name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
intervalIntegral.integral_pos_iff_support_of_nonneg_ae'
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_pos_iff_support_of_nonneg_ae' (hf : 0 ≤ᵐ[μ.restrict (Ι a b)] f) (hfi : IntervalIntegrable f μ a b) : (0 < ∫ x in a..b, f x ∂μ) ↔ a < b ∧ 0 < μ (support f ∩ Ioc a b)
case inr f : ℝ → ℝ a b : ℝ μ : Measure ℝ hf : 0 ≤ᶠ[ae (μ.restrict (Ι a b))] f hfi : IntervalIntegrable f μ a b hba : b ≤ a ⊢ ∫ (x : ℝ) in a..b, f x ∂μ ≤ 0
rw [integral_of_ge hba, neg_nonpos]
case inr f : ℝ → ℝ a b : ℝ μ : Measure ℝ hf : 0 ≤ᶠ[ae (μ.restrict (Ι a b))] f hfi : IntervalIntegrable f μ a b hba : b ≤ a ⊢ 0 ≤ ∫ (x : ℝ) in Ioc b a, f x ∂μ
98c9d1e3c30988ab
Int.bmod_mul_bmod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem bmod_mul_bmod : Int.bmod (Int.bmod x n * y) n = Int.bmod (x * y) n
case isFalse x : Int n : Nat y : Int h✝ : ¬x % ↑n < (↑n + 1) / 2 ⊢ ((x % ↑n - ↑n) * y).bmod n = (x * y).bmod n
next p => rw [Int.sub_mul, Int.sub_eq_add_neg, ← Int.mul_neg, bmod_add_mul_cancel, emod_mul_bmod_congr]
no goals
c390cd06841d2283
CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem isPullback_initial_to_of_cofan_isVanKampen [HasInitial C] {ι : Type*} {F : Discrete ι ⥤ C} {c : Cocone F} (hc : IsVanKampenColimit c) (i j : Discrete ι) (hi : i ≠ j) : IsPullback (initial.to _) (initial.to _) (c.ι.app i) (c.ι.app j)
C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasInitial C ι : Type u_3 F : Discrete ι ⥤ C c : Cocone F hc : IsVanKampenColimit c i j : Discrete ι hi : i ≠ j ⊢ IsPullback (initial.to (F.obj i)) (initial.to (F.obj j)) (c.ι.app i) (c.ι.app j)
classical let f : ι → C := F.obj ∘ Discrete.mk have : F = Discrete.functor f := Functor.hext (fun i ↦ rfl) (by rintro ⟨i⟩ ⟨j⟩ ⟨⟨rfl : i = j⟩⟩; simp [f]) clear_value f subst this have : ∀ i, Subsingleton (⊥_ C ⟶ (Discrete.functor f).obj i) := inferInstance convert isPullback_of_cofan_isVanKampen hc i.as j.as exact (if_neg (mt Discrete.ext hi.symm)).symm
no goals
d267d3f87162638e
PartialHomeomorph.extend_target_mem_nhdsWithin
Mathlib/Geometry/Manifold/IsManifold/ExtChartAt.lean
theorem extend_target_mem_nhdsWithin {y : M} (hy : y ∈ f.source) : (f.extend I).target ∈ 𝓝[range I] f.extend I y
𝕜 : Type u_1 E : Type u_2 M : Type u_3 H : Type u_4 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : TopologicalSpace H inst✝ : TopologicalSpace M f : PartialHomeomorph M H I : ModelWithCorners 𝕜 E H y : M hy : y ∈ f.source ⊢ ↑(f.extend I) '' (f.extend I).source ∈ map (↑(f.extend I)) (𝓝 y)
exact image_mem_map (extend_source_mem_nhds _ hy)
no goals
9f61ee0dd9db10cc
Function.piCongrLeft'_update
Mathlib/Logic/Equiv/Basic.lean
theorem piCongrLeft'_update [DecidableEq α] [DecidableEq β] (P : α → Sort*) (e : α ≃ β) (f : ∀ a, P a) (b : β) (x : P (e.symm b)) : e.piCongrLeft' P (update f (e.symm b) x) = update (e.piCongrLeft' P f) b x
case h.inr.h α : Sort u_1 β : Sort u_4 inst✝¹ : DecidableEq α inst✝ : DecidableEq β P : α → Sort u_10 e : α ≃ β f : (a : α) → P a b : β x : P (e.symm b) b' : β h : b' ≠ b h' : e.symm b' = e.symm b ⊢ False
cases e.symm.injective h' |> h
no goals
7974ca7dfc401d98
Metric.Sigma.completeSpace
Mathlib/Topology/MetricSpace/Gluing.lean
