Serial Number
int64
1
6k
Issue Number
int64
75.6k
112k
Title
stringlengths
3
357
Labels
stringlengths
3
241
Body
stringlengths
9
74.5k
Comments
int64
0
867
1,801
106,101
EMFORMER_RNNT not compilable
triaged, oncall: pt2, module: dynamic shapes, module: dynamo
### 🚀 The feature ## Repro ```python import torch import torchaudio from torchaudio.io import StreamReader bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH feature_extractor = bundle.get_streaming_feature_extractor() decoder = bundle.get_decoder() token_processor = bundle.get_token_processor() # random values # This works decoder(torch.randn(80, 80), length=torch.tensor([1.0]), beam_width=10) decoder = torch.compile(decoder, fullgraph=True) # This does not work decoder(torch.randn(80, 80), length=torch.tensor([1.0]), beam_width=10) ``` ## Error ``` (nightly) marksaroufim@marksaroufim-mbp zzz % ls add.ff model.ff test.py test4.py buck2-aarch64-apple-darwin.zst tes2.py test3.py (nightly) marksaroufim@marksaroufim-mbp zzz % (nightly) marksaroufim@marksaroufim-mbp zzz % python test4.py Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions. Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions. /Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/executorch/extension/pytree/__init__.py:25: UserWarning: Unable to import executorch.extension.pytree, using native torch pytree instead. warnings.warn( [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] WON'T CONVERT forward /Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/torchaudio/models/rnnt_decoder.py line 267 [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] due to: [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] Traceback (most recent call last): [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] File "/Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/torch/_inductor/fx_passes/split_cat.py", line 125, in normalize_cat_default [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] assert all(ndim == x.meta["example_value"].dim() for x in tensors) [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] AssertionError: [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] [2023-07-26 18:57:18,049] torch._dynamo.convert_frame: [WARNING] converting frame raised error, suppressing error [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] WON'T CONVERT transcribe /Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/torchaudio/models/rnnt.py line 580 [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] due to: [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] Traceback (most recent call last): [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] File "/Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/torch/_inductor/fx_passes/split_cat.py", line 125, in normalize_cat_default [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] assert all(ndim == x.meta["example_value"].dim() for x in tensors) [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] AssertionError: [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] [2023-07-26 18:57:21,172] torch._dynamo.convert_frame: [WARNING] converting frame raised error, suppressing error [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] WON'T CONVERT forward /Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/torchaudio/models/rnnt.py line 220 [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] due to: [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] Traceback (most recent call last): [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] File "/Users/marksaroufim/opt/anaconda3/envs/nightly/lib/python3.10/site-packages/torch/_inductor/fx_passes/split_cat.py", line 125, in normalize_cat_default [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] assert all(ndim == x.meta["example_value"].dim() for x in tensors) [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] AssertionError: [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] [2023-07-26 18:57:24,048] torch._dynamo.convert_frame: [WARNING] converting frame raised error, suppressing error ``` ### Motivation, pitch It's a popular model folks have been asking me about and I'd like get it deployed to a mobile device, starting with the decoder Here's my progress so far * torch.compile was graph breaking on jit annotate ``` @@ -236,7 +236,7 @@ class RNNTBeamSearch(torch.nn.Module): b_hypos = self._init_b_hypos(device) if hypo is None else hypo for t in range(n_time_steps): a_hypos = b_hypos - b_hypos = torch.jit.annotate(List[Hypothesis], []) + b_hypos = [] key_to_b_hypo: Dict[str, Hypothesis] = {} symbols_current_t = 0 @@ -292,7 +292,7 @@ class RNNTBeamSearch(torch.nn.Module): enc_out, _ = self.model.transcribe(input, length) return self._search(enc_out, None, beam_width) - @torch.jit.export + # @torch.jit.export def infer( self, input: torch.Tensor, ``` ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
7
1,802
106,099
Hack FSDP to work with CPU training
module: cpu, Stale, release notes: distributed (fsdp)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106099 Quick demo how FSDP on CPU can work. We need to improve the Stream stub and add an Event stub that are noops for CPU, and fallback to collectives that gloo does support. To actually enable this, we may not want Gloo to fallback to allgather / reduce + scatter when using the unsupported collectives, and maybe handle this at the FSDP level instead. But that seems a little more brittle since future changes to FSDP can again use these unsupported colls directly, causing CPU training to break. Differential Revision: [D47821700](https://our.internmc.facebook.com/intern/diff/D47821700/) cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
4
1,803
106,096
DO NOT MERGE! Test if backwards cumprod is broken even when falling back on cpu on macos 13.2.1
triaged, open source, Stale, topic: not user facing, ciflow/mps
I do not have macos 13.2.1 so I am testing this here on the ci. If there is a better way please let me know. Please do not bother triaging this. Please also unassign this pr is possible (I don't think I have permissions to do it)
4
1,804
106,081
[do not review][Dynamo] Wait for lazy accumaultion of guards for input tensors
Stale, topic: not user facing, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106081 Looking for what CI shows up here, and how bad the problem is. Trying to check the complexity of solving - https://github.com/pytorch/pytorch/issues/106067 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @ipiszy
2
1,805
106,073
Potential lack of CI testing on older NVIDIA GPU
module: ci, triaged
## Issue description Recently, we observe flaky issue with AWS G3 runner using Tesla M60 GPU https://github.com/pytorch/pytorch/issues/105721#event-9928505839. The issue was mitigated by moving the job to the newer G5 runner using A10G. Because the actual root cause is unclear, running on G5 could hide actual issues if it turns out to be something on PyTorch. So this issue is here to track any future investigations on this area. Here is an example failure where `nvidia-smi` hangs: * [linux-bionic-cuda11.8-py3.9-gcc7 / test (multigpu, 1, 1, linux.16xlarge.nvidia.gpu)](https://hud.pytorch.org/pytorch/pytorch/commit/33b855e9069ddc98399c0dfd362f18df9503b66f) cc @seemethere @malfet @pytorch/pytorch-dev-infra
1
1,806
106,067
Tensors always get 0/1 specialization guards, even if they're not used
triaged, oncall: pt2, module: dynamic shapes, module: guards
### 🐛 Describe the bug This recompiles but it shouldn't: ``` import torch @torch.compile(backend="eager") def f(x, y): return y + 2 f(torch.randn(0), torch.randn(2)) f(torch.randn(2), torch.randn(2)) ``` `TORCHDYNAMO_PRINT_GUARDS=1 TORCH_LOGS=guards,dynamic,recompiles python n.py` ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305
0
1,807
106,050
"Graph break: inline in skipfiles:" is a bad message
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug TORCH_LOGS=graph_breaks should produce user-understandable logs, but a log like `Graph break: inline in skipfiles: LazyGetItemMixin.__getitem__ | __getitem__ ` is completely impenetrable to any standard user. Need more info. ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
0
1,808
106,046
Avoid incrementing refcount of `grad_fn` in `unpack_list`
module: autograd, triaged, module: mta
https://github.com/pytorch/pytorch/pull/105504 added an argument of `shared_ptr<Node>` which we ideally would `std::move` to avoid bumping refcount but it turned out impossible as we call the lambda multiple times. rel: - https://github.com/pytorch/pytorch/blob/c4b7311fc26a878ee594b6a65a66b38dfe22db86/tools/autograd/templates/Functions.h#L28-L45 cc @ezyang @albanD @zou3519 @gqchen @pearu @nikitaved @soulitzer @Lezcano @Varal7 @mcarilli
0
1,809
106,031
torch._dynamo.export does not support symbolic int inputs
triaged, oncall: pt2, module: dynamic shapes, module: export
### 🐛 Describe the bug ``` import torch def f(x, i): return x.view(i) + 2 r = torch._dynamo.export(f, torch.randn(3, 3), 9) ``` prints ``` [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] Summary of dimension constraints: [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] The following dimensions have been specialized and CANNOT be dynamic. [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] ``` [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] def specializations(x, i): [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] # x: [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] assert x.size()[0] == 3 [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] assert x.size()[1] == 3 [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] ``` [2023-07-26 07:44:09,382] torch._dynamo.eval_frame: [INFO] ``` There isn't really any reason why the input 9 couldn't be treated symbolically though. You can sort of fake it with this patch ``` diff --git a/fbcode/caffe2/torch/_dynamo/eval_frame.py b/fbcode/caffe2/torch/_dynamo/eval_frame.py --- a/fbcode/caffe2/torch/_dynamo/eval_frame.py +++ b/fbcode/caffe2/torch/_dynamo/eval_frame.py @@ -966,7 +966,7 @@ assume_static_by_default = True with patch(f"{__name__}.most_recent_backend", None), config.patch( summarize_dim_constraints=True, - specialize_int=True, + specialize_int=False, assume_static_by_default=assume_static_by_default, automatic_dynamic_shapes=False, capture_dynamic_output_shape_ops=True, diff --git a/fbcode/caffe2/torch/_dynamo/variables/builder.py b/fbcode/caffe2/torch/_dynamo/variables/builder.py --- a/fbcode/caffe2/torch/_dynamo/variables/builder.py +++ b/fbcode/caffe2/torch/_dynamo/variables/builder.py @@ -1082,12 +1082,6 @@ ) self.tx.output.unspec_variable_map[self.name] = unspec_var if not is_constant_source(self.get_source()): - if self.tx.export and not isinstance(self.get_source(), LocalSource): - raise AssertionError( - "Dynamo attempts to add additional input during export: value={}, source={}".format( - wrapped_value, self.get_source() - ) - ) fake_tensor_value = None if isinstance(unspec_var, ConstantVariable): example_value = unspec_var.value diff --git a/fbcode/caffe2/torch/fx/experimental/symbolic_shapes.py b/fbcode/caffe2/torch/fx/experimental/symbolic_shapes.py --- a/fbcode/caffe2/torch/fx/experimental/symbolic_shapes.py +++ b/fbcode/caffe2/torch/fx/experimental/symbolic_shapes.py @@ -1480,7 +1480,11 @@ self.symbol_to_source = symbol_to_source def print_source(self, source) -> str: - return f"dynamic_dim({source.base.name()}, {source.idx})" + from torch._dynamo.source import TensorPropertySource + if isinstance(source, TensorPropertySource): + return f"dynamic_dim({source.base.name()}, {source.idx})" + else: + return "TODO" def _print_Symbol(self, expr) -> str: assert isinstance(expr, sympy.Symbol), str(type(expr)) ``` but there are still some gaps (see TODO; also argument matching doesn't work ``` eval_frame.py", line 924, in produce_matching id(arg) in dict_of_source_args AssertionError: Dynamo input and output is a strict subset of traced input/output ``` cc @msaroufim @wconstab @bdhirsh @anijain2305 @tugsbayasgalan @voznesenskym ### Versions main
1
1,810
106,029
[FSDP] Investigate sharded GPU gradient lifetime when CPU offloading
triaged, module: fsdp
I wonder if we are keeping a reference to the sharded GPU gradient even after the gradient offload to CPU has finished, resulting in unnecessary GPU memory usage. More broadly, we need to do some memory profiling for CPU offloading since there have been reports of it not saving GPU memory. cc @zhaojuanmao @mrshenli @rohan-varma
0
1,811
106,027
DISABLED test_profiler_cuda_sync_events (__main__.TestProfiler)
module: rocm, triaged, skipped
Platforms: rocm This test was disabled because it is failing on master ([recent examples](http://torch-ci.com/failure/profiler%2Ftest_profiler.py%3A%3ATestProfiler%3A%3Atest_profiler_cuda_sync_events)). Introduced by https://github.com/pytorch/pytorch/pull/105187 cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
1
1,812
106,026
DISABLED test_triton_template_with_epilogues_and_dynamic_shape (__main__.TestDoBench)
module: rocm, triaged, skipped
Platforms: rocm This test was disabled because it is failing on master ([recent examples](http://torch-ci.com/failure/inductor%2Ftest_max_autotune.py%3A%3ATestDoBench%3A%3Atest_triton_template_with_epilogues_and_dynamic_shape)). Looks like it was introduced by https://hud.pytorch.org/pytorch/pytorch/commit/98956c5320534cb66fd0dd69bc632122e16adba9 @jataylo to look into this further cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
1
1,813
106,024
Make Intel GPUs available
triaged, open source, Stale, release notes: mps, ciflow/mps
Fixes #ISSUE_NUMBER
4
1,814
106,017
enable torch.device TorchFunctionMode
open source, Stale
Fixes #ISSUE_NUMBER
3
1,815
106,011
Misleading error message in multilabel_margin_loss when passing incompatible tensor dimensions
module: nn, triaged, actionable
### 🐛 Describe the bug While using MultiLabelMarginLoss in PyTorch, I received a RuntimeError with a misleading error message. Here's the traceback ``` RuntimeError: Expected non-empty vector or matrix with optional 0-dim batch size, but got: [20, 9, 20] ``` The error message suggests that I'm passing an empty vector or matrix, but that's not the case. I have tried tensors of different shapes, and the error message remains the same. In my first example, my input tensor shape was [20, 9, 20] and the target tensor was a 7-D tensor. In a second example, the input tensor shape was [1, 2, 3] and the target tensor was a 3-D tensor. In both cases, I suspect the issue is that tensor shapes are uncompatiable. While I understand that multilabel_margin_loss is expected to receive 1-D or 2-D tensors, the error message could be more descriptive. It would be helpful if it indicated the expected and received tensor dimensions, rather than just saying it expected a non-empty vector or matrix. Here are the examples that led to this error: ```python # First example input_tensor = torch.rand([20, 9, 20]) target_tensor = torch.rand([2, 2, 2, 2, 2, 2, 2]) # 7-D tensor loss_function = nn.MultiLabelMarginLoss() loss = loss_function(input_tensor, target_tensor) # Second example input_tensor = torch.rand([1, 2, 3]) target_tensor = torch.rand([2, 2, 2]) # 3-D tensor loss_function = nn.MultiLabelMarginLoss() loss = loss_function(input_tensor, target_tensor) ``` Please let me know if there's any additional information you need or if there's a better way to approach this problem. If this behavior is expected and known, feel free to close this issue. Thank you! ### Versions PyTorch version: 2.1.0.dev20230622+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: 12.0.0-3ubuntu1~20.04.5 CMake version: version 3.26.1 Libc version: glibc-2.31 Python version: 3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-152-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2070 GPU 1: NVIDIA GeForce RTX 2070 GPU 2: NVIDIA GeForce RTX 2070 GPU 3: NVIDIA GeForce RTX 2070 Nvidia driver version: 530.30.02 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.2 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 63 Model name: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz Stepping: 2 CPU MHz: 1224.656 CPU max MHz: 3200.0000 CPU min MHz: 1200.0000 BogoMIPS: 4794.39 Virtualization: VT-x L1d cache: 512 KiB L1i cache: 512 KiB L2 cache: 4 MiB L3 cache: 40 MiB NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts md_clear flush_l1d Versions of relevant libraries: [pip3] numpy==1.24.1 [pip3] pytorch-triton==2.1.0+440fd1bf20 [pip3] torch==2.1.0.dev20230622+cu118 [pip3] torchaudio==2.1.0.dev20230622+cu118 [pip3] torchvision==0.16.0.dev20230622+cu118 [conda] blas 1.0 mkl [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-service 2.4.0 py39h5eee18b_1 [conda] mkl_fft 1.3.6 py39h417a72b_1 [conda] mkl_random 1.2.2 py39h417a72b_1 [conda] numpy 1.24.1 pypi_0 pypi [conda] pytorch-mutex 1.0 cpu pytorch [conda] pytorch-triton 2.1.0+440fd1bf20 pypi_0 pypi [conda] torch 2.1.0.dev20230622+cu118 pypi_0 pypi [conda] torchaudio 2.1.0.dev20230622+cu118 pypi_0 pypi [conda] torchvision 0.16.0.dev20230622+cu118 pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
2
1,816
106,010
[quant][fx] Fix node deletion bug during fx convert
triaged, open source, Stale, release notes: quantization, release notes: AO frontend
If a binary_op node `add_xx` is used by 2 nodes, and one of them is a `quantize_per_tensor_xx` node, it would be deleted during `convert`, `lower_to_native_backend` step, which would cause an error, because `torch.fx` is trying to delete a node which is used by another node. It was found when I tried to quantize a EfficientNet model.
2
1,817
106,006
[torch.compile] assertion sometimes ignored with inductor backend
triaged, oncall: pt2
### 🐛 Describe the bug When the default backend is used, assertions are sometimes ignored. This bug is a bit flaky - it disappeared when I tried to wrap it in try/catch - but was reduced from a non-toy example. It does not manifest with the 'eager' backend selected. This was discovered with the nightly 2.1.0.dev20230725+cu118 - the stable version crashes outright due to #96529 ### Error logs Not applicable, the bug manifests as **lack** of AssertionError ### Minified repro ### handbuilt repro ``` import torch x, y = torch.ones(5), torch.zeros(5) def incorrect(x,y): assert torch.all(torch.eq(x,y)) #with assert False, it behaves as expected print("not thrown") return x+y def correct(x,y): try: assert torch.all(torch.eq(x, y)) print("not thrown") except: print("throw") return x+y torch.compile(correct, backend='eager')(x,y) #throw, correct torch._dynamo.reset() torch.compile(correct, backend='inductor')(x,y) #throw, correct torch._dynamo.reset() torch.compile(incorrect, backend='inductor')(x,y) #not thrown, incorrect torch._dynamo.reset() torch.compile(incorrect, backend='eager')(x,y) #assertion error, correct ``` ### Versions ``` % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 21653 100 21653 0 0 80621 0 --:--:-- --:--:-- --:--:-- 80794 Collecting environment information... PyTorch version: 2.1.0.dev20230725+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: 14.0.0-1ubuntu1 CMake version: version 3.25.2 Libc version: glibc-2.35 Python version: 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.15.109+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4400.33 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.22.4 [pip3] pytorch-triton==2.1.0+9e3e10c5ed [pip3] torch==2.1.0.dev20230725+cu118 [pip3] torchaudio==2.1.0.dev20230725+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.16.0.dev20230725+cu118 [pip3] triton==2.0.0 [conda] Could not collect ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
1,818
106,003
[FSDPxMTPG] Migrate TestFSDPTraversal
Stale, topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #106003 * #106002 * #106001 * #106000 * #105999 * #105995 * #105991 * #105207 * #105206 * #105205 * #105180 * #105176 This test can be migrated to MTPG, saving ~4x test time. Differential Revision: [D47784765](https://our.internmc.facebook.com/intern/diff/D47784765/)
2
1,819
106,002
[FSDPExecOrder] Migrate one test to MTPG
Stale, topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106003 * __->__ #106002 * #106001 * #106000 * #105999 * #105995 * #105991 * #105207 * #105206 * #105205 * #105180 * #105176 Only a single test can be migrated because the rest of the tests capture warning.warnings which MTPG seems to have issues with. cc @kumpera Differential Revision: [D47784763](https://our.internmc.facebook.com/intern/diff/D47784763/)
2
1,820
106,001
[FSDP test][ez] remove setUp()
Stale, topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106003 * #106002 * __->__ #106001 * #106000 * #105999 * #105995 * #105991 * #105207 * #105206 * #105205 * #105180 * #105176 Only calls the super method, so not needed Differential Revision: [D47784764](https://our.internmc.facebook.com/intern/diff/D47784764/)
2
1,821
106,000
[ComposablexMTPG] Migrate some composable tests to MTPG
Stale, topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106003 * #106002 * #106001 * __->__ #106000 * #105999 * #105995 * #105991 * #105207 * #105206 * #105205 * #105180 * #105176 Per title Differential Revision: [D47784762](https://our.internmc.facebook.com/intern/diff/D47784762/)
2
1,822
105,999
[FSDPxMTPG] Migrate one more test
Stale, topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106003 * #106002 * #106001 * #106000 * __->__ #105999 * #105995 * #105991 * #105207 * #105206 * #105205 * #105180 * #105176 After Rodrigo's work to enable MTPG in backward pass, we can migrate this test. the remaining tests are still on multiprocess due to things like numerical issues when moving them to MTPG. On 8 GPU A100 node, this test runtime is cut from ~92s to ~8s Differential Revision: [D47784179](https://our.internmc.facebook.com/intern/diff/D47784179/)
3
1,823
105,997
Flatbuffer torchscipt files don't load in PyTorch Android Lite 1.13.1
oncall: jit
### 🐛 Describe the bug When attempting to load a flatbuffer traced pytorch file, I get the following exception: ``` Caused by: com.facebook.jni.CppException: Flatbuffer input file but the build hasn't enabled flatbuffer Exception raised from _load_mobile_from_bytes at /home/agunapal/pytorch/torch/csrc/jit/mobile/import.cpp:638 (most recent call first): (no backtrace available) at org.pytorch.LiteNativePeer.initHybrid(Native Method) at org.pytorch.LiteNativePeer.<init>(LiteNativePeer.java:28) at org.pytorch.LiteModuleLoader.load(LiteModuleLoader.java:30) at ai.sensory.face.model.ImageProcessingModel.<init>(ImageProcessingModel.java:49) at ai.sensory.face.model.FaceLivenessModel.<init>(FaceLivenessModel.java:42) at ai.sensory.face.CaptureActivity.onCreate(CaptureActivity.java:195) at android.app.Activity.performCreate(Activity.java:7327) at android.app.Activity.performCreate(Activity.java:7318) at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1271) at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:3096) ... 11 more ``` ### Versions [1.13.1](https://mvnrepository.com/artifact/org.pytorch/pytorch_android_lite/1.13.1) cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,824
105,993
[aarch64][xplat/caffe2] Fix aarch64 build
fb-exported, Stale, topic: not user facing
Summary: Add missing dep to pull in sleef headers. Test Plan: ``` $ buck2 build -c fbcode.arch=aarch64 fbsource//xplat/caffe2:cpukernel_avx2 ``` Reviewed By: r1mikey, ajaymh Differential Revision: D47772650
4
1,825
105,982
vmap and rnn/lstm "accessing '.data' under vmap transform is not allowed"
triaged, module: functorch
### 🐛 Describe the bug Quick disclaimer before I start: This is literally the first time I ever posted a bug report on GitHub; I've done my best to be clear and complete and follow the guidelines, but plz forgive me if anything here is incomplete/unclear :X I have a use case where it'd be very ( very ) nice to be able to run a collection of models ( really a bunch of differently-weighted versions of the same model ) in a vectorized way rather than looping through each of them individually. The models here all have the same architecture, and are all ( at any given time ) doing inference on the same batch of data - they differ only in their weights. The error here only occurs with the LSTM component of the model. The rest of the model is just a bunch of linear layers, which I have tested independently, and are not subject to this error - only the LSTM does this. Below is minimal code to reproduce the problem ( written following guidance provided [here](https://pytorch.org/tutorials/intermediate/ensembling.html) ). ```python import torch as pt BSIZE = 32 SEQLEN = 16 LSTMSIZE = 64 INPUTSIZE = 8 NUMMODELS = 4 def BuildLSTM( inputSize=INPUTSIZE, lstmSize=LSTMSIZE ): return pt.nn.LSTM( input_size=INPUTSIZE, hidden_size=LSTMSIZE, batch_first=True ) BASELSTM = BuildLSTM().to( 'meta' ) def fLSTM( params, buffers, inputBatch ): return pt.func.functional_call( BASELSTM, (params,buffers), (inputBatch,) ) dummyBatch = pt.rand( (BSIZE, SEQLEN, INPUTSIZE) ) #(32,16,8) LSTMstack = [ BuildLSTM() for _ in range( NUMMODELS ) ] #len = 4 PARAMS,BUFFERS = pt.func.stack_module_state( LSTMstack ) pt.vmap( fLSTM, in_dims=(0,0,None) )( PARAMS, BUFFERS, dummyBatch ) ``` The exact error produced is: ``` Traceback (most recent call last): File "vmaptest.py", line 20, in <module> pt.vmap( fLSTM, in_dims=(0,0,None) )( PARAMS, BUFFERS, dummyBatch ) File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/_functorch/vmap.py", line 434, in wrapped return _flat_vmap( File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/_functorch/vmap.py", line 39, in fn return f(*args, **kwargs) File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/_functorch/vmap.py", line 619, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "vmaptest.py", line 18, in fLSTM return pt.func.functional_call( BASELSTM, (params,buffers), (inputBatch,) ) File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/_functorch/functional_call.py", line 143, in functional_call return nn.utils.stateless._functional_call( File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/nn/utils/stateless.py", line 262, in _functional_call return module(*args, **kwargs) File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/nn/modules/rnn.py", line 760, in forward self._init_flat_weights() File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/nn/modules/rnn.py", line 139, in _init_flat_weights self.flatten_parameters() File "/home/USERNAME/miniconda3/envs/ENVNAME/lib/python3.8/site-packages/torch/nn/modules/rnn.py", line 167, in flatten_parameters if (not isinstance(fw.data, Tensor) or not (fw.data.dtype == dtype) or not fw.data.is_cuda or not torch.backends.cudnn.is_acceptable(fw.data)): RuntimeError: accessing `data` under vmap transform is not allowed ``` Superficially, this seems quite similar to: https://github.com/pytorch/pytorch/issues/103161, minus the jacrev stuff. I'll add a couple additional observations in a reply to this issue to avoid making this post excessively long. Environment details below. ### Versions PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.8.16 | packaged by conda-forge | (default, Feb 1 2023, 16:01:55) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.19.0-46-generic-x86_64-with-glibc2.10 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Nvidia driver version: 525.125.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.2 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8.6.0 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.6.0 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.6.0 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.6.0 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.6.0 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.6.0 /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: AuthenticAMD Model name: AMD Ryzen 5 2600 Six-Core Processor CPU family: 23 Model: 8 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 2 BogoMIPS: 6799.27 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 192 KiB (6 instances) L1i cache: 384 KiB (6 instances) L2 cache: 3 MiB (6 instances) L3 cache: 16 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT vulnerable Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.22.4 [pip3] pytorch-lightning==2.0.2 [pip3] torch==2.0.1 [pip3] torchmetrics==0.11.4 [conda] blas 2.16 mkl conda-forge [conda] libblas 3.8.0 16_mkl conda-forge [conda] libcblas 3.8.0 16_mkl conda-forge [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch-nightly [conda] liblapack 3.8.0 16_mkl conda-forge [conda] liblapacke 3.8.0 16_mkl conda-forge [conda] mkl 2020.2 256 [conda] numpy 1.22.4 py38h99721a1_0 conda-forge [conda] pytorch 2.0.1 py3.8_cuda11.8_cudnn8.7.0_0 pytorch [conda] pytorch-cuda 11.8 h7e8668a_5 pytorch [conda] pytorch-lightning 2.0.2 pyhd8ed1ab_0 conda-forge [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchmetrics 0.11.4 pyhd8ed1ab_0 conda-forge [conda] torchtriton 2.0.0 py38 pytorch cc @zou3519 @Chillee @samdow @kshitij12345 @janeyx99
1
1,826
105,980
[DONOTMERGE][ROCm]Test MI210 CI Nodes
module: rocm, open source, ciflow/trunk, topic: not user facing, ciflow/periodic, keep-going, ciflow/slow
Fixes #ISSUE_NUMBER cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
34
1,827
105,966
Test
Stale, module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #105966 * #105687 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @ngimel
2
1,828
105,961
Error in Profiler : RuntimeError: Expected !config.profile_memory to be true, but got false
oncall: profiler
### 🐛 Describe the bug The moment I set profile_memory flag or any other flag after it in the function `ProfilerConfig` to `True` , I get the following error `RuntimeError: Expected !config.profile_memory to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.)` ### Full log ``` ========================================================================================================= test session starts ========================================================================================================= platform linux -- Python 3.8.10, pytest-7.3.1, pluggy-1.0.0 rootdir: /workspace/work plugins: hypothesis-5.35.1, rerunfailures-11.1.2, shard-0.1.2, xdist-3.2.1, xdoctest-1.0.2 collected 2 items Running 2 items in this shard nsys_profiler_issue.py .F [100%] ============================================================================================================== FAILURES =============================================================================================================== ____________________________________________________________________________ test_NsysProfilingScope[t_shape0-experimental0-False-False-False-True-False] _____________________________________________________________________________ t_shape = (3, 3, 3), record_input_shape = False, profile_memory = True, with_stack = False, with_flops = False, with_modules = False, experimental = <torch._C._profiler._ExperimentalConfig object at 0x7f59d53ddbb0> is_unit_testing = True @pytest.mark.parametrize("record_input_shape", [False]) @pytest.mark.parametrize("profile_memory", [False,True]) @pytest.mark.parametrize("with_stack", [False]) @pytest.mark.parametrize("with_flops", [False]) @pytest.mark.parametrize("with_modules", [False]) @pytest.mark.parametrize("experimental", [torch._C._profiler._ExperimentalConfig()]) @pytest.mark.parametrize("t_shape", [(3, 3, 3)]) @torch.no_grad() def test_NsysProfilingScope( t_shape, record_input_shape, profile_memory, with_stack, with_flops, with_modules, experimental, is_unit_testing=True, ): t = torch.rand(t_shape).cuda() module = Module().eval().cuda() module = torch.jit.script(module) out = module(t) > with NsysProfilerScope( record_input_shape, profile_memory, with_stack, with_flops, with_modules,experimental, is_unit_testing ): nsys_profiler_issue.py:108: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <nsys_profiler_issue.NsysProfilerScope object at 0x7f591b092a90> def __enter__(self): > _enable_profiler(self.profiler_config, self.activities, self.scopes) E RuntimeError: Expected !config.profile_memory to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.) nsys_profiler_issue.py:64: RuntimeError ======================================================================================================= short test summary info ======================================================================================================= FAILED nsys_profiler_issue.py::test_NsysProfilingScope[t_shape0-experimental0-False-False-False-True-False] - RuntimeError: Expected !config.profile_memory to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.) ===================================================================================================== 1 failed, 1 passed in 2.27s ===================================================================================================== ``` ### Reproducible script Filename : `nsys_profiler_issue.py` ``` import torch from torch.autograd import ProfilerConfig, ProfilerState, _disable_profiler, _enable_profiler import pytest from typing import Any class NsysProfilerScope: """ Denotes the scope of code that nsys should profile when run with the --capture-range cudaProfilerApi and --capture-range-end stop command line flags. Users must ensure that this scope is entered and exited ONLY ONCE during program execution. Therefore, it is recommended that this scope be used at the highest level function that runs any PyTorch model. Usage: with NsysProfilerScope(): <code to be profiled> """ class_counter = 0 # Required to make sure multiple instances of the class are not created. def __init__( self, record_input_shape: bool = False, profile_memory: bool = False, with_stack: bool = False, with_flops: bool = False, with_modules: bool = False, experimental: bool = None, is_unit_testing: bool = False, ): """ Args: record_input_shape : bool flag to display shapes of tensor on nsys profile. Default = False profile_memory : bool flag to display tensor memory allocation / deallocation on nsys. Expensive to trace , hence , turned off by default with_stack : enable record source and information for the ops. Default = False with_flops : enable estimated FLOPS of operators. Default = False with_modules : record module hierarchy. Only supported for torchscript modules. Default = False is_unit_testing: helps in resetting class counter to perform unit testing on different configurations """ super().__init__() ## Check only single instance of class is created if not is_unit_testing: NsysProfilerScope.class_counter += 1 if NsysProfilerScope.class_counter > 1: raise RuntimeError("Multiple instances of NsysProfilerScope have been created ") self.profiler_config = ProfilerConfig( ProfilerState.NVTX, record_input_shape, profile_memory, with_stack, with_flops, with_modules, experimental, ) self.activities = set() self.scopes = set() self.is_unit_testing = is_unit_testing def __enter__(self): _enable_profiler(self.profiler_config, self.activities, self.scopes) torch.cuda.synchronize() torch.cuda.profiler.cudart().cudaProfilerStart() def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any): torch.cuda.synchronize() torch.cuda.profiler.cudart().cudaProfilerStop() _disable_profiler() class Module(torch.nn.Module): def __init__(self): super().__init__() def forward(self, t: torch.Tensor) -> torch.Tensor: u = t + t return u @pytest.mark.parametrize("record_input_shape", [False]) @pytest.mark.parametrize("profile_memory", [False,True]) @pytest.mark.parametrize("with_stack", [False]) @pytest.mark.parametrize("with_flops", [False]) @pytest.mark.parametrize("with_modules", [False]) @pytest.mark.parametrize("experimental", [torch._C._profiler._ExperimentalConfig()]) @pytest.mark.parametrize("t_shape", [(3, 3, 3)]) @torch.no_grad() def test_NsysProfilingScope( t_shape, record_input_shape, profile_memory, with_stack, with_flops, with_modules, experimental, is_unit_testing=True, ): t = torch.rand(t_shape).cuda() module = Module().eval().cuda() module = torch.jit.script(module) out = module(t) with NsysProfilerScope( record_input_shape, profile_memory, with_stack, with_flops, with_modules,experimental, is_unit_testing ): other = module(t) torch.allclose(out, other) if __name__ == "__main__": pytest.main() ``` ### Reproducible command `pytest nsys_profiler_issue.py` ### Versions **Versions** Pytorch NGC Container 23.04 cc @robieta @chaekit @aaronenyeshi @nbcsm @guotuofeng @guyang3532 @gaoteng-git @tiffzhaofb @dzhulgakov @davidberard98
1
1,829
105,954
Ensure PRs are rebased on top of a recent commit (CI check)
triaged, module: devx
**Goal**: Reduce breaks from land races **Context** Today our PR staleness checks only check to see that CI was run on the PR within the past X days, but it doesn't check how old the merge base was (despite many of us thinking that's what it does!) Let's align reality with our expectations and make this actually happen. CI checks seem like a good option for this **Exit criteria** A CI Check that fails if it notices that the mergebase of the pr and trunk is more than X business days old (3 seems like a good value to use). If the check fails, we'd ideally post a comment on the PR sharing the commands the dev should run to rebase their PR. Defining this to use business days in order to avoid requiring rebases right after the weekend cc @kit1980 @huydhn @clee2000
2
1,830
105,944
ReplayRecordTests.test_fn_call_args and others fail on my local devserver
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug The failures look like this ``` __________________________________________________ ReplayRecordTests.test_fn_call_args ___________________________________________________ Traceback (most recent call last): File "/data/users/ezyang/c/pytorch/test/dynamo/test_replay_record.py", line 186, in test_fn_call_args self.check_replay( File "/data/users/ezyang/c/pytorch/test/dynamo/test_replay_record.py", line 50, in check_replay with self.assertLogs(logger="torch._dynamo", level=logging.ERROR) as log_orig: File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/_log.py", line 84, in __exit__ self._raiseFailure( File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: no logs of level ERROR or higher triggered on torch._dynamo To execute this test, run the following from the base repo dir: python test/dynamo/test_replay_record.py -k test_fn_call_args This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` I have checked and confirmed that an exception is being raised, there just is no ERROR log. It's not obvious to me why I would necessarily expect the exception to show up in logs. Oddly, these seem to pass in CI I'm running on Python 3.10.11. Please reach out if you need help reproducing. ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
0
1,831
105,943
PT2 is not thread safe
triaged, oncall: pt2
### 🐛 Describe the bug PT2 compilation stack is not thread safe. We do not test for this very carefully and I suspect https://github.com/pytorch/pytorch/pull/105942 may not be the last fix we need for this. cc @msaroufim @wconstab @bdhirsh @anijain2305 @eellison who also suffered under fake tensor thread safety ### Versions main
1
1,832
105,941
Differences in the results of conv2d calculations in PyTorch 1.8
needs reproduction, module: cudnn, triaged
### 🐛 Describe the bug ```python import torch inputs = torch.tensor([[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]]], device='cuda:0', dtype=torch.float16) weight = torch.tensor([[[[1.]], [[2.]]]], device='cuda:0', dtype=torch.float16) with torch.backends.cudnn.flags(deterministic=True, benchmark=True): stride = (2, 2) padding = (0, 0) dilation = (1, 1) groups = 1 out_gpu = torch.nn.functional.conv2d( inputs, weight, None, stride=stride, padding=padding, dilation=dilation, groups=groups, ) out_cpu = torch.nn.functional.conv2d( inputs.to('cpu').to(torch.float), weight.to('cpu').to(torch.float), None, stride=stride, padding=padding, dilation=dilation, groups=groups, ) print(f"{out_cpu = }") print(f"{out_gpu = }") ``` ## Output ``` out_cpu = tensor([[[[11.]]]]) out_gpu = tensor([[[[5.]]]], device='cuda:0', dtype=torch.float16) ``` The expected result is 11. Also, the result at cpu or other version is 11 as expected. However, the result at PyTorch 1.6, 1.7 at cuda with torch.float16, torch.float32, torch.float64 is 5 ### Versions I am using [nvcr.io/nvidia/pytorch:20.12-py3](http://nvcr.io/nvidia/pytorch:20.12-py3) on 3070Ti at ArchLinx(linux: 6.4.4-arch1-1) ``` Collecting environment information... PyTorch version: 1.8.0a0+1606899 Is debug build: False CUDA used to build PyTorch: 11.1 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.1 LTS (x86_64) GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 Clang version: Could not collect CMake version: version 3.18.2 Libc version: glibc-2.31 Python version: 3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0] (64-bit runtime) Python platform: Linux-6.4.4-arch1-1-x86_64-with-glibc2.10 Is CUDA available: True CUDA runtime version: 11.1.105 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3070 Ti Nvidia driver version: 535.86.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.5 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 39 bits physical, 48 bits virtual CPU(s): 16 On-line CPU(s) list: 0-15 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 167 Model name: 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz Stepping: 1 CPU MHz: 2127.380 CPU max MHz: 4900.0000 CPU min MHz: 800.0000 BogoMIPS: 4993.00 Virtualization: VT-x L1d cache: 384 KiB L1i cache: 256 KiB L2 cache: 4 MiB L3 cache: 16 MiB NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap avx512ifma clflushopt intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] flake8==3.7.9 [pip3] numpy==1.19.2 [pip3] pytorch-transformers==1.1.0 [pip3] torch==1.8.0a0+1606899 [pip3] torchtext==0.9.0a0 [pip3] torchvision==0.9.0a0 [conda] magma-cuda110 2.5.2 5 local [conda] mkl 2019.4 243 [conda] mkl-include 2019.4 243 [conda] nomkl 3.0 0 [conda] numpy 1.19.2 py38h6163131_0 [conda] numpy-base 1.19.2 py38h75fe3a5_0 [conda] pytorch-transformers 1.1.0 pypi_0 pypi [conda] torch 1.8.0a0+1606899 pypi_0 pypi [conda] torchtext 0.9.0a0 pypi_0 pypi [conda] torchvision 0.9.0a0 pypi_0 pypi ``` ## Possible related issues - https://github.com/pytorch/pytorch/issues/55381 - https://github.com/pytorch/pytorch/issues/54036 If there is any duplication with these issues, please let me know. Thank you in advance. cc @csarofeen @ptrblck @xwang233
4
1,833
105,936
[FSDP] Support `OptimStateDictConfig.offload_to_cpu` for real
feature, triaged, actionable, module: fsdp
With https://github.com/pytorch/pytorch/pull/105848, I added the doc for `OptimStateDictConfig.offload_to_cpu` describing `offload_to_cpu: bool`; however, the bool does not actually work at the moment and only supports `True`. This issue is to track adding support for real. https://github.com/pytorch/pytorch/blob/71d18f61059dbb617a8afc79b64598d2fbb89d63/torch/distributed/fsdp/api.py#L329-L339 cc @zhaojuanmao @mrshenli @rohan-varma @fegin @wz337
0
1,834
105,934
Flip default on `add_zero_attn` in `torch.nn.MultiheadAttention` to `True`
module: nn, triaged, oncall: transformer/mha
### 🚀 The feature, motivation and pitch I'm working on implementing a modified version of Softmax to be used in Transformer models that could greatly improve the performance of these models across the board. Evan Miller outlines the change in the blog post linked below, and it is an extremely simple one. This is my first issue on the pytorch library and I am happy to begin working on it. From what I know, this would involve: 1. Creating a new function within torch.nn.functional that resembles the torch.nn.functional.softmax code. 2. Add similar functionality to the next layers of code that inherit from torch.nn.functional. The quantized version comes to mind. 3. Add an nn.Module that while similar to nn.Softmax, uses the new torch.nn.functional.softmax_one code to be written for point 1. Credit to Evan Miller for this enlightening discovery: https://www.evanmiller.org/attention-is-off-by-one.html ### Alternatives A possible alternative could be me publishing my own nn.Module as a separate function. ### Additional context This improvement is something that, while it would require retraining for Transformer models that want to use this new optimization, would not introduce any breaking changes to the torch library. cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @bhosmer @cpuhrsch @erichan1 @drisspg
4
1,835
105,933
DISABLED test_cross_entropy_large_tensor_reduction_sum_cuda (__main__.TestNNDeviceTypeCUDA)
module: nn, module: rocm, triaged, module: flaky-tests, skipped
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/failure/test_cross_entropy_large_tensor_reduction_sum_cuda) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/15304850679). Over the past 72 hours, it has flakily failed in 6 workflow(s). **Debugging instructions (after clicking on the recent samples link):** To find relevant log snippets: 1. Click on the workflow logs linked above 2. Grep for `test_cross_entropy_large_tensor_reduction_sum_cuda` Test file path: `test_nn.py` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
1
1,836
105,929
Dynamo silently ignores TorchDispatchMode
triaged, module: __torch_dispatch__, oncall: pt2, module: dynamo
### 🐛 Describe the bug This test fails: ``` diff --git a/test/dynamo/test_misc.py b/test/dynamo/test_misc.py index 4ac6b803ddb..43083783cc3 100644 --- a/test/dynamo/test_misc.py +++ b/test/dynamo/test_misc.py @@ -38,6 +38,7 @@ from torch._dynamo.testing import ( unsupported, ) +from torch.utils._python_dispatch import TorchDispatchMode from torch._dynamo.utils import CompileProfiler, ifdynstaticdefault from torch.ao.quantization import MinMaxObserver from torch.ao.quantization.fake_quantize import FakeQuantize @@ -6040,6 +6041,22 @@ def ___make_guard_fn(): self.assertEqual(counter.frame_count, 1) self.assertEqual(counter.op_count, 3) + def test_mode_guard(self): + class RewriteAddToMul(TorchDispatchMode): + def __torch_dispatch__(self, func, types, args=(), kwargs=None): + if func is torch.ops.aten.add.Tensor: + func = torch.ops.aten.mul.Tensor + return func(*args, **kwargs) + + def fn(x): + return x + x + + x = torch.tensor([3.0]) + with RewriteAddToMul(): + r = fn(x) + opt_r = torch.compile(fn)(x) + self.assertEqual(r, opt_r) + def test_tracing_nested_py_tree(self): import torch.utils._pytree as pytree ``` Note that if you don't make torch.compile unconditionally bail out and have it handle torch dispatch mode, you need to add appropriate guards; this test doesn't exercise that the guards are correct. ### Versions main cc @Chillee @zou3519 @albanD @samdow @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
3
1,837
105,926
enabling fused A16W8 mm through prologue fusion WIP
Stale, module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #105926 Summary: note: for something like torch.mm(x, weight.to(torch.float16))*scale+bias even with scale, bias being multi-dimensional, this PR handles the prologue fusion and the epilogue fusion happens correctly without needing to do anything. codegen: https://gist.github.com/HDCharles/d8a1ff7d52fcafcb7a0d880596b2c0c1 benchmarks: https://gist.github.com/HDCharles/3deb02e26e3d53f106c15216ff0e608a Test Plan: Reviewers: Subscribers: Tasks: Tags: cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,838
105,925
Possible speed up of nn.MultiheadAttention
oncall: transformer/mha
### 🚀 The feature, motivation and pitch Hello, Implementing MHA using the `opt_einsum` package speeds up the MultiheadAttention by ~30%: ```python from math import sqrt from opt_einsum import contract as einsum d = Q.shape[-1] A = einsum('b n h c, b m h c -> b n m h', Q, K) / sqrt(d) A = A.softmax(2) y = einsum('b n m h, b m h c -> b n h c', A, V).reshape(B, N, -1) ``` On my machine (NVIDIA RTX A4000 Laptop GPU) it runs 30% faster and on a Tesla V100 it runs 65% faster when compared against calling the forward pass of `nn.MultiheadAttention` for both PyTorch 1.13 and 2.0. I don't know if this implementation is feasible, but there's that. ### Alternatives _No response_ ### Additional context The function used to measure speed: ```python def timeit(func, N=1000): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() for _ in range(N): func() end.record() torch.cuda.synchronize() print(start.elapsed_time(end)) ``` cc @jbschlosser @bhosmer @cpuhrsch @erichan1 @drisspg
1
1,839
105,920
test_linalg: triangular_solve - set higher precision
open source, Stale, ciflow/trunk, topic: not user facing, ciflow/periodic
This is a follow-up on https://github.com/pytorch/pytorch/pull/104425. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #105920
6
1,840
105,918
Torch.jit : RuntimeError: Unable to extract string literal index for ModuleDict
oncall: jit
### 🐛 Describe the bug Hi, I'm trying to use torch-mlir to compile a pytorch wide_and_deep model from https://github.com/jrzaurin/pytorch-widedeep. But I'm having some issues now, when compiling the model. According to reply from torch-mlir, the error due to torch.jit.script that can not extract string literal index for ModuleDict . When I call torch_mlir.compile, torch-mlir calls torch.jit.script on the module before importing it into torch-mlir. 1. Python Script ``` import pandas as pd import numpy as np import torch from sklearn.model_selection import train_test_split from pytorch_widedeep import Trainer from pytorch_widedeep.preprocessing import WidePreprocessor, TabPreprocessor from pytorch_widedeep.models import Wide, TabMlp, WideDeep from pytorch_widedeep.metrics import Accuracy from pytorch_widedeep.datasets import load_adult import torch_mlir df = load_adult(as_frame=True) df["income_label"] = (df["income"].apply(lambda x: ">50K" in x)).astype(int) df.drop("income", axis=1, inplace=True) df_train, df_test = train_test_split(df, test_size=0.2, stratify=df.income_label) # Define the 'column set up' wide_cols = [ "education", "relationship", "workclass", "occupation", "native-country", "gender", ] crossed_cols = [("education", "occupation"), ("native-country", "occupation")] cat_embed_cols = [ "workclass", "education", "marital-status", "occupation", "relationship", "race", "gender", "capital-gain", "capital-loss", "native-country", ] continuous_cols = ["age", "hours-per-week"] target = "income_label" target = df_train[target].values # prepare the data wide_preprocessor = WidePreprocessor(wide_cols=wide_cols, crossed_cols=crossed_cols) X_wide = wide_preprocessor.fit_transform(df_train) tab_preprocessor = TabPreprocessor( cat_embed_cols=cat_embed_cols, continuous_cols=continuous_cols # type: ignore[arg-type] ) X_tab = tab_preprocessor.fit_transform(df_train) # build the model wide = Wide(input_dim=np.unique(X_wide).shape[0], pred_dim=1) tab_mlp = TabMlp( column_idx=tab_preprocessor.column_idx, cat_embed_input=tab_preprocessor.cat_embed_input, continuous_cols=continuous_cols, ) model = WideDeep(wide=wide, deeptabular=tab_mlp) print("dim: ",np.unique(X_wide).shape[0]) # train and validate trainer = Trainer(model, objective="binary", metrics=[Accuracy]) trainer.fit( X_wide=X_wide, X_tab=X_tab, target=target, n_epochs=5, batch_size=256, ) # predict on test X_wide_te = wide_preprocessor.transform(df_test) X_tab_te = tab_preprocessor.transform(df_test) preds = trainer.predict(X_wide=X_wide_te, X_tab=X_tab_te) # Save and load # Option 1: this will also save training history and lr history if the # LRHistory callback is used trainer.save(path="model_weights", save_state_dict=True) # Option 2: save as any other torch model torch.save(model.state_dict(), "model_weights/wd_model.pt") # From here in advance, Option 1 or 2 are the same. I assume the user has # prepared the data and defined the new model components: # 1. Build the model model_new = WideDeep(wide=wide, deeptabular=tab_mlp) model_new.load_state_dict(torch.load("model_weights/wd_model.pt")) # 2. Instantiate the trainer trainer_new = Trainer(model_new, objective="binary") # 3. Either start the fit or directly predict preds = trainer_new.predict(X_wide=X_wide, X_tab=X_tab) data = [] data.append(torch.from_numpy(X_wide)) data.append(torch.from_numpy(X_tab)) print(model_new) module = torch_mlir.compile(model_new, data, output_type=torch_mlir.OutputType.LINALG_ON_TENSORS, use_tracing=False) ``` 2. Error ``` Traceback (most recent call last): File "/home/project/iree-demo/pytorch/test-case-generate/widedeep/wide_deep.py", line 105, in <module> module = torch_mlir.compile(model_new, data, output_type=torch_mlir.OutputType.LINALG_ON_TENSORS, use_tracing=False) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch_mlir/__init__.py", line 404, in compile scripted = torch.jit.script(model) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_script.py", line 1284, in script return torch.jit._recursive.create_script_module( File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 480, in create_script_module return create_script_module_impl(nn_module, concrete_type, stubs_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 546, in create_script_module_impl create_methods_and_properties_from_stubs(concrete_type, method_stubs, property_stubs) File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/torch/jit/_recursive.py", line 397, in create_methods_and_properties_from_stubs concrete_type._create_methods_and_properties(property_defs, property_rcbs, method_defs, method_rcbs, method_defaults) RuntimeError: Unable to extract string literal index. ModuleDict indexing is only supported with string literals. For example, 'i = "a"; self.layers[i](x)' will fail because i is not a literal. Enumeration of ModuleDict is supported, e.g. 'for k, v in self.items(): out = v(inp)': File "/root/anaconda3/envs/torch-mlir/lib/python3.10/site-packages/pytorch_widedeep/models/tabular/embeddings_layers.py", line 173 def forward(self, X: Tensor) -> Tensor: embed = [ self.embed_layers["emb_layer_" + self.embed_layers_names[col]]( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE X[:, self.column_idx[col]].long() ) ``` ### Versions ``` conda create -n torch-mlir python=3.10 pip install torch-2.1.0.dev20230523+cpu-cp310-cp310-linux_x86_64.whl pip install torch_mlir-20230524.848-cp310-cp310-linux_x86_64.whl pip install torchvision-0.16.0.dev20230523+cpu-cp310-cp310-linux_x86_64.whl pip install pytorch-widedeep ``` cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,841
105,917
Torch.jit.frontend.NotSupportedError: not supporting functions with variable number of arguments.
oncall: jit
### 🐛 Describe the bug Hi, I'm trying to use torch-mlir to compile **a pytorch yolov5 model** from https://github.com/ultralytics/yolov5 . But I'm having some issues now, when compiling these model. When I call torch_mlir.compile, torch-mlir calls torch.jit.script on the module before importing it into torch-mlir. The error is due to torch.jit.script not supporting functions with variable number of arguments. 1. python script ``` import torch import torch_mlir model = torch.hub.load("ultralytics/yolov5", "yolov5s") module = torch_mlir.compile(model, torch.zeros(1,3,640,640), output_type="linalg-on-tensors") ``` 2.Error ``` Traceback (most recent call last): File "/home/project/iree-demo/pytorch/test-case-generate/yolo/yolo.py", line 35, in <module> module = torch_mlir.compile(yolomodel, img, output_type="linalg-on-tensors") File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch_mlir/__init__.py", line 404, in compile scripted = torch.jit.script(model) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_script.py", line 1284, in script return torch.jit._recursive.create_script_module( File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 480, in create_script_module return create_script_module_impl(nn_module, concrete_type, stubs_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 542, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_script.py", line 614, in _construct init_fn(script_module) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 520, in init_fn scripted = create_script_module_impl(orig_value, sub_concrete_type, stubs_fn) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 546, in create_script_module_impl create_methods_and_properties_from_stubs(concrete_type, method_stubs, property_stubs) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 397, in create_methods_and_properties_from_stubs concrete_type._create_methods_and_properties(property_defs, property_rcbs, method_defs, method_rcbs, method_defaults) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_script.py", line 1466, in _recursive_compile_class return _compile_and_register_class(obj, rcb, _qual_name) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/_recursive.py", line 49, in _compile_and_register_class ast = get_jit_class_def(obj, obj.__name__) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/frontend.py", line 234, in get_jit_class_def method_defs = [ File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/frontend.py", line 235, in <listcomp> get_jit_def(obj, name, self_name=self_name, is_classmethod=is_classmethod(obj)) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/frontend.py", line 297, in get_jit_def return build_def(parsed_def.ctx, fn_def, type_line, def_name, self_name=self_name, pdt_arg_types=pdt_arg_types) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/frontend.py", line 335, in build_def param_list = build_param_list(ctx, py_def.args, self_name, pdt_arg_types) File "/root/anaconda3/envs/yolo/lib/python3.10/site-packages/torch/jit/frontend.py", line 363, in build_param_list raise NotSupportedError(ctx_range, _vararg_kwarg_err) torch.jit.frontend.NotSupportedError: Compiled functions can't take variable number of arguments or use keyword-only arguments with defaults: File "/root/anaconda3/envs/yolo/lib/python3.10/warnings.py", line 477 def __exit__(self, *exc_info): ~~~~~~~~~ <--- HERE if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) '__torch__.warnings.catch_warnings' is being compiled since it was called from 'SPPF.forward' File "/root/.cache/torch/hub/ultralytics_yolov5_master/models/common.py", line 229 def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): ~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) ``` From torch-mlir community reply, they think this error due to torch.jit.sript. So I'm here for help! ### Versions ### Python Version as shown below ``` conda create -n torch-mlir python=3.10 pip install torch-2.1.0.dev20230523+cpu-cp310-cp310-linux_x86_64.whl pip install torch_mlir-20230524.848-cp310-cp310-linux_x86_64.whl pip install torchvision-0.16.0.dev20230523+cpu-cp310-cp310-linux_x86_64.whl ``` cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,842
105,916
Missing coalesced flag from `torch.autograd.Function.backward`
module: sparse, triaged
### 🐛 Describe the bug Sparse gradients change coalesced flag after backward Code to reproduce: ```python import torch from typing import Any, Tuple class CheckFn(torch.autograd.Function): @staticmethod def forward(ctx: Any, *args: Any, **__: Any) -> torch.Tensor: x, w = args ctx.w = w return x @staticmethod def backward(ctx: Any, *args: Any) -> Tuple[None, torch.Tensor]: w = ctx.w shape = w.shape i = torch.tensor([0, 1]).reshape([1, -1]) v = torch.tensor([[1, 2], [3, 4]], dtype=torch.float) g = torch.sparse_coo_tensor(i, v, shape, check_invariants=False)._coalesced_(True) print(g.is_coalesced()) # True return None, g if __name__ == '__main__': x = torch.tensor([1, 2, 3, 4], dtype=torch.float).view([2, 2]) w = torch.tensor([1, 1, 1, 1], dtype=torch.float).view([2, 2]) w.requires_grad = True y = CheckFn.apply(x, w) y.sum().backward() print(w.grad.is_coalesced()) # False ``` ### Versions ```` Collecting environment information... PyTorch version: 2.0.1+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 18:08:17) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz CPU family: 6 Model: 142 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 Stepping: 12 CPU max MHz: 4400.0000 CPU min MHz: 400.0000 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 128 KiB (4 instances) L1i cache: 128 KiB (4 instances) L2 cache: 1 MiB (4 instances) L3 cache: 6 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.1 [pip3] torch==2.0.1+cpu [pip3] torchaudio==2.0.2+cpu [pip3] torchvision==0.15.2+cpu [conda] No relevant packages ``` cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer
0
1,843
105,914
torch.compile(cpu) does not handle float16 properly
triaged, oncall: pt2, module: cpu inductor
### 🐛 Describe the bug ```python import torch a = torch.randn(64, dtype=torch.float16) @torch.compile def f(a, dim=-1): na = torch.linalg.vector_norm(a, dim=dim) eps = 1e-8 return na.clamp_min(eps) f(a) ``` This does work with `bfloat16`. The issue here is that `bfloat16` works because there exists the magic helper function https://github.com/pytorch/pytorch/blob/5f6c6ff4cf27e4924aee4e3c951efe83bf95c106/torch/_inductor/codegen/cpp.py#L2516 This function inserts the necessary `to_dtype`s for `bfloat16` to work. This hack should either be removed or generalised to other dtypes. ### Versions master cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
4
1,844
105,912
Batching rule for aten::bincount.
triaged, module: functorch
### 🚀 The feature, motivation and pitch I used `torch.bincount()` in a function that was passed to `torch.func.vmap()` and got this warning: > UserWarning: There is a performance drop because we have not yet implemented the batching rule for aten::bincount. **Please file us an issue on GitHub** so that we can prioritize its implementation. (Triggered internally at ../aten/src/ATen/functorch/BatchedFallback.cpp:82.) I'm filing an issue as requested : ) ### Alternatives _No response_ ### Additional context _No response_ cc @zou3519 @Chillee @samdow @kshitij12345 @janeyx99
0
1,845
105,907
Enable xpu backend in totchdynamo benchmarks
open source, Stale, module: dynamo, ciflow/inductor
Add xpu backend for torchdynamo benchmarks cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @ipiszy
3
1,846
105,904
Libtorch linking Error:undefined reference
module: build, triaged
### 🐛 Describe the bug After linking libtorch in my own created project's cmakelist, the compiler reports an "undefined reference" error, unable to find the reference of a function within my own project, rather than a function in libtorch. However, before linking libtorch, this error did not occur.How can I solve this bug. find_package(Torch REQUIRED) target_link_libraries(${binary_name} ${TORCH_LIBRARIES}) ### Versions PyTorch version: 1.12.1+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: 10.0.0-4ubuntu1 CMake version: version 3.22.2 Libc version: glibc-2.31 Python version: 3.8.16 (default, Jun 12 2023, 18:09:05) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.14.0_1-0-0-50-x86_64-with-glibc2.17 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 57 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60GHz Stepping: 6 Frequency boost: enabled CPU MHz: 3100.000 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5200.00 Virtualization: VT-x L1d cache: 3 MiB L1i cache: 2 MiB L2 cache: 80 MiB L3 cache: 96 MiB NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts avx512vbmi umip pku avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.5 [pip3] torch==1.12.1+cpu [pip3] torchtext==0.4.0 [pip3] torchvision==0.13.1+cpu [conda] numpy 1.23.5 pypi_0 pypi [conda] torch 1.12.1+cpu pypi_0 pypi [conda] torchtext 0.4.0 pypi_0 pypi [conda] torchvision 0.13.1+cpu pypi_0 pypi cc @malfet @seemethere
1
1,847
105,901
Default parameters missing of maxpool2d node generated by dynamo export
triaged, oncall: pt2, module: export
### 🐛 Describe the bug When we use `dynamo.export` to capture the fx graph, the default parameters as input nodes for `maxpool2d` is missing. However, for `convolution`, the default parameters as input node are in the fx graph. Take the example code: ``` import torch import torch._dynamo as torchdynamo import copy class ConvMaxpool2d(torch.nn.Module): def __init__(self,): super().__init__() self.conv = torch.nn.Conv2d(3, 64, 7, bias=True) self.relu = torch.nn.ReLU() self.maxpool = torch.nn.MaxPool2d(3, stride=2) def forward(self, x): return self.maxpool(self.relu(self.conv(x))) def run_max_pool2d(): batch_size = 116 model = ConvMaxpool2d().eval() x = torch.randn(batch_size, 3, 224, 224).contiguous(memory_format=torch.channels_last) example_inputs = (x,) with torch.no_grad(): # Generate the FX Module exported_model, guards = torchdynamo.export( model, *copy.deepcopy(example_inputs), aten_graph=True, ) print("exported_model is: {}".format(exported_model), flush=True) if __name__ == "__main__": run_max_pool2d() ``` The generated fx graph is: ``` def forward(self, x): arg0, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) _param_constant0 = self._param_constant0 _param_constant1 = self._param_constant1 convolution_default = torch.ops.aten.convolution.default(arg0, _param_constant0, _param_constant1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1); arg0 = _param_constant0 = _param_constant1 = None relu_default = torch.ops.aten.relu.default(convolution_default); convolution_default = None max_pool2d_with_indices_default = torch.ops.aten.max_pool2d_with_indices.default(relu_default, [3, 3], [2, 2]); relu_default = None getitem = max_pool2d_with_indices_default[0] getitem_1 = max_pool2d_with_indices_default[1]; max_pool2d_with_indices_default = None return pytree.tree_unflatten([getitem], self._out_spec) ``` As we can see: - For `convolution`, even we define the module as `torch.nn.Conv2d(3, 64, 7, bias=True)`, the generated graph will still take default parameters of `convolution` as input node `torch.ops.aten.convolution.default(arg0, _param_constant0, _param_constant1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1);` - However, the `maxpool2d` the generated node is ` torch.ops.aten.max_pool2d_with_indices.default(relu_default, [3, 3], [2, 2]); ` which abandons the default parameters as input nodes. It will cause complicated definition in graph lowering of inductor pattern matcher. If we define the ` torch.nn.MaxPool2d(3, stride=2)` with different parameters (for example: `torch.nn.MaxPool2d(3, stride=2, padding=1)`), it will generate patterns with different number of input nodes. So, we have to pattern match each of the generated pattern. ### Versions ``` (inductor_quant) [root@CPX-4 inductor_quant]# python collect_env.py Collecting environment information... PyTorch version: 2.1.0a0+git9f2ad4f Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: CentOS Linux 7 (Core) (x86_64) GCC version: (GCC) 11.2.1 20210728 (Red Hat 11.2.1-1) Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.17 Python version: 3.8.10 (default, Jun 4 2021, 15:09:15) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-4.19.5-1.el7.elrepo.x86_64-x86_64-with-glibc2.17 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 56 On-line CPU(s) list: 0-55 Thread(s) per core: 1 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel Genuine CPU Stepping: 10 CPU MHz: 1200.331 CPU max MHz: 2900.0000 CPU min MHz: 1200.0000 BogoMIPS: 5800.00 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 1024K L3 cache: 39424K NUMA node0 CPU(s): 0-27 NUMA node1 CPU(s): 28-55 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.3 [pip3] torch==2.1.0a0+gitd5fc795 [pip3] torchvision==0.16.0a0+08c9938 [conda] mkl 2023.0.0 intel_25398 intel [conda] mkl-include 2023.0.0 intel_25398 intel [conda] mkl-include 2023.0.0 <pip> [conda] mkl-service 2.4.0 py38h3605609_14 intel [conda] mkl-static 2023.0.0 <pip> [conda] mkl_fft 1.3.1 py38hcab1719_22 intel [conda] mkl_random 1.2.2 py38hbf47bc3_22 intel [conda] mkl_umath 0.1.1 py38hf66a691_32 intel [conda] numpy 1.24.3 <pip> [conda] numpy 1.22.3 py38hf0956d0_5 intel [conda] numpy-base 1.22.3 py38h45c9ace_5 intel ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
3
1,848
105,900
torch.jit.frontend.NotSupported when compiling stable-diffusion
oncall: jit
### 🐛 Describe the bug ``` from diffusers import UNet2DConditionModel as model unet = model.from_pretrained("CompViz/stable-diffusion-v1-4", subfolder="unet", torchscript=True) # torchscript=True is from troch_tensorrt bert case unet = torch.jit.script(unet) ``` then got torch.jit.frontend.NotSupportedError: keyword-arg expansion is not supported I use torch.jit.script to adapt torch_tensorrt(as torchtrt).ts.compile. Using torch.jit.trace would face Aten dtype not support error, and using torchtrt.compile would face torchtrt.expanddim error If this bug happens causing from the mismatch between torchtrt/torch.jit and diffusers.models, is there any way to compile diffusers' model without writing the unet instead of import, or writing the engine using nvidia/tensorRT python API without torchtrt to compile it? Thanks for any possible solution! p.s. I have already remove all assert and branch using tensor result like `assert input_shape[0]==xxx manually` in diffusers. ### Versions docker image: nvcr.io/nvidia/pytorch:22.11-py3 platform: DGX-A100 40GB(SXM) python packages: pytorch 1.13.0a0+936e930 torch_tensorrt 1.3.0a0 diffusers 0.19.0.dev0 other CPU/memory/... env is unrelated, if need, i would list them here cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,849
105,884
[vision hash update] update the pinned vision hash
open source, Stale, ciflow/trunk, topic: not user facing, ciflow/inductor, merging
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/_update-commit-hash.yml). Update the pinned vision hash.
