Serial Number
int64
1
6k
Issue Number
int64
75.6k
112k
Title
stringlengths
3
357
Labels
stringlengths
3
241
โŒ€
Body
stringlengths
9
74.5k
โŒ€
Comments
int64
0
867
1,601
106,851
RPC all_gather doesn't work with dynamic world size (world_size=None)
oncall: distributed, module: rpc
### ๐Ÿ› Describe the bug The `rpc.api._all_gather(obj)` function doesn't work when the rpc cluster is initialized with `world_size=None`. Here is a test code that can reproduce the problem: ```python import torch.distributed.rpc as rpc import time import multiprocessing as mp import torch import os os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '11111' def worker(rank): rpc.init_rpc( name=f'worker_{rank}', rank=rank, ) print(f'rank {rank} initialized') time.sleep(1) print(rpc.api._all_gather(torch.cuda.device_count())) if rank == 0: time.sleep(1) rpc.shutdown() print(f'rank {rank} exited') if __name__ == '__main__': ranks = [0, 1, 2, 3] for rank in ranks: process = mp.Process(target=worker, args=(rank, )) process.start() ``` Output: ``` rank 0 initialized rank 1 initialized rank 2 initialized rank 3 initialized {'worker_0': 4} [W tensorpipe_agent.cpp:726] RPC agent for worker_1 encountered error when reading incoming request from worker_0: eof (this error originated at tensorpipe/transport/shm/connection_impl.cc:259) [W tensorpipe_agent.cpp:726] RPC agent for worker_2 encountered error when reading incoming request from worker_0: eof (this error originated at tensorpipe/transport/shm/connection_impl.cc:259) [W tensorpipe_agent.cpp:726] RPC agent for worker_3 encountered error when reading incoming request from worker_0: eof (this error originated at tensorpipe/transport/shm/connection_impl.cc:259) rank 0 exited ``` `Rank 0` only collects its own device count, the other ranks throw the `eof` error and doesn't exit. Specifying the `world_size` as `4` makes the code behave as expected. ### Versions PyTorch version: 1.13.0+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.8.10 (default, Mar 13 2023, 10:26:41) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.29 Is CUDA available: True CUDA runtime version: 11.6.124 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A10 GPU 1: NVIDIA A10 GPU 2: NVIDIA A10 GPU 3: NVIDIA A10 Nvidia driver version: 535.54.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz Stepping: 6 CPU MHz: 2899.998 BogoMIPS: 5799.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 3 MiB L1i cache: 2 MiB L2 cache: 80 MiB L3 cache: 96 MiB NUMA node0 CPU(s): 0-63 NUMA node1 CPU(s): 64-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid arch_capabilities cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @pietern @jjlilley @mrzzd
0
1,602
106,846
untimeError: The following operation failed in the TorchScript interpreter. Traceback of TorchScript (most recent call last): RuntimeError: nvrtc: error: invalid value for --gpu-architecture (-arch)
needs reproduction, oncall: jit
### ๐Ÿ› Describe the bug pos[:2] += torch_rand_float(-1., 1., (2, 1), device=self.device).squeeze(1) untimeError: The following operation failed in the TorchScript interpreter. Traceback of TorchScript (most recent call last): RuntimeError: nvrtc: error: invalid value for --gpu-architecture (-arch) ### Versions ubuntu:20.04: NVIDIA GeForce RTX 4060 Ti cuda :11.3 - torch==1.10.0+cu113 - torchvision==0.11.1+cu113 - torchaudio==0.10.0+cu113 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,603
106,845
`1/torch.inf` produce inconsistent results
module: numerical-stability, triaged, module: complex, module: type promotion, module: edge cases
### ๐Ÿ› Describe the bug ```Python import torch def hf0(m, n): x0 = torch.ones(m,n,dtype=torch.complex128) x1 = torch.ones(m,n,dtype=torch.float64) x1[0,0] = torch.inf print(x0/x1) hf0(1, 2) # tensor([[0.+0.j, 1.+0.j]], dtype=torch.complex128) hf0(2, 2) # tensor([[nan+nanj, 1.+0.j], # [1.+0.j, 1.+0.j]], dtype=torch.complex128) ``` the following environments are tested | environment | results | | :-: | :-: | | ubuntu 22.04 | `[0,1], [[nan,1],[1,1]]` | | mac m1 silicon | `[0,1], [[0,1],[1,1]]` | | google colab [link](https://colab.research.google.com/drive/1K30lY7zLvbrQ5Jl5lvNvWpF6cpQPNgcy?usp=sharing) | `[0,1], [[nan,1],[1,1]]` | ### Versions Collecting environment information... PyTorch version: 2.0.0.post200 Is debug build: False CUDA used to build PyTorch: 11.2 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-6.2.0-26-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 535.86.10 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.3 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 5800H with Radeon Graphics CPU family: 25 Model: 80 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 4462.5000 CPU min MHz: 1200.0000 BogoMIPS: 6387.93 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 4 MiB (8 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.0.0.post200 [pip3] torchvision==0.15.2a0+072ec57 [conda] cudatoolkit 11.8.0 h4ba93d1_12 conda-forge [conda] libmagma 2.7.1 hc72dce7_3 conda-forge [conda] libmagma_sparse 2.7.1 hc72dce7_4 conda-forge [conda] magma 2.7.1 ha770c72_4 conda-forge [conda] mkl 2022.2.1 h84fe81f_16997 conda-forge [conda] numpy 1.25.1 py310ha4c1d20_0 conda-forge [conda] pytorch 2.0.0 cuda112py310he33e0d6_200 conda-forge [conda] torchvision 0.15.2 cuda112py310h0801bf5_1 conda-forge cc @ezyang @anjali411 @dylanbespalko @mruberry @Lezcano @nikitaved @nairbv
4
1,604
106,837
Multiprocess DataLoader doesn't work with sparse tensor as it'll try to access the underlying storage
module: sparse, module: dataloader, triaged
### ๐Ÿ› Describe the bug # Summary When using `DataLoader` with multiprocess loading to load a dataset with sparse tensor elements, it'll try to access the underlying storage of the tensor, but sparse tensor (COO, CSF etc) doesn't support accessing storage. I've put the **minimal reproduction sample** in this colab notebook: https://colab.research.google.com/drive/16q_tzyUz5ylZSCcpzhJ52pxVSUpMZX-M#scrollTo=o0KeaWnVz9Hm&uniqifier=1 ## Case 1: default collation When using default collate (auto_collate=True [here](https://github.com/pytorch/pytorch/blob/v2.0.1/torch/utils/data/dataloader.py#L366)), to collate on a sparse tensor, it'll attempt to access the `elem._typed_storage` [here](https://github.com/pytorch/pytorch/blob/v2.0.1/torch/utils/data/_utils/collate.py#L160), thus hitting error: ``` NotImplementedError: Caught NotImplementedError in DataLoader worker process 0. Original Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop data = fetcher.fetch(index) File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py", line 54, in fetch return self.collate_fn(data) File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/collate.py", line 265, in default_collate return collate(batch, collate_fn_map=default_collate_fn_map) File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/collate.py", line 119, in collate return collate_fn_map[elem_type](batch, collate_fn_map=collate_fn_map) File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/collate.py", line 160, in collate_tensor_fn storage = elem._typed_storage()._new_shared(numel, device=elem.device) File "/usr/local/lib/python3.10/dist-packages/torch/_tensor.py", line 238, in _typed_storage untyped_storage = self.untyped_storage() NotImplementedError: Cannot access storage of SparseTensorImpl ``` ## Case 2: Manual collation Without auto collation, (set `batch_size=None` so that it'll use `default_convert` method, OR provide a `collate_fn`) we get around the issue in default_collate in case 1; But later on when the worker process is feeding into the `worker_result_queue` the loaded data, it'll again attemp to access the underlying storage, thus hitting ``` Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/torch/multiprocessing/reductions.py", line 152, in reduce_tensor storage = tensor._typed_storage() File "/usr/lib/python3.10/multiprocessing/queues.py", line 244, in _feed obj = _ForkingPickler.dumps(obj) File "/usr/lib/python3.10/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) File "/usr/local/lib/python3.10/dist-packages/torch/_tensor.py", line 238, in _typed_storage untyped_storage = self.untyped_storage() NotImplementedError: Cannot access storage of SparseTensorImpl Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/queues.py", line 244, in _feed obj = _ForkingPickler.dumps(obj) File "/usr/lib/python3.10/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) File "/usr/local/lib/python3.10/dist-packages/torch/multiprocessing/reductions.py", line 152, in reduce_tensor storage = tensor._typed_storage() File "/usr/local/lib/python3.10/dist-packages/torch/_tensor.py", line 238, in _typed_storage untyped_storage = self.untyped_storage() NotImplementedError: Cannot access storage of SparseTensorImpl ``` So that anyway we cannot do multiprocess loading with sparse tensor. ### Versions ``` PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.25.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.109+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] Could not collect ``` cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @SsnL @VitalyFedyunin @ejguan @dzhulgakov
3
1,605
106,833
Fix warning in CUDAJitLoops.cuh
fb-exported, Stale, release notes: cuda
Differential Revision: D48173306
3
1,606
106,828
Use expect tests for error inputs
triaged, better-engineering, module: testing
### ๐Ÿ› Describe the bug If I change an error message, it shouldn't be necessary to go manually update every single error input for the new format. This is exactly what expect tests are designed to do. Example of this in practice: https://github.com/pytorch/pytorch/pull/106788 ### Versions master
1
1,607
106,826
Ablate TORCH_CUDA_ARCH_LIST from torchaudio install
Stale, ciflow/trunk, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106826 Signed-off-by: Edward Z. Yang <ezyang@meta.com>
6
1,608
106,820
Simplify TypeIndex.h
fb-exported, Stale
Differential Revision: D48164249
4
1,609
106,816
Broadcasting semantics notes
Stale
When a tensor has a dimension size 0, the resulting size is 0. Add an example for that. This is consistent with numpy: ``` >>> np.add(np.zeros([1, 0]), torch.ones([1, 1, 1])) tensor([], size=(1, 1, 0), dtype=torch.float64) ``` Fixes #ISSUE_NUMBER
3
1,610
106,815
Please verify 1.14.1 ONNX release candidate on TestPyPI
module: onnx, triaged, module: infra
### ๐Ÿš€ The feature, motivation and pitch Hi ONNX partner, We have released TestPyPI packages of ONNX 1.14.1: https://test.pypi.org/project/onnx/1.14.1rc1/ (ONNX 1.14.1rc1 is the latest version number for testing now). Please verify it and let us know about any problems. Thank you for your help! ### Alternatives _No response_ ### Additional context _No response_
1
1,611
106,813
[MPS] Make several ops unranked to avoid graph recompilation
triaged, open source, module: mps, release notes: mps, ciflow/mps
- Made `bmm`, `cat`, `softmax`, `copy_cast` and `index_select` unranked. This improves the performance of LLMs and other networks, because these graphs would be invariant to shape changes, and therefore, they won't recompile. - Binary ops: Flatten tensors bigger than 4D to 1D, and reuse existing buffer for in-place operations (for offset 0). - Cache the `MPSGraphExecutable` in `MPSCachedGraph`. These executables have the typeInference disabled which should help with recompilation issues on MPSGraph. - Handle transposes in second batch of matrices in `bmm`. This helps with performance in case the second batch (i.e., `other` argument) was transposed (like the case with `QxK.t()` in Transformers). cc @kulinseth @albanD @malfet @DenisVieriu97 @abhudev
3
1,612
106,802
Optimizers should use learning rates passed as tensors directly
module: optimizer, triaged, actionable, module: dynamic shapes
### ๐Ÿš€ The feature, motivation and pitch If you pass a tensor as the learning rate when constructing an optimizer, it works, but internally it does an item() on every step, which breaks graph capture and triggers synchronization warnings if you have them enabled. It would be nice if the optimizers (maybe just the fused versions?) directly used the tensor, because then you could adjust learning rate every step while using CUDA graphs. I wind up forcing graph rebuilds every 1000 steps or so when I want to dynamically change learning rates. ### Alternatives _No response_ ### Additional context _No response_ cc @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar @ezyang
9
1,613
106,801
Timer benchmark stores only one time value, and therefore has broken mean/median/etc metrics
triaged, module: benchmark
### ๐Ÿ› Describe the bug Here is a simple code to reproduce the error: ``` import torch import torchvision import torch.utils.benchmark as benchmark if __name__ == '__main__': net = torchvision.models.resnet18().cuda() data = torch.rand((1, 3, 224, 224), device='cuda') net.eval() with torch.inference_mode(): timer = benchmark.Timer(stmt='net(data)', num_threads=1, globals={'net': net, 'data': data}) measurement = timer.timeit(number=10) print(measurement.raw_times, measurement.median, measurement.mean, measurement.iqr) ``` This should display a list of 10 values, different median and mean and non-zero iqr. However, I get this: ``` [0.05537769995862618] 0.005537769995862618 0.005537769995862618 0.0 ``` This means that only one value is stored, which not only prevents me doing what I wanted (i.e. get all the raw values and plot them on a graph), but also explains the broken behavior of the metrics (same mean and median, null iqr...). I looked up the source code a bit, in torch/utils/benchmark/utils/timer.py, and found that: ``` def _timeit(self, number: int) -> float: # Even calling a timer in C++ takes ~50 ns, so no real operation should # take less than 1 ns. (And this prevents divide by zero errors.) return max(self._timer.timeit(number), 1e-9) def timeit(self, number: int = 1000000) -> common.Measurement: """Mirrors the semantics of timeit.Timer.timeit(). Execute the main statement (`stmt`) `number` times. https://docs.python.org/3/library/timeit.html#timeit.Timer.timeit """ with common.set_torch_threads(self._task_spec.num_threads): # Warmup self._timeit(number=max(int(number // 100), 2)) return common.Measurement( number_per_run=number, raw_times=[self._timeit(number=number)], task_spec=self._task_spec ) ``` And, if I understand well, it means that, by definition, only one value will ever be stored. I don't think this is the intended behavior at all, and therefore suggest either to fix the source code, or to update the documentation to make it clearer how it actually behaves. ### Versions Collecting environment information... PyTorch version: 2.1.0.dev20230726+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Famille GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.11.4 (tags/v3.11.4:d2340ef, Jun 7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 12.2.91 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1050 Nvidia driver version: 536.25 cuDNN version: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\bin\cudnn_ops_train64_8.dll HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Revision= Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.1.0.dev20230726+cu121 [pip3] torchaudio==2.1.0.dev20230727+cu121 [pip3] torchinfo==1.8.0 [pip3] torchvision==0.16.0.dev20230727+cu121 [conda] Could not collect
4
1,614
106,796
DISABLED test_conversions_all_patterns_backend_cutlass_cuda_float16 (__main__.TestSparseSemiStructuredCUDA)
module: sparse, triaged, module: flaky-tests, skipped
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_conversions_all_patterns_backend_cutlass_cuda_float16&suite=TestSparseSemiStructuredCUDA) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/15706109496). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_conversions_all_patterns_backend_cutlass_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_sparse_semi_structured.py` cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer
33
1,615
106,794
DISABLED test_linear_inference_mode_False_backend_cutlass_cuda (__main__.TestSparseSemiStructuredCUDA)
module: sparse, triaged, module: flaky-tests, skipped
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_linear_inference_mode_False_backend_cutlass_cuda&suite=TestSparseSemiStructuredCUDA) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/15706109496). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_linear_inference_mode_False_backend_cutlass_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_sparse_semi_structured.py` cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer
9
1,616
106,793
DISABLED test_conversions_all_patterns_backend_cutlass_cuda_bfloat16 (__main__.TestSparseSemiStructuredCUDA)
module: sparse, triaged, module: flaky-tests, skipped
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_conversions_all_patterns_backend_cutlass_cuda_bfloat16&suite=TestSparseSemiStructuredCUDA) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/15706109496). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_conversions_all_patterns_backend_cutlass_cuda_bfloat16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_sparse_semi_structured.py` cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer
33
1,617
106,789
Fix prod double backward when there are 2+ zeros
triaged
### ๐Ÿ› Describe the bug When there are two or more zeros, prod's gradient does not require grad. This is equivalent to saying that the double backwards is 0, i.e. there are no gradients to be computed. However, this is wrong; the double backwards should not be zero. ``` import torch x = torch.tensor([2., 3, 0, 0], requires_grad=True) y = torch.prod(x) gx, = torch.autograd.grad(y.sum(), x, create_graph=True) ``` ### Versions main
0
1,618
106,785
Binary op support for (B, *, D) NT with (B, 1, 1) dense
null
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106785 * #106786 Provides a CUDA kernel based on the existing ESUHM kernel for binary op computation between `(B, *, D)` NT and `(B, 1, 1)` dense, broadcasting over both the * and D dims. This is needed for [image preprocessing in SAM](https://github.com/facebookresearch/segment-anything/blob/6fdee8f2727f4506cfbbe553e23b895e27956588/segment_anything/modeling/sam.py#L167).