theorem completeSpace [∀ i, CompleteSpace (E i)] : CompleteSpace (Σi, E i)
ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.1 p.2 < 1} hc : ∀ (i : ι), IsComplete (s i) ⊢ CompleteSpace ((i : ι) × E i)
have hd : ∀ (i j), ∀ x ∈ s i, ∀ y ∈ s j, (x, y) ∈ U → i = j := fun i j x hx y hy hxy => (Eq.symm hx).trans ((fst_eq_of_dist_lt_one _ _ hxy).trans hy)
ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.1 p.2 < 1} hc : ∀ (i : ι), IsComplete (s i) hd : ∀ (i j : ι), ∀ x ∈ s i, ∀ y ∈ s j, (x, y) ∈ U → i = j ⊢ CompleteSpace ((i : ι) × E i)
c3518d39e29749a3
IsPrimitiveRoot.zmodEquivZPowers_apply_coe_int
Mathlib/RingTheory/RootsOfUnity/PrimitiveRoots.lean
theorem zmodEquivZPowers_apply_coe_int (i : ℤ) : h.zmodEquivZPowers i = Additive.ofMul (⟨ζ ^ i, i, rfl⟩ : Subgroup.zpowers ζ)
R : Type u_4 k : ℕ inst✝ : CommRing R ζ : Rˣ h : IsPrimitiveRoot ζ k i : ℤ ⊢ (((Int.castAddHom (ZMod k)).liftOfRightInverse ZMod.cast ⋯) ⟨{ toFun := fun i => Additive.ofMul ⟨(fun x => ζ ^ x) i, ⋯⟩, map_zero' := ⋯, map_add' := ⋯ }, ⋯⟩) ↑i = Additive.ofMul ⟨ζ ^ i, ⋯⟩
exact AddMonoidHom.liftOfRightInverse_comp_apply _ _ ZMod.intCast_rightInverse _ _
no goals
d9a59ad1ebca66bb
norm_commutator_units_sub_one_le
Mathlib/Analysis/Normed/Field/Basic.lean
lemma norm_commutator_units_sub_one_le (a b : αˣ) : ‖(a * b * a⁻¹ * b⁻¹).val - 1‖ ≤ 2 * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ * ‖a.val - 1‖ * ‖b.val - 1‖ := calc ‖(a * b * a⁻¹ * b⁻¹).val - 1‖ = ‖(a * b - b * a) * a⁻¹.val * b⁻¹.val‖
α : Type u_2 inst✝ : SeminormedRing α a b : αˣ ⊢ ‖(↑a - 1) * (↑b - 1) - (↑b - 1) * (↑a - 1)‖ * ‖↑a⁻¹‖ * ‖↑b⁻¹‖ ≤ (‖(↑a - 1) * (↑b - 1)‖ + ‖(↑b - 1) * (↑a - 1)‖) * ‖↑a⁻¹‖ * ‖↑b⁻¹‖
gcongr
case h.h α : Type u_2 inst✝ : SeminormedRing α a b : αˣ ⊢ ‖(↑a - 1) * (↑b - 1) - (↑b - 1) * (↑a - 1)‖ ≤ ‖(↑a - 1) * (↑b - 1)‖ + ‖(↑b - 1) * (↑a - 1)‖
23e2a090ea0ebe1c
PFunctor.M.mk_dest
Mathlib/Data/PFunctor/Univariate/M.lean
theorem mk_dest (x : M F) : M.mk (dest x) = x
case H.zero F : PFunctor.{u} x : F.M ⊢ Approx.sMk x.dest 0 = x.approx 0
apply @Subsingleton.elim _ CofixA.instSubsingleton
no goals
475d78b79340343f
Function.monotoneOn_of_rightInvOn_of_mapsTo
Mathlib/Data/Set/Monotone.lean
theorem monotoneOn_of_rightInvOn_of_mapsTo {α β : Type*} [PartialOrder α] [LinearOrder β] {φ : β → α} {ψ : α → β} {t : Set β} {s : Set α} (hφ : MonotoneOn φ t) (φψs : Set.RightInvOn ψ φ s) (ψts : Set.MapsTo ψ s t) : MonotoneOn ψ s
case inl α : Type u_4 β : Type u_5 inst✝¹ : PartialOrder α inst✝ : LinearOrder β φ : β → α ψ : α → β t : Set β s : Set α hφ : MonotoneOn φ t φψs : RightInvOn ψ φ s ψts : MapsTo ψ s t x : α xs : x ∈ s y : α ys : y ∈ s l : x ≤ y ψxy : ψ x ≤ ψ y ⊢ ψ x ≤ ψ y
exact ψxy
no goals
9a6af1077e41fc7e
finRotate_succ_eq_decomposeFin
Mathlib/GroupTheory/Perm/Fin.lean
theorem finRotate_succ_eq_decomposeFin {n : ℕ} : finRotate n.succ = decomposeFin.symm (1, finRotate n)
case H.h.succ.refine_1 n✝ : ℕ i : Fin (n✝ + 1).succ ⊢ ↑((finRotate (n✝ + 1).succ) 0) = ↑((decomposeFin.symm (1, finRotate (n✝ + 1))) 0)
simp
no goals
bcacb481255d2ca2
MulAction.mem_subgroup_orbit_iff
Mathlib/GroupTheory/GroupAction/Defs.lean
