name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Real.sqrtTwoAddSeries_two
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem sqrtTwoAddSeries_two : sqrtTwoAddSeries 0 2 = √(2 + √2)
⊢ sqrtTwoAddSeries 0 2 = √(2 + √2)
simp
no goals
37f80746f6448103
Int.cast_pow
Mathlib/Algebra/Ring/Int/Defs.lean
@[simp, norm_cast] lemma cast_pow {R : Type*} [Ring R] (n : ℤ) (m : ℕ) : ↑(n ^ m) = (n ^ m : R)
R : Type u_1 inst✝ : Ring R n : ℤ m : ℕ ⊢ ↑(n ^ m) = ↑n ^ m
induction' m with m ih <;> simp [_root_.pow_succ, *]
no goals
1c3329c1e4791938
StieltjesFunction.measure_Ici
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem measure_Ici {l : ℝ} (hf : Tendsto f atTop (𝓝 l)) (x : ℝ) : f.measure (Ici x) = ofReal (l - leftLim f x)
f : StieltjesFunction l : ℝ hf : Tendsto (↑f) atTop (𝓝 l) x : ℝ h_le1 : ∀ (x : ℝ), ↑f (x - 1) ≤ leftLim (↑f) x h_le2 : ∀ (x : ℝ), leftLim (↑f) x ≤ ↑f x ⊢ Tendsto (fun i => i - 1) atTop atTop
rw [tendsto_atTop_atTop]
f : StieltjesFunction l : ℝ hf : Tendsto (↑f) atTop (𝓝 l) x : ℝ h_le1 : ∀ (x : ℝ), ↑f (x - 1) ≤ leftLim (↑f) x h_le2 : ∀ (x : ℝ), leftLim (↑f) x ≤ ↑f x ⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ a - 1
4e0cbe1c1c7072ca
MeasureTheory.hahn_decomposition
Mathlib/MeasureTheory/Decomposition/UnsignedHahn.lean
theorem hahn_decomposition (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] : ∃ s, MeasurableSet s ∧ (∀ t, MeasurableSet t → t ⊆ s → ν t ≤ μ t) ∧ ∀ t, MeasurableSet t → t ⊆ sᶜ → μ t ≤ ν t
case intro.refine_1 α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν d : Set α → ℝ := fun s => ↑(μ s).toNNReal - ↑(ν s).toNNReal c : Set ℝ := d '' {s | MeasurableSet s} γ : ℝ := sSup c hμ : ∀ (s : Set α), μ s ≠ ⊤ hν : ∀ (s : Set α), ν s ≠ ⊤ to_nnreal_μ : ∀ (s : Set α), ↑(μ s).toNNReal = μ s to_nnreal_ν : ∀ (s : Set α), ↑(ν s).toNNReal = ν s d_split : ∀ (s t : Set α), MeasurableSet t → d s = d (s \ t) + d (s ∩ t) d_Union : ∀ (s : ℕ → Set α), Monotone s → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋃ n, s n))) d_Inter : ∀ (s : ℕ → Set α), (∀ (n : ℕ), MeasurableSet (s n)) → (∀ (n m : ℕ), n ≤ m → s m ⊆ s n) → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋂ n, s n))) bdd_c : BddAbove c c_nonempty : c.Nonempty d_le_γ : ∀ (s : Set α), MeasurableSet s → d s ≤ γ this : ∀ (n : ℕ), ∃ s, MeasurableSet s ∧ γ - (1 / 2) ^ n < d s e : ℕ → Set α he : ∀ (x : ℕ), MeasurableSet (e x) ∧ γ - (1 / 2) ^ x < d (e x) he₁ : ∀ (n : ℕ), MeasurableSet (e n) he₂ : ∀ (n : ℕ), γ - (1 / 2) ^ n < d (e n) f : ℕ → ℕ → Set α := fun n m => (Finset.Ico n (m + 1)).inf e hf : ∀ (n m : ℕ), MeasurableSet (f n m) f_subset_f : ∀ {a b c d : ℕ}, a ≤ b → c ≤ d → f a d ⊆ f b c f_succ : ∀ (n m : ℕ), n ≤ m → f n (m + 1) = f n m ∩ e (m + 1) le_d_f : ∀ (n m : ℕ), m ≤ n → γ - 2 * (1 / 2) ^ m + (1 / 2) ^ n ≤ d (f m n) s : Set α := ⋃ m, ⋂ n, f m n γ_le_d_s : γ ≤ d s hs : MeasurableSet s ⊢ ∀ (t : Set α), MeasurableSet t → t ⊆ s → ν t ≤ μ t
intro t ht hts
case intro.refine_1 α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν d : Set α → ℝ := fun s => ↑(μ s).toNNReal - ↑(ν s).toNNReal c : Set ℝ := d '' {s | MeasurableSet s} γ : ℝ := sSup c hμ : ∀ (s : Set α), μ s ≠ ⊤ hν : ∀ (s : Set α), ν s ≠ ⊤ to_nnreal_μ : ∀ (s : Set α), ↑(μ s).toNNReal = μ s to_nnreal_ν : ∀ (s : Set α), ↑(ν s).toNNReal = ν s d_split : ∀ (s t : Set α), MeasurableSet t → d s = d (s \ t) + d (s ∩ t) d_Union : ∀ (s : ℕ → Set α), Monotone s → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋃ n, s n))) d_Inter : ∀ (s : ℕ → Set α), (∀ (n : ℕ), MeasurableSet (s n)) → (∀ (n m : ℕ), n ≤ m → s m ⊆ s n) → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋂ n, s n))) bdd_c : BddAbove c c_nonempty : c.Nonempty d_le_γ : ∀ (s : Set α), MeasurableSet s → d s ≤ γ this : ∀ (n : ℕ), ∃ s, MeasurableSet s ∧ γ - (1 / 2) ^ n < d s e : ℕ → Set α he : ∀ (x : ℕ), MeasurableSet (e x) ∧ γ - (1 / 2) ^ x < d (e x) he₁ : ∀ (n : ℕ), MeasurableSet (e n) he₂ : ∀ (n : ℕ), γ - (1 / 2) ^ n < d (e n) f : ℕ → ℕ → Set α := fun n m => (Finset.Ico n (m + 1)).inf e hf : ∀ (n m : ℕ), MeasurableSet (f n m) f_subset_f : ∀ {a b c d : ℕ}, a ≤ b → c ≤ d → f a d ⊆ f b c f_succ : ∀ (n m : ℕ), n ≤ m → f n (m + 1) = f n m ∩ e (m + 1) le_d_f : ∀ (n m : ℕ), m ≤ n → γ - 2 * (1 / 2) ^ m + (1 / 2) ^ n ≤ d (f m n) s : Set α := ⋃ m, ⋂ n, f m n γ_le_d_s : γ ≤ d s hs : MeasurableSet s t : Set α ht : MeasurableSet t hts : t ⊆ s ⊢ ν t ≤ μ t
b74e26e9476d0e19
MeasureTheory.MemLp.induction_dense
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem MemLp.induction_dense (hp_ne_top : p ≠ ∞) (P : (α → E) → Prop) (h0P : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet s → μ s < ∞ → ∀ {ε : ℝ≥0∞}, ε ≠ 0 → ∃ g : α → E, eLpNorm (g - s.indicator fun _ => c) p μ ≤ ε ∧ P g) (h1P : ∀ f g, P f → P g → P (f + g)) (h2P : ∀ f, P f → AEStronglyMeasurable f μ) {f : α → E} (hf : MemLp f p μ) {ε : ℝ≥0∞} (hε : ε ≠ 0) : ∃ g : α → E, eLpNorm (f - g) p μ ≤ ε ∧ P g
case intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α hp_ne_top : p ≠ ⊤ P : (α → E) → Prop h0P : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → ∀ {ε : ℝ≥0∞}, ε ≠ 0 → ∃ g, eLpNorm (g - s.indicator fun x => c) p μ ≤ ε ∧ P g h1P : ∀ (f g : α → E), P f → P g → P (f + g) h2P : ∀ (f : α → E), P f → AEStronglyMeasurable f μ f : α → E hf : MemLp f p μ ε : ℝ≥0∞ hε : ε ≠ 0 hp_pos : p ≠ 0 H : ∀ (f' : α →ₛ E) (δ : ℝ≥0∞), δ ≠ 0 → MemLp (⇑f') p μ → ∃ g, eLpNorm (⇑f' - g) p μ ≤ δ ∧ P g η : ℝ≥0∞ ηpos : 0 < η hη : ∀ (f g : α → E), AEStronglyMeasurable f μ → AEStronglyMeasurable g μ → eLpNorm f p μ ≤ η → eLpNorm g p μ ≤ η → eLpNorm (f + g) p μ < ε f' : α →ₛ E hf' : eLpNorm (f - ⇑f') p μ < η f'_mem : MemLp (⇑f') p μ g : α → E hg : eLpNorm (⇑f' - g) p μ ≤ η Pg : P g ⊢ ∃ g, eLpNorm (f - g) p μ ≤ ε ∧ P g
refine ⟨g, ?_, Pg⟩
case intro.intro.intro.intro.intro.intro α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E p : ℝ≥0∞ μ : Measure α hp_ne_top : p ≠ ⊤ P : (α → E) → Prop h0P : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → ∀ {ε : ℝ≥0∞}, ε ≠ 0 → ∃ g, eLpNorm (g - s.indicator fun x => c) p μ ≤ ε ∧ P g h1P : ∀ (f g : α → E), P f → P g → P (f + g) h2P : ∀ (f : α → E), P f → AEStronglyMeasurable f μ f : α → E hf : MemLp f p μ ε : ℝ≥0∞ hε : ε ≠ 0 hp_pos : p ≠ 0 H : ∀ (f' : α →ₛ E) (δ : ℝ≥0∞), δ ≠ 0 → MemLp (⇑f') p μ → ∃ g, eLpNorm (⇑f' - g) p μ ≤ δ ∧ P g η : ℝ≥0∞ ηpos : 0 < η hη : ∀ (f g : α → E), AEStronglyMeasurable f μ → AEStronglyMeasurable g μ → eLpNorm f p μ ≤ η → eLpNorm g p μ ≤ η → eLpNorm (f + g) p μ < ε f' : α →ₛ E hf' : eLpNorm (f - ⇑f') p μ < η f'_mem : MemLp (⇑f') p μ g : α → E hg : eLpNorm (⇑f' - g) p μ ≤ η Pg : P g ⊢ eLpNorm (f - g) p μ ≤ ε
747111af72f956df
Ordnode.size_balance'
Mathlib/Data/Ordmap/Ordset.lean
theorem size_balance' {l x r} (hl : @Sized α l) (hr : Sized r) : size (@balance' α l x r) = size l + size r + 1
α : Type u_1 l : Ordnode α x : α r : Ordnode α hl : l.Sized hr : r.Sized ⊢ (l.balance' x r).size = l.size + r.size + 1
unfold balance'
α : Type u_1 l : Ordnode α x : α r : Ordnode α hl : l.Sized hr : r.Sized ⊢ (if l.size + r.size ≤ 1 then l.node' x r else if r.size > delta * l.size then l.rotateL x r else if l.size > delta * r.size then l.rotateR x r else l.node' x r).size = l.size + r.size + 1
164cc76764f47764
PrimeSpectrum.mem_image_comap_zeroLocus_sdiff
Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean
/-- Let `A` be an `R`-algebra. `𝔭 : Spec R` is in the image of `Z(I) ∩ D(f) ⊆ Spec S` if and only if `f` is not nilpotent on `κ(𝔭) ⊗ A ⧸ I`. -/ lemma mem_image_comap_zeroLocus_sdiff (f : A) (s : Set A) (x) : x ∈ comap (algebraMap R A) '' (zeroLocus s \ zeroLocus {f}) ↔ ¬ IsNilpotent (algebraMap A ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField) f)
case mpr.intro.intro R : Type u_2 A : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A f : A s : Set A x : PrimeSpectrum R q : Ideal ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField) hq : q.IsPrime hfq : (Ideal.Quotient.mk (Ideal.span s)) f ⊗ₜ[R] 1 ∉ q this : ∀ a ∈ s, (Ideal.Quotient.mk (Ideal.span s)) a ⊗ₜ[R] 1 ∈ q ⊢ x ∈ ⇑(comap (algebraMap R A)) '' (zeroLocus s \ zeroLocus {f})
refine ⟨comap (algebraMap A _) ⟨q, hq⟩, ⟨by simpa [Set.subset_def], by simpa⟩, ?_⟩
case mpr.intro.intro R : Type u_2 A : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A f : A s : Set A x : PrimeSpectrum R q : Ideal ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField) hq : q.IsPrime hfq : (Ideal.Quotient.mk (Ideal.span s)) f ⊗ₜ[R] 1 ∉ q this : ∀ a ∈ s, (Ideal.Quotient.mk (Ideal.span s)) a ⊗ₜ[R] 1 ∈ q ⊢ (comap (algebraMap R A)) ((comap (algebraMap A ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField))) { asIdeal := q, isPrime := hq }) = x
b5370dee55806ec3
MeasureTheory.eLpNorm_one_condExp_le_eLpNorm
Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean
theorem eLpNorm_one_condExp_le_eLpNorm (f : α → ℝ) : eLpNorm (μ[f|m]) 1 μ ≤ eLpNorm f 1 μ
α : Type u_1 m m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hm : m ≤ m0 hsig : SigmaFinite (μ.trim hm) ⊢ 0 ≤ᶠ[ae μ] μ[|f| |m]
rw [← condExp_zero]
α : Type u_1 m m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hm : m ≤ m0 hsig : SigmaFinite (μ.trim hm) ⊢ ?m.15243[0|?m.15241] ≤ᶠ[ae μ] μ[|f| |m] α : Type u_1 m m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hm : m ≤ m0 hsig : SigmaFinite (μ.trim hm) ⊢ MeasurableSpace α α : Type u_1 m m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hm : m ≤ m0 hsig : SigmaFinite (μ.trim hm) ⊢ MeasurableSpace α α : Type u_1 m m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hm : m ≤ m0 hsig : SigmaFinite (μ.trim hm) ⊢ Measure α
4c3dc2a5be2f6f42
TopCat.isTopologicalBasis_cofiltered_limit
Mathlib/Topology/Category/TopCat/Limits/Cofiltered.lean
theorem isTopologicalBasis_cofiltered_limit (hC : IsLimit C) (T : ∀ j, Set (Set (F.obj j))) (hT : ∀ j, IsTopologicalBasis (T j)) (univ : ∀ i : J, Set.univ ∈ T i) (inter : ∀ (i) (U1 U2 : Set (F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i) (compat : ∀ (i j : J) (f : i ⟶ j) (V : Set (F.obj j)) (_hV : V ∈ T j), F.map f ⁻¹' V ∈ T i) : IsTopologicalBasis {U : Set C.pt | ∃ (j : _) (V : Set (F.obj j)), V ∈ T j ∧ U = C.π.app j ⁻¹' V}
case h.e'_3.h.mpr.intro.intro.intro.intro.refine_2.h.h.h.h.h.h J : Type v inst✝¹ : Category.{w, v} J inst✝ : IsCofiltered J F : J ⥤ TopCat C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j), ∀ V ∈ T j, ⇑(ConcreteCategory.hom (F.map f)) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := hC.conePointUniqueUpToIso (limitConeInfiIsLimit F) hE : IsInducing ⇑(ConcreteCategory.hom E.hom) U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ i ∈ G, U i ∈ T i h2 : U0 = ⋂ i ∈ G, (fun x => (ConcreteCategory.hom (D.π.app i)) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => ⋯.some Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ⇑(ConcreteCategory.hom (F.map (g e h))) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ e ∈ G, Vs e e : J he : e ∈ G ⊢ ⇑(ConcreteCategory.hom (D.π.app e)) = ⇑(ConcreteCategory.hom (F.map (g e he))) ∘ ⇑(ConcreteCategory.hom (D.π.app j))
