|Style=Coll`, `Case=Ill\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Par\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=PROPN`, `Case=Nom\|Clitic=Pa\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=ADJ\|Typo=Yes`, `POS=ADV\|Style=Coll`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Tra\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=NOUN\|Style=Coll`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem\|Typo=Yes`, `Case=Ine\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Clitic=Ko\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Case=Ill\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Abbr=Yes\|Case=Abl\|Number=Sing\|POS=PROPN`, `Case=Abl\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Ade\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Par\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Han\|POS=ADV`, `Case=Par\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Llinen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Plur\|POS=NOUN`, `Case=Abl\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=All\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Par\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Tra\|InfForm=1\|Number=Sing\|POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=All\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|Case=Ade\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=SCONJ\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ill\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Ill\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=All\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Abl\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Gen\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Clitic=Ko\|Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Ess\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Degree=Sup\|Derivation=Sti\|POS=ADV`, `Case=Ine\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Tra\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Par\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, `Case=Abl\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Ess\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Par\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|PronType=Rcp`, `Case=Par\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Ill\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=All\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Tra\|Clitic=Kin\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ess\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Tra\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Clitic=Kin\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ade\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Par\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ess\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Com\|Derivation=U\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Clitic=Kaan\|Connegative=Yes\|Mood=Cnd\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Case=Ade\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abl\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ine\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ess\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Abe\|InfForm=3\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Degree=Cmp\|Derivation=Sti\|POS=ADV`, `Case=Ade\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Derivation=Ja,Tar\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Sup\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Clitic=Kin\|InfForm=1\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ela\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Ine\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ill\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ela\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Abe\|Clitic=Kaan\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Par\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Connegative=Yes\|Mood=Cnd\|POS=VERB\|VerbForm=Fin`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Abl\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ela\|Degree=Sup\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=U\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Abl\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ess\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Tra\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|Connegative=Yes\|Mood=Cnd\|POS=VERB\|VerbForm=Fin`, `Case=Abl\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ill\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Ine\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Mood=Pot\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=All\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=All\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Clitic=Ko\|POS=CCONJ`, `Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `POS=NUM`, `Case=Par\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Degree=Cmp\|POS=ADV`, `Case=Ine\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|Case=Ela\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=All\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Par\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ill\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=3\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ela\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Par\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ade\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Clitic=Han\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Ela\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Par\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Tra\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Abl\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Abe\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Ess\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Inen\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=All\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Abl\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Sing\|POS=PROPN`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ade\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Pot\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ine\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=INTJ`, `Case=Ade\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ela\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=Ade\|Number=Plur\|POS=PRON\|PronType=Dem`, `Clitic=Pa\|POS=ADV`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Mood=Pot\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=Ela\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Ess\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=0\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Plur\|POS=PROPN`, `Case=Gen\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=All\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Clitic=Pa,S\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Connegative=Yes\|Mood=Cnd\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Par\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Case=Ill\|POS=PRON\|PronType=Rel`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|Case=All\|Number=Sing\|POS=NOUN`, `Case=Abl\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|POS=SCONJ`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Nom\|Number=Plur\|POS=PRON\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Gen\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Act`, `Case=All\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ\|Style=Coll`, `Case=Ade\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ\|Style=Coll`, `Abbr=Yes\|Case=Par\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Connegative=Yes\|Mood=Cnd\|POS=AUX\|Style=Coll\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ill\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|NumType=Card\|Number=Sing\|POS=NUM\|Style=Coll`, `Case=Ill\|Clitic=Kaan\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Number[psor]=Plur\|POS=ADV\|Person[psor]=1`, `Abbr=Yes\|Case=Ine\|Number=Sing\|POS=PROPN`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=All\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Abl\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Par\|Degree=Cmp\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Llinen\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `AdpType=Post\|Number[psor]=Plur\|POS=ADP\|Person[psor]=1\|Style=Coll`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=All\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Par\|Number=Plur\|POS=PROPN`, `Case=Par\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Number=Plur\|POS=NOUN\|Style=Coll`, `Clitic=Ka\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ill\|InfForm=3\|Number=Sing\|POS=VERB\|Style=Coll\|VerbForm=Inf\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Abbr=Yes\|Case=Nom\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|Case=Ela\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Com\|Number=Plur\|POS=PROPN\|Person[psor]=3`, `Case=Ess\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Par\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Abl\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Clitic=Kaan\|NumType=Card\|Number=Sing\|POS=NUM`, `InfForm=1\|Number=Sing\|POS=VERB\|Style=Coll\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Clitic=Kaan\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Case=Nom\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Par\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ\|Style=Coll`, `POS=INTJ\|Style=Coll`, `Case=Ill\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Par\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Mood=Ind\|POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Pass`, `Case=Par\|NumType=Ord\|Number=Sing\|POS=ADJ\|Style=Coll`, `Number=Plur\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Style=Coll\|Tense=Pres\|VerbForm=Fin`, `Case=Tra\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Com\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Abl\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ill\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Tra\|Number=Plur\|POS=NOUN`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Plur\|POS=AUX\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Par\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Style=Coll`, `Case=Ade\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ill\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Ill\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdpType=Post\|POS=ADP\|Typo=Yes`, `Case=Ill\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Par\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ine\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Tra\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ess\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=2\|VerbForm=Inf\|Voice=Act`, `Case=Tra\|Degree=Cmp\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Ade\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=2\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Par\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Par\|Clitic=Kin\|Derivation=U\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Ill\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Tra\|InfForm=1\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=2\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Tra\|InfForm=1\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ill\|InfForm=3\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Clitic=Pa,S\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa,S\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=NOUN\|Style=Coll`, `Connegative=Yes\|Mood=Cnd\|POS=VERB\|Style=Coll\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Style=Coll`, `Clitic=Kin\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Ela\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=Abl\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ill\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Ela\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Ela\|Number=Plur\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Ela\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ill\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ade\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=ADJ\|Style=Coll`, `Connegative=Yes\|Mood=Pot\|POS=AUX\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|PronType=Prs\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko,S\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|POS=ADV`, `Case=Par\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Par\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Abl\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NUM`, `POS=NOUN\|Typo=Yes`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Case=Ine\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ine\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Clitic=Kin\|POS=SCONJ`, `Case=Nom\|Clitic=Kin\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Neg\|VerbForm=Part\|Voice=Act`, `Clitic=Kaan\|Derivation=Sti\|POS=ADV`, `Case=Ill\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ade\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Par\|Clitic=Kin\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ess\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PROPN`, `Case=Ine\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=CCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Par\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=1\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Clitic=Ka\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|NumType=Ord\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Gen\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Par\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ine\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Case=Par\|Number=Plur\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Tra\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Kin\|InfForm=1\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Sup\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Clitic=Ko\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Han\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|POS=AUX\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=ADJ\|Person[psor]=1`, `Case=Par\|Degree=Sup\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ine\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|PartForm=Past\|Person[psor]=1\|VerbForm=Part\|Voice=Pass`, `Case=Tra\|InfForm=1\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=All\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person[psor]=3\|PronType=Ind`, `Case=Abl\|Number=Plur\|POS=PRON\|PronType=Ind`, `Clitic=Kaan\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Derivation=Llinen,Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Derivation=Minen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ade\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Derivation=U\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Sup\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Tra\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Tra\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=VERB\|PartForm=Neg\|VerbForm=Part\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Number=Plur\|POS=PROPN`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Rel`, `Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `POS=NOUN`, `Case=All\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ela\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ill\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Abe\|Number=Plur\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Clitic=Kin\|Derivation=Sti\|POS=ADV`, `Case=Ine\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Degree=Pos\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Pass`, `Case=Ess\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=PRON`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Clitic=Ka\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|PronType=Ind`, `Case=Gen\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ins\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Derivation=Inen,Vs\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=All\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Par\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Derivation=Ton,Vs\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=Ton,Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Derivation=Ton,Vs\|Number=Plur\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Case=Par\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ill\|Degree=Cmp\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=ADV\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Tra\|InfForm=1\|Number=Sing\|Number[psor]=Plur\|POS=AUX\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Case=Abl\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ine\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ill\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Ine\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Ade\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Plur\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Ine\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Tra\|Degree=Pos\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=2\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Derivation=Minen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Degree=Pos\|POS=ADJ`, `Case=Ela\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Ine\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ela\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=All\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ess\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Mood=Pot\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|Person[psor]=3`, `Case=Par\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=All\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Mood=Pot\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Com\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=All\|Derivation=Ja\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Derivation=Vs\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ess\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ess\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Clitic=Han\|Degree=Pos\|Number=Sing\|POS=NOUN`, `Case=Ade\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=All\|Derivation=Ja\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|Case=Ill\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Clitic=Ko\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Abl\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Clitic=Pa\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Abbr=Yes\|Case=Ela\|Number=Plur\|POS=NOUN`, `Case=All\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Clitic=Kaan\|Number=Sing\|POS=NUM\|PronType=Ind`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Par\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Case=Ine\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Degree=Sup\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Clitic=Ko\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Par\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Case=Ine\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Tra\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ade\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Abl\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2\|Style=Coll`, `Case=Ill\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ade\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Case=Nom\|Clitic=Han\|Number=Plur\|POS=NOUN`, `Case=Ela\|Number=Plur\|POS=PROPN`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Case=Par\|Derivation=Ja\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `AdpType=Post\|Clitic=Kin\|POS=ADP`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Nom\|Number=Plur\|POS=PRON`, `Case=Par\|Derivation=U\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ade\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Abl\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PROPN`, `Case=All\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Abe\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=All\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=All\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Par\|Clitic=Kin\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ine\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=All\|Derivation=Lainen\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Derivation=Lainen\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=Abe\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Degree=Sup\|POS=ADV`, `Case=Tra\|Degree=Cmp\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=NUM`, `Number=Plur\|POS=ADV\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Connegative=Yes\|Mood=Cnd\|POS=AUX\|Typo=Yes\|VerbForm=Fin`, `Number=Sing\|POS=ADV\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Case=Ill\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ill\|Clitic=Kaan\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Kaan\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Abl\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Dem\|Typo=Yes`, `Clitic=Han\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=2`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Par\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind\|Typo=Yes`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Clitic=Kaan\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ine\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ine\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Abl\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Tra\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ill\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Gen\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|PronType=Rcp`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Plur\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=Ela\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Gen\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Ine\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Gen\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Ine\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kaan\|Number=Plur\|POS=PRON\|PronType=Ind`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=2`, `Case=All\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `AdpType=Post\|Number[psor]=Plur\|POS=ADP\|Person[psor]=2`, `Number=Sing\|POS=CCONJ\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `POS=CCONJ\|Style=Coll`, `Case=Tra\|InfForm=1\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=1\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Number=Sing\|POS=SCONJ\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Tra\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Clitic=Kaan\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ade\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|POS=PRON`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|InfForm=1\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=All\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ade\|Derivation=U\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ela\|Clitic=Kin\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Par\|Clitic=Kin\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Tra\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1\|Style=Arch`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Number=Plur\|POS=CCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Pass`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Connegative=Yes\|Mood=Ind\|POS=AUX\|Style=Coll\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Clitic=Pa\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Ja\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ess\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=AUX\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Tra\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Abl\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Abe\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Clitic=Ko\|InfForm=1\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Degree=Sup\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Par\|Clitic=Kaan\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Inen,Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=1`, `Case=Tra\|InfForm=1\|Number=Sing\|POS=AUX\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Int\|Style=Coll`, `Case=Par\|Number=Sing\|POS=NUM`, `Case=Ess\|NumType=Ord\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Gen\|Derivation=Minen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=1\|Style=Coll\|VerbForm=Part\|Voice=Pass`, `Case=Tra\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ine\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ess\|Clitic=Kin\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Clitic=Ka\|Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind\|Style=Coll`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Sup\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Ine\|Clitic=Kaan\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Sing\|POS=NUM`, `Case=All\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ade\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Ade