@[to_additive] lemma mem_subgroup_orbit_iff {H : Subgroup G} {x : α} {a b : orbit G x} : a ∈ MulAction.orbit H b ↔ (a : α) ∈ MulAction.orbit H (b : α)
case refine_2.intro G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α H : Subgroup G x : α a b : ↑(orbit G x) g : ↥H h : g • ↑b = ↑a ⊢ a ∈ orbit (↥H) b
erw [← orbit.coe_smul, ← Subtype.ext_iff] at h
case refine_2.intro G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α H : Subgroup G x : α a b : ↑(orbit G x) g : ↥H h : ↑g • b = a ⊢ a ∈ orbit (↥H) b
455130db4c4a28b8
DedekindDomain.FiniteAdeleRing.submodulesRingBasis
Mathlib/RingTheory/DedekindDomain/FiniteAdeleRing.lean
theorem submodulesRingBasis : SubmodulesRingBasis (fun (r : R⁰) ↦ Submodule.span (R_hat R K) {((r : R) : FiniteAdeleRing R K)}) where inter i j := ⟨i * j, by push_cast simp only [le_inf_iff, Submodule.span_singleton_le_iff_mem, Submodule.mem_span_singleton] exact ⟨⟨((j : R) : R_hat R K), by rw [mul_comm]; rfl⟩, ⟨((i : R) : R_hat R K), rfl⟩⟩⟩ leftMul a r
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K i j : ↥R⁰ ⊢ Submodule.span (R_hat R K) {↑↑(i * j)} ≤ Submodule.span (R_hat R K) {↑↑i} ⊓ Submodule.span (R_hat R K) {↑↑j}
push_cast
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K i j : ↥R⁰ ⊢ Submodule.span (R_hat R K) {↑↑i * ↑↑j} ≤ Submodule.span (R_hat R K) {↑↑i} ⊓ Submodule.span (R_hat R K) {↑↑j}
a7e62a339be55b1a
MeasureTheory.Measure.mconv_zero
Mathlib/MeasureTheory/Group/Convolution.lean
theorem mconv_zero (μ : Measure M) : (0 : Measure M) ∗ μ = (0 : Measure M)
M : Type u_1 inst✝¹ : Monoid M inst✝ : MeasurableSpace M μ : Measure M ⊢ 0 ∗ μ = 0
unfold mconv
M : Type u_1 inst✝¹ : Monoid M inst✝ : MeasurableSpace M μ : Measure M ⊢ map (fun x => x.1 * x.2) (Measure.prod 0 μ) = 0
2c52f80d7ac9c3ce
MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le
Mathlib/Probability/Martingale/Upcrossing.lean
theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k ∈ Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0]
case h.e'_6.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), (∑ k ∈ Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ x✝ : Ω ⊢ ∑ x ∈ Finset.range n, upcrossingStrat a b f N x x✝ * (f (x + 1) x✝ - f x x✝) = (∑ k ∈ Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) x✝
simp
no goals
4c851012d18abd58
Ideal.Quotient.maximal_of_isField
Mathlib/RingTheory/Ideal/Quotient/Basic.lean
theorem maximal_of_isField {R} [CommRing R] (I : Ideal R) (hqf : IsField (R ⧸ I)) : I.IsMaximal
R : Type u_1 inst✝ : CommRing R I : Ideal R hqf : IsField (R ⧸ I) ⊢ 1 ∉ I ∧ ∀ (J : Ideal R) (x : R), I ≤ J → x ∉ I → x ∈ J → 1 ∈ J
constructor
case left R : Type u_1 inst✝ : CommRing R I : Ideal R hqf : IsField (R ⧸ I) ⊢ 1 ∉ I case right R : Type u_1 inst✝ : CommRing R I : Ideal R hqf : IsField (R ⧸ I) ⊢ ∀ (J : Ideal R) (x : R), I ≤ J → x ∉ I → x ∈ J → 1 ∈ J
5e093035780dd060
Asymptotics.isBigOWith_congr
Mathlib/Analysis/Asymptotics/Defs.lean
theorem isBigOWith_congr (hc : c₁ = c₂) (hf : f₁ =ᶠ[l] f₂) (hg : g₁ =ᶠ[l] g₂) : IsBigOWith c₁ l f₁ g₁ ↔ IsBigOWith c₂ l f₂ g₂
α : Type u_1 E : Type u_3 F : Type u_4 inst✝¹ : Norm E inst✝ : Norm F c₁ : ℝ l : Filter α f₁ f₂ : α → E g₁ g₂ : α → F hf : f₁ =ᶠ[l] f₂ hg : g₁ =ᶠ[l] g₂ ⊢ (∀ᶠ (x : α) in l, ‖f₁ x‖ ≤ c₁ * ‖g₁ x‖) ↔ ∀ᶠ (x : α) in l, ‖f₂ x‖ ≤ c₁ * ‖g₂ x‖