rw [← coe_comp, D.w]
case h.e'_3.h.mpr.intro.intro.intro.intro.refine_2.h.h.h.h.h.h J : Type v inst✝¹ : Category.{w, v} J inst✝ : IsCofiltered J F : J ⥤ TopCat C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j), ∀ V ∈ T j, ⇑(ConcreteCategory.hom (F.map f)) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := hC.conePointUniqueUpToIso (limitConeInfiIsLimit F) hE : IsInducing ⇑(ConcreteCategory.hom E.hom) U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ i ∈ G, U i ∈ T i h2 : U0 = ⋂ i ∈ G, (fun x => (ConcreteCategory.hom (D.π.app i)) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => ⋯.some Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ⇑(ConcreteCategory.hom (F.map (g e h))) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ e ∈ G, Vs e e : J he : e ∈ G ⊢ ⇑(ConcreteCategory.hom (D.π.app e)) = ⇑(ConcreteCategory.hom (D.π.app e))
8a9de6a458f61cf0
LinearMap.span_singleton_inf_orthogonal_eq_bot
Mathlib/LinearAlgebra/SesquilinearForm.lean
theorem span_singleton_inf_orthogonal_eq_bot (B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂) (x : V₁) (hx : ¬B.IsOrtho x x) : (K₁ ∙ x) ⊓ Submodule.orthogonalBilin (K₁ ∙ x) B = ⊥
case intro K : Type u_13 K₁ : Type u_14 V₁ : Type u_17 V₂ : Type u_18 inst✝⁵ : Field K inst✝⁴ : Field K₁ inst✝³ : AddCommGroup V₁ inst✝² : Module K₁ V₁ inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂ x : V₁ hx : ¬B.IsOrtho x x μ : V₁ → K₁ h : ∑ i ∈ {x}, μ i • i ∈ Submodule.span K₁ ↑{x} ⊓ (Submodule.span K₁ ↑{x}).orthogonalBilin B ⊢ ∑ i ∈ {x}, μ i • i ∈ ⊥
replace h := h.2 x (by simp [Submodule.mem_span] : x ∈ Submodule.span K₁ ({x} : Finset V₁))
case intro K : Type u_13 K₁ : Type u_14 V₁ : Type u_17 V₂ : Type u_18 inst✝⁵ : Field K inst✝⁴ : Field K₁ inst✝³ : AddCommGroup V₁ inst✝² : Module K₁ V₁ inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂ x : V₁ hx : ¬B.IsOrtho x x μ : V₁ → K₁ h : B.IsOrtho x (∑ i ∈ {x}, μ i • i) ⊢ ∑ i ∈ {x}, μ i • i ∈ ⊥
b7086190b7929afb
ENNReal.mul_div_cancel'
Mathlib/Data/ENNReal/Inv.lean
/-- See `ENNReal.mul_div_cancel` for a simpler version assuming `a ≠ 0`, `a ≠ ∞`. -/ protected lemma mul_div_cancel' (ha₀ : a = 0 → b = 0) (ha : a = ∞ → b = 0) : a * (b / a) = b
a b : ℝ≥0∞ ha₀ : a = 0 → b = 0 ha : a = ⊤ → b = 0 ⊢ a * (b / a) = b
rw [mul_comm, ENNReal.div_mul_cancel' ha₀ ha]
no goals
466a2e4a896026ed
Cardinal.aleph_le_beth
Mathlib/SetTheory/Cardinal/Aleph.lean
theorem aleph_le_beth (o : Ordinal) : ℵ_ o ≤ ℶ_ o
case H₂ o : Ordinal.{u_1} h : ℵ_ o ≤ ℶ_ o ⊢ ℵ_ o < 2 ^ ℶ_ o
exact (cantor _).trans_le (power_le_power_left two_ne_zero h)
no goals
ddd0314775c52403
aux₁
Mathlib/MeasureTheory/Order/UpperLower.lean
/-- If we can fit a small ball inside a set `sᶜ` intersected with any neighborhood of `x`, then the density of `s` near `x` is not `1`. Along with `aux₀`, this proves that `x` is a Lebesgue point of `s`. This will be used to prove that the frontier of an order-connected set is null. -/ private lemma aux₁ (h : ∀ δ, 0 < δ → ∃ y, closedBall y (δ / 4) ⊆ closedBall x δ ∧ closedBall y (δ / 4) ⊆ interior sᶜ) : ¬Tendsto (fun r ↦ volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
case intro.intro.intro.refine_1 ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) ⊢ ENNReal.ofReal (4⁻¹ ^ Fintype.card ι) ≠ 0 case intro.intro.intro.refine_2 ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ ⊢ ((fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) ∘ ε) n ≤ 1 - ENNReal.ofReal (4⁻¹ ^ Fintype.card ι)
on_goal 2 => calc volume (closure s ∩ closedBall x (ε n)) / volume (closedBall x (ε n)) ≤ volume (closedBall x (ε n) \ closedBall (f (ε n) <| hε' n) (ε n / 4)) / volume (closedBall x (ε n)) := by gcongr rw [diff_eq_compl_inter] refine inter_subset_inter_left _ ?_ rw [subset_compl_comm, ← interior_compl] exact hf₁ _ _ _ = 1 - ENNReal.ofReal (4⁻¹ ^ Fintype.card ι) := ?_ dsimp only have := hε' n rw [measure_diff (hf₀ _ _) _ ((Real.volume_pi_closedBall _ _).trans_ne ENNReal.ofReal_ne_top), Real.volume_pi_closedBall, Real.volume_pi_closedBall, ENNReal.sub_div fun _ _ ↦ _, ENNReal.div_self _ ENNReal.ofReal_ne_top, ← ENNReal.ofReal_div_of_pos, ← div_pow, mul_div_mul_left _ _ (two_ne_zero' ℝ), div_right_comm, div_self, one_div]
case intro.intro.intro.refine_1 ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) ⊢ ENNReal.ofReal (4⁻¹ ^ Fintype.card ι) ≠ 0 case intro.intro.intro.refine_2 ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ ε n ≠ 0 case intro.intro.intro.refine_2 ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ 0 < (2 * ε n) ^ Fintype.card ι ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ ENNReal.ofReal ((2 * ε n) ^ Fintype.card ι) ≠ 0 ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ 0 < ENNReal.ofReal ((2 * (ε n / 4)) ^ Fintype.card ι) → ENNReal.ofReal ((2 * (ε n / 4)) ^ Fintype.card ι) < ENNReal.ofReal ((2 * ε n) ^ Fintype.card ι) → ENNReal.ofReal ((2 * ε n) ^ Fintype.card ι) ≠ 0 case intro.intro.intro.refine_2.hr ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ 0 ≤ ε n / 4 case intro.intro.intro.refine_2.hr ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ 0 ≤ ε n ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ NullMeasurableSet (closedBall (f (ε n) ⋯) (ε n / 4)) volume ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ this : 0 < ε n ⊢ 0 ≤ ε n / 4
97816f689cf8a35d
Int.ofNat_toNat
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem ofNat_toNat (a : Int) : (a.toNat : Int) = max a 0
a : Int n : Nat ⊢ ↑-[n+1].toNat = max -[n+1] 0
simp
no goals
3021bd9f1ab75728
EulerSine.integral_sin_mul_sin_mul_cos_pow_eq
Mathlib/Analysis/SpecialFunctions/Trigonometric/EulerSineProd.lean
theorem integral_sin_mul_sin_mul_cos_pow_eq (hn : 2 ≤ n) (hz : z ≠ 0) : (∫ x in (0 : ℝ)..π / 2, Complex.sin (2 * z * x) * sin x * (cos x : ℂ) ^ (n - 1)) = (n / (2 * z) * ∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ n) - (n - 1) / (2 * z) * ∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (n - 2)
case h.e'_8.h z : ℂ n : ℕ hn : 2 ≤ n hz : z ≠ 0 x : ℝ a✝ : x ∈ uIcc 0 (π / 2) c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x y : ℝ ⊢ ↑(sin y) * ↑(cos y) ^ (n - 1) = Complex.sin ↑y * ((fun x => x ^ (n - 1)) ∘ Complex.cos) ↑y
simp only [Complex.ofReal_sin, Complex.ofReal_cos, Function.comp]
no goals
aa9c88c94003a4d7
AlgebraicGeometry.isNoetherian_iff_of_finite_affine_openCover
Mathlib/AlgebraicGeometry/Noetherian.lean
theorem isNoetherian_iff_of_finite_affine_openCover {𝒰 : Scheme.OpenCover.{v, u} X} [Finite 𝒰.J] [∀ i, IsAffine (𝒰.obj i)] : IsNoetherian X ↔ ∀ (i : 𝒰.J), IsNoetherianRing Γ(𝒰.obj i, ⊤)
X : Scheme 𝒰 : X.OpenCover inst✝¹ : Finite 𝒰.J inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) ⊢ IsNoetherian X ↔ ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤)
constructor
case mp X : Scheme 𝒰 : X.OpenCover inst✝¹ : Finite 𝒰.J inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) ⊢ IsNoetherian X → ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤) case mpr X : Scheme 𝒰 : X.OpenCover inst✝¹ : Finite 𝒰.J inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i) ⊢ (∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤)) → IsNoetherian X
f55c23f20e8dcf72
Polynomial.zero_modByMonic
Mathlib/Algebra/Polynomial/Div.lean
theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0
case neg R : Type u inst✝ : Ring R p : R[X] hp : ¬p.Monic ⊢ (if h : p.Monic then (if p.degree ≤ ⊥ ∧ ¬0 = 0 then (C 0 * X ^ (0 - p.natDegree) + ((0 - p * (C 0 * X ^ (0 - p.natDegree))).divModByMonicAux ⋯).1, ((0 - p * (C 0 * X ^ (0 - p.natDegree))).divModByMonicAux ⋯).2) else 0).2 else 0) = 0
rw [dif_neg hp]
no goals
f0d18cde90b3b083
MeasureTheory.uniformIntegrable_finite
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem uniformIntegrable_finite [Finite ι] (hp_one : 1 ≤ p) (hp_top : p ≠ ∞) (hf : ∀ i, MemLp (f i) p μ) : UniformIntegrable f p μ
case pos α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup β p : ℝ≥0∞ f : ι → α → β inst✝ : Finite ι hp_one : 1 ≤ p hp_top : p ≠ ⊤ val✝ : Fintype ι hι : Nonempty ι h✝ : ∀ (i : ι), AEStronglyMeasurable (f i) μ hf : ∀ (i : ι), eLpNorm (f i) p μ < ⊤ C : ℝ≥0∞ := (Finset.image (fun i => eLpNorm (f i) p μ) Finset.univ).max' ⋯ i : ι ⊢ eLpNorm (f i) p μ ≤ C
exact Finset.le_max' (α := ℝ≥0∞) _ _ (Finset.mem_image.2 ⟨i, Finset.mem_univ _, rfl⟩)
no goals
5abac80f706d496a
Submodule.fg_induction
Mathlib/RingTheory/Finiteness/Basic.lean
theorem fg_induction (R M : Type*) [Semiring R] [AddCommMonoid M] [Module R M] (P : Submodule R M → Prop) (h₁ : ∀ x, P (Submodule.span R {x})) (h₂ : ∀ M₁ M₂, P M₁ → P M₂ → P (M₁ ⊔ M₂)) (N : Submodule R M) (hN : N.FG) : P N
case intro.empty R : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M P : Submodule R M → Prop h₁ : ∀ (x : M), P (span R {x}) h₂ : ∀ (M₁ M₂ : Submodule R M), P M₁ → P M₂ → P (M₁ ⊔ M₂) ⊢ P (span R ↑∅)
rw [Finset.coe_empty, Submodule.span_empty, ← Submodule.span_zero_singleton]
case intro.empty R : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M P : Submodule R M → Prop h₁ : ∀ (x : M), P (span R {x}) h₂ : ∀ (M₁ M₂ : Submodule R M), P M₁ → P M₂ → P (M₁ ⊔ M₂) ⊢ P (span R {0})
acaf019d55d4c340
HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod
Mathlib/Analysis/Analytic/Basic.lean
theorem HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod {y : E} (hf : HasFPowerSeriesWithinOnBall f p s x r) (hy : y ∈ EMetric.ball (0 : E) r) (h'y : x + y ∈ insert x s) : Tendsto (fun (z : ℕ × E) ↦ p.partialSum z.1 z.2) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ y : E hf : HasFPowerSeriesWithinOnBall f p s x r hy : y ∈ EMetric.ball 0 r h'y : x + y ∈ insert x s A : Tendsto (fun z => p.partialSum z.1 y) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y))) ε : ℝ εpos : ε > 0 r' : ℝ≥0 yr' : ‖y‖₊ < r' r'r : ↑r' < r yr'_2 : ‖y‖ < ↑r' S : Summable fun n => ‖p n‖ * ↑r' ^ n k : ℕ hk : ∑' (n : ℕ), ‖p (n + k)‖ * ↑r' ^ (n + k) < ε / 4 ⊢ ∀ᶠ (x : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum x.1 x.2 - p.partialSum x.1 y) 0 < ε
have A : ∀ᶠ (z : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum k z.2) (p.partialSum k y) < ε / 4 := by have : ContinuousAt (fun z ↦ p.partialSum k z) y := (p.partialSum_continuous k).continuousAt exact tendsto_snd (Metric.tendsto_nhds.1 this.tendsto (ε / 4) (by linarith))
case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ y : E hf : HasFPowerSeriesWithinOnBall f p s x r hy : y ∈ EMetric.ball 0 r h'y : x + y ∈ insert x s A✝ : Tendsto (fun z => p.partialSum z.1 y) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y))) ε : ℝ εpos : ε > 0 r' : ℝ≥0 yr' : ‖y‖₊ < r' r'r : ↑r' < r yr'_2 : ‖y‖ < ↑r' S : Summable fun n => ‖p n‖ * ↑r' ^ n k : ℕ hk : ∑' (n : ℕ), ‖p (n + k)‖ * ↑r' ^ (n + k) < ε / 4 A : ∀ᶠ (z : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum k z.2) (p.partialSum k y) < ε / 4 ⊢ ∀ᶠ (x : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum x.1 x.2 - p.partialSum x.1 y) 0 < ε
