name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
ONote.split_dvd
Mathlib/SetTheory/Ordinal/Notation.lean
theorem split_dvd {o o' m} [NF o] (h : split o = (o', m)) : ω ∣ repr o'
case mk o : ONote m : ℕ inst✝ : o.NF a : ONote n : ℕ e : o.split' = (a, n) snd_eq✝ : n = m ⊢ ω ∣ (scale 1 a).repr
cases nf_repr_split' e
case mk.intro o : ONote m : ℕ inst✝ : o.NF a : ONote n : ℕ e : o.split' = (a, n) snd_eq✝ : n = m left✝ : a.NF right✝ : o.repr = ω * a.repr + ↑n ⊢ ω ∣ (scale 1 a).repr
86e9373ce6e65b94
borel_eq_generateFrom_of_subbasis
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
theorem borel_eq_generateFrom_of_subbasis {s : Set (Set α)} [t : TopologicalSpace α] [SecondCountableTopology α] (hs : t = .generateFrom s) : borel α = .generateFrom s := le_antisymm (generateFrom_le fun u (hu : t.IsOpen u) => by rw [hs] at hu induction hu with | basic u hu => exact GenerateMeasurable.basic u hu | univ => exact @MeasurableSet.univ α (generateFrom s) | inter s₁ s₂ _ _ hs₁ hs₂ => exact @MeasurableSet.inter α (generateFrom s) _ _ hs₁ hs₂ | sUnion f hf ih => rcases isOpen_sUnion_countable f (by rwa [hs]) with ⟨v, hv, vf, vu⟩ rw [← vu] exact @MeasurableSet.sUnion α (generateFrom s) _ hv fun x xv => ih _ (vf xv)) (generateFrom_le fun u hu => GenerateMeasurable.basic _ <| show t.IsOpen u by rw [hs]; exact GenerateOpen.basic _ hu)
case sUnion.intro.intro.intro α : Type u_1 s : Set (Set α) t : TopologicalSpace α inst✝ : SecondCountableTopology α hs : t = TopologicalSpace.generateFrom s u : Set α f : Set (Set α) hf : ∀ s_1 ∈ f, GenerateOpen s s_1 ih : ∀ s_1 ∈ f, MeasurableSet s_1 v : Set (Set α) hv : v.Countable vf : v ⊆ f vu : ⋃₀ v = ⋃₀ f ⊢ MeasurableSet (⋃₀ v)
exact @MeasurableSet.sUnion α (generateFrom s) _ hv fun x xv => ih _ (vf xv)
no goals
95f3ad778a5ab9a8
Real.sinh_sub_id_strictMono
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
theorem sinh_sub_id_strictMono : StrictMono fun x => sinh x - x
case refine_2 x : ℝ hx : 0 < x ⊢ 0 < deriv (fun x => sinh x - x) x
rw [deriv_sub, deriv_sinh, deriv_id'', sub_pos, one_lt_cosh]
case refine_2 x : ℝ hx : 0 < x ⊢ x ≠ 0 case refine_2.hf x : ℝ hx : 0 < x ⊢ DifferentiableAt ℝ sinh x case refine_2.hg x : ℝ hx : 0 < x ⊢ DifferentiableAt ℝ (fun x => x) x
6a7e41008e3f2d58
Set.Iic.coe_iSup
Mathlib/Order/CompleteLatticeIntervals.lean
theorem coe_iSup : (↑(⨆ i, f i) : α) = ⨆ i, (f i : α)
case e_a.h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α a : α f : ι → ↑(Iic a) x✝ : α ⊢ (x✝ ∈ Subtype.val '' range fun i => f i) ↔ x✝ ∈ range fun i => ↑(f i)
simp
no goals
2881ea5d6a16fbe1
MeasureTheory.tendsto_sum_indicator_atTop_iff
Mathlib/Probability/Martingale/BorelCantelli.lean
theorem tendsto_sum_indicator_atTop_iff [IsFiniteMeasure μ] (hfmono : ∀ᵐ ω ∂μ, ∀ n, f n ω ≤ f (n + 1) ω) (hf : Adapted ℱ f) (hint : ∀ n, Integrable (f n) μ) (hbdd : ∀ᵐ ω ∂μ, ∀ n, |f (n + 1) ω - f n ω| ≤ R) : ∀ᵐ ω ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
case h.mp.refine_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop n m : ℕ hnm : n ≤ m ⊢ (fun n => predictablePart f ℱ μ n ω) n ≤ (fun n => predictablePart f ℱ μ n ω) m
simp only [predictablePart, Finset.sum_apply]
case h.mp.refine_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop n m : ℕ hnm : n ≤ m ⊢ ∑ c ∈ Finset.range n, (μ[f (c + 1) - f c|↑ℱ c]) ω ≤ ∑ c ∈ Finset.range m, (μ[f (c + 1) - f c|↑ℱ c]) ω
a9fbe9b501f842e9
Polynomial.coeff_ofFinsupp
Mathlib/Algebra/Polynomial/Basic.lean
theorem coeff_ofFinsupp (p) : coeff (⟨p⟩ : R[X]) = p
R : Type u inst✝ : Semiring R p : R[ℕ] ⊢ { toFinsupp := p }.coeff = ⇑p
rw [coeff]
no goals
ec1fe4e80b08672a
Array.foldlM_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Monadic.lean
theorem foldlM_filter [Monad m] [LawfulMonad m] (p : α → Bool) (g : β → α → m β) (l : Array α) (init : β) (w : stop = (l.filter p).size) : (l.filter p).foldlM g init 0 stop = l.foldlM (fun x y => if p y then g x y else pure x) init
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m p : α → Bool g : β → α → m β l : Array α init : β ⊢ foldlM g init (filter p l) = foldlM (fun x y => if p y = true then g x y else pure x) init l
cases l
case mk m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m p : α → Bool g : β → α → m β init : β toList✝ : List α ⊢ foldlM g init (filter p { toList := toList✝ }) = foldlM (fun x y => if p y = true then g x y else pure x) init { toList := toList✝ }
54c58a709caed831
List.IsInfix.filterMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem IsInfix.filterMap {β} (f : α → Option β) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) : filterMap f l₁ <:+: filterMap f l₂
case intro.intro α : Type u_1 β : Type u_2 f : α → Option β l₁ xs ys : List α ⊢ List.filterMap f l₁ <:+: List.filterMap f xs ++ List.filterMap f l₁ ++ List.filterMap f ys
apply infix_append
no goals
124f10e693a6e10b
AddCircle.ergodic_zsmul_add
Mathlib/Dynamics/Ergodic/AddCircle.lean
theorem ergodic_zsmul_add (x : AddCircle T) {n : ℤ} (h : 1 < |n|) : Ergodic fun y => n • y + x
T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving (⇑e) volume volume h : n - 1 ≠ 0 ⊢ n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1)
conv_rhs => congr; rw [← DivisibleBy.div_cancel x h]
T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving (⇑e) volume volume h : n - 1 ≠ 0 ⊢ n • DivisibleBy.div x (n - 1) = (n - 1) • DivisibleBy.div x (n - 1) + DivisibleBy.div x (n - 1)
05c20060c1761793
NonUnitalStarSubalgebra.iSupLift_inclusion
Mathlib/Algebra/Star/NonUnitalSubalgebra.lean
theorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) : iSupLift K dir f hf T hT (inclusion h x) = f i x
case h R : Type u A : Type v B : Type w inst✝¹¹ : CommSemiring R inst✝¹⁰ : NonUnitalSemiring A inst✝⁹ : StarRing A inst✝⁸ : Module R A inst✝⁷ : NonUnitalSemiring B inst✝⁶ : StarRing B inst✝⁵ : Module R B ι : Type u_1 inst✝⁴ : StarRing R inst✝³ : IsScalarTower R A A inst✝² : SMulCommClass R A A inst✝¹ : StarModule R A inst✝ : Nonempty ι K : ι → NonUnitalStarSubalgebra R A dir : Directed (fun x1 x2 => x1 ≤ x2) K f : (i : ι) → ↥(K i) →⋆ₙₐ[R] B hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h) i : ι x : ↥(K i) h : K i ≤ iSup K ⊢ ↑(K i) ⊆ ↑(iSup K)
exact h
no goals
99a36d2072712ece
Array.foldlM_append'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem foldlM_append' [Monad m] [LawfulMonad m] (f : β → α → m β) (b) (l l' : Array α) (w : stop = l.size + l'.size) : (l ++ l').foldlM f b 0 stop = l.foldlM f b >>= l'.foldlM f
case mk.mk m : Type u_1 → Type u_2 β : Type u_1 α : Type u_3 inst✝¹ : Monad m inst✝ : LawfulMonad m f : β → α → m β b : β l l' : List α ⊢ foldlM f b ({ toList := l } ++ { toList := l' }) 0 ({ toList := l }.size + { toList := l' }.size) = do let init ← foldlM f b { toList := l } foldlM f init { toList := l' }
simp
no goals
01331f0cf3e76f5b
EuclideanGeometry.dist_div_cos_angle_of_angle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
theorem dist_div_cos_angle_of_angle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∠ p₁ p₂ p₃ = π / 2) (h0 : p₁ = p₂ ∨ p₃ ≠ p₂) : dist p₃ p₂ / Real.cos (∠ p₂ p₃ p₁) = dist p₁ p₃
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ : P h : inner (p₂ -ᵥ p₃) (p₁ -ᵥ p₂) = 0 h0 : p₂ -ᵥ p₃ ≠ 0 ∨ p₁ -ᵥ p₂ = 0 ⊢ dist p₃ p₂ / Real.cos (∠ p₂ p₃ p₁) = dist p₁ p₃
rw [angle, dist_eq_norm_vsub' V p₃ p₂, dist_eq_norm_vsub V p₁ p₃, ← vsub_add_vsub_cancel p₁ p₂ p₃, add_comm, norm_div_cos_angle_add_of_inner_eq_zero h h0]
no goals
1b78c9d197eba1ad
Matrix.Pivot.exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction
Mathlib/LinearAlgebra/Matrix/Transvection.lean
theorem exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction (IH : ∀ M : Matrix (Fin r) (Fin r) 𝕜, ∃ (L₀ L₀' : List (TransvectionStruct (Fin r) 𝕜)) (D₀ : Fin r → 𝕜), (L₀.map toMatrix).prod * M * (L₀'.map toMatrix).prod = diagonal D₀) (M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) : ∃ (L L' : List (TransvectionStruct (Fin r ⊕ Unit) 𝕜)) (D : Fin r ⊕ Unit → 𝕜), (L.map toMatrix).prod * M * (L'.map toMatrix).prod = diagonal D
𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ IH : ∀ (M : Matrix (Fin r) (Fin r) 𝕜), ∃ L₀ L₀' D₀, (List.map toMatrix L₀).prod * M * (List.map toMatrix L₀').prod = diagonal D₀ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 L₁ L₁' : List (TransvectionStruct (Fin r ⊕ Unit) 𝕜) hM : ((List.map toMatrix L₁).prod * M * (List.map toMatrix L₁').prod).IsTwoBlockDiagonal M' : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 := (List.map toMatrix L₁).prod * M * (List.map toMatrix L₁').prod M'' : Matrix (Fin r) (Fin r) 𝕜 := M'.toBlocks₁₁ L₀ L₀' : List (TransvectionStruct (Fin r) 𝕜) D₀ : Fin r → 𝕜 h₀ : (List.map toMatrix L₀).prod * M'' * (List.map toMatrix L₀').prod = diagonal D₀ c : 𝕜 := M' (inr ()) (inr ()) ⊢ fromBlocks M'.toBlocks₁₁ 0 0 M'.toBlocks₂₂ = fromBlocks M'' 0 0 (diagonal fun x => c)
rfl
no goals
1db945989babbcf8
Affine.Triangle.scalene_iff_dist_ne_and_dist_ne_and_dist_ne
Mathlib/Analysis/Normed/Affine/Simplex.lean
lemma scalene_iff_dist_ne_and_dist_ne_and_dist_ne {t : Triangle R P} : t.Scalene ↔ dist (t.points 0) (t.points 1) ≠ dist (t.points 0) (t.points 2) ∧ dist (t.points 0) (t.points 1) ≠ dist (t.points 1) (t.points 2) ∧ dist (t.points 0) (t.points 2) ≠ dist (t.points 1) (t.points 2)
R : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring R inst✝³ : SeminormedAddCommGroup V inst✝² : PseudoMetricSpace P inst✝¹ : Module R V inst✝ : NormedAddTorsor V P t : Triangle R P ⊢ Simplex.Scalene t ↔ dist (t.points 0) (t.points 1) ≠ dist (t.points 0) (t.points 2) ∧ dist (t.points 0) (t.points 1) ≠ dist (t.points 1) (t.points 2) ∧ dist (t.points 0) (t.points 2) ≠ dist (t.points 1) (t.points 2)
refine ⟨fun h ↦ ⟨h.dist_ne (by decide : (0 : Fin 3) ≠ 1) (by decide : (0 : Fin 3) ≠ 2) (by decide) (by decide), h.dist_ne (by decide : (0 : Fin 3) ≠ 1) (by decide : (1 : Fin 3) ≠ 2) (by decide) (by decide), h.dist_ne (by decide : (0 : Fin 3) ≠ 2) (by decide : (1 : Fin 3) ≠ 2) (by decide) (by decide)⟩, fun ⟨h₁, h₂, h₃⟩ ↦ ?_⟩
R : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Ring R inst✝³ : SeminormedAddCommGroup V inst✝² : PseudoMetricSpace P inst✝¹ : Module R V inst✝ : NormedAddTorsor V P t : Triangle R P x✝ : dist (t.points 0) (t.points 1) ≠ dist (t.points 0) (t.points 2) ∧ dist (t.points 0) (t.points 1) ≠ dist (t.points 1) (t.points 2) ∧ dist (t.points 0) (t.points 2) ≠ dist (t.points 1) (t.points 2) h₁ : dist (t.points 0) (t.points 1) ≠ dist (t.points 0) (t.points 2) h₂ : dist (t.points 0) (t.points 1) ≠ dist (t.points 1) (t.points 2) h₃ : dist (t.points 0) (t.points 2) ≠ dist (t.points 1) (t.points 2) ⊢ Simplex.Scalene t
db09e2b7b29c27ae
CategoryTheory.IsPullback.inl_snd'
Mathlib/CategoryTheory/Limits/Shapes/Pullback/CommSq.lean
theorem inl_snd' {b : BinaryBicone X Y} (h : b.IsBilimit) : IsPullback b.inl (0 : X ⟶ 0) b.snd (0 : 0 ⟶ Y)
C : Type u₁ inst✝² : Category.{v₁, u₁} C X Y : C inst✝¹ : HasZeroObject C inst✝ : HasZeroMorphisms C b : BinaryBicone X Y h : b.IsBilimit ⊢ IsPullback (b.inl ≫ b.fst) 0 0 (0 ≫ 0)
simp
no goals
c7eabf364f79dd8d
MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred
Mathlib/Probability/Process/Stopping.lean
theorem IsStoppingTime.measurableSet_lt_of_pred [PredOrder ι] (hτ : IsStoppingTime f τ) (i : ι) : MeasurableSet[f i] {ω | τ ω < i}
Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i this : {ω | τ ω < i} = ∅ ⊢ MeasurableSet {ω | τ ω < i}
rw [this]
Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i this : {ω | τ ω < i} = ∅ ⊢ MeasurableSet ∅
9a3bc634c9a3c058
StieltjesFunction.outer_trim
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem outer_trim : f.outer.trim = f.outer
f : StieltjesFunction s : Set ℝ t : ℕ → Set ℝ ht : s ⊆ ⋃ i, t i ε : ℝ≥0 ε0 : 0 < ε h : ∑' (i : ℕ), f.length (t i) < ⊤ ε' : ℕ → ℝ≥0 ε'0 : ∀ (i : ℕ), 0 < ε' i hε : ∑' (i : ℕ), ↑(ε' i) < ↑ε i : ℕ a b : ℝ h₁ : t i ⊆ Ioc a b h₂ : f.outer (Ioc a b) < f.length (t i) + ↑(ε' i) ⊢ f.outer (Ioc a b) < f.length (t i) + ofReal ↑(ε' i)
simpa using h₂
no goals
f9dd01cdb673361c
OreLocalization.add''_char
Mathlib/RingTheory/OreLocalization/Basic.lean
theorem add''_char (r₁ : X) (s₁ : S) (r₂ : X) (s₂ : S) (rb : R) (sb : R) (hb : sb * s₁ = rb * s₂) (h : sb * s₁ ∈ S) : add'' r₁ s₁ r₂ s₂ = (sb • r₁ + rb • r₂) /ₒ ⟨sb * s₁, h⟩
R : Type u_1 inst✝³ : Monoid R S : Submonoid R inst✝² : OreSet S X : Type u_2 inst✝¹ : AddMonoid X inst✝ : DistribMulAction R X r₁ : X s₁ : ↥S r₂ : X s₂ : ↥S rb sb : R hb : sb * ↑s₁ = rb * ↑s₂ h : sb * ↑s₁ ∈ S ra : R sa : ↥S ha : ↑sa * ↑s₁ = ra * ↑s₂ rc : R sc : ↥S hc : ↑sc * sb = rc * ↑sa ⊢ ↑sc * rb * ↑s₂ = rc * ra * ↑s₂
rw [mul_assoc rc, ← ha, ← mul_assoc, ← hc, mul_assoc, mul_assoc, hb]
no goals
b4e8e56da73063e8
FirstOrder.Language.equiv_between_cg
Mathlib/ModelTheory/PartialEquiv.lean
theorem equiv_between_cg (M_cg : Structure.CG L M) (N_cg : Structure.CG L N) (g : L.FGEquiv M N) (ext_dom : L.IsExtensionPair M N) (ext_cod : L.IsExtensionPair N M) : ∃ f : M ≃[L] N, g ≤ f.toEmbedding.toPartialEquiv
case mk.intro.intro.mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N ext_dom : L.IsExtensionPair M N ext_cod : L.IsExtensionPair N M X : Set M X_count : X.Countable X_gen : (closure L).toFun X = ⊤ Y : Set N Y_count : Y.Countable Y_gen : (closure L).toFun Y = ⊤ x✝⁵ : Countable ↑X x✝⁴ : Encodable ↑X x✝³ : Countable ↑Y x✝² : Encodable ↑Y D : ↑X ⊕ ↑Y → Order.Cofinal (L.FGEquiv M N) := fun p => Sum.recOn p (fun x => ext_dom.definedAtLeft ↑x) fun y => ext_cod.definedAtRight ↑y S : ℕ →o M ≃ₚ[L] N := { toFun := Subtype.val ∘ Order.sequenceOfCofinals g D, monotone' := ⋯ } F : M ≃ₚ[L] N := partialEquivLimit S x✝¹ : X ⊆ ↑F.dom x✝ : Y ⊆ ↑F.cod dom_top : F.dom = ⊤ cod_top : F.cod = ⊤ ⊢ ∃ f, ↑g ≤ f.toEmbedding.toPartialEquiv
refine ⟨toEquivOfEqTop dom_top cod_top, ?_⟩
case mk.intro.intro.mk.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N g : L.FGEquiv M N ext_dom : L.IsExtensionPair M N ext_cod : L.IsExtensionPair N M X : Set M X_count : X.Countable X_gen : (closure L).toFun X = ⊤ Y : Set N Y_count : Y.Countable Y_gen : (closure L).toFun Y = ⊤ x✝⁵ : Countable ↑X x✝⁴ : Encodable ↑X x✝³ : Countable ↑Y x✝² : Encodable ↑Y D : ↑X ⊕ ↑Y → Order.Cofinal (L.FGEquiv M N) := fun p => Sum.recOn p (fun x => ext_dom.definedAtLeft ↑x) fun y => ext_cod.definedAtRight ↑y S : ℕ →o M ≃ₚ[L] N := { toFun := Subtype.val ∘ Order.sequenceOfCofinals g D, monotone' := ⋯ } F : M ≃ₚ[L] N := partialEquivLimit S x✝¹ : X ⊆ ↑F.dom x✝ : Y ⊆ ↑F.cod dom_top : F.dom = ⊤ cod_top : F.cod = ⊤ ⊢ ↑g ≤ (toEquivOfEqTop dom_top cod_top).toEmbedding.toPartialEquiv
d1b972cd720b6e06
Array.lt_iff_exists
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lex/Lemmas.lean
theorem lt_iff_exists [DecidableEq α] [LT α] [DecidableLT α] {l₁ l₂ : Array α} : l₁ < l₂ ↔ (l₁ = l₂.take l₁.size ∧ l₁.size < l₂.size) ∨ (∃ (i : Nat) (h₁ : i < l₁.size) (h₂ : i < l₂.size), (∀ j, (hj : j < i) → l₁[j]'(Nat.lt_trans hj h₁) = l₂[j]'(Nat.lt_trans hj h₂)) ∧ l₁[i] < l₂[i])
case mk α : Type u_1 inst✝² : DecidableEq α inst✝¹ : LT α inst✝ : DecidableLT α l₂ : Array α toList✝ : List α ⊢ { toList := toList✝ } < l₂ ↔ { toList := toList✝ } = l₂.take { toList := toList✝ }.size ∧ { toList := toList✝ }.size < l₂.size ∨ ∃ i h₁ h₂, (∀ (j : Nat) (hj : j < i), { toList := toList✝ }[j] = l₂[j]) ∧ { toList := toList✝ }[i] < l₂[i]
cases l₂
case mk.mk α : Type u_1 inst✝² : DecidableEq α inst✝¹ : LT α inst✝ : DecidableLT α toList✝¹ toList✝ : List α ⊢ { toList := toList✝¹ } < { toList := toList✝ } ↔ { toList := toList✝¹ } = { toList := toList✝ }.take { toList := toList✝¹ }.size ∧ { toList := toList✝¹ }.size < { toList := toList✝ }.size ∨ ∃ i h₁ h₂, (∀ (j : Nat) (hj : j < i), { toList := toList✝¹ }[j] = { toList := toList✝ }[j]) ∧ { toList := toList✝¹ }[i] < { toList := toList✝ }[i]
ae7954081a1c04fb
Finset.prod_dite
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem prod_dite {s : Finset α} {p : α → Prop} {hp : DecidablePred p} (f : ∀ x : α, p x → β) (g : ∀ x : α, ¬p x → β) : ∏ x ∈ s, (if hx : p x then f x hx else g x hx) = (∏ x : {x ∈ s | p x}, f x.1 (by simpa using (mem_filter.mp x.2).2)) * ∏ x : {x ∈ s | ¬p x}, g x.1 (by simpa using (mem_filter.mp x.2).2)
ι : Type u_1 κ : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s✝ s₁ s₂ : Finset α a : α f✝ g✝ : α → β inst✝ : CommMonoid β s : Finset α p : α → Prop hp : DecidablePred p f : (x : α) → p x → β g : (x : α) → ¬p x → β x : { x // x ∈ filter (fun x => ¬p x) s } ⊢ ¬p ↑x
simpa using (mem_filter.mp x.2).2
no goals
dc94d4cafa1d0c81
Finsupp.embDomain_apply
Mathlib/Data/Finsupp/Defs.lean
theorem embDomain_apply (f : α ↪ β) (v : α →₀ M) (a : α) : embDomain f v (f a) = v a
case pos α : Type u_1 β : Type u_2 M : Type u_5 inst✝ : Zero M f : α ↪ β v : α →₀ M a : α h✝ : f a ∈ map f v.support h : a ∈ v.support ⊢ v (choose (fun a₁ => f a₁ = f a) v.support ⋯) = v a
refine congr_arg (v : α → M) (f.inj' ?_)
case pos α : Type u_1 β : Type u_2 M : Type u_5 inst✝ : Zero M f : α ↪ β v : α →₀ M a : α h✝ : f a ∈ map f v.support h : a ∈ v.support ⊢ f.toFun (choose (fun a₁ => f a₁ = f a) v.support ⋯) = f.toFun a
f564562eef1563c7
mellin_hasDerivAt_of_isBigO_rpow
Mathlib/Analysis/MellinTransform.lean
theorem mellin_hasDerivAt_of_isBigO_rpow [NormedSpace ℂ E] {a b : ℝ} {f : ℝ → E} {s : ℂ} (hfc : LocallyIntegrableOn f (Ioi 0)) (hf_top : f =O[atTop] (· ^ (-a))) (hs_top : s.re < a) (hf_bot : f =O[𝓝[>] 0] (· ^ (-b))) (hs_bot : b < s.re) : MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) volume hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) volume h3 : AEStronglyMeasurable (F' s) (volume.restrict (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v ⊢ ‖F' z t‖ ≤ bound t
simp_rw [F', bound, norm_smul, norm_mul, norm_real, mul_assoc]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) volume hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) volume h3 : AEStronglyMeasurable (F' s) (volume.restrict (Ioi 0)) t : ℝ ht : t ∈ Ioi 0 z : ℂ hz : z ∈ Metric.ball s v ⊢ ‖↑t ^ (z - 1)‖ * (‖log t‖ * ‖f t‖) ≤ (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * (|log t| * ‖f t‖)
3ad5d9a87042b6f9
BoxIntegral.Integrable.dist_integralSum_integral_le_of_memBaseSet
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem dist_integralSum_integral_le_of_memBaseSet (h : Integrable I l f vol) (h₀ : 0 < ε) (hπ : l.MemBaseSet I c (h.convergenceR ε c) π) (hπp : π.IsPartition) : dist (integralSum f vol π) (integral I l f vol) ≤ ε
ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F c : ℝ≥0 ε : ℝ h : Integrable I l f vol h₀ : 0 < ε hπ : l.MemBaseSet I c (h.convergenceR ε c) π hπp : π.IsPartition ⊢ dist (integralSum f vol π) (integral I l f vol) ≤ ε
rw [convergenceR, dif_pos h₀] at hπ
ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F c : ℝ≥0 ε : ℝ h : Integrable I l f vol h₀ : 0 < ε hπ : l.MemBaseSet I c (⋯.choose c) π hπp : π.IsPartition ⊢ dist (integralSum f vol π) (integral I l f vol) ≤ ε
a9d29982a078a587
LinearMap.minpoly_coeff_zero_of_injective
Mathlib/LinearAlgebra/Charpoly/Basic.lean
theorem minpoly_coeff_zero_of_injective [Nontrivial R] (hf : Function.Injective f) : (minpoly R f).coeff 0 ≠ 0
case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Free R M inst✝¹ : Module.Finite R M f : M →ₗ[R] M inst✝ : Nontrivial R hf : Function.Injective ⇑f h : (minpoly R f).coeff 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : P.degree < (minpoly R f).degree hPmonic : P.Monic hzero : (aeval f) (minpoly R f) = 0 ⊢ False
simp only [hP, mul_eq_comp, LinearMap.ext_iff, hf, aeval_X, map_eq_zero_iff, coe_comp, _root_.map_mul, zero_apply, Function.comp_apply] at hzero
case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Free R M inst✝¹ : Module.Finite R M f : M →ₗ[R] M inst✝ : Nontrivial R hf : Function.Injective ⇑f h : (minpoly R f).coeff 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : P.degree < (minpoly R f).degree hPmonic : P.Monic hzero : ∀ (x : M), ((aeval f) P) x = 0 ⊢ False
5bd9e33feec06141
Std.DHashMap.Internal.Raw.foldRev_cons
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem foldRev_cons {l : Raw α β} {acc : List ((a : α) × β a)} : l.foldRev (fun acc k v => ⟨k, v⟩ :: acc) acc = toListModel l.buckets ++ acc
α : Type u β : α → Type v l : Raw α β acc : List ((a : α) × β a) ⊢ Raw.foldRev (fun acc k v => ⟨k, v⟩ :: acc) acc l = toListModel l.buckets ++ acc