apply Filter.eventually_congr
case h α : Type u_1 E : Type u_3 F : Type u_4 inst✝¹ : Norm E inst✝ : Norm F c₁ : ℝ l : Filter α f₁ f₂ : α → E g₁ g₂ : α → F hf : f₁ =ᶠ[l] f₂ hg : g₁ =ᶠ[l] g₂ ⊢ ∀ᶠ (x : α) in l, ‖f₁ x‖ ≤ c₁ * ‖g₁ x‖ ↔ ‖f₂ x‖ ≤ c₁ * ‖g₂ x‖
ed385ef33338e32f
MeasureTheory.lintegral_abs_det_fderiv_le_addHaar_image_aux1
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem lintegral_abs_det_fderiv_le_addHaar_image_aux1 (hs : MeasurableSet s) (hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x) (hf : InjOn f s) {ε : ℝ≥0} (εpos : 0 < ε) : (∫⁻ x in s, ENNReal.ofReal |(f' x).det| ∂μ) ≤ μ (f '' s) + 2 * ε * μ s
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E s : Set E f : E → E f' : E → E →L[ℝ] E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure hs : MeasurableSet s hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x hf : InjOn f s ε : ℝ≥0 εpos : 0 < ε δ : (E →L[ℝ] E) → ℝ≥0 hδ : ∀ (A : E →L[ℝ] E), 0 < δ A ∧ (∀ (B : E →L[ℝ] E), ‖B - A‖ ≤ ↑(δ A) → |B.det - A.det| ≤ ↑ε) ∧ ∀ (t : Set E) (g : E → E), ApproximatesLinearOn g A t (δ A) → ENNReal.ofReal |A.det| * μ t ≤ μ (g '' t) + ↑ε * μ t t : ℕ → Set E A : ℕ → E →L[ℝ] E t_disj : Pairwise (Disjoint on t) t_meas : ∀ (n : ℕ), MeasurableSet (t n) t_cover : s ⊆ ⋃ n, t n ht : ∀ (n : ℕ), ApproximatesLinearOn f (A n) (s ∩ t n) (δ (A n)) s_eq : s = ⋃ n, s ∩ t n ⊢ ∫⁻ (x : E) in s, ENNReal.ofReal |(f' x).det| ∂μ = ∑' (n : ℕ), ∫⁻ (x : E) in s ∩ t n, ENNReal.ofReal |(f' x).det| ∂μ
conv_lhs => rw [s_eq]
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E s : Set E f : E → E f' : E → E →L[ℝ] E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure hs : MeasurableSet s hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x hf : InjOn f s ε : ℝ≥0 εpos : 0 < ε δ : (E →L[ℝ] E) → ℝ≥0 hδ : ∀ (A : E →L[ℝ] E), 0 < δ A ∧ (∀ (B : E →L[ℝ] E), ‖B - A‖ ≤ ↑(δ A) → |B.det - A.det| ≤ ↑ε) ∧ ∀ (t : Set E) (g : E → E), ApproximatesLinearOn g A t (δ A) → ENNReal.ofReal |A.det| * μ t ≤ μ (g '' t) + ↑ε * μ t t : ℕ → Set E A : ℕ → E →L[ℝ] E t_disj : Pairwise (Disjoint on t) t_meas : ∀ (n : ℕ), MeasurableSet (t n) t_cover : s ⊆ ⋃ n, t n ht : ∀ (n : ℕ), ApproximatesLinearOn f (A n) (s ∩ t n) (δ (A n)) s_eq : s = ⋃ n, s ∩ t n ⊢ ∫⁻ (x : E) in ⋃ n, s ∩ t n, ENNReal.ofReal |(f' x).det| ∂μ = ∑' (n : ℕ), ∫⁻ (x : E) in s ∩ t n, ENNReal.ofReal |(f' x).det| ∂μ
10b49d97c45d9730
functionField_iff
Mathlib/NumberTheory/FunctionField.lean
theorem functionField_iff (Fqt : Type*) [Field Fqt] [Algebra Fq[X] Fqt] [IsFractionRing Fq[X] Fqt] [Algebra (RatFunc Fq) F] [Algebra Fqt F] [Algebra Fq[X] F] [IsScalarTower Fq[X] Fqt F] [IsScalarTower Fq[X] (RatFunc Fq) F] : FunctionField Fq F ↔ FiniteDimensional Fqt F
Fq : Type u_1 F : Type u_2 inst✝⁹ : Field Fq inst✝⁸ : Field F Fqt : Type u_3 inst✝⁷ : Field Fqt inst✝⁶ : Algebra Fq[X] Fqt inst✝⁵ : IsFractionRing Fq[X] Fqt inst✝⁴ : Algebra (RatFunc Fq) F inst✝³ : Algebra Fqt F inst✝² : Algebra Fq[X] F inst✝¹ : IsScalarTower Fq[X] Fqt F inst✝ : IsScalarTower Fq[X] (RatFunc Fq) F e : RatFunc Fq ≃ₐ[Fq[X]] Fqt := IsLocalization.algEquiv Fq[X]⁰ (RatFunc Fq) Fqt c : RatFunc Fq x : F ⊢ e c • x = c • x