1
1,619
106,784
[ux] Suppot torch.tensor(set([1,2,3]))
triaged, needs research, topic: new features, module: python frontend
### ๐Ÿš€ The feature, motivation and pitch If it's easy to do, it would save a few keystrokes ( + maybe same for `dict_keys` and `dict_values`) and maybe some copies and python objects on the heap for large inputs: ```python import torch torch.tensor(list(set([1,2,3]))) # tensor([1, 2, 3]) torch.tensor(set([1,2,3])) # RuntimeError: Could not infer dtype of set # torch.tensor(set([1,2,3]), dtype = torch.int64) # TypeError: an integer is required (got type set) # torch.tensor({1 : 'a', 2 : 'b', 3 : 'c'}.keys()) # RuntimeError: Could not infer dtype of dict_keys # torch.tensor({1 : 'a', 2 : 'b', 3 : 'c'}.keys(), dtype = torch.int64) # TypeError: an integer is required (got type dict_keys) ``` ### Alternatives _No response_ ### Additional context _No response_ cc @albanD
4
1,620
106,780
inf and nan are mapped to quant_min in torch.fake_quantize_per_tensor_affine
oncall: quantization, triaged
### ๐Ÿ› Describe the bug torch.fake_quantize_per_tensor_affine quantizes inf, -inf and nan to quant_min (after dequantize). This is expected for -inf, but not expected behavior for inf. ``` import torch x = torch.tensor([1.0, torch.inf, torch.nan, -torch.inf, 26]) torch.fake_quantize_per_tensor_affine(x, 0.1, 0, -128, 127) >> tensor([ 1.0000, -12.8000, -12.8000, -12.8000, 12.7000]) ``` ### Versions --2023-08-08 13:31:48-- https://raw.githubusercontent.com/pytorch/pytorch/main/torch/utils/collect_env.py Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 21653 (21K) [text/plain] Saving to: โ€˜collect_env.pyโ€™ collect_env.py 100%[===================>] 21.15K --.-KB/s in 0.001s 2023-08-08 13:31:48 (25.6 MB/s) - โ€˜collect_env.pyโ€™ saved [21653/21653] Collecting environment information... PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.25.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.109+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 525.105.17 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.30GHz CPU family: 6 Model: 63 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4599.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 45 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.22.4 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] Could not collect cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel
0
1,621
106,778
`torch::nn::MultiheadAttention`, `F::multi_head_attention_forward`: check embed_dim and num_heads
module: cpp, module: error checking, triaged, open source, ciflow/trunk, release notes: cpp, module: multi-headed-attention
Fixes #106700 Referred [check of python API](https://github.com/pytorch/pytorch/blob/main/torch/nn/modules/activation.py#L967-L971). cc @jbschlosser @malfet
9
1,622
106,772
Enable Mypy Checking in torch/_inductor/codegen/triton.py
triaged, open source, module: inductor, ciflow/inductor
Fixes #105230 Summary: As suggested in https://github.com/pytorch/pytorch/issues/105230 mypy checking is enabled in torch/_inductor/codegen/triton.py After Fix: mypy --follow-imports=skip torch/_inductor/codegen/triton.py Success: no issues found in 1 source file cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,623
106,770
[Inductor][cpu] torchbench model doctr_det_predictor perf regression
triaged, oncall: pt2
### ๐Ÿ› Describe the bug **doctr_det_predictor** Perf regression tracked on https://github.com/pytorch/pytorch/issues/93531#issuecomment-1668825530 | | 2023-08-06 nightly | | | | 2023-08-02 nightly | | | | Result Comp | | | | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | | model | batch_size | speedup | inductor | eager | batch_size | speedup | inductor | eager | speedup ratio | eager ratio | inductor ratio | |doctr_det_predictor |1 |0.649268 |3.384136689 |2.19721166 |1 |1.182882 |1.861407945 |2.201825953 |0.55 |1 |0.55 2023-08-06 nightly SW | Nightly commit | Main commit -- | -- | -- Pytorch|[a8638d6](https://github.com/pytorch/pytorch/commit/a8638d6)|[](https://github.com/pytorch/pytorch/commit/) Torchbench|/|[770d5cf7](https://github.com/pytorch/benchmark/commit/770d5cf7) torchaudio|[dc83b38](https://github.com/pytorch/audio/commit/dc83b38)|[](https://github.com/pytorch/audio/commit/) torchtext|[c11d758](https://github.com/pytorch/text/commit/c11d758)| [](https://github.com/pytorch/text/commit/) torchvision|[58366ab](https://github.com/pytorch/vision/commit/58366ab)|[](https://github.com/pytorch/vision/commit/) torchdata|[1d231d1](https://github.com/pytorch/data/commit/1d231d1)|[](https://github.com/pytorch/data/commit/) dynamo_benchmarks|[f228c8b](https://github.com/pytorch/pytorch/commit/f228c8b)|/ 2023-08-02 nightly SW | Nightly commit | Main commit -- | -- | -- Pytorch|[c89b169](https://github.com/pytorch/pytorch/commit/c89b169)|[92cac6b](https://github.com/pytorch/pytorch/commit/92cac6b) Torchbench|/|[770d5cf7](https://github.com/pytorch/benchmark/commit/770d5cf7) torchaudio|[dc83b38](https://github.com/pytorch/audio/commit/dc83b38)|[66f661d](https://github.com/pytorch/audio/commit/66f661d) torchtext|[c11d758](https://github.com/pytorch/text/commit/c11d758)| [60bea66](https://github.com/pytorch/text/commit/60bea66) torchvision|[58366ab](https://github.com/pytorch/vision/commit/58366ab)|[a6dea86](https://github.com/pytorch/vision/commit/a6dea86) torchdata|[1d231d1](https://github.com/pytorch/data/commit/1d231d1)|[757c032](https://github.com/pytorch/data/commit/757c032) dynamo_benchmarks|[f228c8b](https://github.com/pytorch/pytorch/commit/f228c8b)|/ ### Versions bash [inductor_single_test.sh](https://github.com/chuanqi129/inductor-tools/blob/yudong/aws_auto/scripts/modelbench/inductor_single_run.sh) multiple inference performance torchbench doctr_det_predictor float32 first static default 0 cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
1,624
106,764
[Feature request] Add new API Tensor.device_as
triage review, oncall: jit, feature, module: python frontend
### ๐Ÿš€ The feature, motivation and pitch This new Api can be like Tensor.type_as. ```python a1 = torch.zeros(5, device='cuda') a2 = torch.zeros(5, device='cpu') a3 = a1.device_as(a2) assert a3.device == a1.device ``` Mainly used in the jit.trace model. Because Tensor.to only record constant parameter. This can cause exceptions when moving the model to other devices. I am currently using this method to transfer tensor from A device to B device in the trace model. ```python @torch.jit.script def device_as(self, other): return self.to(device=other.device) ``` ### Alternatives _No response_ ### Additional context _No response_ cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @albanD
0
1,625
106,751
[Inductor][amp] clip: expected scalar type BFloat16 but found Float
triaged
### ๐Ÿ› Describe the bug As the title, for reproduce: bash [inductor_single_test.sh](https://github.com/chuanqi129/inductor-tools/blob/yudong/aws_auto/scripts/modelbench/inductor_single_run.sh) multiple inference performance torchbench clip amp Error message: ``` loading model: 0it [00:00, ?it/s] loading model: 0it [00:01, ?it/s]cpu eval clip ERROR:common:expected scalar type BFloat16 but found Float Traceback (most recent call last): File "/workspace/pytorch/benchmarks/dynamo/common.py", line 1997, in check_accuracy correct_result = self.run_n_iterations( File "/workspace/pytorch/benchmarks/dynamo/common.py", line 1882, in run_n_iterations self.model_iter_fn(mod, inputs, collect_outputs=False) File "benchmarks/dynamo/torchbench.py", line 437, in forward_pass return mod(*inputs) File "/workspace/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torchmultimodal/models/clip/model.py", line 72, in forward embeddings_a = self.encoder_a(features_a) File "/workspace/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torchmultimodal/models/clip/image_encoder.py", line 109, in forward x = self.encoder(x) File "/workspace/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/transformer.py", line 361, in forward output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers) File "/workspace/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/transformer.py", line 678, in forward x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal) File "/workspace/pytorch/torch/nn/modules/transformer.py", line 689, in _sa_block x = self.self_attn(x, x, x, File "/workspace/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/workspace/pytorch/torch/nn/modules/activation.py", line 1182, in forward return torch._native_multi_head_attention( RuntimeError: expected scalar type BFloat16 but found Float eager_1st_run_fail ``` ### Versions torchbench : 770d5cf7 torch : 2.1.0a0+git4734e4d torchvision : 0.16.0a0+58366ab torchtext : 0.16.0a0+c11d758 torchaudio : 2.1.0a0+dc83b38 torchdata : 0.7.0a0+1d231d1 dynamo_benchmarks : f228c8b
3
1,626
106,748
[FX][ONNX][exporter] Failed to export traced fx graph to onnx model
module: onnx, triaged, module: export
### ๐Ÿ› Describe the bug I traced and quantized a ResNet50 model (only backbone and fused some skip-adds) and tried to export it to a onnx model format, but using `torch.onnx.dynamo_export`, here're informations: Exporting codes: ```python qmodel = xxxx # trace and quantize tensor_x = torch.randn(1, 3, 224, 224) onnx_model = dynamo_export(qmodel, tensor_x) # failed! ``` Model graph: ```txt GraphModule( (conv1): QuantizedConvReLU2d(3, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.013380219228565693, zero_point=128, padding=(1, 1)) (layer1): Module( (0): Module( (conv1): QuantizedConvReLU2d(64, 64, kernel_size=(1, 1), stride=(1, 1), scale=0.005257370416074991, zero_point=128) (conv2): QuantizedConvReLU2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.008329497650265694, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(64, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.010099029168486595, zero_point=128) (downsample): Module( (0): QuantizedConv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.005250006914138794, zero_point=128) ) ) (1): Module( (conv1): QuantizedConvReLU2d(256, 64, kernel_size=(1, 1), stride=(1, 1), scale=0.005096939858049154, zero_point=128) (conv2): QuantizedConvReLU2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.004832049366086721, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(64, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.00993015430867672, zero_point=128) ) (2): Module( (conv1): QuantizedConvReLU2d(256, 64, kernel_size=(1, 1), stride=(1, 1), scale=0.0038794134743511677, zero_point=128) (conv2): QuantizedConvReLU2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.005039558280259371, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(64, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.010828116908669472, zero_point=128) ) ) (layer2): Module( (0): Module( (conv1): QuantizedConvReLU2d(256, 128, kernel_size=(1, 1), stride=(1, 1), scale=0.004017043858766556, zero_point=128) (conv2): QuantizedConvReLU2d(128, 128, kernel_size=(3, 3), stride=(2, 2), scale=0.004348098766058683, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(128, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.005679312162101269, zero_point=128) (downsample): Module( (0): QuantizedConv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), scale=0.004687752574682236, zero_point=128) ) ) (1): Module( (conv1): QuantizedConvReLU2d(512, 128, kernel_size=(1, 1), stride=(1, 1), scale=0.0029946595896035433, zero_point=128) (conv2): QuantizedConvReLU2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.002591489814221859, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(128, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.0066427248530089855, zero_point=128) ) (2): Module( (conv1): QuantizedConvReLU2d(512, 128, kernel_size=(1, 1), stride=(1, 1), scale=0.003675809595733881, zero_point=128) (conv2): QuantizedConvReLU2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.004037801176309586, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(128, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.0076212105341255665, zero_point=128) ) (3): Module( (conv1): QuantizedConvReLU2d(512, 128, kernel_size=(1, 1), stride=(1, 1), scale=0.0036621815524995327, zero_point=128) (conv2): QuantizedConvReLU2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.003685015020892024, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(128, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.006834834348410368, zero_point=128) ) ) (layer3): Module( (0): Module( (conv1): QuantizedConvReLU2d(512, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.00595456175506115, zero_point=128) (conv2): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(2, 2), scale=0.006026321556419134, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), scale=0.007073363289237022, zero_point=128) (downsample): Module( (0): QuantizedConv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), scale=0.004362074658274651, zero_point=128) ) ) (1): Module( (conv1): QuantizedConvReLU2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.003083687275648117, zero_point=128) (conv2): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.0031905779615044594, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), scale=0.007137070409953594, zero_point=128) ) (2): Module( (conv1): QuantizedConvReLU2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.004007844254374504, zero_point=128) (conv2): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.0028449269011616707, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), scale=0.00658777728676796, zero_point=128) ) (3): Module( (conv1): QuantizedConvReLU2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.00378667120821774, zero_point=128) (conv2): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.00343075068667531, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), scale=0.006993501912802458, zero_point=128) ) (4): Module( (conv1): QuantizedConvReLU2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.0034908351954072714, zero_point=128) (conv2): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.004998135380446911, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), scale=0.008047958835959435, zero_point=128) ) (5): Module( (conv1): QuantizedConvReLU2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), scale=0.00446851784363389, zero_point=128) (conv2): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.004318995401263237, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), scale=0.008282049559056759, zero_point=128) ) ) (layer4): Module( (0): Module( (conv1): QuantizedConvReLU2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.006188110448420048, zero_point=128) (conv2): QuantizedConvReLU2d(512, 512, kernel_size=(3, 3), stride=(2, 2), scale=0.006452975329011679, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), scale=0.014389239251613617, zero_point=128) (downsample): Module( (0): QuantizedConv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), scale=0.005995641928166151, zero_point=128) ) ) (1): Module( (conv1): QuantizedConvReLU2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.004341470077633858, zero_point=128) (conv2): QuantizedConvReLU2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.0054984972812235355, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), scale=0.02057485468685627, zero_point=128) ) (2): Module( (conv1): QuantizedConvReLU2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), scale=0.003666398348286748, zero_point=128) (conv2): QuantizedConvReLU2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.006707869004458189, zero_point=128, padding=(1, 1)) (conv3): QuantizedConvAddReLU2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), scale=0.0357082337141037, zero_point=128) ) ) ) ``` Error message: ``` Traceback (most recent call last): File "/workspace/torchint/lib/python3.10/site-packages/torch/onnx/_internal/exporter.py", line 595, in dynamo_export ).export() File "/workspace/torchint/lib/python3.10/site-packages/torch/onnx/_internal/exporter.py", line 446, in export graph_module = self.options.fx_tracer.generate_fx( File "/workspace/torchint/lib/python3.10/site-packages/torch/onnx/_internal/fx/dynamo_graph_extractor.py", line 196, in generate_fx graph_module, graph_guard = torch._dynamo.export( File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 948, in export result_traced = opt_f(*args, **kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 295, in _fn return fn(*args, **kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/onnx/_internal/fx/dynamo_graph_extractor.py", line 153, in wrapped return output_adapter.apply(model_func(*args, **kwargs)) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 448, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 127, in _fn return fn(*args, **kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 360, in _convert_frame_assert return _compile( File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 430, in _compile out_code = transform_code_object(code, transform) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1000, in transform_code_object transformations(instructions, code_options) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 415, in transform tracer.run() File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2026, in run super().run() File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 708, in run and self.step() File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 668, in step getattr(self, inst.opname)(inst) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 390, in wrapper return inner_fn(self, inst) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1100, in CALL_FUNCTION self.call_function(fn, args, {}) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 559, in call_function self.push(fn.call_function(self, args, kwargs)) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 610, in call_function tensor_variable = wrap_fx_proxy( File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1115, in wrap_fx_proxy return wrap_fx_proxy_cls( File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1151, in wrap_fx_proxy_cls example_value = get_fake_value(proxy.node, tx) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1313, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1281, in get_fake_value return wrap_fake_exception( File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 871, in wrap_fake_exception return fn() File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1282, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1347, in run_node raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e File "/workspace/torchint/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1334, in run_node return node.target(*args, **kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1161, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/workspace/torchint/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1410, in dispatch return run_fallback_kernel(self, func, args, kwargs, not_implemented_error) File "/workspace/torchint/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1657, in run_fallback_kernel return tree_map(map_out, r) File "/workspace/torchint/lib/python3.10/site-packages/torch/utils/_pytree.py", line 323, in tree_map return tree_unflatten([fn(i) for i in flat_args], spec) File "/workspace/torchint/lib/python3.10/site-packages/torch/utils/_pytree.py", line 323, in <listcomp> return tree_unflatten([fn(i) for i in flat_args], spec) File "/workspace/torchint/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1653, in map_out return fake_mode.fake_tensor_converter(fake_mode, e) File "/workspace/torchint/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 341, in __call__ return self.from_real_tensor( File "/workspace/torchint/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 274, in from_real_tensor raise UnsupportedFakeTensorException("quantized nyi in meta tensors") raise UnsupportedFakeTensorException("quantized nyi in meta tensors") torch._dynamo.exc.TorchRuntimeError: Failed running call_function <built-in method quantize_per_tensor of type object at 0x7f3ab3e18160>(*(Fake Tensor(..., size=(24, 3, 32, 32)), FakeTensor(..., size=()), FakeTensor(..., size=(), dtype=torch.int64), torch.quint8), **{}): quantized nyi in meta tensors ``` ### Versions ```txt PyTorch version: 2.1.0.dev20230621+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.4.0-42-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe GPU 1: NVIDIA A100 80GB PCIe GPU 2: NVIDIA A100 80GB PCIe GPU 3: NVIDIA A100 80GB PCIe GPU 4: NVIDIA A100 80GB PCIe GPU 5: NVIDIA A100 80GB PCIe GPU 6: NVIDIA A100 80GB PCIe GPU 7: NVIDIA A100 80GB PCIe Nvidia driver version: 515.48.07 [28/4606] cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 6 Frequency boost: enabled CPU max MHz: 3600.0000 CPU min MHz: 800.0000 BogoMIPS: 6200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqd q dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pl n pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l 1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 40 MiB (32 instances) L3 cache: 72 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-15,32-47 NUMA node1 CPU(s): 16-31,48-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.25.1 [pip3] pytorch-triton==2.1.0+440fd1bf20 [pip3] torch==2.1.0.dev20230621+cu117 [pip3] torch-int==0.0.0 [pip3] torchvision==0.15.2 [conda] Could not collect ```
6
1,627
106,746
pytorch with ROCM on Windows
module: windows, module: rocm, triaged
### ๐Ÿš€ The feature, motivation and pitch pytorch with ROCM on Windows Since the ROCM has supported Windows, when will the Pytorch be availabled on Windows? ### Alternatives _No response_ ### Additional context _No response_ cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @vladimir-aubrecht @iremyux @Blackhex @cristianPanaite @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
5
1,628
106,738
[FSDP][WIP] [Do not review] Trace FSDP
Stale, release notes: distributed (fsdp), module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106738 * #106906 * #106890 * #106888 * #106886 * #106884 cc @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @ipiszy
3
1,629
106,735
[vision hash update] update the pinned vision hash
open source, Stale, ciflow/trunk, topic: not user facing, ciflow/inductor
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/_update-commit-hash.yml). Update the pinned vision hash.
5
1,630
106,733
Expose dcp utils
open source, Stale
Expose DCP's _dedup_tensors utils
3
1,631
106,732
Hugging Face safetensor does not work with FakeTensorMode
triaged, oncall: pt2, module: fakeTensor
### ๐Ÿ› Describe the bug When certain HF models are loaded within Fake mode, the `load_state_dict` API tries to load data using `safetensors`, which fail to determine the tensor shape and crash ```python from torch._subclasses.fake_tensor import FakeTensorMode from transformers import AutoModel model_name = "bigscience/bloom-560m" fake_mode = FakeTensorMode() with fake_mode: model = AutoModel.from_pretrained(model_name) ``` The error is: ```bash โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Traceback (most recent call last) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ /opt/pytorch/repro_bloom.py:12 in <module> โ”‚ โ”‚ โ”‚ โ”‚ 9 # with torch.onnx.enable_fake_mode() as fake_context: โ”‚ โ”‚ 10 fake_mode = FakeTensorMode() โ”‚ โ”‚ 11 with fake_mode: โ”‚ โ”‚ โฑ 12 โ”‚ model = AutoModel.from_pretrained(model_name) โ”‚ โ”‚ 13 # outputs = model(**inputs) โ”‚ โ”‚ 14 # ( โ”‚ โ”‚ 15 # onnx_model, โ”‚ โ”‚ โ”‚ โ”‚ /opt/conda/envs/ptca/lib/python3.8/site-packages/transformers/models/auto/auto_factory.py:484 in โ”‚ โ”‚ from_pretrained โ”‚ โ”‚ โ”‚ โ”‚ 481 โ”‚ โ”‚ โ”‚ ) โ”‚ โ”‚ 482 โ”‚ โ”‚ elif type(config) in cls._model_mapping.keys(): โ”‚ โ”‚ 483 โ”‚ โ”‚ โ”‚ model_class = _get_model_class(config, cls._model_mapping) โ”‚ โ”‚ โฑ 484 โ”‚ โ”‚ โ”‚ return model_class.from_pretrained( โ”‚ โ”‚ 485 โ”‚ โ”‚ โ”‚ โ”‚ pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, โ”‚ โ”‚ 486 โ”‚ โ”‚ โ”‚ ) โ”‚ โ”‚ 487 โ”‚ โ”‚ raise ValueError( โ”‚ โ”‚ โ”‚ โ”‚ /opt/conda/envs/ptca/lib/python3.8/site-packages/transformers/modeling_utils.py:2604 in โ”‚ โ”‚ from_pretrained โ”‚ โ”‚ โ”‚ โ”‚ 2601 โ”‚ โ”‚ if from_pt: โ”‚ โ”‚ 2602 โ”‚ โ”‚ โ”‚ if not is_sharded and state_dict is None: โ”‚ โ”‚ 2603 โ”‚ โ”‚ โ”‚ โ”‚ # Time to load the checkpoint โ”‚ โ”‚ โฑ 2604 โ”‚ โ”‚ โ”‚ โ”‚ state_dict = load_state_dict(resolved_archive_file) โ”‚ โ”‚ 2605 โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ 2606 โ”‚ โ”‚ โ”‚ # set dtype to instantiate the model under: โ”‚ โ”‚ 2607 โ”‚ โ”‚ โ”‚ # 1. If torch_dtype is not None, we use that dtype โ”‚ โ”‚ โ”‚ โ”‚ /opt/conda/envs/ptca/lib/python3.8/site-packages/transformers/modeling_utils.py:461 in โ”‚ โ”‚ load_state_dict โ”‚ โ”‚ โ”‚ โ”‚ 458 โ”‚ โ”‚ โ”‚ raise NotImplementedError( โ”‚ โ”‚ 459 โ”‚ โ”‚ โ”‚ โ”‚ f"Conversion from a {metadata['format']} safetensors archive to PyTorch โ”‚ โ”‚ 460 โ”‚ โ”‚ โ”‚ ) โ”‚ โ”‚ โฑ 461 โ”‚ โ”‚ return safe_load_file(checkpoint_file) โ”‚ โ”‚ 462 โ”‚ try: โ”‚ โ”‚ 463 โ”‚ โ”‚ return torch.load(checkpoint_file, map_location="cpu") โ”‚ โ”‚ 464 โ”‚ except Exception as e: โ”‚ โ”‚ โ”‚ โ”‚ /opt/conda/envs/ptca/lib/python3.8/site-packages/safetensors/torch.py:261 in load_file โ”‚ โ”‚ โ”‚ โ”‚ 258 โ”‚ result = {} โ”‚ โ”‚ 259 โ”‚ with safe_open(filename, framework="pt", device=device) as f: โ”‚ โ”‚ 260 โ”‚ โ”‚ for k in f.keys(): โ”‚ โ”‚ โฑ 261 โ”‚ โ”‚ โ”‚ result[k] = f.get_tensor(k) โ”‚ โ”‚ 262 โ”‚ return result โ”‚ โ”‚ 263 โ”‚ โ”‚ 264 โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ ValueError: could not determine the shape of object type 'torch.storage.UntypedStorage' ``` Looking at the [torch/csrc/utils/tensor_new.cpp code](https://github.com/pytorch/pytorch/blob/646fa36875821f2bcf4fbfbf669c1f4f9f69700d/torch/csrc/utils/tensor_new.cpp), I found this ```cpp std::vector<int64_t> compute_sizes(PyObject* seq, ScalarType scalar_type) { bool is_storage = isStorage(seq); std::vector<int64_t> sizes; THPObjectPtr handle; while (PySequence_Check(seq)) { auto length = PySequence_Length(seq); if (length < 0) throw python_error(); if (is_storage) { length /= static_cast<int64_t>(elementSize(scalar_type)); } sizes.push_back(length); if (sizes.size() > MAX_DIMS) { throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name); } if (length == 0) break; handle = THPObjectPtr(PySequence_GetItem(seq, 0)); if (!handle) { throw ValueError( "could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name); } seq = handle.get(); } return sizes; } ``` ### Versions pytorch main branch () safetensors 0.3.1 transformers 4.30.0 cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
6
1,632
106,718
Add AMD image to the .devcontainer spec
triaged, better-engineering
# Summary Add an AMD/ROCM image to the .devcontainer spec. This will aid in users seeking to contribute for AMD based gpu enviornments. This can likely be adapted from the CUDA container. Research into the tooling required packages needs to be done.