\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Pa\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Ine\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Case=Com\|Degree=Pos\|POS=ADJ`, `Case=Abl\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Ko\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kin\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ine\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Pot\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Number=Plur\|POS=VERB\|Person=0\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Ill\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Mood=Pot\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `InfForm=1\|Number=Sing\|POS=VERB\|Style=Arch\|VerbForm=Inf\|Voice=Act`, `Case=All\|Degree=Pos\|Derivation=Minen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Case=Nom\|Degree=Sup\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Clitic=S\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Int\|Typo=Yes`, `Clitic=Han,Pa\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Abe\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Derivation=Minen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Han\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `POS=INTJ\|Typo=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PROPN\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Han,Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Clitic=Ko\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ela\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Connegative=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=SCONJ\|Style=Coll`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ess\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `AdpType=Post\|Number[psor]=Sing\|POS=ADP\|Person[psor]=1`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Clitic=Pa\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Clitic=Ko\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `AdpType=Post\|Number[psor]=Sing\|POS=ADP\|Person[psor]=2\|Style=Coll`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Style=Coll`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Style=Coll\|Tense=Pres\|VerbForm=Fin`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Kaan\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=All\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=All\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Case=Tra\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Clitic=S\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=0\|VerbForm=Fin\|Voice=Act`, `Clitic=Han,Pa\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Kaan\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Ine\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Ade\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|POS=VERB\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Par\|Number=Sing\|POS=PROPN\|Style=Coll`, `Clitic=Kin\|POS=ADV\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Derivation=Sti\|POS=ADV\|Style=Coll`, `Case=Abl\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Clitic=Ko\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2\|Style=Coll`, `Case=Ill\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Style=Coll`, `Case=Nom\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=ADJ\|Style=Coll`, `AdpType=Post\|Number[psor]=Sing\|POS=ADP\|Person[psor]=1\|Style=Coll`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=All\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Ess\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|Style=Coll\|VerbForm=Part\|Voice=Act`, `Case=Ins\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Number=Sing\|POS=PROPN`, `Clitic=Pa\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Pass`, `Case=All\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Clitic=Han\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Dem`, `Clitic=Pa\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Ko\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Plur\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Par\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Clitic=Kaan\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Kin\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Clitic=Kaan\|Connegative=Yes\|Mood=Cnd\|POS=AUX\|VerbForm=Fin`, `Clitic=S\|POS=ADV`, `Case=Gen\|Clitic=Ko\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=All\|Clitic=Kaan\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Par\|Clitic=Kin\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Case=Ins\|InfForm=2\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Ine\|Clitic=Kaan\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Number=Plur\|POS=ADV\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Ade\|Clitic=S\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Ade\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ess\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Par\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Clitic=Han,Ko\|POS=ADV`, `Case=Ade\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `AdpType=Post\|Number[psor]=Sing\|POS=ADP\|Person[psor]=2`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ela\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ela\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=Nom\|Clitic=Kin\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Clitic=Ko\|Derivation=Sti\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=2`, `Case=Nom\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Ess\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=2\|Reflex=Yes`, `Case=Acc\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ess\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Ill\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Clitic=Kin\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ela\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Ade\|Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=1`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Clitic=Ko,S\|POS=ADV\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Int\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=NOUN\|Style=Coll`, `Clitic=Ko\|POS=ADV\|Style=Coll`, `Case=Nom\|Derivation=U\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Connegative=Yes\|Mood=Cnd\|POS=VERB\|Style=Coll\|VerbForm=Fin`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Ind\|Style=Coll`, `Case=Abl\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2\|Style=Coll`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Plur\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Ade\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Par\|Degree=Cmp\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Ind\|Typo=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Style=Coll`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Abl\|NumType=Card\|Number=Sing\|POS=NUM`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Ill\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Number=Plur\|POS=PRON\|PronType=Rcp\|Typo=Yes`, `Case=Ade\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=Par\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `POS=ADV\|Person[psor]=3\|Typo=Yes`, `Clitic=Pa\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Par\|Clitic=Kaan\|NumType=Card\|Number=Sing\|POS=NUM`, `Clitic=Pa,S\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Dem\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Han\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Clitic=Han,Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Connegative=Yes\|Mood=Pot\|POS=VERB\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Number[psor]=Plur\|POS=ADV\|Person[psor]=2`, `Mood=Pot\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Abl\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Clitic=Pa\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Ine\|Number=Plur\|POS=PROPN`, `Case=All\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2\|Style=Coll`, `Case=All\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=All\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person[psor]=3`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=PROPN\|Style=Coll`, `Case=All\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Ade\|Derivation=Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `Clitic=Kaan\|POS=ADV\|Style=Coll`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Pa\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ess\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Clitic=Kin\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Ine\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Ko\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Clitic=Han,Ko\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Par\|Number=Plur\|POS=PRON\|Person[psor]=3`, `Case=Ade\|Number=Sing\|POS=PROPN\|Style=Coll`, `Case=Ess\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=Ill\|Clitic=Kaan\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Case=Ela\|Clitic=Ko\|Number=Sing\|POS=PROPN`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=Ine\|Derivation=Minen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Number=Sing\|POS=NUM`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind\|Style=Coll`, `Clitic=S\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Pass`, `Case=Abl\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko,S\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Style=Coll`, `Case=Ill\|Number=Sing\|POS=PRON`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Clitic=Ko,S\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=Ela\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Clitic=Kin\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `AdpType=Post\|POS=ADP\|Style=Coll`, `Case=Gen\|Number=Plur\|POS=NUM`, `Case=Ela\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Par\|NumType=Card\|Number=Sing\|POS=NUM\|Style=Coll`, `Case=Gen\|Derivation=Ton\|Number=Plur\|POS=NOUN`, `Case=Nom\|Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|PronType=Prs\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Case=All\|Clitic=Pa\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Abl\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Clitic=Kaan\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Number=Plur\|POS=PRON\|Person[psor]=3`, `Case=Gen\|Clitic=Kin\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Gen\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Han\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=All\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Clitic=Ko\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ine\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, `Case=Ine\|Clitic=Kin\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Par\|Clitic=Kin\|Number=Sing\|POS=NOUN\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Number=Sing\|POS=SCONJ\|Person=1\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Abl\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Par\|Clitic=Ko\|Number=Sing\|POS=NOUN`, `Mood=Pot\|Number=Sing\|POS=AUX\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Ade\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Abl\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Han\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Dem\|Style=Coll`, `Case=Tra\|InfForm=1\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|Person[psor]=2\|VerbForm=Inf\|Voice=Act`, `Clitic=Han\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|Case=Nom\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ela\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|Person[psor]=3`, `Clitic=Pa,S\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Pass`, `Case=Ess\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Han\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes\|Style=Coll`, `Case=Par\|Clitic=Kin\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ine\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Ine\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ\|Style=Coll`, `Case=Ine\|Derivation=Vs\|Number=Plur\|POS=NOUN\|Style=Coll`, `Case=Par\|Derivation=Ja\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Par\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Ind\|Style=Coll`, `Case=Ine\|Derivation=Inen\|Number=Plur\|POS=ADJ\|Style=Coll`, `Case=Gen\|Degree=Sup\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=NOUN\|Style=Coll`, `Case=Ine\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=2`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=2\|Reflex=Yes`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Rel\|Style=Coll`, `Clitic=Pa,S\|POS=ADV`, `Case=Ess\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Nom\|Clitic=Kin\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Style=Coll\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Plur\|POS=PROPN`, `Clitic=Ko,S\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Ind\|Style=Coll`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Clitic=Han\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Clitic=Ko,S\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa,S\|Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Han,Ko\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Tra\|Number=Sing\|POS=PRON`, `Case=Nom\|Clitic=Kaan\|POS=PRON\|PronType=Ind`, `Clitic=Pa\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Int\|Style=Coll`, `Connegative=Yes\|Mood=Pot\|POS=AUX\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=VERB\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Number=Plur\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=All\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ\|Person[psor]=3`, `Case=Gen\|Clitic=Kin\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Connegative=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Clitic=Han\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=All\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Plur\|POS=PRON`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Pot\|Number=Sing\|POS=AUX\|Person=0\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ess\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Degree=Sup\|Number=Plur\|POS=ADJ\|Person[psor]=3`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Com\|Derivation=Ja\|POS=NOUN\|Person[psor]=3`, `Clitic=Pa,S\|Mood=Ind\|POS=AUX\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Abl\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ade\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=PRON\|Person[psor]=3`, `Case=Ade\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ade\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Derivation=Lainen\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|POS=ADJ`, `Case=Ins\|Number=Plur\|POS=PROPN`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Gen\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Ess\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Case=Nom\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Ela\|Clitic=Kaan\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person[psor]=3`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Derivation=Inen\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Ill\|NumType=Card\|Number=Sing\|POS=NUM\|Style=Coll`, `Case=Ine\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ade\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Case=Tra\|Clitic=Kin\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=PROPN\|Style=Coll`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=ADJ\|Style=Coll`, `Case=Ine\|Number=Plur\|POS=NOUN\|Style=Coll`, `Clitic=Kaan\|InfForm=1\|Number=Sing\|POS=VERB\|Style=Coll\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=NOUN\|Style=Coll`, `Clitic=Han,Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Clitic=Ko,S\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Style=Coll\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|PronType=Prs\|Style=Coll\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Abl\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=All\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Derivation=Ton,Vs\|Number=Plur\|POS=NOUN`, `Case=Ela\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Pass`, `Case=Ela\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=All\|Number=Plur\|POS=PRON\|Person[psor]=3\|PronType=Rcp`, `Case=Ela\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Mood=Ind\|POS=VERB\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Pass`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=ADJ\|Typo=Yes`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|POS=ADJ`, `Case=Ess\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Tra\|NumType=Card\|Number=Sing\|POS=NUM`, `Clitic=Pa\|Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Ine\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Gen\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ela\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Tra\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|Case=Tra\|Number=Sing\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ess\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Tra\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Case=All\|Number=Sing\|POS=PROPN`, `Case=All\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=U\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Gen\|NumType=Ord\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=ADJ\|Typo=Yes`, `POS=X`, `Case=Par\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Style=Coll`, `Case=Gen\|Derivation=Inen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Clitic=Kin\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Nom\|Clitic=Kin\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=All\|Clitic=Kin\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=All\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Ill\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Clitic=Kin\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Abl\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ade\|Derivation=U\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ill\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Typo=Yes`, `Case=Nom\|Clitic=Kin\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Par\|NumType=Ord\|POS=ADJ`, `Case=Par\|Degree=Sup\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=All\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=All\|Clitic=Kin\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Ja\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ade\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Case=Ess\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Abl\|Degree=Pos\|Derivation=Ja\|Number=Plur\|POS=ADJ`, `Case=Tra\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Abbr=Yes\|Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ill\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ela\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person[psor]=2`, `Case=Nom\|Degree=Pos\|Number=Plur\|Number[psor]=Plur\|POS=AUX\|PartForm=Pres\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Neg\|VerbForm=Part\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Tra\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Cmp\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ins\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Derivation=Ton\|Number=Plur\|POS=NOUN`, `Case=Ade\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Case=Tra\|Degree=Sup\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Clitic=Kin\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ela\|Number=Plur\|POS=PRON\|Person[psor]=3`, `Case=Gen\|Degree=Sup\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Par\|Clitic=S\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Abl\|Clitic=Pa\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Clitic=Pa,S\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=2\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Clitic=Han\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Pa,S\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Clitic=Kin\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Plur\|POS=PRON`, `Case=All\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Lainen,Vs\|Number=Sing\|POS=NOUN`, `AdpType=Post\|Clitic=Kaan\|POS=ADP`, `AdpType=Prep\|POS=ADP\|Person[psor]=3`, `Case=Ine\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Ine\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Lainen\|Number=Plur\|POS=ADJ\|Style=Coll`, `AdpType=Prep\|Clitic=Kaan\|POS=ADP`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PROPN`, `Clitic=Pa\|InfForm=1\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Ade\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ill\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ade\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Gen\|Clitic=Kaan\|Number=Sing\|POS=PROPN`, `Case=Com\|Clitic=Kin\|Derivation=U\|POS=NOUN\|Person[psor]=3`, `Case=Ade\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=2\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Clitic=Kin\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ade\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=All\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Gen\|Derivation=U\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Degree=Sup\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Ill\|Number=Plur\|POS=PRON\|Person[psor]=3`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Nom\|Degree=Sup\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Vs\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Cmp\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Ind\|Typo=Yes`, `Case=Ela\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ill\|Derivation=Lainen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Ess\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Clitic=Kin\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Neg\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Ela\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Com\|Degree=Pos\|Derivation=Inen\|POS=ADJ`, `Case=Com\|Degree=Pos\|Derivation=Llinen\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Connegative=Yes\|Mood=Cnd\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Derivation=Ton,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=Ja\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ine\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ill\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ela\|Number=Sing\|POS=NUM`, `Abbr=Yes\|Case=Ill\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ela\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Tra\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Derivation=Tar\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=Tar\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ess\|Degree=Sup\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Abl\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Clitic=Kin\|Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON`, `Case=Ill\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Ade\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Ade\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Derivation=Lainen,Vs\|Number=Sing\|POS=NOUN`, `Case=All\|Derivation=Lainen\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ine\|Degree=Cmp\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ill\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `POS=PROPN\|Typo=Yes`, `Case=All\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Abbr=Yes\|Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Derivation=Lainen\|Number=Sing\|POS=PROPN`, `Case=Ela\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Abl\|Number=Plur\|POS=PROPN`, `Case=Ess\|Derivation=Ja\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Abbr=Yes\|Case=Tra\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Tra\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Derivation=Lainen,Vs\|Number=Sing\|POS=NOUN`, `Case=Abl\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Case=Nom\|Degree=Sup\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Degree=Cmp\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Clitic=Kin\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADJ`, `Case=Ine\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Par\|Derivation=Tar\|Number=Sing\|POS=NOUN`, `Case=Ela\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ess\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Ela\|Derivation=U\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=All\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ela\|Derivation=Lainen,Vs\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=VERB\|PartForm=Neg\|VerbForm=Part\|Voice=Act`, `POS=CCONJ\|Typo=Yes`, `Case=All\|Number=Sing\|POS=PRON`, `Case=Ess\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Ine\|POS=SYM`, `Abbr=Yes\|Case=Ess\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Abbr=Yes\|Case=Nom\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ade\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Cmp\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Tra\|Derivation=Ja\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Abl\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Nom\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ade\|Clitic=Kaan\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=PROPN`, `Case=Par\|Derivation=Inen\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Neg\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Ade\|Degree=Sup\|Derivation=Inen\|Number=Plur\|POS=ADJ\|Person[psor]=3`, `Case=Ade\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=All\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Number=Plur\|POS=PROPN`, `Case=Par\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ine\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Tra\|Derivation=Ja\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Abbr=Yes\|Case=Tra\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|Case=Gen\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Case=Par\|Degree=Sup\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=All\|NumType=Ord\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Par\|NumType=Card\|Number=Sing\|POS=ADJ`, `Case=Ela\|Derivation=Vs\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|Case=Ine\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Nom\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Case=Ill\|Number=Plur\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Case=Tra\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ess\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Clitic=Kin\|Number=Plur\|POS=PRON`, `Case=Ill\|Clitic=Kin\|Number=Plur\|POS=PRON`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Ind\|Style=Coll`, `Case=Ill\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Case=Ade\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Ess\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Case=Tra\|Degree=Sup\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=All\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ess\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Tra\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Abbr=Yes\|Case=Gen\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Degree=Sup\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ess\|Derivation=Inen\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Tra\|Degree=Sup\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Gen\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Degree=Pos\|Derivation=Lainen\|POS=ADJ`, `Abbr=Yes\|Case=Par\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Abl\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|Case=Par\|Number=Sing\|POS=PROPN`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Tar\|Number=Plur\|POS=NOUN`, `Case=Nom\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ela\|Degree=Sup\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `InfForm=1\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Case=Ade\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=All\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Abl\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=All\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ine\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=All\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=All\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Gen\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ill\|Clitic=Kin\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=PROPN`, `Abbr=Yes\|Case=Nom\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ess\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Ine\|Clitic=Kin\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PROPN\|Person[psor]=3`, `Case=Abl\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Par\|POS=SYM`, `Case=Ine\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Mood=Pot\|POS=VERB\|Typo=Yes\|VerbForm=Fin\|Voice=Pass`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Derivation=Minen\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=Par\|Number=Plur\|POS=NOUN\|Person[psor]=3\|Style=Coll`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Tra\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Tra\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ade\|Number=Sing\|POS=NUM`, `Case=Par\|Derivation=Ton\|Number=Plur\|POS=NOUN`, `Case=Ine\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Ine\|Derivation=Ton,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Clitic=Kin\|Degree=Pos\|Number=Plur\|POS=PRON\|PronType=Ind` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:nn`, `compound:prt`, `conj`, `cop`, `cop:own`, `csubj`, `csubj:cop`, `dep`, `det`, `discourse`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `goeswith`, `mark`, `nmod`, `nmod:gobj`, `nmod:gsubj`, `nmod:poss`, `nsubj`, `nsubj:cop`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp`, `xcomp:ds` | | **`experimental_edit_tree_lemmatizer`** | `3`, `4`, `7`, `10`, `13`, `15`, `19`, `21`, `23`, `25`, `29`, `35`, `40`, `41`, `45`, `48`, `50`, `52`, `55`, `57`, `59`, `61`, `64`, `67`, `71`, `73`, `75`, `77`, `80`, `85`, `86`, `90`, `92`, `94`, `96`, `99`, `101`, `103`, `104`, `106`, `109`, `111`, `112`, `114`, `117`, `120`, `123`, `127`, `130`, `134`, `136`, `138`, `141`, `145`, `147`, `149`, `151`, `153`, `157`, `158`, `160`, `161`, `163`, `166`, `168`, `170`, `173`, `175`, `177`, `179`, `181`, `184`, `187`, `191`, `194`, `198`, `199`, `201`, `202`, `205`, `207`, `210`, `212`, `214`, `217`, `218`, `222`, `224`, `226`, `228`, `230`, `232`, `234`, `236`, `239`, `241`, `243`, `246`, `249`, `251`, `253`, `254`, `256`, `258`, `260`, `261`, `264`, `267`, `269`, `271`, `273`, `274`, `278`, `281`, `282`, `284`, `286`, `289`, `291`, `292`, `294`, `299`, `301`, `304`, `306`, `308`, `310`, `313`, `316`, `317`, `320`, `322`, `327`, `329`, `334`, `336`, `338`, `340`, `344`, `345`, `348`, `350`, `352`, `354`, `357`, `359`, `362`, `363`, `365`, `366`, `367`, `368`, `369`, `370`, `372`, `375`, `377`, `380`, `382`, `385`, `387`, `389`, `390`, `392`, `395`, `397`, `400`, `403`, `406`, `408`, `411`, `413`, `415`, `417`, `419`, `421`, `423`, `425`, `428`, `431`, `433`, `436`, `438`, `440`, `442`, `443`, `446`, `448`, `451`, `453`, `455`, `457`, `459`, `461`, `463`, `466`, `469`, `471`, `473`, `476`, `477`, `481`, `482`, `484`, `488`, `490`, `491`, `495`, `498`, `501`, `503`, `506`, `509`, `513`, `515`, `517`, `519`, `521`, `523`, `526`, `528`, `529`, `531`, `533`, `535`, `537`, `538`, `539`, `542`, `544`, `546`, `548`, `551`, `553`, `556`, `558`, `562`, `564`, `566`, `568`, `570`, `574`, `576`, `578`, `582`, `584`, `586`, `588`, `591`, `593`, `595`, `596`, `598`, `600`, `601`, `602`, `604`, `606`, `608`, `609`, `435`, `610`, `611`, `614`, `616`, `617`, `620`, `622`, `625`, `626`, `628`, `630`, `631`, `633`, `635`, `637`, `638`, `640`, `641`, `643`, `645`, `646`, `650`, `651`, `653`, `655`, `657`, `659`, `660`, `664`, `667`, `671`, `672`, `674`, `677`, `681`, `683`, `684`, `686`, `687`, `689`, `691`, `693`, `695`, `698`, `701`, `703`, `705`, `707`, `710`, `713`, `716`, `720`, `723`, `725`, `726`, `730`, `731`, `734`, `736`, `738`, `739`, `741`, `744`, `748`, `749`, `750`, `752`, `755`, `757`, `759`, `761`, `762`, `763`, `767`, `769`, `772`, `774`, `777`, `780`, `781`, `782`, `784`, `785`, `787`, `788`, `790`, `792`, `793`, `794`, `797`, `799`, `802`, `803`, `805`, `807`, `810`, `388`, `811`, `813`, `815`, `817`, `821`, `823`, `824`, `826`, `828`, `829`, `831`, `832`, `833`, `834`, `836`, `838`, `840`, `842`, `844`, `845`, `847`, `849`, `852`, `855`, `857`, `861`, `863`, `865`, `867`, `868`, `870`, `872`, `875`, `876`, `878`, `879`, `881`, `883`, `886`, `888`, `890`, `891`, `892`, `895`, `896`, `898`, `900`, `903`, `907`, `910`, `912`, `914`, `915`, `917`, `920`, `921`, `924`, `926`, `928`, `930`, `932`, `934`, `937`, `940`, `941`, `943`, `944`, `945`, `946`, `947`, `949`, `952`, `954`, `956`, `960`, `963`, `966`, `969`, `971`, `972`, `974`, `977`, `978`, `981`, `983`, `985`, `987`, `990`, `991`, `993`, `995`, `996`, `999`, `1002`, `1006`, `1008`, `1011`, `1013`, `1016`, `1018`, `1020`, `1022`, `1024`, `1026`, `1028`, `1030`, `1032`, `1034`, `1036`, `1038`, `1040`, `1043`, `1044`, `1046`, `1048`, `1051`, `1054`, `1056`, `1057`, `1060`, `1062`, `1064`, `1066`, `1067`, `1069`, `1071`, `1074`, `1077`, `1078`, `1081`, `1084`, `1086`, `1087`, `1089`, `1091`, `1093`, `1095`, `1096`, `1098`, `1100`, `1101`, `1103`, `1104`, `1106`, `1108`, `1111`, `1114`, `1116`, `1118`, `1119`, `1121`, `1123`, `1125`, `1127`, `1128`, `1133`, `1136`, `1139`, `1141`, `1143`, `1146`, `1149`, `1150`, `1151`, `1153`, `1156`, `1157`, `1159`, `1161`, `1163`, `1167`, `1169`, `1171`, `1172`, `1174`, `1176`, `1180`, `1181`, `1184`, `1186`, `1189`, `1190`, `1193`, `1195`, `1197`, `1199`, `1202`, `1204`, `1205`, `1206`, `1207`, `1209`, `1210`, `1212`, `1214`, `1218`, `1220`, `1222`, `1224`, `1225`, `1227`, `1229`, `1230`, `1232`, `1235`, `1236`, `1238`, `1239`, `1241`, `1245`, `1246`, `1248`, `1249`, `1251`, `1252`, `1253`, `1255`, `1256`, `1259`, `1260`, `1262`, `1263`, `1265`, `1268`, `1269`, `1271`, `1272`, `1275`, `1276`, `1277`, `1279`, `1280`, `1283`, `1285`, `1286`, `1289`, `1291`, `1294`, `1295`, `1298`, `1300`, `1302`, `1304`, `1306`, `1308`, `1311`, `1312`, `1313`, `1314`, `1316`, `1317`, `1318`, `1320`, `1322`, `1323`, `1325`, `1327`, `1330`, `1332`, `1334`, `1339`, `1341`, `1344`, `1345`, `1347`, `1349`, `1352`, `1355`, `1356`, `1360`, `1363`, `1365`, `1367`, `1368`, `1369`, `1372`, `1374`, `1376`, `1377`, `1379`, `1380`, `1382`, `1384`, `1386`, `1389`, `1391`, `1392`, `1393`, `1396`, `1399`, `1400`, `1401`, `1403`, `1405`, `1406`, `1408`, `1411`, `1414`, `1416`, `1417`, `1419`, `1420`, `1422`, `1423`, `1425`, `1428`, `1430`, `1433`, `1436`, `1437`, `1439`, `1442`, `1444`, `1446`, `1449`, `1451`, `1454`, `1456`, `1457`, `1459`, `1461`, `1462`, `1464`, `1465`, `1467`, `1469`, `1470`, `1472`, `1475`, `1477`, `1478`, `1480`, `1482`, `1483`, `1484`, `1486`, `1487`, `1489`, `1491`, `1492`, `1494`, `1497`, `1498`, `1499`, `1501`, `1503`, `1506`, `1507`, `1511`, `1513`, `1514`, `1517`, `1519`, `1521`, `1523`, `1526`, `1528`, `1531`, `1533`, `1535`, `1536`, `1538`, `1540`, `1542`, `1545`, `1547`, `1549`, `1550`, `1551`, `1552`, `1554`, `1555`, `1556`, `1558`, `1559`, `1560`, `1562`, `1563`, `1564`, `1566`, `1568`, `1570`, `1575`, `1577`, `1578`, `1579`, `1580`, `1582`, `1585`, `1586`, `1589`, `1590`, `1592`, `1594`, `1598`, `1600`, `1601`, `1603`, `1604`, `1605`, `1607`, `1609`, `1610`, `1613`, `1616`, `1618`, `1619`, `1621`, `1622`, `1624`, `1627`, `1629`, `1631`, `1633`, `1635`, `1638`, `1640`, `1643`, `1646`, `1647`, `1649`, `1651`, `1654`, `1655`, `1658`, `1662`, `1663`, `1666`, `1669`, `1671`, `1673`, `1676`, `1679`, `1682`, `1685`, `1686`, `1688`, `1690`, `1693`, `1695`, `1698`, `1700`, `1702`, `1704`, `1705`, `1707`, `1710`, `1713`, `1715`, `1717`, `1719`, `1721`, `1724`, `1725`, `1727`, `1729`, `1730`, `1731`, `1732`, `1734`, `1736`, `1737`, `1738`, `1741`, `1744`, `1746`, `1747`, `1749`, `1751`, `1752`, `1753`, `1754`, `1756`, `1758`, `1761`, `1762`, `1764`, `1765`, `1766`, `1767`, `1769`, `1772`, `1774`, `1777`, `1778`, `1779`, `1781`, `1782`, `1784`, `1787`, `1790`, `1792`, `1794`, `1798`, `1800`, `1803`, `1805`, `1807`, `1809`, `1810`, `1811`, `1813`, `1815`, `1816`, `1820`, `1823`, `1824`, `1827`, `1830`, `1832`, `1833`, `1834`, `1835`, `1836`, `1838`, `1841`, `1842`, `1843`, `1845`, `1847`, `1849`, `1853`, `1856`, `1858`, `1860`, `1861`, `1863`, `1864`, `1865`, `1866`, `1867`, `1869`, `1870`, `1874`, `1875`, `1876`, `1879`, `1881`, `1882`, `1883`, `1886`, `1887`, `1890`, `1891`, `1893`, `1896`, `1898`, `1901`, `1903`, `1906`, `1908`, `1910`, `1912`, `1914`, `1917`, `1919`, `1921`, `1923`, `1926`, `1927`, `1928`, `1930`, `1931`, `1933`, `1935`, `1937`, `1939`, `1941`, `1943`, `1944`, `1946`, `1948`, `1950`, `1952`, `1955`, `1956`, `1957`, `1958`, `1960`, `1962`, `1963`, `1965`, `1967`, `1969`, `1970`, `1972`, `1973`, `1974`, `1975`, `1976`, `1978`, `1981`, `1984`, `1986`, `1989`, `1992`, `1994`, `1995`, `1996`, `1998`, `2000`, `2003`, `2004`, `2006`, `2007`, `2008`, `2009`, `2011`, `2013`, `2016`, `2017`, `2019`, `2020`, `2022`, `2025`, `2028`, `2029`, `2031`, `2034`, `2035`, `2038`, `2041`, `2043`, `2045`, `2047`, `2049`, `2051`, `2052`, `2055`, `2057`, `2058`, `2060`, `2062`, `2063`, `2065`, `2067`, `2069`, `2071`, `2073`, `2074`, `2076`, `2078`, `2082`, `2084`, `2086`, `2088`, `2089`, `2090`, `2092`, `2093`, `2094`, `2096`, `2098`, `2100`, `2102`, `2104`, `2107`, `2109`, `2110`, `2111`, `2112`, `2114`, `2115`, `2116`, `2117`, `2119`, `2121`, `2124`, `2125`, `2126`, `2129`, `2130`, `2132`, `2135`, `2137`, `2140`, `2142`, `2144`, `2146`, `2147`, `2148`, `2150`, `2151`, `2152`, `2153`, `2156`, `2159`, `2161`, `2163`, `2164`, `2165`, `2167`, `2169`, `2170`, `2171`, `2172`, `2173`, `2176`, `2178`, `2180`, `2182`, `2183`, `2186`, `2188`, `2191`, `2193`, `2195`, `2197`, `2198`, `2199`, `2202`, `2204`, `2206`, `2208`, `2210`, `2211`, `2214`, `2218`, `2219`, `2222`, `2224`, `2226`, `2227`, `2228`, `2229`, `2232`, `2234`, `2237`, `2239`, `2240`, `2242`, `2243`, `2245`, `2246`, `2247`, `2248`, `2249`, `2252`, `2253`, `2256`, `2258`, `2261`, `2263`, `2265`, `2269`, `2271`, `2273`, `2274`, `2276`, `2277`, `2279`, `2282`, `2284`, `2287`, `2290`, `2292`, `2293`, `2294`, `2296`, `2297`, `2300`, `2301`, `2303`, `2305`, `2308`, `2310`, `2312`, `2313`, `2315`, `2316`, `2317`, `2319`, `2321`, `2322`, `2324`, `2325`, `2326`, `2330`, `2332`, `2334`, `2335`, `2338`, `2340`, `2341`, `2343`, `2345`, `2346`, `2348`, `2349`, `2350`, `2352`, `2354`, `2356`, `2358`, `2360`, `2362`, `2364`, `2368`, `2371`, `2376`, `2377`, `2379`, `2381`, `2382`, `2383`, `2384`, `2385`, `2387`, `2388`, `2389`, `2390`, `2392`, `2393`, `2394`, `2395`, `2396`, `2399`, `2401`, `2403`, `2405`, `2408`, `2409`, `2411`, `2414`, `2416`, `2418`, `2421`, `2423`, `2425`, `2428`, `2429`, `2430`, `2432`, `2435`, `2437`, `2439`, `2441`, `2445`, `2448`, `2449`, `2451`, `2452`, `2453`, `2454`, `2456`, `2459`, `2462`, `2463`, `2464`, `2466`, `2467`, `2469`, `2472`, `2475`, `2476`, `2478`, `2481`, `2483`, `2485`, `2488`, `2490`, `2493`, `2497`, `2499`, `2502`, `2504`, `2506`, `2509`, `2511`, `2513`, `2514`, `2516`, `2520`, `2523`, `2526`, `2527`, `2530`, `2531`, `2533`, `2534`, `2536`, `2537`, `2539`, `2540`, `2543`, `2546`, `2548`, `2551`, `2554`, `2555`, `2557`, `2559`, `2560`, `2562`, `2563`, `2566`, `2568`, `2570`, `2572`, `2575`, `2578`, `2580`, `2583`, `2586`, `2588`, `2590`, `2593`, `2596`, `2598`, `2601`, `2603`, `2605`, `2608`, `2611`, `2614`, `2615`, `2617`, `2618`, `2620`, `2623`, `2626`, `2629`, `2631`, `2633`, `2635`, `2637`, `2639`, `2640`, `2642`, `2644`, `2646`, `2648`, `2652`, `2655`, `2657`, `2660`, `2662`, `2663`, `2666`, `2668`, `2669`, `2672`, `2676`, `2679`, `2682`, `2685`, `2687`, `2689`, `2691`, `2693`, `2695`, `2697`, `2699`, `2702`, `2703`, `2705`, `2707`, `2709`, `2711`, `2713`, `2714`, `2720`, `2722`, `2724`, `2726`, `2728`, `2730`, `2732`, `2734`, `2736`, `2738`, `2740`, `2743`, `2746`, `2749`, `2753`, `2755`, `2757`, `2759`, `2760`, `2762`, `2765`, `2766`, `2767`, `2769`, `2771`, `2772`, `2775`, `2778`, `2781`, `2783`, `2786`, `2788`, `2792`, `2793`, `2796`, `2798`, `2799`, `2802`, `2805`, `2806`, `2809`, `2810`, `2813`, `2814`, `2817`, `2820`, `2822`, `2823`, `2824`, `2825`, `2827`, `2829`, `2831`, `2833`, `2835`, `2837`, `2839`, `2842`, `2844`, `2845`, `2846`, `2849`, `2851`, `2853`, `2855`, `2857`, `2860`, `2862`, `2864`, `2865`, `2867`, `2869`, `2871`, `2874`, `2875`, `2877`, `2879`, `2880`, `2881`, `2882`, `2883`, `2886`, `2888`, `2889`, `2890`, `2892`, `2893`, `2894`, `2896`, `2899`, `2900`, `2902`, `2903`, `2904`, `2905`, `2906`, `2907`, `2909`, `2912`, `2915`, `2917`, `2918`, `2920`, `2922`, `2924`, `2925`, `2926`, `2928`, `2930`, `2932`, `2936`, `2938`, `2940`, `2943`, `2944`, `2947`, `2948`, `2950`, `2951`, `2954`, `2956`, `2957`, `2959`, `2961`, `2962`, `2963`, `2964`, `2965`, `2966`, `2968`, `2969`, `2972`, `2974`, `2975`, `2978`, `2979`, `2982`, `2985`, `2986`, `2988`, `2989`, `2991`, `2993`, `2994`, `2996`, `2999`, `3000`, `3002`, `3005`, `3007`, `3008`, `3010`, `3011`, `3012`, `3014`, `3016`, `3018`, `3020`, `3021`, `3023`, `3024`, `3027`, `3029`, `3032`, `3034`, `3035`, `3037`, `3040`, `3041`, `3044`, `3047`, `3048`, `3049`, `3052`, `3054`, `3056`, `3058`, `3060`, `3062`, `3064`, `3066`, `3067`, `3070`, `3071`, `3072`, `3074`, `3076`, `3077`, `3080`, `3082`, `3085`, `3088`, `3089`, `3092`, `3095`, `3097`, `3098`, `3100`, `3102`, `3104`, `3107`, `3108`, `3110`, `3113`, `3115`, `3117`, `3121`, `3122`, `3123`, `3125`, `3127`, `3128`, `3131`, `3134`, `3135`, `3136`, `3138`, `3139`, `3141`, `3142`, `3143`, `3145`, `3146`, `3147`, `3148`, `3151`, `3152`, `3154`, `3155`, `3158`, `3160`, `3163`, `3164`, `3165`, `3167`, `3168`, `3170`, `3171`, `3173`, `3174`, `3175`, `3176`, `3178`, `3179`, `3180`, `3182`, `3184`, `3186`, `3188`, `3190`, `3193`, `3195`, `3196`, `3198`, `3200`, `3202`, `3203`, `3205`, `3207`, `3209`, `3211`, `3213`, `3215`, `3217`, `3220`, `3221`, `3224`, `3225`, `3226`, `3229`, `3231`, `3233`, `3234`, `3237`, `3239`, `3240`, `3241`, `3242`, `3243`, `3244`, `3246`, `3249`, `3251`, `3252`, `3254`, `3256`, `3258`, `3259`, `3260`, `3262`, `3264`, `3267`, `3268`, `3269`, `3270`, `3271`, `3273`, `3275`, `3278`, `3280`, `3281`, `3282`, `3285`, `3286`, `3288`, `3290`, `3292`, `3295`, `3296`, `3298`, `3300`, `3301`, `3302`, `3304`, `3306`, `3309`, `3311`, `3312`, `3314`, `3315`, `3317`, `3319`, `3321`, `3324`, `3325`, `3327`, `3329`, `3331`, `3333`, `3335`, `3336`, `3338`, `3341`, `3343`, `3345`, `3347`, `3351`, `3352`, `3354`, `3356`, `3358`, `3359`, `3361`, `3363`, `3366`, `3367`, `3370`, `3371`, `3372`, `3373`, `3374`, `3375`, `3377`, `3381`, `3383`, `3384`, `3386`, `3388`, `3391`, `3394`, `3395`, `3398`, `3400`, `3402`, `3403`, `3405`, `3406`, `3407`, `3409`, `3411`, `3414`, `3417`, `3418`, `3419`, `3420`, `3422`, `3424`, `3426`, `3427`, `3429`, `3430`, `3433`, `3434`, `3435`, `3437`, `3442`, `3446`, `3447`, `3449`, `3450`, `3452`, `3453`, `3454`, `3457`, `3459`, `3461`, `3464`, `3466`, `3467`, `3469`, `3470`, `3472`, `3475`, `3477`, `3479`, `3482`, `3484`, `3486`, `3487`, `3488`, `3490`, `3491`, `3493`, `3496`, `3498`, `3501`, `3503`, `3505`, `3506`, `3508`, `3510`, `3511`, `3513`, `3515`, `3516`, `3519`, `3522`, `3524`, `3526`, `3528`, `3530`, `3532`, `3533`, `3535`, `3538`, `3540`, `3541`, `3543`, `3544`, `3546`, `3548`, `3550`, `3552`, `3553`, `3556`, `3557`, `3558`, `3559`, `3561`, `3562`, `3563`, `3564`, `3567`, `3569`, `3571`, `3572`, `3573`, `3574`, `3576`, `3578`, `3580`, `3583`, `3584`, `3586`, `3589`, `3590`, `3592`, `3593`, `3596`, `3598`, `3599`, `3601`, `3603`, `3605`, `3607`, `3608`, `3609`, `3611`, `3613`, `3614`, `3615`, `3617`, `3619`, `3620`, `3622`, `3624`, `3625`, `3626`, `3628`, `3630`, `3633`, `3635`, `3636`, `3639`, `3640`, `3642`, `3645`, `3647`, `3648`, `3650`, `3652`, `3654`, `3655`, `3657`, `3660`, `3662`, `3663`, `3664`, `3665`, `3666`, `3670`, `3671`, `3673`, `3675`, `3677`, `3679`, `3681`, `3684`, `3686`, `3687`, `3690`, `3692`, `3694`, `3696`, `3698`, `3700`, `3701`, `3703`, `3705`, `3708`, `3709`, `3712`, `3715`, `3716`, `3719`, `3721`, `3722`, `3723`, `3724`, `3725`, `3727`, `3728`, `3730`, `3731`, `3735`, `3737`, `3740`, `3742`, `3743`, `3744`, `3745`, `3746`, `3747`, `3749`, `3750`, `3752`, `3754`, `3757`, `3758`, `3759`, `3760`, `3763`, `3765`, `3766`, `3768`, `3771`, `3772`, `3774`, `3775`, `3777`, `3779`, `3781`, `3782`, `3784`, `3786`, `3787`, `3788`, `3789`, `3790`, `3791`, `3792`, `3794`, `3795`, `3797`, `3798`, `3799`, `3801`, `3803`, `3805`, `3808`, `3811`, `3812`, `3813`, `3815`, `3816`, `3818`, `2885`, `3820`, `3822`, `3823`, `3826`, `3828`, `3830`, `3833`, `3834`, `3837`, `3840`, `3842`, `3843`, `3845`, `3848`, `3851`, `3852`, `3853`, `3856`, `3859`, `3860`, `3861`, `3862`, `3863`, `3864`, `3866`, `3867`, `3868`, `3870`, `3871`, `3872`, `3874`, `3876`, `3879`, `3881`, `3883`, `3886`, `3888`, `3890`, `3891`, `3893`, `3895`, `3897`, `3898`, `3900`, `3902`, `3904`, `3905`, `3908`, `3909`, `3910`, `3912`, `3913`, `3914`, `3917`, `3918`, `3920`, `3922`, `3923`, `3924`, `3926`, `3927`, `3928`, `3930`, `3933`, `3936`, `3937`, `3939`, `3942`, `3944`, `3945`, `3947`, `3950`, `3952`, `3955`, `3956`, `3957`, `3958`, `3959`, `3960`, `3961`, `3962`, `3963`, `3964`, `3965`, `3966`, `3967`, `3969`, `3971`, `3973`, `3976`, `3978`, `3979`, `3980`, `3981`, `3982`, `3984`, `3985`, `3989`, `3992`, `3993`, `3995`, `3996`, `3998`, `4000`, `4003`, `4004`, `4005`, `4007`, `4008`, `4011`, `4013`, `4014`, `4015`, `4016`, `4018`, `4020`, `4021`, `4022`, `4024`, `4025`, `4026`, `4028`, `4029`, `4032`, `4033`, `4034`, `4036`, `4039`, `4040`, `4042`, `4044`, `4046`, `4047`, `4049`, `4051`, `4052`, `4054`, `4055`, `4056`, `4057`, `4060`, `4064`, `4066`, `4068`, `4069`, `4070`, `4071`, `4072`, `4073`, `4074`, `4076`, `4078`, `4081`, `4082`, `4083`, `4084`, `4085`, `4087`, `4089`, `4091`, `4093`, `4095`, `4096`, `4098`, `4102`, `4103`, `4105`, `4106`, `4107`, `4110`, `4111`, `4112`, `4113`, `4115`, `4119`, `4121`, `4122`, `4123`, `4124`, `4126`, `4127`, `4129`, `4130`, `4134`, `4136`, `4138`, `4142`, `4143`, `4144`, `4145`, `4148`, `4150`, `4151`, `4153`, `4155`, `4156`, `4158`, `4159`, `4161`, `4162`, `4163`, `4165`, `4166`, `4169`, `4170`, `4172`, `4173`, `4174`, `4175`, `4177`, `4178`, `4180`, `4182`, `4183`, `4185`, `4187`, `4189`, `4191`, `4192`, `4194`, `4195`, `4196`, `4198`, `4200`, `4202`, `4203`, `4204`, `4205`, `4207`, `4209`, `4211`, `4213`, `4215`, `4216`, `4219`, `4221`, `4222`, `4223`, `4224`, `4227`, `4229`, `4232`, `4233`, `4234`, `4236`, `4238`, `4239`, `4240`, `4241`, `4243`, `4245`, `4247`, `4250`, `4251`, `4254`, `4255`, `4256`, `4258`, `4262`, `4265`, `4268`, `4271`, `4273`, `4275`, `4277`, `4278`, `4279`, `4281`, `4283`, `4285`, `4286`, `4288`, `4291`, `4293`, `4295`, `4297`, `4299`, `4300`, `4303`, `4306`, `4309`, `4312`, `4314`, `4315`, `4318`, `4320`, `4324`, `4326`, `4328`, `4330`, `4331`, `4334`, `4336`, `4338`, `4342`, `4343`, `4345`, `4346`, `4347`, `4348`, `4349`, `4350`, `4352`, `4356`, `4359`, `4361`, `4362`, `4363`, `4364`, `4369`, `4370`, `4372`, `4374`, `4376`, `4380`, `4382`, `4383`, `4384`, `4388`, `4391`, `4392`, `4394`, `4395`, `4396`, `4398`, `4400`, `4402`, `4404`, `4405`, `4407`, `4409`, `4410`, `4411`, `4414`, `4416`, `4418`, `4419`, `4421`, `4423`, `4425`, `4426`, `4428`, `4429`, `4431`, `4432`, `4434`, `4437`, `4438`, `4439`, `4441`, `4442`, `4443`, `4445`, `4446`, `4449`, `4450`, `4452`, `4454`, `4456`, `4457`, `4458`, `4459`, `4462`, `4463`, `4464`, `4465`, `4466`, `4469`, `4472`, `4475`, `4478`, `4481`, `4482`, `4484`, `4485`, `4487`, `4489`, `4492`, `4493`, `4496`, `4498`, `4499`, `4500`, `4502`, `4503`, `4505`, `4506`, `4508`, `4510`, `4511`, `4512`, `4514`, `4515`, `4518`, `4519`, `4521`, `4524`, `4526`, `4527`, `4528`, `4531`, `4534`, `4537`, `4539`, `4541`, `4542`, `4544`, `4546`, `4549`, `4551`, `4552`, `4556`, `4558`, `4561`, `4564`, `4566`, `4568`, `4569`, `4572`, `4574`, `4575`, `4576`, `4577`, `4578`, `4580`, `4582`, `4583`, `4585`, `4587`, `4589`, `4591`, `4593`, `4594`, `4596`, `4597`, `4600`, `4601`, `4602`, `4603`, `4605`, `4606`, `4608`, `4611`, `4614`, `4615`, `4617`, `4620`, `4623`, `4625`, `4626`, `4627`, `4631`, `4632`, `4633`, `4634`, `4637`, `4638`, `4639`, `4642`, `4643`, `4646`, `4648`, `4650`, `4651`, `4653`, `4655`, `4656`, `4657`, `4658`, `4659`, `4661`, `4664`, `4666`, `4668`, `4669`, `4670`, `4671`, `4673`, `4674`, `4677`, `4679`, `4680`, `4683`, `4684`, `4685`, `4687`, `4688`, `4690`, `4691`, `4693`, `4694`, `4697`, `4698`, `4699`, `4701`, `4702`, `4705`, `4706`, `4707`, `4709`, `4710`, `4711`, `4714`, `4715`, `4717`, `4718`, `4720`, `4722`, `4726`, `4728`, `4730`, `4734`, `4736`, `4737`, `4738`, `4740`, `4743`, `4745`, `4747`, `4748`, `4749`, `4751`, `4752`, `4754`, `4756`, `4759`, `4760`, `4761`, `4763`, `4764`, `4765`, `4769`, `4770`, `4773`, `4775`, `4776`, `4777`, `4779`, `4782`, `4783`, `4784`, `4787`, `4789`, `4790`, `4791`, `4792`, `4794`, `4795`, `4796`, `4797`, `4798`, `4801`, `4802`, `4803`, `4805`, `4807`, `4811`, `4812`, `4814`, `4817`, `4818`, `4819`, `4821`, `4824`, `4825`, `4826`, `4829`, `4831`, `4833`, `4834`, `4835`, `4837`, `4839`, `4840`, `4842`, `4844`, `4846`, `4848`, `4849`, `4852`, `4854`, `4856`, `4857`, `4860`, `4861`, `4862`, `4863`, `4866`, `4867`, `4869`, `4871`, `4872`, `4875`, `4877`, `4879`, `4881`, `4886`, `4887`, `4889`, `4890`, `4892`, `4893`, `4896`, `4897`, `4898`, `4900`, `4901`, `4904`, `4905`, `4907`, `4909`, `4910`, `4912`, `4914`, `4916`, `4919`, `4922`, `4924`, `4926`, `4927`, `4929`, `4930`, `4933`, `4934`, `4936`, `4938`, `4940`, `4943`, `4946`, `4948`, `4949`, `4950`, `4951`, `4952`, `4954`, `4955`, `4958`, `4960`, `4962`, `4964`, `4965`, `4967`, `4970`, `4972`, `4973`, `4975`, `4978`, `4981`, `4983`, `4984`, `4986`, `4987`, `4989`, `4990`, `4991`, `4992`, `4993`, `4994`, `4995`, `4998`, `4999`, `5000`, `5002`, `5003`, `5006`, `5007`, `5008`, `5010`, `5011`, `5014`, `5017`, `5019`, `5020`, `5023`, `5024`, `5026`, `5028`, `5029`, `5031`, `5033`, `5034`, `5035`, `5036`, `5037`, `5039`, `5041`, `5043`, `5046`, `5049`, `5051`, `5053`, `5054`, `5056`, `5059`, `5062`, `5063`, `5065`, `5067`, `5068`, `5069`, `5072`, `5075`, `5076`, `5077`, `5078`, `5079`, `5081`, `5082`, `5085`, `5088`, `5089`, `5090`, `5091`, `5093`, `5096`, `5098`, `5100`, `5102`, `5103`, `5104`, `5105`, `5106`, `5107`, `5109`, `5111`, `5112`, `5113`, `5115`, `5116`, `5117`, `5119`, `5121`, `5122`, `5123`, `5125`, `5126`, `5127`, `5128`, `5130`, `5132`, `5133`, `5135`, `5136`, `5137`, `5139`, `5141`, `5143`, `5144`, `5147`, `5148`, `5150`, `5153`, `5154`, `5157`, `5159`, `5161`, `5163`, `5165`, `5169`, `5171`, `5172`, `5173`, `5175`, `5178`, `5179`, `5181`, `5185`, `5186`, `5188`, `5190`, `5193`, `5195`, `5196`, `5199`, `5202`, `5203`, `5205`, `5207`, `5209`, `5211`, `5212`, `5214`, `5216`, `5217`, `5220`, `5222`, `5223`, `5224`, `5227`, `5228`, `5230`, `5231`, `5232`, `5233`, `5235`