84f2046d5fc6e8a5
Nat.det_vandermonde_id_eq_superFactorial
Mathlib/Data/Nat/Factorial/SuperFactorial.lean
theorem det_vandermonde_id_eq_superFactorial (n : ℕ) : (Matrix.vandermonde (fun (i : Fin (n + 1)) ↦ (i : R))).det = Nat.superFactorial n
case succ R : Type u_1 inst✝ : CommRing R n : ℕ hn : (Matrix.vandermonde fun i => ↑↑i).det = ↑(sf n) ⊢ (∏ j ∈ Ioi 0, (↑↑j - ↑↑0)) * ∏ i : Fin (n + 1), ∏ j ∈ Ioi (Fin.succAbove 0 i), (↑↑j - ↑↑(Fin.succAbove 0 i)) = ↑(n.succ ! * sf n)
push_cast
case succ R : Type u_1 inst✝ : CommRing R n : ℕ hn : (Matrix.vandermonde fun i => ↑↑i).det = ↑(sf n) ⊢ (∏ j ∈ Ioi 0, (↑↑j - ↑↑0)) * ∏ i : Fin (n + 1), ∏ j ∈ Ioi (Fin.succAbove 0 i), (↑↑j - ↑↑(Fin.succAbove 0 i)) = ↑n.succ ! * ↑(sf n)
55fe604c0006566e
Polynomial.map_restriction
Mathlib/RingTheory/Polynomial/Basic.lean
theorem map_restriction {R : Type u} [CommRing R] (p : R[X]) : p.restriction.map (algebraMap _ _) = p := ext fun n => by rw [coeff_map, Algebra.algebraMap_ofSubring_apply, coeff_restriction]
R : Type u inst✝ : CommRing R p : R[X] n : ℕ ⊢ (map (algebraMap (↥(Subring.closure ↑p.coeffs)) R) p.restriction).coeff n = p.coeff n
rw [coeff_map, Algebra.algebraMap_ofSubring_apply, coeff_restriction]
no goals
7be49a5ed8028cf9
Module.FaithfullyFlat.trans
Mathlib/RingTheory/Flat/FaithfullyFlat/Basic.lean
theorem trans : FaithfullyFlat R M
R : Type u_1 inst✝⁸ : CommRing R S : Type u_2 inst✝⁷ : CommRing S inst✝⁶ : Algebra R S M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module S M inst✝² : IsScalarTower R S M inst✝¹ : FaithfullyFlat R S inst✝ : FaithfullyFlat S M ⊢ FaithfullyFlat R M
rw [iff_zero_iff_lTensor_zero]
R : Type u_1 inst✝⁸ : CommRing R S : Type u_2 inst✝⁷ : CommRing S inst✝⁶ : Algebra R S M : Type u_3 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module S M inst✝² : IsScalarTower R S M inst✝¹ : FaithfullyFlat R S inst✝ : FaithfullyFlat S M ⊢ Flat R M ∧ ∀ {N : Type (max u_1 u_3)} [inst : AddCommGroup N] [inst_1 : Module R N] {N' : Type (max u_1 u_3)} [inst_2 : AddCommGroup N'] [inst_3 : Module R N'] (f : N →ₗ[R] N'), lTensor M f = 0 ↔ f = 0
67560735acca6665
LinearMap.ker_le_iff
Mathlib/Algebra/Module/Submodule/Range.lean
theorem ker_le_iff [RingHomSurjective τ₁₂] {p : Submodule R M} : ker f ≤ p ↔ ∃ y ∈ range f, f ⁻¹' {y} ⊆ p
R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁸ : Ring R inst✝⁷ : Ring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_10 inst✝² : FunLike F M M₂ inst✝¹ : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M ⊢ ker f ≤ p ↔ ∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑p
constructor
case mp R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁸ : Ring R inst✝⁷ : Ring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_10 inst✝² : FunLike F M M₂ inst✝¹ : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M ⊢ ker f ≤ p → ∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑p case mpr R : Type u_1 R₂ : Type u_2 M : Type u_5 M₂ : Type u_6 inst✝⁸ : Ring R inst✝⁷ : Ring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_10 inst✝² : FunLike F M M₂ inst✝¹ : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M ⊢ (∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑p) → ker f ≤ p
4607f9408a9aa2c2
NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal
Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean
theorem finite_of_discr_bdd_of_isReal : {K : { F : IntermediateField ℚ A // FiniteDimensional ℚ F} | haveI : NumberField K := @NumberField.mk _ _ inferInstance K.prop {w : InfinitePlace K | IsReal w}.Nonempty ∧ |discr K| ≤ N }.Finite
A : Type u_2 inst✝¹ : Field A inst✝ : CharZero A N : ℕ D : ℕ := rankOfDiscrBdd N B : ℝ≥0 := boundOfDiscBdd N C : ℕ := ⌈(B ⊔ 1) ^ D * ↑(D.choose (D / 2))⌉₊ x✝¹ : { F // FiniteDimensional ℚ ↥F } K : IntermediateField ℚ A hK₀ : FiniteDimensional ℚ ↥K x✝ : ⟨K, hK₀⟩ ∈ {K | {w | w.IsReal}.Nonempty ∧ |discr ↥↑K| ≤ ↑N} hK₂ : |discr ↥↑⟨K, hK₀⟩| ≤ ↑N this✝¹ : CharZero ↥K this✝ : NumberField ↥K w₀ : InfinitePlace ↥↑⟨K, hK₀⟩ hw₀ : w₀ ∈ {w | w.IsReal} this : minkowskiBound (↥K) 1 < ↑(convexBodyLTFactor ↥K) * ↑B x : 𝓞 ↥K hx₁ : ℚ⟮↑x⟯ = ⊤ hx₂ : ∀ (w : InfinitePlace ↥K), w ↑x < ↑(B ⊔ 1) hx : IsIntegral ℤ ((algebraMap (𝓞 ↥K) ↥K) x) i : ℕ ⊢ ↑(B ⊔ 1) ⊔ 1 = ↑B ⊔ 1
simp
no goals
258b240e119b72fe
CategoryTheory.leftAdjoint_preservesTerminal_of_reflective
Mathlib/CategoryTheory/Monad/Limits.lean
/-- The reflector always preserves terminal objects. Note this in general doesn't apply to any other limit. -/ lemma leftAdjoint_preservesTerminal_of_reflective (R : D ⥤ C) [Reflective R] : PreservesLimitsOfShape (Discrete.{v} PEmpty) (monadicLeftAdjoint R) where preservesLimit {K}
case preserves C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D R : D ⥤ C inst✝ : Reflective R K : Discrete PEmpty.{v + 1} ⥤ C F : Discrete PEmpty.{v + 1} ⥤ D := Functor.empty D c : Cone (F ⋙ R) h : IsLimit c this✝ : HasLimit (F ⋙ R) this : HasLimit F ⊢ Nonempty (IsLimit ((monadicLeftAdjoint R).mapCone c))
constructor
case preserves.val C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D R : D ⥤ C inst✝ : Reflective R K : Discrete PEmpty.{v + 1} ⥤ C F : Discrete PEmpty.{v + 1} ⥤ D := Functor.empty D c : Cone (F ⋙ R) h : IsLimit c this✝ : HasLimit (F ⋙ R) this : HasLimit F ⊢ IsLimit ((monadicLeftAdjoint R).mapCone c)
68ed64ef7d4b8b6f
Lagrange.eq_interpolate_of_eval_eq
Mathlib/LinearAlgebra/Lagrange.lean
theorem eq_interpolate_of_eval_eq {f : F[X]} (hvs : Set.InjOn v s) (degree_f_lt : f.degree < #s) (eval_f : ∀ i ∈ s, f.eval (v i) = r i) : f = interpolate s v r
F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v r : ι → F f : F[X] hvs : Set.InjOn v ↑s degree_f_lt : f.degree < ↑(#s) eval_f : ∀ i ∈ s, eval (v i) f = r i ⊢ f = (interpolate s v) r
rw [eq_interpolate hvs degree_f_lt]
F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v r : ι → F f : F[X] hvs : Set.InjOn v ↑s degree_f_lt : f.degree < ↑(#s) eval_f : ∀ i ∈ s, eval (v i) f = r i ⊢ ((interpolate s v) fun i => eval (v i) f) = (interpolate s v) r
854f85709b9436f3
Finsupp.sum_sum_index'
Mathlib/Algebra/BigOperators/Finsupp.lean
theorem Finsupp.sum_sum_index' (h0 : ∀ i, t i 0 = 0) (h1 : ∀ i x y, t i (x + y) = t i x + t i y) : (∑ x ∈ s, f x).sum t = ∑ x ∈ s, (f x).sum t
α : Type u_1 ι : Type u_2 A : Type u_4 C : Type u_6 inst✝¹ : AddCommMonoid A inst✝ : AddCommMonoid C t : ι → A → C s✝ : Finset α f : α → ι →₀ A h0 : ∀ (i : ι), t i 0 = 0 h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y a : α s : Finset α has : a ∉ s ih : (∑ x ∈ s, f x).sum t = ∑ x ∈ s, (f x).sum t ⊢ (∑ x ∈ insert a s, f x).sum t = ∑ x ∈ insert a s, (f x).sum t
simp_rw [Finset.sum_insert has, Finsupp.sum_add_index' h0 h1, ih]
no goals
23af0593f3118115
SimplexCategoryGenRel.hom_induction
Mathlib/AlgebraicTopology/SimplexCategory/GeneratorsRelations/Basic.lean
/-- An unrolled version of the induction principle obtained in the previous lemma. -/ @[elab_as_elim, cases_eliminator, induction_eliminator] lemma hom_induction (P : MorphismProperty SimplexCategoryGenRel) (id : ∀ {n : ℕ}, P (𝟙 (mk n))) (comp_δ : ∀ {n m : ℕ} (u : mk n ⟶ mk m) (i : Fin (m + 2)), P u → P (u ≫ δ i)) (comp_σ : ∀ {n m : ℕ} (u : mk n ⟶ mk (m + 1)) (i : Fin (m + 1)), P u → P (u ≫ σ i)) {a b : SimplexCategoryGenRel} (f : a ⟶ b) : P f := by suffices generators.multiplicativeClosure ≤ P by rw [multiplicativeClosure_isGenerator_eq_top, top_le_iff] at this rw [this] apply MorphismProperty.top_apply intro _ _ f hf induction hf with | of f h => rcases h with ⟨⟨i⟩⟩ | ⟨⟨i⟩⟩ · simpa using (comp_δ (𝟙 _) i id) · simpa using (comp_σ (𝟙 _) i id) | id n => exact id | comp_of f g hf hg hrec => rcases hg with ⟨⟨i⟩⟩ | ⟨⟨i⟩⟩ · simpa using (comp_δ f i hrec) · simpa using (comp_σ f i hrec)
P : MorphismProperty SimplexCategoryGenRel id : ∀ {n : ℕ}, P (𝟙 (mk n)) comp_δ : ∀ {n m : ℕ} (u : mk n ⟶ mk m) (i : Fin (m + 2)), P u → P (u ≫ δ i) comp_σ : ∀ {n m : ℕ} (u : mk n ⟶ mk (m + 1)) (i : Fin (m + 1)), P u → P (u ≫ σ i) a b : SimplexCategoryGenRel f : a ⟶ b ⊢ generators.multiplicativeClosure ≤ P
intro _ _ f hf
P : MorphismProperty SimplexCategoryGenRel id : ∀ {n : ℕ}, P (𝟙 (mk n)) comp_δ : ∀ {n m : ℕ} (u : mk n ⟶ mk m) (i : Fin (m + 2)), P u → P (u ≫ δ i) comp_σ : ∀ {n m : ℕ} (u : mk n ⟶ mk (m + 1)) (i : Fin (m + 1)), P u → P (u ≫ σ i) a b : SimplexCategoryGenRel f✝ : a ⟶ b X✝ Y✝ : SimplexCategoryGenRel f : X✝ ⟶ Y✝ hf : generators.multiplicativeClosure f ⊢ P f
5b459ccac98f64d1
CategoryTheory.Limits.PullbackCone.mono_of_isLimitMkIdId
Mathlib/CategoryTheory/Limits/Shapes/Pullback/Mono.lean
theorem mono_of_isLimitMkIdId (f : X ⟶ Y) (t : IsLimit (mk (𝟙 X) (𝟙 X) rfl : PullbackCone f f)) : Mono f := ⟨fun {Z} g h eq => by rcases PullbackCone.IsLimit.lift' t _ _ eq with ⟨_, rfl, rfl⟩ rfl⟩
C : Type u inst✝ : Category.{v, u} C X Y : C f : X ⟶ Y t : IsLimit (mk (𝟙 X) (𝟙 X) ⋯) Z : C g h : Z ⟶ X eq : g ≫ f = h ≫ f ⊢ g = h
rcases PullbackCone.IsLimit.lift' t _ _ eq with ⟨_, rfl, rfl⟩
case mk.intro C : Type u inst✝ : Category.{v, u} C X Y : C f : X ⟶ Y t : IsLimit (mk (𝟙 X) (𝟙 X) ⋯) Z : C val✝ : Z ⟶ (mk (𝟙 X) (𝟙 X) ⋯).pt eq : (val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).fst) ≫ f = (val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).snd) ≫ f ⊢ val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).fst = val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).snd
98d4f8fb735a5040
Int.cast_mul_eq_zsmul_cast
Mathlib/Algebra/Ring/Int/Defs.lean
/-- Note this holds in marginally more generality than `Int.cast_mul` -/ lemma cast_mul_eq_zsmul_cast {α : Type*} [AddCommGroupWithOne α] : ∀ m n : ℤ, ↑(m * n) = m • (n : α) := fun m ↦ Int.induction_on m (by simp) (fun _ ih ↦ by simp [add_mul, add_zsmul, ih]) fun _ ih ↦ by simp only [sub_mul, one_mul, cast_sub, ih, sub_zsmul, one_zsmul, ← sub_eq_add_neg, forall_const]
α : Type u_1 inst✝ : AddCommGroupWithOne α m : ℤ x✝ : ℕ ih : ∀ (n : ℤ), ↑(-↑x✝ * n) = -↑x✝ • ↑n ⊢ ∀ (n : ℤ), ↑((-↑x✝ - 1) * n) = (-↑x✝ - 1) • ↑n
simp only [sub_mul, one_mul, cast_sub, ih, sub_zsmul, one_zsmul, ← sub_eq_add_neg, forall_const]
no goals
581b90f0b94a9546
Nat.add_lt_of_lt_sub
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean
theorem add_lt_of_lt_sub {a b c : Nat} (h : a < c - b) : a + b < c
case h a b c : Nat h : a < c - b hgt : c < b ⊢ False
apply Nat.not_lt_zero a
case h a b c : Nat h : a < c - b hgt : c < b ⊢ a < 0
f12023f17c28ef23
AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_apply_eq_comap
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
lemma toSpec_base_apply_eq_comap {f} (x : Proj| pbo f) : (toSpec 𝒜 f).base x = PrimeSpectrum.comap (mapId 𝒜 (Submonoid.powers_le.mpr x.2)) (closedPoint (AtPrime 𝒜 x.1.asHomogeneousIdeal.toIdeal))
