name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
CategoryTheory.Quotient.lift_spec
Mathlib/CategoryTheory/Quotient.lean
theorem lift_spec : functor r ⋙ lift r F H = F
case h_map C : Type u_1 inst✝¹ : Category.{u_2, u_1} C r : HomRel C D : Type u_3 inst✝ : Category.{u_4, u_3} D F : C ⥤ D H : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂ ⊢ autoParam (∀ (X Y : C) (f : X ⟶ Y), (functor r ⋙ lift r F H).map f = eqToHom ⋯ ≫ F.map f ≫ eqToHom ⋯) _auto✝
rintro X Y f
case h_map C : Type u_1 inst✝¹ : Category.{u_2, u_1} C r : HomRel C D : Type u_3 inst✝ : Category.{u_4, u_3} D F : C ⥤ D H : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂ X Y : C f : X ⟶ Y ⊢ (functor r ⋙ lift r F H).map f = eqToHom ⋯ ≫ F.map f ≫ eqToHom ⋯
9549d608fcca58b6
SymOptionSuccEquiv.encode_decode
Mathlib/Data/Sym/Basic.lean
theorem encode_decode [DecidableEq α] (s : Sym (Option α) n ⊕ Sym α n.succ) : encode (decode s) = s
case inl α : Type u_1 n : ℕ inst✝ : DecidableEq α s : Sym (Option α) n ⊢ encode (decode (Sum.inl s)) = Sum.inl s
simp
no goals
35ba1e8a60769782
ContinuousMap.compactOpen_eq_generateFrom
Mathlib/Topology/ContinuousMap/SecondCountableSpace.lean
theorem compactOpen_eq_generateFrom {S : Set (Set X)} {T : Set (Set Y)} (hS₁ : ∀ K ∈ S, IsCompact K) (hT : IsTopologicalBasis T) (hS₂ : ∀ f : C(X, Y), ∀ x, ∀ V ∈ T, f x ∈ V → ∃ K ∈ S, K ∈ 𝓝 x ∧ MapsTo f K V) : compactOpen = .generateFrom (.image2 (fun K t ↦ {f : C(X, Y) | MapsTo f K (⋃₀ t)}) S {t : Set (Set Y) | t.Finite ∧ t ⊆ T})
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y S : Set (Set X) T : Set (Set Y) hS₁ : ∀ K ∈ S, IsCompact K hT : IsTopologicalBasis T hS₂ : ∀ (f : C(X, Y)) (x : X), ∀ V ∈ T, f x ∈ V → ∃ K ∈ S, K ∈ 𝓝 x ∧ MapsTo (⇑f) K V f : C(X, Y) K : Set X hK : IsCompact K U : Set Y hU : IsOpen U hfKU : MapsTo (⇑f) K U t : Set (Set Y) htT : t ⊆ T htf : t.Finite hTU : ∀ V ∈ t, V ⊆ U hKT : K ⊆ ⇑f ⁻¹' ⋃₀ t ⊢ ∀ x ∈ K, ∃ L ∈ S, L ∈ 𝓝 x ∧ MapsTo (⇑f) L (⋃₀ t)
intro x hx
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y S : Set (Set X) T : Set (Set Y) hS₁ : ∀ K ∈ S, IsCompact K hT : IsTopologicalBasis T hS₂ : ∀ (f : C(X, Y)) (x : X), ∀ V ∈ T, f x ∈ V → ∃ K ∈ S, K ∈ 𝓝 x ∧ MapsTo (⇑f) K V f : C(X, Y) K : Set X hK : IsCompact K U : Set Y hU : IsOpen U hfKU : MapsTo (⇑f) K U t : Set (Set Y) htT : t ⊆ T htf : t.Finite hTU : ∀ V ∈ t, V ⊆ U hKT : K ⊆ ⇑f ⁻¹' ⋃₀ t x : X hx : x ∈ K ⊢ ∃ L ∈ S, L ∈ 𝓝 x ∧ MapsTo (⇑f) L (⋃₀ t)
febdf58bf7ae25f1
map_inv_natCast_smul
Mathlib/Algebra/Module/Basic.lean
theorem map_inv_natCast_smul [AddCommMonoid M] [AddCommMonoid M₂] {F : Type*} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (R S : Type*) [DivisionSemiring R] [DivisionSemiring S] [Module R M] [Module S M₂] (n : ℕ) (x : M) : f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x
case pos M : Type u_3 M₂ : Type u_4 inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ F : Type u_5 inst✝⁵ : FunLike F M M₂ inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_6 S : Type u_7 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 hS : ↑n = 0 ⊢ f ((↑n)⁻¹ • x) = (↑n)⁻¹ • f x
suffices ∀ y, f y = 0 by simp [this]
case pos M : Type u_3 M₂ : Type u_4 inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ F : Type u_5 inst✝⁵ : FunLike F M M₂ inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_6 S : Type u_7 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 hS : ↑n = 0 ⊢ ∀ (y : M), f y = 0
acfa63a0edc35b17
IsPurelyInseparable.trans
Mathlib/FieldTheory/PurelyInseparable/Basic.lean
theorem IsPurelyInseparable.trans [Algebra E K] [IsScalarTower F E K] [h1 : IsPurelyInseparable F E] [h2 : IsPurelyInseparable E K] : IsPurelyInseparable F K
case intro.intro.intro F : Type u E : Type v inst✝⁶ : Field F inst✝⁵ : Field E inst✝⁴ : Algebra F E K : Type w inst✝³ : Field K inst✝² : Algebra F K inst✝¹ : Algebra E K inst✝ : IsScalarTower F E K q : ℕ h2✝ : ∀ (x : K), ∃ n, x ^ q ^ n ∈ (algebraMap E K).range h1 : ∀ (x : E), ∃ n, x ^ q ^ n ∈ (algebraMap F E).range h✝ : ExpChar F q this : ExpChar E q x : K n : ℕ y : E h2 : (algebraMap E K) y = x ^ q ^ n ⊢ ∃ n, x ^ q ^ n ∈ (algebraMap F K).range
obtain ⟨m, z, h1⟩ := h1 y
case intro.intro.intro.intro.intro F : Type u E : Type v inst✝⁶ : Field F inst✝⁵ : Field E inst✝⁴ : Algebra F E K : Type w inst✝³ : Field K inst✝² : Algebra F K inst✝¹ : Algebra E K inst✝ : IsScalarTower F E K q : ℕ h2✝ : ∀ (x : K), ∃ n, x ^ q ^ n ∈ (algebraMap E K).range h1✝ : ∀ (x : E), ∃ n, x ^ q ^ n ∈ (algebraMap F E).range h✝ : ExpChar F q this : ExpChar E q x : K n : ℕ y : E h2 : (algebraMap E K) y = x ^ q ^ n m : ℕ z : F h1 : (algebraMap F E) z = y ^ q ^ m ⊢ ∃ n, x ^ q ^ n ∈ (algebraMap F K).range
db24f710628c1cfb
Finset.Nonempty.norm_prod_le_sup'_norm
Mathlib/Analysis/Normed/Group/Ultra.lean
/-- Nonarchimedean norm of a product is less than or equal the norm of any term in the product. This version is phrased using `Finset.sup'` and `Finset.Nonempty` due to `Finset.sup` operating over an `OrderBot`, which `ℝ` is not. -/ @[to_additive "Nonarchimedean norm of a sum is less than or equal the norm of any term in the sum. This version is phrased using `Finset.sup'` and `Finset.Nonempty` due to `Finset.sup` operating over an `OrderBot`, which `ℝ` is not. "] lemma _root_.Finset.Nonempty.norm_prod_le_sup'_norm {s : Finset ι} (hs : s.Nonempty) (f : ι → M) : ‖∏ i ∈ s, f i‖ ≤ s.sup' hs (‖f ·‖)
case cons.refine_2 M : Type u_1 ι : Type u_2 inst✝¹ : SeminormedCommGroup M inst✝ : IsUltrametricDist M s : Finset ι f : ι → M j : ι t : Finset ι hj : j ∉ t hs✝ : t.Nonempty IH : ∃ b ∈ t, ‖∏ i ∈ t, f i‖ ≤ ‖f b‖ h : ‖f j‖ ≤ ‖∏ i ∈ t, f i‖ ⊢ ∃ a ∈ t, ‖f j * ∏ i ∈ t, f i‖ ≤ ‖f a‖
exact ⟨_, IH.choose_spec.left, (norm_mul_le_max _ _).trans <| ((max_eq_right h).le.trans IH.choose_spec.right)⟩
no goals
3c2c7b0860a7c76e
MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf
Mathlib/MeasureTheory/Function/LpSpace/Basic.lean
theorem eLpNorm'_lim_eq_lintegral_liminf {ι} [Nonempty ι] [LinearOrder ι] {f : ι → α → G} {p : ℝ} {f_lim : α → G} (h_lim : ∀ᵐ x : α ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (f_lim x))) : eLpNorm' f_lim p μ = (∫⁻ a, atTop.liminf (‖f · a‖ₑ ^ p) ∂μ) ^ (1 / p)
α : Type u_1 G : Type u_6 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup G ι : Type u_7 inst✝¹ : Nonempty ι inst✝ : LinearOrder ι f : ι → α → G p : ℝ f_lim : α → G h_lim : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (f_lim x)) ⊢ eLpNorm' f_lim p μ = (∫⁻ (a : α), liminf (fun x => ‖f x a‖ₑ ^ p) atTop ∂μ) ^ (1 / p)
suffices h_no_pow : (∫⁻ a, ‖f_lim a‖ₑ ^ p ∂μ) = ∫⁻ a, atTop.liminf fun m => ‖f m a‖ₑ ^ p ∂μ by rw [eLpNorm'_eq_lintegral_enorm, h_no_pow]
α : Type u_1 G : Type u_6 m0 : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup G ι : Type u_7 inst✝¹ : Nonempty ι inst✝ : LinearOrder ι f : ι → α → G p : ℝ f_lim : α → G h_lim : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (f_lim x)) ⊢ ∫⁻ (a : α), ‖f_lim a‖ₑ ^ p ∂μ = ∫⁻ (a : α), liminf (fun m => ‖f m a‖ₑ ^ p) atTop ∂μ
0eb42e6f44204d59
CategoryTheory.Limits.preservesPushout_symmetry
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean
/-- If `F` preserves the pushout of `f, g`, it also preserves the pushout of `g, f`. -/ lemma preservesPushout_symmetry : PreservesColimit (span g f) G where preserves {c} hc := ⟨by apply (IsColimit.precomposeHomEquiv (diagramIsoSpan.{v₂} _).symm _).toFun apply IsColimit.ofIsoColimit _ (PushoutCocone.isoMk _).symm apply PushoutCocone.isColimitOfFlip apply (isColimitMapCoconePushoutCoconeEquiv _ _).toFun · refine @isColimitOfPreserves _ _ _ _ _ _ _ _ _ ?_ ?_ -- Porting note: more TC coddling · exact PushoutCocone.flipIsColimit hc · dsimp infer_instance⟩
case ht.refine_2 C : Type u₁ inst✝² : Category.{v₁, u₁} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D G : C ⥤ D W X Y : C f : W ⟶ X g : W ⟶ Y inst✝ : PreservesColimit (span f g) G c : Cocone (span g f) hc : IsColimit c ⊢ PreservesColimit (span f g) G
infer_instance
no goals
a31b72fa98bb4cd6
Matrix.inv_mulVec_eq_vec
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
lemma inv_mulVec_eq_vec {A : Matrix n n α} [Invertible A] {u v : n → α} (hM : u = A.mulVec v) : A⁻¹.mulVec u = v
n : Type u' α : Type v inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix n n α inst✝ : Invertible A u v : n → α hM : u = A *ᵥ v ⊢ A⁻¹ *ᵥ u = v
rw [hM, Matrix.mulVec_mulVec, Matrix.inv_mul_of_invertible, Matrix.one_mulVec]
no goals
973e1e1efd7de833
CategoryTheory.Functor.isContinuous_of_coverPreserving
Mathlib/CategoryTheory/Sites/CoverPreserving.lean
/-- If `F` is cover-preserving and compatible-preserving, then `F` is a continuous functor. -/ @[stacks 00WW "This is basically this Stacks entry."] lemma Functor.isContinuous_of_coverPreserving (hF₁ : CompatiblePreserving.{w} K F) (hF₂ : CoverPreserving J K F) : Functor.IsContinuous.{w} F J K where op_comp_isSheaf_of_types G X S hS x hx
case hunique.intro.intro.intro.intro C : Type u₁ inst✝¹ : Category.{v₁, u₁} C D : Type u₂ inst✝ : Category.{v₂, u₂} D F : C ⥤ D J : GrothendieckTopology C K : GrothendieckTopology D hF₁ : CompatiblePreserving K F hF₂ : CoverPreserving J K F G : Sheaf K (Type w) X : C S : Sieve X hS : S ∈ J X x : FamilyOfElements (F.op ⋙ G.val) S.arrows hx : x.Compatible y₁ y₂ : (F.op ⋙ G.val).obj (op X) hy₁ : x.IsAmalgamation y₁ hy₂ : x.IsAmalgamation y₂ Y : D Z : C g : Z ⟶ X h : Y ⟶ F.obj Z hg : S.arrows g H : G.val.map (F.map g).op y₁ = G.val.map (F.map g).op y₂ ⊢ G.val.map h.op (G.val.map (F.map g).op y₁) = G.val.map h.op (G.val.map (F.map g).op y₂)
rw [H]
no goals
343ebb90057ceb12
Polynomial.EisensteinCriterionAux.isUnit_of_natDegree_eq_zero_of_isPrimitive
Mathlib/RingTheory/EisensteinCriterion.lean
theorem isUnit_of_natDegree_eq_zero_of_isPrimitive {p q : R[X]} -- Porting note: stated using `IsPrimitive` which is defeq to old statement. (hu : IsPrimitive (p * q)) (hpm : p.natDegree = 0) : IsUnit p
R : Type u_1 inst✝ : CommRing R p q : R[X] hu : (p * q).IsPrimitive hpm : p.natDegree = 0 ⊢ IsUnit (p.coeff 0)
refine hu _ ?_
R : Type u_1 inst✝ : CommRing R p q : R[X] hu : (p * q).IsPrimitive hpm : p.natDegree = 0 ⊢ C (p.coeff 0) ∣ p * q
447194fa7b9cf99d