, `5237`, `5238`, `5241`, `5243`, `5244`, `5245`, `5248`, `5250`, `5252`, `5254`, `5255`, `5256`, `5259`, `5260`, `5262`, `5266`, `5269`, `5270`, `5272`, `5273`, `5276`, `5277`, `5278`, `5280`, `5283`, `5284`, `5285`, `5286`, `5287`, `5289`, `5290`, `5293`, `5296`, `5299`, `5300`, `5301`, `5302`, `5304`, `5306`, `5308`, `5309`, `5310`, `5313`, `5314`, `5315`, `5316`, `5319`, `5320`, `5321`, `5324`, `5326`, `5327`, `5329`, `5332`, `5333`, `5335`, `5337`, `5339`, `5341`, `5343`, `5345`, `5347`, `5349`, `5350`, `5351`, `5354`, `5355`, `5356`, `5357`, `5358`, `5360`, `5361`, `5362`, `5364`, `5365`, `5369`, `5371`, `5374`, `5375`, `5377`, `5380`, `5383`, `5385`, `5386`, `5387`, `5388`, `5390`, `5392`, `5394`, `5396`, `5398`, `5399`, `5400`, `5402`, `5405`, `5409`, `5410`, `5412`, `5413`, `5414`, `5415`, `5418`, `5420`, `5423`, `5425`, `5426`, `5427`, `5428`, `5431`, `5432`, `5434`, `5436`, `5438`, `5439`, `5441`, `5442`, `5445`, `5447`, `5450`, `5451`, `5452`, `5455`, `5457`, `5459`, `5462`, `5463`, `5465`, `5466`, `5467`, `5469`, `5470`, `5471`, `5474`, `5476`, `5478`, `5479`, `5480`, `5481`, `5483`, `5486`, `5488`, `5489`, `5490`, `5492`, `5495`, `5497`, `5498`, `5500`, `5501`, `5506`, `5508`, `5510`, `5511`, `5512`, `5515`, `5516`, `5517`, `5518`, `5519`, `5522`, `5524`, `5525`, `5527`, `5528`, `5530`, `5531`, `5532`, `5535`, `5536`, `5538`, `5539`, `5541`, `5543`, `5544`, `5546`, `5547`, `5549`, `5552`, `5555`, `5558`, `5559`, `5561`, `5562`, `5563`, `5564`, `5567`, `5568`, `5569`, `5571`, `5572`, `5574`, `5575`, `5577`, `5580`, `5583`, `5584`, `5585`, `5588`, `5590`, `5591`, `5593`, `5594`, `5595`, `5596`, `5597`, `5599`, `5602`, `5603`, `5604`, `5607`, `5609`, `5610`, `5611`, `5612`, `5613`, `5614`, `5616`, `5617`, `5621`, `5623`, `5625`, `5628`, `5630`, `5633`, `5636`, `5639`, `5642`, `5644`, `5645`, `5647`, `5649`, `5651`, `5653`, `5654`, `5655`, `5658`, `5659`, `5662`, `5664`, `5665`, `5667`, `5669`, `5670`, `5671`, `5673`, `5674`, `5676`, `5678`, `5680`, `5682`, `5684`, `5685`, `5687`, `5689`, `5691`, `5695`, `5696`, `5698`, `5699`, `5703`, `5704`, `5706`, `5709`, `5710`, `5711`, `5712`, `5714`, `5717`, `5719`, `5722`, `5723`, `5724`, `5726`, `5727`, `5728`, `5730`, `5733`, `5735`, `5736`, `5738`, `5739`, `5741`, `5743`, `5746`, `5747`, `5748`, `5750`, `5753`, `5756`, `5757`, `5758`, `5759`, `5761`, `5762`, `5765`, `5766`, `5768`, `5771`, `5772`, `5773`, `5776`, `5777`, `5778`, `5779`, `5781`, `5783`, `5784`, `5785`, `5789`, `5791`, `5793`, `5794`, `5797`, `5798`, `5800`, `5802`, `5803`, `5807`, `5808`, `5810`, `5813`, `5815`, `5818`, `5821`, `5823`, `5825`, `5826`, `5827`, `5828`, `5830`, `5831`, `5832`, `5835`, `5838`, `5839`, `5841`, `5842`, `5844`, `5846`, `5849`, `5851`, `5852`, `5854`, `5857`, `5858`, `5860`, `5861`, `5863`, `5864`, `5865`, `5867`, `5869`, `5871`, `5872`, `5873`, `5874`, `5875`, `5876`, `5877`, `5878`, `5879`, `5881`, `5884`, `5885`, `5887`, `5888`, `5889`, `5891`, `5892`, `5894`, `5895`, `5896`, `5898`, `5900`, `5902`, `5904`, `5906`, `5909`, `5911`, `5914`, `5915`, `5916`, `5917`, `5918`, `5919`, `5921`, `5923`, `5925`, `5927`, `5929`, `5931`, `5934`, `5937`, `5939`, `5940`, `5941`, `5943`, `5945`, `5946`, `5948`, `5950`, `5952`, `5954`, `5955`, `5956`, `5960`, `5961`, `5962`, `5965`, `5967`, `5969`, `5972`, `5973`, `5975`, `5976`, `5977`, `5978`, `5981`, `5982`, `5984`, `5986`, `5988`, `5990`, `5991`, `5993`, `5995`, `5998`, `6000`, `6002`, `6005`, `6007`, `6008`, `6009`, `6011`, `6013`, `6014`, `6015`, `6018`, `6019`, `6021`, `6024`, `6026`, `6028`, `6030`, `6031`, `6032`, `6034`, `6036`, `6037`, `6040`, `6042`, `6045`, `6046`, `6047`, `6048`, `6049`, `6050`, `6051`, `6053`, `6054`, `6055`, `6056`, `6058`, `6059`, `6061`, `6062`, `6064`, `6065`, `6067`, `6068`, `6069`, `6070`, `6072`, `6073`, `6074`, `6075`, `6077`, `6079`, `6082`, `6084`, `6085`, `6087`, `6089`, `6091`, `6093`, `6096`, `6098`, `6099`, `6101`, `6102`, `6104`, `6106`, `6108`, `6109`, `6110`, `6112`, `6114`, `6115`, `6118`, `6120`, `6122`, `6123`, `6125`, `6127`, `6129`, `6130`, `6132`, `6134`, `6135`, `6136`, `6137`, `6139`, `6140`, `6141`, `6145`, `6147`, `6149`, `6150`, `6151`, `6153`, `6154`, `6155`, `6157`, `6159`, `6161`, `6163`, `6164`, `6165`, `6166`, `6167`, `6170`, `6171`, `6173`, `6176`, `6178`, `6179`, `6182`, `6183`, `6185`, `6187`, `6188`, `6190`, `6191`, `6193`, `6194`, `6196`, `6197`, `6198`, `6199`, `6200`, `6201`, `6203`, `6205`, `6206`, `6207`, `6208`, `6209`, `6211`, `6213`, `6215`, `6216`, `6217`, `6219`, `6220`, `6222`, `6224`, `6226`, `6229`, `6232`, `6235`, `6238`, `6239`, `6242`, `6243`, `6245`, `6247`, `6248`, `6249`, `6252`, `6253`, `6254`, `6256`, `6257`, `6258`, `6260`, `6261`, `6262`, `6263`, `6265`, `6267`, `6269`, `6272`, `6273`, `6274`, `6275`, `6277`, `6278`, `6281`, `6283`, `6285`, `6287`, `6288`, `6289`, `6290`, `6291`, `6293`, `6295`, `6297`, `6298`, `6300`, `6302`, `6304`, `6307`, `6308`, `6310`, `6312`, `6314`, `6316`, `6318`, `6321`, `6323`, `6326`, `6328`, `6329`, `6330`, `6332`, `6333`, `6336`, `6338`, `6340`, `6342`, `6345`, `6346`, `6347`, `6349`, `6350`, `6352`, `6354`, `6357`, `6359`, `6363`, `6364`, `6366`, `6368`, `6369`, `6370`, `6374`, `6376`, `6377`, `6381`, `6384`, `6385`, `6387`, `6389`, `6391`, `6394`, `6395`, `6397`, `6398`, `6400`, `6401`, `6402`, `6403`, `6406`, `6407`, `6409`, `6412`, `6413`, `6414`, `6416`, `6418`, `6419`, `6421`, `6424`, `6426`, `6427`, `6428`, `6430`, `6431`, `6432`, `6433`, `6434`, `6436`, `6438`, `6440`, `6442`, `6443`, `6445`, `6447`, `6450`, `6452`, `6453`, `6454`, `6455`, `6456`, `6458`, `6460`, `6461`, `6462`, `6463`, `6464`, `6465`, `6466`, `6468`, `6469`, `6470`, `6471`, `6472`, `6473`, `6475`, `6476`, `6480`, `6482`, `6484`, `6486`, `6488`, `6491`, `6493`, `6495`, `6497`, `6498`, `6499`, `6500`, `6502`, `6504`, `6506`, `6508`, `6510`, `6511`, `6513`, `6516`, `6517`, `6519`, `6521`, `6523`, `6525`, `6527`, `6528`, `6530`, `6532`, `6533`, `6536`, `6539`, `6541`, `6542`, `6543`, `6544`, `6546`, `6547`, `6550`, `6552`, `6555`, `6556`, `6557`, `6558`, `6559`, `6561`, `6562`, `6563`, `6565`, `6566`, `6567`, `6570`, `6571`, `6572`, `6573`, `6574`, `6575`, `6576`, `6577`, `6578`, `6579`, `6582`, `6583`, `6585`, `6588`, `6589`, `6590`, `6591`, `6592`, `6593`, `6594`, `6596`, `6597`, `6598`, `6600`, `6601`, `6602`, `6603`, `6604`, `6606`, `6607`, `6608`, `6610`, `6611`, `6612`, `6614`, `6617`, `6619`, `6621`, `6622`, `6625`, `6628`, `6631`, `6632`, `6633`, `6634`, `6637`, `6639`, `6640`, `6642`, `6644`, `6645`, `6646`, `6647`, `6649`, `6650`, `6651`, `6653`, `6655`, `6656`, `6658`, `6659`, `6661`, `6662`, `6665`, `6666`, `6668`, `6669`, `6670`, `6671`, `6672`, `6673`, `6674`, `6675`, `6676`, `6677`, `6678`, `6679`, `6680`, `6682`, `6683`, `6684`, `6685`, `6687`, `6688`, `6690`, `6692`, `6693`, `6694`, `6696`, `6697`, `6698`, `6701`, `6702`, `6705`, `6707`, `6708`, `6709`, `6711`, `6712`, `6714`, `6716`, `6717`, `6718`, `6721`, `6723`, `6724`, `6726`, `6730`, `6732`, `6733`, `6734`, `6735`, `6736`, `6738`, `6740`, `6742`, `6744`, `6745`, `6746`, `6747`, `6748`, `6750`, `6753`, `6755`, `6756`, `6758`, `6759`, `6760`, `6761`, `6763`, `6764`, `6767`, `6770`, `6772`, `6773`, `6774`, `6776`, `6778`, `6781`, `6783`, `6784`, `6785`, `6788`, `6790`, `6793`, `6794`, `6796`, `6797`, `6801`, `6804`, `6807`, `6809`, `6812`, `6814`, `6816`, `6817`, `6819`, `6821`, `6822`, `6824`, `6825`, `6828`, `6831`, `6834`, `6835`, `6836`, `6838`, `6839`, `6841`, `6844`, `6846`, `6847`, `6848`, `6849`, `6851`, `6852`, `6854`, `6855`, `6856`, `6857`, `6859`, `6860`, `6861`, `6862`, `6864`, `6865`, `6866`, `6867`, `6868`, `6870`, `6873`, `6875`, `6876`, `6878`, `6882`, `6885`, `6888`, `6889`, `6890`, `6893`, `6895`, `6898`, `6901`, `6903`, `6905`, `6906`, `6909`, `6911`, `6912`, `6913`, `6914`, `6915`, `6916`, `6919`, `6920`, `6923`, `6924`, `6925`, `6926`, `6930`, `6932`, `6934`, `6937`, `6939`, `6940`, `6942`, `6944`, `6945`, `6947`, `6949`, `6952`, `6954`, `6957`, `6959`, `6960`, `6963`, `6966`, `6969`, `6970`, `6973`, `6974`, `6976`, `6978`, `6980`, `6983`, `6985`, `6986`, `6988`, `6989`, `6991`, `6993`, `6995`, `6997`, `7000`, `7002`, `7005`, `7007`, `7008`, `7010`, `7013`, `7016`, `7018`, `7019`, `7020`, `7022`, `7023`, `7024`, `7025`, `7028`, `7030`, `7031`, `7032`, `7033`, `7035`, `7036`, `7037`, `7038`, `7040`, `7041`, `7043`, `7044`, `7045`, `7048`, `7050`, `7051`, `7054`, `7056`, `7058`, `7059`, `7060`, `7063`, `7065`, `7066`, `7067`, `7068`, `7071`, `7074`, `7077`, `7078`, `7079`, `7080`, `7081`, `7083`, `7084`, `7086`, `7088`, `7091`, `7092`, `7094`, `7095`, `7097`, `7099`, `7100`, `7102`, `7104`, `7105`, `7107`, `7109`, `7112`, `7113`, `7115`, `7117`, `7119`, `7120`, `7123`, `7126`, `7128`, `7129`, `7131`, `7133`, `7136`, `7139`, `7142`, `7143`, `7144`, `7145`, `7148`, `7150`, `7151`, `7152`, `7154`, `7156`, `7158`, `7160`, `7163`, `7164`, `7167`, `7170`, `7172`, `7175`, `7177`, `7180`, `7181`, `7182`, `7185`, `7186`, `7189`, `7190`, `7191`, `7192`, `7193`, `7194`, `7196`, `7199`, `7201`, `7202`, `7203`, `7204`, `7207`, `7209`, `7211`, `7214`, `7215`, `7217`, `7218`, `7220`, `7222`, `7223`, `7225`, `7227`, `7228`, `7230`, `7232`, `7233`, `7234`, `7236`, `7237`, `7238`, `7239`, `7240`, `7242`, `7244`, `7246`, `7247`, `7249`, `7250`, `7252`, `7253`, `7255`, `7257`, `7259`, `7261`, `7262`, `7264`, `7267`, `7268`, `7270`, `7272`, `7274`, `7276`, `7278`, `7279`, `7281`, `7284`, `7285`, `7289`, `7291`, `7295`, `7296`, `7298`, `7299`, `7301`, `7305`, `7308`, `7310`, `7311`, `7313`, `7315`, `7316`, `7318`, `7319`, `7321`, `7323`, `7324`, `7325`, `7328`, `7330`, `7331`, `7333`, `7336`, `7337`, `7338`, `7339`, `7341`, `7343`, `7345`, `7346`, `7347`, `7349`, `7352`, `7353`, `7356`, `7359`, `7361`, `7362`, `7363`, `7364`, `7366`, `7368`, `7370`, `7373`, `7375`, `7377`, `7379`, `7381`, `7384`, `7386`, `7388`, `7390`, `7393`, `7395`, `7397`, `7398`, `7399`, `7401`, `7402`, `7405`, `7408`, `7409`, `7411`, `7412`, `7414`, `7415`, `7417`, `7420`, `7422`, `7423`, `7425`, `7426`, `7429`, `7431`, `7434`, `7437`, `7440`, `7442`, `7446`, `7448`, `7450`, `7452`, `7453`, `7455`, `7457`, `7459`, `7460`, `7464`, `7468`, `7470`, `7471`, `7473`, `7475`, `7476`, `7478`, `7479`, `7481`, `7482`, `7486`, `7487`, `7489`, `7490`, `7491`, `7493`, `7494`, `7495`, `7497`, `7499`, `7501`, `7502`, `7504`, `7505`, `7506`, `7508`, `7509`, `7512`, `7513`, `7514`, `7515`, `7517`, `7518`, `7521`, `7523`, `7525`, `7526`, `7529`, `7532`, `7533`, `7534`, `7537`, `7538`, `7540`, `7541`, `7542`, `7544`, `7547`, `7549`, `7550`, `7552`, `7553`, `7554`, `7556`, `7558`, `7560`, `7562`, `7563`, `7565`, `7566`, `7567`, `7568`, `7569`, `7570`, `7571`, `7572`, `7575`, `7577`, `7579`, `7580`, `7581`, `7583`, `7585`, `7586`, `7588`, `7592`, `7595`, `7596`, `4604`, `7598`, `7599`, `7601`, `7602`, `7604`, `7605`, `7608`, `7609`, `7613`, `7615`, `7617`, `7619`, `7620`, `7621`, `7623`, `7624`, `7626`, `7627`, `7630`, `7631`, `7632`, `7635`, `7637`, `7638`, `7639`, `7640`, `7643`, `7646`, `7648`, `7650`, `7651`, `7652`, `7653`, `7654`, `7655`, `7658`, `7660`, `7661`, `7662`, `7664`, `7665`, `7667`, `7668`, `7669`, `7672`, `7673`, `7676`, `7680`, `7682`, `7684`, `7685`, `7686`, `7689`, `7690`, `7692`, `7694`, `7695`, `7696`, `7698`, `7700`, `7701`, `7702`, `7704`, `7706`, `7708`, `7711`, `7713`, `7714`, `7715`, `7717`, `7718`, `7720`, `7722`, `7723`, `7725`, `7727`, `7730`, `7732`, `7735`, `7738`, `7741`, `7743`, `7746`, `7748`, `7751`, `7754`, `7757`, `7758`, `7760`, `7761`, `7763`, `7765`, `7769`, `7770`, `7772`, `7773`, `7774`, `7775`, `7777`, `7780`, `7781`, `7782`, `7785`, `7786`, `7787`, `7788`, `7789`, `7790`, `7791`, `7793`, `7794`, `7796`, `7797`, `7799`, `7801`, `7802`, `7804`, `7807`, `7809`, `7810`, `7813`, `7815`, `7817`, `7819`, `7821`, `7823`, `7826`, `7827`, `7830`, `7832`, `7833`, `7835`, `7837`, `7839`, `7841`, `7843`, `7844`, `7845`, `7849`, `7850`, `7852`, `7854`, `7856`, `7857`, `7858`, `7859`, `7862`, `7863`, `7866`, `7867`, `7869`, `7871`, `7873`, `7875`, `7876`, `7877`, `7878`, `7879`, `7882`, `7884`, `7886`, `7887`, `7888`, `7890`, `7891`, `7894`, `7896`, `7897`, `7899`, `7901`, `7902`, `7903`, `7904`, `7906`, `7907`, `7908`, `7910`, `7913`, `7916`, `7917`, `7921`, `7924`, `7925`, `7926`, `7928`, `7929`, `7930`, `7932`, `7934`, `7935`, `7937`, `7938`, `7939`, `7940`, `7942`, `7944`, `7947`, `7948`, `7949`, `7950`, `7952`, `7954`, `7955`, `7957`, `7959`, `7961`, `7962`, `7963`, `7965`, `7967`, `7969`, `7971`, `7972`, `7973`, `7975`, `7978`, `7980`, `7982`, `7984`, `7986`, `7988`, `7990`, `7991`, `7993`, `7996`, `7997`, `7998`, `7999`, `8002`, `8005`, `8008`, `8009`, `8011`, `8013`, `8015`, `8017`, `8018`, `8021`, `8025`, `8026`, `8027`, `8030`, `8031`, `8033`, `8035`, `8037`, `8038`, `8040`, `8043`, `8044`, `8045`, `8047`, `8049`, `8051`, `8053`, `8055`, `8057`, `8059`, `8062`, `8064`, `8065`, `8069`, `8072`, `8074`, `8075`, `8077`, `8079`, `8080`, `8081`, `8082`, `8084`, `8087`, `8089`, `8092`, `8095`, `8097`, `8098`, `8101`, `8104`, `8105`, `8107`, `8108`, `8109`, `8111`, `8113`, `8116`, `8118`, `8119`, `8123`, `8125`, `8127`, `8129`, `8130`, `8132`, `8133`, `8134`, `8135`, `8137`, `8138`, `8140`, `8142`, `8144`, `8145`, `8147`, `8149`, `8150`, `8153`, `8155`, `8157`, `8160`, `8162`, `8165`, `8167`, `8170`, `8171`, `8173`, `8174`, `8176`, `8178`, `8180`, `8182`, `8184`, `8185`, `8187`, `8188`, `8190`, `8192`, `8196`, `8199`, `8201`, `8202`, `8204`, `8206`, `8208`, `8209`, `8211`, `8213`, `8216`, `8218`, `8219`, `8222`, `8224`, `8225`, `8227`, `8228`, `8230`, `8231`, `8235`, `8237`, `8240`, `8241`, `8243`, `8244`, `8245`, `8248`, `8249`, `8251`, `8253`, `8254`, `8256`, `8257`, `8258`, `8259`, `8261`, `8262`, `8263`, `8264`, `8266`, `8267`, `8270`, `8273`, `8274`, `8277`, `8279`, `8280`, `8281`, `8283`, `8286`, `8287`, `8289`, `8290`, `8291`, `8292`, `8293`, `8294`, `8295`, `8298`, `8299`, `8300`, `8303`, `8304`, `8305`, `8307`, `8309`, `8310`, `8311`, `8314`, `8316`, `8318`, `8320`, `8322`, `8325`, `8327`, `8329`, `8330`, `8332`, `8334`, `8337`, `8339`, `8340`, `8341`, `8342`, `8345`, `8346`, `8347`, `8348`, `8350`, `8352`, `8353`, `8355`, `8357`, `8360`, `8361`, `8363`, `8366`, `8368`, `8370`, `8371`, `8372`, `8374`, `8376`, `8377`, `8378`, `8379`, `8382`, `8385`, `8386`, `8387`, `8388`, `8390`, `8391`, `8393`, `8394`, `8395`, `8396`, `8397`, `8398`, `8399`, `8401`, `8403`, `8404`, `8406`, `8409`, `8411`, `8412`, `8413`, `8414`, `8417`, `8418`, `8419`, `8420`, `8422`, `8423`, `8424`, `8426`, `8427`, `8429`, `8430`, `8432`, `8434`, `8437`, `8438`, `8439`, `8441`, `8443`, `8445`, `8446`, `8449`, `8451`, `8452`, `8453`, `8454`, `8455`, `8456`, `8457`, `8458`, `8459`, `8461`, `8462`, `8463`, `8466`, `8467`, `8469`, `8471`, `8472`, `8475`, `8477`, `8478`, `8479`, `8480`, `8481`, `8483`, `8487`, `8489`, `8490`, `8491`, `8494`, `8495`, `8498`, `8499`, `8501`, `8502`, `8505`, `8506`, `8508`, `8509`, `8510`, `8515`, `8517`, `8518`, `8520`, `8521`, `8522`, `8524`, `8525`, `8526`, `8527`, `8530`, `8533`, `8534`, `8536`, `8537`, `8538`, `8539`, `8540`, `8542`, `8544`, `8546`, `8547`, `8548`, `8551`, `8552`, `8554`, `8555`, `8557`, `8559`, `8561`, `8562`, `8563`, `8566`, `8568`, `8570`, `8573`, `8574`, `8575`, `8576`, `8577`, `8579`, `8582`, `8584`, `8585`, `8586`, `8587`, `8588`, `8589`, `8590`, `8591`, `8592`, `8593`, `8594`, `8596`, `8598`, `8601`, `8602`, `8603`, `8605`, `8607`, `8608`, `8610`, `8612`, `8613`, `8614`, `8617`, `8619`, `8621`, `8622`, `8623`, `8624`, `8626`, `8627`, `8629`, `8630`, `8632`, `8633`, `8635`, `8636`, `8639`, `8642`, `8645`, `8646`, `8647`, `8648`, `8651`, `8653`, `8654`, `8655`, `8656`, `8657`, `8658`, `8661`, `8662`, `8665`, `8667`, `8669`, `8671`, `8672`, `8673`, `8674`, `8676`, `8677`, `8678`, `8679`, `8681`, `8683`, `8684`, `8685`, `8687`, `8690`, `8691`, `8693`, `8696`, `8698`, `8699`, `8700`, `8701`, `8703`, `8704`, `8707`, `8709`, `8712`, `8714`, `8715`, `8717`, `8718`, `8720`, `8721`, `8724`, `8725`, `8726`, `8728`, `8729`, `8730`, `8732`, `8735`, `8737`, `8739`, `8741`, `8742`, `8743`, `8745`, `8746`, `8749`, `8751`, `8754`, `8755`, `8756`, `8757`, `8758`, `8761`, `8763`, `8764`, `8766`, `8767`, `8768`, `8769`, `8770`, `8772`, `8773`, `8774`, `8776`, `8777`, `8778`, `8779`, `8782`, `8784`, `8787`, `8790`, `8791`, `8794`, `8796`, `8797`, `8798`, `8799`, `8802`, `8804`, `8806`, `8808`, `8809`, `8814`, `8816`, `8818`, `8820`, `8821`, `8823`, `8824`, `8825`, `8827`, `8828`, `8829`, `8831`, `8832`, `8834`, `8835`, `8838`, `8840`, `8842`, `8843`, `8844`, `8845`, `8847`, `8849`, `8851`, `8854`, `8856`, `8857`, `8858`, `8862`, `8864`, `8865`, `8866`, `8868`, `8871`, `8874`, `8877`, `8878`, `8881`, `8882`, `8883`, `8884`, `8885`, `8888`, `8890`, `8892`, `8894`, `8896`, `8898`, `8901`, `8903`, `8904`, `8906`, `8907`, `8909`, `8910`, `8911`, `8912`, `8913`, `8914`, `8916`, `8918`, `8922`, `8923`, `8924`, `8926`, `8927`, `8928`, `8929`, `8931`, `8933`, `8935`, `8936`, `8939`, `8941`, `8945`, `8947`, `8949`, `8951`, `8953`, `8955`, `8959`, `8962`, `8963`, `8965`, `8967`, `8969`, `8972`, `8974`, `8976`, `8978`, `8980`, `8981`, `8982`, `8983`, `8984`, `8986`, `8988`, `8989`, `8991`, `8993`, `8995`, `8997`, `8999`, `9001`, `9002`, `9003`, `9004`, `9005`, `9007`, `9010`, `9013`, `9014`, `9015`, `9016`, `9017`, `9018`, `9021`, `9022`, `9023`, `9025`, `9026`, `9027`, `9029`, `9030`, `9032`, `9036`, `9039`, `9040`, `9041`, `9042`, `9045`, `9046`, `9048`, `9049`, `9051`, `9053`, `9055`, `9057`, `9059`, `9060`, `9061`, `9062`, `9063`, `9065`, `9066`, `9068`, `9070`, `9072`, `9073`, `9074`, `9075`, `9077`, `9078`, `9079`, `9081`, `9083`, `9084`, `9085`, `9086`, `9089`, `9092`, `9094`, `9095`, `9097`, `9098`, `9100`, `9101`, `9103`, `9107`, `9108`, `9110`, `9112`, `9113`, `9115`, `9119`, `9120`, `9121`, `9122`, `9124`, `9125`, `9127`, `9130`, `9131`, `9132`, `9133`, `9134`, `9135`, `9137`, `9138`, `9139`, `9143`, `9145`, `9146`, `9149`, `9151`, `9153`, `9155`, `9156`, `9157`, `9159`, `948`, `9161`, `9163`, `9166`, `9167`, `9169`, `9171`, `9172`, `9175`, `9176`, `9179`, `9181`, `9184`, `9185`, `9187`, `9189`, `9190`, `9192`, `9193`, `9196`, `9198`, `9202`, `9204`, `9205`, `9207`, `9209`, `9211`, `9212`, `9215`, `9217`, `9219`, `9221`, `9224`, `9226`, `9227`, `9229`, `9232`, `9234`, `9236`, `9237`, `9239`, `9240`, `9242`, `9244`, `9246`, `9247`, `9249`, `9252`, `9253`, `9254`, `9258`, `9260`, `9262`, `9264`, `9265`, `9267`, `545`, `9269`, `9270`, `9271`, `9273`, `9274`, `9275`, `9276`, `9278`, `9281`, `9283`, `9285`, `9286`, `9290`, `9292`, `9294`, `9296`, `9297`, `9300`, `9301`, `9303`, `9306`, `9308`, `9310`, `9311`, `9313`, `9316`, `9317`, `9320`, `9321`, `9323`, `9325`, `9327`, `9329`, `9332`, `9335`, `9337`, `9338`, `9340`, `9341`, `9342`, `9344`, `9346`, `9348`, `9349`, `9351`, `9352`, `9354`, `9357`, `9360`, `9362`, `9363`, `9365`, `9368`, `9370`, `9373`, `9375`, `9376`, `9378`, `9381`, `9383`, `9386`, `9388`, `9389`, `9391`, `9393`, `9394`, `9396`, `9398`, `9400`, `9403`, `9406`, `9408`, `9410`, `9412`, `9413`, `9414`, `9416`, `9418`, `9419`, `9420`, `9424`, `9425`, `9428`, `9429`, `9431`, `9432`, `9435`, `9436`, `9438`, `9439`, `9441`, `9443`, `9444`, `9446`, `9448`, `9450`, `9452`, `9455`, `9457`, `9459`, `9460`, `9462`, `9464`, `9467`, `9470`, `9471`, `9472`, `9474`, `9476`, `9478`, `9479`, `9480`, `9482`, `9483`, `9485`, `9486`, `9487`, `9489`, `9491`, `9493`, `9495`, `9497`, `9499`, `9504`, `9506`, `9508`, `9510`, `9511`, `9512`, `9515`, `9516`, `9519`, `9521`, `9522`, `9523`, `9524`, `9526`, `9527`, `9528`, `9531`, `9533`, `9534`, `9536`, `9537`, `9539`, `9541`, `9543`, `9546`, `9548`, `9551`, `9553`, `9554`, `9559`, `9562`, `9564`, `9565`, `9567`, `9569`, `9572`, `9573`, `9574`, `9576`, `9577`, `9578`, `9581`, `9583`, `9584`, `9585`, `9586`, `9587`, `9588`, `9590`, `9591`, `9592`, `9594`, `9595`, `9596`, `9597`, `9601`, `9602`, `9604`, `9607`, `9609`, `9611`, `9614`, `9616`, `9618`, `9621`, `9624`, `9625`, `9628`, `9630`, `9632`, `9633`, `9636`, `9637`, `9638`, `9639`, `9640`, `9641`, `9643`, `9645`, `9648`, `9650`, `9652`, `9653`, `9655`, `9656`, `9658`, `9660`, `9662`, `9663`, `9665`, `9666`, `9669`, `9670`, `9672`, `9674`, `9676`, `9678`, `9679`, `9683`, `9685`, `9687`, `9688`, `9689`, `9691`, `9694`, `9695`, `9697`, `9699`, `9700`, `9702`, `9703`, `9704`, `9706`, `9707`, `9709`, `9711`, `9713`, `9714`, `9715`, `9719`, `9720`, `9722`, `9725`, `9728`, `9732`, `9733`, `9735`, `9736`, `9738`, `9739`, `9742`, `9743`, `9745`, `9747`, `9748`, `9750`, `9751`, `9752`, `9754`, `9755`, `9757`, `9759`, `9761`, `9762`, `9763`, `9765`, `9766`, `9767`, `9769`, `9770`, `9772`, `9773`, `9774`, `9776`, `9778`, `9779`, `9781`, `9783`, `9786`, `9787`, `9789`, `9791`, `9794`, `9796`, `9797`, `9799`, `9800`, `9803`, `9805`, `9807`, `9809`, `9812`, `9814`, `9817`, `9819`, `9820`, `9821`, `9823`, `9825`, `9826`, `9829`, `9830`, `9832`, `9834`, `9835`, `9837`, `9838`, `9841`, `9843`, `9845`, `9846`, `9847`, `9848`, `9850`, `9851`, `9852`, `9853`, `9854`, `9856`, `9857`, `9859`, `9860`, `9861`, `9863`, `9865`, `9867`, `9869`, `9871`, `9872`, `9874`, `9875`, `9876`, `9878`, `9879`, `9880`, `9883`, `9884`, `9885`, `9888`, `9890`, `9892`, `9894`, `9896`, `9897`, `9899`, `9901`, `9903`, `9904`, `9905`, `9907`, `9908`, `9910`, `9912`, `9914`, `9917`, `9920`, `9921`, `9923`, `9926`, `9927`, `9929`, `9931`, `9932`, `9933`, `9935`, `9937`, `9940`, `9941`, `9943`, `9945`, `9946`, `9948`, `9949`, `9950`, `9952`, `9953`, `9955`, `9958`, `9959`, `9961`, `9963`, `9964`, `9965`, `9967`, `9970`, `9972`, `9973`, `9974`, `3616`, `9975`, `9978`, `9980`, `9981`, `9983`, `9984`, `9985`, `6121`, `9988`, `9989`, `9992`, `9993`, `9995`, `9998`, `10000`, `10001`, `10002`, `10003`, `10006`, `10009`, `10012`, `10013`, `10016`, `10018`, `10020`, `10022`, `10023`, `10025`, `10026`, `10028`, `10029`, `10030`, `10033`, `10034`, `10035`, `10036`, `10038`, `10039`, `10042`, `10044`, `10048`, `10049`, `10051`, `10052`, `10054`, `10056`, `10058`, `10061`, `10062`, `10065`, `10066`, `10068`, `10069`, `10071`, `10073`, `10075`, `10076`, `10081`, `10083`, `10085`, `10087`, `10089`, `10091`, `10093`, `10095`, `10096`, `10098`, `10100`, `10101`, `10103`, `10105`, `10106`, `10108`, `10110`, `10112`, `10114`, `10116`, `10118`, `10120`, `10121`, `10122`, `10123`, `10124`, `10125`, `10127`, `10129`, `10130`, `10132`, `10133`, `10134`, `10136`, `10138`, `10140`, `10142`, `10144`, `10145`, `10146`, `10148`, `10149`, `10152`, `10156`, `10157`, `10158`, `10161`, `10163`, `10164`, `10166`, `10168`, `10170`, `10171`, `10172`, `10175`, `10179`, `10180`, `10181`, `10182`, `10184`, `10187`, `10188`, `10189`, `10191`, `10192`, `10193`, `10194`, `10197`, `10198`, `10200`, `10202`, `10205`, `10206`, `10207`, `10209`, `10211`, `10213`, `10216`, `10218`, `10220`, `10222`, `10224`, `10226`, `10228`, `10232`, `10233`, `10235`, `10237`, `10240`, `10242`, `10243`, `10245`, `10246`, `10249`, `10250`, `10252`, `10254`, `10255`, `10257`, `10259`, `10261`, `10263`, `10266`, `10269`, `10270`, `10273`, `10274`, `10276`, `10278`, `10279`, `10281`, `10282`, `10284`, `10287`, `10288`, `10289`, `10292`, `10293`, `10295`, `10296`, `10299`, `10301`, `10304`, `10306`, `10308`, `10309`, `10312`, `10313`, `10315`, `10316`, `10318`, `10320`, `10321`, `10322`, `10325`, `10328`, `10329`, `10330`, `10332`, `10334`, `10335`, `10337`, `10340`, `10343`, `10345`, `10346`, `10349`, `10350`, `10352`, `10354`, `10356`, `10357`, `10358`, `10359`, `10361`, `10362`, `10363`, `10365`, `10366`, `10367`, `10369`, `10372`, `10374`, `10377`, `10378`, `10379`, `10381`, `10383`, `10384`, `10387`, `10388`, `10390`, `10391`, `10392`, `10393`, `10395`, `10398`, `10400`, `10401`, `10404`, `10405`, `10407`, `10409`, `10411`, `10413`, `10414`, `10415`, `10416`, `10417`, `10418`, `10419`, `10420`, `10422`, `10423`, `10424`, `10425`, `10427`, `10428`, `10429`, `10430`, `10432`, `10434`, `10436`, `10437`, `10438`, `10440`, `10441`, `10444`, `10446`, `10448`, `10449`, `10450`, `10451`, `10454`, `10455`, `10457`, `10458`, `10461`, `10462`, `10463`, `10464`, `10466`, `10468`, `10469`, `10471`, `10473`, `10474`, `10476`, `10478`, `10479`, `10482`, `10483`, `10485`, `10488`, `10489`, `10490`, `10493`, `10495`, `10497`, `10498`, `10499`, `10500`, `10502`, `10504`, `10507`, `10509`, `10510`, `10511`, `10513`, `10514`, `10515`, `10516`, `10517`, `10519`, `10521`, `10523`, `10525`, `10527`, `10528`, `10530`, `10531`, `10532`, `10534`, `10535`, `10536`, `10538`, `10539`, `10540`, `10541`, `10543`, `10545`, `10547`, `10550`, `10551`, `10554`, `10556`, `10559`, `10563`, `10565`, `10567`, `10569`, `10571`, `10572`, `10574`, `10578`, `10581`, `10583`, `10586`, `10588`, `10592`, `10593`, `10594`, `10595`, `10596`, `10597`, `10598`, `10600`, `10602`, `10603`, `10604`, `10605`, `10606`, `10608`, `10611`, `10613`, `10615`, `10616`, `10618`, `10620`, `10623`, `10626`, `10627`, `10630`, `10632`, `10635`, `10637`, `10639`, `10641`, `10643`, `10644`, `10645`, `10647`, `10649`, `10650`, `10653`, `10656`, `10658`, `10659`, `10661`, `10662`, `10663`, `10664`, `10665`, `10667`, `10669`, `10670`, `10672`, `10674`, `10675`, `10676`, `10678`, `10679`, `10681`, `10684`, `10686`, `10687`, `10690`, `10692`, `10693`, `10694`, `10697`, `10700`, `10702`, `10704`, `10706`, `10708`, `10710`, `10712`, `10713`, `10716`, `10717`, `10718`, `10719`, `10720`, `10721`, `10722`, `10725`, `10727`, `10729`, `10731`, `10733`, `10735`, `10736`, `10737`, `10738`, `10739`, `10740`, `10741`, `10744`, `10746`, `10748`, `10750`, `10753`, `10754`, `10756`, `10757`, `10758`, `10760`, `10763`, `10764`, `10765`, `10766`, `10767`, `10769`, `10770`, `10772`, `10774`, `10775`, `10776`, `10779`, `10783`, `10785`, `10788`, `10790`, `10791`, `10793`, `10796`, `10797`, `10798`, `10800`, `10804`, `10805`, `10806`, `10807`, `10808`, `10809`, `10810`, `10812`, `10814`, `10816`, `10817`, `10818`, `10819`, `10821`, `10823`, `10825`, `10827`, `10828`, `10829`, `10830`, `10832`, `10834`, `10835`, `10836`, `10838`, `10839`, `10841`, `10842`, `10844`, `10846`, `10850`, `10852`, `10857`, `10858`, `10859`, `10861`, `10862`, `10863`, `10864`, `10865`, `10868`, `10870`, `10873`, `10875`, `10878`, `10880`, `10884`, `10886`, `10887`, `10888`, `10889`, `10892`, `10894`, `10897`, `10898`, `10900`, `10901`, `10903`, `10905`, `10906`, `10908`, `10909`, `10911`, `10912`, `10915`, `10916`, `10917`, `10918`, `10919`, `10921`, `10922`, `10924`, `10925`, `10927`, `10928`, `10931`, `10932`, `10933`, `10934`, `10935`, `10938`, `10942`, `10943`, `10945`, `10947`, `10949`, `10950`, `10951`, `10953`, `10955`, `10956`, `10957`, `10958`, `10959`, `10961`, `10962`, `10963`, `10964`, `10965`, `10966`, `10968`, `10971`, `10972`, `10974`, `10975`, `10977`, `10978`, `10980`, `10981`, `10983`, `10984`, `10985`, `10986`, `10987`, `10989`, `10991`, `10992`, `10993`, `10995`, `10997`, `10999`, `11001`, `11002`, `11004`, `11007`, `11010`, `11012`, `11013`, `11014`, `11016`, `11019`, `11023`, `11025`, `11027`, `11028`, `11030`, `11032`, `11033`, `11034`, `11036`, `11037`, `11038`, `11040`, `11044`, `11046`, `11049`, `11050`, `11054`, `11055`, `11057`, `11059`, `11060`, `11062`, `11064`, `11065`, `11066`, `11068`, `11071`, `11074`, `11075`, `11078`, `11079`, `11080`, `11083`, `11084`, `11085`, `11089`, `11090`, `11093`, `11094`, `11096`, `11097`, `11098`, `11100`, `11102`, `11103`, `11105`, `11106`, `11109`, `11113`, `11116`, `11117`, `11119`, `11120`, `11122`, `11125`, `11128`, `11129`, `11131`, `11132`, `11133`, `11134`, `11136`, `11137`, `11138`, `11140`, `11142`, `11144`, `11147`, `11148`, `11150`, `11152`, `11155`, `11157`, `11159`, `11160`, `11162`, `11163`, `11164`, `11166`, `11167`, `11169`, `11171`, `11174`, `11176`, `11178`, `11179`, `11181`, `11184`, `11185`, `11186`, `11189`, `11190`, `11192`, `11194`, `11196`, `11198`, `11199`, `11202`, `11204`, `11206`, `11208`, `11211`, `11212`, `11214`, `11216`, `11220`, `11222`, `11223`, `11226`, `11228`, `11230`, `11231`, `11232`, `11233`, `11235`, `11237`, `11239`, `11240`, `11241`, `11242`, `11243`, `11244`, `11245`, `11247`, `11250`, `11252`, `11254`, `11256`, `11258`, `11260`, `11262`, `11263`, `11264`, `11265`, `11269`, `11271`, `11273`, `11277`, `11279`, `11282`, `11285`, `11286`, `11289`, `11290`, `11292`, `11294`, `11296`, `11298`, `11301`, `11303`, `11305`, `11308`, `11309`, `11311`, `11314`, `11315`, `11317`, `11319`, `11320`, `11321`, `11324`, `11325`, `11326`, `11328`, `11330`, `11331`, `11332`, `11333`, `11334`, `11336`, `11338`, `11341`, `11342`, `11344`, `11348`, `11349`, `11350`, `11352`, `11353`, `11355`, `11357`, `11358`, `11359`, `11360`, `11361`, `11362`, `11366`, `11367`, `11370`, `11371`, `11373`, `11375`, `11376`, `11378`, `11380`, `11382`, `11383`, `11384`, `11385`, `11386`, `11387`, `11388`, `11390`, `11393`, `11395`, `11396`, `11397`, `11399`, `11401`, `11403`, `11404`, `11405`, `11406`, `11407`, `11408`, `11410`, `11412`, `11413`, `11414`, `11415`, `11416`, `11417`, `11420`, `11421`, `11422`, `11423`, `11425`, `11427`, `11428`, `11430`, `11433`, `11435`, `11438`, `11440`, `11442`, `11443`, `11445`, `11446`, `11448`, `11450`, `11452`, `11454`, `11455`, `11456`, `11457`, `11458`, `11459`, `11461`, `11462`, `11463`, `11464`, `11468`, `11469`, `11470`, `11473`, `11474`, `11476`, `11479`, `11480`, `11482`, `11484`, `11486`, `11487`, `11489`, `11490`, `11492`, `11494`, `11495`, `11496`, `11497`, `11499`, `11500`, `11501`, `11504`, `11505`, `11508`, `11509`, `11511`, `11513`, `11515`, `11518`, `11519`, `11520`, `11522`, `11523`, `11524`, `11525`, `11526`, `11529`, `11530`, `11531`, `11533`, `11534`, `11536`, `11538`, `11540`, `11542`, `11544`, `11546`, `11547`, `11549`, `11551`, `11552`, `11553`, `11555`, `11557`, `11559`, `11560`, `11562`, `11565`, `11567`, `11568`, `11570`, `11572`, `11573`, `11576`, `11577`, `11579`, `11580`, `11581`, `11583`, `11584`, `11586`, `11587`, `11591`, `11593`, `11594`, `11597`, `11598`, `11601`, `11602`, `11603`, `11605`, `11606`, `11608`, `11610`, `11611`, `11612`, `11614`, `11615`, `11618`, `11619`, `11620`, `11621`, `11623`, `11624`, `11627`, `11628`, `11631`, `11632`, `11633`, `11634`, `11635`, `11636`, `11639`, `11640`, `11642`, `11643`, `11644`, `11646`, `11647`, `11649`, `11650`, `11652`, `11656`, `11657`, `11658`, `11660`, `11663`, `11665`, `11666`, `11668`, `11670`, `11671`, `11673`, `11674`, `11675`, `11676`, `11678`, `11679`, `11680`, `11681`, `11684`, `11686`, `11687`, `11690`, `11691`, `11692`, `11693`, `11694`, `11695`, `11696`, `11697`, `11698`, `11699`, `11700`, `11701`, `11702`, `11703`, `11704`, `11705`, `11706`, `11707`, `11708`, `11709`, `11710`, `11711`, `11712`, `11713`, `11716`, `11718`, `11719`, `11722`, `11723`, `11724`, `11725`, `11727`, `11728`, `11729`, `11731`, `11733`, `11735`, `11736`, `11737`, `11739`, `11741`, `11744`, `11745`, `11747`, `11749`, `11751`, `11752`, `11753`, `11755`, `11756`, `11757`, `11758`, `11759`, `11760`, `11762`, `11764`, `11766`, `11768`, `11770`, `11771`, `11773`, `11775`, `11776`, `11778`, `11780`, `11782`, `11785`, `11786`, `11788`, `11790`, `11793`, `11795`, `11796`, `11798`, `11799`, `11800`, `11802`, `11803`, `11806`, `11808`, `11809`, `11810`, `11812`, `11813`, `11814`, `11816`, `11819`, `11821`, `11823`, `11825`, `11826`, `11829`, `11830`, `11832`, `11833`, `11835`, `11837`, `11838`, `11841`, `11842`, `11843`, `11847`, `11850`, `11853`, `11855`, `11857`, `11858`, `11860`, `11864`, `11865`, `11867`, `11869`, `11870`, `11872`, `11873`, `11876`, `11877`, `11879`, `11882`, `11884`, `11885`, `11886`, `11888`, `11890`, `11894`, `11895`, `11896`, `11898`, `11899`, `11902`, `11903`, `11906`, `11907`, `11908`, `11909`, `11910`, `11912`, `11914`, `11916`, `11919`, `11920`, `11923`, `11926`, `11928`, `11929`, `11930`, `11931`, `11933`, `11935`, `11937`, `11939`, `11942`, `11944`, `11946`, `11948`, `11951`, `11953`, `11954`, `11955`, `11957`, `11958`, `11959`, `11961`, `11964`, `11965`, `1175`, `11966`, `11967`, `11970`, `11971`, `11973`, `11974`, `11975`, `11976`, `11977`, `11979`, `11981`, `11984`, `11985`, `11987`, `11990`, `11992`, `11993`, `11994`, `11997`, `12000`, `12002`, `12003`, `12006`, `12008`, `12010`, `12011`, `12013`, `12015`, `12016`, `12018`, `12019`, `12021`, `12022`, `12023`, `12024`, `12025`, `12026`, `12027`, `12028`, `12030`, `12031`, `12033`, `12034`, `12035`, `12036`, `12037`, `12038`, `12039`, `12040`, `12041`, `12042`, `12043`, `12044`, `12045`, `12046`, `12047`, `12048`, `12049`, `12050`, `12051`, `12053`, `12054`, `12055`, `12056`, `12057`, `12061`, `12063`, `12066`, `12067`, `12069`, `12071`, `12074`, `12076`, `12079`, `12080`, `12081`, `12082`, `12083`, `12085`, `12087`, `12088`, `12090`, `12091`, `12092`, `12093`, `12094`, `12095`, `12096`, `12100`, `12101`, `12104`, `12105`, `12108`, `12109`, `12110`, `12112`, `12113`, `12115`, `12117`, `12118`, `12119`, `12120`, `12122`, `12123`, `12125`, `12126`, `12127`, `12128`, `12129`, `12130`, `12131`, `12134`, `12135`, `12136`, `12138`, `12140`, `12141`, `12142`, `12143`, `12144`, `12145`, `12146`, `12147`, `12150`, `12151`, `12152`, `12153`, `12154`, `12158`, `12159`, `12160`, `12161`, `12163`, `12164`, `12165`, `12168`, `12172`, `12173`, `12174`, `12175`, `12176`, `12177`, `12178`, `12179`, `12180`, `12183`, `12184`, `12186`, `12187`, `12190`, `12192`, `12195`, `12196`, `12198`, `12199`, `12200`, `12201`, `12203`, `12204`, `12205`, `12206`, `12207`, `12209`, `12210`, `12211`, `12212`, `12213`, `12214`, `12216`, `12217`, `12219`, `12221`, `12222`, `12223`, `12224`, `12225`, `12226`, `12227`, `12228`, `12229`, `12230`, `12232`, `12233`, `12234`, `12236`, `12237`, `12239`, `12241`, `12244`, `12245`, `12246`, `12247`, `12248`, `12250`, `12251`, `12252`, `12253`, `12254`, `12255`, `12257`, `12258`, `12260`, `12261`, `12262`, `12263`, `12265`, `12266`, `12270`, `12271`, `12272`, `12273`, `12275`, `12277`, `12279`, `12280`, `12281`, `12282`, `12283`, `12287`, `12288`, `12290`, `12292`, `12295`, `12297`, `12298`, `12299`, `12300`, `12301`, `12302`, `12303`, `12304`, `12305`, `12307`, `12310`, `12312`, `12313`, `12314`, `12316`, `12318`, `12319`, `12320`, `12321`, `12322`, `12326`, `12327`, `12330`, `12332`, `12334`, `12335`, `12336`, `12337`, `12339`, `12341`, `12342`, `12344`, `12346`, `12347`, `12349`, `12351`, `12353`, `12355`, `12356`, `12357`, `12359`, `12361`, `12363`, `12364`, `12365`, `12366`, `12369`, `12370`, `12371`, `12374`, `12376`, `12377`, `12378`, `12381`, `12383`, `12384`, `12385`, `12387`, `12389`, `12390`, `12392`, `12393`, `12394`, `12395`, `12397`, `12398`, `12399`, `12400`, `12402`, `12403`, `12404`, `12405`, `12406`, `12407`, `12408`, `12410`, `12412`, `12413`, `12414`, `12415`, `12416`, `12418`, `12420`, `12421`, `12422`, `12424`, `12426`, `12427`, `12429`, `12430`, `12431`, `12432`, `12433`, `12434`, `12435`, `12437`, `12438`, `12439`, `12440`, `12441`, `12442`, `12444`, `12445`, `12446`, `12447`, `12448`, `12449`, `12450`, `12451`, `12453`, `12455`, `12457`, `12458`, `12459`, `12461`, `12463`, `12466`, `12467`, `12468`, `12469`, `12470`, `12472`, `12473`, `12475`, `12476`, `12477`, `12479`, `12480`, `12481`, `12485`, `12486`, `12487`, `12490`, `12492`, `12493`, `12494`, `12495`, `12496`, `12497`, `12500`, `12501`, `12503`, `12504`, `12505`, `12506`, `12508`, `12509`, `12511`, `12514`, `12516`, `12518`, `12520`, `12522`, `12523`, `12524`, `12525`, `12526`, `12527`, `12528`, `12531`, `12532`, `12533`, `12534`, `12536`, `12537`, `12538`, `12539`, `12541`, `12542`, `12543`, `12544`, `12545`, `12546`, `12547`, `12548`, `12550`, `12551`, `12552`, `12554`, `12555`, `12557`, `12558`, `12560`, `12561`, `12563`, `12564`, `12565`, `12567`, `12569`, `12570`, `12571`, `12572`, `12574`, `12575`, `12577`, `12580`, `12583`, `12585`, `12586`, `12588`, `12589`, `12591`, `12594`, `12596`, `12597`, `12598`, `12600`, `12601`, `12603`, `12604`, `12607`, `12608`, `12609`, `12611`, `12612`, `12614`, `12615`, `12618`, `12620`, `12622`, `12624`, `12625`, `12627`, `12628`, `12630`, `12632`, `12633`, `12634`, `12635`, `12637`, `12638`, `12640`, `12642`, `12643`, `12645`, `12648`, `12649`, `12651`, `12653`, `12654`, `12656`, `12657`, `12658`, `12661`, `12662`, `12663`, `12665`, `12667`, `12668`, `12669`, `12671`, `12672`, `12674`, `12677`, `12679`, `12680`, `12682`, `12683`, `12685`, `12687`, `12690`, `12691`, `12692`, `12694`, `12695`, `12697`, `12698`, `12699`, `12700`, `12701`, `12702`, `12704`, `12705`, `12706`, `12707`, `12708`, `12709`, `12712`, `12713`, `12715`, `12716`, `12718`, `12719`, `12720`, `12722`, `12725`, `12726`, `12728`, `12729`, `12730`, `12732`, `12733`, `12734`, `12735`, `12737`, `12738`, `12739`, `12740`, `12742`, `12743`, `12744`, `12745`, `12747`, `12749`, `12751`, `12752`, `12754`, `12756`, `12757`, `12758`, `12760`, `12761`, `12762`, `12763`, `12764`, `12766`, `12768`, `12769`, `12770`, `12772`, `12773`, `12775`, `12777`, `12780`, `12781`, `12783`, `12784`, `12786`, `12789`, `12790`, `12792`, `12793`, `12794`, `12795`, `12796`, `12797`, `12798`, `12800`, `12802`, `12803`, `12805`, `12806`, `12808`, `12809`, `12810`, `12812`, `12813`, `12814`, `12815`, `12816`, `12817`, `12818`, `12820`, `12822`, `12826`, `12829`, `12831`, `12832`, `12833`, `12835`, `12836`, `12838`, `12839`, `12840`, `12841`, `12842`, `12844`, `12847`, `12848`, `12849`, `12850`, `12851`, `12852`, `12853`, `12854`, `12855`, `12856`, `12857`, `12859`, `12860`, `12861`, `12863`, `12864`, `12865`, `12868`, `12869`, `12870`, `12871`, `12872`, `12874`, `12875`, `12876`, `12878`, `12879`, `12881`, `12882`, `12884`, `12885`, `12886`, `12887`, `12888`, `12889`, `12890`, `12893`, `12894`, `12895`, `12896`, `12897`, `12899`, `12901`, `12902`, `12904`, `12906`, `12908`, `12910`, `12911`, `12912`, `12913`, `12914`, `12915`, `12916`, `12917`, `12918`, `12920`, `12921`, `12922`, `12924`, `12926`, `12928`, `12929`, `12932`, `12934`, `12936`, `12937`, `12939`, `12941`, `12946`, `12948`, `12949`, `12952`, `12955`, `12957`, `12958`, `12959`, `12960`, `12962`, `12963`, `12965`, `12969`, `12971`, `12972`, `12975`, `12976`, `12978`, `12980`, `12981`, `12983`, `12985`, `12986`, `12988`, `12990`, `12992`, `12996`, `12999`, `13001`, `13002`, `13003`, `13006`, `13008`, `13009`, `13010`, `13011`, `13012`, `13014`, `13015`, `13017`, `13018`, `13019`, `13020`, `13021`, `13022`, `13023`, `13024`, `13025`, `13027`, `13028`, `13029`, `13031`, `13032`, `13033`, `13034`, `13035`, `13037`, `13038`, `13039`, `13040`, `13041`, `13042`, `13043`, `13044`, `13046`, `13047`, `13048`, `13050`, `13052`, `13053`, `13054`, `13055`, `13057`, `13059`, `13060`, `13061`, `13062`, `13064`, `13067`, `13068`, `13069`, `13071`, `13072`, `13073`, `13075`, `13076`, `13077`, `13079`, `13080`, `13082`, `13083`, `13084`, `13085`, `13088`, `13091`, `13092`, `13094`, `13095`, `13096`, `13097`, `13098`, `13100`, `13101`, `13102`, `13103`, `13104`, `13105`, `13106`, `13107`, `13108`, `13110`, `13111`, `13113`, `13115`, `13116`, `13118`, `13119`, `13120`, `13121`, `13123`, `13124`, `13126`, `13127`, `13128`, `13129`, `13130`, `13131`, `13132`, `13134`, `13135`, `13136`, `13137`, `13138`, `13139`, `13141`, `13142`, `13143`, `13144`, `13146`, `13147`, `13148`, `13150`, `13151`, `13153`, `13154`, `13155`, `13157`, `13158`, `13159`, `13160`, `13161`, `13162`, `13164`, `13167`, `13168`, `13169`, `13172`, `13173`, `13174`, `13176`, `13177`, `13179`, `13181`, `13183`, `13184`, `13185`, `13187`, `13189`, `13190`, `13192`, `13194`, `13195`, `13198`, `13199`, `13200`, `13202`, `13203`, `13205`, `13207`, `13209`, `13210`, `13211`, `13212`, `13214`, `13215`, `13216`, `13218`, `13219`, `13220`, `13222`, `13224`, `13226`, `13230`, `13232`, `13233`, `13234`, `13235`, `13238`, `13241`, `13242`, `13245`, `13247`, `13248`, `13249`, `13250`, `13252`, `13254`, `13257`, `13259`, `13260`, `13261`, `13264`, `13265`, `13267`, `13269`, `13270`, `13273`, `13276`, `13279`, `13280`, `13281`, `13284`, `13286`, `13287`, `13290`, `13291`, `13292`, `13294`, `13295`, `13296`, `13297`, `13299`, `13300`, `13303`, `13304`, `13305`, `13306`, `13308`, `13311`, `13312`, `13313`, `13314`, `13315`, `13318`, `13320`, `13321`, `13322`, `13325`, `13326`, `13329`, `13331`, `13332`, `13334`, `13335`, `13337`, `13338`, `13339`, `13340`, `13342`, `13344`, `13347`, `13348`, `13349`, `13350`, `13351`, `13352`, `13353`, `13355`, `13357`, `13360`, `13363`, `13364`, `13365`, `13366`, `13368`, `13369`, `13372`, `13375`, `13376`, `13377`, `13379`, `13380`, `13381`, `13383`, `13384`, `13385`, `13386`, `13388`, `13390`, `13392`, `13394`, `13395`, `13396`, `13399`, `13400`, `13401`, `13403`, `13404`, `13405`, `13406`, `13407`, `13410`, `13412`, `13414`, `13415`, `13417`, `13420`, `13421`, `13422`, `13424`, `13426`, `13428`, `13430`, `13431`, `13433`, `13434`, `13436`, `13437`, `13440`, `13442`, `13444`, `13446`, `13448`, `13449`, `13451`, `13453`, `13454`, `13456`, `13458`, `13459`, `13461`, `13462`, `13464`, `13466`, `13467`, `13468`, `13469`, `13470`, `13471`, `13473`, `13478`, `13480`, `13481`, `13482`, `13483`, `13484`, `13485`, `13486`, `13488`, `13490`, `13491`, `13492`, `13496`, `13497`, `13499`, `13500`, `13503`, `13506`, `13507`, `13509`, `13510`, `13511`, `13513`, `13516`, `13517`, `13519`, `13520`, `13524`, `13527`, `13530`, `13531`, `13532`, `13535`, `13537`, `13540`, `13543`, `13545`, `13547`, `13550`, `13551`, `13552`, `13554`, `13555`, `13557`, `13559`, `13560`, `13562`, `13565`, `13566`, `13567`, `13568`, `13569`, `13571`, `13574`, `13576`, `13577`, `13578`, `13580`, `13581`, `13583`, `13584`, `13585`, `13586`, `13587`, `13588`, `13590`, `13591`, `13594`, `13595`, `13598`, `13600`, `13604`, `13606`, `13608`, `13609`, `13612`, `13613`, `13615`, `13616`, `13617`, `13619`, `13621`, `13622`, `13623`, `13624`, `13625`, `13627`, `13630`, `13632`, `13633`, `13634`, `13637`, `13638`, `13639`, `13641`, `13642`, `13643`, `13644`, `13645`, `13646`, `13647`, `13649`, `13651`, `13652`, `13653`, `13654`, `13656`, `13658`, `13660`, `13661`, `13663`, `13665`, `13667`, `13668`, `13669`, `13670`, `13673`, `13674`, `13678`, `13680`, `13682`, `13683`, `13684`, `13686`, `13687`, `13688`, `13689`, `13691`, `13693`, `13694`, `13697`, `13699`, `13700`, `13702`, `13705`, `13706`, `13708`, `13709`, `13710`, `13711`, `13712`, `13713`, `13714`, `13716`, `13719`, `13720`, `13721`, `13722`, `13724`, `13725`, `13726`, `13729`, `13731`, `13733`, `13734`, `13735`, `13737`, `13738`, `13739`, `13740`, `13741`, `13742`, `13743`, `13744`, `13745`, `13746`, `13747`, `13748`, `13749`, `13750`, `13751`, `13753`, `13754`, `13757`, `13759`, `13761`, `13763`, `13765`, `13767`, `13770`, `13771`, `13773`, `13775`, `13776`, `13777`, `13778`, `13779`, `13782`, `13783`, `13785`, `13787`, `13788`, `13791`, `13792`, `13794`, `13796`, `13797`, `13799`, `13800`, `13803`, `13805`, `13807`, `13808`, `13810`, `13813`, `13814`, `13816`, `13819`, `13822`, `13823`, `13824`, `13826`, `13827`, `13829`, `13831`, `13833`, `13834`, `13836`, `13838`, `13840`, `13841`, `13844`, `13845`, `13846`, `13847`, `13848`, `13849`, `13850`, `13852`, `13854`, `13855`, `13857`, `13858`, `13859`, `13860`, `13862`, `13865`, `13867`, `13869`, `13871`, `13873`, `13874`, `13876`, `13878`, `13879`, `13882`, `13885`, `13886`, `13888`, `13890`, `13893`, `13894`, `13895`, `13896`, `13897`, `13899`, `13901`, `13903`, `13904`, `13905`, `13906`, `13907`, `13909`, `13911`, `13912`, `13913`, `13914`, `13915`, `13916`, `13918`, `13919`, `13921`, `13922`, `13923`, `13924`, `13925`, `13928`, `13930`, `13932`, `13934`, `13937`, `13939`, `13940`, `13943`, `13944`, `13947`, `13949`, `13950`, `13952`, `13954`, `13956`, `13958`, `13959`, `13961`, `13963`, `13966`, `13968`, `13971`, `13972`, `13973`, `13974`, `13976`, `13978`, `13979`, `13980`, `13982`, `13983`, `13984`, `13986`, `13988`, `13989`, `13991`, `13992`, `13994`, `13995`, `13997`, `13998`, `13999`, `14001`, `14004`, `14006`, `14007`, `14008`, `14009`, `14010`, `14011`, `14014`, `14016`, `14018`, `14019`, `14023`, `14024`, `14025`, `14026`, `14027`, `14028`, `14029`, `14031`, `14032`, `14033`, `14034`, `14036`, `14037`, `14038`, `14041`, `14043`, `14044`, `14048`, `14051`, `14052`, `14054`, `14056`, `14059`, `14062`, `14063`, `14064`, `14066`, `14067`, `14068`, `14070`, `14071`, `14072`, `14073`, `14074`, `14076`, `14078`, `14080`, `14081`, `14082`, `14083`, `14085`, `14086`, `14087`, `14088`, `14089`, `14091`, `14093`, `14094`, `14095`, `14096`, `14098`, `14100`, `14102`, `14103`, `14104`, `14106`, `14107`, `14108`, `14110`, `14112`, `14113`, `14115`, `14118`, `14119`, `14120`, `14121`, `14124`, `14126`, `14127`, `14129`, `14132`, `14134`, `14136`, `14137`, `14139`, `14140`, `14142`, `14144`, `14147`, `14148`, `14149`, `14150`, `14152`, `14153`, `14155`, `14158`, `14160`, `14161`, `14162`, `14163`, `14164`, `14165`, `14166`, `14167`, `14168`, `14169`, `14170`, `14172`, `14174`, `14175`, `14176`, `14177`, `14178`, `14180`, `14181`, `14182`, `14183`, `14184`, `14185`, `14186`, `14189`, `14191`, `14193`, `14194`, `14197`, `14200`, `14201`, `14204`, `14206`, `14207`, `14208`, `14210`, `14211`, `14212`, `14214`, `14215`, `14216`, `14217`, `14218`, `14219`, `14220`, `14221`, `14222`, `14225`, `14228`, `14229`, `14232`, `14233`, `14235`, `14237`, `14238`, `14240`, `14241`, `14242`, `14244`, `14246`, `14248`, `14249`, `14251`, `14252`, `14253`, `14254`, `14258`, `14259`, `14260`, `14261`, `14263`, `14265`, `14266`, `14267`, `14270`, `14271`, `14272`, `14273`, `14274`, `14277`, `14278`, `14279`, `14280`, `14283`, `14284`, `14286`, `14288`, `14289`, `14290`, `14293`, `14294`, `14295`, `14297`, `14298`, `14299`, `14300`, `14301`, `14302`, `14305`, `14307`, `14308`, `14310`, `14311`, `14312`, `14313`, `14314`, `14316`, `14317`, `14319`, `14321`, `14322`, `14324`, `14325`, `14326`, `14328`, `14330`, `14332`, `14333`, `14334`, `14335`, `14336`, `14337`, `14338`, `14339`, `14341`, `14343`, `14344`, `14345`, `14346`, `14348`, `14349`, `14350`, `14351`, `14353`, `14354`, `14356`, `14358`, `14359`, `14361`, `14362`, `14363`, `14364`, `14365`, `14367`, `14368`, `14369`, `14371`, `14375`, `14376`, `14377`, `14380`, `14381`, `14382`, `14383`, `14385`, `14386`, `14388`, `14389`, `14390`, `14391`, `14392`, `14393`, `14396`, `14397`, `14399`, `14401`, `14403`, `14405`, `14406`, `14408`, `14409`, `14410`, `14411`, `14412`, `14414`, `14415`, `14416`, `14417`, `14418`, `14419`, `14420`, `14421`, `14422`, `14424`, `14428`, `14429`, `14431`, `14432`, `14434`, `14436`, `14438`, `14440`, `14441`, `14442`, `14443`, `14444`, `14445`, `14446`, `14447`, `14450`, `14451`, `14452`, `14453`, `14455`, `14456`, `14457`, `14460`, `14461`, `14462`, `14463`, `14465`, `14466`, `14468`, `14469`, `14472`, `14474`, `14475`, `14476`, `14478`, `14479`, `14480`, `14481`, `14482`, `14483`, `14486`, `14490`, `14491`, `14492`, `14494`, `14496`, `14497`, `14498`, `14499`, `14501`, `14502`, `14504`, `14505`, `14506`, `14508`, `14511`, `14512`, `14513`, `14516`, `14517`, `14518`, `14519`, `14520`, `14522`, `14523`, `14524`, `14526`, `14527`, `14528`, `14529`, `14530`, `14531`, `14532`, `14533`, `14534`, `14535`, `14537`, `14539`, `14540`, `14541`, `14542`, `14543`, `14545`, `14546`, `14548`, `14550`, `14551`, `14552`, `14554`, `14555`, `14556`, `14558`, `14559`, `14560`, `14561`, `14563`, `14564`, `14565`, `14567`, `14568`, `14570`, `14571`, `14572`, `14573`, `14575`, `14576`, `14577`, `14578`, `14579`, `14580`, `14581`, `14582`, `14583`, `14585`, `14586`, `14587`, `14590`, `14591`, `14592`, `14594`, `14595`, `14596`, `14597`, `14598`, `14599`, `14601`, `14602`, `14603`, `14605`, `14606`, `14608`, `14609`, `14612`, `14613`, `14614`, `14617`, `14618`, `14620`, `14621`, `14622`, `14624`, `14625`, `14626`, `14628`, `14630`, `14631`, `14633`, `14634`, `14635`, `14637`, `14638`, `14639`, `14640`, `14641`, `14642`, `14643`, `14644`, `14645`, `14647`, `14648`, `14649`, `14652`, `14655`, `14656`, `14658`, `14659`, `14660`, `14661`, `14662`, `14663`, `14664`, `14665`, `14667`, `14668`, `14672`, `14675`, `14678`, `14679`, `14680`, `14681`, `14682`, `14685`, `14686`, `14687`, `14688`, `14689`, `14691`, `14692`, `14694`, `14695`, `14696`, `14697`, `14698`, `14701`, `14702`, `14703`, `14704`, `14705`, `14707`, `14708`, `14711`, `14713`, `14715`, `14716`, `14717`, `14718`, `14720`, `14722`, `14723`, `14725`, `14726`, `14728`, `14729`, `14730`, `14731`, `14732`, `14734`, `14735`, `14736`, `14737`, `14738`, `14740`, `14743`, `14746`, `14747`, `14749`, `14751`, `14752`, `14753`, `14754`, `14756`, `14757`, `14759`, `14760`, `14763`, `14764`, `14766`, `14769`, `14770`, `14771`, `14772`, `14773`, `14774`, `14775`, `14778`, `14779`, `14780`, `14781`, `14784`, `14785`, `14786`, `14787`, `14788`, `14789`, `14791`, `14792`, `14794`, `14796`, `14797`, `14798`, `14800`, `14801`, `14804`, `14805`, `14806`, `14808`, `14812`, `14814`, `14815`, `14816`, `14818`, `14819`, `14821`, `14823`, `14824`, `14826`, `14827`, `14828`, `14830`, `14831`, `14832`, `14834`, `14835`, `14836`, `14837`, `14839`, `14840`, `14841`, `14843`, `14844`, `14845`, `14846`, `14847`, `14848`, `14849`, `14850`, `14851`, `14852`, `14854`, `14857`, `14858`, `14859`, `14861`, `14862`, `14863`, `14865`, `14866`, `14867`, `14868`, `14869`, `14870`, `14871`, `14873`, `14874`, `14875`, `14876`, `14877`, `14879`, `14881`, `14883`, `14884`, `14887`, `14889`, `14891`, `14893`, `14895`, `14896`, `14898`, `14900`, `14902`, `14904`, `14905`, `14906`, `14908`, `14909`, `14910`, `14912`, `14913`, `14914`, `14915`, `14916`, `14918`, `14919`, `14920`, `14921`, `14922`, `14924`, `14926`, `14928`, `14930`, `14931`, `14932`, `14933`, `14934`, `14935`, `14937`, `14938`, `14939`, `14941`, `14942`, `14943`, `14945`, `14946`, `14948`, `14949`, `14951`, `14952`, `14954`, `14956`, `14957`, `14958`, `14960`, `14961`, `14962`, `14963`, `14964`, `14965`, `14966`, `14967`, `14968`, `14969`, `14970`, `14971`, `14974`, `14976`, `14979`, `14980`, `14981`, `14982`, `14984`, `14985`, `14986`, `14987`, `14988`, `14990`, `14992`, `14993`, `14995`, `14997`, `15000`, `15001`, `15002`, `15003`, `15004`, `15005`, `15006`, `15007`, `15009`, `15010`, `15012`, `15013`, `15014`, `15015`, `15017`, `15018`, `15020`, `15021`, `15022`, `15023`, `15024`, `15025`, `15026`, `15027`, `15028`, `15029`, `15030`, `15031`, `15032`, `15033`, `15034`, `15035`, `15036`, `15037`, `15040`, `15041`, `15043`, `15044`, `15046`, `15048`, `15049`, `15050`, `15051`, `15052`, `15053`, `15054`, `15055`, `15058`, `15061`, `15065`, `15066`, `15067`, `15068`, `15069`, `15070`, `15072`, `15075`, `15076`, `15077`, `15078`, `15079`, `15081`, `15084`, `15086`, `15089`, `15091`, `15092`, `15094`, `15095`, `15096`, `15098`, `15099`, `15102`, `15103`, `15105`, `15106`, `15107`, `15108`, `15109`, `15110`, `15111`, `15113`, `15114`, `15116`, `15117`, `15118`, `15120`, `15121`, `15122`, `15123`, `15124`, `15126`, `15128`, `15129`, `15130`, `15133`, `15134`, `15135`, `15136`, `15137`, `15138`, `15139`, `15140`, `15142`, `15144`, `15145`, `15147`, `15148`, `15149`, `15152`, `15153`, `15155`, `15156`, `15158`, `15159`, `15160`, `15161`, `15164`, `15165`, `15166`, `15168`, `15169`, `15171`, `15172`, `15173`, `15174`, `15175`, `15176`, `15177`, `15178`, `15179`, `15180`, `15181`, `15183`, `15184`, `15185`, `15186`, `15188`, `15191`, `15192`, `15194`, `15196`, `15198`, `15199`, `15201`, `15202`, `15203`, `15204`, `15205`, `15207`, `15208`, `15209`, `15210`, `15213`, `15214`, `15216`, `15217`, `15218`, `15219`, `15221`, `15222`, `15224`, `15225`, `15227`, `15228`, `15230`, `15231`, `15232`, `15233`, `15