name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Vector.range'_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Range.lean
theorem range'_eq_append_iff : range' s (n + m) = xs ++ ys ↔ xs = range' s n ∧ ys = range' (s + n) m
case mp s n m : Nat xs : Vector Nat n ys : Vector Nat m ⊢ (∃ k, k ≤ n + m ∧ xs.toArray = Array.range' s k ∧ ys.toArray = Array.range' (s + k) (n + m - k)) → xs.toArray = Array.range' s n ∧ ys.toArray = Array.range' (s + n) m
rintro ⟨k, hk, h₁, h₂⟩
case mp.intro.intro.intro s n m : Nat xs : Vector Nat n ys : Vector Nat m k : Nat hk : k ≤ n + m h₁ : xs.toArray = Array.range' s k h₂ : ys.toArray = Array.range' (s + k) (n + m - k) ⊢ xs.toArray = Array.range' s n ∧ ys.toArray = Array.range' (s + n) m
fe298cc85f386ffd
Dynamics.coverEntropy_eq_iSup_basis
Mathlib/Dynamics/TopologicalEntropy/CoverEntropy.lean
lemma coverEntropy_eq_iSup_basis {ι : Sort*} {p : ι → Prop} {s : ι → Set (X × X)} (h : (𝓤 X).HasBasis p s) (T : X → X) (F : Set X) : coverEntropy T F = ⨆ (i : ι) (_ : p i), coverEntropyEntourage T F (s i)
case intro.intro X : Type u_1 inst✝ : UniformSpace X ι : Sort u_2 p : ι → Prop s : ι → Set (X × X) h : (𝓤 X).HasBasis p s T : X → X F : Set X U : Set (X × X) U_uni : U ∈ 𝓤 X i : ι h_i : p i si_U : s i ⊆ U ⊢ coverEntropyEntourage T F U ≤ ⨆ i, ⨆ (_ : p i), coverEntropyEntourage T F (s i)
exact (coverEntropyEntourage_antitone T F si_U).trans (le_iSup₂ (f := fun (i : ι) (_ : p i) ↦ coverEntropyEntourage T F (s i)) i h_i)
no goals
62ab95ca01179b11
Finset.inductive_claim_mul
Mathlib/Combinatorics/Additive/SmallTripling.lean
@[to_additive] private lemma inductive_claim_mul (hm : 3 ≤ m) (h : ∀ ε : Fin 3 → ℤ, (∀ i, |ε i| = 1) → #((finRange 3).map fun i ↦ A ^ ε i).prod ≤ k * #A) (ε : Fin m → ℤ) (hε : ∀ i, |ε i| = 1) : #((finRange m).map fun i ↦ A ^ ε i).prod ≤ k ^ (m - 2) * #A
case succ.zero G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G k : ℝ m : ℕ h : ∀ (ε : Fin 3 → ℤ), (∀ (i : Fin 3), |ε i| = 1) → ↑(#(List.map (fun i => A ^ ε i) (finRange 3)).prod) ≤ k * ↑(#A) hm : 3 ≤ 0 ih : ∀ (ε : Fin 0 → ℤ), (∀ (i : Fin 0), |ε i| = 1) → ↑(#(List.map (fun i => A ^ ε i) (finRange 0)).prod) ≤ k ^ (0 - 2) * ↑(#A) ε : Fin (0 + 1) → ℤ hε : ∀ (i : Fin (0 + 1)), |ε i| = 1 ⊢ ↑(#(List.map (fun i => A ^ ε i) (finRange (0 + 1))).prod) ≤ k ^ (0 + 1 - 2) * ↑(#A)
simp at hm
no goals
75599e5c7cd8b516
Finset.inductive_claim_mul
Mathlib/Combinatorics/Additive/SmallTripling.lean
@[to_additive] private lemma inductive_claim_mul (hm : 3 ≤ m) (h : ∀ ε : Fin 3 → ℤ, (∀ i, |ε i| = 1) → #((finRange 3).map fun i ↦ A ^ ε i).prod ≤ k * #A) (ε : Fin m → ℤ) (hε : ∀ i, |ε i| = 1) : #((finRange m).map fun i ↦ A ^ ε i).prod ≤ k ^ (m - 2) * #A
G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G k : ℝ m✝ : ℕ h : ∀ (ε : Fin 3 → ℤ), (∀ (i : Fin 3), |ε i| = 1) → ↑(#(List.map (fun i => A ^ ε i) (finRange 3)).prod) ≤ k * ↑(#A) m : ℕ hm : 3 ≤ m + 1 ih : ∀ (ε : Fin (m + 1) → ℤ), (∀ (i : Fin (m + 1)), |ε i| = 1) → ↑(#(List.map (fun i => A ^ ε i) (finRange (m + 1))).prod) ≤ k ^ (m + 1 - 2) * ↑(#A) ε : Fin (m + 1 + 1) → ℤ hε : ∀ (i : Fin (m + 1 + 1)), |ε i| = 1 hm₀ : m ≠ 0 hε₀ : ∀ (i : Fin (m + 1 + 1)), ε i ≠ 0 hA : A.Nonempty hk : 0 ≤ k π : {n : ℕ} → (Fin n → ℤ) → Finset G := fun {n} δ => (List.map (fun i => A ^ δ i) (finRange n)).prod V : Finset G := π ![-ε 1, -ε 0] W : Finset G := π (tail (tail ε)) ⊢ k * ↑(#A) * (k ^ (m - 1) * ↑(#A)) = ↑(#A) * (k ^ (m - 1) * k * ↑(#A))
ring
no goals
75599e5c7cd8b516
ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
Mathlib/MeasureTheory/Integral/MeanInequalities.lean
theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : (∫⁻ a, (f * g) a ∂μ) = 0
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α p : ℝ hp0 : 0 ≤ p f g : α → ℝ≥0∞ hf : AEMeasurable f μ hf_zero : ∫⁻ (a : α), f a ^ p ∂μ = 0 hf_eq_zero : f =ᶠ[ae μ] 0 ⊢ f * g =ᶠ[ae μ] 0 * g
exact hf_eq_zero.mul (ae_eq_refl g)
no goals
1c7b734166a127cf
ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear
Mathlib/Analysis/Calculus/ContDiff/Bounds.lean
theorem ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear (B : E →L[𝕜] F →L[𝕜] G) {f : D → E} {g : D → F} {N : WithTop ℕ∞} {s : Set D} {x : D} (hf : ContDiffOn 𝕜 N f s) (hg : ContDiffOn 𝕜 N g s) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) {n : ℕ} (hn : n ≤ N) : ‖iteratedFDerivWithin 𝕜 n (fun y => B (f y) (g y)) s x‖ ≤ ‖B‖ * ∑ i ∈ Finset.range (n + 1), (n.choose i : ℝ) * ‖iteratedFDerivWithin 𝕜 i f s x‖ * ‖iteratedFDerivWithin 𝕜 (n - i) g s x‖
case hx 𝕜 : Type u_1 inst✝⁸ : NontriviallyNormedField 𝕜 D : Type uD inst✝⁷ : NormedAddCommGroup D inst✝⁶ : NormedSpace 𝕜 D E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G B : E →L[𝕜] F →L[𝕜] G f : D → E g : D → F N : WithTop ℕ∞ s : Set D x : D hf : ContDiffOn 𝕜 N f s hg : ContDiffOn 𝕜 N g s hs : UniqueDiffOn 𝕜 s hx : x ∈ s n : ℕ hn : ↑n ≤ N Du : Type (max uD uE uF uG) := ULift.{max uE uF uG, uD} D Eu : Type (max uD uE uF uG) := ULift.{max uD uF uG, uE} E Fu : Type (max uD uE uF uG) := ULift.{max uD uE uG, uF} F Gu : Type (max uD uE uF uG) := ULift.{max uD uE uF, uG} G isoD : Du ≃ₗᵢ[𝕜] D isoE : Eu ≃ₗᵢ[𝕜] E isoF : Fu ≃ₗᵢ[𝕜] F isoG : Gu ≃ₗᵢ[𝕜] G fu : Du → Eu := ⇑isoE.symm ∘ f ∘ ⇑isoD gu : Du → Fu := ⇑isoF.symm ∘ g ∘ ⇑isoD Bu₀ : Eu →L[𝕜] Fu →L[𝕜] G := ((B.comp ↑{ toLinearEquiv := isoE.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).flip.comp ↑{ toLinearEquiv := isoF.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).flip Bu : Eu →L[𝕜] Fu →L[𝕜] Gu := ((compL 𝕜 Eu (Fu →L[𝕜] G) (Fu →L[𝕜] Gu)) ((compL 𝕜 Fu G Gu) ↑{ toLinearEquiv := isoG.symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ })) Bu₀ hBu : Bu = ((compL 𝕜 Eu (Fu →L[𝕜] G) (Fu →L[𝕜] Gu)) ((compL 𝕜 Fu G Gu) ↑{ toLinearEquiv := isoG.symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ })) Bu₀ Bu_eq : (fun y => (Bu (fu y)) (gu y)) = ⇑isoG.symm ∘ (fun y => (B (f y)) (g y)) ∘ ⇑isoD Bu_le : ‖Bu‖ ≤ ‖B‖ su : Set Du := ⇑isoD ⁻¹' s hsu : UniqueDiffOn 𝕜 su xu : Du := isoD.symm x hxu : xu ∈ su xu_x : isoD xu = x hfu : ContDiffOn 𝕜 (↑n) fu su hgu : ContDiffOn 𝕜 (↑n) gu su Nfu : ∀ (i : ℕ), ‖iteratedFDerivWithin 𝕜 i fu su xu‖ = ‖iteratedFDerivWithin 𝕜 i f s x‖ i : ℕ ⊢ isoD xu ∈ s
rwa [← xu_x] at hx
no goals
c6fa542bdff00851
Cardinal.mul_eq_self
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem mul_eq_self {c : Cardinal} (h : ℵ₀ ≤ c) : c * c = c
case intro.intro.intro.refine_2.inr c✝ : Cardinal.{u_1} h✝ : ℵ₀ ≤ c✝ c : Cardinal.{u_1} x✝ : ∀ y < c, Acc (fun x1 x2 => x1 < x2) y α : Type u_1 IH : ∀ y < #α, ℵ₀ ≤ y → y * y ≤ y ol : ℵ₀ ≤ #α r : α → α → Prop wo : IsWellOrder α r e : (#α).ord = type r this✝¹ : LinearOrder α := linearOrderOfSTO r this✝ : IsWellOrder α fun x1 x2 => x1 < x2 g : α × α → α := fun p => p.1 ⊔ p.2 f : α × α ↪ Ordinal.{u_1} × α × α := { toFun := fun p => ((typein fun x1 x2 => x1 < x2).toRelEmbedding (g p), p), inj' := ⋯ } s : α × α → α × α → Prop := ⇑f ⁻¹'o Prod.Lex (fun x1 x2 => x1 < x2) (Prod.Lex (fun x1 x2 => x1 < x2) fun x1 x2 => x1 < x2) this : IsWellOrder (α × α) s p : α × α h : (typein s).toRelEmbedding p < type s qo : ℵ₀ ≤ (succ ((typein fun x1 x2 => x1 < x2).toRelEmbedding (g p))).card ⊢ (typein LT.lt).toRelEmbedding (g p) < type r
apply typein_lt_type
no goals
2b4cf21a89b59c38
CategoryTheory.Subobject.factorThru_add_sub_factorThru_left
Mathlib/CategoryTheory/Subobject/FactorThru.lean
theorem factorThru_add_sub_factorThru_left {X Y : C} {P : Subobject Y} (f g : X ⟶ Y) (w : P.Factors (f + g)) (wf : P.Factors f) : P.factorThru (f + g) w - P.factorThru f wf = P.factorThru g (factors_right_of_factors_add f g w wf)
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C X Y : C P : Subobject Y f g : X ⟶ Y w : P.Factors (f + g) wf : P.Factors f ⊢ P.factorThru (f + g) w - P.factorThru f wf = P.factorThru g ⋯
ext
case h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C X Y : C P : Subobject Y f g : X ⟶ Y w : P.Factors (f + g) wf : P.Factors f ⊢ (P.factorThru (f + g) w - P.factorThru f wf) ≫ P.arrow = P.factorThru g ⋯ ≫ P.arrow
6fdfbb9ccec603d1
CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
lemma exists_iso_of_arrow_iso (T₁ T₂ : Triangle C) (hT₁ : T₁ ∈ distTriang C) (hT₂ : T₂ ∈ distTriang C) (e : Arrow.mk T₁.mor₁ ≅ Arrow.mk T₂.mor₁) : ∃ (e' : T₁ ≅ T₂), e'.hom.hom₁ = e.hom.left ∧ e'.hom.hom₂ = e.hom.right
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T₁ T₂ : Triangle C hT₁ : T₁ ∈ distinguishedTriangles hT₂ : T₂ ∈ distinguishedTriangles e : Arrow.mk T₁.mor₁ ≅ Arrow.mk T₂.mor₁ φ : T₁ ⟶ T₂ := completeDistinguishedTriangleMorphism T₁ T₂ hT₁ hT₂ e.hom.left e.hom.right ⋯ this✝² : IsIso φ.hom₁ this✝¹ : IsIso φ.hom₂ this✝ : IsIso φ.hom₃ this : IsIso φ ⊢ (asIso φ).hom.hom₁ = e.hom.left
simp [φ]
no goals
9637a6fb8661e804
Finpartition.equitabilise_aux
Mathlib/Combinatorics/SimpleGraph/Regularity/Equitabilise.lean
theorem equitabilise_aux (hs : a * m + b * (m + 1) = #s) : ∃ Q : Finpartition s, (∀ x : Finset α, x ∈ Q.parts → #x = m ∨ #x = m + 1) ∧ (∀ x, x ∈ P.parts → #(x \ {y ∈ Q.parts | y ⊆ x}.biUnion id) ≤ m) ∧ #{i ∈ Q.parts | #i = m + 1} = b
case neg α : Type u_1 inst✝ : DecidableEq α m : ℕ m_pos : m > 0 s : Finset α ih : ∀ t ⊂ s, ∀ {a b : ℕ} {P : Finpartition t}, a * m + b * (m + 1) = #t → ∃ Q, (∀ x ∈ Q.parts, #x = m ∨ #x = m + 1) ∧ (∀ x ∈ P.parts, #(x \ (filter (fun y => y ⊆ x) Q.parts).biUnion id) ≤ m) ∧ #(filter (fun i => #i = m + 1) Q.parts) = b a b : ℕ P : Finpartition s hs : a * m + b * (m + 1) = #s hab : 0 < a ∨ 0 < b ⊢ ∃ Q, (∀ x ∈ Q.parts, #x = m ∨ #x = m + 1) ∧ (∀ x ∈ P.parts, #(x \ (filter (fun y => y ⊆ x) Q.parts).biUnion id) ≤ m) ∧ #(filter (fun i => #i = m + 1) Q.parts) = b
set n := if 0 < a then m else m + 1 with hn
case neg α : Type u_1 inst✝ : DecidableEq α m : ℕ m_pos : m > 0 s : Finset α ih : ∀ t ⊂ s, ∀ {a b : ℕ} {P : Finpartition t}, a * m + b * (m + 1) = #t → ∃ Q, (∀ x ∈ Q.parts, #x = m ∨ #x = m + 1) ∧ (∀ x ∈ P.parts, #(x \ (filter (fun y => y ⊆ x) Q.parts).biUnion id) ≤ m) ∧ #(filter (fun i => #i = m + 1) Q.parts) = b a b : ℕ P : Finpartition s hs : a * m + b * (m + 1) = #s hab : 0 < a ∨ 0 < b n : ℕ := if 0 < a then m else m + 1 hn : n = if 0 < a then m else m + 1 ⊢ ∃ Q, (∀ x ∈ Q.parts, #x = m ∨ #x = m + 1) ∧ (∀ x ∈ P.parts, #(x \ (filter (fun y => y ⊆ x) Q.parts).biUnion id) ≤ m) ∧ #(filter (fun i => #i = m + 1) Q.parts) = b
d46caaad6f3368e3
MvPowerSeries.coeff_eq_zero_of_constantCoeff_nilpotent
Mathlib/RingTheory/MvPowerSeries/Basic.lean
theorem coeff_eq_zero_of_constantCoeff_nilpotent {f : MvPowerSeries σ R} {m : ℕ} (hf : constantCoeff σ R f ^ m = 0) {d : σ →₀ ℕ} {n : ℕ} (hn : m + degree d ≤ n) : coeff R d (f ^ n) = 0
case h.h σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R f : MvPowerSeries σ R m : ℕ hf : (constantCoeff σ R) f ^ m = 0 d : σ →₀ ℕ n : ℕ hn : m + d.degree ≤ n k : ℕ →₀ σ →₀ ℕ hk : (range n).sum ⇑k = d ∧ k.support ⊆ range n s : Finset ℕ := Finset.filter (fun i => k i = 0) (range n) hs_def : s = Finset.filter (fun i => k i = 0) (range n) hs : s ⊆ range n hs' : ∀ i ∈ s, (coeff R (k i)) f = (constantCoeff σ R) f hs'' : ∀ i ∈ s, k i = 0 ⊢ ∏ x ∈ s, (coeff R (k x)) f = 0
rw [prod_congr rfl hs', prod_const]
case h.h σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R f : MvPowerSeries σ R m : ℕ hf : (constantCoeff σ R) f ^ m = 0 d : σ →₀ ℕ n : ℕ hn : m + d.degree ≤ n k : ℕ →₀ σ →₀ ℕ hk : (range n).sum ⇑k = d ∧ k.support ⊆ range n s : Finset ℕ := Finset.filter (fun i => k i = 0) (range n) hs_def : s = Finset.filter (fun i => k i = 0) (range n) hs : s ⊆ range n hs' : ∀ i ∈ s, (coeff R (k i)) f = (constantCoeff σ R) f hs'' : ∀ i ∈ s, k i = 0 ⊢ (constantCoeff σ R) f ^ #s = 0
cf9ab574f0bd652b
ENNReal.Ioo_zero_top_eq_iUnion_Ico_zpow
