name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
HasFPowerSeriesOnBall.unshift
Mathlib/Analysis/Analytic/Constructions.lean
theorem HasFPowerSeriesOnBall.unshift (hf : HasFPowerSeriesOnBall f pf x r) : HasFPowerSeriesOnBall (fun y ↦ z + f y (y - x)) (pf.unshift z) x r where r_le
𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_3 F : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → E →L[𝕜] F pf : FormalMultilinearSeries 𝕜 E (E →L[𝕜] F) x : E r : ℝ≥0∞ z : F hf : HasFPowerSeriesOnBall f pf x r y : E hy : y ∈ EMetric.ball 0 r ⊢ HasSum (fun n => (pf.unshift z n) fun x => y) (z + (f (x + y)) (x + y - x))
apply HasSum.zero_add
case h 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_3 F : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → E →L[𝕜] F pf : FormalMultilinearSeries 𝕜 E (E →L[𝕜] F) x : E r : ℝ≥0∞ z : F hf : HasFPowerSeriesOnBall f pf x r y : E hy : y ∈ EMetric.ball 0 r ⊢ HasSum (fun n => (pf.unshift z (n + 1)) fun x => y) ((f (x + y)) (x + y - x))
8771ecd745213522
QuadraticMap.posDef_pi_iff
Mathlib/LinearAlgebra/QuadraticForm/Prod.lean
theorem posDef_pi_iff {P} [Fintype ι] [OrderedAddCommMonoid P] [Module R P] {Q : ∀ i, QuadraticMap R (Mᵢ i) P} : (pi Q).PosDef ↔ ∀ i, (Q i).PosDef
ι : Type u_1 R : Type u_2 Mᵢ : ι → Type u_8 inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝³ : (i : ι) → Module R (Mᵢ i) P : Type u_10 inst✝² : Fintype ι inst✝¹ : OrderedAddCommMonoid P inst✝ : Module R P Q : (i : ι) → QuadraticMap R (Mᵢ i) P h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ (Q i) x) ∧ (Q i).Anisotropic x : (i : ι) → Mᵢ i hx : ∑ i : ι, (Q i) (x i) = 0 i j : ι x✝ : j ∈ Finset.univ ⊢ 0 ≤ (Q j) (x j)
exact (h j).1 _
no goals
77c7beb36c84b56a
IsDedekindDomain.selmerGroup.fromUnit_ker
Mathlib/RingTheory/DedekindDomain/SelmerGroup.lean
theorem fromUnit_ker [hn : Fact <| 0 < n] : (@fromUnit R _ _ K _ _ _ n).ker = (powMonoidHom n : Rˣ →* Rˣ).range
case h.mk.mp.intro.mk.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K n : ℕ hn : Fact (0 < n) val✝ inv✝ : R val_inv✝ : val✝ * inv✝ = 1 inv_val✝ : inv✝ * val✝ = 1 hx✝ : { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } ∈ fromUnit.ker v' i' : R vi✝ : (algebraMap R K) v' * (algebraMap R K) i' = 1 vi : v' * i' = 1 iv : (algebraMap R K) i' * (algebraMap R K) v' = 1 hx : (powMonoidHom n) { val := (algebraMap R K) v', inv := (algebraMap R K) i', val_inv := vi✝, inv_val := iv } = (Units.map ↑(algebraMap R K)) { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } hv : ↑{ val := (algebraMap R K) v', inv := (algebraMap R K) i', val_inv := vi✝, inv_val := iv } ^ n = (algebraMap R K) ↑{ val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } hi : ↑{ val := (algebraMap R K) i', inv := (algebraMap R K) v', val_inv := iv, inv_val := vi✝ } ^ n = (algebraMap R K) { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ }.inv ⊢ { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } ∈ (powMonoidHom n).range
rw [← map_mul, map_eq_one_iff _ <| FaithfulSMul.algebraMap_injective R K] at iv
case h.mk.mp.intro.mk.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K n : ℕ hn : Fact (0 < n) val✝ inv✝ : R val_inv✝ : val✝ * inv✝ = 1 inv_val✝ : inv✝ * val✝ = 1 hx✝ : { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } ∈ fromUnit.ker v' i' : R vi✝ : (algebraMap R K) v' * (algebraMap R K) i' = 1 vi : v' * i' = 1 iv✝ : (algebraMap R K) i' * (algebraMap R K) v' = 1 iv : i' * v' = 1 hx : (powMonoidHom n) { val := (algebraMap R K) v', inv := (algebraMap R K) i', val_inv := vi✝, inv_val := iv✝ } = (Units.map ↑(algebraMap R K)) { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } hv : ↑{ val := (algebraMap R K) v', inv := (algebraMap R K) i', val_inv := vi✝, inv_val := iv✝ } ^ n = (algebraMap R K) ↑{ val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } hi : ↑{ val := (algebraMap R K) i', inv := (algebraMap R K) v', val_inv := iv✝, inv_val := vi✝ } ^ n = (algebraMap R K) { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ }.inv ⊢ { val := val✝, inv := inv✝, val_inv := val_inv✝, inv_val := inv_val✝ } ∈ (powMonoidHom n).range
252946ccdda732f7
Turing.Tape.move_left_right
Mathlib/Computability/Tape.lean
theorem Tape.move_left_right {Γ} [Inhabited Γ] (T : Tape Γ) : (T.move Dir.left).move Dir.right = T
Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ move Dir.right (move Dir.left T) = T
cases T
case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ move Dir.right (move Dir.left { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ }
798d0e8480a2164b
List.findIdx?_isSome
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx?_isSome {xs : List α} {p : α → Bool} : (xs.findIdx? p).isSome = xs.any p
case cons α : Type u_1 p : α → Bool x : α xs : List α ih : (findIdx? p xs).isSome = xs.any p ⊢ (findIdx? p (x :: xs)).isSome = (x :: xs).any p
simp only [findIdx?_cons]
case cons α : Type u_1 p : α → Bool x : α xs : List α ih : (findIdx? p xs).isSome = xs.any p ⊢ (if p x = true then some 0 else Option.map (fun i => i + 1) (findIdx? p xs)).isSome = (x :: xs).any p
f5b414e8399ca944
Relation.church_rosser
Mathlib/Logic/Relation.lean
theorem church_rosser (h : ∀ a b c, r a b → r a c → ∃ d, ReflGen r b d ∧ ReflTransGen r c d) (hab : ReflTransGen r a b) (hac : ReflTransGen r a c) : Join (ReflTransGen r) b c
case tail.intro.intro α : Type u_1 r : α → α → Prop a b✝ c : α h : ∀ (a b c : α), r a b → r a c → ∃ d, ReflGen r b d ∧ ReflTransGen r c d hac : ReflTransGen r a c d e : α a✝ : ReflTransGen r a d hde : r d e b : α hdb : ReflTransGen r d b hcb : ReflTransGen r c b this : ∃ a, ReflTransGen r e a ∧ ReflGen r b a ⊢ Join (ReflTransGen r) e c
rcases this with ⟨a, hea, hba⟩
case tail.intro.intro.intro.intro α : Type u_1 r : α → α → Prop a✝¹ b✝ c : α h : ∀ (a b c : α), r a b → r a c → ∃ d, ReflGen r b d ∧ ReflTransGen r c d hac : ReflTransGen r a✝¹ c d e : α a✝ : ReflTransGen r a✝¹ d hde : r d e b : α hdb : ReflTransGen r d b hcb : ReflTransGen r c b a : α hea : ReflTransGen r e a hba : ReflGen r b a ⊢ Join (ReflTransGen r) e c
b76c57a616feebb5
Cardinal.lift_lt_nat_iff
Mathlib/SetTheory/Cardinal/Basic.lean
theorem lift_lt_nat_iff {a : Cardinal.{u}} {n : ℕ} : lift.{v} a < n ↔ a < n
a : Cardinal.{u} n : ℕ ⊢ lift.{v, u} a < ↑n ↔ a < ↑n
rw [← lift_natCast.{v,u}, lift_lt]
no goals
8732111f112099cd
CategoryTheory.FintypeCat.Action.isConnected_of_transitive
Mathlib/CategoryTheory/Galois/Examples.lean
theorem Action.isConnected_of_transitive (X : FintypeCat) [MulAction G X] [MulAction.IsPretransitive G X] [h : Nonempty X] : IsConnected (Action.FintypeCat.ofMulAction G X) where notInitial := not_initial_of_inhabited (Action.forget _ _) h.some noTrivialComponent Y i hm hni
G : Type u inst✝² : Group G X : FintypeCat inst✝¹ : MulAction G X.carrier inst✝ : MulAction.IsPretransitive G X.carrier h : Nonempty X.carrier Y : Action FintypeCat G i : Y ⟶ Action.FintypeCat.ofMulAction G X hm : Mono i hni : IsInitial Y → False y : Y.V.carrier ⊢ IsIso i.hom
refine (ConcreteCategory.isIso_iff_bijective i.hom).mpr ⟨?_, fun x' ↦ ?_⟩
case refine_1 G : Type u inst✝² : Group G X : FintypeCat inst✝¹ : MulAction G X.carrier inst✝ : MulAction.IsPretransitive G X.carrier h : Nonempty X.carrier Y : Action FintypeCat G i : Y ⟶ Action.FintypeCat.ofMulAction G X hm : Mono i hni : IsInitial Y → False y : Y.V.carrier ⊢ Function.Injective ⇑(ConcreteCategory.hom i.hom) case refine_2 G : Type u inst✝² : Group G X : FintypeCat inst✝¹ : MulAction G X.carrier inst✝ : MulAction.IsPretransitive G X.carrier h : Nonempty X.carrier Y : Action FintypeCat G i : Y ⟶ Action.FintypeCat.ofMulAction G X hm : Mono i hni : IsInitial Y → False y : Y.V.carrier x' : (Action.FintypeCat.ofMulAction G X).V.carrier ⊢ ∃ a, (ConcreteCategory.hom i.hom) a = x'
598f0ed4a0644baa
Polynomial.exists_approx_polynomial
Mathlib/NumberTheory/ClassNumber/AdmissibleCardPowDegree.lean
theorem exists_approx_polynomial {b : Fq[X]} (hb : b ≠ 0) {ε : ℝ} (hε : 0 < ε) (A : Fin (Fintype.card Fq ^ ⌈-log ε / log (Fintype.card Fq)⌉₊).succ → Fq[X]) : ∃ i₀ i₁, i₀ ≠ i₁ ∧ (cardPowDegree (A i₁ % b - A i₀ % b) : ℝ) < cardPowDegree b • ε
case h.e'_3 Fq : Type u_1 inst✝¹ : Fintype Fq inst✝ : Field Fq b : Fq[X] hb : b ≠ 0 ε : ℝ hε : 0 < ε A : Fin (Fintype.card Fq ^ ⌈-log ε / log ↑(Fintype.card Fq)⌉₊).succ → Fq[X] hbε : 0 < cardPowDegree b • ε one_lt_q : 1 < Fintype.card Fq one_lt_q' : 1 < ↑(Fintype.card Fq) q_pos : 0 < Fintype.card Fq q_pos' : 0 < ↑(Fintype.card Fq) le_b : ⌈-log ε / log ↑(Fintype.card Fq)⌉₊ < b.natDegree i₀ i₁ : Fin (Fintype.card Fq ^ ⌈-log ε / log ↑(Fintype.card Fq)⌉₊).succ i_ne : i₀ ≠ i₁ deg_lt : (A i₁ % b - A i₀ % b).degree < ↑(b.natDegree - ⌈-log ε / log ↑(Fintype.card Fq)⌉₊) h : ¬A i₁ % b = A i₀ % b h' : A i₁ % b - A i₀ % b ≠ 0 ⊢ ↑(A i₁ % b - A i₀ % b).natDegree = (A i₁ % b - A i₀ % b).degree
rw [degree_eq_natDegree h']
case h.e'_3 Fq : Type u_1 inst✝¹ : Fintype Fq inst✝ : Field Fq b : Fq[X] hb : b ≠ 0 ε : ℝ hε : 0 < ε A : Fin (Fintype.card Fq ^ ⌈-log ε / log ↑(Fintype.card Fq)⌉₊).succ → Fq[X] hbε : 0 < cardPowDegree b • ε one_lt_q : 1 < Fintype.card Fq one_lt_q' : 1 < ↑(Fintype.card Fq) q_pos : 0 < Fintype.card Fq q_pos' : 0 < ↑(Fintype.card Fq) le_b : ⌈-log ε / log ↑(Fintype.card Fq)⌉₊ < b.natDegree i₀ i₁ : Fin (Fintype.card Fq ^ ⌈-log ε / log ↑(Fintype.card Fq)⌉₊).succ i_ne : i₀ ≠ i₁ deg_lt : (A i₁ % b - A i₀ % b).degree < ↑(b.natDegree - ⌈-log ε / log ↑(Fintype.card Fq)⌉₊) h : ¬A i₁ % b = A i₀ % b h' : A i₁ % b - A i₀ % b ≠ 0 ⊢ ↑(A i₁ % b - A i₀ % b).natDegree = ↑(A i₁ % b - A i₀ % b).natDegree
0dfa674178256fe6
ENNReal.inv_rpow
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem inv_rpow (x : ℝ≥0∞) (y : ℝ) : x⁻¹ ^ y = (x ^ y)⁻¹
case inr x : ℝ≥0∞ y : ℝ hy : y ≠ 0 ⊢ x⁻¹ ^ y = (x ^ y)⁻¹
replace hy := hy.lt_or_lt
case inr x : ℝ≥0∞ y : ℝ hy : y < 0 ∨ 0 < y ⊢ x⁻¹ ^ y = (x ^ y)⁻¹
b19d8c607ccb3ad9
PolynomialModule.aeval_equivPolynomial
Mathlib/Algebra/Polynomial/Module/Basic.lean
@[simp] lemma aeval_equivPolynomial {S : Type*} [CommRing S] [Algebra S R] (f : PolynomialModule S S) (x : R) : aeval x (equivPolynomial f) = eval x (map R (Algebra.linearMap S R) f)
case hadd R : Type u_1 inst✝² : CommRing R S : Type u_6 inst✝¹ : CommRing S inst✝ : Algebra S R f✝ : PolynomialModule S S x : R f g : PolynomialModule S S e₁ : (aeval x) (equivPolynomial f) = (eval x) ((map R (Algebra.linearMap S R)) f) e₂ : (aeval x) (equivPolynomial g) = (eval x) ((map R (Algebra.linearMap S R)) g) ⊢ (aeval x) (equivPolynomial (f + g)) = (eval x) ((map R (Algebra.linearMap S R)) (f + g))
simp_rw [map_add, e₁, e₂]
no goals
9bbec61022753076
LinearIndependent.repr_eq_single
Mathlib/LinearAlgebra/LinearIndependent/Defs.lean
