name
stringlengths 3
112
| file
stringlengths 21
116
| statement
stringlengths 17
8.64k
| state
stringlengths 7
205k
| tactic
stringlengths 3
4.55k
| result
stringlengths 7
205k
| id
stringlengths 16
16
|
---|---|---|---|---|---|---|
Real.sqrtTwoAddSeries_two
|
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
|
theorem sqrtTwoAddSeries_two : sqrtTwoAddSeries 0 2 = √(2 + √2)
|
⊢ sqrtTwoAddSeries 0 2 = √(2 + √2)
|
simp
|
no goals
|
37f80746f6448103
|
Int.cast_pow
|
Mathlib/Algebra/Ring/Int/Defs.lean
|
@[simp, norm_cast] lemma cast_pow {R : Type*} [Ring R] (n : ℤ) (m : ℕ) :
↑(n ^ m) = (n ^ m : R)
|
R : Type u_1
inst✝ : Ring R
n : ℤ
m : ℕ
⊢ ↑(n ^ m) = ↑n ^ m
|
induction' m with m ih <;> simp [_root_.pow_succ, *]
|
no goals
|
1c3329c1e4791938
|
StieltjesFunction.measure_Ici
|
Mathlib/MeasureTheory/Measure/Stieltjes.lean
|
theorem measure_Ici {l : ℝ} (hf : Tendsto f atTop (𝓝 l)) (x : ℝ) :
f.measure (Ici x) = ofReal (l - leftLim f x)
|
f : StieltjesFunction
l : ℝ
hf : Tendsto (↑f) atTop (𝓝 l)
x : ℝ
h_le1 : ∀ (x : ℝ), ↑f (x - 1) ≤ leftLim (↑f) x
h_le2 : ∀ (x : ℝ), leftLim (↑f) x ≤ ↑f x
⊢ Tendsto (fun i => i - 1) atTop atTop
|
rw [tendsto_atTop_atTop]
|
f : StieltjesFunction
l : ℝ
hf : Tendsto (↑f) atTop (𝓝 l)
x : ℝ
h_le1 : ∀ (x : ℝ), ↑f (x - 1) ≤ leftLim (↑f) x
h_le2 : ∀ (x : ℝ), leftLim (↑f) x ≤ ↑f x
⊢ ∀ (b : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ a - 1
|
4e0cbe1c1c7072ca
|
MeasureTheory.hahn_decomposition
|
Mathlib/MeasureTheory/Decomposition/UnsignedHahn.lean
|
theorem hahn_decomposition (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
∃ s, MeasurableSet s ∧ (∀ t, MeasurableSet t → t ⊆ s → ν t ≤ μ t) ∧
∀ t, MeasurableSet t → t ⊆ sᶜ → μ t ≤ ν t
|
case intro.refine_1
α : Type u_1
mα : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
d : Set α → ℝ := fun s => ↑(μ s).toNNReal - ↑(ν s).toNNReal
c : Set ℝ := d '' {s | MeasurableSet s}
γ : ℝ := sSup c
hμ : ∀ (s : Set α), μ s ≠ ⊤
hν : ∀ (s : Set α), ν s ≠ ⊤
to_nnreal_μ : ∀ (s : Set α), ↑(μ s).toNNReal = μ s
to_nnreal_ν : ∀ (s : Set α), ↑(ν s).toNNReal = ν s
d_split : ∀ (s t : Set α), MeasurableSet t → d s = d (s \ t) + d (s ∩ t)
d_Union : ∀ (s : ℕ → Set α), Monotone s → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋃ n, s n)))
d_Inter :
∀ (s : ℕ → Set α),
(∀ (n : ℕ), MeasurableSet (s n)) →
(∀ (n m : ℕ), n ≤ m → s m ⊆ s n) → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋂ n, s n)))
bdd_c : BddAbove c
c_nonempty : c.Nonempty
d_le_γ : ∀ (s : Set α), MeasurableSet s → d s ≤ γ
this : ∀ (n : ℕ), ∃ s, MeasurableSet s ∧ γ - (1 / 2) ^ n < d s
e : ℕ → Set α
he : ∀ (x : ℕ), MeasurableSet (e x) ∧ γ - (1 / 2) ^ x < d (e x)
he₁ : ∀ (n : ℕ), MeasurableSet (e n)
he₂ : ∀ (n : ℕ), γ - (1 / 2) ^ n < d (e n)
f : ℕ → ℕ → Set α := fun n m => (Finset.Ico n (m + 1)).inf e
hf : ∀ (n m : ℕ), MeasurableSet (f n m)
f_subset_f : ∀ {a b c d : ℕ}, a ≤ b → c ≤ d → f a d ⊆ f b c
f_succ : ∀ (n m : ℕ), n ≤ m → f n (m + 1) = f n m ∩ e (m + 1)
le_d_f : ∀ (n m : ℕ), m ≤ n → γ - 2 * (1 / 2) ^ m + (1 / 2) ^ n ≤ d (f m n)
s : Set α := ⋃ m, ⋂ n, f m n
γ_le_d_s : γ ≤ d s
hs : MeasurableSet s
⊢ ∀ (t : Set α), MeasurableSet t → t ⊆ s → ν t ≤ μ t
|
intro t ht hts
|
case intro.refine_1
α : Type u_1
mα : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
d : Set α → ℝ := fun s => ↑(μ s).toNNReal - ↑(ν s).toNNReal
c : Set ℝ := d '' {s | MeasurableSet s}
γ : ℝ := sSup c
hμ : ∀ (s : Set α), μ s ≠ ⊤
hν : ∀ (s : Set α), ν s ≠ ⊤
to_nnreal_μ : ∀ (s : Set α), ↑(μ s).toNNReal = μ s
to_nnreal_ν : ∀ (s : Set α), ↑(ν s).toNNReal = ν s
d_split : ∀ (s t : Set α), MeasurableSet t → d s = d (s \ t) + d (s ∩ t)
d_Union : ∀ (s : ℕ → Set α), Monotone s → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋃ n, s n)))
d_Inter :
∀ (s : ℕ → Set α),
(∀ (n : ℕ), MeasurableSet (s n)) →
(∀ (n m : ℕ), n ≤ m → s m ⊆ s n) → Tendsto (fun n => d (s n)) atTop (𝓝 (d (⋂ n, s n)))
bdd_c : BddAbove c
c_nonempty : c.Nonempty
d_le_γ : ∀ (s : Set α), MeasurableSet s → d s ≤ γ
this : ∀ (n : ℕ), ∃ s, MeasurableSet s ∧ γ - (1 / 2) ^ n < d s
e : ℕ → Set α
he : ∀ (x : ℕ), MeasurableSet (e x) ∧ γ - (1 / 2) ^ x < d (e x)
he₁ : ∀ (n : ℕ), MeasurableSet (e n)
he₂ : ∀ (n : ℕ), γ - (1 / 2) ^ n < d (e n)
f : ℕ → ℕ → Set α := fun n m => (Finset.Ico n (m + 1)).inf e
hf : ∀ (n m : ℕ), MeasurableSet (f n m)
f_subset_f : ∀ {a b c d : ℕ}, a ≤ b → c ≤ d → f a d ⊆ f b c
f_succ : ∀ (n m : ℕ), n ≤ m → f n (m + 1) = f n m ∩ e (m + 1)
le_d_f : ∀ (n m : ℕ), m ≤ n → γ - 2 * (1 / 2) ^ m + (1 / 2) ^ n ≤ d (f m n)
s : Set α := ⋃ m, ⋂ n, f m n
γ_le_d_s : γ ≤ d s
hs : MeasurableSet s
t : Set α
ht : MeasurableSet t
hts : t ⊆ s
⊢ ν t ≤ μ t
|
b74e26e9476d0e19
|
MeasureTheory.MemLp.induction_dense
|
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
|
theorem MemLp.induction_dense (hp_ne_top : p ≠ ∞) (P : (α → E) → Prop)
(h0P :
∀ (c : E) ⦃s : Set α⦄,
MeasurableSet s →
μ s < ∞ →
∀ {ε : ℝ≥0∞}, ε ≠ 0 → ∃ g : α → E, eLpNorm (g - s.indicator fun _ => c) p μ ≤ ε ∧ P g)
(h1P : ∀ f g, P f → P g → P (f + g)) (h2P : ∀ f, P f → AEStronglyMeasurable f μ) {f : α → E}
(hf : MemLp f p μ) {ε : ℝ≥0∞} (hε : ε ≠ 0) : ∃ g : α → E, eLpNorm (f - g) p μ ≤ ε ∧ P g
|
case intro.intro.intro.intro.intro.intro
α : Type u_1
E : Type u_4
inst✝¹ : MeasurableSpace α
inst✝ : NormedAddCommGroup E
p : ℝ≥0∞
μ : Measure α
hp_ne_top : p ≠ ⊤
P : (α → E) → Prop
h0P :
∀ (c : E) ⦃s : Set α⦄,
MeasurableSet s → μ s < ⊤ → ∀ {ε : ℝ≥0∞}, ε ≠ 0 → ∃ g, eLpNorm (g - s.indicator fun x => c) p μ ≤ ε ∧ P g
h1P : ∀ (f g : α → E), P f → P g → P (f + g)
h2P : ∀ (f : α → E), P f → AEStronglyMeasurable f μ
f : α → E
hf : MemLp f p μ
ε : ℝ≥0∞
hε : ε ≠ 0
hp_pos : p ≠ 0
H : ∀ (f' : α →ₛ E) (δ : ℝ≥0∞), δ ≠ 0 → MemLp (⇑f') p μ → ∃ g, eLpNorm (⇑f' - g) p μ ≤ δ ∧ P g
η : ℝ≥0∞
ηpos : 0 < η
hη :
∀ (f g : α → E),
AEStronglyMeasurable f μ →
AEStronglyMeasurable g μ → eLpNorm f p μ ≤ η → eLpNorm g p μ ≤ η → eLpNorm (f + g) p μ < ε
f' : α →ₛ E
hf' : eLpNorm (f - ⇑f') p μ < η
f'_mem : MemLp (⇑f') p μ
g : α → E
hg : eLpNorm (⇑f' - g) p μ ≤ η
Pg : P g
⊢ ∃ g, eLpNorm (f - g) p μ ≤ ε ∧ P g
|
refine ⟨g, ?_, Pg⟩
|
case intro.intro.intro.intro.intro.intro
α : Type u_1
E : Type u_4
inst✝¹ : MeasurableSpace α
inst✝ : NormedAddCommGroup E
p : ℝ≥0∞
μ : Measure α
hp_ne_top : p ≠ ⊤
P : (α → E) → Prop
h0P :
∀ (c : E) ⦃s : Set α⦄,
MeasurableSet s → μ s < ⊤ → ∀ {ε : ℝ≥0∞}, ε ≠ 0 → ∃ g, eLpNorm (g - s.indicator fun x => c) p μ ≤ ε ∧ P g
h1P : ∀ (f g : α → E), P f → P g → P (f + g)
h2P : ∀ (f : α → E), P f → AEStronglyMeasurable f μ
f : α → E
hf : MemLp f p μ
ε : ℝ≥0∞
hε : ε ≠ 0
hp_pos : p ≠ 0
H : ∀ (f' : α →ₛ E) (δ : ℝ≥0∞), δ ≠ 0 → MemLp (⇑f') p μ → ∃ g, eLpNorm (⇑f' - g) p μ ≤ δ ∧ P g
η : ℝ≥0∞
ηpos : 0 < η
hη :
∀ (f g : α → E),
AEStronglyMeasurable f μ →
AEStronglyMeasurable g μ → eLpNorm f p μ ≤ η → eLpNorm g p μ ≤ η → eLpNorm (f + g) p μ < ε
f' : α →ₛ E
hf' : eLpNorm (f - ⇑f') p μ < η
f'_mem : MemLp (⇑f') p μ
g : α → E
hg : eLpNorm (⇑f' - g) p μ ≤ η
Pg : P g
⊢ eLpNorm (f - g) p μ ≤ ε
|
747111af72f956df
|
Ordnode.size_balance'
|
Mathlib/Data/Ordmap/Ordset.lean
|
theorem size_balance' {l x r} (hl : @Sized α l) (hr : Sized r) :
size (@balance' α l x r) = size l + size r + 1
|
α : Type u_1
l : Ordnode α
x : α
r : Ordnode α
hl : l.Sized
hr : r.Sized
⊢ (l.balance' x r).size = l.size + r.size + 1
|
unfold balance'
|
α : Type u_1
l : Ordnode α
x : α
r : Ordnode α
hl : l.Sized
hr : r.Sized
⊢ (if l.size + r.size ≤ 1 then l.node' x r
else
if r.size > delta * l.size then l.rotateL x r
else if l.size > delta * r.size then l.rotateR x r else l.node' x r).size =
l.size + r.size + 1
|
164cc76764f47764
|
PrimeSpectrum.mem_image_comap_zeroLocus_sdiff
|
Mathlib/RingTheory/Spectrum/Prime/Polynomial.lean
|
/-- Let `A` be an `R`-algebra.