rw [Algebra.smul_def, Algebra.smul_def]
Fq : Type u_1 F : Type u_2 inst✝⁹ : Field Fq inst✝⁸ : Field F Fqt : Type u_3 inst✝⁷ : Field Fqt inst✝⁶ : Algebra Fq[X] Fqt inst✝⁵ : IsFractionRing Fq[X] Fqt inst✝⁴ : Algebra (RatFunc Fq) F inst✝³ : Algebra Fqt F inst✝² : Algebra Fq[X] F inst✝¹ : IsScalarTower Fq[X] Fqt F inst✝ : IsScalarTower Fq[X] (RatFunc Fq) F e : RatFunc Fq ≃ₐ[Fq[X]] Fqt := IsLocalization.algEquiv Fq[X]⁰ (RatFunc Fq) Fqt c : RatFunc Fq x : F ⊢ (algebraMap Fqt F) (e c) * x = (algebraMap (RatFunc Fq) F) c * x
3d099644c240a495
MeasureTheory.condExp_ae_eq_condExpL1
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
theorem condExp_ae_eq_condExpL1 (hm : m ≤ m₀) [hμm : SigmaFinite (μ.trim hm)] (f : α → E) : μ[f|m] =ᵐ[μ] condExpL1 hm μ f
case pos α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hm : m ≤ m₀ hμm : SigmaFinite (μ.trim hm) f : α → E hfi : Integrable f μ ⊢ (if StronglyMeasurable f then f else AEStronglyMeasurable.mk ↑↑(condExpL1 hm μ f) ⋯) =ᶠ[ae μ] ↑↑(condExpL1 hm μ f)
by_cases hfm : StronglyMeasurable[m] f
case pos α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hm : m ≤ m₀ hμm : SigmaFinite (μ.trim hm) f : α → E hfi : Integrable f μ hfm : StronglyMeasurable f ⊢ (if StronglyMeasurable f then f else AEStronglyMeasurable.mk ↑↑(condExpL1 hm μ f) ⋯) =ᶠ[ae μ] ↑↑(condExpL1 hm μ f) case neg α : Type u_1 E : Type u_3 m m₀ : MeasurableSpace α μ : Measure α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E hm : m ≤ m₀ hμm : SigmaFinite (μ.trim hm) f : α → E hfi : Integrable f μ hfm : ¬StronglyMeasurable f ⊢ (if StronglyMeasurable f then f else AEStronglyMeasurable.mk ↑↑(condExpL1 hm μ f) ⋯) =ᶠ[ae μ] ↑↑(condExpL1 hm μ f)
1968c39efda9fc0f
Ordinal.lt_nmul_iff
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem lt_nmul_iff : c < a ⨳ b ↔ ∃ a' < a, ∃ b' < b, c ♯ a' ⨳ b' ≤ a' ⨳ b ♯ a ⨳ b'
case refine_1 a b c : Ordinal.{u} h : c < sInf {c | ∀ a' < a, ∀ b' < b, a' ⨳ b ♯ a ⨳ b' < c ♯ a' ⨳ b'} ⊢ ∃ a' < a, ∃ b' < b, c ♯ a' ⨳ b' ≤ a' ⨳ b ♯ a ⨳ b'
simpa using not_mem_of_lt_csInf h ⟨0, fun _ _ => bot_le⟩
no goals
598fd2131c85b39a
CategoryTheory.Functor.Monoidal.map_associator_inv
Mathlib/CategoryTheory/Monoidal/Functor.lean
theorem map_associator_inv (X Y Z : C) : F.map (α_ X Y Z).inv = δ F X (Y ⊗ Z) ≫ F.obj X ◁ δ F Y Z ≫ (α_ (F.obj X) (F.obj Y) (F.obj Z)).inv ≫ μ F X Y ▷ F.obj Z ≫ μ F (X ⊗ Y) Z
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : MonoidalCategory D F : C ⥤ D inst✝ : F.Monoidal X Y Z : C ⊢ F.map (α_ X Y Z).inv = δ F X (Y ⊗ Z) ≫ F.obj X ◁ δ F Y Z ≫ (α_ (F.obj X) (F.obj Y) (F.obj Z)).inv ≫ μ F X Y ▷ F.obj Z ≫ μ F (X ⊗ Y) Z
rw [← cancel_epi (F.map (α_ X Y Z).hom), Iso.map_hom_inv_id, map_associator, assoc, assoc, assoc, assoc, OplaxMonoidal.associativity_inv_assoc, whiskerRight_δ_μ_assoc, δ_μ, comp_id, LaxMonoidal.associativity_inv, Iso.hom_inv_id_assoc, whiskerRight_δ_μ_assoc, δ_μ]
no goals
c47ae625bb59e643
ProbabilityTheory.eq_condKernel_of_measure_eq_compProd
Mathlib/Probability/Kernel/Disintegration/Unique.lean
theorem eq_condKernel_of_measure_eq_compProd (κ : Kernel α Ω) [IsFiniteKernel κ] (hκ : ρ = ρ.fst ⊗ₘ κ) : ∀ᵐ x ∂ρ.fst, κ x = ρ.condKernel x