theorem LinearIndependent.repr_eq_single (i) (x : span R (range v)) (hx : ↑x = v i) : hv.repr x = Finsupp.single i 1
ι : Type u' R : Type u_2 M : Type u_4 v : ι → M inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M hv : LinearIndependent R v i : ι x : ↥(span R (range v)) hx : ↑x = v i ⊢ (Finsupp.linearCombination R v) (Finsupp.single i 1) = ↑x
simp [Finsupp.linearCombination_single, hx]
no goals
20149aae7f7911e9
Nat.minSqFacAux_has_prop
Mathlib/Data/Nat/Squarefree.lean
theorem minSqFacAux_has_prop {n : ℕ} (k) (n0 : 0 < n) (i) (e : k = 2 * i + 3) (ih : ∀ m, Prime m → m ∣ n → k ≤ m) : MinSqFacProp n (minSqFacAux n k)
case inr n k : ℕ n0 : 0 < n i : ℕ e : k = 2 * i + 3 ih : ∀ (m : ℕ), Prime m → m ∣ n → k ≤ m h : ¬n < k * k k2 : 2 ≤ k k0 : 0 < k n' : ℕ nd' : n' ∣ n nk : ¬k ∣ n' hn' : n' ≤ n this : n'.sqrt - k < n.sqrt + 2 - k m : ℕ m2 : Prime m d : m ∣ n' ml : k < m me : k.succ = m ⊢ False
rw [← me, e] at d
case inr n k : ℕ n0 : 0 < n i : ℕ e : k = 2 * i + 3 ih : ∀ (m : ℕ), Prime m → m ∣ n → k ≤ m h : ¬n < k * k k2 : 2 ≤ k k0 : 0 < k n' : ℕ nd' : n' ∣ n nk : ¬k ∣ n' hn' : n' ≤ n this : n'.sqrt - k < n.sqrt + 2 - k m : ℕ m2 : Prime m d : (2 * i + 3).succ ∣ n' ml : k < m me : k.succ = m ⊢ False
6662ac2b7e23ff85
UniformFun.tendsto_iff_tendstoUniformly
Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean
theorem tendsto_iff_tendstoUniformly {F : ι → α →ᵤ β} {f : α →ᵤ β} : Tendsto F p (𝓝 f) ↔ TendstoUniformly (toFun ∘ F) (toFun f) p
α : Type u_1 β : Type u_2 ι : Type u_4 p : Filter ι inst✝ : UniformSpace β F : ι → α →ᵤ β f : α →ᵤ β ⊢ (∀ i ∈ 𝓤 β, ∀ᶠ (x : ι) in p, F x ∈ {g | (f, g) ∈ UniformFun.gen α β i}) ↔ ∀ u ∈ 𝓤 β, ∀ᶠ (n : ι) in p, ∀ (x : α), (toFun f x, (⇑toFun ∘ F) n x) ∈ u
simp only [mem_setOf, UniformFun.gen, Function.comp_def]
no goals
e2c1c54083b2cb04
Topology.IsConstructible.preimage
Mathlib/Topology/Constructible.lean
/-- If `f` is continuous and is such that preimages of retrocompact sets are retrocompact, then preimages of constructible sets are constructible. -/ @[stacks 005I] lemma IsConstructible.preimage {s : Set Y} (hfcont : Continuous f) (hf : ∀ s, IsRetrocompact s → IsRetrocompact (f ⁻¹' s)) (hs : IsConstructible s) : IsConstructible (f ⁻¹' s)
case union X : Type u_2 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y s✝ : Set Y hfcont : Continuous f hf : ∀ (s : Set Y), IsRetrocompact s → IsRetrocompact (f ⁻¹' s) s : Set Y hs : IsConstructible s t : Set Y ht : IsConstructible t hs' : IsConstructible (f ⁻¹' s) ht' : IsConstructible (f ⁻¹' t) ⊢ IsConstructible (f ⁻¹' (s ∪ t))
rw [preimage_union]
case union X : Type u_2 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y s✝ : Set Y hfcont : Continuous f hf : ∀ (s : Set Y), IsRetrocompact s → IsRetrocompact (f ⁻¹' s) s : Set Y hs : IsConstructible s t : Set Y ht : IsConstructible t hs' : IsConstructible (f ⁻¹' s) ht' : IsConstructible (f ⁻¹' t) ⊢ IsConstructible (f ⁻¹' s ∪ f ⁻¹' t)
fc0dbcb56e879f3b
min_eq_iff
Mathlib/Order/MinMax.lean
theorem min_eq_iff : min a b = c ↔ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a
α : Type u inst✝ : LinearOrder α a b c : α h : a ⊓ b = c h' : b ≤ a ⊢ b = c
simpa [h'] using h
no goals
45de0eaec408f730
PiNat.mem_cylinder_iff_eq
Mathlib/Topology/MetricSpace/PiNat.lean
theorem mem_cylinder_iff_eq {x y : ∀ n, E n} {n : ℕ} : y ∈ cylinder x n ↔ cylinder y n = cylinder x n
case mp.h₁ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder y n i : ℕ hi : i < n ⊢ z i = x i
rw [← hy i hi]
case mp.h₁ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder y n i : ℕ hi : i < n ⊢ z i = y i
1650d6a7263b81d8
Set.mem_ite_empty_right
Mathlib/Data/Set/Basic.lean
theorem mem_ite_empty_right (p : Prop) [Decidable p] (t : Set α) (x : α) : x ∈ ite p t ∅ ↔ p ∧ x ∈ t := (mem_dite_empty_right p (fun _ => t) x).trans (by simp)
α : Type u p : Prop inst✝ : Decidable p t : Set α x : α ⊢ (∃ (_ : p), x ∈ t) ↔ p ∧ x ∈ t
simp
no goals
9b2f6e8db686c2f7
CondensedMod.isDiscrete_tfae
Mathlib/Condensed/Discrete/Characterization.lean
theorem isDiscrete_tfae (M : CondensedMod.{u} R) : TFAE [ M.IsDiscrete , IsIso ((Condensed.discreteUnderlyingAdj _).counit.app M) , (Condensed.discrete _).essImage M , (CondensedMod.LocallyConstant.functor R).essImage M , IsIso ((CondensedMod.LocallyConstant.adjunction R).counit.app M) , Sheaf.IsConstant (coherentTopology Profinite) ((Condensed.ProfiniteCompHaus.equivalence _).inverse.obj M) , ∀ S : Profinite.{u}, Nonempty (IsColimit <| (profiniteToCompHaus.op ⋙ M.val).mapCocone S.asLimitCone.op) ]
R : Type (u + 1) inst✝ : Ring R M : CondensedMod R tfae_1_iff_2 : Condensed.IsDiscrete M ↔ IsIso ((Condensed.discreteUnderlyingAdj (ModuleCat R)).counit.app M) ⊢ [Condensed.IsDiscrete M, IsIso ((Condensed.discreteUnderlyingAdj (ModuleCat R)).counit.app M), (Condensed.discrete (ModuleCat R)).essImage M, (functor R).essImage M, IsIso ((LocallyConstant.adjunction R).counit.app M), Sheaf.IsConstant (coherentTopology Profinite) ((Condensed.ProfiniteCompHaus.equivalence (ModuleCat R)).inverse.obj M), ∀ (S : Profinite), Nonempty (IsColimit ((profiniteToCompHaus.op ⋙ M.val).mapCocone S.asLimitCone.op))].TFAE
tfae_have 1 ↔ 3 := ⟨fun ⟨h⟩ ↦ h, fun h ↦ ⟨h⟩⟩
R : Type (u + 1) inst✝ : Ring R M : CondensedMod R tfae_1_iff_2 : Condensed.IsDiscrete M ↔ IsIso ((Condensed.discreteUnderlyingAdj (ModuleCat R)).counit.app M) tfae_1_iff_3 : Condensed.IsDiscrete M ↔ (Condensed.discrete (ModuleCat R)).essImage M ⊢ [Condensed.IsDiscrete M, IsIso ((Condensed.discreteUnderlyingAdj (ModuleCat R)).counit.app M), (Condensed.discrete (ModuleCat R)).essImage M, (functor R).essImage M, IsIso ((LocallyConstant.adjunction R).counit.app M), Sheaf.IsConstant (coherentTopology Profinite) ((Condensed.ProfiniteCompHaus.equivalence (ModuleCat R)).inverse.obj M), ∀ (S : Profinite), Nonempty (IsColimit ((profiniteToCompHaus.op ⋙ M.val).mapCocone S.asLimitCone.op))].TFAE
6b931ea1420905ba
map_prime_of_factor_orderIso
Mathlib/RingTheory/ChainOfDivisors.lean
theorem map_prime_of_factor_orderIso {m p : Associates M} {n : Associates N} (hn : n ≠ 0) (hp : p ∈ normalizedFactors m) (d : Set.Iic m ≃o Set.Iic n) : Prime (d ⟨p, dvd_of_mem_normalizedFactors hp⟩ : Associates N)
M : Type u_1 inst✝³ : CancelCommMonoidWithZero M N : Type u_2 inst✝² : CancelCommMonoidWithZero N inst✝¹ : UniqueFactorizationMonoid N inst✝ : UniqueFactorizationMonoid M m p : Associates M n : Associates N hn : n ≠ 0 hp : p ∈ normalizedFactors m d : ↑(Set.Iic m) ≃o ↑(Set.Iic n) ⊢ Prime ↑(d ⟨p, ⋯⟩)
rw [← irreducible_iff_prime]
M : Type u_1 inst✝³ : CancelCommMonoidWithZero M N : Type u_2 inst✝² : CancelCommMonoidWithZero N inst✝¹ : UniqueFactorizationMonoid N inst✝ : UniqueFactorizationMonoid M m p : Associates M n : Associates N hn : n ≠ 0 hp : p ∈ normalizedFactors m d : ↑(Set.Iic m) ≃o ↑(Set.Iic n) ⊢ Irreducible ↑(d ⟨p, ⋯⟩)
b9f5949373dcb4ed
AlgebraicGeometry.Scheme.Hom.ker_apply
Mathlib/AlgebraicGeometry/IdealSheaf.lean
@[simp] lemma Hom.ker_apply (f : X.Hom Y) [QuasiCompact f] (U : Y.affineOpens) : f.ker.ideal U = RingHom.ker (f.app U).hom
X Y : Scheme f : X.Hom Y inst✝ : QuasiCompact f U✝ U : ↑Y.affineOpens s : ↑Γ(Y, ↑U) this : IsLocalization.Away s ↑Γ(Y, Y.basicOpen s) x : ↑Γ(Y, ↑U) n : ℕ hx : IsLocalization.mk' (↑Γ(Y, Y.basicOpen s)) x ⟨(fun x => s ^ x) n, ⋯⟩ ∈ (fun U => RingHom.ker (CommRingCat.Hom.hom (f.app ↑U))) (Y.affineBasicOpen s) ⊢ f ⁻¹ᵁ Y.basicOpen s = X.basicOpen ((CommRingCat.Hom.hom (f.app ↑U)) s)
simp
no goals
443ed8a730592383
topologicalClosure_subgroupClosure_toSubmonoid
Mathlib/Topology/Algebra/Group/SubmonoidClosure.lean
theorem topologicalClosure_subgroupClosure_toSubmonoid (s : Set G) : (Subgroup.closure s).toSubmonoid.topologicalClosure = (Submonoid.closure s).topologicalClosure
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : CompactSpace G inst✝ : IsTopologicalGroup G s : Set G ⊢ (Subgroup.closure s).topologicalClosure ≤ (Submonoid.closure s).topologicalClosure
refine Submonoid.topologicalClosure_minimal _ ?_ isClosed_closure
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : CompactSpace G inst✝ : IsTopologicalGroup G s : Set G ⊢ (Subgroup.closure s).toSubmonoid ≤ (Submonoid.closure s).topologicalClosure
fccf0f4d21f9338e
CategoryTheory.Limits.HasZeroMorphisms.ext_aux
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
theorem ext_aux (I J : HasZeroMorphisms C) (w : ∀ X Y : C, (I.zero X Y).zero = (J.zero X Y).zero) : I = J
case mk.mk.h.e_5 C : Type u inst✝ : Category.{v, u} C zero✝¹ : (X Y : C) → Zero (X ⟶ Y) comp_zero✝¹ : ∀ {X Y : C} (f : X ⟶ Y) (Z : C), f ≫ 0 = 0 zero_comp✝¹ : ∀ (X : C) {Y Z : C} (f : Y ⟶ Z), 0 ≫ f = 0 zero✝ : (X Y : C) → Zero (X ⟶ Y) comp_zero✝ : ∀ {X Y : C} (f : X ⟶ Y) (Z : C), f ≫ 0 = 0 zero_comp✝ : ∀ (X : C) {Y Z : C} (f : Y ⟶ Z), 0 ≫ f = 0 w : ∀ (X Y : C), Zero.zero = Zero.zero this : zero = zero ⊢ HEq zero_comp✝¹ zero_comp✝
apply proof_irrel_heq
no goals
e7a423b46e9eb497
MvPolynomial.schwartz_zippel_sup_sum
Mathlib/Algebra/MvPolynomial/SchwartzZippel.lean
/-- The **Schwartz-Zippel lemma** For a nonzero multivariable polynomial `p` over an integral domain, the probability that `p` evaluates to zero at points drawn at random from a product of finite subsets `S i` of the integral domain is bounded by the supremum of `∑ i, degᵢ s / #(S i)` ranging over monomials `s` of `p`. -/ lemma schwartz_zippel_sup_sum : ∀ {n} {p : MvPolynomial (Fin n) R} (hp : p ≠ 0) (S : Fin n → Finset R), #{x ∈ S ^^ n | eval x p = 0} / ∏ i, (#(S i) : ℚ≥0) ≤ p.support.sup fun s ↦ ∑ i, (s i / #(S i) : ℚ≥0) | 0, p, hp, S => by -- Because `p` is a polynomial over zero variables, it is constant. rw [p.eq_C_of_isEmpty] at * simp [C_ne_zero.mp hp] -- Now, assume that the theorem holds for all polynomials in `n` variables. | n + 1, p, hp, S => by -- We can consider `p` to be a polynomial over multivariable polynomials in one fewer variables. set p' : Polynomial (MvPolynomial (Fin n) R) := finSuccEquiv R n p with hp' -- Since `p` is not identically zero, there is some `k` such that `pₖ` is not identically zero. -- WLOG `k` is the largest such. set k := p'.natDegree with hk set pₖ := p'.leadingCoeff with hpₖ have hp'₀ : p' ≠ 0 := EmbeddingLike.map_ne_zero_iff.2 hp have hpₖ₀ : pₖ ≠ 0
case h R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : DecidableEq R n : ℕ p : MvPolynomial (Fin (n + 1)) R hp : p ≠ 0 S : Fin (n + 1) → Finset R p' : Polynomial (MvPolynomial (Fin n) R) := (finSuccEquiv R n) p hp' : p' = (finSuccEquiv R n) p k : ℕ := p'.natDegree hk : k = p'.natDegree pₖ : MvPolynomial (Fin n) R := p'.leadingCoeff hpₖ : pₖ = p'.leadingCoeff hp'₀ : p' ≠ 0 hpₖ₀ : pₖ ≠ 0 ⊢ filter (fun xₜ => (eval xₜ) pₖ ≠ 0) (piFinset fun i => tail S i) ⊆ piFinset fun i => tail S i
exact filter_subset ..