`𝔭 : Spec R` is in the image of `Z(I) ∩ D(f) ⊆ Spec S`
if and only if `f` is not nilpotent on `κ(𝔭) ⊗ A ⧸ I`. -/
lemma mem_image_comap_zeroLocus_sdiff (f : A) (s : Set A) (x) :
x ∈ comap (algebraMap R A) '' (zeroLocus s \ zeroLocus {f}) ↔
¬ IsNilpotent (algebraMap A ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField) f)
|
case mpr.intro.intro
R : Type u_2
A : Type u_1
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
f : A
s : Set A
x : PrimeSpectrum R
q : Ideal ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField)
hq : q.IsPrime
hfq : (Ideal.Quotient.mk (Ideal.span s)) f ⊗ₜ[R] 1 ∉ q
this : ∀ a ∈ s, (Ideal.Quotient.mk (Ideal.span s)) a ⊗ₜ[R] 1 ∈ q
⊢ x ∈ ⇑(comap (algebraMap R A)) '' (zeroLocus s \ zeroLocus {f})
|
refine ⟨comap (algebraMap A _) ⟨q, hq⟩, ⟨by simpa [Set.subset_def], by simpa⟩, ?_⟩
|
case mpr.intro.intro
R : Type u_2
A : Type u_1
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
f : A
s : Set A
x : PrimeSpectrum R
q : Ideal ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField)
hq : q.IsPrime
hfq : (Ideal.Quotient.mk (Ideal.span s)) f ⊗ₜ[R] 1 ∉ q
this : ∀ a ∈ s, (Ideal.Quotient.mk (Ideal.span s)) a ⊗ₜ[R] 1 ∈ q
⊢ (comap (algebraMap R A))
((comap (algebraMap A ((A ⧸ Ideal.span s) ⊗[R] x.asIdeal.ResidueField))) { asIdeal := q, isPrime := hq }) =
x
|
b5370dee55806ec3
|
MeasureTheory.eLpNorm_one_condExp_le_eLpNorm
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean
|
theorem eLpNorm_one_condExp_le_eLpNorm (f : α → ℝ) : eLpNorm (μ[f|m]) 1 μ ≤ eLpNorm f 1 μ
|
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f μ
hm : m ≤ m0
hsig : SigmaFinite (μ.trim hm)
⊢ 0 ≤ᶠ[ae μ] μ[|f| |m]
|
rw [← condExp_zero]
|
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f μ
hm : m ≤ m0
hsig : SigmaFinite (μ.trim hm)
⊢ ?m.15243[0|?m.15241] ≤ᶠ[ae μ] μ[|f| |m]
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f μ
hm : m ≤ m0
hsig : SigmaFinite (μ.trim hm)
⊢ MeasurableSpace α
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f μ
hm : m ≤ m0
hsig : SigmaFinite (μ.trim hm)
⊢ MeasurableSpace α
α : Type u_1
m m0 : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f μ
hm : m ≤ m0
hsig : SigmaFinite (μ.trim hm)
⊢ Measure α
|
4c3dc2a5be2f6f42
|
TopCat.isTopologicalBasis_cofiltered_limit
|
Mathlib/Topology/Category/TopCat/Limits/Cofiltered.lean
|
theorem isTopologicalBasis_cofiltered_limit (hC : IsLimit C) (T : ∀ j, Set (Set (F.obj j)))
(hT : ∀ j, IsTopologicalBasis (T j)) (univ : ∀ i : J, Set.univ ∈ T i)
(inter : ∀ (i) (U1 U2 : Set (F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i)
(compat : ∀ (i j : J) (f : i ⟶ j) (V : Set (F.obj j)) (_hV : V ∈ T j), F.map f ⁻¹' V ∈ T i) :
IsTopologicalBasis
{U : Set C.pt | ∃ (j : _) (V : Set (F.obj j)), V ∈ T j ∧ U = C.π.app j ⁻¹' V}
|
case h.e'_3.h.mpr.intro.intro.intro.intro.refine_2.h.h.h.h.h.h
J : Type v
inst✝¹ : Category.{w, v} J
inst✝ : IsCofiltered J
F : J ⥤ TopCat
C : Cone F
hC : IsLimit C
T : (j : J) → Set (Set ↑(F.obj j))
hT : ∀ (j : J), IsTopologicalBasis (T j)
univ : ∀ (i : J), Set.univ ∈ T i
inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i
compat : ∀ (i j : J) (f : i ⟶ j), ∀ V ∈ T j, ⇑(ConcreteCategory.hom (F.map f)) ⁻¹' V ∈ T i
D : Cone F := limitConeInfi F
E : C.pt ≅ D.pt := hC.conePointUniqueUpToIso (limitConeInfiIsLimit F)
hE : IsInducing ⇑(ConcreteCategory.hom E.hom)
U0 : Set ↑D.pt
U : (i : J) → Set ↑(F.obj i)
G : Finset J
h1 : ∀ i ∈ G, U i ∈ T i
h2 : U0 = ⋂ i ∈ G, (fun x => (ConcreteCategory.hom (D.π.app i)) x) ⁻¹' U i
j : J
hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X)
g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => ⋯.some
Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ⇑(ConcreteCategory.hom (F.map (g e h))) ⁻¹' U e else Set.univ
V : Set ↑(F.obj j) := ⋂ e ∈ G, Vs e
e : J
he : e ∈ G
⊢ ⇑(ConcreteCategory.hom (D.π.app e)) = ⇑(ConcreteCategory.hom (F.map (g e he))) ∘ ⇑(ConcreteCategory.hom (D.π.app j))
|
rw [← coe_comp, D.w]
|
case h.e'_3.h.mpr.intro.intro.intro.intro.refine_2.h.h.h.h.h.h
J : Type v
inst✝¹ : Category.{w, v} J
inst✝ : IsCofiltered J
F : J ⥤ TopCat
C : Cone F
hC : IsLimit C
T : (j : J) → Set (Set ↑(F.obj j))
hT : ∀ (j : J), IsTopologicalBasis (T j)
univ : ∀ (i : J), Set.univ ∈ T i
inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i
compat : ∀ (i j : J) (f : i ⟶ j), ∀ V ∈ T j, ⇑(ConcreteCategory.hom (F.map f)) ⁻¹' V ∈ T i
D : Cone F := limitConeInfi F
E : C.pt ≅ D.pt := hC.conePointUniqueUpToIso (limitConeInfiIsLimit F)
hE : IsInducing ⇑(ConcreteCategory.hom E.hom)
U0 : Set ↑D.pt
U : (i : J) → Set ↑(F.obj i)
G : Finset J
h1 : ∀ i ∈ G, U i ∈ T i
h2 : U0 = ⋂ i ∈ G, (fun x => (ConcreteCategory.hom (D.π.app i)) x) ⁻¹' U i
j : J
hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X)
g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => ⋯.some
Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ⇑(ConcreteCategory.hom (F.map (g e h))) ⁻¹' U e else Set.univ
V : Set ↑(F.obj j) := ⋂ e ∈ G, Vs e
e : J
he : e ∈ G
⊢ ⇑(ConcreteCategory.hom (D.π.app e)) = ⇑(ConcreteCategory.hom (D.π.app e))
|
8a9de6a458f61cf0
|
LinearMap.span_singleton_inf_orthogonal_eq_bot
|
Mathlib/LinearAlgebra/SesquilinearForm.lean
|
theorem span_singleton_inf_orthogonal_eq_bot (B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂) (x : V₁)
(hx : ¬B.IsOrtho x x) : (K₁ ∙ x) ⊓ Submodule.orthogonalBilin (K₁ ∙ x) B = ⊥
|
case intro
K : Type u_13
K₁ : Type u_14
V₁ : Type u_17
V₂ : Type u_18
inst✝⁵ : Field K
inst✝⁴ : Field K₁
inst✝³ : AddCommGroup V₁
inst✝² : Module K₁ V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂
x : V₁
hx : ¬B.IsOrtho x x
μ : V₁ → K₁
h : ∑ i ∈ {x}, μ i • i ∈ Submodule.span K₁ ↑{x} ⊓ (Submodule.span K₁ ↑{x}).orthogonalBilin B
⊢ ∑ i ∈ {x}, μ i • i ∈ ⊥
|
replace h := h.2 x (by simp [Submodule.mem_span] : x ∈ Submodule.span K₁ ({x} : Finset V₁))
|
case intro
K : Type u_13
K₁ : Type u_14
V₁ : Type u_17
V₂ : Type u_18
inst✝⁵ : Field K
inst✝⁴ : Field K₁
inst✝³ : AddCommGroup V₁
inst✝² : Module K₁ V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
J₁ J₁' : K₁ →+* K
B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] V₂
x : V₁
hx : ¬B.IsOrtho x x
μ : V₁ → K₁
h : B.IsOrtho x (∑ i ∈ {x}, μ i • i)
⊢ ∑ i ∈ {x}, μ i • i ∈ ⊥
|
b7086190b7929afb
|
ENNReal.mul_div_cancel'
|
Mathlib/Data/ENNReal/Inv.lean
|
/-- See `ENNReal.mul_div_cancel` for a simpler version assuming `a ≠ 0`, `a ≠ ∞`. -/
protected lemma mul_div_cancel' (ha₀ : a = 0 → b = 0) (ha : a = ∞ → b = 0) : a * (b / a) = b
|
a b : ℝ≥0∞
ha₀ : a = 0 → b = 0
ha : a = ⊤ → b = 0
⊢ a * (b / a) = b
|
rw [mul_comm, ENNReal.div_mul_cancel' ha₀ ha]
|
no goals
|
466a2e4a896026ed
|
Cardinal.aleph_le_beth
|
Mathlib/SetTheory/Cardinal/Aleph.lean
|
theorem aleph_le_beth (o : Ordinal) : ℵ_ o ≤ ℶ_ o
|
case H₂
o : Ordinal.{u_1}
h : ℵ_ o ≤ ℶ_ o
⊢ ℵ_ o < 2 ^ ℶ_ o
|
exact (cantor _).trans_le (power_le_power_left two_ne_zero h)
|
no goals
|
ddd0314775c52403
|
aux₁
|
Mathlib/MeasureTheory/Order/UpperLower.lean
|
/-- If we can fit a small ball inside a set `sᶜ` intersected with any neighborhood of `x`, then the
density of `s` near `x` is not `1`.
Along with `aux₀`, this proves that `x` is a Lebesgue point of `s`. This will be used to prove that
the frontier of an order-connected set is null. -/
private lemma aux₁
(h : ∀ δ, 0 < δ →
∃ y, closedBall y (δ / 4) ⊆ closedBall x δ ∧ closedBall y (δ / 4) ⊆ interior sᶜ) :
¬Tendsto (fun r ↦ volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0)
(𝓝 1)
|
case intro.intro.intro.refine_1
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
⊢ ENNReal.ofReal (4⁻¹ ^ Fintype.card ι) ≠ 0
case intro.intro.intro.refine_2
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
⊢ ((fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) ∘ ε) n ≤
1 - ENNReal.ofReal (4⁻¹ ^ Fintype.card ι)
|
on_goal 2 =>
calc
volume (closure s ∩ closedBall x (ε n)) / volume (closedBall x (ε n))
≤ volume (closedBall x (ε n) \ closedBall (f (ε n) <| hε' n) (ε n / 4)) /
volume (closedBall x (ε n)) := by
gcongr
rw [diff_eq_compl_inter]
refine inter_subset_inter_left _ ?_
rw [subset_compl_comm, ← interior_compl]
exact hf₁ _ _
_ = 1 - ENNReal.ofReal (4⁻¹ ^ Fintype.card ι) := ?_
dsimp only
have := hε' n
rw [measure_diff (hf₀ _ _) _ ((Real.volume_pi_closedBall _ _).trans_ne ENNReal.ofReal_ne_top),
Real.volume_pi_closedBall, Real.volume_pi_closedBall, ENNReal.sub_div fun _ _ ↦ _,
ENNReal.div_self _ ENNReal.ofReal_ne_top, ← ENNReal.ofReal_div_of_pos, ← div_pow,
mul_div_mul_left _ _ (two_ne_zero' ℝ), div_right_comm, div_self, one_div]
|
case intro.intro.intro.refine_1
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
⊢ ENNReal.ofReal (4⁻¹ ^ Fintype.card ι) ≠ 0
case intro.intro.intro.refine_2
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ ε n ≠ 0
case intro.intro.intro.refine_2
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ 0 < (2 * ε n) ^ Fintype.card ι
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ ENNReal.ofReal ((2 * ε n) ^ Fintype.card ι) ≠ 0
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ 0 < ENNReal.ofReal ((2 * (ε n / 4)) ^ Fintype.card ι) →
ENNReal.ofReal ((2 * (ε n / 4)) ^ Fintype.card ι) < ENNReal.ofReal ((2 * ε n) ^ Fintype.card ι) →
ENNReal.ofReal ((2 * ε n) ^ Fintype.card ι) ≠ 0
case intro.intro.intro.refine_2.hr
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ 0 ≤ ε n / 4
case intro.intro.intro.refine_2.hr
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ 0 ≤ ε n
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ NullMeasurableSet (closedBall (f (ε n) ⋯) (ε n / 4)) volume
ι : Type u_1
inst✝ : Fintype ι
s : Set (ι → ℝ)
x : ι → ℝ
f : (δ : ℝ) → 0 < δ → ι → ℝ
hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ
hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior sᶜ
H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 1)
ε : ℕ → ℝ
hε' : ∀ (n : ℕ), 0 < ε n
hε₀ : Tendsto ε atTop (𝓝[>] 0)
n : ℕ
this : 0 < ε n
⊢ 0 ≤ ε n / 4
|
97816f689cf8a35d
|
Int.ofNat_toNat
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
|
theorem ofNat_toNat (a : Int) : (a.toNat : Int) = max a 0
|
a : Int
n : Nat
⊢ ↑-[n+1].toNat = max -[n+1] 0
|
simp
|
no goals
|
3021bd9f1ab75728
|
EulerSine.integral_sin_mul_sin_mul_cos_pow_eq
|
Mathlib/Analysis/SpecialFunctions/Trigonometric/EulerSineProd.lean
|
theorem integral_sin_mul_sin_mul_cos_pow_eq (hn : 2 ≤ n) (hz : z ≠ 0) :
(∫ x in (0 : ℝ)..π / 2, Complex.sin (2 * z * x) * sin x * (cos x : ℂ) ^ (n - 1)) =
(n / (2 * z) * ∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ n) -
(n - 1) / (2 * z) *
∫ x in (0 : ℝ)..π / 2, Complex.cos (2 * z * x) * (cos x : ℂ) ^ (n - 2)
|
case h.e'_8.h
z : ℂ
n : ℕ
hn : 2 ≤ n
hz : z ≠ 0
x : ℝ
a✝ : x ∈ uIcc 0 (π / 2)
c : HasDerivAt ((fun x => x ^ (n - 1)) ∘ Complex.cos) (↑(n - 1) * Complex.cos ↑x ^ (n - 1 - 1) * -Complex.sin ↑x) ↑x
y : ℝ
⊢ ↑(sin y) * ↑(cos y) ^ (n - 1) = Complex.sin ↑y * ((fun x => x ^ (n - 1)) ∘ Complex.cos) ↑y
|
simp only [Complex.ofReal_sin, Complex.ofReal_cos, Function.comp]
|
no goals
|
aa9c88c94003a4d7
|
AlgebraicGeometry.isNoetherian_iff_of_finite_affine_openCover
|
Mathlib/AlgebraicGeometry/Noetherian.lean
|
theorem isNoetherian_iff_of_finite_affine_openCover {𝒰 : Scheme.OpenCover.{v, u} X}
[Finite 𝒰.J] [∀ i, IsAffine (𝒰.obj i)] :
IsNoetherian X ↔ ∀ (i : 𝒰.J), IsNoetherianRing Γ(𝒰.obj i, ⊤)
|
X : Scheme
𝒰 : X.OpenCover
inst✝¹ : Finite 𝒰.J
inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i)
⊢ IsNoetherian X ↔ ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤)
|
constructor
|
case mp
X : Scheme
𝒰 : X.OpenCover
inst✝¹ : Finite 𝒰.J
inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i)
⊢ IsNoetherian X → ∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤)
case mpr
X : Scheme
𝒰 : X.OpenCover
inst✝¹ : Finite 𝒰.J
inst✝ : ∀ (i : 𝒰.J), IsAffine (𝒰.obj i)
⊢ (∀ (i : 𝒰.J), IsNoetherianRing ↑Γ(𝒰.obj i, ⊤)) → IsNoetherian X
|
f55c23f20e8dcf72