5
1,850
105,883
Add oneDNN Graph fusion pass in Inductor CPP backend
triaged, module: mkldnn, open source, release notes: jit, module: inductor, module: dynamo, ciflow/inductor
[RFC: Integrating oneDNN Graph Compiler into Inductor C++/OpenMP Backend for Enhanced Graph Fusion and Performance #105582](https://github.com/pytorch/pytorch/issues/105582) - [ ] need to update python binding file after #97957 Handling the opaque op is referred to #90356 cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @anijain2305
7
1,851
105,878
FakeTensor detach() gives meta tensor other than FakeTensor under `torch._C._DisableTorchDispatch()`
triaged, tensor subclass, module: fakeTensor
### 🐛 Describe the bug My repro: ``` import torch from torch._subclasses.fake_tensor import FakeTensorMode from torch.utils._mode_utils import no_dispatch fake_mode = FakeTensorMode() with fake_mode: t = torch.ones([10]) print(t) print(t.detach()) with no_dispatch(): t_no_dispatch = t.detach() print(t_no_dispatch) ``` Output: ``` FakeTensor(..., size=(10,)) FakeTensor(..., size=(10,)) tensor(..., device='meta', size=(10,)) ``` I feel like the expected behavior of detaching a fake tensor should be the same with/without `no_dispatch`, which is a thin wrapper of `_DisableTorchDispatch` as otherwise we cannot load fake tensors as parameters into nn.Module with `no_dispatch`. ### Versions PyTorch version: 2.1.0.dev20230524+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 10.4.0-4ubuntu1~22.04) 10.4.0 Clang version: 14.0.0-1ubuntu1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.8.16 (default, Jun 12 2023, 18:09:05) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.19.0-45-generic-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3070 Nvidia driver version: 520.61.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 5900X 12-Core Processor CPU family: 25 Model: 33 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 4950.1948 CPU min MHz: 2200.0000 BogoMIPS: 7399.95 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 6 MiB (12 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] bert-pytorch==0.0.1a4 [pip3] clip-anytorch==2.5.2 [pip3] CoCa-pytorch==0.0.7 [pip3] dalle2-pytorch==1.14.2 [pip3] ema-pytorch==0.2.3 [pip3] flake8==6.0.0 [pip3] functorch==1.14.0a0+b71aa0b [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.21.2 [pip3] open-clip-torch==2.20.0 [pip3] pytorch-transformers==1.2.0 [pip3] pytorch-triton==2.1.0+7d1a95b046 [pip3] pytorch-warmup==0.1.1 [pip3] rotary-embedding-torch==0.2.5 [pip3] torch==2.1.0.dev20230524+cu118 [pip3] torch-fidelity==0.3.0 [pip3] torch_geometric==2.4.0 [pip3] torch-struct==0.5 [pip3] torchaudio==2.1.0.dev20230524+cu118 [pip3] torchdata==0.7.0.dev20230524 [pip3] torchmetrics==1.0.1 [pip3] torchrec-nightly==2023.7.17 [pip3] torchtext==0.16.0.dev20230524+cpu [pip3] torchvision==0.16.0.dev20230524+cu118 [pip3] vector-quantize-pytorch==1.6.30 cc @ezyang @msaroufim @albanD @wconstab @bdhirsh @anijain2305
3
1,852
105,872
PyTorch 2.0.x `CUDA error: operation not supported` when `Tensor.to` a different device
needs reproduction, module: cuda, triaged, module: regression
### 🐛 Describe the bug I've created an Azure VM with 2 A10 GPUs (`standard_nv72ads_a10_v5`). When running Hugging Face code to use both the GPUs, I've accountered `CUDA error: operation not supported`, and turns out it is reproducible with this PyTorch snippet. ```python import torch a = torch.Tensor(torch.randn(5,5,5)) a = a.to("cuda:0") # Move a to another device b = a.to("cuda:1") ``` It shows Segmentation Fault, and with [faulthandler](https://docs.python.org/3/library/faulthandler.html) enabled, it shows the error: ``` RuntimeError: CUDA error: operation not supported CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Notably when I downgrade PyTorch from 2.0.1 to 1.13.1, the same snippet works. As PyTorch 2.0 should be backward compatible, I hope to understand how this could happen, since there are some new features of PyTorch 2.0 that I need. ### Versions Output of `collect_env.py` ``` PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.31 Python version: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-1040-azure-x86_64-with-glibc2.29 Is CUDA available: True CUDA runtime version: 10.1.243 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A10-24Q GPU 1: NVIDIA A10-24Q Nvidia driver version: 525.105.17 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 72 On-line CPU(s) list: 0-71 Thread(s) per core: 2 Core(s) per socket: 18 Socket(s): 2 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 74F3 24-Core Processor Stepping: 1 CPU MHz: 3194.042 BogoMIPS: 6388.08 Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 1.1 MiB L1i cache: 1.1 MiB L2 cache: 18 MiB L3 cache: 128 MiB NUMA node0 CPU(s): 0-17 NUMA node1 CPU(s): 18-35 NUMA node2 CPU(s): 36-53 NUMA node3 CPU(s): 54-71 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid Versions of relevant libraries: [pip3] torch==2.0.1 [pip3] triton==2.0.0 [conda] Could not collect ``` Output of NVIDIA's `deviceQuery`: ``` Detected 2 CUDA Capable device(s) Device 0: "NVIDIA A10-24Q" CUDA Driver Version / Runtime Version 12.0 / 9.2 CUDA Capability Major/Minor version number: 8.6 Total amount of global memory: 24298 MBytes (25478168576 bytes) MapSMtoCores for SM 8.6 is undefined. Default to use 64 Cores/SM MapSMtoCores for SM 8.6 is undefined. Default to use 64 Cores/SM (72) Multiprocessors, ( 64) CUDA Cores/MP: 4608 CUDA Cores GPU Max Clock rate: 1695 MHz (1.70 GHz) Memory Clock rate: 6251 Mhz Memory Bus Width: 384-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 1536 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 3 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 2 / 0 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "NVIDIA A10-24Q" CUDA Driver Version / Runtime Version 12.0 / 9.2 CUDA Capability Major/Minor version number: 8.6 Total amount of global memory: 24298 MBytes (25478168576 bytes) MapSMtoCores for SM 8.6 is undefined. Default to use 64 Cores/SM MapSMtoCores for SM 8.6 is undefined. Default to use 64 Cores/SM (72) Multiprocessors, ( 64) CUDA Cores/MP: 4608 CUDA Cores GPU Max Clock rate: 1695 MHz (1.70 GHz) Memory Clock rate: 6251 Mhz Memory Bus Width: 384-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 1536 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 3 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 3 / 0 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > > Peer access from NVIDIA A10-24Q (GPU0) -> NVIDIA A10-24Q (GPU1) : Yes > Peer access from NVIDIA A10-24Q (GPU1) -> NVIDIA A10-24Q (GPU0) : Yes deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.0, CUDA Runtime Version = 9.2, NumDevs = 2 Result = PASS ``` cc @ezyang @gchanan @zou3519 @peterjc123 @mszhanyi @skyline75489 @nbcsm @vladimir-aubrecht @iremyux @Blackhex @cristianPanaite @ptrblck
6
1,853
105,863
torch.compile does not respect branching in forward()
triaged, oncall: pt2, module: guards
### 🐛 Describe the bug Hey all, I have a Module that has an if statement in its `forward()` function. When using torch.compile, the model is frozen in the first branching it encountered. I have created a minimal repro script that recreates this problem without all the other fuzz. ```python import torch from torch import nn from torch.optim import Adam class SimpleNetwork(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential(nn.Conv2d(3, 16, 3, 2, 1), nn.ReLU(), nn.Conv2d(16, 32, 3, 2, 1), nn.AdaptiveAvgPool2d(1)) self.return_input = True def forward(self, x): ret = self.layers(x)[0, 0] if self.return_input: return ret, x else: return ret if __name__ == '__main__': loss = nn.CrossEntropyLoss() net = SimpleNetwork().to('cuda') net_optim = torch.compile(net) optim = Adam(net_optim.parameters(), lr=1e-4) for i in range(10): optim.zero_grad() dummy_input = torch.rand((1, 3, 32, 32), device=torch.device('cuda', 0)) dummy_target = torch.randint(0, 32, (1, ), device=torch.device('cuda', 0)) # here the output is a tuple of (result, input) out = net_optim(dummy_input) l = loss(out[0], dummy_target) l.backward() optim.step() net_optim.return_input = False dummy_input = torch.rand((1, 3, 32, 32), device=torch.device('cuda', 0)) # the expected output here is just the result. This should NOT be a tuple because we set return_orig to False out = net_optim(dummy_input) print(type(out)) ``` At the very end the module still returns a tuple of (result, input) even though it should return the result only. It can of course be that this is intended behavior (after all, how could torch.compile know about the other branch at compile time?). If that is the case, I would very much appreciate a hint as to how to reset the model compilation upon changing `return_input`. Why not simply create a new compiled model by calling torch.compile again? Because that is not as straightforward as it seems. IIRC the correct order is `initialize model` -> `torch.compile` -> `initialize optimizers` -> `initialize DDP` (which is what I am using). Redoing the compile step would require me to redo the other steps as well which is just ugly. Best, Fabian ### Error logs _No response_ ### Minified repro _No response_ ### Versions Collecting environment information... PyTorch version: 2.1.0.dev20230724 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.19.0-46-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 530.30.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 5800X 8-Core Processor CPU family: 25 Model: 33 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 5083,9839 CPU min MHz: 2200,0000 BogoMIPS: 7600.15 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 4 MiB (8 instances) L3 cache: 32 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.1.0.dev20230724 [pip3] torchaudio==2.1.0.dev20230724 [pip3] torchvision==0.16.0.dev20230724 [pip3] triton==2.1.0 [conda] Could not collect cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
1,854
105,860
Programmation error enabling unlegal memory access on gpu
module: error checking, triaged, module: mps
### 🐛 Describe the bug Hi, in the following code I make a voluntary indexing logic error, as I wanted to index a tensor w.r.t multiple indexes at once. When I send all the tensors on cpu, an indexing error is raised which is fine. But, when I send it on my macOS mps device, I don't have any raised error and I can show that non legal memory is accessed instead. I understand the programmation error I am voluntary making, but should an error be raised or is it normal? The code is the following for the minimal reproducible error: ``` import torch as T def access_non_legal_memory(batch_size=9): some_tensor = T.tensor([[0,0,1,1], [1,1,0,0]], device='mps')[None, :, :] non_legal_memory = some_tensor[T.arange(batch_size), T.unsqueeze(T.tensor([0,1,1,0,1,0,1,1,0], device='mps'), dim=0)] print(non_legal_memory) if __name__=="__main__": access_non_legal_memory() ``` The output printed is: tensor([[[0, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 2, 3]]], device='mps:0') And as I said, on cpu an error is raised as it should. ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: version 3.26.3 Libc version: N/A Python version: 3.10.4 (main, Mar 31 2022, 03:37:37) [Clang 12.0.0 ] (64-bit runtime) Python platform: macOS-13.4-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] numpy==1.21.5 [pip3] pytorch-ignite==0.4.12 [pip3] torch==2.0.1 [pip3] torch-scatter==2.1.1 [pip3] torch-sparse==0.6.17 [pip3] torchvision==0.13.0 [conda] numpy 1.22.3 pypi_0 pypi [conda] numpy-base 1.21.5 py310h742c864_3 [conda] pytorch-ignite 0.4.12 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torch-scatter 2.1.1 pypi_0 pypi [conda] torch-sparse 0.6.17 pypi_0 pypi [conda] torchvision 0.13.0 pypi_0 pypi (PTorchEnv) dominikrichard@REC-P-778273 Deep % cc @malfet @kulinseth @albanD @DenisVieriu97 @razarmehr @abhudev
0
1,855
105,859
Report model flop utilization (mfu) in benchmark
feature, triaged, oncall: pt2
### 🐛 Describe the bug This should be easy to do by running flop counter on the eager model (or even on fake tensors in dynamo analysis) to compute the theoretical maximum throughput. This would help us control for eager model being extremely extremely bad; it gives us an absolute yardstick to measure against, rather than speedup against eager (which can be gamed by slowing eager down.) ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305
1
1,856
105,858
[WIP][Experiment] Avoid real computation for dynamo export
open source, Stale, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #105858 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @ipiszy
2
1,857
105,853
Bug when dealing with fallbacks on CPU
triaged, module: complex, module: dynamic shapes, module: inductor, module: cpu inductor
### 🐛 Describe the bug To repro, patch in https://github.com/pytorch/pytorch/pull/105850, change the line https://github.com/pytorch/pytorch/blob/3045e84e679a23ba3d5a5071b79593724098f389/test/test_linalg.py#L4313 for `torch.compile(torch.matmul)(x, y)`, and run ```bash python test/test_linalg.py -vk test_matmul_small_brute_force_1d_Nd_cpu_complex64 ``` It fails with the following traceback ``` File "/home/lezcano/git/pytorch/pytorch/torch/fx/interpreter.py", line 138, in run self.env[node] = self.run_node(node) File "/home/lezcano/git/pytorch/pytorch/torch/_inductor/graph.py", line 658, in run_node result = fallback_handler(n.target, add_to_fallback_set=False)( File "/home/lezcano/git/pytorch/pytorch/torch/_inductor/lowering.py", line 1291, in handler TensorBox.create, ir.FallbackKernel.create(kernel, *args, **kwargs) File "/home/lezcano/git/pytorch/pytorch/torch/_inductor/ir.py", line 3430, in create return generate_output(example_output, []) File "/home/lezcano/git/pytorch/pytorch/torch/_inductor/ir.py", line 3427, in generate_output assert output is None, f"FallbackKernel output type {type(output)} is not supported" torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: AssertionError: FallbackKernel output type <class 'torch.SymInt'> is not supported ``` It fails when creating a fallback for: ``` aten.sym_size (TensorBox(StorageBox( InputBuffer(name='arg3_1', layout=FixedLayout('cpu', torch.complex64, size=[0, s0, 0], stride=[s0, 1, 1])) )), 1) {} ``` This is odd, as `sym_size` does have a lowering. ### Versions master cc @ezyang @anjali411 @dylanbespalko @mruberry @Lezcano @nikitaved @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
3
1,858
105,846
Strange backward behavior with sparse tensors
module: sparse, module: autograd, triaged
### 🐛 Describe the bug Backward fails with sparse gradients. Error: `RuntimeError: reshape is not implemented for sparse tensors` Code to reproduce: ```python import torch from typing import Any, Tuple class CheckFn(torch.autograd.Function): @staticmethod def forward(ctx: Any, *args: Any, **__: Any) -> torch.Tensor: x, w = args ctx.w = w return x @staticmethod def backward(ctx: Any, *args: Any) -> Tuple[None, torch.Tensor]: w = ctx.w shape = w.shape i = torch.tensor([0, 1]).reshape([1, -1]) v = torch.tensor([[1, 2], [3, 4]], dtype=torch.float) g = torch.sparse_coo_tensor(i, v, shape, check_invariants=False)._coalesced_(True) print(f"g: {g.shape}") return None, g if __name__ == '__main__': x = torch.tensor([1, 2, 3, 4], dtype=torch.float).view([2, 2]) w = torch.tensor([1, 1, 1, 1], dtype=torch.float, requires_grad=True).view([2, 2]) print(f"w: {w.shape}") y = CheckFn.apply(x, w) y.sum().backward() ``` ### Versions ``` Collecting environment information... PyTorch version: 2.0.1+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 18:08:17) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz CPU family: 6 Model: 142 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 Stepping: 12 CPU max MHz: 4400.0000 CPU min MHz: 400.0000 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 128 KiB (4 instances) L1i cache: 128 KiB (4 instances) L2 cache: 1 MiB (4 instances) L3 cache: 6 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.1 [pip3] torch==2.0.1+cpu [pip3] torchaudio==2.0.2+cpu [pip3] torchvision==0.15.2+cpu [conda] No relevant packages ``` cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @ezyang @albanD @zou3519 @gqchen @soulitzer @Lezcano @Varal7
7
1,859
105,840
[FSDP] FSDP doesn't work (random accuracy performance) when using `param_init_fn` and `sync_module_states=True`
feature, triaged, module: fsdp
### 🐛 Describe the bug Currently, when using FSDP, the model is loaded for each of the N processes completely on CPU leading to huge CPU RAM usage. When training models like Flacon-40B with FSDP on a dgx node with 8 GPUs, it would lead to CPU RAM getting out of memory because each process is loading 160GB (40B x 4Bytes (FP32)) in CPU RAM for a total of 160*8=1280GB requirement which results in script getting killed due to out of CPU RAM. To combat this, we are trying to load the model only on rank 0 and have it on `meta` device when rank!=0. Then use `param_init_fn` along with `sync_module_states=True` for FSDP to properly init the weights on other ranks and broadcast the params from rank 0 to other ranks. **This is trying to achieve what `zero.init()` from DeepSpeed does. it would be great for FSDP too to support this out of the box** However, when using above approach, the metrics in terms of accuracy and F1 scores are random, ie., the model isn;t learning anything even though the weights seem to change and train loss seems to decrease a little bit. Code: https://github.com/pacman100/ram_efficient_fsdp Steps: 1. pip install -r requirements.txt 2. bash run.sh The FSDP config is in `config.yaml` ``` compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_forward_prefetch: true fsdp_offload_params: false fsdp_sharding_strategy: 1 fsdp_state_dict_type: FULL_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` Output: ``` [2023-07-24 16:34:14,815] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2023-07-24 16:34:19,709] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2023-07-24 16:34:19,736] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect) DistributedType.FSDP wandb: Currently logged in as: smangrul. Use `wandb login --relogin` to force relogin Found cached dataset glue (/raid/sourab/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad) 100%|██████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1269.59it/s] wandb: Tracking run with wandb version 0.15.5 wandb: Run data is saved locally in /home/sourab/ram_efficient_fsdp/wandb/run-20230724_163421-hshg5m1t wandb: Run `wandb offline` to turn off syncing. wandb: Syncing run whole-fire-12 wandb: ⭐️ View project at https://wandb.ai/smangrul/fsdp_glue_no_trainer wandb: 🚀 View run at https://wandb.ai/smangrul/fsdp_glue_no_trainer/runs/hshg5m1t Found cached dataset glue (/raid/sourab/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad) 100%|██████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1229.52it/s] Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-c8be3b6cea2b5568.arrow Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-98f28c5bb15f064c.arrow accelerator.process_index=1 model.bert.pooler.dense.weight=Parameter containing: tensor(..., device='meta', size=(768, 768), requires_grad=True) accelerator.process_index=1 model.classifier.weight=Parameter containing: tensor(..., device='meta', size=(2, 768), requires_grad=True) Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. accelerator.process_index=0 model.bert.pooler.dense.weight=Parameter containing: tensor([[-0.0013, -0.0381, -0.0158, ..., 0.0244, -0.0008, 0.0240], [ 0.0020, 0.0151, 0.0033, ..., 0.0180, -0.0023, 0.0231], [-0.0386, 0.0145, 0.0621, ..., 0.0374, -0.0105, -0.0395], ..., [-0.0111, 0.0136, 0.0541, ..., 0.0666, 0.0017, -0.0090], [ 0.0001, 0.0024, -0.0125, ..., 0.0046, -0.0014, -0.0079], [ 0.0415, 0.0751, 0.0305, ..., 0.0317, 0.0479, 0.0080]], requires_grad=True) accelerator.process_index=0 model.classifier.weight=Parameter containing: tensor([[-0.0025, 0.0011, -0.0052, ..., -0.0212, 0.0227, 0.0206], [ 0.0151, -0.0045, 0.0243, ..., -0.0208, -0.0183, -0.0203]], requires_grad=True) FullyShardedDataParallel( (_fsdp_wrapped_module): BertForSequenceClassification( (bert): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(30522, 768, padding_idx=0) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x FullyShardedDataParallel( (_fsdp_wrapped_module): BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) (dropout): Dropout(p=0.1, inplace=False) (classifier): Linear(in_features=768, out_features=2, bias=True) ) ) accelerator.process_index=0 model.bert.pooler.dense.weight=Parameter containing: tensor([[-0.0013, -0.0381, -0.0158, ..., 0.0244, -0.0008, 0.0240], [ 0.0020, 0.0151, 0.0033, ..., 0.0180, -0.0023, 0.0231], [-0.0386, 0.0145, 0.0621, ..., 0.0374, -0.0105, -0.0395], ..., [-0.0111, 0.0136, 0.0541, ..., 0.0666, 0.0017, -0.0090], [ 0.0001, 0.0024, -0.0125, ..., 0.0046, -0.0014, -0.0079], [ 0.0415, 0.0751, 0.0305, ..., 0.0317, 0.0479, 0.0080]], device='cuda:0', requires_grad=True) accelerator.process_index=0 model.classifier.weight=Parameter containing: tensor([[-0.0025, 0.0011, -0.0052, ..., -0.0212, 0.0227, 0.0206], [ 0.0151, -0.0045, 0.0243, ..., -0.0208, -0.0183, -0.0203]], device='cuda:0', requires_grad=True) accelerator.process_index=1 model.bert.pooler.dense.weight=Parameter containing: tensor([[-0.0013, -0.0381, -0.0158, ..., 0.0244, -0.0008, 0.0240], [ 0.0020, 0.0151, 0.0033, ..., 0.0180, -0.0023, 0.0231], [-0.0386, 0.0145, 0.0621, ..., 0.0374, -0.0105, -0.0395], ..., [-0.0111, 0.0136, 0.0541, ..., 0.0666, 0.0017, -0.0090], [ 0.0001, 0.0024, -0.0125, ..., 0.0046, -0.0014, -0.0079], [ 0.0415, 0.0751, 0.0305, ..., 0.0317, 0.0479, 0.0080]], device='cuda:1', requires_grad=True) accelerator.process_index=1 model.classifier.weight=Parameter containing: tensor([[-0.0025, 0.0011, -0.0052, ..., -0.0212, 0.0227, 0.0206], [ 0.0151, -0.0045, 0.0243, ..., -0.0208, -0.0183, -0.0203]], device='cuda:1', requires_grad=True) /home/sourab/miniconda3/envs/hf/lib/python3.10/site-packages/torch/cuda/memory.py:303: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats. warnings.warn( /home/sourab/miniconda3/envs/hf/lib/python3.10/site-packages/torch/cuda/memory.py:303: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats. warnings.warn( You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. Memory before entering the train : 212 Memory consumed at the end of the train (end-begin): 659 Peak Memory consumed during the train (max-begin): 1995 Total Peak Memory consumed during the train (max): 2207 epoch 0: {'accuracy': 0.6838235294117647, 'f1': 0.8122270742358079} Memory before entering the eval : 872 Memory consumed at the end of the eval (end-begin): 94 Peak Memory consumed during the eval (max-begin): 209 Total Peak Memory consumed during the eval (max): 1081 /home/sourab/miniconda3/envs/hf/lib/python3.10/site-packages/torch/cuda/memory.py:303: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats. warnings.warn( /home/sourab/miniconda3/envs/hf/lib/python3.10/site-packages/torch/cuda/memory.py:303: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats. warnings.warn( Memory before entering the train : 966 Memory consumed at the end of the train (end-begin): -94 Peak Memory consumed during the train (max-begin): 1218 Total Peak Memory consumed during the train (max): 2184 epoch 1: {'accuracy': 0.6838235294117647, 'f1': 0.8122270742358079} Memory before entering the eval : 872 Memory consumed at the end of the eval (end-begin): 94 Peak Memory consumed during the eval (max-begin): 209 Total Peak Memory consumed during the eval (max): 1081 /home/sourab/miniconda3/envs/hf/lib/python3.10/site-packages/torch/cuda/memory.py:303: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats. warnings.warn( /home/sourab/miniconda3/envs/hf/lib/python3.10/site-packages/torch/cuda/memory.py:303: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats. warnings.warn( Memory before entering the train : 966 Memory consumed at the end of the train (end-begin): -94 Peak Memory consumed during the train (max-begin): 1297 Total Peak Memory consumed during the train (max): 2263 epoch 2: {'accuracy': 0.6838235294117647, 'f1': 0.8122270742358079} Memory before entering the eval : 872 Memory consumed at the end of the eval (end-begin): 94 Peak Memory consumed during the eval (max-begin): 209 Total Peak Memory consumed during the eval (max): 1081 wandb: Waiting for W&B process to finish... (success). wandb: wandb: Run history: wandb: accuracy ▁▁▁ wandb: eval_total_peak_memory ▁▁▁ wandb: f1 ▁▁▁ wandb: train_loss █▂▁ wandb: train_total_peak_memory ▃▁█ wandb: wandb: Run summary: wandb: accuracy 0.68382 wandb: eval_total_peak_memory 1081 wandb: f1 0.81223 wandb: train_loss 0.63513 wandb: train_total_peak_memory 2263 wandb: wandb: 🚀 View run whole-fire-12 at: https://wandb.ai/smangrul/fsdp_glue_no_trainer/runs/hshg5m1t wandb: Synced 6 W&B file(s), 0 media file(s), 2 artifact file(s) and 0 other file(s) wandb: Find logs at: ./wandb/run-20230724_163421-hshg5m1t/logs ``` As you can see, the performance remains same across the 3 epochs which is random performance. **Expected Behaviour:** Model learns when using `param_init_fn` and `sync_module_states=True` with FSDP so that the pretrained model can be loaded only on rank_0 and it can be `meta` for rank!=0. This is required for FSDP to be usable with large models in practice. ### Versions PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: 10.0.0-4ubuntu1 CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.10.11 (main, May 16 2023, 00:28:57) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-125-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA DGX Display GPU 4: NVIDIA A100-SXM4-80GB Nvidia driver version: 515.65.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] lion-pytorch==0.0.6 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.4 [pip3] pytorch-lightning==1.9.0 [pip3] pytorch-triton==2.1.0+9e3e10c5ed [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchmetrics==0.11.4 [pip3] torchvision==0.15.2+cu118 [conda] blas 1.0 mkl [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] lion-pytorch 0.0.6 pypi_0 pypi [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.6 py310h1128e8f_1 [conda] mkl_random 1.2.2 py310h1128e8f_1 [conda] numpy 1.24.4 pypi_0 pypi [conda] numpy-base 1.25.0 py310hb5e798b_0 [conda] pytorch-cuda 11.8 h7e8668a_5 pytorch [conda] pytorch-lightning 1.9.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] pytorch-triton 2.1.0+9e3e10c5ed pypi_0 pypi [conda] torch 2.0.1+cu118 pypi_0 pypi [conda] torchaudio 2.0.2+cu118 pypi_0 pypi [conda] torchmetrics 0.11.4 pypi_0 pypi [conda] torchvision 0.15.2+cu118 pypi_0 pypi cc @zhaojuanmao @mrshenli @rohan-varma @awgu
19
1,860
105,839
MPS memory issue, MPS backend out of memory, but works if I empty the MPS cache
module: memory usage, triaged, module: mps
### 🐛 Describe the bug There appears to be something wrong the the MPS cache, I appears that either its not releasing memory when it ideally should be, or the freeable memory in the cache is not being taken into account when the check for space occurs. The issue occurs on the currently nightly, see versions, and 2.0.1 This issue affects performance at best and terminates an application at worse. Here's an example... ``` from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline from torch import mps import torch import fp16fixes import gc fp16fixes.fp16_fixes() pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16) pipe_prior.to("mps") prompt = "A car exploding into colorful dust" out = pipe_prior(prompt) image_emb = out.image_embeds zero_image_emb = out.negative_image_embeds pipe_prior = None gc.collect() mps.empty_cache() pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) pipe.to("mps") pipe.enable_attention_slicing() image = pipe( image_embeds=image_emb, negative_image_embeds=zero_image_emb, height=1024, width=1024, num_inference_steps=30, ).images image[0].save("cat.png") ``` This works on a 8GB M1 Mac Mini without issue the two models run at ``` 100%|████████| 25/25 [00:07<00:00, 3.15it/s] 100%|████████| 30/30 [04:24<00:00, 8.82s/it] ``` Remove the `mps.empty_cache()` and it fails during the second model run ``` 0%| | 0/30 [00:03<?, ?it/s] Traceback (most recent call last): File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/8GB_M1_Diffusers_Scripts/sag/k2img.py", line 25, in <module> image = pipe( File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py", line 272, in __call__ noise_pred = self.unet( File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/diffusers/models/unet_2d_condition.py", line 905, in forward sample, res_samples = downsample_block( File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/diffusers/models/unet_2d_blocks.py", line 1662, in forward hidden_states = attn( File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/diffusers/models/attention_processor.py", line 321, in forward return self.processor( File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/diffusers/models/attention_processor.py", line 1590, in __call__ attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) File "/Volumes/Sabrent Media/Documents/Source/Python/Diffusers/lib/python3.10/site-packages/diffusers/models/attention_processor.py", line 374, in get_attention_scores attention_probs = attention_scores.softmax(dim=-1) RuntimeError: MPS backend out of memory (MPS allocated: 3.90 GB, other allocations: 4.94 GB, max allowed: 9.07 GB). Tried to allocate 387.00 MB on private pool. Use PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for memory allocations (may cause system failure). ``` If I reduce the height and width values to 512 it'll run to completion but the second model runs at 40 seconds per iter with a lot of swap file access. With the cache emptied manually it runs at around 2 seconds per iter. the fp16fixes file is required to work around some issues with using fp16 on mps which fails with a broadcast error on 2.0.1 and fails with a bad image on the nightly I'm currently using. If I remove it the issue still occurs on the nightly. ``` % cat fp16fixes.py import torch def fp16_fixes(): if torch.backends.mps.is_available(): torch.empty = torch.zeros _torch_layer_norm = torch.nn.functional.layer_norm def new_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05): if input.device.type == "mps" and input.dtype == torch.float16: input = input.float() if weight is not None: weight = weight.float() if bias is not None: bias = bias.float() return _torch_layer_norm(input, normalized_shape, weight, bias, eps).half() else: return _torch_layer_norm(input, normalized_shape, weight, bias, eps) torch.nn.functional.layer_norm = new_layer_norm def new_torch_tensor_permute(input, *dims): result = torch.permute(input, tuple(dims)) if input.device == "mps" and input.dtype == torch.float16: result = result.contiguous() return result torch.Tensor.permute = new_torch_tensor_permute ``` ### Versions Collecting environment information... PyTorch version: 2.1.0.dev20230724 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4.1 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: version 3.24.4 Libc version: N/A Python version: 3.10.11 (main, Apr 8 2023, 02:11:11) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.4.1-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.1.0.dev20230724 [pip3] torchvision==0.15.2 [conda] Could not collect cc @ezyang @gchanan @zou3519 @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
1
1,861
105,838
Exporting the operator 'aten::grad' to ONNX opset version 18 is not supported.