no goals
0aa93d268fe4b9d8
SnakeLemma.exact_δ_left
Mathlib/Algebra/Module/SnakeLemma.lean
/-- Suppose we have an exact commutative diagram ``` K₃ | ι₃ ↓ M₁ -f₁→ M₂ -f₂→ M₃ | | | i₁ i₂ i₃ ↓ ↓ ↓ N₁ -g₁→ N₂ -g₂→ N₃ | | π₁ π₂ ↓ ↓ C₁ -G-→ C₂ ``` such that `f₂` is surjective with a (set-theoretic) section `σ`, `g₁` is injective with a (set-theoretic) retraction `ρ`, and `π₁` is surjective, then `K₂ -δ→ C₁ -G→ C₂` is exact. -/ lemma SnakeLemma.exact_δ_left (G : C₁ →ₗ[R] C₂) (hF : G.comp π₁ = π₂.comp g₁) (h : Surjective π₁) : Exact (δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁) G
R : Type u_1 inst✝¹⁸ : CommRing R M₁ : Type u_7 M₂ : Type u_8 M₃ : Type u_9 N₁ : Type u_4 N₂ : Type u_5 N₃ : Type u_10 inst✝¹⁷ : AddCommGroup M₁ inst✝¹⁶ : Module R M₁ inst✝¹⁵ : AddCommGroup M₂ inst✝¹⁴ : Module R M₂ inst✝¹³ : AddCommGroup M₃ inst✝¹² : Module R M₃ inst✝¹¹ : AddCommGroup N₁ inst✝¹⁰ : Module R N₁ inst✝⁹ : AddCommGroup N₂ inst✝⁸ : Module R N₂ inst✝⁷ : AddCommGroup N₃ inst✝⁶ : Module R N₃ i₁ : M₁ →ₗ[R] N₁ i₂ : M₂ →ₗ[R] N₂ i₃ : M₃ →ₗ[R] N₃ f₁ : M₁ →ₗ[R] M₂ f₂ : M₂ →ₗ[R] M₃ hf : Exact ⇑f₁ ⇑f₂ g₁ : N₁ →ₗ[R] N₂ g₂ : N₂ →ₗ[R] N₃ hg : Exact ⇑g₁ ⇑g₂ h₁ : g₁ ∘ₗ i₁ = i₂ ∘ₗ f₁ h₂ : g₂ ∘ₗ i₂ = i₃ ∘ₗ f₂ σ : M₃ → M₂ hσ : ⇑f₂ ∘ σ = id ρ : N₂ → N₁ hρ : ρ ∘ ⇑g₁ = id K₃ : Type u_6 C₁ : Type u_2 C₂ : Type u_3 inst✝⁵ : AddCommGroup K₃ inst✝⁴ : Module R K₃ inst✝³ : AddCommGroup C₁ inst✝² : Module R C₁ inst✝¹ : AddCommGroup C₂ inst✝ : Module R C₂ ι₃ : K₃ →ₗ[R] M₃ hι₃ : Exact ⇑ι₃ ⇑i₃ π₁ : N₁ →ₗ[R] C₁ hπ₁ : Exact ⇑i₁ ⇑π₁ π₂ : N₂ →ₗ[R] C₂ hπ₂ : Exact ⇑i₂ ⇑π₂ G : C₁ →ₗ[R] C₂ hF : G ∘ₗ π₁ = π₂ ∘ₗ g₁ h : Surjective ⇑π₁ ⊢ Exact ⇑(δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁) ⇑G
haveI H₁ : ∀ x, f₂ (σ x) = x := congr_fun hσ
R : Type u_1 inst✝¹⁸ : CommRing R M₁ : Type u_7 M₂ : Type u_8 M₃ : Type u_9 N₁ : Type u_4 N₂ : Type u_5 N₃ : Type u_10 inst✝¹⁷ : AddCommGroup M₁ inst✝¹⁶ : Module R M₁ inst✝¹⁵ : AddCommGroup M₂ inst✝¹⁴ : Module R M₂ inst✝¹³ : AddCommGroup M₃ inst✝¹² : Module R M₃ inst✝¹¹ : AddCommGroup N₁ inst✝¹⁰ : Module R N₁ inst✝⁹ : AddCommGroup N₂ inst✝⁸ : Module R N₂ inst✝⁷ : AddCommGroup N₃ inst✝⁶ : Module R N₃ i₁ : M₁ →ₗ[R] N₁ i₂ : M₂ →ₗ[R] N₂ i₃ : M₃ →ₗ[R] N₃ f₁ : M₁ →ₗ[R] M₂ f₂ : M₂ →ₗ[R] M₃ hf : Exact ⇑f₁ ⇑f₂ g₁ : N₁ →ₗ[R] N₂ g₂ : N₂ →ₗ[R] N₃ hg : Exact ⇑g₁ ⇑g₂ h₁ : g₁ ∘ₗ i₁ = i₂ ∘ₗ f₁ h₂ : g₂ ∘ₗ i₂ = i₃ ∘ₗ f₂ σ : M₃ → M₂ hσ : ⇑f₂ ∘ σ = id ρ : N₂ → N₁ hρ : ρ ∘ ⇑g₁ = id K₃ : Type u_6 C₁ : Type u_2 C₂ : Type u_3 inst✝⁵ : AddCommGroup K₃ inst✝⁴ : Module R K₃ inst✝³ : AddCommGroup C₁ inst✝² : Module R C₁ inst✝¹ : AddCommGroup C₂ inst✝ : Module R C₂ ι₃ : K₃ →ₗ[R] M₃ hι₃ : Exact ⇑ι₃ ⇑i₃ π₁ : N₁ →ₗ[R] C₁ hπ₁ : Exact ⇑i₁ ⇑π₁ π₂ : N₂ →ₗ[R] C₂ hπ₂ : Exact ⇑i₂ ⇑π₂ G : C₁ →ₗ[R] C₂ hF : G ∘ₗ π₁ = π₂ ∘ₗ g₁ h : Surjective ⇑π₁ H₁ : ∀ (x : M₃), f₂ (σ x) = x ⊢ Exact ⇑(δ i₁ i₂ i₃ f₁ f₂ hf g₁ g₂ hg h₁ h₂ σ hσ ρ hρ ι₃ hι₃ π₁ hπ₁) ⇑G
003c564d5000ab77
Real.sInf_smul_of_nonneg
Mathlib/Data/Real/Pointwise.lean
theorem Real.sInf_smul_of_nonneg (ha : 0 ≤ a) (s : Set ℝ) : sInf (a • s) = a • sInf s
case inr.inl α : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : MulActionWithZero α ℝ inst✝ : OrderedSMul α ℝ s : Set ℝ hs : s.Nonempty ha : 0 ≤ 0 ⊢ sInf (0 • s) = 0 • sInf s
rw [zero_smul_set hs, zero_smul]
case inr.inl α : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : MulActionWithZero α ℝ inst✝ : OrderedSMul α ℝ s : Set ℝ hs : s.Nonempty ha : 0 ≤ 0 ⊢ sInf 0 = 0
e87faa52ebef3829
Besicovitch.ae_tendsto_measure_inter_div_of_measurableSet
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem ae_tendsto_measure_inter_div_of_measurableSet (μ : Measure β) [IsLocallyFiniteMeasure μ] {s : Set β} (hs : MeasurableSet s) : ∀ᵐ x ∂μ, Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 (s.indicator 1 x))
β : Type u inst✝⁵ : MetricSpace β inst✝⁴ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : SecondCountableTopology β inst✝¹ : HasBesicovitchCovering β μ : Measure β inst✝ : IsLocallyFiniteMeasure μ s : Set β hs : MeasurableSet s ⊢ ∀ᵐ (x : β) ∂μ, Tendsto (fun r => μ (s ∩ closedBall x r) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 (s.indicator 1 x))
filter_upwards [VitaliFamily.ae_tendsto_measure_inter_div_of_measurableSet (Besicovitch.vitaliFamily μ) hs]
case h β : Type u inst✝⁵ : MetricSpace β inst✝⁴ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : SecondCountableTopology β inst✝¹ : HasBesicovitchCovering β μ : Measure β inst✝ : IsLocallyFiniteMeasure μ s : Set β hs : MeasurableSet s ⊢ ∀ (a : β), Tendsto (fun a => μ (s ∩ a) / μ a) ((Besicovitch.vitaliFamily μ).filterAt a) (𝓝 (s.indicator 1 a)) → Tendsto (fun r => μ (s ∩ closedBall a r) / μ (closedBall a r)) (𝓝[>] 0) (𝓝 (s.indicator 1 a))
b2265b4585ab8741
Filter.map₂_sup_right
Mathlib/Order/Filter/NAry.lean
theorem map₂_sup_right : map₂ m f (g₁ ⊔ g₂) = map₂ m f g₁ ⊔ map₂ m f g₂
α : Type u_1 β : Type u_3 γ : Type u_5 m : α → β → γ f : Filter α g₁ g₂ : Filter β ⊢ map₂ m f (g₁ ⊔ g₂) = map₂ m f g₁ ⊔ map₂ m f g₂
simp_rw [← map_prod_eq_map₂, prod_sup, map_sup]
no goals
aaa94fa941e0727d
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnitInvariant_insertUnit
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem insertUnitInvariant_insertUnit {n : Nat} (assignments0 : Array Assignment) (assignments0_size : assignments0.size = n) (units : Array (Literal (PosFin n))) (assignments : Array Assignment) (assignments_size : assignments.size = n) (foundContradiction : Bool) (l : Literal (PosFin n)) : InsertUnitInvariant assignments0 assignments0_size units assignments assignments_size → let update_res := insertUnit (units, assignments, foundContradiction) l have update_res_size : update_res.snd.fst.size = n
case neg n : Nat assignments0 : Array Assignment assignments0_size : assignments0.size = n units : Array (Literal (PosFin n)) assignments : Array Assignment assignments_size : assignments.size = n foundContradiction : Bool l : Literal (PosFin n) i : Fin n i_in_bounds : ↑i < assignments.size l_in_bounds : l.fst.val < assignments.size j : Fin units.size b : Bool i_gt_zero : ↑i > 0 h4 : ∀ (k : Fin units.size), ¬k = j → ¬units[↑k].fst.val = ↑i h5 : ¬hasAssignment l.snd assignments[l.fst.val]! = true i_eq_l : ↑i = l.fst.val units_size_lt_updatedUnits_size : units.size < (insertUnit (units, assignments, foundContradiction) l).fst.size mostRecentUnitIdx : Fin (insertUnit (units, assignments, foundContradiction) l).fst.size := ⟨units.size, units_size_lt_updatedUnits_size⟩ j_lt_updatedUnits_size : ↑j < (insertUnit (units, assignments, foundContradiction) l).fst.size h1 : units[↑j] = (⟨↑i, ⋯⟩, false) h2 : assignments[↑i] = addAssignment false assignments0[↑i] h3 : hasAssignment false assignments0[↑i] = false hb : b = false hl : l.snd = true k : Fin (if hasAssignment l.snd assignments[l.fst.val]! = true then (units, assignments, foundContradiction) else (units.push (l.fst, l.snd), assignments.modify l.fst.val (addAssignment l.snd), foundContradiction || assignments[l.fst.val]! != unassigned)).fst.size k_ne_l : ¬k = mostRecentUnitIdx k_ne_j : ¬k = ⟨↑j, j_lt_updatedUnits_size⟩ h : ¬↑k < units.size k_property : ↑k < units.size + 1 ⊢ False
rcases Nat.lt_or_eq_of_le <| Nat.le_of_lt_succ k_property with k_lt_units_size | k_eq_units_size
case neg.inl n : Nat assignments0 : Array Assignment assignments0_size : assignments0.size = n units : Array (Literal (PosFin n)) assignments : Array Assignment assignments_size : assignments.size = n foundContradiction : Bool l : Literal (PosFin n) i : Fin n i_in_bounds : ↑i < assignments.size l_in_bounds : l.fst.val < assignments.size j : Fin units.size b : Bool i_gt_zero : ↑i > 0 h4 : ∀ (k : Fin units.size), ¬k = j → ¬units[↑k].fst.val = ↑i h5 : ¬hasAssignment l.snd assignments[l.fst.val]! = true i_eq_l : ↑i = l.fst.val units_size_lt_updatedUnits_size : units.size < (insertUnit (units, assignments, foundContradiction) l).fst.size mostRecentUnitIdx : Fin (insertUnit (units, assignments, foundContradiction) l).fst.size := ⟨units.size, units_size_lt_updatedUnits_size⟩ j_lt_updatedUnits_size : ↑j < (insertUnit (units, assignments, foundContradiction) l).fst.size h1 : units[↑j] = (⟨↑i, ⋯⟩, false) h2 : assignments[↑i] = addAssignment false assignments0[↑i] h3 : hasAssignment false assignments0[↑i] = false hb : b = false hl : l.snd = true k : Fin (if hasAssignment l.snd assignments[l.fst.val]! = true then (units, assignments, foundContradiction) else (units.push (l.fst, l.snd), assignments.modify l.fst.val (addAssignment l.snd), foundContradiction || assignments[l.fst.val]! != unassigned)).fst.size k_ne_l : ¬k = mostRecentUnitIdx k_ne_j : ¬k = ⟨↑j, j_lt_updatedUnits_size⟩ h : ¬↑k < units.size k_property : ↑k < units.size + 1 k_lt_units_size : ↑k < units.size ⊢ False case neg.inr n : Nat assignments0 : Array Assignment assignments0_size : assignments0.size = n units : Array (Literal (PosFin n)) assignments : Array Assignment assignments_size : assignments.size = n foundContradiction : Bool l : Literal (PosFin n) i : Fin n i_in_bounds : ↑i < assignments.size l_in_bounds : l.fst.val < assignments.size j : Fin units.size b : Bool i_gt_zero : ↑i > 0 h4 : ∀ (k : Fin units.size), ¬k = j → ¬units[↑k].fst.val = ↑i h5 : ¬hasAssignment l.snd assignments[l.fst.val]! = true i_eq_l : ↑i = l.fst.val units_size_lt_updatedUnits_size : units.size < (insertUnit (units, assignments, foundContradiction) l).fst.size mostRecentUnitIdx : Fin (insertUnit (units, assignments, foundContradiction) l).fst.size := ⟨units.size, units_size_lt_updatedUnits_size⟩ j_lt_updatedUnits_size : ↑j < (insertUnit (units, assignments, foundContradiction) l).fst.size h1 : units[↑j] = (⟨↑i, ⋯⟩, false) h2 : assignments[↑i] = addAssignment false assignments0[↑i] h3 : hasAssignment false assignments0[↑i] = false hb : b = false hl : l.snd = true k : Fin (if hasAssignment l.snd assignments[l.fst.val]! = true then (units, assignments, foundContradiction) else (units.push (l.fst, l.snd), assignments.modify l.fst.val (addAssignment l.snd), foundContradiction || assignments[l.fst.val]! != unassigned)).fst.size k_ne_l : ¬k = mostRecentUnitIdx k_ne_j : ¬k = ⟨↑j, j_lt_updatedUnits_size⟩ h : ¬↑k < units.size k_property : ↑k < units.size + 1 k_eq_units_size : ↑k = units.size ⊢ False
4e9908103f3f6d5f
Polynomial.IsWeaklyEisensteinAt.map
Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean
theorem map (hf : f.IsWeaklyEisensteinAt 𝓟) {A : Type v} [CommRing A] (φ : R →+* A) : (f.map φ).IsWeaklyEisensteinAt (𝓟.map φ)
R : Type u inst✝¹ : CommSemiring R 𝓟 : Ideal R f : R[X] hf : f.IsWeaklyEisensteinAt 𝓟 A : Type v inst✝ : CommRing A φ : R →+* A n✝ : ℕ hn : n✝ < (Polynomial.map φ f).natDegree ⊢ φ (f.coeff n✝) ∈ Ideal.map φ 𝓟
exact mem_map_of_mem _ (hf.mem (lt_of_lt_of_le hn natDegree_map_le))
no goals
aa9cfbf730e9ec74
MvQPF.liftR_map
Mathlib/Data/QPF/Multivariate/Constructions/Cofix.lean
theorem liftR_map {α β : TypeVec n} {F' : TypeVec n → Type u} [MvFunctor F'] [LawfulMvFunctor F'] (R : β ⊗ β ⟹ «repeat» n Prop) (x : F' α) (f g : α ⟹ β) (h : α ⟹ Subtype_ R) (hh : subtypeVal _ ⊚ h = (f ⊗' g) ⊚ prod.diag) : LiftR' R (f <$$> x) (g <$$> x)
n : ℕ α β : TypeVec.{u_1} n F' : TypeVec.{u_1} n → Type u inst✝¹ : MvFunctor F' inst✝ : LawfulMvFunctor F' R : β ⊗ β ⟹ «repeat» n Prop x : F' α f g : α ⟹ β h : α ⟹ Subtype_ R hh : subtypeVal R ⊚ h = (f ⊗' g) ⊚ prod.diag ⊢ (f ⊚ TypeVec.id) <$$> x = f <$$> x ∧ (g ⊚ TypeVec.id) <$$> x = g <$$> x
dsimp [LiftR']
n : ℕ α β : TypeVec.{u_1} n F' : TypeVec.{u_1} n → Type u inst✝¹ : MvFunctor F' inst✝ : LawfulMvFunctor F' R : β ⊗ β ⟹ «repeat» n Prop x : F' α f g : α ⟹ β h : α ⟹ Subtype_ R hh : subtypeVal R ⊚ h = (f ⊗' g) ⊚ prod.diag ⊢ f <$$> x = f <$$> x ∧ g <$$> x = g <$$> x
