name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Nat.getLast_digit_ne_zero
Mathlib/Data/Nat/Digits.lean
theorem getLast_digit_ne_zero (b : ℕ) {m : ℕ} (hm : m ≠ 0) : (digits b m).getLast (digits_ne_nil_iff_ne_zero.mpr hm) ≠ 0
case succ.zero m : ℕ hm : m ≠ 0 ⊢ ((0 + 1).digits m).getLast ⋯ ≠ 0
cases m
case succ.zero.zero hm : 0 ≠ 0 ⊢ ((0 + 1).digits 0).getLast ⋯ ≠ 0 case succ.zero.succ n✝ : ℕ hm : n✝ + 1 ≠ 0 ⊢ ((0 + 1).digits (n✝ + 1)).getLast ⋯ ≠ 0
f80a47e31809cc02
Convex.helly_theorem_set
Mathlib/Analysis/Convex/Radon.lean
theorem helly_theorem_set {F : Finset (Set E)} (h_card : finrank 𝕜 E + 1 ≤ #F) (h_convex : ∀ X ∈ F, Convex 𝕜 X) (h_inter : ∀ G : Finset (Set E), G ⊆ F → #G = finrank 𝕜 E + 1 → (⋂₀ G : Set E).Nonempty) : (⋂₀ (F : Set (Set E))).Nonempty
case intro.intro.intro 𝕜 : Type u_2 E : Type u_3 inst✝³ : LinearOrderedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : FiniteDimensional 𝕜 E F : Finset (Set E) h_card : finrank 𝕜 E + 1 ≤ #F h_convex : ∀ X ∈ F, Convex 𝕜 X h_inter : ∀ G ⊆ F, #G = finrank 𝕜 E + 1 → (⋂₀ ↑G).Nonempty I : Finset (Set E) hI_ss : I ⊆ F hI_card : #I ≤ finrank 𝕜 E + 1 J : Finset (Set E) left✝ : I ⊆ J hJ_ss : J ⊆ F hJ_card : #J = finrank 𝕜 E + 1 this : ⋂₀ ↑J ⊆ ⋂₀ ↑I ⊢ (⋂₀ ↑J).Nonempty
exact h_inter J hJ_ss (by omega)
no goals
3b89e2c411c19e93
LieModule.exists_forall_mem_corootSpace_smul_add_eq_zero
Mathlib/Algebra/Lie/Weights/Chain.lean
/-- Given a (potential) root `α` relative to a Cartan subalgebra `H`, if we restrict to the ideal `I = corootSpace α` of `H` (informally, `I = ⁅H(α), H(-α)⁆`), we may find an integral linear combination between `α` and any weight `χ` of a representation. This is Proposition 4.4 from [carter2005] and is a key step in the proof that the roots of a semisimple Lie algebra form a root system. It shows that the restriction of `α` to `I` vanishes iff the restriction of every root to `I` vanishes (which cannot happen in a semisimple Lie algebra). -/ lemma exists_forall_mem_corootSpace_smul_add_eq_zero [IsDomain R] [IsPrincipalIdealRing R] [CharZero R] [NoZeroSMulDivisors R M] [IsNoetherian R M] (hα : α ≠ 0) (hχ : genWeightSpace M χ ≠ ⊥) : ∃ a b : ℤ, 0 < b ∧ ∀ x ∈ corootSpace α, (a • α + b • χ) x = 0
R : Type u_1 L : Type u_2 inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L M : Type u_3 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M H : LieSubalgebra R L α χ : ↥H → R inst✝⁶ : H.IsCartanSubalgebra inst✝⁵ : IsNoetherian R L inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : CharZero R inst✝¹ : NoZeroSMulDivisors R M inst✝ : IsNoetherian R M hα : α ≠ 0 hχ : genWeightSpace M χ ≠ ⊥ p : ℤ hp₀ : p < 0 q : ℤ hq₀ : q > 0 hp : genWeightSpace M (p • α + χ) = ⊥ hq : genWeightSpace M (q • α + χ) = ⊥ a : ℤ := ∑ i ∈ Finset.Ioo p q, finrank R ↥(genWeightSpace M (i • α + χ)) • i b : ℕ := ∑ i ∈ Finset.Ioo p q, finrank R ↥(genWeightSpace M (i • α + χ)) ⊢ 0 < b
replace hχ : Nontrivial (genWeightSpace M χ) := by rwa [LieSubmodule.nontrivial_iff_ne_bot]
R : Type u_1 L : Type u_2 inst✝¹³ : CommRing R inst✝¹² : LieRing L inst✝¹¹ : LieAlgebra R L M : Type u_3 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M inst✝⁸ : LieRingModule L M inst✝⁷ : LieModule R L M H : LieSubalgebra R L α χ : ↥H → R inst✝⁶ : H.IsCartanSubalgebra inst✝⁵ : IsNoetherian R L inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : CharZero R inst✝¹ : NoZeroSMulDivisors R M inst✝ : IsNoetherian R M hα : α ≠ 0 p : ℤ hp₀ : p < 0 q : ℤ hq₀ : q > 0 hp : genWeightSpace M (p • α + χ) = ⊥ hq : genWeightSpace M (q • α + χ) = ⊥ a : ℤ := ∑ i ∈ Finset.Ioo p q, finrank R ↥(genWeightSpace M (i • α + χ)) • i b : ℕ := ∑ i ∈ Finset.Ioo p q, finrank R ↥(genWeightSpace M (i • α + χ)) hχ : Nontrivial ↥(genWeightSpace M χ) ⊢ 0 < b
b168e9f902539ba8
LieAlgebra.isNilpotent_range_ad_iff
Mathlib/Algebra/Lie/Nilpotent.lean
theorem LieAlgebra.isNilpotent_range_ad_iff : IsNilpotent (ad R L).range ↔ IsNilpotent L
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ LieRing.IsNilpotent ↥(ad R L).range ↔ LieRing.IsNilpotent L
refine ⟨fun h => ?_, ?_⟩
case refine_1 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L h : LieRing.IsNilpotent ↥(ad R L).range ⊢ LieRing.IsNilpotent L case refine_2 R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L ⊢ LieRing.IsNilpotent L → LieRing.IsNilpotent ↥(ad R L).range
b95fab998472ba6f
Monotone.isBoundedUnder_le_comp_iff
Mathlib/Order/LiminfLimsup.lean
theorem Monotone.isBoundedUnder_le_comp_iff [Nonempty β] [LinearOrder β] [Preorder γ] [NoMaxOrder γ] {g : β → γ} {f : α → β} {l : Filter α} (hg : Monotone g) (hg' : Tendsto g atTop atTop) : IsBoundedUnder (· ≤ ·) l (g ∘ f) ↔ IsBoundedUnder (· ≤ ·) l f
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) l (g ∘ f) → IsBoundedUnder (fun x1 x2 => x1 ≤ x2) l f
rintro ⟨c, hc⟩
case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop c : γ hc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x1 x2 => x1 ≤ x2) x c ⊢ IsBoundedUnder (fun x1 x2 => x1 ≤ x2) l f
27bb41283202a063
DFinsupp.lapply_comp_lsingle_of_ne
Mathlib/LinearAlgebra/DFinsupp.lean
theorem lapply_comp_lsingle_of_ne [DecidableEq ι] (i i' : ι) (h : i ≠ i') : lapply i ∘ₗ lsingle i' = (0 : M i' →ₗ[R] M i)
case h ι : Type u_1 R : Type u_2 M : ι → Type u_4 inst✝³ : Semiring R inst✝² : (i : ι) → AddCommMonoid (M i) inst✝¹ : (i : ι) → Module R (M i) inst✝ : DecidableEq ι i i' : ι h : i ≠ i' x✝ : M i' ⊢ (lapply i ∘ₗ lsingle i') x✝ = 0 x✝
simp [h.symm]
no goals
b16b6e818e3e4df4
thickenedIndicatorAux_tendsto_indicator_closure
Mathlib/Topology/MetricSpace/ThickenedIndicator.lean
theorem thickenedIndicatorAux_tendsto_indicator_closure {δseq : ℕ → ℝ} (δseq_lim : Tendsto δseq atTop (𝓝 0)) (E : Set α) : Tendsto (fun n => thickenedIndicatorAux (δseq n) E) atTop (𝓝 (indicator (closure E) fun _ => (1 : ℝ≥0∞)))
case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : x ∉ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ b ≥ N, |δseq b| < ε n : ℕ n_large : n ≥ N key : x ∉ thickening ε E ⊢ thickenedIndicatorAux (δseq n) E x ≤ 0
apply (thickenedIndicatorAux_mono (lt_of_abs_lt (hN n n_large)).le E x).trans
case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : x ∉ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ b ≥ N, |δseq b| < ε n : ℕ n_large : n ≥ N key : x ∉ thickening ε E ⊢ thickenedIndicatorAux ε E x ≤ 0
72db20e07f758bc5
MeasureTheory.Lp_toLp_restrict_smul
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem Lp_toLp_restrict_smul (c : 𝕜) (f : Lp F p μ) (s : Set X) : ((Lp.memLp (c • f)).restrict s).toLp (⇑(c • f)) = c • ((Lp.memLp f).restrict s).toLp f
case h X : Type u_1 F : Type u_4 mX : MeasurableSpace X 𝕜 : Type u_5 inst✝² : NormedField 𝕜 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : ℝ≥0∞ μ : Measure X c : 𝕜 f : ↥(Lp F p μ) s : Set X ⊢ ∀ᵐ (x : X) ∂μ.restrict s, ↑↑(MemLp.toLp ↑↑f ⋯) x = ↑↑f x → ↑↑(c • f) x = (c • ↑↑f) x → ↑↑(MemLp.toLp ↑↑(c • f) ⋯) x = ↑↑(c • MemLp.toLp ↑↑f ⋯) x
refine (MemLp.coeFn_toLp ((Lp.memLp (c • f)).restrict s)).mp ?_
case h X : Type u_1 F : Type u_4 mX : MeasurableSpace X 𝕜 : Type u_5 inst✝² : NormedField 𝕜 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : ℝ≥0∞ μ : Measure X c : 𝕜 f : ↥(Lp F p μ) s : Set X ⊢ ∀ᵐ (x : X) ∂μ.restrict s, ↑↑(MemLp.toLp ↑↑(c • f) ⋯) x = ↑↑(c • f) x → ↑↑(MemLp.toLp ↑↑f ⋯) x = ↑↑f x → ↑↑(c • f) x = (c • ↑↑f) x → ↑↑(MemLp.toLp ↑↑(c • f) ⋯) x = ↑↑(c • MemLp.toLp ↑↑f ⋯) x
1d5bc8078fd879d3
sphere_prod
Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean
lemma sphere_prod (x : α × β) (r : ℝ) : sphere x r = sphere x.1 r ×ˢ closedBall x.2 r ∪ closedBall x.1 r ×ˢ sphere x.2 r
case inr.inr.h.mk.refine_2 α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β x' : α y' : β hr : 0 < dist y' x.2 ⊢ dist x' x.1 ≤ dist y' x.2 ↔ dist x' x.1 ≤ dist y' x.2
rfl
no goals
949a8c74f6143514
NonUnitalAlgebra.commute_of_mem_adjoin_of_forall_mem_commute
Mathlib/Algebra/Algebra/NonUnitalSubalgebra.lean
lemma commute_of_mem_adjoin_of_forall_mem_commute {a b : A} {s : Set A} (hb : b ∈ adjoin R s) (h : ∀ b ∈ s, Commute a b) : Commute a b
R : Type u_1 A : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : NonUnitalSemiring A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A a b : A s : Set A hb : b ∈ adjoin R s h : ∀ b ∈ s, Commute a b ⊢ a ∈ centralizer R s
simpa only [Commute.symm_iff (a := a)] using h
no goals
ccb5feb11561b3f7
Topology.IsUpperSet.isSheaf_of_isRightKanExtension
Mathlib/Topology/Sheaves/Alexandrov.lean
theorem Topology.IsUpperSet.isSheaf_of_isRightKanExtension (P : (Opens X)ᵒᵖ ⥤ C) (η : Alexandrov.principals X ⋙ P ⟶ F) [P.IsRightKanExtension η] : Presheaf.IsSheaf (Opens.grothendieckTopology X) P
X : Type v inst✝⁵ : TopologicalSpace X inst✝⁴ : Preorder X inst✝³ : Topology.IsUpperSet X C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C F : X ⥤ C P : (Opens X)ᵒᵖ ⥤ C η : principals X ⋙ P ⟶ F inst✝ : P.IsRightKanExtension η γ : principals X ⋙ principalsKanExtension F ⟶ F := (principals X).pointwiseRightKanExtensionCounit F x✝¹ : (principalsKanExtension F).IsRightKanExtension γ := inferInstance this : P ≅ principalsKanExtension F x✝ : Preorder ↑(of X) := inferInstanceAs (Preorder X) ⊢ TopCat.Presheaf.IsSheaf (principalsKanExtension F)
have _ : Topology.IsUpperSet (TopCat.of X) := inferInstanceAs <| Topology.IsUpperSet X
X : Type v inst✝⁵ : TopologicalSpace X inst✝⁴ : Preorder X inst✝³ : Topology.IsUpperSet X C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C F : X ⥤ C P : (Opens X)ᵒᵖ ⥤ C η : principals X ⋙ P ⟶ F inst✝ : P.IsRightKanExtension η γ : principals X ⋙ principalsKanExtension F ⟶ F := (principals X).pointwiseRightKanExtensionCounit F x✝² : (principalsKanExtension F).IsRightKanExtension γ := inferInstance this : P ≅ principalsKanExtension F x✝¹ : Preorder ↑(of X) := inferInstanceAs (Preorder X) x✝ : Topology.IsUpperSet ↑(of X) ⊢ TopCat.Presheaf.IsSheaf (principalsKanExtension F)
484b46eb3ee8177c
iteratedFDerivWithin_eventually_congr_set'
Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean
theorem iteratedFDerivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) (n : ℕ) : iteratedFDerivWithin 𝕜 n f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 n f t
case succ 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s t : Set E f : E → F y : E n : ℕ ihn : ∀ {x : E}, s =ᶠ[𝓝[{y}ᶜ] x] t → iteratedFDerivWithin 𝕜 n f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 n f t x : E h : s =ᶠ[𝓝[{y}ᶜ] x] t ⊢ iteratedFDerivWithin 𝕜 (n + 1) f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 (n + 1) f t
refine (eventually_nhds_nhdsWithin.2 h).mono fun y hy => ?_
case succ 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s t : Set E f : E → F y✝ : E n : ℕ ihn : ∀ {x : E}, s =ᶠ[𝓝[{y✝}ᶜ] x] t → iteratedFDerivWithin 𝕜 n f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 n f t x : E h : s =ᶠ[𝓝[{y✝}ᶜ] x] t y : E hy : ∀ᶠ (x : E) in 𝓝[{y✝}ᶜ] y, s x = t x ⊢ iteratedFDerivWithin 𝕜 (n + 1) f s y = iteratedFDerivWithin 𝕜 (n + 1) f t y
148a306dc1a96a2a
List.map_rotate
Mathlib/Data/List/Rotate.lean
theorem map_rotate {β : Type*} (f : α → β) (l : List α) (n : ℕ) : map f (l.rotate n) = (map f l).rotate n
case succ α : Type u β : Type u_1 f : α → β n : ℕ hn : ∀ (l : List α), map f (l.rotate n) = (map f l).rotate n l : List α ⊢ map f (l.rotate (n + 1)) = (map f l).rotate (n + 1)
rcases l with - | ⟨hd, tl⟩
case succ.nil α : Type u β : Type u_1 f : α → β n : ℕ hn : ∀ (l : List α), map f (l.rotate n) = (map f l).rotate n ⊢ map f ([].rotate (n + 1)) = (map f []).rotate (n + 1) case succ.cons α : Type u β : Type u_1 f : α → β n : ℕ hn : ∀ (l : List α), map f (l.rotate n) = (map f l).rotate n hd : α tl : List α ⊢ map f ((hd :: tl).rotate (n + 1)) = (map f (hd :: tl)).rotate (n + 1)
b4ad2f0f7827e283
recursion'
Mathlib/Data/Real/Pi/Irrational.lean
/-- Auxiliary for the proof that `π` is irrational. While it is most natural to give the recursive formula for `I (n + 2) θ`, as well as give the second base case of `I 1 θ`, it is in fact more convenient to give the recursive formula for `I (n + 1) θ` in terms of `I n θ` and `I (n - 1) θ` (note the natural subtraction!). Despite the usually inconvenient subtraction, this in fact allows deducing both of the above facts with significantly fewer analysis computations. In addition, note the `0 ^ n` on the right hand side - this is intentional, and again allows combining the proof of the "usual" recursion formula and the base case `I 1 θ`. -/ private lemma recursion' (n : ℕ) : I (n + 1) θ * θ ^ 2 = - (2 * 2 * ((n + 1) * (0 ^ n * cos θ))) + 2 * (n + 1) * (2 * n + 1) * I n θ - 4 * (n + 1) * n * I (n - 1) θ
θ : ℝ n : ℕ f : ℝ → ℝ := fun x => 1 - x ^ 2 u₁ : ℝ → ℝ := fun x => f x ^ (n + 1) u₁' : ℝ → ℝ := fun x => -(2 * (↑n + 1) * x * f x ^ n) v₁ : ℝ → ℝ := fun x => sin (x * θ) v₁' : ℝ → ℝ := fun x => cos (x * θ) * θ u₂ : ℝ → ℝ := fun x => x * f x ^ n u₂' : ℝ → ℝ := fun x => f x ^ n - 2 * ↑n * x ^ 2 * f x ^ (n - 1) v₂ : ℝ → ℝ := fun x => cos (x * θ) v₂' : ℝ → ℝ := fun x => -sin (x * θ) * θ hfd : Continuous f hu₁d : Continuous u₁' hv₁d : Continuous v₁' hu₂d : Continuous u₂' hv₂d : Continuous v₂' ⊢ (∫ (x : ℝ) in -1 ..1, (1 - x ^ 2) ^ (n + 1) * cos (x * θ)) * θ ^ 2 = -(2 * 2 * ((↑n + 1) * (0 ^ n * cos θ))) + 2 * (↑n + 1) * (2 * ↑n + 1) * I n θ - 4 * (↑n + 1) * ↑n * I (n - 1) θ
have hu₁_eval_one : u₁ 1 = 0 := by simp only [u₁, f]; simp
θ : ℝ n : ℕ f : ℝ → ℝ := fun x => 1 - x ^ 2 u₁ : ℝ → ℝ := fun x => f x ^ (n + 1) u₁' : ℝ → ℝ := fun x => -(2 * (↑n + 1) * x * f x ^ n) v₁ : ℝ → ℝ := fun x => sin (x * θ) v₁' : ℝ → ℝ := fun x => cos (x * θ) * θ u₂ : ℝ → ℝ := fun x => x * f x ^ n u₂' : ℝ → ℝ := fun x => f x ^ n - 2 * ↑n * x ^ 2 * f x ^ (n - 1) v₂ : ℝ → ℝ := fun x => cos (x * θ) v₂' : ℝ → ℝ := fun x => -sin (x * θ) * θ hfd : Continuous f hu₁d : Continuous u₁' hv₁d : Continuous v₁' hu₂d : Continuous u₂' hv₂d : Continuous v₂' hu₁_eval_one : u₁ 1 = 0 ⊢ (∫ (x : ℝ) in -1 ..1, (1 - x ^ 2) ^ (n + 1) * cos (x * θ)) * θ ^ 2 = -(2 * 2 * ((↑n + 1) * (0 ^ n * cos θ))) + 2 * (↑n + 1) * (2 * ↑n + 1) * I n θ - 4 * (↑n + 1) * ↑n * I (n - 1) θ
834ac76d1ec60c71
lt_iff_transGen_covBy
Mathlib/Order/Interval/Finset/Basic.lean
/-- In a locally finite preorder, `<` is the transitive closure of `⋖`. -/ lemma lt_iff_transGen_covBy [Preorder α] [LocallyFiniteOrder α] {x y : α} : x < y ↔ TransGen (· ⋖ ·) x y
α : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α x y : α h : TransGen (fun x1 x2 => x1 ⋖ x2) x y ⊢ x < y
induction h with | single hx => exact hx.1 | tail _ hb ih => exact ih.trans hb.1
no goals
2dfe5e14ad9034b4
LinearMap.toMatrix'_apply
Mathlib/LinearAlgebra/Matrix/ToLin.lean
theorem LinearMap.toMatrix'_apply (f : (n → R) →ₗ[R] m → R) (i j) : LinearMap.toMatrix' f i j = f (fun j' ↦ if j' = j then 1 else 0) i
case pos R : Type u_1 inst✝² : CommSemiring R m : Type u_4 n : Type u_5 inst✝¹ : DecidableEq n inst✝ : Fintype n f : (n → R) →ₗ[R] m → R i : m j j' : n h : j' = j ⊢ Pi.single j 1 j' = 1
rw [h, Pi.single_eq_same]
no goals
914bf9aa225ab3c0
HahnSeries.min_orderTop_le_orderTop_add
Mathlib/RingTheory/HahnSeries/Addition.lean
theorem min_orderTop_le_orderTop_add {Γ} [LinearOrder Γ] {x y : HahnSeries Γ R} : min x.orderTop y.orderTop ≤ (x + y).orderTop
case neg R : Type u_3 inst✝¹ : AddMonoid R Γ : Type u_8 inst✝ : LinearOrder Γ x y : HahnSeries Γ R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 ⊢ x.orderTop ⊓ y.orderTop ≤ (x + y).orderTop
rw [orderTop_of_ne hx, orderTop_of_ne hy, orderTop_of_ne hxy, ← WithTop.coe_min, WithTop.coe_le_coe]
case neg R : Type u_3 inst✝¹ : AddMonoid R Γ : Type u_8 inst✝ : LinearOrder Γ x y : HahnSeries Γ R hx : ¬x = 0 hy : ¬y = 0 hxy : ¬x + y = 0 ⊢ ⋯.min ⋯ ⊓ ⋯.min ⋯ ≤ ⋯.min ⋯
2ae7da1a5993815d
Odd.map
Mathlib/Algebra/Ring/Parity.lean
lemma Odd.map [FunLike F α β] [RingHomClass F α β] (f : F) : Odd a → Odd (f a)
F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : Semiring α inst✝² : Semiring β inst✝¹ : FunLike F α β inst✝ : RingHomClass F α β f : F a : α ⊢ f (2 * a + 1) = 2 * f a + 1
simp [two_mul]
no goals
89d2d0c4c4fac8c0
MeasureTheory.tendsto_diracProba_iff_tendsto
Mathlib/MeasureTheory/Measure/DiracProba.lean
lemma tendsto_diracProba_iff_tendsto [CompletelyRegularSpace X] {x : X} (L : Filter X) : Tendsto diracProba L (𝓝 (diracProba x)) ↔ Tendsto id L (𝓝 x)
case mpr X : Type u_1 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : OpensMeasurableSpace X inst✝ : CompletelyRegularSpace X x : X L : Filter X ⊢ Tendsto id L (𝓝 x) → Tendsto diracProba L (𝓝 (diracProba x))
intro h
case mpr X : Type u_1 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : OpensMeasurableSpace X inst✝ : CompletelyRegularSpace X x : X L : Filter X h : Tendsto id L (𝓝 x) ⊢ Tendsto diracProba L (𝓝 (diracProba x))
a577f032dda19d3d
MeasureTheory.measure_mul_closure_one
Mathlib/MeasureTheory/Group/Measure.lean
@[to_additive (attr := simp)] lemma measure_mul_closure_one (s : Set G) (μ : Measure G) : μ (s * (closure {1} : Set G)) = μ s
G : Type u_1 inst✝⁴ : MeasurableSpace G inst✝³ : TopologicalSpace G inst✝² : BorelSpace G inst✝¹ : Group G inst✝ : IsTopologicalGroup G s : Set G μ : Measure G ⊢ μ (s * closure {1}) ≤ ⨅ t, ⨅ (_ : s ⊆ t), ⨅ (_ : MeasurableSet t), μ t
simp only [le_iInf_iff]
G : Type u_1 inst✝⁴ : MeasurableSpace G inst✝³ : TopologicalSpace G inst✝² : BorelSpace G inst✝¹ : Group G inst✝ : IsTopologicalGroup G s : Set G μ : Measure G ⊢ ∀ (i : Set G), s ⊆ i → MeasurableSet i → μ (s * closure {1}) ≤ μ i
6ce7197066cf35a1
IsCauSeq.of_abv_le
Mathlib/Algebra/Order/CauSeq/BigOperators.lean
lemma of_abv_le (n : ℕ) (hm : ∀ m, n ≤ m → abv (f m) ≤ a m) : IsCauSeq abs (fun n ↦ ∑ i ∈ range n, a i) → IsCauSeq abv fun n ↦ ∑ i ∈ range n, f i
case intro α : Type u_1 β : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Ring β abv : β → α inst✝ : IsAbsoluteValue abv f : ℕ → β a : ℕ → α n : ℕ hm : ∀ (m : ℕ), n ≤ m → abv (f m) ≤ a m hg : IsCauSeq abs fun n => ∑ i ∈ range n, a i ε : α ε0 : ε > 0 i : ℕ hi : ∀ j ≥ i, |(fun n => ∑ i ∈ range n, a i) j - (fun n => ∑ i ∈ range n, a i) i| < ε / 2 ⊢ ∃ i, ∀ j ≥ i, abv ((fun n => ∑ i ∈ range n, f i) j - (fun n => ∑ i ∈ range n, f i) i) < ε
exists max n i
case intro α : Type u_1 β : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Ring β abv : β → α inst✝ : IsAbsoluteValue abv f : ℕ → β a : ℕ → α n : ℕ hm : ∀ (m : ℕ), n ≤ m → abv (f m) ≤ a m hg : IsCauSeq abs fun n => ∑ i ∈ range n, a i ε : α ε0 : ε > 0 i : ℕ hi : ∀ j ≥ i, |(fun n => ∑ i ∈ range n, a i) j - (fun n => ∑ i ∈ range n, a i) i| < ε / 2 ⊢ ∀ j ≥ n ⊔ i, abv ((fun n => ∑ i ∈ range n, f i) j - (fun n => ∑ i ∈ range n, f i) (n ⊔ i)) < ε
b6f4f6743be2f6bd
CategoryTheory.ShortComplex.ShortExact.extClass_hom
Mathlib/Algebra/Homology/DerivedCategory/Ext/ExtClass.lean
@[simp] lemma extClass_hom [HasDerivedCategory.{w'} C] : hS.extClass.hom = hS.singleδ
C : Type u inst✝³ : Category.{v, u} C inst✝² : Abelian C inst✝¹ : HasExt C S : ShortComplex C hS : S.ShortExact inst✝ : HasDerivedCategory C ⊢ (isoOfHom Q W (CochainComplex.mappingCone.descShortComplex (S.map (CochainComplex.singleFunctor C 0))) ⋯).inv ≫ Q.map (CochainComplex.mappingCone.triangle ((CochainComplex.singleFunctor C 0).map S.f)).mor₃ ≫ (Q.commShiftIso 1).hom.app ((CochainComplex.singleFunctor C 0).obj S.X₁) = (𝟙 ((singleFunctors C).functor 0)).app S.X₃ ≫ inv (Q.map (CochainComplex.mappingCone.descShortComplex (S.map (HomologicalComplex.single C (ComplexShape.up ℤ) 0)))) ≫ Q.map (CochainComplex.mappingCone.triangle ((HomologicalComplex.single C (ComplexShape.up ℤ) 0).map S.f)).mor₃ ≫ (Q.commShiftIso 1).hom.app ((HomologicalComplex.single C (ComplexShape.up ℤ) 0).obj S.X₁) ≫ (shiftFunctor (DerivedCategory C) 1).map ((𝟙 (((CochainComplex.singleFunctors C).postcomp Q).functor 0)).app S.X₁)
erw [Category.id_comp, Functor.map_id, Category.comp_id]