simp [foldRev_cons_apply]
no goals
d17e4c0f17165021
ZFSet.toSet_equiv_aux
Mathlib/SetTheory/ZFC/Basic.lean
private lemma toSet_equiv_aux {s : Set ZFSet.{u}} (hs : Small.{u} s) : (mk <| PSet.mk (Shrink s) fun x ↦ ((equivShrink s).symm x).1.out).toSet = s
case h.refine_1.intro s : Set ZFSet.{u} hs : Small.{u, u + 1} ↑s x : ZFSet.{u} b : (PSet.mk (Shrink.{u, u + 1} ↑s) fun x => Quotient.out ↑((equivShrink ↑s).symm x)).Type h2 : (Quotient.out x).Equiv ((PSet.mk (Shrink.{u, u + 1} ↑s) fun x => Quotient.out ↑((equivShrink ↑s).symm x)).Func b) ⊢ x ∈ s
rw [← ZFSet.eq, ZFSet.mk_out] at h2
case h.refine_1.intro s : Set ZFSet.{u} hs : Small.{u, u + 1} ↑s x : ZFSet.{u} b : (PSet.mk (Shrink.{u, u + 1} ↑s) fun x => Quotient.out ↑((equivShrink ↑s).symm x)).Type h2 : x = mk ((PSet.mk (Shrink.{u, u + 1} ↑s) fun x => Quotient.out ↑((equivShrink ↑s).symm x)).Func b) ⊢ x ∈ s
d1b549e8dc7b2bb2
Equidecomp.toPartialEquiv_injective
Mathlib/Algebra/Group/Action/Equidecomp.lean
theorem toPartialEquiv_injective : Injective <| toPartialEquiv (X := X) (G := G)
X : Type u_1 G : Type u_2 inst✝ : SMul G X toPartialEquiv✝ : PartialEquiv X X w✝ : Finset G h✝ : IsDecompOn (↑toPartialEquiv✝) toPartialEquiv✝.source w✝ a₂✝ : Equidecomp X G a✝ : { toPartialEquiv := toPartialEquiv✝, isDecompOn' := ⋯ }.toPartialEquiv = a₂✝.toPartialEquiv ⊢ { toPartialEquiv := toPartialEquiv✝, isDecompOn' := ⋯ } = a₂✝
congr
no goals
7b9bab81ff2aaf5e
List.exists_chain_of_relationReflTransGen
Mathlib/Data/List/Chain.lean
theorem exists_chain_of_relationReflTransGen (h : Relation.ReflTransGen r a b) : ∃ l, Chain r a l ∧ getLast (a :: l) (cons_ne_nil _ _) = b
case refine_2 α : Type u r : α → α → Prop a b : α h : Relation.ReflTransGen r a b ⊢ ∀ {a c : α}, r a c → Relation.ReflTransGen r c b → (∃ l, Chain r c l ∧ (c :: l).getLast ⋯ = b) → ∃ l, Chain r a l ∧ (a :: l).getLast ⋯ = b
intro c d e _ ih
case refine_2 α : Type u r : α → α → Prop a b : α h : Relation.ReflTransGen r a b c d : α e : r c d h✝ : Relation.ReflTransGen r d b ih : ∃ l, Chain r d l ∧ (d :: l).getLast ⋯ = b ⊢ ∃ l, Chain r c l ∧ (c :: l).getLast ⋯ = b
78f3a017142a6566
CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
theorem forallYonedaIsSheaf_iff_colimit (S : Sieve X) : (∀ W : C, Presieve.IsSheafFor (yoneda.obj W) (S : Presieve X)) ↔ Nonempty (IsColimit S.arrows.cocone)
C : Type u inst✝ : Category.{v, u} C X : C S : Sieve X H : ∀ (W : C), IsSheafFor (yoneda.obj W) S.arrows ⊢ ∀ (s : Cocone S.arrows.diagram) (m : S.arrows.cocone.pt ⟶ s.pt), (∀ (j : S.arrows.category), S.arrows.cocone.ι.app j ≫ m = s.ι.app j) → m = (fun s => Exists.choose ⋯) s
intro s Fs HFs
C : Type u inst✝ : Category.{v, u} C X : C S : Sieve X H : ∀ (W : C), IsSheafFor (yoneda.obj W) S.arrows s : Cocone S.arrows.diagram Fs : S.arrows.cocone.pt ⟶ s.pt HFs : ∀ (j : S.arrows.category), S.arrows.cocone.ι.app j ≫ Fs = s.ι.app j ⊢ Fs = (fun s => Exists.choose ⋯) s
0cc74e895fe44091
Std.DHashMap.Internal.Raw₀.toListModel_mapₘ
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/WF.lean
theorem toListModel_mapₘ {m : Raw₀ α β} {f : (a : α) → β a → δ a} : Perm (toListModel (m.mapₘ f).1.buckets) ((toListModel m.1.buckets).map fun p => ⟨p.1, f p.1 p.2⟩) := toListModel_updateAllBuckets AssocList.toList_map (by simp)
α : Type u β : α → Type v δ : α → Type w m : Raw₀ α β f : (a : α) → β a → δ a ⊢ ∀ {l l' : List ((a : α) × β a)}, List.map (fun p => ⟨p.fst, f p.fst p.snd⟩) (l ++ l') ~ List.map (fun p => ⟨p.fst, f p.fst p.snd⟩) l ++ List.map (fun p => ⟨p.fst, f p.fst p.snd⟩) l'
simp
no goals
6068394d90bb11fd
Ideal.homogeneousCore'_eq_sSup
Mathlib/RingTheory/GradedAlgebra/Homogeneous/Ideal.lean
theorem Ideal.homogeneousCore'_eq_sSup : I.homogeneousCore' 𝒜 = sSup { J : Ideal A | J.IsHomogeneous 𝒜 ∧ J ≤ I }
case h ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁵ : Semiring A inst✝⁴ : DecidableEq ι inst✝³ : AddMonoid ι inst✝² : SetLike σ A inst✝¹ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝ : GradedRing 𝒜 I : Ideal A ⊢ IsGreatest {J | IsHomogeneous 𝒜 J ∧ J ≤ I} (homogeneousCore' 𝒜 I)
have coe_mono : Monotone (toIdeal : HomogeneousIdeal 𝒜 → Ideal A) := fun x y => id
case h ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁵ : Semiring A inst✝⁴ : DecidableEq ι inst✝³ : AddMonoid ι inst✝² : SetLike σ A inst✝¹ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝ : GradedRing 𝒜 I : Ideal A coe_mono : Monotone toIdeal ⊢ IsGreatest {J | IsHomogeneous 𝒜 J ∧ J ≤ I} (homogeneousCore' 𝒜 I)
9432fbd8401d3b7e
PerfectClosure.natCast_eq_iff
Mathlib/FieldTheory/PerfectClosure.lean
theorem natCast_eq_iff (x y : ℕ) : (x : PerfectClosure K p) = y ↔ (x : K) = y
case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ H : ↑x = ↑y ⊢ ↑x = ↑y
rw [natCast K p 0, natCast K p 0, mk_eq_iff] at H
case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ H : ∃ z, (⇑(frobenius K p))^[(0, ↑y).1 + z] (0, ↑x).2 = (⇑(frobenius K p))^[(0, ↑x).1 + z] (0, ↑y).2 ⊢ ↑x = ↑y
f69df36b38bd9cb7
IsLocalization.isLocalization_of_submonoid_le
Mathlib/RingTheory/Localization/LocalizationLocalization.lean
theorem isLocalization_of_submonoid_le (M N : Submonoid R) (h : M ≤ N) [IsLocalization M S] [IsLocalization N T] [Algebra S T] [IsScalarTower R S T] : IsLocalization (N.map (algebraMap R S)) T := { map_units'
R : Type u_1 inst✝⁸ : CommSemiring R S : Type u_2 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra R S T : Type u_3 inst✝⁵ : CommSemiring T inst✝⁴ : Algebra R T M N : Submonoid R h : M ≤ N inst✝³ : IsLocalization M S inst✝² : IsLocalization N T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T x₁ x₂ : S y₁ : R s₁ : ↥M e₁ : x₁ * (algebraMap R S) ↑s₁ = (algebraMap R S) y₁ y₂ : R s₂ : ↥M e₂ : x₂ * (algebraMap R S) ↑s₂ = (algebraMap R S) y₂ this : (algebraMap R T) (y₁ * ↑s₂) = (algebraMap R T) (y₂ * ↑s₁) → ∃ a, (algebraMap R S) (↑a * (y₁ * ↑s₂)) = (algebraMap R S) (↑a * (y₂ * ↑s₁)) ⊢ (algebraMap S T) x₁ = (algebraMap S T) x₂ → ∃ a, (algebraMap R S) ↑a * x₁ = (algebraMap R S) ↑a * x₂
have h₁ := @IsUnit.mul_left_inj T _ _ (algebraMap S T x₁) (algebraMap S T x₂) (IsLocalization.map_units T ⟨(s₁ : R), h s₁.prop⟩)
R : Type u_1 inst✝⁸ : CommSemiring R S : Type u_2 inst✝⁷ : CommSemiring S inst✝⁶ : Algebra R S T : Type u_3 inst✝⁵ : CommSemiring T inst✝⁴ : Algebra R T M N : Submonoid R h : M ≤ N inst✝³ : IsLocalization M S inst✝² : IsLocalization N T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T x₁ x₂ : S y₁ : R s₁ : ↥M e₁ : x₁ * (algebraMap R S) ↑s₁ = (algebraMap R S) y₁ y₂ : R s₂ : ↥M e₂ : x₂ * (algebraMap R S) ↑s₂ = (algebraMap R S) y₂ this : (algebraMap R T) (y₁ * ↑s₂) = (algebraMap R T) (y₂ * ↑s₁) → ∃ a, (algebraMap R S) (↑a * (y₁ * ↑s₂)) = (algebraMap R S) (↑a * (y₂ * ↑s₁)) h₁ : (algebraMap S T) x₁ * (algebraMap R T) ↑⟨↑s₁, ⋯⟩ = (algebraMap S T) x₂ * (algebraMap R T) ↑⟨↑s₁, ⋯⟩ ↔ (algebraMap S T) x₁ = (algebraMap S T) x₂ ⊢ (algebraMap S T) x₁ = (algebraMap S T) x₂ → ∃ a, (algebraMap R S) ↑a * x₁ = (algebraMap R S) ↑a * x₂
af3dd23a92652c9e
derivWithin.star
Mathlib/Analysis/Calculus/Deriv/Star.lean
theorem derivWithin.star : derivWithin (fun y => star (f y)) s x = star (derivWithin f s x)
case inl 𝕜 : Type u inst✝⁷ : NontriviallyNormedField 𝕜 F : Type v inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F f : 𝕜 → F inst✝⁴ : StarRing 𝕜 inst✝³ : TrivialStar 𝕜 inst✝² : StarAddMonoid F inst✝¹ : ContinuousStar F inst✝ : StarModule 𝕜 F s : Set 𝕜 x : 𝕜 hxs : UniqueDiffWithinAt 𝕜 s x ⊢ derivWithin (fun y => star (f y)) s x = star (derivWithin f s x)
exact DFunLike.congr_fun (fderivWithin_star hxs) _
no goals
e9c7dc1260002160
starConvex_iff_div
Mathlib/Analysis/Convex/Star.lean
theorem starConvex_iff_div : StarConvex 𝕜 x s ↔ ∀ ⦃y⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s := ⟨fun h y hy a b ha hb hab => by apply h hy · positivity · positivity · rw [← add_div] exact div_self hab.ne', fun h y hy a b ha hb hab => by have h' := h hy ha hb rw [hab, div_one, div_one] at h' exact h' zero_lt_one⟩
case a 𝕜 : Type u_1 E : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E x : E s : Set E h : StarConvex 𝕜 x s y : E hy : y ∈ s a b : 𝕜 ha : 0 ≤ a hb : 0 ≤ b hab : 0 < a + b ⊢ 0 ≤ a / (a + b)
positivity
no goals
cfbb609cf4b8dfa0
Stream.fst_takeTR_loop
Mathlib/.lake/packages/batteries/Batteries/Data/Stream.lean
theorem fst_takeTR_loop [Stream σ α] (s : σ) (acc : List α) (n : Nat) : (takeTR.loop s acc n).fst = acc.reverseAux (take s n).fst
case succ σ : Type u_1 α : Type u_2 inst✝ : Stream σ α n : Nat ih : ∀ (s : σ) (acc : List α), (takeTR.loop s acc n).fst = acc.reverseAux (take s n).fst s : σ acc : List α ⊢ (match next? s with | none => (acc.reverse, s) | some (a, s) => takeTR.loop s (a :: acc) n).fst = acc.reverseAux (match next? s with | none => ([], s) | some (a, s) => (a :: (take s n).fst, (take s n).snd)).fst
split
case succ.h_1 σ : Type u_1 α : Type u_2 inst✝ : Stream σ α n : Nat ih : ∀ (s : σ) (acc : List α), (takeTR.loop s acc n).fst = acc.reverseAux (take s n).fst s : σ acc : List α x✝ : Option (α × σ) heq✝ : next? s = none ⊢ (acc.reverse, s).fst = acc.reverseAux ([], s).fst case succ.h_2 σ : Type u_1 α : Type u_2 inst✝ : Stream σ α n : Nat ih : ∀ (s : σ) (acc : List α), (takeTR.loop s acc n).fst = acc.reverseAux (take s n).fst s : σ acc : List α x✝ : Option (α × σ) fst✝ : α s✝ : σ heq✝ : next? s = some (fst✝, s✝) ⊢ (takeTR.loop s✝ (fst✝ :: acc) n).fst = acc.reverseAux (fst✝ :: (take s✝ n).fst, (take s✝ n).snd).fst
2bffc6cbe2fbb7d5
FractionalIdeal.dual_eq_mul_inv
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma dual_eq_mul_inv : dual A K I = dual A K 1 * I⁻¹
case h.e'_3 A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁸ : CommRing A inst✝¹⁷ : Field K inst✝¹⁶ : CommRing B inst✝¹⁵ : Field L inst✝¹⁴ : Algebra A K inst✝¹³ : Algebra B L inst✝¹² : Algebra A B inst✝¹¹ : Algebra K L inst✝¹⁰ : Algebra A L inst✝⁹ : IsScalarTower A K L inst✝⁸ : IsScalarTower A B L inst✝⁷ : IsDomain A inst✝⁶ : IsFractionRing A K inst✝⁵ : FiniteDimensional K L inst✝⁴ : Algebra.IsSeparable K L inst✝³ : IsIntegralClosure B A L inst✝² : IsFractionRing B L inst✝¹ : IsIntegrallyClosed A inst✝ : IsDedekindDomain B I : FractionalIdeal B⁰ L hI : ¬I = 0 this : dual A K I * I ≤ dual A K 1 ⊢ dual A K I = (fun J => J * I⁻¹) (dual A K I * I)