Associates.exists_prime_dvd_of_not_inf_one
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem exists_prime_dvd_of_not_inf_one {a b : α} (ha : a ≠ 0) (hb : b ≠ 0) (h : Associates.mk a ⊓ Associates.mk b ≠ 1) : ∃ p : α, Prime p ∧ p ∣ a ∧ p ∣ b
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a b : α ha : a ≠ 0 hb : b ≠ 0 h : Associates.mk a ⊓ Associates.mk b ≠ 1 ⊢ (Associates.mk a).factors ⊓ (Associates.mk b).factors ≠ 0
contrapose! h with hf
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a b : α ha : a ≠ 0 hb : b ≠ 0 hf : (Associates.mk a).factors ⊓ (Associates.mk b).factors = 0 ⊢ Associates.mk a ⊓ Associates.mk b = 1
4b4dfcc04fa14351
lt_mul_iff_one_lt_left'
Mathlib/Algebra/Order/Monoid/Unbundled/Basic.lean
theorem lt_mul_iff_one_lt_left' [MulRightStrictMono α] [MulRightReflectLT α] (a : α) {b : α} : a < b * a ↔ 1 < b := Iff.trans (by rw [one_mul]) (mul_lt_mul_iff_right a)
α : Type u_1 inst✝³ : MulOneClass α inst✝² : LT α inst✝¹ : MulRightStrictMono α inst✝ : MulRightReflectLT α a b : α ⊢ a < b * a ↔ 1 * a < b * a
rw [one_mul]
no goals
f17213218151fc57
reesAlgebra.fg
Mathlib/RingTheory/ReesAlgebra.lean
theorem reesAlgebra.fg (hI : I.FG) : (reesAlgebra I).FG
case h R : Type u inst✝ : CommRing R I : Ideal R s : Finset R hs : Ideal.span ↑s = I ⊢ Algebra.adjoin R (⇑(monomial 1) '' ↑s) = Algebra.adjoin R ↑(Submodule.map (monomial 1) (Ideal.span ↑s))
change _ = Algebra.adjoin R (Submodule.map (monomial 1 : R →ₗ[R] R[X]) (Submodule.span R ↑s) : Set R[X])
case h R : Type u inst✝ : CommRing R I : Ideal R s : Finset R hs : Ideal.span ↑s = I ⊢ Algebra.adjoin R (⇑(monomial 1) '' ↑s) = Algebra.adjoin R ↑(Submodule.map (monomial 1) (Submodule.span R ↑s))
69fde803654cdf7f
CompleteLattice.ωScottContinuous.sup
Mathlib/Order/OmegaCompletePartialOrder.lean
lemma ωScottContinuous.sup (hf : ωScottContinuous f) (hg : ωScottContinuous g) : ωScottContinuous (f ⊔ g)
α : Type u_2 β : Type u_3 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β f g : α → β hf : ωScottContinuous f hg : ωScottContinuous g ⊢ ωScottContinuous (f ⊔ g)
rw [← sSup_pair]
α : Type u_2 β : Type u_3 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β f g : α → β hf : ωScottContinuous f hg : ωScottContinuous g ⊢ ωScottContinuous (SupSet.sSup {f, g})
43f8aa09f2e0bd75
Nat.Primes.summable_rpow
Mathlib/NumberTheory/SumPrimeReciprocals.lean
theorem Nat.Primes.summable_rpow {r : ℝ} : Summable (fun p : Nat.Primes ↦ (p : ℝ) ^ r) ↔ r < -1
case pos r : ℝ h : r < -1 ⊢ Summable fun p => ↑↑p ^ r
exact (Real.summable_nat_rpow.mpr h).subtype _
no goals
1efd7ce0900dcc13
MeasureTheory.AEMeasurable.ae_eq_of_forall_setLIntegral_eq
Mathlib/MeasureTheory/Function/AEEqOfLIntegral.lean
theorem AEMeasurable.ae_eq_of_forall_setLIntegral_eq {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (hgi : ∫⁻ x, g x ∂μ ≠ ∞) (hfg : ∀ ⦃s⦄, MeasurableSet s → μ s < ∞ → ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ) : f =ᵐ[μ] g
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hfi : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hgi : ∫⁻ (x : α), g x ∂μ ≠ ⊤ hfg : ∀ ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → ∫⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α) in s, g x ∂μ hf' : AEFinStronglyMeasurable f μ hg' : AEFinStronglyMeasurable g μ s : Set α := hf'.sigmaFiniteSet t : Set α := hg'.sigmaFiniteSet this : SigmaFinite (μ.restrict hf'.sigmaFiniteSet) ⊢ f =ᶠ[ae (μ.restrict (s ∪ t))] g
have := hg'.sigmaFinite_restrict
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hfi : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hgi : ∫⁻ (x : α), g x ∂μ ≠ ⊤ hfg : ∀ ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → ∫⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α) in s, g x ∂μ hf' : AEFinStronglyMeasurable f μ hg' : AEFinStronglyMeasurable g μ s : Set α := hf'.sigmaFiniteSet t : Set α := hg'.sigmaFiniteSet this✝ : SigmaFinite (μ.restrict hf'.sigmaFiniteSet) this : SigmaFinite (μ.restrict hg'.sigmaFiniteSet) ⊢ f =ᶠ[ae (μ.restrict (s ∪ t))] g
928eae5949838171
numDerangements_tendsto_inv_e
Mathlib/Combinatorics/Derangements/Exponential.lean
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
case h s : ℕ → ℝ := fun n => ∑ k ∈ Finset.range n, (-1) ^ k / ↑k.factorial this : ∀ (n : ℕ), ↑(numDerangements n) / ↑n.factorial = s (n + 1) ⊢ HasSum (fun i => (-1) ^ i / ↑i.factorial) (exp ℝ (-1))
exact expSeries_div_hasSum_exp ℝ (-1 : ℝ)
no goals
368760d6fa6aef58
CategoryTheory.IsPushout.isVanKampen_iff
Mathlib/CategoryTheory/Adhesive.lean
theorem IsPushout.isVanKampen_iff (H : IsPushout f g h i) : H.IsVanKampen ↔ IsVanKampenColimit (PushoutCocone.mk h i H.w)
case mp.refine_1 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : H✝.IsVanKampen F' : WalkingSpan ⥤ C c' : Cocone F' α : F' ⟶ span f g fα : c'.pt ⟶ (PushoutCocone.mk h i ⋯).pt eα : α ≫ (PushoutCocone.mk h i ⋯).ι = c'.ι ≫ (Functor.const WalkingSpan).map fα hα : NatTrans.Equifibered α this : F'.map WalkingSpan.Hom.fst ≫ c'.ι.app WalkingSpan.left = F'.map WalkingSpan.Hom.snd ≫ c'.ι.app WalkingSpan.right ⊢ Nonempty (IsColimit c') ↔ IsPushout (F'.map WalkingSpan.Hom.fst) (F'.map WalkingSpan.Hom.snd) (c'.ι.app WalkingSpan.left) (c'.ι.app WalkingSpan.right)
rw [(IsColimit.equivOfNatIsoOfIso (diagramIsoSpan F') c' (PushoutCocone.mk _ _ this) _).nonempty_congr]
case mp.refine_1 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : H✝.IsVanKampen F' : WalkingSpan ⥤ C c' : Cocone F' α : F' ⟶ span f g fα : c'.pt ⟶ (PushoutCocone.mk h i ⋯).pt eα : α ≫ (PushoutCocone.mk h i ⋯).ι = c'.ι ≫ (Functor.const WalkingSpan).map fα hα : NatTrans.Equifibered α this : F'.map WalkingSpan.Hom.fst ≫ c'.ι.app WalkingSpan.left = F'.map WalkingSpan.Hom.snd ≫ c'.ι.app WalkingSpan.right ⊢ Nonempty (IsColimit (PushoutCocone.mk (c'.ι.app WalkingSpan.left) (c'.ι.app WalkingSpan.right) this)) ↔ IsPushout (F'.map WalkingSpan.Hom.fst) (F'.map WalkingSpan.Hom.snd) (c'.ι.app WalkingSpan.left) (c'.ι.app WalkingSpan.right) C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : H✝.IsVanKampen F' : WalkingSpan ⥤ C c' : Cocone F' α : F' ⟶ span f g fα : c'.pt ⟶ (PushoutCocone.mk h i ⋯).pt eα : α ≫ (PushoutCocone.mk h i ⋯).ι = c'.ι ≫ (Functor.const WalkingSpan).map fα hα : NatTrans.Equifibered α this : F'.map WalkingSpan.Hom.fst ≫ c'.ι.app WalkingSpan.left = F'.map WalkingSpan.Hom.snd ≫ c'.ι.app WalkingSpan.right ⊢ (Cocones.precompose (diagramIsoSpan F').inv).obj c' ≅ PushoutCocone.mk (c'.ι.app WalkingSpan.left) (c'.ι.app WalkingSpan.right) this
03b3318bb2e454c2
Asymptotics.isTheta_bot
Mathlib/Analysis/Asymptotics/Theta.lean
theorem isTheta_bot : f =Θ[⊥] g
α : Type u_1 E : Type u_3 F : Type u_4 inst✝¹ : Norm E inst✝ : Norm F f : α → E g : α → F ⊢ f =Θ[⊥] g
simp [IsTheta]
no goals
cdefb79688fb2d6c
norm_div_eq_norm_left
Mathlib/Analysis/Normed/Group/Basic.lean
@[to_additive] lemma norm_div_eq_norm_left (x : E) {y : E} (h : ‖y‖ = 0) : ‖x / y‖ = ‖x‖
E : Type u_5 inst✝ : SeminormedGroup E x y : E h : ‖y‖ = 0 ⊢ ‖x / y‖ ≤ ‖x‖
simpa [h] using norm_div_le x y
no goals
4d6cda813de16e1c
List.forIn'_pure_yield_eq_foldl
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Monadic.lean
theorem forIn'_pure_yield_eq_foldl [Monad m] [LawfulMonad m] (l : List α) (f : (a : α) → a ∈ l → β → β) (init : β) : forIn' l init (fun a m b => pure (.yield (f a m b))) = pure (f := m) (l.attach.foldl (fun b ⟨a, h⟩ => f a h b) init)
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m l : List α f : (a : α) → a ∈ l → β → β init : β ⊢ (forIn' l init fun a m_1 b => pure (ForInStep.yield (f a m_1 b))) = pure (foldl (fun b x => match x with | ⟨a, h⟩ => f a h b) init l.attach)
simp only [forIn'_eq_foldlM]
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m l : List α f : (a : α) → a ∈ l → β → β init : β ⊢ ForInStep.value <$> List.foldlM (fun b x => match b with | ForInStep.yield b => pure (ForInStep.yield (f x.val ⋯ b)) | ForInStep.done b => pure (ForInStep.done b)) (ForInStep.yield init) l.attach = pure (foldl (fun b x => f x.val ⋯ b) init l.attach)
242f86750c77fe00
BoxIntegral.unitPartition.mem_admissibleIndex_of_mem_box
Mathlib/Analysis/BoxIntegral/UnitPartition.lean
theorem mem_admissibleIndex_of_mem_box {B : Box ι} (hB : hasIntegralVertices B) {x : ι → ℝ} (hx : x ∈ B) : index n x ∈ admissibleIndex n B
case intro.intro.intro.refine_2 ι : Type u_1 n : ℕ inst✝¹ : NeZero n inst✝ : Fintype ι B : Box ι x : ι → ℝ hx : x ∈ B l u : ι → ℤ hl : ∀ (i : ι), B.lower i = ↑(l i) hu : ∀ (i : ι), B.upper i = ↑(u i) i : ι ⊢ (↑⌈↑n * x i⌉ - 1 + 1) / ↑n ≤ ↑(u i)
exact (mem_admissibleIndex_of_mem_box_aux₂ n (x i) (u i)).mp ((hu i) ▸ (hx i).2)
no goals
1dc74fce82988f92
Set.MapsTo.iterate_restrict
Mathlib/Data/Set/Function.lean
theorem MapsTo.iterate_restrict {f : α → α} {s : Set α} (h : MapsTo f s s) (n : ℕ) : (h.restrict f s s)^[n] = (h.iterate n).restrict _ _ _
α : Type u_1 f : α → α s : Set α h : MapsTo f s s n : ℕ ⊢ (restrict f s s h)^[n] = restrict f^[n] s s ⋯
funext x
case h α : Type u_1 f : α → α s : Set α h : MapsTo f s s n : ℕ x : ↑s ⊢ (restrict f s s h)^[n] x = restrict f^[n] s s ⋯ x
46f3dbaf8f18289b
ContinuousMap.tendsto_of_tendstoLocallyUniformly
Mathlib/Topology/UniformSpace/CompactConvergence.lean
theorem tendsto_of_tendstoLocallyUniformly (h : TendstoLocallyUniformly (fun i a => F i a) f p) : Tendsto F p (𝓝 f)
α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) h : TendstoLocallyUniformly (fun i a => (F i) a) (⇑f) p K : Set α hK : IsCompact K ⊢ TendstoLocallyUniformlyOn (fun i a => (F i) a) (⇑f) p K
exact h.tendstoLocallyUniformlyOn
no goals
2a076f002ba6ff4c
norm_div_pos_iff
Mathlib/Analysis/Normed/Group/Basic.lean
theorem norm_div_pos_iff : 0 < ‖a / b‖ ↔ a ≠ b
E : Type u_5 inst✝ : NormedGroup E a b : E ⊢ 0 < ‖a / b‖ ↔ a ≠ b
rw [(norm_nonneg' _).lt_iff_ne, ne_comm]
E : Type u_5 inst✝ : NormedGroup E a b : E ⊢ ‖a / b‖ ≠ 0 ↔ a ≠ b
a5c810d9d84d6c6c
SSet.Quasicategory.hornFilling
Mathlib/AlgebraicTopology/Quasicategory/Basic.lean
lemma Quasicategory.hornFilling {S : SSet} [Quasicategory S] ⦃n : ℕ⦄ ⦃i : Fin (n+1)⦄ (h0 : 0 < i) (hn : i < Fin.last n) (σ₀ : Λ[n, i] ⟶ S) : ∃ σ : Δ[n] ⟶ S, σ₀ = hornInclusion n i ≫ σ