69a7a718513674ac
RCLike.tendsto_add_mul_div_add_mul_atTop_nhds
Mathlib/Analysis/SpecificLimits/RCLike.lean
theorem RCLike.tendsto_add_mul_div_add_mul_atTop_nhds (a b c : 𝕜) {d : 𝕜} (hd : d ≠ 0) : Tendsto (fun k : ℕ ↦ (a + c * k) / (b + d * k)) atTop (𝓝 (c / d))
𝕜 : Type u_1 inst✝ : RCLike 𝕜 a b c d : 𝕜 hd : d ≠ 0 ⊢ Tendsto (fun k => (↑k)⁻¹) atTop (𝓝 0)
exact RCLike.tendsto_inverse_atTop_nhds_zero_nat 𝕜
no goals
6d8178cde5b196f7
CochainComplex.mappingCone.inl_snd
Mathlib/Algebra/Homology/HomotopyCategory/MappingCone.lean
@[simp] lemma inl_snd : (inl φ).comp (snd φ) (add_zero (-1)) = 0
case h C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C F G : CochainComplex C ℤ φ : F ⟶ G inst✝ : HasHomotopyCofiber φ p q : ℤ hpq : p + -1 = q ⊢ ((inl φ).comp (snd φ) ⋯).v p q hpq = Cochain.v 0 p q hpq
simp [Cochain.comp_v _ _ (add_zero (-1)) p q q (by omega) (by omega)]
no goals
44f1f38cc4972470
ZMod.unitsMap_comp
Mathlib/Data/ZMod/Units.lean
lemma unitsMap_comp {d : ℕ} (hm : n ∣ m) (hd : m ∣ d) : (unitsMap hm).comp (unitsMap hd) = unitsMap (dvd_trans hm hd)
n m d : ℕ hm : n ∣ m hd : m ∣ d ⊢ Units.map ((↑(castHom hm (ZMod n))).comp ↑(castHom hd (ZMod m))) = Units.map ↑(castHom ⋯ (ZMod n))
exact congr_arg Units.map <| congr_arg RingHom.toMonoidHom <| castHom_comp hm hd
no goals
da72c543c0a8baaf
AlgebraicGeometry.IsAffineOpen.isoSpec_inv_appTop
Mathlib/AlgebraicGeometry/AffineScheme.lean
lemma isoSpec_inv_appTop : hU.isoSpec.inv.appTop = U.topIso.hom ≫ (Scheme.ΓSpecIso Γ(X, U)).inv
X : Scheme U : X.Opens hU : IsAffineOpen U ⊢ Scheme.Hom.app (Spec.map (X.presheaf.map (eqToHom ⋯).op)) (inv (↑U).toSpecΓ ⁻¹ᵁ ⊤) = Scheme.Hom.appTop (Spec.map (X.presheaf.map (eqToHom ⋯).op))
simp only [Opens.map_top]
no goals
973fd42a0973af38
SimpleGraph.Iso.card_edgeFinset_eq
Mathlib/Combinatorics/SimpleGraph/Operations.lean
theorem card_edgeFinset_eq [Fintype G.edgeSet] [Fintype G'.edgeSet] : #G.edgeFinset = #G'.edgeFinset
V : Type u_1 G : SimpleGraph V W : Type u_2 G' : SimpleGraph W f : G ≃g G' inst✝¹ : Fintype ↑G.edgeSet inst✝ : Fintype ↑G'.edgeSet ⊢ #G.edgeFinset = #G'.edgeFinset
apply Finset.card_eq_of_equiv
case i V : Type u_1 G : SimpleGraph V W : Type u_2 G' : SimpleGraph W f : G ≃g G' inst✝¹ : Fintype ↑G.edgeSet inst✝ : Fintype ↑G'.edgeSet ⊢ { x // x ∈ G.edgeFinset } ≃ { x // x ∈ G'.edgeFinset }
85bae14cfc5d0190
CFC.negPart_mul_posPart
Mathlib/Analysis/SpecialFunctions/ContinuousFunctionalCalculus/PosPart.lean
@[simp] lemma negPart_mul_posPart (a : A) : a⁻ * a⁺ = 0
case pos A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : Module ℝ A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : IsScalarTower ℝ A A inst✝² : StarRing A inst✝¹ : TopologicalSpace A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha : IsSelfAdjoint a x : ℝ x✝ : x ∈ quasispectrum ℝ a ⊢ x⁻ * x⁺ = 0 x
simp only [_root_.posPart_def, _root_.negPart_def]
case pos A : Type u_1 inst✝⁶ : NonUnitalRing A inst✝⁵ : Module ℝ A inst✝⁴ : SMulCommClass ℝ A A inst✝³ : IsScalarTower ℝ A A inst✝² : StarRing A inst✝¹ : TopologicalSpace A inst✝ : NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint a : A ha : IsSelfAdjoint a x : ℝ x✝ : x ∈ quasispectrum ℝ a ⊢ (-x ⊔ 0) * (x ⊔ 0) = 0 x
ef2285912fb9ffa3
Submodule.mem_span_finite_of_mem_span
Mathlib/LinearAlgebra/Span/Defs.lean
theorem mem_span_finite_of_mem_span {S : Set M} {x : M} (hx : x ∈ span R S) : ∃ T : Finset M, ↑T ⊆ S ∧ x ∈ span R (T : Set M)
case refine_3.intro.intro.intro.intro R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ ∃ T, ↑T ⊆ S ∧ x + y ∈ span R ↑T
refine ⟨X ∪ Y, ?_, ?_⟩
case refine_3.intro.intro.intro.intro.refine_1 R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ ↑(X ∪ Y) ⊆ S case refine_3.intro.intro.intro.intro.refine_2 R : Type u_1 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ x + y ∈ span R ↑(X ∪ Y)
56bd86754d77402c
covariant_le_of_covariant_lt
Mathlib/Algebra/Order/Monoid/Unbundled/Defs.lean
theorem covariant_le_of_covariant_lt [PartialOrder N] : Covariant M N μ (· < ·) → Covariant M N μ (· ≤ ·)
M : Type u_1 N : Type u_2 μ : M → N → N inst✝ : PartialOrder N ⊢ (Covariant M N μ fun x1 x2 => x1 < x2) → Covariant M N μ fun x1 x2 => x1 ≤ x2
intro h a b c bc
M : Type u_1 N : Type u_2 μ : M → N → N inst✝ : PartialOrder N h : Covariant M N μ fun x1 x2 => x1 < x2 a : M b c : N bc : b ≤ c ⊢ μ a b ≤ μ a c
d2d038fc353a5ff4
Matrix.Pivot.isTwoBlockDiagonal_listTransvecCol_mul_mul_listTransvecRow
Mathlib/LinearAlgebra/Matrix/Transvection.lean
theorem isTwoBlockDiagonal_listTransvecCol_mul_mul_listTransvecRow (hM : M (inr unit) (inr unit) ≠ 0) : IsTwoBlockDiagonal ((listTransvecCol M).prod * M * (listTransvecRow M).prod)
case right.a 𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 hM : M (inr ()) (inr ()) ≠ 0 i : Unit j : Fin r ⊢ ((listTransvecCol M).prod * M * (listTransvecRow M).prod).toBlocks₂₁ i j = 0 i j
have : i = unit := by simp only [eq_iff_true_of_subsingleton]
case right.a 𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 hM : M (inr ()) (inr ()) ≠ 0 i : Unit j : Fin r this : i = () ⊢ ((listTransvecCol M).prod * M * (listTransvecRow M).prod).toBlocks₂₁ i j = 0 i j
82335502dab8b550
cfc_comp
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Unital.lean
lemma cfc_comp (g f : R → R) (a : A) (ha : p a
R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p inst✝ : UniqueHom R A g f : R → R a : A ha : autoParam (p a) _auto✝ hg : autoParam (ContinuousOn g (f '' spectrum R a)) _auto✝ hf : autoParam (ContinuousOn f (spectrum R a)) _auto✝ ⊢ cfc (g ∘ f) a = cfc g (cfc f a)
have := hg.comp hf <| (spectrum R a).mapsTo_image f
R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p inst✝ : UniqueHom R A g f : R → R a : A ha : autoParam (p a) _auto✝ hg : autoParam (ContinuousOn g (f '' spectrum R a)) _auto✝ hf : autoParam (ContinuousOn f (spectrum R a)) _auto✝ this : ContinuousOn (g ∘ f) (spectrum R a) ⊢ cfc (g ∘ f) a = cfc g (cfc f a)
c2e8482f645781c9
Set.mulIndicator_iInter_apply
Mathlib/Algebra/Order/Group/Indicator.lean
@[to_additive] lemma mulIndicator_iInter_apply (h1 : (⊥ : M) = 1) (s : ι → Set α) (f : α → M) (x : α) : mulIndicator (⋂ i, s i) f x = ⨅ i, mulIndicator (s i) f x
ι : Sort u_1 α : Type u_2 M : Type u_3 inst✝² : CompleteLattice M inst✝¹ : One M inst✝ : Nonempty ι h1 : ⊥ = 1 s : ι → Set α f : α → M x : α ⊢ (⋂ i, s i).mulIndicator f x = ⨅ i, (s i).mulIndicator f x
by_cases hx : x ∈ ⋂ i, s i
case pos ι : Sort u_1 α : Type u_2 M : Type u_3 inst✝² : CompleteLattice M inst✝¹ : One M inst✝ : Nonempty ι h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : x ∈ ⋂ i, s i ⊢ (⋂ i, s i).mulIndicator f x = ⨅ i, (s i).mulIndicator f x case neg ι : Sort u_1 α : Type u_2 M : Type u_3 inst✝² : CompleteLattice M inst✝¹ : One M inst✝ : Nonempty ι h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : x ∉ ⋂ i, s i ⊢ (⋂ i, s i).mulIndicator f x = ⨅ i, (s i).mulIndicator f x
1f86a6e9fd525ad5
Finset.supIndep_product_iff
Mathlib/Order/SupIndep.lean
theorem supIndep_product_iff {s : Finset ι} {t : Finset ι'} {f : ι × ι' → α} : (s.product t).SupIndep f ↔ (s.SupIndep fun i => t.sup fun i' => f (i, i')) ∧ t.SupIndep fun i' => s.sup fun i => f (i, i')
case refine_1 α : Type u_1 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s : Finset ι t : Finset ι' f : ι × ι' → α h : (↑(s.product t)).PairwiseDisjoint f i : ι hi : i ∈ ↑s j : ι hj : j ∈ ↑s hij : i ≠ j i' : ι' hi' : i' ∈ t j' : ι' hj' : j' ∈ t ⊢ Disjoint (f (i, i')) (f (j, j'))
exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij)
no goals
0ebb2b0ffa7364cc
thickening_thickening
Mathlib/Analysis/NormedSpace/Pointwise.lean
theorem thickening_thickening (hε : 0 < ε) (hδ : 0 < δ) (s : Set E) : thickening ε (thickening δ s) = thickening (ε + δ) s := (thickening_thickening_subset _ _ _).antisymm fun x => by simp_rw [mem_thickening_iff] rintro ⟨z, hz, hxz⟩ rw [add_comm] at hxz obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hε hδ hxz exact ⟨y, ⟨_, hz, hyz⟩, hxy⟩
case intro.intro E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E δ ε : ℝ hε : 0 < ε hδ : 0 < δ s : Set E x z : E hz : z ∈ s hxz : dist x z < δ + ε ⊢ ∃ z, (∃ z_1 ∈ s, dist z z_1 < δ) ∧ dist x z < ε
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hε hδ hxz
case intro.intro.intro.intro E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E δ ε : ℝ hε : 0 < ε hδ : 0 < δ s : Set E x z : E hz : z ∈ s hxz : dist x z < δ + ε y : E hxy : dist x y < ε hyz : dist y z < δ ⊢ ∃ z, (∃ z_1 ∈ s, dist z z_1 < δ) ∧ dist x z < ε
9e14a4b557febbe2
SimplexCategory.len_le_of_mono
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem len_le_of_mono {x y : SimplexCategory} {f : x ⟶ y} : Mono f → x.len ≤ y.len
x y : SimplexCategory f : x ⟶ y hyp_f_mono : Mono f ⊢ x.len ≤ y.len
have f_inj : Function.Injective f.toOrderHom.toFun := mono_iff_injective.1 hyp_f_mono
x y : SimplexCategory f : x ⟶ y hyp_f_mono : Mono f f_inj : Function.Injective (Hom.toOrderHom f).toFun ⊢ x.len ≤ y.len
7453314deb953b9d
Finsupp.range_linearCombination
Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean
theorem range_linearCombination : LinearMap.range (linearCombination R v) = span R (range v)
case h.mpr.a α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : α → M x : M ⊢ Set.range v ⊆ ↑(LinearMap.range (linearCombination R v))
intro x hx
case h.mpr.a α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : α → M x✝ x : M hx : x ∈ Set.range v ⊢ x ∈ ↑(LinearMap.range (linearCombination R v))
28c3b4ab3746ce9c
Topology.IsScott.scottContinuous_iff_continuous
Mathlib/Topology/Order/ScottTopology.lean
@[simp] lemma scottContinuous_iff_continuous {D : Set (Set α)} [Topology.IsScott α D] (hD : ∀ a b : α, a ≤ b → {a, b} ∈ D) : ScottContinuousOn D f ↔ Continuous f
case refine_2 α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : TopologicalSpace α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : IsScott β univ f : α → β D : Set (Set α) inst✝ : IsScott α D hD : ∀ (a b : α), a ≤ b → {a, b} ∈ D hf : Continuous f t : Set α h₀ : t ∈ D d₁ : t.Nonempty d₂ : DirectedOn (fun x1 x2 => x1 ≤ x2) t a : α d₃ : IsLUB t a b : β hb : b ∈ upperBounds (f '' t) ⊢ f a ≤ b
by_contra h
case refine_2 α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : TopologicalSpace α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : IsScott β univ f : α → β D : Set (Set α) inst✝ : IsScott α D hD : ∀ (a b : α), a ≤ b → {a, b} ∈ D hf : Continuous f t : Set α h₀ : t ∈ D d₁ : t.Nonempty d₂ : DirectedOn (fun x1 x2 => x1 ≤ x2) t a : α d₃ : IsLUB t a b : β hb : b ∈ upperBounds (f '' t) h : ¬f a ≤ b ⊢ False
ca207f5b40605d41
iteratedFDerivWithin_neg_apply
Mathlib/Analysis/Calculus/ContDiff/Operations.lean
theorem iteratedFDerivWithin_neg_apply {f : E → F} (hu : UniqueDiffOn 𝕜 s) (hx : x ∈ s) : iteratedFDerivWithin 𝕜 i (-f) s x = -iteratedFDerivWithin 𝕜 i f s x
case zero.H 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F hu : UniqueDiffOn 𝕜 s x : E hx : x ∈ s x✝ : Fin 0 → E ⊢ (iteratedFDerivWithin 𝕜 0 (-f) s x) x✝ = (-iteratedFDerivWithin 𝕜 0 f s x) x✝
simp
no goals
bb20b634e45c45b1
List.dropInfix?_eq_some_iff
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem dropInfix?_eq_some_iff [BEq α] {l i p s : List α} : dropInfix? l i = some (p, s) ↔ -- `i` is an infix up to `==` (∃ i', l = p ++ i' ++ s ∧ i' == i) ∧ -- and there is no shorter prefix for which that is the case (∀ p' i' s', l = p' ++ i' ++ s' → i' == i → p'.length ≥ p.length)
α : Type u_1 inst✝ : BEq α l i p s : List α ⊢ dropInfix?.go i l [] = some (p, s) ↔ (∃ i', l = p ++ i' ++ s ∧ (i' == i) = true) ∧ ∀ (p' i' s' : List α), l = p' ++ i' ++ s' → (i' == i) = true → p'.length ≥ p.length
rw [dropInfix?_go_eq_some_iff]