0
1,633
106,717
Provide .devcontainer PyTorch - MPS environment
triaged, better-engineering
# Summary Add a MPS image to the .devcontainer spec. This will aid in users seeking to contribute to the MPS backend. ### Blockers This is likely blocked via lack of support in linux based containers. See: https://github.com/pytorch/pytorch/issues/81224#issuecomment-1499741152.
0
1,634
106,715
Add reset_parameters to nn.Module base class
Stale, release notes: nn
**We need a good solution to the subclass issue https://github.com/pytorch/pytorch/issues/71404#issuecomment-1026011644 before landing probably, I'm working on it!** [Some wip thoughts on the above](https://colab.research.google.com/drive/1RFZjWpGfBVZka-NU6jmCZrftvq5HdT5u) Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106508 * #106506 * __->__ #106715
2
1,635
106,713
Dev Container Support for PyTorch
triaged, better-engineering
# Summary This servers as the top-level project tracker for making contributions to the PyTorch project easier and more device agnostic. The primary tool for doing this is the devcontainer spec. This spec provides two nice entrypoints, [codespaces](https://github.com/features/codespaces) which is Githubs compute service for running devcontainers. Github users get access to a free tier spec. There is comprehensive VSCode support for devcontainers. [VSCode integration](https://code.visualstudio.com/docs/devcontainers/containers) ### Sub Tasks - [x] Initial devcontainer support for local CPU development: https://github.com/pytorch/pytorch/issues/106714 - [x] Initial devcontainer support for remote codespaces development. See attached screenshot for - [x] Initial devcontainer support for local GPU development: https://github.com/pytorch/pytorch/issues/106714 - [ ] Document process for building locally + codespaces - [ ] Add to contributing guide - [ ] Add support for MPS based dev: #106717 - [ ] Add support for AMD based dev: #106718 <img width="1064" alt="Screenshot 2023-08-07 at 11 42 24 AM" src="https://github.com/pytorch/pytorch/assets/32754868/371270c9-2b88-4879-889f-cb9ed5689ec4">
0
1,636
106,711
'CUDA out of memory' when using a GPU services for reinforcement learning in Torch rpc tutorial
oncall: distributed, module: rpc
### ๐Ÿ› Describe the bug I followed this [tutorial](https://pytorch.org/tutorials/intermediate/rpc_tutorial.html) to implement reinforcement learning with RPC on Torch. And I can run the original tutorial well. After adding the specified **GPU** device for the model as shown in the original tutorial, I encountered a "cuda out of memory" issue. Currently, I use one trainer process and one observer process. The trainer process creating the model, and the observer process calls the model forward using **RPC**. To simplify reproduction, I removed some of the original code from the tutorial. https://gist.github.com/lpf6/9cd5bf55489758defc6b9fdbc2dcee62 The modifications compared to the tutorial are `select_action` and `Agent.__init__` function add `to(self.device_id)`. For example, the `select_action` function: ``` python def select_action(self, ob_id, state): state: torch.Tensor = torch.from_numpy(state).float().unsqueeze(0).to(self.device_id) probs = self.policy(state) m = Categorical(probs) action = m.sample() self.saved_log_probs[ob_id].append(m.log_prob(action)) result = action.item() del action, m, state, probs return result ``` And I got result ``` /home/lu/PycharmProjects/tetris/venv/bin/python /home/lu/PycharmProjects/tetris/test_error.py obs_0_for_0 started WARNING: Logging before InitGoogleLogging() is written to STDERR I20230807 23:22:56.714407 262881 ProcessGroupNCCL.cpp:665] [Rank 0] ProcessGroupNCCL initialized with following options: NCCL_ASYNC_ERROR_HANDLING: 0 NCCL_DESYNC_DEBUG: 0 NCCL_BLOCKING_WAIT: 0 TIMEOUT(ms): 1800000 USE_HIGH_PRIORITY_STREAM: 0 I20230807 23:22:56.714471 262980 ProcessGroupNCCL.cpp:842] [Rank 0] NCCL watchdog thread started! agent_0 started /home/lu/PycharmProjects/tetris/venv/lib/python3.11/site-packages/gym/utils/passive_env_checker.py:233: DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24) if not isinstance(terminated, (bool, np.bool8)): episode : 1, mem_used: 146.25Mb episode : 2, mem_used: 251.88Mb episode : 3, mem_used: 438.75Mb episode : 4, mem_used: 682.50Mb ..... episode : 44, mem_used: 4834.38Mb At: /usr/lib/python3.11/site-packages/torch/distributed/rpc/internal.py(234): _handle_exception ') Traceback (most recent call last): File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/internal.py", line 207, in _run_function result = python_udf.func(*python_udf.args, **python_udf.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/rref_proxy.py", line 42, in _invoke_rpc return _rref_type_cont(rref_fut) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/rref_proxy.py", line 31, in _rref_type_cont return rpc_api( ^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/api.py", line 82, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/api.py", line 809, in rpc_sync return fut.wait() ^^^^^^^^^^ RuntimeError: RuntimeError: On WorkerInfo(id=1, name=obs_0_for_0): RuntimeError('OutOfMemoryError: On WorkerInfo(id=0, name=agent_0): OutOfMemoryError('CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 10.75 GiB total capacity; 4.73 GiB already allocated; 10.88 MiB free; 5.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF') Traceback (most recent call last): File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/internal.py", line 207, in _run_function result = python_udf.func(*python_udf.args, **python_udf.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/distributed/rpc/rref_proxy.py", line 11, in _local_invoke return getattr(rref.local_value(), func_name)(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/lu/PycharmProjects/tetris/test_error.py", line 71, in select_action probs = self.policy(state) ^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/lu/PycharmProjects/tetris/test_error.py", line 25, in forward x = self.affine1(x) ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/torch/nn/modules/linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 10.75 GiB total capacity; 4.73 GiB already allocated; 10.88 MiB free; 5.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF Process finished with exit code 1 ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 12.2 ROCM used to build PyTorch: N/A OS: Manjaro Linux (x86_64) GCC version: (GCC) 13.1.1 20230714 Clang version: 15.0.7 CMake version: Could not collect Libc version: glibc-2.37 Python version: 3.11.3 (main, Jun 5 2023, 09:32:32) [GCC 13.1.1 20230429] (64-bit runtime) Python platform: Linux-6.4.6-1-MANJARO-x86_64-with-glibc2.37 Is CUDA available: True CUDA runtime version: 12.2.91 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2080 Ti GPU 1: NVIDIA GeForce RTX 2080 Ti GPU 2: NVIDIA GeForce RTX 2080 Ti GPU 3: NVIDIA GeForce RTX 2080 Ti Nvidia driver version: 535.86.05 cuDNN version: Probably one of the following: /usr/lib/libcudnn.so.8.9.2 /usr/lib/libcudnn_adv_infer.so.8.9.2 /usr/lib/libcudnn_adv_train.so.8.9.2 /usr/lib/libcudnn_cnn_infer.so.8.9.2 /usr/lib/libcudnn_cnn_train.so.8.9.2 /usr/lib/libcudnn_ops_infer.so.8.9.2 /usr/lib/libcudnn_ops_train.so.8.9.2 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: ๆžถๆž„๏ผš x86_64 CPU ่ฟ่กŒๆจกๅผ๏ผš 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual ๅญ—่Š‚ๅบ๏ผš Little Endian CPU: 48 ๅœจ็บฟ CPU ๅˆ—่กจ๏ผš 0-47 ๅŽ‚ๅ•† ID๏ผš GenuineIntel ๅž‹ๅทๅ็งฐ๏ผš Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz CPU ็ณปๅˆ—๏ผš 6 ๅž‹ๅท๏ผš 63 ๆฏไธชๆ ธ็š„็บฟ็จ‹ๆ•ฐ๏ผš 2 ๆฏไธชๅบง็š„ๆ ธๆ•ฐ๏ผš 12 ๅบง๏ผš 2 ๆญฅ่ฟ›๏ผš 2 CPU(s) scaling MHz: 47% CPU ๆœ€ๅคง MHz๏ผš 3300.0000 CPU ๆœ€ๅฐ MHz๏ผš 1200.0000 BogoMIPS๏ผš 5001.30 ๆ ‡่ฎฐ๏ผš fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perf pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm cpuid_fault epb invpcid_single pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts vnmi md_clear flush_l1d ่™šๆ‹ŸๅŒ–๏ผš VT-x L1d ็ผ“ๅญ˜๏ผš 768 KiB (24 instances) L1i ็ผ“ๅญ˜๏ผš 768 KiB (24 instances) L2 ็ผ“ๅญ˜๏ผš 6 MiB (24 instances) L3 ็ผ“ๅญ˜๏ผš 60 MiB (2 instances) NUMA ่Š‚็‚น๏ผš 2 NUMA ่Š‚็‚น0 CPU๏ผš 0-11,24-35 NUMA ่Š‚็‚น1 CPU๏ผš 12-23,36-47 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.0.1 [pip3] torchsummary==1.5.1 [conda] blas 1.0 mkl defaults [conda] mkl 2021.4.0 h06a4308_640 defaults [conda] mkl-service 2.4.0 py310h7f8727e_0 defaults [conda] mkl_fft 1.3.1 py310hd6ae3a3_0 defaults [conda] mkl_random 1.2.2 py310h00e6091_0 defaults [conda] numpy 1.23.5 py310hd5efca6_0 defaults [conda] numpy-base 1.23.5 py310h8e6c178_0 defaults [conda] numpydoc 1.5.0 py310h06a4308_0 defaults [conda] pytorch 1.12.1 cpu_py310hb1f1ab4_1 defaults cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @pietern @jjlilley @mrzzd
4
1,637
106,705
[WIP] FSDP rate limiter
Stale, release notes: distributed (fsdp)
Use streams wait to hold all-gather execution instead of using CPU synchronization. The basic implementation relies on using ping-pong buffers (for maximally two outstanding all-gathers). Each buffer would have size of the largest FSDP instance.
2
1,638
106,704
Dataloader extremely slow on in-memory datasets
module: dataloader, triaged, module: data
### ๐Ÿ› Describe the bug I am not sure this is a bug but it is a major performance issue and there seems to be no suitable issue category for that. Torch dataloaders are the natural entry point for many applications but they apparently are extremely slow when working on in-memory data. Here a full example. ```python from torch.utils.data import DataLoader, TensorDataset import torch import time X = torch.ones(20000, 20) Y = torch.ones(20000, 5) ds = TensorDataset(X, Y) dl_torch = DataLoader(ds, batch_size=256, shuffle=False, drop_last=True) def get_custom_dl(batch_size=256): i_low = 0 for i_high in range(batch_size, len(ds), batch_size): yield ds[i_low:i_high] i_low = i_high # Evaluate speed of dl_torch now = time.time() for _ in range(100): list(dl_torch) print(time.time() - now) # >>> gives 4.5 secs on my system # Now custom_dl now = time.time() for _ in range(100): list(get_custom_dl()) print(time.time() - now) # >>> 0.014 secs ``` After some profiling, I found one of the problems to be in `_MapDatasetFetcher`, which calls the slow `data = [self.dataset[idx] for idx in possibly_batched_index]` and then collates it. This can be bypassed by using the reserved `__getitems__` method which is used in `_MapDatasetFetcher`: ```python from torch.utils.data import DataLoader, TensorDataset import torch import time X = torch.ones(20000, 20) Y = torch.ones(20000, 5) class ExtendedTensorDataset(TensorDataset): def __getitems__(self, item): return self.__getitem__(item) ds_ext = ExtendedTensorDataset(X, Y) dl_ext = DataLoader(dl_ext, batch_size=256, shuffle=False, collate_fn=lambda x:x) now = time.time() for _ in range(100): list(dl_ext) print(time.time() - now) # >>> 0.58 secs ``` This feels very hacky and the performance is still off by a factor of 40 from pure python (much better than the original factor 400 though). I feel like something here is missing. I searched the torch package for the usage of `__getitems__` but found nothing, is this mechanism being deprecated? I would be happy to work on a fix in a PR, as I feel that the default performance of `DataLoader` should not be so bad. But maybe I am just missing some way of improving it? I understand that I can pass a custom sampler to dataloader which would alleviate these issues, but I feel like the default SequenceSampler shouldn't be so slow ### Versions PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.35 Python version: 3.11.4 (main, Jun 7 2023, 12:45:48) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-6.2.0-10018-tuxedo-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-1260P CPU family: 6 Model: 154 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 3 CPU max MHz: 4700,0000 CPU min MHz: 400,0000 BogoMIPS: 4992.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 448 KiB (12 instances) L1i cache: 640 KiB (12 instances) L2 cache: 9 MiB (6 instances) L3 cache: 18 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.4 [pip3] pytorch-lightning==2.0.6 [pip3] torch==2.0.1 [pip3] torchdata==0.6.1 [pip3] torchmetrics==1.0.1 [pip3] triton==2.0.0 [conda] Could not collect cc @SsnL @VitalyFedyunin @ejguan @dzhulgakov
1
1,639
106,700
C++ API `torch::nn::MultiheadAttention` Crashes by division by zero
module: crash, module: cpp, triaged, oncall: transformer/mha
### ๐Ÿ› Describe the bug `num_heads = 0` leads to crash by division by zero. Test code: ```c++ #include <stdint.h> #include <stddef.h> #include <c10/util/irange.h> #include <cassert> #include <torch/torch.h> namespace F = torch::nn::functional; using namespace torch::nn; int main() { try { torch::TensorOptions toptions = torch::TensorOptions(); auto moptions = torch::nn::MultiheadAttentionOptions(0,0); auto m = torch::nn::MultiheadAttention(moptions); auto result = m->forward( torch::randn({}, toptions), torch::randn({}, toptions), torch::randn({}, toptions)); } catch (std::exception& e) { return -2; } return 0; } ``` Error Log: ``` AddressSanitizer:DEADLYSIGNAL ================================================================= ==700223==ERROR: AddressSanitizer: FPE on unknown address 0x7f0cd209f172 (pc 0x7f0cd209f172 bp 0x7ffdf04ab770 sp 0x7ffdf04aa360 T0) #0 0x7f0cd209f172 in torch::nn::MultiheadAttentionImpl::reset() /home/sehoon/pytorch/torch/csrc/api/src/nn/modules/activation.cpp:500:34 #1 0x7f0cd209d092 in torch::nn::MultiheadAttentionImpl::MultiheadAttentionImpl(torch::nn::MultiheadAttentionOptions const&) /home/sehoon/pytorch/torch/csrc/api/src/nn/modules/activation.cpp:437:3 #2 0x407115 in torch::nn::ModuleHolder<torch::nn::MultiheadAttentionImpl>::ModuleHolder<torch::nn::MultiheadAttentionOptions&, void>(torch::nn::MultiheadAttentionOptions&) /home/sehoon/pytorch/torch/csrc/api/include/torch/nn/pimpl.h:65:19 #3 0x4057ac in torch::nn::MultiheadAttention::MultiheadAttention<torch::nn::MultiheadAttentionOptions&, void>(torch::nn::MultiheadAttentionOptions&) /home/sehoon/pytorch/torch/csrc/api/include/torch/nn/modules/activation.h:872:1 #4 0x4047ff in main /home/sehoon/pytorch/test/cpp/reproduce/MultiheadAttention.cpp:15:14 #5 0x7f0cb084dd8f in __libc_start_call_main csu/../sysdeps/nptl/libc_start_call_main.h:58:16 #6 0x7f0cb084de3f in __libc_start_main csu/../csu/libc-start.c:392:3 #7 0x404484 in _start (/home/sehoon/pytorch/build/bin/reproduce_MultiheadAttention+0x404484) AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: FPE /home/sehoon/pytorch/torch/csrc/api/src/nn/modules/activation.cpp:500:34 in torch::nn::MultiheadAttentionImpl::reset() ==700223==ABORTING ``` [Error location](https://github.com/pytorch/pytorch/blob/1cc002621d23749c6742193ef3c1eda1015480c2/torch/csrc/api/src/nn/modules/activation.cpp#L500): ```c++ head_dim = options.embed_dim() / options.num_heads(); ``` Because there is no guard which bans `num_heads=0`, it ends up with crash. ### Versions PyTorch version: 2.1.0a0+git416bf4e Is debug build: True CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 12.0.1 (git@github.com:starlab-unist/llvm-project.git 82ccd79bfce79353c2bb4c1ab258ebfeb536a67d) CMake version: version 3.26.4 Libc version: glibc-2.35 Python version: 3.9.17 (main, Jul 5 2023, 20:41:20) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 535.86.10 cuDNN version: Probably one of the following: /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.9.2 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 1200.0000 BogoMIPS: 6000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (48 instances) L1i cache: 1.5 MiB (48 instances) L2 cache: 48 MiB (48 instances) L3 cache: 71.5 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.1.0a0+git416bf4e [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-include 2023.1.0 h06a4308_46342 [conda] numpy 1.25.2 pypi_0 pypi [conda] torch 2.1.0a0+git416bf4e dev_0 <develop> cc @jbschlosser @bhosmer @cpuhrsch @erichan1 @drisspg
1
1,640
106,699
torch.jit.script: scripting doesn't work with wraps
oncall: jit
### ๐Ÿ› Describe the bug Say we have a decorator that does some kind of preprocessing (maybe some checks on the arguments, maybe some kind of normalization etc) and we decide to decorate and then script a function as shown below: ```python import functools import torch def decorator(obj): @functools.wraps(obj) def wrapper(inpt): return obj((inpt).sigmoid()) return wrapper @decorator def func(inpt): return torch.sqrt(inpt) script_func = torch.jit.script(func) inpt = torch.ones(1) print(func(inpt)) print(script_func(inpt)) print(script_func.code) ``` Running this gives: ``` tensor([0.8550]) tensor([1.]) def func(inpt: Tensor) -> Tensor: return torch.sqrt(inpt) ``` So it seems that scripting jumps straight to `__wrapped__` and ignores the decorator. If we separate the decorator and the function: ```python # decorator_file.py import functools def decorator(obj): @functools.wraps(obj) def wrapper(inpt): return obj((inpt).sigmoid()) return wrapper ``` ```python # script_file.py import torch from decorator_file import decorator @decorator def func(inpt): return torch.sqrt(inpt) script_func = torch.jit.script(func) ``` We get the following: ``` Traceback (most recent call last): File "C:\Users\user\Desktop\test-env\script_file.py", line 10, in <module> script_func = torch.jit.script(func) ^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\user\Desktop\test-env\env\Lib\site-packages\torch\jit\_script.py", line 1341, in script fn = torch._C._jit_script_compile( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: undefined value torch: File "C:\Users\user\Desktop\test-env\decorator_file.py", line 7 @decorator def func(inpt): return torch.sqrt(inpt) ~~~~~ <--- HERE ``` So the decorator and the imports from `script_file.py` are ignored (need to `import torch` in `decorator_file.py`). ### Versions ``` Collecting environment information... PyTorch version: 2.0.1+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Home GCC version: (x86_64-posix-seh-rev0, Built by MinGW-W64 project) 8.1.0 Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.11.3 (tags/v3.11.3:f3909b8, Apr 4 2023, 23:49:59) [MSC v.1934 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: False CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1650 Nvidia driver version: 471.11 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=2592 DeviceID=CPU0 Family=198 L2CacheSize=1536 L2CacheSpeed= Manufacturer=GenuineIntel MaxClockSpeed=2592 Name=Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz ProcessorType=3 Revision= Versions of relevant libraries: [pip3] torch==2.0.1 [conda] Could not collect ``` cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,641
106,697
Enable Mypy Checking in torch/_inductor/fx_passes/pad_mm.py
triaged, open source, module: inductor, ciflow/inductor
Fixes #105230 Summary: As suggested in https://github.com/pytorch/pytorch/issues/105230 mypy checking is enabled in torch/_inductor/fx_passes/pad_mm.py After Fix: mypy --follow-imports=skip torch/_inductor/fx_passes/pad_mm.py Success: no issues found in 1 source file cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
3
1,642
106,692
torch.polygamma inconsistent with scipy.special.polygamma for n >= 1
triaged, module: numpy, module: special
kshitij12345 raised an issue two years ago concerning the fact that pytorch's implementation of the 1st order polygamma function incorrectly produces finite values for negative integers. The issue was closed, but the issue still seems to be present in the latest nightlies and the latest release of pytorch. > n = 1 > > ```python > >>> t = torch.tensor([-1.]) > >>> torch.polygamma(1, t) > tensor([1.2914e+15]) > >>> scipy.special.polygamma(1, t.numpy()) > array([inf], dtype=float32) > > >>> t = torch.tensor([-501.]) > >>> torch.polygamma(1, t) > tensor([2.0831e+09]) > >>> scipy.special.polygamma(1, t.numpy()) > array([inf], dtype=float32) > > >>> t = torch.tensor([-float('inf')]) > >>> torch.polygamma(1, t) > tensor([nan]) > >>> scipy.special.polygamma(1, t.numpy()) > array([inf], dtype=float32) > >>> > ``` > > n > 1 > > ```python > >>> t = torch.tensor([float('inf')]) > >>> torch.polygamma(2, t) > tensor([nan]) > >>> scipy.special.polygamma(2, t.numpy()) > array([-0.], dtype=float32) > >>> torch.polygamma(3, t) > tensor([nan]) > >>> scipy.special.polygamma(3, t.numpy()) > array([0.], dtype=float32) > >>> torch.polygamma(4, t) > tensor([nan]) > >>> scipy.special.polygamma(4, t.numpy()) > array([-0.], dtype=float32) > ``` > > cc @mruberry @rgommers @kshitij12345 _Originally posted in https://github.com/pytorch/pytorch/issues/55357
0
1,643
106,691
Enable Mypy Checking in torch/_inductor/fx_passes/joint_graph.py
triaged, open source, module: inductor, ciflow/inductor
Fixes #105230 Summary: As suggested in https://github.com/pytorch/pytorch/issues/105230 mypy checking is enabled in torch/_inductor/fx_passes/joint_graph.py After Fix: mypy --follow-imports=skip torch/_inductor/fx_passes/joint_graph.py Success: no issues found in 1 source file cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,644
106,690
DDP grads not synced when static_graph=True and module output is a dict subclass?