case succ.succ S : SSet inst✝ : S.Quasicategory n : ℕ i : Fin (n + 1 + 1 + 1) h0 : 0 < i hn : i < Fin.last (n + 1 + 1) σ₀ : Λ[n + 1 + 1, i] ⟶ S ⊢ ∃ σ, σ₀ = hornInclusion (n + 1 + 1) i ≫ σ
exact Quasicategory.hornFilling' σ₀ h0 hn
no goals
7effe73f43c70d45
WeierstrassCurve.Projective.negDblY_of_Z_eq_zero
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma negDblY_of_Z_eq_zero [NoZeroDivisors R] {P : Fin 3 → R} (hP : W'.Equation P) (hPz : P z = 0) : W'.negDblY P = -P y ^ 4
R : Type r inst✝¹ : CommRing R W' : Projective R inst✝ : NoZeroDivisors R P : Fin 3 → R hP : W'.Equation P hPz : P z = 0 ⊢ ⋯ - ⋯ - ⋯ * 0 ^ 4 + ⋯ * P y ^ 2 * 0 + ⋯ * 0 * P y * 0 ^ 2 + 9 * W'.a₂ ^ 2 * 0 ^ 4 - 8 * W'.a₂ ^ 2 * 0 * P y ^ 2 * 0 - 9 * W'.a₂ * W'.a₃ * 0 ^ 2 * P y * 0 + 9 * W'.a₂ * W'.a₄ * 0 ^ 3 * 0 - 4 * W'.a₂ * W'.a₄ * P y ^ 2 * 0 ^ 2 - 27 * W'.a₂ * W'.a₆ * 0 ^ 2 * 0 ^ 2 - 9 * W'.a₃ ^ 2 * 0 ^ 3 * 0 + 6 * W'.a₃ ^ 2 * P y ^ 2 * 0 ^ 2 - 12 * W'.a₃ * W'.a₄ * 0 * P y * 0 ^ 2 + 9 * W'.a₄ ^ 2 * 0 ^ 2 * 0 ^ 2 - 2 * W'.a₁ ^ 3 * 0 ^ 3 * P y + W'.a₁ ^ 3 * P y ^ 3 * 0 + 3 * W'.a₁ ^ 2 * W'.a₂ * 0 ^ 4 + 2 * W'.a₁ ^ 2 * W'.a₂ * 0 * P y ^ 2 * 0 + 3 * W'.a₁ ^ 2 * W'.a₃ * 0 ^ 2 * P y * 0 + 3 * W'.a₁ ^ 2 * W'.a₄ * 0 ^ 3 * 0 - W'.a₁ ^ 2 * W'.a₄ * P y ^ 2 * 0 ^ 2 - 12 * W'.a₁ * W'.a₂ ^ 2 * 0 ^ 2 * P y * 0 - 6 * W'.a₁ * W'.a₂ * W'.a₃ * 0 ^ 3 * 0 + 4 * W'.a₁ * W'.a₂ * W'.a₃ * P y ^ 2 * 0 ^ 2 - 8 * W'.a₁ * W'.a₂ * W'.a₄ * 0 * P y * 0 ^ 2 + 6 * W'.a₁ * W'.a₃ ^ 2 * 0 * P y * 0 ^ 2 - W'.a₁ * W'.a₄ ^ 2 * P y * 0 ^ 3 + 8 * W'.a₂ ^ 3 * 0 ^ 3 * 0 - 8 * W'.a₂ ^ 2 * W'.a₃ * 0 * P y * 0 ^ 2 + 12 * W'.a₂ ^ 2 * W'.a₄ * 0 ^ 2 * 0 ^ 2 - 9 * W'.a₂ * W'.a₃ ^ 2 * 0 ^ 2 * 0 ^ 2 - 4 * W'.a₂ * W'.a₃ * W'.a₄ * P y * 0 ^ 3 + 6 * W'.a₂ * W'.a₄ ^ 2 * 0 * 0 ^ 3 + W'.a₃ ^ 3 * P y * 0 ^ 3 - 3 * W'.a₃ ^ 2 * W'.a₄ * 0 * 0 ^ 3 + W'.a₄ ^ 3 * 0 ^ 4 + W'.a₁ ^ 4 * 0 * P y ^ 2 * 0 - 3 * W'.a₁ ^ 3 * W'.a₂ * 0 ^ 2 * P y * 0 + W'.a₁ ^ 3 * W'.a₃ * P y ^ 2 * 0 ^ 2 - 2 * W'.a₁ ^ 3 * W'.a₄ * 0 * P y * 0 ^ 2 + 2 * W'.a₁ ^ 2 * W'.a₂ ^ 2 * 0 ^ 3 * 0 - 2 * W'.a₁ ^ 2 * W'.a₂ * W'.a₃ * 0 * P y * 0 ^ 2 + 3 * W'.a₁ ^ 2 * W'.a₂ * W'.a₄ * 0 ^ 2 * 0 ^ 2 - 2 * W'.a₁ ^ 2 * W'.a₃ * W'.a₄ * P y * 0 ^ 3 + W'.a₁ ^ 2 * W'.a₄ ^ 2 * 0 * 0 ^ 3 + W'.a₁ * W'.a₂ * W'.a₃ ^ 2 * P y * 0 ^ 3 + 2 * W'.a₁ * W'.a₂ * W'.a₃ * W'.a₄ * 0 * 0 ^ 3 + W'.a₁ * W'.a₃ * W'.a₄ ^ 2 * 0 ^ 4 - 2 * W'.a₂ ^ 2 * W'.a₃ ^ 2 * 0 * 0 ^ 3 - W'.a₂ * W'.a₃ ^ 2 * W'.a₄ * 0 ^ 4 = -P y ^ 4
ring1
no goals
70a44ce1db5dd732
monotone_of_odd_of_monotoneOn_nonneg
Mathlib/Order/Monotone/Odd.lean
theorem monotone_of_odd_of_monotoneOn_nonneg {f : G → H} (h₁ : ∀ x, f (-x) = -f x) (h₂ : MonotoneOn f (Ici 0)) : Monotone f
G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : MonotoneOn f (Ici 0) x : G hx : x ∈ Iic 0 y : G hy : y ∈ Iic 0 hxy : x ≤ y ⊢ f (-y) ≤ f (-x)
exact h₂ (neg_nonneg.2 hy) (neg_nonneg.2 hx) (neg_le_neg hxy)
no goals
fca0f3ebe0373e0a
Finset.UV.kruskal_katona_helper
Mathlib/Combinatorics/SetFamily/KruskalKatona.lean
/-- The main Kruskal-Katona helper: use induction with our measure to keep compressing until we can't any more, which gives a set family which is fully compressed and has the nice properties we want. -/ private lemma kruskal_katona_helper {r : ℕ} (𝒜 : Finset (Finset (Fin n))) (h : (𝒜 : Set (Finset (Fin n))).Sized r) : ∃ ℬ : Finset (Finset (Fin n)), #(∂ ℬ) ≤ #(∂ 𝒜) ∧ #𝒜 = #ℬ ∧ (ℬ : Set (Finset (Fin n))).Sized r ∧ ∀ U V, UsefulCompression U V → IsCompressed U V ℬ
case inr.intro.mk.intro n r : ℕ 𝒜 : Finset (Finset (Fin n)) h : Set.Sized r ↑𝒜 usable : Finset (Finset (Fin n) × Finset (Fin n)) := filter (fun t => Finset.UV.UsefulCompression t.1 t.2 ∧ ¬IsCompressed t.1 t.2 𝒜) univ husable : usable.Nonempty U V : Finset (Fin n) hUV : (U, V) ∈ usable t : ∀ x' ∈ usable, #(U, V).1 ≤ #x'.1 ⊢ ∃ ℬ, #(∂ ℬ) ≤ #(∂ 𝒜) ∧ #𝒜 = #ℬ ∧ Set.Sized r ↑ℬ ∧ ∀ (U V : Finset (Fin n)), Finset.UV.UsefulCompression U V → IsCompressed U V ℬ
rw [mem_filter] at hUV
case inr.intro.mk.intro n r : ℕ 𝒜 : Finset (Finset (Fin n)) h : Set.Sized r ↑𝒜 usable : Finset (Finset (Fin n) × Finset (Fin n)) := filter (fun t => Finset.UV.UsefulCompression t.1 t.2 ∧ ¬IsCompressed t.1 t.2 𝒜) univ husable : usable.Nonempty U V : Finset (Fin n) hUV : (U, V) ∈ univ ∧ Finset.UV.UsefulCompression (U, V).1 (U, V).2 ∧ ¬IsCompressed (U, V).1 (U, V).2 𝒜 t : ∀ x' ∈ usable, #(U, V).1 ≤ #x'.1 ⊢ ∃ ℬ, #(∂ ℬ) ≤ #(∂ 𝒜) ∧ #𝒜 = #ℬ ∧ Set.Sized r ↑ℬ ∧ ∀ (U V : Finset (Fin n)), Finset.UV.UsefulCompression U V → IsCompressed U V ℬ
ad1c271bd9c8d7ce
Nat.frequently_atTop_modEq_one
Mathlib/NumberTheory/PrimesCongruentOne.lean
theorem frequently_atTop_modEq_one {k : ℕ} (hk0 : k ≠ 0) : ∃ᶠ p in atTop, Nat.Prime p ∧ p ≡ 1 [MOD k]
k : ℕ hk0 : k ≠ 0 n : ℕ ⊢ ∃ b ≥ n, Prime b ∧ b ≡ 1 [MOD k]
obtain ⟨p, hp⟩ := exists_prime_gt_modEq_one n hk0
case intro k : ℕ hk0 : k ≠ 0 n p : ℕ hp : Prime p ∧ n < p ∧ p ≡ 1 [MOD k] ⊢ ∃ b ≥ n, Prime b ∧ b ≡ 1 [MOD k]
3062ae9187c2fafe
WittVector.ghostFun_natCast
Mathlib/RingTheory/WittVector/Basic.lean
theorem ghostFun_natCast (i : ℕ) : ghostFun (i : 𝕎 R) = i := show ghostFun i.unaryCast = _ by induction i <;> simp [*, Nat.unaryCast, ghostFun_zero, ghostFun_one, ghostFun_add, -Pi.natCast_def]
p : ℕ R : Type u_1 inst✝¹ : CommRing R inst✝ : Fact (Nat.Prime p) i : ℕ ⊢ WittVector.ghostFun i.unaryCast = ↑i
induction i <;> simp [*, Nat.unaryCast, ghostFun_zero, ghostFun_one, ghostFun_add, -Pi.natCast_def]
no goals
22bebc9c8a72ffc9
PrimeSpectrum.zeroLocus_empty_iff_eq_top
Mathlib/RingTheory/Spectrum/Prime/Basic.lean
theorem zeroLocus_empty_iff_eq_top {I : Ideal R} : zeroLocus (I : Set R) = ∅ ↔ I = ⊤
case mpr R : Type u inst✝ : CommSemiring R I : Ideal R ⊢ I = ⊤ → zeroLocus ↑I = ∅
rintro rfl
case mpr R : Type u inst✝ : CommSemiring R ⊢ zeroLocus ↑⊤ = ∅
3bed0d5e08a59c7f
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.mk'
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
theorem IsStableUnderBaseChange.mk' [RespectsIso P] (hP₂ : ∀ (X Y S : C) (f : X ⟶ S) (g : Y ⟶ S) [HasPullback f g] (_ : P g), P (pullback.fst f g)) : IsStableUnderBaseChange P where of_isPullback {X Y Y' S f g f' g'} sq hg
C : Type u inst✝¹ : Category.{v, u} C P : MorphismProperty C inst✝ : P.RespectsIso hP₂ : ∀ (X Y S : C) (f : X ⟶ S) (g : Y ⟶ S) [inst : HasPullback f g], P g → P (pullback.fst f g) X Y Y' S : C f : X ⟶ S g : Y ⟶ S f' : Y' ⟶ Y g' : Y' ⟶ X sq : IsPullback f' g' g f hg : P g this : HasPullback f g e : Y' ≅ pullback f g := ⋯.isoPullback ⊢ P (pullback.fst f g)
exact hP₂ _ _ _ f g hg
no goals
a7faae7a4ba1aa38
ConvexOn.le_right_of_left_le'
Mathlib/Analysis/Convex/Function.lean
theorem ConvexOn.le_right_of_left_le' (hf : ConvexOn 𝕜 s f) {x y : E} {a b : 𝕜} (hx : x ∈ s) (hy : y ∈ s) (ha : 0 ≤ a) (hb : 0 < b) (hab : a + b = 1) (hfx : f x ≤ f (a • x + b • y)) : f (a • x + b • y) ≤ f y
𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : AddCommMonoid E inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : SMul 𝕜 E inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set E f : E → β hf : ConvexOn 𝕜 s f x y : E a b : 𝕜 hx : x ∈ s hy : y ∈ s ha : 0 ≤ a hb : 0 < b hab : b + a = 1 hfx : f x ≤ f (b • y + a • x) ⊢ f (b • y + a • x) ≤ f y
exact hf.le_left_of_right_le' hy hx hb ha hab hfx
no goals
1b3839f8b3fe1c83
EulerProduct.one_sub_inv_eq_geometric_of_summable_norm
Mathlib/NumberTheory/EulerProduct/Basic.lean
lemma one_sub_inv_eq_geometric_of_summable_norm {f : ℕ →*₀ F} {p : ℕ} (hp : p.Prime) (hsum : Summable fun x ↦ ‖f x‖) : (1 - f p)⁻¹ = ∑' (e : ℕ), f (p ^ e)
F : Type u_1 inst✝¹ : NormedField F inst✝ : CompleteSpace F f : ℕ →*₀ F p : ℕ hp : Nat.Prime p hsum : Summable fun x => ‖f x‖ ⊢ Summable fun n => f p ^ n
refine Summable.of_norm ?_
F : Type u_1 inst✝¹ : NormedField F inst✝ : CompleteSpace F f : ℕ →*₀ F p : ℕ hp : Nat.Prime p hsum : Summable fun x => ‖f x‖ ⊢ Summable fun a => ‖f p ^ a‖
bde940928d778afb
List.cons_le_cons_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lex.lean
theorem cons_le_cons_iff [DecidableEq α] [LT α] [DecidableLT α] [i₀ : Std.Irrefl (· < · : α → α → Prop)] [i₁ : Std.Asymm (· < · : α → α → Prop)] [i₂ : Std.Antisymm (¬ · < · : α → α → Prop)] {a b} {l₁ l₂ : List α} : (a :: l₁) ≤ (b :: l₂) ↔ a < b ∨ a = b ∧ l₁ ≤ l₂
case h α : Type u_1 inst✝² : DecidableEq α inst✝¹ : LT α inst✝ : DecidableLT α i₀ : Std.Irrefl fun x1 x2 => x1 < x2 i₁ : Std.Asymm fun x1 x2 => x1 < x2 i₂ : Std.Antisymm fun x1 x2 => ¬x1 < x2 a b : α l₁ l₂ : List α h₁ : ¬b < a h₂ : ¬Lex (fun x1 x2 => x1 < x2) l₂ l₁ h₃ : ¬a < b ⊢ a = b ∧ ¬Lex (fun x1 x2 => x1 < x2) l₂ l₁
exact ⟨i₂.antisymm _ _ h₃ h₁, h₂⟩
no goals
75deba79ccf9ad38
Set.offDiag_union
Mathlib/Data/Set/Prod.lean
theorem offDiag_union (h : Disjoint s t) : (s ∪ t).offDiag = s.offDiag ∪ t.offDiag ∪ s ×ˢ t ∪ t ×ˢ s
case h.mpr.inl.inr.intro α : Type u_1 s t : Set α h : Disjoint s t x : α × α h0 : x.2 ∈ s h1 : x.2 ∈ t h3 : x.1 = x.2 ⊢ False
exact Set.disjoint_left.mp h h0 h1
no goals
e368a686903f78bc
cfcₙHom_eq_cfcₙ_extend
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
lemma cfcₙHom_eq_cfcₙ_extend {a : A} (g : R → R) (ha : p a) (f : C(σₙ R a, R)₀) : cfcₙHom ha f = cfcₙ (Function.extend Subtype.val f g) a
R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p a : A g : R → R ha : p a f : C(↑(σₙ R a), R)₀ ⊢ ⇑f = (σₙ R a).restrict (Function.extend Subtype.val (⇑f) g)
ext
case h R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p a : A g : R → R ha : p a f : C(↑(σₙ R a), R)₀ x✝ : ↑(σₙ R a) ⊢ f x✝ = (σₙ R a).restrict (Function.extend Subtype.val (⇑f) g) x✝
21b58a7c62c97b99
TensorProduct.equivFinsuppOfBasisRight_apply_tmul_apply
Mathlib/LinearAlgebra/TensorProduct/Basis.lean
lemma TensorProduct.equivFinsuppOfBasisRight_apply_tmul_apply (m : M) (n : N) (i : κ) : (TensorProduct.equivFinsuppOfBasisRight 𝒞) (m ⊗ₜ n) i = 𝒞.repr n i • m
R : Type u_1 M : Type u_3 N : Type u_4 κ : Type u_6 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N inst✝ : DecidableEq κ 𝒞 : Basis κ R N m : M n : N i : κ ⊢ ((equivFinsuppOfBasisRight 𝒞) (m ⊗ₜ[R] n)) i = (𝒞.repr n) i • m
simp only [equivFinsuppOfBasisRight_apply_tmul, Finsupp.mapRange_apply]
no goals
90ef4be1340cec36
AffineSubspace.isConnected_setOf_sOppSide
Mathlib/Analysis/Convex/Side.lean