|
Polynomial.zero_modByMonic
|
Mathlib/Algebra/Polynomial/Div.lean
|
theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0
|
case neg
R : Type u
inst✝ : Ring R
p : R[X]
hp : ¬p.Monic
⊢ (if h : p.Monic then
(if p.degree ≤ ⊥ ∧ ¬0 = 0 then
(C 0 * X ^ (0 - p.natDegree) + ((0 - p * (C 0 * X ^ (0 - p.natDegree))).divModByMonicAux ⋯).1,
((0 - p * (C 0 * X ^ (0 - p.natDegree))).divModByMonicAux ⋯).2)
else 0).2
else 0) =
0
|
rw [dif_neg hp]
|
no goals
|
f0d18cde90b3b083
|
MeasureTheory.uniformIntegrable_finite
|
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
|
theorem uniformIntegrable_finite [Finite ι] (hp_one : 1 ≤ p) (hp_top : p ≠ ∞)
(hf : ∀ i, MemLp (f i) p μ) : UniformIntegrable f p μ
|
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace α
μ : Measure α
inst✝¹ : NormedAddCommGroup β
p : ℝ≥0∞
f : ι → α → β
inst✝ : Finite ι
hp_one : 1 ≤ p
hp_top : p ≠ ⊤
val✝ : Fintype ι
hι : Nonempty ι
h✝ : ∀ (i : ι), AEStronglyMeasurable (f i) μ
hf : ∀ (i : ι), eLpNorm (f i) p μ < ⊤
C : ℝ≥0∞ := (Finset.image (fun i => eLpNorm (f i) p μ) Finset.univ).max' ⋯
i : ι
⊢ eLpNorm (f i) p μ ≤ C
|
exact Finset.le_max' (α := ℝ≥0∞) _ _ (Finset.mem_image.2 ⟨i, Finset.mem_univ _, rfl⟩)
|
no goals
|
5abac80f706d496a
|
Submodule.fg_induction
|
Mathlib/RingTheory/Finiteness/Basic.lean
|
theorem fg_induction (R M : Type*) [Semiring R] [AddCommMonoid M] [Module R M]
(P : Submodule R M → Prop) (h₁ : ∀ x, P (Submodule.span R {x}))
(h₂ : ∀ M₁ M₂, P M₁ → P M₂ → P (M₁ ⊔ M₂)) (N : Submodule R M) (hN : N.FG) : P N
|
case intro.empty
R : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
P : Submodule R M → Prop
h₁ : ∀ (x : M), P (span R {x})
h₂ : ∀ (M₁ M₂ : Submodule R M), P M₁ → P M₂ → P (M₁ ⊔ M₂)
⊢ P (span R ↑∅)
|
rw [Finset.coe_empty, Submodule.span_empty, ← Submodule.span_zero_singleton]
|
case intro.empty
R : Type u_4
M : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
P : Submodule R M → Prop
h₁ : ∀ (x : M), P (span R {x})
h₂ : ∀ (M₁ M₂ : Submodule R M), P M₁ → P M₂ → P (M₁ ⊔ M₂)
⊢ P (span R {0})
|
acaf019d55d4c340
|
HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod
|
Mathlib/Analysis/Analytic/Basic.lean
|
theorem HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod {y : E}
(hf : HasFPowerSeriesWithinOnBall f p s x r) (hy : y ∈ EMetric.ball (0 : E) r)
(h'y : x + y ∈ insert x s) :
Tendsto (fun (z : ℕ × E) ↦ p.partialSum z.1 z.2) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
|
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
p : FormalMultilinearSeries 𝕜 E F
s : Set E
x : E
r : ℝ≥0∞
y : E
hf : HasFPowerSeriesWithinOnBall f p s x r
hy : y ∈ EMetric.ball 0 r
h'y : x + y ∈ insert x s
A : Tendsto (fun z => p.partialSum z.1 y) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
ε : ℝ
εpos : ε > 0
r' : ℝ≥0
yr' : ‖y‖₊ < r'
r'r : ↑r' < r
yr'_2 : ‖y‖ < ↑r'
S : Summable fun n => ‖p n‖ * ↑r' ^ n
k : ℕ
hk : ∑' (n : ℕ), ‖p (n + k)‖ * ↑r' ^ (n + k) < ε / 4
⊢ ∀ᶠ (x : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum x.1 x.2 - p.partialSum x.1 y) 0 < ε
|
have A : ∀ᶠ (z : ℕ × E) in atTop ×ˢ 𝓝 y,
dist (p.partialSum k z.2) (p.partialSum k y) < ε / 4 := by
have : ContinuousAt (fun z ↦ p.partialSum k z) y := (p.partialSum_continuous k).continuousAt
exact tendsto_snd (Metric.tendsto_nhds.1 this.tendsto (ε / 4) (by linarith))
|
case intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
p : FormalMultilinearSeries 𝕜 E F
s : Set E
x : E
r : ℝ≥0∞
y : E
hf : HasFPowerSeriesWithinOnBall f p s x r
hy : y ∈ EMetric.ball 0 r
h'y : x + y ∈ insert x s
A✝ : Tendsto (fun z => p.partialSum z.1 y) (atTop ×ˢ 𝓝 y) (𝓝 (f (x + y)))
ε : ℝ
εpos : ε > 0
r' : ℝ≥0
yr' : ‖y‖₊ < r'
r'r : ↑r' < r
yr'_2 : ‖y‖ < ↑r'
S : Summable fun n => ‖p n‖ * ↑r' ^ n
k : ℕ
hk : ∑' (n : ℕ), ‖p (n + k)‖ * ↑r' ^ (n + k) < ε / 4
A : ∀ᶠ (z : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum k z.2) (p.partialSum k y) < ε / 4
⊢ ∀ᶠ (x : ℕ × E) in atTop ×ˢ 𝓝 y, dist (p.partialSum x.1 x.2 - p.partialSum x.1 y) 0 < ε
|
84f2046d5fc6e8a5
|
Nat.det_vandermonde_id_eq_superFactorial
|
Mathlib/Data/Nat/Factorial/SuperFactorial.lean
|
theorem det_vandermonde_id_eq_superFactorial (n : ℕ) :
(Matrix.vandermonde (fun (i : Fin (n + 1)) ↦ (i : R))).det = Nat.superFactorial n
|
case succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
hn : (Matrix.vandermonde fun i => ↑↑i).det = ↑(sf n)
⊢ (∏ j ∈ Ioi 0, (↑↑j - ↑↑0)) * ∏ i : Fin (n + 1), ∏ j ∈ Ioi (Fin.succAbove 0 i), (↑↑j - ↑↑(Fin.succAbove 0 i)) =
↑(n.succ ! * sf n)
|
push_cast
|
case succ
R : Type u_1
inst✝ : CommRing R
n : ℕ
hn : (Matrix.vandermonde fun i => ↑↑i).det = ↑(sf n)
⊢ (∏ j ∈ Ioi 0, (↑↑j - ↑↑0)) * ∏ i : Fin (n + 1), ∏ j ∈ Ioi (Fin.succAbove 0 i), (↑↑j - ↑↑(Fin.succAbove 0 i)) =
↑n.succ ! * ↑(sf n)
|
55fe604c0006566e
|
Polynomial.map_restriction
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
theorem map_restriction {R : Type u} [CommRing R] (p : R[X]) :
p.restriction.map (algebraMap _ _) = p :=
ext fun n => by rw [coeff_map, Algebra.algebraMap_ofSubring_apply, coeff_restriction]
|
R : Type u
inst✝ : CommRing R
p : R[X]
n : ℕ
⊢ (map (algebraMap (↥(Subring.closure ↑p.coeffs)) R) p.restriction).coeff n = p.coeff n
|
rw [coeff_map, Algebra.algebraMap_ofSubring_apply, coeff_restriction]
|
no goals
|
7be49a5ed8028cf9
|
Module.FaithfullyFlat.trans
|
Mathlib/RingTheory/Flat/FaithfullyFlat/Basic.lean
|
theorem trans : FaithfullyFlat R M
|
R : Type u_1
inst✝⁸ : CommRing R
S : Type u_2
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module S M
inst✝² : IsScalarTower R S M
inst✝¹ : FaithfullyFlat R S
inst✝ : FaithfullyFlat S M
⊢ FaithfullyFlat R M
|
rw [iff_zero_iff_lTensor_zero]
|
R : Type u_1
inst✝⁸ : CommRing R
S : Type u_2
inst✝⁷ : CommRing S
inst✝⁶ : Algebra R S
M : Type u_3
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : Module S M
inst✝² : IsScalarTower R S M
inst✝¹ : FaithfullyFlat R S
inst✝ : FaithfullyFlat S M
⊢ Flat R M ∧
∀ {N : Type (max u_1 u_3)} [inst : AddCommGroup N] [inst_1 : Module R N] {N' : Type (max u_1 u_3)}
[inst_2 : AddCommGroup N'] [inst_3 : Module R N'] (f : N →ₗ[R] N'), lTensor M f = 0 ↔ f = 0
|
67560735acca6665
|
LinearMap.ker_le_iff
|
Mathlib/Algebra/Module/Submodule/Range.lean
|
theorem ker_le_iff [RingHomSurjective τ₁₂] {p : Submodule R M} :
ker f ≤ p ↔ ∃ y ∈ range f, f ⁻¹' {y} ⊆ p
|
R : Type u_1
R₂ : Type u_2
M : Type u_5
M₂ : Type u_6
inst✝⁸ : Ring R
inst✝⁷ : Ring R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_10
inst✝² : FunLike F M M₂
inst✝¹ : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
⊢ ker f ≤ p ↔ ∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑p
|
constructor
|
case mp
R : Type u_1
R₂ : Type u_2
M : Type u_5
M₂ : Type u_6
inst✝⁸ : Ring R
inst✝⁷ : Ring R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_10
inst✝² : FunLike F M M₂
inst✝¹ : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
⊢ ker f ≤ p → ∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑p
case mpr
R : Type u_1
R₂ : Type u_2
M : Type u_5
M₂ : Type u_6
inst✝⁸ : Ring R
inst✝⁷ : Ring R₂
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_10
inst✝² : FunLike F M M₂
inst✝¹ : SemilinearMapClass F τ₁₂ M M₂
f : F
inst✝ : RingHomSurjective τ₁₂
p : Submodule R M
⊢ (∃ y ∈ range f, ⇑f ⁻¹' {y} ⊆ ↑p) → ker f ≤ p
|
4607f9408a9aa2c2
|
NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal
|
Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean
|
theorem finite_of_discr_bdd_of_isReal :
{K : { F : IntermediateField ℚ A // FiniteDimensional ℚ F} |
haveI : NumberField K := @NumberField.mk _ _ inferInstance K.prop
{w : InfinitePlace K | IsReal w}.Nonempty ∧ |discr K| ≤ N }.Finite
|
A : Type u_2
inst✝¹ : Field A
inst✝ : CharZero A
N : ℕ
D : ℕ := rankOfDiscrBdd N
B : ℝ≥0 := boundOfDiscBdd N
C : ℕ := ⌈(B ⊔ 1) ^ D * ↑(D.choose (D / 2))⌉₊
x✝¹ : { F // FiniteDimensional ℚ ↥F }
K : IntermediateField ℚ A
hK₀ : FiniteDimensional ℚ ↥K
x✝ : ⟨K, hK₀⟩ ∈ {K | {w | w.IsReal}.Nonempty ∧ |discr ↥↑K| ≤ ↑N}
hK₂ : |discr ↥↑⟨K, hK₀⟩| ≤ ↑N
this✝¹ : CharZero ↥K
this✝ : NumberField ↥K
w₀ : InfinitePlace ↥↑⟨K, hK₀⟩
hw₀ : w₀ ∈ {w | w.IsReal}
this : minkowskiBound (↥K) 1 < ↑(convexBodyLTFactor ↥K) * ↑B
x : 𝓞 ↥K
hx₁ : ℚ⟮↑x⟯ = ⊤
hx₂ : ∀ (w : InfinitePlace ↥K), w ↑x < ↑(B ⊔ 1)
hx : IsIntegral ℤ ((algebraMap (𝓞 ↥K) ↥K) x)
i : ℕ
⊢ ↑(B ⊔ 1) ⊔ 1 = ↑B ⊔ 1
|
simp
|
no goals
|
258b240e119b72fe
|
CategoryTheory.leftAdjoint_preservesTerminal_of_reflective
|
Mathlib/CategoryTheory/Monad/Limits.lean
|
/-- The reflector always preserves terminal objects. Note this in general doesn't apply to any other
limit.
-/
lemma leftAdjoint_preservesTerminal_of_reflective (R : D ⥤ C) [Reflective R] :
PreservesLimitsOfShape (Discrete.{v} PEmpty) (monadicLeftAdjoint R) where
preservesLimit {K}
|
case preserves
C : Type u₁
inst✝² : Category.{v₁, u₁} C
D : Type u₂
inst✝¹ : Category.{v₂, u₂} D
R : D ⥤ C
inst✝ : Reflective R
K : Discrete PEmpty.{v + 1} ⥤ C
F : Discrete PEmpty.{v + 1} ⥤ D := Functor.empty D
c : Cone (F ⋙ R)
h : IsLimit c
this✝ : HasLimit (F ⋙ R)
this : HasLimit F
⊢ Nonempty (IsLimit ((monadicLeftAdjoint R).mapCone c))
|
constructor
|
case preserves.val
C : Type u₁
inst✝² : Category.{v₁, u₁} C
D : Type u₂
inst✝¹ : Category.{v₂, u₂} D
R : D ⥤ C
inst✝ : Reflective R
K : Discrete PEmpty.{v + 1} ⥤ C
F : Discrete PEmpty.{v + 1} ⥤ D := Functor.empty D
c : Cone (F ⋙ R)
h : IsLimit c
this✝ : HasLimit (F ⋙ R)
this : HasLimit F
⊢ IsLimit ((monadicLeftAdjoint R).mapCone c)
|
68ed64ef7d4b8b6f
|
Lagrange.eq_interpolate_of_eval_eq
|
Mathlib/LinearAlgebra/Lagrange.lean
|
theorem eq_interpolate_of_eval_eq {f : F[X]} (hvs : Set.InjOn v s) (degree_f_lt : f.degree < #s)
(eval_f : ∀ i ∈ s, f.eval (v i) = r i) : f = interpolate s v r
|
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v r : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
degree_f_lt : f.degree < ↑(#s)
eval_f : ∀ i ∈ s, eval (v i) f = r i
⊢ f = (interpolate s v) r
|
rw [eq_interpolate hvs degree_f_lt]
|
F : Type u_1
inst✝¹ : Field F
ι : Type u_2
inst✝ : DecidableEq ι
s : Finset ι
v r : ι → F
f : F[X]
hvs : Set.InjOn v ↑s
degree_f_lt : f.degree < ↑(#s)
eval_f : ∀ i ∈ s, eval (v i) f = r i
⊢ ((interpolate s v) fun i => eval (v i) f) = (interpolate s v) r
|
854f85709b9436f3
|
Finsupp.sum_sum_index'
|
Mathlib/Algebra/BigOperators/Finsupp.lean
|
theorem Finsupp.sum_sum_index' (h0 : ∀ i, t i 0 = 0) (h1 : ∀ i x y, t i (x + y) = t i x + t i y) :
(∑ x ∈ s, f x).sum t = ∑ x ∈ s, (f x).sum t
|
α : Type u_1
ι : Type u_2
A : Type u_4
C : Type u_6
inst✝¹ : AddCommMonoid A
inst✝ : AddCommMonoid C
t : ι → A → C
s✝ : Finset α
f : α → ι →₀ A
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
a : α
s : Finset α
has : a ∉ s
ih : (∑ x ∈ s, f x).sum t = ∑ x ∈ s, (f x).sum t
⊢ (∑ x ∈ insert a s, f x).sum t = ∑ x ∈ insert a s, (f x).sum t
|
simp_rw [Finset.sum_insert has, Finsupp.sum_add_index' h0 h1, ih]
|
no goals
|
23af0593f3118115
|
SimplexCategoryGenRel.hom_induction
|
Mathlib/AlgebraicTopology/SimplexCategory/GeneratorsRelations/Basic.lean
|
/-- An unrolled version of the induction principle obtained in the previous lemma. -/
@[elab_as_elim, cases_eliminator, induction_eliminator]
lemma hom_induction (P : MorphismProperty SimplexCategoryGenRel)
(id : ∀ {n : ℕ}, P (𝟙 (mk n)))
(comp_δ : ∀ {n m : ℕ} (u : mk n ⟶ mk m) (i : Fin (m + 2)), P u → P (u ≫ δ i))
(comp_σ : ∀ {n m : ℕ} (u : mk n ⟶ mk (m + 1)) (i : Fin (m + 1)), P u → P (u ≫ σ i))
{a b : SimplexCategoryGenRel} (f : a ⟶ b) :
P f :=
by
suffices generators.multiplicativeClosure ≤ P by
rw [multiplicativeClosure_isGenerator_eq_top, top_le_iff] at this
rw [this]
apply MorphismProperty.top_apply
intro _ _ f hf
induction hf with
| of f h =>
rcases h with ⟨⟨i⟩⟩ | ⟨⟨i⟩⟩
· simpa using (comp_δ (𝟙 _) i id)
· simpa using (comp_σ (𝟙 _) i id)
| id n => exact id
| comp_of f g hf hg hrec =>
rcases hg with ⟨⟨i⟩⟩ | ⟨⟨i⟩⟩
· simpa using (comp_δ f i hrec)