oncall: distributed, module: pytree
### ๐Ÿ› Describe the bug I am using something very similar to [`transformers.utils.ModelOutput`](https://github.com/huggingface/transformers/blob/d533465150532b0c5de167b574e59f64c68b1154/src/transformers/utils/generic.py#L237) for my model outputs, and I noticed that when I use DDP with `static_graph=True`, the grads do not appear to be synchronized after `backward()`, but they are if I use a plain `dict` instead. Is there some intricacy of supported DDP outputs that I am missing? command: ``` CUDA_VISIBLE_DEVICES=0,1 torchrun \ --nproc_per_node=2 \ --nnodes=1 \ --node_rank=0 \ --rdzv_id=462 \ --rdzv_backend=c10d \ a.py ``` **a.py**: ```python from typing import Dict import torch import torch.distributed as dist from torch import hub, nn class ModelOutput(dict): """Like `transformers.utils.ModelOutput`. See: https://github.com/huggingface/transformers/blob/d533465150532b0c5de167b574e59f64c68b1154/src/transformers/utils/generic.py#L237. """ class MobileNetBinaryClassifier(nn.Module): def __init__(self, num_classes=2): super().__init__() self.model = hub.load("pytorch/vision:v0.6.0", "mobilenet_v2", pretrained=True, verbose=False) self.model.classifier[1] = nn.Linear(1280, num_classes) for p in self.model.parameters(): p.requires_grad = True def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: output = self.model(x) # return dict(output=output) # grads are synced return ModelOutput(output=output) # grads are not synced? def setup(): dist.init_process_group(backend="nccl") def cleanup(): dist.destroy_process_group() def demo_basic(): setup() rank = dist.get_rank() if dist.is_initialized() else 0 model = MobileNetBinaryClassifier().to(rank) ddp_model = nn.parallel.DistributedDataParallel(model, device_ids=[rank], static_graph=True) optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.001) optimizer.zero_grad() data = torch.randn((16, 3, 224, 224), device=torch.device(rank)) outputs = ddp_model(data) outputs["output"].sum().backward() print(f"rank{rank}: {ddp_model.module.model.classifier[1].weight.grad[0,:5]}") cleanup() if __name__ == "__main__": demo_basic() ``` `return dict(output=output)` (expected): ``` rank0: tensor([ 8.5775, 9.8441, 10.3479, 8.0700, 7.9398], device='cuda:0') rank1: tensor([ 8.5775, 9.8441, 10.3479, 8.0700, 7.9398], device='cuda:1') ``` `return ModelOutput(output=output)` ``` rank1: tensor([9.3800, 8.2608, 9.2448, 9.0277, 9.6185], device='cuda:1') rank0: tensor([8.1090, 9.8833, 9.2154, 6.4282, 8.2903], device='cuda:0') ``` ### Versions ```console $ python collect_env.py Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.31 Python version: 3.10.6 (main, Oct 24 2022, 16:07:47) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX A6000 GPU 1: NVIDIA RTX A6000 GPU 2: NVIDIA RTX A6000 GPU 3: NVIDIA RTX A6000 Nvidia driver version: 525.105.17 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 43 bits physical, 48 bits virtual CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD Ryzen Threadripper 3970X 32-Core Processor Stepping: 0 Frequency boost: enabled CPU MHz: 2746.204 CPU max MHz: 3700.0000 CPU min MHz: 2200.0000 BogoMIPS: 7400.62 Virtualization: AMD-V L1d cache: 1 MiB L1i cache: 1 MiB L2 cache: 16 MiB L3 cache: 128 MiB NUMA node0 CPU(s): 0-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es Versions of relevant libraries: [pip3] facenet-pytorch==2.5.2 [pip3] flytekitplugins-kfpytorch==1.6.2 [pip3] mypy==1.4.1 [pip3] mypy-boto3-s3==1.26.0.post1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.25.2 [pip3] onnx2pytorch==0.4.1 [pip3] torch==2.0.1+cu117 [pip3] torchaudio==2.0.2 [pip3] torchdata==0.6.1 [pip3] torchjpeg==0.9.29 [pip3] torchmetrics==1.0.2 [pip3] torchsnapshot==0.1.0 [pip3] torchvision==0.15.2+cu117 [pip3] triton==2.0.0 [conda] facenet-pytorch 2.5.2 pypi_0 pypi [conda] flytekitplugins-kfpytorch 1.6.2 pypi_0 pypi [conda] numpy 1.25.2 pypi_0 pypi [conda] onnx2pytorch 0.4.1 pypi_0 pypi [conda] torch 2.0.1+cu117 pypi_0 pypi [conda] torchaudio 2.0.2 pypi_0 pypi [conda] torchdata 0.6.1 pypi_0 pypi [conda] torchjpeg 0.9.29 pypi_0 pypi [conda] torchmetrics 1.0.2 pypi_0 pypi [conda] torchsnapshot 0.1.0 pypi_0 pypi [conda] torchvision 0.15.2+cu117 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi ``` cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @zou3519
6
1,645
106,687
add register backend for custom device
triaged, open source, Stale, topic: not user facing
Fixes #ISSUE_NUMBER as title, add register backend func for custom device, then we could call func by torch.backends.foo for `foo` custom device.
3
1,646
106,668
Enabling Transformer fast path for not batch_first (MHA, TE, TEL)
enhancement, fb-exported, release notes: nn
Summary: The fast path for the `forward()` method in `MultiheadAttention`, `TE`, `TEL` only accepted `batch_first = True`. This diff enables fast path for `batch_first=False` as well. Differential Revision: D48095703
12
1,647
106,667
[docs] Idea collection of examples of custom ops / inline torch extensions
module: docs, triaged, module: custom-operators
### ๐Ÿš€ The feature, motivation and pitch Following up on https://github.com/pytorch/pytorch/issues/68066#issuecomment-1611836317: <hr> - a complete example of a custom op (maybe with forward/backward and registration) implemented via load_inline with only CUDA op or both CPU/SSE (how to properly do SSE impls?) and CUDA code - maybe for bilateral filter or batched base64 encoding/decoding or some bit magics like popcnt (https://github.com/pytorch/pytorch/issues/32867 or groupbitsum from https://github.com/Felix-Petersen/difflogic) - maybe general discussion of whether `cupy` api/features for this are worth being compatible with? pure nvrtc compilation? pure C compilation / marshalling (of pure pointers + numbers + C strings + ctype structs?)? - support for launcher-less kernels via `cupy`-like api? (also a good fit for nvrtc) for instance, here https://github.com/pytorch/pytorch/blob/main/test/test_cpp_extensions_jit.py#L338 there's even an unintuitive need for a c++ source for function declaration. it would be nicer to do without and be able to directly call the kernel - example of calling a C function consuming raw data pointers or DLPack structures. It often is much simpler to have these kinds of interfaces for thin C wrappers (e.g. audio decoding). It would be nice to have this example as inline, as often it's just dozen lines of C++ code in extern C function to call some underlying library like BLAS / cuBLAS / some media encoding-decoding. - example of using extra (currently unbound) functions cuBLAS / cudnn / blas. Maybe an example here could be some code using `ctypes`? it should be explained how to correctly marshal CUDA pointers. <hr> More ideas from https://github.com/pytorch/pytorch/pull/105947#issuecomment-1655693163: - also interesting would be examples on how to register ops currently missing in pytorch, e.g. adding a quantized impl or some missing sparse op, so that dispatcher would use it and let go the exception that some op impl can't be found - also interesting an example of adding a custom backward impl via a decorator - also interesting an example of cuda op, but without having to manually add a C++ launcher stub (e.g. so that pytorch would generate the kernel launcher and maybe that the kernel can be compiled by nvrtc - like in CuPy) - and also the CuPy-like API could be worth a discussion - also interesting would be an example of adding a pure C-op passing/consuming a dlpack tensor or even pure pointers - useful for interaction with C libraries of image/audio encoding/decoding <hr> Trying to distill from above concrete ideas on improving FFI story of PyTorch: - Fixing interop issues: https://github.com/pytorch/pytorch/issues/34651 https://github.com/pytorch/pytorch/issues/69491 - CuPy-like features: - API like [RawKernel](https://docs.cupy.dev/en/stable/reference/generated/cupy.RawKernel.html) [RawModule](https://docs.cupy.dev/en/stable/reference/generated/cupy.RawModule.html) - `nvrtc`-compilation (supposed to be faster than dealing with full nvcc / working with disk) - kernel launch functionality from Python directly (like CuPy) - Examples of interop with pure C functions: - consuming pure pointers - consuming DLPack tensors - Examples of using libopus loop-less API: https://github.com/jlaine/opuslib/blob/master/opuslib/api/decoder.py https://github.com/orion-labs/opuslib - Examples of interop PyTorch<> C code using ffmpeg libraries - Examples of interaction of interop of PyTorch tensors with ctypes-functions (e.g. how to properly deal with tensor memory ownership) - Examples of C++ extensions: - Examples of interop of PyTorch with opencv via C++ code snippets interacting with libopencv-dev - Examples of using directly CUDA kernel files from [FasterTransformer](https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/kernels/layernorm_kernels.cu ) or [OneFlow](https://github.com/Oneflow-Inc/oneflow/blob/2d24fe08be1b1bedcc22fb409c5d688924ce89fc/oneflow/user/kernels/layer_norm_gpu_kernel.cu). Somehow getting a compiled kernel without fully installing a python Package gives a nice feeling of experimentation and flexibility :) cc @svekars @carljparker
6
1,648
106,665
Inconsistency between CPU and GPU for `Linear()` layer with input size 0
module: nn, triaged, actionable, module: edge cases
### ๐Ÿ› Describe the bug On a CPU, the following code: ```python import torch layer = torch.nn.Linear(0, 2) x = torch.randn(3, 0) print(x.shape) y = layer(x) print(y.shape) print(y) ``` gives the following output: ``` /home/tgebhard/.virtualenvs/venv/lib/python3.10/site-packages/torch/nn/init.py:405: UserWarning: Initializing zero-element tensors is a no-op warnings.warn("Initializing zero-element tensors is a no-op") torch.Size([3, 0]) torch.Size([3, 2]) tensor([[0., 0.], [0., 0.], [0., 0.]], grad_fn=<AddmmBackward0>) ``` Meanwhile, on a GPU, the equivalent code: ```python import torch layer = torch.nn.Linear(0, 2).to("cuda") x = torch.randn(2, 0, device="cuda") print(x.shape) y = layer(x) print(y.shape) print(y) ``` produces: ``` torch.Size([3, 0]) /home/tgebhard/.virtualenvs/venv/lib/python3.10/site-packages/torch/nn/modules/linear.py:114: UserWarning: An output with one or more elements was resized since it had shape [3, 2], which does not match the required output shape [2]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at ../aten/src/ATen/native/Resize.cpp:26.) return F.linear(input, self.weight, self.bias) torch.Size([2]) tensor([0., 0.], device='cuda:0', grad_fn=<AddmmBackward0>) ``` I will admit that a linear layer with zero input features is a somewhat questionable use case, but as long as PyTorch supports such layers, I feel they should behave consistently? ### Versions ``` PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.35 Python version: 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.15.0-58-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 530.30.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 256 On-line CPU(s) list: 4-7 Off-line CPU(s) list: 0-3,8-255 Vendor ID: AuthenticAMD Model name: AMD EPYC 7662 64-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 64 Socket(s): 2 Stepping: 0 Frequency boost: enabled CPU max MHz: 2154.2959 CPU min MHz: 1500.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es Virtualization: AMD-V L1d cache: 4 MiB (128 instances) L1i cache: 4 MiB (128 instances) L2 cache: 64 MiB (128 instances) L3 cache: 512 MiB (32 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-63,128-191 NUMA node1 CPU(s): 64-127,192-255 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.4 [pip3] torch==2.0.1 [pip3] torchdiffeq==0.2.3 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] blas 1.0 mkl [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py310h7f8727e_0 [conda] mkl_fft 1.3.1 py310hd6ae3a3_0 [conda] mkl_random 1.2.2 py310h00e6091_0 [conda] numpy 1.23.5 py310hd5efca6_0 [conda] numpy-base 1.23.5 py310h8e6c178_0 [conda] numpydoc 1.5.0 py310h06a4308_0 [conda] pytorch 1.12.1 cpu_py310hb1f1ab4_1 ``` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
5
1,649
106,664
[docs] URL and link format proposal to make function page URLs more concise
module: docs, triaged, enhancement
### ๐Ÿ› Describe the bug These links end up copy-pasted in messengers for chat with colleagues, so making them have less bloat would be nice. If the links are concise, one can also do quick lookups without going to relatively slower loading https://pytorch.org/docs - e.g. by typing https://pytorch.org/docs/torch.div or https://pytorch.org/docs/div https://docs.pytorch.org/torch.div or https://docs.pytorch.org/div. These pages can also be auto-generated or symlinked for all function names at least for the torch/tensor functions (and such pages can list all functions with the same name e.g. torch.sigmoid, F.sigmoid which may be good by itself https://github.com/pytorch/pytorch/issues/105318 or https://discuss.pytorch.org/t/various-quantized-quantizable-intrinsic-modules-purpose/183562 for LinearReLU) <hr> If we go to https://pytorch.org/docs/stable/torch.html, we have links like https://pytorch.org/docs/stable/generated/torch.div.html#torch.div I'm proposing that instead these function links should be more concise and not include the hash. Going further, there should be symlinks https://pytorch.org/docs/torch.div.html or https://pytorch.org/docs/torch.div or even https://docs.pytorch.org/torch.div (and https://docs.pytorch.org/div) When doing simple search like `torch.div` we get: <img width="517" alt="image" src="https://github.com/pytorch/pytorch/assets/1041752/1612511a-0941-43c7-8514-18d763b2946b"> Clicking the first hit will get us to https://pytorch.org/docs/stable/generated/torch.div.html?highlight=torch+div#torch.div Also, the highlight seems to have no effect now (as opposed to the Google's https://pytorch.org/docs/stable/generated/torch.div.html#:~:text=torch.div https://stackoverflow.com/questions/62161819/what-exactly-is-the-text-location-hash-in-an-url). So maybe worth dropping the highligh part from the Sphinx search hit URLs too? ### Versions N/A cc @svekars @carljparker
1
1,650
106,662
Will torch.sparse.mm support multiplying two boolean matrices?