Mathlib/Data/ENNReal/Inv.lean
theorem Ioo_zero_top_eq_iUnion_Ico_zpow {y : ℝ≥0∞} (hy : 1 < y) (h'y : y ≠ ⊤) : Ioo (0 : ℝ≥0∞) (∞ : ℝ≥0∞) = ⋃ n : ℤ, Ico (y ^ n) (y ^ (n + 1))
case h y : ℝ≥0∞ hy : 1 < y h'y : y ≠ ⊤ x : ℝ≥0∞ ⊢ x ∈ Ioo 0 ⊤ ↔ x ∈ ⋃ n, Ico (y ^ n) (y ^ (n + 1))
simp only [mem_iUnion, mem_Ioo, mem_Ico]
case h y : ℝ≥0∞ hy : 1 < y h'y : y ≠ ⊤ x : ℝ≥0∞ ⊢ 0 < x ∧ x < ⊤ ↔ ∃ i, y ^ i ≤ x ∧ x < y ^ (i + 1)
ad0e350e2128c607
Fin.Iio_last_eq_map
Mathlib/Data/Fintype/Fin.lean
theorem Iio_last_eq_map : Iio (Fin.last n) = Finset.univ.map Fin.castSuccEmb := coe_injective <| by ext; simp [lt_def]
case h n : ℕ x✝ : Fin (n + 1) ⊢ x✝ ∈ ↑(Iio (last n)) ↔ x✝ ∈ ↑(map castSuccEmb univ)
simp [lt_def]
no goals
5a0290270028545b
Vector.lex_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lex.lean
theorem lex_toArray [BEq α] (lt : α → α → Bool) (l₁ l₂ : Vector α n) : l₁.toArray.lex l₂.toArray lt = l₁.lex l₂ lt
α : Type u_1 n : Nat inst✝ : BEq α lt : α → α → Bool l₁ l₂ : Vector α n ⊢ l₁.lex l₂.toArray lt = l₁.lex l₂ lt
cases l₁
case mk α : Type u_1 n : Nat inst✝ : BEq α lt : α → α → Bool l₂ : Vector α n toArray✝ : Array α size_toArray✝ : toArray✝.size = n ⊢ { toArray := toArray✝, size_toArray := size_toArray✝ }.lex l₂.toArray lt = { toArray := toArray✝, size_toArray := size_toArray✝ }.lex l₂ lt
520bcebfaeec0320
String.Iterator.ValidFor.toEnd
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem toEnd (h : ValidFor l r it) : ValidFor (r.reverse ++ l) [] it.toEnd
l r : List Char it : Iterator h : ValidFor l r it ⊢ { s := { data := l.reverseAux r }, i := { byteIdx := utf8Len l + utf8Len r } }.i.byteIdx = utf8Len (r.reverse ++ l)
simp [Nat.add_comm]
no goals
488307e720c4178d
Composition.eq_ones_iff_length
Mathlib/Combinatorics/Enumerative/Composition.lean
theorem eq_ones_iff_length {c : Composition n} : c = ones n ↔ c.length = n
case intro.intro n : ℕ c : Composition n H : ¬c = ones n length_n : c.length = n i : ℕ hi : i ∈ c.blocks i_blocks : 1 < i ⊢ ∑ i : Fin c.length, 1 < ∑ i : Fin c.length, c.blocksFun i
rw [← ofFn_blocksFun, mem_ofFn' c.blocksFun, Set.mem_range] at hi
case intro.intro n : ℕ c : Composition n H : ¬c = ones n length_n : c.length = n i : ℕ hi : ∃ y, c.blocksFun y = i i_blocks : 1 < i ⊢ ∑ i : Fin c.length, 1 < ∑ i : Fin c.length, c.blocksFun i
c4bb0bd15cee3f52
Localization.add_mk_self
Mathlib/RingTheory/Localization/Defs.lean
theorem add_mk_self (a b c) : (mk a b : Localization M) + mk c b = mk (a + c) b
R : Type u_1 inst✝ : CommSemiring R M : Submonoid R a : R b : ↥M c : R ⊢ ↑1 * (↑(↑b * c + ↑b * a, b * b).2 * (a + c, b).1) = ↑1 * (↑(a + c, b).2 * (↑b * c + ↑b * a, b * b).1)
simp only [Submonoid.coe_one, Submonoid.coe_mul]
R : Type u_1 inst✝ : CommSemiring R M : Submonoid R a : R b : ↥M c : R ⊢ 1 * (↑b * ↑b * (a + c)) = 1 * (↑b * (↑b * c + ↑b * a))
40fb5fea9adce157
RingHom.OfLocalizationSpanTarget.ofLocalizationSpan
Mathlib/RingTheory/LocalProperties/Basic.lean
theorem RingHom.OfLocalizationSpanTarget.ofLocalizationSpan (hP : RingHom.OfLocalizationSpanTarget @P) (hP' : RingHom.StableUnderCompositionWithLocalizationAwaySource @P) : RingHom.OfLocalizationSpan @P
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpanTarget P hP' : StableUnderCompositionWithLocalizationAwaySource P ⊢ OfLocalizationSpan P
introv R hs hs'
P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hP : OfLocalizationSpanTarget P hP' : StableUnderCompositionWithLocalizationAwaySource P R S : Type u inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Set R hs : Ideal.span s = ⊤ hs' : ∀ (r : ↑s), P (Localization.awayMap f ↑r) ⊢ P f
4181d293dd91340a
List.eraseIdx_ne_nil_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Erase.lean
theorem eraseIdx_ne_nil_iff {l : List α} {i : Nat} : eraseIdx l i ≠ [] ↔ 2 ≤ l.length ∨ (l.length = 1 ∧ i ≠ 0)
α : Type u_1 l : List α i : Nat ⊢ l.eraseIdx i ≠ [] ↔ 2 ≤ l.length ∨ l.length = 1 ∧ i ≠ 0
match l with | [] | [a] | a::b::l => simp [Nat.succ_inj']
no goals
754019398fff23c9
List.set_getElem_self
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem set_getElem_self {as : List α} {i : Nat} (h : i < as.length) : as.set i as[i] = as
case h α : Type u_1 as : List α i : Nat h : i < as.length n : Nat h₁ : n < (as.set i as[i]).length h₂ : n < as.length ⊢ (if i = n then as[i] else as[n]) = as[n]
split <;> simp_all
no goals
a48e8c1addedf8f5
Ideal.exists_le_prime_nmem_of_isIdempotentElem
Mathlib/RingTheory/Ideal/Maximal.lean
theorem exists_le_prime_nmem_of_isIdempotentElem (a : α) (ha : IsIdempotentElem a) (haI : a ∉ I) : ∃ p : Ideal α, p.IsPrime ∧ I ≤ p ∧ a ∉ p := have : Disjoint (I : Set α) (Submonoid.powers a) := Set.disjoint_right.mpr <| by rw [ha.coe_powers] rintro _ (rfl|rfl) exacts [I.ne_top_iff_one.mp (ne_of_mem_of_not_mem' Submodule.mem_top haI).symm, haI] have ⟨p, h1, h2, h3⟩ := exists_le_prime_disjoint _ _ this ⟨p, h1, h2, Set.disjoint_right.mp h3 (Submonoid.mem_powers a)⟩
α : Type u inst✝ : CommSemiring α I : Ideal α a : α ha : IsIdempotentElem a haI : a ∉ I ⊢ ∀ ⦃a_1 : α⦄, a_1 ∈ {1, a} → a_1 ∉ ↑I
rintro _ (rfl|rfl)
case inl α : Type u inst✝ : CommSemiring α I : Ideal α a : α ha : IsIdempotentElem a haI : a ∉ I ⊢ 1 ∉ ↑I case inr α : Type u inst✝ : CommSemiring α I : Ideal α a✝ : α ha : IsIdempotentElem a✝ haI : a✝ ∉ I ⊢ a✝ ∉ ↑I
da5240270130848b
AffineSubspace.setOf_sOppSide_eq_image2
Mathlib/Analysis/Convex/Side.lean
theorem setOf_sOppSide_eq_image2 {s : AffineSubspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) : { y | s.SOppSide x y } = Set.image2 (fun (t : R) q => t • (x -ᵥ p) +ᵥ q) (Set.Iio 0) s
case h.mp.intro.intro.intro.intro.inr.inl R : Type u_1 V : Type u_2 P : Type u_4 inst✝³ : LinearOrderedField R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P s : AffineSubspace R P x p : P hx : x ∉ s hp : p ∈ s y : P hy : y ∉ s p₂ : P hp₂ : p₂ ∈ s h : p₂ = y ⊢ ∃ a < 0, ∃ b ∈ ↑s, a • (x -ᵥ p) +ᵥ b = y
exact False.elim (hy (h ▸ hp₂))
no goals
839d674f40d68f94
Nat.divisors_filter_squarefree
Mathlib/Data/Nat/Squarefree.lean
theorem divisors_filter_squarefree {n : ℕ} (h0 : n ≠ 0) : {d ∈ n.divisors | Squarefree d}.val = (UniqueFactorizationMonoid.normalizedFactors n).toFinset.powerset.val.map fun x => x.val.prod
n : ℕ h0 : n ≠ 0 ⊢ ∀ (a : ℕ), a ∈ (filter (fun d => Squarefree d) n.divisors).val ↔ a ∈ Multiset.map (fun x => x.val.prod) (normalizedFactors n).toFinset.powerset.val
intro a
n : ℕ h0 : n ≠ 0 a : ℕ ⊢ a ∈ (filter (fun d => Squarefree d) n.divisors).val ↔ a ∈ Multiset.map (fun x => x.val.prod) (normalizedFactors n).toFinset.powerset.val
4b75722f8636dcf2
SimplexCategory.eq_comp_δ_of_not_surjective'
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem eq_comp_δ_of_not_surjective' {n : ℕ} {Δ : SimplexCategory} (θ : Δ ⟶ mk (n + 1)) (i : Fin (n + 2)) (hi : ∀ x, θ.toOrderHom x ≠ i) : ∃ θ' : Δ ⟶ mk n, θ = θ' ≫ δ i
case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ ⦋n + 1⦌ i : Fin (n + 2) hi : ∀ (x : Fin (Δ.len + 1)), (Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (Δ.len + 1) h' : i < (Hom.toOrderHom θ) x ⊢ (Hom.toOrderHom θ) x = (((Hom.toOrderHom θ) x).pred ⋯).succ
rw [Fin.succ_pred]
no goals
4424d07c1d7e8eb1
MeasureTheory.crossing_pos_eq
Mathlib/Probability/Martingale/Upcrossing.lean
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
case pos Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
simp_rw [hf']
no goals
3016c9a152ee0783
Subring.closure_induction₂
Mathlib/Algebra/Ring/Subring/Basic.lean
theorem closure_induction₂ {s : Set R} {p : (x y : R) → x ∈ closure s → y ∈ closure s → Prop} (mem_mem : ∀ (x) (y) (hx : x ∈ s) (hy : y ∈ s), p x y (subset_closure hx) (subset_closure hy)) (zero_left : ∀ x hx, p 0 x (zero_mem _) hx) (zero_right : ∀ x hx, p x 0 hx (zero_mem _)) (one_left : ∀ x hx, p 1 x (one_mem _) hx) (one_right : ∀ x hx, p x 1 hx (one_mem _)) (neg_left : ∀ x y hx hy, p x y hx hy → p (-x) y (neg_mem hx) hy) (neg_right : ∀ x y hx hy, p x y hx hy → p x (-y) hx (neg_mem hy)) (add_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x + y) z (add_mem hx hy) hz) (add_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y + z) hx (add_mem hy hz)) (mul_left : ∀ x y z hx hy hz, p x z hx hz → p y z hy hz → p (x * y) z (mul_mem hx hy) hz) (mul_right : ∀ x y z hx hy hz, p x y hx hy → p x z hx hz → p x (y * z) hx (mul_mem hy hz)) {x y : R} (hx : x ∈ closure s) (hy : y ∈ closure s) : p x y hx hy
case mem R : Type u inst✝ : Ring R s : Set R p : (x y : R) → x ∈ closure s → y ∈ closure s → Prop mem_mem : ∀ (x y : R) (hx : x ∈ s) (hy : y ∈ s), p x y ⋯ ⋯ zero_left : ∀ (x : R) (hx : x ∈ closure s), p 0 x ⋯ hx zero_right : ∀ (x : R) (hx : x ∈ closure s), p x 0 hx ⋯ one_left : ∀ (x : R) (hx : x ∈ closure s), p 1 x ⋯ hx one_right : ∀ (x : R) (hx : x ∈ closure s), p x 1 hx ⋯ neg_left : ∀ (x y : R) (hx : x ∈ closure s) (hy : y ∈ closure s), p x y hx hy → p (-x) y ⋯ hy neg_right : ∀ (x y : R) (hx : x ∈ closure s) (hy : y ∈ closure s), p x y hx hy → p x (-y) hx ⋯ add_left : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x z hx hz → p y z hy hz → p (x + y) z ⋯ hz add_right : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x y hx hy → p x z hx hz → p x (y + z) hx ⋯ mul_left : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x z hx hz → p y z hy hz → p (x * y) z ⋯ hz mul_right : ∀ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x y hx hy → p x z hx hz → p x (y * z) hx ⋯ x y : R hx : x ∈ closure s z : R hz : z ∈ s ⊢ p x z hx ⋯
induction hx using closure_induction with | mem _ h => exact mem_mem _ _ h hz | zero => exact zero_left _ _ | one => exact one_left _ _ | mul _ _ _ _ h₁ h₂ => exact mul_left _ _ _ _ _ _ h₁ h₂ | add _ _ _ _ h₁ h₂ => exact add_left _ _ _ _ _ _ h₁ h₂ | neg _ _ h => exact neg_left _ _ _ _ h
no goals
52e4f74d3c55783d
Cubic.degree_of_a_eq_zero
Mathlib/Algebra/CubicDiscriminant.lean
theorem degree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.degree ≤ 2
R : Type u_1 P : Cubic R inst✝ : Semiring R ha : P.a = 0 ⊢ P.toPoly.degree ≤ 2
simpa only [of_a_eq_zero ha] using degree_quadratic_le
no goals
0fbe731777f869bb
Polynomial.irreducible_iff_roots_eq_zero_of_degree_le_three
Mathlib/Algebra/Polynomial/SpecificDegree.lean
theorem irreducible_iff_roots_eq_zero_of_degree_le_three {p : K[X]} (hp2 : 2 ≤ p.natDegree) (hp3 : p.natDegree ≤ 3) : Irreducible p ↔ p.roots = 0
K : Type u_1 inst✝ : Field K p : K[X] hp2 : 2 ≤ p.natDegree hp3 : p.natDegree ≤ 3 ⊢ p ≠ 0
rintro rfl
K : Type u_1 inst✝ : Field K hp2 : 2 ≤ natDegree 0 hp3 : natDegree 0 ≤ 3 ⊢ False
2d87ab08172091ac
Real.exp_pos
Mathlib/Data/Complex/Exponential.lean
theorem exp_pos (x : ℝ) : 0 < exp x := (le_total 0 x).elim (lt_of_lt_of_le zero_lt_one ∘ one_le_exp) fun h => by rw [← neg_neg x, Real.exp_neg] exact inv_pos.2 (lt_of_lt_of_le zero_lt_one (one_le_exp (neg_nonneg.2 h)))
x : ℝ h : x ≤ 0 ⊢ 0 < rexp x
rw [← neg_neg x, Real.exp_neg]
x : ℝ h : x ≤ 0 ⊢ 0 < (rexp (-x))⁻¹
949bf308b7d9f797
Polynomial.natTrailingDegree_intCast
Mathlib/Algebra/Polynomial/Degree/TrailingDegree.lean
theorem natTrailingDegree_intCast (n : ℤ) : natTrailingDegree (n : R[X]) = 0
R : Type u inst✝ : Ring R n : ℤ ⊢ (↑n).natTrailingDegree = 0
simp only [← C_eq_intCast, natTrailingDegree_C]
no goals
ddd799dec85b3000
TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff
Mathlib/Topology/Sheaves/CommRingCat.lean
theorem objSupIsoProdEqLocus_inv_eq_iff {X : TopCat.{u}} (F : X.Sheaf CommRingCat.{u}) {U V W UW VW : Opens X} (e : W ≤ U ⊔ V) (x) (y : F.1.obj (op W)) (h₁ : UW = U ⊓ W) (h₂ : VW = V ⊓ W) : F.1.map (homOfLE e).op ((F.objSupIsoProdEqLocus U V).inv x) = y ↔ F.1.map (homOfLE (h₁ ▸ inf_le_left : UW ≤ U)).op x.1.1 = F.1.map (homOfLE <| h₁ ▸ inf_le_right).op y ∧ F.1.map (homOfLE (h₂ ▸ inf_le_left : VW ≤ V)).op x.1.2 = F.1.map (homOfLE <| h₂ ▸ inf_le_right).op y