theorem isConnected_setOf_sOppSide {s : AffineSubspace ℝ P} {x : P} (hx : x ∉ s) (h : (s : Set P).Nonempty) : IsConnected { y | s.SOppSide x y }
case intro V : Type u_2 P : Type u_4 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : x ∉ s p : P hp : p ∈ ↑s this : Nonempty ↥s ⊢ IsConnected ((fun x_1 => x_1.1 • (x -ᵥ p) +ᵥ x_1.2) '' Set.Iio 0 ×ˢ ↑s)
refine (isConnected_Iio.prod (isConnected_iff_connectedSpace.2 ?_)).image _ ((continuous_fst.smul continuous_const).vadd continuous_snd).continuousOn
case intro V : Type u_2 P : Type u_4 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P hx : x ∉ s p : P hp : p ∈ ↑s this : Nonempty ↥s ⊢ ConnectedSpace ↑↑s
e51bcb5e18670498
ZMod.dft_even_iff
Mathlib/Analysis/Fourier/ZMod.lean
/-- The discrete Fourier transform of `Φ` is even if and only if `Φ` itself is. -/ lemma dft_even_iff {Φ : ZMod N → ℂ} : (𝓕 Φ).Even ↔ Φ.Even
N : ℕ inst✝ : NeZero N Φ : ZMod N → ℂ h : ∀ {f : ZMod N → ℂ}, Function.Even f → Function.Even (𝓕 f) ⊢ Function.Even (𝓕 Φ) ↔ Function.Even Φ
refine ⟨fun hΦ x ↦ ?_, h⟩
N : ℕ inst✝ : NeZero N Φ : ZMod N → ℂ h : ∀ {f : ZMod N → ℂ}, Function.Even f → Function.Even (𝓕 f) hΦ : Function.Even (𝓕 Φ) x : ZMod N ⊢ Φ (-x) = Φ x
16cf2a81b38e6f67
DividedPowers.ext
Mathlib/RingTheory/DividedPowers/Basic.lean
theorem DividedPowers.ext (hI : DividedPowers I) (hI' : DividedPowers I) (h_eq : ∀ (n : ℕ) {x : A} (_ : x ∈ I), hI.dpow n x = hI'.dpow n x) : hI = hI'
case mk A : Type u_1 inst✝ : CommSemiring A I : Ideal A hI' : DividedPowers I hI : ℕ → A → A h₀ : ∀ {n : ℕ} {x : A}, x ∉ I → hI n x = 0 dpow_zero✝ : ∀ {x : A}, x ∈ I → hI 0 x = 1 dpow_one✝ : ∀ {x : A}, x ∈ I → hI 1 x = x dpow_mem✝ : ∀ {n : ℕ} {x : A}, n ≠ 0 → x ∈ I → hI n x ∈ I dpow_add✝ : ∀ {n : ℕ} {x y : A}, x ∈ I → y ∈ I → hI n (x + y) = ∑ k ∈ antidiagonal n, hI k.1 x * hI k.2 y dpow_mul✝ : ∀ {n : ℕ} {a x : A}, x ∈ I → hI n (a * x) = a ^ n * hI n x mul_dpow✝ : ∀ {m n : ℕ} {x : A}, x ∈ I → hI m x * hI n x = ↑((m + n).choose m) * hI (m + n) x dpow_comp✝ : ∀ {m n : ℕ} {x : A}, n ≠ 0 → x ∈ I → hI m (hI n x) = ↑(m.uniformBell n) * hI (m * n) x h_eq : ∀ (n : ℕ) {x : A}, x ∈ I → { dpow := hI, dpow_null := h₀, dpow_zero := dpow_zero✝, dpow_one := dpow_one✝, dpow_mem := dpow_mem✝, dpow_add := dpow_add✝, dpow_mul := dpow_mul✝, mul_dpow := mul_dpow✝, dpow_comp := dpow_comp✝ }.dpow n x = hI'.dpow n x ⊢ { dpow := hI, dpow_null := h₀, dpow_zero := dpow_zero✝, dpow_one := dpow_one✝, dpow_mem := dpow_mem✝, dpow_add := dpow_add✝, dpow_mul := dpow_mul✝, mul_dpow := mul_dpow✝, dpow_comp := dpow_comp✝ } = hI'
obtain ⟨hI', h₀', _⟩ := hI'
case mk.mk A : Type u_1 inst✝ : CommSemiring A I : Ideal A hI : ℕ → A → A h₀ : ∀ {n : ℕ} {x : A}, x ∉ I → hI n x = 0 dpow_zero✝¹ : ∀ {x : A}, x ∈ I → hI 0 x = 1 dpow_one✝¹ : ∀ {x : A}, x ∈ I → hI 1 x = x dpow_mem✝¹ : ∀ {n : ℕ} {x : A}, n ≠ 0 → x ∈ I → hI n x ∈ I dpow_add✝¹ : ∀ {n : ℕ} {x y : A}, x ∈ I → y ∈ I → hI n (x + y) = ∑ k ∈ antidiagonal n, hI k.1 x * hI k.2 y dpow_mul✝¹ : ∀ {n : ℕ} {a x : A}, x ∈ I → hI n (a * x) = a ^ n * hI n x mul_dpow✝¹ : ∀ {m n : ℕ} {x : A}, x ∈ I → hI m x * hI n x = ↑((m + n).choose m) * hI (m + n) x dpow_comp✝¹ : ∀ {m n : ℕ} {x : A}, n ≠ 0 → x ∈ I → hI m (hI n x) = ↑(m.uniformBell n) * hI (m * n) x hI' : ℕ → A → A h₀' : ∀ {n : ℕ} {x : A}, x ∉ I → hI' n x = 0 dpow_zero✝ : ∀ {x : A}, x ∈ I → hI' 0 x = 1 dpow_one✝ : ∀ {x : A}, x ∈ I → hI' 1 x = x dpow_mem✝ : ∀ {n : ℕ} {x : A}, n ≠ 0 → x ∈ I → hI' n x ∈ I dpow_add✝ : ∀ {n : ℕ} {x y : A}, x ∈ I → y ∈ I → hI' n (x + y) = ∑ k ∈ antidiagonal n, hI' k.1 x * hI' k.2 y dpow_mul✝ : ∀ {n : ℕ} {a x : A}, x ∈ I → hI' n (a * x) = a ^ n * hI' n x mul_dpow✝ : ∀ {m n : ℕ} {x : A}, x ∈ I → hI' m x * hI' n x = ↑((m + n).choose m) * hI' (m + n) x dpow_comp✝ : ∀ {m n : ℕ} {x : A}, n ≠ 0 → x ∈ I → hI' m (hI' n x) = ↑(m.uniformBell n) * hI' (m * n) x h_eq : ∀ (n : ℕ) {x : A}, x ∈ I → { dpow := hI, dpow_null := h₀, dpow_zero := dpow_zero✝¹, dpow_one := dpow_one✝¹, dpow_mem := dpow_mem✝¹, dpow_add := dpow_add✝¹, dpow_mul := dpow_mul✝¹, mul_dpow := mul_dpow✝¹, dpow_comp := dpow_comp✝¹ }.dpow n x = { dpow := hI', dpow_null := h₀', dpow_zero := dpow_zero✝, dpow_one := dpow_one✝, dpow_mem := dpow_mem✝, dpow_add := dpow_add✝, dpow_mul := dpow_mul✝, mul_dpow := mul_dpow✝, dpow_comp := dpow_comp✝ }.dpow n x ⊢ { dpow := hI, dpow_null := h₀, dpow_zero := dpow_zero✝¹, dpow_one := dpow_one✝¹, dpow_mem := dpow_mem✝¹, dpow_add := dpow_add✝¹, dpow_mul := dpow_mul✝¹, mul_dpow := mul_dpow✝¹, dpow_comp := dpow_comp✝¹ } = { dpow := hI', dpow_null := h₀', dpow_zero := dpow_zero✝, dpow_one := dpow_one✝, dpow_mem := dpow_mem✝, dpow_add := dpow_add✝, dpow_mul := dpow_mul✝, mul_dpow := mul_dpow✝, dpow_comp := dpow_comp✝ }
3b635b1fbc30763f
Real.summable_exp_nat_mul_iff
Mathlib/Analysis/SpecialFunctions/Exp.lean
lemma summable_exp_nat_mul_iff {a : ℝ} : Summable (fun n : ℕ ↦ exp (n * a)) ↔ a < 0
a : ℝ ⊢ (Summable fun n => rexp (↑n * a)) ↔ a < 0
simp only [exp_nat_mul, summable_geometric_iff_norm_lt_one, norm_of_nonneg (exp_nonneg _), exp_lt_one_iff]
no goals
d02e87599149c19e
Path.trans_range
Mathlib/Topology/Path.lean
theorem trans_range {a b c : X} (γ₁ : Path a b) (γ₂ : Path b c) : range (γ₁.trans γ₂) = range γ₁ ∪ range γ₂
case h X : Type u_1 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : γ₂ ⟨t, ⋯⟩ = x h : t = 0 ⊢ { toFun := (fun t => if t ≤ 1 / 2 then γ₁.extend (2 * t) else γ₂.extend (2 * t - 1)) ∘ Subtype.val, continuous_toFun := ⋯, source' := ⋯, target' := ⋯ } ⟨1 / 2, ⋯⟩ = x
rw [coe_mk_mk, Function.comp_apply, if_pos le_rfl, Subtype.coe_mk, mul_one_div_cancel (two_ne_zero' ℝ)]
case h X : Type u_1 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : γ₂ ⟨t, ⋯⟩ = x h : t = 0 ⊢ γ₁.extend 1 = x
4045b3b0d5c91c52
Submodule.basis_of_pid_aux
Mathlib/LinearAlgebra/FreeModule/PID.lean
theorem Submodule.basis_of_pid_aux [Finite ι] {O : Type*} [AddCommGroup O] [Module R O] (M N : Submodule R O) (b'M : Basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) : ∃ y ∈ M, ∃ a : R, a • y ∈ N ∧ ∃ M' ≤ M, ∃ N' ≤ N, N' ≤ M' ∧ (∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0) ∧ (∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0) ∧ ∀ (n') (bN' : Basis (Fin n') R N'), ∃ bN : Basis (Fin (n' + 1)) R N, ∀ (m') (hn'm' : n' ≤ m') (bM' : Basis (Fin m') R M'), ∃ (hnm : n' + 1 ≤ m' + 1) (bM : Basis (Fin (m' + 1)) R M), ∀ as : Fin n' → R, (∀ i : Fin n', (bN' i : O) = as i • (bM' (Fin.castLE hn'm' i) : O)) → ∃ as' : Fin (n' + 1) → R, ∀ i : Fin (n' + 1), (bN i : O) = as' i • (bM (Fin.castLE hnm i) : O)
case neg.intro.intro.intro.refine_1.refine_2.intro ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c : ι → R hc : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c i val✝ : Fintype ι y' : O := ∑ i : ι, c i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c i • b'M i a_smul_y' : a • y' = y ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 M' : Submodule R O := map M.subtype (LinearMap.ker ϕ) N' : Submodule R O := map N.subtype (LinearMap.ker (ϕ ∘ₗ inclusion N_le_M)) M'_le_M : M' ≤ M N'_le_M' : N' ≤ M' N'_le_N : N' ≤ N y'_ortho_M' : ∀ (c : R), ∀ z ∈ M', c • y' + z = 0 → c = 0 ay'_ortho_N' : ∀ (c : R), ∀ z ∈ N', c • a • y' + z = 0 → c = 0 n' : ℕ bN' : Basis (Fin n') R ↥N' z : O zN : z ∈ N b : R hb : ϕ ⟨z, ⋯⟩ = generator (ϕ.submoduleImage N) * b ⊢ ∃ c, z + c • y ∈ N'
refine ⟨-b, Submodule.mem_map.mpr ⟨⟨_, N.sub_mem zN (N.smul_mem b yN)⟩, ?_, ?_⟩⟩
case neg.intro.intro.intro.refine_1.refine_2.intro.refine_1 ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c : ι → R hc : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c i val✝ : Fintype ι y' : O := ∑ i : ι, c i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c i • b'M i a_smul_y' : a • y' = y ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 M' : Submodule R O := map M.subtype (LinearMap.ker ϕ) N' : Submodule R O := map N.subtype (LinearMap.ker (ϕ ∘ₗ inclusion N_le_M)) M'_le_M : M' ≤ M N'_le_M' : N' ≤ M' N'_le_N : N' ≤ N y'_ortho_M' : ∀ (c : R), ∀ z ∈ M', c • y' + z = 0 → c = 0 ay'_ortho_N' : ∀ (c : R), ∀ z ∈ N', c • a • y' + z = 0 → c = 0 n' : ℕ bN' : Basis (Fin n') R ↥N' z : O zN : z ∈ N b : R hb : ϕ ⟨z, ⋯⟩ = generator (ϕ.submoduleImage N) * b ⊢ ⟨z - b • y, ⋯⟩ ∈ LinearMap.ker (ϕ ∘ₗ inclusion N_le_M) case neg.intro.intro.intro.refine_1.refine_2.intro.refine_2 ι : Type u_1 R : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R inst✝² : Finite ι O : Type u_4 inst✝¹ : AddCommGroup O inst✝ : Module R O M N : Submodule R O b'M : Basis ι R ↥M N_bot : N ≠ ⊥ N_le_M : N ≤ M this : ∃ ϕ, ∀ (ψ : ↥M →ₗ[R] R), ¬ϕ.submoduleImage N < ψ.submoduleImage N ϕ : ↥M →ₗ[R] R := this.choose ϕ_max : ∀ (ψ : ↥M →ₗ[R] R), ¬this.choose.submoduleImage N < ψ.submoduleImage N a : R := generator (ϕ.submoduleImage N) a_mem : a ∈ ϕ.submoduleImage N a_zero : ¬a = 0 y : O yN : y ∈ N ϕy_eq : ϕ ⟨y, ⋯⟩ = a _ϕy_ne_zero : ϕ ⟨y, ⋯⟩ ≠ 0 c : ι → R hc : ∀ (i : ι), (b'M.coord i) ⟨y, ⋯⟩ = a * c i val✝ : Fintype ι y' : O := ∑ i : ι, c i • ↑(b'M i) y'M : y' ∈ M mk_y' : ⟨y', y'M⟩ = ∑ i : ι, c i • b'M i a_smul_y' : a • y' = y ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 M' : Submodule R O := map M.subtype (LinearMap.ker ϕ) N' : Submodule R O := map N.subtype (LinearMap.ker (ϕ ∘ₗ inclusion N_le_M)) M'_le_M : M' ≤ M N'_le_M' : N' ≤ M' N'_le_N : N' ≤ N y'_ortho_M' : ∀ (c : R), ∀ z ∈ M', c • y' + z = 0 → c = 0 ay'_ortho_N' : ∀ (c : R), ∀ z ∈ N', c • a • y' + z = 0 → c = 0 n' : ℕ bN' : Basis (Fin n') R ↥N' z : O zN : z ∈ N b : R hb : ϕ ⟨z, ⋯⟩ = generator (ϕ.submoduleImage N) * b ⊢ N.subtype ⟨z - b • y, ⋯⟩ = z + -b • y
48ee91e21f4317c3
NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm
Mathlib/NumberTheory/NumberField/FinitePlaces.lean
/-- The norm of a maximal ideal is `> 1` -/ lemma one_lt_absNorm : 1 < absNorm v.asIdeal
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K v : HeightOneSpectrum (𝓞 K) h : absNorm v.asIdeal ≤ 1 ⊢ Finite (𝓞 K ⧸ v.asIdeal)
exact (v.asIdeal.fintypeQuotientOfFreeOfNeBot v.ne_bot).finite
no goals
849af9e987d28ab6
List.mem_range'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Range.lean
theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i | 0 => by simp [range', Nat.not_lt_zero] | n + 1 => by have h (i) : i ≤ n ↔ i = 0 ∨ ∃ j, i = succ j ∧ j < n