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A x : ↑(Proj.restrict ⋯).toTopCat ⊢ ((PrimeSpectrum.comap (CommRingCat.Hom.hom (CommRingCat.ofHom (mapId 𝒜 ⋯)))).comp (PrimeSpectrum.comap (CommRingCat.Hom.hom ((«Proj».stalkIso' 𝒜 ↑x).toCommRingCatIso.inv ≫ (Proj.restrictStalkIso ⋯ x).inv)))) (closedPoint ↑((Proj.restrict ⋯).presheaf.stalk x)) = (PrimeSpectrum.comap (mapId 𝒜 ⋯)) (closedPoint (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal))
exact congr(PrimeSpectrum.comap _ $(@IsLocalRing.comap_closedPoint (HomogeneousLocalization.AtPrime 𝒜 x.1.asHomogeneousIdeal.toIdeal) _ _ ((Proj| pbo f).presheaf.stalk x) _ _ _ (isLocalHom_of_isIso _)))
no goals
0f648351cda17755
Nat.digits_add
Mathlib/Data/Nat/Digits.lean
theorem digits_add (b : ℕ) (h : 1 < b) (x y : ℕ) (hxb : x < b) (hxy : x ≠ 0 ∨ y ≠ 0) : digits b (x + b * y) = x :: digits b y
case intro.succ.e_tail.e_a x b : ℕ h : 1 < b + 2 hxb : x < b + 2 n✝ : ℕ hxy : x ≠ 0 ∨ n✝ + 1 ≠ 0 ⊢ (x + (b + 2) * (n✝ + 1)) / (b + 2) = n✝ + 1
simp [add_mul_div_left, div_eq_of_lt hxb]
no goals
5707ca6647bd00ed
CategoryTheory.HomOrthogonal.equiv_of_iso
Mathlib/CategoryTheory/Preadditive/HomOrthogonal.lean
theorem equiv_of_iso (o : HomOrthogonal s) {α β : Type} [Finite α] [Finite β] {f : α → ι} {g : β → ι} (i : (⨁ fun a => s (f a)) ≅ ⨁ fun b => s (g b)) : ∃ e : α ≃ β, ∀ a, g (e a) = f a
case h C : Type u inst✝⁵ : Category.{v, u} C ι : Type u_1 s : ι → C inst✝⁴ : Preadditive C inst✝³ : HasFiniteBiproducts C inst✝² : ∀ (i : ι), InvariantBasisNumber (End (s i)) o : HomOrthogonal s α β : Type inst✝¹ : Finite α inst✝ : Finite β f : α → ι g : β → ι i : (⨁ fun a => s (f a)) ≅ ⨁ fun b => s (g b) c : ι ⊢ Nonempty (↑(f ⁻¹' {c}) ≃ ↑(g ⁻¹' {c}))
apply Cardinal.eq.1
case h C : Type u inst✝⁵ : Category.{v, u} C ι : Type u_1 s : ι → C inst✝⁴ : Preadditive C inst✝³ : HasFiniteBiproducts C inst✝² : ∀ (i : ι), InvariantBasisNumber (End (s i)) o : HomOrthogonal s α β : Type inst✝¹ : Finite α inst✝ : Finite β f : α → ι g : β → ι i : (⨁ fun a => s (f a)) ≅ ⨁ fun b => s (g b) c : ι ⊢ Cardinal.mk ↑(f ⁻¹' {c}) = Cardinal.mk ↑(g ⁻¹' {c})
24935b447fa3d747
LinearIndependent.map_of_isPurelyInseparable_of_isSeparable
Mathlib/FieldTheory/PurelyInseparable/Tower.lean
theorem LinearIndependent.map_of_isPurelyInseparable_of_isSeparable [IsPurelyInseparable F E] {ι : Type*} {v : ι → K} (hsep : ∀ i : ι, IsSeparable F (v i)) (h : LinearIndependent F v) : LinearIndependent E v
case intro F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : IsPurelyInseparable F E ι : Type u_1 v : ι → K hsep : ∀ (i : ι), IsSeparable F (v i) h : LinearIndependent F v q : ℕ h✝ : ExpChar F q this : ExpChar K q l : ι →₀ E hl : (Finsupp.linearCombination E v) l = 0 i : ι f : ι → ℕ hf : ∀ (i : ι), l i ^ q ^ f i ∈ (algebraMap F E).range ⊢ l i = 0 i
let n := l.support.sup f
case intro F : Type u E : Type v inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Algebra F E K : Type w inst✝⁴ : Field K inst✝³ : Algebra F K inst✝² : Algebra E K inst✝¹ : IsScalarTower F E K inst✝ : IsPurelyInseparable F E ι : Type u_1 v : ι → K hsep : ∀ (i : ι), IsSeparable F (v i) h : LinearIndependent F v q : ℕ h✝ : ExpChar F q this : ExpChar K q l : ι →₀ E hl : (Finsupp.linearCombination E v) l = 0 i : ι f : ι → ℕ hf : ∀ (i : ι), l i ^ q ^ f i ∈ (algebraMap F E).range n : ℕ := l.support.sup f ⊢ l i = 0 i
e47247a3e0a1480f
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.limplies_of_assignmentsInvariant
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem limplies_of_assignmentsInvariant {n : Nat} (f : DefaultFormula n) (f_AssignmentsInvariant : AssignmentsInvariant f) : Limplies (PosFin n) f f.assignments
case pos n : Nat f : DefaultFormula n p : PosFin n → Bool pf : p ⊨ f hsize : f.assignments.size = n i : PosFin n f_AssignmentsInvariant : hasAssignment (decide (p i = false)) f.assignments[i.val] = true → Limplies (PosFin n) f (i, decide (p i = false)) h✝ : hasAssignment (decide (p i = false)) f.assignments[i.val] = true ⊢ hasAssignment (decide (p i = false)) f.assignments[i.val]! = false
next h => specialize f_AssignmentsInvariant h p pf by_cases hpi : p i <;> simp [hpi, Entails.eval] at f_AssignmentsInvariant
no goals
324db374b482bd66
Polynomial.comp_eq_zero_iff
Mathlib/Algebra/Polynomial/Degree/Lemmas.lean
lemma comp_eq_zero_iff [Semiring R] [NoZeroDivisors R] {p q : R[X]} : p.comp q = 0 ↔ p = 0 ∨ p.eval (q.coeff 0) = 0 ∧ q = C (q.coeff 0)
R : Type u inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p q : R[X] h : p.comp q = 0 ⊢ p = 0 ∨ eval (q.coeff 0) p = 0 ∧ q = C (q.coeff 0)
have key : p.natDegree = 0 ∨ q.natDegree = 0 := by rw [← mul_eq_zero, ← natDegree_comp, h, natDegree_zero]
R : Type u inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p q : R[X] h : p.comp q = 0 key : p.natDegree = 0 ∨ q.natDegree = 0 ⊢ p = 0 ∨ eval (q.coeff 0) p = 0 ∧ q = C (q.coeff 0)
3c93f890bf6dfb1a
TopCat.GlueData.fromOpenSubsetsGlue_isOpenMap
Mathlib/Topology/Gluing.lean
theorem fromOpenSubsetsGlue_isOpenMap : IsOpenMap (fromOpenSubsetsGlue U)
α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ↑(ofOpenSubsets U).glued hs : IsOpen s ⊢ IsOpen (⇑(ConcreteCategory.hom (fromOpenSubsetsGlue U)) '' s)
rw [(ofOpenSubsets U).isOpen_iff] at hs
α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ↑(ofOpenSubsets U).glued hs : ∀ (i : (ofOpenSubsets U).J), IsOpen (⇑(ConcreteCategory.hom ((ofOpenSubsets U).ι i)) ⁻¹' s) ⊢ IsOpen (⇑(ConcreteCategory.hom (fromOpenSubsetsGlue U)) '' s)
65b5b2de14fddbed
StieltjesFunction.length_subadditive_Icc_Ioo
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem length_subadditive_Icc_Ioo {a b : ℝ} {c d : ℕ → ℝ} (ss : Icc a b ⊆ ⋃ i, Ioo (c i) (d i)) : ofReal (f b - f a) ≤ ∑' i, ofReal (f (d i) - f (c i))
f : StieltjesFunction a b : ℝ c d : ℕ → ℝ ss : Icc a b ⊆ ⋃ i, Ioo (c i) (d i) this : ∀ (s : Finset ℕ) (b : ℝ), Icc a b ⊆ ⋃ i ∈ ↑s, Ioo (c i) (d i) → ofReal (↑f b - ↑f a) ≤ ∑ i ∈ s, ofReal (↑f (d i) - ↑f (c i)) ⊢ ofReal (↑f b - ↑f a) ≤ ∑' (i : ℕ), ofReal (↑f (d i) - ↑f (c i))
rcases isCompact_Icc.elim_finite_subcover_image (fun (i : ℕ) (_ : i ∈ univ) => @isOpen_Ioo _ _ _ _ (c i) (d i)) (by simpa using ss) with ⟨s, _, hf, hs⟩
case intro.intro.intro f : StieltjesFunction a b : ℝ c d : ℕ → ℝ ss : Icc a b ⊆ ⋃ i, Ioo (c i) (d i) this : ∀ (s : Finset ℕ) (b : ℝ), Icc a b ⊆ ⋃ i ∈ ↑s, Ioo (c i) (d i) → ofReal (↑f b - ↑f a) ≤ ∑ i ∈ s, ofReal (↑f (d i) - ↑f (c i)) s : Set ℕ left✝ : s ⊆ univ hf : s.Finite hs : Icc a b ⊆ ⋃ i ∈ s, Ioo (c i) (d i) ⊢ ofReal (↑f b - ↑f a) ≤ ∑' (i : ℕ), ofReal (↑f (d i) - ↑f (c i))
16e01a7b132038e4
HomologicalComplex.restrictionMap_f'
Mathlib/Algebra/Homology/Embedding/Restriction.lean
@[reassoc] lemma restrictionMap_f' {i : ι} {i' : ι'} (hi : e.f i = i') : (restrictionMap φ e).f i = (K.restrictionXIso e hi).hom ≫ φ.f i' ≫ (L.restrictionXIso e hi).inv
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝² : Category.{u_4, u_3} C inst✝¹ : HasZeroMorphisms C K L : HomologicalComplex C c' φ : K ⟶ L e : c.Embedding c' inst✝ : e.IsRelIff i : ι ⊢ (restrictionMap φ e).f i = (K.restrictionXIso e ⋯).hom ≫ φ.f (e.f i) ≫ (L.restrictionXIso e ⋯).inv
simp [restrictionXIso]
no goals
e78462e2308f811b
CategoryTheory.Presheaf.isLocallySurjective_of_whisker
Mathlib/CategoryTheory/Sites/PreservesLocallyBijective.lean
lemma isLocallySurjective_of_whisker (hH : CoverPreserving J K H) [H.IsCoverDense K] [IsLocallySurjective J (whiskerLeft H.op f)] : IsLocallySurjective K f where imageSieve_mem {X} a
case h C : Type u_1 D : Type u_2 A : Type u_3 inst✝⁶ : Category.{u_6, u_1} C inst✝⁵ : Category.{u_7, u_2} D inst✝⁴ : Category.{u_8, u_3} A J : GrothendieckTopology C K : GrothendieckTopology D H : C ⥤ D F G : Dᵒᵖ ⥤ A f : F ⟶ G FA : A → A → Type u_4 CA : A → Type u_5 inst✝³ : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝² : ConcreteCategory A FA hH : CoverPreserving J K H inst✝¹ : H.IsCoverDense K inst✝ : IsLocallySurjective J (whiskerLeft H.op f) X : D a : ToType (G.obj (Opposite.op X)) Y : D g : Y ⟶ X Z : C lift : Y ⟶ H.obj Z map : H.obj Z ⟶ X fac : lift ≫ map = g ⊢ Sieve.pullback lift (Sieve.pullback map (imageSieve f a)) ∈ K Y
apply K.pullback_stable
case h.hS C : Type u_1 D : Type u_2 A : Type u_3 inst✝⁶ : Category.{u_6, u_1} C inst✝⁵ : Category.{u_7, u_2} D inst✝⁴ : Category.{u_8, u_3} A J : GrothendieckTopology C K : GrothendieckTopology D H : C ⥤ D F G : Dᵒᵖ ⥤ A f : F ⟶ G FA : A → A → Type u_4 CA : A → Type u_5 inst✝³ : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝² : ConcreteCategory A FA hH : CoverPreserving J K H inst✝¹ : H.IsCoverDense K inst✝ : IsLocallySurjective J (whiskerLeft H.op f) X : D a : ToType (G.obj (Opposite.op X)) Y : D g : Y ⟶ X Z : C lift : Y ⟶ H.obj Z map : H.obj Z ⟶ X fac : lift ≫ map = g ⊢ Sieve.pullback map (imageSieve f a) ∈ K (H.obj Z)
6db4c45a55a27efe
IsCoprime.intCast
Mathlib/RingTheory/Coprime/Basic.lean
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) : IsCoprime (a : R) (b : R)
case intro.intro R : Type u_1 inst✝ : CommRing R a b u v : ℤ H : u * a + v * b = 1 ⊢ IsCoprime ↑a ↑b
use u, v
case h R : Type u_1 inst✝ : CommRing R a b u v : ℤ H : u * a + v * b = 1 ⊢ ↑u * ↑a + ↑v * ↑b = 1
0b43dd1d4f9f208c
normEDS_three
Mathlib/NumberTheory/EllipticDivisibilitySequence.lean
@[simp] lemma normEDS_three : normEDS b c d 3 = c
R : Type u inst✝ : CommRing R b c d : R ⊢ ¬Even 3
decide
no goals
1d48b070f930378a
CStarRing.norm_coe_unitary_mul
Mathlib/Analysis/CStarAlgebra/Basic.lean
theorem norm_coe_unitary_mul (U : unitary E) (A : E) : ‖(U : E) * A‖ = ‖A‖
E : Type u_2 inst✝² : NormedRing E inst✝¹ : StarRing E inst✝ : CStarRing E U : ↥(unitary E) A : E a✝ : Nontrivial E ⊢ ‖↑U * A‖ = ‖A‖
refine le_antisymm ?_ ?_
case refine_1 E : Type u_2 inst✝² : NormedRing E inst✝¹ : StarRing E inst✝ : CStarRing E U : ↥(unitary E) A : E a✝ : Nontrivial E ⊢ ‖↑U * A‖ ≤ ‖A‖ case refine_2 E : Type u_2 inst✝² : NormedRing E inst✝¹ : StarRing E inst✝ : CStarRing E U : ↥(unitary E) A : E a✝ : Nontrivial E ⊢ ‖A‖ ≤ ‖↑U * A‖
f09abe48df8a1a8c
Filter.EventuallyEq.lineDerivWithin_eq
Mathlib/Analysis/Calculus/LineDeriv/Basic.lean
theorem Filter.EventuallyEq.lineDerivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : lineDerivWithin 𝕜 f₁ s x v = lineDerivWithin 𝕜 f s x v
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f f₁ : E → F s : Set E x v : E hs : f₁ =ᶠ[𝓝[s] x] f hx : f₁ x = f x ⊢ Continuous fun t => x + t • v
fun_prop
no goals
c1bb0926c6962436
DistribLattice.prime_ideal_of_disjoint_filter_ideal
Mathlib/Order/PrimeSeparator.lean
theorem prime_ideal_of_disjoint_filter_ideal (hFI : Disjoint (F : Set α) (I : Set α)) : ∃ J : Ideal α, (IsPrime J) ∧ I ≤ J ∧ Disjoint (F : Set α) J