236`, `15237`, `15238`, `15240`, `15242`, `15244`, `15246`, `15247`, `15248`, `15249`, `15252`, `15253`, `15254`, `15255`, `15257`, `15258`, `15259`, `15260`, `15261`, `15262`, `15263`, `15265`, `15266`, `15267`, `15269`, `15271`, `15273`, `15274`, `15275`, `15277`, `15280`, `15281`, `15282`, `15283`, `15285`, `15288`, `15291`, `15293`, `15294`, `15295`, `15296`, `15297`, `15298`, `15299`, `15301`, `15302`, `15304`, `15305`, `15307`, `15308`, `15309`, `15310`, `15313`, `15315`, `15317`, `15318`, `15319`, `15320`, `15322`, `15324`, `15325`, `15326`, `15327`, `15328`, `15331`, `15332`, `15333`, `15335`, `15336`, `15337`, `15338`, `15339`, `15340`, `15341`, `15342`, `15343`, `15345`, `15346`, `15347`, `15350`, `15351`, `15352`, `15354`, `15355`, `15356`, `15359`, `15361`, `15362`, `15363`, `15365`, `15366`, `15368`, `15369`, `15370`, `15372`, `15373`, `15374`, `15375`, `15378`, `15380`, `15381`, `15382`, `15383`, `15384`, `15385`, `15387`, `15391`, `15393`, `15394`, `15395`, `15397`, `15398`, `15399`, `15400`, `15403`, `15405`, `15406`, `15408`, `15409`, `15410`, `15412`, `15413`, `15415`, `15418`, `15419`, `15421`, `15423`, `15424`, `15425`, `15426`, `15428`, `15430`, `15432`, `15434`, `15438`, `15439`, `15440`, `15441`, `15442`, `15443`, `15445`, `15447`, `15451`, `15452`, `15453`, `15454`, `15455`, `15456`, `15457`, `15460`, `15461`, `15462`, `15463`, `15465`, `15466`, `15467`, `15468`, `15469`, `15472`, `15473`, `15475`, `15476`, `15477`, `15481`, `15484`, `15485`, `15487`, `15488`, `15489`, `15491`, `15492`, `15493`, `15495`, `15496`, `15498`, `15499`, `15501`, `15503`, `15504`, `15505`, `15507`, `15508`, `15510`, `15511`, `15512`, `15513`, `15514`, `15515`, `15516`, `15517`, `15518`, `15519`, `15520`, `15523`, `15524`, `15525`, `15526`, `15527`, `15528`, `15529`, `15530`, `15531`, `15532`, `15533`, `15535`, `15536`, `15537`, `15538`, `15539`, `15540`, `15541`, `15542`, `15543`, `15544`, `15545`, `15547`, `15548`, `15549`, `15550`, `15551`, `15554`, `15555`, `15556`, `15558`, `15559`, `15560`, `15562`, `15563`, `15564`, `15566`, `15567`, `15568`, `15569`, `15570`, `15571`, `15572`, `15573`, `15574`, `15575`, `15576`, `15578`, `15579`, `15581`, `15582`, `15584`, `15585`, `15586`, `15587`, `15588`, `15591`, `15592`, `15593`, `15594`, `15595`, `15596`, `15598`, `15602`, `15603`, `15605`, `15606`, `15607`, `15608`, `15609`, `15610`, `15612`, `15613`, `15614`, `15615`, `15616`, `15618`, `15619`, `15620`, `15622`, `15623`, `15625`, `15626`, `15629`, `15630`, `15632`, `15634`, `15635`, `15636`, `15638`, `15639`, `15640`, `15641`, `15642`, `15644`, `15645`, `15646`, `15648`, `15649`, `15650`, `15653`, `15654`, `15655`, `15656`, `15657`, `15658`, `15659`, `15660`, `15661`, `15663`, `15664`, `15665`, `15666`, `15667`, `15668`, `15669`, `15670`, `15671`, `15672`, `15673`, `15674`, `15675`, `15676`, `15677`, `15678`, `15679`, `15680`, `15682`, `15684`, `15687`, `15689`, `15691`, `15692`, `15693`, `15694`, `15695`, `15698`, `15699`, `15700`, `15703`, `15704`, `15707`, `15710`, `15712`, `15713`, `15714`, `15715`, `15717`, `15718`, `15719`, `15720`, `15721`, `15723`, `15724`, `15725`, `15726`, `15727`, `15729`, `15730`, `15732`, `15733`, `15734`, `15736`, `15738`, `15740`, `15741`, `15744`, `15745`, `15746`, `15748`, `15750`, `15751`, `15752`, `15754`, `15755`, `15756`, `15757`, `15758`, `15759`, `15761`, `15763`, `15765`, `15767`, `15770`, `15771`, `15772`, `15773`, `15774`, `15775`, `15776`, `15777`, `15780`, `15781`, `15783`, `15785`, `15786`, `15787`, `15788`, `15791`, `15792`, `15793`, `15794`, `15795`, `15798`, `15799`, `15800`, `15801`, `15804`, `15805`, `15806`, `15807`, `15808`, `15809`, `15810`, `15811`, `15812`, `15813`, `15814`, `15815`, `15816`, `15818`, `15819`, `15820`, `15821`, `15822`, `15823`, `15824`, `15827`, `15828`, `15829`, `15830`, `15831`, `15832`, `15833`, `15836`, `15837`, `15839`, `15841`, `15844`, `15845`, `15846`, `15850`, `15851`, `15852`, `15853`, `15854`, `15855`, `15856`, `15857`, `15858`, `15859`, `15861`, `15862`, `15863`, `15864`, `15865`, `15866`, `15868`, `15870`, `15871`, `15873`, `15874`, `15875`, `15876`, `15878`, `15880`, `15882`, `15885`, `15887`, `15888`, `15889`, `15891`, `15892`, `15893`, `15894`, `15895`, `15897`, `15899`, `15901`, `15903`, `15906`, `15909`, `15910`, `15911`, `15913`, `15916`, `15917`, `15918`, `15919`, `15920`, `15921`, `15923`, `15925`, `15926`, `15930`, `15932`, `15933`, `15934`, `15937`, `15939`, `15942`, `15944`, `15946`, `15947`, `15948`, `15949`, `15951`, `15952`, `15954`, `15955`, `15956`, `15957`, `15958`, `15960`, `15962`, `15964`, `15965`, `15966`, `15968`, `15970`, `15971`, `15972`, `15973`, `15974`, `15975`, `15977`, `15978`, `15980`, `15981`, `15982`, `15983`, `15984`, `15985`, `15986`, `15987`, `15988`, `15989`, `15990`, `15991`, `15992`, `15995`, `15996`, `15998`, `15999`, `16000`, `16001`, `16002`, `16003`, `16004`, `16005`, `16006`, `16008`, `16009`, `16011`, `16013`, `16014`, `16015`, `16017`, `16018`, `16019`, `16020`, `16021`, `16022`, `16023`, `16025`, `16026`, `16027`, `16029`, `16030`, `16031`, `16032`, `16033`, `16034`, `16037`, `16038`, `16041`, `16042`, `16043`, `16044`, `16045`, `16047`, `16050`, `16051`, `16052`, `16053`, `16056`, `16057`, `16060`, `16061`, `16063`, `16064`, `16066`, `16067`, `16070`, `16071`, `16073`, `16075`, `16077`, `16078`, `16079`, `16081`, `16082`, `16083`, `16084`, `16085`, `16086`, `16088`, `16089`, `16091`, `16092`, `16094`, `16095`, `16096`, `16098`, `16100`, `16102`, `16104`, `16106`, `16110`, `16112`, `16113`, `16114`, `16115`, `16116`, `16117`, `16119`, `16120`, `16121`, `16123`, `16127`, `16128`, `16130`, `16131`, `16132`, `16133`, `16134`, `16136`, `16137`, `16139`, `16140`, `16141`, `16142`, `16143`, `16144`, `16145`, `16146`, `16147`, `16149`, `16151`, `16153`, `16155`, `16157`, `16158`, `16159`, `16160`, `16161`, `16163`, `16165`, `16166`, `16167`, `16168`, `16169`, `16170`, `16171`, `16173`, `16174`, `16176`, `16178`, `16181`, `16183`, `16184`, `16185`, `16187`, `16188`, `16189`, `16190`, `16192`, `16193`, `16195`, `16196`, `16197`, `16200`, `16201`, `16202`, `16203`, `16205`, `16208`, `16209`, `16210`, `16211`, `16212`, `16213`, `16215`, `16216`, `16218`, `16219`, `16220`, `16221`, `16224`, `16225`, `16226`, `16227`, `16229`, `16230`, `16234`, `16235`, `16236`, `16237`, `16238`, `16239`, `16240`, `16242`, `16244`, `16245`, `16247`, `16249`, `16250`, `16251`, `16252`, `16254`, `16257`, `16258`, `16259`, `16260`, `16261`, `16262`, `16264`, `16265`, `16267`, `16268`, `16270`, `16271`, `16272`, `16274`, `16277`, `16278`, `16279`, `16280`, `16283`, `16286`, `16290`, `16291`, `16292`, `16294`, `16295`, `16296`, `16298`, `16299`, `16301`, `16302`, `16303`, `16305`, `16306`, `16307`, `16308`, `16309`, `16310`, `16312`, `16313`, `16314`, `16315`, `16316`, `16317`, `16319`, `16320`, `16321`, `16322`, `16328`, `16329`, `16331`, `16333`, `16334`, `16336`, `16337`, `16339`, `16341`, `16342`, `16344`, `16347`, `16349`, `16351`, `16353`, `16355`, `16357`, `16358`, `16359`, `16360`, `16361`, `16362`, `16363`, `16365`, `16367`, `16368`, `16371`, `16373`, `16375`, `16376`, `16378`, `16379`, `16380`, `16382`, `16383`, `16385`, `16386`, `16387`, `16388`, `16389`, `16391`, `16392`, `16394`, `16395`, `16396`, `16398`, `16399`, `16400`, `16401`, `16402`, `16403`, `16404`, `16405`, `16406`, `16407`, `16408`, `16410`, `16412`, `16413`, `16414`, `16416`, `16417`, `16418`, `16419`, `16421`, `16422`, `16423`, `16425`, `16427`, `16429`, `16430`, `16431`, `16432`, `16433`, `16434`, `16437`, `16438`, `16440`, `16441`, `16443`, `16444`, `16446`, `16448`, `16449`, `16451`, `16452`, `16454`, `16456`, `16458`, `16459`, `16460`, `16461`, `16462`, `16463`, `16465`, `16466`, `16467`, `16468`, `16469`, `16470`, `16471`, `16472`, `16475`, `16476`, `16477`, `16480`, `16482`, `16483`, `16485`, `16486`, `16487`, `16488`, `16489`, `16491`, `16492`, `16493`, `16494`, `16496`, `16497`, `16498`, `16499`, `16500`, `16501`, `16503`, `16504`, `16505`, `16506`, `16507`, `16508`, `16509`, `16512`, `16513`, `16514`, `16515`, `16517`, `16518`, `16519`, `16520`, `16521`, `16523`, `16524`, `16526`, `16528`, `16530`, `16531`, `16533`, `16534`, `16535`, `16536`, `16537`, `16538`, `16539`, `16540`, `16542`, `16546`, `16549`, `16550`, `16552`, `16554`, `16555`, `16556`, `16557`, `16559`, `16561`, `16562`, `16563`, `16564`, `16566`, `16567`, `16568`, `16569`, `16570`, `16572`, `16574`, `16575`, `16576`, `16580`, `16582`, `16583`, `16585`, `16586`, `16587`, `16588`, `16591`, `16593`, `16594`, `16595`, `16597`, `16599`, `16600`, `16601`, `16605`, `16606`, `16607`, `16608`, `16609`, `16610`, `16611`, `16612`, `16613`, `16614`, `16615`, `16616`, `16617`, `16618`, `16619`, `16620`, `16622`, `16623`, `16626`, `16627`, `16628`, `16629`, `16630`, `16632`, `16633`, `16634`, `16636`, `16637`, `16638`, `16640`, `16642`, `16644`, `16645`, `16646`, `16648`, `16650`, `16651`, `16653`, `16654`, `16655`, `16657`, `16658`, `16660`, `16661`, `16662`, `16663`, `16664`, `16666`, `16667`, `16668`, `16671`, `16672`, `16674`, `16675`, `16677`, `16678`, `16679`, `16680`, `16681`, `16682`, `16683`, `16684`, `16685`, `16686`, `16687`, `16688`, `16690`, `16691`, `16692`, `16693`, `16694`, `16695`, `16696`, `16697`, `16698`, `16699`, `16700`, `16701`, `16702`, `16704`, `16705`, `16707`, `16708`, `16709`, `16711`, `16712`, `16715`, `16717`, `16718`, `16719`, `16722`, `16723`, `16725`, `16728`, `16730`, `16731`, `16735`, `16736`, `16738`, `16739`, `16742`, `16743`, `16744`, `16745`, `16746`, `16747`, `16748`, `16749`, `16751`, `16752`, `16753`, `16754`, `16755`, `16757`, `16758`, `16760`, `16761`, `16762`, `16763`, `16766`, `16767`, `16770`, `16771`, `16772`, `16773`, `16776`, `16777`, `16780`, `16781`, `16783`, `16785`, `16788`, `16789`, `16791`, `16792`, `16794`, `16795`, `16798`, `16799`, `16801`, `16802`, `16803`, `16804`, `16805`, `16806`, `16808`, `16809`, `16812`, `16814`, `16816`, `16819`, `16820`, `16821`, `16822`, `16823`, `16825`, `16826`, `16827`, `16829`, `16830`, `16831`, `16832`, `16833`, `16834`, `16837`, `16840`, `16841`, `16842`, `16844`, `16845`, `16847`, `16848`, `16849`, `16851`, `16853`, `16855`, `16857`, `16859`, `16861`, `16862`, `16864`, `16865`, `16866`, `12423`, `16867`, `16869`, `16871`, `16872`, `16873`, `16874`, `16875`, `16877`, `16878`, `16880`, `16881`, `16882`, `16883`, `16884`, `16886`, `16889`, `16890`, `16892`, `16893`, `16894`, `16897`, `16898`, `16900`, `16901`, `16903`, `16905`, `16907`, `16908`, `16909`, `16911`, `16913`, `16915`, `16916`, `16917`, `16919`, `16922`, `16923`, `16924`, `16925`, `16926`, `16927`, `16928`, `16929`, `16930`, `16931`, `16932`, `16933`, `16934`, `16935`, `16936`, `16937`, `16938`, `16939`, `16940`, `16941`, `16942`, `16943`, `16944`, `16946`, `16947`, `16948`, `16949`, `16950`, `16951`, `16954`, `16955`, `16956`, `16957`, `16958`, `16961`, `16963`, `16964`, `16965`, `16967`, `16968`, `16970`, `16973`, `16975`, `16976`, `16977`, `16978`, `16979`, `16982`, `16984`, `16986`, `16988`, `16989`, `16991`, `16994`, `16995`, `16997`, `16999`, `17000`, `17001`, `17002`, `17003`, `17005`, `17006`, `17007`, `17008`, `17010`, `17013`, `17017`, `17018`, `17020`, `17021`, `17022`, `17025`, `17027`, `17028`, `17029`, `17030`, `17032`, `17033`, `17034`, `17036`, `17038`, `17039`, `17041`, `17042`, `17044`, `17045`, `17046`, `17047`, `17050`, `17051`, `17052`, `17054`, `17055`, `17057`, `17058`, `17061`, `17063`, `17064`, `17067`, `17069`, `17072`, `17073`, `17074`, `17076`, `17078`, `17079`, `17082`, `17083`, `17084`, `17086`, `17088`, `17090`, `17091`, `17092`, `17094`, `17095`, `17096`, `17097`, `17098`, `17099`, `17101`, `17102`, `17103`, `17104`, `17105`, `17106`, `17108`, `17109`, `17111`, `17113`, `17114`, `17116`, `17117`, `17119`, `17122`, `17123`, `17125`, `17126`, `17127`, `17129`, `17130`, `17132`, `17135`, `17136`, `17139`, `17141`, `17142`, `17143`, `17145`, `17148`, `17149`, `17150`, `17151`, `17154`, `17155`, `17156`, `17158`, `17159`, `17160`, `17161`, `17162`, `17163`, `17164`, `17165`, `17166`, `17168`, `17171`, `17173`, `17175`, `17177`, `17180`, `17181`, `17182`, `17183`, `17184`, `17185`, `17187`, `17188`, `17190`, `17193`, `17195`, `17199`, `17200`, `17202`, `17204`, `17205`, `17206`, `17209`, `17210`, `17211`, `17212`, `17214`, `17215`, `17216`, `17217`, `17220`, `17221`, `17222`, `17224`, `17227`, `17230`, `17232`, `17233`, `17234`, `17235`, `17236`, `17237`, `17238`, `17239`, `17241`, `17242`, `17245`, `17247`, `17249`, `17251`, `17252`, `17253`, `17255`, `17258`, `17260`, `17261`, `17262`, `17263`, `17264`, `17265`, `17266`, `17267`, `17268`, `17269`, `17270`, `17271`, `17272`, `17273`, `17274`, `17275`, `17276`, `17278`, `17279`, `17281`, `17282`, `17283`, `17284`, `17288`, `17290`, `17292`, `17293`, `17295`, `17296`, `17297`, `17298`, `17300`, `17301`, `17302`, `17303`, `17305`, `17306`, `17307`, `17309`, `17310`, `17311`, `17312`, `17314`, `17315`, `17316`, `17318`, `17319`, `17321`, `17322`, `17323`, `17327`, `17328`, `17329`, `17330`, `17331`, `17332`, `17333`, `17335`, `17338`, `17340`, `17341`, `17342`, `17343`, `17345`, `17346`, `17349`, `17350`, `17352`, `17353`, `17354`, `17355`, `17356`, `17357`, `17359`, `17360`, `17363`, `17365`, `17366`, `17367`, `17368`, `17370`, `17371`, `17372`, `17373`, `17375`, `17377`, `17378`, `17381`, `17382`, `17383`, `17384`, `17385`, `17386`, `17389`, `17390`, `17391`, `17392`, `17393`, `17396`, `17398`, `17399`, `17401`, `17402`, `17404`, `17406`, `17407`, `17408`, `17409`, `17410`, `17412`, `17413`, `17414`, `17415`, `17416`, `17417`, `17418`, `17419`, `17420`, `17421`, `17423`, `17425`, `17426`, `17428`, `17429`, `17430`, `17431`, `17432`, `17434`, `17436`, `17438`, `17440`, `17441`, `17443`, `17445`, `17446`, `17447`, `17448`, `17450`, `17452`, `17454`, `17455`, `17456`, `17457`, `17458`, `17459`, `17461`, `17462`, `17463`, `17464`, `17465`, `17467`, `17468`, `17469`, `17470`, `17471`, `17472`, `17473`, `17474`, `17475`, `17476`, `17478`, `17479`, `17483`, `17485`, `17486`, `17489`, `17490`, `17491`, `17492`, `17493`, `17494`, `17496`, `17497`, `17499`, `17500`, `17501`, `17504`, `17505`, `17507`, `17508`, `17509`, `17512`, `17513`, `17514`, `17515`, `17517`, `17518`, `17519`, `17520`, `17522`, `17523`, `17524`, `17525`, `17526`, `17527`, `17529`, `17531`, `17532`, `17533`, `17534`, `17535`, `17536`, `17537`, `17538`, `17539`, `17540`, `17541`, `17542`, `17543`, `17545`, `17547`, `17548`, `17549`, `17550`, `17551`, `17552`, `17553`, `17556`, `17557`, `17560`, `17561`, `17562`, `17563`, `17566`, `17567`, `17568`, `17570`, `17572`, `17573`, `17574`, `17576`, `17578`, `17580`, `17581`, `17582`, `17583`, `17584`, `17585`, `17586`, `17587`, `17589`, `17590`, `17591`, `17593`, `17595`, `17596`, `17598`, `17599`, `17600`, `17601`, `17602`, `17603`, `17604`, `17605`, `17606`, `17607`, `17608`, `17609`, `17610`, `17613`, `17615`, `17616`, `17617`, `17619`, `17620`, `17622`, `17623`, `17624`, `17625`, `17626`, `17628`, `17629`, `17630`, `17632`, `17633`, `17634`, `17635`, `17638`, `17639`, `17641`, `17642`, `17643`, `17644`, `17645`, `17646`, `17647`, `17648`, `17650`, `17652`, `17653`, `17654`, `17656`, `17658`, `17661`, `17662`, `17663`, `17664`, `17666`, `17667`, `17668`, `17669`, `17672`, `17674`, `17675`, `17676`, `17677`, `17678`, `17679`, `17680`, `17681`, `17683`, `17684`, `17687`, `17688`, `17689`, `17691`, `17692`, `17694`, `17697`, `17698`, `17700`, `17701`, `17702`, `17703`, `17706`, `17707`, `17709`, `17713`, `17714`, `17715`, `17717`, `17718`, `17719`, `17720`, `17722`, `17723`, `17725`, `17726`, `17727`, `17729`, `17730`, `17732`, `17733`, `17737`, `17738`, `17739`, `17740`, `17741`, `17743`, `17744`, `17745`, `17747`, `17749`, `17752`, `17753`, `17754`, `17756`, `17760`, `17761`, `17762`, `17763`, `17764`, `17766`, `17767`, `17769`, `17771`, `17773`, `17775`, `17776`, `17778`, `17779`, `17780`, `17781`, `17782`, `17784`, `17787`, `17790`, `17792`, `17794`, `17795`, `17796`, `17797`, `17798`, `17802`, `17804`, `17805`, `17807`, `17808`, `17809`, `17811`, `17813`, `17816`, `17817`, `17818`, `17819`, `17820`, `17821`, `17822`, `17823`, `17825`, `17826`, `17827`, `17828`, `17829`, `17830`, `17831`, `17832`, `17833`, `17834`, `17835`, `17836`, `17837`, `17838`, `17840`, `17841`, `17842`, `17843`, `17844`, `17846`, `17848`, `17849`, `17850`, `17852`, `17853`, `17854`, `17855`, `17856`, `17858`, `17860`, `17863`, `17864`, `17865`, `17869`, `17871`, `17873`, `17875`, `17876`, `17879`, `17881`, `17884`, `17887`, `17890`, `17891`, `17892`, `17894`, `17895`, `17896`, `17897`, `17898`, `17901`, `17902`, `17903`, `17904`, `17907`, `17908`, `17909`, `17910`, `17912`, `17914`, `17917`, `17918`, `17923`, `17925`, `17927`, `17929`, `17930`, `17932`, `17934`, `17935`, `17937`, `17939`, `17940`, `17941`, `17942`, `17943`, `17945`, `17946`, `17948`, `17949`, `17951`, `17952`, `17954`, `17955`, `17956`, `17957`, `17958`, `17959`, `17961`, `17962`, `17964`, `17965`, `17967`, `17968`, `17971`, `17972`, `17973`, `17975`, `17976`, `17977`, `17978`, `17980`, `17982`, `17984`, `17985`, `17988`, `17989`, `17991`, `17993`, `17995`, `17996`, `17998`, `18000`, `18002`, `18004`, `18005`, `18006`, `18011`, `18012`, `18014`, `18015`, `18016`, `18017`, `18018`, `18019`, `18023`, `18024`, `18026`, `18028`, `18029`, `18030`, `18031`, `18032`, `18033`, `18034`, `18035`, `18036`, `18037`, `18038`, `18039`, `18040`, `18041`, `18042`, `18043`, `18044`, `18045`, `18047`, `18048`, `18050`, `18053`, `18054`, `18055`, `18056`, `18057`, `18059`, `18061`, `18062`, `18064`, `18065`, `18067`, `18068`, `18070`, `18071`, `18073`, `18074`, `18076`, `18078`, `18079`, `18081`, `18082`, `18085`, `18086`, `18087`, `18088`, `18091`, `18092`, `18093`, `18095`, `18096`, `18098`, `18099`, `18102`, `18104`, `18106`, `18108`, `18109`, `18110`, `18112`, `18113`, `18114`, `18115`, `18116`, `18117`, `18118`, `18120`, `18122`, `18124`, `18127`, `18129`, `18130`, `18132`, `18133`, `18134`, `18138`, `18140`, `18142`, `18144`, `18145`, `18147`, `18148`, `18149`, `18150`, `18153`, `18155`, `18157`, `18158`, `18159`, `18160`, `18162`, `18164`, `18167`, `18168`, `18169`, `18170`, `18172`, `18173`, `18176`, `18177`, `18179`, `18181`, `18182`, `18184`, `18186`, `18188`, `18189`, `18192`, `18193`, `18194`, `18195`, `18196`, `18197`, `18198`, `18200`, `18201`, `18203`, `18204`, `18205`, `18207`, `18208`, `18211`, `18213`, `18214`, `18215`, `18216`, `18218`, `18219`, `18220`, `18222`, `18224`, `18226`, `18227`, `18228`, `18229`, `18232`, `18234`, `18236`, `18237`, `18238`, `18239`, `18241`, `18242`, `18243`, `18244`, `18245` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.79 | | `TOKEN_P` | 99.79 | | `TOKEN_R` | 99.80 | | `TOKEN_ACC` | 99.97 | | `SENTS_F` | 96.20 | | `SENTS_P` | 96.95 | | `SENTS_R` | 95.45 | | `TAG_ACC` | 98.33 | | `POS_ACC` | 97.91 | | `MORPH_ACC` | 95.92 | | `DEP_UAS` | 91.92 | | `DEP_LAS` | 89.41 | | `LEMMA_ACC` | 88.22 |
{"language": ["fi"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/fi_udv25_finnishtdt_trf
null
[ "spacy", "token-classification", "fi", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "fi" ]
TAGS #spacy #token-classification #fi #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_Finnish-TDT ### Label Scheme View label scheme (12912 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (12912 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #fi #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (12912 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_French-Sequoia | Feature | Description | | --- | --- | | **Name** | `fr_udv25_frenchsequoia_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `LGPL-LR` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (916 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `ADJ`, `ADP`, `ADP_DET`, `ADP_PRON`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` | | **`morphologizer`** | `POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=DET\|Poss=Yes`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Number=Plur\|POS=ADP\|PronType=Art`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|PronType=Int`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=DET\|Poss=Yes`, `POS=AUX\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PRON\|Person=3\|Reflex=Yes`, `Gender=Masc\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=PRON\|Person=3`, `Number=Plur\|POS=NOUN`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=3`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes`, `Gender=Masc\|POS=PRON`, `POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=PRON`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=PRON`, `POS=NUM`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=PRON`, `Number=Plur\|POS=PRON\|Person=3`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Number=Plur\|POS=PRON\|Person=2`, `NumType=Card\|POS=PRON`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NOUN`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3`, `Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=DET`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|POS=PRON`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `POS=SYM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `POS=DET`, `Gender=Masc\|Number=Plur\|POS=PRON`, `POS=PART`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=1\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|NumType=Card\|POS=NUM` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advcl:cleft`, `advmod`, `amod`, `appos`, `aux:caus`, `aux:pass`, `aux:tense`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `expl:comp`, `expl:pass`, `expl:subj`, `fixed`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:caus`, `nsubj:pass`, `nummod`, `obj`, `obl:agent`, `obl:arg`, `obl:mod`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `0`, `3`, `4`, `6`, `8`, `10`, `12`, `14`, `16`, `20`, `22`, `24`, `26`, `30`, `32`, `34`, `36`, `39`, `40`, `42`, `44`, `45`, `48`, `50`, `52`, `54`, `56`, `58`, `61`, `63`, `66`, `70`, `72`, `74`, `77`, `79`, `81`, `82`, `84`, `86`, `88`, `89`, `91`, `95`, `97`, `99`, `102`, `103`, `106`, `110`, `111`, `113`, `114`, `115`, `118`, `119`, `123`, `125`, `126`, `128`, `130`, `132`, `133`, `134`, `136`, `138`, `139`, `140`, `142`, `143`, `144`, `146`, `148`, `150`, `152`, `155`, `157`, `160`, `161`, `163`, `165`, `167`, `171`, `173`, `174`, `176`, `177`, `179`, `181`, `183`, `185`, `187`, `189`, `191`, `192`, `195`, `197`, `198`, `200`, `202`, `203`, `205`, `208`, `210`, `211`, `212`, `214`, `217`, `218`, `221`, `225`, `227`, `229`, `230`, `232`, `234`, `236`, `238`, `240`, `242`, `243`, `245`, `247`, `248`, `251`, `253`, `255`, `257`, `258`, `260`, `261`, `264`, `267`, `268`, `269`, `272`, `273`, `276`, `277`, `278`, `279`, `284`, `287`, `288`, `291`, `293`, `295`, `298`, `299`, `301`, `304`, `306`, `307`, `309`, `310`, `313`, `315`, `318`, `319`, `322`, `324`, `325`, `327`, `329`, `330`, `332`, `333`, `336`, `339`, `341`, `342`, `344`, `346`, `347`, `350`, `351`, `353`, `356`, `358`, `359`, `361`, `363`, `365`, `367`, `369`, `373`, `376`, `378`, `379`, `380`, `382`, `384`, `386`, `389`, `390`, `391`, `394`, `396`, `398`, `399`, `401`, `404`, `406`, `409`, `412`, `414`, `418`, `421`, `423`, `424`, `426`, `428`, `429`, `430`, `434`, `436`, `438`, `440`, `441`, `443`, `446`, `447`, `448`, `451`, `453`, `456`, `457`, `458`, `460`, `462`, `463`, `465`, `468`, `470`, `472`, `474`, `480`, `482`, `483`, `485`, `486`, `490`, `493`, `494`, `497`, `499`, `500`, `501`, `503`, `506`, `509`, `511`, `512`, `514`, `516`, `518`, `522`, `523`, `526`, `530`, `532`, `534`, `537`, `539`, `540`, `541`, `543`, `545`, `546`, `548`, `550`, `551`, `552`, `554`, `556`, `557`, `558`, `561`, `563`, `565`, `567`, `570`, `571`, `573`, `574`, `575`, `576`, `578`, `579`, `581`, `582`, `583`, `584`, `586`, `587`, `588`, `589`, `590`, `592`, `595`, `600`, `603`, `604`, `606`, `608`, `611`, `612`, `614`, `615`, `616`, `618`, `619`, `620`, `621`, `622`, `623`, `624`, `625`, `626`, `627`, `628`, `629`, `630`, `631`, `632`, `633`, `634`, `635`, `636`, `638`, `640`, `644`, `646`, `647`, `648`, `650`, `652`, `654`, `657`, `659`, `660`, `661`, `662`, `663`, `664`, `665`, `666`, `668`, `672`, `674`, `675`, `677`, `678`, `679`, `680`, `681`, `682`, `683`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `691`, `692`, `693`, `694`, `695`, `696`, `697`, `698`, `699`, `700`, `701`, `702`, `704`, `705`, `706`, `707`, `708`, `709`, `710`, `711`, `712`, `713`, `714`, `715`, `716`, `717`, `718`, `719`, `720`, `721`, `722`, `723`, `724`, `725`, `726`, `727`, `728`, `729`, `730`, `731`, `732`, `733`, `734`, `735`, `736`, `737`, `738`, `739`, `740`, `741`, `743`, `744`, `747`, `748`, `749`, `750`, `751`, `752`, `753`, `754`, `755`, `756`, `758`, `760`, `762`, `763`, `766`, `767`, `768`, `770`, `772`, `773`, `774`, `775`, `776`, `777`, `778`, `779`, `781`, `783`, `784`, `786`, `787`, `789`, `790`, `791`, `794`, `795`, `796`, `797`, `798`, `799`, `800`, `801`, `802`, `803`, `807`, `809`, `812`, `813`, `815`, `817`, `819`, `821`, `825`, `828`, `829`, `832`, `833`, `834`, `837`, `838`, `839`, `841`, `842`, `844`, `846`, `849`, `851`, `853`, `854`, `855`, `858`, `861`, `862`, `866`, `868`, `869`, `871`, `872`, `874`, `876`, `879`, `880`, `882`, `885`, `887`, `891`, `893`, `895`, `898`, `899`, `902`, `903`, `905`, `906`, `908`, `910`, `911`, `912`, `914`, `917`, `920`, `923`, `925`, `927`, `929`, `932`, `933`, `934`, `936`, `938`, `939`, `943`, `944`, `945`, `946`, `947`, `950`, `952`, `954`, `956`, `958`, `959`, `961`, `963`, `965`, `967`, `969`, `971`, `973`, `976`, `978`, `979`, `980`, `981`, `984`, `986`, `987`, `990`, `993`, `994`, `996`, `998`, `999`, `1000`, `1001`, `1002`, `1004`, `1006`, `1007`, `1009`, `1010`, `1012`, `1014`, `1016`, `1018`, `1021`, `1023`, `1026`, `1027`, `1029`, `1031`, `1033`, `1034`, `1036`, `1037`, `1039`, `1041`, `1043`, `1044`, `1045`, `1046`, `1049`, `1051`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1059`, `1061`, `1063`, `1065`, `1067`, `1068`, `1070`, `1072`, `1073`, `1075`, `1077`, `1078`, `1080`, `1081`, `1082`, `1084`, `1085`, `1087`, `1088`, `1089`, `1090`, `1091`, `1092`, `1094`, `1095`, `1097`, `1098`, `1100`, `1103`, `1106`, `1108`, `1110`, `1111`, `1113`, `1116`, `1117`, `1119`, `1121`, `1124`, `1127`, `1129`, `1131`, `1132`, `1133`, `1135`, `1136`, `1138`, `1139`, `1141`, `1142`, `1145`, `1148`, `1153`, `1154`, `1156`, `1157`, `1159`, `1161` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.70 | | `TOKEN_P` | 99.69 | | `TOKEN_R` | 99.71 | | `TOKEN_ACC` | 99.96 | | `SENTS_F` | 94.42 | | `SENTS_P` | 94.42 | | `SENTS_R` | 94.42 | | `TAG_ACC` | 98.65 | | `POS_ACC` | 98.56 | | `MORPH_ACC` | 97.55 | | `DEP_UAS` | 94.68 | | `DEP_LAS` | 92.60 | | `LEMMA_ACC` | 97.41 |