simp only [mul_inv_cancel₀ hI, mul_one, mul_assoc]
no goals
ed98528f286a47a6
Vector.exists_mem_push
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem exists_mem_push {p : α → Prop} {a : α} {xs : Vector α n} : (∃ x, ∃ _ : x ∈ xs.push a, p x) ↔ p a ∨ ∃ x, ∃ _ : x ∈ xs, p x
case mpr.inr.intro.intro α : Type u_1 n : Nat p : α → Prop a : α xs : Vector α n x : α h : x ∈ xs h' : p x ⊢ ∃ x, (x ∈ xs ∨ x = a) ∧ p x
exact ⟨x, .inl h, h'⟩
no goals
110c8ee2b5790ab6
ContinuousMap.secondCountableTopology
Mathlib/Topology/ContinuousMap/SecondCountableSpace.lean
theorem secondCountableTopology [SecondCountableTopology Y] (hX : ∃ S : Set (Set X), S.Countable ∧ (∀ K ∈ S, IsCompact K) ∧ ∀ f : C(X, Y), ∀ V, IsOpen V → ∀ x ∈ f ⁻¹' V, ∃ K ∈ S, K ∈ 𝓝 x ∧ MapsTo f K V) : SecondCountableTopology C(X, Y) where is_open_generated_countable
case intro.intro.intro.refine_2.a X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : SecondCountableTopology Y S : Set (Set X) hScount : S.Countable hScomp : ∀ K ∈ S, IsCompact K hS : ∀ (f : C(X, Y)) (V : Set Y), IsOpen V → ∀ x ∈ ⇑f ⁻¹' V, ∃ K ∈ S, K ∈ 𝓝 x ∧ MapsTo (⇑f) K V f : C(X, Y) x : X V : Set Y hV : V ∈ countableBasis Y hx : f x ∈ V ⊢ IsOpen V case intro.intro.intro.refine_2.a X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : SecondCountableTopology Y S : Set (Set X) hScount : S.Countable hScomp : ∀ K ∈ S, IsCompact K hS : ∀ (f : C(X, Y)) (V : Set Y), IsOpen V → ∀ x ∈ ⇑f ⁻¹' V, ∃ K ∈ S, K ∈ 𝓝 x ∧ MapsTo (⇑f) K V f : C(X, Y) x : X V : Set Y hV : V ∈ countableBasis Y hx : f x ∈ V ⊢ x ∈ ⇑f ⁻¹' V
exacts [isOpen_of_mem_countableBasis hV, hx]
no goals
0dafc646dd2a456c
MeasureTheory.compl_cylinder
Mathlib/MeasureTheory/Constructions/Cylinders.lean
theorem compl_cylinder (s : Finset ι) (S : Set (∀ i : s, α i)) : (cylinder s S)ᶜ = cylinder s (Sᶜ)
case h ι : Type u_1 α : ι → Type u_2 s : Finset ι S : Set ((i : { x // x ∈ s }) → α ↑i) f : (i : ι) → α i ⊢ f ∈ (cylinder s S)ᶜ ↔ f ∈ cylinder s Sᶜ
simp only [mem_compl_iff, mem_cylinder]
no goals
0a9d73df55e687df
RelSeries.smash_succ_natAdd
Mathlib/Order/RelSeries.lean
lemma smash_succ_natAdd {p q : RelSeries r} (h : p.last = q.head) (i : Fin q.length) : smash p q h (i.natAdd p.length).succ = q i.succ
case neg α : Type u_1 r : Rel α α p q : RelSeries r h : p.last = q.head i : Fin q.length H : ¬↑(Fin.natAdd p.length i).succ < p.length ⊢ q.toFun ⟨↑(Fin.natAdd p.length i).succ - p.length, ⋯⟩ = q.toFun i.succ
congr
case neg.e_a.e_val α : Type u_1 r : Rel α α p q : RelSeries r h : p.last = q.head i : Fin q.length H : ¬↑(Fin.natAdd p.length i).succ < p.length ⊢ ↑(Fin.natAdd p.length i).succ - p.length = ↑i + 1
fa10ba653f3f8a7f
Cardinal.isPrimePow_iff
Mathlib/SetTheory/Cardinal/Divisibility.lean
theorem isPrimePow_iff {a : Cardinal} : IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n : ℕ, a = n ∧ IsPrimePow n
case neg.intro a : ℕ h : ¬ℵ₀ ≤ ↑a ⊢ IsPrimePow ↑a ↔ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
rw [isPrimePow_def]
case neg.intro a : ℕ h : ¬ℵ₀ ≤ ↑a ⊢ (∃ p k, Prime p ∧ 0 < k ∧ p ^ k = ↑a) ↔ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
a84b61c12666a126
RegularExpression.star_rmatch_iff
Mathlib/Computability/RegularExpressions.lean
theorem star_rmatch_iff (P : RegularExpression α) : ∀ x : List α, (star P).rmatch x ↔ ∃ S : List (List α), x = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t := fun x => by have IH := fun t (_h : List.length t < List.length x) => star_rmatch_iff P t clear star_rmatch_iff constructor · rcases x with - | ⟨a, x⟩ · intro _h use []; dsimp; tauto · rw [rmatch, deriv, mul_rmatch_iff] rintro ⟨t, u, hs, ht, hu⟩ have hwf : u.length < (List.cons a x).length
case mpr.intro.intro.cons.cons.cons.refine_2 α : Type u_1 inst✝ : DecidableEq α P : RegularExpression α a : α x : List α IH : ∀ (t : List α), t.length < (a :: x).length → (P.star.rmatch t = true ↔ ∃ S, t = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true) U : List (List α) b : α t✝ : List α helem : ∀ t ∈ (b :: t✝) :: U, t ≠ [] ∧ P.rmatch t = true hsum : a = b ∧ x = t✝ ++ U.flatten hwf : U.flatten.length < (a :: x).length t : List α h : t ∈ U ⊢ t ∈ (b :: t✝) :: U
right
case mpr.intro.intro.cons.cons.cons.refine_2.a α : Type u_1 inst✝ : DecidableEq α P : RegularExpression α a : α x : List α IH : ∀ (t : List α), t.length < (a :: x).length → (P.star.rmatch t = true ↔ ∃ S, t = S.flatten ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true) U : List (List α) b : α t✝ : List α helem : ∀ t ∈ (b :: t✝) :: U, t ≠ [] ∧ P.rmatch t = true hsum : a = b ∧ x = t✝ ++ U.flatten hwf : U.flatten.length < (a :: x).length t : List α h : t ∈ U ⊢ Mem t U
8215ce2ddbd6bd2a
LocalizedModule.algebraMap_mk
Mathlib/Algebra/Module/LocalizedModule/Basic.lean
theorem algebraMap_mk {A : Type*} [Semiring A] [Algebra R A] (a : R) (s : S) : algebraMap _ _ (Localization.mk a s) = mk (algebraMap R A a) s
R : Type u inst✝² : CommSemiring R S : Submonoid R A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R A a : R s : ↥S ⊢ (algebraMap (Localization S) (LocalizedModule S A)) (Localization.mk a s) = mk ((algebraMap R A) a) s
rw [Localization.mk_eq_mk']
R : Type u inst✝² : CommSemiring R S : Submonoid R A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R A a : R s : ↥S ⊢ (algebraMap (Localization S) (LocalizedModule S A)) (IsLocalization.mk' (Localization S) a s) = mk ((algebraMap R A) a) s
5d3f59e00a22b9fa
MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
lemma eLpNorm_indicator_eq_eLpNorm_restrict (hs : MeasurableSet s) : eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s)
case pos α : Type u_1 F : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup F f : α → F s : Set α hs : MeasurableSet s hp_zero : ¬p = 0 hp_top : p = ⊤ ⊢ eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s)
simp_rw [hp_top, eLpNorm_exponent_top, eLpNormEssSup_eq_essSup_enorm, enorm_indicator_eq_indicator_enorm, ENNReal.essSup_indicator_eq_essSup_restrict hs]
no goals
8446bfb6ebb65622
FormalMultilinearSeries.radius_rightInv_pos_of_radius_pos
Mathlib/Analysis/Analytic/Inverse.lean
theorem radius_rightInv_pos_of_radius_pos {p : FormalMultilinearSeries 𝕜 E F} {i : E ≃L[𝕜] F} {x : E} (hp : 0 < p.radius) : 0 < (p.rightInv i x).radius
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F i : E ≃L[𝕜] F x : E hp : 0 < p.radius C r : ℝ Cpos : 0 < C rpos : 0 < r ple : ∀ (n : ℕ), ‖p n‖ ≤ C * r ^ n I : ℝ := ‖↑i.symm‖ a : ℝ apos : 0 < a ha1 : 2 * I * C * r ^ 2 * (I + 1) ^ 2 * a ≤ 1 ha2 : r * (I + 1) * a ≤ 1 / 2 S : ℕ → ℝ := fun n => ∑ k ∈ Ico 1 n, a ^ k * ‖p.rightInv i x k‖ n : ℕ one_le_n : 1 ≤ n hn : S n ≤ (I + 1) * a In : 2 ≤ n + 1 rSn : r * S n ≤ 1 / 2 ⊢ r * S n ≠ 1
exact ne_of_lt (rSn.trans_lt (by norm_num))
no goals
8af3e9ca55cc3d57
ProbabilityTheory.measure_ge_le_exp_mul_mgf
Mathlib/Probability/Moments/Basic.lean
theorem measure_ge_le_exp_mul_mgf [IsFiniteMeasure μ] (ε : ℝ) (ht : 0 ≤ t) (h_int : Integrable (fun ω => exp (t * X ω)) μ) : (μ {ω | ε ≤ X ω}).toReal ≤ exp (-t * ε) * mgf X μ t
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable (fun ω => rexp (t * X ω)) μ ht_pos : 0 < t ⊢ (μ {ω | rexp (t * ε) ≤ rexp (t * X ω)}).toReal ≤ (rexp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => rexp (t * X ω)) x ∂μ
have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] := mul_meas_ge_le_integral_of_nonneg (ae_of_all _ fun x => (exp_pos _).le) h_int _
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable (fun ω => rexp (t * X ω)) μ ht_pos : 0 < t this : rexp (t * ε) * (μ {ω | rexp (t * ε) ≤ rexp (t * X ω)}).toReal ≤ ∫ (x : Ω), (fun ω => rexp (t * X ω)) x ∂μ ⊢ (μ {ω | rexp (t * ε) ≤ rexp (t * X ω)}).toReal ≤ (rexp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => rexp (t * X ω)) x ∂μ
d0b4656bb63daebb
Valuation.map_add_supp
Mathlib/RingTheory/Valuation/Basic.lean
theorem map_add_supp (a : R) {s : R} (h : s ∈ supp v) : v (a + s) = v a
R : Type u_3 Γ₀ : Type u_4 inst✝¹ : CommRing R inst✝ : LinearOrderedCommMonoidWithZero Γ₀ v : Valuation R Γ₀ a s : R h : s ∈ v.supp aux : ∀ (a s : R), v s = 0 → v (a + s) ≤ v a ⊢ v a = v (a + s + -s)
simp
no goals
350be2a7ba39fca1
exists_isTranscendenceBasis'
Mathlib/RingTheory/AlgebraicIndependent/TranscendenceBasis.lean
theorem exists_isTranscendenceBasis' (R : Type u) {A : Type v} [CommRing R] [CommRing A] [Algebra R A] (h : Injective (algebraMap R A)) : ∃ (ι : Type v) (x : ι → A), IsTranscendenceBasis R x
case intro R : Type u A : Type v inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A h✝ : Injective ⇑(algebraMap R A) s : Set A h : IsTranscendenceBasis R Subtype.val ⊢ ∃ ι x, IsTranscendenceBasis R x
exact ⟨s, Subtype.val, h⟩
no goals
db78d0e9bc9b1610
Besicovitch.TauPackage.color_lt
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem color_lt {i : Ordinal.{u}} (hi : i < p.lastStep) {N : ℕ} (hN : IsEmpty (SatelliteConfig α N p.τ)) : p.color i < N
case h α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α N : ℕ hN : IsEmpty (SatelliteConfig α N p.τ) i : Ordinal.{u} IH : ∀ k < i, k < p.lastStep → p.color k < N hi : i < p.lastStep ⊢ p.color i < N
let A : Set ℕ := ⋃ (j : { j // j < i }) (_ : (closedBall (p.c (p.index j)) (p.r (p.index j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color j}
case h α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α N : ℕ hN : IsEmpty (SatelliteConfig α N p.τ) i : Ordinal.{u} IH : ∀ k < i, k < p.lastStep → p.color k < N hi : i < p.lastStep A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color ↑j} ⊢ p.color i < N
70d4d5d8aa8a7de2
HahnSeries.SummableFamily.pow_finite_co_support
Mathlib/RingTheory/HahnSeries/Summable.lean
theorem pow_finite_co_support {x : HahnSeries Γ R} (hx : 0 < x.orderTop) (g : Γ) : Set.Finite {a | ((fun n ↦ x ^ n) a).coeff g ≠ 0}
Γ : Type u_1 R : Type u_3 inst✝¹ : LinearOrderedCancelAddCommMonoid Γ inst✝ : CommRing R x : HahnSeries Γ R hx : 0 < x.orderTop g : Γ hpwo : (⋃ n, (x ^ n).support).IsPWO ⊢ {a | ((fun n => x ^ n) a).coeff g ≠ 0}.Finite
by_cases h0 : x = 0