case mpr.intro.refine_1 X : TopCat F : Sheaf CommRingCat X U V W : Opens ↑X e : W ≤ U ⊔ V x : ↑(CommRingCat.of ↥(((CommRingCat.Hom.hom (F.val.map (homOfLE ⋯).op)).comp (RingHom.fst ↑(F.val.obj (op U)) ↑(F.val.obj (op V)))).eqLocus ((CommRingCat.Hom.hom (F.val.map (homOfLE ⋯).op)).comp (RingHom.snd ↑(F.val.obj (op U)) ↑(F.val.obj (op V)))))) y : ↑(F.val.obj (op W)) e₁ : (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) (↑x).1 = (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) y e₂ : (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) (↑x).2 = (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) y ⊢ W ≤ U ⊓ W ⊔ V ⊓ W
rw [← inf_sup_right]
case mpr.intro.refine_1 X : TopCat F : Sheaf CommRingCat X U V W : Opens ↑X e : W ≤ U ⊔ V x : ↑(CommRingCat.of ↥(((CommRingCat.Hom.hom (F.val.map (homOfLE ⋯).op)).comp (RingHom.fst ↑(F.val.obj (op U)) ↑(F.val.obj (op V)))).eqLocus ((CommRingCat.Hom.hom (F.val.map (homOfLE ⋯).op)).comp (RingHom.snd ↑(F.val.obj (op U)) ↑(F.val.obj (op V)))))) y : ↑(F.val.obj (op W)) e₁ : (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) (↑x).1 = (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) y e₂ : (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) (↑x).2 = (ConcreteCategory.hom (F.val.map (homOfLE ⋯).op)) y ⊢ W ≤ (U ⊔ V) ⊓ W
fda8563349ccb2ed
CategoryTheory.Presieve.isSheaf_coverage
Mathlib/CategoryTheory/Sites/Coverage.lean
theorem isSheaf_coverage (K : Coverage C) (P : Cᵒᵖ ⥤ Type*) : Presieve.IsSheaf (toGrothendieck _ K) P ↔ (∀ {X : C} (R : Presieve X), R ∈ K X → Presieve.IsSheafFor P R)
case mpr.top C : Type u_2 inst✝ : Category.{u_3, u_2} C K : Coverage C P : Cᵒᵖ ⥤ Type u_1 H : ∀ {X : C}, ∀ R ∈ K.covering X, IsSheafFor P R X : C S : Sieve X X✝ Y✝ : C f✝ : Y✝ ⟶ X✝ ⊢ IsSheafFor P (Sieve.pullback f✝ ⊤).arrows
simpa using Presieve.isSheafFor_top_sieve _
no goals
b0ee5f44dbe2a8c4
CanonicallyOrderedAdd.multiset_prod_pos
Mathlib/Algebra/Order/BigOperators/Ring/Multiset.lean
@[simp] lemma CanonicallyOrderedAdd.multiset_prod_pos {R : Type*} [CommSemiring R] [PartialOrder R] [CanonicallyOrderedAdd R] [NoZeroDivisors R] [Nontrivial R] {m : Multiset R} : 0 < m.prod ↔ ∀ x ∈ m, 0 < x
case mk R : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : PartialOrder R inst✝² : CanonicallyOrderedAdd R inst✝¹ : NoZeroDivisors R inst✝ : Nontrivial R m : Multiset R l : List R ⊢ 0 < l.prod ↔ ∀ x ∈ ↑l, 0 < x
exact CanonicallyOrderedAdd.list_prod_pos
no goals
7f13f37d937206bf
Set.Definable.inter
Mathlib/ModelTheory/Definability.lean
theorem Definable.inter {f g : Set (α → M)} (hf : A.Definable L f) (hg : A.Definable L g) : A.Definable L (f ∩ g)
case intro M : Type w A : Set M L : Language inst✝ : L.Structure M α : Type u₁ g : Set (α → M) hg : A.Definable L g φ : L[[↑A]].Formula α ⊢ A.Definable L (setOf φ.Realize ∩ g)
rcases hg with ⟨θ, rfl⟩
case intro.intro M : Type w A : Set M L : Language inst✝ : L.Structure M α : Type u₁ φ θ : L[[↑A]].Formula α ⊢ A.Definable L (setOf φ.Realize ∩ setOf θ.Realize)
f6c5351870975076
CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms_rlp
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/EnoughInjectives.lean
lemma generatingMonomorphisms_rlp [IsGrothendieckAbelian.{w} C] (hG : IsSeparator G) : (generatingMonomorphisms G).rlp = (monomorphisms C).rlp
case a C : Type u inst✝² : Category.{v, u} C G : C inst✝¹ : Abelian C inst✝ : IsGrothendieckAbelian.{w, v, u} C hG : IsSeparator G ⊢ (generatingMonomorphisms G).rlp ≤ (monomorphisms C).rlp
intro X Y p hp A B i (_ : Mono i)
case a C : Type u inst✝² : Category.{v, u} C G : C inst✝¹ : Abelian C inst✝ : IsGrothendieckAbelian.{w, v, u} C hG : IsSeparator G X Y : C p : X ⟶ Y hp : (generatingMonomorphisms G).rlp p A B : C i : A ⟶ B x✝ : Mono i ⊢ HasLiftingProperty i p
f4387f1ab4475cee
IsOpen.exists_between_affineIndependent_span_eq_top
Mathlib/Analysis/Normed/Affine/AddTorsorBases.lean
theorem IsOpen.exists_between_affineIndependent_span_eq_top {s u : Set P} (hu : IsOpen u) (hsu : s ⊆ u) (hne : s.Nonempty) (h : AffineIndependent ℝ ((↑) : s → P)) : ∃ t : Set P, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ ((↑) : t → P) ∧ affineSpan ℝ t = ⊤
case intro.intro.intro.intro.intro.intro V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s u : Set P hu : IsOpen u hsu : s ⊆ u h : AffineIndependent ℝ Subtype.val q : P hq : q ∈ s ε : ℝ ε0 : 0 < ε hεu : Metric.closedBall q ε ⊆ u t : Set P ht₁ : s ⊆ t ht₂ : AffineIndependent ℝ fun p => ↑p ht₃ : affineSpan ℝ t = ⊤ f : P → P := fun y => (lineMap q y) (ε / dist y q) hf : ∀ (y : P), f y ∈ u ⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
have hεyq : ∀ y ∉ s, ε / dist y q ≠ 0 := fun y hy => div_ne_zero ε0.ne' (dist_ne_zero.2 (ne_of_mem_of_not_mem hq hy).symm)
case intro.intro.intro.intro.intro.intro V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s u : Set P hu : IsOpen u hsu : s ⊆ u h : AffineIndependent ℝ Subtype.val q : P hq : q ∈ s ε : ℝ ε0 : 0 < ε hεu : Metric.closedBall q ε ⊆ u t : Set P ht₁ : s ⊆ t ht₂ : AffineIndependent ℝ fun p => ↑p ht₃ : affineSpan ℝ t = ⊤ f : P → P := fun y => (lineMap q y) (ε / dist y q) hf : ∀ (y : P), f y ∈ u hεyq : ∀ y ∉ s, ε / dist y q ≠ 0 ⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤
9c25b7b430e74f74
IsUniformInducing.equicontinuousAt_iff
Mathlib/Topology/UniformSpace/Equicontinuity.lean
theorem IsUniformInducing.equicontinuousAt_iff {F : ι → X → α} {x₀ : X} {u : α → β} (hu : IsUniformInducing u) : EquicontinuousAt F x₀ ↔ EquicontinuousAt ((u ∘ ·) ∘ F) x₀
ι : Type u_1 X : Type u_3 α : Type u_6 β : Type u_8 tX : TopologicalSpace X uα : UniformSpace α uβ : UniformSpace β F : ι → X → α x₀ : X u : α → β hu : IsUniformInducing u ⊢ EquicontinuousAt F x₀ ↔ EquicontinuousAt ((fun x => u ∘ x) ∘ F) x₀
have := (UniformFun.postcomp_isUniformInducing (α := ι) hu).isInducing
ι : Type u_1 X : Type u_3 α : Type u_6 β : Type u_8 tX : TopologicalSpace X uα : UniformSpace α uβ : UniformSpace β F : ι → X → α x₀ : X u : α → β hu : IsUniformInducing u this : IsInducing (⇑ofFun ∘ (fun x => u ∘ x) ∘ ⇑toFun) ⊢ EquicontinuousAt F x₀ ↔ EquicontinuousAt ((fun x => u ∘ x) ∘ F) x₀
7642583c4dad8f53
Matroid.IsRestriction.base_iff
Mathlib/Data/Matroid/Restrict.lean
theorem IsRestriction.base_iff (hMN : N ≤r M) {B : Set α} : N.IsBase B ↔ M.IsBasis B N.E := ⟨fun h ↦ IsBase.isBasis_of_isRestriction h hMN, fun h ↦ by simpa [hMN.eq_restrict] using h.restrict_isBase⟩
α : Type u_1 M N : Matroid α hMN : N ≤r M B : Set α h : M.IsBasis B N.E ⊢ N.IsBase B
simpa [hMN.eq_restrict] using h.restrict_isBase
no goals
244eca4bb448c196
HasDerivAt.lhopital_zero_atBot_on_Iio
Mathlib/Analysis/Calculus/LHopital.lean
theorem lhopital_zero_atBot_on_Iio (hff' : ∀ x ∈ Iio a, HasDerivAt f (f' x) x) (hgg' : ∀ x ∈ Iio a, HasDerivAt g (g' x) x) (hg' : ∀ x ∈ Iio a, g' x ≠ 0) (hfbot : Tendsto f atBot (𝓝 0)) (hgbot : Tendsto g atBot (𝓝 0)) (hdiv : Tendsto (fun x => f' x / g' x) atBot l) : Tendsto (fun x => f x / g x) atBot l
a : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ x ∈ Iio a, HasDerivAt f (f' x) x hgg' : ∀ x ∈ Iio a, HasDerivAt g (g' x) x hg' : ∀ x ∈ Iio a, g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ x ∈ Ioi (-a), HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ x ∈ Ioi (-a), HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x ⊢ Tendsto (fun x => f x / g x) atBot l
have := lhopital_zero_atTop_on_Ioi hdnf hdng (by intro x hx h apply hg' _ (by rw [← neg_Iio] at hx; exact hx) rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h) (hfbot.comp tendsto_neg_atTop_atBot) (hgbot.comp tendsto_neg_atTop_atBot) (by simp only [mul_one, mul_neg, neg_div_neg_eq] exact (tendsto_congr fun x => rfl).mp (hdiv.comp tendsto_neg_atTop_atBot))
a : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hff' : ∀ x ∈ Iio a, HasDerivAt f (f' x) x hgg' : ∀ x ∈ Iio a, HasDerivAt g (g' x) x hg' : ∀ x ∈ Iio a, g' x ≠ 0 hfbot : Tendsto f atBot (𝓝 0) hgbot : Tendsto g atBot (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) atBot l hdnf : ∀ x ∈ Ioi (-a), HasDerivAt (f ∘ Neg.neg) (f' (-x) * -1) x hdng : ∀ x ∈ Ioi (-a), HasDerivAt (g ∘ Neg.neg) (g' (-x) * -1) x this : Tendsto (fun x => (f ∘ Neg.neg) x / (g ∘ Neg.neg) x) atTop l ⊢ Tendsto (fun x => f x / g x) atBot l
bfae29b4a3f3d519
getElem_congr_idx
Mathlib/.lake/packages/lean4/src/lean/Init/GetElem.lean
theorem getElem_congr_idx [GetElem coll idx elem valid] {c : coll} {i j : idx} {w : valid c i} (h' : i = j) : c[i] = c[j]'(h' ▸ w)
coll : Type u_1 idx : Type u_2 elem : Type u_3 valid : coll → idx → Prop inst✝ : GetElem coll idx elem valid c : coll i j : idx w : valid c i h' : i = j ⊢ getElem c i w = getElem c j ⋯
cases h'
case refl coll : Type u_1 idx : Type u_2 elem : Type u_3 valid : coll → idx → Prop inst✝ : GetElem coll idx elem valid c : coll i : idx w : valid c i ⊢ getElem c i w = getElem c i ⋯
a9b5f0846516a702
Equiv.traverse_eq_map_id
Mathlib/Control/Traversable/Equiv.lean
theorem traverse_eq_map_id (f : α → β) (x : t' α) : Equiv.traverse eqv ((pure : β → Id β) ∘ f) x = pure (Equiv.map eqv f x)
t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Traversable t inst✝ : LawfulTraversable t α β : Type u f : α → β x : t' α ⊢ (eqv β) (id.mk (f <$> (eqv α).symm x)) = Equiv.map eqv f x
rfl
no goals
42d05ed5206def1a
Finsupp.erase_zero
Mathlib/Data/Finsupp/Single.lean
theorem erase_zero (a : α) : erase a (0 : α →₀ M) = 0
α : Type u_1 M : Type u_5 inst✝ : Zero M a : α ⊢ erase a 0 = 0
simp
no goals
7a4c9027ee9a9fd3
Rat.inv_intCast_den
Mathlib/Data/Rat/Lemmas.lean
theorem inv_intCast_den (a : ℤ) : (a : ℚ)⁻¹.den = if a = 0 then 1 else a.natAbs
case inl.intro a : ℤ lt : 0 < a ⊢ ↑(↑(-a))⁻¹.den = ↑(-a).natAbs
simp only [Int.cast_neg, Rat.inv_neg, neg_den, inv_intCast_den_of_pos lt, Int.natAbs_neg]
case inl.intro a : ℤ lt : 0 < a ⊢ a = ↑a.natAbs
d9f5d1fcf285c31d
NNReal.coe_sSup
Mathlib/Data/NNReal/Defs.lean
theorem coe_sSup (s : Set ℝ≥0) : (↑(sSup s) : ℝ) = sSup (((↑) : ℝ≥0 → ℝ) '' s)
case hs.intro.intro s : Set ℝ≥0 hs : s.Nonempty H : BddAbove s y : { r // 0 ≤ r } ⊢ 0 ≤ ↑y
exact y.2
no goals
d35908ad2b094ce8
CategoryTheory.Functor.final_of_final_costructuredArrowToOver_small
Mathlib/CategoryTheory/Comma/StructuredArrow/Final.lean
/-- The version of `final_of_final_costructuredArrowToOver` on small categories used to prove the full statement. -/ private lemma final_of_final_costructuredArrowToOver_small (L : A ⥤ T) (R : B ⥤ T) [Final R] [∀ b : B, Final (CostructuredArrow.toOver L (R.obj b))] : Final L
case h.e'_5 A : Type u₁ inst✝⁴ : SmallCategory A B : Type u₁ inst✝³ : SmallCategory B T : Type u₁ inst✝² : SmallCategory T L : A ⥤ T R : B ⥤ T inst✝¹ : R.Final inst✝ : ∀ (b : B), (CostructuredArrow.toOver L (R.obj b)).Final G : T ⥤ Type u₁ this : ∀ (b : B), Final ((whiskerLeft R (preFunctor L (𝟭 T))).app b) i : colimit (L ⋙ G) ≅ colimit G := Trans.trans (Trans.trans (Trans.trans (Trans.trans (Trans.trans (Trans.trans (L.colimitIsoColimitGrothendieck (L ⋙ G)) (Final.colimitIso (Grothendieck.pre (functor L) R) (grothendieckProj L ⋙ L ⋙ G)).symm) (HasColimit.isoOfNatIso (NatIso.ofComponents (fun x => Iso.refl ((Grothendieck.pre (functor L) R ⋙ grothendieckProj L ⋙ L ⋙ G).obj x)) ⋯))) (Final.colimitIso (Grothendieck.map (whiskerLeft R (preFunctor L (𝟭 T)))) (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G))) (HasColimit.isoOfNatIso (Iso.refl (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G)))) (Final.colimitIso (Grothendieck.pre (functor (𝟭 T)) R) (grothendieckProj (𝟭 T) ⋙ G))) ((𝟭 T).colimitIsoColimitGrothendieck G).symm ⊢ colimit.pre G L = (L.colimitIsoColimitGrothendieck (L ⋙ G)).hom ≫ (Final.colimitIso (Grothendieck.pre (functor L) R) (grothendieckProj L ⋙ L ⋙ G)).inv ≫ (HasColimit.isoOfNatIso (NatIso.ofComponents (fun x => Iso.refl (G.obj (L.obj x.fiber.left))) ⋯)).hom ≫ (Final.colimitIso (Grothendieck.map (whiskerLeft R (preFunctor L (𝟭 T)))) (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G)).hom ≫ (HasColimit.isoOfNatIso (Iso.refl (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G))).hom ≫ (Final.colimitIso (Grothendieck.pre (functor (𝟭 T)) R) (grothendieckProj (𝟭 T) ⋙ G)).hom ≫ ((𝟭 T).colimitIsoColimitGrothendieck G).inv