{"language": ["fr"], "license": "lgpl-lr", "tags": ["spacy", "token-classification"]}
explosion/fr_udv25_frenchsequoia_trf
null
[ "spacy", "token-classification", "fr", "license:lgpl-lr", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #spacy #token-classification #fr #license-lgpl-lr #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_French-Sequoia ### Label Scheme View label scheme (916 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (916 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #fr #license-lgpl-lr #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (916 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_Irish-IDT | Feature | Description | | --- | --- | | **Name** | `ga_udv25_irishidt_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (1662 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `!`, `.`, `...`, `?`, `Abr`, `Ad`, `Adj`, `Art`, `CM`, `CU`, `Cmp`, `Cmpd`, `CmpdNoGen`, `Comp`, `Cond`, `Coord`, `Cop`, `Cp`, `Deg`, `Dem`, `Det`, `Dir`, `Foreign`, `FutInd`, `Gn`, `Idf`, `Imper`, `Inf`, `Item`, `Itj`, `Its`, `Loc`, `Nm`, `Noun`, `Num`, `PastImp`, `PastInd`, `Pat`, `Pers`, `Poss`, `Prep`, `PresImp`, `PresInd`, `PresSubj`, `Pron`, `Punct`, `Q`, `Ref`, `Rel`, `Simp`, `Subord`, `Subst`, `Sup`, `Temp`, `Unknown`, `VD`, `VI`, `VT`, `VTI`, `Vb`, `Voc`, `Web`, `cionn` | | **`morphologizer`** | `POS=ADP`, `Case=NomAcc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=AUX\|Tense=Pres\|VerbForm=Cop`, `Number=Sing\|POS=PRON\|Person=3`, `Mood=Ind\|POS=VERB\|Tense=Fut`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PART\|PartType=Inf`, `POS=NOUN\|VerbForm=Inf`, `Number=Sing\|POS=ADP\|PronType=Art`, `POS=ADV`, `POS=PUNCT`, `POS=PART\|PartType=Vb\|Polarity=Neg`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut`, `Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=NomAcc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=NomAcc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Int\|POS=AUX\|Polarity=Neg\|Tense=Pres\|VerbForm=Cop`, `Degree=Pos\|POS=ADJ`, `POS=PART\|PartType=Vb\|PronType=Rel`, `Form=Len\|Mood=Cnd\|POS=VERB`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=ADP\|Person=1`, `Case=NomAcc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Emp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Rel\|Tense=Pres`, `Case=NomAcc\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=DET\|Person=1\|Poss=Yes`, `POS=PART\|PartType=Cmpl`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Past`, `POS=PRON\|PronType=Dem`, `POS=PART\|PartType=Vb`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Past`, `Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=PART\|PartType=Comp`, `Degree=Cmp,Sup\|POS=ADJ`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Pres`, `NumType=Card\|POS=NUM`, `POS=ADJ\|VerbForm=Part`, `Number=Plur\|POS=ADP\|Person=1`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres`, `POS=PRON\|PronType=Int`, `Mood=Ind\|POS=VERB\|PronType=Rel\|Tense=Pres`, `Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Dialect=Munster\|POS=X`, `POS=ADP\|PrepForm=Cmpd`, `Case=NomAcc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=NomAcc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Form=Ecl\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `POS=NOUN\|VerbForm=Vnoun`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Form=Len\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes`, `Case=NomAcc\|Form=Ecl\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|Voice=Auto`, `Number=Plur\|POS=PRON\|Person=3`, `Case=Gen\|Definite=Def\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Form=Len\|POS=NOUN\|VerbForm=Inf`, `POS=PART\|PartType=Ad`, `POS=PART\|PartType=Pat`, `POS=NUM`, `Mood=Ind\|POS=VERB\|Tense=Pres`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Form=Len\|POS=VERB`, `POS=PRON\|Reflex=Yes`, `POS=VERB`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=NomAcc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=SCONJ\|VerbForm=Cop`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=NomAcc\|Form=HPref\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=DET\|PronType=Dem`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past`, `Case=NomAcc\|Form=HPref\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Case=Dat\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADP\|Person=3`, `POS=PART\|PartType=Comp`, `POS=PART`, `Case=NomAcc\|Form=Ecl\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=DET\|PronType=Ind`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Fut\|Voice=Auto`, `Case=Gen\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Pres\|Voice=Auto`, `POS=X`, `POS=PART\|PronType=Rel`, `Form=VF\|POS=AUX\|Tense=Pres\|VerbForm=Cop`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes`, `POS=AUX\|Polarity=Neg\|PronType=Rel\|Tense=Pres\|VerbForm=Cop`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Pres`, `Case=Gen\|Form=Ecl\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `POS=PART\|PartType=Vb\|Polarity=Neg\|PronType=Rel`, `Number=Sing\|POS=PRON\|PronType=Int`, `Abbr=Yes\|POS=X`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Cop`, `Number=Sing\|POS=PRON\|Person=1`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Pres\|Voice=Auto`, `Case=NomAcc\|Form=HPref\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Fut`, `Case=Gen\|POS=NOUN\|VerbForm=Inf`, `Form=HPref\|POS=DET\|PronType=Ind`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=NomAcc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Case=Gen\|NounType=Strong\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Mood=Ind\|POS=VERB\|Tense=Fut\|Voice=Auto`, `Number=Plur\|POS=ADP\|Person=3\|PronType=Emp`, `Mood=Ind\|POS=VERB\|Tense=Past`, `POS=PART\|PartType=Cmpl\|Polarity=Neg\|Tense=Past`, `Number=Plur\|POS=ADP\|Person=3\|Poss=Yes`, `Form=Ecl\|POS=NOUN\|VerbForm=Inf`, `Case=Gen\|Form=Len\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Len\|NumType=Card\|POS=NUM`, `Abbr=Yes\|POS=NUM`, `Case=NomAcc\|NounType=NotSlender\|Number=Plur\|POS=ADJ`, `Case=NomAcc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=PROPN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|Voice=Auto`, `POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Cop`, `Degree=Pos\|Form=Len\|POS=ADJ`, `Form=Len\|NumType=Ord\|POS=NUM`, `Number=Plur\|POS=ADP\|PronType=Art`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2`, `Form=Len\|Number=Plur\|POS=ADP\|Person=1`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Form=Ecl\|POS=ADJ`, `Mood=Imp\|POS=PART\|PartType=Vb`, `Mood=Cnd\|POS=VERB`, `Number=Sing\|POS=ADP\|Person=1\|Poss=Yes`, `Form=Ecl\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1`, `Form=Len\|Mood=Imp\|POS=VERB\|Tense=Past\|Voice=Auto`, `Case=Gen\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `POS=PART\|PartType=Num`, `Form=HPref\|NumType=Card\|POS=NUM`, `Form=Len\|Mood=Sub\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Case=Gen\|Form=Len\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADP\|Person=3`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Emp`, `POS=PART\|PartType=Vb\|Tense=Past`, `Case=NomAcc\|Form=Ecl\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Def\|Dialect=Ulster\|POS=X`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Fut`, `POS=PART\|PartType=Vb\|Polarity=Neg\|Tense=Past`, `POS=PART\|PartType=Cmpl\|Polarity=Neg`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADP\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Form=Len\|Mood=Imp\|POS=VERB\|Voice=Auto`, `Definite=Def\|POS=DET`, `POS=AUX\|PronType=Rel\|Tense=Pres\|VerbForm=Cop`, `Case=NomAcc\|NounType=Slender\|Number=Plur\|POS=ADJ`, `POS=AUX\|Polarity=Neg\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Form=Ecl\|Mood=Cnd\|POS=VERB`, `Case=Gen\|Form=Ecl\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=AUX\|Polarity=Neg\|Tense=Pres\|VerbForm=Cop`, `Form=Len\|Mood=Imp\|POS=VERB\|Tense=Past`, `Case=Gen\|Form=Ecl\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADP\|Person=2`, `Degree=Pos\|Form=HPref\|POS=ADJ`, `Dialect=Munster\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes`, `Case=NomAcc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Number=Plur\|POS=ADP\|Person=1\|PronType=Emp`, `POS=PART\|PartType=Vb\|Polarity=Neg\|PronType=Rel\|Tense=Past`, `POS=PRON\|PronType=Ind`, `Number=Plur\|POS=ADP\|Person=1\|Poss=Yes`, `Gender=Fem\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|NounType=Weak\|Number=Plur\|POS=ADJ`, `Form=Emp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=VF\|POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Cop`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3`, `Form=VF\|POS=AUX\|Polarity=Neg\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Case=NomAcc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=NomAcc\|Form=Emp\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Form=Ecl\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PROPN`, `Mood=Imp\|POS=PART\|PartType=Vb\|Polarity=Neg`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes`, `Form=Ecl\|NumType=Card\|POS=NUM`, `Case=Gen\|Form=Len\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Dialect=Munster\|Mood=Ind\|POS=X\|Tense=Past\|Voice=Auto`, `Number=Sing\|POS=DET\|Person=2\|Poss=Yes`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past\|Voice=Auto`, `Definite=Def\|NumType=Card\|POS=NUM`, `Form=Len\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1`, `Case=NomAcc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Form=Len\|Mood=Cnd\|POS=VERB\|Voice=Auto`, `Mood=Imp\|POS=VERB\|Tense=Past`, `Case=Gen\|Form=Ecl\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Number=Plur\|POS=ADP\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Past\|Voice=Auto`, `Definite=Def\|Form=Ecl\|POS=DET`, `Number=Plur\|POS=ADJ`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut\|Voice=Auto`, `Form=VF\|POS=AUX\|Tense=Past\|VerbForm=Cop`, `Form=Len\|Number=Sing\|POS=NOUN`, `POS=AUX`, `Gender=Masc\|POS=PRON\|Person=3`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Form=Len\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Int\|POS=PART\|PartType=Vb\|Polarity=Neg`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Form=Ecl\|Mood=Imp\|POS=VERB\|Tense=Past`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Emp`, `Case=NomAcc\|Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=X`, `Dialect=Munster\|Form=Len\|Mood=Ind\|Number=Sing\|POS=X\|Person=1\|Tense=Past`, `POS=PART\|PartType=Vb\|PronType=Rel\|Tense=Past`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2`, `POS=PART\|PartType=Voc`, `Form=HPref\|POS=NOUN\|VerbForm=Inf`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Degree=Cmp,Sup\|Form=Len\|POS=ADJ`, `POS=NOUN`, `Form=Ecl\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Case=NomAcc\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Number=Plur\|POS=ADP\|Person=2`, `POS=SCONJ\|Tense=Past\|VerbForm=Cop`, `NumType=Ord\|POS=NUM`, `Mood=Int\|POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Cop`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Dialect=Ulster\|POS=X\|VerbForm=Cop`, `Mood=Int\|Number=Sing\|POS=AUX\|PronType=Art\|VerbForm=Cop`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|POS=NOUN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Form=Ecl\|POS=NOUN\|VerbForm=Vnoun`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Ecl\|Mood=Sub\|POS=VERB\|Tense=Pres`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Plur\|POS=ADJ\|PartType=Voc`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past`, `Number=Sing\|POS=DET\|PronType=Int`, `Form=Len\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3`, `Dialect=Munster\|Form=Len\|Mood=Ind\|POS=VERB\|Tense=Past`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Case=NomAcc\|Gender=Masc\|POS=PROPN`, `Case=Gen\|Form=Len\|Gender=Masc\|POS=PROPN`, `Form=Ecl\|POS=VERB`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Form=Ecl\|Number=Sing\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut\|Voice=Auto`, `POS=AUX\|PronType=Dem\|VerbForm=Cop`, `POS=AUX\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Case=NomAcc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres`, `Form=Ecl\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past`, `Abbr=Yes\|POS=SYM`, `Case=Gen\|Form=Len\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres\|Voice=Auto`, `POS=PART\|PartType=Cop\|PronType=Rel`, `Form=VF\|POS=AUX\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Form=Len\|Number=Sing\|POS=PRON\|Person=2`, `Case=Voc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=ADJ\|PartType=Voc`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Form=Len\|Gender=Fem\|POS=PROPN`, `Case=Gen\|Form=HPref\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Dialect=Ulster\|Gender=Masc\|Number=Sing\|POS=X\|Person=3`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut`, `Case=NomAcc\|Form=HPref\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=ADV\|PronType=Int`, `Form=Ecl\|Mood=Cnd\|POS=VERB\|Voice=Auto`, `POS=ADP\|PronType=Art`, `Mood=Int\|POS=AUX\|Tense=Pres\|VerbForm=Cop`, `POS=PART\|PartType=Deg`, `Number=Sing\|POS=ADP\|Person=1\|PronType=Emp`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Cop`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADP`, `Abbr=Yes\|POS=PROPN`, `Form=Len\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2`, `Case=Voc\|Form=Len\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past\|Voice=Auto`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past`, `Case=NomAcc\|Form=Ecl\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Len\|POS=ADV`, `Case=Voc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=2`, `POS=DET`, `Number=Sing\|POS=ADP\|Person=3`, `Mood=Cnd\|POS=VERB\|Voice=Auto`, `Form=Len\|Number=Sing\|POS=ADP\|Person=1`, `Dialect=Munster\|Mood=Imp\|Number=Sing\|POS=X\|Person=2\|Polarity=Neg`, `Dialect=Munster\|POS=X\|PronType=Dem`, `Form=Len\|POS=VERB\|Polarity=Neg`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Form=Ecl\|NumType=Ord\|POS=NUM`, `Mood=Ind\|POS=VERB\|PronType=Rel\|Tense=Fut`, `Form=Len\|Number=Plur\|POS=ADP\|Person=3`, `Case=NomAcc\|Form=HPref\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Fut\|Voice=Auto`, `Form=Len\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Form=Len\|Gender=Fem\|POS=PROPN`, `Form=Ecl\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Form=Len\|POS=NOUN\|VerbForm=Inf`, `Degree=Pos\|POS=NOUN`, `POS=AUX\|PartType=Comp\|Tense=Past\|VerbForm=Cop`, `Number=Plur\|POS=DET\|Person=1\|Poss=Yes`, `Case=Dat\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Form=HPref\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADP\|Person=3\|Poss=Yes`, `POS=NOUN\|Reflex=Yes`, `Dialect=Ulster\|POS=X\|PartType=Vb\|Polarity=Neg`, `Form=Emp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|PronType=Emp`, `Form=Ecl\|POS=PART\|PartType=Vb\|PronType=Rel`, `Form=Ecl\|Mood=Cnd\|POS=VERB\|Polarity=Neg`, `Case=Gen\|Form=Ecl\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Form=Len\|Mood=Cnd\|POS=VERB\|Polarity=Neg`, `Form=Len\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Form=HPref\|Gender=Fem\|POS=PROPN`, `Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=HPref\|Gender=Fem\|Number=Sing\|POS=NOUN`, `NounType=Slender\|Number=Plur\|POS=ADJ`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=PRON`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=NOUN\|PartType=Comp`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PART\|PartType=Cmpl\|Tense=Past`, `Form=Ecl\|Mood=Int\|POS=VERB\|Polarity=Neg`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `NounType=NotSlender\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|POS=AUX\|VerbForm=Cop`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Gender=Masc\|Number=Sing\|POS=INTJ`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Fem\|Number=Sing\|POS=SCONJ`, `POS=PART\|Tense=Pres\|VerbForm=Cop`, `Case=Gen\|Definite=Def\|Gender=Fem\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Form=Ecl\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=DET\|PronType=Art`, `Form=Ecl,Emp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Form=Ecl\|Mood=Cnd,Int\|POS=VERB`, `Definite=Def\|Dialect=Munster\|Gender=Fem\|Number=Sing\|POS=X`, `POS=AUX\|PronType=Dem`, `POS=AUX\|PartType=Cmpl\|Tense=Pres\|VerbForm=Cop`, `Form=Len\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `POS=PART\|PartType=Inf\|PronType=Rel`, `Form=Ecl\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `POS=SCONJ\|Tense=Past`, `Form=HPref\|Gender=Masc\|Number=Sing\|POS=ADP\|Person=3`, `Form=Ecl\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Form=HPref\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `POS=INTJ`, `Form=HPref\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Form=Len\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Mood=Sub\|POS=VERB\|Tense=Pres\|Voice=Auto`, `Number=Sing\|POS=VERB\|Person=1`, `Gender=Masc\|POS=PROPN`, `POS=ADP\|PronType=Rel`, `Mood=Ind\|POS=NOUN\|PronType=Rel\|Tense=Pres`, `Form=Ecl\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Form=Ecl\|Mood=Cnd,Int\|POS=VERB\|Voice=Auto`, `Form=Len\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|POS=PROPN`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2`, `Form=HPref\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Dialect=Ulster\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN` | | **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `case:voc`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj:cleft`, `csubj:cop`, `dep`, `det`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `list`, `mark`, `mark:prt`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:prep`, `obl:tmod`, `parataxis`, `punct`, `vocative`, `xcomp`, `xcomp:pred` | | **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `10`, `11`, `13`, `15`, `16`, `17`, `19`, `21`, `25`, `27`, `28`, `30`, `32`, `34`, `36`, `37`, `40`, `42`, `44`, `46`, `51`, `54`, `56`, `59`, `62`, `64`, `66`, `68`, `70`, `72`, `73`, `74`, `77`, `81`, `83`, `85`, `88`, `89`, `91`, `93`, `96`, `99`, `100`, `102`, `104`, `108`, `114`, `116`, `119`, `120`, `121`, `123`, `126`, `127`, `128`, `131`, `133`, `135`, `137`, `138`, `139`, `142`, `144`, `145`, `147`, `149`, `151`, `153`, `157`, `159`, `161`, `164`, `165`, `169`, `171`, `173`, `176`, `181`, `183`, `185`, `186`, `188`, `189`, `191`, `193`, `194`, `195`, `197`, `199`, `201`, `202`, `205`, `207`, `209`, `210`, `213`, `216`, `217`, `220`, `221`, `223`, `225`, `227`, `228`, `230`, `232`, `233`, `236`, `238`, `240`, `241`, `242`, `244`, `246`, `247`, `249`, `251`, `252`, `254`, `256`, `257`, `259`, `264`, `267`, `268`, `271`, `273`, `275`, `276`, `278`, `279`, `280`, `282`, `283`, `285`, `286`, `289`, `291`, `293`, `295`, `296`, `299`, `301`, `302`, `303`, `304`, `305`, `306`, `308`, `310`, `311`, `312`, `315`, `318`, `319`, `320`, `321`, `323`, `325`, `327`, `328`, `332`, `334`, `336`, `339`, `341`, `343`, `346`, `348`, `350`, `353`, `355`, `358`, `359`, `361`, `363`, `365`, `366`, `367`, `368`, `370`, `371`, `373`, `376`, `378`, `380`, `381`, `384`, `385`, `386`, `389`, `390`, `392`, `396`, `398`, `400`, `401`, `402`, `405`, `407`, `409`, `410`, `411`, `413`, `415`, `416`, `419`, `421`, `422`, `423`, `426`, `427`, `428`, `429`, `430`, `431`, `432`, `433`, `434`, `437`, `438`, `439`, `440`, `441`, `442`, `443`, `446`, `449`, `453`, `455`, `457`, `458`, `459`, `461`, `462`, `464`, `466`, `469`, `471`, `473`, `475`, `478`, `479`, `480`, `482`, `483`, `485`, `487`, `490`, `491`, `492`, `495`, `496`, `497`, `500`, `502`, `505`, `507`, `509`, `512`, `513`, `515`, `516`, `518`, `520`, `522`, `523`, `525`, `527`, `530`, `531`, `532`, `534`, `536`, `537`, `538`, `540`, `541`, `542`, `545`, `546`, `548`, `549`, `551`, `554`, `557`, `560`, `562`, `564`, `565`, `567`, `570`, `571`, `573`, `574`, `578`, `579`, `581`, `585`, `587`, `590`, `591`, `592`, `596`, `597`, `598`, `599`, `600`, `602`, `604`, `605`, `606`, `608`, `609`, `611`, `613`, `614`, `616`, `618`, `619`, `621`, `623`, `624`, `627`, `628`, `629`, `630`, `632`, `633`, `635`, `636`, `637`, `640`, `642`, `644`, `646`, `648`, `649`, `651`, `653`, `655`, `656`, `657`, `659`, `660`, `663`, `665`, `667`, `669`, `673`, `675`, `676`, `678`, `682`, `683`, `686`, `688`, `690`, `691`, `693`, `696`, `698`, `702`, `705`, `708`, `710`, `711`, `712`, `714`, `715`, `717`, `719`, `721`, `722`, `724`, `725`, `727`, `729`, `734`, `736`, `738`, `739`, `742`, `743`, `744`, `746`, `750`, `751`, `753`, `755`, `756`, `758`, `759`, `760`, `761`, `762`, `764`, `766`, `767`, `769`, `770`, `771`, `772`, `773`, `774`, `777`, `778`, `780`, `781`, `783`, `784`, `785`, `787`, `789`, `790`, `793`, `794`, `796`, `798`, `800`, `802`, `803`, `805`, `808`, `809`, `810`, `811`, `813`, `815`, `816`, `817`, `820`, `822`, `827`, `828`, `830`, `833`, `836`, `837`, `838`, `841`, `842`, `843`, `845`, `847`, `849`, `850`, `852`, `24`, `854`, `856`, `859`, `860`, `861`, `862`, `863`, `864`, `866`, `868`, `869`, `870`, `873`, `874`, `877`, `878`, `879`, `881`, `884`, `886`, `888`, `889`, `890`, `893`, `894`, `897`, `898`, `900`, `902`, `905`, `908`, `909`, `910`, `911`, `912`, `913`, `915`, `916`, `917`, `919`, `921`, `924`, `926`, `927`, `928`, `929`, `930`, `932`, `935`, `937`, `941`, `943`, `945`, `946`, `948`, `950`, `951`, `953`, `954`, `955`, `958`, `960`, `963`, `965`, `966`, `967`, `968`, `969`, `971`, `974`, `976`, `978`, `979`, `981`, `982`, `983`, `984`, `985`, `986`, `988`, `990`, `992`, `994`, `997`, `998`, `999`, `1001`, `1003`, `1004`, `1006`, `1008`, `1010`, `1011`, `1012`, `1015`, `1017`, `1019`, `1020`, `1021`, `1022`, `1025`, `1028`, `1030`, `1032`, `1033`, `1035`, `1036`, `1039`, `1040`, `1041`, `1042`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1051`, `1053`, `1055`, `1056`, `1057`, `1058`, `1061`, `1062`, `1064`, `1065`, `1068`, `1070`, `1071`, `1073`, `1074`, `1076`, `1078`, `1080`, `1082`, `1084`, `1086`, `1087`, `1088`, `1089`, `1090`, `1091`, `1092`, `1093`, `1095`, `1097`, `1100`, `1101`, `1103`, `1105`, `1106`, `1108`, `1110`, `1113`, `1114`, `1115`, `1117`, `1118`, `1120`, `1123`, `1127`, `1128`, `1129`, `1131`, `1135`, `1137`, `1138`, `1140`, `1141`, `1143`, `1144`, `1145`, `818`, `1146`, `1148`, `1149`, `1150`, `1152`, `1154`, `1157`, `1159`, `1160`, `1163`, `1166`, `1168`, `1170`, `1171`, `1173`, `1174`, `1176`, `1179`, `1180`, `1182`, `1183`, `1184`, `1186`, `1187`, `1188`, `1189`, `1191`, `1192`, `1195`, `1198`, `1199`, `1200`, `1201`, `1202`, `1205`, `1206`, `1208`, `1210`, `1212`, `1214`, `1215`, `1217`, `1218`, `1219`, `1220`, `1223`, `1227`, `1228`, `1230`, `1231`, `1233`, `1235`, `1236`, `1240`, `1242`, `1244`, `1245`, `1247`, `1248`, `1249`, `1251`, `1252`, `1253`, `1254`, `1255`, `1256`, `1259`, `1260`, `1263`, `1264`, `1267`, `1270`, `1272`, `1273`, `1275`, `1277`, `1279`, `1281`, `1282`, `1283`, `1285`, `1286`, `1288`, `1290`, `1292`, `1295`, `1297`, `1298`, `1299`, `1301`, `1302`, `1305`, `1306`, `1308`, `1309`, `1310`, `1311`, `1313`, `1315`, `1317`, `1318`, `1319`, `1321`, `1323`, `1325`, `1326`, `1327`, `1330`, `1333`, `1336`, `1338`, `1339`, `1340`, `1341`, `1343`, `0`, `1345`, `1347`, `1350`, `1352`, `1356`, `1359`, `1360`, `1361`, `1362`, `1365`, `1367`, `1368`, `1369`, `1371`, `1373`, `1375`, `1378`, `1379`, `1382`, `1384`, `1387`, `1390`, `1392`, `1395`, `1396`, `1397`, `1400`, `1403`, `1406`, `1407`, `1410`, `1411`, `1412`, `1414`, `1416`, `1418`, `1421`, `1422`, `1423`, `1424`, `1426`, `1429`, `1431`, `1433`, `1436`, `1437`, `1442`, `1443`, `1445`, `1446`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1457`, `1460`, `1462`, `1463`, `1466`, `1467`, `1470`, `1471`, `1473`, `1474`, `1477`, `1479`, `1480`, `1481`, `1484`, `1486`, `1489`, `1492`, `1495`, `1496`, `1497`, `1498`, `1501`, `1502`, `1505`, `1506`, `1508`, `1509`, `1510`, `1511`, `1513`, `1514`, `1516`, `1518`, `1521`, `1523`, `1527`, `1528`, `1531`, `1532`, `1534`, `1537`, `1540`, `1541`, `1544`, `1545`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1553`, `1554`, `1555`, `1557`, `1558`, `1559`, `1560`, `1561`, `1563`, `1565`, `1566`, `1567`, `1569`, `1571`, `1573`, `1576`, `1578`, `1579`, `1580`, `1582`, `1583`, `1211`, `1585`, `1587`, `1588`, `1590`, `1593`, `1595`, `1596`, `1597`, `1598`, `1599`, `1602`, `1604`, `1606`, `1608`, `1610`, `1611`, `1612`, `1613`, `1615`, `1617`, `1618`, `1620`, `1622`, `1623`, `1624`, `1625`, `1626`, `1629`, `1630`, `1632`, `1633`, `1634`, `1637`, `1639`, `65`, `1641`, `1643`, `1644`, `1646`, `1648`, `1649`, `1650`, `1651`, `1652`, `1654`, `1655`, `1658`, `1660`, `1661`, `1662`, `1663`, `1665`, `1666`, `1668`, `1669`, `1671`, `1672`, `1675`, `1676`, `1680`, `1681`, `1682`, `1684`, `1687`, `1689`, `1690`, `1691`, `1692`, `1693`, `1695`, `1696`, `1698`, `1699`, `1700`, `1702`, `1703`, `1704`, `1706`, `1707`, `1708`, `1709`, `1712`, `1715`, `1716`, `1719`, `1722`, `1724`, `1725`, `1726`, `1727`, `1729`, `1730`, `1731`, `1733`, `1736`, `1738`, `1739`, `1742`, `1745`, `1746`, `1747`, `1749`, `1750`, `1752`, `1753`, `1754`, `1757`, `1758`, `1761`, `1764`, `1765`, `1766`, `1767`, `1768`, `1769`, `1771`, `1772`, `1774`, `1776`, `1777`, `1780`, `1783`, `1784`, `1787`, `1789`, `1791`, `1792`, `1794`, `1797`, `1798`, `1800`, `1803`, `1804`, `1807`, `1808`, `1810`, `1812`, `1814`, `1815`, `1817`, `1819`, `1820`, `1822`, `1824`, `1825`, `1826`, `1827`, `1830`, `1832`, `1833`, `1836`, `1840`, `1843`, `1844`, `1846`, `1849`, `1851`, `1853`, `1854`, `1857`, `1859`, `1860`, `1861`, `1862`, `1863`, `1864`, `1865`, `1868`, `1869`, `1872`, `1873`, `1875`, `1877`, `1878`, `1879`, `1882`, `1884`, `1886`, `1888`, `1889`, `1892`, `1895`, `1898`, `1899`, `1901`, `1903`, `1904`, `1905`, `1907`, `1910`, `1912`, `1913`, `1914`, `1917`, `1919`, `1921`, `1924`, `1925`, `1926`, `1928`, `1931`, `1934`, `1936`, `1938`, `1939`, `1636`, `1942`, `1945`, `1947`, `1948`, `1949`, `1950`, `1952`, `1954`, `1956`, `1957`, `1959`, `1961`, `1963`, `1964`, `1965`, `1968`, `1969`, `1970`, `1971`, `1973`, `1974`, `1978`, `1980`, `1981`, `1983`, `1984`, `1987`, `1990`, `1991`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2001`, `2003`, `2004`, `2006`, `2008`, `2010` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.74 | | `TOKEN_P` | 99.73 | | `TOKEN_R` | 99.74 | | `TOKEN_ACC` | 99.95 | | `SENTS_F` | 97.57 | | `SENTS_P` | 97.35 | | `SENTS_R` | 97.78 | | `TAG_ACC` | 93.34 | | `POS_ACC` | 92.17 | | `MORPH_ACC` | 68.98 | | `DEP_UAS` | 83.61 | | `DEP_LAS` | 74.65 | | `LEMMA_ACC` | 89.81 |
