name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
CategoryTheory.Functor.PreservesRightHomologyOf.mk'
Mathlib/Algebra/Homology/ShortComplex/PreservesHomology.lean
/-- If a functor preserves a certain right homology data of a short complex `S`, then it preserves the right homology of `S`. -/ lemma PreservesRightHomologyOf.mk' (h : S.RightHomologyData) [h.IsPreservedBy F] : F.PreservesRightHomologyOf S where isPreservedBy h' := { f := ShortComplex.RightHomologyData.IsPreservedBy.hf h F g'
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_3, u_1} C inst✝⁴ : Category.{u_4, u_2} D inst✝³ : HasZeroMorphisms C inst✝² : HasZeroMorphisms D F : C ⥤ D inst✝¹ : F.PreservesZeroMorphisms S : ShortComplex C h : S.RightHomologyData inst✝ : h.IsPreservedBy F h' : S.RightHomologyData ⊢ PreservesLimit (parallelPair h'.g' 0) F
have := ShortComplex.RightHomologyData.IsPreservedBy.hg' h F
C : Type u_1 D : Type u_2 inst✝⁵ : Category.{u_3, u_1} C inst✝⁴ : Category.{u_4, u_2} D inst✝³ : HasZeroMorphisms C inst✝² : HasZeroMorphisms D F : C ⥤ D inst✝¹ : F.PreservesZeroMorphisms S : ShortComplex C h : S.RightHomologyData inst✝ : h.IsPreservedBy F h' : S.RightHomologyData this : PreservesLimit (parallelPair h.g' 0) F ⊢ PreservesLimit (parallelPair h'.g' 0) F
39fd2293ef3ce48f
Complex.tendsto_tsum_powerSeries_nhdsWithin_stolzSet
Mathlib/Analysis/Complex/AbelLimit.lean
theorem tendsto_tsum_powerSeries_nhdsWithin_stolzSet (h : Tendsto (fun n ↦ ∑ i ∈ range n, f i) atTop (𝓝 l)) {M : ℝ} : Tendsto (fun z ↦ ∑' n, f n * z ^ n) (𝓝[stolzSet M] 1) (𝓝 l)
case h.h.h f : ℕ → ℂ l : ℂ h : Tendsto (fun n => ∑ i ∈ range n, f i) atTop (𝓝 l) M : ℝ hM : 1 < M s : ℕ → ℂ := fun n => ∑ i ∈ range n, f i g : ℂ → ℂ := fun z => ∑' (n : ℕ), f n * z ^ n ε : ℝ εpos : ε > 0 B₁ : ℕ hB₁ : ∀ n ≥ B₁, ‖∑ i ∈ range n, f i - l‖ < ε / 4 / M F : ℝ := ∑ i ∈ range B₁, ‖l - s (i + 1)‖ z : ℂ zn : ‖z‖ < 1 zm : ‖1 - z‖ < M * (1 - ‖z‖) zd : ‖z - 1‖ < ε / 4 / (F + 1) B₂ : ℕ hB₂ : ‖l - ∑' (n : ℕ), f n * z ^ n - (1 - z) * ∑ i ∈ range (B₁ ⊔ B₂), (l - ∑ j ∈ range (i + 1), f j) * z ^ i‖ < ε / 2 S₁ : ‖1 - z‖ * ∑ i ∈ range B₁, ‖l - s (i + 1)‖ * ‖z‖ ^ i < ε / 4 i : ℕ hi : i ∈ Ico B₁ (B₁ ⊔ B₂) this : ‖l - ∑ i ∈ range (i + 1), f i‖ < ε / 4 / M ⊢ ‖l - s (i + 1)‖ ≤ ε / 4 / M
exact this.le
no goals
e1f8d437480849f9
Filter.tendsto_atTop_finset_of_monotone
Mathlib/Order/Filter/AtTopBot/Finset.lean
theorem tendsto_atTop_finset_of_monotone [Preorder β] {f : β → Finset α} (h : Monotone f) (h' : ∀ x : α, ∃ n, x ∈ f n) : Tendsto f atTop atTop
case intro α : Type u_3 β : Type u_4 inst✝ : Preorder β f : β → Finset α h : Monotone f h' : ∀ (x : α), ∃ n, x ∈ f n a : α b : β hb : a ∈ f b ⊢ ∀ᶠ (a_1 : β) in atTop, f a_1 ∈ Ici {a}
exact (eventually_ge_atTop b).mono fun b' hb' => (Finset.singleton_subset_iff.2 hb).trans (h hb')
no goals
7efa857265d50b55
WeierstrassCurve.exists_variableChange_of_char_ne_two_or_three
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_ne_two_or_three {p : ℕ} [CharP F p] (hchar2 : p ≠ 2) (hchar3 : p ≠ 3) (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
F : Type u_1 inst✝⁴ : Field F inst✝³ : IsSepClosed F E E' : WeierstrassCurve F inst✝² : E.IsElliptic inst✝¹ : E'.IsElliptic p : ℕ inst✝ : CharP F p hchar2 : 2 ≠ 0 hchar3 : 3 ≠ 0 this✝⁴ : NeZero 2 this✝³ : NeZero 4 this✝² : NeZero 6 this✝¹ : Invertible 2 := invertibleOfNonzero hchar2 this✝ : Invertible 3 := invertibleOfNonzero hchar3 this : ∀ (E : WeierstrassCurve F) [inst : E.IsElliptic], E.j = E'.j → E.IsShortNF → ∃ C, E.variableChange C = E' h✝ : ¬E.IsShortNF C : VariableChange F heq : (E.variableChange C).j = E'.j hE : (E.variableChange C).IsShortNF C' : VariableChange F hC : (E.variableChange C).variableChange C' = E' ⊢ E.variableChange (C'.comp C) = E'
rwa [variableChange_comp]
no goals
5599f8482dc6841e
Finsupp.support_single_add
Mathlib/Data/Finsupp/Single.lean
theorem support_single_add {a : α} {b : M} {f : α →₀ M} (ha : a ∉ f.support) (hb : b ≠ 0) : support (single a b + f) = cons a f.support ha
α : Type u_1 M : Type u_5 inst✝ : AddZeroClass M a : α b : M f : α →₀ M ha : a ∉ f.support hb : b ≠ 0 ⊢ (single a b + f).support = cons a f.support ha
have H := support_single_ne_zero a hb
α : Type u_1 M : Type u_5 inst✝ : AddZeroClass M a : α b : M f : α →₀ M ha : a ∉ f.support hb : b ≠ 0 H : (single a b).support = {a} ⊢ (single a b + f).support = cons a f.support ha
e3a6e48c80b3900b
IsLocalizedModule.mk'_eq_zero
Mathlib/Algebra/Module/LocalizedModule/Basic.lean
theorem mk'_eq_zero {m : M} (s : S) : mk' f m s = 0 ↔ f m = 0
R : Type u_1 inst✝⁵ : CommSemiring R S : Submonoid R M : Type u_2 M' : Type u_3 inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M' inst✝² : Module R M inst✝¹ : Module R M' f : M →ₗ[R] M' inst✝ : IsLocalizedModule S f m : M s : ↥S ⊢ mk' f m s = 0 ↔ f m = 0
rw [mk'_eq_iff, smul_zero]
no goals
db62fb65c91114a2
PartENat.lt_def
Mathlib/Data/Nat/PartENat.lean
theorem lt_def (x y : PartENat) : x < y ↔ ∃ hx : x.Dom, ∀ hy : y.Dom, x.get hx < y.get hy
case h x y : PartENat h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), y.get ⋯ ≤ x.get hy hyx : y.Dom → x.Dom H : ∀ (hy : y.Dom), x.get ⋯ ≤ y.get hy hx : x.Dom hy : y.Dom ⊢ x.get hx < y.get hy
specialize H hy
case h x y : PartENat h : ∀ (x_1 : x.Dom → y.Dom), ¬∀ (hy : x.Dom), y.get ⋯ ≤ x.get hy hyx : y.Dom → x.Dom hx : x.Dom hy : y.Dom H : x.get ⋯ ≤ y.get hy ⊢ x.get hx < y.get hy
d9afc030dbc26ee8
Finset.Nonempty.zero_smul
Mathlib/Algebra/GroupWithZero/Pointwise/Finset.lean
lemma Nonempty.zero_smul (ht : t.Nonempty) : (0 : Finset α) • t = 0 := t.zero_smul_subset.antisymm <| by simpa [mem_smul] using ht
α : Type u_1 β : Type u_2 inst✝³ : DecidableEq β inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β t : Finset β ht : t.Nonempty ⊢ 0 ⊆ 0 • t
simpa [mem_smul] using ht
no goals
68cccc7d617ad1f6
Path.Homotopy.continuous_transReflReparamAux
Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean
theorem continuous_transReflReparamAux : Continuous transReflReparamAux
case refine_5 x : ↑I hx : ↑x = 1 / 2 ⊢ 2 * ↑x = 1
simp [hx]
no goals
92d41a2e994f3e1d
LSeries_eventually_eq_zero_iff'
Mathlib/NumberTheory/LSeries/Injectivity.lean
/-- The `LSeries` of `f` is zero for large real arguments if and only if either `f n = 0` for all `n ≠ 0` or the L-series converges nowhere. -/ lemma LSeries_eventually_eq_zero_iff' {f : ℕ → ℂ} : (fun x : ℝ ↦ LSeries f x) =ᶠ[atTop] 0 ↔ (∀ n ≠ 0, f n = 0) ∨ abscissaOfAbsConv f = ⊤
case neg.refine_1.ind f : ℕ → ℂ h : ¬abscissaOfAbsConv f = ⊤ H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0 F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n ha : ¬abscissaOfAbsConv F = ⊤ h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0 n : ℕ ih : ∀ m < n, F m = 0 ⊢ F n = 0
suffices Tendsto (fun x : ℝ ↦ n ^ (x : ℂ) * LSeries F x) atTop (nhds (F n)) by replace this := this.congr' <| H' n simp only [tendsto_const_nhds_iff] at this exact this.symm
case neg.refine_1.ind f : ℕ → ℂ h : ¬abscissaOfAbsConv f = ⊤ H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0 F : ℕ → ℂ := fun n => if n = 0 then 0 else f n hF₀ : F 0 = 0 hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n ha : ¬abscissaOfAbsConv F = ⊤ h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0 n : ℕ ih : ∀ m < n, F m = 0 ⊢ Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n))
7103bb783fd652c6
MeasureTheory.Egorov.measure_notConvergentSeq_tendsto_zero
Mathlib/MeasureTheory/Function/Egorov.lean
theorem measure_notConvergentSeq_tendsto_zero [SemilatticeSup ι] [Countable ι] (hf : ∀ n, StronglyMeasurable (f n)) (hg : StronglyMeasurable g) (hsm : MeasurableSet s) (hs : μ s ≠ ∞) (hfg : ∀ᵐ x ∂μ, x ∈ s → Tendsto (fun n => f n x) atTop (𝓝 (g x))) (n : ℕ) : Tendsto (fun j => μ (s ∩ notConvergentSeq f g n j)) atTop (𝓝 0)
case inr α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α inst✝² : MetricSpace β μ : Measure α s : Set α f : ι → α → β g : α → β inst✝¹ : SemilatticeSup ι inst✝ : Countable ι hf : ∀ (n : ι), StronglyMeasurable (f n) hg : StronglyMeasurable g hsm : MeasurableSet s hs : μ s ≠ ⊤ hfg : ∀ᵐ (x : α) ∂μ, x ∈ s → Tendsto (fun n => f n x) atTop (𝓝 (g x)) n : ℕ h : Nonempty ι ⊢ Tendsto (fun j => μ (s ∩ notConvergentSeq f g n j)) atTop (𝓝 0)
rw [← measure_inter_notConvergentSeq_eq_zero hfg n, Set.inter_iInter]
case inr α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α inst✝² : MetricSpace β μ : Measure α s : Set α f : ι → α → β g : α → β inst✝¹ : SemilatticeSup ι inst✝ : Countable ι hf : ∀ (n : ι), StronglyMeasurable (f n) hg : StronglyMeasurable g hsm : MeasurableSet s hs : μ s ≠ ⊤ hfg : ∀ᵐ (x : α) ∂μ, x ∈ s → Tendsto (fun n => f n x) atTop (𝓝 (g x)) n : ℕ h : Nonempty ι ⊢ Tendsto (fun j => μ (s ∩ notConvergentSeq f g n j)) atTop (𝓝 (μ (⋂ i, s ∩ notConvergentSeq f g n i)))
bd38541566755b41
List.getElem!_cons_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem getElem!_cons_succ [Inhabited α] {l : List α} : (a::l)[i+1]! = l[i]!
α : Type u_1 a : α i : Nat inst✝ : Inhabited α l : List α ⊢ (a :: l)[i + 1]! = l[i]!
by_cases h : i < l.length
case pos α : Type u_1 a : α i : Nat inst✝ : Inhabited α l : List α h : i < l.length ⊢ (a :: l)[i + 1]! = l[i]! case neg α : Type u_1 a : α i : Nat inst✝ : Inhabited α l : List α h : ¬i < l.length ⊢ (a :: l)[i + 1]! = l[i]!