case pos Γ : Type u_1 R : Type u_3 inst✝¹ : LinearOrderedCancelAddCommMonoid Γ inst✝ : CommRing R x : HahnSeries Γ R hx : 0 < x.orderTop g : Γ hpwo : (⋃ n, (x ^ n).support).IsPWO h0 : x = 0 ⊢ {a | ((fun n => x ^ n) a).coeff g ≠ 0}.Finite case neg Γ : Type u_1 R : Type u_3 inst✝¹ : LinearOrderedCancelAddCommMonoid Γ inst✝ : CommRing R x : HahnSeries Γ R hx : 0 < x.orderTop g : Γ hpwo : (⋃ n, (x ^ n).support).IsPWO h0 : ¬x = 0 ⊢ {a | ((fun n => x ^ n) a).coeff g ≠ 0}.Finite
0868e21674511ec5
Cardinal.mk_perm_eq_self_power
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem mk_perm_eq_self_power : #(Equiv.Perm α) = #α ^ #α := ((mk_equiv_le_embedding α α).trans (mk_embedding_le_arrow α α)).antisymm <| by suffices Nonempty ((α → Bool) ↪ Equiv.Perm (α × Bool)) by obtain ⟨e⟩ : Nonempty (α ≃ α × Bool)
α : Type u inst✝ : Infinite α ⊢ Nonempty ((α → Bool) ↪ Perm (α × Bool))
refine ⟨⟨fun f ↦ Involutive.toPerm (fun x ↦ ⟨x.1, xor (f x.1) x.2⟩) fun x ↦ ?_, fun f g h ↦ ?_⟩⟩
case refine_1 α : Type u inst✝ : Infinite α f : α → Bool x : α × Bool ⊢ (fun x => (x.1, f x.1 ^^ x.2)) ((fun x => (x.1, f x.1 ^^ x.2)) x) = x case refine_2 α : Type u inst✝ : Infinite α f g : α → Bool h : (fun f => Involutive.toPerm (fun x => (x.1, f x.1 ^^ x.2)) ⋯) f = (fun f => Involutive.toPerm (fun x => (x.1, f x.1 ^^ x.2)) ⋯) g ⊢ f = g
22b0a13df4d7f440
FiniteField.trace_to_zmod_nondegenerate
Mathlib/FieldTheory/Finite/Trace.lean
theorem trace_to_zmod_nondegenerate (F : Type*) [Field F] [Finite F] [Algebra (ZMod (ringChar F)) F] {a : F} (ha : a ≠ 0) : ∃ b : F, Algebra.trace (ZMod (ringChar F)) F (a * b) ≠ 0
F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 this : Fact (Nat.Prime (ringChar F)) ⊢ ∃ b, (Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0
have htr := traceForm_nondegenerate (ZMod (ringChar F)) F a
F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 this : Fact (Nat.Prime (ringChar F)) htr : (∀ (n : F), ((Algebra.traceForm (ZMod (ringChar F)) F) a) n = 0) → a = 0 ⊢ ∃ b, (Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0
94745db3858cfcfe
Finset.prod_add_prod_le
Mathlib/Algebra/Order/BigOperators/Ring/Finset.lean
/-- If `g, h ≤ f` and `g i + h i ≤ f i`, then the product of `f` over `s` is at least the sum of the products of `g` and `h`. This is the version for `OrderedCommSemiring`. -/ lemma prod_add_prod_le {i : ι} {f g h : ι → R} (hi : i ∈ s) (h2i : g i + h i ≤ f i) (hgf : ∀ j ∈ s, j ≠ i → g j ≤ f j) (hhf : ∀ j ∈ s, j ≠ i → h j ≤ f j) (hg : ∀ i ∈ s, 0 ≤ g i) (hh : ∀ i ∈ s, 0 ≤ h i) : ((∏ i ∈ s, g i) + ∏ i ∈ s, h i) ≤ ∏ i ∈ s, f i
ι : Type u_1 R : Type u_2 inst✝ : OrderedCommSemiring R s : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ j ∈ s, j ≠ i → g j ≤ f j hhf : ∀ j ∈ s, j ≠ i → h j ≤ f j hg : ∀ i ∈ s, 0 ≤ g i hh : ∀ i ∈ s, 0 ≤ h i ⊢ ∏ i ∈ s, g i + ∏ i ∈ s, h i ≤ ∏ i ∈ s, f i
simp_rw [prod_eq_mul_prod_diff_singleton hi]
ι : Type u_1 R : Type u_2 inst✝ : OrderedCommSemiring R s : Finset ι i : ι f g h : ι → R hi : i ∈ s h2i : g i + h i ≤ f i hgf : ∀ j ∈ s, j ≠ i → g j ≤ f j hhf : ∀ j ∈ s, j ≠ i → h j ≤ f j hg : ∀ i ∈ s, 0 ≤ g i hh : ∀ i ∈ s, 0 ≤ h i ⊢ g i * ∏ i ∈ s \ {i}, g i + h i * ∏ i ∈ s \ {i}, h i ≤ f i * ∏ i ∈ s \ {i}, f i
81f5bc6d2c853439
RingHom.Flat.isStableUnderBaseChange
Mathlib/RingTheory/RingHom/Flat.lean
lemma isStableUnderBaseChange : IsStableUnderBaseChange Flat
case h.e'_5.h.h.e_5.h.h R S T : Type u_4 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Module.Flat R T this : Module.Flat S (S ⊗[R] T) e_4✝ : NonUnitalNonAssocSemiring.toAddCommMonoid = addCommMonoid r✝ : S x✝ : S ⊗[R] T ⊢ (algebraMap S (S ⊗[R] T)) r✝ * x✝ = (algebraMap S (S ⊗[R] T)) r✝ * x✝
rfl
no goals
de2a47f537ad5f13
IsMulFreimanIso.mono
Mathlib/Combinatorics/Additive/FreimanHom.lean
@[to_additive] lemma IsMulFreimanIso.mono {hmn : m ≤ n} (hf : IsMulFreimanIso n A B f) : IsMulFreimanIso m A B f where bijOn := hf.bijOn map_prod_eq_map_prod s t hsA htA hs ht
case inr.intro.refine_1 α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanIso n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ s ∨ a ∈ replicate (n - m) a✝ ⊢ a ∈ A
obtain ha | ha := ha
case inr.intro.refine_1.inl α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanIso n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ s ⊢ a ∈ A case inr.intro.refine_1.inr α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanIso n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ replicate (n - m) a✝ ⊢ a ∈ A
4d38848292c1597f
Polynomial.eval_comp
Mathlib/Algebra/Polynomial/Eval/Defs.lean
theorem eval_comp : (p.comp q).eval x = p.eval (q.eval x)
case h_monomial R : Type u inst✝ : CommSemiring R p q : R[X] x : R n : ℕ a : R ⊢ eval x (((monomial n) a).comp q) = eval (eval x q) ((monomial n) a)
simp
no goals
89083fc25576ec15
cfcₙ_integral
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Integral.lean
/-- The non-unital continuous functional calculus commutes with integration. -/ lemma cfcₙ_integral [TopologicalSpace X] [OpensMeasurableSpace X] (f : X → 𝕜 → 𝕜) (bound : X → ℝ) (a : A) [SecondCountableTopologyEither X C(quasispectrum 𝕜 a, 𝕜)₀] (hf₁ : ∀ x, ContinuousOn (f x) (quasispectrum 𝕜 a)) (hf₂ : ∀ x, f x 0 = 0) (hf₃ : Continuous (fun x ↦ (⟨⟨_, hf₁ x |>.restrict⟩, hf₂ x⟩ : C(quasispectrum 𝕜 a, 𝕜)₀))) (hbound : ∀ x, ∀ z ∈ quasispectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖) (hbound_finite_integral : HasFiniteIntegral bound μ) (ha : p a
X : Type u_1 𝕜 : Type u_2 A : Type u_3 p : A → Prop inst✝¹² : RCLike 𝕜 inst✝¹¹ : MeasurableSpace X μ : Measure X inst✝¹⁰ : NonUnitalNormedRing A inst✝⁹ : StarRing A inst✝⁸ : CompleteSpace A inst✝⁷ : NormedSpace 𝕜 A inst✝⁶ : NormedSpace ℝ A inst✝⁵ : IsScalarTower 𝕜 A A inst✝⁴ : SMulCommClass 𝕜 A A inst✝³ : NonUnitalContinuousFunctionalCalculus 𝕜 p inst✝² : TopologicalSpace X inst✝¹ : OpensMeasurableSpace X f : X → 𝕜 → 𝕜 bound : X → ℝ a : A inst✝ : SecondCountableTopologyEither X C(↑(quasispectrum 𝕜 a), 𝕜)₀ hf₁ : ∀ (x : X), ContinuousOn (f x) (quasispectrum 𝕜 a) hf₂ : ∀ (x : X), f x 0 = 0 hf₃ : Continuous fun x => { toFun := (quasispectrum 𝕜 a).restrict (f x), continuous_toFun := ⋯, map_zero' := ⋯ } hbound : ∀ (x : X), ∀ z ∈ quasispectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖ hbound_finite_integral : HasFiniteIntegral bound μ ha : autoParam (p a) _auto✝ fc : X → C(↑(quasispectrum 𝕜 a), 𝕜)₀ := fun x => { toFun := (quasispectrum 𝕜 a).restrict (f x), continuous_toFun := ⋯, map_zero' := ⋯ } x : X ⊢ ‖fc x‖ ≤ ‖bound x‖
change ‖(fc x : C(quasispectrum 𝕜 a, 𝕜))‖ ≤ ‖bound x‖
X : Type u_1 𝕜 : Type u_2 A : Type u_3 p : A → Prop inst✝¹² : RCLike 𝕜 inst✝¹¹ : MeasurableSpace X μ : Measure X inst✝¹⁰ : NonUnitalNormedRing A inst✝⁹ : StarRing A inst✝⁸ : CompleteSpace A inst✝⁷ : NormedSpace 𝕜 A inst✝⁶ : NormedSpace ℝ A inst✝⁵ : IsScalarTower 𝕜 A A inst✝⁴ : SMulCommClass 𝕜 A A inst✝³ : NonUnitalContinuousFunctionalCalculus 𝕜 p inst✝² : TopologicalSpace X inst✝¹ : OpensMeasurableSpace X f : X → 𝕜 → 𝕜 bound : X → ℝ a : A inst✝ : SecondCountableTopologyEither X C(↑(quasispectrum 𝕜 a), 𝕜)₀ hf₁ : ∀ (x : X), ContinuousOn (f x) (quasispectrum 𝕜 a) hf₂ : ∀ (x : X), f x 0 = 0 hf₃ : Continuous fun x => { toFun := (quasispectrum 𝕜 a).restrict (f x), continuous_toFun := ⋯, map_zero' := ⋯ } hbound : ∀ (x : X), ∀ z ∈ quasispectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖ hbound_finite_integral : HasFiniteIntegral bound μ ha : autoParam (p a) _auto✝ fc : X → C(↑(quasispectrum 𝕜 a), 𝕜)₀ := fun x => { toFun := (quasispectrum 𝕜 a).restrict (f x), continuous_toFun := ⋯, map_zero' := ⋯ } x : X ⊢ ‖↑(fc x)‖ ≤ ‖bound x‖
c8ceb0f73ee7838a
DenseRange.topologicalClosure_map_subgroup
Mathlib/Topology/Algebra/Group/Basic.lean
theorem DenseRange.topologicalClosure_map_subgroup [Group H] [TopologicalSpace H] [IsTopologicalGroup H] {f : G →* H} (hf : Continuous f) (hf' : DenseRange f) {s : Subgroup G} (hs : s.topologicalClosure = ⊤) : (s.map f).topologicalClosure = ⊤
G : Type w H : Type x inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : IsTopologicalGroup G inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : IsTopologicalGroup H f : G →* H hf : Continuous ⇑f hf' : DenseRange ⇑f s : Subgroup G hs : s.topologicalClosure = ⊤ ⊢ (Subgroup.map f s).topologicalClosure = ⊤
rw [SetLike.ext'_iff] at hs ⊢
G : Type w H : Type x inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : IsTopologicalGroup G inst✝² : Group H inst✝¹ : TopologicalSpace H inst✝ : IsTopologicalGroup H f : G →* H hf : Continuous ⇑f hf' : DenseRange ⇑f s : Subgroup G hs : ↑s.topologicalClosure = ↑⊤ ⊢ ↑(Subgroup.map f s).topologicalClosure = ↑⊤
b2d3347c9216c0a5
IntermediateField.exists_algHom_adjoin_of_splits
Mathlib/FieldTheory/Extension.lean
theorem exists_algHom_adjoin_of_splits : ∃ φ : adjoin F S →ₐ[F] K, φ.comp (inclusion hL) = f
case intro.intro.refine_2 F : Type u_1 E : Type u_2 K : Type u_3 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Field K inst✝¹ : Algebra F E inst✝ : Algebra F K S : Set E hK : ∀ s ∈ S, IsIntegral F s ∧ Splits (algebraMap F K) (minpoly F s) L : IntermediateField F E f : ↥L →ₐ[F] K hL : L ≤ adjoin F S φ : Lifts F E K hfφ : { carrier := L, emb := f } ≤ φ hφ : IsMax φ ⊢ (φ.emb.comp (inclusion ⋯)).comp (inclusion hL) = f
ext
case intro.intro.refine_2.H F : Type u_1 E : Type u_2 K : Type u_3 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Field K inst✝¹ : Algebra F E inst✝ : Algebra F K S : Set E hK : ∀ s ∈ S, IsIntegral F s ∧ Splits (algebraMap F K) (minpoly F s) L : IntermediateField F E f : ↥L →ₐ[F] K hL : L ≤ adjoin F S φ : Lifts F E K hfφ : { carrier := L, emb := f } ≤ φ hφ : IsMax φ x✝ : ↥L ⊢ ((φ.emb.comp (inclusion ⋯)).comp (inclusion hL)) x✝ = f x✝
8633288b622106c6
Linarith.lt_of_eq_of_lt
Mathlib/Tactic/Linarith/Lemmas.lean
theorem lt_of_eq_of_lt {α} [OrderedSemiring α] {a b : α} (ha : a = 0) (hb : b < 0) : a + b < 0
α : Type u_1 inst✝ : OrderedSemiring α a b : α ha : a = 0 hb : b < 0 ⊢ a + b < 0
simp [*]
no goals
f1d12b3ca07ba69a
AkraBazziRecurrence.GrowsPolynomially.zpow
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