case h α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α F : PFilter α I : Ideal α hFI : Disjoint ↑F ↑I S : Set (Set α) := {J | IsIdeal J ∧ ↑I ≤ J ∧ Disjoint (↑F) J} Jset : Set α left✝ : ↑I ⊆ Jset hmax : Maximal (fun x => x ∈ S) Jset Jidl : IsIdeal Jset IJ : ↑I ≤ Jset J : Ideal α := Jidl.toIdeal IJ' : I ≤ J Jpr : J.IsProper a₁ a₂ : α ha₁ : a₁ ∉ J ha₂ : a₂ ∉ J J₁ : Ideal α := J ⊔ principal a₁ J₂ : Ideal α := J ⊔ principal a₂ a₁J₁ : a₁ ∈ J₁ a₂J₂ : a₂ ∈ J₂ J₁J : ↑J₁ ≠ Jset J₂J : ↑J₂ ≠ Jset J₁S : ↑J₁ ∉ S J₂S : ↑J₂ ∉ S J₁F : ¬Disjoint ↑F ↑J₁ J₂F : ¬Disjoint ↑F ↑J₂ c₁ : α c₁F : c₁ ∈ ↑F c₁J₁ : c₁ ∈ ↑J₁ c₂ : α c₂F : c₂ ∈ ↑F c₂J₂ : c₂ ∈ ↑J₂ b₁ : α b₁J : b₁ ∈ J cba₁ : c₁ ≤ b₁ ⊔ a₁ b₂ : α b₂J : b₂ ∈ J cba₂ : c₂ ≤ b₂ ⊔ a₂ b : α := b₁ ⊔ b₂ bJ : b ∈ J ineq : c₁ ⊓ c₂ ≤ b ⊔ a₁ ⊓ a₂ ba₁a₂F : b ⊔ a₁ ⊓ a₂ ∈ F ha₁a₂ : a₁ ⊓ a₂ ∈ J ⊢ ∃ x ∈ ↑F, x ∈ Jset
use b ⊔ (a₁ ⊓ a₂)
case h α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α F : PFilter α I : Ideal α hFI : Disjoint ↑F ↑I S : Set (Set α) := {J | IsIdeal J ∧ ↑I ≤ J ∧ Disjoint (↑F) J} Jset : Set α left✝ : ↑I ⊆ Jset hmax : Maximal (fun x => x ∈ S) Jset Jidl : IsIdeal Jset IJ : ↑I ≤ Jset J : Ideal α := Jidl.toIdeal IJ' : I ≤ J Jpr : J.IsProper a₁ a₂ : α ha₁ : a₁ ∉ J ha₂ : a₂ ∉ J J₁ : Ideal α := J ⊔ principal a₁ J₂ : Ideal α := J ⊔ principal a₂ a₁J₁ : a₁ ∈ J₁ a₂J₂ : a₂ ∈ J₂ J₁J : ↑J₁ ≠ Jset J₂J : ↑J₂ ≠ Jset J₁S : ↑J₁ ∉ S J₂S : ↑J₂ ∉ S J₁F : ¬Disjoint ↑F ↑J₁ J₂F : ¬Disjoint ↑F ↑J₂ c₁ : α c₁F : c₁ ∈ ↑F c₁J₁ : c₁ ∈ ↑J₁ c₂ : α c₂F : c₂ ∈ ↑F c₂J₂ : c₂ ∈ ↑J₂ b₁ : α b₁J : b₁ ∈ J cba₁ : c₁ ≤ b₁ ⊔ a₁ b₂ : α b₂J : b₂ ∈ J cba₂ : c₂ ≤ b₂ ⊔ a₂ b : α := b₁ ⊔ b₂ bJ : b ∈ J ineq : c₁ ⊓ c₂ ≤ b ⊔ a₁ ⊓ a₂ ba₁a₂F : b ⊔ a₁ ⊓ a₂ ∈ F ha₁a₂ : a₁ ⊓ a₂ ∈ J ⊢ b ⊔ a₁ ⊓ a₂ ∈ ↑F ∧ b ⊔ a₁ ⊓ a₂ ∈ Jset
689f1ec2649ea4e9
TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_nonunital
Mathlib/RingTheory/TwoSidedIdeal/Operations.lean
lemma mem_span_iff_mem_addSubgroup_closure_nonunital {s : Set R} {z : R} : z ∈ span s ↔ z ∈ AddSubgroup.closure (s ∪ s * univ ∪ univ * s ∪ univ * s * univ)
case refine_1.inl.inr.intro.intro.intro.intro R : Type u_1 inst✝ : NonUnitalRing R s : Set R z x r y : R hy : y ∈ s ⊢ x * (fun x1 x2 => x1 * x2) r y ∈ s ∪ s * univ ∪ univ * s ∪ univ * s * univ
exact .inl <| .inr <| ⟨x * r, mem_univ _, y, hy, mul_assoc ..⟩
no goals
a217d500043db5e0
Balanced.sub
Mathlib/Analysis/LocallyConvex/Basic.lean
theorem Balanced.sub (hs : Balanced 𝕜 s) (ht : Balanced 𝕜 t) : Balanced 𝕜 (s - t)
𝕜 : Type u_1 E : Type u_3 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Balanced 𝕜 s ht : Balanced 𝕜 t ⊢ Balanced 𝕜 (s - t)
simp_rw [sub_eq_add_neg]
𝕜 : Type u_1 E : Type u_3 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Balanced 𝕜 s ht : Balanced 𝕜 t ⊢ Balanced 𝕜 (s + -t)
609a724600ad6e81
Ordinal.veblenWith_eq_veblenWith_iff
Mathlib/SetTheory/Ordinal/Veblen.lean
theorem veblenWith_eq_veblenWith_iff : veblenWith f o₁ a = veblenWith f o₂ b ↔ o₁ = o₂ ∧ a = b ∨ o₁ < o₂ ∧ a = veblenWith f o₂ b ∨ o₂ < o₁ ∧ veblenWith f o₁ a = b
f : Ordinal.{u} → Ordinal.{u} o₁ o₂ a b : Ordinal.{u} hf : IsNormal f ⊢ (match cmp o₁ o₂ with | Ordering.eq => cmp a b | Ordering.lt => cmp a (veblenWith f o₂ b) | Ordering.gt => cmp (veblenWith f o₁ a) b) = Ordering.eq ↔ o₁ = o₂ ∧ a = b ∨ o₁ < o₂ ∧ a = veblenWith f o₂ b ∨ o₂ < o₁ ∧ veblenWith f o₁ a = b
aesop (add simp lt_asymm)
no goals
0d52f83a3c4edba7
Nat.add_le_mul
Mathlib/Data/Nat/Init.lean
protected lemma add_le_mul {a : ℕ} (ha : 2 ≤ a) : ∀ {b : ℕ} (_ : 2 ≤ b), a + b ≤ a * b | 2, _ => by omega | b + 3, _ => by have := Nat.add_le_mul ha (Nat.le_add_left _ b); rw [mul_succ]; omega
a : ℕ ha : 2 ≤ a x✝ : 2 ≤ 2 ⊢ a + 2 ≤ a * 2
omega
no goals
13e04ab1add282ca
Set.disjoint_ordT5Nhd
Mathlib/Order/Interval/Set/OrdConnectedComponent.lean
theorem disjoint_ordT5Nhd : Disjoint (ordT5Nhd s t) (ordT5Nhd t s)
case intro.intro.inr.inr α✝ : Type u_1 inst✝¹ : LinearOrder α✝ s✝ t✝ : Set α✝ α : Type u_1 inst✝ : LinearOrder α s t : Set α x a : α has : a ∈ s b : α hbt : b ∈ t hab : a ≤ b ha : [[a, x]] ⊆ tᶜ hb : [[b, x]] ⊆ sᶜ hsub : [[a, b]] ⊆ (s.ordSeparatingSet t).ordConnectedSectionᶜ hax : a ≤ x hxb : x ≤ b ⊢ x ∈ ⊥
have h' : x ∈ ordSeparatingSet s t := ⟨mem_iUnion₂.2 ⟨a, has, ha⟩, mem_iUnion₂.2 ⟨b, hbt, hb⟩⟩
case intro.intro.inr.inr α✝ : Type u_1 inst✝¹ : LinearOrder α✝ s✝ t✝ : Set α✝ α : Type u_1 inst✝ : LinearOrder α s t : Set α x a : α has : a ∈ s b : α hbt : b ∈ t hab : a ≤ b ha : [[a, x]] ⊆ tᶜ hb : [[b, x]] ⊆ sᶜ hsub : [[a, b]] ⊆ (s.ordSeparatingSet t).ordConnectedSectionᶜ hax : a ≤ x hxb : x ≤ b h' : x ∈ s.ordSeparatingSet t ⊢ x ∈ ⊥
cc7be6509b6c5432
Array.all_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem all_eq {xs : Array α} {p : α → Bool} : xs.all p = decide (∀ i, (_ : i < xs.size) → p xs[i])
case neg α : Type u_1 xs : Array α p : α → Bool h : ¬xs.all p = true ⊢ xs.all p = decide (∀ (i : Nat) (x : i < xs.size), p xs[i] = true)
simp only [Bool.not_eq_true] at h
case neg α : Type u_1 xs : Array α p : α → Bool h : xs.all p = false ⊢ xs.all p = decide (∀ (i : Nat) (x : i < xs.size), p xs[i] = true)
906b6db12be6dc9b
MeasureTheory.Measure.integrable_measure_prod_mk_left
Mathlib/MeasureTheory/Integral/Prod.lean
theorem integrable_measure_prod_mk_left {s : Set (α × β)} (hs : MeasurableSet s) (h2s : (μ.prod ν) s ≠ ∞) : Integrable (fun x => (ν (Prod.mk x ⁻¹' s)).toReal) μ
case h α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α ν : Measure β inst✝ : SFinite ν s : Set (α × β) hs : MeasurableSet s h2s : (μ.prod ν) s ≠ ⊤ x : α hx : ν (Prod.mk x ⁻¹' s) < ⊤ ⊢ ENNReal.ofReal (ν (Prod.mk x ⁻¹' s)).toReal = ν (Prod.mk x ⁻¹' s)
rw [lt_top_iff_ne_top] at hx
case h α : Type u_1 β : Type u_2 inst✝² : MeasurableSpace α inst✝¹ : MeasurableSpace β μ : Measure α ν : Measure β inst✝ : SFinite ν s : Set (α × β) hs : MeasurableSet s h2s : (μ.prod ν) s ≠ ⊤ x : α hx : ν (Prod.mk x ⁻¹' s) ≠ ⊤ ⊢ ENNReal.ofReal (ν (Prod.mk x ⁻¹' s)).toReal = ν (Prod.mk x ⁻¹' s)
cda3d9546eac8d79
AddGroupWithOne.ext
Mathlib/Algebra/Ring/Ext.lean
theorem AddGroupWithOne.ext ⦃inst₁ inst₂ : AddGroupWithOne R⦄ (h_add : local_hAdd[R, inst₁] = local_hAdd[R, inst₂]) (h_one : (letI := inst₁; One.one : R) = (letI := inst₂; One.one)) : inst₁ = inst₂
case h_mul R : Type u inst₁ inst₂ : AddGroupWithOne R h_add : HAdd.hAdd = HAdd.hAdd h_one : One.one = One.one this✝ : toAddMonoidWithOne = toAddMonoidWithOne this : AddMonoidWithOne.toNatCast = AddMonoidWithOne.toNatCast ⊢ Add.add = Add.add
exact h_add
no goals
3b41a61ef664adfb
MeasureTheory.Measure.singularPart_eq_zero
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
lemma singularPart_eq_zero (μ ν : Measure α) [μ.HaveLebesgueDecomposition ν] : μ.singularPart ν = 0 ↔ μ ≪ ν
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝ : μ.HaveLebesgueDecomposition ν h_dec : μ = ν.withDensity (μ.rnDeriv ν) h : μ.singularPart ν = 0 ⊢ ν.withDensity (μ.rnDeriv ν) ≪ ν
exact withDensity_absolutelyContinuous ν _
no goals
4a91c07e6c9d50fd
DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply
Mathlib/Analysis/InnerProductSpace/PiL2.lean
theorem DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply [DecidableEq ι] {V : ι → Submodule 𝕜 E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily 𝕜 (fun i => V i) fun i => (V i).subtypeₗᵢ) (w : PiLp 2 fun i => V i) : (hV.isometryL2OfOrthogonalFamily hV').symm w = ∑ i, (w i : E)
ι : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : Fintype ι inst✝ : DecidableEq ι V : ι → Submodule 𝕜 E hV : IsInternal V hV' : OrthogonalFamily 𝕜 (fun i => ↥(V i)) fun i => (V i).subtypeₗᵢ w : PiLp 2 fun i => ↥(V i) e₁ : (⨁ (i : ι), ↥(V i)) ≃ₗ[𝕜] (i : ι) → ↥(V i) := linearEquivFunOnFintype 𝕜 ι fun i => ↥(V i) e₂ : (⨁ (i : ι), ↥(V i)) ≃ₗ[𝕜] E := LinearEquiv.ofBijective (coeLinearMap V) hV this : ∀ (v : ⨁ (i : ι), ↥(V i)), e₂ v = ∑ i : ι, ↑(e₁ v i) ⊢ (hV.isometryL2OfOrthogonalFamily hV').symm w = ∑ i : ι, ↑(w i)
exact this (e₁.symm w)
no goals
8f71fc0c58ddeeed
List.drop_eq_getElem?_toList_append
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem drop_eq_getElem?_toList_append {l : List α} {n : Nat} : l.drop n = l[n]?.toList ++ l.drop (n + 1)
case cons α : Type u_1 hd : α tl : List α ih : ∀ {n : Nat}, drop n tl = tl[n]?.toList ++ drop (n + 1) tl n : Nat ⊢ drop n (hd :: tl) = (hd :: tl)[n]?.toList ++ drop (n + 1) (hd :: tl)
cases n
case cons.zero α : Type u_1 hd : α tl : List α ih : ∀ {n : Nat}, drop n tl = tl[n]?.toList ++ drop (n + 1) tl ⊢ drop 0 (hd :: tl) = (hd :: tl)[0]?.toList ++ drop (0 + 1) (hd :: tl) case cons.succ α : Type u_1 hd : α tl : List α ih : ∀ {n : Nat}, drop n tl = tl[n]?.toList ++ drop (n + 1) tl n✝ : Nat ⊢ drop (n✝ + 1) (hd :: tl) = (hd :: tl)[n✝ + 1]?.toList ++ drop (n✝ + 1 + 1) (hd :: tl)
8b64a3b2a111c7eb
CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_uniq
Mathlib/CategoryTheory/Localization/Prod.lean
lemma prod_uniq (F₁ F₂ : (W₁.Localization × W₂.Localization ⥤ E)) (h : (W₁.Q.prod W₂.Q) ⋙ F₁ = (W₁.Q.prod W₂.Q) ⋙ F₂) : F₁ = F₂
case h.h C₁ : Type u₁ C₂ : Type u₂ inst✝² : Category.{v₁, u₁} C₁ inst✝¹ : Category.{v₂, u₂} C₂ W₁ : MorphismProperty C₁ W₂ : MorphismProperty C₂ E : Type u₅ inst✝ : Category.{v₅, u₅} E F₁ F₂ : W₁.Localization × W₂.Localization ⥤ E h : W₁.Q.prod W₂.Q ⋙ F₁ = W₁.Q.prod W₂.Q ⋙ F₂ ⊢ W₁.Q ⋙ curry.obj F₁ = W₁.Q ⋙ curry.obj F₂
apply Functor.flip_injective
case h.h.h C₁ : Type u₁ C₂ : Type u₂ inst✝² : Category.{v₁, u₁} C₁ inst✝¹ : Category.{v₂, u₂} C₂ W₁ : MorphismProperty C₁ W₂ : MorphismProperty C₂ E : Type u₅ inst✝ : Category.{v₅, u₅} E F₁ F₂ : W₁.Localization × W₂.Localization ⥤ E h : W₁.Q.prod W₂.Q ⋙ F₁ = W₁.Q.prod W₂.Q ⋙ F₂ ⊢ (W₁.Q ⋙ curry.obj F₁).flip = (W₁.Q ⋙ curry.obj F₂).flip
77a9b99162fee2d1
AnalyticOnNhd.eqOn_zero_of_preconnected_of_eventuallyEq_zero
Mathlib/Analysis/Analytic/Uniqueness.lean
theorem eqOn_zero_of_preconnected_of_eventuallyEq_zero {f : E → F} {U : Set E} (hf : AnalyticOnNhd 𝕜 f U) (hU : IsPreconnected U) {z₀ : E} (h₀ : z₀ ∈ U) (hfz₀ : f =ᶠ[𝓝 z₀] 0) : EqOn f 0 U
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F U : Set E hf : AnalyticOnNhd 𝕜 f U hU : IsPreconnected U z₀ : E h₀ : z₀ ∈ U hfz₀ : f =ᶠ[𝓝 z₀] 0 F' : Type u_3 := UniformSpace.Completion F e : F →L[𝕜] F' := UniformSpace.Completion.toComplL this : AnalyticOnNhd 𝕜 (⇑e ∘ f) U A : EqOn (⇑e ∘ f) 0 U z : E hz : z ∈ U ⊢ f z = 0 z
have : e (f z) = e 0 := by simpa only using A hz
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F U : Set E hf : AnalyticOnNhd 𝕜 f U hU : IsPreconnected U z₀ : E h₀ : z₀ ∈ U hfz₀ : f =ᶠ[𝓝 z₀] 0 F' : Type u_3 := UniformSpace.Completion F e : F →L[𝕜] F' := UniformSpace.Completion.toComplL this✝ : AnalyticOnNhd 𝕜 (⇑e ∘ f) U A : EqOn (⇑e ∘ f) 0 U z : E hz : z ∈ U this : e (f z) = e 0 ⊢ f z = 0 z
fc36c195452effd3
IsLocallyConstant.range_finite
Mathlib/Topology/LocallyConstant/Basic.lean
theorem range_finite [CompactSpace X] {f : X → Y} (hf : IsLocallyConstant f) : (Set.range f).Finite