α : Type u_1 inst✝ : BEq α l i p s : List α ⊢ (∃ p', p = [].reverse ++ p' ∧ (∃ i', l = p' ++ i' ++ s ∧ (i' == i) = true) ∧ ∀ (p'' i'' s'' : List α), l = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ p'.length) ↔ (∃ i', l = p ++ i' ++ s ∧ (i' == i) = true) ∧ ∀ (p' i' s' : List α), l = p' ++ i' ++ s' → (i' == i) = true → p'.length ≥ p.length
670e84ee38da8bdb
List.map_inj
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem map_inj : map f = map g ↔ f = g
case mpr α✝¹ : Type u_1 α✝ : Type u_2 f g : α✝¹ → α✝ h : f = g ⊢ map f = map g
subst h
case mpr α✝¹ : Type u_1 α✝ : Type u_2 f : α✝¹ → α✝ ⊢ map f = map f
707d036b1fa4a9fd
UniformConvergenceCLM.topologicalSpace_mono
Mathlib/Topology/Algebra/Module/StrongTopology.lean
theorem topologicalSpace_mono [TopologicalSpace F] [IsTopologicalAddGroup F] (h : 𝔖₂ ⊆ 𝔖₁) : instTopologicalSpace σ F 𝔖₁ ≤ instTopologicalSpace σ F 𝔖₂
𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝⁸ : NormedField 𝕜₁ inst✝⁷ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 F : Type u_4 inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜₁ E inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup F inst✝² : Module 𝕜₂ F 𝔖₁ 𝔖₂ : Set (Set E) inst✝¹ : TopologicalSpace F inst✝ : IsTopologicalAddGroup F h : 𝔖₂ ⊆ 𝔖₁ this : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F ⊢ instTopologicalSpace σ F 𝔖₁ ≤ instTopologicalSpace σ F 𝔖₂
haveI : UniformAddGroup F := uniformAddGroup_of_addCommGroup
𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝⁸ : NormedField 𝕜₁ inst✝⁷ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 F : Type u_4 inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜₁ E inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup F inst✝² : Module 𝕜₂ F 𝔖₁ 𝔖₂ : Set (Set E) inst✝¹ : TopologicalSpace F inst✝ : IsTopologicalAddGroup F h : 𝔖₂ ⊆ 𝔖₁ this✝ : UniformSpace F := IsTopologicalAddGroup.toUniformSpace F this : UniformAddGroup F ⊢ instTopologicalSpace σ F 𝔖₁ ≤ instTopologicalSpace σ F 𝔖₂
798e9de145e94e05
Liouville.exists_pos_real_of_irrational_root
Mathlib/NumberTheory/Transcendental/Liouville/Basic.lean
theorem exists_pos_real_of_irrational_root {α : ℝ} (ha : Irrational α) {f : ℤ[X]} (f0 : f ≠ 0) (fa : eval α (map (algebraMap ℤ ℝ) f) = 0) : ∃ A : ℝ, 0 < A ∧ ∀ a : ℤ, ∀ b : ℕ, (1 : ℝ) ≤ ((b : ℝ) + 1) ^ f.natDegree * (|α - a / (b + 1)| * A)
α : ℝ ha : Irrational α f : ℤ[X] f0 : f ≠ 0 fR : ℝ[X] := map (algebraMap ℤ ℝ) f fa : eval α fR = 0 ⊢ ∃ A, 0 < A ∧ ∀ (a : ℤ) (b : ℕ), 1 ≤ (↑b + 1) ^ f.natDegree * (|α - ↑a / (↑b + 1)| * A)
obtain fR0 : fR ≠ 0 := fun fR0 => (map_injective (algebraMap ℤ ℝ) fun _ _ A => Int.cast_inj.mp A).ne f0 (fR0.trans (Polynomial.map_zero _).symm)
α : ℝ ha : Irrational α f : ℤ[X] f0 : f ≠ 0 fR : ℝ[X] := map (algebraMap ℤ ℝ) f fa : eval α fR = 0 fR0 : fR ≠ 0 ⊢ ∃ A, 0 < A ∧ ∀ (a : ℤ) (b : ℕ), 1 ≤ (↑b + 1) ^ f.natDegree * (|α - ↑a / (↑b + 1)| * A)
438cd78b42993df9
BitVec.ushiftRightRec_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem ushiftRightRec_eq (x : BitVec w₁) (y : BitVec w₂) (n : Nat) : ushiftRightRec x y n = x >>> (y.setWidth (n + 1)).setWidth w₂
w₁ w₂ n : Nat ih : ∀ (x : BitVec w₁) (y : BitVec w₂), x.ushiftRightRec y n = x >>> setWidth w₂ (setWidth (n + 1) y) x : BitVec w₁ y : BitVec w₂ ⊢ (x.ushiftRightRec y n >>> if y.getLsbD (n + 1) = true then twoPow w₂ (n + 1) else 0#w₂) = x >>> setWidth w₂ (setWidth (n + 1 + 1) y)
rw [ih]
w₁ w₂ n : Nat ih : ∀ (x : BitVec w₁) (y : BitVec w₂), x.ushiftRightRec y n = x >>> setWidth w₂ (setWidth (n + 1) y) x : BitVec w₁ y : BitVec w₂ ⊢ (x >>> setWidth w₂ (setWidth (n + 1) y) >>> if y.getLsbD (n + 1) = true then twoPow w₂ (n + 1) else 0#w₂) = x >>> setWidth w₂ (setWidth (n + 1 + 1) y)
c716927de5030eb6
lemma₁
Mathlib/NumberTheory/LSeries/SumCoeff.lean
theorem lemma₁ (hlim : Tendsto (fun n : ℕ ↦ (∑ k ∈ Icc 1 n, f k) / n) atTop (𝓝 l)) {s : ℝ} (hs : 1 < s) : IntegrableOn (fun t : ℝ ↦ (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * (t : ℂ) ^ (-(s : ℂ) - 1)) (Set.Ici 1)
case refine_1 f : ℕ → ℂ l : ℂ hlim : Tendsto (fun n => (∑ k ∈ Icc 1 n, f k) / ↑n) atTop (𝓝 l) s : ℝ hs : 1 < s h₁ : LocallyIntegrableOn (fun t => (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * ↑t ^ (-↑s - 1)) (Set.Ici 1) volume h₂ : (fun t => ∑ k ∈ Icc 1 ⌊t⌋₊, f k) =O[atTop] fun t => t ^ 1 ⊢ (fun t => ↑t ^ (-↑s - 1)) =O[atTop] fun t => t ^ (-s - 1)
exact (norm_ofReal_cpow_eventually_eq_atTop _).isBigO.of_norm_left
no goals
44984ad91259849f
GenLoop.homotopicTo
Mathlib/Topology/Homotopy/HomotopyGroup.lean
theorem homotopicTo (i : N) {p q : Ω^ N X x} : Homotopic p q → (toLoop i p).Homotopic (toLoop i q)
case refine_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : (↑p).HomotopyRel (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), { toFun := fun t => ⟨(homotopyTo i H) t, ⋯⟩, continuous_toFun := ⋯ }.toFun (1, x_1) = (toLoop i q).toContinuousMap x_1 case refine_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : (↑p).HomotopyRel (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ H ((0, x✝).1, (Cube.insertAt i) ((0, x✝).2, y✝)) = p ((Cube.insertAt i) (x✝, y✝)) case refine_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : (↑p).HomotopyRel (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → { toFun := fun x_2 => { toFun := fun t => ⟨(homotopyTo i H) t, ⋯⟩, continuous_toFun := ⋯, map_zero_left := ⋯, map_one_left := ?refine_4 }.toFun (t, x_2), continuous_toFun := ⋯ } x_1 = (toLoop i p).toContinuousMap x_1
intro
case refine_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : (↑p).HomotopyRel (↑q) (Cube.boundary N) x✝ : ↑I ⊢ { toFun := fun t => ⟨(homotopyTo i H) t, ⋯⟩, continuous_toFun := ⋯ }.toFun (1, x✝) = (toLoop i q).toContinuousMap x✝ case refine_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : (↑p).HomotopyRel (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ H ((0, x✝).1, (Cube.insertAt i) ((0, x✝).2, y✝)) = p ((Cube.insertAt i) (x✝, y✝)) case refine_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : (↑p).HomotopyRel (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → { toFun := fun x_2 => { toFun := fun t => ⟨(homotopyTo i H) t, ⋯⟩, continuous_toFun := ⋯, map_zero_left := ⋯, map_one_left := ⋯ }.toFun (t, x_2), continuous_toFun := ⋯ } x_1 = (toLoop i p).toContinuousMap x_1
5948809eedd27d88
List.filter_eq_cons_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem filter_eq_cons_iff {l} {a} {as} : filter p l = a :: as ↔ ∃ l₁ l₂, l = l₁ ++ a :: l₂ ∧ (∀ x, x ∈ l₁ → ¬p x) ∧ p a ∧ filter p l₂ = as
case mp.cons α✝ : Type u_1 p : α✝ → Bool a : α✝ as : List α✝ x : α✝ l : List α✝ ih : filter p l = a :: as → ∃ l₁ l₂, l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝), x ∈ l₁ → ¬p x = true) ∧ p a = true ∧ filter p l₂ = as h : (if p x = true then x :: filter p l else filter p l) = a :: as ⊢ ∃ l₁ l₂, x :: l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝), x ∈ l₁ → ¬p x = true) ∧ p a = true ∧ filter p l₂ = as
split at h <;> rename_i w
case mp.cons.isTrue α✝ : Type u_1 p : α✝ → Bool a : α✝ as : List α✝ x : α✝ l : List α✝ ih : filter p l = a :: as → ∃ l₁ l₂, l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝), x ∈ l₁ → ¬p x = true) ∧ p a = true ∧ filter p l₂ = as w : p x = true h : x :: filter p l = a :: as ⊢ ∃ l₁ l₂, x :: l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝), x ∈ l₁ → ¬p x = true) ∧ p a = true ∧ filter p l₂ = as case mp.cons.isFalse α✝ : Type u_1 p : α✝ → Bool a : α✝ as : List α✝ x : α✝ l : List α✝ ih : filter p l = a :: as → ∃ l₁ l₂, l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝), x ∈ l₁ → ¬p x = true) ∧ p a = true ∧ filter p l₂ = as w : ¬p x = true h : filter p l = a :: as ⊢ ∃ l₁ l₂, x :: l = l₁ ++ a :: l₂ ∧ (∀ (x : α✝), x ∈ l₁ → ¬p x = true) ∧ p a = true ∧ filter p l₂ = as
40c82d08e6c727c5
LieAlgebra.IsSemisimple.isSimple_of_isAtom
Mathlib/Algebra/Lie/Semisimple/Basic.lean
lemma isSimple_of_isAtom (I : LieIdeal R L) (hI : IsAtom I) : IsSimple R I where non_abelian := IsSemisimple.non_abelian_of_isAtom I hI eq_bot_or_eq_top
case a.right R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L I : LieIdeal R L hI : IsAtom I J : LieIdeal R ↥I J' : LieIdeal R L := let __spread.0 := Submodule.map ↑I.incl ↑J; { toSubmodule := __spread.0, lie_mem := ⋯ } hJ : J' = I ⊢ ⊤ ≤ J
rintro ⟨x, hx⟩ -
case a.right.mk R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L I : LieIdeal R L hI : IsAtom I J : LieIdeal R ↥I J' : LieIdeal R L := let __spread.0 := Submodule.map ↑I.incl ↑J; { toSubmodule := __spread.0, lie_mem := ⋯ } hJ : J' = I x : L hx : x ∈ I ⊢ ⟨x, hx⟩ ∈ J
94384633946b96a7
tendsto_prod_nat_add
Mathlib/Topology/Algebra/InfiniteSum/NatInt.lean
theorem tendsto_prod_nat_add [T2Space G] (f : ℕ → G) : Tendsto (fun i ↦ ∏' k, f (k + i)) atTop (𝓝 1)
case neg G : Type u_2 inst✝³ : CommGroup G inst✝² : TopologicalSpace G inst✝¹ : IsTopologicalGroup G inst✝ : T2Space G f : ℕ → G hf : ¬Multipliable f n : ℕ ⊢ ¬Multipliable fun k => f (k + n)
rwa [multipliable_nat_add_iff n]
no goals
33f63157f8fa4b6a
ConvexOn.locallyLipschitzOn_iff_continuousOn
Mathlib/Analysis/Convex/Continuous.lean
lemma ConvexOn.locallyLipschitzOn_iff_continuousOn (hC : IsOpen C) (hf : ConvexOn ℝ C f) : LocallyLipschitzOn C f ↔ ContinuousOn f C
case inl E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ hC : IsOpen ∅ hf : ConvexOn ℝ ∅ f ⊢ LocallyLipschitzOn ∅ f ↔ ContinuousOn f ∅
simp
no goals
5e4fbafa12420a3c
Finpartition.card_filter_equitabilise_small
Mathlib/Combinatorics/SimpleGraph/Regularity/Equitabilise.lean
theorem card_filter_equitabilise_small (hm : m ≠ 0) : #{u ∈ (P.equitabilise h).parts | #u = m} = a
α : Type u_1 inst✝ : DecidableEq α s : Finset α m a b : ℕ P : Finpartition s h✝ : a * m + b * (m + 1) = #s hm : m ≠ 0 hunion : (equitabilise h✝).parts = filter (fun u => #u = m) (equitabilise h✝).parts ∪ filter (fun u => #u = m + 1) (equitabilise h✝).parts x : Finset α → Prop ha : x ≤ fun u => #u = m hb : x ≤ fun u => #u = m + 1 i : Finset α h : x i ⊢ ⊥ i
apply succ_ne_self m _
α : Type u_1 inst✝ : DecidableEq α s : Finset α m a b : ℕ P : Finpartition s h✝ : a * m + b * (m + 1) = #s hm : m ≠ 0 hunion : (equitabilise h✝).parts = filter (fun u => #u = m) (equitabilise h✝).parts ∪ filter (fun u => #u = m + 1) (equitabilise h✝).parts x : Finset α → Prop ha : x ≤ fun u => #u = m hb : x ≤ fun u => #u = m + 1 i : Finset α h : x i ⊢ m.succ = m
6764f0dc61dac4e1
SimpleGraph.IsAlternating.spanningCoe
Mathlib/Combinatorics/SimpleGraph/Matching.lean
lemma IsAlternating.spanningCoe (halt : G.IsAlternating G') (H : Subgraph G) : H.spanningCoe.IsAlternating G'
V : Type u_1 G G' : SimpleGraph V halt : G.IsAlternating G' H : G.Subgraph ⊢ H.spanningCoe.IsAlternating G'
intro v w w' hww' hvw hvv'
V : Type u_1 G G' : SimpleGraph V halt : G.IsAlternating G' H : G.Subgraph v w w' : V hww' : w ≠ w' hvw : H.spanningCoe.Adj v w hvv' : H.spanningCoe.Adj v w' ⊢ G'.Adj v w ↔ ¬G'.Adj v w'
ed3a8bfe083f2513
Algebra.Extension.Cotangent.map_sub_map
Mathlib/RingTheory/Kaehler/CotangentComplex.lean
lemma Cotangent.map_sub_map (f g : Hom P P') : map f - map g = (f.sub g) ∘ₗ P.cotangentComplex
case h.e.intro.a.a R : Type u S : Type v inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Extension R S R' : Type u' S' : Type v' inst✝⁷ : CommRing R' inst✝⁶ : CommRing S' inst✝⁵ : Algebra R' S' P' : Extension R' S' inst✝⁴ : Algebra R R' inst✝³ : Algebra S S' inst✝² : Algebra R S' inst✝¹ : IsScalarTower R R' S' inst✝ : IsScalarTower R S S' f g : P.Hom P' x : ↥P.ker ⊢ ↑(P'.ker.cotangentEquivIdeal (mk ⟨f.toAlgHom ↑x, ⋯⟩ - mk ⟨g.toAlgHom ↑x, ⋯⟩).val) = ↑(P'.ker.cotangentEquivIdeal (P'.ker.toCotangent ((f.subToKer g) ↑x)))