module: sparse, triaged, module: boolean tensor
### ๐Ÿš€ The feature, motivation and pitch I have two huge matrices. They are sparse Boolean matrices. I call torch.sparse.mm and found that it cannot be successful. Will the multiplication of bool sparse matrices be supported in the future? ### Alternatives _No response_ ### Additional context _No response_ cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer
0
1,651
106,660
Question about garbage collection without GPU sync
triaged, module: CUDACachingAllocator
### ๐Ÿ› Describe the bug I found that in `void garbage_collect_cached_blocks()` ``` size_t gc_threshold = static_cast<size_t>( CachingAllocatorConfig::garbage_collection_threshold() * allowed_memory_maximum); ``` If the `torch._C._cuda_setMemoryFraction` function is not called๏ผŒ`allowed_memory_maximum` value is 0. The value of `gc_threshold` is also 0. The garbage collection without GPU sync mechanism does not take effect. And there's no prompt. So I think it's more reasonable whether to use `device_total` (obtained using `cudaMemGetInfo`) when `allowed_memory_maximum` is 0. ### Versions https://github.com/pytorch/pytorch/blob/dc22b4fdb1b4af1f0b7b77a78b30237d337d7109/c10/cuda/CUDACachingAllocator.cpp#L2577C47-L2577C47
1
1,652
106,659
Enable transformer.py fastpath for not batch_first for TE & TEL
fb-exported, Stale
Summary: TE & TEL support for not batch_first transpose position of (variable) seqlen and batch position, prior to converting inputs to nested tensor, and undo the transformation after. Also, in TE-layer. Test Plan: sandcastle Differential Revision: D47989561
5
1,653
106,655
Add functional collective all_to_all_single and support it in Inductor
fb-exported, module: inductor, module: dynamo, ciflow/inductor, release notes: AO frontend
Summary: `all_to_all_single` is being used by all the important All2All workloads (e.g. alltoall_pooled / alltoall_sequence / alltoallv). This PR adds functional collective `all_to_all_single` and support it in Inductor, to unlock our exploration on internal workloads. Differential Revision: D48013416 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @chenyang78 @kadeng @muchulee8 @aakhundov @anijain2305
24
1,654
106,649
Dynamo graph break on triplet_margin_with_distance_loss
triaged, module: dynamo
### ๐Ÿ› Describe the bug python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_nn_functional_triplet_margin_with_distance_loss_cuda_float32 > File "/scratch/eellison/work/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/scratch/eellison/work/pytorch/torch/_dynamo/symbolic_convert.py", line 1156, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/scratch/eellison/work/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/scratch/eellison/work/pytorch/torch/_dynamo/variables/torch.py", line 723, in call_function *proxy_args_kwargs(args, kwargs), File "/scratch/eellison/work/pytorch/torch/_dynamo/utils.py", line 504, in proxy_args_kwargs f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}" File "/scratch/eellison/work/pytorch/torch/_dynamo/exc.py", line 143, in unimplemented raise Unsupported(msg) torch._dynamo.exc.Unsupported: call_function args: TensorVariable() TensorVariable() TensorVariable() ConstantVariable(float) NNModuleVariable() related: https://github.com/pytorch/pytorch/issues/105534 ### Versions master cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov @peterbell10 @ngimel @yf225 @kadeng @muchulee8
1
1,655
106,638
add is_complex op for ShardedTensor #93886
Stale, release notes: distributed (sharded)
Summary: ATT Test Plan: unit tests
4
1,656
106,637
Using retain_graph in backward() with FSDP
oncall: distributed, triaged, module: fsdp
### ๐Ÿ› Describe the bug We need to support a use case where for the same model output, we need to compute loss (and corresponding gradients) twice, each time with a different set of target labels. To do the above in one forward pass, we do not want the `backward()` to clean up the computation graph and hence we use `backward(retain_graph=True)`. **Without FSDP** When the model is not wrapped in FSDP, we can make successive calls `loss1.backward(retain_graph=True), loss2.backward()` and they are executed successfully. ``` class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.Linear(2, 2, bias=False) self.softmax = nn.Softmax(dim=1) def forward(self, x): return self.softmax(self.layer(x)) loss_fn = nn.CrossEntropyLoss() model = Model() optimizer = torch.optim.AdamW(opt_model.parameters(), lr=0.01) dummy_data = torch.ones((2, 2)) out = opt_model(dummy_data) target1 = torch.zeros(2, dtype=torch.long) optimizer.zero_grad() loss1 = loss_fn(out, target1) loss1.backward(retain_graph=True) optimizer.zero_grad() target2 = torch.ones(2, dtype=torch.long) loss2 = loss_fn(out, target2) loss2.backward() ``` **With FSDP (Script to reproduce error)** However, when the model is wrapped using FSDP, multiple calls to `backward()` with the retain_graph option leads to error. The code to reproduce the error is given below: ``` import functools import os import torch import torch.distributed as dist import torch.nn as nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import MixedPrecision, ShardingStrategy, StateDictType from torch.distributed.fsdp.wrap import enable_wrap, transformer_auto_wrap_policy, wrap local_rank = int(os.getenv("LOCAL_RANK")) torch.manual_seed(42 + local_rank) torch.cuda.manual_seed_all(42 + local_rank) mp_policy = MixedPrecision( param_dtype=torch.bfloat16, reduce_dtype=torch.bfloat16, buffer_dtype=torch.bfloat16, ) wrapping_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls={}) model_sharding_strategy = ShardingStrategy.FULL_SHARD torch.cuda.set_device(int(os.getenv("RANK"))) dist.init_process_group("nccl") v = 2048 d = 1024 model = nn.Sequential(nn.Embedding(v, d), nn.Linear(d, v)) model = FSDP( model, auto_wrap_policy=wrapping_policy, mixed_precision=mp_policy, sharding_strategy=model_sharding_strategy, device_id=local_rank, limit_all_gathers=True, use_orig_params=True, ) optimizer = torch.optim.AdamW(model.parameters(), lr=0.0001) criterion = nn.CrossEntropyLoss() # TRAINING LOOP for i in range(10): inp = torch.randint(v, (8, 256), device=local_rank) label = inp.add(1) % v print("Input and labels created") optimizer.zero_grad() pred = model(inp) loss = criterion(pred.view(-1, pred.size(-1)), label.view(-1)) print("Loss computed. Calling backward() with retain_graph..") loss.backward(retain_graph=True) print("Gradient computed once. Called backward() again without retain_graph..") loss.backward() print("Gradient computed twice") optimizer.step() print("Update step complete") if local_rank == 0 and (i + 1) % 10 == 0: print(f"Step {i+1}, loss {loss.item()}") ``` The relevant error log is given below: ``` Input and labels created NCCL version 2.17.1+cuda11.8 Loss computed. Calling backward() with retain_graph.. Gradient computed once. Called backward() again without retain_graph.. Traceback (most recent call last): File "/opt/conda/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/workspace/foundation-model-stack/nlp/scripts/pretraining/repro.py", line 59, in <module> loss.backward() File "/opt/conda/lib/python3.10/site-packages/torch/_tensor.py", line 491, in backward torch.autograd.backward( File "/opt/conda/lib/python3.10/site-packages/torch/autograd/__init__.py", line 204, in backward Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/_runtime_utils.py", line 690, in _pre_backward_hook if state._needs_pre_backward_unshard[_handles_key]: KeyError: (<torch.distributed.fsdp.flat_param.FlatParamHandle object at 0x7f8889313910>,) [2023-08-04 20:41:22,975] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 0 (pid: 135) of binary: /opt/conda/bin/python Traceback (most recent call last): File "/opt/conda/bin/torchrun", line 8, in <module> sys.exit(main()) File "/opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/torch/distributed/run.py", line 797, in main run(args) File "/opt/conda/lib/python3.10/site-packages/torch/distributed/run.py", line 788, in run elastic_launch( File "/opt/conda/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 134, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/opt/conda/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ ``` ### Versions Pytorch nightly image from 07-17-2023. cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @fegin
0
1,657
106,635
Hackable distributed filesystem reader and writer
triaged, open source
I propose some changes so that the `FileSystemReader` and `FileSystemWriter` can be used on other file systems. User only needs to provide `path` as a subclass of `Path` that overrides the necessary interfaces. For example, one can utilize `tf.io.gfile` to implement an interface to save to or load from HDFS. The following code snippet shows a working implementation. ```python from pathlib import Path import tensorflow as tf class GFileWrapper(tf.io.gfile.GFile): def __init__(self, path, mode="r") -> None: super().__init__(path, mode) def write(self, data): return super().write(bytes(data)) # a not quite efficient readinto, but it works def readinto(self, buffer): # read up to buffer's length data = self.read(len(buffer)) length = len(data) buffer[:length] = data return length class HdfsPath(type(Path())): def __new__(cls, *pathsegments): return super().__new__(cls, *pathsegments) @staticmethod def _fix_path(path): path = str(path) if path.startswith("hdfs:/") and not path.startswith("hdfs://"): path = path.replace("hdfs:/", "hdfs://") return path def open(self, mode="r", *args, **kwargs): return GFileWrapper(HdfsPath._fix_path(self), mode=mode) def mkdir(self, **kwargs) -> None: return tf.io.gfile.makedirs(HdfsPath._fix_path(self)) def rename(self, target): return tf.io.gfile.rename(HdfsPath._fix_path(self), HdfsPath._fix_path(target)) ``` ```python writer = FileSystemWriter(HdfsPath("hdfs://..."), sync_files=False) reader = FileSystemReader(HdfsPath("hdfs://...")) ```
4
1,658
106,634
Confusing error message for DataLoader with num_workers=0 and non-zero timeout
module: dataloader, triaged
### ๐Ÿ› Describe the bug It looks like setting a timeout on the DataLoader is illegal with num_workers=0, but the documentation doesn't mention it and the error message is very confusing. I would expect the timeout to be ignored under those circumstances, but at the very least this deserves a clear error message, since the current one reads as if a timeout occurred, rather than an illegal value for it was passed. Minimal reproducing example ```python from torch.utils.data import DataLoader train_dataloader_full_tracks = DataLoader( [], num_workers=0, timeout=1 ) iter(train_dataloader_full_tracks) ``` Output ``` Traceback (most recent call last): File "dataloader_problem.py", line 6, in <module> iter(train_dataloader_full_tracks) File "/usr/local/lib/python3.8/dist-packages/torch/utils/data/dataloader.py", line 442, in __iter__ return self._get_iterator() File "/usr/local/lib/python3.8/dist-packages/torch/utils/data/dataloader.py", line 385, in _get_iterator return _SingleProcessDataLoaderIter(self) File "/usr/local/lib/python3.8/dist-packages/torch/utils/data/dataloader.py", line 664, in __init__ assert self._timeout == 0 AssertionError ``` ### Versions I use 2.0.0, but I see that the main branch has the same issue as of today. cc @SsnL @VitalyFedyunin @ejguan @dzhulgakov
0
1,659
106,633
Refcount problem for torch.distributed.Store objects defined in Python
oncall: distributed, module: c10d
### ๐Ÿ› Describe the bug Consider the following Python code, call it `store_bug.py` (for a fully working version, see [here](https://gist.github.com/heiner/7ed5802eb9b3218a418262d542ecb827#file-store_bug-py)): ```python import datetime import sys import torch class MyStore(torch.distributed.Store): # Some store implementation. def init(rank, world_size, use_workaround=False, *, _cache={}): store = MyStore() torch.distributed.init_process_group( backend="gloo", world_size=world_size, rank=rank, timeout=datetime.timedelta(seconds=3.0), store=store, ) if use_workaround: _cache["store"] = store def main(): rank = int(sys.argv[1]) world_size = int(sys.argv[2]) use_workaround = sys.argv[3] if len(sys.argv) > 3 else False print(f"starting rank {rank}/{world_size} with use_workaround={use_workaround}") init(rank, world_size, use_workaround) g = torch.distributed.new_group(timeout=datetime.timedelta(seconds=2.0)) payload = torch.tensor([3 * rank + 1], dtype=torch.int64) torch.distributed.all_reduce(payload, group=g) print(f"Rank {rank}, sum is {payload}") if __name__ == "__main__": main() ``` Now, run the above code like this: ```sh rm -rf /tmp/store_bug; for i in {0..1}; do python -u store_bug.py $i 2 & done && wait ``` This will result in ```sh $ rm -rf /tmp/store_bug; for i in {0..1}; do python -u store_bug.py $i 2 & done && wait [2] 69038 [3] 69039 starting rank 1/2 with use_workaround=False starting rank 0/2 with use_workaround=False Traceback (most recent call last): File "/Users/heiner/src/projects/pytorch_store_bug/store_bug.py", line 147, in <module> main() File "/Users/heiner/src/projects/pytorch_store_bug/store_bug.py", line 139, in main g = torch.distributed.new_group(timeout=datetime.timedelta(seconds=2.0)) File "/Users/heiner/miniconda3/envs/dev/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 3520, in new_group pg = _new_process_group_helper( File "/Users/heiner/miniconda3/envs/dev/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 1009, in _new_process_group_helper backend_class = ProcessGroupGloo(backend_prefix_store, group_rank, group_size, timeout=timeout) RuntimeError: fn INTERNAL ASSERT FAILED at "/Users/runner/work/pytorch/pytorch/pytorch/torch/csrc/distributed/c10d/init.cpp":137, please report a bug to PyTorch. Traceback (most recent call last): File "/Users/heiner/src/projects/pytorch_store_bug/store_bug.py", line 147, in <module> main() File "/Users/heiner/src/projects/pytorch_store_bug/store_bug.py", line 139, in main g = torch.distributed.new_group(timeout=datetime.timedelta(seconds=2.0)) File "/Users/heiner/miniconda3/envs/dev/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 3520, in new_group pg = _new_process_group_helper( File "/Users/heiner/miniconda3/envs/dev/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 1009, in _new_process_group_helper backend_class = ProcessGroupGloo(backend_prefix_store, group_rank, group_size, timeout=timeout) RuntimeError: fn INTERNAL ASSERT FAILED at "/Users/runner/work/pytorch/pytorch/pytorch/torch/csrc/distributed/c10d/init.cpp":137, please report a bug to PyTorch. [3] + exit 1 python -u store_bug.py $i 2 [2] + exit 1 python -u store_bug.py $i 2 ``` In contrast, running the code such that `use_workaround` becomes true works: ```sh $ rm -rf /tmp/store_bug; for i in {0..1}; do python -u store_bug.py $i 2 1 & done && wait [2] 69067 [3] 69068 starting rank 1/2 with use_workaround=1 starting rank 0/2 with use_workaround=1 Rank 1, sum is tensor([5]) Rank 0, sum is tensor([5]) [3] + done python -u store_bug.py $i 2 1 [2] + done python -u store_bug.py $i 2 1 ``` The difference, of course, is that the working version keeps an additional reference to the `store` object, making sure it stays alive. This is a regression introduced in or around PyTorch 2.0, possibly in https://github.com/pytorch/pytorch/pull/91178. The [existing test](https://github.com/pytorch/pytorch/blob/a01e795a6d03dff853534c4c4a9f3522f3fd717d/test/distributed/test_store.py#L461) for this via `torch.distributed._test_python_store` doesn't catch this as it does not create a new group via the store. To recreate at home: ```sh git clone https://gist.github.com/7ed5802eb9b3218a418262d542ecb827.git storebug cd storebug/ rm -rf /tmp/store_bug; for i in {0..1}; do python -u store_bug.py $i 2 1 & done && wait # Works. rm -rf /tmp/store_bug; for i in {0..1}; do python -u store_bug.py $i 2 & done && wait # Breaks. ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.6 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.102) CMake version: version 3.24.2 Libc version: N/A Python version: 3.9.11 (main, Mar 29 2022, 14:04:34) [Clang 12.0.0 ] (64-bit runtime) Python platform: macOS-12.6-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] flake8==4.0.1 [pip3] flake8-bugbear==22.3.23 [pip3] flake8-unused-arguments==0.0.10 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.5 [pip3] open-clip-torch==2.9.1 [pip3] pytorch-lightning==1.4.2 [pip3] torch==2.0.1 [pip3] torchaudio==0.13.1 [pip3] torchdiffeq==0.2.3 [pip3] torchmetrics==0.6.0 [pip3] torchvision==0.14.1 [conda] numpy 1.23.5 pypi_0 pypi [conda] open-clip-torch 2.9.1 pypi_0 pypi [conda] pytorch-lightning 1.4.2 pypi_0 pypi [conda] torch 1.11.0 pypi_0 pypi [conda] torchaudio 0.13.1 py39_cpu pytorch [conda] torchdiffeq 0.2.3 pypi_0 pypi [conda] torchmetrics 0.6.0 pypi_0 pypi [conda] torchvision 0.14.1 pypi_0 pypi cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu
5
1,660
106,630
no_grad() changes output of TransformerDecoder module during evaluation
oncall: transformer/mha
### ๐Ÿ› Describe the bug The TransformerDecoder module gives different outputs at validation time depending on whether gradient calculations are being performed. Minimal example: ``` import torch torch.manual_seed(5) class TestModule(torch.nn.Module): def __init__(self): super().__init__() layer = torch.nn.TransformerDecoderLayer( d_model=8, nhead=2, batch_first=True, dropout=0 ) self.transformer_decoder = torch.nn.TransformerDecoder(layer, num_layers=1) self.final = torch.nn.Linear(8, 1) def forward(self, batch): tgt, memory = batch mask = (~torch.triu(torch.ones(tgt.shape[1], tgt.shape[1], dtype=torch.bool)).transpose(0, 1)).type_as(tgt) preds = self.transformer_decoder( tgt=tgt, memory=memory, tgt_mask=mask ) return torch.sum(self.final(preds)) model = TestModule() tgt = torch.normal(0, 1, size=(1, 5, 8)) mem = torch.zeros(1, 5, 8) model.train() print(model((tgt, mem))) model.train() with torch.no_grad(): print(model((tgt, mem))) model.eval() print(model((tgt, mem))) model.eval() with torch.no_grad(): print(model((tgt, mem))) ```` **Output:** > tensor(1.8914, grad_fn=<SumBackward0>) > tensor(1.8914) > tensor(1.8914, grad_fn=<SumBackward0>) > tensor(2.9639) **Expected output:** All four outputs should be the same - whether or not the computation graph is stored shouldn't affect the output of the model. The difference isn't caused by unexpected train vs. test logic somewhere in the TransformerDecoderLayer (eg. a hidden dropout or batch norm), since the model behaves as expected when run in eval model but with gradients. ### Versions **Output of collect_env.py:** PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.25.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.109+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.22.4 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 cc @jbschlosser @bhosmer @cpuhrsch @erichan1 @drisspg
2
1,661
106,625
Dynamo debug decorator