5553a5f71d6d6c08
prod_generateFrom_generateFrom_eq
Mathlib/Topology/Constructions.lean
theorem prod_generateFrom_generateFrom_eq {X Y : Type*} {s : Set (Set X)} {t : Set (Set Y)} (hs : ⋃₀ s = univ) (ht : ⋃₀ t = univ) : @instTopologicalSpaceProd X Y (generateFrom s) (generateFrom t) = generateFrom (image2 (· ×ˢ ·) s t) := let G := generateFrom (image2 (· ×ˢ ·) s t) le_antisymm (le_generateFrom fun _ ⟨_, hu, _, hv, g_eq⟩ => g_eq.symm ▸ @IsOpen.prod _ _ (generateFrom s) (generateFrom t) _ _ (GenerateOpen.basic _ hu) (GenerateOpen.basic _ hv)) (le_inf (coinduced_le_iff_le_induced.mp <| le_generateFrom fun u hu => have : ⋃ v ∈ t, u ×ˢ v = Prod.fst ⁻¹' u
X : Type u_5 Y : Type u_6 s : Set (Set X) t : Set (Set Y) hs : ⋃₀ s = univ ht : ⋃₀ t = univ G : TopologicalSpace (X × Y) := generateFrom (image2 (fun x1 x2 => x1 ×ˢ x2) s t) v : Set Y hv : v ∈ t this : ⋃ u ∈ s, u ×ˢ v = Prod.snd ⁻¹' v ⊢ TopologicalSpace.IsOpen (⋃ u ∈ s, u ×ˢ v)
exact isOpen_iUnion fun u => isOpen_iUnion fun hu => GenerateOpen.basic _ ⟨_, hu, _, hv, rfl⟩
no goals
6bf5cf316a327555
MeasureTheory.eLpNorm_sub_le_of_dist_bdd
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
theorem eLpNorm_sub_le_of_dist_bdd (μ : Measure α) {p : ℝ≥0∞} (hp' : p ≠ ∞) {s : Set α} (hs : MeasurableSet[m] s) {f g : α → β} {c : ℝ} (hc : 0 ≤ c) (hf : ∀ x ∈ s, dist (f x) (g x) ≤ c) : eLpNorm (s.indicator (f - g)) p μ ≤ ENNReal.ofReal c * μ s ^ (1 / p.toReal)
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ hp' : p ≠ ⊤ s : Set α hs : MeasurableSet s f g : α → β c : ℝ hc : 0 ≤ c hf : ∀ x ∈ s, dist (f x) (g x) ≤ c hp : ¬p = 0 this : ∀ (x : α), ‖s.indicator (f - g) x‖ ≤ ‖s.indicator (fun x => c) x‖ ⊢ eLpNorm (s.indicator fun x => c) p μ ≤ ENNReal.ofReal c * μ s ^ (1 / p.toReal)
rw [eLpNorm_indicator_const hs hp hp']
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α inst✝ : NormedAddCommGroup β μ : Measure α p : ℝ≥0∞ hp' : p ≠ ⊤ s : Set α hs : MeasurableSet s f g : α → β c : ℝ hc : 0 ≤ c hf : ∀ x ∈ s, dist (f x) (g x) ≤ c hp : ¬p = 0 this : ∀ (x : α), ‖s.indicator (f - g) x‖ ≤ ‖s.indicator (fun x => c) x‖ ⊢ ‖c‖ₑ * μ s ^ (1 / p.toReal) ≤ ENNReal.ofReal c * μ s ^ (1 / p.toReal)
5a09cd678840d75b
Padic.exi_rat_seq_conv
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem exi_rat_seq_conv {ε : ℚ} (hε : 0 < ε) : ∃ N, ∀ i ≥ N, padicNormE (f i - (limSeq f i : ℚ_[p]) : ℚ_[p]) < ε
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : 0 < ε N : ℕ hN : 1 / ε < ↑N i : ℕ hi : i ≥ N h : padicNormE (↑f i - ↑(Classical.choose ⋯)) < 1 / (↑i + 1) ⊢ 1 ≤ (↑i + 1) * ε
rw [right_distrib]
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : 0 < ε N : ℕ hN : 1 / ε < ↑N i : ℕ hi : i ≥ N h : padicNormE (↑f i - ↑(Classical.choose ⋯)) < 1 / (↑i + 1) ⊢ 1 ≤ ↑i * ε + 1 * ε
a4713483bdf9656c
MeasureTheory.Measure.haar.nonempty_iInter_clPrehaar
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem nonempty_iInter_clPrehaar (K₀ : PositiveCompacts G) : (haarProduct (K₀ : Set G) ∩ ⋂ V : OpenNhdsOf (1 : G), clPrehaar K₀ V).Nonempty
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ V ∈ t, V.carrier h1V₀ : IsOpen V₀ ⊢ 1 ∈ V₀
simp only [V₀, mem_iInter]
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G this : IsCompact (haarProduct ↑K₀) t : Finset (OpenNhdsOf 1) V₀ : Set G := ⋂ V ∈ t, V.carrier h1V₀ : IsOpen V₀ ⊢ ∀ i ∈ t, 1 ∈ i.carrier
25c220e55fac0398
intervalIntegral.continuousAt_parametric_primitive_of_dominated
Mathlib/MeasureTheory/Integral/DominatedConvergence.lean
theorem continuousAt_parametric_primitive_of_dominated [FirstCountableTopology X] {F : X → ℝ → E} (bound : ℝ → ℝ) (a b : ℝ) {a₀ b₀ : ℝ} {x₀ : X} (hF_meas : ∀ x, AEStronglyMeasurable (F x) (μ.restrict <| Ι a b)) (h_bound : ∀ᶠ x in 𝓝 x₀, ∀ᵐ t ∂μ.restrict <| Ι a b, ‖F x t‖ ≤ bound t) (bound_integrable : IntervalIntegrable bound μ a b) (h_cont : ∀ᵐ t ∂μ.restrict <| Ι a b, ContinuousAt (fun x ↦ F x t) x₀) (ha₀ : a₀ ∈ Ioo a b) (hb₀ : b₀ ∈ Ioo a b) (hμb₀ : μ {b₀} = 0) : ContinuousAt (fun p : X × ℝ ↦ ∫ t : ℝ in a₀..p.2, F p.1 t ∂μ) (x₀, b₀)
E : Type u_1 X : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : TopologicalSpace X μ : Measure ℝ inst✝ : FirstCountableTopology X F : X → ℝ → E bound : ℝ → ℝ a b a₀ b₀ : ℝ x₀ : X hF_meas : ∀ (x : X), AEStronglyMeasurable (F x) (μ.restrict (Ι a b)) h_bound : ∀ᶠ (x : X) in 𝓝 x₀, ∀ᵐ (t : ℝ) ∂μ.restrict (Ι a b), ‖F x t‖ ≤ bound t bound_integrable : IntervalIntegrable bound μ a b h_cont : ∀ᵐ (t : ℝ) ∂μ.restrict (Ι a b), ContinuousAt (fun x => F x t) x₀ ha₀ : a₀ ∈ Ioo a b hb₀ : b₀ ∈ Ioo a b hμb₀ : μ {b₀} = 0 hsub : ∀ {a₀ b₀ : ℝ}, a₀ ∈ Ioo a b → b₀ ∈ Ioo a b → Ι a₀ b₀ ⊆ Ι a b ⊢ ContinuousAt (fun p => ∫ (t : ℝ) in a₀..p.2, F p.1 t ∂μ) (x₀, b₀)
have Ioo_nhds : Ioo a b ∈ 𝓝 b₀ := Ioo_mem_nhds hb₀.1 hb₀.2
E : Type u_1 X : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : TopologicalSpace X μ : Measure ℝ inst✝ : FirstCountableTopology X F : X → ℝ → E bound : ℝ → ℝ a b a₀ b₀ : ℝ x₀ : X hF_meas : ∀ (x : X), AEStronglyMeasurable (F x) (μ.restrict (Ι a b)) h_bound : ∀ᶠ (x : X) in 𝓝 x₀, ∀ᵐ (t : ℝ) ∂μ.restrict (Ι a b), ‖F x t‖ ≤ bound t bound_integrable : IntervalIntegrable bound μ a b h_cont : ∀ᵐ (t : ℝ) ∂μ.restrict (Ι a b), ContinuousAt (fun x => F x t) x₀ ha₀ : a₀ ∈ Ioo a b hb₀ : b₀ ∈ Ioo a b hμb₀ : μ {b₀} = 0 hsub : ∀ {a₀ b₀ : ℝ}, a₀ ∈ Ioo a b → b₀ ∈ Ioo a b → Ι a₀ b₀ ⊆ Ι a b Ioo_nhds : Ioo a b ∈ 𝓝 b₀ ⊢ ContinuousAt (fun p => ∫ (t : ℝ) in a₀..p.2, F p.1 t ∂μ) (x₀, b₀)
700abcaa08c19cdb
Basis.SmithNormalForm.toAddSubgroup_index_eq_pow_mul_prod
Mathlib/LinearAlgebra/FreeModule/Int.lean
/-- Given a submodule `N` in Smith normal form of a free `R`-module, its index as an additive subgroup is an appropriate power of the cardinality of `R` multiplied by the product of the indexes of the ideals generated by each basis vector. -/ lemma toAddSubgroup_index_eq_pow_mul_prod [Module R M] {N : Submodule R M} (snf : Basis.SmithNormalForm N ι n) : N.toAddSubgroup.index = Nat.card R ^ (Fintype.card ι - n) * ∏ i : Fin n, (Ideal.span {snf.a i}).toAddSubgroup.index
case h.refine_2 ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN' : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index g : ι → R h : ∀ (i : ι), (if h : ∃ j, f j = i then a h.choose else 0) ∣ g i ⊢ g = ∑ x : Fin n, (fun j => Exists.choose ⋯) x • Pi.single (f x) (a x)
ext i
case h.refine_2.h ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN' : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index g : ι → R h : ∀ (i : ι), (if h : ∃ j, f j = i then a h.choose else 0) ∣ g i i : ι ⊢ g i = (∑ x : Fin n, (fun j => Exists.choose ⋯) x • Pi.single (f x) (a x)) i
3d7a9cb7455a5c0f
bind₁_rename_expand_wittPolynomial
Mathlib/RingTheory/WittVector/StructurePolynomial.lean
theorem bind₁_rename_expand_wittPolynomial (Φ : MvPolynomial idx ℤ) (n : ℕ) (IH : ∀ m : ℕ, m < n + 1 → map (Int.castRingHom ℚ) (wittStructureInt p Φ m) = wittStructureRat p (map (Int.castRingHom ℚ) Φ) m) : bind₁ (fun b => rename (fun i => (b, i)) (expand p (W_ ℤ n))) Φ = bind₁ (fun i => expand p (wittStructureInt p Φ i)) (W_ ℤ n)
case a p : ℕ idx : Type u_2 hp : Fact (Nat.Prime p) Φ : MvPolynomial idx ℤ n : ℕ IH : ∀ m < n + 1, (map (Int.castRingHom ℚ)) (wittStructureInt p Φ m) = wittStructureRat p ((map (Int.castRingHom ℚ)) Φ) m ⊢ (bind₁ fun i => (expand p) ((rename fun i_1 => (i, i_1)) (W_ ℚ n))) ((map (Int.castRingHom ℚ)) Φ) = (bind₁ fun i => (expand p) ((map (Int.castRingHom ℚ)) (wittStructureInt p Φ i))) (W_ ℚ n)
have key := (wittStructureRat_prop p (map (Int.castRingHom ℚ) Φ) n).symm
case a p : ℕ idx : Type u_2 hp : Fact (Nat.Prime p) Φ : MvPolynomial idx ℤ n : ℕ IH : ∀ m < n + 1, (map (Int.castRingHom ℚ)) (wittStructureInt p Φ m) = wittStructureRat p ((map (Int.castRingHom ℚ)) Φ) m key : (bind₁ fun i => (rename (Prod.mk i)) (W_ ℚ n)) ((map (Int.castRingHom ℚ)) Φ) = (bind₁ (wittStructureRat p ((map (Int.castRingHom ℚ)) Φ))) (W_ ℚ n) ⊢ (bind₁ fun i => (expand p) ((rename fun i_1 => (i, i_1)) (W_ ℚ n))) ((map (Int.castRingHom ℚ)) Φ) = (bind₁ fun i => (expand p) ((map (Int.castRingHom ℚ)) (wittStructureInt p Φ i))) (W_ ℚ n)
227cfd398809aa75
Set.le_einfsep_pair
Mathlib/Topology/MetricSpace/Infsep.lean
theorem le_einfsep_pair : edist x y ⊓ edist y x ≤ ({x, y} : Set α).einfsep
case inr.inl α : Type u_1 inst✝ : EDist α a b : α hab : a ≠ b ⊢ edist b a ≤ edist a b ∨ edist a b ≤ edist a b
simp only [le_refl, true_or, or_true]
no goals
a64ce198c4883813
CategoryTheory.Adjunction.leftAdjointUniq_hom_counit
Mathlib/CategoryTheory/Adjunction/Unique.lean
theorem leftAdjointUniq_hom_counit {F F' : C ⥤ D} {G : D ⥤ C} (adj1 : F ⊣ G) (adj2 : F' ⊣ G) : whiskerLeft G (leftAdjointUniq adj1 adj2).hom ≫ adj2.counit = adj1.counit
case w.h C : Type u_1 D : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Category.{u_4, u_2} D F F' : C ⥤ D G : D ⥤ C adj1 : F ⊣ G adj2 : F' ⊣ G x : D ⊢ F.map (adj2.unit.app (G.obj x)) ≫ adj1.counit.app (F'.obj (G.obj x)) ≫ adj2.counit.app x = adj1.counit.app x
rw [← adj1.counit_naturality, ← Category.assoc, ← F.map_comp]
case w.h C : Type u_1 D : Type u_2 inst✝¹ : Category.{u_3, u_1} C inst✝ : Category.{u_4, u_2} D F F' : C ⥤ D G : D ⥤ C adj1 : F ⊣ G adj2 : F' ⊣ G x : D ⊢ F.map (adj2.unit.app (G.obj x) ≫ G.map (adj2.counit.app x)) ≫ adj1.counit.app x = adj1.counit.app x
9669f69f339158ab
finprod_mem_inter_mul_diff'
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) : ((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i
case hs α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M s t : Set α h : (s ∩ mulSupport f).Finite ⊢ (s ∩ t ∩ mulSupport f).Finite case ht α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M s t : Set α h : (s ∩ mulSupport f).Finite ⊢ (s \ t ∩ mulSupport f).Finite
exacts [h.subset fun x hx => ⟨hx.1.1, hx.2⟩, h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
no goals
b5ec9483672c1fac
PrimeSpectrum.isTopologicalBasis_basic_opens
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
theorem isTopologicalBasis_basic_opens : TopologicalSpace.IsTopologicalBasis (Set.range fun r : R => (basicOpen r : Set (PrimeSpectrum R)))
R : Type u inst✝ : CommSemiring R ⊢ TopologicalSpace.IsTopologicalBasis (Set.range fun r => ↑(basicOpen r))
apply TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
case h_open R : Type u inst✝ : CommSemiring R ⊢ ∀ u ∈ Set.range fun r => ↑(basicOpen r), IsOpen u case h_nhds R : Type u inst✝ : CommSemiring R ⊢ ∀ (a : PrimeSpectrum R) (u : Set (PrimeSpectrum R)), a ∈ u → IsOpen u → ∃ v ∈ Set.range fun r => ↑(basicOpen r), a ∈ v ∧ v ⊆ u
38672fba2e8d5a02
MeasureTheory.Content.innerContent_iSup_nat
Mathlib/MeasureTheory/Measure/Content.lean
theorem innerContent_iSup_nat [R1Space G] (U : ℕ → Opens G) : μ.innerContent (⨆ i : ℕ, U i) ≤ ∑' i : ℕ, μ.innerContent (U i)