simp only [val_sub, val_mk, map_sub, AddSubgroupClass.coe_sub, Ideal.cotangentEquivIdeal_apply, Ideal.toCotangent_to_quotient_square, Submodule.mkQ_apply, Ideal.Quotient.mk_eq_mk, Hom.subToKer_apply_coe]
case h.e.intro.a.a R : Type u S : Type v inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Algebra R S P : Extension R S R' : Type u' S' : Type v' inst✝⁷ : CommRing R' inst✝⁶ : CommRing S' inst✝⁵ : Algebra R' S' P' : Extension R' S' inst✝⁴ : Algebra R R' inst✝³ : Algebra S S' inst✝² : Algebra R S' inst✝¹ : IsScalarTower R R' S' inst✝ : IsScalarTower R S S' f g : P.Hom P' x : ↥P.ker ⊢ (Ideal.Quotient.mk (P'.ker ^ 2)) (f.toAlgHom ↑x) - (Ideal.Quotient.mk (P'.ker ^ 2)) (g.toAlgHom ↑x) = (Ideal.Quotient.mk (P'.ker ^ 2)) (f.toRingHom ↑x) - (Ideal.Quotient.mk (P'.ker ^ 2)) (g.toRingHom ↑x)
0b659ae456a50538
Real.sqrt_eq_zero
Mathlib/Data/Real/Sqrt.lean
theorem sqrt_eq_zero (h : 0 ≤ x) : √x = 0 ↔ x = 0
x : ℝ h : 0 ≤ x ⊢ √x = 0 ↔ x = 0
simpa using sqrt_inj h le_rfl
no goals
e4ec7c482c0284fd
MeasureTheory.measurableSet_generateFrom_singleton_iff
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurableSet_generateFrom_singleton_iff {s t : Set α} : MeasurableSet[MeasurableSpace.generateFrom {s}] t ↔ t = ∅ ∨ t = s ∨ t = sᶜ ∨ t = univ
case neg α : Type u_1 s : Set α x : Set Prop hT : True ∈ x hF : False ∉ x ⊢ (fun x => x ∈ s) ⁻¹' x = ∅ ∨ (fun x => x ∈ s) ⁻¹' x = s ∨ (fun x => x ∈ s) ⁻¹' x = sᶜ ∨ (fun x => x ∈ s) ⁻¹' x = univ
have hx : x = {True} := by ext p refine ⟨fun hp ↦ mem_singleton_iff.2 ?_, fun hp ↦ hp ▸ hT⟩ by_contra hpneg rw [eq_iff_iff, iff_true, ← false_iff] at hpneg exact hF (by convert hp)
case neg α : Type u_1 s : Set α x : Set Prop hT : True ∈ x hF : False ∉ x hx : x = {True} ⊢ (fun x => x ∈ s) ⁻¹' x = ∅ ∨ (fun x => x ∈ s) ⁻¹' x = s ∨ (fun x => x ∈ s) ⁻¹' x = sᶜ ∨ (fun x => x ∈ s) ⁻¹' x = univ
39127bdfcef76ebf
div_le_one_of_neg
Mathlib/Algebra/Order/Field/Basic.lean
theorem div_le_one_of_neg (hb : b < 0) : a / b ≤ 1 ↔ b ≤ a
α : Type u_2 inst✝ : LinearOrderedField α a b : α hb : b < 0 ⊢ a / b ≤ 1 ↔ b ≤ a
rw [div_le_iff_of_neg hb, one_mul]
no goals
30b01843a216b560
Module.End.genEigenspace_inf_le_add
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
lemma genEigenspace_inf_le_add (f₁ f₂ : End R M) (μ₁ μ₂ : R) (k₁ k₂ : ℕ∞) (h : Commute f₁ f₂) : (f₁.genEigenspace μ₁ k₁) ⊓ (f₂.genEigenspace μ₂ k₂) ≤ (f₁ + f₂).genEigenspace (μ₁ + μ₂) (k₁ + k₂)
case h.right R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f₁ f₂ : End R M μ₁ μ₂ : R k₁ k₂ : ℕ∞ m : M l₁ : ℕ hlk₁ : ↑l₁ ≤ k₁ hl₁ : ((f₁ - μ₁ • 1) ^ l₁) m = 0 l₂ : ℕ hlk₂ : ↑l₂ ≤ k₂ hl₂ : ((f₂ - μ₂ • 1) ^ l₂) m = 0 this : f₁ + f₂ - (μ₁ + μ₂) • 1 = f₁ - μ₁ • 1 + (f₂ - μ₂ • 1) h : Commute (f₁ - μ₁ • 1) (f₂ - μ₂ • 1) x✝ : ℕ × ℕ i j : ℕ hij : (i, j) ∈ Finset.antidiagonal (l₁ + l₂) ⊢ ((l₁ + l₂).choose (i, j).1 • ((f₁ - μ₁ • 1) ^ (i, j).1 * (f₂ - μ₂ • 1) ^ (i, j).2)) m = 0
suffices (((f₁ - μ₁ • 1) ^ i) * ((f₂ - μ₂ • 1) ^ j)) m = 0 by rw [LinearMap.smul_apply, this, smul_zero]
case h.right R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f₁ f₂ : End R M μ₁ μ₂ : R k₁ k₂ : ℕ∞ m : M l₁ : ℕ hlk₁ : ↑l₁ ≤ k₁ hl₁ : ((f₁ - μ₁ • 1) ^ l₁) m = 0 l₂ : ℕ hlk₂ : ↑l₂ ≤ k₂ hl₂ : ((f₂ - μ₂ • 1) ^ l₂) m = 0 this : f₁ + f₂ - (μ₁ + μ₂) • 1 = f₁ - μ₁ • 1 + (f₂ - μ₂ • 1) h : Commute (f₁ - μ₁ • 1) (f₂ - μ₂ • 1) x✝ : ℕ × ℕ i j : ℕ hij : (i, j) ∈ Finset.antidiagonal (l₁ + l₂) ⊢ ((f₁ - μ₁ • 1) ^ i * (f₂ - μ₂ • 1) ^ j) m = 0
4aaf1ee24d6a3721
MeasureTheory.setLIntegral_withDensity_eq_setLIntegral_mul_non_measurable
Mathlib/MeasureTheory/Measure/WithDensity.lean
theorem setLIntegral_withDensity_eq_setLIntegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞} (f_meas : Measurable f) (g : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ x ∂μ.restrict s, f x < ∞) : ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ f_meas : Measurable f g : α → ℝ≥0∞ s : Set α hs : MeasurableSet s hf : ∀ᵐ (x : α) ∂μ.restrict s, f x < ⊤ ⊢ ∫⁻ (a : α) in s, g a ∂μ.withDensity f = ∫⁻ (a : α) in s, (f * g) a ∂μ
rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul_non_measurable _ f_meas hf]
no goals
7b09b8562c7f6ee7
Mathlib.Tactic.Qify.intCast_ne
Mathlib/Tactic/Qify.lean
@[qify_simps] lemma intCast_ne (a b : ℤ) : a ≠ b ↔ (a : ℚ) ≠ (b : ℚ)
a b : ℤ ⊢ a ≠ b ↔ ↑a ≠ ↑b
simp only [ne_eq, Int.cast_inj]
no goals
31cd91cd96368c69
Module.End.exists_eigenvalue
Mathlib/LinearAlgebra/Eigenspace/Triangularizable.lean
theorem exists_eigenvalue [IsAlgClosed K] [FiniteDimensional K V] [Nontrivial V] (f : End K V) : ∃ c : K, f.HasEigenvalue c
K : Type u_1 V : Type u_2 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : IsAlgClosed K inst✝¹ : FiniteDimensional K V inst✝ : Nontrivial V f : End K V ⊢ ∃ c, c ∈ spectrum K f
exact spectrum.nonempty_of_isAlgClosed_of_finiteDimensional K f
no goals
ffbb664e5460280f
IsConj.normalClosure_eq_top_of
Mathlib/Algebra/Group/Subgroup/Basic.lean
theorem normalClosure_eq_top_of {N : Subgroup G} [hn : N.Normal] {g g' : G} {hg : g ∈ N} {hg' : g' ∈ N} (hc : IsConj g g') (ht : normalClosure ({⟨g, hg⟩} : Set N) = ⊤) : normalClosure ({⟨g', hg'⟩} : Set N) = ⊤
case intro G : Type u_1 inst✝ : Group G N : Subgroup G hn : N.Normal g : G hg : g ∈ N ht : normalClosure {⟨g, hg⟩} = ⊤ c : G hg' : c * g * c⁻¹ ∈ N hc : IsConj g (c * g * c⁻¹) h : ∀ (x : ↥N), (MulAut.conj c) ↑x ∈ N hs : Surjective ⇑(((MulEquiv.toMonoidHom (MulAut.conj c)).restrict N).codRestrict N h) ⊢ ⟨c * g * c⁻¹, ⋯⟩ ∈ normalClosure {⟨c * g * c⁻¹, hg'⟩}
exact subset_normalClosure (Set.mem_singleton _)
no goals
8c82072c9d0e73b6
HasFTaylorSeriesUpToOn.compContinuousLinearMap
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
theorem HasFTaylorSeriesUpToOn.compContinuousLinearMap (hf : HasFTaylorSeriesUpToOn n f p s) (g : G →L[𝕜] E) : HasFTaylorSeriesUpToOn n (f ∘ g) (fun x k => (p (g x) k).compContinuousLinearMap fun _ => g) (g ⁻¹' s)
case zero_eq 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E f : E → F n : WithTop ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F hf : HasFTaylorSeriesUpToOn n f p s g : G →L[𝕜] E A : (m : ℕ) → ContinuousMultilinearMap 𝕜 (fun i => E) F → ContinuousMultilinearMap 𝕜 (fun i => G) F := fun m h => h.compContinuousLinearMap fun x => g hA : ∀ (m : ℕ), IsBoundedLinearMap 𝕜 (A m) x : G hx : x ∈ ⇑g ⁻¹' s ⊢ ((p (g x) 0) fun x => 0) = (p (g x) 0) 0
rfl
no goals
827bfe05b18c9500
List.getElem_insertIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/InsertIdx.lean
theorem getElem_insertIdx {l : List α} {x : α} {n k : Nat} (h : k < (insertIdx n x l).length) : (insertIdx n x l)[k] = if h₁ : k < n then l[k]'(by simp [length_insertIdx] at h; split at h <;> omega) else if h₂ : k = n then x else l[k-1]'(by simp [length_insertIdx] at h; split at h <;> omega)
case isFalse.isFalse α : Type u l : List α x : α n k : Nat h : k < (insertIdx n x l).length h₁ : ¬k < n h₂ : ¬k = n ⊢ (insertIdx n x l)[k] = l[k - 1]
rw [getElem_insertIdx_of_ge (by omega)]
no goals
2303cbe5977d4288
List.append_sublist_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem append_sublist_iff {l₁ l₂ : List α} : l₁ ++ l₂ <+ r ↔ ∃ r₁ r₂, r = r₁ ++ r₂ ∧ l₁ <+ r₁ ∧ l₂ <+ r₂
case nil.mp α : Type u_1 l₂ r : List α w : [] ++ l₂ <+ r ⊢ ∃ r₁ r₂, r = r₁ ++ r₂ ∧ [] <+ r₁ ∧ l₂ <+ r₂
refine ⟨[], r, by simp_all⟩
no goals
0739d14b8e5e6a1b
Cardinal.power_nat_le_max
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem power_nat_le_max {c : Cardinal.{u}} {n : ℕ} : c ^ (n : Cardinal.{u}) ≤ max c ℵ₀
case inl c : Cardinal.{u} n : ℕ hc : ℵ₀ ≤ c ⊢ c ^ ↑n ≤ c ⊔ ℵ₀
exact le_max_of_le_left (power_nat_le hc)
no goals
b97a0b119d137349
Real.pi_gt_d20
Mathlib/Data/Real/Pi/Bounds.lean
theorem pi_gt_d20 : 3.14159265358979323846 < π
⊢ 3.14159265358979323846 < π
pi_lower_bound [ 671574048197/474874563549, 58134718954/31462283181, 3090459598621/1575502640777, 2-7143849599/741790664068, 8431536490061/4220852446654, 2-2725579171/4524814682468, 2-2494895647/16566776788806, 2-608997841/16175484287402, 2-942567063/100141194694075, 2-341084060/144951150987041, 2-213717653/363295959742218, 2-71906926/488934711121807, 2-29337101/797916288104986, 2-45326311/4931175952730065, 2-7506877/3266776448781479, 2-5854787/10191338039232571, 2-4538642/31601378399861717, 2-276149/7691013341581098, 2-350197/39013283396653714, 2-442757/197299283738495963, 2-632505/1127415566199968707, 2-1157/8249230030392285, 2-205461/5859619883403334178, 2-33721/3846807755987625852, 2-11654/5317837263222296743, 2-8162/14897610345776687857, 2-731/5337002285107943372, 2-1320/38549072592845336201, 2-707/82588467645883795866, 2-53/24764858756615791675, 2-237/442963888703240952920, 2-128/956951523274512100791, 2-32/956951523274512100783, 2-27/3229711391051478340136]
no goals
6462fe7379859663
MeasureTheory.condExp_restrict_ae_eq_restrict
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
theorem condExp_restrict_ae_eq_restrict (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hs_m : MeasurableSet[m] s) (hf_int : Integrable f μ) : (μ.restrict s)[f|m] =ᵐ[μ.restrict s] μ[f|m]
α : Type u_1 E : Type u_2 m m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E s : Set α hm : m ≤ m0 inst✝ : SigmaFinite (μ.trim hm) hs_m : MeasurableSet s hf_int : Integrable f μ this : SigmaFinite ((μ.restrict s).trim hm) t : Set α ht : MeasurableSet t a✝ : μ t < ⊤ h_int_restrict : Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s) ⊢ Integrable (s.indicator (t.indicator (μ.restrict s[f|m]))) μ
rw [integrable_indicator_iff (hm _ hs_m), IntegrableOn]
α : Type u_1 E : Type u_2 m m0 : MeasurableSpace α inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure α f : α → E s : Set α hm : m ≤ m0 inst✝ : SigmaFinite (μ.trim hm) hs_m : MeasurableSet s hf_int : Integrable f μ this : SigmaFinite ((μ.restrict s).trim hm) t : Set α ht : MeasurableSet t a✝ : μ t < ⊤ h_int_restrict : Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s) ⊢ Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
1b22860bba6f556e
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.clear_insert_inductive_case
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem clear_insert_inductive_case {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (units : Array (Literal (PosFin n))) (units_nodup : ∀ i : Fin units.size, ∀ j : Fin units.size, i ≠ j → units[i] ≠ units[j]) (idx : Fin units.size) (assignments : Array Assignment) (ih : ClearInsertInductionMotive f f_assignments_size units idx.1 assignments) : ClearInsertInductionMotive f f_assignments_size units (idx.1 + 1) (clearUnit assignments units[idx])
case right.left n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_eq_j1 : idx = j1 idx_ne_j2 : idx ≠ j2 ⊢ units[j2] = (⟨↑i, ⋯⟩, false)
simp only [Fin.getElem_fin]
case right.left n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_eq_j1 : idx = j1 idx_ne_j2 : idx ≠ j2 ⊢ units[↑j2] = (⟨↑i, ⋯⟩, false)
c90be518eb885cb1
FermatLastTheoremForThreeGen.lambda_sq_dvd_c
Mathlib/NumberTheory/FLT/Three.lean
/-- Given `S' : Solution'`, we have that `λ ^ 2` divides `S'.c`. -/ lemma lambda_sq_dvd_c : λ ^ 2 ∣ S'.c
case intro K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S' : Solution' hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hm : FiniteMultiplicity λ S'.c this : 2 ≤ multiplicity λ S'.c x : 𝓞 K hx : S'.c = λ ^ multiplicity λ S'.c * x ⊢ λ ^ 2 ∣ S'.c
refine ⟨λ ^ (multiplicity (hζ.toInteger - 1) S'.c - 2) * x, ?_⟩
case intro K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S' : Solution' hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K hm : FiniteMultiplicity λ S'.c this : 2 ≤ multiplicity λ S'.c x : 𝓞 K hx : S'.c = λ ^ multiplicity λ S'.c * x ⊢ S'.c = λ ^ 2 * (λ ^ (multiplicity λ S'.c - 2) * x)
c4ebb8ae9468f9d9
Batteries.RBNode.min?_eq_toList_head?