· simpa using (comp_σ f i hrec)
|
P : MorphismProperty SimplexCategoryGenRel
id : ∀ {n : ℕ}, P (𝟙 (mk n))
comp_δ : ∀ {n m : ℕ} (u : mk n ⟶ mk m) (i : Fin (m + 2)), P u → P (u ≫ δ i)
comp_σ : ∀ {n m : ℕ} (u : mk n ⟶ mk (m + 1)) (i : Fin (m + 1)), P u → P (u ≫ σ i)
a b : SimplexCategoryGenRel
f : a ⟶ b
⊢ generators.multiplicativeClosure ≤ P
|
intro _ _ f hf
|
P : MorphismProperty SimplexCategoryGenRel
id : ∀ {n : ℕ}, P (𝟙 (mk n))
comp_δ : ∀ {n m : ℕ} (u : mk n ⟶ mk m) (i : Fin (m + 2)), P u → P (u ≫ δ i)
comp_σ : ∀ {n m : ℕ} (u : mk n ⟶ mk (m + 1)) (i : Fin (m + 1)), P u → P (u ≫ σ i)
a b : SimplexCategoryGenRel
f✝ : a ⟶ b
X✝ Y✝ : SimplexCategoryGenRel
f : X✝ ⟶ Y✝
hf : generators.multiplicativeClosure f
⊢ P f
|
5b459ccac98f64d1
|
CategoryTheory.Limits.PullbackCone.mono_of_isLimitMkIdId
|
Mathlib/CategoryTheory/Limits/Shapes/Pullback/Mono.lean
|
theorem mono_of_isLimitMkIdId (f : X ⟶ Y) (t : IsLimit (mk (𝟙 X) (𝟙 X) rfl : PullbackCone f f)) :
Mono f :=
⟨fun {Z} g h eq => by
rcases PullbackCone.IsLimit.lift' t _ _ eq with ⟨_, rfl, rfl⟩
rfl⟩
|
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f : X ⟶ Y
t : IsLimit (mk (𝟙 X) (𝟙 X) ⋯)
Z : C
g h : Z ⟶ X
eq : g ≫ f = h ≫ f
⊢ g = h
|
rcases PullbackCone.IsLimit.lift' t _ _ eq with ⟨_, rfl, rfl⟩
|
case mk.intro
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f : X ⟶ Y
t : IsLimit (mk (𝟙 X) (𝟙 X) ⋯)
Z : C
val✝ : Z ⟶ (mk (𝟙 X) (𝟙 X) ⋯).pt
eq : (val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).fst) ≫ f = (val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).snd) ≫ f
⊢ val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).fst = val✝ ≫ (mk (𝟙 X) (𝟙 X) ⋯).snd
|
98d4f8fb735a5040
|
Int.cast_mul_eq_zsmul_cast
|
Mathlib/Algebra/Ring/Int/Defs.lean
|
/-- Note this holds in marginally more generality than `Int.cast_mul` -/
lemma cast_mul_eq_zsmul_cast {α : Type*} [AddCommGroupWithOne α] :
∀ m n : ℤ, ↑(m * n) = m • (n : α) :=
fun m ↦ Int.induction_on m (by simp) (fun _ ih ↦ by simp [add_mul, add_zsmul, ih]) fun _ ih ↦ by
simp only [sub_mul, one_mul, cast_sub, ih, sub_zsmul, one_zsmul, ← sub_eq_add_neg, forall_const]
|
α : Type u_1
inst✝ : AddCommGroupWithOne α
m : ℤ
x✝ : ℕ
ih : ∀ (n : ℤ), ↑(-↑x✝ * n) = -↑x✝ • ↑n
⊢ ∀ (n : ℤ), ↑((-↑x✝ - 1) * n) = (-↑x✝ - 1) • ↑n
|
simp only [sub_mul, one_mul, cast_sub, ih, sub_zsmul, one_zsmul, ← sub_eq_add_neg, forall_const]
|
no goals
|
581b90f0b94a9546
|
Nat.add_lt_of_lt_sub
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean
|
theorem add_lt_of_lt_sub {a b c : Nat} (h : a < c - b) : a + b < c
|
case h
a b c : Nat
h : a < c - b
hgt : c < b
⊢ False
|
apply Nat.not_lt_zero a
|
case h
a b c : Nat
h : a < c - b
hgt : c < b
⊢ a < 0
|
f12023f17c28ef23
|
AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_apply_eq_comap
|
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
|
lemma toSpec_base_apply_eq_comap {f} (x : Proj| pbo f) :
(toSpec 𝒜 f).base x = PrimeSpectrum.comap (mapId 𝒜 (Submonoid.powers_le.mpr x.2))
(closedPoint (AtPrime 𝒜 x.1.asHomogeneousIdeal.toIdeal))
|
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
x : ↑(Proj.restrict ⋯).toTopCat
⊢ ((PrimeSpectrum.comap (CommRingCat.Hom.hom (CommRingCat.ofHom (mapId 𝒜 ⋯)))).comp
(PrimeSpectrum.comap
(CommRingCat.Hom.hom ((«Proj».stalkIso' 𝒜 ↑x).toCommRingCatIso.inv ≫ (Proj.restrictStalkIso ⋯ x).inv))))
(closedPoint ↑((Proj.restrict ⋯).presheaf.stalk x)) =
(PrimeSpectrum.comap (mapId 𝒜 ⋯)) (closedPoint (AtPrime 𝒜 (↑x).asHomogeneousIdeal.toIdeal))
|
exact congr(PrimeSpectrum.comap _ $(@IsLocalRing.comap_closedPoint
(HomogeneousLocalization.AtPrime 𝒜 x.1.asHomogeneousIdeal.toIdeal) _ _
((Proj| pbo f).presheaf.stalk x) _ _ _ (isLocalHom_of_isIso _)))
|
no goals
|
0f648351cda17755
|
Nat.digits_add
|
Mathlib/Data/Nat/Digits.lean
|
theorem digits_add (b : ℕ) (h : 1 < b) (x y : ℕ) (hxb : x < b) (hxy : x ≠ 0 ∨ y ≠ 0) :
digits b (x + b * y) = x :: digits b y
|
case intro.succ.e_tail.e_a
x b : ℕ
h : 1 < b + 2
hxb : x < b + 2
n✝ : ℕ
hxy : x ≠ 0 ∨ n✝ + 1 ≠ 0
⊢ (x + (b + 2) * (n✝ + 1)) / (b + 2) = n✝ + 1
|
simp [add_mul_div_left, div_eq_of_lt hxb]
|
no goals
|
5707ca6647bd00ed
|
CategoryTheory.HomOrthogonal.equiv_of_iso
|
Mathlib/CategoryTheory/Preadditive/HomOrthogonal.lean
|
theorem equiv_of_iso (o : HomOrthogonal s) {α β : Type} [Finite α] [Finite β] {f : α → ι}
{g : β → ι} (i : (⨁ fun a => s (f a)) ≅ ⨁ fun b => s (g b)) :
∃ e : α ≃ β, ∀ a, g (e a) = f a
|
case h
C : Type u
inst✝⁵ : Category.{v, u} C
ι : Type u_1
s : ι → C
inst✝⁴ : Preadditive C
inst✝³ : HasFiniteBiproducts C
inst✝² : ∀ (i : ι), InvariantBasisNumber (End (s i))
o : HomOrthogonal s
α β : Type
inst✝¹ : Finite α
inst✝ : Finite β
f : α → ι
g : β → ι
i : (⨁ fun a => s (f a)) ≅ ⨁ fun b => s (g b)
c : ι
⊢ Nonempty (↑(f ⁻¹' {c}) ≃ ↑(g ⁻¹' {c}))
|
apply Cardinal.eq.1
|
case h
C : Type u
inst✝⁵ : Category.{v, u} C
ι : Type u_1
s : ι → C
inst✝⁴ : Preadditive C
inst✝³ : HasFiniteBiproducts C
inst✝² : ∀ (i : ι), InvariantBasisNumber (End (s i))
o : HomOrthogonal s
α β : Type
inst✝¹ : Finite α
inst✝ : Finite β
f : α → ι
g : β → ι
i : (⨁ fun a => s (f a)) ≅ ⨁ fun b => s (g b)
c : ι
⊢ Cardinal.mk ↑(f ⁻¹' {c}) = Cardinal.mk ↑(g ⁻¹' {c})
|
24935b447fa3d747
|
LinearIndependent.map_of_isPurelyInseparable_of_isSeparable
|
Mathlib/FieldTheory/PurelyInseparable/Tower.lean
|
theorem LinearIndependent.map_of_isPurelyInseparable_of_isSeparable [IsPurelyInseparable F E]
{ι : Type*} {v : ι → K} (hsep : ∀ i : ι, IsSeparable F (v i))
(h : LinearIndependent F v) : LinearIndependent E v
|
case intro
F : Type u
E : Type v
inst✝⁷ : Field F
inst✝⁶ : Field E
inst✝⁵ : Algebra F E
K : Type w
inst✝⁴ : Field K
inst✝³ : Algebra F K
inst✝² : Algebra E K
inst✝¹ : IsScalarTower F E K
inst✝ : IsPurelyInseparable F E
ι : Type u_1
v : ι → K
hsep : ∀ (i : ι), IsSeparable F (v i)
h : LinearIndependent F v
q : ℕ
h✝ : ExpChar F q
this : ExpChar K q
l : ι →₀ E
hl : (Finsupp.linearCombination E v) l = 0
i : ι
f : ι → ℕ
hf : ∀ (i : ι), l i ^ q ^ f i ∈ (algebraMap F E).range
⊢ l i = 0 i
|
let n := l.support.sup f
|
case intro
F : Type u
E : Type v
inst✝⁷ : Field F
inst✝⁶ : Field E
inst✝⁵ : Algebra F E
K : Type w
inst✝⁴ : Field K
inst✝³ : Algebra F K
inst✝² : Algebra E K
inst✝¹ : IsScalarTower F E K
inst✝ : IsPurelyInseparable F E
ι : Type u_1
v : ι → K
hsep : ∀ (i : ι), IsSeparable F (v i)
h : LinearIndependent F v
q : ℕ
h✝ : ExpChar F q
this : ExpChar K q
l : ι →₀ E
hl : (Finsupp.linearCombination E v) l = 0
i : ι
f : ι → ℕ
hf : ∀ (i : ι), l i ^ q ^ f i ∈ (algebraMap F E).range
n : ℕ := l.support.sup f
⊢ l i = 0 i
|
e47247a3e0a1480f
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.limplies_of_assignmentsInvariant
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
|
theorem limplies_of_assignmentsInvariant {n : Nat} (f : DefaultFormula n)
(f_AssignmentsInvariant : AssignmentsInvariant f) :
Limplies (PosFin n) f f.assignments
|
case pos
n : Nat
f : DefaultFormula n
p : PosFin n → Bool
pf : p ⊨ f
hsize : f.assignments.size = n
i : PosFin n
f_AssignmentsInvariant :
hasAssignment (decide (p i = false)) f.assignments[i.val] = true → Limplies (PosFin n) f (i, decide (p i = false))
h✝ : hasAssignment (decide (p i = false)) f.assignments[i.val] = true
⊢ hasAssignment (decide (p i = false)) f.assignments[i.val]! = false
|
next h =>
specialize f_AssignmentsInvariant h p pf
by_cases hpi : p i <;> simp [hpi, Entails.eval] at f_AssignmentsInvariant
|
no goals
|
324db374b482bd66
|
Polynomial.comp_eq_zero_iff
|
Mathlib/Algebra/Polynomial/Degree/Lemmas.lean
|
lemma comp_eq_zero_iff [Semiring R] [NoZeroDivisors R] {p q : R[X]} :
p.comp q = 0 ↔ p = 0 ∨ p.eval (q.coeff 0) = 0 ∧ q = C (q.coeff 0)
|
R : Type u
inst✝¹ : Semiring R
inst✝ : NoZeroDivisors R
p q : R[X]
h : p.comp q = 0
⊢ p = 0 ∨ eval (q.coeff 0) p = 0 ∧ q = C (q.coeff 0)
|
have key : p.natDegree = 0 ∨ q.natDegree = 0 := by
rw [← mul_eq_zero, ← natDegree_comp, h, natDegree_zero]
|
R : Type u
inst✝¹ : Semiring R
inst✝ : NoZeroDivisors R
p q : R[X]
h : p.comp q = 0
key : p.natDegree = 0 ∨ q.natDegree = 0
⊢ p = 0 ∨ eval (q.coeff 0) p = 0 ∧ q = C (q.coeff 0)
|
3c93f890bf6dfb1a
|
TopCat.GlueData.fromOpenSubsetsGlue_isOpenMap
|
Mathlib/Topology/Gluing.lean
|
theorem fromOpenSubsetsGlue_isOpenMap : IsOpenMap (fromOpenSubsetsGlue U)
|
α : Type u
inst✝ : TopologicalSpace α
J : Type u
U : J → Opens α
s : Set ↑(ofOpenSubsets U).glued
hs : IsOpen s
⊢ IsOpen (⇑(ConcreteCategory.hom (fromOpenSubsetsGlue U)) '' s)
|
rw [(ofOpenSubsets U).isOpen_iff] at hs
|
α : Type u
inst✝ : TopologicalSpace α
J : Type u
U : J → Opens α
s : Set ↑(ofOpenSubsets U).glued
hs : ∀ (i : (ofOpenSubsets U).J), IsOpen (⇑(ConcreteCategory.hom ((ofOpenSubsets U).ι i)) ⁻¹' s)
⊢ IsOpen (⇑(ConcreteCategory.hom (fromOpenSubsetsGlue U)) '' s)
|
65b5b2de14fddbed
|
StieltjesFunction.length_subadditive_Icc_Ioo
|
Mathlib/MeasureTheory/Measure/Stieltjes.lean
|
theorem length_subadditive_Icc_Ioo {a b : ℝ} {c d : ℕ → ℝ} (ss : Icc a b ⊆ ⋃ i, Ioo (c i) (d i)) :
ofReal (f b - f a) ≤ ∑' i, ofReal (f (d i) - f (c i))
|
f : StieltjesFunction
a b : ℝ
c d : ℕ → ℝ
ss : Icc a b ⊆ ⋃ i, Ioo (c i) (d i)
this :
∀ (s : Finset ℕ) (b : ℝ),
Icc a b ⊆ ⋃ i ∈ ↑s, Ioo (c i) (d i) → ofReal (↑f b - ↑f a) ≤ ∑ i ∈ s, ofReal (↑f (d i) - ↑f (c i))
⊢ ofReal (↑f b - ↑f a) ≤ ∑' (i : ℕ), ofReal (↑f (d i) - ↑f (c i))
|
rcases isCompact_Icc.elim_finite_subcover_image
(fun (i : ℕ) (_ : i ∈ univ) => @isOpen_Ioo _ _ _ _ (c i) (d i)) (by simpa using ss) with
⟨s, _, hf, hs⟩
|
case intro.intro.intro
f : StieltjesFunction
a b : ℝ
c d : ℕ → ℝ
ss : Icc a b ⊆ ⋃ i, Ioo (c i) (d i)
this :
∀ (s : Finset ℕ) (b : ℝ),
Icc a b ⊆ ⋃ i ∈ ↑s, Ioo (c i) (d i) → ofReal (↑f b - ↑f a) ≤ ∑ i ∈ s, ofReal (↑f (d i) - ↑f (c i))
s : Set ℕ
left✝ : s ⊆ univ
hf : s.Finite
hs : Icc a b ⊆ ⋃ i ∈ s, Ioo (c i) (d i)
⊢ ofReal (↑f b - ↑f a) ≤ ∑' (i : ℕ), ofReal (↑f (d i) - ↑f (c i))
|
16e01a7b132038e4
|
HomologicalComplex.restrictionMap_f'
|
Mathlib/Algebra/Homology/Embedding/Restriction.lean
|
@[reassoc]
lemma restrictionMap_f' {i : ι} {i' : ι'} (hi : e.f i = i') :
(restrictionMap φ e).f i = (K.restrictionXIso e hi).hom ≫
φ.f i' ≫ (L.restrictionXIso e hi).inv
|
ι : Type u_1
ι' : Type u_2
c : ComplexShape ι
c' : ComplexShape ι'
C : Type u_3
inst✝² : Category.{u_4, u_3} C
inst✝¹ : HasZeroMorphisms C
K L : HomologicalComplex C c'
φ : K ⟶ L
e : c.Embedding c'
inst✝ : e.IsRelIff
i : ι
⊢ (restrictionMap φ e).f i = (K.restrictionXIso e ⋯).hom ≫ φ.f (e.f i) ≫ (L.restrictionXIso e ⋯).inv
|
simp [restrictionXIso]
|
no goals
|
e78462e2308f811b
|
CategoryTheory.Presheaf.isLocallySurjective_of_whisker
|
Mathlib/CategoryTheory/Sites/PreservesLocallyBijective.lean
|
lemma isLocallySurjective_of_whisker (hH : CoverPreserving J K H)
[H.IsCoverDense K] [IsLocallySurjective J (whiskerLeft H.op f)] : IsLocallySurjective K f where
imageSieve_mem {X} a
|
case h
C : Type u_1
D : Type u_2
A : Type u_3
inst✝⁶ : Category.{u_6, u_1} C
inst✝⁵ : Category.{u_7, u_2} D
inst✝⁴ : Category.{u_8, u_3} A
J : GrothendieckTopology C
K : GrothendieckTopology D
H : C ⥤ D
F G : Dᵒᵖ ⥤ A
f : F ⟶ G
FA : A → A → Type u_4
CA : A → Type u_5
inst✝³ : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y)
inst✝² : ConcreteCategory A FA
hH : CoverPreserving J K H
inst✝¹ : H.IsCoverDense K
inst✝ : IsLocallySurjective J (whiskerLeft H.op f)
X : D
a : ToType (G.obj (Opposite.op X))
Y : D
g : Y ⟶ X
Z : C
lift : Y ⟶ H.obj Z
map : H.obj Z ⟶ X
fac : lift ≫ map = g
⊢ Sieve.pullback lift (Sieve.pullback map (imageSieve f a)) ∈ K Y
|
apply K.pullback_stable
|
case h.hS
C : Type u_1
D : Type u_2
A : Type u_3
inst✝⁶ : Category.{u_6, u_1} C
inst✝⁵ : Category.{u_7, u_2} D
inst✝⁴ : Category.{u_8, u_3} A
J : GrothendieckTopology C
K : GrothendieckTopology D
H : C ⥤ D
F G : Dᵒᵖ ⥤ A
f : F ⟶ G
FA : A → A → Type u_4
CA : A → Type u_5
inst✝³ : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y)
inst✝² : ConcreteCategory A FA