s step m : Nat ⊢ m ∈ range' s 0 step ↔ ∃ i, i < 0 ∧ m = s + step * i
simp [range', Nat.not_lt_zero]
no goals
1c34e10b4040f331
ContractingWith.isFixedPt_fixedPoint_iterate
Mathlib/Topology/MetricSpace/Contracting.lean
theorem isFixedPt_fixedPoint_iterate {n : ℕ} (hf : ContractingWith K f^[n]) : IsFixedPt f (hf.fixedPoint f^[n])
α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x this✝ : ¬IsFixedPt f x this : 0 < dist x (f x) ⊢ ↑K * dist x (f x) < dist x (f x)
simpa only [NNReal.coe_one, one_mul, NNReal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left
no goals
c937df74ec08dd68
FormalMultilinearSeries.changeOrigin_eval
Mathlib/Analysis/Analytic/ChangeOrigin.lean
theorem changeOrigin_eval (h : (‖x‖₊ + ‖y‖₊ : ℝ≥0∞) < p.radius) : (p.changeOrigin x).sum y = p.sum (x + y)
case mk.mk.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : CompleteSpace F p : FormalMultilinearSeries 𝕜 E F x y : E h : ↑‖x‖₊ + ↑‖y‖₊ < p.radius radius_pos : 0 < p.radius x_mem_ball : x ∈ EMetric.ball 0 p.radius y_mem_ball : y ∈ EMetric.ball 0 (p.changeOrigin x).radius x_add_y_mem_ball : x + y ∈ EMetric.ball 0 p.radius f : (k : ℕ) × (l : ℕ) × { s // s.card = l } → F := fun s => ((p.changeOriginSeriesTerm s.fst s.snd.fst ↑s.snd.snd ⋯) fun x_1 => x) fun x => y k l : ℕ s : Finset (Fin (k + l)) hs : s.card = l ⊢ ‖f ⟨k, ⟨l, ⟨s, hs⟩⟩⟩‖₊ ≤ ‖p (k + l)‖₊ * ‖x‖₊ ^ l * ‖y‖₊ ^ k
exact p.nnnorm_changeOriginSeriesTerm_apply_le _ _ _ _ _ _
no goals
ccc324cf6a7a6ae5
SimpleGraph.Subgraph.comap_monotone
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
theorem comap_monotone {G' : SimpleGraph W} (f : G →g G') : Monotone (Subgraph.comap f)
case right V : Type u W : Type v G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : G'.Subgraph h : H ≤ H' v w : V ⊢ G.Adj v w → H.Adj (f v) (f w) → H'.Adj (f v) (f w)
intro
case right V : Type u W : Type v G : SimpleGraph V G' : SimpleGraph W f : G →g G' H H' : G'.Subgraph h : H ≤ H' v w : V a✝ : G.Adj v w ⊢ H.Adj (f v) (f w) → H'.Adj (f v) (f w)
b65a5ecf003263d1
Stonean.epi_iff_surjective
Mathlib/Topology/Category/Stonean/Basic.lean
/-- A morphism in `Stonean` is an epi iff it is surjective. -/ lemma epi_iff_surjective {X Y : Stonean} (f : X ⟶ Y) : Epi f ↔ Function.Surjective f
X Y : Stonean f : X ⟶ Y h : Epi f y : ↑Y.toTop hy : ∀ (a : ↑X.toTop), (ConcreteCategory.hom f) a ≠ y ⊢ False
let C := Set.range f
X Y : Stonean f : X ⟶ Y h : Epi f y : ↑Y.toTop hy : ∀ (a : ↑X.toTop), (ConcreteCategory.hom f) a ≠ y C : Set ((fun X => ↑X.toTop) Y) := Set.range ⇑(ConcreteCategory.hom f) ⊢ False
333cfe532dfd4152
AkraBazziRecurrence.GrowsPolynomially.mul
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
protected lemma GrowsPolynomially.mul {f g : ℝ → ℝ} (hf : GrowsPolynomially f) (hg : GrowsPolynomially g) : GrowsPolynomially fun x => f x * g x
f g : ℝ → ℝ hf✝¹ : GrowsPolynomially f hg✝¹ : GrowsPolynomially g b : ℝ hb : b ∈ Set.Ioo 0 1 c₁ : ℝ hc₁_mem : c₁ > 0 c₂ : ℝ hc₂_mem : c₂ > 0 hf✝ : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, (fun x => |f x|) u ∈ Set.Icc (c₁ * (fun x => |f x|) x) (c₂ * (fun x => |f x|) x) c₃ : ℝ hc₃_mem : c₃ > 0 c₄ : ℝ hc₄_mem : c₄ > 0 hg✝ : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (b * x) x, (fun x => |g x|) u ∈ Set.Icc (c₃ * (fun x => |g x|) x) (c₄ * (fun x => |g x|) x) x : ℝ hf : ∀ u ∈ Set.Icc (b * x) x, |f u| ∈ Set.Icc (c₁ * |f x|) (c₂ * |f x|) hg : ∀ u ∈ Set.Icc (b * x) x, |g u| ∈ Set.Icc (c₃ * |g x|) (c₄ * |g x|) u : ℝ hu : u ∈ Set.Icc (b * x) x ⊢ c₂ * |f x| * (c₄ * |g x|) = c₂ * c₄ * (|f x| * |g x|)
ring
no goals
c399539f7cb9b401
MeasureTheory.Measure.eq_withDensity_rnDeriv
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem eq_withDensity_rnDeriv {s : Measure α} {f : α → ℝ≥0∞} (hf : Measurable f) (hs : s ⟂ₘ ν) (hadd : μ = s + ν.withDensity f) : ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
case intro.intro α : Type u_1 m : MeasurableSpace α μ ν s : Measure α f : α → ℝ≥0∞ hf : Measurable f hs : s ⟂ₘ ν hadd : μ = s + ν.withDensity f this : μ.HaveLebesgueDecomposition ν hmeas : Measurable (μ.rnDeriv ν) hsing : μ.singularPart ν ⟂ₘ ν hadd' : μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν) ⊢ ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
obtain ⟨⟨S, hS₁, hS₂, hS₃⟩, ⟨T, hT₁, hT₂, hT₃⟩⟩ := hs, hsing
case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 m : MeasurableSpace α μ ν s : Measure α f : α → ℝ≥0∞ hf : Measurable f hadd : μ = s + ν.withDensity f this : μ.HaveLebesgueDecomposition ν hmeas : Measurable (μ.rnDeriv ν) hadd' : μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν) S : Set α hS₁ : MeasurableSet S hS₂ : s S = 0 hS₃ : ν Sᶜ = 0 T : Set α hT₁ : MeasurableSet T hT₂ : (μ.singularPart ν) T = 0 hT₃ : ν Tᶜ = 0 ⊢ ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
fc3f06ec8038d87c
Cycle.Chain.imp
Mathlib/Data/List/Cycle.lean
theorem Chain.imp {r₁ r₂ : α → α → Prop} (H : ∀ a b, r₁ a b → r₂ a b) (p : Chain r₁ s) : Chain r₂ s
case HI α : Type u_1 s : Cycle α r₁ r₂ : α → α → Prop H : ∀ (a b : α), r₁ a b → r₂ a b a✝¹ : α l✝ : List α a✝ : Chain r₁ ↑l✝ → Chain r₂ ↑l✝ p : List.Chain r₁ a✝¹ (l✝ ++ [a✝¹]) ⊢ List.Chain r₂ a✝¹ (l✝ ++ [a✝¹])
exact p.imp H
no goals
f7c8f7679a6fc82c
Std.DHashMap.Raw.Const.getKeyD_ofList_of_contains_eq_false
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
theorem getKeyD_ofList_of_contains_eq_false [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k fallback : α} (contains_eq_false : (l.map Prod.fst).contains k = false) : (ofList l).getKeyD k fallback = fallback
α : Type u inst✝³ : BEq α inst✝² : Hashable α β : Type v inst✝¹ : EquivBEq α inst✝ : LawfulHashable α l : List (α × β) k fallback : α contains_eq_false : (List.map Prod.fst l).contains k = false ⊢ (ofList l).getKeyD k fallback = fallback
simp_to_raw using Raw₀.Const.getKeyD_insertMany_empty_list_of_contains_eq_false
no goals
d55c5bbc0972f7ce
Ideal.mem_pointwise_smul_iff_inv_smul_mem
Mathlib/RingTheory/Ideal/Pointwise.lean
theorem mem_pointwise_smul_iff_inv_smul_mem {a : M} {S : Ideal R} {x : R} : x ∈ a • S ↔ a⁻¹ • x ∈ S := ⟨fun h => by simpa using smul_mem_pointwise_smul a⁻¹ _ _ h, fun h => by simpa using smul_mem_pointwise_smul a _ _ h⟩
M : Type u_1 R : Type u_2 inst✝² : Group M inst✝¹ : Semiring R inst✝ : MulSemiringAction M R a : M S : Ideal R x : R h : x ∈ a • S ⊢ a⁻¹ • x ∈ S
simpa using smul_mem_pointwise_smul a⁻¹ _ _ h
no goals
02576b44d4ec2894
MeasureTheory.Measure.OuterRegular.of_restrict
Mathlib/MeasureTheory/Measure/Regular.lean
/-- If the restrictions of a measure to countably many open sets covering the space are outer regular, then the measure itself is outer regular. -/ lemma of_restrict [OpensMeasurableSpace α] {μ : Measure α} {s : ℕ → Set α} (h : ∀ n, OuterRegular (μ.restrict (s n))) (h' : ∀ n, IsOpen (s n)) (h'' : univ ⊆ ⋃ n, s n) : OuterRegular μ
α : Type u_1 inst✝² : MeasurableSpace α inst✝¹ : TopologicalSpace α inst✝ : OpensMeasurableSpace α μ : Measure α s : ℕ → Set α h : ∀ (n : ℕ), (μ.restrict (s n)).OuterRegular h' : ∀ (n : ℕ), IsOpen (s n) h'' : univ ⊆ ⋃ n, s n r : ℝ≥0∞ hm : ∀ (n : ℕ), MeasurableSet (s n) A : ℕ → Set α hAm : ∀ (n : ℕ), MeasurableSet (A n) hAs : ∀ (n : ℕ), A n ⊆ s n hAd : Pairwise (Disjoint on A) hA : MeasurableSet (⋃ n, A n) hr : r > μ (⋃ n, A n) HA : μ (⋃ n, A n) < ⊤ δ : ℕ → ℝ≥0∞ δ0 : ∀ (i : ℕ), 0 < δ i hδε : μ (⋃ n, A n) + ∑' (i : ℕ), δ i < r ⊢ ∀ (n : ℕ), ∃ U ⊇ A n, IsOpen U ∧ μ U < μ (A n) + δ n
intro n
α : Type u_1 inst✝² : MeasurableSpace α inst✝¹ : TopologicalSpace α inst✝ : OpensMeasurableSpace α μ : Measure α s : ℕ → Set α h : ∀ (n : ℕ), (μ.restrict (s n)).OuterRegular h' : ∀ (n : ℕ), IsOpen (s n) h'' : univ ⊆ ⋃ n, s n r : ℝ≥0∞ hm : ∀ (n : ℕ), MeasurableSet (s n) A : ℕ → Set α hAm : ∀ (n : ℕ), MeasurableSet (A n) hAs : ∀ (n : ℕ), A n ⊆ s n hAd : Pairwise (Disjoint on A) hA : MeasurableSet (⋃ n, A n) hr : r > μ (⋃ n, A n) HA : μ (⋃ n, A n) < ⊤ δ : ℕ → ℝ≥0∞ δ0 : ∀ (i : ℕ), 0 < δ i hδε : μ (⋃ n, A n) + ∑' (i : ℕ), δ i < r n : ℕ ⊢ ∃ U ⊇ A n, IsOpen U ∧ μ U < μ (A n) + δ n
aae30475f9af97a9
Real.fourierCoeff_tsum_comp_add
Mathlib/Analysis/Fourier/PoissonSummation.lean
theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, ℂ)} (hf : ∀ K : Compacts ℝ, Summable fun n : ℤ => ‖(f.comp (ContinuousMap.addRight n)).restrict K‖) (m : ℤ) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (f.comp (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := (fourier (-m)).comp { toFun := QuotientAddGroup.mk, continuous_toFun := ⋯ } neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), e.comp (ContinuousMap.addRight ↑n) = e ⊢ ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, (e * f.comp (ContinuousMap.addRight ↑n)) x = ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, (e.comp (ContinuousMap.addRight ↑n) * f.comp (ContinuousMap.addRight ↑n)) x
simp_rw [eadd]
no goals
ec2dd51bd198a0fb
AkraBazziRecurrence.GrowsPolynomially.eventually_atTop_nonneg_or_nonpos
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_atTop_nonneg_or_nonpos (hf : GrowsPolynomially f) : (∀ᶠ x in atTop, 0 ≤ f x) ∨ (∀ᶠ x in atTop, f x ≤ 0)
f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 h : ∀ᶠ (x : ℝ) in atTop, ∀ u ∈ Set.Icc (1 / 2 * x) x, f u ∈ Set.Icc (c₁ * f x) (c₂ * f x) heq : c₁ = c₂ c : ℝ hc✝ : ∀ᶠ (x : ℝ) in atTop, f x = c hneg : c < 0 x : ℝ hc : f x = c ⊢ f x < 0
simpa only [hc]
no goals
69674f7264744f71
Std.DHashMap.Internal.List.mem_alterKey_of_key_ne
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem mem_alterKey_of_key_ne {a : α} {f : Option (β a) → Option (β a)} {l : List ((a : α) × β a)} (p : (a : α) × β a) (hne : p.1 ≠ a) : p ∈ alterKey a f l ↔ p ∈ l
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : LawfulBEq α a : α f : Option (β a) → Option (β a) l : List ((a : α) × β a) p : (a : α) × β a hne : p.fst ≠ a ⊢ p ∈ alterKey a f l ↔ p ∈ l
rw [alterKey]
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : LawfulBEq α a : α f : Option (β a) → Option (β a) l : List ((a : α) × β a) p : (a : α) × β a hne : p.fst ≠ a ⊢ (p ∈ match f (getValueCast? a l) with | none => eraseKey a l | some v => insertEntry a v l) ↔ p ∈ l
c3b5d8c9bced3123
Set.range_list_getElem?