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem min?_eq_toList_head? {t : RBNode α} : t.min? = t.toList.head?
case node α : Type u_1 c✝ : RBColor l : RBNode α v✝ : α r✝ : RBNode α ih : l.min? = l.toList.head? r_ih✝ : r✝.min? = r✝.toList.head? ⊢ (node c✝ l v✝ r✝).min? = (node c✝ l v✝ r✝).toList.head?
cases l <;> simp [RBNode.min?, ih]
no goals
a0db33adc70d6f16
NatOrdinal.toOrdinal_cast_nat
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem toOrdinal_cast_nat (n : ℕ) : toOrdinal n = n
n : ℕ ⊢ toOrdinal ↑n = ↑n
induction' n with n hn
case zero ⊢ toOrdinal ↑0 = ↑0 case succ n : ℕ hn : toOrdinal ↑n = ↑n ⊢ toOrdinal ↑(n + 1) = ↑(n + 1)
f1ab3737731117b1
intervalIntegral.integral_const'
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_const' [CompleteSpace E] (c : E) : ∫ _ in a..b, c ∂μ = ((μ <| Ioc a b).toReal - (μ <| Ioc b a).toReal) • c
E : Type u_3 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E a b : ℝ μ : Measure ℝ inst✝ : CompleteSpace E c : E ⊢ ∫ (x : ℝ) in a..b, c ∂μ = ((μ (Ioc a b)).toReal - (μ (Ioc b a)).toReal) • c
simp only [intervalIntegral, setIntegral_const, sub_smul]
no goals
305e107ae5363c8d
NoetherNormalization.sum_r_mul_neq
Mathlib/RingTheory/NoetherNormalization.lean
private lemma sum_r_mul_neq (vlt : ∀ i, v i < up) (wlt : ∀ i, w i < up) (neq : v ≠ w) : ∑ x : Fin (n + 1), r x * v x ≠ ∑ x : Fin (n + 1), r x * w x
k : Type u_1 inst✝ : Field k n : ℕ f : MvPolynomial (Fin (n + 1)) k v w : Fin (n + 1) →₀ ℕ vlt : ∀ (i : Fin (n + 1)), v i < up wlt : ∀ (i : Fin (n + 1)), w i < up neq : v ≠ w h : ∑ x : Fin (n + 1), r x * v x = ∑ x : Fin (n + 1), r x * w x ⊢ ofDigits up (ofFn ⇑v) = ofDigits up (ofFn ⇑w)
simpa only [ofDigits_eq_sum_mapIdx, mapIdx_eq_ofFn, get_ofFn, length_ofFn, Fin.coe_cast, mul_comm, sum_ofFn] using h
no goals
954bc6c11dddb9ea
MeasureTheory.lintegral_lintegral_mul_inv
Mathlib/MeasureTheory/Group/Prod.lean
theorem lintegral_lintegral_mul_inv [IsMulLeftInvariant ν] (f : G → G → ℝ≥0∞) (hf : AEMeasurable (uncurry f) (μ.prod ν)) : (∫⁻ x, ∫⁻ y, f (y * x) x⁻¹ ∂ν ∂μ) = ∫⁻ x, ∫⁻ y, f x y ∂ν ∂μ
G : Type u_1 inst✝⁷ : MeasurableSpace G inst✝⁶ : Group G inst✝⁵ : MeasurableMul₂ G μ ν : Measure G inst✝⁴ : SFinite ν inst✝³ : SFinite μ inst✝² : MeasurableInv G inst✝¹ : μ.IsMulLeftInvariant inst✝ : ν.IsMulLeftInvariant f : G → G → ℝ≥0∞ hf : AEMeasurable (uncurry f) (μ.prod ν) h : Measurable fun z => (z.2 * z.1, z.1⁻¹) h2f : AEMeasurable (uncurry fun x y => f (y * x) x⁻¹) (μ.prod ν) ⊢ ∫⁻ (z : G × G), f (z.2 * z.1) z.1⁻¹ ∂μ.prod ν = ∫⁻ (z : G × G), f z.1 z.2 ∂map (fun z => (z.2 * z.1, z.1⁻¹)) (μ.prod ν)
symm
G : Type u_1 inst✝⁷ : MeasurableSpace G inst✝⁶ : Group G inst✝⁵ : MeasurableMul₂ G μ ν : Measure G inst✝⁴ : SFinite ν inst✝³ : SFinite μ inst✝² : MeasurableInv G inst✝¹ : μ.IsMulLeftInvariant inst✝ : ν.IsMulLeftInvariant f : G → G → ℝ≥0∞ hf : AEMeasurable (uncurry f) (μ.prod ν) h : Measurable fun z => (z.2 * z.1, z.1⁻¹) h2f : AEMeasurable (uncurry fun x y => f (y * x) x⁻¹) (μ.prod ν) ⊢ ∫⁻ (z : G × G), f z.1 z.2 ∂map (fun z => (z.2 * z.1, z.1⁻¹)) (μ.prod ν) = ∫⁻ (z : G × G), f (z.2 * z.1) z.1⁻¹ ∂μ.prod ν
5030442f8dec594f
Besicovitch.exists_closedBall_covering_tsum_measure_le
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exists_closedBall_covering_tsum_measure_le (μ : Measure α) [SFinite μ] [Measure.OuterRegular μ] {ε : ℝ≥0∞} (hε : ε ≠ 0) (f : α → Set ℝ) (s : Set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty) : ∃ (t : Set α) (r : α → ℝ), t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ (s ⊆ ⋃ x ∈ t, closedBall x (r x)) ∧ (∑' x : t, μ (closedBall x (r x))) ≤ μ s + ε
case intro.intro.intro α : Type u_1 inst✝⁶ : MetricSpace α inst✝⁵ : SecondCountableTopology α inst✝⁴ : MeasurableSpace α inst✝³ : OpensMeasurableSpace α inst✝² : HasBesicovitchCovering α μ : Measure α inst✝¹ : SFinite μ inst✝ : μ.OuterRegular ε : ℝ≥0∞ hε : ε ≠ 0 f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty u : Set α su : u ⊇ s u_open : IsOpen u μu : μ u ≤ μ s + ε / 2 this : ∀ x ∈ s, ∃ R > 0, ball x R ⊆ u ⊢ ∃ t r, t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ s ⊆ ⋃ x ∈ t, closedBall x (r x) ∧ ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + ε
choose! R hR using this
case intro.intro.intro α : Type u_1 inst✝⁶ : MetricSpace α inst✝⁵ : SecondCountableTopology α inst✝⁴ : MeasurableSpace α inst✝³ : OpensMeasurableSpace α inst✝² : HasBesicovitchCovering α μ : Measure α inst✝¹ : SFinite μ inst✝ : μ.OuterRegular ε : ℝ≥0∞ hε : ε ≠ 0 f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty u : Set α su : u ⊇ s u_open : IsOpen u μu : μ u ≤ μ s + ε / 2 R : α → ℝ hR : ∀ x ∈ s, R x > 0 ∧ ball x (R x) ⊆ u ⊢ ∃ t r, t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ s ⊆ ⋃ x ∈ t, closedBall x (r x) ∧ ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + ε
181682c2ed74f98b
egauge_smul_right
Mathlib/Analysis/Convex/EGauge.lean
lemma egauge_smul_right (h : c = 0 → s.Nonempty) (x : E) : egauge 𝕜 s (c • x) = ‖c‖ₑ * egauge 𝕜 s x
𝕜 : Type u_1 inst✝² : NormedDivisionRing 𝕜 E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E c : 𝕜 s : Set E h : c = 0 → s.Nonempty x : E ⊢ egauge 𝕜 s (c • x) ≤ ‖c‖ₑ * egauge 𝕜 s x
rcases eq_or_ne c 0 with rfl | hc
case inl 𝕜 : Type u_1 inst✝² : NormedDivisionRing 𝕜 E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E h : 0 = 0 → s.Nonempty ⊢ egauge 𝕜 s (0 • x) ≤ ‖0‖ₑ * egauge 𝕜 s x case inr 𝕜 : Type u_1 inst✝² : NormedDivisionRing 𝕜 E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E c : 𝕜 s : Set E h : c = 0 → s.Nonempty x : E hc : c ≠ 0 ⊢ egauge 𝕜 s (c • x) ≤ ‖c‖ₑ * egauge 𝕜 s x
72e8d0e4301ff41d
IsDiscreteValuationRing.eq_unit_mul_pow_irreducible
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
theorem eq_unit_mul_pow_irreducible {x : R} (hx : x ≠ 0) {ϖ : R} (hirr : Irreducible ϖ) : ∃ (n : ℕ) (u : Rˣ), x = u * ϖ ^ n
R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsDiscreteValuationRing R x : R hx : x ≠ 0 ϖ : R hirr : Irreducible ϖ ⊢ ∃ n u, x = ↑u * ϖ ^ n
obtain ⟨n, hn⟩ := associated_pow_irreducible hx hirr
case intro R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsDiscreteValuationRing R x : R hx : x ≠ 0 ϖ : R hirr : Irreducible ϖ n : ℕ hn : Associated x (ϖ ^ n) ⊢ ∃ n u, x = ↑u * ϖ ^ n
f3a096b201723180
AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.add_mem'
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/StructureSheaf.lean
theorem add_mem' (U : (Opens (ProjectiveSpectrum.top 𝒜))ᵒᵖ) (a b : ∀ x : U.unop, at x.1) (ha : (isLocallyFraction 𝒜).pred a) (hb : (isLocallyFraction 𝒜).pred b) : (isLocallyFraction 𝒜).pred (a + b) := fun x => by rcases ha x with ⟨Va, ma, ia, ja, ⟨ra, ra_mem⟩, ⟨sa, sa_mem⟩, hwa, wa⟩ rcases hb x with ⟨Vb, mb, ib, jb, ⟨rb, rb_mem⟩, ⟨sb, sb_mem⟩, hwb, wb⟩ refine ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ja + jb, ⟨sb * ra + sa * rb, add_mem (add_comm jb ja ▸ mul_mem_graded sb_mem ra_mem : sb * ra ∈ 𝒜 (ja + jb)) (mul_mem_graded sa_mem rb_mem)⟩, ⟨sa * sb, mul_mem_graded sa_mem sb_mem⟩, fun y ↦ y.1.asHomogeneousIdeal.toIdeal.primeCompl.mul_mem (hwa ⟨y.1, y.2.1⟩) (hwb ⟨y.1, y.2.2⟩), ?_⟩ rintro ⟨y, hy⟩ simp only [Subtype.forall, Opens.apply_mk] at wa wb simp [wa y hy.1, wb y hy.2, ext_iff_val, add_mk, add_comm (sa * rb)]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : ↥(unop U)) → at ↑x ha : (isLocallyFraction 𝒜).pred a hb : (isLocallyFraction 𝒜).pred b x : ↥(unop U) Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ unop U ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja hwa : ∀ (x : ↥Va), ↑⟨sa, sa_mem⟩ ∉ (↑x).asHomogeneousIdeal wa : ∀ (x : ↥Va), (fun x => a (ia x)) x = HomogeneousLocalization.mk { deg := ja, num := ⟨ra, ra_mem⟩, den := ⟨sa, sa_mem⟩, den_mem := ⋯ } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ unop U jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb hwb : ∀ (x : ↥Vb), ↑⟨sb, sb_mem⟩ ∉ (↑x).asHomogeneousIdeal wb : ∀ (x : ↥Vb), (fun x => b (ib x)) x = HomogeneousLocalization.mk { deg := jb, num := ⟨rb, rb_mem⟩, den := ⟨sb, sb_mem⟩, den_mem := ⋯ } ⊢ ∀ (x : ↥(Va ⊓ Vb)), (fun x => (a + b) ((Va.infLELeft Vb ≫ ia) x)) x = HomogeneousLocalization.mk { deg := ja + jb, num := ⟨sb * ra + sa * rb, ⋯⟩, den := ⟨sa * sb, ⋯⟩, den_mem := ⋯ }
rintro ⟨y, hy⟩
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : ↥(unop U)) → at ↑x ha : (isLocallyFraction 𝒜).pred a hb : (isLocallyFraction 𝒜).pred b x : ↥(unop U) Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ unop U ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja hwa : ∀ (x : ↥Va), ↑⟨sa, sa_mem⟩ ∉ (↑x).asHomogeneousIdeal wa : ∀ (x : ↥Va), (fun x => a (ia x)) x = HomogeneousLocalization.mk { deg := ja, num := ⟨ra, ra_mem⟩, den := ⟨sa, sa_mem⟩, den_mem := ⋯ } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ unop U jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb hwb : ∀ (x : ↥Vb), ↑⟨sb, sb_mem⟩ ∉ (↑x).asHomogeneousIdeal wb : ∀ (x : ↥Vb), (fun x => b (ib x)) x = HomogeneousLocalization.mk { deg := jb, num := ⟨rb, rb_mem⟩, den := ⟨sb, sb_mem⟩, den_mem := ⋯ } y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ Va ⊓ Vb ⊢ (fun x => (a + b) ((Va.infLELeft Vb ≫ ia) x)) ⟨y, hy⟩ = HomogeneousLocalization.mk { deg := ja + jb, num := ⟨sb * ra + sa * rb, ⋯⟩, den := ⟨sa * sb, ⋯⟩, den_mem := ⋯ }
02bfb46c59768ab9