module: onnx, module: autograd, triaged
### 🚀 The feature, motivation and pitch I am attampting to conver a model from pytorch to ONNX, inside which there is a gradient calculation operation: torch.autograd.grad(params...) (I was using the backward hooks to get gradients, but torchscript does not support that) And then when it calls jitscriptModule = torch.jit.script(model) # good, and torchscript pt model works well torch.onnx.export(jitscriptModule, tensor, "converted.onnx") # bad, operator not supported occurs. torch.onnx.errors.UnsupportedOperatorError: Exporting the operator 'aten::grad' to ONNX opset version 18 is not supported. ### Alternatives Using pytorch 2.0.1 ### Additional context Will this feature be supported by future pytorch? cc @ezyang @albanD @zou3519 @gqchen @pearu @nikitaved @soulitzer @Lezcano @Varal7
0
1,862
105,835
Remove TORCH_API from OpaqueTensorImpl
triaged, open source, Stale
Removes the TORCH_API qualifier macro from the OpaqueTensorImpl class template, so that the class template can be inherited from by classes defined outside torch_cpu.dll and correctly generate class template implementation.
4
1,863
105,823
Add UT for NEON implementation of vec_reduce_all
module: cpu, triaged, open source, Stale, ciflow/trunk, release notes: sparse
All these changes are required to add a UT for the NEON implementation of `vec_reduce_all` that I introduced in #105590. This enables reuse of the existing tests in aten/src/ATen/test/vec_test_all_types.cpp As requested, I have made a separate PR for these changes so that this can land before #105590. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
10
1,864
105,822
Redundant kernels for torch.scatter() when using torch.compile()
triaged, module: functionalization, oncall: pt2, module: inductor
### 🐛 Describe the bug Hello, I have a very simple program as follows: ``` import torch def fn(out, src, index): out.scatter_(0, index, src) return out out = torch.zeros(8, dtype=torch.int64, device='cuda') src = torch.tensor([1001, 1002, 1003], dtype=torch.int64, device='cuda') index = torch.tensor([1, 3, 5], dtype=torch.int64, device='cuda') compiled_f = torch.compile(fn, backend='inductor', options={'trace.enabled':True, 'trace.graph_diagram':True}) out = compiled_f(out, src, index) ``` I found out that the triton code generated using torch.compile() is as follow: ``` from ctypes import c_void_p, c_long import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch import empty_strided, as_strided, device from torch._inductor.codecache import AsyncCompile from torch._inductor.select_algorithm import extern_kernels aten = torch.ops.aten assert_size_stride = torch._C._dynamo.guards.assert_size_stride async_compile = AsyncCompile() # kernel path: /tmp/torchinductor_surakav/ve/cve56yx3hkxlcxgcjzkzrwkfqjk32wabeioxkqmj6wzktob6ndln.py # Original ATen: aten.scatter # aten.scatter => scatter triton_poi_fused_scatter_0 = async_compile.triton('triton_', ''' import triton import triton.language as tl from torch._inductor.ir import ReductionHint from torch._inductor.ir import TileHint from torch._inductor.triton_heuristics import AutotuneHint, pointwise from torch._inductor.utils import instance_descriptor from torch._inductor import triton_helpers @pointwise(size_hints=[8], filename=__file__, meta={'signature': {0: '*i64', 1: '*i64', 2: 'i32'}, 'device': 0, 'constants': {}, 'mutated_arg_names': [], 'autotune_hints': set(), 'configs': [instance_descriptor(divisible_by_16=(0, 1), equal_to_1=())]}) @triton.jit def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''') import triton import triton.language as tl from torch._inductor.triton_heuristics import grid, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_cuda_stream # kernel path: /tmp/torchinductor_surakav/ot/cotufkhkaxlsx7zez6h2ksaw3znejjzmdja62ubpjuiga5xnawzq.py # Original ATen: aten.scatter # aten.scatter => scatter triton_poi_fused_scatter_1 = async_compile.triton('triton_', ''' import triton import triton.language as tl from torch._inductor.ir import ReductionHint from torch._inductor.ir import TileHint from torch._inductor.triton_heuristics import AutotuneHint, pointwise from torch._inductor.utils import instance_descriptor from torch._inductor import triton_helpers @pointwise(size_hints=[4], filename=__file__, meta={'signature': {0: '*i64', 1: '*i64', 2: '*i64', 3: 'i32'}, 'device': 0, 'constants': {}, 'mutated_arg_names': ['out_ptr0'], 'autotune_hints': set(), 'configs': [instance_descriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}) @triton.jit def triton_(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tl.device_assert(((0 <= tmp0) & (tmp0 < 8)) | ~xmask, "index out of bounds: 0 <= tmp0 < 8") tl.store(out_ptr0 + (tl.broadcast_to(tmp0, [XBLOCK])), tmp1, xmask) ''') # kernel path: /tmp/torchinductor_surakav/3i/c3igscqoaoc2w6f2rm3zzbumbrsp3453ilgp42nn463kkpl5aed2.py # Original ATen: triton_poi_fused_2 = async_compile.triton('triton_', ''' import triton import triton.language as tl from torch._inductor.ir import ReductionHint from torch._inductor.ir import TileHint from torch._inductor.triton_heuristics import AutotuneHint, pointwise from torch._inductor.utils import instance_descriptor from torch._inductor import triton_helpers @pointwise(size_hints=[8], filename=__file__, meta={'signature': {0: '*i64', 1: '*i64', 2: 'i32'}, 'device': 0, 'constants': {}, 'mutated_arg_names': ['out_ptr0'], 'autotune_hints': set(), 'configs': [instance_descriptor(divisible_by_16=(0, 1), equal_to_1=())]}) @triton.jit def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (8, ), (1, )) assert_size_stride(arg1_1, (3, ), (1, )) assert_size_stride(arg2_1, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # no-op to ensure context buf0 = empty_strided((8, ), (1, ), device='cuda', dtype=torch.int64) stream0 = get_cuda_stream(0) triton_poi_fused_scatter_0.run(arg0_1, buf0, 8, grid=grid(8), stream=stream0) triton_poi_fused_scatter_1.run(arg2_1, arg1_1, buf0, 3, grid=grid(3), stream=stream0) del arg1_1 del arg2_1 triton_poi_fused_2.run(buf0, arg0_1, 8, grid=grid(8), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.int64) return print_performance(lambda: call([arg0_1, arg1_1, arg2_1]), times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) ``` Seems like there are two redundant kernels before and after torch.scatter() that do nothing but loading and storing the same data (triton_poi_fused_scatter_0 and triton_poi_fused_2). I am wondering if this is a bug? Is there a way to eliminate these two redundant kernels? ### Error logs _No response_ ### Minified repro _No response_ ### Versions Collecting environment information... PyTorch version: 2.1.0a0+git72b223c Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: 10.0.0-4ubuntu1 CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.9.17 (main, Jul 5 2023, 20:41:20) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1038-azure-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 GPU 1: Tesla T4 GPU 2: Tesla T4 GPU 3: Tesla T4 Nvidia driver version: 520.61.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s) per core: 1 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7V12 64-Core Processor Stepping: 0 CPU MHz: 2445.440 BogoMIPS: 4890.88 Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 2 MiB L1i cache: 2 MiB L2 cache: 32 MiB L3 cache: 256 MiB NUMA node0 CPU(s): 0-15 NUMA node1 CPU(s): 16-31 NUMA node2 CPU(s): 32-47 NUMA node3 CPU(s): 48-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip rdpid Versions of relevant libraries: [pip3] numpy==1.25.0 [pip3] pytorch-triton==2.1.0+440fd1bf20 [pip3] torch==2.1.0a0+git72b223c [conda] magma-cuda118 2.6.1 1 pytorch [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-include 2023.1.0 h06a4308_46342 [conda] numpy 1.25.0 pypi_0 pypi [conda] pytorch-triton 2.1.0+440fd1bf20 pypi_0 pypi [conda] torch 2.1.0a0+git72b223c dev_0 <develop> cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,865
105,821
JIT input aliasing does not support aten::fill_
oncall: jit
### 🐛 Describe the bug 在将deformble-detr代码使用TensorBoard进行模型结构输出时出现: ``` /root/autodl-tmp/read-Deformable-DETR-main/util/misc.py:300: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results). max_size = _max_by_axis([list(img.shape) for img in tensor_list]) /root/autodl-tmp/read-Deformable-DETR-main/util/misc.py:286: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! maxes[index] = max(maxes[index], item) /root/autodl-tmp/read-Deformable-DETR-main/util/misc.py:303: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results. batch_shape = [len(tensor_list)] + max_size /root/autodl-tmp/read-Deformable-DETR-main/util/misc.py:315: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results). for img, pad_img, m in zip(tensor_list, tensor, mask): /root/autodl-tmp/read-Deformable-DETR-main/models/position_encoding.py:50: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) /root/miniconda3/lib/python3.8/site-packages/torch/nn/functional.py:2498: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). _verify_batch_size([input.size(0) * input.size(1) // num_groups, num_groups] + list(input.size()[2:])) /root/autodl-tmp/read-Deformable-DETR-main/models/deformable_transformer.py:243: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) /root/autodl-tmp/read-Deformable-DETR-main/models/deformable_transformer.py:405: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results). for lvl, (H_, W_) in enumerate(spatial_shapes): /root/miniconda3/lib/python3.8/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /root/autodl-tmp/read-Deformable-DETR-main/models/ops/modules/ms_deform_attn.py:118: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in /root/autodl-tmp/read-Deformable-DETR-main/models/ops/modules/ms_deform_attn.py:140: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if reference_points.shape[-1] == 2: /root/autodl-tmp/read-Deformable-DETR-main/models/deformable_transformer.py:565: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if reference_points.shape[-1] == 4: /root/autodl-tmp/read-Deformable-DETR-main/models/deformable_transformer.py:571: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert reference_points.shape[-1] == 2 /root/autodl-tmp/read-Deformable-DETR-main/models/deformable_detr.py:294: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if reference.shape[-1] == 4: 0INTERNAL ASSERT FAILED at "../torch/csrc/jit/ir/alias_analysis.cpp":607, please report a bug to PyTorch. We don't have an op for aten::fill_ but it isn't a special case. Argument types: Tensor, bool, Candidates: aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> (Tensor(a!)) aten::fill_.Tensor(Tensor(a!) self, Tensor value) -> (Tensor(a!)) Error occurs, No graph saved Traceback (most recent call last): File "main.py", line 406, in <module> main(args) File "main.py", line 343, in main train_stats = train_one_epoch( File "/root/autodl-tmp/read-Deformable-DETR-main/engine.py", line 51, in train_one_epoch writer.add_graph(model, samples.tensors,use_strict_trace=False) File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 736, in add_graph self._get_file_writer().add_graph(graph(model, input_to_model, verbose, use_strict_trace)) File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/tensorboard/_pytorch_graph.py", line 297, in graph raise e File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/tensorboard/_pytorch_graph.py", line 291, in graph trace = torch.jit.trace(model, args, strict=use_strict_trace) File "/root/miniconda3/lib/python3.8/site-packages/torch/jit/_trace.py", line 741, in trace return trace_module( File "/root/miniconda3/lib/python3.8/site-packages/torch/jit/_trace.py", line 958, in trace_module module._c._create_method_from_trace( RuntimeError: 0INTERNAL ASSERT FAILED at "../torch/csrc/jit/ir/alias_analysis.cpp":607, please report a bug to PyTorch. We don't have an op for aten::fill_ but it isn't a special case. Argument types: Tensor, bool, Candidates: aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> (Tensor(a!)) aten::fill_.Tensor(Tensor(a!) self, Tensor value) -> (Tensor(a!)) ``` deformable_detr代码如下: ```# ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ Deformable DETR model and criterion classes. """ import torch import torch.nn.functional as F from torch import nn import math from util import box_ops from util.misc import (NestedTensor, nested_tensor_from_tensor_list, accuracy, get_world_size, interpolate, is_dist_avail_and_initialized, inverse_sigmoid) from .backbone import build_backbone from .matcher import build_matcher from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm, dice_loss, sigmoid_focal_loss) from .deformable_transformer import build_deformable_transformer import copy # copy clone几份 def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class DeformableDETR(nn.Module): """ This is the Deformable DETR module that performs object detection """ def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, aux_loss=True, with_box_refine=False, two_stage=False): # num_feature_levels, with_box_refine, two_stage 是DeformableDETR新增的 """ Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. with_box_refine: iterative bounding box refinement two_stage: two-stage Deformable DETR """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model # DETR加1,这个地方没有加1,同时后面的处理也有些不同 self.class_embed = nn.Linear(hidden_dim, num_classes) # 因为bbox的坐标是4,这里的output_dim为4 # 因此使用多层的MLP可以更好的糅合提取必要的信息 # 相比于类别的输出头,其只需要使用一个Linear就可以了 self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) # multi level self.num_feature_levels = num_feature_levels # 不使用two_stage的情况 if not two_stage: # 这里处理与DETR不同 # 这里hidden_dim的数量乘以2,在后面会被split成query_embed和tgt # 而detr的tgt在初始时是zeros_like # 这里的tgt在网络中是共享的 self.query_embed = nn.Embedding(num_queries, hidden_dim * 2) if num_feature_levels > 1: # backbone 有3层的输出 2 3 4, strides is [8,16,32] num_backbone_outs = len(backbone.strides) input_proj_list = [] for _ in range(num_backbone_outs): # num_channels is [512,1024,2048] in_channels = backbone.num_channels[_] # 每一层的channel数量都要投影成 给到transformer一样的 input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )) for _ in range(num_feature_levels - num_backbone_outs): # 这里一共需要num_feature_levels=4个特征层,但是num_backbone_outs=3, # 那么会有一个是backbone没法提供的,因此这里会这样构造 # 这里的in_channels在第一次时最后一个channel的宽度2048 # 3x3卷积会使特征图小一半 input_proj_list.append(nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, hidden_dim), )) in_channels = hidden_dim self.input_proj = nn.ModuleList(input_proj_list) else: # 用的是其中第一个512的 self.input_proj = nn.ModuleList([ nn.Sequential( nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), )]) self.backbone = backbone self.aux_loss = aux_loss self.with_box_refine = with_box_refine self.two_stage = two_stage prior_prob = 0.01 # todo bias_value = -math.log((1 - prior_prob) / prior_prob) # 权重初始化 self.class_embed.bias.data = torch.ones(num_classes) * bias_value # 权重初始化 nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) # 权重初始化 for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) # if two-stage, the last class_embed and bbox_embed is for region proposal generation num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers if with_box_refine: # 这里 class_embed 和 bbox_embed 也都是6个 # 不使用with_box_refine 这两个也都是六个 # 不过区别在于使用了with_box_refine之后,这六个是不同的,各自独立的 # 如果没有使用的话,这六个其实是同一个模块,就跟DETR是相同的 # clone 6个 self.class_embed = _get_clones(self.class_embed, num_pred) # clone 6个 self.bbox_embed = _get_clones(self.bbox_embed, num_pred) # 参数初始化 nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) # hack implementation for iterative bounding box refinement self.transformer.decoder.bbox_embed = self.bbox_embed else: # bias 初始化成了 0 0 -2 -2 # todo why -2 nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) # 这里的使用与DETR不同,DETR的class_embed和bbox_embed都只有一个 # 这里给每层创建了一个(但其实是相同的class_embed,真实的网络还是只有一份的) # 这里其实也可以保持跟DETR相同的设计,但是这里这样做的原因是因为在后面bbox的计算部分 # 需要不同的decoder层的输出上加上相应的对应层的计算出的便宜量,因此这里会是这样的设计 self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) self.transformer.decoder.bbox_embed = None if two_stage: # hack implementation for two-stage # class_embed 输出类别的 self.transformer.decoder.class_embed = self.class_embed # todo 源码中应该是缺少了这行代码,这是我添加的 self.transformer.decoder.bbox_embed = self.bbox_embed for box_embed in self.bbox_embed: # todo why -2变回0 nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) def forward(self, samples): """The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if not isinstance(samples, NestedTensor): samples = nested_tensor_from_tensor_list(samples) # features的item数量为3,detr仅有一个 # 3就是在backbone里面定义了三层,并不是参数配置的 features, pos = self.backbone(samples) # 经过input_proj之后,这里的feature的channel都是256 srcs = [] masks = [] # 遍历每一个特征层 for l, feat in enumerate(features): # 分解出特征和mask src, mask = feat.decompose() # input_proj 是Conv2d,不同的特征层有不同的卷积 srcs.append(self.input_proj[l](src)) masks.append(mask) assert mask is not None # 4层的举例,这里会用到最后一个 # Sequential( # (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) # (1): GroupNorm(32, 256, eps=1e-05, affine=True) # ) # Sequential( # (0): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) # (1): GroupNorm(32, 256, eps=1e-05, affine=True) # ) # Sequential( # (0): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) # (1): GroupNorm(32, 256, eps=1e-05, affine=True) # ) # Sequential( # (0): Conv2d(2048, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) # (1): GroupNorm(32, 256, eps=1e-05, affine=True) # ) # 多出backbone特征层的层 if self.num_feature_levels > len(srcs): _len_srcs = len(srcs) for l in range(_len_srcs, self.num_feature_levels): if l == _len_srcs: # 这里的还可以承接backbone的特征 src = self.input_proj[l](features[-1].tensors) else: # 这里的只能承接上一层的了,跟backbone的特征已经中间有隔阂了 src = self.input_proj[l](srcs[-1]) # 这个是gt的mask m = samples.mask # 使用插值创建新的mask mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] # backbone[1] 是位置编码,因为这个最后的src,和gt的mask,并没有经过位置编码 # 位置编码也是module,这里就是调用了他们的forward方法 pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) srcs.append(src) masks.append(mask) pos.append(pos_l) # 如果使用了two_stage 那么传给tansformer的query_embeds是None query_embeds = None if not self.two_stage: # 也是与DETR相同,用的是query_embed.weight query_embeds = self.query_embed.weight # DETR在这个地方的返回值只有两个,第一个是decoder的输出,第二个是encoder的输出 # 后两个只有在two stage的时候才有值 # hs [6,bs,300,256] # init_reference [bs,300,2] 经过Linear网络 初始生成的参考点的坐标 # inter_references [6,bs,300,2] 经过各个decoder layer之后的参考点的坐标? hs, init_reference, inter_references, \ enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, query_embeds) outputs_classes = [] outputs_coords = [] for lvl in range(hs.shape[0]): if lvl == 0: # init_reference 是经过Linear生成的 初始的 参考点的坐标 reference = init_reference else: # 网络的输出结果,都是对传入decoder的reference_points进行的偏移量修正,因此需要使用上一个的reference_points reference = inter_references[lvl - 1] # 先将参考点位取反函数结果,得到的值是真实的图像上的坐标值,修正也是使用的这个坐标系 # 但最后还是会使用sigmoid再次限制到0-1之间 # sigmoid的反函数 [bs,300,2] reference = inverse_sigmoid(reference) # 类别的输出 [bs,300,91] outputs_class = self.class_embed[lvl](hs[lvl]) # [bs,300,4] tmp = self.bbox_embed[lvl](hs[lvl]) if reference.shape[-1] == 4: # == 4 的情况,就是中心坐标以及高宽 tmp += reference else: # == 2 的情况,就是只有中心坐标 # assert reference.shape[-1] == 2 # 与前两个维度相加,前两个维度就是高宽 tmp[..., :2] += reference # bbox的输出 [bs,300,4] outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) # 每层都有一个预测的类别,与DETR的不同在于,DETR这些网络结构只有一个,六层通过同一个网络结构 # Deformable DETR这些网络结构有六个,每层对应的使用一个网络结构 outputs_class = torch.stack(outputs_classes) # 每层都有一个预测的框 outputs_coord = torch.stack(outputs_coords) # 最后一个decoder的预测 out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]} # 辅助loss if self.aux_loss: # out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) out = (outputs_class[-1], outputs_coord[-1]) if self.two_stage: # 坐标经过sigmoid,保证在0-1内 enc_outputs_coord = enc_outputs_coord_unact.sigmoid() # out['enc_outputs'] = {'pred_logits': enc_outputs_class, 'pred_boxes': enc_outputs_coord} return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{'pred_logits': a, 'pred_boxes': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] class SetCriterion(nn.Module): """ This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25): """ Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. losses: list of all the losses to be applied. See get_loss for list of available losses. focal_alpha: alpha in Focal Loss """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.losses = losses # ['labels','boxes','cardinality'] self.focal_alpha = focal_alpha def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] # [bs,300,91] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) # 填充的都是91 target_classes[idx] = target_classes_o # 这里+1 91变成92 [bs,300,92],onehot这个是原始detr中没有的 target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) # target_classes is [bs,300] ->unsqueeze(-1)-> [bs,300,1] # scatter_(dim,index,src) 这里的src都是1 # target_classes_onehot 原本是 92个0 # target_classes 里面大部分都是91,91就是92个位置中的最后一个,会被填上1 # 然后在下一个语句中会将最后一个切掉 target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) # [bs,200,91] target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * \ src_logits.shape[1] losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ 与DETR相同 Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients """ # [bs,300,91] pred_logits = outputs['pred_logits'] device = pred_logits.device # image中的gt的数量 tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) # 差值的均数 card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) # 这个值应该是越小越好,但是变小也不能保证预测的正确性 # 并且对于Deformable DETR,它的91而不是92类别的方式,可能并不适用,这个值没有意义 losses = {'cardinality_error': card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """ 与DETR相同 Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) # idx 是个tuple,正好将pred_boxes的第一维是batch的image,第二位是每个预测的box(每个图片100个),将这两个维度,直接取出来了 src_boxes = outputs['pred_boxes'][idx] # 取出gt的boxes target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes # giou loss,iou loss的计算需要左上右下的坐标,因此先获取左上右下的坐标 loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose() target_masks = target_masks.to(src_masks) src_masks = src_masks[src_idx] # upsample predictions to the target size src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False) src_masks = src_masks[:, 0].flatten(1) target_masks = target_masks[tgt_idx].flatten(1) losses = { "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), "loss_dice": dice_loss(src_masks, target_masks, num_boxes), } return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): # 一共四种loss,masks 只有在分割任务中会被使用 # cardinality 这个也并不是一个真的loss的计算 loss_map = { 'labels': self.loss_labels, 'cardinality': self.loss_cardinality, 'boxes': self.loss_boxes, 'masks': self.loss_masks } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): """ This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format "pred_logtis": [2,300,91], "pred_boxes": [2,300,4], "aux_outputs": 前五层decoder的输出 list 内容是bs中的images信息 targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc "boxes" "labels" "image_id" "area" "iscrowd" "orig_size" "size" """ outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'} # 两个tensor,第一个是detr中的proposal的下标,第二个是image中gt的下标 # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # 这个bs中总的boxes的数量 # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) # 后面device的处理,就是要获取到detr输出的outputs中的tensor的device num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: kwargs = {} losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets) for loss in self.losses: if loss == 'masks': # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs['log'] = False l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{i}': v for k, v in l_dict.items()} losses.update(l_dict) # two-stage的时候会有这个输出 if 'enc_outputs' in outputs: enc_outputs = outputs['enc_outputs'] # 两项内容,pred_logits,pred_boxes 这两个是encoder的输出经过liner得到的 bin_targets = copy.deepcopy(targets) for bt in bin_targets: # 都当成同一类,为了让分配gt时不用考虑类别 # 即使这个label=0是虚假的,后面也计算了类别的loss,但是也没有什么损失 # 这部分的label 慢慢都会预测成0,也不会有其他的预测 # 不过这个地方使用的class_embed bbox_embed 是detr中的那个,不知这样是否有不妥 bt['labels'] = torch.zeros_like(bt['labels']) indices = self.matcher(enc_outputs, bin_targets) for loss in self.losses: if loss == 'masks': # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs['log'] = False # 正常的计算loss l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs) l_dict = {k + f'_enc': v for k, v in l_dict.items()} losses.update(l_dict) return losses class PostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, outputs, target_sizes): """ Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ # [bs,300,91], [bs,300,4] out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 # [bs,300,91] prob = out_logits.sigmoid() # [bs,100] [bs,,300*91] # 在300个预测-91个类别中选出概率最大的100个 topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1) # [bs,100] scores = topk_values # 属于哪一个预测 [bs,100] topk_boxes = topk_indexes // out_logits.shape[2] # 预测的类别 labels = topk_indexes % out_logits.shape[2] # 中心坐标高宽 -> 左上右下 [bs,300,4] boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) # [bs,100,1] repeat -> [bs,100,4] 最后标识属于哪个预测的id 重复4次, # 从boxes中取出对应的框 # [bs,100,4] boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) # 图像的高 宽 # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) # 缩放回图像中的框体大小 boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] return results class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def build(args): # 91类就是coco中的stuff类别数量 num_classes = 20 if args.dataset_file != 'coco' else 91 if args.dataset_file == "coco_panoptic": num_classes = 250 device = torch.device(args.device) backbone = build_backbone(args) transformer = build_deformable_transformer(args) model = DeformableDETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, num_feature_levels=args.num_feature_levels, aux_loss=args.aux_loss, with_box_refine=args.with_box_refine, two_stage=args.two_stage, ) if args.masks: model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) matcher = build_matcher(args) weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef} weight_dict['loss_giou'] = args.giou_loss_coef if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] if args.masks: losses += ["masks"] # num_classes, matcher, weight_dict, losses, focal_alpha=0.25 criterion = SetCriterion(num_classes, matcher, weight_dict, losses, focal_alpha=args.focal_alpha) criterion.to(device) postprocessors = {'bbox': PostProcess()} if args.masks: postprocessors['segm'] = PostProcessSegm() if args.dataset_file == "coco_panoptic": is_thing_map = {i: i <= 90 for i in range(201)} postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) return model, criterion, postprocessors ``` 调用代码engine.py中如下: ``` writer.add_graph(model, samples.tensors,use_strict_trace=False)``` ### Versions 代码来源 https://github.com/xunull/read-Deformable-DETR 只更改了上面两个文件的代码 其余文件代码未更改 运行步骤1、cd models/ops 2、 python setup.py build install 3、cd ../../ 4、python main.py cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
6
1,866
105,804
Conversion Error to ComplexDouble on MPS
triaged, module: complex, module: mps
### 🐛 Describe the bug ## Description I am trying to use PyTorch for a generative model for audio phase reconstruction. In the model, I use the inverse Short-time Fourier Transform as a step on MPS, which requires a complex tensor that cannot be created when the device is set to `mps`. It works on the CPU, but then the training time is unfeasible. I found that there is an issue with MPS and double precision numbers here: https://github.com/pytorch/pytorch/issues/77781 but I was wondering if there is a workaround for this issue. ## Code ```python device = 'mps' mag = torch.randn(512,512).to(device) phase = torch.randn(512,512).to(device) out = mag*(torch.cos(mag)+1j* torch.sin(phase)) ``` ## Traceback ``` libc++abi: terminating due to uncaught exception of type c10::TypeError: Trying to convert ComplexDouble to the MPS backend but it does not have support for that dtype. Exception raised from getMPSScalarType at /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/mps/OperationUtils.mm:91 (most recent call first): frame #0: at::native::mps::getMPSScalarType(c10::ScalarType) + 180 (0x1122cd940 in libtorch_cpu.dylib) frame #1: invocation function for block in at::native::mps::binaryOpTensor(at::Tensor const&, at::Tensor const&, c10::Scalar const&, at::Tensor const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, MPSGraphTensor* (at::native::mps::BinaryOpCachedGraph*, MPSGraphTensor*, MPSGraphTensor*) block_pointer) + 156 (0x1122e8830 in libtorch_cpu.dylib) frame #2: invocation function for block in at::native::mps::MPSGraphCache::CreateCachedGraph(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, at::native::mps::MPSCachedGraph* () block_pointer) + 216 (0x1122e38c0 in libtorch_cpu.dylib) frame #3: _dispatch_client_callout + 20 (0x184c80400 in libdispatch.dylib) frame #4: _dispatch_lane_barrier_sync_invoke_and_complete + 56 (0x184c8f97c in libdispatch.dylib) frame #5: at::native::mps::MPSGraphCache::CreateCachedGraph(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, at::native::mps::MPSCachedGraph* () block_pointer) + 160 (0x1122d19cc in libtorch_cpu.dylib) frame #6: at::native::mps::binaryOpTensor(at::Tensor const&, at::Tensor const&, c10::Scalar const&, at::Tensor const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, MPSGraphTensor* (at::native::mps::BinaryOpCachedGraph*, MPSGraphTensor*, MPSGraphTensor*) block_pointer) + 2352 (0x1122e7884 in libtorch_cpu.dylib) frame #7: at::native::structured_mul_out_mps::impl(at::Tensor const&, at::Tensor const&, at::Tensor const&) + 128 (0x1122eb3dc in libtorch_cpu.dylib) frame #8: at::(anonymous namespace)::wrapper_MPS_mul_Tensor(at::Tensor const&, at::Tensor const&) + 140 (0x10fa87e88 in libtorch_cpu.dylib) frame #9: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&), &torch::autograd::VariableType::(anonymous namespace)::mul_Tensor(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, at::Tensor const&) + 1412 (0x11070c2a0 in libtorch_cpu.dylib) frame #10: at::_ops::mul_Tensor::call(at::Tensor const&, at::Tensor const&) + 284 (0x10e8c5878 in libtorch_cpu.dylib) frame #11: torch::autograd::THPVariable_mul(_object*, _object*, _object*) + 396 (0x1027749e8 in libtorch_python.dylib) frame #12: _object* torch::autograd::TypeError_to_NotImplemented_<&torch::autograd::THPVariable_mul(_object*, _object*, _object*)>(_object*, _object*, _object*) + 12 (0x1026d0a3c in libtorch_python.dylib) <omitting python frames> frame #30: start + 2236 (0x184ad7f28 in dyld) ``` ### Versions PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: Could not collect Libc version: N/A Python version: 3.10.1 (main, Apr 29 2023, 23:15:20) [Clang 14.0.3 (clang-1403.0.22.14.1)] (64-bit runtime) Python platform: macOS-13.4-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M2 Max Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] pytorch-complex==0.1.2 [pip3] torch==2.0.1 [pip3] torch-tb-profiler==0.4.1 [pip3] torchaudio==2.0.2 [pip3] torchshow==0.5.1 [pip3] torchvision==0.15.2 [conda] Could not collect cc @ezyang @anjali411 @dylanbespalko @mruberry @Lezcano @nikitaved @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
2
1,867
105,803
Changed documentation of DataLoadder to match class signature in sour…
triaged, open source, Stale
Aligned the documentation with the class signature. Fixes #105799
6
1,868
105,802
Errors while trying to finetune compiled transformers model
needs reproduction, triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug I'm switching to Pytorch 2.0.1 and want to compile the model for training times improvement. I'm trying to compile the model according to the [docs](https://pytorch.org/blog/Accelerating-Hugging-Face-and-TIMM-models/#hugging-face-models), but it does not work and throws an error. The code looks this: ```python model = AutoModelForSequenceClassification.from_pretrained( model_id, num_labels=num_labels, label2id=label2id, id2label=id2label ).to(device="cuda:0") model = torch.compile(model, dynamic=True, fullgraph=True) training_args = TrainingArguments( output_dir="./temp", per_device_train_batch_size=128, per_device_eval_batch_size=128, learning_rate=5e-5, num_train_epochs=3, optim="adamw_torch_fused", logging_steps=1, logging_strategy="steps", evaluation_strategy="epoch", save_strategy="epoch", save_total_limit=2, load_best_model_at_end=True, metric_for_best_model="f1", ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], tokenizer=tokenizer, compute_metrics=compute_metrics, ) trainer.train() ``` Here is the [link](https://colab.research.google.com/drive/1VnPcPyQ0Jg55Zn0x8pNJq-tQRX2IwIYR?authuser=2#scrollTo=DVrNg-2xmY7v) to colab version ("Pytorch API" section) ### Error logs ```bash --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) [<ipython-input-25-4dd917c6010c>](https://localhost:8080/#) in <cell line: 31>() 29 ) 30 ---> 31 trainer.train() 2 frames [/usr/local/lib/python3.10/dist-packages/transformers/trainer_pt_utils.py](https://localhost:8080/#) in get_model_param_count(model, trainable_only) 1051 return p.numel() 1052 -> 1053 return sum(numel(p) for p in model.parameters() if not trainable_only or p.requires_grad) 1054 1055 AttributeError: 'function' object has no attribute 'parameters' ``` ### Minified repro _No response_ ### Versions PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: 14.0.0-1ubuntu1 CMake version: version 3.25.2 Libc version: glibc-2.35 Python version: 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.15.109+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 525.105.17 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.30GHz CPU family: 6 Model: 63 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4599.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 45 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.22.4 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] Could not collect cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @ipiszy
11
1,869
105,801
[MPS] aten::erfinv bug fix: add storage offset buffers to handle slicing
triaged, open source, release notes: mps, ciflow/mps
A bug fix of a recently merged PR per comment: https://github.com/pytorch/pytorch/pull/101507#discussion_r1271393706 The follow test would fail without this bug fix: ``` import torch def test_erfinv(): for device in ['cpu', 'mps']: x = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5], device=device) y = x[2:].erfinv() x2 = torch.tensor([0.3, 0.4, 0.5], device=device) y2 = x2.erfinv() print(y) print(y2) torch.testing.assert_close(y, y2) print(f"{device} passes.") test_erfinv() ```
3
1,870
105,799
inconsistent signature for dataloader in docs/source/data.rst
module: dataloader, triaged
### 📚 The doc issue docs/source/data.rst indicates the signature of the dataloader with `prefetch_factor=2` but the class uses `None` as default. This is confusing and the signature should be updated. ### Suggest a potential alternative/fix Replace the current signature in the docs ``` DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, *, prefetch_factor=2, persistent_workers=False) ``` with the current signature in the code ``` DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=None, persistent_workers=False, pin_memory_device='') ``` cc @SsnL @VitalyFedyunin @ejguan @dzhulgakov
2
1,871
105,795
Enable the RUF013 rule in ruff
open source, release notes: fx, module: inductor, module: dynamo, ciflow/inductor, suppress-bc-linter
As suggested by @Skylion007 in https://github.com/pytorch/pytorch/pull/105791#issuecomment-1646644405 This rule enforces `Optional[...]` as the type for parameters having a default value of None. Apply all RUF013 patches from ruff. Apply all other ruff patches in the affected files - otherwise lintrunner fails the build. Fixes parts of #105230 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @anijain2305
12
1,872
105,792
[BUG] Fix grad_ready_order_indices' error type in DDP
triaged, open source, Stale, release notes: distributed (c10d)
The type of grad_ready_order_indices_ should be std::vector<size_t> instead of std::vector<int>. In https://github.com/pytorch/pytorch/blob/afd955f3de4050e9617245fbd40769859b10515b/torch/csrc/distributed/c10d/reducer.hpp#L527, the type of grad_ready_order_indices_ is std::vector<int>. In https://github.com/pytorch/pytorch/blob/afd955f3de4050e9617245fbd40769859b10515b/torch/csrc/distributed/c10d/reducer.cpp#L649, the index is directly inserted into grad_ready_order_indices_, and the type of index is size_t. A type mismatch occurred during this process, and an overflow may occur.