Mathlib/Data/Set/List.lean
theorem range_list_getElem? : range (l[·]? : ℕ → Option α) = insert none (some '' { x | x ∈ l })
case refine_2 α : Type u_1 l : List α ⊢ none ∈ range fun x => l[x]?
exact ⟨_, getElem?_eq_none_iff.mpr le_rfl⟩
no goals
ac656803bb38f6d4
doublyStochastic_sum_perm_aux
Mathlib/Analysis/Convex/Birkhoff.lean
/-- If M is a scalar multiple of a doubly stochastic matrix, then it is a conical combination of permutation matrices. This is most useful when M is a doubly stochastic matrix, in which case the combination is convex. This particular formulation is chosen to make the inductive step easier: we no longer need to rescale each time a permutation matrix is subtracted. -/ private lemma doublyStochastic_sum_perm_aux (M : Matrix n n R) (s : R) (hs : 0 ≤ s) (hM : ∃ M' ∈ doublyStochastic R n, M = s • M') : ∃ w : Equiv.Perm n → R, (∀ σ, 0 ≤ w σ) ∧ ∑ σ, w σ • σ.permMatrix R = M
R : Type u_1 n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : LinearOrderedField R h✝ : Nonempty n d : ℕ ih : ∀ m < d, ∀ (M : Matrix n n R) (s : R), 0 ≤ s → (∃ M' ∈ doublyStochastic R n, M = s • M') → #(filter (fun i => M i.1 i.2 ≠ 0) univ) = m → ∃ w, (∀ (σ : Equiv.Perm n), 0 ≤ w σ) ∧ ∑ σ : Equiv.Perm n, w σ • Equiv.Perm.permMatrix R σ = M M : Matrix n n R s : R hs : 0 ≤ s hM : (∀ (i j : n), 0 ≤ M i j) ∧ (∀ (i : n), ∑ j : n, M i j = s) ∧ ∀ (j : n), ∑ i : n, M i j = s hd : #(filter (fun i => M i.1 i.2 ≠ 0) univ) = d hs' : 0 < s σ : Equiv.Perm n hσ : ∀ (i j : n), M i j = 0 → Equiv.Perm.permMatrix R σ i j = 0 i : n hi : i ∈ univ hi' : ∀ x' ∈ univ, M i (σ i) ≤ M x' (σ x') N : Matrix n n R := M - M i (σ i) • Equiv.Perm.permMatrix R σ hMi' : 0 < M i (σ i) s' : R := s - M i (σ i) ⊢ M i (σ i) ≤ ∑ j : n, M i j
exact single_le_sum (fun j _ => hM.1 i j) (by simp)
no goals
fe82d3c50ee8248f
MeasureTheory.aestronglyMeasurable_condExpL1CLM
Mathlib/MeasureTheory/Function/ConditionalExpectation/CondexpL1.lean
theorem aestronglyMeasurable_condExpL1CLM (f : α →₁[μ] F') : AEStronglyMeasurable[m] (condExpL1CLM F' hm μ f) μ
case refine_1 α : Type u_1 F' : Type u_3 inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 inst✝ : SigmaFinite (μ.trim hm) f : ↥(Lp F' 1 μ) c : F' s : Set α hs : MeasurableSet s hμs : μ s < ⊤ ⊢ AEStronglyMeasurable (↑↑((condExpL1CLM F' hm μ) ↑(simpleFunc.indicatorConst 1 hs ⋯ c))) μ
rw [condExpL1CLM_indicatorConst hs hμs.ne c]
case refine_1 α : Type u_1 F' : Type u_3 inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α hm : m ≤ m0 inst✝ : SigmaFinite (μ.trim hm) f : ↥(Lp F' 1 μ) c : F' s : Set α hs : MeasurableSet s hμs : μ s < ⊤ ⊢ AEStronglyMeasurable (↑↑((condExpInd F' hm μ s) c)) μ
3f7d93520dda47e8
IntermediateField.Lifts.union_isExtendible
Mathlib/FieldTheory/Extension.lean
theorem union_isExtendible [alg : Algebra.IsAlgebraic F E] [Nonempty c] (hext : ∀ σ ∈ c, σ.IsExtendible) : (union c hc).IsExtendible := fun S ↦ by let Ω := adjoin F (S : Set E) →ₐ[F] K have ⟨ω, hω⟩ : ∃ ω : Ω, ∀ π : c, ∃ θ ≥ π.1, ⟨_, ω⟩ ≤ θ ∧ θ.carrier = π.1.1 ⊔ adjoin F S
F : Type u_1 E : Type u_2 K : Type u_3 inst✝⁵ : Field F inst✝⁴ : Field E inst✝³ : Field K inst✝² : Algebra F E inst✝¹ : Algebra F K c : Set (Lifts F E K) hc : IsChain (fun x1 x2 => x1 ≤ x2) c alg : Algebra.IsAlgebraic F E inst✝ : Nonempty ↑c hext : ∀ σ ∈ c, σ.IsExtendible S : Finset E Ω : Type (max u_2 u_3) := ↥(adjoin F ↑S) →ₐ[F] K ω : Ω θ : ↑c → Lifts F E K ge : ∀ (π : ↑c), θ π ≥ ↑π hθ : ∀ (π : ↑c), { carrier := adjoin F ↑S, emb := ω } ≤ θ π eq : ∀ (π : ↑c), (θ π).carrier = (↑π).carrier ⊔ adjoin F ↑S this : IsChain (fun x1 x2 => x1 ≤ x2) (Set.range θ) ⊢ ↑S ⊆ ↑(union (Set.range θ) this).carrier
simp_rw [carrier_union, iSup_range', eq]
F : Type u_1 E : Type u_2 K : Type u_3 inst✝⁵ : Field F inst✝⁴ : Field E inst✝³ : Field K inst✝² : Algebra F E inst✝¹ : Algebra F K c : Set (Lifts F E K) hc : IsChain (fun x1 x2 => x1 ≤ x2) c alg : Algebra.IsAlgebraic F E inst✝ : Nonempty ↑c hext : ∀ σ ∈ c, σ.IsExtendible S : Finset E Ω : Type (max u_2 u_3) := ↥(adjoin F ↑S) →ₐ[F] K ω : Ω θ : ↑c → Lifts F E K ge : ∀ (π : ↑c), θ π ≥ ↑π hθ : ∀ (π : ↑c), { carrier := adjoin F ↑S, emb := ω } ≤ θ π eq : ∀ (π : ↑c), (θ π).carrier = (↑π).carrier ⊔ adjoin F ↑S this : IsChain (fun x1 x2 => x1 ≤ x2) (Set.range θ) ⊢ ↑S ⊆ ↑(⨆ i, (↑i).carrier ⊔ adjoin F ↑S)
f447a1810182010c
frontier_univ_prod_eq
Mathlib/Topology/Constructions.lean
theorem frontier_univ_prod_eq (s : Set Y) : frontier ((univ : Set X) ×ˢ s) = univ ×ˢ frontier s
X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set Y ⊢ frontier (univ ×ˢ s) = univ ×ˢ frontier s
simp [frontier_prod_eq]
no goals
b3fc2d5c16ff578b
List.fst_lt_add_of_mem_enumFrom
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Range.lean
theorem fst_lt_add_of_mem_enumFrom {x : Nat × α} {n : Nat} {l : List α} (h : x ∈ enumFrom n l) : x.1 < n + length l
case intro α : Type u_1 n : Nat l : List α i : Fin (enumFrom n l).length h : (enumFrom n l).get i ∈ enumFrom n l ⊢ ((enumFrom n l).get i).fst < n + l.length
simpa using i.isLt
no goals
c1ce1a46fa439db5
MeasureTheory.IsSetSemiring.disjointOfUnion_props
Mathlib/MeasureTheory/SetSemiring.lean
theorem disjointOfUnion_props (hC : IsSetSemiring C) (h1 : ↑J ⊆ C) : ∃ K : Set α → Finset (Set α), PairwiseDisjoint J K ∧ (∀ i ∈ J, ↑(K i) ⊆ C) ∧ PairwiseDisjoint (⋃ x ∈ J, (K x : Set (Set α))) id ∧ (∀ j ∈ J, ⋃₀ K j ⊆ j) ∧ (∀ j ∈ J, ∅ ∉ K j) ∧ ⋃₀ J = ⋃₀ (⋃ x ∈ J, (K x : Set (Set α)))
case h.refine_6 α : Type u_1 C : Set (Set α) J✝ : Finset (Set α) hC : IsSetSemiring C s : Set α J : Finset (Set α) hJ : s ∉ J hind : ↑J ⊆ C → ∃ K, (↑J).PairwiseDisjoint K ∧ (∀ i ∈ J, ↑(K i) ⊆ C) ∧ (⋃ x ∈ J, ↑(K x)).PairwiseDisjoint id ∧ (∀ j ∈ J, ⋃₀ ↑(K j) ⊆ j) ∧ (∀ j ∈ J, ∅ ∉ K j) ∧ ⋃₀ ↑J = ⋃₀ ⋃ x ∈ J, ↑(K x) h1 : s ∈ C ∧ ↑J ⊆ C K : Set α → Finset (Set α) hK0 : (↑J).PairwiseDisjoint K hK1 : ∀ i ∈ J, ↑(K i) ⊆ C hK2 : (⋃ x ∈ J, ↑(K x)).PairwiseDisjoint id hK3 : ∀ j ∈ J, ⋃₀ ↑(K j) ⊆ j hK4 : ∀ j ∈ J, ∅ ∉ K j hK5 : ⋃₀ ↑J = ⋃₀ ⋃ x ∈ J, ↑(K x) K1 : Set α → Finset (Set α) := fun t => if t = s then hC.disjointOfDiffUnion ⋯ ⋯ else K t hK1s : K1 s = hC.disjointOfDiffUnion ⋯ ⋯ hK1_of_ne : ∀ (t : Set α), t ≠ s → K1 t = K t ht1' : ∀ x ∈ J, K1 x = K x ht2 : ⋃ x ∈ J, ↑(K1 x) = ⋃ x ∈ J, ↑(K x) ⊢ s ∪ ⋃₀ ↑J = ⋃₀ ⋃ x, ⋃ (_ : x = s ∨ x ∈ J), ↑(K1 x)
simp only [iUnion_iUnion_eq_or_left, ht2, sUnion_union, ht2, K1]
case h.refine_6 α : Type u_1 C : Set (Set α) J✝ : Finset (Set α) hC : IsSetSemiring C s : Set α J : Finset (Set α) hJ : s ∉ J hind : ↑J ⊆ C → ∃ K, (↑J).PairwiseDisjoint K ∧ (∀ i ∈ J, ↑(K i) ⊆ C) ∧ (⋃ x ∈ J, ↑(K x)).PairwiseDisjoint id ∧ (∀ j ∈ J, ⋃₀ ↑(K j) ⊆ j) ∧ (∀ j ∈ J, ∅ ∉ K j) ∧ ⋃₀ ↑J = ⋃₀ ⋃ x ∈ J, ↑(K x) h1 : s ∈ C ∧ ↑J ⊆ C K : Set α → Finset (Set α) hK0 : (↑J).PairwiseDisjoint K hK1 : ∀ i ∈ J, ↑(K i) ⊆ C hK2 : (⋃ x ∈ J, ↑(K x)).PairwiseDisjoint id hK3 : ∀ j ∈ J, ⋃₀ ↑(K j) ⊆ j hK4 : ∀ j ∈ J, ∅ ∉ K j hK5 : ⋃₀ ↑J = ⋃₀ ⋃ x ∈ J, ↑(K x) K1 : Set α → Finset (Set α) := fun t => if t = s then hC.disjointOfDiffUnion ⋯ ⋯ else K t hK1s : K1 s = hC.disjointOfDiffUnion ⋯ ⋯ hK1_of_ne : ∀ (t : Set α), t ≠ s → K1 t = K t ht1' : ∀ x ∈ J, K1 x = K x ht2 : ⋃ x ∈ J, ↑(K1 x) = ⋃ x ∈ J, ↑(K x) ⊢ s ∪ ⋃₀ ↑J = ⋃₀ ↑(if True then hC.disjointOfDiffUnion ⋯ ⋯ else K s) ∪ ⋃₀ ⋃ x ∈ J, ↑(K x)
defbf789029f4cb3
FractionalIdeal.isFractional_span_iff
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ ∃ a ∈ S, ∀ b : P, b ∈ s → IsInteger R (a • b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun _ hb => span_induction (hx := hb) h (by rw [smul_zero] exact isInteger_zero) (fun x y _ _ hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x _ hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P s : Set P x✝³ : ∃ a ∈ S, ∀ b ∈ s, IsInteger R (a • b) a : R a_mem : a ∈ S h : ∀ b ∈ s, IsInteger R (a • b) x✝² : P hb : x✝² ∈ span R s x y : P x✝¹ : x ∈ span R s x✝ : y ∈ span R s hx : IsInteger R (a • x) hy : IsInteger R (a • y) ⊢ IsInteger R (a • (x + y))
rw [smul_add]
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P s : Set P x✝³ : ∃ a ∈ S, ∀ b ∈ s, IsInteger R (a • b) a : R a_mem : a ∈ S h : ∀ b ∈ s, IsInteger R (a • b) x✝² : P hb : x✝² ∈ span R s x y : P x✝¹ : x ∈ span R s x✝ : y ∈ span R s hx : IsInteger R (a • x) hy : IsInteger R (a • y) ⊢ IsInteger R (a • x + a • y)
6aeb6df4d04dfba9
MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos'
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
theorem exists_subset_restrict_nonpos' (hi₁ : MeasurableSet i) (hi₂ : s i < 0) (hn : ¬∀ n : ℕ, ¬s ≤[i \ ⋃ l < n, restrictNonposSeq s i l] 0) : ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ s ≤[j] 0 ∧ s j < 0
case neg.h α : Type u_1 inst✝ : MeasurableSpace α s : SignedMeasure α i : Set α hi₁ : MeasurableSet i hi₂ : ↑s i < 0 h : ¬s ≤[i] 0 hn : ∃ n, s ≤[i \ ⋃ l, ⋃ (_ : l < n), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 k : ℕ := Nat.find hn hk₂ : s ≤[i \ ⋃ l, ⋃ (_ : l < k), MeasureTheory.SignedMeasure.restrictNonposSeq s i l] 0 hmeas : MeasurableSet (⋃ l, ⋃ (_ : l < k), MeasureTheory.SignedMeasure.restrictNonposSeq s i l) a : ℕ x : α a✝ : a < k hx : x ∈ MeasureTheory.SignedMeasure.restrictNonposSeq s i a ⊢ x ∈ i
exact restrictNonposSeq_subset _ hx
no goals
37ca223bdee11c33
Mathlib.Tactic.LinearCombination'.eq_of_add
Mathlib/Tactic/LinearCombination'.lean
theorem eq_of_add [AddGroup α] (p : (a:α) = b) (H : (a' - b') - (a - b) = 0) : a' = b'
α : Type u_1 a a' b b' : α inst✝ : AddGroup α p : a - b = 0 H : a' - b' - (a - b) = 0 ⊢ a' - b' = 0
rwa [sub_eq_zero, p] at H
no goals
cd0168b15ad88650
CategoryTheory.ChosenFiniteProducts.prodComparisonBifunctorNatTrans_comp