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X f : X → Y hf : IsLocallyConstant f this✝ : TopologicalSpace Y := ⊥ this : DiscreteTopology Y ⊢ (range f).Finite
exact (isCompact_range hf.continuous).finite_of_discrete
no goals
a1204405fd1910fe
CategoryTheory.MorphismProperty.IsInvertedBy.iff_map_le_isomorphisms
Mathlib/CategoryTheory/MorphismProperty/IsInvertedBy.lean
lemma IsInvertedBy.iff_map_le_isomorphisms (W : MorphismProperty C) (F : C ⥤ D) : W.IsInvertedBy F ↔ W.map F ≤ isomorphisms D
C : Type u inst✝¹ : Category.{v, u} C D : Type u' inst✝ : Category.{v', u'} D W : MorphismProperty C F : C ⥤ D ⊢ W.IsInvertedBy F ↔ W.map F ≤ isomorphisms D
rw [iff_le_inverseImage_isomorphisms, map_le_iff]
no goals
33fdfd2662ec8270
CochainComplex.HomComplex.Cochain.rightShift_smul
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
@[simp] lemma rightShift_smul (a n' : ℤ) (hn' : n' + a = n) (x : R) : (x • γ).rightShift a n' hn' = x • γ.rightShift a n' hn'
C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C R : Type u_1 inst✝¹ : Ring R inst✝ : Linear R C K L : CochainComplex C ℤ n : ℤ γ : Cochain K L n a n' : ℤ hn' : n' + a = n x : R ⊢ (x • γ).rightShift a n' hn' = x • γ.rightShift a n' hn'
ext p q hpq
case h C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C R : Type u_1 inst✝¹ : Ring R inst✝ : Linear R C K L : CochainComplex C ℤ n : ℤ γ : Cochain K L n a n' : ℤ hn' : n' + a = n x : R p q : ℤ hpq : p + n' = q ⊢ ((x • γ).rightShift a n' hn').v p q hpq = (x • γ.rightShift a n' hn').v p q hpq
ee8e7d1e3839df76
geom_sum_eq_zero_iff_neg_one
Mathlib/Algebra/GeomSum.lean
theorem geom_sum_eq_zero_iff_neg_one [LinearOrderedRing α] (hn : n ≠ 0) : ∑ i ∈ range n, x ^ i = 0 ↔ x = -1 ∧ Even n
α : Type u n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ∨ x ≠ -1 ⊢ ∑ i ∈ range n, x ^ i ≠ 0
rcases hx with hx | hx
case inl α : Type u n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ⊢ ∑ i ∈ range n, x ^ i ≠ 0 case inr α : Type u n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x ≠ -1 ⊢ ∑ i ∈ range n, x ^ i ≠ 0
b77f74310391edb9
List.sublist_flatten_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem sublist_flatten_iff {L : List (List α)} {l} : l <+ L.flatten ↔ ∃ L' : List (List α), l = L'.flatten ∧ ∀ i (_ : i < L'.length), L'[i] <+ L[i]?.getD []
case cons.mp α : Type u_1 l' : List α L : List (List α) ih : ∀ {l : List α}, l <+ L.flatten ↔ ∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD [] l : List α ⊢ (∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁ <+ l' ∧ ∃ L', l₂ = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []) → ∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ (l' :: L)[i]?.getD []
rintro ⟨l₁, l₂, rfl, s, L', rfl, h⟩
case cons.mp.intro.intro.intro.intro.intro.intro α : Type u_1 l' : List α L : List (List α) ih : ∀ {l : List α}, l <+ L.flatten ↔ ∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD [] l₁ : List α s : l₁ <+ l' L' : List (List α) h : ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD [] ⊢ ∃ L'_1, l₁ ++ L'.flatten = L'_1.flatten ∧ ∀ (i : Nat) (x : i < L'_1.length), L'_1[i] <+ (l' :: L)[i]?.getD []
2d054bb50b16d9ba
TopCat.GlueData.ι_eq_iff_rel
Mathlib/Topology/Gluing.lean
theorem ι_eq_iff_rel (i j : D.J) (x : D.U i) (y : D.U j) : 𝖣.ι i x = 𝖣.ι j y ↔ D.Rel ⟨i, x⟩ ⟨j, y⟩
case mpr.intro.intro D : GlueData i j : D.J x : ↑(D.U i) y : ↑(D.U j) z : ↑(D.V (⟨i, x⟩.fst, ⟨j, y⟩.fst)) e₁ : (ConcreteCategory.hom (D.f i j)) z = (ConcreteCategory.hom (D.f i j)) z e₂ : (ConcreteCategory.hom (D.f j i)) ((ConcreteCategory.hom (D.t i j)) z) = (ConcreteCategory.hom (D.f j i)) ((ConcreteCategory.hom (D.t i j)) z) ⊢ (ConcreteCategory.hom (D.ι i)) ((ConcreteCategory.hom (D.f i j)) z) = (ConcreteCategory.hom (D.ι j)) ((ConcreteCategory.hom (D.f j i)) ((ConcreteCategory.hom (D.t i j)) z))
rw [D.glue_condition_apply]
no goals
e0a110dda282edcf
Int.even_iff_not_odd
Mathlib/Algebra/Ring/Int/Parity.lean
@[deprecated not_odd_iff_even (since := "2024-08-21")] lemma even_iff_not_odd : Even n ↔ ¬Odd n
n : ℤ ⊢ Even n ↔ ¬Odd n
rw [not_odd_iff, even_iff]
no goals
659139c98549e4e5
frontier_le_subset_eq
Mathlib/Topology/Order/OrderClosed.lean
theorem frontier_le_subset_eq (hf : Continuous f) (hg : Continuous g) : frontier { b | f b ≤ g b } ⊆ { b | f b = g b }
case intro α : Type u β : Type v inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g b : β hb₁ : b ∈ {b | f b ≤ g b} hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ ⊢ b ∈ {b | f b = g b}
refine le_antisymm hb₁ (closure_lt_subset_le hg hf ?_)
case intro α : Type u β : Type v inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderClosedTopology α f g : β → α inst✝ : TopologicalSpace β hf : Continuous f hg : Continuous g b : β hb₁ : b ∈ {b | f b ≤ g b} hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ ⊢ b ∈ closure {b | g b < f b}
0ce32949b8808351
Order.height_eq_krullDim_Iic
Mathlib/Order/KrullDimension.lean
lemma height_eq_krullDim_Iic (x : α) : (height x : ℕ∞) = krullDim (Set.Iic x)
case a.h.h α : Type u_1 inst✝ : Preorder α x : α p : LTSeries ↑(Set.Iic x) ⊢ RelSeries.last p ≤ ⊤ → ↑p.length ≤ ⨆ p, ⨆ (_ : RelSeries.last p ≤ x), ↑p.length
intro _
case a.h.h α : Type u_1 inst✝ : Preorder α x : α p : LTSeries ↑(Set.Iic x) i✝ : RelSeries.last p ≤ ⊤ ⊢ ↑p.length ≤ ⨆ p, ⨆ (_ : RelSeries.last p ≤ x), ↑p.length
b4cd0b25c1815825
isApproximateSubgroup_one
Mathlib/Combinatorics/Additive/ApproximateSubgroup.lean
/-- A `1`-approximate subgroup is the same thing as a subgroup. -/ @[to_additive (attr := simp) "A `1`-approximate subgroup is the same thing as a subgroup."] lemma isApproximateSubgroup_one {A : Set G} : IsApproximateSubgroup 1 (A : Set G) ↔ ∃ H : Subgroup G, H = A where mp hA
case intro G : Type u_1 inst✝ : Group G A : Set G hA : IsApproximateSubgroup 1 A x : G hx : A * A ⊆ x • A hx' : x⁻¹ • (A * A) ⊆ A hx_inv : x⁻¹ ∈ A ⊢ A * A ⊆ A
have hx_sq : x * x ∈ A := by rw [← hA.inv_eq_self] simpa using hx' (smul_mem_smul_set (mul_mem_mul hx_inv hA.one_mem))
case intro G : Type u_1 inst✝ : Group G A : Set G hA : IsApproximateSubgroup 1 A x : G hx : A * A ⊆ x • A hx' : x⁻¹ • (A * A) ⊆ A hx_inv : x⁻¹ ∈ A hx_sq : x * x ∈ A ⊢ A * A ⊆ A
1d755e438e264b32
Matroid.IsStrictRestriction.ssubset
Mathlib/Data/Matroid/Restrict.lean
theorem IsStrictRestriction.ssubset (h : N <r M) : N.E ⊂ M.E
case intro.intro α : Type u_1 M : Matroid α R : Set α h : M ↾ R <r M ⊢ (M ↾ R).E ⊂ M.E
refine h.isRestriction.subset.ssubset_of_ne (fun h' ↦ h.2 ⟨R, Subset.rfl, ?_⟩)
case intro.intro α : Type u_1 M : Matroid α R : Set α h : M ↾ R <r M h' : (M ↾ R).E = M.E ⊢ M = M ↾ R ↾ R
e50c5ed5ba55dc85
LieAlgebra.InvariantForm.atomistic
Mathlib/Algebra/Lie/InvariantForm.lean
lemma atomistic : ∀ I : LieIdeal K L, sSup {J : LieIdeal K L | IsAtom J ∧ J ≤ I} = I
case hst K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L Φ : LinearMap.BilinForm K L hΦ_nondeg : Φ.Nondegenerate hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ hΦ_refl : Φ.IsRefl hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥I I : LieIdeal K L a✝ : ∀ (y : LieIdeal K L), (invImage (fun x => finrank K ↥x) instWellFoundedRelationOfSizeOf).1 y I → sSup {J | IsAtom J ∧ J ≤ y} = y hI : ¬I = ⊥ J : LieIdeal K L h✝ : IsAtom J ∧ J ≤ I hJ : IsAtom J hJI : J ≤ I J' : LieSubmodule K L L := orthogonal Φ hΦ_inv J this : I ≤ J ⊔ J' ⊓ I hIJ' : I ≤ J' ⊢ J = ⊥
rw [eq_bot_iff]
case hst K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L Φ : LinearMap.BilinForm K L hΦ_nondeg : Φ.Nondegenerate hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ hΦ_refl : Φ.IsRefl hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥I I : LieIdeal K L a✝ : ∀ (y : LieIdeal K L), (invImage (fun x => finrank K ↥x) instWellFoundedRelationOfSizeOf).1 y I → sSup {J | IsAtom J ∧ J ≤ y} = y hI : ¬I = ⊥ J : LieIdeal K L h✝ : IsAtom J ∧ J ≤ I hJ : IsAtom J hJI : J ≤ I J' : LieSubmodule K L L := orthogonal Φ hΦ_inv J this : I ≤ J ⊔ J' ⊓ I hIJ' : I ≤ J' ⊢ J ≤ ⊥
9856eccb3c27c11b
CategoryTheory.MorphismProperty.isStableUnderCobaseChange_iff_pushouts_le
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
lemma isStableUnderCobaseChange_iff_pushouts_le : P.IsStableUnderCobaseChange ↔ P.pushouts ≤ P
case mpr.of_isPushout C : Type u inst✝ : Category.{v, u} C P : MorphismProperty C h : P.pushouts ≤ P A✝ A'✝ B✝ B'✝ : C f✝ : A✝ ⟶ A'✝ g✝ : A✝ ⟶ B✝ f'✝ : B✝ ⟶ B'✝ g'✝ : A'✝ ⟶ B'✝ h₁ : IsPushout g✝ f✝ f'✝ g'✝ h₂ : P f✝ ⊢ P f'✝
exact h _ ⟨_, _, _, _, _, h₂, h₁⟩
no goals
d27fb1816868ef70
StrictConvex.add_smul_sub_mem
Mathlib/Analysis/Convex/Strict.lean
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
case a 𝕜 : Type u_1 E : Type u_3 inst✝³ : OrderedRing 𝕜 inst✝² : TopologicalSpace E inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ openSegment 𝕜 x y
rw [openSegment_eq_image']
case a 𝕜 : Type u_1 E : Type u_3 inst✝³ : OrderedRing 𝕜 inst✝² : TopologicalSpace E inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Ioo 0 1
4d2f0ab6105dbf60
MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem lintegral_pow_le_pow_lintegral_fderiv {u : E → F} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u) {p : ℝ} (hp : Real.IsConjExponent (finrank ℝ E) p) : ∫⁻ x, ‖u x‖ₑ ^ p ∂μ ≤ lintegralPowLePowLIntegralFDerivConst μ p * (∫⁻ x, ‖fderiv ℝ u x‖ₑ ∂μ) ^ p
F : Type u_3 inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedSpace ℝ F E : Type u_4 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure u : E → F hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p : ℝ hp✝ : (↑(finrank ℝ E)).IsConjExponent p C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p ι : Type := Fin (finrank ℝ E) hιcard : #ι = finrank ℝ E this✝¹ : finrank ℝ E = finrank ℝ (ι → ℝ) e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝¹ this✝ : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure hp : (↑#ι).IsConjExponent p h0p : 0 ≤ p c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume) hc : 0 < c h2c : μ = c • Measure.map (⇑e.symm) volume h3c : ↑c ≠ 0 h0C : C = c * ‖↑e.symm‖₊ ^ p * (c ^ p)⁻¹ hC : C * c ^ p = c * ‖↑e.symm‖₊ ^ p v : (ι → ℝ) → F := u ∘ ⇑e.symm hv : ContDiff ℝ 1 v h2v : HasCompactSupport v this : ↑c * ∫⁻ (x : E), ‖u x‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤ ↑C * ↑(c ^ p) * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p ⊢ ↑c * ∫⁻ (a : E), ‖u a‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤ ↑C * (↑c * ∫⁻ (a : E), ‖fderiv ℝ u a‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p
rw [ENNReal.mul_rpow_of_nonneg _ _ h0p, ← mul_assoc, ← ENNReal.coe_rpow_of_ne_zero hc.ne']