case intro.intro.intro.intro G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G U : ℕ → Opens G h3 : ∀ (t : Finset ℕ) (K : ℕ → Compacts G), μ (t.sup K) ≤ ∑ i ∈ t, μ (K i) K : Compacts G hK : ↑K ⊆ ↑(⨆ i, U i) t : Finset ℕ ht : ↑K ⊆ ⋃ i ∈ t, ↑(U i) K' : ℕ → Set G h1K' : ∀ (i : ℕ), IsCompact (K' i) h2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i h3K' : ↑K = ⋃ i ∈ t, K' i L : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := ⋯ } ⊢ μ K ≤ ∑' (i : ℕ), μ.innerContent (U i)
convert le_trans (h3 t L) _
case h.e'_3.h.e'_6 G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G U : ℕ → Opens G h3 : ∀ (t : Finset ℕ) (K : ℕ → Compacts G), μ (t.sup K) ≤ ∑ i ∈ t, μ (K i) K : Compacts G hK : ↑K ⊆ ↑(⨆ i, U i) t : Finset ℕ ht : ↑K ⊆ ⋃ i ∈ t, ↑(U i) K' : ℕ → Set G h1K' : ∀ (i : ℕ), IsCompact (K' i) h2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i h3K' : ↑K = ⋃ i ∈ t, K' i L : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := ⋯ } ⊢ K = t.sup L case intro.intro.intro.intro.convert_2 G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G U : ℕ → Opens G h3 : ∀ (t : Finset ℕ) (K : ℕ → Compacts G), μ (t.sup K) ≤ ∑ i ∈ t, μ (K i) K : Compacts G hK : ↑K ⊆ ↑(⨆ i, U i) t : Finset ℕ ht : ↑K ⊆ ⋃ i ∈ t, ↑(U i) K' : ℕ → Set G h1K' : ∀ (i : ℕ), IsCompact (K' i) h2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i h3K' : ↑K = ⋃ i ∈ t, K' i L : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := ⋯ } ⊢ ∑ i ∈ t, μ (L i) ≤ ∑' (i : ℕ), μ.innerContent (U i)
47868df373390eca
MeasureTheory.eLpNorm_le_eLpNorm_fderiv_of_eq_inner
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem eLpNorm_le_eLpNorm_fderiv_of_eq_inner {u : E → F'} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u) {p p' : ℝ≥0} (hp : 1 ≤ p) (hn : 0 < finrank ℝ E) (hp' : (p' : ℝ)⁻¹ = p⁻¹ - (finrank ℝ E : ℝ)⁻¹) : eLpNorm u p' μ ≤ eLpNormLESNormFDerivOfEqInnerConst μ p * eLpNorm (fderiv ℝ u) p μ
case bc E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp✝ : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn✝ : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent h2p : ↑p < ↑n h0n : 2 ≤ n hn : (↑n).IsConjExponent n' h1n : 1 ≤ ↑n h2n : 0 < ↑n - 1 hnp : 0 < ↑n - ↑p hp : 1 < p q : ℝ := (↑p).conjExponent hq : (↑p).IsConjExponent q h0p : p ≠ 0 h1p : ↑p ≠ 1 h3p : ↑p - 1 ≠ 0 h0p' : p' ≠ 0 h2q : 1 / ↑n' - 1 / q = 1 / ↑p' γ : ℝ≥0 := ⟨↑p * (↑n - 1) / (↑n - ↑p), ⋯⟩ h0γ : ↑γ = ↑p * (↑n - 1) / (↑n - ↑p) h1γ : 1 < ↑γ h2γ : γ * n' = p' h3γ : (↑γ - 1) * q = ↑p' h4γ : ↑γ ≠ 0 h3u : ¬∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ = 0 h4u : ∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ ≠ ⊤ h5u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ 0 h6u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ ⊤ h7u : Continuous u h8u : Continuous (fderiv ℝ u) v : E → ℝ := fun x => ‖u x‖ ^ ↑γ hv : ContDiff ℝ 1 v h2v : HasCompactSupport v C : ℝ≥0 := eLpNormLESNormFDerivOneConst μ ↑n' ⊢ ∫⁻ (x : E), ‖u x‖ₑ ^ (↑γ - 1) * ‖fderiv ℝ u x‖ₑ ∂μ ≤ (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) * (∫⁻ (x : E), ‖fderiv ℝ u x‖ₑ ^ ↑p ∂μ) ^ (1 / ↑p)
convert ENNReal.lintegral_mul_le_Lp_mul_Lq μ (.symm <| .conjExponent <| show 1 < (p : ℝ) from hp) ?_ ?_ using 5
case h.e'_4.h.e'_5.h.e'_5.h.e'_4.h E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp✝ : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn✝ : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent h2p : ↑p < ↑n h0n : 2 ≤ n hn : (↑n).IsConjExponent n' h1n : 1 ≤ ↑n h2n : 0 < ↑n - 1 hnp : 0 < ↑n - ↑p hp : 1 < p q : ℝ := (↑p).conjExponent hq : (↑p).IsConjExponent q h0p : p ≠ 0 h1p : ↑p ≠ 1 h3p : ↑p - 1 ≠ 0 h0p' : p' ≠ 0 h2q : 1 / ↑n' - 1 / q = 1 / ↑p' γ : ℝ≥0 := ⟨↑p * (↑n - 1) / (↑n - ↑p), ⋯⟩ h0γ : ↑γ = ↑p * (↑n - 1) / (↑n - ↑p) h1γ : 1 < ↑γ h2γ : γ * n' = p' h3γ : (↑γ - 1) * q = ↑p' h4γ : ↑γ ≠ 0 h3u : ¬∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ = 0 h4u : ∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ ≠ ⊤ h5u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ 0 h6u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ ⊤ h7u : Continuous u h8u : Continuous (fderiv ℝ u) v : E → ℝ := fun x => ‖u x‖ ^ ↑γ hv : ContDiff ℝ 1 v h2v : HasCompactSupport v C : ℝ≥0 := eLpNormLESNormFDerivOneConst μ ↑n' x✝ : E ⊢ ‖u x✝‖ₑ ^ ↑p' = (‖u x✝‖ₑ ^ (↑γ - 1)) ^ (↑p).conjExponent case bc.convert_3 E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp✝ : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn✝ : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent h2p : ↑p < ↑n h0n : 2 ≤ n hn : (↑n).IsConjExponent n' h1n : 1 ≤ ↑n h2n : 0 < ↑n - 1 hnp : 0 < ↑n - ↑p hp : 1 < p q : ℝ := (↑p).conjExponent hq : (↑p).IsConjExponent q h0p : p ≠ 0 h1p : ↑p ≠ 1 h3p : ↑p - 1 ≠ 0 h0p' : p' ≠ 0 h2q : 1 / ↑n' - 1 / q = 1 / ↑p' γ : ℝ≥0 := ⟨↑p * (↑n - 1) / (↑n - ↑p), ⋯⟩ h0γ : ↑γ = ↑p * (↑n - 1) / (↑n - ↑p) h1γ : 1 < ↑γ h2γ : γ * n' = p' h3γ : (↑γ - 1) * q = ↑p' h4γ : ↑γ ≠ 0 h3u : ¬∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ = 0 h4u : ∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ ≠ ⊤ h5u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ 0 h6u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ ⊤ h7u : Continuous u h8u : Continuous (fderiv ℝ u) v : E → ℝ := fun x => ‖u x‖ ^ ↑γ hv : ContDiff ℝ 1 v h2v : HasCompactSupport v C : ℝ≥0 := eLpNormLESNormFDerivOneConst μ ↑n' ⊢ AEMeasurable (fun x => ‖u x‖ₑ ^ (↑γ - 1)) μ case bc.convert_4 E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : MeasurableSpace E inst✝⁵ : BorelSpace E inst✝⁴ : FiniteDimensional ℝ E μ : Measure E inst✝³ : μ.IsAddHaarMeasure F' : Type u_5 inst✝² : NormedAddCommGroup F' inst✝¹ : InnerProductSpace ℝ F' inst✝ : CompleteSpace F' u : E → F' hu : ContDiff ℝ 1 u h2u : HasCompactSupport u p p' : ℝ≥0 hp✝ : 1 ≤ p hp'0 : ¬p' = 0 n : ℕ := finrank ℝ E hn✝ : 0 < n hp' : (↑p')⁻¹ = ↑p⁻¹ - (↑n)⁻¹ n' : ℝ≥0 := (↑n).conjExponent h2p : ↑p < ↑n h0n : 2 ≤ n hn : (↑n).IsConjExponent n' h1n : 1 ≤ ↑n h2n : 0 < ↑n - 1 hnp : 0 < ↑n - ↑p hp : 1 < p q : ℝ := (↑p).conjExponent hq : (↑p).IsConjExponent q h0p : p ≠ 0 h1p : ↑p ≠ 1 h3p : ↑p - 1 ≠ 0 h0p' : p' ≠ 0 h2q : 1 / ↑n' - 1 / q = 1 / ↑p' γ : ℝ≥0 := ⟨↑p * (↑n - 1) / (↑n - ↑p), ⋯⟩ h0γ : ↑γ = ↑p * (↑n - 1) / (↑n - ↑p) h1γ : 1 < ↑γ h2γ : γ * n' = p' h3γ : (↑γ - 1) * q = ↑p' h4γ : ↑γ ≠ 0 h3u : ¬∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ = 0 h4u : ∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ ≠ ⊤ h5u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ 0 h6u : (∫⁻ (x : E), ‖u x‖ₑ ^ ↑p' ∂μ) ^ (1 / q) ≠ ⊤ h7u : Continuous u h8u : Continuous (fderiv ℝ u) v : E → ℝ := fun x => ‖u x‖ ^ ↑γ hv : ContDiff ℝ 1 v h2v : HasCompactSupport v C : ℝ≥0 := eLpNormLESNormFDerivOneConst μ ↑n' ⊢ AEMeasurable (fun x => ‖fderiv ℝ u x‖ₑ) μ
728bbe5fb5258103
Std.Tactic.BVDecide.BVExpr.bitblast.mkOverflowBit.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Carry.lean
theorem go_decl_eq {aig : AIG α} {cin} {lhs rhs : AIG.RefVec aig w} : ∀ (idx : Nat) (h1) (h2), (go aig lhs rhs curr cin).aig.decls[idx]'h2 = aig.decls[idx]'h1
case isTrue.h2 α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w curr : Nat aig : AIG α cin : aig.Ref lhs rhs : aig.RefVec w res : AIG.Entrypoint α h✝ : curr < w hgo : go (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).aig (lhs.cast ⋯) (rhs.cast ⋯) (curr + 1) (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).ref = res idx✝ : Nat h1✝ : idx✝ < aig.decls.size h2✝ : idx✝ < (go (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).aig (lhs.cast ⋯) (rhs.cast ⋯) (curr + 1) (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).ref).aig.decls.size ⊢ idx✝ < (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).aig.decls.size
apply AIG.LawfulOperator.lt_size_of_lt_aig_size (f := mkFullAdderCarry)
case isTrue.h2.h α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w curr : Nat aig : AIG α cin : aig.Ref lhs rhs : aig.RefVec w res : AIG.Entrypoint α h✝ : curr < w hgo : go (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).aig (lhs.cast ⋯) (rhs.cast ⋯) (curr + 1) (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).ref = res idx✝ : Nat h1✝ : idx✝ < aig.decls.size h2✝ : idx✝ < (go (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).aig (lhs.cast ⋯) (rhs.cast ⋯) (curr + 1) (mkFullAdderCarry aig { lhs := lhs.get curr h✝, rhs := rhs.get curr h✝, cin := cin }).ref).aig.decls.size ⊢ idx✝ < aig.decls.size
0e1562c4999c3b0c
BooleanSubalgebra.sdiff_mem
Mathlib/Order/BooleanSubalgebra.lean
lemma sdiff_mem (ha : a ∈ L) (hb : b ∈ L) : a \ b ∈ L
α : Type u_2 inst✝ : BooleanAlgebra α L : BooleanSubalgebra α a b : α ha : a ∈ L hb : b ∈ L ⊢ a \ b ∈ L
simpa [sdiff_eq] using L.infClosed ha (compl_mem hb)
no goals
0a19dc16f6028850
ExistsContDiffBumpBase.y_smooth
Mathlib/Analysis/Calculus/BumpFunction/FiniteDimension.lean
theorem y_smooth : ContDiffOn ℝ ∞ (uncurry y) (Ioo (0 : ℝ) 1 ×ˢ (univ : Set E))
case refine_3 E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E hs : IsOpen (Ioo 0 1) hk : IsCompact (closedBall 0 1) ⊢ ContDiffOn ℝ ∞ (↿w) (Ioo 0 1 ×ˢ univ)
apply ContDiffOn.mul
case refine_3.hf E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E hs : IsOpen (Ioo 0 1) hk : IsCompact (closedBall 0 1) ⊢ ContDiffOn ℝ ∞ (fun x => ((∫ (x : E), u x ∂μ) * |x.1| ^ finrank ℝ E)⁻¹) (Ioo 0 1 ×ˢ univ) case refine_3.hg E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : MeasurableSpace E inst✝ : BorelSpace E hs : IsOpen (Ioo 0 1) hk : IsCompact (closedBall 0 1) ⊢ ContDiffOn ℝ ∞ (fun x => u (x.1⁻¹ • x.2)) (Ioo 0 1 ×ˢ univ)
5d103a5b75b6c303
MeasureTheory.lintegral_rpow_eq_lintegral_meas_le_mul
Mathlib/Analysis/SpecialFunctions/Pow/Integral.lean
theorem lintegral_rpow_eq_lintegral_meas_le_mul : ∫⁻ ω, ENNReal.ofReal (f ω ^ p) ∂μ = ENNReal.ofReal p * ∫⁻ t in Ioi 0, μ {a : α | t ≤ f a} * ENNReal.ofReal (t ^ (p - 1))
case h α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ μ : Measure α f_nn : 0 ≤ᶠ[ae μ] f f_mble : AEMeasurable f μ p : ℝ p_pos : 0 < p one_lt_p : -1 < p - 1 g : ℝ → ℝ := fun t => t ^ (p - 1) obs : ∀ (x : ℝ), intervalIntegral g 0 x volume = x ^ p / p t : ℝ t_pos : t ∈ Ioi 0 ⊢ 0 ≤ g t
exact Real.rpow_nonneg (mem_Ioi.mp t_pos).le (p - 1)
no goals
720d77f4c064a30f
Module.End.exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow
Mathlib/LinearAlgebra/JordanChevalley.lean
theorem exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow {P : K[X]} {k : ℕ} (sep : P.Separable) (nil : minpoly K f ∣ P ^ k) : ∃ᵉ (n ∈ adjoin K {f}) (s ∈ adjoin K {f}), IsNilpotent n ∧ IsSemisimple s ∧ f = n + s
K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V P : K[X] k : ℕ sep : P.Separable nil : minpoly K f ∣ P ^ k ff : ↥(adjoin K {f}) := ⟨f, ⋯⟩ P' : K[X] := derivative P nil' : IsNilpotent ((aeval ff) P) sep' : IsUnit ((aeval ff) P') ⊢ ∃ n ∈ adjoin K {f}, ∃ s ∈ adjoin K {f}, IsNilpotent n ∧ s.IsSemisimple ∧ f = n + s
obtain ⟨⟨s, mem⟩, ⟨⟨k, hk⟩, hss⟩, -⟩ := existsUnique_nilpotent_sub_and_aeval_eq_zero nil' sep'