Stale, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106625 Dynamo debug decorator ``` @torch._dynamo.debug def inner_foo(x): return x * x def fn(x, y): x2 = inner_foo(x) return x2 * y x = torch.rand([4, 10]) y = torch.rand([4, 10]) torch._dynamo.optimize("eager")(fn)(x, y) ``` Output: ``` [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] INLINING <code object inner_foo at 0x7fd962616e40, file "/scratch/voz/work/pytorch/x.py", line 7> [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] 9 0 LOAD_FAST 0 (x) [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] 2 LOAD_FAST 0 (x) [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] 4 BINARY_MULTIPLY [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] 6 RETURN_VALUE [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line inner_foo /scratch/voz/work/pytorch/x.py:7 (inline depth: 1) [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] @torch._dynamo.debug [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] TRACE starts_line inner_foo /scratch/voz/work/pytorch/x.py:9 (inline depth: 1) [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert.__trace_source: [DEBUG] return x * x [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x [] [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x [TensorVariable()] [2023-08-04 17:48:38,550] torch._dynamo.symbolic_convert: [DEBUG] TRACE BINARY_MULTIPLY None [TensorVariable(), TensorVariable()] [2023-08-04 17:48:38,555] torch._dynamo.symbolic_convert: [DEBUG] TRACE RETURN_VALUE None [TensorVariable()] [2023-08-04 17:48:38,555] torch._dynamo.symbolic_convert: [DEBUG] DONE INLINING <code object inner_foo at 0x7fd962616e40, file "/scratch/voz/work/pytorch/x.py", line 7> ``` And drops a breakpoint in. cc @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @ipiszy
2
1,662
106,624
[feature request] [ux] Frontend methods for fused elementwise affine transform: mul+add+dtype convert + support `integer_tensor.mul_(float_constant)` and `float_tensor.mul(some_constant, out = integer_tensor)` maybe via new args `rounding_mode=...` and `dtype=...` + maybe support OpenCV-style saturated dtype conversions (e.g. `clamp_` before conversion)
triaged, module: type promotion, module: python frontend
### ๐Ÿš€ The feature, motivation and pitch This should be well-compiled as it's elementwise, but would be nice to have as a frontend method for colloquial use. A prototypical example is conversion of float32 image to uint8 image: ```python import torch a = torch.rand(10) b = torch.empty_like(a, dtype = torch.uint8) f32_to_u8 = torch.mul(a, 255, out = b) # RuntimeError: result type Float can't be cast to the desired output type Byte ``` Might be that these methods already exist in the form of helpers for quantization, but would be nice to expose them for wider usage. OpenCV https://docs.opencv.org/4.x/d3/d63/classcv_1_1Mat.html#adf88c60c5b4980e05bb556080916978b has a similar method `convertTo` which multiplies by a scalar, than adds another scalar and then casts dtype. OpenCV also does saturate cast functionality (to make sure that uint8 doesn't overflow too badly) - might be useful for PyTorch too, but saturation might be done prior to actual conversion by `clamp_` or by providing also a fused `mul_add_clamp(..., dtype=...)` (`torch.add(a, b, alpha = ...)` exists but also doesn't support the needed casting). Related: `addcmul` generalization discussion: https://github.com/pytorch/pytorch/issues/104849 (although I realize, this might be somwhat niche - also sth similar exists in torchvision: https://pytorch.org/vision/stable/generated/torchvision.transforms.Normalize.html) Being able to do `int32_tensor.mul_(float_constant)` or `uint8_tensor.mul_(float_constant)` is also useful and related to https://github.com/pytorch/pytorch/issues/54389. It could certainly support rounding, similar to `torch.div(..., rounding_mode = 'trunc')` e.g. by doing int32_tensor.mul_(numerator).div_(denominator, rounding_mode = 'floor') Currently: ```python x = torch.tensor([2, 4, 8], dtype = torch.int32) although docs say "None - default behavior. Performs no rounding and, if both input and other are integer types, promotes the inputs to the default scalar type." x.div_(2) # RuntimeError: result type Float can't be cast to the desired output type Long x.div_(2, rounding_mode = 'trunc') # works x //= 2 # works ``` cc @nairbv @mruberry @albanD
12
1,663
106,623
Meta implementations of FFT operators often have incorrect strides
triaged, module: fft, oncall: pt2
## Issue description `aten._fft_c2r` and `aten._fft_r2c` meta implementations currently return contiguous strides in all cases, which is not consistent with eager. `aten._fft_c2c` makes a much better effort, but is still incorrect on CUDA when there are more than 3 transform dimensions or on CPU when using the pocketfft implementation instead of mkl-fft. Ref: - [c2r](https://github.com/pytorch/pytorch/blob/df8abaaf5f7e19d897aa30896bdbbe416ca2f825/torch/_meta_registrations.py#L279) - [r2c](https://github.com/pytorch/pytorch/blob/df8abaaf5f7e19d897aa30896bdbbe416ca2f825/torch/_meta_registrations.py#L221) - [c2c](https://github.com/pytorch/pytorch/blob/df8abaaf5f7e19d897aa30896bdbbe416ca2f825/torch/_meta_registrations.py#L205) ## Code example This real-to-complex example falls back to eager with `torch.compile` due to `UnsupportedOperatorException`: ```python import torch def fn(x): return torch.fft.rfft(x) torch.compile(fn, dynamic=True) ``` This complex-to-complex example compiles, but fails at runtime with stride mismatch: ```python import torch @torch.compile def fn(x): return torch.fft.fftn(x, dim=(1, 2, 3, 4)) fn(torch.randn((5, 5, 5, 5, 5), dtype=torch.complex64, device="cuda")) # AssertionError: expected size 5==5, stride 1==125 at dim=1 ``` cc @mruberry @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @nkaretnikov
1
1,664
106,622
FFT Samples Inputs with More than Three Dimensions
module: tests, triaged, module: fft
### ๐Ÿš€ The feature, motivation and pitch This is worth capturing because cuFFT can only transform three dimensions at once, so, 4dim+ has divergent behavior. See https://github.com/pytorch/pytorch/pull/103616#discussion_r1237295970. ### Alternatives _No response_ ### Additional context _No response_ cc @mruberry @peterbell10
2
1,665
106,614
Case study of torch.compile / cpp inductor on CPU: min_sum / mul_sum with 1d / matmul-like with static / dynamic shapes
triaged, module: custom-operators, oncall: pt2, module: dynamic shapes
### ๐Ÿ› Describe the bug (I'll add actual benchmarking details and logs and output_code.py in a bit) I'm doing min_sum and mul_sum in two setups: 1. (D, ) x (D, ) -> scalar 2. (B, N, 1, D) x (B, 1, N, D) -> (B, N, N) Case (1) is similar to computing some sort of norm of a given input or a distance between two inputs. Case (2) is matmul-like and is similar to computing distances between all pairs of the batch (mm / pdist / cdist). When running as `python3 bench_minmul_sum.py --enable-dynamic --avx512 --verbose1` Findings and questions regarding dynamic shapes: 1. Dynamic / static shape options are not confined to the torch.compile call (which is super-unintuitive and brittle). When using `--enable-dynamic`, all produced `output_code.py` contain dynamic shapes (meaning, dynamic shapes ended up using not only for `min_sum_compiled_dynamic` but also for `min_sum_compiled`) 2. When not using `--enable-dynamic`, all produced `output_code.py` contain static shapes - ideally this may lead to full loop unrolling for small dims, but currently loop unrolling may only be done by the underlying C++ compiler, loop unrolling pragmas are currently missing from the generated C++ 3. Dynamic shapes `output_code.py` do not record divisibility and always contain an extra tail loop. 4. Ideally, I would like to have static shapes for 1d ops (inner dim is static or there are only a few possible values in my usecase); static shapes for the inner dim of the 2d ops and dynamic shapes for the batch dims (like can be done for torch.onnx.export). Currently parametrizing static or dynamic shapes is unpredictable :( This is not very good :( 5. Why is `#pragma omp simd simdlen(8)` used? Apparently it's correct, but if it's the register-size-in-float32, I would expect it to be `simdlen(16)`, no? Also, I had hard time to find out the resulting assembly and whether the compiled did loop unrolling (there was no `#pragma omp unroll`). How can one do that? Could the debug option print the produced assembly too? (obtained from `objdump`). Currently there are also too much logs, hard to get through all of them. 6. Better explaining of the tiling story to the users is important - for matmul-like ops especially. And these custom matmul-like ops are quite common in kernel methods and similar (see pykeops): https://github.com/pytorch/pytorch/issues/59545 https://github.com/pytorch/pytorch/issues/97006 https://github.com/pytorch/pytorch/issues/71386 Findings and questions regarding NaNs: 1. min_sum produced codes have NaN handling 2. It can be good to give an asserting or a hint to the compiler that the inputs will not contain NaNs, so being NaN-compliant is not needed. This NaN handling might be a perf hit for small 1d vectors. Findings regarding mul_sum (which is equivalent to matrix product or dot product): 1. The mul_sum pattern is not recognized and `gemm` call or `dot` call is not produced. Seems that no tiling is done despite the fact that sum-reduction is used. Findings regarding the benchmarking: 1. On some Linux platforms (e.g. Windows WSLv1) it can be hard to account for CPU throttling. It would be good if PyTorch had some recommendations on how to account for it properly. And on laptops on battery there is often quite severe CPU throttling. 2. config.cpp.simdlen is 512 despite that without `ATEN_CPU_CAPABILITY=avx512`, config.show() shows `CPU capability usage: AVX2` (which 256-bits registers only). And it seems that this ATEN_CPU_CAPABILITY of only 256-bits is discovered automatically, despite that the laptop supports avx512 Misc: 1. NVidia Triton will soon merge more direct and discoverable PyTorch + compile support: https://github.com/triton-inference-server/python_backend/pull/282, they are even considering of making torch.compile enabled as default option: https://github.com/triton-inference-server/python_backend/pull/282#discussion_r1275234208. This means that better telemetry and predictability about torch.compile would soon be more important. E.g. being able to completely save the best benchmarked kernels / selected cudnn algos to some file/database and then providing them as is when deploying to new servers. This is important to force the same algos/impls at every startup (I assume currently the selected cudnn algos might change if at algo benchmarking time, someone at a shared server e.g. occupies the needed benchmarking memory) and giving some indication / hooks when it was not possible. 2. Better compiler debug output visualization report is needed similar to https://godbolt.org for C++ -> Assembly. Maybe some HTML report containing the Python source code so that one can click on compiled function and have C++ / CUDA / Triton / Assembly shown for inspection? ```python # bench_minmul_sum.py import os import sys import time enable_dynamic = '--enable-dynamic' in sys.argv if '--avx512' in sys.argv: os.environ['ATEN_CPU_CAPABILITY'] = 'avx512' if '--verbose1' in sys.argv: os.environ['TORCH_COMPILE_DEBUG'] = '1' if '--verbose2' in sys.argv: os.environ['TORCH_LOGS'] = 'output_code' if '--simd512': from torch._inductor import config config.cpp.simdlen = 512 from torch._inductor import config print('config.cpp.simdlen', config.cpp.simdlen) print([line for line in torch.__config__.show().splitlines() if 'CPU capability' in line]) import torch min_sum = lambda a, b: torch.min(a, b).sum(-1) mul_sum = lambda a, b: torch.mul(a, b).sum(-1) min_sum_compiled_dynamic = torch.compile(min_sum, dynamic = enable_dynamic) mul_sum_compiled_dynamic = torch.compile(mul_sum, dynamic = enable_dynamic) min_sum_compiled = torch.compile(min_sum) mul_sum_compiled = torch.compile(mul_sum) # 192 is 12 float32x16 (512-bit registers) or 24 float32x8 (256-bit registers) static_shape = (192,) dynamic_shape = (6, 183, 192) def benchmark(name, f, a, b, K = 100): tic = time.time() for k in range(K): f(a, b) print(name, a.shape, b.shape, (time.time() - tic) * 1000, 'ms') # warmup for k in range(5): A = torch.rand(*dynamic_shape, dtype = torch.float32).unsqueeze(2) B = torch.rand(*dynamic_shape, dtype = torch.float32).unsqueeze(1) a = torch.rand(*static_shape, dtype = torch.float32) b = torch.rand(*static_shape, dtype = torch.float32) if enable_dynamic: min_sum_compiled_dynamic(A, B) mul_sum_compiled_dynamic(A, B) mul_sum_compiled_dynamic(A, B) min_sum_compiled_dynamic(A, A) min_sum_compiled(A, B) mul_sum_compiled(A, B) min_sum_compiled(A, A) mul_sum_compiled(A, A) min_sum(A, B) mul_sum(A, B) min_sum(A, A) mul_sum(A, A) if enable_dynamic: min_sum_compiled_dynamic(a, b) mul_sum_compiled_dynamic(a, b) min_sum_compiled_dynamic(a, a) mul_sum_compiled_dynamic(a, a) min_sum_compiled(a, b) mul_sum_compiled(a, b) min_sum_compiled(a, a) mul_sum_compiled(a, a) min_sum(a, b) mul_sum(a, b) min_sum(a, a) mul_sum(a, a) # benchmark A = torch.rand(*dynamic_shape, dtype = torch.float32).unsqueeze(2) B = torch.rand(*dynamic_shape, dtype = torch.float32).unsqueeze(1) a = torch.rand(*static_shape, dtype = torch.float32) b = torch.rand(*static_shape, dtype = torch.float32) if enable_dynamic: benchmark('min_sum_compiled_dynamic_AB', min_sum_compiled_dynamic, A, B) benchmark('mul_sum_compiled_dynamic_ab', mul_sum_compiled_dynamic, a, b) benchmark('min_sum_compiled_dynamic_AA', min_sum_compiled_dynamic, A, A) benchmark('mul_sum_compiled_dynamic_aa', mul_sum_compiled_dynamic, a, a) benchmark('min_sum_compiled_AB', min_sum_compiled, A, B) benchmark('mul_sum_compiled_ab', mul_sum_compiled, a, b) benchmark('min_sum_compiled_AA', min_sum_compiled, A, A) benchmark('mul_sum_compiled_aa', mul_sum_compiled, a, a) benchmark('min_sum_AB', min_sum, A, B) benchmark('mul_sum_ab', mul_sum, a, b) benchmark('min_sum_AA', min_sum, A, A) benchmark('mul_sum_aa', mul_sum, a, a) ``` ### Versions 3.1.0.dev20230802+cpu cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
17
1,666
106,613
Stopgap patch for avoiding polluting cache
Stale, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106613 This is a complete and utter hack. See https://github.com/pytorch/pytorch/issues/106547 for details. Signed-off-by: Edward Z. Yang <ezyang@meta.com> cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @ipiszy
2
1,667
106,608
ROCm & Windows Support
module: rocm, triaged
### ๐Ÿš€ The feature, motivation and pitch AMD has release ROCm windows support, as [docs.amd.com](https://docs.amd.com) shows: ![8df2b59d834bd749e7b486cd02a6e4b](https://github.com/pytorch/pytorch/assets/69568351/373102ff-81b7-4029-a1be-889214296303) ![984e40b50fb006e4e94f3abfeba8fe7](https://github.com/pytorch/pytorch/assets/69568351/ded8a54a-db59-4c2f-b5cb-a86883cda63e) Please add PyTorch support of Windows on AMD GPUs! ### Alternatives _No response_ ### Additional context _No response_ cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
5
1,668
106,606
More Performant CachingHostAllocator for Pinned Memory Allocation
module: cuda, triaged
### ๐Ÿš€ The feature, motivation and pitch I intend to employ a memory allocator for pinned memory allocation and have come across the `CachingHostAllocator` in PyTorch. Regrettably, the practical memory consumption surpasses what is expected. The allocator follows a power-of-two allocation strategy without memory coalescing, resulting in substantial memory wastage. This inefficiency can lead to increased memory consumption and suboptimal utilization of resources. The current implementation of the `CachingHostAllocator` in PyTorch for pinned memory allocation seems to exhibit suboptimal performance under certain conditions. As a crucial component in deep learning workloads, efficient memory allocation and management are essential to ensure optimal training and inference performance. ### Alternatives I suggest the development of a more performant alternative to the existing `CachingHostAllocator` that addresses the performance concerns. This new allocator should focus on improving memory allocation speed, reducing memory fragmentation, and better leveraging modern hardware characteristics. ### Additional context _No response_ ```[tasklist] ### Tasks ``` cc @ptrblck
0
1,669
106,604
Relu6 not able to process nan values
triaged, module: NaNs and Infs
### ๐Ÿ› Describe the bug import numpy as np import torch torch_tensor = torch.tensor(np.full([1], np.nan)).cuda() print(np.isnan(torch_tensor.detach().cpu().numpy())) torch_relu = torch.nn.ReLU6().cuda() print(np.isnan(torch_relu(torch_tensor).detach().cpu().numpy())) other competitors framework like MindSpore is able to process nan values, which will output zero instead of nan. ### Versions PyTorch version: 1.10.1+cu111 Is debug build: False CUDA used to build PyTorch: 11.1 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.27 Python version: 3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-4.15.0-211-generic-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: Tesla V100-SXM2-32GB GPU 1: Tesla V100-SXM2-32GB Nvidia driver version: 470.182.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.5 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 10 On-line CPU(s) list: 0-9 Thread(s) per core: 1 Core(s) per socket: 10 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz Stepping: 7 CPU MHz: 2499.998 BogoMIPS: 4999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 32K L1i cache: 32K L2 cache: 4096K L3 cache: 16384K NUMA node0 CPU(s): 0-9 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni Versions of relevant libraries: [pip3] numpy==1.24.2 [pip3] torch==1.10.1+cu111 [pip3] torchaudio==0.10.1+cu111 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.11.2+cu111 [conda] cudatoolkit 11.1.1 h6406543_8 conda-forge [conda] numpy 1.24.2 pypi_0 pypi [conda] torch 1.10.1+cu111 pypi_0 pypi [conda] torchaudio 0.10.1+cu111 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.11.2+cu111 pypi_0 pypi
3
1,670
106,602
onednn ops supported in pytorch
triaged, module: intel
How I get to know what are the onednn ops supported in pytorch? what aten functions are going to ideep and further to onednn? IS there any documentation which I can refer to understand this. cc @frank-wei @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
4
1,671
106,601
[ONNX] Keep functional ops as functions in dynamo exported onnx
module: onnx, triaged
### ๐Ÿš€ The feature, motivation and pitch `nn.Module` may be represented as function in onnx I was expecting the functional op to be expressed as such Although most functional ops correspond to aten ops one-to-one, there are only a few parameter differences But there are still some common functional ops that will be expressed as a combination of multiple aten ops, such as * F.normalize * F.interpolate * etc. Representing it as a function can express the structure of the model more meaningfully, and is more friendly to the optimization of the backend Otherwise downstream tools need to write rules and combine them back together, like https://github.com/Tencent/ncnn/blob/master/tools/pnnx/src/pass_level2/F_interpolate.cpp ### Alternatives _No response_ ### Additional context _No response_
1