{"language": ["ga"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/ga_udv25_irishidt_trf
null
[ "spacy", "token-classification", "ga", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ga" ]
TAGS #spacy #token-classification #ga #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_Irish-IDT ### Label Scheme View label scheme (1662 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (1662 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #ga #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (1662 labels for 6 components)", "### Accuracy" ]
token-classification
spacy
UD v2.5 benchmarking pipeline for UD_Croatian-SET | Feature | Description | | --- | --- | | **Name** | `hr_udv25_croatianset_trf` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (3855 labels for 6 components)</summary> | Component | Labels | | --- | --- | | **`experimental_char_ner_tokenizer`** | `TOKEN` | | **`senter`** | `I`, `S` | | **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmply`, `Agcmpny`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmpvy`, `Agpmsann`, `Agpmsany`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsdy`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmpvy`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsiy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsann`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsdn`, `Aspnsgn`, `Aspnsgy`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpl`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsl`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlomsv`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-d`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsn-n`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pg`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp2-sv`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpd`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, `Ps1fsv`, `Ps1mpa`, `Ps1mpd`, `Ps1mpg`, `Ps1mpi`, `Ps1mpl`, `Ps1mpn`, `Ps1mpv`, `Ps1msan`, `Ps1msay`, `Ps1msd`, `Ps1msg`, `Ps1msi`, `Ps1msl`, `Ps1msn`, `Ps1msv`, `Ps1npn`, `Ps1nsa`, `Ps1nsg`, `Ps1nsi`, `Ps1nsl`, `Ps1nsn`, `Ps2fpa`, `Ps2fpl`, `Ps2fpn`, `Ps2fsa`, `Ps2fsd`, `Ps2fsg`, `Ps2fsn`, `Ps2mpa`, `Ps2mpg`, `Ps2mpl`, `Ps2mpn`, `Ps2msan`, `Ps2msd`, `Ps2msg`, `Ps2msi`, `Ps2msl`, `Ps2msn`, `Ps2npn`, `Ps2nsa`, `Ps2nsg`, `Ps2nsi`, `Ps2nsl`, `Ps2nsn`, `Ps3fpa`, `Ps3fpg`, `Ps3fpl`, `Ps3fpn`, `Ps3fsa`, `Ps3fsd`, `Ps3fsg`, `Ps3fsi`, `Ps3fsl`, `Ps3fsn`, `Ps3mpa`, `Ps3mpd`, `Ps3mpg`, `Ps3mpi`, `Ps3mpl`, `Ps3mpn`, `Ps3msan`, `Ps3msay`, `Ps3msd`, `Ps3msg`, `Ps3msi`, `Ps3msl`, `Ps3msn`, `Ps3npa`, `Ps3npg`, `Ps3npl`, `Ps3npn`, `Ps3nsa`, `Ps3nsg`, `Ps3nsi`, `Ps3nsl`, `Ps3nsn`, `Px--sa`, `Px--sd`, `Px--sg`, `Px--si`, `Px--sl`, `Px-fpa`, `Px-fpg`, `Px-fpi`, `Px-fpl`, `Px-fsa`, `Px-fsd`, `Px-fsg`, `Px-fsi`, `Px-fsl`, `Px-mpa`, `Px-mpd`, `Px-mpg`, `Px-mpi`, `Px-mpl`, `Px-msan`, `Px-msay`, `Px-msd`, `Px-msg`, `Px-msi`, `Px-msl`, `Px-npa`, `Px-npg`, `Px-npi`, `Px-npl`, `Px-nsa`, `Px-nsg`, `Px-nsi`, `Px-nsl`, `Qo`, `Qq`, `Qr`, `Qz`, `Rgc`, `Rgp`, `Rgs`, `Rr`, `Sa`, `Sd`, `Sg`, `Si`, `Sl`, `Vaa1p`, `Vaa1s`, `Vaa2p`, `Vaa2s`, `Vaa3p`, `Vaa3s`, `Vae3s`, `Vam2p`, `Van`, `Vap-pf`, `Vap-pm`, `Vap-pn`, `Vap-sf`, `Vap-sm`, `Vap-sn`, `Var1p`, `Var1s`, `Var2p`, `Var2s`, `Var3p`, `Var3s`, `Vma3s`, `Vmm1p`, `Vmm2p`, `Vmm2s`, `Vmn`, `Vmp-pf`, `Vmp-pm`, `Vmp-pn`, `Vmp-sf`, `Vmp-sm`, `Vmp-sn`, `Vmr1p`, `Vmr1s`, `Vmr2p`, `Vmr2s`, `Vmr3p`, `Vmr3s`, `X`, `Xf`, `Y`, `Z` | | **`morphologizer`** | `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `NumType=Card\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=X`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `NumType=Ord\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=PART\|Polarity=Neg`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|POS=ADP`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=PART`, `Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADV\|Tense=Past\|VerbForm=Conv`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=DET\|Polarity=Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `NumType=Ord\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|POS=ADP`, `Degree=Sup\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `POS=ADV\|Tense=Pres\|VerbForm=Conv`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `NumType=Mult\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `NumType=Mult\|POS=SYM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=DET`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=DET`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Loc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=PROPN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Tot`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=INTJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PART\|Polarity=Pos`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=DET\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Gender=Neut\|Number=Sing\|POS=DET\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Voc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Animacy=Anim\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Neg`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `expl`, `expl:pv`, `fixed`, `flat`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `5`, `7`, `9`, `10`, `12`, `14`, `16`, `17`, `19`, `21`, `23`, `25`, `27`, `29`, `31`, `33`, `35`, `38`, `40`, `41`, `43`, `45`, `47`, `49`, `51`, `53`, `56`, `58`, `60`, `62`, `64`, `65`, `67`, `69`, `71`, `73`, `75`, `76`, `79`, `82`, `84`, `86`, `88`, `90`, `92`, `94`, `96`, `98`, `100`, `102`, `104`, `106`, `110`, `112`, `114`, `116`, `118`, `120`, `124`, `126`, `128`, `129`, `130`, `132`, `134`, `136`, `139`, `141`, `142`, `145`, `148`, `150`, `151`, `153`, `154`, `156`, `158`, `159`, `161`, `162`, `164`, `165`, `166`, `168`, `170`, `172`, `175`, `176`, `177`, `179`, `181`, `186`, `188`, `189`, `192`, `194`, `197`, `199`, `201`, `202`, `204`, `205`, `208`, `210`, `212`, `214`, `217`, `219`, `221`, `223`, `225`, `227`, `229`, `231`, `233`, `235`, `237`, `241`, `243`, `245`, `247`, `249`, `251`, `253`, `255`, `173`, `256`, `257`, `259`, `262`, `264`, `266`, `269`, `270`, `271`, `273`, `275`, `276`, `279`, `280`, `281`, `282`, `283`, `284`, `286`, `288`, `290`, `291`, `293`, `295`, `296`, `298`, `300`, `302`, `303`, `304`, `305`, `307`, `308`, `309`, `311`, `313`, `315`, `317`, `318`, `321`, `323`, `325`, `326`, `329`, `331`, `333`, `335`, `336`, `337`, `338`, `339`, `340`, `341`, `343`, `226`, `346`, `347`, `349`, `350`, `351`, `353`, `355`, `358`, `360`, `363`, `365`, `366`, `368`, `371`, `374`, `376`, `379`, `381`, `382`, `384`, `385`, `387`, `389`, `391`, `393`, `396`, `398`, `400`, `402`, `403`, `405`, `406`, `408`, `410`, `412`, `415`, `418`, `419`, `421`, `425`, `426`, `428`, `429`, `431`, `432`, `433`, `435`, `436`, `438`, `439`, `440`, `441`, `442`, `444`, `446`, `448`, `450`, `452`, `454`, `456`, `457`, `459`, `461`, `462`, `465`, `466`, `468`, `469`, `471`, `473`, `475`, `477`, `479`, `481`, `483`, `484`, `485`, `487`, `488`, `489`, `492`, `493`, `494`, `495`, `497`, `500`, `501`, `502`, `507`, `508`, `512`, `513`, `516`, `517`, `519`, `520`, `521`, `524`, `525`, `526`, `528`, `529`, `531`, `532`, `534`, `535`, `536`, `538`, `539`, `543`, `545`, `546`, `547`, `548`, `550`, `552`, `554`, `555`, `557`, `559`, `561`, `564`, `566`, `567`, `570`, `571`, `572`, `573`, `575`, `576`, `579`, `583`, `584`, `585`, `586`, `588`, `590`, `592`, `594`, `597`, `598`, `601`, `603`, `605`, `606`, `608`, `610`, `613`, `614`, `617`, `619`, `622`, `623`, `624`, `627`, `629`, `631`, `633`, `635`, `637`, `639`, `641`, `643`, `644`, `646`, `647`, `648`, `650`, `652`, `656`, `657`, `661`, `663`, `664`, `666`, `669`, `670`, `672`, `674`, `676`, `678`, `680`, `681`, `682`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `692`, `693`, `695`, `696`, `698`, `699`, `701`, `702`, `705`, `706`, `707`, `708`, `710`, `712`, `714`, `715`, `716`, `717`, `718`, `719`, `721`, `722`, `723`, `724`, `727`, `728`, `729`, `732`, `733`, `737`, `738`, `739`, `740`, `741`, `742`, `744`, `745`, `748`, `750`, `752`, `754`, `756`, `758`, `760`, `762`, `763`, `764`, `765`, `768`, `770`, `772`, `773`, `774`, `775`, `777`, `778`, `780`, `782`, `783`, `786`, `788`, `789`, `790`, `792`, `795`, `796`, `798`, `801`, `802`, `805`, `807`, `809`, `811`, `813`, `816`, `818`, `820`, `822`, `824`, `825`, `826`, `829`, `833`, `835`, `838`, `840`, `841`, `842`, `843`, `845`, `847`, `849`, `851`, `854`, `855`, `857`, `859`, `860`, `861`, `863`, `865`, `866`, `867`, `868`, `869`, `872`, `874`, `876`, `878`, `879`, `882`, `884`, `885`, `886`, `887`, `890`, `891`, `892`, `893`, `894`, `895`, `896`, `898`, `899`, `901`, `903`, `904`, `906`, `907`, `909`, `910`, `911`, `912`, `913`, `915`, `916`, `918`, `920`, `922`, `923`, `924`, `925`, `926`, `927`, `929`, `930`, `933`, `934`, `935`, `937`, `938`, `940`, `942`, `944`, `945`, `946`, `947`, `948`, `949`, `951`, `953`, `955`, `958`, `959`, `960`, `961`, `962`, `964`, `965`, `967`, `969`, `974`, `976`, `977`, `979`, `980`, `981`, `983`, `985`, `986`, `988`, `989`, `990`, `991`, `993`, `994`, `996`, `998`, `1001`, `1002`, `1004`, `1007`, `1008`, `1010`, `1011`, `1014`, `1015`, `1017`, `1018`, `383`, `1020`, `1021`, `1022`, `1023`, `1024`, `1025`, `1027`, `1030`, `1032`, `1033`, `1035`, `1037`, `1038`, `1039`, `1041`, `1043`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1051`, `1053`, `1055`, `1056`, `1059`, `1060`, `1063`, `1065`, `1066`, `1068`, `1069`, `1070`, `1072`, `1073`, `1074`, `1075`, `1077`, `1080`, `1081`, `1084`, `1085`, `1087`, `1089`, `1091`, `1092`, `1093`, `1094`, `1096`, `1097`, `1099`, `1101`, `1102`, `1103`, `1104`, `1105`, `1107`, `1109`, `1110`, `1113`, `1114`, `1115`, `1117`, `1118`, `1119`, `1120`, `1121`, `1122`, `1123`, `1124`, `1125`, `1126`, `1128`, `1131`, `1133`, `1134`, `1135`, `1137`, `1138`, `1140`, `1142`, `1143`, `1144`, `1146`, `1148`, `1149`, `1150`, `1151`, `1153`, `1154`, `1156`, `1158`, `1159`, `1160`, `1163`, `1165`, `1169`, `1172`, `1174`, `1177`, `1179`, `1181`, `1182`, `1184`, `1187`, `1189`, `1190`, `1193`, `1195`, `1196`, `1198`, `1199`, `1200`, `1203`, `1204`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1211`, `1213`, `1214`, `1215`, `1216`, `1217`, `1218`, `1220`, `1222`, `1223`, `1225`, `1229`, `1230`, `1232`, `1233`, `1237`, `1238`, `1239`, `1242`, `1243`, `1244`, `1246`, `1249`, `1250`, `1251`, `1252`, `1255`, `1256`, `1257`, `1260`, `1262`, `1264`, `1266`, `1268`, `1270`, `1272`, `1274`, `1276`, `1277`, `1278`, `1279`, `1281`, `1282`, `1283`, `1285`, `1288`, `1290`, `1292`, `1294`, `1296`, `1298`, `1299`, `1300`, `1302`, `1303`, `1304`, `1306`, `1307`, `1309`, `1311`, `1313`, `1314`, `1315`, `1316`, `1318`, `1319`, `1320`, `1321`, `1322`, `1323`, `1325`, `1326`, `1327`, `1329`, `1331`, `1333`, `1334`, `1335`, `1337`, `1338`, `1340`, `1341`, `1342`, `1343`, `1345`, `1346`, `1349`, `1351`, `1353`, `1355`, `1357`, `1358`, `1361`, `1362`, `1363`, `1364`, `1365`, `1366`, `1367`, `1368`, `1369`, `1372`, `1324`, `1373`, `1374`, `1375`, `1376`, `1378`, `1380`, `1382`, `1383`, `1386`, `1388`, `1390`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1398`, `1400`, `1401`, `1403`, `1404`, `1406`, `1407`, `1410`, `1411`, `1412`, `1416`, `1418`, `1419`, `1421`, `1422`, `1423`, `1425`, `1426`, `1427`, `1430`, `1431`, `1433`, `1434`, `1435`, `1436`, `1437`, `1438`, `1439`, `1441`, `1442`, `1443`, `1444`, `1445`, `1447`, `1448`, `1451`, `1452`, `1453`, `1454`, `1456`, `1457`, `1458`, `1460`, `1461`, `1463`, `1464`, `1467`, `1469`, `1471`, `1473`, `1475`, `1476`, `1478`, `1479`, `1480`, `1482`, `1484`, `1485`, `1488`, `1489`, `1490`, `1491`, `1494`, `1495`, `1496`, `1498`, `1499`, `1501`, `1503`, `1506`, `1507`, `1508`, `1510`, `1512`, `1514`, `1516`, `1519`, `1520`, `1523`, `1524`, `1526`, `1527`, `1528`, `1529`, `1530`, `1531`, `1532`, `1533`, `1534`, `1536`, `1537`, `1538`, `1540`, `1541`, `1542`, `1543`, `1544`, `1545`, `1546`, `1549`, `1550`, `1552`, `1553`, `1554`, `1556`, `1557`, `1558`, `1559`, `1560`, `1561`, `1562`, `1564`, `1566`, `1568`, `1569`, `1570`, `1573`, `1575`, `1577`, `1578`, `1579`, `1581`, `1582`, `1583`, `1584`, `1585`, `1587`, `1589`, `1591`, `1592`, `1593`, `1595`, `1597`, `1599`, `1601`, `1603`, `1605`, `1606`, `1608`, `1609`, `1611`, `1612`, `1613`, `1614`, `1615`, `1616`, `1617`, `1618`, `1620`, `1623`, `1624`, `1625`, `1627`, `1629`, `1630`, `1631`, `1632`, `1633`, `1635`, `1637`, `1640`, `1641`, `1642`, `1643`, `1644`, `1645`, `1647`, `1648`, `1650`, `1651`, `1652`, `1653`, `1654`, `1655`, `1657`, `1658`, `1659`, `1660`, `1661`, `1663`, `1666`, `1667`, `1668`, `1669`, `1670`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1677`, `1679`, `1680`, `1683`, `1685`, `1686`, `160`, `1687`, `1689`, `1691`, `1693`, `1694`, `1695`, `1696`, `1697`, `1698`, `1699`, `1700`, `1702`, `1704`, `1705`, `1707`, `1708`, `1709`, `1710`, `1712`, `1713`, `1714`, `1716`, `1718`, `1720`, `1722`, `1724`, `1725`, `1726`, `1417`, `1727`, `1728`, `1729`, `1730`, `1732`, `1734`, `1735`, `1736`, `1738`, `1740`, `1741`, `1743`, `1744`, `1745`, `1747`, `1749`, `1752`, `1754`, `1756`, `1759`, `1761`, `1764`, `1766`, `1768`, `1770`, `1772`, `1774`, `1775`, `1776`, `1778`, `1779`, `1781`, `1783`, `1784`, `1786`, `1788`, `1789`, `1790`, `1792`, `1794`, `1795`, `1797`, `1798`, `1799`, `1801`, `1802`, `1805`, `1807`, `1809`, `1810`, `1811`, `1812`, `1814`, `1815`, `1816`, `1818`, `1819`, `1820`, `1821`, `1823`, `1824`, `1825`, `1826`, `1827`, `1828`, `1829`, `1831`, `1833`, `1834`, `1836`, `1838`, `1839`, `1841`, `1842`, `1845`, `1847`, `1850`, `1851`, `1853`, `1854`, `1856`, `1857`, `1858`, `1860`, `1861`, `1862`, `1864`, `1865`, `1866`, `1867`, `1869`, `1870`, `1871`, `1872`, `1873`, `1875`, `1878`, `1879`, `1880`, `1881`, `1883`, `1885`, `1886`, `1888`, `1890`, `1891`, `1892`, `1893`, `1894`, `1895`, `1896`, `1898`, `1900`, `1901`, `1908`, `1910`, `1911`, `1912`, `1913`, `1915`, `1916`, `1917`, `1919`, `1920`, `1921`, `1922`, `1924`, `1925`, `1926`, `1927`, `1928`, `1930`, `1931`, `1932`, `1934`, `1935`, `1936`, `1937`, `1938`, `1939`, `1941`, `1942`, `1944`, `542`, `1946`, `1947`, `1949`, `1951`, `1952`, `1953`, `1954`, `1955`, `1957`, `1959`, `1960`, `1963`, `1964`, `1965`, `1966`, `1967`, `1969`, `1971`, `1973`, `1974`, `1975`, `1977`, `1979`, `1981`, `1982`, `1984`, `1985`, `1986`, `1988`, `1989`, `1990`, `1991`, `1993`, `1994`, `1996`, `1998`, `1999`, `2000`, `2001`, `2003`, `2005`, `2006`, `2007`, `2009`, `2010`, `2012`, `2013`, `314`, `2015`, `2016`, `2017`, `2019`, `2021`, `2023`, `2025`, `2026`, `2028`, `2029`, `2031`, `2034`, `2036`, `2038`, `2039`, `2041`, `1565`, `2043`, `2045`, `2046`, `2047`, `2049`, `2051`, `2053`, `2054`, `2055`, `2057`, `2059`, `2060`, `2062`, `2064`, `2065`, `2067`, `2068`, `2070`, `2071`, `2072`, `2073`, `2074`, `2075`, `2078`, `2079`, `2080`, `2082`, `2085`, `2086`, `2089`, `2091`, `2092`, `2096`, `2098`, `2100`, `2102`, `2103`, `2104`, `2105`, `2106`, `2109`, `2110`, `2112`, `133`, `2113`, `2115`, `2117`, `2120`, `2121`, `2122`, `2126`, `2127`, `2129`, `2130`, `2132`, `2134`, `2135`, `2137`, `2138`, `2139`, `2141`, `2143`, `2145`, `2147`, `2148`, `2149`, `2151`, `2152`, `2154`, `1976`, `2156`, `2157`, `2158`, `2159`, `2160`, `2161`, `2162`, `2163`, `2164`, `2165`, `2168`, `2170`, `2171`, `2173`, `2174`, `2177`, `2178`, `2180`, `2181`, `2184`, `2188`, `2189`, `2190`, `2191`, `2192`, `2194`, `2195`, `2196`, `2197`, `2198`, `2199`, `2200`, `2201`, `2204`, `2207`, `2208`, `2211`, `2213`, `2214`, `2215`, `2216`, `2218`, `2221`, `2222`, `2223`, `2225`, `2227`, `2229`, `2231`, `2232`, `2233`, `2235`, `2236`, `2237`, `2238`, `2239`, `2240`, `2241`, `2243`, `2245`, `2247`, `2249`, `2250`, `2252`, `2254`, `2256`, `2258`, `2259`, `2261`, `2264`, `2266`, `2268`, `2269`, `2270`, `2272`, `2273`, `2275`, `2276`, `2277`, `2279`, `2281`, `2283`, `2284`, `2286`, `2287`, `2289`, `2291`, `2292`, `2293`, `2295`, `2296`, `2297`, `2299`, `2300`, `2302`, `2305`, `2306`, `2307`, `2308`, `2309`, `2310`, `2311`, `2312`, `2314`, `2315`, `2316`, `2318`, `2319`, `2320`, `2321`, `2322`, `2324`, `2326`, `2327`, `2328`, `2330`, `2331`, `2332`, `2334`, `2336`, `2339`, `2340`, `2341`, `2343`, `2344`, `2346`, `2348`, `2350`, `2352`, `2355`, `2356`, `2357`, `2358`, `2361`, `2363`, `2365`, `2367`, `2369`, `2370`, `2371`, `2374`, `2375`, `2376`, `2377`, `2378`, `2380`, `2381`, `2382`, `2383`, `2384`, `2386`, `2387`, `2390`, `2392`, `2395`, `2396`, `2399`, `2401`, `2403`, `2404`, `2405`, `2406`, `2407`, `2408`, `2409`, `2410`, `2412`, `2413`, `2416`, `2417`, `2418`, `2419`, `2420`, `2423`, `2424`, `2426`, `2428`, `2429`, `2430`, `2431`, `2432`, `2433`, `2435`, `2436`, `2437`, `2440`, `2441`, `2442`, `2443`, `2447`, `2448`, `2450`, `2451`, `2452`, `2454`, `2458`, `2460`, `2461`, `2463`, `2465`, `2467`, `2471`, `2473`, `2475`, `2477`, `2479`, `2481`, `2482`, `2484`, `2485`, `2487`, `2488`, `2490`, `2491`, `2493`, `2495`, `2496`, `2497`, `2498`, `2499`, `2500`, `2501`, `2502`, `2505`, `2506`, `2507`, `2509`, `2511`, `2513`, `2515`, `2516`, `2517`, `2519`, `2520`, `2522`, `2524`, `2525`, `2526`, `2527`, `2528`, `2530`, `2532`, `2534`, `2535`, `2537`, `2538`, `2539`, `2541`, `2542`, `2544`, `2545`, `2547`, `2548`, `2549`, `2550`, `2552`, `2553`, `2554`, `2556`, `2557`, `2558`, `2560`, `2562`, `2564`, `2566`, `2567`, `2569`, `2570`, `2571`, `2572`, `2573`, `2575`, `2576`, `2578`, `2579`, `2581`, `2583`, `2586`, `2588`, `2589`, `2590`, `2591`, `2592`, `2593`, `2594`, `2596`, `2598`, `2599`, `2601`, `2602`, `2604`, `2606`, `2607`, `2608`, `2609`, `2613`, `2615`, `2617`, `2619`, `2620`, `2621`, `2622`, `2623`, `2624`, `2626`, `2627`, `2628`, `2629`, `2630`, `2631`, `2632`, `2633`, `2634`, `2635`, `2637`, `2638`, `2639`, `2641`, `2643`, `2645`, `2647`, `2648`, `2649`, `2650`, `2652`, `2653`, `2654`, `2656`, `2657`, `2658`, `2659`, `2660`, `2662`, `2663`, `2665`, `2667`, `2669`, `2670`, `2672`, `2673`, `2675`, `2677`, `2678`, `2679`, `2680`, `2682`, `2684`, `2686`, `2687`, `2689`, `2692`, `2694`, `2696`, `2697`, `2698`, `2699`, `2700`, `2701`, `2703`, `2705`, `2707`, `2708`, `2709`, `2711`, `2713`, `2714`, `2716`, `2719`, `2720`, `2722`, `2723`, `2724`, `2725`, `2727`, `2728`, `2729`, `2732`, `574`, `2733`, `2734`, `2735`, `2736`, `2737`, `2738`, `2739`, `2740`, `2742`, `2743`, `2744`, `2746`, `2747`, `2748`, `2750`, `2751`, `2753`, `2755`, `2756`, `2757`, `2758`, `2759`, `2760`, `2762`, `2763`, `2765`, `2766`, `2767`, `2770`, `2773`, `2775`, `2777`, `2779`, `2780`, `2782`, `2783`, `2784`, `2786`, `2787`, `2788`, `2789`, `2790`, `2791`, `2793`, `2794`, `2795`, `2796`, `2797`, `2799`, `2800`, `2801`, `2802`, `2804`, `2806`, `2807`, `2808`, `2810`, `2811`, `2813`, `2814`, `2816`, `2817`, `2819`, `2820`, `2821`, `2823`, `2824`, `2825`, `2826`, `2827`, `2828`, `2829`, `2830`, `2832`, `2834`, `2836`, `248`, `2837`, `2838`, `2839`, `2841`, `2843`, `2845`, `2847`, `2849`, `2851`, `2853`, `2855`, `2856`, `2858`, `2859`, `2860`, `2861`, `2863`, `2864`, `2866`, `2867`, `2868`, `2869`, `2871`, `2873`, `2874`, `2875`, `2878`, `2879`, `2880`, `2881`, `2882`, `2883`, `2885`, `2886`, `2889`, `2892`, `2894`, `2895`, `2897`, `2899`, `2900`, `2902`, `0`, `2903`, `2904`, `2905`, `2906`, `2907`, `74`, `2908`, `2910`, `2912`, `2914`, `2915`, `2916`, `2917`, `2919`, `2920`, `2922`, `2925`, `2926`, `2929`, `2931`, `2933`, `2934`, `2935`, `2937`, `2938`, `2939`, `2940`, `2942`, `2943`, `2944`, `2946`, `2948`, `2949`, `2951`, `2952`, `2953`, `2954`, `2955`, `2958`, `2960`, `2961`, `2962`, `2964`, `2965`, `2967`, `2968`, `2969`, `2970`, `2971`, `2972`, `2973`, `2976`, `2977`, `2978`, `2979`, `2981`, `2983`, `2985`, `2987`, `2989`, `2991`, `2992`, `2993`, `2994`, `2995`, `2996`, `2998`, `2999`, `3001`, `3003`, `3004`, `3007`, `3009`, `3011`, `3012`, `3013`, `3014`, `3016`, `3018`, `3020`, `3021`, `3022`, `3024`, `3026`, `3027`, `3029`, `3030`, `3031`, `3033`, `3034`, `3036`, `3038`, `3039`, `3041`, `3043`, `3044`, `3046`, `3047`, `3048`, `3050`, `3051`, `3052`, `3053`, `3055`, `3057`, `3058`, `3061`, `3063`, `3064`, `3065`, `3066`, `3067`, `3068`, `3069`, `3070`, `3072`, `3074`, `3075`, `3077`, `3078`, `3079`, `3080`, `3081`, `3082`, `3083`, `3084`, `3085`, `3086`, `3088`, `3090`, `3091`, `3092`, `3094`, `3095`, `3096`, `3097`, `3099`, `3100`, `3101`, `3102`, `3103`, `3104`, `3105`, `3106`, `3107`, `3108`, `3110`, `3111`, `3112`, `3114`, `3115`, `3116`, `3117`, `3118`, `3119`, `3120`, `3122`, `3124`, `3126`, `3128`, `3129`, `3131`, `3132`, `3133`, `3135`, `3136`, `3138`, `3139`, `3141`, `3143`, `3145`, `3146`, `3147`, `3148`, `3150`, `3153`, `3154`, `3155`, `3156`, `3157`, `3158`, `3159`, `3161`, `3162`, `3164`, `3165`, `3167`, `3168`, `3169`, `3171`, `3172`, `3173`, `3174`, `3175`, `3177`, `3178`, `3179`, `3180`, `3181`, `3182`, `3183`, `3185`, `2764`, `3188`, `3190`, `3191`, `3193`, `3195`, `3196`, `3197`, `3198`, `3199`, `3200`, `3202`, `13`, `3205`, `3206`, `3208`, `3209`, `3210`, `3212`, `3213`, `3214`, `3215`, `3216`, `3217`, `3219`, `3220`, `3222`, `3224`, `3225`, `3227`, `3228`, `3229`, `3230`, `3231`, `3232`, `3233`, `3235`, `3236`, `3237`, `3238`, `3240`, `3242`, `3243`, `3244`, `3245`, `3246`, `3248`, `3249`, `3250`, `3253`, `3254`, `3256`, `3257`, `3258`, `3259`, `3262`, `3263`, `3264`, `3265`, `3266`, `3267`, `3268`, `3269`, `3271`, `3273`, `3274`, `3275`, `3276`, `3277`, `3278`, `3279`, `3280`, `3281`, `3282`, `3284`, `3286`, `3287`, `3289`, `3290`, `3292`, `3293`, `3295`, `3296`, `3297`, `3298`, `3300`, `3302`, `3303`, `3304`, `3306`, `3308`, `3310`, `3311`, `3312`, `3314`, `3316`, `3317`, `3318`, `3320`, `3321`, `3323`, `3324`, `3327`, `3329`, `3330`, `3332`, `3333`, `3336`, `3338`, `3341`, `3343`, `3345`, `3347`, `3348`, `3350`, `3351`, `3353`, `3354`, `3355`, `3356`, `3358`, `3359`, `3360`, `3363`, `3364`, `649`, `3366`, `3368`, `3369`, `3371`, `3372`, `3373`, `3375`, `3377`, `3378`, `3380`, `3382`, `3384`, `3385`, `3387`, `3388`, `3391`, `3393`, `3394`, `3395`, `3396`, `3397`, `3398`, `3399`, `3401`, `3402`, `3403`, `3404`, `3405`, `3406`, `3407`, `3408`, `3409`, `3410`, `3412`, `3413`, `3415`, `3416`, `3417`, `3420`, `3421`, `3423`, `3424`, `3425`, `3426`, `3427`, `3428`, `3430`, `3431`, `3433`, `3434`, `3435`, `3437`, `3439`, `3440`, `3442`, `3444`, `3445`, `3446`, `3447`, `3449`, `3451`, `3452`, `3453`, `3456`, `3457`, `3458`, `3459`, `3460`, `85`, `3461`, `3463`, `3464`, `3465`, `3467`, `3469`, `3471`, `3473`, `3475`, `3477`, `3478`, `3480`, `3481`, `3482`, `3483`, `3484`, `3485`, `3486`, `3487`, `3489`, `3491`, `3494`, `3496`, `3497`, `3498`, `3499`, `3501`, `3502`, `3504`, `3505`, `3506`, `3508`, `3509`, `3510`, `3512`, `3513`, `3517`, `3518`, `3519`, `3520`, `3521`, `3522`, `3524`, `3525`, `3526`, `3527`, `3529`, `3532`, `3533`, `3535`, `3536`, `3537`, `3539`, `3541`, `3542`, `3543` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_F` | 99.97 | | `TOKEN_P` | 99.97 | | `TOKEN_R` | 99.96 | | `TOKEN_ACC` | 99.99 | | `SENTS_F` | 98.90 | | `SENTS_P` | 99.06 | | `SENTS_R` | 98.75 | | `TAG_ACC` | 96.40 | | `POS_ACC` | 98.50 | | `MORPH_ACC` | 96.78 | | `DEP_UAS` | 92.41 | | `DEP_LAS` | 87.03 | | `LEMMA_ACC` | 96.35 |
{"language": ["hr"], "license": "cc-by-sa-4.0", "tags": ["spacy", "token-classification"]}
explosion/hr_udv25_croatianset_trf
null
[ "spacy", "token-classification", "hr", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hr" ]
TAGS #spacy #token-classification #hr #license-cc-by-sa-4.0 #model-index #region-us
UD v2.5 benchmarking pipeline for UD\_Croatian-SET ### Label Scheme View label scheme (3855 labels for 6 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (3855 labels for 6 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #hr #license-cc-by-sa-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (3855 labels for 6 components)", "### Accuracy" ]