C : Type u inst✝³ : Category.{v, u} C inst✝² : Abelian C inst✝¹ : HasExt C S : ShortComplex C hS : S.ShortExact inst✝ : HasDerivedCategory C ⊢ (isoOfHom Q W (CochainComplex.mappingCone.descShortComplex (S.map (CochainComplex.singleFunctor C 0))) ⋯).inv ≫ Q.map (CochainComplex.mappingCone.triangle ((CochainComplex.singleFunctor C 0).map S.f)).mor₃ ≫ (Q.commShiftIso 1).hom.app ((CochainComplex.singleFunctor C 0).obj S.X₁) = inv (Q.map (CochainComplex.mappingCone.descShortComplex (S.map (HomologicalComplex.single C (ComplexShape.up ℤ) 0)))) ≫ Q.map (CochainComplex.mappingCone.triangle ((HomologicalComplex.single C (ComplexShape.up ℤ) 0).map S.f)).mor₃ ≫ (Q.commShiftIso 1).hom.app ((HomologicalComplex.single C (ComplexShape.up ℤ) 0).obj S.X₁)
ecc4c8a588d5dbf9
Set.mk_preimage_tprod
Mathlib/Data/Prod/TProd.lean
theorem mk_preimage_tprod : ∀ (l : List ι) (t : ∀ i, Set (α i)), TProd.mk l ⁻¹' Set.tprod l t = { i | i ∈ l }.pi t | [], t => by simp [Set.tprod] | i :: l, t => by ext f have h : TProd.mk l f ∈ Set.tprod l t ↔ ∀ i : ι, i ∈ l → f i ∈ t i
case h ι : Type u α : ι → Type v i : ι l : List ι t : (i : ι) → Set (α i) f : (i : ι) → α i ⊢ f ∈ TProd.mk (i :: l) ⁻¹' Set.tprod (i :: l) t ↔ f ∈ {i_1 | i_1 ∈ i :: l}.pi t
have h : TProd.mk l f ∈ Set.tprod l t ↔ ∀ i : ι, i ∈ l → f i ∈ t i := by change f ∈ TProd.mk l ⁻¹' Set.tprod l t ↔ f ∈ { x | x ∈ l }.pi t rw [mk_preimage_tprod l t]
case h ι : Type u α : ι → Type v i : ι l : List ι t : (i : ι) → Set (α i) f : (i : ι) → α i h : TProd.mk l f ∈ Set.tprod l t ↔ ∀ i ∈ l, f i ∈ t i ⊢ f ∈ TProd.mk (i :: l) ⁻¹' Set.tprod (i :: l) t ↔ f ∈ {i_1 | i_1 ∈ i :: l}.pi t
2802ceb5fdebf838
Filter.HasBasis.isVonNBounded_iff
Mathlib/Analysis/LocallyConvex/Bounded.lean
theorem _root_.Filter.HasBasis.isVonNBounded_iff {q : ι → Prop} {s : ι → Set E} {A : Set E} (h : (𝓝 (0 : E)).HasBasis q s) : IsVonNBounded 𝕜 A ↔ ∀ i, q i → Absorbs 𝕜 (s i) A
𝕜 : Type u_1 E : Type u_3 ι : Type u_5 inst✝³ : SeminormedRing 𝕜 inst✝² : SMul 𝕜 E inst✝¹ : Zero E inst✝ : TopologicalSpace E q : ι → Prop s : ι → Set E A : Set E h : (𝓝 0).HasBasis q s hA : ∀ (i : ι), q i → Absorbs 𝕜 (s i) A V : Set E hV : V ∈ 𝓝 0 ⊢ Absorbs 𝕜 V A
rcases h.mem_iff.mp hV with ⟨i, hi, hV⟩
case intro.intro 𝕜 : Type u_1 E : Type u_3 ι : Type u_5 inst✝³ : SeminormedRing 𝕜 inst✝² : SMul 𝕜 E inst✝¹ : Zero E inst✝ : TopologicalSpace E q : ι → Prop s : ι → Set E A : Set E h : (𝓝 0).HasBasis q s hA : ∀ (i : ι), q i → Absorbs 𝕜 (s i) A V : Set E hV✝ : V ∈ 𝓝 0 i : ι hi : q i hV : s i ⊆ V ⊢ Absorbs 𝕜 V A
d51ba1066824d9b9
dist_left_midpoint_eq_dist_right_midpoint
Mathlib/Analysis/Normed/Affine/AddTorsor.lean
theorem dist_left_midpoint_eq_dist_right_midpoint (p₁ p₂ : P) : dist p₁ (midpoint 𝕜 p₁ p₂) = dist p₂ (midpoint 𝕜 p₁ p₂)
V : Type u_1 P : Type u_2 inst✝⁵ : SeminormedAddCommGroup V inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor V P 𝕜 : Type u_5 inst✝² : NormedField 𝕜 inst✝¹ : NormedSpace 𝕜 V inst✝ : Invertible 2 p₁ p₂ : P ⊢ dist p₁ (midpoint 𝕜 p₁ p₂) = dist p₂ (midpoint 𝕜 p₁ p₂)
rw [dist_left_midpoint p₁ p₂, dist_right_midpoint p₁ p₂]
no goals
69da2c93168aa2f0
Nat.Partrec.Code.evaln_mono
Mathlib/Computability/PartrecCode.lean
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n | 0, k₂, c, n, x, _, h => by simp [evaln] at h | k + 1, k₂ + 1, c, n, x, hl, h => by have hl' := Nat.le_of_succ_le_succ hl have : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ }
case zero k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure 0) n = some x h : x ∈ pure 0 ⊢ x ∈ pure 0 case succ k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure n.succ) n = some x h : x ∈ pure n.succ ⊢ x ∈ pure n.succ case left k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).1) n = some x h : x ∈ pure (unpair n).1 ⊢ x ∈ pure (unpair n).1 case right k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ n x : ℕ h✝ : (fun n => do guard (n ≤ k) pure (unpair n).2) n = some x h : x ∈ pure (unpair n).2 ⊢ x ∈ pure (unpair n).2 case pair k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n) n = some x h : x ∈ Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n ⊢ x ∈ Nat.pair <$> evaln (k₂ + 1) cf n <*> evaln (k₂ + 1) cg n case comp k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (cf.prec cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (cf.prec cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (cf.prec cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k cf.rfind' (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k cf.rfind' (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ cf.rfind' (Nat.pair a (m + 1))) n
iterate 4 exact h
case pair k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n) n = some x h : x ∈ Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n ⊢ x ∈ Nat.pair <$> evaln (k₂ + 1) cf n <*> evaln (k₂ + 1) cg n case comp k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) let x ← evaln (k + 1) cg n evaln (k + 1) cf x) n = some x h : x ∈ do let x ← evaln (k + 1) cg n evaln (k + 1) cf x ⊢ x ∈ do let x ← evaln (k₂ + 1) cg n evaln (k₂ + 1) cf x case prec k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf cg : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (cf.prec cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n) n = some x h : x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k + 1) cf a) fun y => do let i ← evaln k (cf.prec cg) (Nat.pair a y) evaln (k + 1) cg (Nat.pair a (Nat.pair y i))) n ⊢ x ∈ unpaired (fun a n => Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do let i ← evaln k₂ (cf.prec cg) (Nat.pair a y) evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i))) n case rfind' k k₂ : ℕ hl : k + 1 ≤ k₂ + 1 hl' : k ≤ k₂ this : ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) → (x ∈ do guard (n ≤ k) o₁) → x ∈ do guard (n ≤ k₂) o₂ cf : Code hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x n x : ℕ h✝ : (fun n => do guard (n ≤ k) unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k cf.rfind' (Nat.pair a (m + 1))) n) n = some x h : x ∈ unpaired (fun a m => do let x ← evaln (k + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k cf.rfind' (Nat.pair a (m + 1))) n ⊢ x ∈ unpaired (fun a m => do let x ← evaln (k₂ + 1) cf (Nat.pair a m) if x = 0 then pure m else evaln k₂ cf.rfind' (Nat.pair a (m + 1))) n
231a1123011d0046
Turing.PartrecToTM2.codeSupp'_supports
Mathlib/Computability/TMToPartrec.lean
theorem codeSupp'_supports {S c k} (H : codeSupp c k ⊆ S) : Supports (codeSupp' c k) S
case comp.refine_1 S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (f.comp g) k ⊆ S H'✝ : trStmts₁ (trNormal (f.comp g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S ⊢ codeSupp f k ⊆ S
simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
case comp.refine_1 S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H'✝ : trStmts₁ (trNormal (f.comp g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ⊆ S ∧ trStmts₁ (trNormal f k) ⊆ S ∧ codeSupp' f k ⊆ S H : (trStmts₁ (trNormal (f.comp g) k) ⊆ S ∧ codeSupp' g (Cont'.comp f k) ⊆ S ∧ trStmts₁ (trNormal f k) ⊆ S ∧ codeSupp' f k ⊆ S) ∧ contSupp k ⊆ S ⊢ codeSupp' f k ⊆ S ∧ contSupp k ⊆ S
5fb2278c84599fe0
ENNReal.trichotomy₂
Mathlib/Data/ENNReal/Real.lean
theorem trichotomy₂ {p q : ℝ≥0∞} (hpq : p ≤ q) : p = 0 ∧ q = 0 ∨ p = 0 ∧ q = ∞ ∨ p = 0 ∧ 0 < q.toReal ∨ p = ∞ ∧ q = ∞ ∨ 0 < p.toReal ∧ q = ∞ ∨ 0 < p.toReal ∧ 0 < q.toReal ∧ p.toReal ≤ q.toReal
case inr.inr.h.h.h.h p q : ℝ≥0∞ hpq : p ≤ q hp : 0 < p hq : q < ⊤ ⊢ 0 < p.toReal ∧ q = ⊤ ∨ 0 < p.toReal ∧ 0 < q.toReal ∧ p.toReal ≤ q.toReal
right
case inr.inr.h.h.h.h.h p q : ℝ≥0∞ hpq : p ≤ q hp : 0 < p hq : q < ⊤ ⊢ 0 < p.toReal ∧ 0 < q.toReal ∧ p.toReal ≤ q.toReal
3be24298098eb436
HahnSeries.ofPowerSeries_X_pow
Mathlib/RingTheory/HahnSeries/PowerSeries.lean
theorem ofPowerSeries_X_pow {R} [Semiring R] (n : ℕ) : ofPowerSeries Γ R (PowerSeries.X ^ n) = single (n : Γ) 1
Γ : Type u_1 inst✝¹ : StrictOrderedSemiring Γ R : Type u_3 inst✝ : Semiring R n : ℕ ⊢ (ofPowerSeries Γ R) (PowerSeries.X ^ n) = (single ↑n) 1
simp
no goals
727042d063ddfdf9
Finset.mulDysonETransform_idem
Mathlib/Combinatorics/Additive/ETransform.lean
theorem mulDysonETransform_idem : mulDysonETransform e (mulDysonETransform e x) = mulDysonETransform e x
case snd α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CommGroup α e : α x : Finset α × Finset α ⊢ x.2 ∩ e⁻¹ • x.1 ∩ e⁻¹ • (x.1 ∪ e • x.2) = x.2 ∩ e⁻¹ • x.1
rw [smul_finset_union, inv_smul_smul, union_comm, inter_eq_left]
case snd α : Type u_1 inst✝¹ : DecidableEq α inst✝ : CommGroup α e : α x : Finset α × Finset α ⊢ x.2 ∩ e⁻¹ • x.1 ⊆ x.2 ∪ e⁻¹ • x.1
8c8645060ea3b1ed
Nat.bisect_add_one_false
Mathlib/.lake/packages/batteries/Batteries/Data/Nat/Bisect.lean
theorem bisect_add_one_false {p : Nat → Bool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) : p (bisect h hstart hstop + 1) = false
start stop : Nat p : Nat → Bool h : start < stop hstart : p start = true hstop : p stop = false h' : ¬start < start.avg stop heq : start.avg stop = start ⊢ p (start.avg stop + 1) = false
rw [← hstop, heq]
start stop : Nat p : Nat → Bool h : start < stop hstart : p start = true hstop : p stop = false h' : ¬start < start.avg stop heq : start.avg stop = start ⊢ p (start + 1) = p stop
ac8252c3fc1bc6fa
GenContFract.compExactValue_correctness_of_stream_eq_some_aux_comp
Mathlib/Algebra/ContinuedFractions/Computation/CorrectnessTerminating.lean
theorem compExactValue_correctness_of_stream_eq_some_aux_comp {a : K} (b c : K) (fract_a_ne_zero : Int.fract a ≠ 0) : ((⌊a⌋ : K) * b + c) / Int.fract a + b = (b * a + c) / Int.fract a
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ ↑⌊a⌋ * b + c + b * Int.fract a = b * a + c
rw [Int.fract]
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K a b c : K fract_a_ne_zero : Int.fract a ≠ 0 ⊢ ↑⌊a⌋ * b + c + b * (a - ↑⌊a⌋) = b * a + c
4bc31c2d1c2c0d60
QuaternionGroup.quaternionGroup_one_isCyclic
Mathlib/GroupTheory/SpecificGroups/Quaternion.lean
theorem quaternionGroup_one_isCyclic : IsCyclic (QuaternionGroup 1)
case hx ⊢ orderOf ?x = Nat.card (QuaternionGroup 1)