1,672
106,596
[discussion] move-semantics for tensors
triaged, module: python frontend
### ๐Ÿš€ The feature, motivation and pitch Sometimes we want to kind of pass the tensor to a function entirely (so that it can safely do inplace modifications without worrying to disturb other consumers). One way it could work is that after a new_tensor_ref = tensor.move() is called, the previous tensor reference becomes somewhat invalid and would throw exception on any usage. There could also be some `assert tensor.is_single_owner()` which could ensure that there is only one reference to the tensor. Of course, there would be ways to circumvent this (e.g. by recording manually data_ptr), but it could be a way to increase expressiveness, give compiler more hints for compilation, and let the user express clearer ownership semantics and have some guards. ### Alternatives _No response_ ### Additional context _No response_ cc @albanD
10
1,673
106,585
[ROCm] Add summary warning about no write permissions for hipify
module: rocm, triaged, open source, ciflow/trunk, rocm
Fixes #66573 CC @hongxiayang cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
2
1,674
106,584
Lacking commutativity of `tensor.expand` and `tensor.flatten`
triaged, module: viewing and reshaping
### ๐Ÿ› Describe the bug I guess this is just another facet of https://github.com/pytorch/pytorch/issues/28090 `flatten` could realloc only the needed amount needed to deal with the required dimensions (and keep some unaffected dimensions expanded). In this example, `x1` consumes less memory than `x2`. If `flatten` was smarter, `x2` would consume as little memory as `x1`. ```python import torch # output from meshgrid x0 = torch.arange(100).unsqueeze(-1).expand(-1, 200) print(x0.numel(), x0.storage().size()) #bar.py:4: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage #will be the only storage class. This should only matter to you if you are using storages directly. To #access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() # print(x0.numel(), x0.storage().size()) # 20000 100 x1 = x0.flatten(start_dim = -2).unsqueeze(0).expand(30, -1) print(x1.numel(), x1.storage().size()) # 600000 20000 x2 = x0.unsqueeze(0).expand(30, -1, -1).flatten(start_dim = -2) print(x2.numel(), x2.storage().size()) # 600000 600000 ``` ### Versions 2.1.0 nightly
5
1,675
106,581
[inductor] Add ir.Scan and lower aten.cumsum on CUDA
open source, Merged, Reverted, ciflow/trunk, module: inductor, ciflow/inductor, ciflow/unstable, release notes: inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #110911 * #109132 * __->__ #106581 * #109601 This adds the `ir.Scan` node (currently only supported on CUDA) which re-uses the existing reduction kernel machinery to support different kinds of non-pointwise ops. Just like reductions it supports prologue and epilogue fusions and has both persistent and non-persistent kernel generation. Currently this doesn't support the equivalent of `Reduction.create_multilayer` and will instead fall back to eager in those cases. This is because splitting into multiple kernel invocations ends up being far slower than cub's single kernel strategy which matches the performance of a copy kernel. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
36
1,676
106,580
[dynamo] Unsupported to trace through Boolean Tensor indexing
triaged, oncall: pt2, module: dynamic shapes
### ๐Ÿ› Describe the bug even though indexing by boolean tensor is supported in normal torch, it is not supported in dynamo ### Reprod Script ```python import torch def reprod_function(t: torch.Tensor, a: torch.Tensor): t[a] *= 0.2 return t reprod_function_compile = torch.compile(reprod_function, backend="eager", fullgraph=True) x = torch.rand(1,2,3) y = torch.rand(1,2,3).to(torch.bool) z = reprod_function(x,y) print(z.dtype) z = reprod_function_compile(x,y) print(z.dtype) ``` ### Traceback ```python File "PATH_TO_PYTHON_LIB/site-packages/torch/_dynamo/variables/builtin.py", line 450, in call_function unimplemented("dynamic Tensor.__getitem__(bool[])") File "PATH_TO_PYTHON_LIB/site-packages/torch/_dynamo/exc.py", line 71, in unimplemented raise Unsupported(msg) torch._dynamo.exc.Unsupported: dynamic Tensor.__getitem__(bool[]) from user code: File "./reprod.py", line 4, in reprod_function t[a] *= 0.2 Set torch._dynamo.config.verbose=True for more information You can suppress this exception and fall back to eager by setting: torch._dynamo.config.suppress_errors = True ``` cc: @cchan @ezhang887 @ezyang ### Versions torch==2.0.1 python==3.8 ### Workaround ```python t = torch.where(a, t * 0.2, t) ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
4
1,677
106,579
Boolean valued images loaded from disk, when converted to torch int/float tensor, the True valued pixels gets converted to 255 instead of 1
triaged, module: boolean tensor
### ๐Ÿ› Describe the bug Boolean valued images loaded from disk, when converted to torch int/float tensor, the True valued pixels gets converted to 255 instead of 1 **Step-by-step procedure:** - Load a boolean-valued image from disk using PIL.Image.open. - Convert image to boolean numpy array - Convert to torch.tensor - Convert to torch int / float tensor - The `True` valued pixels in the original image now have a value of `255`, instead of `1` **Minimal reproducible code** ```python print_img_info = lambda desc, inp_img: print( f"{desc} | type: {type(inp_img)} dtype: {inp_img.dtype}, max: {inp_img.max()}, min: {inp_img.min()}" ) img = np.array(Image.open(img_path)) print_img_info("orignal image", img) # orignal image | type: <class 'numpy.ndarray'> dtype: bool, max: True, min: False imgT = torch.tensor(img) print_img_info("torch image", imgT) # torch image | type: <class 'torch.Tensor'> dtype: torch.bool, max: True, min: False imgTInt = imgT.to(torch.int) print_img_info("torch image int", imgTInt) # torch image int | type: <class 'torch.Tensor'> dtype: torch.int32, max: 255, min: 0 imgTFloat = imgT.to(torch.float) print_img_info("torch image float", imgTFloat) # torch image float | type: <class 'torch.Tensor'> dtype: torch.float32, max: 255.0, min: 0.0 ``` Note that the output of every print statement is commented in the next line. Notice that the int/float tensor's max pixel value is 255 instead of 1. PFA the code and sample images: [torch_boolean_conversion_issue_minimal_reproducible_code.zip](https://github.com/pytorch/pytorch/files/12255240/torch_boolean_conversion_issue_minimal_reproducible_code.zip) ### Versions I tested the attached zip on many of my colleagues' machines. I was able to reproduce the issue on all of them except for one. Attaching some of those environments here. I have added the PIL library versions for these environments as well. <details> <summary>Torch environment 1 (The issue is observed)</summary> PIL library version: 10.0.0 ```sh PyTorch version: 1.9.0+cu111 Is debug build: False CUDA used to build PyTorch: 11.1 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.8.17 (default, Jul 5 2023, 21:04:15) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: 11.6.124 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1080 Ti GPU 1: NVIDIA GeForce GTX 1080 Ti GPU 2: NVIDIA GeForce GTX 1080 Ti GPU 3: NVIDIA GeForce GTX 1080 Ti Nvidia driver version: 510.108.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5 /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.3 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn.so.8 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 /usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 24 On-line CPU(s) list: 0-23 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz Stepping: 4 CPU MHz: 1200.191 CPU max MHz: 4400.0000 CPU min MHz: 1200.0000 BogoMIPS: 5799.77 Virtualization: VT-x L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 12 MiB L3 cache: 16.5 MiB NUMA node0 CPU(s): 0-23 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.19.0 [pip3] torch==1.9.0+cu111 [pip3] torchvision==0.10.0+cu111 [conda] numpy 1.19.0 pypi_0 pypi [conda] torch 1.9.0+cu111 pypi_0 pypi [conda] torchvision 0.10.0+cu111 pypi_0 pypi ``` </details> <details> <summary> Torch environment 2 (The issue is observed) </summary> PIL library version: 9.2.0 ```sh PyTorch version: 1.12.1+cu102 Is debug build: False CUDA used to build PyTorch: 10.2 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 10.1.243 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1080 Ti GPU 1: NVIDIA GeForce GTX 1080 Ti GPU 2: NVIDIA GeForce GTX 1080 Ti GPU 3: NVIDIA GeForce GTX 1080 Ti Nvidia driver version: 525.125.06 cuDNN version: /usr/lib/libcudnn.so.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 24 On-line CPU(s) list: 0-23 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz Stepping: 4 CPU MHz: 2900.000 CPU max MHz: 4400.0000 CPU min MHz: 1200.0000 BogoMIPS: 5799.77 Virtualization: VT-x L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 12 MiB L3 cache: 16.5 MiB NUMA node0 CPU(s): 0-23 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.2 [pip3] torch==1.12.1 [pip3] torchaudio==0.12.1 [pip3] torchvision==0.13.1 [conda] blas 1.0 mkl [conda] clip-anytorch 2.5.0 pypi_0 pypi [conda] coca-pytorch 0.0.7 pypi_0 pypi [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] dalle2-pytorch 1.11.4 pypi_0 pypi [conda] ema-pytorch 0.1.2 pypi_0 pypi [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.23.5 py39h14f4228_0 [conda] numpy-base 1.23.5 py39h31eccc5_0 [conda] open-clip-torch 2.8.2 pypi_0 pypi [conda] pytorch 1.12.1 py3.9_cuda11.3_cudnn8.3.2_0 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] pytorch-scatter 2.1.0 py39_torch_1.12.0_cu113 pyg [conda] pytorch-warmup 0.1.1 pypi_0 pypi [conda] rotary-embedding-torch 0.1.5 pypi_0 pypi [conda] torch-ema 0.3 pypi_0 pypi [conda] torch-fidelity 0.3.0 pypi_0 pypi [conda] torchaudio 0.12.1 py39_cu113 pytorch [conda] torchmetrics 0.11.0 pypi_0 pypi [conda] torchvision 0.13.1 py39_cu113 pytorch [conda] vector-quantize-pytorch 0.10.14 pypi_0 pypi ``` </details> <details> <summary>Torch environment 3 (<strong>The issue is not observed</strong>)</summary> PIL library version: 8.2.0 ```sh PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.9.16 (main, May 15 2023, 23:46:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-155-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.3.58 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1080 Ti GPU 1: NVIDIA GeForce GTX 1080 Ti GPU 2: NVIDIA GeForce GTX 1080 Ti GPU 3: NVIDIA GeForce GTX 1080 Ti Nvidia driver version: 470.199.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 24 On-line CPU(s) list: 0-23 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz Stepping: 4 CPU MHz: 1200.167 CPU max MHz: 4400.0000 CPU min MHz: 1200.0000 BogoMIPS: 5799.77 Virtualization: VT-x L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 12 MiB L3 cache: 16.5 MiB NUMA node0 CPU(s): 0-23 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.20.2 [pip3] torch==2.0.1 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] numpy 1.20.2 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi ``` </details>
2
1,678
106,571
Enable more flake8-bugbear lints
good first issue, module: lint, triaged, enhancement, better-engineering
### ๐Ÿš€ The feature, motivation and pitch * There are a lot of flake8-bugbear code reported by flake8-bugbear and ruff that need to be fixed. These would be a good starting issue for a new contributor. This can be found be removing the codes from the ignore list in the .flake8 file and the .pyproject file for ruff. - [ ] "B007", - [ ] "B008" - [ ] "B017", - [ ] "B018", # Useless expression - [ ] "B019", - [ ] "B020", - [ ] "B023", - [ ] "B024", - [ ] "B026", - [ ] "B028", # No explicit `stacklevel` keyword argument found - [ ] "B904", ### Alternatives _No response_ ### Additional context _No response_
10
1,679
106,566
DTensor Sharding prop cache stats
oncall: distributed, triaged, module: dtensor
### ๐Ÿš€ The feature, motivation and pitch We have built `_CachingPropagator` and we need some stats to monitor cache miss rate so that we can understand potential perf regression in DTensor CPU overhead. ### Alternatives _No response_ ### Additional context _No response_ cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu
0
1,680
106,565
install cuda version always get cpuonly
oncall: releng, triaged
### ๐Ÿ› Describe the bug I found that when installing PyTorch with CUDA version 1.9.1 or below, the cpuonly library is also installed, which prevents training from using the GPU. Even after uninstalling cpuonly, it still doesnโ€™t work. I have experimented with versions 1.10.1, 1.10.0, 1.9.1, 1.9.0, 1.8.1 and 1.8.0. ### Versions Collecting environment information... PyTorch version: 1.8.1 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: Could not collect CMake version: version 3.10.2 Libc version: glibc-2.27 Python version: 3.8.16 (default, Jun 12 2023, 18:09:05) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.17 Is CUDA available: False CUDA runtime version: 11.4.152 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 Nvidia driver version: 470.182.03 cuDNN version: Probably one of the following: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8.2.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.2.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.2.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.2.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.2.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.2.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.2.1 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn.so.8.6.0 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.6.0 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.6.0 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.6.0 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.6.0 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.6.0 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 33 Model name: AMD Ryzen 9 5950X 16-Core Processor Stepping: 0 CPU MHz: 2197.976 CPU max MHz: 3400.0000 CPU min MHz: 2200.0000 BogoMIPS: 6799.97 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 32768K NUMA node0 CPU(s): 0-31 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==1.8.1 [pip3] torchaudio==0.8.0a0+e4e171a [pip3] torchvision==0.9.1 [conda] blas 1.0 mkl [conda] cpuonly 1.0 0 pytorch [conda] cudatoolkit 11.3.1 h9edb442_10 conda-forge [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py38h95df7f1_0 conda-forge [conda] mkl_fft 1.3.1 py38h8666266_1 conda-forge [conda] mkl_random 1.2.2 py38h1abd341_0 conda-forge [conda] numpy 1.24.3 py38h14f4228_0 [conda] numpy-base 1.24.3 py38h31eccc5_0 [conda] pytorch 1.8.1 py3.8_cpu_0 [cpuonly] pytorch [conda] torchaudio 0.8.1 py38 pytorch [conda] torchvision 0.9.1 py38_cpu [cpuonly] pytorch
1
1,681
106,563
NotImplementedError: Could not run 'aten::multinomial' with arguments from the 'Meta' backend.
triaged, module: random
### ๐Ÿ› Describe the bug The error says: NotImplementedError: Could not run 'aten::multinomial' with arguments from the 'Meta' backend. This could be because the operator doesn't exist for thi s backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, pl ease visit https://fburl.com/ptmfixes for possible resolutions. 'aten::multinomial' is only available for these backends: [CPU, CUDA, BackendSelect, Py thon, FuncTorchDynamicLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradHIP, AutogradXLA, AutogradMPS, AutogradIPU, AutogradXPU, AutogradHPU, AutogradVE, AutogradLazy, AutogradMeta, AutogradMTIA, AutogradPrivateUse1 , AutogradPrivateUse2, AutogradPrivateUse3, AutogradNestedTensor, Tracer, AutocastCPU, AutocastCUDA, FuncTorchBatched, FuncTorchVmapMode, Batched, Vmap Mode, FuncTorchGradWrapper, PythonTLSSnapshot, FuncTorchDynamicLayerFrontMode, PythonDispatcher]. Code: def sample_top_p(probs, p): probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token ### Versions StatusCode : 200 StatusDescription : OK Content : # Unlike the rest of the PyTorch this file must be python2 compliant. # This script outputs relevant system environment info # Run it with `python collect_env.py`. import datetime import locale impor... RawContent : HTTP/1.1 200 OK Connection: keep-alive Content-Security-Policy: default-src 'none'; style-src 'unsafe-inline'; sandbox Strict-Transport-Security: max-age=31536000 X-Content-Type-Options: nosniff ... Forms : {} Headers : {[Connection, keep-alive], [Content-Security-Policy, default-src 'none'; style-src 'unsafe-inline'; sandbox], [Strict-Transport-Security, max-age=31536000], [X-Content-Type-Options, nosniff]...} Images : {} InputFields : {} Links : {} ParsedHtml : mshtml.HTMLDocumentClass RawContentLength : 21653 cc @pbelevich
1
1,682
106,560
Serialize
Stale, release notes: vulkan, module: export
Fixes #ISSUE_NUMBER cc @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan
3
1,683
106,557
DISABLED test_cpp_wrapper_cpu (__main__.FreezingCpuTests)
triaged, skipped, oncall: pt2
Platforms: macos This test was disabled because it is failing on master ([recent examples](http://torch-ci.com/failure/inductor%2Ftest_inductor_freezing.py%3A%3AFreezingCpuTests%3A%3Atest_cpp_wrapper_cpu)). cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @albanD
1
1,684
106,556
Pytorch: torch.autograd.grad returns NoneType
module: autograd, triaged
### ๐Ÿ› Describe the bug ``` import torch #Captum Attribution from captum.attr import Saliency model = torch.hub.load('pytorch/vision:v0.10.0', 'squeezenet1_1', pretrained=True) model.eval() sal = Saliency(model) #X, y is an image and label original_label = y test_image = X.reshape([1,3,227,227]).float() #I need gradient w.r.t. this test_image test_image.requires_grad = True test_image.retain_grad() #Calculate saliency attribution = sal.attribute(test_image, target=original_label) attribution = torch.sum(torch.abs(attribution[0]), dim=0) attribution = 227 * 227 * attribution / torch.sum(attribution) attribution = attribution.view(-1) elem1 = torch.argsort(attribution)[-1000:] elements1 = torch.zeros(227 * 227) elements1[elem1] = `1` #I need gradient of topK_loss w.r.t. test_image topK_loss = torch.sum(attribution * elements1) topK_loss.requires_grad = True topK_loss.retain_grad() gradients = -torch.autograd.grad(outputs=topK_loss, inputs=test_image, allow_unused=True)[0] ``` I get this error: `bad operand type for unary -: 'NoneType'` ### Versions PyTorch version: 2.0.0+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.15.120+-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 4 On-line CPU(s) list: 0-3 Thread(s) per core: 2 Core(s) per socket: 2 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU @ 2.20GHz Stepping: 0 CPU MHz: 2200.186 BogoMIPS: 4400.37 Hypervisor vendor: KVM Virtualization type: full L1d cache: 64 KiB L1i cache: 64 KiB L2 cache: 512 KiB L3 cache: 55 MiB NUMA node0 CPU(s): 0-3 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities cc @ezyang @albanD @zou3519 @gqchen @pearu @nikitaved @soulitzer @Lezcano @Varal7
3
1,685
106,551
UFMT utils tensorboard, data, benchmark.