α : Type u_1 Ω : Type u_3 mα : MeasurableSpace α inst✝⁴ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ κ : Kernel α Ω inst✝ : IsFiniteKernel κ hκ : ρ = ρ.fst ⊗ₘ κ f : Ω → ℝ := embeddingReal Ω hf : MeasurableEmbedding (embeddingReal Ω) ⊢ ∀ᵐ (x : α) ∂ρ.fst, κ x = ρ.condKernel x
set ρ' : Measure (α × ℝ) := ρ.map (Prod.map id f) with hρ'def
α : Type u_1 Ω : Type u_3 mα : MeasurableSpace α inst✝⁴ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ κ : Kernel α Ω inst✝ : IsFiniteKernel κ hκ : ρ = ρ.fst ⊗ₘ κ f : Ω → ℝ := embeddingReal Ω hf : MeasurableEmbedding (embeddingReal Ω) ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ hρ'def : ρ' = Measure.map (Prod.map id f) ρ ⊢ ∀ᵐ (x : α) ∂ρ.fst, κ x = ρ.condKernel x
69d76b4765c3d24f
MvPolynomial.IsWeightedHomogeneous.pderiv
Mathlib/RingTheory/MvPolynomial/EulerIdentity.lean
protected lemma IsWeightedHomogeneous.pderiv [AddCancelCommMonoid M] {w : σ → M} {n n' : M} {i : σ} (h : φ.IsWeightedHomogeneous w n) (h' : n' + w i = n) : (pderiv i φ).IsWeightedHomogeneous w n'
case neg R : Type u_1 σ : Type u_2 M : Type u_3 inst✝¹ : CommSemiring R φ : MvPolynomial σ R inst✝ : AddCancelCommMonoid M w : σ → M n n' : M i : σ h : φ ∈ Submodule.span R ((fun i => single i 1) '' {d | (weight w) d = n}) h' : n' + w i = n m : σ →₀ ℕ hm : m ∈ {d | (weight w) d = n} hi : ¬m i = 0 ⊢ IsWeightedHomogeneous w ((monomial (m - single i 1)) ↑(m i)) n'
convert isWeightedHomogeneous_monomial ..
case neg.convert_10 R : Type u_1 σ : Type u_2 M : Type u_3 inst✝¹ : CommSemiring R φ : MvPolynomial σ R inst✝ : AddCancelCommMonoid M w : σ → M n n' : M i : σ h : φ ∈ Submodule.span R ((fun i => single i 1) '' {d | (weight w) d = n}) h' : n' + w i = n m : σ →₀ ℕ hm : m ∈ {d | (weight w) d = n} hi : ¬m i = 0 ⊢ (weight w) (m - single i 1) = n'
8ec031de5f3c8a44
ZetaAsymptotics.term_one
Mathlib/NumberTheory/Harmonic/ZetaAsymp.lean
lemma term_one {n : ℕ} (hn : 0 < n) : term n 1 = (log (n + 1) - log n) - 1 / (n + 1)
n : ℕ hn : 0 < n hv : ∀ x ∈ uIcc (↑n) (↑n + 1), 0 < x x : ℝ hx : x ∈ uIcc (↑n) (↑n + 1) ⊢ (x - ↑n) * (x * x ^ 2) = (x ^ 2 - x * ↑n) * x ^ 2
ring
no goals
b352dfbb4af79ad9
Polynomial.leadingCoeff_multiset_prod'
Mathlib/Algebra/Polynomial/BigOperators.lean
theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).prod ≠ 0) : t.prod.leadingCoeff = (t.map leadingCoeff).prod
case cons R : Type u inst✝ : CommSemiring R t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : (Multiset.map leadingCoeff t).prod ≠ 0 → t.prod.leadingCoeff = (Multiset.map leadingCoeff t).prod h : (Multiset.map leadingCoeff (a ::ₘ t)).prod ≠ 0 ⊢ (a ::ₘ t).prod.leadingCoeff = (Multiset.map leadingCoeff (a ::ₘ t)).prod
simp only [Multiset.map_cons, Multiset.prod_cons] at h ⊢
case cons R : Type u inst✝ : CommSemiring R t✝ : Multiset R[X] a : R[X] t : Multiset R[X] ih : (Multiset.map leadingCoeff t).prod ≠ 0 → t.prod.leadingCoeff = (Multiset.map leadingCoeff t).prod h : a.leadingCoeff * (Multiset.map leadingCoeff t).prod ≠ 0 ⊢ (a * t.prod).leadingCoeff = a.leadingCoeff * (Multiset.map leadingCoeff t).prod
08d45fcd3d906d49
le_iff_exists_one_le_mul
Mathlib/Algebra/Order/Monoid/Unbundled/ExistsOfLE.lean