rw [← Iso.inv_comp_eq, Iso.eq_inv_comp]
case h.e'_5 A : Type u₁ inst✝⁴ : SmallCategory A B : Type u₁ inst✝³ : SmallCategory B T : Type u₁ inst✝² : SmallCategory T L : A ⥤ T R : B ⥤ T inst✝¹ : R.Final inst✝ : ∀ (b : B), (CostructuredArrow.toOver L (R.obj b)).Final G : T ⥤ Type u₁ this : ∀ (b : B), Final ((whiskerLeft R (preFunctor L (𝟭 T))).app b) i : colimit (L ⋙ G) ≅ colimit G := Trans.trans (Trans.trans (Trans.trans (Trans.trans (Trans.trans (Trans.trans (L.colimitIsoColimitGrothendieck (L ⋙ G)) (Final.colimitIso (Grothendieck.pre (functor L) R) (grothendieckProj L ⋙ L ⋙ G)).symm) (HasColimit.isoOfNatIso (NatIso.ofComponents (fun x => Iso.refl ((Grothendieck.pre (functor L) R ⋙ grothendieckProj L ⋙ L ⋙ G).obj x)) ⋯))) (Final.colimitIso (Grothendieck.map (whiskerLeft R (preFunctor L (𝟭 T)))) (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G))) (HasColimit.isoOfNatIso (Iso.refl (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G)))) (Final.colimitIso (Grothendieck.pre (functor (𝟭 T)) R) (grothendieckProj (𝟭 T) ⋙ G))) ((𝟭 T).colimitIsoColimitGrothendieck G).symm ⊢ (Final.colimitIso (Grothendieck.pre (functor L) R) (grothendieckProj L ⋙ L ⋙ G)).hom ≫ (L.colimitIsoColimitGrothendieck (L ⋙ G)).inv ≫ colimit.pre G L = (HasColimit.isoOfNatIso (NatIso.ofComponents (fun x => Iso.refl (G.obj (L.obj x.fiber.left))) ⋯)).hom ≫ (Final.colimitIso (Grothendieck.map (whiskerLeft R (preFunctor L (𝟭 T)))) (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G)).hom ≫ (HasColimit.isoOfNatIso (Iso.refl (grothendieckPrecompFunctorToComma (𝟭 T) R ⋙ Comma.fst (𝟭 T) R ⋙ G))).hom ≫ (Final.colimitIso (Grothendieck.pre (functor (𝟭 T)) R) (grothendieckProj (𝟭 T) ⋙ G)).hom ≫ ((𝟭 T).colimitIsoColimitGrothendieck G).inv
5b21f5fd15909d2e
Std.Sat.AIG.mkConstCached_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/CachedLemmas.lean
theorem mkConstCached_decl_eq (aig : AIG α) (val : Bool) (idx : Nat) {h : idx < aig.decls.size} {hbound} : (aig.mkConstCached val).aig.decls[idx]'hbound = aig.decls[idx]
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α val : Bool idx : Nat h : idx < aig.decls.size hbound : idx < (aig.mkConstCached val).aig.decls.size gate : CacheHit aig.decls (Decl.const val) hcache : aig.cache.get? (Decl.const val) = some gate ⊢ (aig.mkConstCached val).aig.decls[idx] = aig.decls[idx]
have := mkConstCached_hit_aig aig hcache
α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α val : Bool idx : Nat h : idx < aig.decls.size hbound : idx < (aig.mkConstCached val).aig.decls.size gate : CacheHit aig.decls (Decl.const val) hcache : aig.cache.get? (Decl.const val) = some gate this : (aig.mkConstCached val).aig = aig ⊢ (aig.mkConstCached val).aig.decls[idx] = aig.decls[idx]
36b90051913996fa
MeasureTheory.convolution_assoc
Mathlib/Analysis/Convolution.lean
theorem convolution_assoc (hL : ∀ (x : E) (y : E') (z : E''), L₂ (L x y) z = L₃ x (L₄ y z)) {x₀ : G} (hf : AEStronglyMeasurable f ν) (hg : AEStronglyMeasurable g μ) (hk : AEStronglyMeasurable k μ) (hfg : ∀ᵐ y ∂μ, ConvolutionExistsAt f g y L ν) (hgk : ∀ᵐ x ∂ν, ConvolutionExistsAt (fun x => ‖g x‖) (fun x => ‖k x‖) x (mul ℝ ℝ) μ) (hfgk : ConvolutionExistsAt (fun x => ‖f x‖) ((fun x => ‖g x‖) ⋆[mul ℝ ℝ, μ] fun x => ‖k x‖) x₀ (mul ℝ ℝ) ν) : ((f ⋆[L, ν] g) ⋆[L₂, μ] k) x₀ = (f ⋆[L₃, ν] g ⋆[L₄, μ] k) x₀
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' E'' : Type uE'' F : Type uF F' : Type uF' F'' : Type uF'' inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup E' inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedAddCommGroup F f : G → E g : G → E' inst✝²² : RCLike 𝕜 inst✝²¹ : NormedSpace 𝕜 E inst✝²⁰ : NormedSpace 𝕜 E' inst✝¹⁹ : NormedSpace 𝕜 E'' inst✝¹⁸ : NormedSpace ℝ F inst✝¹⁷ : NormedSpace 𝕜 F inst✝¹⁶ : MeasurableSpace G μ ν : Measure G L : E →L[𝕜] E' →L[𝕜] F inst✝¹⁵ : CompleteSpace F inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace ℝ F' inst✝¹² : NormedSpace 𝕜 F' inst✝¹¹ : CompleteSpace F' inst✝¹⁰ : NormedAddCommGroup F'' inst✝⁹ : NormedSpace ℝ F'' inst✝⁸ : NormedSpace 𝕜 F'' inst✝⁷ : CompleteSpace F'' k : G → E'' L₂ : F →L[𝕜] E'' →L[𝕜] F' L₃ : E →L[𝕜] F'' →L[𝕜] F' L₄ : E' →L[𝕜] E'' →L[𝕜] F'' inst✝⁶ : AddGroup G inst✝⁵ : SFinite μ inst✝⁴ : SFinite ν inst✝³ : μ.IsAddRightInvariant inst✝² : MeasurableAdd₂ G inst✝¹ : ν.IsAddRightInvariant inst✝ : MeasurableNeg G hL : ∀ (x : E) (y : E') (z : E''), (L₂ ((L x) y)) z = (L₃ x) ((L₄ y) z) x₀ : G hf : AEStronglyMeasurable f ν hg : AEStronglyMeasurable g μ hk : AEStronglyMeasurable k μ hfg : ∀ᵐ (y : G) ∂μ, ConvolutionExistsAt f g y L ν hgk : ∀ᵐ (x : G) ∂ν, ConvolutionExistsAt (fun x => ‖g x‖) (fun x => ‖k x‖) x (mul ℝ ℝ) μ hfgk : ConvolutionExistsAt (fun x => ‖f x‖) ((fun x => ‖g x‖) ⋆[mul ℝ ℝ, μ] fun x => ‖k x‖) x₀ (mul ℝ ℝ) ν h_meas : AEStronglyMeasurable (uncurry fun x y => (L₃ (f y)) ((L₄ (g x)) (k (x₀ - y - x)))) (μ.prod ν) h2_meas : AEStronglyMeasurable (fun y => ∫ (x : G), ‖(L₃ (f y)) ((L₄ (g x)) (k (x₀ - y - x)))‖ ∂μ) ν h3 : Measure.map (fun z => (z.1 - z.2, z.2)) (μ.prod ν) = μ.prod ν ⊢ Integrable (uncurry fun x y => (L₃ (f y)) ((L₄ (g (x - y))) (k (x₀ - x)))) (μ.prod ν)
suffices Integrable (uncurry fun x y => L₃ (f y) (L₄ (g x) (k (x₀ - y - x)))) (μ.prod ν) by rw [← h3] at this convert this.comp_measurable (measurable_sub.prod_mk measurable_snd) ext ⟨x, y⟩ simp (config := { unfoldPartialApp := true }) only [uncurry, Function.comp_apply, sub_sub_sub_cancel_right]
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' E'' : Type uE'' F : Type uF F' : Type uF' F'' : Type uF'' inst✝²⁶ : NormedAddCommGroup E inst✝²⁵ : NormedAddCommGroup E' inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedAddCommGroup F f : G → E g : G → E' inst✝²² : RCLike 𝕜 inst✝²¹ : NormedSpace 𝕜 E inst✝²⁰ : NormedSpace 𝕜 E' inst✝¹⁹ : NormedSpace 𝕜 E'' inst✝¹⁸ : NormedSpace ℝ F inst✝¹⁷ : NormedSpace 𝕜 F inst✝¹⁶ : MeasurableSpace G μ ν : Measure G L : E →L[𝕜] E' →L[𝕜] F inst✝¹⁵ : CompleteSpace F inst✝¹⁴ : NormedAddCommGroup F' inst✝¹³ : NormedSpace ℝ F' inst✝¹² : NormedSpace 𝕜 F' inst✝¹¹ : CompleteSpace F' inst✝¹⁰ : NormedAddCommGroup F'' inst✝⁹ : NormedSpace ℝ F'' inst✝⁸ : NormedSpace 𝕜 F'' inst✝⁷ : CompleteSpace F'' k : G → E'' L₂ : F →L[𝕜] E'' →L[𝕜] F' L₃ : E →L[𝕜] F'' →L[𝕜] F' L₄ : E' →L[𝕜] E'' →L[𝕜] F'' inst✝⁶ : AddGroup G inst✝⁵ : SFinite μ inst✝⁴ : SFinite ν inst✝³ : μ.IsAddRightInvariant inst✝² : MeasurableAdd₂ G inst✝¹ : ν.IsAddRightInvariant inst✝ : MeasurableNeg G hL : ∀ (x : E) (y : E') (z : E''), (L₂ ((L x) y)) z = (L₃ x) ((L₄ y) z) x₀ : G hf : AEStronglyMeasurable f ν hg : AEStronglyMeasurable g μ hk : AEStronglyMeasurable k μ hfg : ∀ᵐ (y : G) ∂μ, ConvolutionExistsAt f g y L ν hgk : ∀ᵐ (x : G) ∂ν, ConvolutionExistsAt (fun x => ‖g x‖) (fun x => ‖k x‖) x (mul ℝ ℝ) μ hfgk : ConvolutionExistsAt (fun x => ‖f x‖) ((fun x => ‖g x‖) ⋆[mul ℝ ℝ, μ] fun x => ‖k x‖) x₀ (mul ℝ ℝ) ν h_meas : AEStronglyMeasurable (uncurry fun x y => (L₃ (f y)) ((L₄ (g x)) (k (x₀ - y - x)))) (μ.prod ν) h2_meas : AEStronglyMeasurable (fun y => ∫ (x : G), ‖(L₃ (f y)) ((L₄ (g x)) (k (x₀ - y - x)))‖ ∂μ) ν h3 : Measure.map (fun z => (z.1 - z.2, z.2)) (μ.prod ν) = μ.prod ν ⊢ Integrable (uncurry fun x y => (L₃ (f y)) ((L₄ (g x)) (k (x₀ - y - x)))) (μ.prod ν)
f21dcf6a44458531
MulAction.stabilizer_inf_stabilizer_le_stabilizer_apply₂
Mathlib/Algebra/Pointwise/Stabilizer.lean
@[to_additive] lemma stabilizer_inf_stabilizer_le_stabilizer_apply₂ {f : Set α → Set α → Set α} (hf : ∀ a : G, a • f s t = f (a • s) (a • t)) : stabilizer G s ⊓ stabilizer G t ≤ stabilizer G (f s t)
G : Type u_1 α : Type u_3 inst✝¹ : Group G inst✝ : MulAction G α s t : Set α f : Set α → Set α → Set α hf : ∀ (a : G), a • f s t = f (a • s) (a • t) ⊢ stabilizer G s ⊓ stabilizer G t ≤ stabilizer G (f s t)
aesop (add simp [SetLike.le_def])
no goals
fe563d9fe94341ce
Antitone.map_limsSup_of_continuousAt
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
theorem Antitone.map_limsSup_of_continuousAt {F : Filter R} [NeBot F] {f : R → S} (f_decr : Antitone f) (f_cont : ContinuousAt f F.limsSup) (bdd_above : F.IsBounded (· ≤ ·)
case a R : Type u_4 S : Type u_5 inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : F.NeBot f : R → S f_decr : Antitone f f_cont : ContinuousAt f F.limsSup bdd_above : autoParam (IsBounded (fun x1 x2 => x1 ≤ x2) F) _auto✝ cobdd : autoParam (IsCobounded (fun x1 x2 => x1 ≤ x2) F) _auto✝ ⊢ liminf f F ≤ f F.limsSup
by_cases h' : ∃ c, c < F.limsSup ∧ Set.Ioo c F.limsSup = ∅
case pos R : Type u_4 S : Type u_5 inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : F.NeBot f : R → S f_decr : Antitone f f_cont : ContinuousAt f F.limsSup bdd_above : autoParam (IsBounded (fun x1 x2 => x1 ≤ x2) F) _auto✝ cobdd : autoParam (IsCobounded (fun x1 x2 => x1 ≤ x2) F) _auto✝ h' : ∃ c < F.limsSup, Set.Ioo c F.limsSup = ∅ ⊢ liminf f F ≤ f F.limsSup case neg R : Type u_4 S : Type u_5 inst✝⁶ : ConditionallyCompleteLinearOrder R inst✝⁵ : TopologicalSpace R inst✝⁴ : OrderTopology R inst✝³ : ConditionallyCompleteLinearOrder S inst✝² : TopologicalSpace S inst✝¹ : OrderTopology S F : Filter R inst✝ : F.NeBot f : R → S f_decr : Antitone f f_cont : ContinuousAt f F.limsSup bdd_above : autoParam (IsBounded (fun x1 x2 => x1 ≤ x2) F) _auto✝ cobdd : autoParam (IsCobounded (fun x1 x2 => x1 ≤ x2) F) _auto✝ h' : ¬∃ c < F.limsSup, Set.Ioo c F.limsSup = ∅ ⊢ liminf f F ≤ f F.limsSup
3b8bbb0ba829f542
CategoryTheory.Localization.essSurj_mapArrow
Mathlib/CategoryTheory/Localization/CalculusOfFractions.lean
lemma Localization.essSurj_mapArrow : L.mapArrow.EssSurj where mem_essImage f
case intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝³ : Category.{u_3, u_1} C inst✝² : Category.{u_4, u_2} D L : C ⥤ D W : MorphismProperty C inst✝¹ : L.IsLocalization W inst✝ : W.HasLeftCalculusOfFractions f : Arrow D this : L.EssSurj X : C eX : L.obj X ≅ f.left Y : C eY : L.obj Y ≅ f.right φ : W.LeftFraction X Y hφ : eX.hom ≫ f.hom ≫ eY.inv = φ.map L ⋯ ⊢ L.mapArrow.essImage f
refine ⟨Arrow.mk φ.f, ⟨Iso.symm ?_⟩⟩
case intro.intro.intro.intro.intro C : Type u_1 D : Type u_2 inst✝³ : Category.{u_3, u_1} C inst✝² : Category.{u_4, u_2} D L : C ⥤ D W : MorphismProperty C inst✝¹ : L.IsLocalization W inst✝ : W.HasLeftCalculusOfFractions f : Arrow D this : L.EssSurj X : C eX : L.obj X ≅ f.left Y : C eY : L.obj Y ≅ f.right φ : W.LeftFraction X Y hφ : eX.hom ≫ f.hom ≫ eY.inv = φ.map L ⋯ ⊢ f ≅ L.mapArrow.obj (Arrow.mk φ.f)
164023e816364abf
LSeries.positive
Mathlib/NumberTheory/LSeries/Positivity.lean
/-- If all values of `a : ℕ → ℂ` are nonnegative reals and `a 1` is positive, then `L a x` is positive real for all real `x` larger than `abscissaOfAbsConv a`. -/ lemma positive {a : ℕ → ℂ} (ha₀ : 0 ≤ a) (ha₁ : 0 < a 1) {x : ℝ} (hx : abscissaOfAbsConv a < x) : 0 < LSeries a x
a : ℕ → ℂ ha₀ : 0 ≤ a ha₁ : 0 < a 1 x : ℝ hx : abscissaOfAbsConv a < ↑x ⊢ 0 < LSeries a ↑x
rw [LSeries]
a : ℕ → ℂ ha₀ : 0 ≤ a ha₁ : 0 < a 1 x : ℝ hx : abscissaOfAbsConv a < ↑x ⊢ 0 < ∑' (n : ℕ), term a (↑x) n
e902be672425c326
Primrec.list_get?