5
1,873
105,790
torch.sparse.mm() with reduce operator for GPU support and COO matrices
module: sparse, feature, triaged, module: reductions
### 🚀 The feature, motivation and pitch I am working on a ML program and need to use sparse matrix multiplication with "reduce" operator. Here is an example: ``` a = torch.sparse_coo_tensor(torch.tensor([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]), [1., 2., 3., 4., 5., 6.], size=[3, 2]) b = torch.tensor([[7, 9], [8, 10]], dtype=torch.float, requires_grad=True) # a and b are the input. a is a sparse-COO matrix, and b is a typical dense matrix with grad a_csr = a.to_sparse_csr() c = torch.sparse.mm(a_csr, b, "max") print(c) # c is what I want ``` Currently the above codes is the only way for my work, but it runs quite slow for not supporting GPU, and is redundant for converting COO to CSR. What I hope to be possible: 1. enable GPU support to the reduce operator, and 2. enable COO matrix with the reduce operator. Thanks a lot for your help! ### Alternatives _No response_ ### Additional context According to the docs [here](https://pytorch.org/docs/stable/generated/torch.sparse.mm.html#torch.sparse.mm), currently `reduce` is implemented only for CSR storage format on CPU device. cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer
0
1,874
105,782
DDP , error . [c10d] The client socket has timed out after 900s while trying to connect to (XX.XX.XX.XX, 8514).
oncall: distributed
### 🐛 Describe the bug code: python -m torch.distributed.launch --use_env --nproc_per_node=${GPUS_PER_NODE} --nnodes=${WORKER_CNT} --node_rank=${RANK} \ --master_addr="172.22.48.199" --master_port=${MASTER_PORT} cn_clip/training/main.py \ error: [W socket.cpp:601] [c10d] The IPv6 network addresses of (XX.XX.XX.XX, 8514) cannot be retrieved (gai error: -2 - Name or service not known). [E socket.cpp:860] [c10d] The client socket has timed out after 900s while trying to connect to (XX.XX.XX.XX, 8514). Traceback (most recent call last): File "/mnt/e/wsldata/conda/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/mnt/e/wsldata/conda/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/launch.py", line 196, in <module> main() File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/launch.py", line 192, in main launch(args) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/launch.py", line 177, in launch run(args) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/run.py", line 785, in run elastic_launch( File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 134, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 241, in launch_agent result = agent.run() File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 129, in wrapper result = f(*args, **kwargs) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 723, in run result = self._invoke_run(role) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 858, in _invoke_run self._initialize_workers(self._worker_group) File "/mnt/e/wsldata/conda/envs/cnclip/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 129, in wrapper result = f(*args, **kwargs) ### Versions Collecting environment information... PyTorch version: 2.0.0+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.35 Python version: 3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.7.64 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 Nvidia driver version: 516.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 56 On-line CPU(s) list: 0-55 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 1 Stepping: 4 BogoMIPS: 5187.81 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 896 KiB (28 instances) L1i cache: 896 KiB (28 instances) L2 cache: 28 MiB (28 instances) L3 cache: 19.3 MiB (1 instance) Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.0.0+cu117 [pip3] torchvision==0.15.1 [pip3] triton==2.0.0 [conda] numpy 1.24.3 pypi_0 pypi [conda] torch 2.0.0+cu117 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi
0
1,875
105,781
[WIP] Fix Prims as_strided_scatter
Stale, ciflow/trunk, topic: not user facing, ciflow/inductor
Took over from https://github.com/pytorch/pytorch/pull/98483 and try to reland.
2
1,876
105,779
Mode to warm up PT2 with a regular eager mode execution
triaged, oncall: pt2
### 🐛 Describe the bug When we originally were designing the warmup policy of PT2, we had a lot of discussion about whether or not we should do background compilation vs wait for compilation on the very first round. We never ended up doing background compilation because it is a bit of work for a Python compilation stack (GIL contention means that you'd have to do it out of process... out of process is complicated...) Another problem was that PT2 could potentially apply memory saving optimizations, that might end up being mandatory: your model would OOM if not run under PT2. (In practice, this is rarely the case today, and even when it is true people have a preference for keeping their eager mode runnable.) I think a more limited form of warmup would be useful for PT2, and possibly even should be the default setting. Instead of immediately attempting to compile, we instead only do a Dynamo level analysis and then bail to the regular CPython interpreter. Only when the frame is deemed sufficiently hot do we actually perform compilation. This "wait and see" strategy has several benefits: 1. We can record how long a frame takes in eager mode. If the walltime of the frame is very low, there is not much benefit to compiling it, and we can choose to skip it (even if, in principle, we could compile it.) If we do end up compiling it, we can compare how long eager took with compile without user intervention, and automatically report how much speed up PT2 gave. This is a great benefit in a production setting, since we can monitor the benefit of PT2 and observe the effect of optimizations in aggregate. 2. If a frame is dynamic (sizes/ints vary from run to run), we can avoid compiling an overly specialized frame; by waiting, we are more likely to predict which sizes truly are dynamic and properly compile them. We can also partially solve the problem described in https://github.com/pytorch/pytorch/issues/105634#issuecomment-1645624378 by using the *largest* observed size for tuning (in this case, the user may need to assist in saying when warmup should end.) 3. If a frame will eventually be skipped, we can detect if this would happen, by generating "ghost" guards which we check if they match. If we see that we never manage a cache hit, we can give up before we've actually spent time doing expensive inductor lowering compilation. (This is also incomplete, as we won't generate guards from AOTAutograd/Inductor, but my guess is these are not the bulk of the recompilation reasons.) (1) by itself is compelling enough that I would add this as an option. But I am really tantalized by the prospect of automatic telemetry about how much speedup PT2 is giving. cc @msaroufim @wconstab @bdhirsh @anijain2305 @kumpera whose questions inspired me to think more carefully about this ### Versions main
3
1,877
105,778
https://pytorch.org/docs/stable/backends.html does not describe torch.backends.cpu
module: docs, module: cpu, triaged, actionable
### 📚 The doc issue I was looking for the possible return values from torch.backends.cpu.get_cpu_capability() but the backends doc page did not list cpu, let alone get_cpu_capabilities ### Suggest a potential alternative/fix _No response_ cc @svekars @carljparker @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
2
1,878
105,774
Add automated minifier script for Dynamo benchmarks
triaged, open source, Stale, topic: not user facing, module: dynamo, ciflow/inductor
### Description This tool runs the minifier across a list of models from the Hugging Face, timm, or TorchBench suites. It leverages the existing TorchDynamo benchmark runner scripts and allows for end-to-end functionality. ### Purpose This script will be useful for any developer that wants to run the existing Dynamo benchmarks (or even a single model) on a backend where support may be limited. It identifies existing model coverage for a backend, and also quickly identifies specific operators that are failing for each failing model. Additionally, the auto-minifier tool is great to reproduce failures across a set of models, and thus is a great tool to add to model pipelines. The tool covers the whole cycle, as outlined below, thus allowing for modifications to be made more easily than if it was integrated with the existing benchmarking scripts. 1) It first runs model training/inference for all models. This is to identify the models that are failing compilation or evaluation, and ensure we don't run the minifier on models that pass training and eval loops. 2) It then classifies model failures into either compilation or accuracy errors, with the purpose of running the minifier with the proper granularity. If the model contains a compilation error, `TORCHDYNAMO_REPRO_LEVEL` is set to 1, while accuracy errors set this variable to 4. Possible classification errors are caught for models by comparing to the benchmark results csv file. 3) It then runs the minifier on each failed model. If a `repro.py` script is produced, it is renamed to include the model name, and is saved to the output directory: e.g. `artifact_dir/gpt2/gpt2_repro.py` 4) Optionally, the FX IR can be traced for the minified model, and will be similarly saved to an output file. Similarly, all HLO files can be dumped for the minified model. All logs are saved to the output directory by default, and a csv file is created with the benchmark results. ### Functionality - For Dynamo benchmarks, runs model training or inference across a given model suite - Compatible with existing benchmark scripts, but easier to modify given it's a standalone script - Classify failures into "compiler" and "accuracy", ensuring the correct granularity is used when running the minifier - Produced minified graph (repro.py script) for models that failed accuracy check, and also ones that failed compilation check - Dump minified FX IR to file for each model - Dump HLO files to file for each model - Support for GPUs on PyTorch 2.0 implemented and tested - Functional for Hugging Face, TIMM, and TorchBench model suites - Works with existing model runner scripts, and uses the same model list - Basic run information saved to a csv file ### How to run 1) Create a model list. The existing huggingface, timm, and torchbench model lists also work. This should be a text file, with the model name and the batch size specified in a comma-separated list. 2) Specify whether you're running training or inference (eval loop) using either `--training` or `--inference` flag. 3) Specify the device, backend, precision, output directory, and whether to run in precision or accuracy mode. This should be the same as running the existing benchmark scripts. 4) (Optional) Capture FX IR of the minified graphs by passing the `--print-fx` flag 5) (Optional) Dump HLO files of the minified graphs by passing the `--gen_hlo_files` flag 6) Run the script. An example command is provided below. `python auto-minifier.py --model-suite huggingface --model-list huggingface_models_list.txt --device gpu --mode inference --output-dir hf_artifacts --accuracy --print-fx` ### Testing - Tested across NVIDIA A100, A10G, and T4 GPUs for Hugging Face, timm, and TorchBench model suites - Tested across multiple compiler backends, including eager, XLA, and inductor cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @ipiszy
6
1,879
105,768
torch.compile uses more memory when using less parameters
module: memory usage, module: convolution, triaged, oncall: pt2
### 🐛 Describe the bug When running a residual block, I noticed that compiled networks that have a 1x1 skip convolution use less memory when applied to all layers rather than just layers where the number of channels change. Up to a certain input size, the program OOMs only when 1x1 convs happen in the layers with changing channel counts. I would expect the opposite because applying 1x1 convs to all layers would add parameters thus increasing memory usage. Also, this is not the case if there is no normalization and activation happens after the convolution. Is this just a quirk of the compile function? I know that pre-activation is not the norm but it seems to have produced better results here: https://towardsdatascience.com/resnet-with-identity-mapping-over-1000-layers-reached-image-classification-bb50a42af03e Code to reproduce: ```python import torch.nn.functional as F import torch.nn as nn import torch._dynamo import torch, gc class ResBlock(nn.Module): def __init__(self, in_c: int, nc: int, conv_shortcut: bool = False): ''' in_c: number of input channels nc: number of output channels ''' super().__init__() self.norm = nn.GroupNorm(8, in_c) self.conv = nn.Conv2d(in_c, nc, 3, padding=1) self.skip = nn.Conv2d(in_c, nc, 1) if (in_c != nc or conv_shortcut) else None def forward(self, x): h = self.conv(F.relu(self.norm(x))) #h = F.relu(self.conv(self.norm(x))) # bug also happens in this case #h = F.relu(self.norm(self.conv(x))) # bug also happens in this case #h = self.conv(F.relu(x)) # bug also happens in this case #h = F.relu(self.conv(x)) # bug does NOT happens in this case x = x if self.skip is None else self.skip(x) return h + x device = 'cuda' for ENABLE_CONV_SHORTCUT in [True, False]: print('conv shortcut:', ENABLE_CONV_SHORTCUT) with torch.no_grad(): with torch.amp.autocast('cuda'): model = nn.Sequential( ResBlock(256, 256, conv_shortcut=ENABLE_CONV_SHORTCUT), ResBlock(256, 512, conv_shortcut=ENABLE_CONV_SHORTCUT), ResBlock(512, 512, conv_shortcut=ENABLE_CONV_SHORTCUT), ResBlock(512, 1024, conv_shortcut=ENABLE_CONV_SHORTCUT), ResBlock(1024, 1024, conv_shortcut=ENABLE_CONV_SHORTCUT), ResBlock(1024, 2048, conv_shortcut=ENABLE_CONV_SHORTCUT), ResBlock(2048, 2048, conv_shortcut=ENABLE_CONV_SHORTCUT), ).to(device) model = torch.compile(model) print('N params:', sum([p.numel() for p in model.parameters()])) x = torch.zeros((8, 256, 64, 64)).to(device) for _ in range(2): __ = model(x) torch.cuda.synchronize() print('max mem alloc (GiB):', torch.cuda.max_memory_allocated() / (1024**3)) print('max mem reser (GiB):', torch.cuda.max_memory_reserved() / (1024**3)) # clear gpu mem del model, x, __ torch._C._cuda_clearCublasWorkspaces() torch._dynamo.reset() gc.collect() torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() print() ``` Output (OS: Ubuntu 22.04, CPU: i7-12700H, GPU: RTX 3060 Mobile Max-Q): ``` 1x1 conv shortcut in all layers: True N params: 83245568 max mem alloc (GiB): 1.231997013092041 max mem reser (GiB): 1.888671875 1x1 conv shortcut in all layers: False N params: 77671168 max mem alloc (GiB): 1.3362345695495605 max mem reser (GiB): 2.07421875 ``` ### Error logs _No response_ ### Minified repro _No response_ ### Versions PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.35 Python version: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.19.0-46-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.2.91 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 535.54.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12700H CPU family: 6 Model: 154 Thread(s) per core: 2 Core(s) per socket: 14 Socket(s): 1 Stepping: 3 CPU max MHz: 4700.0000 CPU min MHz: 400.0000 BogoMIPS: 5376.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 544 KiB (14 instances) L1i cache: 704 KiB (14 instances) L2 cache: 11.5 MiB (8 instances) L3 cache: 24 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-19 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.25.0 [pip3] torch==2.0.1 [pip3] torch-tb-profiler==0.4.1 [pip3] torchaudio==2.0.2 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] blas 1.0 mkl [conda] cudatoolkit 11.8.0 h6a678d5_0 [conda] libmagma 2.7.1 hc72dce7_3 conda-forge [conda] libmagma_sparse 2.7.1 hc72dce7_4 conda-forge [conda] magma 2.7.1 h2c23e93_0 [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.6 py310h1128e8f_1 [conda] mkl_random 1.2.2 py310h1128e8f_1 [conda] numpy 1.25.0 py310h5f9d8c6_0 [conda] numpy-base 1.25.0 py310hb5e798b_0 [conda] pytorch 2.0.1 py3.10_cuda11.7_cudnn8.5.0_0 pytorch [conda] pytorch-cuda 11.7 h778d358_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch-tb-profiler 0.4.1 pypi_0 pypi [conda] torchaudio 2.0.2 py310_cu117 pytorch [conda] torchtriton 2.0.0 py310 pytorch [conda] torchvision 0.15.2 py310_cu117 pytorch [conda] triton 2.0.0 pypi_0 pypi cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
0
1,880
105,765
I just need to ssh into a CI machine
ciflow/trunk, release notes: releng, topic: not user facing, test-config/default
null
1
1,881
105,758
Improve error messaging on EmbeddingBag.cu
fb-exported, Stale, ciflow/trunk, release notes: cuda, topic: improvements
Test Plan: Sandcastle Differential Revision: D47679132
7
1,882
105,751
Revisit checkpoint naming mismatch with torch name (and ONNX initializer name as a consequence)
module: onnx, triaged
Addresses https://github.com/pytorch/pytorch/blob/main/torch/onnx/_internal/fx/serialization.py#L138-L152 within `save_model_with_external_data` utility. The hugging face model, for example, may have a checkpoint with keys `transformer.h.0.attn.bias` while the fx model has name `h.0.attn.bias` Track why this discrepancy happens and fix it, if applicable
1
1,883
105,742
`torch.unique()` messes around with order even if `sorted=False`
module: docs, triaged, actionable, module: sorting and selection
### 🐛 Describe the bug Hi, When I use `torch.unique` without specifying `dim` (in which case it is known that PyTorch will sort the output, cf. [here](https://pytorch.org/docs/stable/generated/torch.unique.html)) and when specifying `sorted=False`, I find that PyTorch still messes around with the order. **Code for reproducing:** ```python import torch unique_classes, counts = torch.unique( input=torch.tensor([0, 0, 2, 1, 1, 1]).long(), sorted=False, return_counts=True ) print(unique_classes, counts) ``` yields the output ```python (tensor([1, 2, 0]), tensor([3, 1, 2])) ``` **Expected behavior:**: Since the element `0` appears before `1` or `2` in the input tensor, I would expect `unique_classes` to be ```python tensor([0, 2, 1]) ``` instead of ```python tensor([1, 2, 0]) ``` Best, Imahn ### Versions conda 23.3.1 PyTorch 2.0.1 (GPU version) cc @svekars @carljparker @ezyang @gchanan @zou3519
7
1,884
105,734
[FAILING] Make guard after freeze a hard error
Stale, release notes: fx, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #105734 Signed-off-by: Edward Z. Yang <ezyang@meta.com>
3
1,885
105,731
Pypi is missing dependencies
oncall: binaries
### 🐛 Describe the bug Asking Pypi.org for a list of dependencies for torch does not provide a complete list of dependencies. See the list from pypi's json: ``` ~$ curl -s 'https://pypi.org/pypi/torch/json' | jq '.info.requires_dist|.[]' "filelock" "typing-extensions" "sympy" "networkx" "jinja2" "opt-einsum (>=3.3) ; extra == 'opt-einsum'" ``` And now compare it with the actual list of dependencies in the wheel file's metadata: ``` ~$ grep -i requires-dist torch-2.0.1-cp39-cp39-manylinux1_x86_64/torch-2.0.1.dist-info/METADATA Requires-Dist: filelock Requires-Dist: typing-extensions Requires-Dist: sympy Requires-Dist: networkx Requires-Dist: jinja2 Requires-Dist: nvidia-cuda-nvrtc-cu11 (==11.7.99) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cuda-runtime-cu11 (==11.7.99) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cuda-cupti-cu11 (==11.7.101) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cudnn-cu11 (==8.5.0.96) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cublas-cu11 (==11.10.3.66) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cufft-cu11 (==10.9.0.58) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-curand-cu11 (==10.2.10.91) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cusolver-cu11 (==11.4.0.1) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-cusparse-cu11 (==11.7.4.91) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-nccl-cu11 (==2.14.3) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: nvidia-nvtx-cu11 (==11.7.91) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: triton (==2.0.0) ; platform_system == "Linux" and platform_machine == "x86_64" Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum' ``` I don't know why all the nvidida-* packages, as well as triton, are missing from the requires_dist field in the JSON of this package. Should they be there? This is a serious problem for people who are trying to build a consistent private python package mirror on an isolated network. We need to be able to programmatically determine all the dependencies for a package so that when we mirror the package, we also mirror it's requirements. If we cannot do this accurately, installing this package will fail on machines that cannot access pypi.org and rely on the mirror I'm building. ### Versions This is not relevant to this bug, as it does not rely on any specific python environment. cc @seemethere @malfet
3
1,886
105,729
[FSDP] using CPUOffload cannot make the code runing stop
triaged, module: fsdp
### 🐛 Describe the bug I was tried to use offload fsdp to run the vicuna training, however, after I run this command. the code looks like keeping still for 3-4hours and prints nothing like and the last warning before it stay is ``` Please use torch.distributed.reduce_scatter_tensor instead. "torch.distributed._reduce_scatter_base is a private function and will " ``` ### Versions ``` torchrun --nproc_per_node=8 --master_port=20002 fastchat/train/train_mem.py \ --model_name_or_path /home/ma-user/work/jianqiao/alpca-lora/weights \ --data_path data/sharegpt_clean_gpt4_openchat_v2_maxlen1024.json \ --bf16 False \ --fp16 True \ --output_dir output_vicuna \ --num_train_epochs 3 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 16 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1200 \ --save_total_limit 10 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --fsdp "full_shard offload auto_wrap" \ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \ --tf32 False \ --model_max_length 1024 \ --gradient_checkpointing True \ --lazy_preprocess True \ --data_key items ``` Could anybody help to solve this issue? Thanks. cc @zhaojuanmao @mrshenli @rohan-varma @awgu
1
1,887
105,728
Compile error PyTorch 2.0.1 / GCC 13.1.0
module: build, triaged
### 🐛 Describe the bug I came across a strange error when compiling PyTorch (only C++ API, Python disabled) on A64FX using GCC 13.1.0. When compiling the file `aten/src/ATen/native/mkldnn/Pooling.cpp` GCC turns on `-Werror` without turning on `-Wno-dangling-reference` so that ``` aten/src/ATen/core/IListRef_inl.h:171:17: error: possibly dangling reference to a temporary [-Werror=dangling-reference] 171 | const auto& ivalue = (*it).get(); ``` This seems to be triggered by line 534 in `caffe2/CMakeLists.txt`: ``` # Required workaround for LLVM 9 includes. if(NOT MSVC) set_source_files_properties(${TORCH_SRC_DIR}/csrc/jit/tensorexpr/llvm_jit.cpp PROPERTIES COMPILE_FLAGS -Wno-noexcept-type) # Force -Werror on several files set_source_files_properties(${CMAKE_CURRENT_LIST_DIR}/../aten/src/ATen/native/mkldnn/Pooling.cpp PROPERTIES COMPILE_FLAGS "-Werror") endif() ``` Is this special treatment of the file `Pooling.cpp` really necessary? If so, one should maybe add `-Wno-dangling-reference`. ### Error logs _No response_ ### Minified repro _No response_ ### Versions Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Rocky Linux release 8.4 (Green Obsidian) (aarch64) GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-15) Clang version: 12.0.1 (Red Hat 12.0.1-4.module+el8.5.0+715+58f51d49) CMake version: version 3.20.2 Libc version: glibc-2.17 Python version: 3.6.8 (default, Nov 9 2021, 14:47:09) [GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] (64-bit runtime) Python platform: Linux-4.18.0-305.25.1.el8_4.aarch64-aarch64-with-centos-8.4-Green_Obsidian Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Thread(s) per core: 1 Core(s) per cluster: 12 Socket(s): - Cluster(s): 4 NUMA node(s): 4 Vendor ID: FUJITSU Model: 0 Model name: A64FX Stepping: 0x1 BogoMIPS: 200.00 NUMA node0 CPU(s): 0-11 NUMA node1 CPU(s): 12-23 NUMA node2 CPU(s): 24-35 NUMA node3 CPU(s): 36-47 Flags: fp asimd evtstrm sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm fcma dcpop sve Versions of relevant libraries: [pip3] numpy==1.14.3 [conda] Could not collect cc @malfet @seemethere @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
6
1,888
105,726
There is a big precision error between A100 and 3090 when using torch.matmul with fp16 precision
module: cuda, triaged, module: half
### 🐛 Describe the bug There are two intputs: attention_scores_clamp_softmax.npy and andattention_values.npy Test data: The copy them with different names and there md5 value are the same: 2c93eb5671266aeb561724e0d487e2e5 38_attention_scores_clamp_softmax.npy 6316a816fdecde5084160cb9ccd10889 38_attention_values.npy 2c93eb5671266aeb561724e0d487e2e5 41_attention_scores_clamp_softmax.npy 6316a816fdecde5084160cb9ccd10889 41_attention_values.npy 2c93eb5671266aeb561724e0d487e2e5 42_attention_scores_clamp_softmax.npy 6316a816fdecde5084160cb9ccd10889 42_attention_values.npy Hardware & Software information: 38 Server is a Server with 3090 NVIDIA Card Driver: 530.30.02 CUDA: 12.1 torch 2.0.1 torchaudio 2.0.2 torchvision 0.15.2 41 Server is a Server with A100 NVIDIA Card torch Driver: 530.30.02 CUDA: 12.1 torch 2.0.1 torchaudio 2.0.2 torchvision 0.15.2 42 Server is a Server with A100 NVIDIA Card torch Driver: 525.125.06 CUDA: 12.0 torch 2.0.1 torchaudio 2.0.2 torchvision 0.15.2 1st, run generate_output_38.py on 3090 Server 2nd, run generate_output_41.py on A100 Server 3rd, run generate_output_42.py on A100 Server 4th, copy all files to 38 Server and 41 Server 5th, run cmp_output_fp16.py on 3090 Server 6th, run cmp_output_fp16.py on A100 Server 7th, run cmp_output_fp16.py on A100 Server Then get results below: On 41 Server(A100): $ python cmp_output_fp16.py matmul_out_38 == matmul_out_42 False matmul_out_41 == matmul_out_42 True allclose torch output between 38 and 42 False allclose torch output between 38 and 41 False allclose torch output between 41 and 42 True On 38 Server(3090): $ python cmp_output_fp16.py matmul_out_38 == matmul_out_42 False matmul_out_41 == matmul_out_42 True allclose torch output between 38 and 42 False allclose torch output between 38 and 41 False allclose torch output between 41 and 42 True On 42 Server(A100): $ python cmp_output_fp16.py matmul_out_38 == matmul_out_42 False matmul_out_41 == matmul_out_42 True allclose torch output between 38 and 42 False allclose torch output between 38 and 41 False allclose torch output between 41 and 42 True It seems there is a big gap between the value generated on 3090 and A100. Then, check the md5 value of each outputs and found the tensor from 41 and 42 (A100) are the same: 5d77b2f48b27e099b10e5bdee5f1a38b 38_output.npy 4654e5fe4740dc4480953585379ea638 41_output.npy 4654e5fe4740dc4480953585379ea638 42_output.npy Change the atol and rtol and found the following results: test_cmp_output_fp16_threshold.py When np.allclose(matmul_out_38, matmul_out_42, rtol=1e-05, atol=1e-03)} the 3090 and A100 could np.allclose return True Attachment 1 generate_output_38.py ``` import torch import numpy as np x = torch.from_numpy(np.load('38_attention_scores_clamp_softmax.npy')).cuda().half() y = torch.from_numpy(np.load('38_attention_values.npy')).cuda().half() class MatMulNetwork(torch.nn.Module): def __init__(self): super(MatMulNetwork, self).__init__() def forward(self, x, y): return torch.matmul(x, y) net = MatMulNetwork() net.cuda() net.half() net.eval() output = net(x, y) np.save("38_output.npy", output.cpu().numpy()) print(output) ``` Attachment 2 cmp_output_fp16.py ``` import numpy as np import torch torch_matmul_38 = "38_output.npy" torch_matmul_42 = "42_output.npy" torch_matmul_41 = "41_output.npy" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") matmul_out_38 = np.load(torch_matmul_38) matmul_out_42 = np.load(torch_matmul_42) matmul_out_41 = np.load(torch_matmul_41) print(f"matmul_out_38 == matmul_out_42 {np.array_equal(matmul_out_38, matmul_out_42)}") print(f"matmul_out_41 == matmul_out_42 {np.array_equal(matmul_out_41, matmul_out_42)}") print(f"allclose torch output between 38 and 42 {np.allclose(matmul_out_38, matmul_out_42, rtol=1e-05, atol=1e-08)}") print(f"allclose torch output between 38 and 41 {np.allclose(matmul_out_38, matmul_out_41, rtol=1e-05, atol=1e-08)}") print(f"allclose torch output between 41 and 42 {np.allclose(matmul_out_41, matmul_out_42, rtol=1e-05, atol=1e-08)}") ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.31 Python version: 3.10.8 (main, Nov 24 2022, 14:13:03) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-43-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 GPU 4: NVIDIA GeForce RTX 3090 GPU 5: NVIDIA GeForce RTX 3090 GPU 6: NVIDIA GeForce RTX 3090 GPU 7: NVIDIA GeForce RTX 3090 Nvidia driver version: 530.30.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 57 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz Stepping: 6 CPU MHz: 800.000 CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 5200.00 Virtualization: VT-x L1d cache: 3 MiB L1i cache: 2 MiB L2 cache: 80 MiB L3 cache: 96 MiB NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.25.0 [pip3] torch==2.0.1 [pip3] torchaudio==2.0.2 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] blas 1.0 mkl defaults [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2023.1.0 h6d00ec8_46342 defaults [conda] mkl-service 2.4.0 py310h5eee18b_1 defaults [conda] mkl_fft 1.3.6 py310h1128e8f_1 defaults [conda] mkl_random 1.2.2 py310h1128e8f_1 defaults [conda] numpy 1.25.0 py310h5f9d8c6_0 defaults [conda] numpy-base 1.25.0 py310hb5e798b_0 defaults [conda] pytorch 2.0.1 py3.10_cuda11.7_cudnn8.5.0_0 pytorch [conda] pytorch-cuda 11.7 h778d358_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchaudio 2.0.2 py310_cu117 pytorch [conda] torchtriton 2.0.0 py310 pytorch [conda] torchvision 0.15.2 py310_cu117 pytorch cc @ptrblck
8