hH : CoverPreserving J K H
inst✝¹ : H.IsCoverDense K
inst✝ : IsLocallySurjective J (whiskerLeft H.op f)
X : D
a : ToType (G.obj (Opposite.op X))
Y : D
g : Y ⟶ X
Z : C
lift : Y ⟶ H.obj Z
map : H.obj Z ⟶ X
fac : lift ≫ map = g
⊢ Sieve.pullback map (imageSieve f a) ∈ K (H.obj Z)
|
6db4c45a55a27efe
|
IsCoprime.intCast
|
Mathlib/RingTheory/Coprime/Basic.lean
|
lemma IsCoprime.intCast {R : Type*} [CommRing R] {a b : ℤ} (h : IsCoprime a b) :
IsCoprime (a : R) (b : R)
|
case intro.intro
R : Type u_1
inst✝ : CommRing R
a b u v : ℤ
H : u * a + v * b = 1
⊢ IsCoprime ↑a ↑b
|
use u, v
|
case h
R : Type u_1
inst✝ : CommRing R
a b u v : ℤ
H : u * a + v * b = 1
⊢ ↑u * ↑a + ↑v * ↑b = 1
|
0b43dd1d4f9f208c
|
normEDS_three
|
Mathlib/NumberTheory/EllipticDivisibilitySequence.lean
|
@[simp]
lemma normEDS_three : normEDS b c d 3 = c
|
R : Type u
inst✝ : CommRing R
b c d : R
⊢ ¬Even 3
|
decide
|
no goals
|
1d48b070f930378a
|
CStarRing.norm_coe_unitary_mul
|
Mathlib/Analysis/CStarAlgebra/Basic.lean
|
theorem norm_coe_unitary_mul (U : unitary E) (A : E) : ‖(U : E) * A‖ = ‖A‖
|
E : Type u_2
inst✝² : NormedRing E
inst✝¹ : StarRing E
inst✝ : CStarRing E
U : ↥(unitary E)
A : E
a✝ : Nontrivial E
⊢ ‖↑U * A‖ = ‖A‖
|
refine le_antisymm ?_ ?_
|
case refine_1
E : Type u_2
inst✝² : NormedRing E
inst✝¹ : StarRing E
inst✝ : CStarRing E
U : ↥(unitary E)
A : E
a✝ : Nontrivial E
⊢ ‖↑U * A‖ ≤ ‖A‖
case refine_2
E : Type u_2
inst✝² : NormedRing E
inst✝¹ : StarRing E
inst✝ : CStarRing E
U : ↥(unitary E)
A : E
a✝ : Nontrivial E
⊢ ‖A‖ ≤ ‖↑U * A‖
|
f09abe48df8a1a8c
|
Filter.EventuallyEq.lineDerivWithin_eq
|
Mathlib/Analysis/Calculus/LineDeriv/Basic.lean
|
theorem Filter.EventuallyEq.lineDerivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
lineDerivWithin 𝕜 f₁ s x v = lineDerivWithin 𝕜 f s x v
|
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
F : Type u_2
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
E : Type u_3
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f f₁ : E → F
s : Set E
x v : E
hs : f₁ =ᶠ[𝓝[s] x] f
hx : f₁ x = f x
⊢ Continuous fun t => x + t • v
|
fun_prop
|
no goals
|
c1bb0926c6962436
|
DistribLattice.prime_ideal_of_disjoint_filter_ideal
|
Mathlib/Order/PrimeSeparator.lean
|
theorem prime_ideal_of_disjoint_filter_ideal (hFI : Disjoint (F : Set α) (I : Set α)) :
∃ J : Ideal α, (IsPrime J) ∧ I ≤ J ∧ Disjoint (F : Set α) J
|
case h
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
F : PFilter α
I : Ideal α
hFI : Disjoint ↑F ↑I
S : Set (Set α) := {J | IsIdeal J ∧ ↑I ≤ J ∧ Disjoint (↑F) J}
Jset : Set α
left✝ : ↑I ⊆ Jset
hmax : Maximal (fun x => x ∈ S) Jset
Jidl : IsIdeal Jset
IJ : ↑I ≤ Jset
J : Ideal α := Jidl.toIdeal
IJ' : I ≤ J
Jpr : J.IsProper
a₁ a₂ : α
ha₁ : a₁ ∉ J
ha₂ : a₂ ∉ J
J₁ : Ideal α := J ⊔ principal a₁
J₂ : Ideal α := J ⊔ principal a₂
a₁J₁ : a₁ ∈ J₁
a₂J₂ : a₂ ∈ J₂
J₁J : ↑J₁ ≠ Jset
J₂J : ↑J₂ ≠ Jset
J₁S : ↑J₁ ∉ S
J₂S : ↑J₂ ∉ S
J₁F : ¬Disjoint ↑F ↑J₁
J₂F : ¬Disjoint ↑F ↑J₂
c₁ : α
c₁F : c₁ ∈ ↑F
c₁J₁ : c₁ ∈ ↑J₁
c₂ : α
c₂F : c₂ ∈ ↑F
c₂J₂ : c₂ ∈ ↑J₂
b₁ : α
b₁J : b₁ ∈ J
cba₁ : c₁ ≤ b₁ ⊔ a₁
b₂ : α
b₂J : b₂ ∈ J
cba₂ : c₂ ≤ b₂ ⊔ a₂
b : α := b₁ ⊔ b₂
bJ : b ∈ J
ineq : c₁ ⊓ c₂ ≤ b ⊔ a₁ ⊓ a₂
ba₁a₂F : b ⊔ a₁ ⊓ a₂ ∈ F
ha₁a₂ : a₁ ⊓ a₂ ∈ J
⊢ ∃ x ∈ ↑F, x ∈ Jset
|
use b ⊔ (a₁ ⊓ a₂)
|
case h
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
F : PFilter α
I : Ideal α
hFI : Disjoint ↑F ↑I
S : Set (Set α) := {J | IsIdeal J ∧ ↑I ≤ J ∧ Disjoint (↑F) J}
Jset : Set α
left✝ : ↑I ⊆ Jset
hmax : Maximal (fun x => x ∈ S) Jset
Jidl : IsIdeal Jset
IJ : ↑I ≤ Jset
J : Ideal α := Jidl.toIdeal
IJ' : I ≤ J
Jpr : J.IsProper
a₁ a₂ : α
ha₁ : a₁ ∉ J
ha₂ : a₂ ∉ J
J₁ : Ideal α := J ⊔ principal a₁
J₂ : Ideal α := J ⊔ principal a₂
a₁J₁ : a₁ ∈ J₁
a₂J₂ : a₂ ∈ J₂
J₁J : ↑J₁ ≠ Jset
J₂J : ↑J₂ ≠ Jset
J₁S : ↑J₁ ∉ S
J₂S : ↑J₂ ∉ S
J₁F : ¬Disjoint ↑F ↑J₁
J₂F : ¬Disjoint ↑F ↑J₂
c₁ : α
c₁F : c₁ ∈ ↑F
c₁J₁ : c₁ ∈ ↑J₁
c₂ : α
c₂F : c₂ ∈ ↑F
c₂J₂ : c₂ ∈ ↑J₂
b₁ : α
b₁J : b₁ ∈ J
cba₁ : c₁ ≤ b₁ ⊔ a₁
b₂ : α
b₂J : b₂ ∈ J
cba₂ : c₂ ≤ b₂ ⊔ a₂
b : α := b₁ ⊔ b₂
bJ : b ∈ J
ineq : c₁ ⊓ c₂ ≤ b ⊔ a₁ ⊓ a₂
ba₁a₂F : b ⊔ a₁ ⊓ a₂ ∈ F
ha₁a₂ : a₁ ⊓ a₂ ∈ J
⊢ b ⊔ a₁ ⊓ a₂ ∈ ↑F ∧ b ⊔ a₁ ⊓ a₂ ∈ Jset
|
689f1ec2649ea4e9
|
TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_nonunital
|
Mathlib/RingTheory/TwoSidedIdeal/Operations.lean
|
lemma mem_span_iff_mem_addSubgroup_closure_nonunital {s : Set R} {z : R} :
z ∈ span s ↔ z ∈ AddSubgroup.closure (s ∪ s * univ ∪ univ * s ∪ univ * s * univ)
|
case refine_1.inl.inr.intro.intro.intro.intro
R : Type u_1
inst✝ : NonUnitalRing R
s : Set R
z x r y : R
hy : y ∈ s
⊢ x * (fun x1 x2 => x1 * x2) r y ∈ s ∪ s * univ ∪ univ * s ∪ univ * s * univ
|
exact .inl <| .inr <| ⟨x * r, mem_univ _, y, hy, mul_assoc ..⟩
|
no goals
|
a217d500043db5e0
|
Balanced.sub
|
Mathlib/Analysis/LocallyConvex/Basic.lean
|
theorem Balanced.sub (hs : Balanced 𝕜 s) (ht : Balanced 𝕜 t) : Balanced 𝕜 (s - t)
|
𝕜 : Type u_1
E : Type u_3
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Balanced 𝕜 s
ht : Balanced 𝕜 t
⊢ Balanced 𝕜 (s - t)
|
simp_rw [sub_eq_add_neg]
|
𝕜 : Type u_1
E : Type u_3
inst✝² : SeminormedRing 𝕜
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s t : Set E
hs : Balanced 𝕜 s
ht : Balanced 𝕜 t
⊢ Balanced 𝕜 (s + -t)
|
609a724600ad6e81
|
Ordinal.veblenWith_eq_veblenWith_iff
|
Mathlib/SetTheory/Ordinal/Veblen.lean
|
theorem veblenWith_eq_veblenWith_iff :
veblenWith f o₁ a = veblenWith f o₂ b ↔
o₁ = o₂ ∧ a = b ∨ o₁ < o₂ ∧ a = veblenWith f o₂ b ∨ o₂ < o₁ ∧ veblenWith f o₁ a = b
|
f : Ordinal.{u} → Ordinal.{u}
o₁ o₂ a b : Ordinal.{u}
hf : IsNormal f
⊢ (match cmp o₁ o₂ with
| Ordering.eq => cmp a b
| Ordering.lt => cmp a (veblenWith f o₂ b)
| Ordering.gt => cmp (veblenWith f o₁ a) b) =
Ordering.eq ↔
o₁ = o₂ ∧ a = b ∨ o₁ < o₂ ∧ a = veblenWith f o₂ b ∨ o₂ < o₁ ∧ veblenWith f o₁ a = b
|
aesop (add simp lt_asymm)
|
no goals
|
0d52f83a3c4edba7
|
Nat.add_le_mul
|
Mathlib/Data/Nat/Init.lean
|
protected lemma add_le_mul {a : ℕ} (ha : 2 ≤ a) : ∀ {b : ℕ} (_ : 2 ≤ b), a + b ≤ a * b
| 2, _ => by omega
| b + 3, _ => by have := Nat.add_le_mul ha (Nat.le_add_left _ b); rw [mul_succ]; omega
|
a : ℕ
ha : 2 ≤ a
x✝ : 2 ≤ 2
⊢ a + 2 ≤ a * 2
|
omega
|
no goals
|
13e04ab1add282ca
|
Set.disjoint_ordT5Nhd
|
Mathlib/Order/Interval/Set/OrdConnectedComponent.lean
|
theorem disjoint_ordT5Nhd : Disjoint (ordT5Nhd s t) (ordT5Nhd t s)
|
case intro.intro.inr.inr
α✝ : Type u_1
inst✝¹ : LinearOrder α✝
s✝ t✝ : Set α✝
α : Type u_1
inst✝ : LinearOrder α
s t : Set α
x a : α
has : a ∈ s
b : α
hbt : b ∈ t
hab : a ≤ b
ha : [[a, x]] ⊆ tᶜ
hb : [[b, x]] ⊆ sᶜ
hsub : [[a, b]] ⊆ (s.ordSeparatingSet t).ordConnectedSectionᶜ
hax : a ≤ x
hxb : x ≤ b
⊢ x ∈ ⊥
|
have h' : x ∈ ordSeparatingSet s t := ⟨mem_iUnion₂.2 ⟨a, has, ha⟩, mem_iUnion₂.2 ⟨b, hbt, hb⟩⟩
|
case intro.intro.inr.inr
α✝ : Type u_1
inst✝¹ : LinearOrder α✝
s✝ t✝ : Set α✝
α : Type u_1
inst✝ : LinearOrder α
s t : Set α
x a : α
has : a ∈ s
b : α
hbt : b ∈ t
hab : a ≤ b
ha : [[a, x]] ⊆ tᶜ
hb : [[b, x]] ⊆ sᶜ
hsub : [[a, b]] ⊆ (s.ordSeparatingSet t).ordConnectedSectionᶜ
hax : a ≤ x
hxb : x ≤ b
h' : x ∈ s.ordSeparatingSet t
⊢ x ∈ ⊥
|
cc7be6509b6c5432
|
Array.all_eq
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
|
theorem all_eq {xs : Array α} {p : α → Bool} : xs.all p = decide (∀ i, (_ : i < xs.size) → p xs[i])
|
case neg
α : Type u_1
xs : Array α
p : α → Bool
h : ¬xs.all p = true
⊢ xs.all p = decide (∀ (i : Nat) (x : i < xs.size), p xs[i] = true)
|
simp only [Bool.not_eq_true] at h
|
case neg
α : Type u_1
xs : Array α
p : α → Bool
h : xs.all p = false
⊢ xs.all p = decide (∀ (i : Nat) (x : i < xs.size), p xs[i] = true)
|
906b6db12be6dc9b
|
MeasureTheory.Measure.integrable_measure_prod_mk_left
|
Mathlib/MeasureTheory/Integral/Prod.lean
|
theorem integrable_measure_prod_mk_left {s : Set (α × β)} (hs : MeasurableSet s)
(h2s : (μ.prod ν) s ≠ ∞) : Integrable (fun x => (ν (Prod.mk x ⁻¹' s)).toReal) μ
|
case h
α : Type u_1
β : Type u_2
inst✝² : MeasurableSpace α
inst✝¹ : MeasurableSpace β
μ : Measure α
ν : Measure β
inst✝ : SFinite ν
s : Set (α × β)
hs : MeasurableSet s
h2s : (μ.prod ν) s ≠ ⊤
x : α
hx : ν (Prod.mk x ⁻¹' s) < ⊤
⊢ ENNReal.ofReal (ν (Prod.mk x ⁻¹' s)).toReal = ν (Prod.mk x ⁻¹' s)
|
rw [lt_top_iff_ne_top] at hx
|
case h
α : Type u_1
β : Type u_2
inst✝² : MeasurableSpace α
inst✝¹ : MeasurableSpace β
μ : Measure α
ν : Measure β
inst✝ : SFinite ν
s : Set (α × β)
hs : MeasurableSet s
h2s : (μ.prod ν) s ≠ ⊤
x : α
hx : ν (Prod.mk x ⁻¹' s) ≠ ⊤
⊢ ENNReal.ofReal (ν (Prod.mk x ⁻¹' s)).toReal = ν (Prod.mk x ⁻¹' s)
|
cda3d9546eac8d79
|
AddGroupWithOne.ext
|
Mathlib/Algebra/Ring/Ext.lean
|
theorem AddGroupWithOne.ext ⦃inst₁ inst₂ : AddGroupWithOne R⦄
(h_add : local_hAdd[R, inst₁] = local_hAdd[R, inst₂])
(h_one : (letI := inst₁; One.one : R) = (letI := inst₂; One.one)) :
inst₁ = inst₂
|
case h_mul
R : Type u
inst₁ inst₂ : AddGroupWithOne R
h_add : HAdd.hAdd = HAdd.hAdd
h_one : One.one = One.one
this✝ : toAddMonoidWithOne = toAddMonoidWithOne
this : AddMonoidWithOne.toNatCast = AddMonoidWithOne.toNatCast
⊢ Add.add = Add.add
|
exact h_add
|
no goals
|
3b41a61ef664adfb
|
MeasureTheory.Measure.singularPart_eq_zero
|
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
|
lemma singularPart_eq_zero (μ ν : Measure α) [μ.HaveLebesgueDecomposition ν] :
μ.singularPart ν = 0 ↔ μ ≪ ν
|
α : Type u_1
m : MeasurableSpace α
μ ν : Measure α
inst✝ : μ.HaveLebesgueDecomposition ν
h_dec : μ = ν.withDensity (μ.rnDeriv ν)
h : μ.singularPart ν = 0
⊢ ν.withDensity (μ.rnDeriv ν) ≪ ν
|
exact withDensity_absolutelyContinuous ν _
|
no goals
|
4a91c07e6c9d50fd
|
DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply
|
Mathlib/Analysis/InnerProductSpace/PiL2.lean
|
theorem DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply [DecidableEq ι]
{V : ι → Submodule 𝕜 E} (hV : DirectSum.IsInternal V)
(hV' : OrthogonalFamily 𝕜 (fun i => V i) fun i => (V i).subtypeₗᵢ) (w : PiLp 2 fun i => V i) :
(hV.isometryL2OfOrthogonalFamily hV').symm w = ∑ i, (w i : E)
|
ι : Type u_1
𝕜 : Type u_3
inst✝⁴ : RCLike 𝕜
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : Fintype ι
inst✝ : DecidableEq ι
V : ι → Submodule 𝕜 E
hV : IsInternal V
hV' : OrthogonalFamily 𝕜 (fun i => ↥(V i)) fun i => (V i).subtypeₗᵢ
w : PiLp 2 fun i => ↥(V i)
e₁ : (⨁ (i : ι), ↥(V i)) ≃ₗ[𝕜] (i : ι) → ↥(V i) := linearEquivFunOnFintype 𝕜 ι fun i => ↥(V i)
e₂ : (⨁ (i : ι), ↥(V i)) ≃ₗ[𝕜] E := LinearEquiv.ofBijective (coeLinearMap V) hV
this : ∀ (v : ⨁ (i : ι), ↥(V i)), e₂ v = ∑ i : ι, ↑(e₁ v i)
⊢ (hV.isometryL2OfOrthogonalFamily hV').symm w = ∑ i : ι, ↑(w i)
|
exact this (e₁.symm w)
|
no goals
|
8f71fc0c58ddeeed
|
List.drop_eq_getElem?_toList_append
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
|
theorem drop_eq_getElem?_toList_append {l : List α} {n : Nat} :
l.drop n = l[n]?.toList ++ l.drop (n + 1)
|
case cons
α : Type u_1
hd : α
tl : List α
ih : ∀ {n : Nat}, drop n tl = tl[n]?.toList ++ drop (n + 1) tl
n : Nat
⊢ drop n (hd :: tl) = (hd :: tl)[n]?.toList ++ drop (n + 1) (hd :: tl)
|
cases n
|
case cons.zero
α : Type u_1
hd : α
tl : List α
ih : ∀ {n : Nat}, drop n tl = tl[n]?.toList ++ drop (n + 1) tl
⊢ drop 0 (hd :: tl) = (hd :: tl)[0]?.toList ++ drop (0 + 1) (hd :: tl)
case cons.succ
α : Type u_1
hd : α
tl : List α
ih : ∀ {n : Nat}, drop n tl = tl[n]?.toList ++ drop (n + 1) tl
n✝ : Nat
⊢ drop (n✝ + 1) (hd :: tl) = (hd :: tl)[n✝ + 1]?.toList ++ drop (n✝ + 1 + 1) (hd :: tl)
|
8b64a3b2a111c7eb
|
CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_uniq
|
Mathlib/CategoryTheory/Localization/Prod.lean
|
lemma prod_uniq (F₁ F₂ : (W₁.Localization × W₂.Localization ⥤ E))
(h : (W₁.Q.prod W₂.Q) ⋙ F₁ = (W₁.Q.prod W₂.Q) ⋙ F₂) :
F₁ = F₂
|
case h.h
C₁ : Type u₁
C₂ : Type u₂
inst✝² : Category.{v₁, u₁} C₁
inst✝¹ : Category.{v₂, u₂} C₂
W₁ : MorphismProperty C₁
W₂ : MorphismProperty C₂
E : Type u₅
inst✝ : Category.{v₅, u₅} E