Mathlib/Computability/Primrec.lean
theorem list_get? : Primrec₂ (@List.get? α) := let F (l : List α) (n : ℕ) := l.foldl (fun (s : ℕ ⊕ α) (a : α) => Sum.casesOn s (@Nat.casesOn (fun _ => ℕ ⊕ α) · (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) have hF : Primrec₂ F := (list_foldl fst (sumInl.comp snd) ((sumCasesOn fst (nat_casesOn snd (sumInr.comp <| snd.comp fst) (sumInl.comp snd).to₂).to₂ (sumInr.comp snd).to₂).comp snd).to₂).to₂ have : @Primrec _ (Option α) _ _ fun p : List α × ℕ => Sum.casesOn (F p.1 p.2) (fun _ => none) some := sumCasesOn hF (const none).to₂ (option_some.comp snd).to₂ this.to₂.of_eq fun l n => by dsimp; symm induction' l with a l IH generalizing n; · rfl rcases n with - | n · dsimp [F] clear IH induction' l with _ l IH <;> simp [*] · apply IH
case cons.zero α : Type u_1 inst✝ : Primcodable α F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.1 p.2) (fun x => none) some a : α l : List α IH : ∀ (n : ℕ), l.get? n = Sum.rec (fun val => none) (fun val => some val) (F l n) ⊢ some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) l)
clear IH
case cons.zero α : Type u_1 inst✝ : Primcodable α F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.1 p.2) (fun x => none) some a : α l : List α ⊢ some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) l)
b84fae2f2ee71bbf
IsCompact.uniform_oscillationWithin
Mathlib/Analysis/Oscillation.lean
theorem uniform_oscillationWithin (comp : IsCompact K) (hK : ∀ x ∈ K, oscillationWithin f D x < ε) : ∃ δ > 0, ∀ x ∈ K, diam (f '' (ball x (ENNReal.ofReal δ) ∩ D)) ≤ ε
case right.intro E : Type u F : Type v inst✝¹ : PseudoEMetricSpace F inst✝ : PseudoEMetricSpace E K : Set E f : E → F D : Set E ε : ℝ≥0∞ comp : IsCompact K hK : ∀ x ∈ K, oscillationWithin f D x < ε S : ℝ → Set E := fun r => {x | ∃ a > r, diam (f '' (ball x (ENNReal.ofReal a) ∩ D)) ≤ ε} S_open : ∀ r > 0, IsOpen (S r) S_cover : K ⊆ ⋃ r, ⋃ (_ : r > 0), S r S_antitone : ∀ (r₁ r₂ : ℝ), r₁ ≤ r₂ → S r₂ ⊆ S r₁ T : Set ℝ Tb : T ⊆ Real.lt✝ 0 Tfin : T.Finite hT : K ⊆ ⋃ i ∈ T, S i T_nonempty : T.Nonempty x : E hx : x ∈ K r : ℝ hr : x ∈ ⋃ (_ : r ∈ T), S r ⊢ x ∈ S (⋯.min T_nonempty)
simp only [mem_iUnion, exists_prop] at hr
case right.intro E : Type u F : Type v inst✝¹ : PseudoEMetricSpace F inst✝ : PseudoEMetricSpace E K : Set E f : E → F D : Set E ε : ℝ≥0∞ comp : IsCompact K hK : ∀ x ∈ K, oscillationWithin f D x < ε S : ℝ → Set E := fun r => {x | ∃ a > r, diam (f '' (ball x (ENNReal.ofReal a) ∩ D)) ≤ ε} S_open : ∀ r > 0, IsOpen (S r) S_cover : K ⊆ ⋃ r, ⋃ (_ : r > 0), S r S_antitone : ∀ (r₁ r₂ : ℝ), r₁ ≤ r₂ → S r₂ ⊆ S r₁ T : Set ℝ Tb : T ⊆ Real.lt✝ 0 Tfin : T.Finite hT : K ⊆ ⋃ i ∈ T, S i T_nonempty : T.Nonempty x : E hx : x ∈ K r : ℝ hr : r ∈ T ∧ x ∈ S r ⊢ x ∈ S (⋯.min T_nonempty)
94dd135f2a970b86
LocallyFinite.nhdsWithin_iUnion
Mathlib/Topology/LocallyFinite.lean
theorem nhdsWithin_iUnion (hf : LocallyFinite f) (a : X) : 𝓝[⋃ i, f i] a = ⨆ i, 𝓝[f i] a
case intro.intro ι : Type u_1 X : Type u_4 inst✝ : TopologicalSpace X f : ι → Set X hf : LocallyFinite f a : X U : Set X haU : U ∈ 𝓝 a hfin : {i | (f i ∩ U).Nonempty}.Finite ⊢ 𝓝[⋃ i, f i] a = ⨆ i, 𝓝[f i] a
refine le_antisymm ?_ (Monotone.le_map_iSup fun _ _ ↦ nhdsWithin_mono _)
case intro.intro ι : Type u_1 X : Type u_4 inst✝ : TopologicalSpace X f : ι → Set X hf : LocallyFinite f a : X U : Set X haU : U ∈ 𝓝 a hfin : {i | (f i ∩ U).Nonempty}.Finite ⊢ 𝓝[⋃ i, f i] a ≤ ⨆ i, 𝓝[f i] a
6a6117d01789edf6
Real.deriv2_mul_log
Mathlib/Analysis/SpecialFunctions/Log/NegMulLog.lean
lemma deriv2_mul_log (x : ℝ) : deriv^[2] (fun x ↦ x * log x) x = x⁻¹
case pos x : ℝ hx : x = 0 ⊢ deriv (deriv fun x => x * log x) 0 = 0
exact deriv_zero_of_not_differentiableAt (fun h ↦ not_continuousAt_deriv_mul_log_zero h.continuousAt)
no goals
8a74dc0c380975af
VitaliFamily.withDensity_limRatioMeas_eq
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem withDensity_limRatioMeas_eq : μ.withDensity (v.limRatioMeas hρ) = ρ
case h.refine_1 α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s this : Tendsto (fun t => ↑t ^ 2 * ρ s) (𝓝[>] 1) (𝓝 (1 ^ 2 * ρ s)) ⊢ (μ.withDensity (v.limRatioMeas hρ)) s ≤ ρ s
simp only [one_pow, one_mul, ENNReal.coe_one] at this
case h.refine_1 α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s this : Tendsto (fun t => ↑t ^ 2 * ρ s) (𝓝[>] 1) (𝓝 (ρ s)) ⊢ (μ.withDensity (v.limRatioMeas hρ)) s ≤ ρ s
c98b00e271c474ed
InformationTheory.klDiv_eq_lintegral_klFun
Mathlib/InformationTheory/KullbackLeibler/Basic.lean
lemma klDiv_eq_lintegral_klFun : klDiv μ ν = if μ ≪ ν then ∫⁻ x, ENNReal.ofReal (klFun (μ.rnDeriv ν x).toReal) ∂ν else ∞
case neg α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hμν : μ ≪ ν h_int_iff : ∫⁻ (a : α), ENNReal.ofReal (klFun (μ.rnDeriv ν a).toReal) ∂ν ≠ ⊤ ↔ Integrable (fun x => klFun (μ.rnDeriv ν x).toReal) ν h_int : ¬Integrable (llr μ ν) μ ⊢ (if μ ≪ ν ∧ Integrable (llr μ ν) μ then ENNReal.ofReal (∫ (x : α), klFun (μ.rnDeriv ν x).toReal ∂ν) else ⊤) = if μ ≪ ν then ∫⁻ (x : α), ENNReal.ofReal (klFun (μ.rnDeriv ν x).toReal) ∂ν else ⊤
rw [← not_iff_not, ne_eq, Decidable.not_not] at h_int_iff
case neg α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hμν : μ ≪ ν h_int_iff : ∫⁻ (a : α), ENNReal.ofReal (klFun (μ.rnDeriv ν a).toReal) ∂ν = ⊤ ↔ ¬Integrable (fun x => klFun (μ.rnDeriv ν x).toReal) ν h_int : ¬Integrable (llr μ ν) μ ⊢ (if μ ≪ ν ∧ Integrable (llr μ ν) μ then ENNReal.ofReal (∫ (x : α), klFun (μ.rnDeriv ν x).toReal ∂ν) else ⊤) = if μ ≪ ν then ∫⁻ (x : α), ENNReal.ofReal (klFun (μ.rnDeriv ν x).toReal) ∂ν else ⊤
2592d1db22568a7f
MeasureTheory.lintegral_iSup
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ
case intro.intro α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ≥0∞ hf : ∀ (n : ℕ), Measurable (f n) h_mono : Monotone f c : ℝ≥0 → ℝ≥0∞ := ofNNReal F : α → ℝ≥0∞ := fun a => ⨆ n, f n a s : α →ₛ ℝ≥0 hsf : ∀ (x : α), ↑(s x) ≤ ⨆ n, f n x r : ℝ≥0 right✝ : ↑r < 1 ha✝ : ↑r < 1 ha : r < 1 rs : α →ₛ ℝ≥0 := SimpleFunc.map (fun a => r * a) s eq_rs : SimpleFunc.map c rs = const α ↑r * SimpleFunc.map c s eq : ∀ (p : ℝ≥0∞), ⇑(SimpleFunc.map c rs) ⁻¹' {p} = ⋃ n, ⇑(SimpleFunc.map c rs) ⁻¹' {p} ∩ {a | p ≤ f n a} mono : ∀ (r : ℝ≥0∞), Monotone fun n => ⇑(SimpleFunc.map c rs) ⁻¹' {r} ∩ {a | r ≤ f n a} ⊢ ↑r * (SimpleFunc.map ofNNReal s).lintegral μ ≤ ⨆ n, ∫⁻ (a : α), f n a ∂μ
have h_meas : ∀ n, MeasurableSet {a : α | map c rs a ≤ f n a} := fun n => measurableSet_le (SimpleFunc.measurable _) (hf n)
case intro.intro α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ≥0∞ hf : ∀ (n : ℕ), Measurable (f n) h_mono : Monotone f c : ℝ≥0 → ℝ≥0∞ := ofNNReal F : α → ℝ≥0∞ := fun a => ⨆ n, f n a s : α →ₛ ℝ≥0 hsf : ∀ (x : α), ↑(s x) ≤ ⨆ n, f n x r : ℝ≥0 right✝ : ↑r < 1 ha✝ : ↑r < 1 ha : r < 1 rs : α →ₛ ℝ≥0 := SimpleFunc.map (fun a => r * a) s eq_rs : SimpleFunc.map c rs = const α ↑r * SimpleFunc.map c s eq : ∀ (p : ℝ≥0∞), ⇑(SimpleFunc.map c rs) ⁻¹' {p} = ⋃ n, ⇑(SimpleFunc.map c rs) ⁻¹' {p} ∩ {a | p ≤ f n a} mono : ∀ (r : ℝ≥0∞), Monotone fun n => ⇑(SimpleFunc.map c rs) ⁻¹' {r} ∩ {a | r ≤ f n a} h_meas : ∀ (n : ℕ), MeasurableSet {a | (SimpleFunc.map c rs) a ≤ f n a} ⊢ ↑r * (SimpleFunc.map ofNNReal s).lintegral μ ≤ ⨆ n, ∫⁻ (a : α), f n a ∂μ
e37d047cd3bb7874
CategoryTheory.TwoSquare.GuitartExact.whiskerVertical
Mathlib/CategoryTheory/GuitartExact/VerticalComposition.lean
/-- A 2-square stays Guitart exact if we replace the left and right functors by isomorphic functors. See also `whiskerVertical_iff`. -/ lemma whiskerVertical [w.GuitartExact] (α : L ≅ L') (β : R ≅ R') : (w.whiskerVertical α.hom β.inv).GuitartExact
C₁ : Type u_1 C₂ : Type u_2 D₁ : Type u_4 D₂ : Type u_5 inst✝⁴ : Category.{u_7, u_1} C₁ inst✝³ : Category.{u_9, u_2} C₂ inst✝² : Category.{u_8, u_4} D₁ inst✝¹ : Category.{u_10, u_5} D₂ T : C₁ ⥤ D₁ L : C₁ ⥤ C₂ R : D₁ ⥤ D₂ B : C₂ ⥤ D₂ w : TwoSquare T L R B L' : C₁ ⥤ C₂ R' : D₁ ⥤ D₂ inst✝ : w.GuitartExact α : L ≅ L' β : R ≅ R' ⊢ ∀ (X₂ : D₁), ((w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂).Initial
intro X₂
C₁ : Type u_1 C₂ : Type u_2 D₁ : Type u_4 D₂ : Type u_5 inst✝⁴ : Category.{u_7, u_1} C₁ inst✝³ : Category.{u_9, u_2} C₂ inst✝² : Category.{u_8, u_4} D₁ inst✝¹ : Category.{u_10, u_5} D₂ T : C₁ ⥤ D₁ L : C₁ ⥤ C₂ R : D₁ ⥤ D₂ B : C₂ ⥤ D₂ w : TwoSquare T L R B L' : C₁ ⥤ C₂ R' : D₁ ⥤ D₂ inst✝ : w.GuitartExact α : L ≅ L' β : R ≅ R' X₂ : D₁ ⊢ ((w.whiskerVertical α.hom β.inv).structuredArrowDownwards X₂).Initial
f2a5c6dddf567542
IsArtinianRing.setOf_isMaximal_finite
Mathlib/RingTheory/Artinian/Module.lean
@[stacks 00J7] lemma setOf_isMaximal_finite : {I : Ideal R | I.IsMaximal}.Finite
R : Type u_1 inst✝¹ : CommSemiring R inst✝ : IsArtinianRing R s : Finset { I // I.IsMaximal } H : ∀ (a : { I // I.IsMaximal }), s.inf Subtype.val ≤ ↑a p : ↑{I | I.IsMaximal} ⊢ p ∈ s
have ⟨q, hq1, hq2⟩ := p.2.isPrime.inf_le'.mp (H p)
R : Type u_1 inst✝¹ : CommSemiring R inst✝ : IsArtinianRing R s : Finset { I // I.IsMaximal } H : ∀ (a : { I // I.IsMaximal }), s.inf Subtype.val ≤ ↑a p : ↑{I | I.IsMaximal} q : { I // I.IsMaximal } hq1 : q ∈ s hq2 : ↑q ≤ ↑p ⊢ p ∈ s
2f3781a7cf048e7b
exists_isIdempotentElem_mul_eq_zero_of_ker_isNilpotent_aux
Mathlib/RingTheory/Idempotents.lean
theorem exists_isIdempotentElem_mul_eq_zero_of_ker_isNilpotent_aux (h : ∀ x ∈ RingHom.ker f, IsNilpotent x) (e₁ : S) (he : e₁ ∈ f.range) (he₁ : IsIdempotentElem e₁) (e₂ : R) (he₂ : IsIdempotentElem e₂) (he₁e₂ : e₁ * f e₂ = 0) : ∃ e' : R, IsIdempotentElem e' ∧ f e' = e₁ ∧ e' * e₂ = 0
case intro.inr.intro.refine_1.succ R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : Ring S f : R →+* S h : ∀ x ∈ RingHom.ker f, IsNilpotent x e₂ : R he₂ : IsIdempotentElem e₂ e₁ : R he₁ : IsIdempotentElem (f e₁) he₁e₂ : f e₁ * f e₂ = 0 h✝ : Nontrivial R a : R := e₁ - e₁ * e₂ ha : f a = f e₁ ha' : a * e₂ = 0 hx' : a - a ^ 2 ∈ RingHom.ker f n : ℕ hn : (a - a ^ 2) ^ (n + 1) = 0 ⊢ f (1 - (1 - a ^ (n + 1)) ^ (n + 1)) = f e₁
simp only [map_sub, map_one, map_pow, ha, he₁.pow_succ_eq, he₁.one_sub.pow_succ_eq, sub_sub_cancel]
no goals
58add8d013086a2a
MeasureTheory.Measure.haveLebesgueDecomposition_of_finiteMeasure
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem haveLebesgueDecomposition_of_finiteMeasure [IsFiniteMeasure μ] [IsFiniteMeasure ν] : HaveLebesgueDecomposition μ ν where lebesgue_decomposition
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν g : ℕ → ℝ≥0∞ h✝ : Monotone g hg₂ : Filter.Tendsto g Filter.atTop (nhds (sSup (measurableLEEval ν μ))) f : ℕ → α → ℝ≥0∞ hf₁ : ∀ (n : ℕ), f n ∈ measurableLE ν μ hf₂ : ∀ (n : ℕ), (fun f => ∫⁻ (x : α), f x ∂ν) (f n) = g n ξ : α → ℝ≥0∞ := ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ : ξ = ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ₁ : sSup (measurableLEEval ν μ) = ∫⁻ (a : α), ξ a ∂ν hξm : Measurable ξ hξle : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A, ξ a ∂ν ≤ μ A hle : ν.withDensity ξ ≤ μ hle' : (ν.withDensity ξ) univ ≤ μ univ ⊢ ∫⁻ (a : α), ξ a ∂ν ≠ ⊤