1,889
105,725
[pytorch] replace __FILE__ with __FILE_NAME__ for exceptions
fb-exported, Stale, topic: not user facing
Summary: Replace uses of the `__FILE__` macro with `__FILE_NAME__` for pytorch exceptions. This will prevent embedding build system paths in the build output, which will cause varying output depending on configuration. Test Plan: Build and inspect assert strings before change: ``` $ buck2 build --show-output //fbobjc/Libraries/FBPyTorchCore:torch_core_msg_opsApple $ strings buck-out/v2/gen/fbsource/c969ccb4ab4ae099/fbobjc/Libraries/FBPyTorchCore/__torch_core_msg_opsApple__/libtorch_core_msg_opsApple.pic.a | grep FAIL | grep buck | head -n 3 *current_device == options.device() INTERNAL ASSERT FAILED at "buck-out/v2/gen/fbsource/c969ccb4ab4ae099/fbobjc/Libraries/FBPyTorchCore/__torch_core_msg_ops_aten__/out/RegisterCompositeExplicitAutogradNonFunctional.cpp":99, please report a bug to PyTorch. *current_device == options.device() INTERNAL ASSERT FAILED at "buck-out/v2/gen/fbsource/c969ccb4ab4ae099/fbobjc/Libraries/FBPyTorchCore/__torch_core_msg_ops_aten__/out/RegisterCompositeExplicitAutogradNonFunctional.cpp":118, please report a bug to PyTorch. *current_device == options.device() INTERNAL ASSERT FAILED at "buck-out/v2/gen/fbsource/c969ccb4ab4ae099/fbobjc/Libraries/FBPyTorchCore/__torch_core_msg_ops_aten__/out/RegisterCompositeExplicitAutogradNonFunctional.cpp":151, please report a bug to PyTorch. ``` After change: ``` $ buck2 build --show-output //fbobjc/Libraries/FBPyTorchCore:torch_core_msg_opsApple $ strings buck-out/v2/gen/fbsource/c969ccb4ab4ae099/fbobjc/Libraries/FBPyTorchCore/__torch_core_msg_opsApple__/libtorch_core_msg_opsApple.pic.a | grep FAIL | head -n 10 isBool() INTERNAL ASSERT FAILED at "ivalue.h":666, please report a bug to PyTorch. new_refcount != 1 INTERNAL ASSERT FAILED at "intrusive_ptr.h":268, please report a bug to PyTorch. false INTERNAL ASSERT FAILED at "ivalue.h":1239, please report a bug to PyTorch. owning_ptr == NullType::singleton() || owning_ptr->refcount_.load() == 0 || owning_ptr->weakcount_.load() INTERNAL ASSERT FAILED at "intrusive_ptr.h":474, please report a bug to PyTorch. target_->refcount_ == 0 && target_->weakcount_ == 0 INTERNAL ASSERT FAILED at "intrusive_ptr.h":315, please report a bug to PyTorch. refcount_.load() == 0 || refcount_.load() >= 2147483647 INTERNAL ASSERT FAILED at "intrusive_ptr.h":125, please report a bug to PyTorch. weakcount_.load() == 1 || weakcount_.load() == 0 || weakcount_.load() == 2147483647 - 1 || weakcount_.load() == 2147483647 INTERNAL ASSERT FAILED at "intrusive_ptr.h":131, please report a bug to PyTorch. isDouble() INTERNAL ASSERT FAILED at "ivalue.h":542, please report a bug to PyTorch. isTensorList() INTERNAL ASSERT FAILED at "ivalue_inl.h":2019, please report a bug to PyTorch. isTensorList() INTERNAL ASSERT FAILED at "ivalue_inl.h":2023, please report a bug to PyTorch. $ strings buck-out/v2/gen/fbsource/c969ccb4ab4ae099/fbobjc/Libraries/FBPyTorchCore/__torch_core_msg_opsApple__/libtorch_core_msg_opsApple.pic.a | grep FAIL | grep buck ``` Reviewed By: milend Differential Revision: D47637795
3
1,890
105,723
Parameter ... has been marked as ready twice
oncall: distributed
### 🐛 Describe the bug I have the following code in file named `debug.py` ```python import os import torch import argparse class CustomModel(torch.nn.Module): def __init__(self): super(CustomModel, self).__init__() self.w1 = torch.nn.Parameter(torch.tensor(1.5), requires_grad=True) self.w2 = torch.nn.Parameter(torch.tensor(1.5), requires_grad=True) self.w3 = torch.nn.Parameter(torch.tensor(1.5), requires_grad=True) def forward(self, x, order): if order == 0: return self.w1 * x elif order == 1: return self.w2 * x else: return self.w3 * x def main(): parser = argparse.ArgumentParser() parser.add_argument("--local_rank", type=int, default=-1) args = parser.parse_args() local_rank = args.local_rank torch.cuda.set_device(local_rank) device = torch.device("cuda", local_rank) torch.distributed.init_process_group(backend="nccl") model = CustomModel() model.to(device) # setup distributed model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True) x = torch.tensor(1.) y1 = model(x, 0) y2 = model(x, 1) y3 = model(x, 2) y1.backward() if __name__ == "__main__": main() ``` I run this code with the following command ```shell TORCH_DISTRIBUTED_DEBUG=DETAIL python -m torch.distributed.launch --nproc_per_node=3 debug.py ``` Then, I got the error <pre> Expected to mark a variable ready only once. This error is caused by one of the following reasons: 1) Use of a module parameter outside the `forward` function. Please make sure model parameters are not shared across multiple concurrent forward-backward passes. or try to use _set_static_graph() as a workaround if this module graph does not change during training loop.2) Reused parameters in multiple reentrant backward passes. For example, if you use multiple `checkpoint` functions to wrap the same part of your model, it would result in the same set of parameters been used by different reentrant backward passes multiple times, and hence marking a variable ready multiple times. DDP does not support such use cases in default. You can try to use _set_static_graph() as a workaround if your module graph does not change over iterations. Parameter at index 0 with name .w1 has been marked as ready twice. This means that multiple autograd engine hooks have fired for this particular parameter during this iteration. </pre> If I change the line `y1.backward()` to `y2.backward()`, the parameter that `has been marked as ready twice` change to `.w2` As the error suggested, there might have shared parameters across multiple forward-backward pass or a same set of parameters used by multiple backward passes. However, I find none of these two suggestions match the above provided code. The error disappeared if I set `find_unused_parameters=False`. However, in my actual code, this setting caused another error, which was `Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by passing the keyword argument find_unused_parameters=True to torch.nn.parallel.DistributedDataParallel...`. I am able to change my code to fix the problem. But the focus of my question is why such a simple code above produced the error? Why was there a parameter that `has been marked as ready twice`? ### Versions Collecting environment information... PyTorch version: 1.12.1+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.29 Is CUDA available: True CUDA runtime version: 10.1.243 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: Tesla P100-PCIE-12GB GPU 1: Tesla P100-PCIE-12GB GPU 2: Tesla P100-PCIE-12GB Nvidia driver version: 470.199.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz Stepping: 4 CPU MHz: 2100.000 CPU max MHz: 3000,0000 CPU min MHz: 800,0000 BogoMIPS: 4200.00 Virtualization: VT-x L1d cache: 512 KiB L1i cache: 512 KiB L2 cache: 16 MiB L3 cache: 22 MiB NUMA node0 CPU(s): 0-7,16-23 NUMA node1 CPU(s): 8-15,24-31 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.19.5 [pip3] torch==1.12.1+cu116 [pip3] torchaudio==0.12.1+cu116 [pip3] torchvision==0.13.1+cu116 [conda] Could not collect cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
2
1,891
105,716
Dynamo test pipeline failed on MaxPool2d test when changed to use f-string
module: ci, module: tests, triaged, module: dynamo
### 🐛 Describe the bug Tests [linux-bionic-py3.11-clang9 / test (dynamo, 1, 2, linux.2xlarge)](https://hud.pytorch.org/pr/pytorch/pytorch/105436#15182560189) ([gh](https://github.com/pytorch/pytorch/actions/runs/5604098622/jobs/10251876391)) [linux-bionic-py3.8-clang9 / test (dynamo, 1, 2, linux.2xlarge)](https://hud.pytorch.org/pr/pytorch/pytorch/105436#15182563911) ([gh](https://github.com/pytorch/pytorch/actions/runs/5604098622/jobs/10251879196)) fails when the string format call in `cls_name = 'MaxPool{}d'.format(num_dim)` is changed to f-string in `_test_maxpool_indices`. For some reason the name becomes `MaxPool1d` even when it should be `MaxPool2d` I could not reproduce in either a linux environment or on an m1 mac. It only happens in CI. https://github.com/pytorch/pytorch/pull/105436#issuecomment-1642786366 ### Versions ``` PyTorch version: 2.1.0a0+git2d16f88 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4.1 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: version 3.26.4 Libc version: N/A Python version: 3.11.4 (main, Jun 20 2023, 17:23:00) [Clang 14.0.3 (clang-1403.0.22.14.1)] (64-bit runtime) Python platform: macOS-13.4.1-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] numpy==1.25.1 [pip3] pytorch==2.1.0a0+git2d16f88 [conda] Could not collect ``` cc @seemethere @malfet @pytorch/pytorch-dev-infra @mruberry @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
1
1,892
105,712
Fail to build c++ extension in pytorch 2.0.0
module: windows, module: cpp-extensions, triaged
### 🐛 Describe the bug I am using pytorch2.0.0, vs19 and cuda11.8, and trying to build my custom c++ extension function. The code was built successfully when I was using pytorch1.11.0, vs19 and cuda11.3. The same code is built unsuccessfully when I am now using pytorch 2.0.0, vs19 and cuda11.8. I am not sure what the problem is. The following shows the error messages. Please kindly help me. Thank you very much. ``` D:\NP\self_code\det\extension\sigmoid_focal_loss\src>python setup.py build running build running build_ext D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\utils\cpp_extension.py:359: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') building 'sigmoid_focal_loss_cuda' extension Emitting ninja build file D:\NP\self_code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/2] cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages \torch\include\torch\csrc\api\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\TH -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\in clude" -ID:\Programs\Anaconda3\envs\NP\include -ID:\Programs\Anaconda3\envs\NP\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visua l Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" -c D:\NP\self_code\det\extension\sigmoid_focal_loss\src\sigmoid_focal_loss.cpp /FoD:\NP\self_code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\s igmoid_focal_loss.obj -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=sigmoid_focal_loss_cuda -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++17 FAILED: D:/NP/self_code/det/extension/sigmoid_focal_loss/src/build/temp.win-amd64-cpython-38/Release/sigmoid_focal_loss.obj cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch \include\torch\csrc\api\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\TH -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -ID:\Programs\Anaconda3\envs\NP\include -ID:\Programs\Anaconda3\envs\NP\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visual Stud io\2019\Community\VC\Tools\MSVC\14.29.30133\include" -c D:\NP\self_code\det\extension\sigmoid_focal_loss\src\sigmoid_focal_loss.cpp /FoD:\NP\self_code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\sigmoid _focal_loss.obj -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=sigmoid_focal_loss_cuda -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++17 注意: 包含文件: D:\NP\self_code\det\extension\sigmoid_focal_loss\src\pytorch_cpp_helper.hpp 注意: 包含文件: D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\torch\csrc\api\include\torch/types.h 注意: 包含文件: D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\ATen/ATen.h 注意: 包含文件: D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\ATen/Context.h 注意: 包含文件: D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\ATen/CPUGeneratorImpl.h 注意: 包含文件: D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\ATen/core/Generator.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\stdint.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\vcruntime.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\sal.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\concurrencysal.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\vadefs.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\mutex 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\yvals_core.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\xkeycheck.h 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\__msvc_chrono.hpp 注意: 包含文件: C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\yvals.h C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\yvals.h(12): fatal error C1083: 无法打开包括文件: “crtdbg.h”: No such file or directory [2/2] C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\nvcc --generate-dependencies-with-compile --dependency-output D:\NP\self_code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\sigmoid_focal _loss_cuda.obj.d --use-local-env -Xcompiler /MD -Xcompiler /wd4819 -Xcompiler /wd4251 -Xcompiler /wd4244 -Xcompiler /wd4267 -Xcompiler /wd4275 -Xcompiler /wd4018 -Xcompiler /wd4190 -Xcompiler /EHsc -Xcudafe --diag_suppress=base_class_h as_different_dll_interface -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=dll_interface_conflict_none_assumed -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -ID:\Programs\Anaconda3\envs \NP\lib\site-packages\torch\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\torch\csrc\api\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\TH -ID:\Programs\Anaconda3\envs\NP\lib\site-pack ages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -ID:\Programs\Anaconda3\envs\NP\include -ID:\Programs\Anaconda3\envs\NP\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Communit y\VC\Tools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" -c D:\NP\self_code\det\extension\sigmoid_focal_loss\src\sigmoid_focal_loss_cuda.cu -o D:\NP \self_code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\sigmoid_focal_loss_cuda.obj -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERAT ORS__ --expt-relaxed-constexpr -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=sigmoid_focal_loss_cuda -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 FAILED: D:/NP/self_code/det/extension/sigmoid_focal_loss/src/build/temp.win-amd64-cpython-38/Release/sigmoid_focal_loss_cuda.obj C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\nvcc --generate-dependencies-with-compile --dependency-output D:\NP\self_code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\sigmoid_focal_loss_ cuda.obj.d --use-local-env -Xcompiler /MD -Xcompiler /wd4819 -Xcompiler /wd4251 -Xcompiler /wd4244 -Xcompiler /wd4267 -Xcompiler /wd4275 -Xcompiler /wd4018 -Xcompiler /wd4190 -Xcompiler /EHsc -Xcudafe --diag_suppress=base_class_has_dif ferent_dll_interface -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=dll_interface_conflict_none_assumed -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -ID:\Programs\Anaconda3\envs\NP\li b\site-packages\torch\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\torch\csrc\api\include -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\include\TH -ID:\Programs\Anaconda3\envs\NP\lib\site-packages\t orch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -ID:\Programs\Anaconda3\envs\NP\include -ID:\Programs\Anaconda3\envs\NP\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\T ools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" -c D:\NP\self_code\det\extension\sigmoid_focal_loss\src\sigmoid_focal_loss_cuda.cu -o D:\NP\self_ code\det\extension\sigmoid_focal_loss\src\build\temp.win-amd64-cpython-38\Release\sigmoid_focal_loss_cuda.obj -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=sigmoid_focal_loss_cuda -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 C:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/include\crtdefs.h(10): fatal error C1083: 无法打开包括文件: “corecrt.h”: No such file or directory sigmoid_focal_loss_cuda.cu ninja: build stopped: subcommand failed. Traceback (most recent call last): File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\utils\cpp_extension.py", line 1893, in _run_ninja_build subprocess.run( File "D:\Programs\Anaconda3\envs\NP\lib\subprocess.py", line 516, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "setup.py", line 8, in <module> setup(name='sigmoid_focal_loss', File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\__init__.py", line 107, in setup return distutils.core.setup(**attrs) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup return run_commands(dist) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands dist.run_commands() File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\dist.py", line 969, in run_commands self.run_command(cmd) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\dist.py", line 1244, in run_command super().run_command(command) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\command\build.py", line 131, in run self.run_command(cmd_name) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\dist.py", line 1244, in run_command super().run_command(command) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\command\build_ext.py", line 84, in run _build_ext.run(self) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 345, in run self.build_extensions() File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\utils\cpp_extension.py", line 843, in build_extensions build_ext.build_extensions(self) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 467, in build_extensions self._build_extensions_serial() File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 493, in _build_extensions_serial self.build_extension(ext) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\command\build_ext.py", line 246, in build_extension _build_ext.build_extension(self, ext) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\Cython\Distutils\build_ext.py", line 127, in build_extension super(build_ext, self).build_extension(ext) File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 548, in build_extension objects = self.compiler.compile( File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\utils\cpp_extension.py", line 815, in win_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\utils\cpp_extension.py", line 1574, in _write_ninja_file_and_compile_objects _run_ninja_build( File "D:\Programs\Anaconda3\envs\NP\lib\site-packages\torch\utils\cpp_extension.py", line 1909, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension ``` ### Versions PyTorch version: 2.0.0 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 专业版 GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.8.17 (default, Jul 5 2023, 20:44:21) [MSC v.1916 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\cudnn_ops_train64_8.dll HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: 'wmic' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 Versions of relevant libraries: [pip3] numpy==1.23.2 [pip3] torch==2.0.0 [pip3] torchaudio==2.0.0 [pip3] torchvision==0.15.0 [conda] blas 2.117 mkl conda-forge [conda] blas-devel 3.9.0 17_win64_mkl conda-forge [conda] libblas 3.9.0 17_win64_mkl conda-forge [conda] libcblas 3.9.0 17_win64_mkl conda-forge [conda] liblapack 3.9.0 17_win64_mkl conda-forge [conda] liblapacke 3.9.0 17_win64_mkl conda-forge [conda] mkl 2022.1.0 h6a75c08_874 conda-forge [conda] mkl-devel 2022.1.0 h57928b3_875 conda-forge [conda] mkl-include 2022.1.0 h6a75c08_874 conda-forge [conda] numpy 1.23.2 py38h223ccf5_0 conda-forge [conda] pytorch 2.0.0 py3.8_cuda11.8_cudnn8_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch [conda] pytorch-cuda 11.8 h24eeafa_5 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch [conda] pytorch-mutex 1.0 cuda https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch [conda] torchaudio 2.0.0 pypi_0 pypi [conda] torchvision 0.15.0 pypi_0 pypi cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @vladimir-aubrecht @iremyux @Blackhex @cristianPanaite @malfet @zou3519
4
1,893
105,706
Unable to build documents
module: onnx, triaged, module: doc infra
### 📚 The doc issue i follow the instruction in [contribute.md](https://github.com/pytorch/pytorch/blob/main/CONTRIBUTING.md#building-documentation) **some mistake occured during building the document:** ``` ❯ make html --debug GNU Make 4.3 Built for x86_64-pc-linux-gnu Copyright (C) 1988-2020 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Reading makefiles... Updating makefiles.... Updating goal targets.... File 'html' does not exist. File 'figures' does not exist. Must remake target 'figures'. Successfully remade target file 'figures'. File 'onnx' does not exist. Must remake target 'onnx'. Traceback (most recent call last): File "/docs/source/scripts/onnx/build_onnx_diagnostics_rules_md.py", line 37, in <module> main() File "/docs/source/scripts/onnx/build_onnx_diagnostics_rules_md.py", line 33, in main gen_docs(args.out_dir) File "/docs/source/scripts/onnx/build_onnx_diagnostics_rules_md.py", line 16, in gen_docs full_description_markdown = rule.full_description_markdown ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'Rule' object has no attribute 'full_description_markdown' make: *** [Makefile:22: onnx] Error 1 ``` **system infomation are as follow:** ``` ❯ uname -a Linux DY-Debian 6.1.0-10-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.37-1 (2023-07-03) x86_64 GNU/Linux ``` ``` ❯ python -V Python 3.11.2 ``` ``` ❯ pip freeze absl-py==1.4.0 alabaster==0.7.13 anyio==3.7.1 appdirs==1.4.4 asgiref==3.6.0 asttokens==2.2.1 astunparse==1.6.3 attrs==22.2.0 av==10.0.0 Babel==2.10.3 backcall==0.2.0 bcrypt==3.2.2 beautifulsoup4==4.11.2 beniget==0.4.1 blinker==1.5 Bottleneck==1.3.5 Brlapi==0.8.4 Brotli==1.0.9 bytecode==0.14.0 cachetools==5.3.1 capstone==4.0.2 certifi==2022.9.24 chardet==5.1.0 charset-normalizer==3.0.1 click==8.1.3 colorama==0.4.6 colored-traceback==0.3.0 contourpy==1.0.7 coverage==6.5.0 cryptography==38.0.4 cupshelpers==1.0 cycler==0.11.0 dbus-python==1.3.2 debugpy==1.6.3+git20221103.a2a3328 decorator==5.1.1 defusedxml==0.7.1 distro==1.8.0 dnspython==2.4.0 docutils==0.18.1 entrypoints==0.4 et-xmlfile==1.0.1 executing==1.2.0 Flask==2.2.2 fonttools==4.38.0 fs==2.4.16 fuse-python==1.0.5 future==0.18.2 gast==0.5.2 google-auth==2.22.0 google-auth-oauthlib==0.4.6 gpg==1.18.0 grpcio==1.56.0 h11==0.14.0 html5lib==1.1 httpcore==0.17.3 httplib2==0.20.4 hypothesis==6.67.1 idna==3.3 imagesize==1.4.1 iniconfig==1.1.1 intervaltree==3.0.2 invoke==2.0.0 ipykernel==6.17.0 ipython==8.5.0 itsdangerous==2.1.2 jdcal==1.0 jedi==0.18.2 Jinja2==3.1.2 jupyter_client==7.4.9 jupyter_core==4.12.0 kiwisolver==1.4.4 lazr.restfulclient==0.14.5 lazr.uri==1.0.6 llvmlite==0.39.1 louis==3.24.0 lxml==4.9.2 lz4==4.0.2+dfsg Mako==1.2.4.dev0 Markdown==3.4.3 markdown-it-py==2.2.0 MarkupSafe==2.1.2 matplotlib==3.6.0 matplotlib-inline==0.1.6 mdit-py-plugins==0.3.5 mdurl==0.1.2 more-itertools==8.10.0 mpmath==0.0.0 myst-parser==0.18.1 nest-asyncio==1.5.4 numba==0.56.4 numexpr==2.8.4 numpy==1.24.2 oauthlib==3.2.2 odfpy==1.4.2 olefile==0.46 openpyxl==3.0.9 packaging==23.0 pandas==1.5.3 paramiko==2.12.0 parso==0.8.3 pexpect==4.8.0 pickleshare==0.7.5 Pillow==9.4.0 pluggy==1.0.0+repack plumbum==0.0.0 ply==3.11 prompt-toolkit==3.0.36 protobuf==3.19.6 psutil==5.9.4 ptyprocess==0.7.0 pure-eval==0.0.0 pwntools==4.12.0.dev0 py==1.11.0 pyasn1==0.5.0 pyasn1-modules==0.3.0 pycairo==1.20.1 pycups==2.0.1 pycurl==7.45.2 pydevd==2.9.5 pyelftools==0.29 Pygments==2.14.0 PyGObject==3.42.2 pyinotify==0.9.6 PyJWT==2.6.0 pylibacl==0.7.0 PyNaCl==1.5.0 pyOpenSSL==23.0.0 pyparsing==3.0.9 PyQt5==5.15.9 PyQt5-sip==12.11.1 pyserial==3.5 PySimpleSOAP==1.16.2 pysmbc==1.0.23 PySocks==1.7.1 pytest==7.2.1 python-apt==2.6.0 python-dateutil==2.8.2 python-debian==0.1.49 python-debianbts==4.0.1 python-dotenv==0.21.0 python-etcd==0.4.5 pythran==0.11.0 -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@32a6550fcfd59b7f5d9bae4f2181dc5c715de691#egg=pytorch_sphinx_theme pytz==2022.7.1 pyxattr==0.8.1 pyxdg==0.28 PyYAML==6.0 pyzmq==24.0.1 ranger-fm==1.9.3 reportbug==12.0.0 requests==2.28.1 requests-oauthlib==1.3.1 ROPGadget==7.2 rpyc==5.3.0 rsa==4.9 scapy==2.5.0 scipy==1.10.1 simplejson==3.18.3 six==1.16.0 sniffio==1.3.0 snowballstemmer==2.2.0 sortedcontainers==2.4.0 soupsieve==2.3.2 Sphinx==5.0.0 sphinx-copybutton==0.5.0 sphinx-panels==0.4.1 sphinxcontrib-applehelp==1.0.4 sphinxcontrib-devhelp==1.0.2 sphinxcontrib-htmlhelp==2.0.1 sphinxcontrib-jsmath==1.0.1 sphinxcontrib-katex==0.8.6 sphinxcontrib-qthelp==1.0.3 sphinxcontrib-serializinghtml==1.1.5 stack-data==0.6.2 sympy==1.11.1 tables==3.7.0 tensorboard==2.10.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 torch==1.13.0a0+gitunknown torchaudio==0.13.1 torchvision==0.14.1a0 tornado==6.2 tqdm==4.64.1 traitlets==5.5.0 typing_extensions==4.4.0 ufoLib2==0.14.0 unicorn==2.0.1.post1 urllib3==1.26.12 wadllib==1.3.6 wcwidth==0.2.5 webencodings==0.5.1 Werkzeug==2.2.2 xdg==5 ``` ``` ❯ git status On branch main Your branch is up to date with 'origin/main'. Untracked files: (use "git add <file>..." to include in what will be committed) .venv/ nothing added to commit but untracked files present (use "git add" to track) ``` ``` ❯ git rev-parse HEAD a8f568e99b1e59a97c70ae0a351cdd19716ef085 ``` - katex installed by apt,already in $PATH - pip requirement already satisfied - system is Debian12 with KDE plasma ### Suggest a potential alternative/fix _No response_ cc @ezyang @zou3519 @holly1238 @svekars
0