IsClosed.ae_eq_univ_iff_eq
Mathlib/MeasureTheory/Measure/OpenPos.lean
theorem _root_.IsClosed.ae_eq_univ_iff_eq (hF : IsClosed F) : F =ᵐ[μ] univ ↔ F = univ
X : Type u_1 inst✝¹ : TopologicalSpace X m : MeasurableSpace X μ : Measure X inst✝ : μ.IsOpenPosMeasure F : Set X hF : IsClosed F ⊢ F =ᶠ[ae μ] univ ↔ F = univ
refine ⟨fun h ↦ ?_, fun h ↦ by rw [h]⟩
X : Type u_1 inst✝¹ : TopologicalSpace X m : MeasurableSpace X μ : Measure X inst✝ : μ.IsOpenPosMeasure F : Set X hF : IsClosed F h : F =ᶠ[ae μ] univ ⊢ F = univ
bd0f56f21b466be3
continuousAt_gaussian_integral
Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean
theorem continuousAt_gaussian_integral (b : ℂ) (hb : 0 < re b) : ContinuousAt (fun c : ℂ => ∫ x : ℝ, cexp (-c * (x : ℂ) ^ 2)) b
case h b : ℂ hb : 0 < b.re f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2) d : ℝ hd : 0 < d hd' : d < b.re f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b c : ℂ hc : c ∈ re ⁻¹' Ioi d x : ℝ ⊢ rexp (-c.re * x ^ 2) ≤ rexp (-d * x ^ 2)
gcongr
case h.h.h.a b : ℂ hb : 0 < b.re f : ℂ → ℝ → ℂ := fun c x => cexp (-c * ↑x ^ 2) d : ℝ hd : 0 < d hd' : d < b.re f_meas : ∀ (c : ℂ), AEStronglyMeasurable (f c) volume f_cts : ∀ (x : ℝ), ContinuousAt (fun c => f c x) b c : ℂ hc : c ∈ re ⁻¹' Ioi d x : ℝ ⊢ d ≤ c.re
7ef48b8cfcbec0f8
AlternatingGroup.card_of_cycleType
Mathlib/GroupTheory/SpecificGroups/Alternating/Centralizer.lean
theorem card_of_cycleType (m : Multiset ℕ) : (Finset.univ.filter fun g : alternatingGroup α => (g : Equiv.Perm α).cycleType = m).card = if (m.sum ≤ Fintype.card α ∧ ∀ a ∈ m, 2 ≤ a) ∧ Even (m.sum + Multiset.card m) then (Fintype.card α)! / ((Fintype.card α - m.sum)! * (m.prod * (∏ n ∈ m.toFinset, (m.count n)!))) else 0
case pos α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α m : Multiset ℕ hm : ¬((m.sum ≤ Fintype.card α ∧ ∀ a ∈ m, 2 ≤ a) ∧ Even (m.sum + m.card)) hm' : Even (m.sum + m.card) ⊢ #(filter (fun g => g.cycleType = m) univ) = 0
rw [Equiv.Perm.card_of_cycleType, if_neg]
case pos.hnc α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α m : Multiset ℕ hm : ¬((m.sum ≤ Fintype.card α ∧ ∀ a ∈ m, 2 ≤ a) ∧ Even (m.sum + m.card)) hm' : Even (m.sum + m.card) ⊢ ¬(m.sum ≤ Fintype.card α ∧ ∀ a ∈ m, 2 ≤ a)
a0b3827213bc0d24
BoxIntegral.Prepartition.IsPartition.exists_splitMany_le
Mathlib/Analysis/BoxIntegral/Partition/Split.lean
theorem IsPartition.exists_splitMany_le {I : Box ι} {π : Prepartition I} (h : IsPartition π) : ∃ s, splitMany I s ≤ π
case hp ι : Type u_1 inst✝ : Finite ι I : Box ι π : Prepartition I h : π.IsPartition s : Finset (ι × ℝ) hs : π ⊓ splitMany I s = (splitMany I s).filter fun J => ↑J ⊆ ↑I ⊢ ∀ J ∈ splitMany I s, ↑J ⊆ ↑I
exact fun J hJ => le_of_mem _ hJ
no goals
cbb3b080275f2e9a
PiNat.mem_cylinder_iff_eq
Mathlib/Topology/MetricSpace/PiNat.lean
theorem mem_cylinder_iff_eq {x y : ∀ n, E n} {n : ℕ} : y ∈ cylinder x n ↔ cylinder y n = cylinder x n
case mp E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n ⊢ cylinder y n = cylinder x n
apply Subset.antisymm
case mp.h₁ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n ⊢ cylinder y n ⊆ cylinder x n case mp.h₂ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n ⊢ cylinder x n ⊆ cylinder y n
1650d6a7263b81d8
Nat.ppred_eq_some
Mathlib/Data/Nat/PSub.lean
theorem ppred_eq_some {m : ℕ} : ∀ {n}, ppred n = some m ↔ succ m = n | 0 => by constructor <;> intro h <;> contradiction | n + 1 => by constructor <;> intro h <;> injection h <;> subst m <;> rfl
m : ℕ ⊢ ppred 0 = some m ↔ m.succ = 0
constructor <;> intro h <;> contradiction
no goals
b7a06cee7a813398
Algebra.FormallyUnramified.finite_of_free_aux
Mathlib/RingTheory/Unramified/Finite.lean
lemma finite_of_free_aux (I) [DecidableEq I] (b : Basis I R S) (f : I →₀ S) (x : S) (a : I → I →₀ R) (ha : a = fun i ↦ b.repr (b i * x)) : (1 ⊗ₜ[R] x * Finsupp.sum f fun i y ↦ y ⊗ₜ[R] b i) = Finset.sum (f.support.biUnion fun i ↦ (a i).support) fun k ↦ Finsupp.sum (b.repr (f.sum fun i y ↦ a i k • y)) fun j c ↦ c • b j ⊗ₜ[R] b k
R : Type u_3 S : Type u_4 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S I : Type u_2 inst✝ : DecidableEq I b : Basis I R S f : I →₀ S x : S a : I → I →₀ R := fun i => b.repr (b i * x) h₁ : ∀ (k : I), ((f.sum fun i y => (b.repr (b i * x)) k • b.repr y).sum fun j z => z • b j ⊗ₜ[R] b k) = f.sum fun i y => (b.repr y).sum fun j z => (b.repr (b i * x)) k • z • b j ⊗ₜ[R] b k h₂ : ∀ (x : S), ∑ a ∈ (b.repr x).support, (b.repr x) a • b a = x ⊢ ∑ x ∈ f.support, ∑ x_1 ∈ (a x).support, ((a x) x_1 • f x) ⊗ₜ[R] b x_1 = ∑ x_1 ∈ f.support, ∑ x_2 ∈ f.support.biUnion fun i => (b.repr (b i * x)).support, ((b.repr (b x_1 * x)) x_2 • f x_1) ⊗ₜ[R] b x_2
apply Finset.sum_congr rfl
R : Type u_3 S : Type u_4 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S I : Type u_2 inst✝ : DecidableEq I b : Basis I R S f : I →₀ S x : S a : I → I →₀ R := fun i => b.repr (b i * x) h₁ : ∀ (k : I), ((f.sum fun i y => (b.repr (b i * x)) k • b.repr y).sum fun j z => z • b j ⊗ₜ[R] b k) = f.sum fun i y => (b.repr y).sum fun j z => (b.repr (b i * x)) k • z • b j ⊗ₜ[R] b k h₂ : ∀ (x : S), ∑ a ∈ (b.repr x).support, (b.repr x) a • b a = x ⊢ ∀ x_1 ∈ f.support, ∑ x ∈ (a x_1).support, ((a x_1) x • f x_1) ⊗ₜ[R] b x = ∑ x_2 ∈ f.support.biUnion fun i => (b.repr (b i * x)).support, ((b.repr (b x_1 * x)) x_2 • f x_1) ⊗ₜ[R] b x_2
15cd50f5f7e23b0f
Matrix.fromCols_inj
Mathlib/Data/Matrix/ColumnRowPartitioned.lean
lemma fromCols_inj : Function.Injective2 (@fromCols R m n₁ n₂)
R : Type u_1 m : Type u_2 n₁ : Type u_6 n₂ : Type u_7 x1 x2 : Matrix m n₁ R y1 y2 : Matrix m n₂ R ⊢ x1.fromCols y1 = x2.fromCols y2 → x1 = x2 ∧ y1 = y2
simp only [funext_iff, ← Matrix.ext_iff]
R : Type u_1 m : Type u_2 n₁ : Type u_6 n₂ : Type u_7 x1 x2 : Matrix m n₁ R y1 y2 : Matrix m n₂ R ⊢ (∀ (i : m) (j : n₁ ⊕ n₂), x1.fromCols y1 i j = x2.fromCols y2 i j) → (∀ (i : m) (j : n₁), x1 i j = x2 i j) ∧ ∀ (i : m) (j : n₂), y1 i j = y2 i j
092b292eeeabf04f
FormalMultilinearSeries.leftInv_comp
Mathlib/Analysis/Analytic/Inverse.lean
theorem leftInv_comp (p : FormalMultilinearSeries 𝕜 E F) (i : E ≃L[𝕜] F) (x : E) (h : p 1 = (continuousMultilinearCurryFin1 𝕜 E F).symm i) : (leftInv p i x).comp p = id 𝕜 E x
case convert_2.e_f 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F i : E ≃L[𝕜] F x : E h : p 1 = (continuousMultilinearCurryFin1 𝕜 E F).symm ↑i n✝ n : ℕ v : Fin (n + 2) → E A : univ = {c | c.length < n + 2}.toFinset ∪ {Composition.ones (n + 2)} B : Disjoint {c | c.length < n + 2}.toFinset {Composition.ones (n + 2)} C : ((p.leftInv i x (Composition.ones (n + 2)).length) fun j => (p 1) fun x => v (Fin.castLE ⋯ j)) = (p.leftInv i x (n + 2)) fun j => (p 1) fun x => v j ⊢ (fun x_1 => (p.leftInv i x x_1.length) (p.applyComposition x_1 (⇑↑i.symm ∘ fun j => (p 1) fun x => v j))) = fun c => (p.leftInv i x c.length) (p.applyComposition c v)
ext c
case convert_2.e_f.h 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F i : E ≃L[𝕜] F x : E h : p 1 = (continuousMultilinearCurryFin1 𝕜 E F).symm ↑i n✝ n : ℕ v : Fin (n + 2) → E A : univ = {c | c.length < n + 2}.toFinset ∪ {Composition.ones (n + 2)} B : Disjoint {c | c.length < n + 2}.toFinset {Composition.ones (n + 2)} C : ((p.leftInv i x (Composition.ones (n + 2)).length) fun j => (p 1) fun x => v (Fin.castLE ⋯ j)) = (p.leftInv i x (n + 2)) fun j => (p 1) fun x => v j c : Composition (n + 2) ⊢ (p.leftInv i x c.length) (p.applyComposition c (⇑↑i.symm ∘ fun j => (p 1) fun x => v j)) = (p.leftInv i x c.length) (p.applyComposition c v)
66065fa083a1e448
Set.mul_eq_one_iff
Mathlib/Algebra/Group/Pointwise/Set/Basic.lean
theorem mul_eq_one_iff : s * t = 1 ↔ ∃ a b, s = {a} ∧ t = {b} ∧ a * b = 1
case refine_1 α : Type u_2 inst✝ : DivisionMonoid α s t : Set α h : s * t = 1 hst : (s * t).Nonempty ⊢ ∃ a b, s = {a} ∧ t = {b} ∧ a * b = 1
obtain ⟨a, ha⟩ := hst.of_image2_left
case refine_1.intro α : Type u_2 inst✝ : DivisionMonoid α s t : Set α h : s * t = 1 hst : (s * t).Nonempty a : α ha : a ∈ s ⊢ ∃ a b, s = {a} ∧ t = {b} ∧ a * b = 1
e4590bbb0a7c7ea2
MonCat.Colimits.cocone_naturality_components
Mathlib/Algebra/Category/MonCat/Colimits.lean
theorem cocone_naturality_components (j j' : J) (f : j ⟶ j') (x : F.obj j) : (coconeMorphism F j') (F.map f x) = (coconeMorphism F j) x
J : Type v inst✝ : Category.{u, v} J F : J ⥤ MonCat j j' : J f : j ⟶ j' x : ↑(F.obj j) ⊢ (ConcreteCategory.hom (coconeMorphism F j')) ((ConcreteCategory.hom (F.map f)) x) = (ConcreteCategory.hom (F.map f ≫ coconeMorphism F j')) x
rfl
no goals
159167e7fd0243a3
LieSubalgebra.lieSpan_le
Mathlib/Algebra/Lie/Subalgebra.lean
theorem lieSpan_le {K} : lieSpan R L s ≤ K ↔ s ⊆ K
case mpr R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L s : Set L K : LieSubalgebra R L hs : s ⊆ ↑K m : L hm : ∀ (K : LieSubalgebra R L), s ⊆ ↑K → m ∈ K ⊢ m ∈ K
exact hm _ hs
no goals
69fce09aa84e6f88
SemiNormedGrp.explicitCokernelDesc_comp_eq_zero
Mathlib/Analysis/Normed/Group/SemiNormedGrp/Kernels.lean
theorem explicitCokernelDesc_comp_eq_zero {X Y Z W : SemiNormedGrp.{u}} {f : X ⟶ Y} {g : Y ⟶ Z} {h : Z ⟶ W} (cond : f ≫ g = 0) (cond2 : g ≫ h = 0) : explicitCokernelDesc cond ≫ h = 0
X Y Z W : SemiNormedGrp f : X ⟶ Y g : Y ⟶ Z h : Z ⟶ W cond : f ≫ g = 0 cond2 : g ≫ h = 0 ⊢ g ≫ h = explicitCokernelπ f ≫ 0
simp [cond2]
no goals
20ae50867bd37233