rw [Nat.card_eq_fintype_card, card, mul_one]
case hx ⊢ orderOf ?x = 4
eb8b7a5c1af5daba
CategoryTheory.HasExt.standard
Mathlib/Algebra/Homology/DerivedCategory/Ext/Basic.lean
lemma HasExt.standard : HasExt.{max u v} C
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Abelian C this : (C : Type ?u.37386) → [inst : Category.{?u.37387, ?u.37386} C] → [inst_1 : Abelian C] → HasDerivedCategory C := HasDerivedCategory.standard ⊢ HasExt C
exact hasExt_of_hasDerivedCategory _
no goals
fa5cffabd0d06fd7
CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma HomologyData.exact_iff_i_p_zero (h : S.HomologyData) : S.Exact ↔ h.left.i ≫ h.right.p = 0
case mp C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : HasZeroMorphisms C S : ShortComplex C h : S.HomologyData this : S.HasHomology ⊢ IsZero h.left.H → h.left.π ≫ h.iso.hom ≫ h.right.ι = 0
intro z
case mp C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : HasZeroMorphisms C S : ShortComplex C h : S.HomologyData this : S.HasHomology z : IsZero h.left.H ⊢ h.left.π ≫ h.iso.hom ≫ h.right.ι = 0
d036aacb3bf9ed60
Array.getElem_insertIdx_loop
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Lemmas.lean
theorem getElem_insertIdx_loop {as : Array α} {i : Nat} {j : Nat} {hj : j < as.size} {k : Nat} {h} : (insertIdx.loop i as ⟨j, hj⟩)[k] = if h₁ : k < i then as[k]'(by simpa using h) else if h₂ : k = i then if i ≤ j then as[j] else as[i]'(by simpa [h₂] using h) else if k ≤ j then as[k-1]'(by simp at h; omega) else as[k]'(by simpa using h)
α : Type u_1 as : Array α i j : Nat hj : j < as.size k : Nat h : k < (insertIdx.loop i as ⟨j, hj⟩).size ⊢ (insertIdx.loop i as ⟨j, hj⟩)[k] = if h₁ : k < i then as[k] else if h₂ : k = i then if i ≤ j then as[j] else as[i] else if k ≤ j then as[k - 1] else as[k]
split <;> rename_i h₁
case isTrue α : Type u_1 as : Array α i j : Nat hj : j < as.size k : Nat h : k < (insertIdx.loop i as ⟨j, hj⟩).size h₁ : k < i ⊢ (insertIdx.loop i as ⟨j, hj⟩)[k] = as[k] case isFalse α : Type u_1 as : Array α i j : Nat hj : j < as.size k : Nat h : k < (insertIdx.loop i as ⟨j, hj⟩).size h₁ : ¬k < i ⊢ (insertIdx.loop i as ⟨j, hj⟩)[k] = if h₂ : k = i then if i ≤ j then as[j] else as[i] else if k ≤ j then as[k - 1] else as[k]
7047eb0b3b596b09
ContinuousLinearMap.finset_sum_comp
Mathlib/Topology/Algebra/Module/LinearMap.lean
theorem finset_sum_comp {ι : Type*} {s : Finset ι} [ContinuousAdd M₃] (g : ι → M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M₂) : (∑ i ∈ s, g i).comp f = ∑ i ∈ s, (g i).comp f
R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹³ : Semiring R₁ inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁰ : TopologicalSpace M₁ inst✝⁹ : AddCommMonoid M₁ M₂ : Type u_6 inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁶ : TopologicalSpace M₃ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ ι : Type u_9 s : Finset ι inst✝ : ContinuousAdd M₃ g : ι → M₂ →SL[σ₂₃] M₃ f : M₁ →SL[σ₁₂] M₂ ⊢ (∑ i ∈ s, g i).comp f = ∑ i ∈ s, (g i).comp f
ext
case h R₁ : Type u_1 R₂ : Type u_2 R₃ : Type u_3 inst✝¹³ : Semiring R₁ inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ σ₁₂ : R₁ →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R₁ →+* R₃ M₁ : Type u_4 inst✝¹⁰ : TopologicalSpace M₁ inst✝⁹ : AddCommMonoid M₁ M₂ : Type u_6 inst✝⁸ : TopologicalSpace M₂ inst✝⁷ : AddCommMonoid M₂ M₃ : Type u_7 inst✝⁶ : TopologicalSpace M₃ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R₁ M₁ inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ ι : Type u_9 s : Finset ι inst✝ : ContinuousAdd M₃ g : ι → M₂ →SL[σ₂₃] M₃ f : M₁ →SL[σ₁₂] M₂ x✝ : M₁ ⊢ ((∑ i ∈ s, g i).comp f) x✝ = (∑ i ∈ s, (g i).comp f) x✝
8c914d1a3ca1f3ba
List.getLast?_take
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/TakeDrop.lean
theorem getLast?_take {l : List α} : (l.take n).getLast? = if n = 0 then none else l[n - 1]?.or l.getLast?
α : Type u_1 n : Nat l : List α ⊢ (if min n l.length - 1 < n then l[min n l.length - 1]? else none) = if n = 0 then none else l[n - 1]?.or l.getLast?
split
case isTrue α : Type u_1 n : Nat l : List α h✝ : min n l.length - 1 < n ⊢ l[min n l.length - 1]? = if n = 0 then none else l[n - 1]?.or l.getLast? case isFalse α : Type u_1 n : Nat l : List α h✝ : ¬min n l.length - 1 < n ⊢ none = if n = 0 then none else l[n - 1]?.or l.getLast?
05a9802408c6ca2f
Complex.exp_eq_exp_ℂ
Mathlib/Analysis/SpecialFunctions/Exponential.lean
theorem Complex.exp_eq_exp_ℂ : Complex.exp = NormedSpace.exp ℂ
x : ℂ ⊢ cexp x = NormedSpace.exp ℂ x
rw [Complex.exp, exp_eq_tsum_div]
x : ℂ ⊢ (exp' x).lim = (fun x => ∑' (n : ℕ), x ^ n / ↑n !) x
61d2d71496263d1b
Basis.reindexRange_repr'
Mathlib/LinearAlgebra/Basis/Defs.lean
theorem reindexRange_repr' (x : M) {bi : M} {i : ι} (h : b i = bi) : b.reindexRange.repr x ⟨bi, ⟨i, h⟩⟩ = b.repr x i
ι : Type u_1 R : Type u_3 M : Type u_6 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : Basis ι R M x bi : M i : ι h : b i = bi ⊢ (b.reindexRange.repr x) ⟨bi, ⋯⟩ = (b.repr x) i
nontriviality
ι : Type u_1 R : Type u_3 M : Type u_6 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : Basis ι R M x bi : M i : ι h : b i = bi a✝ : Nontrivial R ⊢ (b.reindexRange.repr x) ⟨bi, ⋯⟩ = (b.repr x) i
d778555276f771cb
Array.flatten_eq_push_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatten_eq_push_iff {xs : Array (Array α)} {ys : Array α} {y : α} : xs.flatten = ys.push y ↔ ∃ (as : Array (Array α)) (bs : Array α) (cs : Array (Array α)), xs = as.push (bs.push y) ++ cs ∧ (∀ l, l ∈ cs → l = #[]) ∧ ys = as.flatten ++ bs
case of.mk.mp.inr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 y : α as : List (List α) bs : List α c : α cs : List α ds : List (List α) h : [y] = c :: cs ++ ds.flatten ⊢ ∃ as_1 bs_1 cs_1, (List.map List.toArray (as ++ (bs ++ c :: cs) :: ds)).toArray = as_1.push (bs_1.push y) ++ cs_1 ∧ (∀ (l : Array α), l ∈ cs_1 → l = #[]) ∧ { toList := as.flatten ++ bs } = as_1.flatten ++ bs_1
rw [List.singleton_eq_append_iff] at h
case of.mk.mp.inr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 y : α as : List (List α) bs : List α c : α cs : List α ds : List (List α) h : c :: cs = [] ∧ ds.flatten = [y] ∨ c :: cs = [y] ∧ ds.flatten = [] ⊢ ∃ as_1 bs_1 cs_1, (List.map List.toArray (as ++ (bs ++ c :: cs) :: ds)).toArray = as_1.push (bs_1.push y) ++ cs_1 ∧ (∀ (l : Array α), l ∈ cs_1 → l = #[]) ∧ { toList := as.flatten ++ bs } = as_1.flatten ++ bs_1
dbe592481896286a
LinearMap.map_le_map_iff
Mathlib/LinearAlgebra/Span/Basic.lean
theorem map_le_map_iff (f : F) {p p'} : map f p ≤ map f p' ↔ p ≤ p' ⊔ ker f
R : Type u_1 R₂ : Type u_2 M : Type u_4 M₂ : Type u_5 inst✝⁸ : Semiring R inst✝⁷ : Semiring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝² : RingHomSurjective τ₁₂ F : Type u_8 inst✝¹ : FunLike F M M₂ inst✝ : SemilinearMapClass F τ₁₂ M M₂ f : F p p' : Submodule R M ⊢ map f p ≤ map f p' ↔ p ≤ p' ⊔ ker f
rw [map_le_iff_le_comap, Submodule.comap_map_eq]
no goals
4f08d29df089c851
MeasureTheory.setIntegral_abs_condExp_le
Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean
theorem setIntegral_abs_condExp_le {s : Set α} (hs : MeasurableSet[m] s) (f : α → ℝ) : ∫ x in s, |(μ[f|m]) x| ∂μ ≤ ∫ x in s, |f x| ∂μ
case pos α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : m ≤ m0 hfint : Integrable f μ ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ
have : ∫ x in s, |(μ[f|m]) x| ∂μ = ∫ x, |(μ[s.indicator f|m]) x| ∂μ := by rw [← integral_indicator (hnm _ hs)] refine integral_congr_ae ?_ have : (fun x => |(μ[s.indicator f|m]) x|) =ᵐ[μ] fun x => |s.indicator (μ[f|m]) x| := (condExp_indicator hfint hs).fun_comp abs refine EventuallyEq.trans (Eventually.of_forall fun x => ?_) this.symm rw [← Real.norm_eq_abs, norm_indicator_eq_indicator_norm] simp only [Real.norm_eq_abs]
case pos α : Type u_1 m m0 : MeasurableSpace α μ : Measure α s : Set α hs : MeasurableSet s f : α → ℝ hnm : m ≤ m0 hfint : Integrable f μ this : ∫ (x : α) in s, |(μ[f|m]) x| ∂μ = ∫ (x : α), |(μ[s.indicator f|m]) x| ∂μ ⊢ ∫ (x : α) in s, |(μ[f|m]) x| ∂μ ≤ ∫ (x : α) in s, |f x| ∂μ
f75c894a42ad0f54
le_nhdsAdjoint_iff'
Mathlib/Topology/Order.lean
theorem le_nhdsAdjoint_iff' {a : α} {f : Filter α} {t : TopologicalSpace α} : t ≤ nhdsAdjoint a f ↔ @nhds α t a ≤ pure a ⊔ f ∧ ∀ b ≠ a, @nhds α t b = pure b
α : Type u a : α f : Filter α t : TopologicalSpace α ⊢ t ≤ nhdsAdjoint a f ↔ 𝓝 a ≤ pure a ⊔ f ∧ ∀ (b : α), b ≠ a → 𝓝 b = pure b
simp_rw [le_iff_nhds, nhds_nhdsAdjoint, forall_update_iff, (pure_le_nhds _).le_iff_eq]
no goals
c347397418b97452
differentiableAt_iff_comp_add_const
Mathlib/Analysis/Calculus/Deriv/Add.lean
lemma differentiableAt_iff_comp_add_const {a b : 𝕜} : DifferentiableAt 𝕜 f a ↔ DifferentiableAt 𝕜 (fun x ↦ f (x + b)) (a - b)
𝕜 : Type u inst✝² : NontriviallyNormedField 𝕜 F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : 𝕜 → F a b : 𝕜 ⊢ DifferentiableAt 𝕜 f a ↔ DifferentiableAt 𝕜 (fun x => f (x + b)) (a - b)
simp [differentiableAt_comp_add_const]
no goals
76441202ae7eef99
Isometry.norm_map_of_map_one
Mathlib/Analysis/Normed/Group/Uniform.lean
theorem Isometry.norm_map_of_map_one {f : E → F} (hi : Isometry f) (h₁ : f 1 = 1) (x : E) : ‖f x‖ = ‖x‖
E : Type u_2 F : Type u_3 inst✝¹ : SeminormedGroup E inst✝ : SeminormedGroup F f : E → F hi : Isometry f h₁ : f 1 = 1 x : E ⊢ ‖f x‖ = ‖x‖
rw [← dist_one_right, ← h₁, hi.dist_eq, dist_one_right]
no goals
4199a2679c9513dc
LieSubmodule.lie_baseChange
Mathlib/Algebra/Lie/BaseChange.lean
lemma lie_baseChange {I : LieIdeal R L} {N : LieSubmodule R L M} : ⁅I, N⁆.baseChange A = ⁅I.baseChange A, N.baseChange A⁆