Stale, release notes: dataloader
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106551 Signed-off-by: Edward Z. Yang <ezyang@meta.com>
2
1,686
106,550
[dynamo] teach dynamo about `pytree._broadcast_to_and_flatten`
triaged, oncall: pt2, module: dynamo
### ๐Ÿ› Describe the bug Given that dynamo knows about a few pytree functions, it would be great to support `_broadcast_to_and_flatten` as it will allow us to improve `vmap` support for dynamo Ref: https://github.com/pytorch/pytorch/pull/101707#discussion_r1280562461 Repro: ```python import torch torch._dynamo.config.suppress_errors=False @torch.compile(backend="eager") def test(): args = (0, 1, 1, 0) _, arg_spec = torch.utils._pytree.tree_flatten(args) # Dynamo doesn't know how to handle this. torch.utils._pytree._broadcast_to_and_flatten(0, arg_spec) test() ``` Output ``` File "/home/kshiteej/Pytorch/pytorch_functorch/torch/fx/node.py", line 644, in <genexpr> t = tuple(map_aggregate(elem, fn) for elem in a) File "/home/kshiteej/Pytorch/pytorch_functorch/torch/fx/node.py", line 654, in map_aggregate return fn(a) File "/home/kshiteej/Pytorch/pytorch_functorch/torch/fx/node.py", line 636, in <lambda> return map_aggregate(a, lambda x: fn(x) if isinstance(x, Node) else x) File "/home/kshiteej/Pytorch/pytorch_functorch/torch/_dynamo/utils.py", line 1302, in visit return n.meta["example_value"] torch._dynamo.exc.InternalTorchDynamoError: example_value ``` ### Versions master cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
2
1,687
106,549
Can't build PyTorch 1.13.1 with Vulkan support
triaged, module: vulkan, ciflow/periodic
### ๐Ÿ› Describe the bug Attempting to build PyTorch with Vulkan support fails with: ``` FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/vulkan/ATen/native/vulkan/glsl.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DBUILD_ONEDNN_GRAPH -DCPUINFO_SUPPORTED_PLATFORM=1 -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_C10D_GLOO -DUSE_DISTRIBUTED -DUSE_EXTERNAL_MZCRC -DUSE_RPC -DUSE_TENSORPIPE -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/libtorch-factory/pytorch/build/aten/src -I/libtorch-factory/pytorch/aten/src -I/libtorch-factory/pytorch/build -I/libtorch-factory/pytorch -I/libtorch-factory/pytorch/cmake/../third_party/benchmark/include -I/libtorch-factory/pytorch/third_party/onnx -I/libtorch-factory/pytorch/build/third_party/onnx -I/libtorch-factory/pytorch/third_party/foxi -I/libtorch-factory/pytorch/build/third_party/foxi -I/libtorch-factory/pytorch/torch/csrc/api -I/libtorch-factory/pytorch/torch/csrc/api/include -I/libtorch-factory/pytorch/caffe2/aten/src/TH -I/libtorch-factory/pytorch/build/caffe2/aten/src/TH -I/libtorch-factory/pytorch/build/caffe2/aten/src -I/libtorch-factory/pytorch/build/caffe2/../aten/src -I/libtorch-factory/pytorch/torch/csrc -I/libtorch-factory/pytorch/third_party/miniz-2.1.0 -I/libtorch-factory/pytorch/third_party/kineto/libkineto/include -I/libtorch-factory/pytorch/third_party/kineto/libkineto/src -I/libtorch-factory/pytorch/build/vulkan -I/libtorch-factory/pytorch/aten/../third_party/VulkanMemoryAllocator -I/libtorch-factory/pytorch/aten/../third_party/catch/single_include -I/libtorch-factory/pytorch/aten/src/ATen/.. -I/libtorch-factory/pytorch/third_party/FXdiv/include -I/libtorch-factory/pytorch/c10/.. -I/libtorch-factory/pytorch/third_party/pthreadpool/include -I/libtorch-factory/pytorch/third_party/cpuinfo/include -I/libtorch-factory/pytorch/third_party/QNNPACK/include -I/libtorch-factory/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/include -I/libtorch-factory/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src -I/libtorch-factory/pytorch/third_party/cpuinfo/deps/clog/include -I/libtorch-factory/pytorch/third_party/NNPACK/include -I/libtorch-factory/pytorch/third_party/fbgemm/include -I/libtorch-factory/pytorch/third_party/fbgemm -I/libtorch-factory/pytorch/third_party/fbgemm/third_party/asmjit/src -I/libtorch-factory/pytorch/third_party/ittapi/src/ittnotify -I/libtorch-factory/pytorch/third_party/FP16/include -I/libtorch-factory/pytorch/third_party/tensorpipe -I/libtorch-factory/pytorch/build/third_party/tensorpipe -I/libtorch-factory/pytorch/third_party/tensorpipe/third_party/libnop/include -I/libtorch-factory/pytorch/third_party/fmt/include -I/libtorch-factory/pytorch/build/third_party/ideep/mkl-dnn/third_party/oneDNN/include -I/libtorch-factory/pytorch/third_party/ideep/mkl-dnn/third_party/oneDNN/src/../include -I/libtorch-factory/pytorch/third_party/flatbuffers/include -isystem /libtorch-factory/pytorch/build/third_party/gloo -isystem /libtorch-factory/pytorch/cmake/../third_party/gloo -isystem /libtorch-factory/pytorch/cmake/../third_party/googletest/googlemock/include -isystem /libtorch-factory/pytorch/cmake/../third_party/googletest/googletest/include -isystem /libtorch-factory/pytorch/third_party/protobuf/src -isystem /libtorch-factory/pytorch/third_party/gemmlowp -isystem /libtorch-factory/pytorch/third_party/neon2sse -isystem /libtorch-factory/pytorch/third_party/XNNPACK/include -isystem /libtorch-factory/pytorch/third_party/ittapi/include -isystem /libtorch-factory/pytorch/cmake/../third_party/eigen -isystem /libtorch-factory/pytorch/third_party/ideep/mkl-dnn/third_party/oneDNN/include -isystem /libtorch-factory/pytorch/third_party/ideep/include -isystem /libtorch-factory/pytorch/third_party/ideep/mkl-dnn/include -isystem /libtorch-factory/pytorch/build/include -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN -DUSE_VULKAN_API -DUSE_VULKAN_SHADERC_RUNTIME -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -DHAVE_AVX2_CPU_DEFINITION -O3 -DNDEBUG -DNDEBUG -fPIC -DCAFFE2_USE_GLOO -DTH_HAVE_THREAD -Wall -Wextra -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-missing-field-initializers -Wno-write-strings -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-sign-compare -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-missing-braces -Wno-maybe-uninitialized -fvisibility=hidden -O2 -fopenmp -DCAFFE2_BUILD_MAIN_LIB -pthread -DASMJIT_STATIC -std=gnu++14 -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/vulkan/ATen/native/vulkan/glsl.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/vulkan/ATen/native/vulkan/glsl.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/vulkan/ATen/native/vulkan/glsl.cpp.o -c /libtorch-factory/pytorch/build/vulkan/ATen/native/vulkan/glsl.cpp /libtorch-factory/pytorch/build/vulkan/ATen/native/vulkan/glsl.cpp:1166:1: error: unable to find string literal operator โ€˜operator""fullyโ€™ with โ€˜const char [1326]โ€™, โ€˜long unsigned intโ€™ arguments 1166 | " // and compute partial sums of texels that are "fully filled"\n" | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``` ### Versions PyTorch: 1.13.1 Vulkan: 1.3.231.1 Workflow: https://pytorch.org/tutorials/prototype/vulkan_workflow.html
2
1,688
106,546
Potential Issue with Pandas Dataframe
needs reproduction, triaged, oncall: pt2
### ๐Ÿ› Describe the bug When using torch.compile, I am experiencing an error in my dataset class specifically due to a len() call on a pandas data frame. My guess is that the code may be getting compiled into a boolean statement with incorrect syntax checking if the data frame is empty or not. ### Error logs ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). ### Minified repro _No response_ ### Versions Collecting environment information... PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.25.0 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX A2000 8GB Laptop GPU Nvidia driver version: 528.79 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12800H CPU family: 6 Model: 154 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 3 BogoMIPS: 5606.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mc a cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_t sc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq ssse3 fma cx16 p cid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowpre fetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase bmi1 avx2 smep bmi2 erm s invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves umip gfn i vaes vpclmulqdq rdpid fsrm flush_l1d arch_capabilities Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB fillin g, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchmetrics==1.0.1 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] Could not collect cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
1,689
106,545
`softmax` to handle dimensions comprised of `-inf`
module: nn, triaged
### ๐Ÿš€ The feature, motivation and pitch Currently `softmax` handles `-inf` in most of the cases, for example: ```python >>> x = torch.tensor([-float('inf'), 1]) >>> x.softmax(-1) tensor([0., 1.]) >>> x.cuda().softmax(-1) tensor([0., 1.], device='cuda:0') ``` However, once the normalized dimension is comprised of solely `-inf`, there is an issue: ```python >>> x = torch.tensor([-float('inf')] * 2) >>> x.softmax(-1) tensor([nan, nan]) >>> x.cuda().softmax(-1) tensor([nan, nan], device='cuda:0') ``` I understand we get it because `inf - inf = nan`, but why not assume that `softmax` is computed in the limit? In such a case `softmax` should return a uniform distribution. This case is quite easy to detect since `max == -inf` will imply a uniform distribution. Issues for more context: https://github.com/pytorch/pytorch/issues/25110 https://github.com/pytorch/pytorch/issues/103749 https://github.com/pytorch/pytorch/issues/103963 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
1
1,690
106,544
Branch name in double quotes ""
module: ci, triaged
### ๐Ÿ› Describe the bug TBD ### Versions It is not a bug per say, but a issue we are facing. We see that a new branch has been added with double quotes in it name: "serialize". We have forked the pytorch repository and our internal automation of fetching the latest code is broken due to branch name in quotes. Just curious, if there any guidelines about branch name? cc @seemethere @malfet @pytorch/pytorch-dev-infra
5
1,691
106,540
Dataset with Queue issue
module: dataloader, triaged, module: data
### ๐Ÿ› Describe the bug In a classification task, due to the small number of certain categories, I added a queue in the function. This queue is used to cache images with a small number, but I found that each epoch will empty my queue. Why๏ผŸ here is demo ``` import random import cv2 import torch import os from torch.utils.data import Dataset, DataLoader from queue import Queue class DataSet_my(Dataset): def __init__(self, path_dir, is_train=True): self.path_dir = path_dir self.jpg_path_List = [] self.label_2 = 2 self.label_1 = 1 self.out_h = 64 self.out_w = 64 self.T_max_obj = 10 self.T_maxqueue_size = 1000 self.queue_obj = Queue(maxsize = self.T_maxqueue_size) # ๅˆ›ๅปบไธ€ไธช้˜Ÿๅˆ—ๅฏน่ฑก def __getitem__(self, idx): path_img = self.jpg_path_List[idx] path_obscure_txt = path_img.replace(".jpg", ".txt") img_src = cv2.imread(path_img) with open(path_obscure_txt, "r") as fr: lines = fr.readlines() roi_img = cv2.imread(lines[0]) label = lines[1] self.queue_obj.qsize() < self.T_maxqueue_size * 0.7: self.queue_obj.put(roi_img.copy()) if self.queue_obj.qsize() > self.T_max_obj * 5 and (len(m_roi_obscure) < len(m_roi_normal)): while not self.queue_obj.empty(): m_out.append(self.queue_obj.get()) out_label = np.array(label) out_img = np.array(m_out) return out_img, out_label.astype(np.float32) ``` ### Versions ``` Package Version -------------------- ----------- anyio 3.7.1 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 attrs 23.1.0 backcall 0.2.0 beautifulsoup4 4.12.2 bleach 6.0.0 certifi 2022.12.7 cffi 1.15.1 charset-normalizer 3.1.0 cPython 0.0.6 cycler 0.11.0 debugpy 1.6.7 decorator 5.1.1 defusedxml 0.7.1 dnspython 2.3.0 easydict 1.10 entrypoints 0.4 exceptiongroup 1.1.2 fastjsonschema 2.17.1 fire 0.5.0 fonttools 4.38.0 glog 0.3.1 idna 3.4 imageio 2.28.1 importlib-metadata 6.7.0 importlib-resources 5.12.0 ipykernel 6.16.2 ipython 7.34.0 ipython-genutils 0.2.0 ipywidgets 8.0.7 jedi 0.18.2 Jinja2 3.1.2 joblib 1.1.0 jsonschema 4.17.3 jupyter_client 7.4.9 jupyter_core 4.12.0 jupyter-server 1.24.0 jupyterlab-pygments 0.2.2 jupyterlab-widgets 3.0.8 kiwisolver 1.4.4 lmdb 1.4.0 MarkupSafe 2.1.3 matplotlib 3.5.3 matplotlib-inline 0.1.6 mistune 3.0.1 mkl-fft 1.3.1 mkl-random 1.2.2 mkl-service 2.4.0 nbclassic 1.0.0 nbclient 0.7.4 nbconvert 7.6.0 nbformat 5.8.0 nest-asyncio 1.5.6 networkx 2.6.3 notebook 6.5.4 notebook_shim 0.2.3 numpy 1.21.6 open3d-python 0.7.0.0 opencv-python 4.6.0.66 packaging 23.1 pandocfilters 1.5.0 parso 0.8.3 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.5.0 pip 22.3.1 pkgutil_resolve_name 1.3.10 prefetch-generator 1.0.1 prettytable 3.7.0 prometheus-client 0.17.1 prompt-toolkit 3.0.39 protobuf 3.19.1 psutil 5.9.5 ptyprocess 0.7.0 pycparser 2.21 Pygments 2.15.1 pymongo 4.3.3 pyparsing 3.1.0 pyrsistent 0.19.3 python-dateutil 2.8.2 python-gflags 3.1.2 PyWavelets 1.4.0 PyYAML 3.13 pyzmq 25.1.0 requests 2.31.0 scikit-image 0.19.3 scikit-learn 1.0.2 scipy 1.7.3 Send2Trash 1.8.2 setuptools 65.6.3 six 1.16.0 sklearn 0.0 sniffio 1.3.0 soupsieve 2.4.1 tensorboardX 2.1 termcolor 2.3.0 terminado 0.17.1 threadpoolctl 3.1.0 tifffile 2021.11.2 tinycss2 1.2.1 torch 1.7.1+cu110 torchvision 0.8.2+cu110 tornado 6.2 tqdm 4.64.1 traitlets 5.9.0 typing_extensions 4.5.0 urllib3 2.0.2 wcwidth 0.2.6 webencodings 0.5.1 websocket-client 1.6.1 wheel 0.38.4 widgetsnbextension 4.0.8 zipp 3.15.0 ``` cc @SsnL @VitalyFedyunin @ejguan @dzhulgakov
1
1,692
106,538
Enable Mypy Checking in torch/_inductor/fx_passes/split_cat.py
triaged, open source, module: inductor, ciflow/inductor
Fixes #105230 Enable Mypy Checking in torch/_inductor cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
4
1,693
106,533
CUDA device support does not register allocator to c10::GetAllocator(...)
module: cpp, module: cuda, triaged
### ๐Ÿ› Describe the bug The CUDA device support does not register its device allocator to `c10::GetAllocator(c10::DeviceType)` but explicitly requires to use `c10::cuda::CUDACachingAllocator::get()`. Here a small demonstrator, that prints the pointer to the CUDACachingAllocator (to proof that CUDA support is loaded), and then all known allocators that are registered to `c10::GetAllocator(...)`. ```c++ #include <c10/cuda/CUDACachingAllocator.h> #include <iostream> int main(int argc, char** argv) { std::cout << "CUDACachingAllocator: " << c10::cuda::CUDACachingAllocator::get() << std::endl; for(int D = 0; D < (int)c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES; D++) { auto d = (c10::DeviceType)D; std::cout << c10::DeviceTypeName(d) << ": " << c10::GetAllocator(d) << std::endl; } return 0; } ``` And then run it using: ```bash python3 -m venv error . error/bin/activate python3 -m pip install torch LIB=$(python3 -c "import site;print(site.getsitepackages()[0])") g++ -D_GLIBCXX_USE_CXX11_ABI=0 -L $LIB/torch/lib -I $LIB/torch/include/ -lc10 -lc10_cuda error.cpp LD_LIBRARY_PATH=$LIB/torch/lib ./a.out ``` Output: ``` CUDACachingAllocator: 0x7f9ab62efda0 CPU: 0x7f9ab639ed68 CUDA: 0 MKLDNN: 0 OPENGL: 0 OPENCL: 0 IDEEP: 0 HIP: 0 FPGA: 0 ORT: 0 XLA: 0 VULKAN: 0 METAL: 0 XPU: 0 MPS: 0 META: 0 HPU: 0 VE: 0 LAZY: 0 IPU: 0 MTIA: 0 privateuseone: 0 ``` To my understanding in `c10/cuda/CUDACachingAllocator.cpp` in `BackendStaticInitializer::BackendStaticInitializer()` it should call `c10::SetAllocator(c10::DeviceType::CUDA, r);` ### Versions Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: CentOS Linux 7 (Core) (x86_64) GCC version: (GCC) 10.5.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.17 Python version: 3.8.17 (default, Jun 26 2023, 05:54:38) [GCC 10.2.1 20210130 (Red Hat 10.2.1-11)] (64-bit runtime) Python platform: Linux-3.10.0-1160.76.1.el7.x86_64-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: 11.8.89 GPU models and configuration: GPU 0: Quadro P4000 Nvidia driver version: 535.54.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] torch==2.0.1 [conda] Could not collect cc @jbschlosser @ptrblck
0
1,694
106,529
Pytorch + ROCm+ Windows
module: rocm, triaged
### ๐Ÿš€ The feature, motivation and pitch A week ago, amd published ROCm for windows and cards like the 6600xt. Yet, you can't install pytorch under this configuration: ![image](https://github.com/pytorch/pytorch/assets/92395216/d1737c9a-cbbc-4528-ad7a-98dc84958fc7) I asked in the unofficial pytorch discord server and somebody told me to try: pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm5.6 but that simply resulted in the error: ERROR: Could not find a version that satisfies the requirement torch (from versions: none) ERROR: No matching distribution found for torch Is there any way to get a working version yet and if not, will that come in the future and when can it be expected? Thanks for any help and I hope I posted this under the correct category. ### Alternatives _No response_ ### Additional context _No response_ cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
2
1,695
106,525
Add ModuleInfo for torch.nn.ChannelShuffle
triaged, open source, fb-exported, topic: not user facing
Summary: Add ModuleInfo for torch.nn.ChannelShuffle: https://github.com/pytorch/pytorch/pull/105351#pullrequestreview-1533879586 Test Plan: Please see GitHub Actions. Differential Revision: D48021100
5
1,696
106,520
Distributed torch.linalg.eigh (and other functions) on cuda using cuSOLVERMG
module: cuda, triaged, module: linear algebra
### ๐Ÿš€ The feature, motivation and pitch The current torch.linalg system seems to primarily call cuSOLVER for many of the operations. I was wondering if it would be possible to ``upgrade" this to use cuSOLVERMG, which is the distributed version of cuSOLVER. Doing this would allow us to, for example, take a eigenvalue decomposition of larger matrices without OOMing. ### Alternatives _No response_ ### Additional context _No response_ cc @ptrblck @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
0
1,697
106,518
Use FastCat in PT Concat implementation
Stale
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106518 Differential Revision: [D48081898](https://our.internmc.facebook.com/intern/diff/D48081898)
6
1,698
106,508
Fix reset_parameters for nn.MHA
Stale
**This is not ready for review but hoping for general feedback on how we should resolve this:** `_reset_parameters()` here does not follow the contract for `reset_parameters()` for two reasons 1) The order in which we initialize things in MHA makes `torch.get_rng_state()` inconsistent when initializing the same param/buffer in `nn.MultiheadAttention.__init__()` and when resetting that param/buffer in `nn.MultiheadAttention()._reset_parameters`. In `__init__` we initialize `out_proj` (a submodule) first before using `self._reset_parameters()` to initialize the reset of the parameters owned by the root. So if we consider the `rng_states` as some sequence $r_0, r_1, r_2, ...$ where $r_0$ is the first `rng_state` after `torch.manual_seed(0)` ``` torch.manual_seed(seed) # torch.get_rng_state() when initializing (e.g. `self.in_proj_weight`) is r_2 # 2 because NonDynamicallyQuantizableLinear has 2 parameters m = nn.MultiheadAttention() torch.manual_seed(seed) # torch.get_rng_state() when initializing (e.g. `self.in_proj_weight`) is r_0 m.reset_parameters() ``` 2) It resets `out_proj.bias` which is a parameter owned by a submodule. This PR tries to fix it by moving `out_proj` to be initialized after the call to `_reset_parameter()` in `__init__()` and also not initializing `out_proj.bias` in `_reset_parameters()` **but this would be BC-breaking**. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106508 * #106506 * #106715
2
1,699
106,506
Add ModuleInfo testing for reset_parameters
Stale, ciflow/trunk, topic: not user facing
The contract on `nn.Module.reset_parameters()` should be as follows 1) `reset_parameters` should re-initialize parameters and buffers to how they were initialized in `nn.Module.__init__()` 2) `reset_parameters` should **not** recurse, (i.e. it should only reset parameters and buffers owned by the root, and not those of submodules) 3) modules that do not have parameters do not need to have a `reset_parameters` (*perhaps we could add one that is a no-op to the `nn.Module` base class*) 4) The following should hold ``` # set some seed torch.manual_seed(some_seed) m = SomeModule() # modify params/buffers in some way ... torch.manual_seed(some_seed) m.apply(lambda mod: mod.reset_parameters() # params/bufs given by m.{parameters/buffers}(recurse=False) should match those of the initial m ``` Going over the ModuleInfos that we have not migrated, only `nn.EmbeddingBag` has parameters/buffers. So otherwise the testing here should be quite complete. Some modules have an underscore `_reset_parameters()`. However the behavior of these does not necessarily match the contract (in particular for `nn.MultiheadAttention`, see further discussion in the description of #106508) Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106508 * __->__ #106506 * #106715
2
1,700
106,485
Increasing batch size makes network forward 1000 times slower
module: cudnn, module: nn, module: cuda, triaged
### ๐Ÿ› Describe the bug I have a two layer network. The input is a 2D array of token ids, first layer is an embedding layer that replaces each pixel the respective embedding, the second layer does a convolution. Find the network definition below. ```python class Model(nn.Module): def __init__(self, voc_dim, emb_dim, out_channels): super().__init__() self.embedding = nn.Embedding( num_embeddings=voc_dim, embedding_dim=emb_dim, padding_idx=0, sparse=True, ) self.conv = nn.Conv2d( in_channels=emb_dim, out_channels=out_channels, kernel_size=3, stride=1, dilation=1, padding=1, bias=False, ) def forward(self, x): # x is (batch_size, 672, 512), embeddings (batch_size, 768, 672, 512) embeddings = self.embedding(x).permute(0, 3, 1, 2) out = self.conv(embeddings) return out network = Model(voc_dim=100000, emb_dim=768, out_channels=64) network.cuda() network.train() ``` For batch sizes of 4 and 8, inference with mixed precision, forward pass runs smoothly. But for batch size 16, forward becomes ~1000 times slower. Batch size 16 does not fit in the memory without mixed precision. Forward pass is timed with the following code. ```python def forward_speed(batch_size, n=5): forward_pass_timed = [] for i in range(n): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) inp = torch.rand(batch_size, 672, 512).long().cuda() start.record() with torch.autocast(device_type="cuda", dtype=torch.float16): x = network(inp) end.record() torch.cuda.synchronize() forward_pass_timed.append(start.elapsed_time(end)) print(f'Batch size - {batch_size}, Mean of {n} runs in ms {round(np.mean(forward_pass_timed), 2)}, STD {round(np.std(forward_pass_timed), 2)}') ``` The output of the function for batch sizes 4,8,16. <img width="604" alt="Screenshot 2023-08-02 at 23 42 12" src="https://github.com/pytorch/pytorch/assets/127740186/c894d48b-1cee-408a-b85b-40878e71fd57"> Interestingly, when I measure just one layer i.e only embedding or only convolution, they are not slow, this effect is seen only when they are called together in a forward pass. GPU is A100 40GB. ### Versions PyTorch version: 2.0.0+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Red Hat Enterprise Linux 8.4 (Ootpa) (x86_64) GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18) Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.28 Python version: 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-305.19.1.el8_4.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 11.0.221 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-PCIE-40GB Nvidia driver version: 495.29.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7543 32-Core Processor Stepping: 1 CPU MHz: 1638.617 CPU max MHz: 2800.0000 CPU min MHz: 1500.0000 BogoMIPS: 5589.65 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 32768K NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall sev_es fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.0 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] numpy 1.23.5 pypi_0 pypi [conda] torch 2.0.0 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi cc @csarofeen @ptrblck @xwang233 @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
6