1,894
105,702
Slightly improve AOTAutograd logging with ViewAndMutationMeta
Merged, Reverted, Stale, ciflow/trunk, ciflow/inductor, release notes: AO frontend, module: export
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #105702 Signed-off-by: Edward Z. Yang <ezyang@meta.com>
11
1,895
105,700
Don't use weak ref finalization for freeing resources when code objects die
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug Today, we use weakref on codegen'ed code objects to trigger deallocation of compiled functions when the cache is cleared (using CleanupManager). I find this to be a bit fragile in the presence of pytest/exceptions, because if an exception is raised inside our compilation stack, the exception will hold references to the frame, and thus the code object, and then if this exception is kept around, this prevents the compiled function from ever being deallocated. It seems better to treat the cache entries as owning their respective code objects etc, and directly trigger deallocation when they are cleared. ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
0
1,896
105,697
Support symmetry in einsum
triaged, module: linear algebra
### 🚀 The feature, motivation and pitch PyTorch is an incredibly powerful tool, particularly due to its capability to parallelize and leverage GPU resources for operations like `einsum`. One area where I'd love to see development is in the support for tensor symmetries. For example, let's consider a tensor contraction like `A[a,b,c,d,e] * B[d,e,f,g,h] = C[a,b,c,f,g,h]`. If we have symmetries such as `A[a,b,c,d,e] = A[b,a,c,d,e]` or `B[d,e,f,g,h]=B[d,e,f,h,g]`, it would be great if we could use these symmetries to boost computational efficiency significantly. ### Alternatives The `ctf` package does offer some functionality along these lines, but it seems limited to symmetric/antisymmetric operations for adjacent indices. Here's the GitHub repository for `ctf`: https://github.com/cyclops-community/ctf For more specifics, the documentation can be found here: https://solomon2.web.engr.illinois.edu/ctf_python/ctf.html#module-ctf.core That said, from my observations, the performance isn't quite as efficient as one might hope. You can check out the issue I'm referring to here: https://github.com/cyclops-community/ctf/issues/136 ### Additional context _No response_ cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
1
1,897
105,694
An experiemnt profling
keep-going
Fixes #ISSUE_NUMBER
2
1,898
105,687
[WIP] low mem max_pool2d_with_indices
Stale, module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #105966 * __->__ #105687 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @ngimel
2
1,899
105,686
Error using torch.compile with HF transformers and model `mosaicml/mpt-7b`
triaged, oncall: pt2, module: dynamic shapes
### 🐛 Describe the bug Below is a reproducible example of what is failing. It seems to relate to `rearrange` function from `einops` package. Tagging @ezyang (at the suggestion of @ani300) ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import torch._dynamo from torch._inductor.compile_fx import compile_fx model_path = "mosaicml/mpt-7b" model = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ).eval() tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) compiled_forward = torch._dynamo.optimize( lambda model, inputs: compile_fx( model, inputs, config_patches={ "triton.cudagraphs": False, "size_asserts": False, }, ), dynamic=True, )(model.forward) with torch.no_grad(): tokenized_inputs = tokenizer( "Testing PT2 Compile", return_tensors="pt", ) print(tokenized_inputs) output = model.forward( input_ids=tokenized_inputs['input_ids'], attention_mask=tokenized_inputs['attention_mask'] ) print(output) output = compiled_forward( input_ids=tokenized_inputs['input_ids'], attention_mask=tokenized_inputs['attention_mask'] ) print(output) ``` ### Error logs ```bash $ python issue.py Instantiating an MPTForCausalLM model from /localhome/tpa/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7/modeling_mpt.py You are using config.init_device='cpu', but you can also use config.init_device="meta" with Composer + FSDP for fast initialization. Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:07<00:00, 3.96s/it] {'input_ids': tensor([[38571, 10622, 19, 3631, 587]]), 'attention_mask': tensor([[1, 1, 1, 1, 1]])} CausalLMOutputWithPast(loss=None, logits=tensor([[[30.7642, 10.5882, 32.5046, ..., 10.4191, 10.4177, 10.4317], [23.1704, 4.3510, 23.5814, ..., 4.3556, 4.3414, 4.3513], [37.4781, 14.9682, 38.8808, ..., 14.9036, 14.8895, 14.9042], [14.8190, -6.1388, 14.6889, ..., -6.2073, -6.2138, -6.2110], [36.7066, 15.7330, 39.1332, ..., 15.6551, 15.6470, 15.6626]]]), past_key_values=None, hidden_states=None, attentions=None) No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' Traceback (most recent call last): File "/localhome/tpa/torch/issue.py", line 44, in <module> output = compiled_forward( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 306, in _fn return fn(*args, **kwargs) File "/localhome/tpa/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7/modeling_mpt.py", line 270, in forward outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1522, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1531, in _call_impl return forward_call(*args, **kwargs) File "/localhome/tpa/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7/modeling_mpt.py", line 143, in forward def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None): File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 466, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 546, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 129, in _fn return fn(*args, **kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 365, in _convert_frame_assert return _compile( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 191, in time_wrapper r = func(*args, **kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 435, in _compile out_code = transform_code_object(code, transform) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1002, in transform_code_object transformations(instructions, code_options) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 420, in transform tracer.run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2060, in run super().run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 719, in run and self.step() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 679, in step getattr(self, inst.opname)(inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 387, in wrapper return inner_fn(self, inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1163, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 556, in call_function self.push(fn.call_function(self, args, kwargs)) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 333, in call_function return tx.inline_user_function_return( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 592, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2165, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2262, in inline_call_ tracer.run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 719, in run and self.step() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 679, in step getattr(self, inst.opname)(inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 387, in wrapper return inner_fn(self, inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1151, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 556, in call_function self.push(fn.call_function(self, args, kwargs)) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 339, in call_function return super().call_function(tx, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 293, in call_function return super().call_function(tx, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 124, in call_function return tx.inline_user_function_return( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 592, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2165, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2262, in inline_call_ tracer.run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 719, in run and self.step() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 679, in step getattr(self, inst.opname)(inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 387, in wrapper return inner_fn(self, inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1163, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 556, in call_function self.push(fn.call_function(self, args, kwargs)) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 333, in call_function return tx.inline_user_function_return( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 592, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2165, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2262, in inline_call_ tracer.run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 719, in run and self.step() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 679, in step getattr(self, inst.opname)(inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 387, in wrapper return inner_fn(self, inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1151, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 556, in call_function self.push(fn.call_function(self, args, kwargs)) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 339, in call_function return super().call_function(tx, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 293, in call_function return super().call_function(tx, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 124, in call_function return tx.inline_user_function_return( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 592, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2165, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2262, in inline_call_ tracer.run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 719, in run and self.step() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 679, in step getattr(self, inst.opname)(inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 387, in wrapper return inner_fn(self, inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1163, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 556, in call_function self.push(fn.call_function(self, args, kwargs)) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 293, in call_function return super().call_function(tx, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 124, in call_function return tx.inline_user_function_return( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 592, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2165, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2262, in inline_call_ tracer.run() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 719, in run and self.step() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 679, in step getattr(self, inst.opname)(inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 387, in wrapper return inner_fn(self, inst) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1163, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 556, in call_function self.push(fn.call_function(self, args, kwargs)) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 673, in call_function tensor_variable = wrap_fx_proxy( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1136, in wrap_fx_proxy return wrap_fx_proxy_cls( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1210, in wrap_fx_proxy_cls example_value = get_fake_value(proxy.node, tx) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1357, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1325, in get_fake_value return wrap_fake_exception( File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 904, in wrap_fake_exception return fn() File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1326, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1391, in run_node raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1378, in run_node return node.target(*args, **kwargs) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce return _apply_recipe(recipe, tensor, reduction_type=reduction) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe _reconstruct_from_shape(recipe, backend.shape(tensor)) torch._dynamo.exc.TorchRuntimeError: Failed running call_function <function rearrange at 0x7fdcfa58e560>(*(FakeTensor(..., size=(1, s0, 4096)), 'b s (h d) -> b h s d'), **{'h': 32}): unhashable type: 'SymInt' from user code: File "/localhome/tpa/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7/attention.py", line 201, in forward (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights) File "/localhome/tpa/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7/attention.py", line 21, in scaled_multihead_dot_product_attention q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Minified repro ``` $ python /localhome/tpa/torch/torch_compile_debug/run_2023_07_20_20_08_37_462675-pid_1406827/minifier/minifier_launcher.py Loading inputs: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1333.64it/s] Traceback (most recent call last): File "/localhome/tpa/torch/torch_compile_debug/run_2023_07_20_20_08_37_462675-pid_1406827/minifier/minifier_launcher.py", line 48, in <module> run_repro(mod, load_args, accuracy=False, command='minify', File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 566, in run_repro COMMAND_FNS[options.command](options, mod, load_args) File "/localhome/tpa/anaconda3/envs/pt-env/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 399, in repro_minify raise RuntimeError( RuntimeError: Compiler name is None - this likely means that a custom compiler was called by torchdynamo. Please remove this error, import your custom compiler function, and replace the backend=None line in run_repro to backend=<my_imported_custom_function> ``` ### Versions ```bash Collecting environment information... PyTorch version: 2.1.0.dev20230720+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.15.0-209-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: Tesla V100-PCIE-16GB GPU 1: Tesla V100-PCIE-16GB GPU 2: Tesla V100-PCIE-16GB GPU 3: Tesla V100-PCIE-16GB Nvidia driver version: 515.65.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 80 On-line CPU(s) list: 0-79 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz Stepping: 7 Frequency boost: enabled CPU MHz: 800.003 CPU max MHz: 2101.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Virtualization: VT-x L1d cache: 1.3 MiB L1i cache: 1.3 MiB L2 cache: 40 MiB L3 cache: 55 MiB NUMA node0 CPU(s): 0-19,40-59 NUMA node1 CPU(s): 20-39,60-79 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.1.0.dev20230720+cpu [conda] numpy 1.25.1 pypi_0 pypi [conda] torch 2.1.0.dev20230720+cpu pypi_0 pypi ``` Conda env: ``` conda create -n pt-env python=3.10 conda activate pt-env pip install --index-url "https://download.pytorch.org/whl/nightly/cpu" torch pip install transformers einops ``` pip freeze: ``` $ pip freeze certifi==2023.5.7 charset-normalizer==3.2.0 einops==0.6.1 filelock==3.9.0 fsspec==2023.4.0 huggingface-hub==0.16.4 idna==3.4 Jinja2==3.1.2 MarkupSafe==2.1.2 mpmath==1.2.1 networkx==2.6.3 numpy==1.25.1 packaging==23.1 PyYAML==6.0.1 regex==2023.6.3 requests==2.31.0 safetensors==0.3.1 sympy==1.11.1 tokenizers==0.13.3 torch==2.1.0.dev20230720+cpu tqdm==4.65.0 transformers==4.31.0 typing_extensions==4.4.0 urllib3==2.0.4 ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
4
1,900
105,682
`torch.autocast(bfloat16)` runs bwd matmuls in fp16
triaged, module: amp (automated mixed precision)
<details> <summary> Repro code </summary> ``` """ python test/test_amp.py """ import itertools import weakref from functools import partial import torch import torch.nn as nn import torch.overrides from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._pytree import tree_map from torch.utils.weak import WeakIdRef dtype_abbrs = { torch.bfloat16: "bf16", torch.float64: "f64", torch.float32: "f32", torch.float16: "f16", torch.complex32: "c32", torch.complex64: "c64", torch.complex128: "c128", torch.int8: "i8", torch.int16: "i16", torch.int32: "i32", torch.int64: "i64", torch.bool: "b8", torch.uint8: "u8", } def main(): torch.manual_seed(42) model = nn.Transformer(num_encoder_layers=1, num_decoder_layers=1, device="cuda") src = torch.rand((10, 32, 512), device="cuda") tgt = torch.rand((20, 32, 512), device="cuda") amp_ctx = torch.autocast(device_type="cuda", dtype=torch.bfloat16) logging_ctx = LoggingMode(collect_logs=True) with amp_ctx, logging_ctx: model(src, tgt).sum().backward() print(logging_ctx.str_logs()) class Lit: def __init__(self, s): self.s = s def __repr__(self): return self.s class LoggingMode(TorchDispatchMode): next_id: int def __init__(self, with_type: bool = True, collect_logs: bool = False): self.memo = {} self.next_id = 0 self.with_type = with_type self.collect_logs = collect_logs self.logs = [] try: self.rank = torch.distributed.get_rank() except: self.rank = 0 def _shortid(self, t: torch.Tensor) -> int: o = WeakIdRef(t) weak_self = weakref.ref(self) def del_memo(): self = weak_self() if self is None: return self.memo.pop(o, None) weakref.finalize(t, del_memo) if o not in self.memo: self.memo[o] = self.next_id self.next_id += 1 return self.memo[o] def _fmt(self, a: object, with_type: bool = False) -> str: if isinstance(a, torch.Tensor): maybe_type = "" if with_type and self.with_type: maybe_type = f": {dtype_abbrs[a.dtype]}[{', '.join(map(str, a.shape))}]" return Lit(f"${self._shortid(a)}{maybe_type}") else: return a def str_logs(self): return "\n".join(self.logs) def __torch_dispatch__(self, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} rs = func(*args, **kwargs) fmt_args = ", ".join( itertools.chain( (repr(tree_map(self._fmt, a)) for a in args), (f"{k}={tree_map(self._fmt, v)}" for k, v in kwargs.items()), ) ) fmt_rets = repr(tree_map(partial(self._fmt, with_type=True), rs)) log_msg = f"{fmt_rets} = {torch.overrides.resolve_name(func)}({fmt_args})" if self.collect_logs: self.logs.append(log_msg) elif self.rank == 0: print(log_msg) return rs if __name__ == "__main__": main() ``` </details> <details> <summary> Logged Ops </summary> E.g., search for `$254: f16[512, 2048] = aten.mm.default($253, $252)`: ``` $1: bf16[1536] = aten._to_copy.default($0, dtype=torch.bfloat16) $3: bf16[1536, 512] = aten._to_copy.default($2, dtype=torch.bfloat16) $5: bf16[10, 32, 512] = aten._to_copy.default($4, dtype=torch.bfloat16) $6: bf16[512, 1536] = aten.t.default($3) $7: bf16[320, 512] = aten.view.default($5, [320, 512]) $8: bf16[320, 1536] = aten.addmm.default($1, $7, $6) $9: bf16[10, 32, 1536] = aten.view.default($8, [10, 32, 1536]) $10: bf16[10, 32, 3, 512] = aten.view.default($9, [10, 32, 3, 512]) $11: bf16[1, 10, 32, 3, 512] = aten.unsqueeze.default($10, 0) $12: bf16[3, 10, 32, 1, 512] = aten.transpose.int($11, 0, -2) $13: bf16[3, 10, 32, 512] = aten.squeeze.dim($12, -2) $14: bf16[3, 10, 32, 512] = aten.clone.default($13, memory_format=torch.contiguous_format) $15: bf16[10, 32, 512] = aten.select.int($14, 0, 0) $16: bf16[10, 32, 512] = aten.select.int($14, 0, 1) $17: bf16[10, 32, 512] = aten.select.int($14, 0, 2) $18: bf16[10, 256, 64] = aten.view.default($15, [10, 256, 64]) $19: bf16[256, 10, 64] = aten.transpose.int($18, 0, 1) $20: bf16[10, 256, 64] = aten.view.default($16, [10, 256, 64]) $21: bf16[256, 10, 64] = aten.transpose.int($20, 0, 1) $22: bf16[10, 256, 64] = aten.view.default($17, [10, 256, 64]) $23: bf16[256, 10, 64] = aten.transpose.int($22, 0, 1) $24: bf16[32, 8, 10, 64] = aten.view.default($19, [32, 8, 10, 64]) $25: bf16[32, 8, 10, 64] = aten.view.default($21, [32, 8, 10, 64]) $26: bf16[32, 8, 10, 64] = aten.view.default($23, [32, 8, 10, 64]) ($27: bf16[32, 8, 10, 64], $28: f32[32, 8, 32], $29: i64[], $30: i64[]) = aten._scaled_dot_product_efficient_attention.default($24, $25, $26, True, 0.1) $31: bf16[32, 8, 10, 64] = aten.detach.default($27) $32: bf16[10, 32, 8, 64] = aten.permute.default($27, [2, 0, 1, 3]) $33: bf16[10, 32, 8, 64] = aten.clone.default($32, memory_format=torch.contiguous_format) $34: bf16[320, 512] = aten.view.default($33, [320, 512]) $36: bf16[512] = aten._to_copy.default($35, dtype=torch.bfloat16) $38: bf16[512, 512] = aten._to_copy.default($37, dtype=torch.bfloat16) $39: bf16[512, 512] = aten.t.default($38) $40: bf16[320, 512] = aten.addmm.default($36, $34, $39) $41: bf16[10, 32, 512] = aten.view.default($40, [10, 32, 512]) ($42: bf16[10, 32, 512], $43: b8[10, 32, 512]) = aten.native_dropout.default($41, 0.1, True) $44: f32[10, 32, 512] = aten.add.Tensor($4, $42) ($47: f32[10, 32, 512], $48: f32[10, 32, 1], $49: f32[10, 32, 1]) = aten.native_layer_norm.default($44, [512], $45, $46, 1e-05) $51: bf16[2048] = aten._to_copy.default($50, dtype=torch.bfloat16) $53: bf16[2048, 512] = aten._to_copy.default($52, dtype=torch.bfloat16) $54: bf16[10, 32, 512] = aten._to_copy.default($47, dtype=torch.bfloat16) $55: bf16[512, 2048] = aten.t.default($53) $56: bf16[320, 512] = aten.view.default($54, [320, 512]) $57: bf16[320, 2048] = aten.addmm.default($51, $56, $55) $58: bf16[10, 32, 2048] = aten.view.default($57, [10, 32, 2048]) $59: bf16[10, 32, 2048] = aten.relu.default($58) $60: bf16[10, 32, 2048] = aten.detach.default($59) ($61: bf16[10, 32, 2048], $62: b8[10, 32, 2048]) = aten.native_dropout.default($59, 0.1, True) $64: bf16[512] = aten._to_copy.default($63, dtype=torch.bfloat16) $66: bf16[512, 2048] = aten._to_copy.default($65, dtype=torch.bfloat16) $67: bf16[2048, 512] = aten.t.default($66) $68: bf16[320, 2048] = aten.view.default($61, [320, 2048]) $69: bf16[320, 512] = aten.addmm.default($64, $68, $67) $70: bf16[10, 32, 512] = aten.view.default($69, [10, 32, 512]) ($71: bf16[10, 32, 512], $72: b8[10, 32, 512]) = aten.native_dropout.default($70, 0.1, True) $73: f32[10, 32, 512] = aten.add.Tensor($47, $71) ($76: f32[10, 32, 512], $77: f32[10, 32, 1], $78: f32[10, 32, 1]) = aten.native_layer_norm.default($73, [512], $74, $75, 1e-05) ($81: f32[10, 32, 512], $82: f32[10, 32, 1], $83: f32[10, 32, 1]) = aten.native_layer_norm.default($76, [512], $79, $80, 1e-05) $85: bf16[1536] = aten._to_copy.default($84, dtype=torch.bfloat16) $87: bf16[1536, 512] = aten._to_copy.default($86, dtype=torch.bfloat16) $89: bf16[20, 32, 512] = aten._to_copy.default($88, dtype=torch.bfloat16) $90: bf16[512, 1536] = aten.t.default($87) $91: bf16[640, 512] = aten.view.default($89, [640, 512]) $92: bf16[640, 1536] = aten.addmm.default($85, $91, $90) $93: bf16[20, 32, 1536] = aten.view.default($92, [20, 32, 1536]) $94: bf16[20, 32, 3, 512] = aten.view.default($93, [20, 32, 3, 512]) $95: bf16[1, 20, 32, 3, 512] = aten.unsqueeze.default($94, 0) $96: bf16[3, 20, 32, 1, 512] = aten.transpose.int($95, 0, -2) $97: bf16[3, 20, 32, 512] = aten.squeeze.dim($96, -2) $98: bf16[3, 20, 32, 512] = aten.clone.default($97, memory_format=torch.contiguous_format) $99: bf16[20, 32, 512] = aten.select.int($98, 0, 0) $100: bf16[20, 32, 512] = aten.select.int($98, 0, 1) $101: bf16[20, 32, 512] = aten.select.int($98, 0, 2) $102: bf16[20, 256, 64] = aten.view.default($99, [20, 256, 64]) $103: bf16[256, 20, 64] = aten.transpose.int($102, 0, 1) $104: bf16[20, 256, 64] = aten.view.default($100, [20, 256, 64]) $105: bf16[256, 20, 64] = aten.transpose.int($104, 0, 1) $106: bf16[20, 256, 64] = aten.view.default($101, [20, 256, 64]) $107: bf16[256, 20, 64] = aten.transpose.int($106, 0, 1) $108: bf16[32, 8, 20, 64] = aten.view.default($103, [32, 8, 20, 64]) $109: bf16[32, 8, 20, 64] = aten.view.default($105, [32, 8, 20, 64]) $110: bf16[32, 8, 20, 64] = aten.view.default($107, [32, 8, 20, 64]) ($111: bf16[32, 8, 20, 64], $112: f32[32, 8, 32], $113: i64[], $114: i64[]) = aten._scaled_dot_product_efficient_attention.default($108, $109, $110, True, 0.1) $115: bf16[32, 8, 20, 64] = aten.detach.default($111) $116: bf16[20, 32, 8, 64] = aten.permute.default($111, [2, 0, 1, 3]) $117: bf16[20, 32, 8, 64] = aten.clone.default($116, memory_format=torch.contiguous_format) $118: bf16[640, 512] = aten.view.default($117, [640, 512]) $120: bf16[512] = aten._to_copy.default($119, dtype=torch.bfloat16) $122: bf16[512, 512] = aten._to_copy.default($121, dtype=torch.bfloat16) $123: bf16[512, 512] = aten.t.default($122) $124: bf16[640, 512] = aten.addmm.default($120, $118, $123) $125: bf16[20, 32, 512] = aten.view.default($124, [20, 32, 512]) ($126: bf16[20, 32, 512], $127: b8[20, 32, 512]) = aten.native_dropout.default($125, 0.1, True) $128: f32[20, 32, 512] = aten.add.Tensor($88, $126) ($131: f32[20, 32, 512], $132: f32[20, 32, 1], $133: f32[20, 32, 1]) = aten.native_layer_norm.default($128, [512], $129, $130, 1e-05) [$135: f32[512, 512], $136: f32[1024, 512]] = aten.split_with_sizes.default($134, [512, 1024]) [$138: f32[512], $139: f32[1024]] = aten.split_with_sizes.default($137, [512, 1024]) $140: bf16[512] = aten._to_copy.default($138, dtype=torch.bfloat16) $141: bf16[512, 512] = aten._to_copy.default($135, dtype=torch.bfloat16) $142: bf16[20, 32, 512] = aten._to_copy.default($131, dtype=torch.bfloat16) $143: bf16[512, 512] = aten.t.default($141) $144: bf16[640, 512] = aten.view.default($142, [640, 512]) $145: bf16[640, 512] = aten.addmm.default($140, $144, $143) $146: bf16[20, 32, 512] = aten.view.default($145, [20, 32, 512]) $147: bf16[1024] = aten._to_copy.default($139, dtype=torch.bfloat16) $148: bf16[1024, 512] = aten._to_copy.default($136, dtype=torch.bfloat16) $149: bf16[10, 32, 512] = aten._to_copy.default($81, dtype=torch.bfloat16) $150: bf16[512, 1024] = aten.t.default($148) $151: bf16[320, 512] = aten.view.default($149, [320, 512]) $152: bf16[320, 1024] = aten.addmm.default($147, $151, $150) $153: bf16[10, 32, 1024] = aten.view.default($152, [10, 32, 1024]) $154: bf16[10, 32, 2, 512] = aten.view.default($153, [10, 32, 2, 512]) $155: bf16[1, 10, 32, 2, 512] = aten.unsqueeze.default($154, 0) $156: bf16[2, 10, 32, 1, 512] = aten.transpose.int($155, 0, -2) $157: bf16[2, 10, 32, 512] = aten.squeeze.dim($156, -2) $158: bf16[2, 10, 32, 512] = aten.clone.default($157, memory_format=torch.contiguous_format) $159: bf16[10, 32, 512] = aten.select.int($158, 0, 0) $160: bf16[10, 32, 512] = aten.select.int($158, 0, 1) $161: bf16[20, 256, 64] = aten.view.default($146, [20, 256, 64]) $162: bf16[256, 20, 64] = aten.transpose.int($161, 0, 1) $163: bf16[10, 256, 64] = aten.view.default($159, [10, 256, 64]) $164: bf16[256, 10, 64] = aten.transpose.int($163, 0, 1) $165: bf16[10, 256, 64] = aten.view.default($160, [10, 256, 64]) $166: bf16[256, 10, 64] = aten.transpose.int($165, 0, 1) $167: bf16[32, 8, 20, 64] = aten.view.default($162, [32, 8, 20, 64]) $168: bf16[32, 8, 10, 64] = aten.view.default($164, [32, 8, 10, 64]) $169: bf16[32, 8, 10, 64] = aten.view.default($166, [32, 8, 10, 64]) ($170: bf16[32, 8, 20, 64], $171: f32[32, 8, 32], $172: i64[], $173: i64[]) = aten._scaled_dot_product_efficient_attention.default($167, $168, $169, True, 0.1) $174: bf16[32, 8, 20, 64] = aten.detach.default($170) $175: bf16[20, 32, 8, 64] = aten.permute.default($170, [2, 0, 1, 3]) $176: bf16[20, 32, 8, 64] = aten.clone.default($175, memory_format=torch.contiguous_format) $177: bf16[640, 512] = aten.view.default($176, [640, 512]) $179: bf16[512] = aten._to_copy.default($178, dtype=torch.bfloat16) $181: bf16[512, 512] = aten._to_copy.default($180, dtype=torch.bfloat16) $182: bf16[512, 512] = aten.t.default($181) $183: bf16[640, 512] = aten.addmm.default($179, $177, $182) $184: bf16[20, 32, 512] = aten.view.default($183, [20, 