case intro.mk.intro.intro.intro K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V P : K[X] k✝ : ℕ sep : P.Separable nil : minpoly K f ∣ P ^ k✝ ff : ↥(adjoin K {f}) := ⟨f, ⋯⟩ P' : K[X] := derivative P nil' : IsNilpotent ((aeval ff) P) sep' : IsUnit ((aeval ff) P') s : End K V mem : s ∈ adjoin K {f} hss : (aeval ⟨s, mem⟩) P = 0 k : ℕ hk : (ff - ⟨s, mem⟩) ^ k = 0 ⊢ ∃ n ∈ adjoin K {f}, ∃ s ∈ adjoin K {f}, IsNilpotent n ∧ s.IsSemisimple ∧ f = n + s
d5adbca57ec910fe
PNat.gcd_eq_left_iff_dvd
Mathlib/Data/PNat/Prime.lean
theorem gcd_eq_left_iff_dvd {m n : ℕ+} : m ∣ n ↔ m.gcd n = m
m n : ℕ+ ⊢ (↑m).gcd ↑n = ↑m ↔ m.gcd n = m
rw [← coe_inj]
m n : ℕ+ ⊢ (↑m).gcd ↑n = ↑m ↔ ↑(m.gcd n) = ↑m
2ad2bac44da65d21
AnalyticOnNhd.is_constant_or_isOpen
Mathlib/Analysis/Complex/OpenMapping.lean
theorem AnalyticOnNhd.is_constant_or_isOpen (hg : AnalyticOnNhd ℂ g U) (hU : IsPreconnected U) : (∃ w, ∀ z ∈ U, g z = w) ∨ ∀ s ⊆ U, IsOpen s → IsOpen (g '' s)
case neg E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E U : Set E g : E → ℂ hg : AnalyticOnNhd ℂ g U hU : IsPreconnected U h : ∀ z₀ ∈ U, ¬∀ᶠ (z : E) in 𝓝 z₀, g z = g z₀ s : Set E hs1 : s ⊆ U hs2 : IsOpen s ⊢ ∀ x ∈ g '' s, g '' s ∈ 𝓝 x
rintro z ⟨w, hw1, rfl⟩
case neg.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E U : Set E g : E → ℂ hg : AnalyticOnNhd ℂ g U hU : IsPreconnected U h : ∀ z₀ ∈ U, ¬∀ᶠ (z : E) in 𝓝 z₀, g z = g z₀ s : Set E hs1 : s ⊆ U hs2 : IsOpen s w : E hw1 : w ∈ s ⊢ g '' s ∈ 𝓝 (g w)
bcea65785f6ffd2a
intervalIntegral.continuousWithinAt_primitive
Mathlib/MeasureTheory/Integral/DominatedConvergence.lean
theorem continuousWithinAt_primitive (hb₀ : μ {b₀} = 0) (h_int : IntervalIntegrable f μ (min a b₁) (max a b₂)) : ContinuousWithinAt (fun b => ∫ x in a..b, f x ∂μ) (Icc b₁ b₂) b₀
case intro.h₂ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b₀ b₁ b₂ : ℝ μ : Measure ℝ f : ℝ → E hb₀ : μ {b₀} = 0 h_int : IntervalIntegrable f μ (a ⊓ b₁) (a ⊔ b₂) h₀ : b₀ ∈ Icc b₁ b₂ h₁₂ : b₁ ≤ b₂ min₁₂ : b₁ ⊓ b₂ = b₁ x : ℝ h₁ : b₁ ≤ x h₂ : x ≤ b₂ ⊢ x ∈ [[a ⊓ b₁, a ⊔ b₂]]
exact ⟨min_le_of_left_le <| (min_le_right _ _).trans h₁, le_max_of_le_right <| h₂.trans <| le_max_right _ _⟩
no goals
9163a1d4de5d2966
Mathlib.Tactic.Bicategory.naturality_leftUnitor
Mathlib/Tactic/CategoryTheory/Bicategory/PureCoherence.lean
theorem naturality_leftUnitor {p : a ⟶ b} {f : b ⟶ c} {pf : a ⟶ c} (η_f : p ≫ f ≅ pf) : p ◁ (λ_ f) ≪≫ η_f = normalizeIsoComp (ρ_ p) η_f := Iso.ext (by simp)
B : Type u inst✝ : Bicategory B a b c : B p : a ⟶ b f : b ⟶ c pf : a ⟶ c η_f : p ≫ f ≅ pf ⊢ (p ◁ λ_ f ≪≫ η_f).hom = (normalizeIsoComp (ρ_ p) η_f).hom
simp
no goals
98745ba2aaaa51f8
eventually_homothety_mem_of_mem_interior
Mathlib/Analysis/Normed/Affine/AddTorsor.lean
theorem eventually_homothety_mem_of_mem_interior (x : Q) {s : Set Q} {y : Q} (hy : y ∈ interior s) : ∀ᶠ δ in 𝓝 (1 : 𝕜), homothety x δ y ∈ s
case h W : Type u_3 Q : Type u_4 inst✝⁴ : NormedAddCommGroup W inst✝³ : MetricSpace Q inst✝² : NormedAddTorsor W Q 𝕜 : Type u_5 inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 W x : Q s : Set Q y : Q hy : y ∈ interior s h : y = x ⊢ 0 < 1 ∧ ∀ ⦃x_1 : 𝕜⦄, x_1 ∈ {y | ‖y - 1‖ < 1} → (homothety x x_1) y ∈ s
simp [h.symm, interior_subset hy]
no goals
1289875882d40d72
Real.continuousOn_tan_Ioo
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
theorem continuousOn_tan_Ioo : ContinuousOn tan (Ioo (-(π / 2)) (π / 2))
x : ℝ ⊢ x ∈ Ioo (-(π / 2)) (π / 2) → x ∈ {x | cos x ≠ 0}
simp only [and_imp, mem_Ioo, mem_setOf_eq, Ne]
x : ℝ ⊢ -(π / 2) < x → x < π / 2 → ¬cos x = 0
d91f87528b6a23d6
GromovHausdorff.hausdorffDist_optimal
Mathlib/Topology/MetricSpace/GromovHausdorff.lean
theorem hausdorffDist_optimal {X : Type u} [MetricSpace X] [CompactSpace X] [Nonempty X] {Y : Type v} [MetricSpace Y] [CompactSpace Y] [Nonempty Y] : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = ghDist X Y
case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts ↥(lp (fun n => ℝ) ⊤) hp : ⟦p⟧ = toGHSpace X hq : ⟦q⟧ = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → ↥(lp (fun n => ℝ) ⊤) Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → ↥(lp (fun n => ℝ) ⊤) Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → ↥(lp (fun n => ℝ) ⊤) := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.1) (f p.2) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb✝ X Y := candidatesBOfCandidates F Fgood ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q
have : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb := hausdorffDist_optimal_le_HD _ _ (candidatesBOfCandidates_mem F Fgood)
case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts ↥(lp (fun n => ℝ) ⊤) hp : ⟦p⟧ = toGHSpace X hq : ⟦q⟧ = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → ↥(lp (fun n => ℝ) ⊤) Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → ↥(lp (fun n => ℝ) ⊤) Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → ↥(lp (fun n => ℝ) ⊤) := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.1) (f p.2) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb✝ X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q
e1b74305bb180259
Metric.Sum.mem_uniformity_iff_glueDist
Mathlib/Topology/MetricSpace/Gluing.lean
theorem Sum.mem_uniformity_iff_glueDist (hε : 0 < ε) (s : Set ((X ⊕ Y) × (X ⊕ Y))) : s ∈ 𝓤 (X ⊕ Y) ↔ ∃ δ > 0, ∀ a b, glueDist Φ Ψ ε a b < δ → (a, b) ∈ s
X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ s ∈ 𝓤 (X ⊕ Y) ↔ ∃ δ > 0, ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s
simp only [Sum.uniformity, Filter.mem_sup, Filter.mem_map, mem_uniformity_dist, mem_preimage]
X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ ((∃ ε > 0, ∀ ⦃a b : X⦄, dist a b < ε → Prod.map Sum.inl Sum.inl (a, b) ∈ s) ∧ ∃ ε > 0, ∀ ⦃a b : Y⦄, dist a b < ε → Prod.map Sum.inr Sum.inr (a, b) ∈ s) ↔ ∃ δ > 0, ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s
fe4b5204c103372a
StieltjesFunction.outer_trim
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem outer_trim : f.outer.trim = f.outer
f : StieltjesFunction s : Set ℝ t : ℕ → Set ℝ ht : s ⊆ ⋃ i, t i ε : ℝ≥0 ε0 : 0 < ε h : ∑' (i : ℕ), f.length (t i) < ⊤ ε' : ℕ → ℝ≥0 ε'0 : ∀ (i : ℕ), 0 < ε' i hε : ∑' (i : ℕ), ↑(ε' i) < ↑ε i : ℕ ⊢ ∃ s, t i ⊆ s ∧ MeasurableSet s ∧ f.outer s ≤ f.length (t i) + ofReal ↑(ε' i)
have hl := ENNReal.lt_add_right ((ENNReal.le_tsum i).trans_lt h).ne (ENNReal.coe_pos.2 (ε'0 i)).ne'
f : StieltjesFunction s : Set ℝ t : ℕ → Set ℝ ht : s ⊆ ⋃ i, t i ε : ℝ≥0 ε0 : 0 < ε h : ∑' (i : ℕ), f.length (t i) < ⊤ ε' : ℕ → ℝ≥0 ε'0 : ∀ (i : ℕ), 0 < ε' i hε : ∑' (i : ℕ), ↑(ε' i) < ↑ε i : ℕ hl : f.length (t i) < f.length (t i) + ↑(ε' i) ⊢ ∃ s, t i ⊆ s ∧ MeasurableSet s ∧ f.outer s ≤ f.length (t i) + ofReal ↑(ε' i)
f9dd01cdb673361c
Real.cos_pi_div_five
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
theorem cos_pi_div_five : cos (π / 5) = (1 + √5) / 4
case inr c : ℝ := cos (π / 5) this : 4 * (c * c) + -2 * c + -1 = 0 hd : discrim 4 (-2) (-1) = 2 * √5 * (2 * √5) h : c = (- -2 - 2 * √5) / (2 * 4) ⊢ c = (1 + √5) / 4
absurd (show 0 ≤ c from cos_nonneg_of_mem_Icc <| by constructor <;> linarith [pi_pos.le])
case inr c : ℝ := cos (π / 5) this : 4 * (c * c) + -2 * c + -1 = 0 hd : discrim 4 (-2) (-1) = 2 * √5 * (2 * √5) h : c = (- -2 - 2 * √5) / (2 * 4) ⊢ ¬0 ≤ c
386d26d34e57890c
Polynomial.cyclotomic_injective
Mathlib/RingTheory/Polynomial/Cyclotomic/Roots.lean
theorem cyclotomic_injective [CharZero R] : Function.Injective fun n => cyclotomic n R
case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : CharZero R n m : ℕ hzero : n ≠ 0 this : NeZero n hnm : cyclotomic n ℂ = cyclotomic m ℂ hprim : IsPrimitiveRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)) n hroot : (cyclotomic m ℂ).IsRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)) hmzero : NeZero m ⊢ n = m
rw [isRoot_cyclotomic_iff (R := ℂ)] at hroot
case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : CharZero R n m : ℕ hzero : n ≠ 0 this : NeZero n hnm : cyclotomic n ℂ = cyclotomic m ℂ hprim : IsPrimitiveRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)) n hroot : IsPrimitiveRoot (Complex.exp (2 * ↑Real.pi * Complex.I / ↑n)) m hmzero : NeZero m ⊢ n = m
95f81674fb37b3a0
CategoryTheory.Comma.inv_right
Mathlib/CategoryTheory/Comma/Basic.lean
@[simp] lemma inv_right [IsIso e] : (inv e).right = inv e.right
A : Type u₁ inst✝³ : Category.{v₁, u₁} A B : Type u₂ inst✝² : Category.{v₂, u₂} B T : Type u₃ inst✝¹ : Category.{v₃, u₃} T L : A ⥤ T R : B ⥤ T X Y : Comma L R e : X ⟶ Y inst✝ : IsIso e ⊢ (inv e).right = inv e.right
apply IsIso.eq_inv_of_hom_inv_id
case hom_inv_id A : Type u₁ inst✝³ : Category.{v₁, u₁} A B : Type u₂ inst✝² : Category.{v₂, u₂} B T : Type u₃ inst✝¹ : Category.{v₃, u₃} T L : A ⥤ T R : B ⥤ T X Y : Comma L R e : X ⟶ Y inst✝ : IsIso e ⊢ e.right ≫ (inv e).right = 𝟙 X.right
c0e969a93d7f9594
Complex.continuousOn_norm_circleTransformBoundingFunction
Mathlib/MeasureTheory/Integral/CircleTransform.lean
theorem continuousOn_norm_circleTransformBoundingFunction {R r : ℝ} (hr : r < R) (z : ℂ) : ContinuousOn ((‖·‖) ∘ circleTransformBoundingFunction R z) (closedBall z r ×ˢ univ)
case hg.hf R r : ℝ hr : r < R z : ℂ ⊢ ContinuousOn (fun x => deriv (circleMap z R) x.2) (closedBall z r ×ˢ univ)
simp only [deriv_circleMap]
case hg.hf R r : ℝ hr : r < R z : ℂ ⊢ ContinuousOn (fun x => circleMap 0 R x.2 * I) (closedBall z r ×ˢ univ)
eed8430be825edc0
NumberField.mixedEmbedding.negAt_symm
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem negAt_symm : (negAt s).symm = negAt s
case neg K : Type u_1 inst✝ : Field K s : Set { w // w.IsReal } x : mixedSpace K w : { w // w.IsReal } hw : w ∉ s ⊢ ((negAt s).symm x).1 w = ((negAt s) x).1 w
simp_rw [negAt_apply_isReal_and_not_mem _ hw, negAt, prod_symm, ContinuousLinearEquiv.prod_apply, piCongrRight_symm_apply, if_neg hw, refl_symm, refl_apply]
no goals
b65992f9db9e340a
Seminorm.ball_norm_mul_subset
Mathlib/Analysis/Seminorm.lean
theorem ball_norm_mul_subset {p : Seminorm 𝕜 E} {k : 𝕜} {r : ℝ} : p.ball 0 (‖k‖ * r) ⊆ k • p.ball 0 r
case inl 𝕜 : Type u_3 E : Type u_7 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E r : ℝ ⊢ p.ball 0 (‖0‖ * r) ⊆ 0 • p.ball 0 r
rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
case inl 𝕜 : Type u_3 E : Type u_7 inst✝² : NormedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E p : Seminorm 𝕜 E r : ℝ ⊢ ∅ ⊆ 0 • p.ball 0 r
b87a373bd1754990
cyclotomic_comp_X_add_one_isEisensteinAt
Mathlib/RingTheory/Polynomial/Eisenstein/IsIntegral.lean
theorem cyclotomic_comp_X_add_one_isEisensteinAt [hp : Fact p.Prime] : ((cyclotomic p ℤ).comp (X + 1)).IsEisensteinAt 𝓟
case refine_2 p : ℕ hp : Fact (Nat.Prime p) i : ℕ hi : i < ((cyclotomic p ℤ).comp (X + 1)).natDegree ⊢ (∑ x ∈ range p, if x = i then ↑(p.choose (x + 1)) else 0) ∈ Submodule.span ℤ {↑p}
rw [natDegree_comp, show (X + 1 : ℤ[X]) = X + C 1 by simp, natDegree_X_add_C, mul_one, natDegree_cyclotomic, Nat.totient_prime hp.out] at hi