case refine_2.intro.intro.intro.intro.add R : Type u_1 A : Type u_2 L : Type u_3 M : Type u_4 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : CommRing A inst✝ : Algebra R A I : LieIdeal R L N : LieSubmodule R L M s : Set (A ⊗[R] M) := {m | ∃ x ∈ I, ∃ n ∈ N, 1 ⊗ₜ[R] ⁅x, n⁆ = m} this : ⇑((TensorProduct.mk R A M) 1) '' {m | ∃ x ∈ I, ∃ n ∈ N, ⁅x, n⁆ = m} = s x : A ⊗[R] L hx : x ∈ baseChange A I ⊢ ∀ (x y : A ⊗[R] L) (hx : x ∈ Submodule.span A ↑(Submodule.map ((TensorProduct.mk R A L) 1) ↑I)) (hy : y ∈ Submodule.span A ↑(Submodule.map ((TensorProduct.mk R A L) 1) ↑I)), (fun x' x => ∀ m' ∈ baseChange A N, ⁅x', m'⁆ ∈ Submodule.span A s) x hx → (fun x' x => ∀ m' ∈ baseChange A N, ⁅x', m'⁆ ∈ Submodule.span A s) y hy → (fun x' x => ∀ m' ∈ baseChange A N, ⁅x', m'⁆ ∈ Submodule.span A s) (x + y) ⋯
intro x y _ _ hx hy m' hm'
case refine_2.intro.intro.intro.intro.add R : Type u_1 A : Type u_2 L : Type u_3 M : Type u_4 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : CommRing A inst✝ : Algebra R A I : LieIdeal R L N : LieSubmodule R L M s : Set (A ⊗[R] M) := {m | ∃ x ∈ I, ∃ n ∈ N, 1 ⊗ₜ[R] ⁅x, n⁆ = m} this : ⇑((TensorProduct.mk R A M) 1) '' {m | ∃ x ∈ I, ∃ n ∈ N, ⁅x, n⁆ = m} = s x✝ : A ⊗[R] L hx✝¹ : x✝ ∈ baseChange A I x y : A ⊗[R] L hx✝ : x ∈ Submodule.span A ↑(Submodule.map ((TensorProduct.mk R A L) 1) ↑I) hy✝ : y ∈ Submodule.span A ↑(Submodule.map ((TensorProduct.mk R A L) 1) ↑I) hx : ∀ m' ∈ baseChange A N, ⁅x, m'⁆ ∈ Submodule.span A s hy : ∀ m' ∈ baseChange A N, ⁅y, m'⁆ ∈ Submodule.span A s m' : A ⊗[R] M hm' : m' ∈ baseChange A N ⊢ ⁅x + y, m'⁆ ∈ Submodule.span A s
c0e93f202362c69d
MeasureTheory.hasFDerivAt_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem hasFDerivAt_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hs : IsOpen s) (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ)) (q₀ : P × G) (hq₀ : q₀.1 ∈ s) : HasFDerivAt (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) ((f ⋆[L.precompR (P × G), μ] fun x : G => fderiv 𝕜 (↿g) (q₀.1, x)) q₀.2) q₀
case neg 𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ) q₀ : P × G hq₀ : q₀.1 ∈ s g' : P × G → P × G →L[𝕜] E' := fderiv 𝕜 ↿g A✝ : ∀ p ∈ s, Continuous (g p) A' : ∀ (q : P × G), q.1 ∈ s → s ×ˢ univ ∈ 𝓝 q g'_zero : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g' (p, x) = 0 A : IsCompact ({q₀.1} ×ˢ k) t : Set (P × G) kt : {q₀.1} ×ˢ k ⊆ t t_open : IsOpen t ht : Bornology.IsBounded (g' '' t) ε : ℝ εpos : 0 < ε hε : thickening ε ({q₀.1} ×ˢ k) ⊆ t h'ε : ball q₀.1 ε ⊆ s C : ℝ Cpos : 0 < C hC : g' '' t ⊆ closedBall 0 C p : P x : G hp : ‖p - q₀.1‖ < ε hps : p ∈ s hx : x ∉ k this : g' (p, x) = 0 ⊢ ‖0‖ ≤ C
simpa only [norm_zero] using Cpos.le
no goals
681ec723c7fd0b70
MvPolynomial.support_sdiff_support_subset_support_add
Mathlib/Algebra/MvPolynomial/Basic.lean
theorem support_sdiff_support_subset_support_add [DecidableEq σ] (p q : MvPolynomial σ R) : p.support \ q.support ⊆ (p + q).support
R : Type u σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : DecidableEq σ p q : MvPolynomial σ R ⊢ p.support \ q.support ⊆ (p + q).support
intro m hm
R : Type u σ : Type u_1 inst✝¹ : CommSemiring R inst✝ : DecidableEq σ p q : MvPolynomial σ R m : σ →₀ ℕ hm : m ∈ p.support \ q.support ⊢ m ∈ (p + q).support
fb17947fed01177e
nhds_nhdsAdjoint_same
Mathlib/Topology/Order.lean
theorem nhds_nhdsAdjoint_same (a : α) (f : Filter α) : @nhds α (nhdsAdjoint a f) a = pure a ⊔ f
α : Type u a : α f : Filter α ⊢ 𝓝 a = pure a ⊔ f
let _ := nhdsAdjoint a f
α : Type u a : α f : Filter α x✝ : TopologicalSpace α := nhdsAdjoint a f ⊢ 𝓝 a = pure a ⊔ f
fb86baaa4749a61f
Cardinal.nat_coe_dvd_iff
Mathlib/SetTheory/Cardinal/Divisibility.lean
theorem nat_coe_dvd_iff : (n : Cardinal) ∣ m ↔ n ∣ m
case intro n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k this : ↑m < ℵ₀ ⊢ n ∣ m
rw [hk, mul_lt_aleph0_iff] at this
case intro n m : ℕ k : Cardinal.{u_1} hk : ↑m = ↑n * k this : ↑n = 0 ∨ k = 0 ∨ ↑n < ℵ₀ ∧ k < ℵ₀ ⊢ n ∣ m
76e842e0713287f3
CategoryTheory.Triangulated.Subcategory.isoClosure_W
Mathlib/CategoryTheory/Triangulated/Subcategory.lean
lemma isoClosure_W : S.isoClosure.W = S.W
case h.mp.intro.intro.intro.intro.intro.intro.intro C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : HasZeroObject C inst✝³ : HasShift C ℤ inst✝² : Preadditive C inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C S : Subcategory C X Y : C f : X ⟶ Y Z : C g : Y ⟶ Z h : Z ⟶ (shiftFunctor C 1).obj X mem : Triangle.mk f g h ∈ distinguishedTriangles Z' : C hZ' : S.P Z' e : Z ≅ Z' ⊢ Triangle.mk f (g ≫ e.hom) (e.inv ≫ h) ≅ Triangle.mk f g h
exact Triangle.isoMk _ _ (Iso.refl _) (Iso.refl _) e.symm
no goals
860294c19a783fa0
Finset.mem_map_equiv
Mathlib/Data/Finset/Image.lean
theorem mem_map_equiv {f : α ≃ β} {b : β} : b ∈ s.map f.toEmbedding ↔ f.symm b ∈ s
α : Type u_1 β : Type u_2 s : Finset α f : α ≃ β b : β ⊢ b ∈ map f.toEmbedding s ↔ f.symm b ∈ s
rw [mem_map]
α : Type u_1 β : Type u_2 s : Finset α f : α ≃ β b : β ⊢ (∃ a ∈ s, f.toEmbedding a = b) ↔ f.symm b ∈ s
40c90e1b99d7e288
ContinuousLinearMap.projKerOfRightInverse_apply_idem
Mathlib/Topology/Algebra/Module/LinearMap.lean
theorem projKerOfRightInverse_apply_idem [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂) (f₂ : M₂ →SL[σ₂₁] M) (h : Function.RightInverse f₂ f₁) (x : LinearMap.ker f₁) : f₁.projKerOfRightInverse f₂ h x = x
case a R : Type u_1 inst✝⁹ : Ring R R₂ : Type u_2 inst✝⁸ : Ring R₂ M : Type u_4 inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M M₂ : Type u_5 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M inst✝² : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝ : IsTopologicalAddGroup M f₁ : M →SL[σ₁₂] M₂ f₂ : M₂ →SL[σ₂₁] M h : Function.RightInverse ⇑f₂ ⇑f₁ x : ↥(LinearMap.ker f₁) ⊢ ↑((f₁.projKerOfRightInverse f₂ h) ↑x) = ↑x
simp
no goals
8e79a5a2228c5cb7
Nat.floorRoot_zero_right
Mathlib/Data/Nat/Factorization/Root.lean
@[simp] lemma floorRoot_zero_right (n : ℕ) : floorRoot n 0 = 0
n : ℕ ⊢ n.floorRoot 0 = 0
simp [floorRoot]
no goals
d167cce764104f8a
discrim_le_zero
Mathlib/Algebra/QuadraticDiscriminant.lean
theorem discrim_le_zero (h : ∀ x : K, 0 ≤ a * (x * x) + b * x + c) : discrim a b c ≤ 0
case inr.inl.inr K : Type u_1 inst✝ : LinearOrderedField K b c : K h : ∀ (x : K), 0 ≤ 0 * (x * x) + b * x + c hb : b ≠ 0 this : 0 ≤ 0 * ((-c - 1) / b * ((-c - 1) / b)) + b * ((-c - 1) / b) + c ⊢ b * b - 4 * 0 * c ≤ 0
rw [mul_div_cancel₀ _ hb] at this
case inr.inl.inr K : Type u_1 inst✝ : LinearOrderedField K b c : K h : ∀ (x : K), 0 ≤ 0 * (x * x) + b * x + c hb : b ≠ 0 this : 0 ≤ 0 * ((-c - 1) / b * ((-c - 1) / b)) + (-c - 1) + c ⊢ b * b - 4 * 0 * c ≤ 0
1756922daf2602f9
AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.add_mem
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
theorem carrier.add_mem (q : Spec.T A⁰_ f) {a b : A} (ha : a ∈ carrier f_deg q) (hb : b ∈ carrier f_deg q) : a + b ∈ carrier f_deg q
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ f ^ i ∈ 𝒜 (m * i)
rw [mul_comm]
R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ f ^ i ∈ 𝒜 (i * m)
e11b14794a0cd9b6
IsLocalMin.fderiv_eq_zero
Mathlib/Analysis/Calculus/LocalExtr/Basic.lean
theorem IsLocalMin.fderiv_eq_zero (h : IsLocalMin f a) : fderiv ℝ f a = 0
E : Type u inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : E → ℝ a : E h : IsLocalMin f a ⊢ fderiv ℝ f a = 0
classical exact if hf : DifferentiableAt ℝ f a then h.hasFDerivAt_eq_zero hf.hasFDerivAt else fderiv_zero_of_not_differentiableAt hf
no goals
8ae5d0ec02b23fbb
jacobiTheta_S_smul
Mathlib/NumberTheory/ModularForms/JacobiTheta/OneVariable.lean
theorem jacobiTheta_S_smul (τ : ℍ) : jacobiTheta ↑(ModularGroup.S • τ) = (-I * τ) ^ (1 / 2 : ℂ) * jacobiTheta τ
τ : ℍ ⊢ jacobiTheta ↑(ModularGroup.S • τ) = (-I * ↑τ) ^ (1 / 2) * jacobiTheta ↑τ
have h0 : (τ : ℂ) ≠ 0 := ne_of_apply_ne im (zero_im.symm ▸ ne_of_gt τ.2)
τ : ℍ h0 : ↑τ ≠ 0 ⊢ jacobiTheta ↑(ModularGroup.S • τ) = (-I * ↑τ) ^ (1 / 2) * jacobiTheta ↑τ
0586d0787d847c58
LieModule.iSup_ucs_eq_genWeightSpace_zero
Mathlib/Algebra/Lie/Weights/Basic.lean
/-- See also `LieModule.iInf_lowerCentralSeries_eq_posFittingComp`. -/ lemma iSup_ucs_eq_genWeightSpace_zero [IsNoetherian R M] : ⨆ k, (⊥ : LieSubmodule R L M).ucs k = genWeightSpace M (0 : L → R)
case intro R : Type u_2 L : Type u_3 M : Type u_4 inst✝⁸ : CommRing R inst✝⁷ : LieRing L inst✝⁶ : LieAlgebra R L inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : LieRingModule L M inst✝² : LieModule R L M inst✝¹ : LieRing.IsNilpotent L inst✝ : IsNoetherian R M k : ℕ hk : genWeightSpace M 0 ≤ LieSubmodule.ucs k ⊥ ⊢ LieSubmodule.ucs k ⊥ ≤ ⨆ k, LieSubmodule.ucs k ⊥
exact le_iSup (fun k ↦ (⊥ : LieSubmodule R L M).ucs k) k
no goals
953c26500f119b1f
Nat.image_div_divisors_eq_divisors
Mathlib/NumberTheory/Divisors.lean
theorem image_div_divisors_eq_divisors (n : ℕ) : image (fun x : ℕ => n / x) n.divisors = n.divisors
case neg.h.mp.intro.intro n : ℕ hn : ¬n = 0 a x : ℕ hx1 : x ∣ n ∧ n ≠ 0 hx2 : n / x = a ⊢ a ∣ n ∧ n ≠ 0
refine ⟨?_, hn⟩
case neg.h.mp.intro.intro n : ℕ hn : ¬n = 0 a x : ℕ hx1 : x ∣ n ∧ n ≠ 0 hx2 : n / x = a ⊢ a ∣ n
fa9501818042115c
Set.chainHeight_le_chainHeight_TFAE
Mathlib/Order/Height.lean
theorem chainHeight_le_chainHeight_TFAE (s : Set α) (t : Set β) : TFAE [s.chainHeight ≤ t.chainHeight, ∀ l ∈ s.subchain, ∃ l' ∈ t.subchain, length l = length l', ∀ l ∈ s.subchain, ∃ l' ∈ t.subchain, length l ≤ length l']
α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s : Set α t : Set β ⊢ s.chainHeight ≤ t.chainHeight ↔ ∀ l ∈ s.subchain, ∃ l' ∈ t.subchain, l.length ≤ l'.length
convert ← chainHeight_add_le_chainHeight_add s t 0 0 <;> apply add_zero
no goals
c0f9e0f54d2e27df
MulChar.isQuadratic_iff_sq_eq_one
Mathlib/NumberTheory/MulChar/Basic.lean
/-- A multiplicative character `χ` into an integral domain is quadratic if and only if `χ^2 = 1`. -/ lemma isQuadratic_iff_sq_eq_one {M R : Type*} [CommMonoid M] [CommRing R] [NoZeroDivisors R] [Nontrivial R] {χ : MulChar M R} : IsQuadratic χ ↔ χ ^ 2 = 1
case refine_1.inl M : Type u_4 R : Type u_5 inst✝³ : CommMonoid M inst✝² : CommRing R inst✝¹ : NoZeroDivisors R inst✝ : Nontrivial R χ : MulChar M R h : χ.IsQuadratic x : Mˣ H : χ ↑x = 0 ⊢ χ ↑x ^ 2 = 1
exact (not_isUnit_zero <| H ▸ IsUnit.map χ <| x.isUnit).elim
no goals
6577a1512c271721
CategoryTheory.mapPair_equifibered