F₁ F₂ : W₁.Localization × W₂.Localization ⥤ E
h : W₁.Q.prod W₂.Q ⋙ F₁ = W₁.Q.prod W₂.Q ⋙ F₂
⊢ W₁.Q ⋙ curry.obj F₁ = W₁.Q ⋙ curry.obj F₂
|
apply Functor.flip_injective
|
case h.h.h
C₁ : Type u₁
C₂ : Type u₂
inst✝² : Category.{v₁, u₁} C₁
inst✝¹ : Category.{v₂, u₂} C₂
W₁ : MorphismProperty C₁
W₂ : MorphismProperty C₂
E : Type u₅
inst✝ : Category.{v₅, u₅} E
F₁ F₂ : W₁.Localization × W₂.Localization ⥤ E
h : W₁.Q.prod W₂.Q ⋙ F₁ = W₁.Q.prod W₂.Q ⋙ F₂
⊢ (W₁.Q ⋙ curry.obj F₁).flip = (W₁.Q ⋙ curry.obj F₂).flip
|
77a9b99162fee2d1
|
AnalyticOnNhd.eqOn_zero_of_preconnected_of_eventuallyEq_zero
|
Mathlib/Analysis/Analytic/Uniqueness.lean
|
theorem eqOn_zero_of_preconnected_of_eventuallyEq_zero {f : E → F} {U : Set E}
(hf : AnalyticOnNhd 𝕜 f U) (hU : IsPreconnected U)
{z₀ : E} (h₀ : z₀ ∈ U) (hfz₀ : f =ᶠ[𝓝 z₀] 0) :
EqOn f 0 U
|
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOnNhd 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this : AnalyticOnNhd 𝕜 (⇑e ∘ f) U
A : EqOn (⇑e ∘ f) 0 U
z : E
hz : z ∈ U
⊢ f z = 0 z
|
have : e (f z) = e 0 := by simpa only using A hz
|
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
U : Set E
hf : AnalyticOnNhd 𝕜 f U
hU : IsPreconnected U
z₀ : E
h₀ : z₀ ∈ U
hfz₀ : f =ᶠ[𝓝 z₀] 0
F' : Type u_3 := UniformSpace.Completion F
e : F →L[𝕜] F' := UniformSpace.Completion.toComplL
this✝ : AnalyticOnNhd 𝕜 (⇑e ∘ f) U
A : EqOn (⇑e ∘ f) 0 U
z : E
hz : z ∈ U
this : e (f z) = e 0
⊢ f z = 0 z
|
fc36c195452effd3
|
IsLocallyConstant.range_finite
|
Mathlib/Topology/LocallyConstant/Basic.lean
|
theorem range_finite [CompactSpace X] {f : X → Y} (hf : IsLocallyConstant f) :
(Set.range f).Finite
|
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : CompactSpace X
f : X → Y
hf : IsLocallyConstant f
this✝ : TopologicalSpace Y := ⊥
this : DiscreteTopology Y
⊢ (range f).Finite
|
exact (isCompact_range hf.continuous).finite_of_discrete
|
no goals
|
a1204405fd1910fe
|
CategoryTheory.MorphismProperty.IsInvertedBy.iff_map_le_isomorphisms
|
Mathlib/CategoryTheory/MorphismProperty/IsInvertedBy.lean
|
lemma IsInvertedBy.iff_map_le_isomorphisms (W : MorphismProperty C) (F : C ⥤ D) :
W.IsInvertedBy F ↔ W.map F ≤ isomorphisms D
|
C : Type u
inst✝¹ : Category.{v, u} C
D : Type u'
inst✝ : Category.{v', u'} D
W : MorphismProperty C
F : C ⥤ D
⊢ W.IsInvertedBy F ↔ W.map F ≤ isomorphisms D
|
rw [iff_le_inverseImage_isomorphisms, map_le_iff]
|
no goals
|
33fdfd2662ec8270
|
CochainComplex.HomComplex.Cochain.rightShift_smul
|
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
|
@[simp]
lemma rightShift_smul (a n' : ℤ) (hn' : n' + a = n) (x : R) :
(x • γ).rightShift a n' hn' = x • γ.rightShift a n' hn'
|
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : Preadditive C
R : Type u_1
inst✝¹ : Ring R
inst✝ : Linear R C
K L : CochainComplex C ℤ
n : ℤ
γ : Cochain K L n
a n' : ℤ
hn' : n' + a = n
x : R
⊢ (x • γ).rightShift a n' hn' = x • γ.rightShift a n' hn'
|
ext p q hpq
|
case h
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : Preadditive C
R : Type u_1
inst✝¹ : Ring R
inst✝ : Linear R C
K L : CochainComplex C ℤ
n : ℤ
γ : Cochain K L n
a n' : ℤ
hn' : n' + a = n
x : R
p q : ℤ
hpq : p + n' = q
⊢ ((x • γ).rightShift a n' hn').v p q hpq = (x • γ.rightShift a n' hn').v p q hpq
|
ee8e7d1e3839df76
|
geom_sum_eq_zero_iff_neg_one
|
Mathlib/Algebra/GeomSum.lean
|
theorem geom_sum_eq_zero_iff_neg_one [LinearOrderedRing α] (hn : n ≠ 0) :
∑ i ∈ range n, x ^ i = 0 ↔ x = -1 ∧ Even n
|
α : Type u
n : ℕ
x : α
inst✝ : LinearOrderedRing α
hn : n ≠ 0
h : x = -1 → ¬Even n
hx : x = -1 ∨ x ≠ -1
⊢ ∑ i ∈ range n, x ^ i ≠ 0
|
rcases hx with hx | hx
|
case inl
α : Type u
n : ℕ
x : α
inst✝ : LinearOrderedRing α
hn : n ≠ 0
h : x = -1 → ¬Even n
hx : x = -1
⊢ ∑ i ∈ range n, x ^ i ≠ 0
case inr
α : Type u
n : ℕ
x : α
inst✝ : LinearOrderedRing α
hn : n ≠ 0
h : x = -1 → ¬Even n
hx : x ≠ -1
⊢ ∑ i ∈ range n, x ^ i ≠ 0
|
b77f74310391edb9
|
List.sublist_flatten_iff
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
|
theorem sublist_flatten_iff {L : List (List α)} {l} :
l <+ L.flatten ↔
∃ L' : List (List α), l = L'.flatten ∧ ∀ i (_ : i < L'.length), L'[i] <+ L[i]?.getD []
|
case cons.mp
α : Type u_1
l' : List α
L : List (List α)
ih : ∀ {l : List α}, l <+ L.flatten ↔ ∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []
l : List α
⊢ (∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁ <+ l' ∧ ∃ L', l₂ = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []) →
∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ (l' :: L)[i]?.getD []
|
rintro ⟨l₁, l₂, rfl, s, L', rfl, h⟩
|
case cons.mp.intro.intro.intro.intro.intro.intro
α : Type u_1
l' : List α
L : List (List α)
ih : ∀ {l : List α}, l <+ L.flatten ↔ ∃ L', l = L'.flatten ∧ ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []
l₁ : List α
s : l₁ <+ l'
L' : List (List α)
h : ∀ (i : Nat) (x : i < L'.length), L'[i] <+ L[i]?.getD []
⊢ ∃ L'_1, l₁ ++ L'.flatten = L'_1.flatten ∧ ∀ (i : Nat) (x : i < L'_1.length), L'_1[i] <+ (l' :: L)[i]?.getD []
|
2d054bb50b16d9ba
|
TopCat.GlueData.ι_eq_iff_rel
|
Mathlib/Topology/Gluing.lean
|
theorem ι_eq_iff_rel (i j : D.J) (x : D.U i) (y : D.U j) :
𝖣.ι i x = 𝖣.ι j y ↔ D.Rel ⟨i, x⟩ ⟨j, y⟩
|
case mpr.intro.intro
D : GlueData
i j : D.J
x : ↑(D.U i)
y : ↑(D.U j)
z : ↑(D.V (⟨i, x⟩.fst, ⟨j, y⟩.fst))
e₁ : (ConcreteCategory.hom (D.f i j)) z = (ConcreteCategory.hom (D.f i j)) z
e₂ :
(ConcreteCategory.hom (D.f j i)) ((ConcreteCategory.hom (D.t i j)) z) =
(ConcreteCategory.hom (D.f j i)) ((ConcreteCategory.hom (D.t i j)) z)
⊢ (ConcreteCategory.hom (D.ι i)) ((ConcreteCategory.hom (D.f i j)) z) =
(ConcreteCategory.hom (D.ι j)) ((ConcreteCategory.hom (D.f j i)) ((ConcreteCategory.hom (D.t i j)) z))
|
rw [D.glue_condition_apply]
|
no goals
|
e0a110dda282edcf
|
Int.even_iff_not_odd
|
Mathlib/Algebra/Ring/Int/Parity.lean
|
@[deprecated not_odd_iff_even (since := "2024-08-21")]
lemma even_iff_not_odd : Even n ↔ ¬Odd n
|
n : ℤ
⊢ Even n ↔ ¬Odd n
|
rw [not_odd_iff, even_iff]
|
no goals
|
659139c98549e4e5
|
frontier_le_subset_eq
|
Mathlib/Topology/Order/OrderClosed.lean
|
theorem frontier_le_subset_eq (hf : Continuous f) (hg : Continuous g) :
frontier { b | f b ≤ g b } ⊆ { b | f b = g b }
|
case intro
α : Type u
β : Type v
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderClosedTopology α
f g : β → α
inst✝ : TopologicalSpace β
hf : Continuous f
hg : Continuous g
b : β
hb₁ : b ∈ {b | f b ≤ g b}
hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ
⊢ b ∈ {b | f b = g b}
|
refine le_antisymm hb₁ (closure_lt_subset_le hg hf ?_)
|
case intro
α : Type u
β : Type v
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderClosedTopology α
f g : β → α
inst✝ : TopologicalSpace β
hf : Continuous f
hg : Continuous g
b : β
hb₁ : b ∈ {b | f b ≤ g b}
hb₂ : b ∈ closure {b | f b ≤ g b}ᶜ
⊢ b ∈ closure {b | g b < f b}
|
0ce32949b8808351
|
Order.height_eq_krullDim_Iic
|
Mathlib/Order/KrullDimension.lean
|
lemma height_eq_krullDim_Iic (x : α) : (height x : ℕ∞) = krullDim (Set.Iic x)
|
case a.h.h
α : Type u_1
inst✝ : Preorder α
x : α
p : LTSeries ↑(Set.Iic x)
⊢ RelSeries.last p ≤ ⊤ → ↑p.length ≤ ⨆ p, ⨆ (_ : RelSeries.last p ≤ x), ↑p.length
|
intro _
|
case a.h.h
α : Type u_1
inst✝ : Preorder α
x : α
p : LTSeries ↑(Set.Iic x)
i✝ : RelSeries.last p ≤ ⊤
⊢ ↑p.length ≤ ⨆ p, ⨆ (_ : RelSeries.last p ≤ x), ↑p.length
|
b4cd0b25c1815825
|
isApproximateSubgroup_one
|
Mathlib/Combinatorics/Additive/ApproximateSubgroup.lean
|
/-- A `1`-approximate subgroup is the same thing as a subgroup. -/
@[to_additive (attr := simp)
"A `1`-approximate subgroup is the same thing as a subgroup."]
lemma isApproximateSubgroup_one {A : Set G} :
IsApproximateSubgroup 1 (A : Set G) ↔ ∃ H : Subgroup G, H = A where
mp hA
|
case intro
G : Type u_1
inst✝ : Group G
A : Set G
hA : IsApproximateSubgroup 1 A
x : G
hx : A * A ⊆ x • A
hx' : x⁻¹ • (A * A) ⊆ A
hx_inv : x⁻¹ ∈ A
⊢ A * A ⊆ A
|
have hx_sq : x * x ∈ A := by
rw [← hA.inv_eq_self]
simpa using hx' (smul_mem_smul_set (mul_mem_mul hx_inv hA.one_mem))
|
case intro
G : Type u_1
inst✝ : Group G
A : Set G
hA : IsApproximateSubgroup 1 A
x : G
hx : A * A ⊆ x • A
hx' : x⁻¹ • (A * A) ⊆ A
hx_inv : x⁻¹ ∈ A
hx_sq : x * x ∈ A
⊢ A * A ⊆ A
|
1d755e438e264b32
|
Matroid.IsStrictRestriction.ssubset
|
Mathlib/Data/Matroid/Restrict.lean
|
theorem IsStrictRestriction.ssubset (h : N <r M) : N.E ⊂ M.E
|
case intro.intro
α : Type u_1
M : Matroid α
R : Set α
h : M ↾ R <r M
⊢ (M ↾ R).E ⊂ M.E
|
refine h.isRestriction.subset.ssubset_of_ne (fun h' ↦ h.2 ⟨R, Subset.rfl, ?_⟩)
|
case intro.intro
α : Type u_1
M : Matroid α
R : Set α
h : M ↾ R <r M
h' : (M ↾ R).E = M.E
⊢ M = M ↾ R ↾ R
|
e50c5ed5ba55dc85
|
LieAlgebra.InvariantForm.atomistic
|
Mathlib/Algebra/Lie/InvariantForm.lean
|
lemma atomistic : ∀ I : LieIdeal K L, sSup {J : LieIdeal K L | IsAtom J ∧ J ≤ I} = I
|
case hst
K : Type u_1
L : Type u_2
inst✝³ : Field K
inst✝² : LieRing L
inst✝¹ : LieAlgebra K L
inst✝ : Module.Finite K L
Φ : LinearMap.BilinForm K L
hΦ_nondeg : Φ.Nondegenerate
hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ
hΦ_refl : Φ.IsRefl
hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥I
I : LieIdeal K L
a✝ :
∀ (y : LieIdeal K L),
(invImage (fun x => finrank K ↥x) instWellFoundedRelationOfSizeOf).1 y I → sSup {J | IsAtom J ∧ J ≤ y} = y
hI : ¬I = ⊥
J : LieIdeal K L
h✝ : IsAtom J ∧ J ≤ I
hJ : IsAtom J
hJI : J ≤ I
J' : LieSubmodule K L L := orthogonal Φ hΦ_inv J
this : I ≤ J ⊔ J' ⊓ I
hIJ' : I ≤ J'
⊢ J = ⊥
|
rw [eq_bot_iff]
|
case hst
K : Type u_1
L : Type u_2
inst✝³ : Field K
inst✝² : LieRing L
inst✝¹ : LieAlgebra K L
inst✝ : Module.Finite K L
Φ : LinearMap.BilinForm K L
hΦ_nondeg : Φ.Nondegenerate
hΦ_inv : LinearMap.BilinForm.lieInvariant L Φ
hΦ_refl : Φ.IsRefl
hL : ∀ (I : LieIdeal K L), IsAtom I → ¬IsLieAbelian ↥I
I : LieIdeal K L
a✝ :
∀ (y : LieIdeal K L),
(invImage (fun x => finrank K ↥x) instWellFoundedRelationOfSizeOf).1 y I → sSup {J | IsAtom J ∧ J ≤ y} = y
hI : ¬I = ⊥
J : LieIdeal K L
h✝ : IsAtom J ∧ J ≤ I
hJ : IsAtom J
hJI : J ≤ I
J' : LieSubmodule K L L := orthogonal Φ hΦ_inv J
this : I ≤ J ⊔ J' ⊓ I
hIJ' : I ≤ J'
⊢ J ≤ ⊥
|
9856eccb3c27c11b
|
CategoryTheory.MorphismProperty.isStableUnderCobaseChange_iff_pushouts_le
|
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
|
lemma isStableUnderCobaseChange_iff_pushouts_le :
P.IsStableUnderCobaseChange ↔ P.pushouts ≤ P
|
case mpr.of_isPushout
C : Type u
inst✝ : Category.{v, u} C
P : MorphismProperty C
h : P.pushouts ≤ P
A✝ A'✝ B✝ B'✝ : C
f✝ : A✝ ⟶ A'✝
g✝ : A✝ ⟶ B✝
f'✝ : B✝ ⟶ B'✝
g'✝ : A'✝ ⟶ B'✝
h₁ : IsPushout g✝ f✝ f'✝ g'✝
h₂ : P f✝
⊢ P f'✝
|
exact h _ ⟨_, _, _, _, _, h₂, h₁⟩
|
no goals
|
d27fb1816868ef70
|
StrictConvex.add_smul_sub_mem
|
Mathlib/Analysis/Convex/Strict.lean
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
|
case a
𝕜 : Type u_1
E : Type u_3
inst✝³ : OrderedRing 𝕜
inst✝² : TopologicalSpace E
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ openSegment 𝕜 x y
|
rw [openSegment_eq_image']
|
case a
𝕜 : Type u_1
E : Type u_3
inst✝³ : OrderedRing 𝕜
inst✝² : TopologicalSpace E
inst✝¹ : AddCommGroup E
inst✝ : Module 𝕜 E
s : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Ioo 0 1
|
4d2f0ab6105dbf60
|
MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv
|
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
|
theorem lintegral_pow_le_pow_lintegral_fderiv {u : E → F}
(hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u)
{p : ℝ} (hp : Real.IsConjExponent (finrank ℝ E) p) :
∫⁻ x, ‖u x‖ₑ ^ p ∂μ ≤
lintegralPowLePowLIntegralFDerivConst μ p * (∫⁻ x, ‖fderiv ℝ u x‖ₑ ∂μ) ^ p
|
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace ℝ F
E : Type u_4
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : μ.IsAddHaarMeasure
u : E → F
hu : ContDiff ℝ 1 u
h2u : HasCompactSupport u
p : ℝ
hp✝ : (↑(finrank ℝ E)).IsConjExponent p
C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p
ι : Type := Fin (finrank ℝ E)