case refine_2 p : ℕ hp : Fact (Nat.Prime p) i : ℕ hi : i < p - 1 ⊢ (∑ x ∈ range p, if x = i then ↑(p.choose (x + 1)) else 0) ∈ Submodule.span ℤ {↑p}
bff95b337ffb159a
ContinuousLinearMap.bijective_iff_dense_range_and_antilipschitz
Mathlib/Analysis/Normed/Operator/Banach.lean
lemma bijective_iff_dense_range_and_antilipschitz (f : E →SL[σ] F) : Bijective f ↔ (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c f
𝕜 : Type u_1 𝕜' : Type u_2 inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NontriviallyNormedField 𝕜' E : Type u_3 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace 𝕜 E σ : 𝕜 →+* 𝕜' σ' : 𝕜' →+* 𝕜 inst✝⁷ : RingHomInvPair σ σ' F : Type u_4 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜' F inst✝⁴ : CompleteSpace E inst✝³ : CompleteSpace F inst✝² : RingHomInvPair σ' σ inst✝¹ : RingHomIsometric σ inst✝ : RingHomIsometric σ' f : E →SL[σ] F x✝ : (LinearMap.range f).topologicalClosure = ⊤ ∧ ∃ c, AntilipschitzWith c ⇑f hd : (LinearMap.range f).topologicalClosure = ⊤ c : ℝ≥0 hf : AntilipschitzWith c ⇑f ⊢ Surjective ⇑f
rwa [← LinearMap.range_eq_top, ← closed_range_of_antilipschitz hf]
no goals
1255c3d2e1f157b7
OrderIso.strictConcaveOn_symm
Mathlib/Analysis/Convex/Function.lean
theorem OrderIso.strictConcaveOn_symm (f : α ≃o β) (hf : StrictConvexOn 𝕜 univ f) : StrictConcaveOn 𝕜 univ f.symm
case intro.intro 𝕜 : Type u_1 α : Type u_4 β : Type u_5 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ⇑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = f x' y' : α hy'' : y = f y' hxy' : x' ≠ y' ⊢ a • x' + b • y' < f.symm (a • f x' + b • f y')
rw [← f.lt_iff_lt, OrderIso.apply_symm_apply]
case intro.intro 𝕜 : Type u_1 α : Type u_4 β : Type u_5 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : OrderedAddCommMonoid α inst✝² : SMul 𝕜 α inst✝¹ : OrderedAddCommMonoid β inst✝ : SMul 𝕜 β f : α ≃o β hf : StrictConvexOn 𝕜 univ ⇑f x : β x✝¹ : x ∈ univ y : β x✝ : y ∈ univ hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 x' : α hx'' : x = f x' y' : α hy'' : y = f y' hxy' : x' ≠ y' ⊢ f (a • x' + b • y') < a • f x' + b • f y'
798e65840fb2b195
Set.inl_compl_union_inr_compl
Mathlib/Data/Set/Basic.lean
lemma inl_compl_union_inr_compl {α β : Type*} {s : Set α} {t : Set β} : Sum.inl '' sᶜ ∪ Sum.inr '' tᶜ = (Sum.inl '' s ∪ Sum.inr '' t)ᶜ
α : Type u_1 β : Type u_2 s : Set α t : Set β ⊢ Sum.inl '' sᶜ ∪ Sum.inr '' tᶜ = (Sum.inl '' s)ᶜ ∩ (Sum.inr '' t)ᶜ
aesop
no goals
912b559fa88b7d10
IsLindelof.disjoint_nhdsSet_left
Mathlib/Topology/Compactness/Lindelof.lean
theorem IsLindelof.disjoint_nhdsSet_left {l : Filter X} [CountableInterFilter l] (hs : IsLindelof s) : Disjoint (𝓝ˢ s) l ↔ ∀ x ∈ s, Disjoint (𝓝 x) l
X : Type u inst✝¹ : TopologicalSpace X s : Set X l : Filter X inst✝ : CountableInterFilter l hs : IsLindelof s ⊢ Disjoint (𝓝ˢ s) l ↔ ∀ x ∈ s, Disjoint (𝓝 x) l
refine ⟨fun h x hx ↦ h.mono_left <| nhds_le_nhdsSet hx, fun H ↦ ?_⟩
X : Type u inst✝¹ : TopologicalSpace X s : Set X l : Filter X inst✝ : CountableInterFilter l hs : IsLindelof s H : ∀ x ∈ s, Disjoint (𝓝 x) l ⊢ Disjoint (𝓝ˢ s) l
f96889b611855166
ZMod.cast_sub_one
Mathlib/Data/ZMod/Basic.lean
theorem cast_sub_one {R : Type*} [Ring R] {n : ℕ} (k : ZMod n) : (cast (k - 1 : ZMod n) : R) = (if k = 0 then (n : R) else cast k) - 1
case neg.zero R : Type u_1 inst✝ : Ring R k : ZMod 0 hk : ¬k = 0 ⊢ (k - 1).cast = k.cast - 1
dsimp [ZMod, ZMod.cast]
case neg.zero R : Type u_1 inst✝ : Ring R k : ZMod 0 hk : ¬k = 0 ⊢ ↑(k - 1) = ↑k - 1
4fdb3038bd174435
Set.Iic_union_Icc'
Mathlib/Order/Interval/Set/Basic.lean
theorem Iic_union_Icc' (h₁ : c ≤ b) : Iic b ∪ Icc c d = Iic (max b d)
case h α : Type u_1 inst✝ : LinearOrder α b c d : α h₁ : c ≤ b x : α ⊢ x ∈ Iic b ∪ Icc c d ↔ x ∈ Iic (b ⊔ d)
simp_rw [mem_union, mem_Iic, mem_Icc, le_max_iff]
case h α : Type u_1 inst✝ : LinearOrder α b c d : α h₁ : c ≤ b x : α ⊢ x ≤ b ∨ c ≤ x ∧ x ≤ d ↔ x ≤ b ∨ x ≤ d
cb2a065dca8b2fee
UV.shadow_compression_subset_compression_shadow
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
theorem shadow_compression_subset_compression_shadow (u v : Finset α) (huv : ∀ x ∈ u, ∃ y ∈ v, IsCompressed (u.erase x) (v.erase y) 𝒜) : ∂ (𝓒 u v 𝒜) ⊆ 𝓒 u v (∂ 𝒜)
case intro.intro.refine_2 α : Type u_1 inst✝ : DecidableEq α 𝒜 : Finset (Finset α) u v : Finset α huv : ∀ x ∈ u, ∃ y ∈ v, IsCompressed (u.erase x) (v.erase y) 𝒜 𝒜' : Finset (Finset α) := 𝓒 u v 𝒜 s : Finset α hs𝒜' : s ∈ ∂ 𝒜' hs𝒜 : s ∉ ∂ 𝒜 m : ∀ y ∉ s, insert y s ∉ 𝒜 x : α left✝ : x ∉ s right✝ : insert x s ∈ 𝒜' hus✝ : u ⊆ insert x s hvs : Disjoint v (insert x s) this✝¹ : (insert x s ∪ v) \ u ∈ 𝒜 hsv : Disjoint s v hvu : Disjoint v u hxv : x ∉ v this✝ : v \ u = v this : x ∉ u hus : u ⊆ s ⊢ insert x ((s ∪ v) \ u) ∈ 𝒜
rwa [← insert_sdiff_of_not_mem _ ‹x ∉ u›, ← insert_union]
no goals
9666ab7e87eab58f
Commute.orderOf_mul_eq_right_of_forall_prime_mul_dvd
Mathlib/GroupTheory/OrderOfElement.lean
theorem orderOf_mul_eq_right_of_forall_prime_mul_dvd (h : Commute x y) (hy : IsOfFinOrder y) (hdvd : ∀ p : ℕ, p.Prime → p ∣ orderOf x → p * orderOf x ∣ orderOf y) : orderOf (x * y) = orderOf y
case hd G : Type u_1 inst✝ : Monoid G x y : G h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y ⊢ ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf y → ¬orderOf (x * y) ∣ orderOf y / p
refine fun p hp hpy hd => hp.ne_one ?_
case hd G : Type u_1 inst✝ : Monoid G x y : G h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y p : ℕ hp : Nat.Prime p hpy : p ∣ orderOf y hd : orderOf (x * y) ∣ orderOf y / p ⊢ p = 1
ad488aedf0f1c9e4
Int.mul_le_mul_of_nonneg_left
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
theorem mul_le_mul_of_nonneg_left {a b c : Int} (h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b := if hba : b ≤ a then by rw [Int.le_antisymm hba h₁]; apply Int.le_refl else if hc0 : c ≤ 0 then by simp [Int.le_antisymm hc0 h₂, Int.zero_mul] else by exact Int.le_of_lt <| Int.mul_lt_mul_of_pos_left (Int.lt_iff_le_not_le.2 ⟨h₁, hba⟩) (Int.lt_iff_le_not_le.2 ⟨h₂, hc0⟩)
a b c : Int h₁ : a ≤ b h₂ : 0 ≤ c hba : ¬b ≤ a hc0 : c ≤ 0 ⊢ c * a ≤ c * b
simp [Int.le_antisymm hc0 h₂, Int.zero_mul]
no goals
ebac8b4eee743453
clusterPt_iff_lift'_closure'
Mathlib/Topology/Basic.lean
theorem clusterPt_iff_lift'_closure' {F : Filter X} : ClusterPt x F ↔ (F.lift' closure ⊓ pure x).NeBot
case mpr X : Type u x : X inst✝ : TopologicalSpace X F : Filter X ⊢ (pure x ⊓ F.lift' closure).NeBot → pure x ≤ F.lift' closure
intro h U hU
case mpr X : Type u x : X inst✝ : TopologicalSpace X F : Filter X h : (pure x ⊓ F.lift' closure).NeBot U : Set X hU : U ∈ F.lift' closure ⊢ U ∈ pure x
70879bd9b2cfc6e6
Set.sInter_prod_sInter
Mathlib/Data/Set/Lattice.lean
theorem sInter_prod_sInter {S : Set (Set α)} {T : Set (Set β)} (hS : S.Nonempty) (hT : T.Nonempty) : ⋂₀ S ×ˢ ⋂₀ T = ⋂ r ∈ S ×ˢ T, r.1 ×ˢ r.2
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) T : Set (Set β) s₁ : Set α h₁ : s₁ ∈ S s₂ : Set β h₂ : s₂ ∈ T x : α × β hx : ∀ i ∈ S ×ˢ T, x ∈ i.1 ×ˢ i.2 ⊢ x ∈ ⋂₀ S ×ˢ ⋂₀ T
exact ⟨fun s₀ h₀ => (hx (s₀, s₂) ⟨h₀, h₂⟩).1, fun s₀ h₀ => (hx (s₁, s₀) ⟨h₁, h₀⟩).2⟩
no goals
5614e7d5edc46357
Ordinal.sup_mul_nat
Mathlib/SetTheory/Ordinal/Arithmetic.lean
theorem sup_mul_nat (o : Ordinal) : (sup fun n : ℕ => o * n) = o * ω
case inr o : Ordinal.{u_1} ho : 0 < o ⊢ (sup fun n => o * ↑n) = o * ω
exact (mul_isNormal ho).apply_omega0
no goals
4ffb26912b5f26d1
MulAction.IsBlockSystem.of_normal
Mathlib/GroupTheory/GroupAction/Blocks.lean
theorem IsBlockSystem.of_normal {N : Subgroup G} [N.Normal] : IsBlockSystem G (Set.range fun a : X => orbit N a)
case right G : Type u_1 inst✝² : Group G X : Type u_2 inst✝¹ : MulAction G X N : Subgroup G inst✝ : N.Normal ⊢ ∀ ⦃B : Set X⦄, (B ∈ range fun a => orbit (↥N) a) → IsBlock G B
intro b
case right G : Type u_1 inst✝² : Group G X : Type u_2 inst✝¹ : MulAction G X N : Subgroup G inst✝ : N.Normal b : Set X ⊢ (b ∈ range fun a => orbit (↥N) a) → IsBlock G b
94f82df37ff2f4b9
MeasureTheory.volume_sum_rpow_le
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
theorem MeasureTheory.volume_sum_rpow_le [Nonempty ι] {p : ℝ} (hp : 1 ≤ p) (r : ℝ) : volume {x : ι → ℝ | (∑ i, |x i| ^ p) ^ (1 / p) ≤ r} = (.ofReal r) ^ card ι * .ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (card ι / p + 1))
ι : Type u_1 inst✝¹ : Fintype ι inst✝ : Nonempty ι p : ℝ hp : 1 ≤ p r : ℝ h₁ : 0 < p eq_norm : ∀ (x : ι → ℝ), ‖x‖ = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) this : Fact (1 ≤ ENNReal.ofReal p) nm_zero : ‖0‖ = 0 eq_zero : ∀ (x : ι → ℝ), ‖x‖ = 0 ↔ x = 0 ⊢ volume {x | (∑ i : ι, |x i| ^ p) ^ (1 / p) ≤ r} = ENNReal.ofReal r ^ card ι * ENNReal.ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (↑(card ι) / p + 1))
have nm_neg := fun x : ι → ℝ => norm_neg (E := PiLp (.ofReal p) (fun _ : ι => ℝ)) x
ι : Type u_1 inst✝¹ : Fintype ι inst✝ : Nonempty ι p : ℝ hp : 1 ≤ p r : ℝ h₁ : 0 < p eq_norm : ∀ (x : ι → ℝ), ‖x‖ = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) this : Fact (1 ≤ ENNReal.ofReal p) nm_zero : ‖0‖ = 0 eq_zero : ∀ (x : ι → ℝ), ‖x‖ = 0 ↔ x = 0 nm_neg : ∀ (x : ι → ℝ), ‖-x‖ = ‖x‖ ⊢ volume {x | (∑ i : ι, |x i| ^ p) ^ (1 / p) ≤ r} = ENNReal.ofReal r ^ card ι * ENNReal.ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (↑(card ι) / p + 1))
b43945fead980666
ProbabilityTheory.Kernel.tendsto_integral_density_of_monotone
Mathlib/Probability/Kernel/Disintegration/Density.lean
lemma tendsto_integral_density_of_monotone (hκν : fst κ ≤ ν) [IsFiniteKernel ν] (a : α) (seq : ℕ → Set β) (hseq : Monotone seq) (hseq_iUnion : ⋃ i, seq i = univ) (hseq_meas : ∀ m, MeasurableSet (seq m)) : Tendsto (fun m ↦ ∫ x, density κ ν a x (seq m) ∂(ν a)) atTop (𝓝 (κ a univ).toReal)
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) ν : Kernel α γ hκν : κ.fst ≤ ν inst✝ : IsFiniteKernel ν a : α seq : ℕ → Set β hseq : Monotone seq hseq_iUnion : ⋃ i, seq i = univ hseq_meas : ∀ (m : ℕ), MeasurableSet (seq m) this : IsFiniteKernel κ ⊢ Tendsto (fun m => ∫ (x : γ), κ.density ν a x (seq m) ∂ν a) atTop (𝓝 ((κ a) univ).toReal)
simp_rw [integral_density hκν a (hseq_meas _)]
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) ν : Kernel α γ hκν : κ.fst ≤ ν inst✝ : IsFiniteKernel ν a : α seq : ℕ → Set β hseq : Monotone seq hseq_iUnion : ⋃ i, seq i = univ hseq_meas : ∀ (m : ℕ), MeasurableSet (seq m) this : IsFiniteKernel κ ⊢ Tendsto (fun m => ((κ a) (univ ×ˢ seq m)).toReal) atTop (𝓝 ((κ a) univ).toReal)
e97057e55029f4e1
SimpleGraph.chromaticNumber_sum
Mathlib/Combinatorics/SimpleGraph/Sum.lean
theorem chromaticNumber_sum : (G ⊕g H).chromaticNumber = max G.chromaticNumber H.chromaticNumber
α : Type u_1 β : Type u_2 G : SimpleGraph α H : SimpleGraph β d : ℕ∞ hG : G.chromaticNumber ≤ d hH : H.chromaticNumber ≤ d ⊢ (G ⊕g H).chromaticNumber ≤ d
cases d with | top => simp | coe n => let cG : G.Coloring (Fin n) := (chromaticNumber_le_iff_colorable.mp hG).some let cH : H.Coloring (Fin n) := (chromaticNumber_le_iff_colorable.mp hH).some exact chromaticNumber_le_iff_colorable.mpr (Nonempty.intro (cG.sum cH))