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem mapPair_equifibered {F F' : Discrete WalkingPair ⥤ C} (α : F ⟶ F') : NatTrans.Equifibered α
case mk.right.mk.up.up C : Type u inst✝ : Category.{v, u} C F F' : Discrete WalkingPair ⥤ C α : F ⟶ F' ⊢ IsPullback (𝟙 (F.obj { as := WalkingPair.right })) (α.app { as := WalkingPair.right }) (α.app { as := WalkingPair.right }) (𝟙 (F'.obj { as := WalkingPair.right }))
exact IsPullback.of_horiz_isIso ⟨by simp only [Category.comp_id, Category.id_comp]⟩
no goals
75bbeab18b3afdbf
FractionalIdeal.div_spanSingleton
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
case pos R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : d = 0 ⊢ J / spanSingleton R₁⁰ d = 1 / spanSingleton R₁⁰ d * J
simp only [hd, spanSingleton_zero, div_zero, zero_mul]
no goals
3a4f3cf63940a3cf
CategoryTheory.Limits.cokernelZeroIsoTarget_hom
Mathlib/CategoryTheory/Limits/Shapes/Kernels.lean
theorem cokernelZeroIsoTarget_hom : cokernelZeroIsoTarget.hom = cokernel.desc (0 : X ⟶ Y) (𝟙 Y) (by simp)
case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasZeroMorphisms C X Y : C ⊢ coequalizer.π 0 0 ≫ cokernelZeroIsoTarget.hom = coequalizer.π 0 0 ≫ cokernel.desc 0 (𝟙 Y) ⋯
simp [cokernelZeroIsoTarget]
no goals
10fc23a19e773db4
ConcaveOn.slope_anti_adjacent
Mathlib/Analysis/Convex/Slope.lean
theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn 𝕜 s f) {x y z : 𝕜} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz)
𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 s : Set 𝕜 f : 𝕜 → 𝕜 hf : ConcaveOn 𝕜 s f x y z : 𝕜 hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : -(((-f) z - (-f) y) / (z - y)) ≤ -(((-f) y - (-f) x) / (y - x)) ⊢ (f z - f y) / (z - y) ≤ (f y - f x) / (y - x)
266390e102ca535a
EuclideanGeometry.reflection_mem_of_le_of_mem
Mathlib/Geometry/Euclidean/Basic.lean
theorem reflection_mem_of_le_of_mem {s₁ s₂ : AffineSubspace ℝ P} [Nonempty s₁] [HasOrthogonalProjection s₁.direction] (hle : s₁ ≤ s₂) {p : P} (hp : p ∈ s₂) : reflection s₁ p ∈ s₂
V : Type u_1 P : Type u_2 inst✝⁵ : NormedAddCommGroup V inst✝⁴ : InnerProductSpace ℝ V inst✝³ : MetricSpace P inst✝² : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝¹ : Nonempty ↥s₁ inst✝ : HasOrthogonalProjection s₁.direction hle : s₁ ≤ s₂ p : P hp : p ∈ s₂ ⊢ (reflection s₁) p ∈ s₂
rw [reflection_apply]
V : Type u_1 P : Type u_2 inst✝⁵ : NormedAddCommGroup V inst✝⁴ : InnerProductSpace ℝ V inst✝³ : MetricSpace P inst✝² : NormedAddTorsor V P s₁ s₂ : AffineSubspace ℝ P inst✝¹ : Nonempty ↥s₁ inst✝ : HasOrthogonalProjection s₁.direction hle : s₁ ≤ s₂ p : P hp : p ∈ s₂ ⊢ (↑((orthogonalProjection s₁) p) -ᵥ p) +ᵥ ↑((orthogonalProjection s₁) p) ∈ s₂
d7a829dab8264775
IsCyclotomicExtension.adjoin_primitive_root_eq_top
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem adjoin_primitive_root_eq_top {n : ℕ+} [IsDomain B] [h : IsCyclotomicExtension {n} A B] {ζ : B} (hζ : IsPrimitiveRoot ζ n) : adjoin A ({ζ} : Set B) = ⊤
A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B n : ℕ+ inst✝ : IsDomain B h : IsCyclotomicExtension {n} A B ζ : B hζ : IsPrimitiveRoot ζ ↑n ⊢ adjoin A ((cyclotomic (↑n) A).rootSet B) = ⊤
rw [adjoin_roots_cyclotomic_eq_adjoin_nth_roots hζ]
A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B n : ℕ+ inst✝ : IsDomain B h : IsCyclotomicExtension {n} A B ζ : B hζ : IsPrimitiveRoot ζ ↑n ⊢ adjoin A {b | ∃ a ∈ {n}, b ^ ↑a = 1} = ⊤
ad8b2bbb3401eddb
Polynomial.addSubmonoid_closure_setOf_eq_monomial
Mathlib/Algebra/Polynomial/Basic.lean
theorem addSubmonoid_closure_setOf_eq_monomial : AddSubmonoid.closure { p : R[X] | ∃ n a, p = monomial n a } = ⊤
case h R : Type u inst✝ : Semiring R ⊢ ⊤ ≤ AddSubmonoid.closure {p | ∃ n a, p = (monomial n) a}
rw [← AddSubmonoid.map_equiv_top (toFinsuppIso R).symm.toAddEquiv, ← Finsupp.add_closure_setOf_eq_single, AddMonoidHom.map_mclosure]
case h R : Type u inst✝ : Semiring R ⊢ AddSubmonoid.closure (⇑(toFinsuppIso R).symm.toAddEquiv '' {f | ∃ a b, f = Finsupp.single a b}) ≤ AddSubmonoid.closure {p | ∃ n a, p = (monomial n) a}
4cb938b2b4ef705e
AlgebraicGeometry.iSup_opensRange_sigmaι
Mathlib/AlgebraicGeometry/Limits.lean
lemma iSup_opensRange_sigmaι : ⨆ i, (Sigma.ι f i).opensRange = ⊤ := eq_top_iff.mpr fun x ↦ by simpa using exists_sigmaι_eq f x
ι : Type u f : ι → Scheme x : ↑↑(∐ f).toPresheafedSpace ⊢ x ∈ ↑⊤ → x ∈ ↑(⨆ i, Scheme.Hom.opensRange (Sigma.ι f i))
simpa using exists_sigmaι_eq f x
no goals
10b96ceb72ebd425
CategoryTheory.FreeBicategory.normalizeAux_congr
Mathlib/CategoryTheory/Bicategory/Coherence.lean
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) : normalizeAux p f = normalizeAux p g
case mk.h.left_unitor_inv B : Type u inst✝ : Quiver B a b c : B f g : Hom b c a✝ b✝ : FreeBicategory B f✝ : a✝ ⟶ b✝ ⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p (𝟙 a✝ ≫ f✝)
funext
case mk.h.left_unitor_inv.h B : Type u inst✝ : Quiver B a b c : B f g : Hom b c a✝ b✝ : FreeBicategory B f✝ : a✝ ⟶ b✝ x✝ : Path a a✝ ⊢ normalizeAux x✝ f✝ = normalizeAux x✝ (𝟙 a✝ ≫ f✝)
023558b97807da1b
Convex.convexJoin
Mathlib/Analysis/Convex/Join.lean
theorem Convex.convexJoin (hs : Convex 𝕜 s) (ht : Convex 𝕜 t) : Convex 𝕜 (convexJoin 𝕜 s t)
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 ⊢ ∃ i, ∃ (_ : i ∈ s), ∃ i_1, ∃ (_ : i_1 ∈ t), p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1]
rcases hs.exists_mem_add_smul_eq hx₁ hx₂ (mul_nonneg hp ha₁) (mul_nonneg hq ha₂) with ⟨x, hxs, hx⟩
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_2 E : Type u_3 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s t : Set E hs : Convex 𝕜 s ht : Convex 𝕜 t x₁ : E hx₁ : x₁ ∈ s y₁ : E hy₁ : y₁ ∈ t a₁ b₁ : 𝕜 ha₁ : 0 ≤ a₁ hb₁ : 0 ≤ b₁ hab₁ : a₁ + b₁ = 1 x₂ : E hx₂ : x₂ ∈ s y₂ : E hy₂ : y₂ ∈ t a₂ b₂ : 𝕜 ha₂ : 0 ≤ a₂ hb₂ : 0 ≤ b₂ hab₂ : a₂ + b₂ = 1 p q : 𝕜 hp : 0 ≤ p hq : 0 ≤ q hpq : p + q = 1 x : E hxs : x ∈ s hx : (p * a₁ + q * a₂) • x = (p * a₁) • x₁ + (q * a₂) • x₂ ⊢ ∃ i, ∃ (_ : i ∈ s), ∃ i_1, ∃ (_ : i_1 ∈ t), p • (a₁ • x₁ + b₁ • y₁) + q • (a₂ • x₂ + b₂ • y₂) ∈ [i-[𝕜]i_1]
8773104f02cc3ff3
integrable_rpow_mul_exp_neg_mul_sq
Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean
theorem integrable_rpow_mul_exp_neg_mul_sq {b : ℝ} (hb : 0 < b) {s : ℝ} (hs : -1 < s) : Integrable fun x : ℝ => x ^ s * exp (-b * x ^ 2)
case hf b : ℝ hb : 0 < b s : ℝ hs : -1 < s ⊢ AEStronglyMeasurable (fun x => (-x) ^ s * rexp (-b * x ^ 2)) (volume.restrict (Ioi 0))
apply Measurable.aestronglyMeasurable
case hf.hf b : ℝ hb : 0 < b s : ℝ hs : -1 < s ⊢ Measurable fun x => (-x) ^ s * rexp (-b * x ^ 2)
7d42832261d7a82c
MulAction.orbitRel_subgroupOf
Mathlib/GroupTheory/GroupAction/Basic.lean
@[to_additive] lemma orbitRel_subgroupOf (H K : Subgroup G) : orbitRel (H.subgroupOf K) α = orbitRel (H ⊓ K : Subgroup G) α
case a.refine_2.intro.mk G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α H K : Subgroup G b✝ : α gv : G gp : gv ∈ Subgroup.map K.subtype (H.subgroupOf K) ⊢ (fun m => m • b✝) ⟨gv, gp⟩ ∈ orbit (↥(H.subgroupOf K)) b✝
simp only [Submonoid.mk_smul]
case a.refine_2.intro.mk G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α H K : Subgroup G b✝ : α gv : G gp : gv ∈ Subgroup.map K.subtype (H.subgroupOf K) ⊢ ⟨gv, gp⟩ • b✝ ∈ orbit (↥(H.subgroupOf K)) b✝
8d6ed0da5cf28147
Seminorm.closedBall_zero_eq_preimage_closedBall
Mathlib/Analysis/Seminorm.lean
theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r
𝕜 : Type u_3 E : Type u_7 inst✝² : SeminormedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E r : ℝ ⊢ p.closedBall 0 r = ⇑p ⁻¹' Metric.closedBall 0 r
rw [closedBall_zero_eq, preimage_metric_closedBall]
no goals
f0da54906ed73db9
LieAlgebra.radical_eq_top_of_isSolvable
Mathlib/Algebra/Lie/Solvable.lean
@[simp] lemma radical_eq_top_of_isSolvable [IsSolvable L] : radical R L = ⊤
R : Type u L : Type v inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSolvable L h : IsSolvable ↥⊤ ⊢ ⊤ ≤ radical R L
exact le_sSup h
no goals
75f4078fc152f6b5
MvPowerSeries.lexOrder_mul
Mathlib/RingTheory/MvPowerSeries/LexOrder.lean
theorem lexOrder_mul [NoZeroDivisors R] (φ ψ : MvPowerSeries σ R) : lexOrder (φ * ψ) = lexOrder φ + lexOrder ψ
case pos σ : Type u_1 R : Type u_2 inst✝³ : Semiring R inst✝² : LinearOrder σ inst✝¹ : WellFoundedGT σ inst✝ : NoZeroDivisors R φ ψ : MvPowerSeries σ R hφ : ¬φ = 0 hψ : ψ = 0 ⊢ (φ * ψ).lexOrder = φ.lexOrder + ψ.lexOrder
simp only [hψ, mul_zero, lexOrder_zero, add_top]
no goals
445a75654a0141af
List.setIfInBounds_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/ToArray.lean
theorem setIfInBounds_toArray (l : List α) (i : Nat) (a : α) : l.toArray.setIfInBounds i a = (l.set i a).toArray
α : Type u_1 l : List α i : Nat a : α ⊢ l.toArray.setIfInBounds i a = (l.set i a).toArray
apply ext'
case h α : Type u_1 l : List α i : Nat a : α ⊢ (l.toArray.setIfInBounds i a).toList = (l.set i a).toArray.toList
7a113e107f9a51d9
Polynomial.IsSeparableContraction.degree_eq
Mathlib/RingTheory/Polynomial/SeparableDegree.lean
theorem IsSeparableContraction.degree_eq [hF : ExpChar F q] (g : F[X]) (hg : IsSeparableContraction q f g) : g.natDegree = hf.degree
case prime.intro.intro.intro.intro F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : g.Separable m : ℕ hm : (expand F (q ^ m)) g = f g' : F[X] := Classical.choose hf hg' : (Classical.choose hf).Separable m' : ℕ hm' : (expand F (q ^ m')) (Classical.choose hf) = f this : Fact (Nat.Prime q) ⊢ (expand F (q ^ m)) g = (expand F (q ^ m')) g'
rw [hm, hm']
no goals
e8a084ffc5e2adb4
FreeAlgebra.ι_ne_algebraMap
Mathlib/Algebra/FreeAlgebra.lean
theorem ι_ne_algebraMap [Nontrivial R] (x : X) (r : R) : ι R x ≠ algebraMap R _ r := fun h ↦ by let f0 : FreeAlgebra R X →ₐ[R] R := lift R 0 let f1 : FreeAlgebra R X →ₐ[R] R := lift R 1 have hf0 : f0 (ι R x) = 0 := lift_ι_apply _ _ have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _ rw [h, f0.commutes, Algebra.id.map_eq_self] at hf0 rw [h, f1.commutes, Algebra.id.map_eq_self] at hf1 exact zero_ne_one (hf0.symm.trans hf1)