F : Type u_3 inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedSpace ℝ F E : Type u_4 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : FiniteDimensional ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure u : E → F hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p : ℝ hp✝ : (↑(finrank ℝ E)).IsConjExponent p C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p ι : Type := Fin (finrank ℝ E) hιcard : #ι = finrank ℝ E this✝¹ : finrank ℝ E = finrank ℝ (ι → ℝ) e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝¹ this✝ : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure hp : (↑#ι).IsConjExponent p h0p : 0 ≤ p c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume) hc : 0 < c h2c : μ = c • Measure.map (⇑e.symm) volume h3c : ↑c ≠ 0 h0C : C = c * ‖↑e.symm‖₊ ^ p * (c ^ p)⁻¹ hC : C * c ^ p = c * ‖↑e.symm‖₊ ^ p v : (ι → ℝ) → F := u ∘ ⇑e.symm hv : ContDiff ℝ 1 v h2v : HasCompactSupport v this : ↑c * ∫⁻ (x : E), ‖u x‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤ ↑C * ↑(c ^ p) * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p ⊢ ↑c * ∫⁻ (a : E), ‖u a‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤ ↑C * ↑(c ^ p) * (∫⁻ (a : E), ‖fderiv ℝ u a‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p
7e7c86c82b1c72d8
SimpleGraph.regularityReduced_edges_card_aux
Mathlib/Combinatorics/SimpleGraph/Triangle/Removal.lean
lemma regularityReduced_edges_card_aux [Nonempty α] (hε : 0 < ε) (hP : P.IsEquipartition) (hPε : P.IsUniform G (ε/8)) (hP' : 4 / ε ≤ #P.parts) : 2 * (#G.edgeFinset - #(G.regularityReduced P (ε/8) (ε/4)).edgeFinset : ℝ) < 2 * ε * (card α ^ 2 : ℕ)
α : Type u_1 inst✝³ : DecidableEq α inst✝² : Fintype α G : SimpleGraph α inst✝¹ : DecidableRel G.Adj P : Finpartition univ ε : ℝ inst✝ : Nonempty α hε : 0 < ε hP : P.IsEquipartition hPε : P.IsUniform G (ε / 8) hP' : 4 / ε ≤ ↑(#P.parts) A : Finset (α × α) := (P.nonUniforms G (ε / 8)).biUnion fun x => match x with | (U, V) => U ×ˢ V B : Finset (α × α) := P.parts.biUnion offDiag C : Finset (α × α) := (P.sparsePairs G (ε / 4)).biUnion fun x => match x with | (U, V) => G.interedges U V ⊢ 4 * (ε / 8) * ↑(Fintype.card α) ^ 2 + ↑(#B) + ↑(#C) ≤ ?m.273627 + ε / 2 * ↑(Fintype.card α) ^ 2 + 4 * (ε / 4) * ↑(Fintype.card α) ^ 2
gcongr
case h₁.bc α : Type u_1 inst✝³ : DecidableEq α inst✝² : Fintype α G : SimpleGraph α inst✝¹ : DecidableRel G.Adj P : Finpartition univ ε : ℝ inst✝ : Nonempty α hε : 0 < ε hP : P.IsEquipartition hPε : P.IsUniform G (ε / 8) hP' : 4 / ε ≤ ↑(#P.parts) A : Finset (α × α) := (P.nonUniforms G (ε / 8)).biUnion fun x => match x with | (U, V) => U ×ˢ V B : Finset (α × α) := P.parts.biUnion offDiag C : Finset (α × α) := (P.sparsePairs G (ε / 4)).biUnion fun x => match x with | (U, V) => G.interedges U V ⊢ ↑(#B) ≤ ε / 2 * ↑(Fintype.card α) ^ 2 case h₂ α : Type u_1 inst✝³ : DecidableEq α inst✝² : Fintype α G : SimpleGraph α inst✝¹ : DecidableRel G.Adj P : Finpartition univ ε : ℝ inst✝ : Nonempty α hε : 0 < ε hP : P.IsEquipartition hPε : P.IsUniform G (ε / 8) hP' : 4 / ε ≤ ↑(#P.parts) A : Finset (α × α) := (P.nonUniforms G (ε / 8)).biUnion fun x => match x with | (U, V) => U ×ˢ V B : Finset (α × α) := P.parts.biUnion offDiag C : Finset (α × α) := (P.sparsePairs G (ε / 4)).biUnion fun x => match x with | (U, V) => G.interedges U V ⊢ ↑(#C) ≤ 4 * (ε / 4) * ↑(Fintype.card α) ^ 2
945c877c5af388f8
List.prod_int_mod
Mathlib/Algebra/BigOperators/Group/List/Basic.lean
lemma prod_int_mod (l : List ℤ) (n : ℤ) : l.prod % n = (l.map (· % n)).prod % n
l : List ℤ n : ℤ ⊢ l.prod % n = (map (fun x => x % n) l).prod % n
induction l <;> simp [Int.mul_emod, *]
no goals
607a556d2d79ada6
disjoint_ball_ball_iff
Mathlib/Analysis/NormedSpace/Pointwise.lean
theorem disjoint_ball_ball_iff (hδ : 0 < δ) (hε : 0 < ε) : Disjoint (ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y
case intro.intro E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E x y : E δ ε : ℝ hδ : 0 < δ hε : 0 < ε h : Disjoint (ball x δ) (ball y ε) hxy : dist x y < ε + δ z : E hxz : dist x z < δ hzy : dist z y < ε ⊢ False
rw [dist_comm] at hxz
case intro.intro E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E x y : E δ ε : ℝ hδ : 0 < δ hε : 0 < ε h : Disjoint (ball x δ) (ball y ε) hxy : dist x y < ε + δ z : E hxz : dist z x < δ hzy : dist z y < ε ⊢ False
f423a604f95f49b3
Basis.coe_sumCoords_of_fintype
Mathlib/LinearAlgebra/Basis/Defs.lean
theorem coe_sumCoords_of_fintype [Fintype ι] : (b.sumCoords : M → R) = ∑ i, b.coord i
ι : Type u_1 R : Type u_3 M : Type u_6 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M b : Basis ι R M inst✝ : Fintype ι ⊢ ⇑b.sumCoords = ⇑(∑ i : ι, b.coord i)
ext m
case h ι : Type u_1 R : Type u_3 M : Type u_6 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M b : Basis ι R M inst✝ : Fintype ι m : M ⊢ b.sumCoords m = (∑ i : ι, b.coord i) m
3d97f1b91390e088
Std.Sat.CNF.Clause.eval_congr
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Basic.lean
theorem eval_congr (a1 a2 : α → Bool) (c : Clause α) (hw : ∀ i, Mem i c → a1 i = a2 i) : eval a1 c = eval a2 c
α : Type u_1 a1 a2 : α → Bool i : Literal α c : List (Literal α) ih : (∀ (i : α), Mem i c → a1 i = a2 i) → eval a1 c = eval a2 c hw : ∀ (i_1 : α), Mem i_1 (i :: c) → a1 i_1 = a2 i_1 ⊢ ∀ (i : α), Mem i c → a1 i = a2 i
intro j h
α : Type u_1 a1 a2 : α → Bool i : Literal α c : List (Literal α) ih : (∀ (i : α), Mem i c → a1 i = a2 i) → eval a1 c = eval a2 c hw : ∀ (i_1 : α), Mem i_1 (i :: c) → a1 i_1 = a2 i_1 j : α h : Mem j c ⊢ a1 j = a2 j
d3bd42fd519c28d6
Nat.exists_prime_lt_and_le_two_mul
Mathlib/NumberTheory/Bertrand.lean
theorem exists_prime_lt_and_le_two_mul (n : ℕ) (hn0 : n ≠ 0) : ∃ p, Nat.Prime p ∧ n < p ∧ p ≤ 2 * n
n : ℕ hn0 : n ≠ 0 ⊢ ∃ p, Prime p ∧ n < p ∧ p ≤ 2 * n
rcases lt_or_le 511 n with h | h
case inl n : ℕ hn0 : n ≠ 0 h : 511 < n ⊢ ∃ p, Prime p ∧ n < p ∧ p ≤ 2 * n case inr n : ℕ hn0 : n ≠ 0 h : n ≤ 511 ⊢ ∃ p, Prime p ∧ n < p ∧ p ≤ 2 * n
481aaedc4f9db56d
Submodule.inf_iSup_genEigenspace
Mathlib/LinearAlgebra/Eigenspace/Triangularizable.lean
theorem inf_iSup_genEigenspace [FiniteDimensional K V] (h : ∀ x ∈ p, f x ∈ p) (k : ℕ∞) : p ⊓ ⨆ μ, f.genEigenspace μ k = ⨆ μ, p ⊓ f.genEigenspace μ k
K : Type u_1 V : Type u_2 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V p : Submodule K V f : End K V inst✝ : FiniteDimensional K V h : ∀ x ∈ p, f x ∈ p k : ℕ∞ m : K →₀ V hm₂ : ∀ (i : K), m i ∈ (f.genEigenspace i) k hm₀ : (m.sum fun _i xi => xi) ∈ p hm₁ : (m.sum fun _i xi => xi) ∈ ⨆ μ, (f.genEigenspace μ) k μ : K hμ : μ ∈ m.support l : K → ℕ hlk : ∀ (i : K), ↑(l i) ≤ k hl : ∀ (i : K), m i ∈ LinearMap.ker ((f - i • 1) ^ l i) l₀ : ℕ := m.support.sup l h_comm : ∀ (μ₁ μ₂ : K), Commute ((f - (algebraMap K (End K V)) μ₁) ^ l₀) ((f - (algebraMap K (End K V)) μ₂) ^ l₀) g : End K V := (m.support.erase μ).noncommProd (fun μ₁ => (f - (algebraMap K (End K V)) μ₁) ^ l₀) ⋯ hfg : Commute f g hg₀ : g (m.sum fun _μ mμ => mμ) = g (m μ) hg₁ : MapsTo ⇑g ↑p ↑p hg₂ : MapsTo ⇑g ↑((f.genEigenspace μ) k) ↑((f.genEigenspace μ) k) this : iSupIndep fun x => (f.genEigenspace x) k μ' : K _hμ' : μ' ∈ m.support.erase μ ⊢ (f.genEigenspace μ') ↑l₀ ≤ (f.genEigenspace μ') k
apply (f.genEigenspace μ').mono
case a K : Type u_1 V : Type u_2 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V p : Submodule K V f : End K V inst✝ : FiniteDimensional K V h : ∀ x ∈ p, f x ∈ p k : ℕ∞ m : K →₀ V hm₂ : ∀ (i : K), m i ∈ (f.genEigenspace i) k hm₀ : (m.sum fun _i xi => xi) ∈ p hm₁ : (m.sum fun _i xi => xi) ∈ ⨆ μ, (f.genEigenspace μ) k μ : K hμ : μ ∈ m.support l : K → ℕ hlk : ∀ (i : K), ↑(l i) ≤ k hl : ∀ (i : K), m i ∈ LinearMap.ker ((f - i • 1) ^ l i) l₀ : ℕ := m.support.sup l h_comm : ∀ (μ₁ μ₂ : K), Commute ((f - (algebraMap K (End K V)) μ₁) ^ l₀) ((f - (algebraMap K (End K V)) μ₂) ^ l₀) g : End K V := (m.support.erase μ).noncommProd (fun μ₁ => (f - (algebraMap K (End K V)) μ₁) ^ l₀) ⋯ hfg : Commute f g hg₀ : g (m.sum fun _μ mμ => mμ) = g (m μ) hg₁ : MapsTo ⇑g ↑p ↑p hg₂ : MapsTo ⇑g ↑((f.genEigenspace μ) k) ↑((f.genEigenspace μ) k) this : iSupIndep fun x => (f.genEigenspace x) k μ' : K _hμ' : μ' ∈ m.support.erase μ ⊢ ↑l₀ ≤ k
a9d126d678497dfd
SimpleGraph.card_cliqueFinset_le
Mathlib/Combinatorics/SimpleGraph/Clique.lean
theorem card_cliqueFinset_le : #(G.cliqueFinset n) ≤ (card α).choose n
α : Type u_1 G : SimpleGraph α inst✝² : Fintype α inst✝¹ : DecidableEq α inst✝ : DecidableRel G.Adj n : ℕ ⊢ #(G.cliqueFinset n) ≤ #(powersetCard n univ)
refine card_mono fun s => ?_
α : Type u_1 G : SimpleGraph α inst✝² : Fintype α inst✝¹ : DecidableEq α inst✝ : DecidableRel G.Adj n : ℕ s : Finset α ⊢ s ∈ G.cliqueFinset n → s ∈ powersetCard n univ
e2e0f29c0cf57a6f
Complex.circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto
Mathlib/Analysis/Complex/CauchyIntegral.lean
theorem circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto {c : ℂ} {R : ℝ} (h0 : 0 < R) {f : ℂ → E} {y : E} {s : Set ℂ} (hs : s.Countable) (hc : ContinuousOn f (closedBall c R \ {c})) (hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z) (hy : Tendsto f (𝓝[{c}ᶜ] c) (𝓝 y)) : (∮ z in C(c, R), (z - c)⁻¹ • f z) = (2 * π * I : ℂ) • y
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c : ℂ R : ℝ h0 : 0 < R f : ℂ → E y : E s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c R \ {c}) hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z hy : Tendsto f (𝓝[≠] c) (𝓝 y) ε : ℝ ε0 : 0 < ε δ : ℝ δ0 : δ > 0 hδ : ∀ z ∈ closedBall c δ \ {c}, dist (f z) y < ε / (2 * π) r : ℝ hr0 : 0 < r hrδ : r ≤ δ hrR : r ≤ R hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c} hsub' : ball c R \ closedBall c r ⊆ ball c R \ {c} hzne : ∀ z ∈ sphere c r, z ≠ c ⊢ ‖(∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • f z) - ∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • y‖ = ‖∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • (f z - y)‖
simp only [smul_sub]
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c : ℂ R : ℝ h0 : 0 < R f : ℂ → E y : E s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c R \ {c}) hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z hy : Tendsto f (𝓝[≠] c) (𝓝 y) ε : ℝ ε0 : 0 < ε δ : ℝ δ0 : δ > 0 hδ : ∀ z ∈ closedBall c δ \ {c}, dist (f z) y < ε / (2 * π) r : ℝ hr0 : 0 < r hrδ : r ≤ δ hrR : r ≤ R hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c} hsub' : ball c R \ closedBall c r ⊆ ball c R \ {c} hzne : ∀ z ∈ sphere c r, z ≠ c ⊢ ‖(∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • f z) - ∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • y‖ = ‖∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • f z - (z - c)⁻¹ • y‖
161c13e075bc65e7
Con.comap_conGen_equiv
Mathlib/GroupTheory/Congruence/Basic.lean
theorem comap_conGen_equiv {M N : Type*} [Mul M] [Mul N] (f : MulEquiv M N) (rel : N → N → Prop) : Con.comap f (map_mul f) (conGen rel) = conGen (fun x y ↦ rel (f x) (f y))
case mul M : Type u_4 N : Type u_5 inst✝¹ : Mul M inst✝ : Mul N f : M ≃* N rel : N → N → Prop a✝² b✝ : M h : (conGen rel) (f a✝²) (f b✝) n1 n2 w x y z : N a✝¹ : ConGen.Rel rel w x a✝ : ConGen.Rel rel y z ih : ∀ (a b : M), f a = w → f b = x → (conGen fun x y => rel (f x) (f y)) a b ih1 : ∀ (a b : M), f a = y → f b = z → (conGen fun x y => rel (f x) (f y)) a b a b : M fa : a = f.symm w * f.symm y fb : b = f.symm x * f.symm z ⊢ (conGen fun x y => rel (f x) (f y)) a b