no goals
14daea5911720f3b
RootPairing.range_polarization_domRestrict_le_span_coroot
Mathlib/LinearAlgebra/RootSystem/Finite/CanonicalBilinear.lean
theorem range_polarization_domRestrict_le_span_coroot : LinearMap.range (P.Polarization.domRestrict P.rootSpan) ≤ P.corootSpan
case intro ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : Fintype ι y : N x : ↥P.rootSpan hx : (P.Polarization.domRestrict P.rootSpan) x = y ⊢ ∃ c, ∑ i : ι, c i • P.coroot i = ∑ i : ι, (P.coroot' i) ↑x • P.coroot i
use fun i => (P.toPerfectPairing x) (P.coroot i)
case h ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : Fintype ι y : N x : ↥P.rootSpan hx : (P.Polarization.domRestrict P.rootSpan) x = y ⊢ ∑ i : ι, (fun i => (P.toPerfectPairing ↑x) (P.coroot i)) i • P.coroot i = ∑ i : ι, (P.coroot' i) ↑x • P.coroot i
f62e36c9fced14b2
WittVector.coeff_add_of_disjoint
Mathlib/RingTheory/WittVector/InitTail.lean
theorem coeff_add_of_disjoint (x y : 𝕎 R) (h : ∀ n, x.coeff n = 0 ∨ y.coeff n = 0) : (x + y).coeff n = x.coeff n + y.coeff n
case h p n✝ : ℕ R : Type u_1 inst✝ : CommRing R hp : Fact (Nat.Prime p) x y : 𝕎 R h : ∀ (n : ℕ), x.coeff n = 0 ∨ y.coeff n = 0 P : ℕ → Prop := fun n => y.coeff n = 0 this : DecidablePred P z : 𝕎 R := mk p fun n => if P n then x.coeff n else y.coeff n n : ℕ ⊢ (select P z).coeff n = x.coeff n
rw [select, coeff_mk, coeff_mk]
case h p n✝ : ℕ R : Type u_1 inst✝ : CommRing R hp : Fact (Nat.Prime p) x y : 𝕎 R h : ∀ (n : ℕ), x.coeff n = 0 ∨ y.coeff n = 0 P : ℕ → Prop := fun n => y.coeff n = 0 this : DecidablePred P z : 𝕎 R := mk p fun n => if P n then x.coeff n else y.coeff n n : ℕ ⊢ (if P n then if P n then x.coeff n else y.coeff n else 0) = x.coeff n
e3aa7fcb498bb341
precise_refinement_set
Mathlib/Topology/Compactness/Paracompact.lean
theorem precise_refinement_set [ParacompactSpace X] {s : Set X} (hs : IsClosed s) (u : ι → Set X) (uo : ∀ i, IsOpen (u i)) (us : s ⊆ ⋃ i, u i) : ∃ v : ι → Set X, (∀ i, IsOpen (v i)) ∧ (s ⊆ ⋃ i, v i) ∧ LocallyFinite v ∧ ∀ i, v i ⊆ u i
ι : Type u X : Type v inst✝¹ : TopologicalSpace X inst✝ : ParacompactSpace X s : Set X hs : IsClosed s u : ι → Set X uo : ∀ (i : ι), IsOpen (u i) us : s ⊆ ⋃ i, u i ⊢ ⋃ i, Option.elim' sᶜ u i = univ
apply Subset.antisymm (subset_univ _)
ι : Type u X : Type v inst✝¹ : TopologicalSpace X inst✝ : ParacompactSpace X s : Set X hs : IsClosed s u : ι → Set X uo : ∀ (i : ι), IsOpen (u i) us : s ⊆ ⋃ i, u i ⊢ univ ⊆ ⋃ i, Option.elim' sᶜ u i
ecc14a28630beea6
RingHom.FormallyUnramified.propertyIsLocal
Mathlib/RingTheory/RingHom/Unramified.lean
lemma propertyIsLocal : PropertyIsLocal FormallyUnramified
case localizationAwayPreserves R S : Type u_3 inst✝⁷ : CommRing R inst✝⁶ : CommRing S f : R →+* S r : R R' S' : Type u_3 inst✝⁵ : CommRing R' inst✝⁴ : CommRing S' inst✝³ : Algebra R R' inst✝² : Algebra S S' inst✝¹ : IsLocalization.Away r R' inst✝ : IsLocalization.Away (f r) S' H✝ : f.FormallyUnramified algInst✝² : Algebra R S := f.toAlgebra algInst✝¹ : Algebra R S' := ((algebraMap S S').comp f).toAlgebra algInst✝ : Algebra R' S' := (IsLocalization.Away.map R' S' f r).toAlgebra scalarTowerInst✝ : IsScalarTower R S S' := IsScalarTower.of_algebraMap_eq' (Eq.refl (algebraMap R S')) algebraizeInst✝ : Algebra.FormallyUnramified R S this✝¹ : Algebra.FormallyUnramified S S' this✝ : Algebra.FormallyUnramified R S' H : Submonoid.powers r ≤ Submonoid.comap f (Submonoid.powers (f r)) this : IsScalarTower R R' S' ⊢ (IsLocalization.Away.map R' S' f r).FormallyUnramified
exact Algebra.FormallyUnramified.of_comp R R' S'
no goals
f955845a3f1095b7
Stream'.Seq.cons_injective2
Mathlib/Data/Seq/Seq.lean
theorem cons_injective2 : Function.Injective2 (cons : α → Seq α → Seq α) := fun x y s t h => ⟨by rw [← Option.some_inj, ← get?_cons_zero, h, get?_cons_zero], Seq.ext fun n => by simp_rw [← get?_cons_succ x s n, h, get?_cons_succ]⟩
α : Type u x y : α s t : Seq α h : cons x s = cons y t n : ℕ ⊢ s.get? n = t.get? n
simp_rw [← get?_cons_succ x s n, h, get?_cons_succ]
no goals
c62240eacb0d23c4
Polynomial.Monic.comp
Mathlib/Algebra/Polynomial/Monic.lean
lemma comp (hp : p.Monic) (hq : q.Monic) (h : q.natDegree ≠ 0) : (p.comp q).Monic
R : Type u inst✝ : Semiring R p q : R[X] hp : p.Monic hq : q.Monic h : q.natDegree ≠ 0 a✝ : Nontrivial R this : (p.comp q).natDegree = p.natDegree * q.natDegree ⊢ (p.comp q).Monic
rw [Monic.def, Polynomial.leadingCoeff, this, coeff_comp_degree_mul_degree h, hp.leadingCoeff, hq.leadingCoeff, one_pow, mul_one]
no goals
6796f7c453197a8d
IsVisible.of_convexHull_of_pos
Mathlib/Analysis/Convex/Visible.lean
/-- If a point `x` sees a convex combination of points of a set `s` through `convexHull ℝ s ∌ x`, then it sees all terms of that combination. Note that the converse does not hold. -/ lemma IsVisible.of_convexHull_of_pos {ι : Type*} {t : Finset ι} {a : ι → V} {w : ι → 𝕜} (hw₀ : ∀ i ∈ t, 0 ≤ w i) (hw₁ : ∑ i ∈ t, w i = 1) (ha : ∀ i ∈ t, a i ∈ s) (hx : x ∉ convexHull 𝕜 s) (hw : IsVisible 𝕜 (convexHull 𝕜 s) x (∑ i ∈ t, w i • a i)) {i : ι} (hi : i ∈ t) (hwi : 0 < w i) : IsVisible 𝕜 (convexHull 𝕜 s) x (a i)
case h.e'_10 𝕜 : Type u_1 V : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup V inst✝ : Module 𝕜 V s : Set V x : V ι : Type u_4 t : Finset ι a : ι → V w : ι → 𝕜 hw₀ : ∀ i ∈ t, 0 ≤ w i hw₁ : ∑ i ∈ t, w i = 1 ha : ∀ i ∈ t, a i ∈ s hx : x ∉ (convexHull 𝕜) s hw : IsVisible 𝕜 ((convexHull 𝕜) s) x (∑ i ∈ t, w i • a i) i : ι hi : i ∈ t hwi✝ : 0 < w i hwi : w i = 1 ⊢ a i = ∑ i ∈ t, w i • a i
rw [← one_smul 𝕜 (a i), ← hwi, eq_comm]
case h.e'_10 𝕜 : Type u_1 V : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup V inst✝ : Module 𝕜 V s : Set V x : V ι : Type u_4 t : Finset ι a : ι → V w : ι → 𝕜 hw₀ : ∀ i ∈ t, 0 ≤ w i hw₁ : ∑ i ∈ t, w i = 1 ha : ∀ i ∈ t, a i ∈ s hx : x ∉ (convexHull 𝕜) s hw : IsVisible 𝕜 ((convexHull 𝕜) s) x (∑ i ∈ t, w i • a i) i : ι hi : i ∈ t hwi✝ : 0 < w i hwi : w i = 1 ⊢ ∑ i ∈ t, w i • a i = w i • a i
7c7847924d1006dd
MvPowerSeries.coeff_mul_of_add_lexOrder
Mathlib/RingTheory/MvPowerSeries/LexOrder.lean
theorem coeff_mul_of_add_lexOrder {φ ψ : MvPowerSeries σ R} {p q : σ →₀ ℕ} (hp : lexOrder φ = toLex p) (hq : lexOrder ψ = toLex q) : coeff R (p + q) (φ * ψ) = coeff R p φ * coeff R q ψ
σ : Type u_1 R : Type u_2 inst✝² : Semiring R inst✝¹ : LinearOrder σ inst✝ : WellFoundedGT σ φ ψ : MvPowerSeries σ R p q : σ →₀ ℕ hp : φ.lexOrder = ↑(toLex p) hq : ψ.lexOrder = ↑(toLex q) ⊢ ∑ p ∈ Finset.antidiagonal (p + q), (coeff R p.1) φ * (coeff R p.2) ψ = (coeff R p) φ * (coeff R q) ψ
apply Finset.sum_eq_single (⟨p, q⟩ : (σ →₀ ℕ) × (σ →₀ ℕ))
case h₀ σ : Type u_1 R : Type u_2 inst✝² : Semiring R inst✝¹ : LinearOrder σ inst✝ : WellFoundedGT σ φ ψ : MvPowerSeries σ R p q : σ →₀ ℕ hp : φ.lexOrder = ↑(toLex p) hq : ψ.lexOrder = ↑(toLex q) ⊢ ∀ b ∈ Finset.antidiagonal (p + q), b ≠ (p, q) → (coeff R b.1) φ * (coeff R b.2) ψ = 0 case h₁ σ : Type u_1 R : Type u_2 inst✝² : Semiring R inst✝¹ : LinearOrder σ inst✝ : WellFoundedGT σ φ ψ : MvPowerSeries σ R p q : σ →₀ ℕ hp : φ.lexOrder = ↑(toLex p) hq : ψ.lexOrder = ↑(toLex q) ⊢ (p, q) ∉ Finset.antidiagonal (p + q) → (coeff R (p, q).1) φ * (coeff R (p, q).2) ψ = 0
0c23704cc23b543a
isPrimePow_iff_factorization_eq_single
Mathlib/Data/Nat/Factorization/PrimePow.lean
theorem isPrimePow_iff_factorization_eq_single {n : ℕ} : IsPrimePow n ↔ ∃ p k : ℕ, 0 < k ∧ n.factorization = Finsupp.single p k
n : ℕ ⊢ IsPrimePow n ↔ ∃ p k, 0 < k ∧ n.factorization = Finsupp.single p k
rw [isPrimePow_nat_iff]
n : ℕ ⊢ (∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n) ↔ ∃ p k, 0 < k ∧ n.factorization = Finsupp.single p k
f949a688297a79db
Algebra.FormallyUnramified.iff_exists_tensorProduct
Mathlib/RingTheory/Unramified/Finite.lean
theorem iff_exists_tensorProduct [EssFiniteType R S] : FormallyUnramified R S ↔ ∃ t : S ⊗[R] S, (∀ s, ((1 : S) ⊗ₜ[R] s - s ⊗ₜ[R] (1 : S)) * t = 0) ∧ TensorProduct.lmul' R t = 1
R : Type u_2 S : Type u_3 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S inst✝ : EssFiniteType R S ⊢ (∃ e, IsIdempotentElem e ∧ KaehlerDifferential.ideal R S = Submodule.span (S ⊗[R] S) {e}) ↔ ∃ t, (∀ (s : S), (1 ⊗ₜ[R] s - s ⊗ₜ[R] 1) * t = 0) ∧ (TensorProduct.lmul' R) t = 1
have : ∀ t : S ⊗[R] S, TensorProduct.lmul' R t = 1 ↔ 1 - t ∈ KaehlerDifferential.ideal R S := by intro t simp only [KaehlerDifferential.ideal, RingHom.mem_ker, map_sub, map_one, sub_eq_zero, @eq_comm S 1]
R : Type u_2 S : Type u_3 inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S inst✝ : EssFiniteType R S this : ∀ (t : S ⊗[R] S), (TensorProduct.lmul' R) t = 1 ↔ 1 - t ∈ KaehlerDifferential.ideal R S ⊢ (∃ e, IsIdempotentElem e ∧ KaehlerDifferential.ideal R S = Submodule.span (S ⊗[R] S) {e}) ↔ ∃ t, (∀ (s : S), (1 ⊗ₜ[R] s - s ⊗ₜ[R] 1) * t = 0) ∧ (TensorProduct.lmul' R) t = 1
242718edd9112c3c
Set.Countable.image
Mathlib/Data/Set/Countable.lean
theorem Countable.image {s : Set α} (hs : s.Countable) (f : α → β) : (f '' s).Countable
α : Type u β : Type v s : Set α hs : s.Countable f : α → β this : Countable ↑s ⊢ (range fun x => f ↑x).Countable
apply countable_range
no goals
f0d955afdd57dc60
IsMulFreimanHom.prod
Mathlib/Combinatorics/Additive/FreimanHom.lean
@[to_additive] lemma IsMulFreimanHom.prod (h₁ : IsMulFreimanHom n A₁ B₁ f₁) (h₂ : IsMulFreimanHom n A₂ B₂ f₂) : IsMulFreimanHom n (A₁ ×ˢ A₂) (B₁ ×ˢ B₂) (Prod.map f₁ f₂) where mapsTo := h₁.mapsTo.prodMap h₂.mapsTo map_prod_eq_map_prod s t hsA htA hs ht h
α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 inst✝³ : CommMonoid α₁ inst✝² : CommMonoid α₂ inst✝¹ : CommMonoid β₁ inst✝ : CommMonoid β₂ A₁ : Set α₁ A₂ : Set α₂ B₁ : Set β₁ B₂ : Set β₂ f₁ : α₁ → β₁ f₂ : α₂ → β₂ n : ℕ h₁ : IsMulFreimanHom n A₁ B₁ f₁ h₂ : IsMulFreimanHom n A₂ B₂ f₂ s t : Multiset (α₁ × α₂) hs : s.card = n ht : t.card = n hsA : (∀ (a : α₁) (b : α₂), (a, b) ∈ s → a ∈ A₁) ∧ ∀ (a : α₁) (b : α₂), (a, b) ∈ s → b ∈ A₂ htA : (∀ (a : α₁) (b : α₂), (a, b) ∈ t → a ∈ A₁) ∧ ∀ (a : α₁) (b : α₂), (a, b) ∈ t → b ∈ A₂ h : (map Prod.fst s).prod = (map Prod.fst t).prod ∧ (map Prod.snd s).prod = (map Prod.snd t).prod ⊢ ∀ ⦃x : α₂⦄, x ∈ map Prod.snd t → x ∈ A₂
simpa [@forall_swap α₁] using htA.2
no goals
33dda5fafc4888d5
WeierstrassCurve.variableChange_id
Mathlib/AlgebraicGeometry/EllipticCurve/VariableChange.lean
lemma variableChange_id : W.variableChange VariableChange.id = W
R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) } = W
ext <;> (dsimp only; ring1)
no goals
be30df7f818a1ddd
AlgebraicTopology.DoldKan.HigherFacesVanish.induction
Mathlib/AlgebraicTopology/DoldKan/Faces.lean
theorem induction {Y : C} {n q : ℕ} {φ : Y ⟶ X _⦋n + 1⦌} (v : HigherFacesVanish q φ) : HigherFacesVanish (q + 1) (φ ≫ (𝟙 _ + Hσ q).f (n + 1))