Mathlib/CategoryTheory/ChosenFiniteProducts.lean
theorem prodComparisonBifunctorNatTrans_comp {E : Type u₂} [Category.{v₂} E] [ChosenFiniteProducts E] (G : D ⥤ E) : prodComparisonBifunctorNatTrans (F ⋙ G) = whiskerRight (prodComparisonBifunctorNatTrans F) ((whiskeringRight _ _ _).obj G) ≫ whiskerLeft F (whiskerRight (prodComparisonBifunctorNatTrans G) ((whiskeringLeft _ _ _).obj F))
case w.h.w.h C : Type u inst✝⁵ : Category.{v, u} C inst✝⁴ : ChosenFiniteProducts C D : Type u₁ inst✝³ : Category.{v₁, u₁} D inst✝² : ChosenFiniteProducts D F : C ⥤ D E : Type u₂ inst✝¹ : Category.{v₂, u₂} E inst✝ : ChosenFiniteProducts E G : D ⥤ E x✝¹ x✝ : C ⊢ ((prodComparisonBifunctorNatTrans (F ⋙ G)).app x✝¹).app x✝ = ((whiskerRight (prodComparisonBifunctorNatTrans F) ((whiskeringRight C D E).obj G) ≫ whiskerLeft F (whiskerRight (prodComparisonBifunctorNatTrans G) ((whiskeringLeft C D E).obj F))).app x✝¹).app x✝
simp [prodComparison_comp]
no goals
f893aa99a63240f8
List.Duplicate.mono_sublist
Mathlib/Data/List/Duplicate.lean
theorem Duplicate.mono_sublist {l' : List α} (hx : x ∈+ l) (h : l <+ l') : x ∈+ l'
case cons₂ α : Type u_1 l : List α x : α l' l₁ l₂ : List α y : α h : l₁ <+ l₂ IH : x ∈+ l₁ → x ∈+ l₂ hx : x ∈+ y :: l₁ ⊢ x ∈+ y :: l₂
rw [duplicate_cons_iff] at hx ⊢
case cons₂ α : Type u_1 l : List α x : α l' l₁ l₂ : List α y : α h : l₁ <+ l₂ IH : x ∈+ l₁ → x ∈+ l₂ hx : y = x ∧ x ∈ l₁ ∨ x ∈+ l₁ ⊢ y = x ∧ x ∈ l₂ ∨ x ∈+ l₂
81309db93c0eb7b6
MeasureTheory.Content.innerContent_pos_of_is_mul_left_invariant
Mathlib/MeasureTheory/Measure/Content.lean
theorem innerContent_pos_of_is_mul_left_invariant [Group G] [IsTopologicalGroup G] (h3 : ∀ (g : G) {K : Compacts G}, μ (K.map _ <| continuous_mul_left g) = μ K) (K : Compacts G) (hK : μ K ≠ 0) (U : Opens G) (hU : (U : Set G).Nonempty) : 0 < μ.innerContent U
G : Type w inst✝² : TopologicalSpace G μ : Content G inst✝¹ : Group G inst✝ : IsTopologicalGroup G h3 : ∀ (g : G) {K : Compacts G}, μ (Compacts.map (fun b => g * b) ⋯ K) = μ K K : Compacts G hK : μ K ≠ 0 U : Opens G hU : (↑U).Nonempty this : (interior ↑U).Nonempty s : Finset G hs : K.carrier ⊆ ⋃ g ∈ s, (fun x => g * x) ⁻¹' ↑U ⊢ ↑K ⊆ ↑(⨆ g ∈ s, (Opens.comap ↑(Homeomorph.mulLeft g)) U)
simpa only [Opens.iSup_def, Opens.coe_comap, Subtype.coe_mk]
no goals
08eb0f8d74959da1
SmoothBumpCovering.embeddingPiTangent_ker_mfderiv
Mathlib/Geometry/Manifold/WhitneyEmbedding.lean
theorem embeddingPiTangent_ker_mfderiv (x : M) (hx : x ∈ s) : LinearMap.ker (mfderiv I 𝓘(ℝ, ι → E × ℝ) f.embeddingPiTangent x) = ⊥
ι : Type uι E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : FiniteDimensional ℝ E H : Type uH inst✝⁵ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M inst✝² : IsManifold I ∞ M inst✝¹ : T2Space M inst✝ : Fintype ι s : Set M f : SmoothBumpCovering ι I M s x : M hx : x ∈ s ⊢ LinearMap.ker (mfderiv I 𝓘(ℝ, ι → E × ℝ) (⇑f.embeddingPiTangent) x) = ⊥
apply bot_unique
case h ι : Type uι E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : FiniteDimensional ℝ E H : Type uH inst✝⁵ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M inst✝² : IsManifold I ∞ M inst✝¹ : T2Space M inst✝ : Fintype ι s : Set M f : SmoothBumpCovering ι I M s x : M hx : x ∈ s ⊢ LinearMap.ker (mfderiv I 𝓘(ℝ, ι → E × ℝ) (⇑f.embeddingPiTangent) x) ≤ ⊥
a0f8631339390c09
Set.preimage_iUnionLift
Mathlib/Data/Set/UnionLift.lean
theorem preimage_iUnionLift (t : Set β) : iUnionLift S f hf T hT ⁻¹' t = inclusion hT ⁻¹' (⋃ i, inclusion (subset_iUnion S i) '' (f i ⁻¹' t))
case h.mp α : Type u_1 ι : Sort u_3 β : Type u_2 S : ι → Set α f : (i : ι) → ↑(S i) → β hf : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), f i ⟨x, hxi⟩ = f j ⟨x, hxj⟩ T : Set α hT : T ⊆ iUnion S t : Set β x : ↑T ⊢ iUnionLift S f hf T hT x ∈ t → ∃ i x_1, f i x_1 ∈ t ∧ inclusion ⋯ x_1 = inclusion hT x
rcases mem_iUnion.1 (hT x.prop) with ⟨i, hi⟩
case h.mp.intro α : Type u_1 ι : Sort u_3 β : Type u_2 S : ι → Set α f : (i : ι) → ↑(S i) → β hf : ∀ (i j : ι) (x : α) (hxi : x ∈ S i) (hxj : x ∈ S j), f i ⟨x, hxi⟩ = f j ⟨x, hxj⟩ T : Set α hT : T ⊆ iUnion S t : Set β x : ↑T i : ι hi : ↑x ∈ S i ⊢ iUnionLift S f hf T hT x ∈ t → ∃ i x_1, f i x_1 ∈ t ∧ inclusion ⋯ x_1 = inclusion hT x
553a23558fd28573
Ideal.Filtration.submodule_eq_span_le_iff_stable_ge
Mathlib/RingTheory/Filtration.lean
theorem submodule_eq_span_le_iff_stable_ge (n₀ : ℕ) : F.submodule = Submodule.span _ (⋃ i ≤ n₀, single R i '' (F.N i : Set M)) ↔ ∀ n ≥ n₀, I • F.N n = F.N (n + 1)
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(F.N i)) hF : ∀ n ≥ n₀, I • F.N n = F.N (n + 1) i✝ i : ℕ hi : i ≤ n₀ ⊢ ⇑(single R i) '' ↑(F.N i) ⊆ ↑F'
refine Set.Subset.trans ?_ Submodule.subset_span
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F : I.Filtration M n₀ : ℕ F' : Submodule (↥(reesAlgebra I)) (PolynomialModule R M) := Submodule.span (↥(reesAlgebra I)) (⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(F.N i)) hF : ∀ n ≥ n₀, I • F.N n = F.N (n + 1) i✝ i : ℕ hi : i ≤ n₀ ⊢ ⇑(single R i) '' ↑(F.N i) ⊆ ⋃ i, ⋃ (_ : i ≤ n₀), ⇑(single R i) '' ↑(F.N i)
fba02d553ffa8877
AntilipschitzWith.hausdorffMeasure_preimage_le
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem hausdorffMeasure_preimage_le (hf : AntilipschitzWith K f) (hd : 0 ≤ d) (s : Set Y) : μH[d] (f ⁻¹' s) ≤ (K : ℝ≥0∞) ^ d * μH[d] s
case inl.inr.intro.inl X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y inst✝³ : MeasurableSpace X inst✝² : BorelSpace X inst✝¹ : MeasurableSpace Y inst✝ : BorelSpace Y f : X → Y s : Set Y hf : AntilipschitzWith 0 f x : X hx : x ∈ f ⁻¹' s this : f ⁻¹' s = {x} hd : 0 ≤ 0 ⊢ 1 ≤ μH[0] s
exact one_le_hausdorffMeasure_zero_of_nonempty ⟨f x, hx⟩
no goals
d3852939648a0879
CategoryTheory.Functor.mem_mapTriangle_essImage_of_distinguished
Mathlib/CategoryTheory/Triangulated/Functor.lean
lemma mem_mapTriangle_essImage_of_distinguished [F.IsTriangulated] [F.mapArrow.EssSurj] (T : Triangle D) (hT : T ∈ distTriang D) : ∃ (T' : Triangle C) (_ : T' ∈ distTriang C), Nonempty (F.mapTriangle.obj T' ≅ T)
case intro.intro.intro.intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝¹⁴ : Category.{u_4, u_1} C inst✝¹³ : Category.{u_5, u_2} D inst✝¹² : HasShift C ℤ inst✝¹¹ : HasShift D ℤ F : C ⥤ D inst✝¹⁰ : F.CommShift ℤ inst✝⁹ : HasZeroObject C inst✝⁸ : HasZeroObject D inst✝⁷ : Preadditive C inst✝⁶ : Preadditive D inst✝⁵ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝⁴ : ∀ (n : ℤ), (shiftFunctor D n).Additive inst✝³ : Pretriangulated C inst✝² : Pretriangulated D inst✝¹ : F.IsTriangulated inst✝ : F.mapArrow.EssSurj T : Triangle D hT : T ∈ distinguishedTriangles X Y : C f : X ⟶ Y e₁ : F.obj X ≅ T.obj₁ e₂ : F.obj Y ≅ T.obj₂ w : F.map f ≫ e₂.hom = e₁.hom ≫ T.mor₁ W : C g : Y ⟶ W h : W ⟶ (shiftFunctor C 1).obj X H : Triangle.mk f g h ∈ distinguishedTriangles ⊢ ∃ T', ∃ (_ : T' ∈ distinguishedTriangles), Nonempty (F.mapTriangle.obj T' ≅ T)
exact ⟨_, H, ⟨isoTriangleOfIso₁₂ _ _ (F.map_distinguished _ H) hT e₁ e₂ w⟩⟩
no goals
5c95eca80a040aef
toIcoDiv_zsmul_add
Mathlib/Algebra/Order/ToIntervalMod.lean
theorem toIcoDiv_zsmul_add (a b : α) (m : ℤ) : toIcoDiv hp a (m • p + b) = m + toIcoDiv hp a b
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a b : α m : ℤ ⊢ toIcoDiv hp a (m • p + b) = m + toIcoDiv hp a b
rw [add_comm, toIcoDiv_add_zsmul, add_comm]
no goals
df5425d9871ec943
MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory
Mathlib/MeasureTheory/Measure/Hausdorff.lean
theorem borel_le_caratheodory (hm : IsMetric μ) : borel X ≤ μ.caratheodory
X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric ⊢ MeasurableSpace.generateFrom {s | IsClosed s} ≤ μ.caratheodory
refine MeasurableSpace.generateFrom_le fun t ht => μ.isCaratheodory_iff_le.2 fun s => ?_
X : Type u_2 inst✝ : EMetricSpace X μ : OuterMeasure X hm : μ.IsMetric t : Set X ht : t ∈ {s | IsClosed s} s : Set X ⊢ μ (s ∩ t) + μ (s \ t) ≤ μ s
603b48ab3190787f
Matrix.PosSemidef.fromBlocks₁₁
Mathlib/LinearAlgebra/Matrix/SchurComplement.lean
theorem PosSemidef.fromBlocks₁₁ [Fintype m] [DecidableEq m] [Fintype n] {A : Matrix m m 𝕜} (B : Matrix m n 𝕜) (D : Matrix n n 𝕜) (hA : A.PosDef) [Invertible A] : (fromBlocks A B Bᴴ D).PosSemidef ↔ (D - Bᴴ * A⁻¹ * B).PosSemidef
case mpr m : Type u_2 n : Type u_3 𝕜 : Type u_5 inst✝⁷ : CommRing 𝕜 inst✝⁶ : StarRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (D - Bᴴ * A⁻¹ * B).PosSemidef → (D - Bᴴ * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ fromBlocks A B Bᴴ D *ᵥ x
refine fun h => ⟨h.1, fun x => ?_⟩
case mpr m : Type u_2 n : Type u_3 𝕜 : Type u_5 inst✝⁷ : CommRing 𝕜 inst✝⁶ : StarRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - Bᴴ * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ fromBlocks A B Bᴴ D *ᵥ x
80a4e91088bca52a
mul_inv_mul_cancel
Mathlib/Algebra/GroupWithZero/Basic.lean
theorem mul_inv_mul_cancel (a : G₀) : a * a⁻¹ * a = a
case pos G₀ : Type u_2 inst✝ : GroupWithZero G₀ a : G₀ h : a = 0 ⊢ a * a⁻¹ * a = a
rw [h, inv_zero, mul_zero]
no goals
c905b8d43fbe3da1
BitVec.le_zero_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem le_zero_iff {x : BitVec w} : x ≤ 0#w ↔ x = 0#w
case mp w : Nat x : BitVec w h : x ≤ 0#w ⊢ x = 0#w
have : x ≥ 0 := not_lt_iff_le.mp not_lt_zero
case mp w : Nat x : BitVec w h : x ≤ 0#w this : x ≥ 0 ⊢ x = 0#w
d0bc1f43385390a3
Topology.IsClosedEmbedding.preimage_closedPoints
Mathlib/Topology/JacobsonSpace.lean
lemma Topology.IsClosedEmbedding.preimage_closedPoints (hf : IsClosedEmbedding f) : f ⁻¹' closedPoints Y = closedPoints X
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : IsClosedEmbedding f ⊢ f ⁻¹' closedPoints Y = closedPoints X