rw [withDensity_apply _ MeasurableSet.univ, Measure.restrict_univ] at hle'
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν g : ℕ → ℝ≥0∞ h✝ : Monotone g hg₂ : Filter.Tendsto g Filter.atTop (nhds (sSup (measurableLEEval ν μ))) f : ℕ → α → ℝ≥0∞ hf₁ : ∀ (n : ℕ), f n ∈ measurableLE ν μ hf₂ : ∀ (n : ℕ), (fun f => ∫⁻ (x : α), f x ∂ν) (f n) = g n ξ : α → ℝ≥0∞ := ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ : ξ = ⨆ n, ⨆ k, ⨆ (_ : k ≤ n), f k hξ₁ : sSup (measurableLEEval ν μ) = ∫⁻ (a : α), ξ a ∂ν hξm : Measurable ξ hξle : ∀ (A : Set α), MeasurableSet A → ∫⁻ (a : α) in A, ξ a ∂ν ≤ μ A hle : ν.withDensity ξ ≤ μ hle' : ∫⁻ (a : α), ξ a ∂ν ≤ μ univ ⊢ ∫⁻ (a : α), ξ a ∂ν ≠ ⊤
0e340e69a0abebdf
PrimeSpectrum.isMaximal_of_toPiLocalization_surjective
Mathlib/RingTheory/Spectrum/Maximal/Localization.lean
theorem isMaximal_of_toPiLocalization_surjective (surj : Function.Surjective (toPiLocalization R)) (I : PrimeSpectrum R) : I.1.IsMaximal
case intro R : Type u_1 inst✝ : CommSemiring R surj : Function.Surjective ⇑(toPiLocalization R) I : PrimeSpectrum R J : Ideal R max : J.IsMaximal le : I.asIdeal ≤ J r : R hr : (toPiLocalization R) r = Function.update 0 { asIdeal := J, isPrime := ⋯ } 1 h : ¬I.asIdeal.IsMaximal ⊢ False
have hJ : algebraMap _ _ r = _ := (congr_fun hr _).trans (Function.update_self ..)
case intro R : Type u_1 inst✝ : CommSemiring R surj : Function.Surjective ⇑(toPiLocalization R) I : PrimeSpectrum R J : Ideal R max : J.IsMaximal le : I.asIdeal ≤ J r : R hr : (toPiLocalization R) r = Function.update 0 { asIdeal := J, isPrime := ⋯ } 1 h : ¬I.asIdeal.IsMaximal hJ : (algebraMap R (Localization { asIdeal := J, isPrime := ⋯ }.asIdeal.primeCompl)) r = 1 ⊢ False
9a9de007cef5767e
Set.nonempty_biUnion
Mathlib/Data/Set/Lattice.lean
theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty
α : Type u_1 β : Type u_2 t : Set α s : α → Set β ⊢ (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty
simp
no goals
3e8d027103f4d344
CategoryTheory.IsUniversalColimit.whiskerEquivalence_iff
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem IsUniversalColimit.whiskerEquivalence_iff {K : Type*} [Category K] (e : J ≌ K) {F : K ⥤ C} {c : Cocone F} : IsUniversalColimit (c.whisker e.functor) ↔ IsUniversalColimit c := ⟨fun hc ↦ ((hc.whiskerEquivalence e.symm).precompose_isIso (e.invFunIdAssoc F).inv).of_iso (Cocones.ext (Iso.refl _) (by simp)), IsUniversalColimit.whiskerEquivalence e⟩
J : Type v' inst✝² : Category.{u', v'} J C : Type u inst✝¹ : Category.{v, u} C K : Type u_3 inst✝ : Category.{u_4, u_3} K e : J ≌ K F : K ⥤ C c : Cocone F hc : IsUniversalColimit (Cocone.whisker e.functor c) ⊢ ∀ (j : K), ((Cocones.precompose (e.invFunIdAssoc F).inv).obj (Cocone.whisker e.symm.functor (Cocone.whisker e.functor c))).ι.app j ≫ (Iso.refl ((Cocones.precompose (e.invFunIdAssoc F).inv).obj (Cocone.whisker e.symm.functor (Cocone.whisker e.functor c))).pt).hom = c.ι.app j
simp
no goals
5ec2c60fb96b32b9
MeasureTheory.tendsto_lintegral_norm_of_dominated_convergence
Mathlib/MeasureTheory/Function/L1Space/HasFiniteIntegral.lean
theorem tendsto_lintegral_norm_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (F_measurable : ∀ n, AEStronglyMeasurable (F n) μ) (bound_hasFiniteIntegral : HasFiniteIntegral bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ‖F n a‖ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) : Tendsto (fun n => ∫⁻ a, ENNReal.ofReal ‖F n a - f a‖ ∂μ) atTop (𝓝 0)
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β F : ℕ → α → β f : α → β bound : α → ℝ F_measurable : ∀ (n : ℕ), AEStronglyMeasurable (F n) μ bound_hasFiniteIntegral : HasFiniteIntegral bound μ h_bound : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, ‖F n a‖ ≤ bound a h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a)) f_measurable : AEStronglyMeasurable f μ b : α → ℝ≥0∞ := fun a => 2 * ENNReal.ofReal (bound a) n : ℕ a : α h₁ : ENNReal.ofReal ‖F n a‖ ≤ ENNReal.ofReal (bound a) h₂ : ENNReal.ofReal ‖f a‖ ≤ ENNReal.ofReal (bound a) ⊢ ENNReal.ofReal ‖F n a - f a‖ ≤ ENNReal.ofReal ‖F n a‖ + ENNReal.ofReal ‖f a‖
rw [← ENNReal.ofReal_add]
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β F : ℕ → α → β f : α → β bound : α → ℝ F_measurable : ∀ (n : ℕ), AEStronglyMeasurable (F n) μ bound_hasFiniteIntegral : HasFiniteIntegral bound μ h_bound : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, ‖F n a‖ ≤ bound a h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a)) f_measurable : AEStronglyMeasurable f μ b : α → ℝ≥0∞ := fun a => 2 * ENNReal.ofReal (bound a) n : ℕ a : α h₁ : ENNReal.ofReal ‖F n a‖ ≤ ENNReal.ofReal (bound a) h₂ : ENNReal.ofReal ‖f a‖ ≤ ENNReal.ofReal (bound a) ⊢ ENNReal.ofReal ‖F n a - f a‖ ≤ ENNReal.ofReal (‖F n a‖ + ‖f a‖) case hp α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β F : ℕ → α → β f : α → β bound : α → ℝ F_measurable : ∀ (n : ℕ), AEStronglyMeasurable (F n) μ bound_hasFiniteIntegral : HasFiniteIntegral bound μ h_bound : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, ‖F n a‖ ≤ bound a h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a)) f_measurable : AEStronglyMeasurable f μ b : α → ℝ≥0∞ := fun a => 2 * ENNReal.ofReal (bound a) n : ℕ a : α h₁ : ENNReal.ofReal ‖F n a‖ ≤ ENNReal.ofReal (bound a) h₂ : ENNReal.ofReal ‖f a‖ ≤ ENNReal.ofReal (bound a) ⊢ 0 ≤ ‖F n a‖ case hq α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β F : ℕ → α → β f : α → β bound : α → ℝ F_measurable : ∀ (n : ℕ), AEStronglyMeasurable (F n) μ bound_hasFiniteIntegral : HasFiniteIntegral bound μ h_bound : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, ‖F n a‖ ≤ bound a h_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a)) f_measurable : AEStronglyMeasurable f μ b : α → ℝ≥0∞ := fun a => 2 * ENNReal.ofReal (bound a) n : ℕ a : α h₁ : ENNReal.ofReal ‖F n a‖ ≤ ENNReal.ofReal (bound a) h₂ : ENNReal.ofReal ‖f a‖ ≤ ENNReal.ofReal (bound a) ⊢ 0 ≤ ‖f a‖
08c35611a6e7531a
Batteries.RBNode.balance1_All
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/WF.lean
theorem balance1_All {l : RBNode α} {v : α} {r : RBNode α} : (balance1 l v r).All p ↔ p v ∧ l.All p ∧ r.All p
α : Type u_1 p : α → Prop l : RBNode α v : α r : RBNode α ⊢ All p (l.balance1 v r) ↔ p v ∧ All p l ∧ All p r
unfold balance1
α : Type u_1 p : α → Prop l : RBNode α v : α r : RBNode α ⊢ All p (match l, v, r with | node red (node red a x b) y c, z, d => node red (node black a x b) y (node black c z d) | node red a x (node red b y c), z, d => node red (node black a x b) y (node black c z d) | a, x, b => node black a x b) ↔ p v ∧ All p l ∧ All p r
61ac165bee48764b
Int.Matrix.image_T_subset_S
Mathlib/NumberTheory/SiegelsLemma.lean
private lemma image_T_subset_S [DecidableEq α] [DecidableEq β] (v) (hv : v ∈ T) : A *ᵥ v ∈ S
case refine_1.h.inr α : Type u_1 β : Type u_2 inst✝³ : Fintype α inst✝² : Fintype β A : Matrix α β ℤ inst✝¹ : DecidableEq α inst✝ : DecidableEq β v : β → ℤ hv : 0 ≤ v ∧ v ≤ B' mulVec_def : A *ᵥ v = fun i => ∑ j : β, A i j * v j i : α j : β a✝ : j ∈ univ hsign : A i j ≤ 0 ⊢ -(↑B * -A i j) ≤ v j * A i j
simp only [mul_neg, neg_neg]
case refine_1.h.inr α : Type u_1 β : Type u_2 inst✝³ : Fintype α inst✝² : Fintype β A : Matrix α β ℤ inst✝¹ : DecidableEq α inst✝ : DecidableEq β v : β → ℤ hv : 0 ≤ v ∧ v ≤ B' mulVec_def : A *ᵥ v = fun i => ∑ j : β, A i j * v j i : α j : β a✝ : j ∈ univ hsign : A i j ≤ 0 ⊢ ↑B * A i j ≤ v j * A i j
f9a7e5b087c18f50
balancedCoreAux_balanced
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
theorem balancedCoreAux_balanced (h0 : (0 : E) ∈ balancedCoreAux 𝕜 s) : Balanced 𝕜 (balancedCoreAux 𝕜 s)
case intro.intro.inr 𝕜 : Type u_1 E : Type u_2 inst✝² : NormedDivisionRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E h0 : 0 ∈ balancedCoreAux 𝕜 s a : 𝕜 ha : ‖a‖ ≤ 1 y : E hy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s h : a ≠ 0 r : 𝕜 hr : 1 ≤ ‖r‖ h'' : 1 ≤ ‖a⁻¹ • r‖ h' : y ∈ (a⁻¹ • r) • s ⊢ (fun x => a • x) y ∈ r • s
rwa [smul_assoc, mem_inv_smul_set_iff₀ h] at h'
no goals
d8dfb328ccf0ac15
CategoryTheory.Functor.shiftIso_hom_app_comp_shiftMap_of_add_eq_zero
Mathlib/CategoryTheory/Shift/ShiftSequence.lean
/-- If `f : X ⟶ Y⟦m⟧`, `n + m = 0` and `ha' : m + a = a'`, this lemma relates the two morphisms `F.shiftMap f a a' ha'` and `(F.shift a').map (f⟦n⟧')`. Indeed, via canonical isomorphisms, they both identify to morphisms `(F.shift a).obj X ⟶ (F.shift a').obj Y`. -/ lemma shiftIso_hom_app_comp_shiftMap_of_add_eq_zero [F.ShiftSequence G] {X Y : C} {m : G} (f : X ⟶ Y⟦m⟧) (n : G) (hnm : n + m = 0) (a a' : G) (ha' : m + a = a') : (F.shiftIso n a' a (by rw [← ha', ← add_assoc, hnm, zero_add])).hom.app X ≫ F.shiftMap f a a' ha' = (F.shift a').map (f⟦n⟧' ≫ (shiftFunctorCompIsoId C m n (by rw [← add_left_inj m, add_assoc, hnm, zero_add, add_zero])).hom.app Y)
C : Type u_1 A : Type u_2 inst✝⁴ : Category.{u_5, u_1} C inst✝³ : Category.{u_6, u_2} A F : C ⥤ A G : Type u_4 inst✝² : AddGroup G inst✝¹ : HasShift C G inst✝ : F.ShiftSequence G X Y : C m : G f : X ⟶ (shiftFunctor C m).obj Y n : G hnm : n + m = 0 a a' : G ha' : m + a = a' hnm' : m + n = 0 ⊢ (F.shiftIso n a' a ⋯).hom.app X ≫ F.shiftMap f a a' ha' = (F.shift a').map ((shiftFunctor C n).map f ≫ (shiftFunctorCompIsoId C m n ⋯).hom.app Y)
simp [F.shiftIso_hom_app_comp_shiftMap f n 0 hnm' a' a, shiftIso_zero_hom_app, shiftFunctorCompIsoId]
no goals
bffaf8c52e2aa69d
Antitone.cauchySeq_series_mul_of_tendsto_zero_of_bounded
Mathlib/Analysis/SpecificLimits/Normed.lean
theorem Antitone.cauchySeq_series_mul_of_tendsto_zero_of_bounded (hfa : Antitone f) (hf0 : Tendsto f atTop (𝓝 0)) (hzb : ∀ n, ‖∑ i ∈ range n, z i‖ ≤ b) : CauchySeq fun n ↦ ∑ i ∈ range n, f i • z i
E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E b : ℝ f : ℕ → ℝ z : ℕ → E hfa : Antitone f hf0 : Tendsto f atTop (𝓝 0) hzb : ∀ (n : ℕ), ‖∑ i ∈ Finset.range n, z i‖ ≤ b hfa' : Monotone fun n => -f n ⊢ CauchySeq fun n => ∑ i ∈ Finset.range n, f i • z i
have hf0' : Tendsto (fun n ↦ -f n) atTop (𝓝 0) := by convert hf0.neg norm_num
E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E b : ℝ f : ℕ → ℝ z : ℕ → E hfa : Antitone f hf0 : Tendsto f atTop (𝓝 0) hzb : ∀ (n : ℕ), ‖∑ i ∈ Finset.range n, z i‖ ≤ b hfa' : Monotone fun n => -f n hf0' : Tendsto (fun n => -f n) atTop (𝓝 0) ⊢ CauchySeq fun n => ∑ i ∈ Finset.range n, f i • z i
6435d9d96a9e6e86
Nat.multinomial_two_mul_le_mul_multinomial
Mathlib/Data/Nat/Choose/Multinomial.lean
lemma multinomial_two_mul_le_mul_multinomial : multinomial s (fun i ↦ 2 * f i) ≤ ((∑ i ∈ s, f i) ^ ∑ i ∈ s, f i) * multinomial s f
ι : Type u_1 s : Finset ι f : ι → ℕ ⊢ (2 * ∑ i ∈ s, f i)! / ∏ i ∈ s, (2 * f i)! ≤ ((∑ i ∈ s, f i) ^ ∑ i ∈ s, f i) * (∑ i ∈ s, f i)! / ∏ i ∈ s, (f i)!