case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X _⦋m + 1 + 1⦌ v : HigherFacesVanish q φ j : Fin (m + 1 + 1) hj₁ : m + 1 + 1 ≤ ↑j + (q + 1) hqn : ¬m + 1 < q ha : q + a = m + 1 hj₂ : ¬a = ↑j haj : a < ↑j ham : a ≤ m ⊢ φ ≫ X.δ j.succ = φ ≫ X.δ ⟨a + 1, ⋯⟩ ≫ X.σ ⟨a, ⋯⟩ ≫ X.δ j.succ
rw [X.δ_comp_σ_of_gt', j.pred_succ]
case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X _⦋m + 1 + 1⦌ v : HigherFacesVanish q φ j : Fin (m + 1 + 1) hj₁ : m + 1 + 1 ≤ ↑j + (q + 1) hqn : ¬m + 1 < q ha : q + a = m + 1 hj₂ : ¬a = ↑j haj : a < ↑j ham : a ≤ m ⊢ φ ≫ X.δ j.succ = φ ≫ X.δ ⟨a + 1, ⋯⟩ ≫ X.δ j ≫ X.σ (⟨a, ⋯⟩.castLT ⋯) case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X _⦋m + 1 + 1⦌ v : HigherFacesVanish q φ j : Fin (m + 1 + 1) hj₁ : m + 1 + 1 ≤ ↑j + (q + 1) hqn : ¬m + 1 < q ha : q + a = m + 1 hj₂ : ¬a = ↑j haj : a < ↑j ham : a ≤ m ⊢ ⟨a, ⋯⟩.succ < j.succ case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X _⦋m + 1 + 1⦌ v : HigherFacesVanish q φ j : Fin (m + 1 + 1) hj₁ : m + 1 + 1 ≤ ↑j + (q + 1) hqn : ¬m + 1 < q ha : q + a = m + 1 hj₂ : ¬a = ↑j haj : a < ↑j ham : a ≤ m ⊢ ⟨a, ⋯⟩.succ < j.succ
69ef2d77296be0d2
minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow
Mathlib/FieldTheory/SeparableDegree.lean
theorem natSepDegree_eq_one_iff_eq_X_sub_C_pow : (minpoly F x).natSepDegree = 1 ↔ ∃ n : ℕ, (minpoly F x).map (algebraMap F E) = (X - C x) ^ q ^ n
case refine_1.intro.intro F : Type u E : Type v inst✝³ : Field F inst✝² : Ring E inst✝¹ : IsDomain E inst✝ : Algebra F E q : ℕ hF : ExpChar F q x : E this✝ : ExpChar E q this : ExpChar E[X] q h✝ : (minpoly F x).natSepDegree = 1 n : ℕ y : F h : minpoly F x = X ^ q ^ n - C y ⊢ ∃ n, Polynomial.map (algebraMap F E) (minpoly F x) = (X - C x) ^ q ^ n
have hx := congr_arg (Polynomial.aeval x) h.symm
case refine_1.intro.intro F : Type u E : Type v inst✝³ : Field F inst✝² : Ring E inst✝¹ : IsDomain E inst✝ : Algebra F E q : ℕ hF : ExpChar F q x : E this✝ : ExpChar E q this : ExpChar E[X] q h✝ : (minpoly F x).natSepDegree = 1 n : ℕ y : F h : minpoly F x = X ^ q ^ n - C y hx : (Polynomial.aeval x) (X ^ q ^ n - C y) = (Polynomial.aeval x) (minpoly F x) ⊢ ∃ n, Polynomial.map (algebraMap F E) (minpoly F x) = (X - C x) ^ q ^ n
731ae2c59cbb171a
Module.exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card
Mathlib/LinearAlgebra/Dimension/Finite.lean
theorem Module.exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card {t : Finset M} (h : finrank R M + 1 < t.card) : ∃ f : M → R, ∑ e ∈ t, f e • e = 0 ∧ ∑ e ∈ t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0
R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Finite R M inst✝ : StrongRankCondition R t : Finset M h : finrank R M + 1 < #t x₀ : M x₀_mem : x₀ ∈ t shift : M ↪ M := { toFun := fun x => x - x₀, inj' := ⋯ } t' : Finset M := Finset.map shift (t.erase x₀) h' : finrank R M < #t' g : M → R gsum : ∑ e ∈ t', g e • e = 0 f : M → R := fun z => if z = x₀ then -∑ z ∈ t.erase x₀, g (z - x₀) else g (z - x₀) x₁ : M x₁_mem' : x₁ ∈ t.erase x₀ x₁_mem : shift x₁ ∈ t' nz : g (shift x₁) ≠ 0 this : x₁ ≠ x₀ ∧ x₁ ∈ t ⊢ x₁ ∈ t ∧ f x₁ ≠ 0
simpa only [f, Embedding.coeFn_mk, sub_add_cancel, this.2, true_and, if_neg this.1]
no goals
9ccb45a24efab47f
Submonoid.LocalizationWithZeroMap.leftCancelMulZero_of_le_isLeftRegular
Mathlib/GroupTheory/MonoidLocalization/MonoidWithZero.lean
theorem leftCancelMulZero_of_le_isLeftRegular (f : LocalizationWithZeroMap S N) [IsLeftCancelMulZero M] (h : ∀ ⦃x⦄, x ∈ S → IsLeftRegular x) : IsLeftCancelMulZero N
M : Type u_1 inst✝² : CommMonoidWithZero M S : Submonoid M N : Type u_2 inst✝¹ : CommMonoidWithZero N f : S.LocalizationWithZeroMap N inst✝ : IsLeftCancelMulZero M h : ∀ ⦃x : M⦄, x ∈ S → IsLeftRegular x fl : S.LocalizationMap N := f.toLocalizationMap g : M →* N := f.toMap a z w : N ha : a ≠ 0 hazw : a * z = a * w b : M × ↥S hb : a * fl.toMap ↑b.2 = fl.toMap b.1 x : M × ↥S hx : z * fl.toMap ↑x.2 = fl.toMap x.1 y : M × ↥S hy : w * fl.toMap ↑y.2 = fl.toMap y.1 b1ne0 : b.1 ≠ 0 ⊢ a * g ↑b.2 * (g ↑x.2 * (w * g ↑y.2)) = a * w * g ↑b.2 * (g ↑x.2 * g ↑y.2)
rw [← mul_assoc, ← mul_assoc _ w, mul_comm _ w, mul_assoc w, mul_assoc, ← mul_assoc w, ← mul_assoc w, mul_comm w]
no goals
395e8d90995bfe86
Ring.DirectLimit.lift_unique
Mathlib/Algebra/Colimit/Ring.lean
theorem lift_unique (F : DirectLimit G f →+* P) (x) : F x = lift G f P (fun i ↦ F.comp <| of G f i) (fun i j hij x ↦ by simp) x
ι : Type u_1 inst✝² : Preorder ι G : ι → Type u_2 inst✝¹ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j P : Type u_3 inst✝ : CommRing P F : DirectLimit G f →+* P x : FreeCommRing ((i : ι) × G i) ⊢ ∀ (x y : FreeCommRing ((i : ι) × G i)), F ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) x) = (lift G f P (fun i => F.comp (of G f i)) ⋯) ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) x) → F ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) y) = (lift G f P (fun i => F.comp (of G f i)) ⋯) ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) y) → F ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) (x * y)) = (lift G f P (fun i => F.comp (of G f i)) ⋯) ((Ideal.Quotient.mk (Ideal.span {a | (∃ i j, ∃ (H : i ≤ j), ∃ x, FreeCommRing.of ⟨j, f i j H x⟩ - FreeCommRing.of ⟨i, x⟩ = a) ∨ (∃ i, FreeCommRing.of ⟨i, 1⟩ - 1 = a) ∨ (∃ i x y, FreeCommRing.of ⟨i, x + y⟩ - (FreeCommRing.of ⟨i, x⟩ + FreeCommRing.of ⟨i, y⟩) = a) ∨ ∃ i x y, FreeCommRing.of ⟨i, x * y⟩ - FreeCommRing.of ⟨i, x⟩ * FreeCommRing.of ⟨i, y⟩ = a})) (x * y))
simp+contextual
no goals
051b292ba4e666cf
Mon_.mul_braiding
Mathlib/CategoryTheory/Monoidal/Mon_.lean
theorem mul_braiding {X Y : Mon_ C} : (X ⊗ Y).mul ≫ (β_ X.X Y.X).hom = ((β_ X.X Y.X).hom ⊗ (β_ X.X Y.X).hom) ≫ (Y ⊗ X).mul
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : SymmetricCategory C X Y : Mon_ C ⊢ (β_ X.X Y.X).hom ▷ (X.X ⊗ Y.X) ≫ ((((((Y.X ⊗ X.X) ◁ (β_ X.X Y.X).hom ≫ (α_ Y.X X.X (Y.X ⊗ X.X)).hom) ≫ Y.X ◁ (α_ X.X Y.X X.X).inv) ≫ Y.X ◁ (β_ X.X Y.X).hom ▷ X.X) ≫ Y.X ◁ (α_ Y.X X.X X.X).hom) ≫ (α_ Y.X Y.X (X.X ⊗ X.X)).inv) ≫ (Y.mul ⊗ X.mul) = ((β_ X.X Y.X).hom ⊗ (β_ X.X Y.X).hom) ≫ (α_ Y.X X.X (Y.X ⊗ X.X)).hom ≫ Y.X ◁ (α_ X.X Y.X X.X).inv ≫ Y.X ◁ (β_ X.X Y.X).hom ▷ X.X ≫ Y.X ◁ (α_ Y.X X.X X.X).hom ≫ (α_ Y.X Y.X (X.X ⊗ X.X)).inv ≫ (Y.mul ⊗ X.mul)
slice_lhs 1 2 => rw [← tensorHom_def]
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : SymmetricCategory C X Y : Mon_ C ⊢ (((((((β_ X.X Y.X).hom ⊗ (β_ X.X Y.X).hom) ≫ (α_ Y.X X.X (Y.X ⊗ X.X)).hom) ≫ Y.X ◁ (α_ X.X Y.X X.X).inv) ≫ Y.X ◁ (β_ X.X Y.X).hom ▷ X.X) ≫ Y.X ◁ (α_ Y.X X.X X.X).hom) ≫ (α_ Y.X Y.X (X.X ⊗ X.X)).inv) ≫ (Y.mul ⊗ X.mul) = ((β_ X.X Y.X).hom ⊗ (β_ X.X Y.X).hom) ≫ (α_ Y.X X.X (Y.X ⊗ X.X)).hom ≫ Y.X ◁ (α_ X.X Y.X X.X).inv ≫ Y.X ◁ (β_ X.X Y.X).hom ▷ X.X ≫ Y.X ◁ (α_ Y.X X.X X.X).hom ≫ (α_ Y.X Y.X (X.X ⊗ X.X)).inv ≫ (Y.mul ⊗ X.mul)
6be9ea682fb53a86
pairwise_coprime_iff_coprime_prod
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem pairwise_coprime_iff_coprime_prod [DecidableEq I] : Pairwise (IsCoprime on fun i : t ↦ s i) ↔ ∀ i ∈ t, IsCoprime (s i) (∏ j ∈ t \ {i}, s j)
case refine_1 R : Type u I : Type v inst✝¹ : CommSemiring R s : I → R t : Finset I inst✝ : DecidableEq I hp : Pairwise (IsCoprime on fun i => s ↑i) i : I hi : i ∈ t j : I hj : j ∈ t ∧ ¬j = i ⊢ IsCoprime (s i) (s j)
obtain ⟨hj, ji⟩ := hj
case refine_1.intro R : Type u I : Type v inst✝¹ : CommSemiring R s : I → R t : Finset I inst✝ : DecidableEq I hp : Pairwise (IsCoprime on fun i => s ↑i) i : I hi : i ∈ t j : I hj : j ∈ t ji : ¬j = i ⊢ IsCoprime (s i) (s j)
d6dd92ae2640356e
WeierstrassCurve.Jacobian.Y_ne_negY_of_Y_ne
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma Y_ne_negY_of_Y_ne [NoZeroDivisors R] {P Q : Fin 3 → R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P x * Q z ^ 2 = Q x * P z ^ 2) (hy : P y * Q z ^ 3 ≠ Q y * P z ^ 3) : P y ≠ W'.negY P
R : Type r inst✝¹ : CommRing R W' : Jacobian R inst✝ : NoZeroDivisors R P Q : Fin 3 → R hP : W'.Equation P hQ : W'.Equation Q hx : P x * Q z ^ 2 = Q x * P z ^ 2 hy : P y * Q z ^ 3 ≠ Q y * P z ^ 3 ⊢ P y ≠ W'.negY P
have hy' : P y * Q z ^ 3 - W'.negY Q * P z ^ 3 = 0 := (mul_eq_zero.mp <| Y_sub_Y_mul_Y_sub_negY hP hQ hx).resolve_left <| sub_ne_zero_of_ne hy
R : Type r inst✝¹ : CommRing R W' : Jacobian R inst✝ : NoZeroDivisors R P Q : Fin 3 → R hP : W'.Equation P hQ : W'.Equation Q hx : P x * Q z ^ 2 = Q x * P z ^ 2 hy : P y * Q z ^ 3 ≠ Q y * P z ^ 3 hy' : P y * Q z ^ 3 - W'.negY Q * P z ^ 3 = 0 ⊢ P y ≠ W'.negY P
1dce46f4b895ab5b
linearIndependent_iff_card_eq_finrank_span
Mathlib/LinearAlgebra/Dimension/DivisionRing.lean
theorem linearIndependent_iff_card_eq_finrank_span {ι : Type*} [Fintype ι] {b : ι → V} : LinearIndependent K b ↔ Fintype.card ι = (Set.range b).finrank K
case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_2 inst✝ : Fintype ι b : ι → V h : LinearIndependent K b ⊢ Fintype.card ι = Set.finrank K (range b)
exact (finrank_span_eq_card h).symm
no goals
911125b85a6b1f1b
RCLike.nnnorm_natCast
Mathlib/Analysis/RCLike/Basic.lean
@[simp, rclike_simps, norm_cast] lemma nnnorm_natCast (n : ℕ) : ‖(n : K)‖₊ = n
K : Type u_1 inst✝ : RCLike K n : ℕ ⊢ ‖↑n‖₊ = ↑n
simp [nnnorm]
no goals
20b378915ca882c2
PFun.mem_fix_iff
Mathlib/Data/PFun.lean
theorem mem_fix_iff {f : α →. β ⊕ α} {a : α} {b : β} : b ∈ f.fix a ↔ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ f.fix a' := ⟨fun h => by let ⟨h₁, h₂⟩ := Part.mem_assert_iff.1 h rw [WellFounded.fixFEq] at h₂ simp only [Part.mem_assert_iff] at h₂ obtain ⟨h₂, h₃⟩ := h₂ split at h₃ next e => simp only [Part.mem_some_iff] at h₃; subst b; exact Or.inl ⟨h₂, e⟩ next e => exact Or.inr ⟨_, ⟨_, e⟩, Part.mem_assert _ h₃⟩, fun h => by simp only [fix, Part.mem_assert_iff] rcases h with (⟨h₁, h₂⟩ | ⟨a', h, h₃⟩) · refine ⟨⟨_, fun y h' => ?_⟩, ?_⟩ · injection Part.mem_unique ⟨h₁, h₂⟩ h' · rw [WellFounded.fixFEq] -- Porting note: used to be simp [h₁, h₂] apply Part.mem_assert h₁ split next e => injection h₂.symm.trans e with h; simp [h] next e => injection h₂.symm.trans e · simp only [fix, Part.mem_assert_iff] at h₃ obtain ⟨h₃, h₄⟩ := h₃ refine ⟨⟨_, fun y h' => ?_⟩, ?_⟩ · injection Part.mem_unique h h' with e exact e ▸ h₃ · obtain ⟨h₁, h₂⟩ := h rw [WellFounded.fixFEq] -- Porting note: used to be simp [h₁, h₂, h₄] apply Part.mem_assert h₁ split next e => injection h₂.symm.trans e next e => injection h₂.symm.trans e; subst a'; exact h₄⟩
case inl.intro.refine_2 α : Type u_1 β : Type u_2 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : (f a).get h₁ = Sum.inl b ⊢ b ∈ match e : (f a).get h₁ with | Sum.inl b => Part.some b | Sum.inr a' => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : (f a).get hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' ⋯) y ⋯) a' ⋯
split
case inl.intro.refine_2.h_1 α : Type u_1 β : Type u_2 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : (f a).get h₁ = Sum.inl b b✝ : β heq✝ : (f a).get h₁ = Sum.inl b✝ ⊢ b ∈ Part.some b✝ case inl.intro.refine_2.h_2 α : Type u_1 β : Type u_2 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : (f a).get h₁ = Sum.inl b a'✝ : α heq✝ : (f a).get h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : (f a).get hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' ⋯) y ⋯) a'✝ ⋯