protected lemma GrowsPolynomially.zpow (p : ℤ) (hf : GrowsPolynomially f) (hf_nonneg : ∀ᶠ x in atTop, 0 ≤ f x) : GrowsPolynomially fun x => (f x) ^ p
f : ℝ → ℝ p : ℤ hf : GrowsPolynomially f hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x ⊢ GrowsPolynomially fun x => f x ^ p
simp_rw [← rpow_intCast]
f : ℝ → ℝ p : ℤ hf : GrowsPolynomially f hf_nonneg : ∀ᶠ (x : ℝ) in atTop, 0 ≤ f x ⊢ GrowsPolynomially fun x => f x ^ ↑p
35ea835a985445c9
Filter.prod_principal_principal
Mathlib/Order/Filter/Prod.lean
theorem prod_principal_principal {s : Set α} {t : Set β} : 𝓟 s ×ˢ 𝓟 t = 𝓟 (s ×ˢ t)
α : Type u_1 β : Type u_2 s : Set α t : Set β ⊢ Prod.fst ⁻¹' s ∩ Prod.snd ⁻¹' t = s ×ˢ t
rfl
no goals
198a598179b7f1b6
isTopologicalBasis_isClopen
Mathlib/Topology/Separation/Profinite.lean
theorem isTopologicalBasis_isClopen : IsTopologicalBasis { s : Set X | IsClopen s }
X : Type u_1 inst✝³ : TopologicalSpace X inst✝² : T2Space X inst✝¹ : CompactSpace X inst✝ : TotallyDisconnectedSpace X ⊢ ∀ (a : X) (u : Set X), a ∈ u → IsOpen u → ∃ v ∈ fun U => IsClosed U ∧ IsOpen U, a ∈ v ∧ v ⊆ u
intro x U hxU U_op
X : Type u_1 inst✝³ : TopologicalSpace X inst✝² : T2Space X inst✝¹ : CompactSpace X inst✝ : TotallyDisconnectedSpace X x : X U : Set X hxU : x ∈ U U_op : IsOpen U ⊢ ∃ v ∈ fun U => IsClosed U ∧ IsOpen U, x ∈ v ∧ v ⊆ U
794664f79b6f2170
ProbabilityTheory.Kernel.IndepSets.union
Mathlib/Probability/Independence/Kernel.lean
theorem IndepSets.union {s₁ s₂ s' : Set (Set Ω)} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : Measure α} (h₁ : IndepSets s₁ s' κ μ) (h₂ : IndepSets s₂ s' κ μ) : IndepSets (s₁ ∪ s₂) s' κ μ
case inr α : Type u_1 Ω : Type u_2 _mα : MeasurableSpace α s₁ s₂ s' : Set (Set Ω) _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α h₁ : IndepSets s₁ s' κ μ h₂ : IndepSets s₂ s' κ μ t1 t2 : Set Ω ht1 : t1 ∈ s₁ ∪ s₂ ht2 : t2 ∈ s' ht1₂ : t1 ∈ s₂ ⊢ ∀ᵐ (a : α) ∂μ, (κ a) (t1 ∩ t2) = (κ a) t1 * (κ a) t2
exact h₂ t1 t2 ht1₂ ht2
no goals
ae105d1947c977e0
FirstOrder.Ring.realize_termOfFreeCommRing
Mathlib/ModelTheory/Algebra/Ring/FreeCommRing.lean
theorem realize_termOfFreeCommRing (p : FreeCommRing α) (v : α → R) : (termOfFreeCommRing p).realize v = FreeCommRing.lift v p
case var α : Type u_1 R : Type u_2 inst✝¹ : CommRing R inst✝ : CompatibleRing R p : FreeCommRing α v : α → R x✝ : CompatibleRing (FreeCommRing α) := compatibleRingOfRing (FreeCommRing α) a✝ : α ⊢ Term.realize v (var a✝) = (FreeCommRing.lift v) (Term.realize FreeCommRing.of (var a✝))
simp
no goals
01caeeaee92420b9
MvPowerSeries.coeff_mul_of_add_lexOrder
Mathlib/RingTheory/MvPowerSeries/LexOrder.lean
theorem coeff_mul_of_add_lexOrder {φ ψ : MvPowerSeries σ R} {p q : σ →₀ ℕ} (hp : lexOrder φ = toLex p) (hq : lexOrder ψ = toLex q) : coeff R (p + q) (φ * ψ) = coeff R p φ * coeff R q ψ
case pos σ : Type u_1 R : Type u_2 inst✝² : Semiring R inst✝¹ : LinearOrder σ inst✝ : WellFoundedGT σ φ ψ : MvPowerSeries σ R p q : σ →₀ ℕ hp : φ.lexOrder = ↑(toLex p) hq : ψ.lexOrder = ↑(toLex q) u v : σ →₀ ℕ h' : (u, v) ≠ (p, q) h : u + v = p + q hu : toLex u < toLex p ⊢ ↑(toLex u) < φ.lexOrder
simp only [hp, WithTop.coe_lt_coe, hu]
no goals
0c23704cc23b543a
Std.Sat.AIG.denote_relabel
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/Relabel.lean
theorem denote_relabel (aig : AIG α) (r : α → β) (start : Nat) {hidx} (assign : β → Bool) : ⟦aig.relabel r, ⟨start, hidx⟩, assign⟧ = ⟦aig, ⟨start, by rw [← relabel_size_eq_size (r := r)]; omega⟩, (assign ∘ r)⟧
α : Type inst✝³ : Hashable α inst✝² : DecidableEq α β : Type inst✝¹ : Hashable β inst✝ : DecidableEq β aig : AIG α r : α → β start : Nat hidx : start < (relabel r aig).decls.size assign : β → Bool ⊢ start < aig.decls.size
rw [← relabel_size_eq_size (r := r)]
α : Type inst✝³ : Hashable α inst✝² : DecidableEq α β : Type inst✝¹ : Hashable β inst✝ : DecidableEq β aig : AIG α r : α → β start : Nat hidx : start < (relabel r aig).decls.size assign : β → Bool ⊢ start < (relabel r aig).decls.size
cbc1035eea40fc57
Std.DHashMap.Internal.AssocList.Const.toList_alter
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/AssocList/Lemmas.lean
theorem toList_alter [BEq α] [EquivBEq α] {a : α} {f : Option β → Option β} {l : AssocList α (fun _ => β)} : Perm (alter a f l).toList (Const.alterKey a f l.toList)
case cons α : Type u β : Type v inst✝¹ : BEq α inst✝ : EquivBEq α a : α f : Option β → Option β key✝ : α value✝ : β tail✝ : AssocList α fun x => β tail_ih✝ : (alter a f tail✝).toList.Perm (Const.alterKey a f tail✝.toList) ⊢ (alter a f (cons key✝ value✝ tail✝)).toList.Perm (if (key✝ == a) = true then match f (some value✝) with | none => tail✝.toList | some v => ⟨a, v⟩ :: tail✝.toList else ⟨key✝, value✝⟩ :: Const.alterKey a f tail✝.toList)
rw [alter]
case cons α : Type u β : Type v inst✝¹ : BEq α inst✝ : EquivBEq α a : α f : Option β → Option β key✝ : α value✝ : β tail✝ : AssocList α fun x => β tail_ih✝ : (alter a f tail✝).toList.Perm (Const.alterKey a f tail✝.toList) ⊢ (if (key✝ == a) = true then match f (some value✝) with | none => tail✝ | some b => cons a b tail✝ else let tail := alter a f tail✝; cons key✝ value✝ tail).toList.Perm (if (key✝ == a) = true then match f (some value✝) with | none => tail✝.toList | some v => ⟨a, v⟩ :: tail✝.toList else ⟨key✝, value✝⟩ :: Const.alterKey a f tail✝.toList)
ede47393f817204a
DihedralGroup.exponent
Mathlib/GroupTheory/SpecificGroups/Dihedral.lean
theorem exponent : Monoid.exponent (DihedralGroup n) = lcm n 2
case inr.a.a.r n : ℕ hn : NeZero n m : ZMod n ⊢ r m ^ lcm n 2 = 1
rw [← orderOf_dvd_iff_pow_eq_one, orderOf_r]
case inr.a.a.r n : ℕ hn : NeZero n m : ZMod n ⊢ n / n.gcd m.val ∣ lcm n 2
5619adb1153445d8
smoothSheafCommRing.isUnit_stalk_iff
Mathlib/Geometry/Manifold/Sheaf/LocallyRingedSpace.lean
theorem smoothSheafCommRing.isUnit_stalk_iff {x : M} (f : (smoothSheafCommRing IM 𝓘(𝕜) M 𝕜).presheaf.stalk x) : IsUnit f ↔ f ∉ RingHom.ker (smoothSheafCommRing.eval IM 𝓘(𝕜) M 𝕜 x)
case mpr.intro.intro.intro 𝕜 : Type u inst✝⁵ : NontriviallyNormedField 𝕜 EM : Type u_1 inst✝⁴ : NormedAddCommGroup EM inst✝³ : NormedSpace 𝕜 EM HM : Type u_2 inst✝² : TopologicalSpace HM IM : ModelWithCorners 𝕜 EM HM M : Type u inst✝¹ : TopologicalSpace M inst✝ : ChartedSpace HM M x : M S : TopCat.Presheaf CommRingCat (TopCat.of M) := (smoothSheafCommRing IM 𝓘(𝕜, 𝕜) M 𝕜).presheaf U : Opens M hxU : x ∈ U f : C^∞⟮IM, ↥U; 𝓘(𝕜, 𝕜), 𝕜⟯ hf : (eval IM 𝓘(𝕜, 𝕜) M 𝕜 x) ((CategoryTheory.ConcreteCategory.hom (S.germ U x hxU)) f) ≠ 0 hf' : f ⟨x, hxU⟩ ≠ 0 ⊢ IsUnit ((CategoryTheory.ConcreteCategory.hom (S.germ U x hxU)) f)
have H : ∀ᶠ (z : U) in 𝓝 ⟨x, hxU⟩, f z ≠ 0 := f.2.continuous.continuousAt.eventually_ne hf'
case mpr.intro.intro.intro 𝕜 : Type u inst✝⁵ : NontriviallyNormedField 𝕜 EM : Type u_1 inst✝⁴ : NormedAddCommGroup EM inst✝³ : NormedSpace 𝕜 EM HM : Type u_2 inst✝² : TopologicalSpace HM IM : ModelWithCorners 𝕜 EM HM M : Type u inst✝¹ : TopologicalSpace M inst✝ : ChartedSpace HM M x : M S : TopCat.Presheaf CommRingCat (TopCat.of M) := (smoothSheafCommRing IM 𝓘(𝕜, 𝕜) M 𝕜).presheaf U : Opens M hxU : x ∈ U f : C^∞⟮IM, ↥U; 𝓘(𝕜, 𝕜), 𝕜⟯ hf : (eval IM 𝓘(𝕜, 𝕜) M 𝕜 x) ((CategoryTheory.ConcreteCategory.hom (S.germ U x hxU)) f) ≠ 0 hf' : f ⟨x, hxU⟩ ≠ 0 H : ∀ᶠ (z : ↥U) in 𝓝 ⟨x, hxU⟩, f z ≠ 0 ⊢ IsUnit ((CategoryTheory.ConcreteCategory.hom (S.germ U x hxU)) f)
f7ca29d724eff4f4
FractionalIdeal.mul_right_mono
Mathlib/RingTheory/FractionalIdeal/Basic.lean
theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P I J J' : FractionalIdeal S P h : J ≤ J' ⊢ ⟨↑J * ↑I, ⋯⟩ ≤ ⟨↑J' * ↑I, ⋯⟩
exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy
no goals
4b4fbc796ff3929f
Fermat42.not_minimal
Mathlib/NumberTheory/FLT/Four.lean
theorem not_minimal {a b c : ℤ} (h : Minimal a b c) (ha2 : a % 2 = 1) (hc : 0 < c) : False
a b c : ℤ h : Minimal a b c ha2 : a % 2 = 1 hc : 0 < c ht : PythagoreanTriple (a ^ 2) (b ^ 2) c h2 : (a ^ 2).gcd (b ^ 2) = 1 ha22 : a ^ 2 % 2 = 1 m n : ℤ ht1 : a ^ 2 = m ^ 2 - n ^ 2 ht2 : b ^ 2 = 2 * m * n ht3 : c = m ^ 2 + n ^ 2 ht4 : m.gcd n = 1 ht5 : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0 ht6 : 0 ≤ m htt : PythagoreanTriple a n m h3 : a.gcd n = 1 hb20 : b ^ 2 ≠ 0 h4 : 0 < m r s : ℤ left✝ : a = r ^ 2 - s ^ 2 htt2 : n = 2 * r * s htt3 : m = r ^ 2 + s ^ 2 htt4 : r.gcd s = 1 htt5 : r % 2 = 0 ∧ s % 2 = 1 ∨ r % 2 = 1 ∧ s % 2 = 0 htt6 : 0 ≤ r hcp : m.gcd (r * s) = 1 b' : ℤ hb2' : b = 2 * b' hs : b' ^ 2 = m * (r * s) hrsz : r * s ≠ 0 h2b0 : b' ≠ 0 i : ℤ hi : m = i ^ 2 ∨ m = -i ^ 2 h1 : m = -i ^ 2 ⊢ False
have hit : -i ^ 2 ≤ 0 := neg_nonpos.mpr (sq_nonneg i)
a b c : ℤ h : Minimal a b c ha2 : a % 2 = 1 hc : 0 < c ht : PythagoreanTriple (a ^ 2) (b ^ 2) c h2 : (a ^ 2).gcd (b ^ 2) = 1 ha22 : a ^ 2 % 2 = 1 m n : ℤ ht1 : a ^ 2 = m ^ 2 - n ^ 2 ht2 : b ^ 2 = 2 * m * n ht3 : c = m ^ 2 + n ^ 2 ht4 : m.gcd n = 1 ht5 : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0 ht6 : 0 ≤ m htt : PythagoreanTriple a n m h3 : a.gcd n = 1 hb20 : b ^ 2 ≠ 0 h4 : 0 < m r s : ℤ left✝ : a = r ^ 2 - s ^ 2 htt2 : n = 2 * r * s htt3 : m = r ^ 2 + s ^ 2 htt4 : r.gcd s = 1 htt5 : r % 2 = 0 ∧ s % 2 = 1 ∨ r % 2 = 1 ∧ s % 2 = 0 htt6 : 0 ≤ r hcp : m.gcd (r * s) = 1 b' : ℤ hb2' : b = 2 * b' hs : b' ^ 2 = m * (r * s) hrsz : r * s ≠ 0 h2b0 : b' ≠ 0 i : ℤ hi : m = i ^ 2 ∨ m = -i ^ 2 h1 : m = -i ^ 2 hit : -i ^ 2 ≤ 0 ⊢ False
58647b498e4824ae
Nat.bitIndices_two_mul_add_one
Mathlib/Data/Nat/BitIndices.lean
theorem bitIndices_two_mul_add_one (n : ℕ) : bitIndices (2 * n + 1) = 0 :: (bitIndices n).map (· + 1)
n : ℕ ⊢ (2 * n + 1).bitIndices = 0 :: map (fun x => x + 1) n.bitIndices
rw [← bitIndices_bit_true, bit_true]
no goals
7c3ae968fa7095e7
tendsto_of_le_liminf_of_limsup_le
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
theorem tendsto_of_le_liminf_of_limsup_le {f : Filter β} {u : β → α} {a : α} (hinf : a ≤ liminf u f) (hsup : limsup u f ≤ a) (h : f.IsBoundedUnder (· ≤ ·) u
case inl α : Type u_2 β : Type u_3 inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α u : β → α a : α hinf : a ≤ liminf u ⊥ hsup : limsup u ⊥ ≤ a h : autoParam (IsBoundedUnder (fun x1 x2 => x1 ≤ x2) ⊥ u) _auto✝ h' : autoParam (IsBoundedUnder (fun x1 x2 => x1 ≥ x2) ⊥ u) _auto✝ ⊢ Tendsto u ⊥ (𝓝 a)