hιcard : #ι = finrank ℝ E
this✝¹ : finrank ℝ E = finrank ℝ (ι → ℝ)
e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝¹
this✝ : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure
hp : (↑#ι).IsConjExponent p
h0p : 0 ≤ p
c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume)
hc : 0 < c
h2c : μ = c • Measure.map (⇑e.symm) volume
h3c : ↑c ≠ 0
h0C : C = c * ‖↑e.symm‖₊ ^ p * (c ^ p)⁻¹
hC : C * c ^ p = c * ‖↑e.symm‖₊ ^ p
v : (ι → ℝ) → F := u ∘ ⇑e.symm
hv : ContDiff ℝ 1 v
h2v : HasCompactSupport v
this :
↑c * ∫⁻ (x : E), ‖u x‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤
↑C * ↑(c ^ p) * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p
⊢ ↑c * ∫⁻ (a : E), ‖u a‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤
↑C * (↑c * ∫⁻ (a : E), ‖fderiv ℝ u a‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p
|
rw [ENNReal.mul_rpow_of_nonneg _ _ h0p, ← mul_assoc, ← ENNReal.coe_rpow_of_ne_zero hc.ne']
|
F : Type u_3
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedSpace ℝ F
E : Type u_4
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : μ.IsAddHaarMeasure
u : E → F
hu : ContDiff ℝ 1 u
h2u : HasCompactSupport u
p : ℝ
hp✝ : (↑(finrank ℝ E)).IsConjExponent p
C : ℝ≥0 := lintegralPowLePowLIntegralFDerivConst μ p
ι : Type := Fin (finrank ℝ E)
hιcard : #ι = finrank ℝ E
this✝¹ : finrank ℝ E = finrank ℝ (ι → ℝ)
e : E ≃L[ℝ] ι → ℝ := ContinuousLinearEquiv.ofFinrankEq this✝¹
this✝ : (Measure.map (⇑e.symm) volume).IsAddHaarMeasure
hp : (↑#ι).IsConjExponent p
h0p : 0 ≤ p
c : ℝ≥0 := μ.addHaarScalarFactor (Measure.map (⇑e.symm) volume)
hc : 0 < c
h2c : μ = c • Measure.map (⇑e.symm) volume
h3c : ↑c ≠ 0
h0C : C = c * ‖↑e.symm‖₊ ^ p * (c ^ p)⁻¹
hC : C * c ^ p = c * ‖↑e.symm‖₊ ^ p
v : (ι → ℝ) → F := u ∘ ⇑e.symm
hv : ContDiff ℝ 1 v
h2v : HasCompactSupport v
this :
↑c * ∫⁻ (x : E), ‖u x‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤
↑C * ↑(c ^ p) * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p
⊢ ↑c * ∫⁻ (a : E), ‖u a‖ₑ ^ p ∂Measure.map (⇑e.symm) volume ≤
↑C * ↑(c ^ p) * (∫⁻ (a : E), ‖fderiv ℝ u a‖ₑ ∂Measure.map (⇑e.symm) volume) ^ p
|
7e7c86c82b1c72d8
|
SimpleGraph.regularityReduced_edges_card_aux
|
Mathlib/Combinatorics/SimpleGraph/Triangle/Removal.lean
|
lemma regularityReduced_edges_card_aux [Nonempty α] (hε : 0 < ε) (hP : P.IsEquipartition)
(hPε : P.IsUniform G (ε/8)) (hP' : 4 / ε ≤ #P.parts) :
2 * (#G.edgeFinset - #(G.regularityReduced P (ε/8) (ε/4)).edgeFinset : ℝ)
< 2 * ε * (card α ^ 2 : ℕ)
|
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Fintype α
G : SimpleGraph α
inst✝¹ : DecidableRel G.Adj
P : Finpartition univ
ε : ℝ
inst✝ : Nonempty α
hε : 0 < ε
hP : P.IsEquipartition
hPε : P.IsUniform G (ε / 8)
hP' : 4 / ε ≤ ↑(#P.parts)
A : Finset (α × α) :=
(P.nonUniforms G (ε / 8)).biUnion fun x =>
match x with
| (U, V) => U ×ˢ V
B : Finset (α × α) := P.parts.biUnion offDiag
C : Finset (α × α) :=
(P.sparsePairs G (ε / 4)).biUnion fun x =>
match x with
| (U, V) => G.interedges U V
⊢ 4 * (ε / 8) * ↑(Fintype.card α) ^ 2 + ↑(#B) + ↑(#C) ≤
?m.273627 + ε / 2 * ↑(Fintype.card α) ^ 2 + 4 * (ε / 4) * ↑(Fintype.card α) ^ 2
|
gcongr
|
case h₁.bc
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Fintype α
G : SimpleGraph α
inst✝¹ : DecidableRel G.Adj
P : Finpartition univ
ε : ℝ
inst✝ : Nonempty α
hε : 0 < ε
hP : P.IsEquipartition
hPε : P.IsUniform G (ε / 8)
hP' : 4 / ε ≤ ↑(#P.parts)
A : Finset (α × α) :=
(P.nonUniforms G (ε / 8)).biUnion fun x =>
match x with
| (U, V) => U ×ˢ V
B : Finset (α × α) := P.parts.biUnion offDiag
C : Finset (α × α) :=
(P.sparsePairs G (ε / 4)).biUnion fun x =>
match x with
| (U, V) => G.interedges U V
⊢ ↑(#B) ≤ ε / 2 * ↑(Fintype.card α) ^ 2
case h₂
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Fintype α
G : SimpleGraph α
inst✝¹ : DecidableRel G.Adj
P : Finpartition univ
ε : ℝ
inst✝ : Nonempty α
hε : 0 < ε
hP : P.IsEquipartition
hPε : P.IsUniform G (ε / 8)
hP' : 4 / ε ≤ ↑(#P.parts)
A : Finset (α × α) :=
(P.nonUniforms G (ε / 8)).biUnion fun x =>
match x with
| (U, V) => U ×ˢ V
B : Finset (α × α) := P.parts.biUnion offDiag
C : Finset (α × α) :=
(P.sparsePairs G (ε / 4)).biUnion fun x =>
match x with
| (U, V) => G.interedges U V
⊢ ↑(#C) ≤ 4 * (ε / 4) * ↑(Fintype.card α) ^ 2
|
945c877c5af388f8
|
List.prod_int_mod
|
Mathlib/Algebra/BigOperators/Group/List/Basic.lean
|
lemma prod_int_mod (l : List ℤ) (n : ℤ) : l.prod % n = (l.map (· % n)).prod % n
|
l : List ℤ
n : ℤ
⊢ l.prod % n = (map (fun x => x % n) l).prod % n
|
induction l <;> simp [Int.mul_emod, *]
|
no goals
|
607a556d2d79ada6
|
disjoint_ball_ball_iff
|
Mathlib/Analysis/NormedSpace/Pointwise.lean
|
theorem disjoint_ball_ball_iff (hδ : 0 < δ) (hε : 0 < ε) :
Disjoint (ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y
|
case intro.intro
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x y : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : Disjoint (ball x δ) (ball y ε)
hxy : dist x y < ε + δ
z : E
hxz : dist x z < δ
hzy : dist z y < ε
⊢ False
|
rw [dist_comm] at hxz
|
case intro.intro
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x y : E
δ ε : ℝ
hδ : 0 < δ
hε : 0 < ε
h : Disjoint (ball x δ) (ball y ε)
hxy : dist x y < ε + δ
z : E
hxz : dist z x < δ
hzy : dist z y < ε
⊢ False
|
f423a604f95f49b3
|
Basis.coe_sumCoords_of_fintype
|
Mathlib/LinearAlgebra/Basis/Defs.lean
|
theorem coe_sumCoords_of_fintype [Fintype ι] : (b.sumCoords : M → R) = ∑ i, b.coord i
|
ι : Type u_1
R : Type u_3
M : Type u_6
inst✝³ : Semiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
b : Basis ι R M
inst✝ : Fintype ι
⊢ ⇑b.sumCoords = ⇑(∑ i : ι, b.coord i)
|
ext m
|
case h
ι : Type u_1
R : Type u_3
M : Type u_6
inst✝³ : Semiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
b : Basis ι R M
inst✝ : Fintype ι
m : M
⊢ b.sumCoords m = (∑ i : ι, b.coord i) m
|
3d97f1b91390e088
|
Std.Sat.CNF.Clause.eval_congr
|
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Basic.lean
|
theorem eval_congr (a1 a2 : α → Bool) (c : Clause α) (hw : ∀ i, Mem i c → a1 i = a2 i) :
eval a1 c = eval a2 c
|
α : Type u_1
a1 a2 : α → Bool
i : Literal α
c : List (Literal α)
ih : (∀ (i : α), Mem i c → a1 i = a2 i) → eval a1 c = eval a2 c
hw : ∀ (i_1 : α), Mem i_1 (i :: c) → a1 i_1 = a2 i_1
⊢ ∀ (i : α), Mem i c → a1 i = a2 i
|
intro j h
|
α : Type u_1
a1 a2 : α → Bool
i : Literal α
c : List (Literal α)
ih : (∀ (i : α), Mem i c → a1 i = a2 i) → eval a1 c = eval a2 c
hw : ∀ (i_1 : α), Mem i_1 (i :: c) → a1 i_1 = a2 i_1
j : α
h : Mem j c
⊢ a1 j = a2 j
|
d3bd42fd519c28d6
|
Nat.exists_prime_lt_and_le_two_mul
|
Mathlib/NumberTheory/Bertrand.lean
|
theorem exists_prime_lt_and_le_two_mul (n : ℕ) (hn0 : n ≠ 0) :
∃ p, Nat.Prime p ∧ n < p ∧ p ≤ 2 * n
|
n : ℕ
hn0 : n ≠ 0
⊢ ∃ p, Prime p ∧ n < p ∧ p ≤ 2 * n
|
rcases lt_or_le 511 n with h | h
|
case inl
n : ℕ
hn0 : n ≠ 0
h : 511 < n
⊢ ∃ p, Prime p ∧ n < p ∧ p ≤ 2 * n
case inr
n : ℕ
hn0 : n ≠ 0
h : n ≤ 511
⊢ ∃ p, Prime p ∧ n < p ∧ p ≤ 2 * n
|
481aaedc4f9db56d
|
Submodule.inf_iSup_genEigenspace
|
Mathlib/LinearAlgebra/Eigenspace/Triangularizable.lean
|
theorem inf_iSup_genEigenspace [FiniteDimensional K V] (h : ∀ x ∈ p, f x ∈ p) (k : ℕ∞) :
p ⊓ ⨆ μ, f.genEigenspace μ k = ⨆ μ, p ⊓ f.genEigenspace μ k
|
K : Type u_1
V : Type u_2
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
p : Submodule K V
f : End K V
inst✝ : FiniteDimensional K V
h : ∀ x ∈ p, f x ∈ p
k : ℕ∞
m : K →₀ V
hm₂ : ∀ (i : K), m i ∈ (f.genEigenspace i) k
hm₀ : (m.sum fun _i xi => xi) ∈ p
hm₁ : (m.sum fun _i xi => xi) ∈ ⨆ μ, (f.genEigenspace μ) k
μ : K
hμ : μ ∈ m.support
l : K → ℕ
hlk : ∀ (i : K), ↑(l i) ≤ k
hl : ∀ (i : K), m i ∈ LinearMap.ker ((f - i • 1) ^ l i)
l₀ : ℕ := m.support.sup l
h_comm : ∀ (μ₁ μ₂ : K), Commute ((f - (algebraMap K (End K V)) μ₁) ^ l₀) ((f - (algebraMap K (End K V)) μ₂) ^ l₀)
g : End K V := (m.support.erase μ).noncommProd (fun μ₁ => (f - (algebraMap K (End K V)) μ₁) ^ l₀) ⋯
hfg : Commute f g
hg₀ : g (m.sum fun _μ mμ => mμ) = g (m μ)
hg₁ : MapsTo ⇑g ↑p ↑p
hg₂ : MapsTo ⇑g ↑((f.genEigenspace μ) k) ↑((f.genEigenspace μ) k)
this : iSupIndep fun x => (f.genEigenspace x) k
μ' : K
_hμ' : μ' ∈ m.support.erase μ
⊢ (f.genEigenspace μ') ↑l₀ ≤ (f.genEigenspace μ') k
|
apply (f.genEigenspace μ').mono
|
case a
K : Type u_1
V : Type u_2
inst✝³ : Field K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
p : Submodule K V
f : End K V
inst✝ : FiniteDimensional K V
h : ∀ x ∈ p, f x ∈ p
k : ℕ∞
m : K →₀ V
hm₂ : ∀ (i : K), m i ∈ (f.genEigenspace i) k
hm₀ : (m.sum fun _i xi => xi) ∈ p
hm₁ : (m.sum fun _i xi => xi) ∈ ⨆ μ, (f.genEigenspace μ) k
μ : K
hμ : μ ∈ m.support
l : K → ℕ
hlk : ∀ (i : K), ↑(l i) ≤ k
hl : ∀ (i : K), m i ∈ LinearMap.ker ((f - i • 1) ^ l i)
l₀ : ℕ := m.support.sup l
h_comm : ∀ (μ₁ μ₂ : K), Commute ((f - (algebraMap K (End K V)) μ₁) ^ l₀) ((f - (algebraMap K (End K V)) μ₂) ^ l₀)
g : End K V := (m.support.erase μ).noncommProd (fun μ₁ => (f - (algebraMap K (End K V)) μ₁) ^ l₀) ⋯
hfg : Commute f g
hg₀ : g (m.sum fun _μ mμ => mμ) = g (m μ)
hg₁ : MapsTo ⇑g ↑p ↑p
hg₂ : MapsTo ⇑g ↑((f.genEigenspace μ) k) ↑((f.genEigenspace μ) k)
this : iSupIndep fun x => (f.genEigenspace x) k
μ' : K
_hμ' : μ' ∈ m.support.erase μ
⊢ ↑l₀ ≤ k
|
a9d126d678497dfd
|
SimpleGraph.card_cliqueFinset_le
|
Mathlib/Combinatorics/SimpleGraph/Clique.lean
|
theorem card_cliqueFinset_le : #(G.cliqueFinset n) ≤ (card α).choose n
|
α : Type u_1
G : SimpleGraph α
inst✝² : Fintype α
inst✝¹ : DecidableEq α
inst✝ : DecidableRel G.Adj
n : ℕ
⊢ #(G.cliqueFinset n) ≤ #(powersetCard n univ)
|
refine card_mono fun s => ?_
|
α : Type u_1
G : SimpleGraph α
inst✝² : Fintype α
inst✝¹ : DecidableEq α
inst✝ : DecidableRel G.Adj
n : ℕ
s : Finset α
⊢ s ∈ G.cliqueFinset n → s ∈ powersetCard n univ
|
e2e0f29c0cf57a6f
|
Complex.circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto
|
Mathlib/Analysis/Complex/CauchyIntegral.lean
|
theorem circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto {c : ℂ}
{R : ℝ} (h0 : 0 < R) {f : ℂ → E} {y : E} {s : Set ℂ} (hs : s.Countable)
(hc : ContinuousOn f (closedBall c R \ {c}))
(hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z) (hy : Tendsto f (𝓝[{c}ᶜ] c) (𝓝 y)) :
(∮ z in C(c, R), (z - c)⁻¹ • f z) = (2 * π * I : ℂ) • y
|
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
c : ℂ
R : ℝ
h0 : 0 < R
f : ℂ → E
y : E
s : Set ℂ
hs : s.Countable
hc : ContinuousOn f (closedBall c R \ {c})
hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z
hy : Tendsto f (𝓝[≠] c) (𝓝 y)
ε : ℝ
ε0 : 0 < ε
δ : ℝ
δ0 : δ > 0
hδ : ∀ z ∈ closedBall c δ \ {c}, dist (f z) y < ε / (2 * π)
r : ℝ
hr0 : 0 < r
hrδ : r ≤ δ
hrR : r ≤ R
hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c}
hsub' : ball c R \ closedBall c r ⊆ ball c R \ {c}
hzne : ∀ z ∈ sphere c r, z ≠ c
⊢ ‖(∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • f z) - ∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • y‖ =
‖∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • (f z - y)‖
|
simp only [smul_sub]
|
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℂ E
inst✝ : CompleteSpace E
c : ℂ
R : ℝ
h0 : 0 < R
f : ℂ → E
y : E
s : Set ℂ
hs : s.Countable
hc : ContinuousOn f (closedBall c R \ {c})
hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z
hy : Tendsto f (𝓝[≠] c) (𝓝 y)
ε : ℝ
ε0 : 0 < ε
δ : ℝ
δ0 : δ > 0
hδ : ∀ z ∈ closedBall c δ \ {c}, dist (f z) y < ε / (2 * π)
r : ℝ
hr0 : 0 < r
hrδ : r ≤ δ
hrR : r ≤ R
hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c}
hsub' : ball c R \ closedBall c r ⊆ ball c R \ {c}
hzne : ∀ z ∈ sphere c r, z ≠ c
⊢ ‖(∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • f z) - ∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • y‖ =
‖∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • f z - (z - c)⁻¹ • y‖
|
161c13e075bc65e7
|
Con.comap_conGen_equiv
|
Mathlib/GroupTheory/Congruence/Basic.lean
|
theorem comap_conGen_equiv {M N : Type*} [Mul M] [Mul N] (f : MulEquiv M N) (rel : N → N → Prop) :