R : Type u_1 inst✝¹ : CommSemiring R X : Type u_2 inst✝ : Nontrivial R x : X r : R h : ι R x = (algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := (lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := (lift R) 1 hf0 : f0 (ι R x) = 0 ⊢ False
have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _
R : Type u_1 inst✝¹ : CommSemiring R X : Type u_2 inst✝ : Nontrivial R x : X r : R h : ι R x = (algebraMap R (FreeAlgebra R X)) r f0 : FreeAlgebra R X →ₐ[R] R := (lift R) 0 f1 : FreeAlgebra R X →ₐ[R] R := (lift R) 1 hf0 : f0 (ι R x) = 0 hf1 : f1 (ι R x) = 1 ⊢ False
dcbb22fde95f412f
Complex.circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto
Mathlib/Analysis/Complex/CauchyIntegral.lean
theorem circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto {c : ℂ} {R : ℝ} (h0 : 0 < R) {f : ℂ → E} {y : E} {s : Set ℂ} (hs : s.Countable) (hc : ContinuousOn f (closedBall c R \ {c})) (hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z) (hy : Tendsto f (𝓝[{c}ᶜ] c) (𝓝 y)) : (∮ z in C(c, R), (z - c)⁻¹ • f z) = (2 * π * I : ℂ) • y
E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c : ℂ R : ℝ h0 : 0 < R f : ℂ → E y : E s : Set ℂ hs : s.Countable hc : ContinuousOn f (closedBall c R \ {c}) hd : ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt ℂ f z hy : Tendsto f (𝓝[≠] c) (𝓝 y) ε : ℝ ε0 : 0 < ε δ : ℝ δ0 : δ > 0 hδ : ∀ z ∈ closedBall c δ \ {c}, dist (f z) y < ε / (2 * π) r : ℝ hr0 : 0 < r hrδ : r ≤ δ hrR : r ≤ R hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c} hsub' : ball c R \ closedBall c r ⊆ ball c R \ {c} hzne : ∀ z ∈ sphere c r, z ≠ c ⊢ 2 * π * r * ε = ε * (r * (2 * π))
ac_rfl
no goals
161c13e075bc65e7
CategoryTheory.Limits.WidePushout.eq_desc_of_comp_eq
Mathlib/CategoryTheory/Limits/Shapes/WidePullbacks.lean
theorem eq_desc_of_comp_eq (g : widePushout _ _ arrows ⟶ X) : (∀ j : J, ι arrows j ≫ g = fs j) → head arrows ≫ g = f → g = desc f fs w
J : Type w C : Type u inst✝¹ : Category.{v, u} C B : C objs : J → C arrows : (j : J) → B ⟶ objs j inst✝ : HasWidePushout B objs arrows X : C f : B ⟶ X fs : (j : J) → objs j ⟶ X w : ∀ (j : J), arrows j ≫ fs j = f g : widePushout B objs arrows ⟶ X ⊢ (∀ (j : J), ι arrows j ≫ g = fs j) → head arrows ≫ g = f → g = desc f fs w
intro h1 h2
J : Type w C : Type u inst✝¹ : Category.{v, u} C B : C objs : J → C arrows : (j : J) → B ⟶ objs j inst✝ : HasWidePushout B objs arrows X : C f : B ⟶ X fs : (j : J) → objs j ⟶ X w : ∀ (j : J), arrows j ≫ fs j = f g : widePushout B objs arrows ⟶ X h1 : ∀ (j : J), ι arrows j ≫ g = fs j h2 : head arrows ≫ g = f ⊢ g = desc f fs w
9b335e052985e4ad
MeasureTheory.Measure.isEverywherePos_everywherePosSubset
Mathlib/MeasureTheory/Measure/EverywherePos.lean
/-- In a space with an inner regular measure, the everywhere positive subset of a measurable set is itself everywhere positive. This is not obvious as `μ.everywherePosSubset s` is defined as the points whose neighborhoods intersect `s` along positive measure subsets, but this does not say they also intersect `μ.everywherePosSubset s` along positive measure subsets. -/ lemma isEverywherePos_everywherePosSubset [OpensMeasurableSpace α] [InnerRegular μ] (hs : MeasurableSet s) : μ.IsEverywherePos (μ.everywherePosSubset s)
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : MeasurableSpace α μ : Measure α s : Set α inst✝¹ : OpensMeasurableSpace α inst✝ : μ.InnerRegular hs : MeasurableSet s ⊢ μ.IsEverywherePos (μ.everywherePosSubset s)
intro x hx n hn
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : MeasurableSpace α μ : Measure α s : Set α inst✝¹ : OpensMeasurableSpace α inst✝ : μ.InnerRegular hs : MeasurableSet s x : α hx : x ∈ μ.everywherePosSubset s n : Set α hn : n ∈ 𝓝[μ.everywherePosSubset s] x ⊢ 0 < μ n
b60d9263f112e009
Tropical.add_pow
Mathlib/Algebra/Tropical/Basic.lean
theorem add_pow [LinearOrder R] [AddMonoid R] [AddLeftMono R] [AddRightMono R] (x y : Tropical R) (n : ℕ) : (x + y) ^ n = x ^ n + y ^ n
R : Type u inst✝³ : LinearOrder R inst✝² : AddMonoid R inst✝¹ : AddLeftMono R inst✝ : AddRightMono R x y : Tropical R n : ℕ ⊢ (x + y) ^ n = x ^ n + y ^ n
rcases le_total x y with h | h
case inl R : Type u inst✝³ : LinearOrder R inst✝² : AddMonoid R inst✝¹ : AddLeftMono R inst✝ : AddRightMono R x y : Tropical R n : ℕ h : x ≤ y ⊢ (x + y) ^ n = x ^ n + y ^ n case inr R : Type u inst✝³ : LinearOrder R inst✝² : AddMonoid R inst✝¹ : AddLeftMono R inst✝ : AddRightMono R x y : Tropical R n : ℕ h : y ≤ x ⊢ (x + y) ^ n = x ^ n + y ^ n
231576695e18102f
LinearEquiv.neg_apply
Mathlib/Algebra/Module/Equiv/Basic.lean
theorem neg_apply (x : M) : neg R x = -x
R : Type u_1 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x : M ⊢ (neg R) x = -x
simp
no goals
2c4cd459210b0404
Polynomial.degreeLE_eq_span_X_pow
Mathlib/RingTheory/Polynomial/Basic.lean
theorem degreeLE_eq_span_X_pow [DecidableEq R] {n : ℕ} : degreeLE R n = Submodule.span R ↑((Finset.range (n + 1)).image fun n => (X : R[X]) ^ n)
case a R : Type u inst✝¹ : Semiring R inst✝ : DecidableEq R n : ℕ ⊢ ↑(range (n + 1)) ⊆ (fun n => X ^ n) ⁻¹' ↑(degreeLE R ↑n)
intro k hk
case a R : Type u inst✝¹ : Semiring R inst✝ : DecidableEq R n k : ℕ hk : k ∈ ↑(range (n + 1)) ⊢ k ∈ (fun n => X ^ n) ⁻¹' ↑(degreeLE R ↑n)
093264c8e0a4af45
QuadraticMap.associated_linMulLin
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
theorem associated_linMulLin [Invertible (2 : R)] (f g : M →ₗ[R] R) : associated (R := R) (N := R) (linMulLin f g) = ⅟ (2 : R) • ((mul R R).compl₁₂ f g + (mul R R).compl₁₂ g f)
R : Type u_3 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Invertible 2 f g : M →ₗ[R] R ⊢ associated (linMulLin f g) = ⅟2 • ((mul R R).compl₁₂ f g + (mul R R).compl₁₂ g f)
ext
case h.h R : Type u_3 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Invertible 2 f g : M →ₗ[R] R x✝¹ x✝ : M ⊢ ((associated (linMulLin f g)) x✝¹) x✝ = ((⅟2 • ((mul R R).compl₁₂ f g + (mul R R).compl₁₂ g f)) x✝¹) x✝
380e1e77dd3b3c1a
AffineSubspace.inter_nonempty_of_nonempty_of_sup_direction_eq_top
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Defs.lean
theorem inter_nonempty_of_nonempty_of_sup_direction_eq_top {s₁ s₂ : AffineSubspace k P} (h1 : (s₁ : Set P).Nonempty) (h2 : (s₂ : Set P).Nonempty) (hd : s₁.direction ⊔ s₂.direction = ⊤) : ((s₁ : Set P) ∩ s₂).Nonempty
k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P s₁ s₂ : AffineSubspace k P h1 : (↑s₁).Nonempty h2 : (↑s₂).Nonempty hd : s₁.direction ⊔ s₂.direction = ⊤ h : ¬(↑s₁ ∩ ↑s₂).Nonempty ⊢ False
rw [Set.not_nonempty_iff_eq_empty] at h
k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P s₁ s₂ : AffineSubspace k P h1 : (↑s₁).Nonempty h2 : (↑s₂).Nonempty hd : s₁.direction ⊔ s₂.direction = ⊤ h : ↑s₁ ∩ ↑s₂ = ∅ ⊢ False
29b6a92f85b1cedf
AlgebraicGeometry.RingedSpace.isUnit_res_of_isUnit_germ
Mathlib/Geometry/RingedSpace/Basic.lean
theorem isUnit_res_of_isUnit_germ (U : Opens X) (f : X.presheaf.obj (op U)) (x : X) (hx : x ∈ U) (h : IsUnit (X.presheaf.germ U x hx f)) : ∃ (V : Opens X) (i : V ⟶ U) (_ : x ∈ V), IsUnit (X.presheaf.map i.op f)
case intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace hx : x ∈ U h : IsUnit ((ConcreteCategory.hom (X.presheaf.germ U x hx)) f) g' : ↑(X.presheaf.stalk x) heq : (ConcreteCategory.hom (X.presheaf.germ U x hx)) f * g' = 1 ⊢ ∃ V i, ∃ (_ : x ∈ V), IsUnit ((ConcreteCategory.hom (X.presheaf.map i.op)) f)
obtain ⟨V, hxV, g, rfl⟩ := X.presheaf.germ_exist x g'
case intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace hx : x ∈ U h : IsUnit ((ConcreteCategory.hom (X.presheaf.germ U x hx)) f) V : Opens ↑↑X.toPresheafedSpace hxV : x ∈ V g : ToType (X.presheaf.obj (op V)) heq : (ConcreteCategory.hom (X.presheaf.germ U x hx)) f * (ConcreteCategory.hom (X.presheaf.germ V x hxV)) g = 1 ⊢ ∃ V i, ∃ (_ : x ∈ V), IsUnit ((ConcreteCategory.hom (X.presheaf.map i.op)) f)
c4e0030823594ac8
BitVec.zero_or
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem zero_or {x : BitVec w} : 0#w ||| x = x
w : Nat x : BitVec w ⊢ 0#w ||| x = x
ext i
case pred w : Nat x : BitVec w i : Nat a✝ : i < w ⊢ (0#w ||| x).getLsbD i = x.getLsbD i
179340e5607fd2c1
Submodule.span_smul_of_span_eq_top
Mathlib/Algebra/Algebra/Tower.lean
theorem span_smul_of_span_eq_top {s : Set S} (hs : span R s = ⊤) (t : Set A) : span R (s • t) = (span S t).restrictScalars R := le_antisymm (span_le.2 fun _x ⟨p, _hps, _q, hqt, hpqx⟩ ↦ hpqx ▸ (span S t).smul_mem p (subset_span hqt)) fun _ hp ↦ closure_induction (hx := hp) (zero_mem _) (fun _ _ _ _ ↦ add_mem) fun s0 y hy ↦ by refine span_induction (fun x hx ↦ subset_span <| by exact ⟨x, hx, y, hy, rfl⟩) ?_ ?_ ?_ (hs ▸ mem_top : s0 ∈ span R s) · rw [zero_smul]; apply zero_mem · intro _ _ _ _; rw [add_smul]; apply add_mem · intro r s0 _ hy; rw [IsScalarTower.smul_assoc]; exact smul_mem _ r hy
case refine_1 R : Type u S : Type v A : Type w inst✝⁶ : Semiring R inst✝⁵ : Semiring S inst✝⁴ : AddCommMonoid A inst✝³ : Module R S inst✝² : Module S A inst✝¹ : Module R A inst✝ : IsScalarTower R S A s : Set S hs : span R s = ⊤ t : Set A x✝ : A hp : x✝ ∈ restrictScalars R (span S t) s0 : S y : A hy : y ∈ t ⊢ 0 ∈ span R (s • t)
apply zero_mem
no goals
9949108e14d83982
MvPolynomial.exists_rename_eq_of_vars_subset_range
Mathlib/Algebra/MvPolynomial/Variables.lean
theorem exists_rename_eq_of_vars_subset_range (p : MvPolynomial σ R) (f : τ → σ) (hfi : Injective f) (hf : ↑p.vars ⊆ Set.range f) : ∃ q : MvPolynomial τ R, rename f q = p := ⟨aeval (fun i : σ => Option.elim' 0 X <| partialInv f i) p, by show (rename f).toRingHom.comp _ p = RingHom.id _ p refine hom_congr_vars ?_ ?_ ?_ · ext1 simp [algebraMap_eq] · intro i hip _ rcases hf hip with ⟨i, rfl⟩ simp [partialInv_left hfi] · rfl⟩
case refine_3 R : Type u σ : Type u_1 τ : Type u_2 inst✝ : CommSemiring R p : MvPolynomial σ R f : τ → σ hfi : Injective f hf : ↑p.vars ⊆ range f ⊢ p = p
rfl
no goals
8ffc8e66df6fb3bc
Batteries.BinomialHeap.Imp.Heap.realSize_tail?