@[to_additive] lemma le_iff_exists_one_le_mul [MulLeftMono α] [MulLeftReflectLE α] : a ≤ b ↔ ∃ c, 1 ≤ c ∧ a * c = b := ⟨exists_one_le_mul_of_le, by rintro ⟨c, hc, rfl⟩; exact le_mul_of_one_le_right' hc⟩
case intro.intro α : Type u inst✝⁴ : MulOneClass α inst✝³ : Preorder α inst✝² : ExistsMulOfLE α a : α inst✝¹ : MulLeftMono α inst✝ : MulLeftReflectLE α c : α hc : 1 ≤ c ⊢ a ≤ a * c
exact le_mul_of_one_le_right' hc
no goals
e9fc7aa0b63b7ad1
MeasureTheory.condExp_mul_of_stronglyMeasurable_left
Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean
theorem condExp_mul_of_stronglyMeasurable_left {f g : α → ℝ} (hf : StronglyMeasurable[m] f) (hfg : Integrable (f * g) μ) (hg : Integrable g μ) : μ[f * g|m] =ᵐ[μ] f * μ[g|m]
case neg α : Type u_1 m m0 : MeasurableSpace α μ : Measure α f g : α → ℝ hf : StronglyMeasurable f hfg : Integrable (f * g) μ hg : Integrable g μ hm : ¬m ≤ m0 ⊢ 0 =ᶠ[ae μ] f * 0
rw [mul_zero]
no goals
baffe7f7f5a39936
disjointed_succ
Mathlib/Order/Disjointed.lean
lemma disjointed_succ (f : ι → α) {i : ι} (hi : ¬IsMax i) : disjointed f (succ i) = f (succ i) \ partialSups f i
α : Type u_1 ι : Type u_2 inst✝³ : GeneralizedBooleanAlgebra α inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : SuccOrder ι f : ι → α i : ι hi : ¬IsMax i ⊢ f (succ i) \ (Iio (succ i)).sup f = f (succ i) \ (Iic i).sup f
congr 2 with m
case e_a.e_s.h α : Type u_1 ι : Type u_2 inst✝³ : GeneralizedBooleanAlgebra α inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : SuccOrder ι f : ι → α i : ι hi : ¬IsMax i m : ι ⊢ m ∈ Iio (succ i) ↔ m ∈ Iic i
b9cdec018ed9bfb6
Vitali.exists_disjoint_subfamily_covering_enlargement
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_subfamily_covering_enlargement (B : ι → Set α) (t : Set ι) (δ : ι → ℝ) (τ : ℝ) (hτ : 1 < τ) (δnonneg : ∀ a ∈ t, 0 ≤ δ a) (R : ℝ) (δle : ∀ a ∈ t, δ a ≤ R) (hne : ∀ a ∈ t, (B a).Nonempty) : ∃ u ⊆ t, u.PairwiseDisjoint B ∧ ∀ a ∈ t, ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ δ a ≤ τ * δ b
case inr.intro.intro α : Type u_1 ι : Type u_2 B : ι → Set α t : Set ι δ : ι → ℝ τ : ℝ hτ : 1 < τ δnonneg : ∀ a ∈ t, 0 ≤ δ a R : ℝ δle : ∀ a ∈ t, δ a ≤ R hne : ∀ a ∈ t, (B a).Nonempty T : Set (Set ι) := {u | u ⊆ t ∧ u.PairwiseDisjoint B ∧ ∀ a ∈ t, ∀ b ∈ u, (B a ∩ B b).Nonempty → ∃ c ∈ u, (B a ∩ B c).Nonempty ∧ δ a ≤ τ * δ c} u : Set ι hu : Maximal (fun x => x ∈ T) u a : ι hat : a ∈ t hcon : ∀ b ∈ u, (B a ∩ B b).Nonempty → τ * δ b < δ a a_disj : ∀ c ∈ u, Disjoint (B a) (B c) A : Set ι := {a' | a' ∈ t ∧ ∀ c ∈ u, Disjoint (B a') (B c)} Anonempty : A.Nonempty m : ℝ := sSup (δ '' A) bddA : BddAbove (δ '' A) this : 0 ≤ m mpos : 0 < m I : m / τ < m x : ℝ xA : x ∈ δ '' A hx : m / τ < x ⊢ ∃ a' ∈ A, m / τ ≤ δ a'
rcases (mem_image _ _ _).1 xA with ⟨a', ha', rfl⟩
case inr.intro.intro.intro.intro α : Type u_1 ι : Type u_2 B : ι → Set α t : Set ι δ : ι → ℝ τ : ℝ hτ : 1 < τ δnonneg : ∀ a ∈ t, 0 ≤ δ a R : ℝ δle : ∀ a ∈ t, δ a ≤ R hne : ∀ a ∈ t, (B a).Nonempty T : Set (Set ι) := {u | u ⊆ t ∧ u.PairwiseDisjoint B ∧ ∀ a ∈ t, ∀ b ∈ u, (B a ∩ B b).Nonempty → ∃ c ∈ u, (B a ∩ B c).Nonempty ∧ δ a ≤ τ * δ c} u : Set ι hu : Maximal (fun x => x ∈ T) u a : ι hat : a ∈ t hcon : ∀ b ∈ u, (B a ∩ B b).Nonempty → τ * δ b < δ a a_disj : ∀ c ∈ u, Disjoint (B a) (B c) A : Set ι := {a' | a' ∈ t ∧ ∀ c ∈ u, Disjoint (B a') (B c)} Anonempty : A.Nonempty m : ℝ := sSup (δ '' A) bddA : BddAbove (δ '' A) this : 0 ≤ m mpos : 0 < m I : m / τ < m a' : ι ha' : a' ∈ A xA : δ a' ∈ δ '' A hx : m / τ < δ a' ⊢ ∃ a' ∈ A, m / τ ≤ δ a'