refine Nat.div_le_div_of_mul_le_mul (by positivity) ((prod_factorial_dvd_factorial_sum ..).trans (Nat.dvd_mul_left ..)) ?_
ι : Type u_1 s : Finset ι f : ι → ℕ ⊢ (2 * ∑ i ∈ s, f i)! * ∏ i ∈ s, (f i)! ≤ ((∑ i ∈ s, f i) ^ ∑ i ∈ s, f i) * (∑ i ∈ s, f i)! * ∏ i ∈ s, (2 * f i)!
f44b98bbd43a1101
MeasureTheory.DominatedFinMeasAdditive.of_measure_le
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem of_measure_le {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : DominatedFinMeasAdditive μ' T C
α : Type u_1 m : MeasurableSpace α μ : Measure α β : Type u_7 inst✝ : SeminormedAddCommGroup β T : Set α → β C : ℝ μ' : Measure α h : μ ≤ μ' hT : DominatedFinMeasAdditive μ T C hC : 0 ≤ C h' : ∀ (s : Set α), μ s = ⊤ → μ' s = ⊤ s : Set α hs : MeasurableSet s hμ's : μ' s < ⊤ hμs : μ s < ⊤ ⊢ ‖T s‖ ≤ C * (μ' s).toReal
calc ‖T s‖ ≤ C * (μ s).toReal := hT.2 s hs hμs _ ≤ C * (μ' s).toReal := by gcongr; exacts [hμ's.ne, h _]
no goals
6e7946b9810c2855
WeakFEPair.f_modif_aux1
Mathlib/NumberTheory/LSeries/AbstractFuncEq.lean
lemma f_modif_aux1 : EqOn (fun x ↦ P.f_modif x - P.f x + P.f₀) ((Ioo 0 1).indicator (fun x : ℝ ↦ P.f₀ - (P.ε * ↑(x ^ (-P.k))) • P.g₀) + ({1} : Set ℝ).indicator (fun _ ↦ P.f₀ - P.f 1)) (Ioi 0)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E P : WeakFEPair E ⊢ EqOn (fun x => P.f_modif x - P.f x + P.f₀) (((Ioo 0 1).indicator fun x => P.f₀ - (P.ε * ↑(x ^ (-P.k))) • P.g₀) + {1}.indicator fun x => P.f₀ - P.f 1) (Ioi 0)
intro x (hx : 0 < x)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E P : WeakFEPair E x : ℝ hx : 0 < x ⊢ (fun x => P.f_modif x - P.f x + P.f₀) x = (((Ioo 0 1).indicator fun x => P.f₀ - (P.ε * ↑(x ^ (-P.k))) • P.g₀) + {1}.indicator fun x => P.f₀ - P.f 1) x
e228f7d66be0dcb7
CategoryTheory.Limits.limit_π_isIso_of_is_strict_terminal
Mathlib/CategoryTheory/Limits/Shapes/StrictInitial.lean
theorem limit_π_isIso_of_is_strict_terminal (F : J ⥤ C) [HasLimit F] (i : J) (H : ∀ (j) (_ : j ≠ i), IsTerminal (F.obj j)) [Subsingleton (i ⟶ i)] : IsIso (limit.π F i)
case pos.refl.refl C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasStrictTerminalObjects C J : Type v inst✝² : SmallCategory J F : J ⥤ C inst✝¹ : HasLimit F i : J H : (j : J) → j ≠ i → IsTerminal (F.obj j) inst✝ : Subsingleton (i ⟶ i) ⊢ ((Functor.const J).obj (F.toPrefunctor.1 i)).map (𝟙 i) ≫ eqToHom ⋯ = eqToHom ⋯ ≫ F.map (𝟙 i)
simp
no goals
464f78ec21e1a3ee
linearIndependent_of_ne_zero_of_inner_eq_zero
Mathlib/Analysis/InnerProductSpace/Basic.lean
theorem linearIndependent_of_ne_zero_of_inner_eq_zero {ι : Type*} {v : ι → E} (hz : ∀ i, v i ≠ 0) (ho : Pairwise fun i j => ⟪v i, v j⟫ = 0) : LinearIndependent 𝕜 v
case convert_3 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : Pairwise fun i j => inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i ∈ s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ∀ b ∈ s, b ≠ i → inner (v i) (g b • v b) = 0
intro j _hj hji
case convert_3 𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : Pairwise fun i j => inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i ∈ s, g i • v i = 0 i : ι hi : i ∈ s j : ι _hj : j ∈ s hji : j ≠ i ⊢ inner (v i) (g j • v j) = 0
8e5b7920a8b38e39
Batteries.RBNode.Balanced.insert
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/WF.lean
theorem Balanced.insert {t : RBNode α} (h : t.Balanced c n) : ∃ c' n', (insert cmp t v).Balanced c' n'
α : Type u_1 c : RBColor n : Nat cmp : α → α → Ordering v : α t a✝¹ : RBNode α c₁✝ : RBColor b✝ : RBNode α c₂✝ : RBColor x✝ : α ha : a✝¹.Balanced c₁✝ n hb : b✝.Balanced c₂✝ n l✝ : RBNode α v✝ : α r✝ : RBNode α h : (node red l✝ v✝ r✝).Balanced c n a✝ : (node red l✝ v✝ r✝).isRed = red ⊢ ∃ c' n', (match (node red l✝ v✝ r✝).isRed with | red => (node red a✝¹ x✝ b✝).setBlack | black => node red a✝¹ x✝ b✝).Balanced c' n'
exact ⟨_, _, .black ha hb⟩
no goals
7df205259925d80b
Set.encard_eq_add_one_iff
Mathlib/Data/Set/Card.lean
theorem encard_eq_add_one_iff {k : ℕ∞} : s.encard = k + 1 ↔ (∃ a t, ¬a ∈ t ∧ insert a t = s ∧ t.encard = k)
case refine_2 α : Type u_1 s : Set α k : ℕ∞ ⊢ (∃ a t, a ∉ t ∧ insert a t = s ∧ t.encard = k) → s.encard = k + 1
rintro ⟨a, t, h, rfl, rfl⟩
case refine_2.intro.intro.intro.intro α : Type u_1 a : α t : Set α h : a ∉ t ⊢ (insert a t).encard = t.encard + 1
5a5667cf41f5375f
PresheafOfModules.hom_ext
Mathlib/Algebra/Category/ModuleCat/Presheaf.lean
@[ext] lemma hom_ext {f g : M₁ ⟶ M₂} (h : ∀ (X : Cᵒᵖ), f.app X = g.app X) : f = g := Hom.ext (by ext1; apply h)
C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat M₁ M₂ : PresheafOfModules R f g : M₁ ⟶ M₂ h : ∀ (X : Cᵒᵖ), f.app X = g.app X ⊢ f.app = g.app
ext1
case h C : Type u₁ inst✝ : Category.{v₁, u₁} C R : Cᵒᵖ ⥤ RingCat M₁ M₂ : PresheafOfModules R f g : M₁ ⟶ M₂ h : ∀ (X : Cᵒᵖ), f.app X = g.app X x✝ : Cᵒᵖ ⊢ f.app x✝ = g.app x✝
f5e4e91e10457734
Cardinal.prime_of_aleph0_le
Mathlib/SetTheory/Cardinal/Divisibility.lean
theorem prime_of_aleph0_le (ha : ℵ₀ ≤ a) : Prime a
case refine_2.inr.inr.inr.hz a : Cardinal.{u} ha : ℵ₀ ≤ a b c : Cardinal.{u} hbc : a ∣ b * c hz : b * c ≠ 0 this : ∀ {a : Cardinal.{u}}, ℵ₀ ≤ a → ∀ (b c : Cardinal.{u}), a ∣ b * c → b * c ≠ 0 → c ≤ b → a ∣ b ∨ a ∣ c h : ¬c ≤ b h✝ : b ≤ c ⊢ c * b ≠ 0
rwa [mul_comm]
no goals
05a70ed30972affc
Prod.map_leftInverse
Mathlib/Data/Prod/Basic.lean
theorem map_leftInverse [Nonempty β] [Nonempty δ] {f₁ : α → β} {g₁ : γ → δ} {f₂ : β → α} {g₂ : δ → γ} : LeftInverse (map f₁ g₁) (map f₂ g₂) ↔ LeftInverse f₁ f₂ ∧ LeftInverse g₁ g₂ := ⟨fun h => ⟨fun b => by inhabit δ exact congr_arg Prod.fst (h (b, default)), fun d => by inhabit β exact congr_arg Prod.snd (h (default, d))⟩, fun h => h.1.prodMap h.2 ⟩
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Nonempty β inst✝ : Nonempty δ f₁ : α → β g₁ : γ → δ f₂ : β → α g₂ : δ → γ h : LeftInverse (map f₁ g₁) (map f₂ g₂) b : β inhabited_h : Inhabited δ ⊢ f₁ (f₂ b) = b
exact congr_arg Prod.fst (h (b, default))
no goals
e56139999ef6092b
CategoryTheory.Functor.uncurry_obj_curry_obj_flip_flip'
Mathlib/CategoryTheory/Functor/Currying.lean
lemma uncurry_obj_curry_obj_flip_flip' (F₁ : B ⥤ C) (F₂ : D ⥤ E) (G : C × E ⥤ H) : uncurry.obj (F₁ ⋙ (F₂ ⋙ (curry.obj G).flip).flip) = (F₁.prod F₂) ⋙ G := Functor.ext (by simp) (fun ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ ⟨f₁, f₂⟩ => by dsimp simp only [Category.id_comp, Category.comp_id, ← G.map_comp, prod_comp])
B : Type u₁ inst✝⁴ : Category.{v₁, u₁} B C : Type u₂ inst✝³ : Category.{v₂, u₂} C D : Type u₃ inst✝² : Category.{v₃, u₃} D E : Type u₄ inst✝¹ : Category.{v₄, u₄} E H : Type u₅ inst✝ : Category.{v₅, u₅} H F₁ : B ⥤ C F₂ : D ⥤ E G : C × E ⥤ H ⊢ ∀ (X : B × D), (uncurry.obj (F₁ ⋙ (F₂ ⋙ (curry.obj G).flip).flip)).obj X = (F₁.prod F₂ ⋙ G).obj X
simp
no goals
24b3f8808a4e0b85
Ideal.isPrime_of_prime
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem Ideal.isPrime_of_prime {P : Ideal A} (h : Prime P) : IsPrime P
case refine_2 A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDedekindDomain A P : Ideal A h : Prime P x✝ y✝ : A hxy : x✝ * y✝ ∈ P ⊢ x✝ ∈ P ∨ y✝ ∈ P
simp only [← Ideal.dvd_span_singleton, ← Ideal.span_singleton_mul_span_singleton] at hxy ⊢
case refine_2 A : Type u_2 inst✝¹ : CommRing A inst✝ : IsDedekindDomain A P : Ideal A h : Prime P x✝ y✝ : A hxy : P ∣ span {x✝} * span {y✝} ⊢ P ∣ span {x✝} ∨ P ∣ span {y✝}
53a6e4534a408bba
ContMDiff.inr
Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean
lemma ContMDiff.inr : ContMDiff I I n (@Sum.inr M M')
case h₁ 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_16 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' n : WithTop ℕ∞ x : M' ⊢ ↑(extChartAt I (Sum.inr x)) ∘ Sum.inr ∘ ↑(extChartAt I x).symm =ᶠ[𝓝[range ↑I] ↑(extChartAt I x) x] id
set C := chartAt H x with hC
case h₁ 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_16 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' n : WithTop ℕ∞ x : M' C : PartialHomeomorph M' H := chartAt H x hC : C = chartAt H x ⊢ ↑(extChartAt I (Sum.inr x)) ∘ Sum.inr ∘ ↑(extChartAt I x).symm =ᶠ[𝓝[range ↑I] ↑(extChartAt I x) x] id
3b205cc4e6e6c88f
exists_closed_cover_approximatesLinearOn_of_hasFDerivWithinAt
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem exists_closed_cover_approximatesLinearOn_of_hasFDerivWithinAt [SecondCountableTopology F] (f : E → F) (s : Set E) (f' : E → E →L[ℝ] F) (hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x) (r : (E →L[ℝ] F) → ℝ≥0) (rpos : ∀ A, r A ≠ 0) : ∃ (t : ℕ → Set E) (A : ℕ → E →L[ℝ] F), (∀ n, IsClosed (t n)) ∧ (s ⊆ ⋃ n, t n) ∧ (∀ n, ApproximatesLinearOn f (A n) (s ∩ t n) (r (A n))) ∧ (s.Nonempty → ∀ n, ∃ y ∈ s, A n = f' y)
E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : SecondCountableTopology F f : E → F s : Set E f' : E → E →L[ℝ] F hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x r : (E →L[ℝ] F) → ℝ≥0 rpos : ∀ (A : E →L[ℝ] F), r A ≠ 0 hs : s.Nonempty T : Set ↑s T_count : T.Countable hT : ⋃ x ∈ T, ball (f' ↑x) ↑(r (f' ↑x)) = ⋃ x, ball (f' ↑x) ↑(r (f' ↑x)) u : ℕ → ℝ left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) M : ℕ → ↑T → Set E := fun n z => {x | x ∈ s ∧ ∀ y ∈ s ∩ ball x (u n), ‖f y - f x - (f' ↑↑z) (y - x)‖ ≤ ↑(r (f' ↑↑z)) * ‖y - x‖} x : E xs : x ∈ s z : ↑s zT : z ∈ T hz : f' x ∈ ball (f' ↑z) ↑(r (f' ↑z)) ε : ℝ εpos : 0 < ε hε : ‖f' x - f' ↑z‖ + ε ≤ ↑(r (f' ↑z)) δ : ℝ δpos : 0 < δ hδ : ball x δ ∩ s ⊆ {y | ‖f y - f x - (f' x) (y - x)‖ ≤ ε * ‖y - x‖} n : ℕ hn : u n < δ y : E hy : y ∈ s ∩ ball x (u n) ⊢ ‖f y - f x - (f' ↑z) (y - x)‖ = ‖f y - f x - (f' x) (y - x) + (f' x - f' ↑z) (y - x)‖
congr 1
case e_a E : Type u_1 F : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : SecondCountableTopology F f : E → F s : Set E f' : E → E →L[ℝ] F hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x r : (E →L[ℝ] F) → ℝ≥0 rpos : ∀ (A : E →L[ℝ] F), r A ≠ 0 hs : s.Nonempty T : Set ↑s T_count : T.Countable hT : ⋃ x ∈ T, ball (f' ↑x) ↑(r (f' ↑x)) = ⋃ x, ball (f' ↑x) ↑(r (f' ↑x)) u : ℕ → ℝ left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) M : ℕ → ↑T → Set E := fun n z => {x | x ∈ s ∧ ∀ y ∈ s ∩ ball x (u n), ‖f y - f x - (f' ↑↑z) (y - x)‖ ≤ ↑(r (f' ↑↑z)) * ‖y - x‖} x : E xs : x ∈ s z : ↑s zT : z ∈ T hz : f' x ∈ ball (f' ↑z) ↑(r (f' ↑z)) ε : ℝ εpos : 0 < ε hε : ‖f' x - f' ↑z‖ + ε ≤ ↑(r (f' ↑z)) δ : ℝ δpos : 0 < δ hδ : ball x δ ∩ s ⊆ {y | ‖f y - f x - (f' x) (y - x)‖ ≤ ε * ‖y - x‖} n : ℕ hn : u n < δ y : E hy : y ∈ s ∩ ball x (u n) ⊢ f y - f x - (f' ↑z) (y - x) = f y - f x - (f' x) (y - x) + (f' x - f' ↑z) (y - x)
6721258aaeea8779
Complex.sinh_three_mul
Mathlib/Data/Complex/Trigonometric.lean
theorem sinh_three_mul : sinh (3 * x) = 4 * sinh x ^ 3 + 3 * sinh x
x : ℂ h1 : x + 2 * x = 3 * x ⊢ cosh x * (2 * sinh x * cosh x) = 2 * sinh x * cosh x ^ 2
ring
no goals
737e6f979e70c403
Std.DHashMap.Internal.List.getEntry?_replaceEntry_of_true
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getEntry?_replaceEntry_of_true [BEq α] [PartialEquivBEq α] {l : List ((a : α) × β a)} {a k : α} {v : β k} (hl : containsKey k l = true) (h : k == a) : getEntry? a (replaceEntry k v l) = some ⟨k, v⟩
α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α a k : α v : β k h : (k == a) = true k' : α v' : β k' l : List ((a : α) × β a) ih : containsKey k l = true → getEntry? a (replaceEntry k v l) = some ⟨k, v⟩ hl : containsKey k (⟨k', v'⟩ :: l) = true ⊢ getEntry? a (replaceEntry k v (⟨k', v'⟩ :: l)) = some ⟨k, v⟩