32, 512]) ($185: bf16[20, 32, 512], $186: b8[20, 32, 512]) = aten.native_dropout.default($184, 0.1, True) $187: f32[20, 32, 512] = aten.add.Tensor($131, $185) ($190: f32[20, 32, 512], $191: f32[20, 32, 1], $192: f32[20, 32, 1]) = aten.native_layer_norm.default($187, [512], $188, $189, 1e-05) $194: bf16[2048] = aten._to_copy.default($193, dtype=torch.bfloat16) $196: bf16[2048, 512] = aten._to_copy.default($195, dtype=torch.bfloat16) $197: bf16[20, 32, 512] = aten._to_copy.default($190, dtype=torch.bfloat16) $198: bf16[512, 2048] = aten.t.default($196) $199: bf16[640, 512] = aten.view.default($197, [640, 512]) $200: bf16[640, 2048] = aten.addmm.default($194, $199, $198) $201: bf16[20, 32, 2048] = aten.view.default($200, [20, 32, 2048]) $202: bf16[20, 32, 2048] = aten.relu.default($201) $203: bf16[20, 32, 2048] = aten.detach.default($202) ($204: bf16[20, 32, 2048], $205: b8[20, 32, 2048]) = aten.native_dropout.default($202, 0.1, True) $207: bf16[512] = aten._to_copy.default($206, dtype=torch.bfloat16) $209: bf16[512, 2048] = aten._to_copy.default($208, dtype=torch.bfloat16) $210: bf16[2048, 512] = aten.t.default($209) $211: bf16[640, 2048] = aten.view.default($204, [640, 2048]) $212: bf16[640, 512] = aten.addmm.default($207, $211, $210) $213: bf16[20, 32, 512] = aten.view.default($212, [20, 32, 512]) ($214: bf16[20, 32, 512], $215: b8[20, 32, 512]) = aten.native_dropout.default($213, 0.1, True) $216: f32[20, 32, 512] = aten.add.Tensor($190, $214) ($219: f32[20, 32, 512], $220: f32[20, 32, 1], $221: f32[20, 32, 1]) = aten.native_layer_norm.default($216, [512], $217, $218, 1e-05) ($224: f32[20, 32, 512], $225: f32[20, 32, 1], $226: f32[20, 32, 1]) = aten.native_layer_norm.default($219, [512], $222, $223, 1e-05) $227: f32[] = aten.sum.default($224, dtype=torch.float32) $228: f32[] = aten.ones_like.default($227, pin_memory=False, memory_format=torch.preserve_format) $229: f32[20, 32, 512] = aten.expand.default($228, [20, 32, 512]) ($230: f32[20, 32, 512], $231: f32[512], $232: f32[512]) = aten.native_layer_norm_backward.default($229, $219, [512], $225, $226, $222, $223, [True, True, True]) $233: f32[512] = aten.detach.default($231) $234: f32[512] = aten.detach.default($233) $235: f32[512] = aten.detach.default($232) $236: f32[512] = aten.detach.default($235) ($237: f32[20, 32, 512], $238: f32[512], $239: f32[512]) = aten.native_layer_norm_backward.default($230, $216, [512], $220, $221, $217, $218, [True, True, True]) $240: f32[512] = aten.detach.default($238) $241: f32[512] = aten.detach.default($240) $242: f32[512] = aten.detach.default($239) $243: f32[512] = aten.detach.default($242) $244: bf16[20, 32, 512] = aten._to_copy.default($237, dtype=torch.bfloat16) $245: bf16[20, 32, 512] = aten.native_dropout_backward.default($244, $215, 1.1111111111111112) $246: bf16[640, 512] = aten.view.default($245, [640, 512]) $247: bf16[512, 2048] = aten.t.default($210) $248: f16[512, 2048] = aten._to_copy.default($247, dtype=torch.float16) $249: f16[640, 512] = aten._to_copy.default($246, dtype=torch.float16) $250: f16[640, 2048] = aten.mm.default($249, $248) $251: bf16[512, 640] = aten.t.default($246) $252: f16[640, 2048] = aten._to_copy.default($211, dtype=torch.float16) $253: f16[512, 640] = aten._to_copy.default($251, dtype=torch.float16) $254: f16[512, 2048] = aten.mm.default($253, $252) $255: f16[2048, 512] = aten.t.default($254) $256: f32[1, 512] = aten.sum.dim_IntList($246, [0], True, dtype=torch.float32) $257: f32[512] = aten.view.default($256, [512]) $258: bf16[512] = aten._to_copy.default($257, dtype=torch.bfloat16) $259: bf16[640, 2048] = aten._to_copy.default($250, dtype=torch.bfloat16) $260: bf16[2048, 512] = aten._to_copy.default($255, dtype=torch.bfloat16) $261: bf16[20, 32, 2048] = aten.view.default($259, [20, 32, 2048]) $262: bf16[512, 2048] = aten.t.default($260) $263: f32[512, 2048] = aten._to_copy.default($262, dtype=torch.float32, layout=torch.strided, device=cuda:0) $264: f32[512, 2048] = aten.detach.default($263) $265: f32[512, 2048] = aten.detach.default($264) $266: f32[512] = aten._to_copy.default($258, dtype=torch.float32, layout=torch.strided, device=cuda:0) $267: f32[512] = aten.detach.default($266) $268: f32[512] = aten.detach.default($267) $269: bf16[20, 32, 2048] = aten.native_dropout_backward.default($261, $205, 1.1111111111111112) $270: bf16[20, 32, 2048] = aten.detach.default($203) $271: bf16[20, 32, 2048] = aten.threshold_backward.default($269, $270, 0) $272: bf16[640, 2048] = aten.view.default($271, [640, 2048]) $273: bf16[2048, 512] = aten.t.default($198) $274: f16[2048, 512] = aten._to_copy.default($273, dtype=torch.float16) $275: f16[640, 2048] = aten._to_copy.default($272, dtype=torch.float16) $276: f16[640, 512] = aten.mm.default($275, $274) $277: bf16[2048, 640] = aten.t.default($272) $278: f16[640, 512] = aten._to_copy.default($199, dtype=torch.float16) $279: f16[2048, 640] = aten._to_copy.default($277, dtype=torch.float16) $280: f16[2048, 512] = aten.mm.default($279, $278) $281: f16[512, 2048] = aten.t.default($280) $282: f32[1, 2048] = aten.sum.dim_IntList($272, [0], True, dtype=torch.float32) $283: f32[2048] = aten.view.default($282, [2048]) $284: bf16[2048] = aten._to_copy.default($283, dtype=torch.bfloat16) $285: bf16[640, 512] = aten._to_copy.default($276, dtype=torch.bfloat16) $286: bf16[512, 2048] = aten._to_copy.default($281, dtype=torch.bfloat16) $287: bf16[20, 32, 512] = aten.view.default($285, [20, 32, 512]) $288: bf16[2048, 512] = aten.t.default($286) $289: f32[20, 32, 512] = aten._to_copy.default($287, dtype=torch.float32, layout=torch.strided, device=cuda:0) $290: f32[20, 32, 512] = aten.add.Tensor($237, $289) $291: f32[2048, 512] = aten._to_copy.default($288, dtype=torch.float32, layout=torch.strided, device=cuda:0) $292: f32[2048, 512] = aten.detach.default($291) $293: f32[2048, 512] = aten.detach.default($292) $294: f32[2048] = aten._to_copy.default($284, dtype=torch.float32, layout=torch.strided, device=cuda:0) $295: f32[2048] = aten.detach.default($294) $296: f32[2048] = aten.detach.default($295) ($297: f32[20, 32, 512], $298: f32[512], $299: f32[512]) = aten.native_layer_norm_backward.default($290, $187, [512], $191, $192, $188, $189, [True, True, True]) $300: f32[512] = aten.detach.default($298) $301: f32[512] = aten.detach.default($300) $302: f32[512] = aten.detach.default($299) $303: f32[512] = aten.detach.default($302) $304: bf16[20, 32, 512] = aten._to_copy.default($297, dtype=torch.bfloat16) $305: bf16[20, 32, 512] = aten.native_dropout_backward.default($304, $186, 1.1111111111111112) $306: bf16[640, 512] = aten.view.default($305, [640, 512]) $307: bf16[512, 512] = aten.t.default($182) $308: f16[512, 512] = aten._to_copy.default($307, dtype=torch.float16) $309: f16[640, 512] = aten._to_copy.default($306, dtype=torch.float16) $310: f16[640, 512] = aten.mm.default($309, $308) $311: bf16[512, 640] = aten.t.default($306) $312: f16[640, 512] = aten._to_copy.default($177, dtype=torch.float16) $313: f16[512, 640] = aten._to_copy.default($311, dtype=torch.float16) $314: f16[512, 512] = aten.mm.default($313, $312) $315: f16[512, 512] = aten.t.default($314) $316: f32[1, 512] = aten.sum.dim_IntList($306, [0], True, dtype=torch.float32) $317: f32[512] = aten.view.default($316, [512]) $318: bf16[512] = aten._to_copy.default($317, dtype=torch.bfloat16) $319: bf16[640, 512] = aten._to_copy.default($310, dtype=torch.bfloat16) $320: bf16[512, 512] = aten._to_copy.default($315, dtype=torch.bfloat16) $321: bf16[512, 512] = aten.t.default($320) $322: f32[512, 512] = aten._to_copy.default($321, dtype=torch.float32, layout=torch.strided, device=cuda:0) $323: f32[512, 512] = aten.detach.default($322) $324: f32[512, 512] = aten.detach.default($323) $325: f32[512] = aten._to_copy.default($318, dtype=torch.float32, layout=torch.strided, device=cuda:0) $326: f32[512] = aten.detach.default($325) $327: f32[512] = aten.detach.default($326) $328: bf16[20, 32, 8, 64] = aten.view.default($319, [20, 32, 8, 64]) $329: bf16[32, 8, 20, 64] = aten.permute.default($328, [1, 2, 0, 3]) $330: bf16[32, 8, 20, 64] = aten.detach.default($174) ($331: bf16[32, 8, 20, 64], $332: bf16[32, 8, 10, 64], $333: bf16[32, 8, 10, 64]) = aten._scaled_dot_product_efficient_attention_backward.default($329, $167, $168, $169, $330, $171, $172, $173, 0.1) $334: bf16[32, 8, 10, 64] = aten.clone.default($333, memory_format=torch.contiguous_format) $335: bf16[256, 10, 64] = aten._unsafe_view.default($334, [256, 10, 64]) $336: bf16[32, 8, 10, 64] = aten.clone.default($332, memory_format=torch.contiguous_format) $337: bf16[256, 10, 64] = aten._unsafe_view.default($336, [256, 10, 64]) $338: bf16[32, 8, 20, 64] = aten.clone.default($331, memory_format=torch.contiguous_format) $339: bf16[256, 20, 64] = aten._unsafe_view.default($338, [256, 20, 64]) $340: bf16[10, 256, 64] = aten.transpose.int($335, 0, 1) $341: bf16[10, 256, 64] = aten.clone.default($340, memory_format=torch.contiguous_format) $342: bf16[10, 32, 512] = aten._unsafe_view.default($341, [10, 32, 512]) $343: bf16[10, 256, 64] = aten.transpose.int($337, 0, 1) $344: bf16[10, 256, 64] = aten.clone.default($343, memory_format=torch.contiguous_format) $345: bf16[10, 32, 512] = aten._unsafe_view.default($344, [10, 32, 512]) $346: bf16[20, 256, 64] = aten.transpose.int($339, 0, 1) $347: bf16[20, 256, 64] = aten.clone.default($346, memory_format=torch.contiguous_format) $348: bf16[20, 32, 512] = aten._unsafe_view.default($347, [20, 32, 512]) $349: bf16[2, 10, 32, 512] = aten.select_backward.default($342, [2, 10, 32, 512], 0, 1) $350: bf16[2, 10, 32, 512] = aten.select_backward.default($345, [2, 10, 32, 512], 0, 0) $351: bf16[2, 10, 32, 512] = aten.add.Tensor($349, $350) $352: bf16[2, 10, 32, 1, 512] = aten.unsqueeze.default($351, 3) $353: bf16[1, 10, 32, 2, 512] = aten.transpose.int($352, 0, -2) $354: bf16[10, 32, 2, 512] = aten.squeeze.dim($353, 0) $355: bf16[10, 32, 2, 512] = aten.clone.default($354, memory_format=torch.contiguous_format) $356: bf16[10, 32, 1024] = aten._unsafe_view.default($355, [10, 32, 1024]) $357: bf16[320, 1024] = aten.view.default($356, [320, 1024]) $358: bf16[1024, 512] = aten.t.default($150) $359: f16[1024, 512] = aten._to_copy.default($358, dtype=torch.float16) $360: f16[320, 1024] = aten._to_copy.default($357, dtype=torch.float16) $361: f16[320, 512] = aten.mm.default($360, $359) $362: bf16[1024, 320] = aten.t.default($357) $363: f16[320, 512] = aten._to_copy.default($151, dtype=torch.float16) $364: f16[1024, 320] = aten._to_copy.default($362, dtype=torch.float16) $365: f16[1024, 512] = aten.mm.default($364, $363) $366: f16[512, 1024] = aten.t.default($365) $367: f32[1, 1024] = aten.sum.dim_IntList($357, [0], True, dtype=torch.float32) $368: f32[1024] = aten.view.default($367, [1024]) $369: bf16[1024] = aten._to_copy.default($368, dtype=torch.bfloat16) $370: bf16[320, 512] = aten._to_copy.default($361, dtype=torch.bfloat16) $371: bf16[512, 1024] = aten._to_copy.default($366, dtype=torch.bfloat16) $372: bf16[10, 32, 512] = aten.view.default($370, [10, 32, 512]) $373: bf16[1024, 512] = aten.t.default($371) $374: f32[10, 32, 512] = aten._to_copy.default($372, dtype=torch.float32, layout=torch.strided, device=cuda:0) $375: f32[1024, 512] = aten._to_copy.default($373, dtype=torch.float32, layout=torch.strided, device=cuda:0) $376: f32[1024] = aten._to_copy.default($369, dtype=torch.float32, layout=torch.strided, device=cuda:0) $377: bf16[640, 512] = aten.view.default($348, [640, 512]) $378: bf16[512, 512] = aten.t.default($143) $379: f16[512, 512] = aten._to_copy.default($378, dtype=torch.float16) $380: f16[640, 512] = aten._to_copy.default($377, dtype=torch.float16) $381: f16[640, 512] = aten.mm.default($380, $379) $382: bf16[512, 640] = aten.t.default($377) $383: f16[640, 512] = aten._to_copy.default($144, dtype=torch.float16) $384: f16[512, 640] = aten._to_copy.default($382, dtype=torch.float16) $385: f16[512, 512] = aten.mm.default($384, $383) $386: f16[512, 512] = aten.t.default($385) $387: f32[1, 512] = aten.sum.dim_IntList($377, [0], True, dtype=torch.float32) $388: f32[512] = aten.view.default($387, [512]) $389: bf16[512] = aten._to_copy.default($388, dtype=torch.bfloat16) $390: bf16[640, 512] = aten._to_copy.default($381, dtype=torch.bfloat16) $391: bf16[512, 512] = aten._to_copy.default($386, dtype=torch.bfloat16) $392: bf16[20, 32, 512] = aten.view.default($390, [20, 32, 512]) $393: bf16[512, 512] = aten.t.default($391) $394: f32[20, 32, 512] = aten._to_copy.default($392, dtype=torch.float32, layout=torch.strided, device=cuda:0) $395: f32[20, 32, 512] = aten.add.Tensor($297, $394) $396: f32[512, 512] = aten._to_copy.default($393, dtype=torch.float32, layout=torch.strided, device=cuda:0) $397: f32[512] = aten._to_copy.default($389, dtype=torch.float32, layout=torch.strided, device=cuda:0) $398: f32[1536] = aten.cat.default([$397, $376]) $399: f32[1536] = aten.detach.default($398) $400: f32[1536] = aten.detach.default($399) $401: f32[1536, 512] = aten.cat.default([$396, $375]) $402: f32[1536, 512] = aten.detach.default($401) $403: f32[1536, 512] = aten.detach.default($402) ($404: f32[20, 32, 512], $405: f32[512], $406: f32[512]) = aten.native_layer_norm_backward.default($395, $128, [512], $132, $133, $129, $130, [True, True, True]) $407: f32[512] = aten.detach.default($405) $408: f32[512] = aten.detach.default($407) $409: f32[512] = aten.detach.default($406) $410: f32[512] = aten.detach.default($409) $411: bf16[20, 32, 512] = aten._to_copy.default($404, dtype=torch.bfloat16) $412: bf16[20, 32, 512] = aten.native_dropout_backward.default($411, $127, 1.1111111111111112) $413: bf16[640, 512] = aten.view.default($412, [640, 512]) $414: bf16[512, 512] = aten.t.default($123) $415: f16[512, 512] = aten._to_copy.default($414, dtype=torch.float16) $416: f16[640, 512] = aten._to_copy.default($413, dtype=torch.float16) $417: f16[640, 512] = aten.mm.default($416, $415) $418: bf16[512, 640] = aten.t.default($413) $419: f16[640, 512] = aten._to_copy.default($118, dtype=torch.float16) $420: f16[512, 640] = aten._to_copy.default($418, dtype=torch.float16) $421: f16[512, 512] = aten.mm.default($420, $419) $422: f16[512, 512] = aten.t.default($421) $423: f32[1, 512] = aten.sum.dim_IntList($413, [0], True, dtype=torch.float32) $424: f32[512] = aten.view.default($423, [512]) $425: bf16[512] = aten._to_copy.default($424, dtype=torch.bfloat16) $426: bf16[640, 512] = aten._to_copy.default($417, dtype=torch.bfloat16) $427: bf16[512, 512] = aten._to_copy.default($422, dtype=torch.bfloat16) $428: bf16[512, 512] = aten.t.default($427) $429: f32[512, 512] = aten._to_copy.default($428, dtype=torch.float32, layout=torch.strided, device=cuda:0) $430: f32[512, 512] = aten.detach.default($429) $431: f32[512, 512] = aten.detach.default($430) $432: f32[512] = aten._to_copy.default($425, dtype=torch.float32, layout=torch.strided, device=cuda:0) $433: f32[512] = aten.detach.default($432) $434: f32[512] = aten.detach.default($433) $435: bf16[20, 32, 8, 64] = aten.view.default($426, [20, 32, 8, 64]) $436: bf16[32, 8, 20, 64] = aten.permute.default($435, [1, 2, 0, 3]) $437: bf16[32, 8, 20, 64] = aten.detach.default($115) ($438: bf16[32, 8, 20, 64], $439: bf16[32, 8, 20, 64], $440: bf16[32, 8, 20, 64]) = aten._scaled_dot_product_efficient_attention_backward.default($436, $108, $109, $110, $437, $112, $113, $114, 0.1) $441: bf16[32, 8, 20, 64] = aten.clone.default($440, memory_format=torch.contiguous_format) $442: bf16[256, 20, 64] = aten._unsafe_view.default($441, [256, 20, 64]) $443: bf16[32, 8, 20, 64] = aten.clone.default($439, memory_format=torch.contiguous_format) $444: bf16[256, 20, 64] = aten._unsafe_view.default($443, [256, 20, 64]) $445: bf16[32, 8, 20, 64] = aten.clone.default($438, memory_format=torch.contiguous_format) $446: bf16[256, 20, 64] = aten._unsafe_view.default($445, [256, 20, 64]) $447: bf16[20, 256, 64] = aten.transpose.int($442, 0, 1) $448: bf16[20, 256, 64] = aten.clone.default($447, memory_format=torch.contiguous_format) $449: bf16[20, 32, 512] = aten._unsafe_view.default($448, [20, 32, 512]) $450: bf16[20, 256, 64] = aten.transpose.int($444, 0, 1) $451: bf16[20, 256, 64] = aten.clone.default($450, memory_format=torch.contiguous_format) $452: bf16[20, 32, 512] = aten._unsafe_view.default($451, [20, 32, 512]) $453: bf16[20, 256, 64] = aten.transpose.int($446, 0, 1) $454: bf16[20, 256, 64] = aten.clone.default($453, memory_format=torch.contiguous_format) $455: bf16[20, 32, 512] = aten._unsafe_view.default($454, [20, 32, 512]) $456: bf16[3, 20, 32, 512] = aten.select_backward.default($449, [3, 20, 32, 512], 0, 2) $457: bf16[3, 20, 32, 512] = aten.select_backward.default($452, [3, 20, 32, 512], 0, 1) $458: bf16[3, 20, 32, 512] = aten.add.Tensor($456, $457) $459: bf16[3, 20, 32, 512] = aten.select_backward.default($455, [3, 20, 32, 512], 0, 0) $460: bf16[3, 20, 32, 512] = aten.add.Tensor($458, $459) $461: bf16[3, 20, 32, 1, 512] = aten.unsqueeze.default($460, 3) $462: bf16[1, 20, 32, 3, 512] = aten.transpose.int($461, 0, -2) $463: bf16[20, 32, 3, 512] = aten.squeeze.dim($462, 0) $464: bf16[20, 32, 3, 512] = aten.clone.default($463, memory_format=torch.contiguous_format) $465: bf16[20, 32, 1536] = aten._unsafe_view.default($464, [20, 32, 1536]) $466: bf16[640, 1536] = aten.view.default($465, [640, 1536]) $467: bf16[1536, 640] = aten.t.default($466) $468: f16[640, 512] = aten._to_copy.default($91, dtype=torch.float16) $469: f16[1536, 640] = aten._to_copy.default($467, dtype=torch.float16) $470: f16[1536, 512] = aten.mm.default($469, $468) $471: f16[512, 1536] = aten.t.default($470) $472: f32[1, 1536] = aten.sum.dim_IntList($466, [0], True, dtype=torch.float32) $473: f32[1536] = aten.view.default($472, [1536]) $474: bf16[1536] = aten._to_copy.default($473, dtype=torch.bfloat16) $475: bf16[512, 1536] = aten._to_copy.default($471, dtype=torch.bfloat16) $476: bf16[1536, 512] = aten.t.default($475) $477: f32[1536, 512] = aten._to_copy.default($476, dtype=torch.float32, layout=torch.strided, device=cuda:0) $478: f32[1536, 512] = aten.detach.default($477) $479: f32[1536, 512] = aten.detach.default($478) $480: f32[1536] = aten._to_copy.default($474, dtype=torch.float32, layout=torch.strided, device=cuda:0) $481: f32[1536] = aten.detach.default($480) $482: f32[1536] = aten.detach.default($481) ($483: f32[10, 32, 512], $484: f32[512], $485: f32[512]) = aten.native_layer_norm_backward.default($374, $76, [512], $82, $83, $79, $80, [True, True, True]) $486: f32[512] = aten.detach.default($484) $487: f32[512] = aten.detach.default($486) $488: f32[512] = aten.detach.default($485) $489: f32[512] = aten.detach.default($488) ($490: f32[10, 32, 512], $491: f32[512], $492: f32[512]) = aten.native_layer_norm_backward.default($483, $73, [512], $77, $78, $74, $75, [True, True, True]) $493: f32[512] = aten.detach.default($491) $494: f32[512] = aten.detach.default($493) $495: f32[512] = aten.detach.default($492) $496: f32[512] = aten.detach.default($495) $497: bf16[10, 32, 512] = aten._to_copy.default($490, dtype=torch.bfloat16) $498: bf16[10, 32, 512] = aten.native_dropout_backward.default($497, $72, 1.1111111111111112) $499: bf16[320, 512] = aten.view.default($498, [320, 512]) $500: bf16[512, 2048] = aten.t.default($67) $501: f16[512, 2048] = aten._to_copy.default($500, dtype=torch.float16) $502: f16[320, 512] = aten._to_copy.default($499, dtype=torch.float16) $503: f16[320, 2048] = aten.mm.default($502, $501) $504: bf16[512, 320] = aten.t.default($499) $505: f16[320, 2048] = aten._to_copy.default($68, dtype=torch.float16) $506: f16[512, 320] = aten._to_copy.default($504, dtype=torch.float16) $507: f16[512, 2048] = aten.mm.default($506, $505) $508: f16[2048, 512] = aten.t.default($507) $509: f32[1, 512] = aten.sum.dim_IntList($499, [0], True, dtype=torch.float32) $510: f32[512] = aten.view.default($509, [512]) $511: bf16[512] = aten._to_copy.default($510, dtype=torch.bfloat16) $512: bf16[320, 2048] = aten._to_copy.default($503, dtype=torch.bfloat16) $513: bf16[2048, 512] = aten._to_copy.default($508, dtype=torch.bfloat16) $514: bf16[10, 32, 2048] = aten.view.default($512, [10, 32, 2048]) $515: bf16[512, 2048] = aten.t.default($513) $516: f32[512, 2048] = aten._to_copy.default($515, dtype=torch.float32, layout=torch.strided, device=cuda:0) $517: f32[512, 2048] = aten.detach.default($516) $518: f32[512, 2048] = aten.detach.default($517) $519: f32[512] = aten._to_copy.default($511, dtype=torch.float32, layout=torch.strided, device=cuda:0) $520: f32[512] = aten.detach.default($519) $521: f32[512] = aten.detach.default($520) $522: bf16[10, 32, 2048] = aten.native_dropout_backward.default($514, $62, 1.1111111111111112) $523: bf16[10, 32, 2048] = aten.detach.default($60) $524: bf16[10, 32, 2048] = aten.threshold_backward.default($522, $523, 0) $525: bf16[320, 2048] = aten.view.default($524, [320, 2048]) $526: bf16[2048, 512] = aten.t.default($55) $527: f16[2048, 512] = aten._to_copy.default($526, dtype=torch.float16) $528: f16[320, 2048] = aten._to_copy.default($525, dtype=torch.float16) $529: f16[320, 512] = aten.mm.default($528, $527) $530: bf16[2048, 320] = aten.t.default($525) $531: f16[320, 512] = aten._to_copy.default($56, dtype=torch.float16) $532: f16[2048, 320] = aten._to_copy.default($530, dtype=torch.float16) $533: f16[2048, 512] = aten.mm.default($532, $531) $534: f16[512, 2048] = aten.t.default($533) $535: f32[1, 2048] = aten.sum.dim_IntList($525, [0], True, dtype=torch.float32) $536: f32[2048] = aten.view.default($535, [2048]) $537: bf16[2048] = aten._to_copy.default($536, dtype=torch.bfloat16) $538: bf16[320, 512] = aten._to_copy.default($529, dtype=torch.bfloat16) $539: bf16[512, 2048] = aten._to_copy.default($534, dtype=torch.bfloat16) $540: bf16[10, 32, 512] = aten.view.default($538, [10, 32, 512]) $541: bf16[2048, 512] = aten.t.default($539) $542: f32[10, 32, 512] = aten._to_copy.default($540, dtype=torch.float32, layout=torch.strided, device=cuda:0) $543: f32[10, 32, 512] = aten.add.Tensor($490, $542) $544: f32[2048, 512] = aten._to_copy.default($541, dtype=torch.float32, layout=torch.strided, device=cuda:0) $545: f32[2048, 512] = aten.detach.default($544) $546: f32[2048, 512] = aten.detach.default($545) $547: f32[2048] = aten._to_copy.default($537, dtype=torch.float32, layout=torch.strided, device=cuda:0) $548: f32[2048] = aten.detach.default($547) $549: f32[2048] = aten.detach.default($548) ($550: f32[10, 32, 512], $551: f32[512], $552: f32[512]) = aten.native_layer_norm_backward.default($543, $44, [512], $48, $49, $45, $46, [True, True, True]) $553: f32[512] = aten.detach.default($551) $554: f32[512] = aten.detach.default($553) $555: f32[512] = aten.detach.default($552) $556: f32[512] = aten.detach.default($555) $557: bf16[10, 32, 512] = aten._to_copy.default($550, dtype=torch.bfloat16) $558: bf16[10, 32, 512] = aten.native_dropout_backward.default($557, $43, 1.1111111111111112) $559: bf16[320, 512] = aten.view.default($558, [320, 512]) $560: bf16[512, 512] = aten.t.default($39) $561: f16[512, 512] = aten._to_copy.default($560, dtype=torch.float16) $562: f16[320, 512] = aten._to_copy.default($559, dtype=torch.float16) $563: f16[320, 512] = aten.mm.default($562, $561) $564: bf16[512, 320] = aten.t.default($559) $565: f16[320, 512] = aten._to_copy.default($34, dtype=torch.float16) $566: f16[512, 320] = aten._to_copy.default($564, dtype=torch.float16) $567: f16[512, 512] = aten.mm.default($566, $565) $568: f16[512, 512] = aten.t.default($567) $569: f32[1, 512] = aten.sum.dim_IntList($559, [0], True, dtype=torch.float32) $570: f32[512] = aten.view.default($569, [512]) $571: bf16[512] = aten._to_copy.default($570, dtype=torch.bfloat16) $572: bf16[320, 512] = aten._to_copy.default($563, dtype=torch.bfloat16) $573: bf16[512, 512] = aten._to_copy.default($568, dtype=torch.bfloat16) $574: bf16[512, 512] = aten.t.default($573) $575: f32[512, 512] = aten._to_copy.default($574, dtype=torch.float32, layout=torch.strided, device=cuda:0) $576: f32[512, 512] = aten.detach.default($575) $577: f32[512, 512] = aten.detach.default($576) $578: f32[512] = aten._to_copy.default($571, dtype=torch.float32, layout=torch.strided, device=cuda:0) $579: f32[512] = aten.detach.default($578) $580: f32[512] = aten.detach.default($579) $581: bf16[10, 32, 8, 64] = aten.view.default($572, [10, 32, 8, 64]) $582: bf16[32, 8, 10, 64] = aten.permute.default($581, [1, 2, 0, 3]) $583: bf16[32, 8, 10, 64] = aten.detach.default($31) ($584: bf16[32, 8, 10, 64], $585: bf16[32, 8, 10, 64], $586: bf16[32, 8, 10, 64]) = aten._scaled_dot_product_efficient_attention_backward.default($582, $24, $25, $26, $583, $28, $29, $30, 0.1) $587: bf16[32, 8, 10, 64] = aten.clone.default($586, memory_format=torch.contiguous_format) $588: bf16[256, 10, 64] = aten._unsafe_view.default($587, [256, 10, 64]) $589: bf16[32, 8, 10, 64] = aten.clone.default($585, memory_format=torch.contiguous_format) $590: bf16[256, 10, 64] = aten._unsafe_view.default($589, [256, 10, 64]) $591: bf16[32, 8, 10, 64] = aten.clone.default($584, memory_format=torch.contiguous_format) $592: bf16[256, 10, 64] = aten._unsafe_view.default($591, [256, 10, 64]) $593: bf16[10, 256, 64] = aten.transpose.int($588, 0, 1) $594: bf16[10, 256, 64] = aten.clone.default($593, memory_format=torch.contiguous_format) $595: bf16[10, 32, 512] = aten._unsafe_view.default($594, [10, 32, 512]) $596: bf16[10, 256, 64] = aten.transpose.int($590, 0, 1) $597: bf16[10, 256, 64] = aten.clone.default($596, memory_format=torch.contiguous_format) $598: bf16[10, 32, 512] = aten._unsafe_view.default($597, [10, 32, 512]) $599: bf16[10, 256, 64] = aten.transpose.int($592, 0, 1) $600: bf16[10, 256, 64] = aten.clone.default($599, memory_format=torch.contiguous_format) $601: bf16[10, 32, 512] = aten._unsafe_view.default($600, [10, 32, 512]) $602: bf16[3, 10, 32, 512] = aten.select_backward.default($595, [3, 10, 32, 512], 0, 2) $603: bf16[3, 10, 32, 512] = aten.select_backward.default($598, [3, 10, 32, 512], 0, 1) $604: bf16[3, 10, 32, 512] = aten.add.Tensor($602, $603) $605: bf16[3, 10, 32, 512] = aten.select_backward.default($601, [3, 10, 32, 512], 0, 0) $606: bf16[3, 10, 32, 512] = aten.add.Tensor($604, $605) $607: bf16[3, 10, 32, 1, 512] = aten.unsqueeze.default($606, 3) $608: bf16[1, 10, 32, 3, 512] = aten.transpose.int($607, 0, -2) $609: bf16[10, 32, 3, 512] = aten.squeeze.dim($608, 0) $610: bf16[10, 32, 3, 512] = aten.clone.default($609, memory_format=torch.contiguous_format) $611: bf16[10, 32, 1536] = aten._unsafe_view.default($610, [10, 32, 1536]) $612: bf16[320, 1536] = aten.view.default($611, [320, 1536]) $613: bf16[1536, 320] = aten.t.default($612) $614: f16[320, 512] = aten._to_copy.default($7, dtype=torch.float16) $615: f16[1536, 320] = aten._to_copy.default($613, dtype=torch.float16) $616: f16[1536, 512] = aten.mm.default($615, $614) $617: f16[512, 1536] = aten.t.default($616) $618: f32[1, 1536] = aten.sum.dim_IntList($612, [0], True, dtype=torch.float32) $619: f32[1536] = aten.view.default($618, [1536]) $620: bf16[1536] = aten._to_copy.default($619, dtype=torch.bfloat16) $621: bf16[512, 1536] = aten._to_copy.default($617, dtype=torch.bfloat16) $622: bf16[1536, 512] = aten.t.default($621) $623: f32[1536, 512] = aten._to_copy.default($622, dtype=torch.float32, layout=torch.strided, device=cuda:0) $624: f32[1536, 512] = aten.detach.default($623) $625: f32[1536, 512] = aten.detach.default($624) $626: f32[1536] = aten._to_copy.default($620, dtype=torch.float32, layout=torch.strided, device=cuda:0) $627: f32[1536] = aten.detach.default($626) $628: f32[1536] = aten.detach.default($627) ``` </details> Version: main cc @mcarilli @ptrblck @leslie-fang-intel @jgong5
0