rw [fa, fb]
case mul M : Type u_4 N : Type u_5 inst✝¹ : Mul M inst✝ : Mul N f : M ≃* N rel : N → N → Prop a✝² b✝ : M h : (conGen rel) (f a✝²) (f b✝) n1 n2 w x y z : N a✝¹ : ConGen.Rel rel w x a✝ : ConGen.Rel rel y z ih : ∀ (a b : M), f a = w → f b = x → (conGen fun x y => rel (f x) (f y)) a b ih1 : ∀ (a b : M), f a = y → f b = z → (conGen fun x y => rel (f x) (f y)) a b a b : M fa : a = f.symm w * f.symm y fb : b = f.symm x * f.symm z ⊢ (conGen fun x y => rel (f x) (f y)) (f.symm w * f.symm y) (f.symm x * f.symm z)
d315948435eb07b2
List.filterMap_eq_cons_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem filterMap_eq_cons_iff {l} {b} {bs} : filterMap f l = b :: bs ↔ ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ (∀ x, x ∈ l₁ → f x = none) ∧ f a = some b ∧ filterMap f l₂ = bs
case mp.cons.some α✝¹ : Type u_1 α✝ : Type u_2 f : α✝¹ → Option α✝ a : α✝¹ l : List α✝¹ b : α✝ h : f a = some b ih : filterMap f l = b :: filterMap f l → ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝¹), x ∈ l₁ → f x = none) ∧ f a = some b ∧ filterMap f l₂ = filterMap f l ⊢ ∃ l₁ a_1 l₂, a :: l = l₁ ++ a_1 :: l₂ ∧ (∀ (x : α✝¹), x ∈ l₁ → f x = none) ∧ f a_1 = some b ∧ filterMap f l₂ = filterMap f l
refine ⟨[], a, l, by simp [h]⟩
no goals
a63f5fdfcdb83803
AlgebraicGeometry.Scheme.IdealSheafData.zeroLocus_inter_subset_support
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma zeroLocus_inter_subset_support (I : IdealSheafData X) (U : X.affineOpens) : X.zeroLocus (U := U.1) (I.ideal U) ∩ U ⊆ I.support
case intro.intro X : Scheme I : X.IdealSheafData U V : ↑X.affineOpens x : ↑↑X.toPresheafedSpace hxV : x ∈ ↑↑V hxU : x ∈ ↑↑U hx : ∀ f ∈ I.ideal U, x ∉ X.basicOpen f s : ↑Γ(X, ↑V) hfU : s ∈ I.ideal V hxs : x ∈ X.basicOpen s ⊢ False
obtain ⟨f, g, hfg, hxf⟩ := exists_basicOpen_le_affine_inter U.2 V.2 x ⟨hxU, hxV⟩
case intro.intro.intro.intro.intro X : Scheme I : X.IdealSheafData U V : ↑X.affineOpens x : ↑↑X.toPresheafedSpace hxV : x ∈ ↑↑V hxU : x ∈ ↑↑U hx : ∀ f ∈ I.ideal U, x ∉ X.basicOpen f s : ↑Γ(X, ↑V) hfU : s ∈ I.ideal V hxs : x ∈ X.basicOpen s f : ↑Γ(X, ↑U) g : ↑Γ(X, ↑V) hfg : X.basicOpen f = X.basicOpen g hxf : x ∈ X.basicOpen f ⊢ False
ac346fd7f1a4fa9f
CommRingCat.KaehlerDifferential.ext
Mathlib/Algebra/Category/ModuleCat/Differentials/Basic.lean
@[ext] lemma ext {M : ModuleCat B} {α β : KaehlerDifferential f ⟶ M} (h : ∀ (b : B), α (d b) = β (d b)) : α = β
A B : CommRingCat f : A ⟶ B M : ModuleCat ↑B α β : KaehlerDifferential f ⟶ M h : ∀ (b : ↑B), (ConcreteCategory.hom α) (d b) = (ConcreteCategory.hom β) (d b) ⊢ ⊤ ≤ LinearMap.ker (ModuleCat.Hom.hom (α - β))
rw [← KaehlerDifferential.span_range_derivation, Submodule.span_le]
A B : CommRingCat f : A ⟶ B M : ModuleCat ↑B α β : KaehlerDifferential f ⟶ M h : ∀ (b : ↑B), (ConcreteCategory.hom α) (d b) = (ConcreteCategory.hom β) (d b) ⊢ Set.range ⇑(_root_.KaehlerDifferential.D ↑A ↑B) ⊆ ↑(LinearMap.ker (ModuleCat.Hom.hom (α - β)))
3a02a1e0fa8a646a
MeasureTheory.Content.innerContent_exists_compact
Mathlib/MeasureTheory/Measure/Content.lean
theorem innerContent_exists_compact {U : Opens G} (hU : μ.innerContent U ≠ ∞) {ε : ℝ≥0} (hε : ε ≠ 0) : ∃ K : Compacts G, (K : Set G) ⊆ U ∧ μ.innerContent U ≤ μ K + ε
G : Type w inst✝ : TopologicalSpace G μ : Content G U : Opens G hU : μ.innerContent U ≠ ⊤ ε : ℝ≥0 hε : ε ≠ 0 h'ε : ↑ε ≠ 0 ⊢ ∃ K, ↑K ⊆ ↑U ∧ μ.innerContent U ≤ μ K + ↑ε
rcases le_or_lt (μ.innerContent U) ε with h | h
case inl G : Type w inst✝ : TopologicalSpace G μ : Content G U : Opens G hU : μ.innerContent U ≠ ⊤ ε : ℝ≥0 hε : ε ≠ 0 h'ε : ↑ε ≠ 0 h : μ.innerContent U ≤ ↑ε ⊢ ∃ K, ↑K ⊆ ↑U ∧ μ.innerContent U ≤ μ K + ↑ε case inr G : Type w inst✝ : TopologicalSpace G μ : Content G U : Opens G hU : μ.innerContent U ≠ ⊤ ε : ℝ≥0 hε : ε ≠ 0 h'ε : ↑ε ≠ 0 h : ↑ε < μ.innerContent U ⊢ ∃ K, ↑K ⊆ ↑U ∧ μ.innerContent U ≤ μ K + ↑ε
1912c8ba0130552e
Set.countable_setOf_finite_subset
Mathlib/Data/Set/Countable.lean
theorem countable_setOf_finite_subset {s : Set α} (hs : s.Countable) : { t | Set.Finite t ∧ t ⊆ s }.Countable
case intro.intro α : Type u s : Set α hs : s.Countable this : Countable ↑s t : Set ↑s ht : (Subtype.val '' t).Finite ⊢ Subtype.val '' t ∈ range fun t => Subtype.val '' ↑t
lift t to Finset s using ht.of_finite_image Subtype.val_injective.injOn
case intro.intro.intro α : Type u s : Set α hs : s.Countable this : Countable ↑s t : Finset ↑s ht : (Subtype.val '' ↑t).Finite ⊢ Subtype.val '' ↑t ∈ range fun t => Subtype.val '' ↑t
ac95a49c211f784f
Convex.is_const_of_fderivWithin_eq_zero
Mathlib/Analysis/Calculus/MeanValue.lean
theorem is_const_of_fderivWithin_eq_zero (hs : Convex ℝ s) (hf : DifferentiableOn 𝕜 f s) (hf' : ∀ x ∈ s, fderivWithin 𝕜 f s x = 0) (hx : x ∈ s) (hy : y ∈ s) : f x = f y
E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E 𝕜 : Type u_3 G : Type u_4 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : E → G s : Set E x y : E hs : Convex ℝ s hf : DifferentiableOn 𝕜 f s hf' : ∀ x ∈ s, fderivWithin 𝕜 f s x = 0 hx : x ∈ s hy : y ∈ s ⊢ f x = f y
have bound : ∀ x ∈ s, ‖fderivWithin 𝕜 f s x‖ ≤ 0 := fun x hx => by simp only [hf' x hx, norm_zero, le_rfl]
E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E 𝕜 : Type u_3 G : Type u_4 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : IsRCLikeNormedField 𝕜 inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G f : E → G s : Set E x y : E hs : Convex ℝ s hf : DifferentiableOn 𝕜 f s hf' : ∀ x ∈ s, fderivWithin 𝕜 f s x = 0 hx : x ∈ s hy : y ∈ s bound : ∀ x ∈ s, ‖fderivWithin 𝕜 f s x‖ ≤ 0 ⊢ f x = f y
9913d0fe64b83cc3
Odd.strictMono_pow
Mathlib/Algebra/Order/Ring/Basic.lean
lemma Odd.strictMono_pow (hn : Odd n) : StrictMono fun a : R => a ^ n
R : Type u_3 inst✝¹ : LinearOrderedSemiring R inst✝ : ExistsAddOfLE R hn : Odd 0 ⊢ False
simp [Odd, eq_comm (a := 0)] at hn
no goals
789fc8d7e45ac2d6
LinearPMap.left_le_sup
Mathlib/LinearAlgebra/LinearPMap.lean
theorem left_le_sup (f g : E →ₗ.[R] F) (h : ∀ (x : f.domain) (y : g.domain), (x : E) = y → f x = g y) : f ≤ f.sup g h
R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f g : E →ₗ.[R] F h : ∀ (x : ↥f.domain) (y : ↥g.domain), ↑x = ↑y → ↑f x = ↑g y z₁ : ↥f.domain z₂ : ↥(f.sup g h).domain hz : ↑z₁ = ↑z₂ ⊢ ↑f z₁ + ↑g 0 = ↑(f.sup g h) z₂
refine (sup_apply h _ _ _ ?_).symm
R : Type u_1 inst✝⁴ : Ring R E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_3 inst✝¹ : AddCommGroup F inst✝ : Module R F f g : E →ₗ.[R] F h : ∀ (x : ↥f.domain) (y : ↥g.domain), ↑x = ↑y → ↑f x = ↑g y z₁ : ↥f.domain z₂ : ↥(f.sup g h).domain hz : ↑z₁ = ↑z₂ ⊢ ↑z₁ + ↑0 = ↑z₂
9fa85484af1849de
Complex.isPrimitiveRoot_iff
Mathlib/RingTheory/RootsOfUnity/Complex.lean
theorem isPrimitiveRoot_iff (ζ : ℂ) (n : ℕ) (hn : n ≠ 0) : IsPrimitiveRoot ζ n ↔ ∃ i < n, ∃ _ : i.Coprime n, exp (2 * π * I * (i / n)) = ζ
case mpr.intro.intro.intro n : ℕ hn : n ≠ 0 hn0 : ↑n ≠ 0 i : ℕ hi : i.Coprime n ⊢ IsPrimitiveRoot (cexp (2 * ↑π * I * (↑i / ↑n))) n
exact isPrimitiveRoot_exp_of_coprime i n hn hi
no goals
3ccb57b63ef696b5
Stream'.WSeq.liftRel_dropn_destruct
Mathlib/Data/Seq/WSeq.lean
theorem liftRel_dropn_destruct {R : α → β → Prop} {s t} (H : LiftRel R s t) : ∀ n, Computation.LiftRel (LiftRelO R (LiftRel R)) (destruct (drop s n)) (destruct (drop t n)) | 0 => liftRel_destruct H | n + 1 => by simp only [LiftRelO, drop, Nat.add_eq, Nat.add_zero, destruct_tail, tail.aux] apply liftRel_bind · apply liftRel_dropn_destruct H n exact fun {a b} o => match a, b, o with | none, none, _ => by -- Porting note: These 2 theorems should be excluded. simp [-liftRel_pure_left, -liftRel_pure_right] | some (a, s), some (b, t), ⟨_, h2⟩ => by simpa [tail.aux] using liftRel_destruct h2
α : Type u β : Type v R : α → β → Prop s : WSeq α t : WSeq β H : LiftRel R s t n : ℕ a : Option (α × WSeq α) b : Option (β × WSeq β) o : LiftRelO R (LiftRel R) a b x✝ : LiftRelO R (LiftRel R) none none ⊢ Computation.LiftRel (LiftRelO R (LiftRel R)) (tail.aux none) (tail.aux none)
simp [-liftRel_pure_left, -liftRel_pure_right]
no goals
1a57f81f307e696b
MeasureTheory.withDensity_absolutelyContinuous
Mathlib/MeasureTheory/Measure/WithDensity.lean
theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) : μ.withDensity f ≪ μ
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ s : Set α hs₁ : MeasurableSet s hs₂ : μ s = 0 ⊢ ∫⁻ (a : α) in s, f a ∂μ = 0
exact setLIntegral_measure_zero _ _ hs₂
no goals
f394db0412a9858c
GenContFract.succ_nth_conv'_eq_squashGCF_nth_conv'
Mathlib/Algebra/ContinuedFractions/ConvergentsEquiv.lean
theorem succ_nth_conv'_eq_squashGCF_nth_conv' : g.convs' (n + 1) = (squashGCF g n).convs' n
K : Type u_1 n : ℕ g : GenContFract K inst✝ : DivisionRing K ⊢ g.convs' (n + 1) = (g.squashGCF n).convs' n
cases n with | zero => cases g_s_head_eq : g.s.get? 0 <;> simp [g_s_head_eq, squashGCF, convs', convs'Aux, Stream'.Seq.head] | succ => simp only [succ_succ_nth_conv'Aux_eq_succ_nth_conv'Aux_squashSeq, convs', squashGCF]
no goals
c535dd95cf67eb71
MeasureTheory.aeconst_of_forall_preimage_smul_ae_eq
Mathlib/Dynamics/Ergodic/Action/Basic.lean
theorem aeconst_of_forall_preimage_smul_ae_eq [SMul G α] [ErgodicSMul G α μ] {s : Set α} (hm : NullMeasurableSet s μ) (h : ∀ g : G, (g • ·) ⁻¹' s =ᵐ[μ] s) : EventuallyConst s (ae μ)
case intro.intro G : Type u_1 α : Type u_2 m : MeasurableSpace α μ : Measure α inst✝¹ : SMul G α inst✝ : ErgodicSMul G α μ s : Set α h : ∀ (g : G), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s t : Set α htm : MeasurableSet t hst : s =ᶠ[ae μ] t g : G ⊢ (fun x => g • x) ⁻¹' t =ᶠ[ae μ] t
refine .trans (.trans ?_ (h g)) hst
case intro.intro G : Type u_1 α : Type u_2 m : MeasurableSpace α μ : Measure α inst✝¹ : SMul G α inst✝ : ErgodicSMul G α μ s : Set α h : ∀ (g : G), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s t : Set α htm : MeasurableSet t hst : s =ᶠ[ae μ] t g : G ⊢ (fun x => g • x) ⁻¹' t =ᶠ[ae μ] (fun x => g • x) ⁻¹' s
f6caf7b1f8b21950
ENNReal.limsup_const_mul
Mathlib/Order/Filter/ENNReal.lean
theorem limsup_const_mul [CountableInterFilter f] {u : α → ℝ≥0∞} {a : ℝ≥0∞} : f.limsup (a * u ·) = a * f.limsup u
α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : u =ᶠ[f] 0 x : α hx : u x = 0 x ⊢ (fun x => a * u x) x = 0 x
simp [hx]
no goals
821a30d44957705c
LinearMap.isSymmetric_adjoint_mul_self
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
theorem isSymmetric_adjoint_mul_self (T : E →ₗ[𝕜] E) : IsSymmetric (LinearMap.adjoint T * T)
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E T : E →ₗ[𝕜] E ⊢ (adjoint T * T).IsSymmetric
intro x y
𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E T : E →ₗ[𝕜] E x y : E ⊢ ⟪(adjoint T * T) x, y⟫_𝕜 = ⟪x, (adjoint T * T) y⟫_𝕜
5056180349104259