cases hk'a : k' == k
case false α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α a k : α v : β k h : (k == a) = true k' : α v' : β k' l : List ((a : α) × β a) ih : containsKey k l = true → getEntry? a (replaceEntry k v l) = some ⟨k, v⟩ hl : containsKey k (⟨k', v'⟩ :: l) = true hk'a : (k' == k) = false ⊢ getEntry? a (replaceEntry k v (⟨k', v'⟩ :: l)) = some ⟨k, v⟩ case true α : Type u β : α → Type v inst✝¹ : BEq α inst✝ : PartialEquivBEq α a k : α v : β k h : (k == a) = true k' : α v' : β k' l : List ((a : α) × β a) ih : containsKey k l = true → getEntry? a (replaceEntry k v l) = some ⟨k, v⟩ hl : containsKey k (⟨k', v'⟩ :: l) = true hk'a : (k' == k) = true ⊢ getEntry? a (replaceEntry k v (⟨k', v'⟩ :: l)) = some ⟨k, v⟩
1c2ff6f966c7019e
Nat.Linear.ExprCnstr.denote_toNormPoly
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
theorem ExprCnstr.denote_toNormPoly (ctx : Context) (c : ExprCnstr) : c.toNormPoly.denote ctx = c.denote ctx
ctx : Context c : ExprCnstr ⊢ PolyCnstr.denote ctx c.toNormPoly = denote ctx c
cases c
case mk ctx : Context eq✝ : Bool lhs✝ rhs✝ : Expr ⊢ PolyCnstr.denote ctx { eq := eq✝, lhs := lhs✝, rhs := rhs✝ }.toNormPoly = denote ctx { eq := eq✝, lhs := lhs✝, rhs := rhs✝ }
46ed2d5790151cf9
Std.Tactic.BVDecide.LRAT.check_sound
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Checker.lean
theorem check_sound (lratProof : Array IntAction) (cnf : CNF Nat) : check lratProof cnf → cnf.Unsat
case a lratProof : Array IntAction cnf : CNF Nat h1 : lratChecker (CNF.convertLRAT cnf) (List.filterMap (fun actOpt => match actOpt with | none => none | some (Action.addEmpty id rupHints) => some (Action.addEmpty id rupHints) | some (Action.addRup id c rupHints) => some (Action.addRup id c rupHints) | some (Action.del ids) => some (Action.del ids) | some (Action.addRat id c pivot rupHints ratHints) => if pivot ∈ Clause.toList c then some (Action.addRat id c pivot rupHints ratHints) else none) (List.map (intActionToDefaultClauseAction (cnf.numLiterals + 1)) lratProof.toList)) = Result.success h2 : Unsatisfiable (PosFin (cnf.numLiterals + 1)) (CNF.convertLRAT cnf) ⊢ Unsatisfiable (PosFin (cnf.numLiterals + 1)) (CNF.convertLRAT cnf)
assumption
no goals
c30c2b987b29eb3d
convexOn_zpow
Mathlib/Analysis/Convex/Mul.lean
/-- `x^m`, `m : ℤ` is convex on `(0, +∞)` for all `m`. -/ lemma convexOn_zpow : ∀ n : ℤ, ConvexOn 𝕜 (Ioi 0) fun x : 𝕜 ↦ x ^ n | (n : ℕ) => by simp_rw [zpow_natCast] exact (convexOn_pow n).subset Ioi_subset_Ici_self (convex_Ioi _) | -[n+1] => by simp_rw [zpow_negSucc, ← inv_pow] refine (convexOn_iff_forall_pos.2 ⟨convex_Ioi _, ?_⟩).pow (fun x (hx : 0 < x) ↦ by positivity) _ rintro x (hx : 0 < x) y (hy : 0 < y) a b ha hb hab field_simp rw [div_le_div_iff₀, ← sub_nonneg] · calc 0 ≤ a * b * (x - y) ^ 2
case hd 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 n : ℕ x : 𝕜 hx : 0 < x y : 𝕜 hy : 0 < y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ 0 < x * y
positivity
no goals
b154fb3321707078
Multiset.coe_count
Mathlib/Data/Multiset/Count.lean
theorem coe_count (a : α) (l : List α) : count a (ofList l) = l.count a
α : Type u_1 inst✝ : DecidableEq α a : α l : List α ⊢ List.countP (fun b => decide (b = a)) l = List.countP (fun x => x == a) l
rfl
no goals
75d288c7e77c5dde
HahnSeries.map_sub
Mathlib/RingTheory/HahnSeries/Addition.lean
@[simp] protected lemma map_sub [AddGroup S] (f : R →+ S) {x y : HahnSeries Γ R} : ((x - y).map f : HahnSeries Γ S) = x.map f - y.map f
case coeff.h Γ : Type u_1 R : Type u_3 S : Type u_4 inst✝² : PartialOrder Γ inst✝¹ : AddGroup R inst✝ : AddGroup S f : R →+ S x y : HahnSeries Γ R x✝ : Γ ⊢ ((x - y).map f).coeff x✝ = (x.map f - y.map f).coeff x✝
simp
no goals
01281b1d860baaef
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftLeft.lean
theorem go_denote_eq (aig : AIG α) (distance : Nat) (input : AIG.RefVec aig w) (assign : α → Bool) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : ∀ (idx : Nat) (hidx1 : idx < w), curr ≤ idx → ⟦ (go aig input distance curr hcurr s).aig, (go aig input distance curr hcurr s).vec.get idx hidx1, assign ⟧ = if hidx : idx < distance then false else ⟦aig, input.get (idx - distance) (by omega), assign⟧
case isTrue.inl.isTrue.isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w h✝² : curr < w heq : curr = idx h✝¹ : curr < distance hgo : go (aig.mkConstCached false).aig (input.cast ⋯) distance (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref) = res h✝ : idx < distance ⊢ ⟦assign, { aig := (go (aig.mkConstCached false).aig (input.cast ⋯) distance (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref)).aig, ref := (((s.cast ⋯).push (aig.mkConstCached false).ref).get idx ?isTrue.inl.isTrue.isTrue.hidx).cast ⋯ }⟧ = false case isTrue.inl.isTrue.isTrue.hidx α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w h✝² : curr < w heq : curr = idx h✝¹ : curr < distance hgo : go (aig.mkConstCached false).aig (input.cast ⋯) distance (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref) = res h✝ : idx < distance ⊢ idx < curr + 1
rw [AIG.RefVec.get_push_ref_eq']
case isTrue.inl.isTrue.isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w h✝² : curr < w heq : curr = idx h✝¹ : curr < distance hgo : go (aig.mkConstCached false).aig (input.cast ⋯) distance (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref) = res h✝ : idx < distance ⊢ ⟦assign, { aig := (go (aig.mkConstCached false).aig (input.cast ⋯) distance (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref)).aig, ref := (aig.mkConstCached false).ref.cast ⋯ }⟧ = false case isTrue.inl.isTrue.isTrue.hidx α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α distance : Nat input : aig.RefVec w assign : α → Bool curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx1 : idx < w hidx2 : curr ≤ idx res : RefVecEntry α w h✝² : curr < w heq : curr = idx h✝¹ : curr < distance hgo : go (aig.mkConstCached false).aig (input.cast ⋯) distance (curr + 1) ⋯ ((s.cast ⋯).push (aig.mkConstCached false).ref) = res h✝ : idx < distance ⊢ idx = curr
625f9e09be737d85
SetTheory.PGame.insertLeft_numeric
Mathlib/SetTheory/Surreal/Basic.lean
theorem insertLeft_numeric {x x' : PGame} (x_num : x.Numeric) (x'_num : x'.Numeric) (h : x' ≤ x) : (insertLeft x x').Numeric
x x' : PGame x'_num : x'.Numeric h : (∀ (i : x'.LeftMoves), x'.moveLeft i < x) ∧ ∀ (j : x.RightMoves), x' < x.moveRight j x_num : match x with | mk α β L R => (∀ (i : α) (j : β), L i < R j) ∧ (∀ (i : α), (L i).Numeric) ∧ ∀ (j : β), (R j).Numeric ⊢ match x.insertLeft x' with | mk α β L R => (∀ (i : α) (j : β), L i < R j) ∧ (∀ (i : α), (L i).Numeric) ∧ ∀ (j : β), (R j).Numeric
rcases x with ⟨xl, xr, xL, xR⟩
case mk x' : PGame x'_num : x'.Numeric xl xr : Type u_1 xL : xl → PGame xR : xr → PGame h : (∀ (i : x'.LeftMoves), x'.moveLeft i < mk xl xr xL xR) ∧ ∀ (j : (mk xl xr xL xR).RightMoves), x' < (mk xl xr xL xR).moveRight j x_num : match mk xl xr xL xR with | mk α β L R => (∀ (i : α) (j : β), L i < R j) ∧ (∀ (i : α), (L i).Numeric) ∧ ∀ (j : β), (R j).Numeric ⊢ match (mk xl xr xL xR).insertLeft x' with | mk α β L R => (∀ (i : α) (j : β), L i < R j) ∧ (∀ (i : α), (L i).Numeric) ∧ ∀ (j : β), (R j).Numeric
9cd580433e4e5761
IsZGroup.exponent_eq_card
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
theorem exponent_eq_card [Finite G] [IsZGroup G] : Monoid.exponent G = Nat.card G
G : Type u_1 inst✝² : Group G inst✝¹ : Finite G inst✝ : IsZGroup G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) P : Sylow p G := default ⊢ (Nat.card G).factorization p ≤ (Monoid.exponent G).factorization p
rw [← hp.pow_dvd_iff_le_factorization Monoid.exponent_ne_zero_of_finite, ← P.card_eq_multiplicity, ← (isZGroup p hp P).exponent_eq_card]
G : Type u_1 inst✝² : Group G inst✝¹ : Finite G inst✝ : IsZGroup G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) P : Sylow p G := default ⊢ Monoid.exponent ↥↑P ∣ Monoid.exponent G
1378a781d9dd8b12
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib/Tactic/Ring/Basic.lean
theorem add_pf_add_overlap (_ : a₁ + b₁ = c₁) (_ : a₂ + b₂ = c₂) : (a₁ + a₂ : R) + (b₁ + b₂) = c₁ + c₂
R : Type u_1 inst✝ : CommSemiring R a₁ a₂ b₁ b₂ c₁ c₂ : R x✝¹ : a₁ + b₁ = c₁ x✝ : a₂ + b₂ = c₂ ⊢ a₁ + a₂ + (b₁ + b₂) = c₁ + c₂
subst_vars
R : Type u_1 inst✝ : CommSemiring R a₁ a₂ b₁ b₂ : R ⊢ a₁ + a₂ + (b₁ + b₂) = a₁ + b₁ + (a₂ + b₂)
b1e9873612add3ee
Polynomial.opRingEquiv_op_monomial
Mathlib/RingTheory/Polynomial/Opposites.lean
theorem opRingEquiv_op_monomial (n : ℕ) (r : R) : opRingEquiv R (op (monomial n r : R[X])) = monomial n (op r)
R : Type u_1 inst✝ : Semiring R n : ℕ r : R ⊢ (opRingEquiv R) (op ((monomial n) r)) = (monomial n) (op r)
simp only [opRingEquiv, RingEquiv.coe_trans, Function.comp_apply, AddMonoidAlgebra.opRingEquiv_apply, RingEquiv.op_apply_apply, toFinsuppIso_apply, unop_op, toFinsupp_monomial, Finsupp.mapRange_single, toFinsuppIso_symm_apply, ofFinsupp_single]
no goals
29025b0c05af9289
MeasureTheory.eLpNorm_smul_measure_of_ne_zero_of_ne_top
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem eLpNorm_smul_measure_of_ne_zero_of_ne_top {p : ℝ≥0∞} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) {f : α → ε} (c : ℝ≥0∞) : eLpNorm f p (c • μ) = c ^ (1 / p).toReal • eLpNorm f p μ
case e_a.e_a α : Type u_1 ε : Type u_2 m0 : MeasurableSpace α μ : Measure α inst✝ : ENorm ε p : ℝ≥0∞ hp_ne_zero : p ≠ 0 hp_ne_top : p ≠ ⊤ f : α → ε c : ℝ≥0∞ ⊢ p.toReal⁻¹ = p⁻¹.toReal
rw [ENNReal.toReal_inv]
no goals
29a17d4553f41dd2
Fin.accumulate_rec
Mathlib/RingTheory/MvPolynomial/Symmetric/FundamentalTheorem.lean
lemma accumulate_rec {i n m : ℕ} (hin : i < n) (him : i + 1 < m) (t : Fin n → ℕ) : accumulate n m t ⟨i, Nat.lt_of_succ_lt him⟩ = t ⟨i, hin⟩ + accumulate n m t ⟨i + 1, him⟩
case h.e'_3.h.e'_6.h.h i n m : ℕ hin : i < n him : i + 1 < m t : Fin n → ℕ a✝ : Fin n ⊢ a✝ ∈ filter (fun i_1 => i + 1 ≤ ↑i_1) univ ↔ a✝ ≠ ⟨i, hin⟩ ∧ a✝ ∈ filter (fun i_1 => i ≤ ↑i_1) univ
simp_rw [mem_filter, mem_univ, true_and, i.succ_le_iff, lt_iff_le_and_ne]
case h.e'_3.h.e'_6.h.h i n m : ℕ hin : i < n him : i + 1 < m t : Fin n → ℕ a✝ : Fin n ⊢ i ≤ ↑a✝ ∧ i ≠ ↑a✝ ↔ a✝ ≠ ⟨i, hin⟩ ∧ i ≤ ↑a✝
3bde688e16503a13
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.reduce_fold_fn_preserves_induction_motive
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem reduce_fold_fn_preserves_induction_motive {c_arr : Array (Literal (PosFin n))} {assignment : Array Assignment} (idx : Fin c_arr.size) (res : ReduceResult (PosFin n)) (ih : ReducePostconditionInductionMotive c_arr assignment idx.1 res) : ReducePostconditionInductionMotive c_arr assignment (idx.1 + 1) (reduce_fold_fn assignment res c_arr[idx])
case h_3 n : Nat c_arr : Array (Literal (PosFin n)) assignment : Array Assignment idx : Fin c_arr.size p : PosFin n → Bool acc✝ : ReduceResult (PosFin n) l : Literal (PosFin n) ih : ReducePostconditionInductionMotive c_arr assignment (↑idx) (reducedToUnit l) x✝ : Assignment heq✝ : assignment[c_arr[↑idx].fst.val]! = both h : encounteredBoth = reducedToEmpty ⊢ (∀ (i : Fin c_arr.size), ↑i < ↑idx + 1 → ¬(p ⊨ c_arr[↑i])) ∨ ¬(p ⊨ assignment)
simp at h
no goals
681a60500ce41fce