Mathlib/.lake/packages/batteries/Batteries/Data/BinomialHeap/Basic.lean
theorem Heap.realSize_tail? {s : Heap α} : s.tail? le = some s' → s.realSize = s'.realSize + 1
α : Type u_1 le : α → α → Bool s' s : Heap α eq : Option.map (fun x => x.snd) (deleteMin le s) = some s' a : α tl : Heap α eq₂ : deleteMin le s = some (a, tl) ⊢ s.realSize = ((fun x => x.snd) (a, tl)).realSize + 1
exact realSize_deleteMin eq₂
no goals
28fc4ef177708b16
Matrix.aeval_self_charpoly
Mathlib/LinearAlgebra/Matrix/Charpoly/Basic.lean
theorem aeval_self_charpoly (M : Matrix n n R) : aeval M M.charpoly = 0
R : Type u_1 inst✝² : CommRing R n : Type u_4 inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R ⊢ (aeval M) M.charpoly = 0
have h : M.charpoly • (1 : Matrix n n R[X]) = adjugate (charmatrix M) * charmatrix M := (adjugate_mul _).symm
R : Type u_1 inst✝² : CommRing R n : Type u_4 inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R h : M.charpoly • 1 = M.charmatrix.adjugate * M.charmatrix ⊢ (aeval M) M.charpoly = 0
650c4547af86a3b8
Matrix.charpoly_sub_diagonal_degree_lt
Mathlib/LinearAlgebra/Matrix/Charpoly/Coeff.lean
theorem charpoly_sub_diagonal_degree_lt : (M.charpoly - ∏ i : n, (X - C (M i i))).degree < ↑(Fintype.card n - 1)
R : Type u inst✝² : CommRing R n : Type v inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R ⊢ (M.charpoly - ∏ i : n, (X - C (M i i))).degree < ↑(Fintype.card n - 1)
rw [charpoly, det_apply', ← insert_erase (mem_univ (Equiv.refl n)), sum_insert (not_mem_erase (Equiv.refl n) univ), add_comm]
R : Type u inst✝² : CommRing R n : Type v inst✝¹ : DecidableEq n inst✝ : Fintype n M : Matrix n n R ⊢ (∑ x ∈ univ.erase (Equiv.refl n), ↑↑(Equiv.Perm.sign x) * ∏ i : n, M.charmatrix (x i) i + ↑↑(Equiv.Perm.sign (Equiv.refl n)) * ∏ i : n, M.charmatrix ((Equiv.refl n) i) i - ∏ i : n, (X - C (M i i))).degree < ↑(Fintype.card n - 1)
f188622eede59de8
List.attach_filterMap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
theorem attach_filterMap {l : List α} {f : α → Option β} : (l.filterMap f).attach = l.attach.filterMap fun ⟨x, h⟩ => (f x).pbind (fun b m => some ⟨b, mem_filterMap.mpr ⟨x, h, m⟩⟩)
case cons.h_2.intro.intro α : Type u_1 β : Type u_2 f : α → Option β x : α xs : List α ih : (filterMap f xs).attach = filterMap (fun x => match x with | ⟨x, h⟩ => (f x).pbind fun b m => some ⟨b, ⋯⟩) xs.attach x✝ : Option { x_1 // x_1 ∈ match f x with | none => filterMap f xs | some b => b :: filterMap f xs } a : β h✝ : a ∈ f x h : f x = some a ⊢ map (fun x_1 => ⟨x_1.val, ⋯⟩) (attach ?m.63176) = ⟨a, ⋯⟩ :: filterMap ((fun x_1 => (f x_1.val).pbind fun a h => some ⟨a, ⋯⟩) ∘ fun x_1 => ⟨x_1.val, ⋯⟩) xs.attach case cons.h_2.intro.intro α : Type u_1 β : Type u_2 f : α → Option β x : α xs : List α ih : (filterMap f xs).attach = filterMap (fun x => match x with | ⟨x, h⟩ => (f x).pbind fun b m => some ⟨b, ⋯⟩) xs.attach x✝ : Option { x_1 // x_1 ∈ match f x with | none => filterMap f xs | some b => b :: filterMap f xs } a : β h✝ : a ∈ f x h : f x = some a ⊢ (match f x with | none => filterMap f xs | some b => b :: filterMap f xs) = ?m.63176 α : Type u_1 β : Type u_2 f : α → Option β x : α xs : List α ih : (filterMap f xs).attach = filterMap (fun x => match x with | ⟨x, h⟩ => (f x).pbind fun b m => some ⟨b, ⋯⟩) xs.attach x✝ : Option { x_1 // x_1 ∈ match f x with | none => filterMap f xs | some b => b :: filterMap f xs } a : β h✝ : a ∈ f x h : f x = some a ⊢ List β
rotate_left
case cons.h_2.intro.intro α : Type u_1 β : Type u_2 f : α → Option β x : α xs : List α ih : (filterMap f xs).attach = filterMap (fun x => match x with | ⟨x, h⟩ => (f x).pbind fun b m => some ⟨b, ⋯⟩) xs.attach x✝ : Option { x_1 // x_1 ∈ match f x with | none => filterMap f xs | some b => b :: filterMap f xs } a : β h✝ : a ∈ f x h : f x = some a ⊢ (match f x with | none => filterMap f xs | some b => b :: filterMap f xs) = ?m.63176 α : Type u_1 β : Type u_2 f : α → Option β x : α xs : List α ih : (filterMap f xs).attach = filterMap (fun x => match x with | ⟨x, h⟩ => (f x).pbind fun b m => some ⟨b, ⋯⟩) xs.attach x✝ : Option { x_1 // x_1 ∈ match f x with | none => filterMap f xs | some b => b :: filterMap f xs } a : β h✝ : a ∈ f x h : f x = some a ⊢ List β case cons.h_2.intro.intro α : Type u_1 β : Type u_2 f : α → Option β x : α xs : List α ih : (filterMap f xs).attach = filterMap (fun x => match x with | ⟨x, h⟩ => (f x).pbind fun b m => some ⟨b, ⋯⟩) xs.attach x✝ : Option { x_1 // x_1 ∈ match f x with | none => filterMap f xs | some b => b :: filterMap f xs } a : β h✝ : a ∈ f x h : f x = some a ⊢ map (fun x_1 => ⟨x_1.val, ⋯⟩) (attach ?m.63176) = ⟨a, ⋯⟩ :: filterMap ((fun x_1 => (f x_1.val).pbind fun a h => some ⟨a, ⋯⟩) ∘ fun x_1 => ⟨x_1.val, ⋯⟩) xs.attach
689b23e1dd2280bf
NonUnitalSubring.closure_induction₂
Mathlib/RingTheory/NonUnitalSubring/Basic.lean
theorem closure_induction₂ {s : Set R} {p : (x y : R) → x ∈ closure s → y ∈ closure s → Prop} (mem_mem : ∀ (x) (y) (hx : x ∈ s) (hy : y ∈ s), p x y (subset_closure hx) (subset_closure hy)) (zero_left : ∀ x hx, p 0 x (zero_mem _) hx) (zero_right : ∀ x hx, p x 0 hx (zero_mem _)) (neg_left : ∀ x y hx hy, p x y hx hy → p (-x) y (neg_mem hx) hy) (neg_right : ∀ x y hx hy, p x y hx hy → p x (-y) hx (neg_mem hy)) (add_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x + y) z (add_mem hx hy) hz) (add_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y + z) hx (add_mem hy hz)) (mul_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x * y) z (mul_mem hx hy) hz) (mul_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y * z) hx (mul_mem hy hz)) {x y : R} (hx : x ∈ closure s) (hy : y ∈ closure s) : p x y hx hy
case mem.mul R : Type u inst✝ : NonUnitalNonAssocRing R s : Set R p : (x y : R) → x ∈ closure s → y ∈ closure s → Prop mem_mem : ∀ (x y : R) (hx : x ∈ s) (hy : y ∈ s), p x y ⋯ ⋯ zero_left : ∀ (x : R) (hx : x ∈ closure s), p 0 x ⋯ hx zero_right : ∀ (x : R) (hx : x ∈ closure s), p x 0 hx ⋯ neg_left : ∀ (x y : R) (hx : x ∈ closure s) (hy : y ∈ closure s), p x y hx hy → p (-x) y ⋯ hy neg_right : ∀ (x y : R) (hx : x ∈ closure s) (hy : y ∈ closure s), p x y hx hy → p x (-y) hx ⋯ add_left : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x z hx hz → p y z hy hz → p (x + y) z ⋯ hz add_right : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x y hx hy → p x z hx hz → p x (y + z) hx ⋯ mul_left : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x z hx hz → p y z hy hz → p (x * y) z ⋯ hz mul_right : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x y hx hy → p x z hx hz → p x (y * z) hx ⋯ x y z : R hz : z ∈ s x✝ y✝ : R hx✝ : x✝ ∈ closure s hy✝ : y✝ ∈ closure s h₁ : p x✝ z hx✝ ⋯ h₂ : p y✝ z hy✝ ⋯ ⊢ p (x✝ * y✝) z ⋯ ⋯
exact mul_left _ _ _ _ _ _ h₁ h₂
no goals
412c69976f3f02c1
PMF.restrict_toMeasure_support
Mathlib/Probability/ProbabilityMassFunction/Basic.lean
theorem restrict_toMeasure_support [MeasurableSingletonClass α] (p : PMF α) : Measure.restrict (toMeasure p) (support p) = toMeasure p
case h α : Type u_1 inst✝¹ : MeasurableSpace α inst✝ : MeasurableSingletonClass α p : PMF α s : Set α hs : MeasurableSet s ⊢ p.toMeasure (s ∩ p.support) = p.toMeasure s
apply toMeasure_apply_inter_support p s hs p.support_countable.measurableSet
no goals
59c875c4e07c5477
PowerSeries.coeff_inv_aux
Mathlib/RingTheory/PowerSeries/Inverse.lean
theorem coeff_inv_aux (n : ℕ) (a : R) (φ : R⟦X⟧) : coeff R n (inv.aux a φ) = if n = 0 then a else -a * ∑ x ∈ antidiagonal n, if x.2 < n then coeff R x.1 φ * coeff R x.2 (inv.aux a φ) else 0
case neg R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : R⟦X⟧ h✝ : ¬n = 0 ⊢ (-a * ∑ x ∈ antidiagonal (single () n), if x.2 < single () n then (MvPowerSeries.coeff R x.1) φ * (MvPowerSeries.coeff R x.2) (MvPowerSeries.inv.aux a φ) else 0) = -a * ∑ x ∈ antidiagonal n, if x.2 < n then (coeff R x.1) φ * (coeff R x.2) (MvPowerSeries.inv.aux a φ) else 0
congr 1
case neg.e_a R : Type u_1 inst✝ : Ring R n : ℕ a : R φ : R⟦X⟧ h✝ : ¬n = 0 ⊢ (∑ x ∈ antidiagonal (single () n), if x.2 < single () n then (MvPowerSeries.coeff R x.1) φ * (MvPowerSeries.coeff R x.2) (MvPowerSeries.inv.aux a φ) else 0) = ∑ x ∈ antidiagonal n, if x.2 < n then (coeff R x.1) φ * (coeff R x.2) (MvPowerSeries.inv.aux a φ) else 0
0d1be33aa33f7301