ext x
case h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : IsClosedEmbedding f x : X ⊢ x ∈ f ⁻¹' closedPoints Y ↔ x ∈ closedPoints X
7d8dbc1c3380d18e
SimpleGraph.Walk.IsEulerian.even_degree_iff
Mathlib/Combinatorics/SimpleGraph/Trails.lean
theorem IsEulerian.even_degree_iff {x u v : V} {p : G.Walk u v} (ht : p.IsEulerian) [Fintype V] [DecidableRel G.Adj] : Even (G.degree x) ↔ u ≠ v → x ≠ u ∧ x ≠ v
case h.e'_1.h.e'_3 V : Type u_1 G : SimpleGraph V inst✝² : DecidableEq V x u v : V p : G.Walk u v ht : p.IsEulerian inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj ⊢ (G.incidenceFinset x).val.card = (Multiset.filter (fun e => x ∈ e) ↑p.edges).card
congr 1
case h.e'_1.h.e'_3.e_a V : Type u_1 G : SimpleGraph V inst✝² : DecidableEq V x u v : V p : G.Walk u v ht : p.IsEulerian inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj ⊢ (G.incidenceFinset x).val = Multiset.filter (fun e => x ∈ e) ↑p.edges
5fed760b6a554578
Finset.Colex.erase_le_erase_min'
Mathlib/Combinatorics/Colex.lean
/-- If `s ≤ t` in colex and `#s ≤ #t`, then `s \ {a} ≤ t \ {min t}` for any `a ∈ s`. -/ lemma erase_le_erase_min' (hst : toColex s ≤ toColex t) (hcard : #s ≤ #t) (ha : a ∈ s) : toColex (s.erase a) ≤ toColex (t.erase <| min' t <| card_pos.1 <| (card_pos.2 ⟨a, ha⟩).trans_le hcard)
case inr.intro.intro.intro.inr.inl α : Type u_1 inst✝ : LinearOrder α s t : Finset α a : α hcard : #s ≤ #t ha : a ∈ s ht : t.Nonempty m : α := t.min' ht h' : s ≠ t hwt : m ∈ t hws : m ∉ s hw : ∀ ⦃a : α⦄, m < a → (a ∈ s ↔ a ∈ t) haw : a < m ⊢ { ofColex := s.erase a } ≤ { ofColex := t.erase m }
have : erase t m ⊆ erase s a := by rintro b hb rw [mem_erase] at hb ⊢ exact ⟨(haw.trans_le <| min'_le _ _ hb.2).ne', (hw <| hb.1.lt_of_le' <| min'_le _ _ hb.2).2 hb.2⟩
case inr.intro.intro.intro.inr.inl α : Type u_1 inst✝ : LinearOrder α s t : Finset α a : α hcard : #s ≤ #t ha : a ∈ s ht : t.Nonempty m : α := t.min' ht h' : s ≠ t hwt : m ∈ t hws : m ∉ s hw : ∀ ⦃a : α⦄, m < a → (a ∈ s ↔ a ∈ t) haw : a < m this : t.erase m ⊆ s.erase a ⊢ { ofColex := s.erase a } ≤ { ofColex := t.erase m }
94805d4e030ffc34
isLUB_Ioo
Mathlib/Order/Bounds/Basic.lean
theorem isLUB_Ioo {a b : γ} (hab : a < b) : IsLUB (Ioo a b) b
γ : Type v inst✝¹ : SemilatticeInf γ inst✝ : DenselyOrdered γ a b : γ hab : a < b ⊢ IsLUB (Ioo a b) b
simpa only [dual_Ioo] using isGLB_Ioo hab.dual
no goals
7075546f82949525
Estimator.improveUntilAux_spec
Mathlib/Order/Estimator.lean
theorem Estimator.improveUntilAux_spec (a : Thunk α) (p : α → Bool) [Estimator a ε] [WellFoundedGT (range (bound a : ε → α))] (e : ε) (r : Bool) : match Estimator.improveUntilAux a p e r with | .error _ => ¬ p a.get | .ok e' => p (bound a e')
case pos α : Type u_1 ε : Type u_2 inst✝² : Preorder α a : Thunk α p : α → Bool inst✝¹ : Estimator a ε inst✝ : WellFoundedGT ↑(range (bound a)) e : ε r : Bool h : p (bound a e) = true ⊢ match if True then pure e else match improve a e, ⋯ with | none, x => Except.error (if r = true then none else some e) | some e', x => improveUntilAux a p e' true with | Except.error a_1 => ¬p a.get = true | Except.ok e' => p (bound a e') = true
exact h
no goals
66dc4c70c5091567
Dynamics.coverMincard_univ
Mathlib/Dynamics/TopologicalEntropy/CoverEntropy.lean
lemma coverMincard_univ (T : X → X) {F : Set X} (h : F.Nonempty) (n : ℕ) : coverMincard T F univ n = 1
X : Type u_1 T : X → X F : Set X h : F.Nonempty n : ℕ ⊢ coverMincard T F univ n = 1
apply le_antisymm _ ((one_le_coverMincard_iff T F univ n).2 h)
X : Type u_1 T : X → X F : Set X h : F.Nonempty n : ℕ ⊢ coverMincard T F univ n ≤ 1
1832f6ac09cf7d05
KaehlerDifferential.span_range_derivation
Mathlib/RingTheory/Kaehler/Basic.lean
theorem KaehlerDifferential.span_range_derivation : Submodule.span S (Set.range <| KaehlerDifferential.D R S) = ⊤
case intro.mk.refine_4.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : Algebra R S x✝ : S ⊗[R] S hx : x✝ ∈ ideal R S this : x✝ ∈ Submodule.span S (Set.range fun s => 1 ⊗ₜ[R] s - s ⊗ₜ[R] 1) r : S x : S ⊗[R] S hx₁ : x ∈ ideal R S hx₂ : (ideal R S).toCotangent ⟨x, hx₁⟩ ∈ Submodule.span S (Set.range ⇑(D R S)) ⊢ ∃ (hx : r • x ∈ ideal R S), (ideal R S).toCotangent ⟨r • x, hx⟩ ∈ Submodule.span S (Set.range ⇑(D R S))
exact ⟨((KaehlerDifferential.ideal R S).restrictScalars S).smul_mem r hx₁, Submodule.smul_mem _ r hx₂⟩
no goals
c1fdba8f7521637c
schnirelmannDensity_finset
Mathlib/Combinatorics/Schnirelmann.lean
/-- The Schnirelmann density of any finset is `0`. -/ lemma schnirelmannDensity_finset (A : Finset ℕ) : schnirelmannDensity A = 0
A : Finset ℕ ε : ℝ hε : 0 < ε hε₁ : ε ≤ 1 ⊢ ∃ n, 0 < n ∧ ↑(#(filter (fun a => a ∈ ↑A) (Ioc 0 n))) / ↑n < ε
let n : ℕ := ⌊#A / ε⌋₊ + 1
A : Finset ℕ ε : ℝ hε : 0 < ε hε₁ : ε ≤ 1 n : ℕ := ⌊↑(#A) / ε⌋₊ + 1 ⊢ ∃ n, 0 < n ∧ ↑(#(filter (fun a => a ∈ ↑A) (Ioc 0 n))) / ↑n < ε
8e68ea4bfdcfb76e
Polynomial.iterate_derivative_C_mul
Mathlib/Algebra/Polynomial/Derivative.lean
theorem iterate_derivative_C_mul (a : R) (p : R[X]) (k : ℕ) : derivative^[k] (C a * p) = C a * derivative^[k] p
R : Type u inst✝ : Semiring R a : R p : R[X] k : ℕ ⊢ (⇑derivative)^[k] (C a * p) = C a * (⇑derivative)^[k] p
simp_rw [← smul_eq_C_mul, iterate_derivative_smul]
no goals
e6a4491999f3fb6b
CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π
C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Cofork f g ⊢ s.ι.app zero = f ≫ s.π
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
no goals
d64991ddd51fc3ff
LaurentSeries.single_order_mul_powerSeriesPart
Mathlib/RingTheory/LaurentSeries.lean
theorem single_order_mul_powerSeriesPart (x : R⸨X⸩) : (single x.order 1 : R⸨X⸩) * x.powerSeriesPart = x
case neg R : Type u_1 inst✝ : Semiring R x : R⸨X⸩ n : ℤ h : 0 ≠ x.coeff n ⊢ order x ≤ n
exact order_le_of_coeff_ne_zero h.symm
no goals
29116b940ffcf48a
Rat.substr_num_den'
Mathlib/Data/Rat/Lemmas.lean
theorem substr_num_den' (q r : ℚ) : (q - r).num * q.den * r.den = (q.num * r.den - r.num * q.den) * (q - r).den
q r : ℚ ⊢ (q - r).num * ↑q.den * ↑r.den = (q.num * ↑r.den - r.num * ↑q.den) * ↑(q - r).den
rw [sub_eq_add_neg, sub_eq_add_neg, ← neg_mul, ← num_neg_eq_neg_num, ← den_neg_eq_den r, add_num_den' q (-r)]
no goals
e22aecd803aed83c
map_le_nonZeroDivisors_of_injective
Mathlib/Algebra/GroupWithZero/NonZeroDivisors.lean
theorem map_le_nonZeroDivisors_of_injective [NoZeroDivisors M₀'] [MonoidWithZeroHomClass F M₀ M₀'] (f : F) (hf : Injective f) {S : Submonoid M₀} (hS : S ≤ M₀⁰) : S.map f ≤ M₀'⁰
case inr.intro.intro F : Type u_1 M₀ : Type u_2 M₀' : Type u_3 inst✝⁴ : MonoidWithZero M₀ inst✝³ : MonoidWithZero M₀' inst✝² : FunLike F M₀ M₀' inst✝¹ : NoZeroDivisors M₀' inst✝ : MonoidWithZeroHomClass F M₀ M₀' f : F hf : Injective ⇑f S : Submonoid M₀ hS : S ≤ M₀⁰ h✝ : Nontrivial M₀ x : M₀ hx : x ∈ ↑S hx0 : f x = 0 ⊢ False
exact zero_not_mem_nonZeroDivisors <| hS <| map_eq_zero_iff f hf |>.mp hx0 ▸ hx
no goals
c454728866afa604
iUnion_Iic_eq_Iio_of_lt_of_tendsto
Mathlib/Topology/Order/OrderClosed.lean
theorem iUnion_Iic_eq_Iio_of_lt_of_tendsto {ι : Type*} {F : Filter ι} [F.NeBot] [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [ClosedIicTopology α] {a : α} {f : ι → α} (hlt : ∀ i, f i < a) (hlim : Tendsto f F (𝓝 a)) : ⋃ i : ι, Iic (f i) = Iio a
case intro α : Type u ι : Type u_1 F : Filter ι inst✝³ : F.NeBot inst✝² : ConditionallyCompleteLinearOrder α inst✝¹ : TopologicalSpace α inst✝ : ClosedIicTopology α f : ι → α i : ι hlt : ∀ (i_1 : ι), f i_1 < f i hlim : Tendsto f F (𝓝 (f i)) ⊢ False
exact (hlt i).false
no goals
01d4e3e5ecc81e53
Pell.n_lt_a_pow
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem n_lt_a_pow : ∀ n : ℕ, n < a ^ n | 0 => Nat.le_refl 1 | n + 1 => by have IH := n_lt_a_pow n have : a ^ n + a ^ n ≤ a ^ n * a
a : ℕ a1 : 1 < a n : ℕ IH : n < a ^ n this : a ^ n + a ^ n ≤ a ^ n * a ⊢ n + 1 < a ^ n + a ^ n
exact add_lt_add_of_lt_of_le IH (lt_of_le_of_lt (Nat.zero_le _) IH)
no goals
e47a66206aecfba3
solvableByRad.induction
Mathlib/FieldTheory/AbelRuffini.lean
theorem induction (P : solvableByRad F E → Prop) (base : ∀ α : F, P (algebraMap F (solvableByRad F E) α)) (add : ∀ α β : solvableByRad F E, P α → P β → P (α + β)) (neg : ∀ α : solvableByRad F E, P α → P (-α)) (mul : ∀ α β : solvableByRad F E, P α → P β → P (α * β)) (inv : ∀ α : solvableByRad F E, P α → P α⁻¹) (rad : ∀ α : solvableByRad F E, ∀ n : ℕ, n ≠ 0 → P (α ^ n) → P α) (α : solvableByRad F E) : P α
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E P : ↥(solvableByRad F E) → Prop base : ∀ (α : F), P ((algebraMap F ↥(solvableByRad F E)) α) add : ∀ (α β : ↥(solvableByRad F E)), P α → P β → P (α + β) neg : ∀ (α : ↥(solvableByRad F E)), P α → P (-α) mul : ∀ (α β : ↥(solvableByRad F E)), P α → P β → P (α * β) inv : ∀ (α : ↥(solvableByRad F E)), P α → P α⁻¹ rad : ∀ (α : ↥(solvableByRad F E)) (n : ℕ), n ≠ 0 → P (α ^ n) → P α ⊢ ∀ (α : ↥(solvableByRad F E)), P α
suffices ∀ α : E, IsSolvableByRad F α → ∃ β : solvableByRad F E, ↑β = α ∧ P β by intro α obtain ⟨α₀, hα₀, Pα⟩ := this α (Subtype.mem α) convert Pα exact Subtype.ext hα₀.symm
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E P : ↥(solvableByRad F E) → Prop base : ∀ (α : F), P ((algebraMap F ↥(solvableByRad F E)) α) add : ∀ (α β : ↥(solvableByRad F E)), P α → P β → P (α + β) neg : ∀ (α : ↥(solvableByRad F E)), P α → P (-α) mul : ∀ (α β : ↥(solvableByRad F E)), P α → P β → P (α * β) inv : ∀ (α : ↥(solvableByRad F E)), P α → P α⁻¹ rad : ∀ (α : ↥(solvableByRad F E)) (n : ℕ), n ≠ 0 → P (α ^ n) → P α ⊢ ∀ (α : E), IsSolvableByRad F α → ∃ β, ↑β = α ∧ P β
856cf0182c98d000