b0fcdf86c1a0e2fe
List.mem_permutationsAux_of_perm
Mathlib/Data/List/Permutation.lean
theorem mem_permutationsAux_of_perm : ∀ {ts is l : List α}, l ~ is ++ ts → (∃ (is' : _) (_ : is' ~ is), l = is' ++ ts) ∨ l ∈ permutationsAux ts is
case inr α : Type u_1 t : α ts is : List α IH1 : ∀ (l : List α), l ~ t :: is ++ ts → (∃ is', ∃ (_ : is' ~ t :: is), l = is' ++ ts) ∨ l ∈ ts.permutationsAux (t :: is) IH2 : ∀ (l : List α), l ~ [] ++ is → (∃ is', ∃ (_ : is' ~ []), l = is' ++ is) ∨ l ∈ is.permutationsAux [] l : List α p : l ~ is ++ t :: ts m : l ∈ ts.permutationsAux (t :: is) ⊢ (∃ is', ∃ (_ : is' ~ is), l = is' ++ t :: ts) ∨ l ∈ ts.permutationsAux (t :: is) ∨ ∃ l₁ l₂, l₁ ++ l₂ ∈ is.permutations ∧ l₂ ≠ [] ∧ l = l₁ ++ t :: l₂ ++ ts
exact Or.inr (Or.inl m)
no goals
c51a06076c0dbbc1
Pell.xz_sub
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem xz_sub {m n} (h : n ≤ m) : xz a1 (m - n) = xz a1 m * xz a1 n - d a1 * yz a1 m * yz a1 n
a : ℕ a1 : 1 < a m n : ℕ h : n ≤ m ⊢ xz a1 (m - n) = xz a1 m * xz a1 n - ↑(Pell.d a1) * yz a1 m * yz a1 n
rw [sub_eq_add_neg, ← mul_neg]
a : ℕ a1 : 1 < a m n : ℕ h : n ≤ m ⊢ xz a1 (m - n) = xz a1 m * xz a1 n + ↑(Pell.d a1) * yz a1 m * -yz a1 n
8c1df321155b9108
OmegaCompletePartialOrder.ωSup_eq_of_isLUB
Mathlib/Order/OmegaCompletePartialOrder.lean
lemma ωSup_eq_of_isLUB {c : Chain α} {a : α} (h : IsLUB (Set.range c) a) : a = ωSup c
case right α : Type u_2 inst✝ : OmegaCompletePartialOrder α c : Chain α a : α h : (∀ (a_1 : ℕ), c a_1 ≤ a) ∧ ∀ ⦃a_1 : α⦄, (∀ (a : ℕ), c a ≤ a_1) → a ≤ a_1 ⊢ ∀ (i : ℕ), c i ≤ a
apply h.1
no goals
05205937dddfa3ff
Finset.offDiag_card
Mathlib/Data/Finset/Prod.lean
theorem offDiag_card : (offDiag s).card = s.card * s.card - s.card := suffices (diag s).card + (offDiag s).card = s.card * s.card by rw [s.diag_card] at this; omega by rw [← card_product, diag, offDiag] conv_rhs => rw [← filter_card_add_filter_neg_card_eq_card (fun a => a.1 = a.2)]
α : Type u_1 inst✝ : DecidableEq α s : Finset α ⊢ #(filter (fun a => a.1 = a.2) (s ×ˢ s)) + #(filter (fun a => a.1 ≠ a.2) (s ×ˢ s)) = #(s ×ˢ s)
conv_rhs => rw [← filter_card_add_filter_neg_card_eq_card (fun a => a.1 = a.2)]
no goals
953ae524eef68703
WithCStarModule.prod_norm_le_norm_add
Mathlib/Analysis/CStarAlgebra/Module/Constructions.lean
lemma prod_norm_le_norm_add (x : C⋆ᵐᵒᵈ (E × F)) : ‖x‖ ≤ ‖x.1‖ + ‖x.2‖
A : Type u_1 inst✝⁹ : NonUnitalCStarAlgebra A inst✝⁸ : PartialOrder A E : Type u_2 F : Type u_3 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : Module ℂ E inst✝⁵ : SMul Aᵐᵒᵖ E inst✝⁴ : NormedAddCommGroup F inst✝³ : Module ℂ F inst✝² : SMul Aᵐᵒᵖ F inst✝¹ : CStarModule A E inst✝ : CStarModule A F x : C⋆ᵐᵒᵈ (E × F) ⊢ ‖⟪x.1, x.1⟫_A‖ + ‖⟪x.2, x.2⟫_A‖ = ‖x.1‖ ^ 2 + 0 + ‖x.2‖ ^ 2
simp [norm_sq_eq]
no goals
530d4c0602d88bbf
Real.rpow_sub_intCast
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
lemma rpow_sub_intCast {x : ℝ} (hx : x ≠ 0) (y : ℝ) (n : ℕ) : x ^ (y - n) = x ^ y / x ^ n
x : ℝ hx : x ≠ 0 y : ℝ n : ℕ ⊢ x ^ (y - ↑n) = x ^ y / x ^ n
simpa using rpow_add_intCast hx y (-n)
no goals
d0fad410096f2fd8
Equiv.symm_trans_swap_trans
Mathlib/Logic/Equiv/Basic.lean
theorem symm_trans_swap_trans [DecidableEq β] (a b : α) (e : α ≃ β) : (e.symm.trans (swap a b)).trans e = swap (e a) (e b) := Equiv.ext fun x => by have : ∀ a, e.symm x = a ↔ x = e a := fun a => by rw [@eq_comm _ (e.symm x)] constructor <;> intros <;> simp_all simp only [trans_apply, swap_apply_def, this] split_ifs <;> simp
α : Sort u_1 β : Sort u_4 inst✝¹ : DecidableEq α inst✝ : DecidableEq β a b : α e : α ≃ β x : β ⊢ ((e.symm.trans (swap a b)).trans e) x = (swap (e a) (e b)) x
have : ∀ a, e.symm x = a ↔ x = e a := fun a => by rw [@eq_comm _ (e.symm x)] constructor <;> intros <;> simp_all
α : Sort u_1 β : Sort u_4 inst✝¹ : DecidableEq α inst✝ : DecidableEq β a b : α e : α ≃ β x : β this : ∀ (a : α), e.symm x = a ↔ x = e a ⊢ ((e.symm.trans (swap a b)).trans e) x = (swap (e a) (e b)) x
48f02afc5d1f6bd8
AlternatingMap.domCoprod.summand_eq_zero_of_smul_invariant
Mathlib/LinearAlgebra/Alternating/DomCoprod.lean
theorem domCoprod.summand_eq_zero_of_smul_invariant (a : Mᵢ [⋀^ιa]→ₗ[R'] N₁) (b : Mᵢ [⋀^ιb]→ₗ[R'] N₂) (σ : Perm.ModSumCongr ιa ιb) {v : ιa ⊕ ιb → Mᵢ} {i j : ιa ⊕ ιb} (hv : v i = v j) (hij : i ≠ j) : swap i j • σ = σ → domCoprod.summand a b σ v = 0
case h.e'_2.h.e'_10 ιa : Type u_1 ιb : Type u_2 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_3 Mᵢ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : Mᵢ [⋀^ιa]→ₗ[R'] N₁ b : Mᵢ [⋀^ιb]→ₗ[R'] N₂ σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιb hv : v (σ (Sum.inr i')) = v (σ (Sum.inr j')) hij : σ (Sum.inr i') ≠ σ (Sum.inr j') hσ✝ : swap (σ (Sum.inr i')) (σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑b fun i => v (σ (Sum.inr i))) = 0
exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl)
no goals
3328e6875d9d0122
Metric.subsingleton_closedBall
Mathlib/Topology/MetricSpace/Defs.lean
theorem subsingleton_closedBall (x : γ) {r : ℝ} (hr : r ≤ 0) : (closedBall x r).Subsingleton
case inr γ : Type w inst✝ : MetricSpace γ x : γ hr : 0 ≤ 0 ⊢ {x}.Subsingleton
exact subsingleton_singleton
no goals
c66d4373aa3b40df
Vector.mem_set
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem mem_set (v : Vector α n) (i : Nat) (hi : i < n) (a : α) : a ∈ v.set i a hi
α : Type u_1 n : Nat v : Vector α n i : Nat hi : i < n a : α ⊢ ∃ i_1 h, (v.set i a hi)[i_1] = a
exact ⟨i, (by simpa using hi), by simp⟩
no goals
78ca1d27ff802219
FractionalIdeal.mem_zero_iff
Mathlib/RingTheory/FractionalIdeal/Basic.lean
theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P x : P x✝ : x ∈ 0 x' : R x'_mem_zero : x' ∈ ↑0 x'_eq_x : (Algebra.linearMap R P) x' = x x'_eq_zero : x' = 0 ⊢ x = 0
simp [x'_eq_x.symm, x'_eq_zero]
no goals
0682cefbc56573ad
List.dropInfix?_go_eq_some_iff
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem dropInfix?_go_eq_some_iff [BEq α] {i l acc p s : List α} : dropInfix?.go i l acc = some (p, s) ↔ ∃ p', p = acc.reverse ++ p' ∧ -- `i` is an infix up to `==` (∃ i', l = p' ++ i' ++ s ∧ i' == i) ∧ -- and there is no shorter prefix for which that is the case (∀ p'' i'' s'', l = p'' ++ i'' ++ s'' → i'' == i → p''.length ≥ p'.length)
case h_2.h_1.mpr.intro.intro.intro.intro.intro.inr.intro.intro.inl.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) a' : List α h : (a :: (a' ++ s)).dropPrefix? i = none w : ∀ (p'' i'' s'' : List α), a :: (a' ++ s) = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ [].length h₂ : (a :: a' == i) = true ⊢ ∃ p', acc.reverse ++ [] = (a :: acc).reverse ++ p' ∧ (∃ i', a' ++ s = p' ++ i' ++ s ∧ (i' == i) = true) ∧ ∀ (p'' i'' s'' : List α), a' ++ s = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ p'.length
rw [← cons_append] at h
case h_2.h_1.mpr.intro.intro.intro.intro.intro.inr.intro.intro.inl.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) a' : List α h : (a :: a' ++ s).dropPrefix? i = none w : ∀ (p'' i'' s'' : List α), a :: (a' ++ s) = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ [].length h₂ : (a :: a' == i) = true ⊢ ∃ p', acc.reverse ++ [] = (a :: acc).reverse ++ p' ∧ (∃ i', a' ++ s = p' ++ i' ++ s ∧ (i' == i) = true) ∧ ∀ (p'' i'' s'' : List α), a' ++ s = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ p'.length
2a30116d5cc9db54
OrthogonalFamily.range_linearIsometry
Mathlib/Analysis/InnerProductSpace/l2Space.lean
theorem range_linearIsometry [∀ i, CompleteSpace (G i)] : LinearMap.range hV.linearIsometry.toLinearMap = (⨆ i, LinearMap.range (V i).toLinearMap).topologicalClosure
ι : Type u_1 𝕜 : Type u_2 inst✝⁶ : RCLike 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E G : ι → Type u_4 inst✝³ : (i : ι) → NormedAddCommGroup (G i) inst✝² : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝¹ : CompleteSpace E V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ LinearMap.range hV.linearIsometry.toLinearMap = (⨆ i, LinearMap.range (V i).toLinearMap).topologicalClosure
refine le_antisymm ?_ ?_
case refine_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁶ : RCLike 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E G : ι → Type u_4 inst✝³ : (i : ι) → NormedAddCommGroup (G i) inst✝² : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝¹ : CompleteSpace E V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ LinearMap.range hV.linearIsometry.toLinearMap ≤ (⨆ i, LinearMap.range (V i).toLinearMap).topologicalClosure case refine_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁶ : RCLike 𝕜 E : Type u_3 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E G : ι → Type u_4 inst✝³ : (i : ι) → NormedAddCommGroup (G i) inst✝² : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝¹ : CompleteSpace E V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ (⨆ i, LinearMap.range (V i).toLinearMap).topologicalClosure ≤ LinearMap.range hV.linearIsometry.toLinearMap
e67b0f768537d5e1
MeasureTheory.Measure.MeasureDense.of_generateFrom_isSetAlgebra_finite
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.of_generateFrom_isSetAlgebra_finite [IsFiniteMeasure μ] (h𝒜 : IsSetAlgebra 𝒜) (hgen : m = MeasurableSpace.generateFrom 𝒜) : μ.MeasureDense 𝒜 where measurable s hs := hgen ▸ measurableSet_generateFrom hs approx s ms
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) inst✝ : IsFiniteMeasure μ h𝒜 : IsSetAlgebra 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s x✝ : Set X f : ℕ → Set X hs✝ : ∀ (n : ℕ), MeasurableSet (f n) hf : ∀ (n : ℕ), MeasurableSet (f n) ∧ ∀ (ε : ℝ), 0 < ε → ∃ t ∈ 𝒜, (μ (f n ∆ t)).toReal < ε ε : ℝ ε_pos : 0 < ε this : Filter.Tendsto (fun n => (μ (Accumulate f n)).toReal) Filter.atTop (nhds (μ (⋃ i, f i)).toReal) N : ℕ hN : ∀ n ≥ N, dist (μ (Accumulate f n)).toReal (μ (⋃ i, f i)).toReal < ε / 2 g : ℕ → Set X g_mem : ∀ (n : ℕ), g n ∈ 𝒜 hg : ∀ (n : ℕ), (μ (f n ∆ g n)).toReal < ε / (2 * (↑N + 1)) ⊢ ∑ n ∈ Finset.range (N + 1), ε / (2 * (↑N + 1)) ≤ ε / 2
simp only [Finset.sum_const, Finset.card_range, nsmul_eq_mul, Nat.cast_add, Nat.cast_one]
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) inst✝ : IsFiniteMeasure μ h𝒜 : IsSetAlgebra 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s x✝ : Set X f : ℕ → Set X hs✝ : ∀ (n : ℕ), MeasurableSet (f n) hf : ∀ (n : ℕ), MeasurableSet (f n) ∧ ∀ (ε : ℝ), 0 < ε → ∃ t ∈ 𝒜, (μ (f n ∆ t)).toReal < ε ε : ℝ ε_pos : 0 < ε this : Filter.Tendsto (fun n => (μ (Accumulate f n)).toReal) Filter.atTop (nhds (μ (⋃ i, f i)).toReal) N : ℕ hN : ∀ n ≥ N, dist (μ (Accumulate f n)).toReal (μ (⋃ i, f i)).toReal < ε / 2 g : ℕ → Set X g_mem : ∀ (n : ℕ), g n ∈ 𝒜 hg : ∀ (n : ℕ), (μ (f n ∆ g n)).toReal < ε / (2 * (↑N + 1)) ⊢ (↑N + 1) * (ε / (2 * (↑N + 1))) ≤ ε / 2
92d6fe7992cc346b