exact tendsto_bot
no goals
b5c733a89e70f693
exists_isIntegralCurveAt_of_contMDiffAt
Mathlib/Geometry/Manifold/IntegralCurve/ExistUnique.lean
theorem exists_isIntegralCurveAt_of_contMDiffAt [CompleteSpace E] (hv : ContMDiffAt I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M)) x₀) (hx : I.IsInteriorPoint x₀) : ∃ γ : ℝ → M, γ t₀ = x₀ ∧ IsIntegralCurveAt γ v t₀
case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E H : Type u_2 inst✝⁴ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M inst✝¹ : IsManifold I 1 M v : (x : M) → TangentSpace I x t₀ : ℝ x₀ : M inst✝ : CompleteSpace E hx : I.IsInteriorPoint x₀ left✝ : ContinuousAt (fun x => { proj := x, snd := v x }) x₀ hv : ContDiffWithinAt ℝ 1 (↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (range ↑I) (↑(extChartAt I x₀) x₀) f : ℝ → E hf1 : f t₀ = ↑(extChartAt I x₀) x₀ hf2 : ∀ᶠ (y : ℝ) in 𝓝 t₀, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y a : ℝ ha : a > 0 hf2' : ∀ y ∈ Metric.ball t₀ a, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y hcont : ∀ A ∈ 𝓝 (↑(extChartAt I x₀) x₀), f ⁻¹' A ∈ 𝓝 t₀ hnhds : ∀ᶠ (x' : ℝ) in 𝓝 t₀, f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 x' s : Set ℝ hs : s ∈ 𝓝 t₀ haux : ∀ y ∈ s, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y ∧ f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 y t : ℝ ht : t ∈ s xₜ : M := ↑(extChartAt I x₀).symm (f t) h : HasDerivAt f ((tangentCoordChange I xₜ x₀ xₜ) (v xₜ)) t hf3 : f t ∈ interior (extChartAt I x₀).target hf3' : f t ∈ (extChartAt I x₀).target hft1 : ↑(extChartAt I x₀).symm (f t) ∈ (extChartAt I x₀).source ⊢ HasMFDerivAt (modelWithCornersSelf ℝ ℝ) I (↑(extChartAt I x₀).symm ∘ f) t (ContinuousLinearMap.smulRight 1 (v ((↑(extChartAt I x₀).symm ∘ f) t)))
have hft2 := mem_extChartAt_source (I := I) xₜ
case intro.intro.intro.intro.intro E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E H : Type u_2 inst✝⁴ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M inst✝¹ : IsManifold I 1 M v : (x : M) → TangentSpace I x t₀ : ℝ x₀ : M inst✝ : CompleteSpace E hx : I.IsInteriorPoint x₀ left✝ : ContinuousAt (fun x => { proj := x, snd := v x }) x₀ hv : ContDiffWithinAt ℝ 1 (↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (range ↑I) (↑(extChartAt I x₀) x₀) f : ℝ → E hf1 : f t₀ = ↑(extChartAt I x₀) x₀ hf2 : ∀ᶠ (y : ℝ) in 𝓝 t₀, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y a : ℝ ha : a > 0 hf2' : ∀ y ∈ Metric.ball t₀ a, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y hcont : ∀ A ∈ 𝓝 (↑(extChartAt I x₀) x₀), f ⁻¹' A ∈ 𝓝 t₀ hnhds : ∀ᶠ (x' : ℝ) in 𝓝 t₀, f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 x' s : Set ℝ hs : s ∈ 𝓝 t₀ haux : ∀ y ∈ s, HasDerivAt f ((↑(extChartAt I.tangent { proj := x₀, snd := v x₀ }) ∘ (fun x => { proj := x, snd := v x }) ∘ ↑(extChartAt I x₀).symm) (f y)).2 y ∧ f ⁻¹' interior (extChartAt I x₀).target ∈ 𝓝 y t : ℝ ht : t ∈ s xₜ : M := ↑(extChartAt I x₀).symm (f t) h : HasDerivAt f ((tangentCoordChange I xₜ x₀ xₜ) (v xₜ)) t hf3 : f t ∈ interior (extChartAt I x₀).target hf3' : f t ∈ (extChartAt I x₀).target hft1 : ↑(extChartAt I x₀).symm (f t) ∈ (extChartAt I x₀).source hft2 : xₜ ∈ (extChartAt I xₜ).source ⊢ HasMFDerivAt (modelWithCornersSelf ℝ ℝ) I (↑(extChartAt I x₀).symm ∘ f) t (ContinuousLinearMap.smulRight 1 (v ((↑(extChartAt I x₀).symm ∘ f) t)))
b2c5f907bce00300
Rack.self_act_eq_iff_eq
Mathlib/Algebra/Quandle.lean
theorem self_act_eq_iff_eq {x y : R} : x ◃ x = y ◃ y ↔ x = y
case mp R : Type u_1 inst✝ : Rack R x y : R ⊢ x ◃ x = y ◃ y → x = y
intro h
case mp R : Type u_1 inst✝ : Rack R x y : R h : x ◃ x = y ◃ y ⊢ x = y
985d64cb6e461efd
aux₀
Mathlib/MeasureTheory/Order/UpperLower.lean
/-- If we can fit a small ball inside a set `s` intersected with any neighborhood of `x`, then the density of `s` near `x` is not `0`. Along with `aux₁`, this proves that `x` is a Lebesgue point of `s`. This will be used to prove that the frontier of an order-connected set is null. -/ private lemma aux₀ (h : ∀ δ, 0 < δ → ∃ y, closedBall y (δ / 4) ⊆ closedBall x δ ∧ closedBall y (δ / 4) ⊆ interior s) : ¬Tendsto (fun r ↦ volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 0)
ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ h : ∀ (δ : ℝ), 0 < δ → ∃ y, closedBall y (δ / 4) ⊆ closedBall x δ ∧ closedBall y (δ / 4) ⊆ interior s ⊢ ¬Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 0)
choose f hf₀ hf₁ using h
ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior s ⊢ ¬Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 0)
0d32daafddddd57d
Nat.factorization_choose_le_one
Mathlib/Data/Nat/Choose/Factorization.lean
theorem factorization_choose_le_one (p_large : n < p ^ 2) : (choose n k).factorization p ≤ 1
case inr p n k : ℕ p_large : n < p ^ 2 hn0 : n ≠ 0 ⊢ log p n ≤ 1
exact Nat.lt_succ_iff.1 (log_lt_of_lt_pow hn0 p_large)
no goals
cceb2011e8e71a2f
MeasurableSpace.generateMeasurableRec_of_omega1_le
Mathlib/MeasureTheory/MeasurableSpace/Card.lean
theorem generateMeasurableRec_of_omega1_le (s : Set (Set α)) {i : Ordinal.{v}} (hi : ω₁ ≤ i) : generateMeasurableRec s i = generateMeasurableRec s (ω₁ : Ordinal.{v})
α : Type u s : Set (Set α) i : Ordinal.{v} hi : ω_ 1 ≤ i ⊢ generateMeasurableRec s i = generateMeasurableRec s (ω_ 1)
apply (generateMeasurableRec_mono s hi).antisymm'
α : Type u s : Set (Set α) i : Ordinal.{v} hi : ω_ 1 ≤ i ⊢ generateMeasurableRec s i ≤ generateMeasurableRec s (ω_ 1)
5d8fe939fc21f9d6
IsDiscreteValuationRing.HasUnitMulPowIrreducibleFactorization.unique_irreducible
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
theorem unique_irreducible (hR : HasUnitMulPowIrreducibleFactorization R) ⦃p q : R⦄ (hp : Irreducible p) (hq : Irreducible q) : Associated p q
R : Type u_1 inst✝ : CommRing R hR : HasUnitMulPowIrreducibleFactorization R p q : R hp : Irreducible p hq : Irreducible q ⊢ Associated p q
rcases hR with ⟨ϖ, hϖ, hR⟩
case intro.intro R : Type u_1 inst✝ : CommRing R p q : R hp : Irreducible p hq : Irreducible q ϖ : R hϖ : Irreducible ϖ hR : ∀ {x : R}, x ≠ 0 → ∃ n, Associated (ϖ ^ n) x ⊢ Associated p q
a4e838b13bdf1d0b
Real.iUnion_Iic_rat
Mathlib/Data/Real/Archimedean.lean
theorem iUnion_Iic_rat : ⋃ r : ℚ, Iic (r : ℝ) = univ
⊢ ⋃ r, Iic ↑r = univ
exact iUnion_Iic_of_not_bddAbove_range not_bddAbove_coe
no goals
e997ec3de0d7f0bf
Polynomial.separable_X_pow_sub_C_of_irreducible
Mathlib/FieldTheory/KummerExtension.lean
theorem Polynomial.separable_X_pow_sub_C_of_irreducible : (X ^ n - C a).Separable
case neg K : Type u inst✝ : Field K n : ℕ hζ✝ : (primitiveRoots n K).Nonempty a : K H : Irreducible (X ^ n - C a) this✝ : Fact (Irreducible (X ^ n - C a)) := { out := H } this : Algebra K K[n√a] := inferInstance hn : 0 < n hn' : ¬n = 1 ζ : K hζ : IsPrimitiveRoot ζ n ⊢ ∀ x ∈ Finset.range n, ∀ y ∈ Finset.range n, (algebraMap K K[n√a]) ζ ^ x * root (X ^ n - C a) = (algebraMap K K[n√a]) ζ ^ y * root (X ^ n - C a) → x = y
have : MonoidHomClass (K →+* K[n√a]) K K[n√a] := inferInstance
case neg K : Type u inst✝ : Field K n : ℕ hζ✝ : (primitiveRoots n K).Nonempty a : K H : Irreducible (X ^ n - C a) this✝¹ : Fact (Irreducible (X ^ n - C a)) := { out := H } this✝ : Algebra K K[n√a] := inferInstance hn : 0 < n hn' : ¬n = 1 ζ : K hζ : IsPrimitiveRoot ζ n this : MonoidHomClass (K →+* K[n√a]) K K[n√a] ⊢ ∀ x ∈ Finset.range n, ∀ y ∈ Finset.range n, (algebraMap K K[n√a]) ζ ^ x * root (X ^ n - C a) = (algebraMap K K[n√a]) ζ ^ y * root (X ^ n - C a) → x = y
162933979857b32b
AlgebraicGeometry.exists_basicOpen_le_appLE_of_appLE_of_isAffine
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
/-- If `P` holds for `f` over affine opens `U₂` of `Y` and `V₂` of `X` and `U₁` (resp. `V₁`) are open affine neighborhoods of `x` (resp. `f.base x`), then `P` also holds for `f` over some basic open of `U₁` (resp. `V₁`). -/ lemma exists_basicOpen_le_appLE_of_appLE_of_isAffine (hPa : StableUnderCompositionWithLocalizationAwayTarget P) (hPl : LocalizationAwayPreserves P) (x : X) (U₁ : Y.affineOpens) (U₂ : Y.affineOpens) (V₁ : X.affineOpens) (V₂ : X.affineOpens) (hx₁ : x ∈ V₁.1) (hx₂ : x ∈ V₂.1) (e₂ : V₂.1 ≤ f ⁻¹ᵁ U₂.1) (h₂ : P (f.appLE U₂ V₂ e₂).hom) (hfx₁ : f.base x ∈ U₁.1) : ∃ (r : Γ(Y, U₁)) (s : Γ(X, V₁)) (_ : x ∈ X.basicOpen s) (e : X.basicOpen s ≤ f ⁻¹ᵁ Y.basicOpen r), P (f.appLE (Y.basicOpen r) (X.basicOpen s) e).hom
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop X Y : Scheme f : X ⟶ Y hPa : StableUnderCompositionWithLocalizationAwayTarget fun {R S} [CommRing R] [CommRing S] => P hPl : LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P x : ↑↑X.toPresheafedSpace U₁ U₂ : ↑Y.affineOpens V₁ V₂ : ↑X.affineOpens hx₁ : x ∈ ↑V₁ hx₂ : x ∈ ↑V₂ e₂ : ↑V₂ ≤ f ⁻¹ᵁ ↑U₂ h₂ : P (CommRingCat.Hom.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) hfx₁ : (ConcreteCategory.hom f.base) x ∈ ↑U₁ r : ↑Γ(Y, ↑U₁) r' : ↑Γ(Y, ↑U₂) hBrr' : Y.basicOpen r = Y.basicOpen r' hBfx : (ConcreteCategory.hom f.base) x ∈ Y.basicOpen r ha : IsAffineOpen (X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r')) hxa : x ∈ X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r') s : ↑Γ(X, ↑V₁) s' : ↑Γ(X, X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r')) hBss' : X.basicOpen s = X.basicOpen s' hBx : x ∈ X.basicOpen s this✝¹ : IsLocalization.Away ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r') ↑Γ(X, X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r')) this✝ : IsLocalization.Away r' ↑Γ(Y, Y.basicOpen r') this : IsLocalization.Away s' ↑Γ(X, X.basicOpen s') ers : X.basicOpen s ≤ f ⁻¹ᵁ Y.basicOpen r ⊢ Scheme.Hom.app f (Y.basicOpen r') ≫ X.presheaf.map (homOfLE ⋯).op = Scheme.Hom.app f (Y.basicOpen r') ≫ X.presheaf.map (homOfLE ⋯).op ≫ CommRingCat.ofHom (algebraMap ↑(X.presheaf.toPrefunctor.1 (Opposite.op (X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.app f ↑U₂ ≫ X.presheaf.map (homOfLE e₂).op)) r')))) ↑(X.presheaf.toPrefunctor.1 (Opposite.op (X.basicOpen s'))))
congr