Con.comap f (map_mul f) (conGen rel) = conGen (fun x y ↦ rel (f x) (f y))
|
case mul
M : Type u_4
N : Type u_5
inst✝¹ : Mul M
inst✝ : Mul N
f : M ≃* N
rel : N → N → Prop
a✝² b✝ : M
h : (conGen rel) (f a✝²) (f b✝)
n1 n2 w x y z : N
a✝¹ : ConGen.Rel rel w x
a✝ : ConGen.Rel rel y z
ih : ∀ (a b : M), f a = w → f b = x → (conGen fun x y => rel (f x) (f y)) a b
ih1 : ∀ (a b : M), f a = y → f b = z → (conGen fun x y => rel (f x) (f y)) a b
a b : M
fa : a = f.symm w * f.symm y
fb : b = f.symm x * f.symm z
⊢ (conGen fun x y => rel (f x) (f y)) a b
|
rw [fa, fb]
|
case mul
M : Type u_4
N : Type u_5
inst✝¹ : Mul M
inst✝ : Mul N
f : M ≃* N
rel : N → N → Prop
a✝² b✝ : M
h : (conGen rel) (f a✝²) (f b✝)
n1 n2 w x y z : N
a✝¹ : ConGen.Rel rel w x
a✝ : ConGen.Rel rel y z
ih : ∀ (a b : M), f a = w → f b = x → (conGen fun x y => rel (f x) (f y)) a b
ih1 : ∀ (a b : M), f a = y → f b = z → (conGen fun x y => rel (f x) (f y)) a b
a b : M
fa : a = f.symm w * f.symm y
fb : b = f.symm x * f.symm z
⊢ (conGen fun x y => rel (f x) (f y)) (f.symm w * f.symm y) (f.symm x * f.symm z)
|
d315948435eb07b2
|
List.filterMap_eq_cons_iff
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
|
theorem filterMap_eq_cons_iff {l} {b} {bs} :
filterMap f l = b :: bs ↔
∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ (∀ x, x ∈ l₁ → f x = none) ∧ f a = some b ∧
filterMap f l₂ = bs
|
case mp.cons.some
α✝¹ : Type u_1
α✝ : Type u_2
f : α✝¹ → Option α✝
a : α✝¹
l : List α✝¹
b : α✝
h : f a = some b
ih :
filterMap f l = b :: filterMap f l →
∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝¹), x ∈ l₁ → f x = none) ∧ f a = some b ∧ filterMap f l₂ = filterMap f l
⊢ ∃ l₁ a_1 l₂,
a :: l = l₁ ++ a_1 :: l₂ ∧ (∀ (x : α✝¹), x ∈ l₁ → f x = none) ∧ f a_1 = some b ∧ filterMap f l₂ = filterMap f l
|
refine ⟨[], a, l, by simp [h]⟩
|
no goals
|
a63f5fdfcdb83803
|
AlgebraicGeometry.Scheme.IdealSheafData.zeroLocus_inter_subset_support
|
Mathlib/AlgebraicGeometry/IdealSheaf.lean
|
lemma zeroLocus_inter_subset_support (I : IdealSheafData X) (U : X.affineOpens) :
X.zeroLocus (U := U.1) (I.ideal U) ∩ U ⊆ I.support
|
case intro.intro
X : Scheme
I : X.IdealSheafData
U V : ↑X.affineOpens
x : ↑↑X.toPresheafedSpace
hxV : x ∈ ↑↑V
hxU : x ∈ ↑↑U
hx : ∀ f ∈ I.ideal U, x ∉ X.basicOpen f
s : ↑Γ(X, ↑V)
hfU : s ∈ I.ideal V
hxs : x ∈ X.basicOpen s
⊢ False
|
obtain ⟨f, g, hfg, hxf⟩ := exists_basicOpen_le_affine_inter U.2 V.2 x ⟨hxU, hxV⟩
|
case intro.intro.intro.intro.intro
X : Scheme
I : X.IdealSheafData
U V : ↑X.affineOpens
x : ↑↑X.toPresheafedSpace
hxV : x ∈ ↑↑V
hxU : x ∈ ↑↑U
hx : ∀ f ∈ I.ideal U, x ∉ X.basicOpen f
s : ↑Γ(X, ↑V)
hfU : s ∈ I.ideal V
hxs : x ∈ X.basicOpen s
f : ↑Γ(X, ↑U)
g : ↑Γ(X, ↑V)
hfg : X.basicOpen f = X.basicOpen g
hxf : x ∈ X.basicOpen f
⊢ False
|
ac346fd7f1a4fa9f
|
CommRingCat.KaehlerDifferential.ext
|
Mathlib/Algebra/Category/ModuleCat/Differentials/Basic.lean
|
@[ext]
lemma ext {M : ModuleCat B} {α β : KaehlerDifferential f ⟶ M}
(h : ∀ (b : B), α (d b) = β (d b)) : α = β
|
A B : CommRingCat
f : A ⟶ B
M : ModuleCat ↑B
α β : KaehlerDifferential f ⟶ M
h : ∀ (b : ↑B), (ConcreteCategory.hom α) (d b) = (ConcreteCategory.hom β) (d b)
⊢ ⊤ ≤ LinearMap.ker (ModuleCat.Hom.hom (α - β))
|
rw [← KaehlerDifferential.span_range_derivation, Submodule.span_le]
|
A B : CommRingCat
f : A ⟶ B
M : ModuleCat ↑B
α β : KaehlerDifferential f ⟶ M
h : ∀ (b : ↑B), (ConcreteCategory.hom α) (d b) = (ConcreteCategory.hom β) (d b)
⊢ Set.range ⇑(_root_.KaehlerDifferential.D ↑A ↑B) ⊆ ↑(LinearMap.ker (ModuleCat.Hom.hom (α - β)))
|
3a02a1e0fa8a646a
|
MeasureTheory.Content.innerContent_exists_compact
|
Mathlib/MeasureTheory/Measure/Content.lean
|
theorem innerContent_exists_compact {U : Opens G} (hU : μ.innerContent U ≠ ∞) {ε : ℝ≥0}
(hε : ε ≠ 0) : ∃ K : Compacts G, (K : Set G) ⊆ U ∧ μ.innerContent U ≤ μ K + ε
|
G : Type w
inst✝ : TopologicalSpace G
μ : Content G
U : Opens G
hU : μ.innerContent U ≠ ⊤
ε : ℝ≥0
hε : ε ≠ 0
h'ε : ↑ε ≠ 0
⊢ ∃ K, ↑K ⊆ ↑U ∧ μ.innerContent U ≤ μ K + ↑ε
|
rcases le_or_lt (μ.innerContent U) ε with h | h
|
case inl
G : Type w
inst✝ : TopologicalSpace G
μ : Content G
U : Opens G
hU : μ.innerContent U ≠ ⊤
ε : ℝ≥0
hε : ε ≠ 0
h'ε : ↑ε ≠ 0
h : μ.innerContent U ≤ ↑ε
⊢ ∃ K, ↑K ⊆ ↑U ∧ μ.innerContent U ≤ μ K + ↑ε
case inr
G : Type w
inst✝ : TopologicalSpace G
μ : Content G
U : Opens G
hU : μ.innerContent U ≠ ⊤
ε : ℝ≥0
hε : ε ≠ 0
h'ε : ↑ε ≠ 0
h : ↑ε < μ.innerContent U
⊢ ∃ K, ↑K ⊆ ↑U ∧ μ.innerContent U ≤ μ K + ↑ε
|
1912c8ba0130552e
|
Set.countable_setOf_finite_subset
|
Mathlib/Data/Set/Countable.lean
|
theorem countable_setOf_finite_subset {s : Set α} (hs : s.Countable) :
{ t | Set.Finite t ∧ t ⊆ s }.Countable
|
case intro.intro
α : Type u
s : Set α
hs : s.Countable
this : Countable ↑s
t : Set ↑s
ht : (Subtype.val '' t).Finite
⊢ Subtype.val '' t ∈ range fun t => Subtype.val '' ↑t
|
lift t to Finset s using ht.of_finite_image Subtype.val_injective.injOn
|
case intro.intro.intro
α : Type u
s : Set α
hs : s.Countable
this : Countable ↑s
t : Finset ↑s
ht : (Subtype.val '' ↑t).Finite
⊢ Subtype.val '' ↑t ∈ range fun t => Subtype.val '' ↑t
|
ac95a49c211f784f
|
Convex.is_const_of_fderivWithin_eq_zero
|
Mathlib/Analysis/Calculus/MeanValue.lean
|
theorem is_const_of_fderivWithin_eq_zero (hs : Convex ℝ s) (hf : DifferentiableOn 𝕜 f s)
(hf' : ∀ x ∈ s, fderivWithin 𝕜 f s x = 0) (hx : x ∈ s) (hy : y ∈ s) : f x = f y
|
E : Type u_1
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
𝕜 : Type u_3
G : Type u_4
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : IsRCLikeNormedField 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E → G
s : Set E
x y : E
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hf' : ∀ x ∈ s, fderivWithin 𝕜 f s x = 0
hx : x ∈ s
hy : y ∈ s
⊢ f x = f y
|
have bound : ∀ x ∈ s, ‖fderivWithin 𝕜 f s x‖ ≤ 0 := fun x hx => by
simp only [hf' x hx, norm_zero, le_rfl]
|
E : Type u_1
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
𝕜 : Type u_3
G : Type u_4
inst✝⁴ : NontriviallyNormedField 𝕜
inst✝³ : IsRCLikeNormedField 𝕜
inst✝² : NormedSpace 𝕜 E
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
f : E → G
s : Set E
x y : E
hs : Convex ℝ s
hf : DifferentiableOn 𝕜 f s
hf' : ∀ x ∈ s, fderivWithin 𝕜 f s x = 0
hx : x ∈ s
hy : y ∈ s
bound : ∀ x ∈ s, ‖fderivWithin 𝕜 f s x‖ ≤ 0
⊢ f x = f y
|
9913d0fe64b83cc3
|
Odd.strictMono_pow
|
Mathlib/Algebra/Order/Ring/Basic.lean
|
lemma Odd.strictMono_pow (hn : Odd n) : StrictMono fun a : R => a ^ n
|
R : Type u_3
inst✝¹ : LinearOrderedSemiring R
inst✝ : ExistsAddOfLE R
hn : Odd 0
⊢ False
|
simp [Odd, eq_comm (a := 0)] at hn
|
no goals
|
789fc8d7e45ac2d6
|
LinearPMap.left_le_sup
|
Mathlib/LinearAlgebra/LinearPMap.lean
|
theorem left_le_sup (f g : E →ₗ.[R] F)
(h : ∀ (x : f.domain) (y : g.domain), (x : E) = y → f x = g y) : f ≤ f.sup g h
|
R : Type u_1
inst✝⁴ : Ring R
E : Type u_2
inst✝³ : AddCommGroup E
inst✝² : Module R E
F : Type u_3
inst✝¹ : AddCommGroup F
inst✝ : Module R F
f g : E →ₗ.[R] F
h : ∀ (x : ↥f.domain) (y : ↥g.domain), ↑x = ↑y → ↑f x = ↑g y
z₁ : ↥f.domain
z₂ : ↥(f.sup g h).domain
hz : ↑z₁ = ↑z₂
⊢ ↑f z₁ + ↑g 0 = ↑(f.sup g h) z₂
|
refine (sup_apply h _ _ _ ?_).symm
|
R : Type u_1
inst✝⁴ : Ring R
E : Type u_2
inst✝³ : AddCommGroup E
inst✝² : Module R E
F : Type u_3
inst✝¹ : AddCommGroup F
inst✝ : Module R F
f g : E →ₗ.[R] F
h : ∀ (x : ↥f.domain) (y : ↥g.domain), ↑x = ↑y → ↑f x = ↑g y
z₁ : ↥f.domain
z₂ : ↥(f.sup g h).domain
hz : ↑z₁ = ↑z₂
⊢ ↑z₁ + ↑0 = ↑z₂
|
9fa85484af1849de
|
Complex.isPrimitiveRoot_iff
|
Mathlib/RingTheory/RootsOfUnity/Complex.lean
|
theorem isPrimitiveRoot_iff (ζ : ℂ) (n : ℕ) (hn : n ≠ 0) :
IsPrimitiveRoot ζ n ↔ ∃ i < n, ∃ _ : i.Coprime n, exp (2 * π * I * (i / n)) = ζ
|
case mpr.intro.intro.intro
n : ℕ
hn : n ≠ 0
hn0 : ↑n ≠ 0
i : ℕ
hi : i.Coprime n
⊢ IsPrimitiveRoot (cexp (2 * ↑π * I * (↑i / ↑n))) n
|
exact isPrimitiveRoot_exp_of_coprime i n hn hi
|
no goals
|
3ccb57b63ef696b5
|
Stream'.WSeq.liftRel_dropn_destruct
|
Mathlib/Data/Seq/WSeq.lean
|
theorem liftRel_dropn_destruct {R : α → β → Prop} {s t} (H : LiftRel R s t) :
∀ n, Computation.LiftRel (LiftRelO R (LiftRel R)) (destruct (drop s n)) (destruct (drop t n))
| 0 => liftRel_destruct H
| n + 1 => by
simp only [LiftRelO, drop, Nat.add_eq, Nat.add_zero, destruct_tail, tail.aux]
apply liftRel_bind
· apply liftRel_dropn_destruct H n
exact fun {a b} o =>
match a, b, o with
| none, none, _ => by
-- Porting note: These 2 theorems should be excluded.
simp [-liftRel_pure_left, -liftRel_pure_right]
| some (a, s), some (b, t), ⟨_, h2⟩ => by simpa [tail.aux] using liftRel_destruct h2
|
α : Type u
β : Type v
R : α → β → Prop
s : WSeq α
t : WSeq β
H : LiftRel R s t
n : ℕ
a : Option (α × WSeq α)
b : Option (β × WSeq β)
o : LiftRelO R (LiftRel R) a b
x✝ : LiftRelO R (LiftRel R) none none
⊢ Computation.LiftRel (LiftRelO R (LiftRel R)) (tail.aux none) (tail.aux none)
|
simp [-liftRel_pure_left, -liftRel_pure_right]
|
no goals
|
1a57f81f307e696b
|
MeasureTheory.withDensity_absolutelyContinuous
|
Mathlib/MeasureTheory/Measure/WithDensity.lean
|
theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
μ.withDensity f ≪ μ
|
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ≥0∞
s : Set α
hs₁ : MeasurableSet s
hs₂ : μ s = 0
⊢ ∫⁻ (a : α) in s, f a ∂μ = 0
|
exact setLIntegral_measure_zero _ _ hs₂
|
no goals
|
f394db0412a9858c
|
GenContFract.succ_nth_conv'_eq_squashGCF_nth_conv'
|
Mathlib/Algebra/ContinuedFractions/ConvergentsEquiv.lean
|
theorem succ_nth_conv'_eq_squashGCF_nth_conv' :
g.convs' (n + 1) = (squashGCF g n).convs' n
|
K : Type u_1
n : ℕ
g : GenContFract K
inst✝ : DivisionRing K
⊢ g.convs' (n + 1) = (g.squashGCF n).convs' n
|
cases n with
| zero =>
cases g_s_head_eq : g.s.get? 0 <;>
simp [g_s_head_eq, squashGCF, convs', convs'Aux, Stream'.Seq.head]
| succ =>
simp only [succ_succ_nth_conv'Aux_eq_succ_nth_conv'Aux_squashSeq, convs',
squashGCF]
|
no goals
|
c535dd95cf67eb71
|
MeasureTheory.aeconst_of_forall_preimage_smul_ae_eq
|
Mathlib/Dynamics/Ergodic/Action/Basic.lean
|
theorem aeconst_of_forall_preimage_smul_ae_eq [SMul G α] [ErgodicSMul G α μ] {s : Set α}
(hm : NullMeasurableSet s μ) (h : ∀ g : G, (g • ·) ⁻¹' s =ᵐ[μ] s) :
EventuallyConst s (ae μ)
|
case intro.intro
G : Type u_1
α : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝¹ : SMul G α
inst✝ : ErgodicSMul G α μ
s : Set α
h : ∀ (g : G), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s
t : Set α
htm : MeasurableSet t
hst : s =ᶠ[ae μ] t
g : G
⊢ (fun x => g • x) ⁻¹' t =ᶠ[ae μ] t
|
refine .trans (.trans ?_ (h g)) hst
|
case intro.intro
G : Type u_1
α : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝¹ : SMul G α
inst✝ : ErgodicSMul G α μ
s : Set α
h : ∀ (g : G), (fun x => g • x) ⁻¹' s =ᶠ[ae μ] s
t : Set α
htm : MeasurableSet t
hst : s =ᶠ[ae μ] t
g : G
⊢ (fun x => g • x) ⁻¹' t =ᶠ[ae μ] (fun x => g • x) ⁻¹' s
|
f6caf7b1f8b21950
|
ENNReal.limsup_const_mul
|
Mathlib/Order/Filter/ENNReal.lean
|
theorem limsup_const_mul [CountableInterFilter f] {u : α → ℝ≥0∞} {a : ℝ≥0∞} :
f.limsup (a * u ·) = a * f.limsup u
|
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : u =ᶠ[f] 0
x : α
hx : u x = 0 x
⊢ (fun x => a * u x) x = 0 x
|
simp [hx]
|
no goals
|
821a30d44957705c
|
LinearMap.isSymmetric_adjoint_mul_self
|
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
|
theorem isSymmetric_adjoint_mul_self (T : E →ₗ[𝕜] E) : IsSymmetric (LinearMap.adjoint T * T)
|
𝕜 : Type u_1
E : Type u_2
inst✝³ : RCLike 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
T : E →ₗ[𝕜] E
⊢ (adjoint T * T).IsSymmetric
|
intro x y
|
𝕜 : Type u_1
E : Type u_2
inst✝³ : RCLike 𝕜
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : FiniteDimensional 𝕜 E
T : E →ₗ[𝕜] E
x y : E
⊢ ⟪(adjoint T * T) x, y⟫_𝕜 = ⟪x, (adjoint T * T) y⟫_𝕜
|
5056180349104259
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.