case e_a P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop X Y : Scheme f : X ⟶ Y hPa : StableUnderCompositionWithLocalizationAwayTarget fun {R S} [CommRing R] [CommRing S] => P hPl : LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => P x : ↑↑X.toPresheafedSpace U₁ U₂ : ↑Y.affineOpens V₁ V₂ : ↑X.affineOpens hx₁ : x ∈ ↑V₁ hx₂ : x ∈ ↑V₂ e₂ : ↑V₂ ≤ f ⁻¹ᵁ ↑U₂ h₂ : P (CommRingCat.Hom.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) hfx₁ : (ConcreteCategory.hom f.base) x ∈ ↑U₁ r : ↑Γ(Y, ↑U₁) r' : ↑Γ(Y, ↑U₂) hBrr' : Y.basicOpen r = Y.basicOpen r' hBfx : (ConcreteCategory.hom f.base) x ∈ Y.basicOpen r ha : IsAffineOpen (X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r')) hxa : x ∈ X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r') s : ↑Γ(X, ↑V₁) s' : ↑Γ(X, X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r')) hBss' : X.basicOpen s = X.basicOpen s' hBx : x ∈ X.basicOpen s this✝¹ : IsLocalization.Away ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r') ↑Γ(X, X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.appLE f (↑U₂) (↑V₂) e₂)) r')) this✝ : IsLocalization.Away r' ↑Γ(Y, Y.basicOpen r') this : IsLocalization.Away s' ↑Γ(X, X.basicOpen s') ers : X.basicOpen s ≤ f ⁻¹ᵁ Y.basicOpen r ⊢ X.presheaf.map (homOfLE ⋯).op = X.presheaf.map (homOfLE ⋯).op ≫ CommRingCat.ofHom (algebraMap ↑(X.presheaf.toPrefunctor.1 (Opposite.op (X.basicOpen ((ConcreteCategory.hom (Scheme.Hom.app f ↑U₂ ≫ X.presheaf.map (homOfLE e₂).op)) r')))) ↑(X.presheaf.toPrefunctor.1 (Opposite.op (X.basicOpen s'))))
cdf0cd1399279970
CategoryTheory.composePath_comp
Mathlib/CategoryTheory/PathCategory/Basic.lean
theorem composePath_comp {X Y Z : C} (f : Path X Y) (g : Path Y Z) : composePath (f.comp g) = composePath f ≫ composePath g
case cons C : Type u₁ inst✝ : Category.{v₁, u₁} C X Y Z : C f : Path X Y Y' Z' : C g : Path Y Y' e : Y' ⟶ Z' ih : composePath (f.comp g) = composePath f ≫ composePath g ⊢ composePath (f.comp (g.cons e)) = composePath f ≫ composePath (g.cons e)
simp [ih]
no goals
755342b6a7c06734
IsCompact.exists_thickening_image_subset
Mathlib/Topology/MetricSpace/Thickening.lean
theorem IsCompact.exists_thickening_image_subset [PseudoEMetricSpace α] {β : Type*} [PseudoEMetricSpace β] {f : α → β} {K : Set α} {U : Set β} (hK : IsCompact K) (ho : IsOpen U) (hf : ∀ x ∈ K, ContinuousAt f x) (hKU : MapsTo f K U) : ∃ ε > 0, ∃ V ∈ 𝓝ˢ K, thickening ε (f '' V) ⊆ U
case hnhds.intro.intro α : Type u inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : PseudoEMetricSpace β f : α → β K : Set α U : Set β hK : IsCompact K ho : IsOpen U hf : ∀ x ∈ K, ContinuousAt f x hKU : MapsTo f K U x : α hx : x ∈ K this : {f x} ⊆ U δ : ℝ hδ : 0 < δ hthick : thickening δ {f x} ⊆ U V : Set α := f ⁻¹' thickening (δ / 2) {f x} ⊢ ∃ t ∈ 𝓝[K] x, ∃ ε > 0, ∃ V ∈ 𝓝ˢ t, thickening ε (f '' V) ⊆ U
have : V ∈ 𝓝 x := by apply hf x hx apply isOpen_thickening.mem_nhds exact (self_subset_thickening (by positivity) _) rfl
case hnhds.intro.intro α : Type u inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : PseudoEMetricSpace β f : α → β K : Set α U : Set β hK : IsCompact K ho : IsOpen U hf : ∀ x ∈ K, ContinuousAt f x hKU : MapsTo f K U x : α hx : x ∈ K this✝ : {f x} ⊆ U δ : ℝ hδ : 0 < δ hthick : thickening δ {f x} ⊆ U V : Set α := f ⁻¹' thickening (δ / 2) {f x} this : V ∈ 𝓝 x ⊢ ∃ t ∈ 𝓝[K] x, ∃ ε > 0, ∃ V ∈ 𝓝ˢ t, thickening ε (f '' V) ⊆ U
d761bc6cba03edce
Profinite.NobelingProof.GoodProducts.spanFin
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem GoodProducts.spanFin [WellFoundedLT I] : ⊤ ≤ Submodule.span ℤ (Set.range (eval (π C (· ∈ s))))
I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I s : Finset I inst✝ : WellFoundedLT I x : ↑(π C fun x => x ∈ s) l : List I := Finset.sort (fun x1 x2 => x1 ≥ x2) s a : I as : List I ha : List.Chain' (fun x1 x2 => x1 > x2) (a :: as) c : Products I →₀ ℤ hc : ↑c.support ⊆ {m | ↑m ≤ as} hmap : ∀ (g : Products I → ℤ → LocallyConstant ↑(π C fun x => x ∈ s) ℤ), e (π C fun x => x ∈ s) a * c.sum g = c.sum fun a_1 b => e (π C fun x => x ∈ s) a * g a_1 b h✝ : ¬↑x a = true m : Products I hm : c m ≠ 0 ⊢ m ∈ ↑c.support
simpa only [Finset.mem_coe, Finsupp.mem_support_iff] using hm
no goals
84857795ad4a98fd
Finset.Colex.trans_aux
Mathlib/Combinatorics/Colex.lean
private lemma trans_aux (hst : toColex s ≤ toColex t) (htu : toColex t ≤ toColex u) (has : a ∈ s) (hat : a ∉ t) : ∃ b, b ∈ u ∧ b ∉ s ∧ a ≤ b
α : Type u_1 inst✝ : PartialOrder α s t u : Finset α a : α hst : { ofColex := s } ≤ { ofColex := t } htu : { ofColex := t } ≤ { ofColex := u } has : a ∈ s hat : a ∉ t s' : Finset α := filter (fun b => b ∉ t ∧ a ≤ b) s ⊢ a ∈ s'
simp [s', has, hat]
no goals
d44eef7b38eb8d38
IsAlgebraic.exists_integral_multiple
Mathlib/RingTheory/Algebraic/Integral.lean
theorem exists_integral_multiple (hz : IsAlgebraic R z) : ∃ y ≠ (0 : R), IsIntegral R (y • z)
case pos R : Type u_1 A : Type u_3 inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A z : A hz : IsAlgebraic R z inj : Function.Injective ⇑(algebraMap R A) p : R[X] p_ne_zero : p ≠ 0 px : (aeval z) p = 0 a : R := p.leadingCoeff a_ne_zero : a ≠ 0 ⊢ ∃ y, y ≠ 0 ∧ IsIntegral R (y • z)
have x_integral : IsIntegral R (algebraMap R A a * z) := ⟨p.integralNormalization, monic_integralNormalization p_ne_zero, integralNormalization_aeval_eq_zero px fun _ ↦ (map_eq_zero_iff _ inj).mp⟩
case pos R : Type u_1 A : Type u_3 inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A z : A hz : IsAlgebraic R z inj : Function.Injective ⇑(algebraMap R A) p : R[X] p_ne_zero : p ≠ 0 px : (aeval z) p = 0 a : R := p.leadingCoeff a_ne_zero : a ≠ 0 x_integral : IsIntegral R ((algebraMap R A) a * z) ⊢ ∃ y, y ≠ 0 ∧ IsIntegral R (y • z)
bbcb89efa15f355a
Module.End_isUnit_inv_apply_apply_of_isUnit
Mathlib/Algebra/Module/LinearMap/End.lean
theorem _root_.Module.End_isUnit_inv_apply_apply_of_isUnit {f : Module.End R M} (h : IsUnit f) (x : M) : h.unit.inv (f x) = x := (by simp : (h.unit.inv * f) x = x)
R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : Module.End R M h : IsUnit f x : M ⊢ (h.unit.inv * f) x = x
simp
no goals
383b162ce542c51f
BitVec.lt_of_getMsbD
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem lt_of_getMsbD {x : BitVec w} {i : Nat} : getMsbD x i = true → i < w
w : Nat x : BitVec w i : Nat h : ¬i < w ⊢ x.getMsbD i = true → i < w
simp [Nat.ge_of_not_lt h]
no goals
ca368506eb0e50ad
List.mergeSort_nil
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sort/Lemmas.lean
theorem mergeSort_nil : [].mergeSort r = []
α✝ : Type u_1 r : α✝ → α✝ → Bool ⊢ [].mergeSort r = []
rw [List.mergeSort]
no goals
5db18dbfedff5412
Cardinal.mk_le_of_module
Mathlib/Algebra/Module/Card.lean
theorem mk_le_of_module (R : Type u) (E : Type v) [AddCommGroup E] [Ring R] [Module R E] [Nontrivial E] [NoZeroSMulDivisors R E] : Cardinal.lift.{v} (#R) ≤ Cardinal.lift.{u} (#E)
case intro R : Type u E : Type v inst✝⁴ : AddCommGroup E inst✝³ : Ring R inst✝² : Module R E inst✝¹ : Nontrivial E inst✝ : NoZeroSMulDivisors R E x : E hx : x ≠ 0 this : Injective fun k => k • x ⊢ lift.{v, u} #R ≤ lift.{u, v} #E
exact lift_mk_le_lift_mk_of_injective this
no goals
75f23a3727a1d651
NNReal.tendsto_of_antitone
Mathlib/Topology/Instances/NNReal/Lemmas.lean
theorem tendsto_of_antitone {f : ℕ → ℝ≥0} (h_ant : Antitone f) : ∃ r : ℝ≥0, Tendsto f atTop (𝓝 r)
case intro f : ℕ → ℝ≥0 h_ant : Antitone f r : ℝ n : ℕ hn : (fun n => ↑(f n)) n = r ⊢ 0 ≤ r
simp_rw [← hn]
case intro f : ℕ → ℝ≥0 h_ant : Antitone f r : ℝ n : ℕ hn : (fun n => ↑(f n)) n = r ⊢ 0 ≤ ↑(f n)
dd15c78146648c25
Turing.ListBlank.ext
Mathlib/Computability/Tape.lean
theorem ListBlank.ext {Γ} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} : (∀ i, L₁.nth i = L₂.nth i) → L₁ = L₂
case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), (mk l₁).nth i_1 = (mk l₂).nth i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), (mk l₁).nth i_1 = (mk l₂).nth i_1) → l₁.length ≤ l₂.length → mk l₁ = mk l₂ h : ¬l₁.length ≤ l₂.length h✝ : l₂.length ≤ l₁.length ⊢ ∀ (i_1 : ℕ), (mk l₂).nth i_1 = (mk l₁).nth i_1
intro
case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), (mk l₁).nth i_1 = (mk l₂).nth i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), (mk l₁).nth i_1 = (mk l₂).nth i_1) → l₁.length ≤ l₂.length → mk l₁ = mk l₂ h : ¬l₁.length ≤ l₂.length h✝ : l₂.length ≤ l₁.length i✝ : ℕ ⊢ (mk l₂).nth i✝ = (mk l₁).nth i✝
fd463af825144e5d
hyperoperation_ge_two_eq_self
Mathlib/Data/Nat/Hyperoperation.lean
theorem hyperoperation_ge_two_eq_self (n m : ℕ) : hyperoperation (n + 2) m 1 = m
n m : ℕ ⊢ hyperoperation (n + 2) m 1 = m
induction' n with nn nih
case zero m : ℕ ⊢ hyperoperation (0 + 2) m 1 = m case succ m nn : ℕ nih : hyperoperation (nn + 2) m 1 = m ⊢ hyperoperation (nn + 1 + 2) m 1 = m
ea562c89101789f2
EisensteinSeries.auxbound1
Mathlib/NumberTheory/ModularForms/EisensteinSeries/UniformConvergence.lean
lemma auxbound1 {c : ℝ} (d : ℝ) (hc : 1 ≤ c ^ 2) : r z ≤ ‖c * (z : ℂ) + d‖
z : ℍ c d : ℝ hc : 1 ≤ c ^ 2 ⊢ r z ≤ ‖↑c * ↑z + ↑d‖
rcases z with ⟨z, hz⟩
case mk c d : ℝ hc : 1 ≤ c ^ 2 z : ℂ hz : 0 < z.im ⊢ r ⟨z, hz⟩ ≤ ‖↑c * ↑⟨z, hz⟩ + ↑d‖
e8fac847c19bb038
Std.DHashMap.Raw.size_alter_eq_sub_one
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem size_alter_eq_sub_one [LawfulBEq α] {k : α} {f : Option (β k) → Option (β k)} (h : m.WF) (h₁ : k ∈ m) (h₂ : (f (m.get? k)).isNone) : (m.alter k f).size = m.size - 1
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α m : Raw α β inst✝ : LawfulBEq α k : α f : Option (β k) → Option (β k) h : m.WF ⊢ k ∈ m → (f (m.get? k)).isNone = true → (m.alter k f).size = m.size - 1
simp only [mem_iff_contains]
α : Type u β : α → Type v inst✝² : BEq α inst✝¹ : Hashable α m : Raw α β inst✝ : LawfulBEq α k : α f : Option (β k) → Option (β k) h : m.WF ⊢ m.contains k = true → (f (m.get? k)).isNone = true → (m.alter k f).size = m.size - 1
d90b6a80187b2ce0
List.idxOf_eq_length_iff
Mathlib/Data/List/Basic.lean
theorem idxOf_eq_length_iff {a : α} {l : List α} : idxOf a l = length l ↔ a ∉ l
case neg α : Type u inst✝ : DecidableEq α a b : α l : List α ih : idxOf a l = l.length ↔ ¬a ∈ l h : ¬b = a ⊢ idxOf a l + 1 = l.length + 1 ↔ ¬a ∈ l
rw [← ih]
case neg α : Type u inst✝ : DecidableEq α a b : α l : List α ih : idxOf a l = l.length ↔ ¬a ∈ l h : ¬b = a ⊢ idxOf a l + 1 = l.length + 1 ↔ idxOf a l = l.length
9447f2f883c10679