e38a150de4970f9c
List.set_set_perm
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Perm.lean
theorem set_set_perm {as : List α} {i j : Nat} (h₁ : i < as.length) (h₂ : j < as.length) : (as.set i as[j]).set j as[i] ~ as
α : Type u_1 as : List α i j : Nat h₁ : i < as.length h₂ : j < as.length h₃ : i = j ⊢ (as.set i as[j]).set j as[i] ~ as
simp [h₃]
no goals
93c9fe7546c9ab4b
CategoryTheory.Limits.Sigma.map_comp_map'
Mathlib/CategoryTheory/Limits/Shapes/Products.lean
lemma Sigma.map_comp_map' {f g : α → C} {h : β → C} [HasCoproduct f] [HasCoproduct g] [HasCoproduct h] (p : α → β) (q : ∀ (a : α), f a ⟶ g a) (q' : ∀ (a : α), g a ⟶ h (p a)) : Sigma.map q ≫ Sigma.map' p q' = Sigma.map' p (fun a => q a ≫ q' a)
β : Type w α : Type w₂ C : Type u inst✝³ : Category.{v, u} C f g : α → C h : β → C inst✝² : HasCoproduct f inst✝¹ : HasCoproduct g inst✝ : HasCoproduct h p : α → β q : (a : α) → f a ⟶ g a q' : (a : α) → g a ⟶ h (p a) ⊢ map q ≫ map' p q' = map' p fun a => q a ≫ q' a
ext
case h β : Type w α : Type w₂ C : Type u inst✝³ : Category.{v, u} C f g : α → C h : β → C inst✝² : HasCoproduct f inst✝¹ : HasCoproduct g inst✝ : HasCoproduct h p : α → β q : (a : α) → f a ⟶ g a q' : (a : α) → g a ⟶ h (p a) b✝ : α ⊢ ι f b✝ ≫ map q ≫ map' p q' = ι f b✝ ≫ map' p fun a => q a ≫ q' a
d3b8f8d83e547df6
CategoryTheory.initiallySmall_of_small_weakly_initial_set
Mathlib/CategoryTheory/Limits/FinallySmall.lean
theorem initiallySmall_of_small_weakly_initial_set [IsCofilteredOrEmpty J] (s : Set J) [Small.{v} s] (hs : ∀ i, ∃ j ∈ s, Nonempty (j ⟶ i)) : InitiallySmall.{v} J
J : Type u inst✝² : Category.{v, u} J inst✝¹ : IsCofilteredOrEmpty J s : Set J inst✝ : Small.{v, u} ↑s hs : ∀ (i : J), ∃ j ∈ s, Nonempty (j ⟶ i) i : J ⊢ ∃ c, Nonempty ((fullSubcategoryInclusion fun x => x ∈ s).obj c ⟶ i)
obtain ⟨j, hj₁, hj₂⟩ := hs i
case intro.intro J : Type u inst✝² : Category.{v, u} J inst✝¹ : IsCofilteredOrEmpty J s : Set J inst✝ : Small.{v, u} ↑s hs : ∀ (i : J), ∃ j ∈ s, Nonempty (j ⟶ i) i j : J hj₁ : j ∈ s hj₂ : Nonempty (j ⟶ i) ⊢ ∃ c, Nonempty ((fullSubcategoryInclusion fun x => x ∈ s).obj c ⟶ i)
5146c16b291c6e05
SemiNormedGrp.explicitCokernel_hom_ext
Mathlib/Analysis/Normed/Group/SemiNormedGrp/Kernels.lean
theorem explicitCokernel_hom_ext {X Y Z : SemiNormedGrp.{u}} {f : X ⟶ Y} (e₁ e₂ : explicitCokernel f ⟶ Z) (h : explicitCokernelπ f ≫ e₁ = explicitCokernelπ f ≫ e₂) : e₁ = e₂
X Y Z : SemiNormedGrp f : X ⟶ Y e₁ e₂ : explicitCokernel f ⟶ Z h : explicitCokernelπ f ≫ e₁ = explicitCokernelπ f ≫ e₂ g : Y ⟶ Z := explicitCokernelπ f ≫ e₂ w : f ≫ g = 0 ⊢ e₁ = e₂
have : e₂ = explicitCokernelDesc w := by apply explicitCokernelDesc_unique; rfl
X Y Z : SemiNormedGrp f : X ⟶ Y e₁ e₂ : explicitCokernel f ⟶ Z h : explicitCokernelπ f ≫ e₁ = explicitCokernelπ f ≫ e₂ g : Y ⟶ Z := explicitCokernelπ f ≫ e₂ w : f ≫ g = 0 this : e₂ = explicitCokernelDesc w ⊢ e₁ = e₂
1608ec920b7bd483
CategoryTheory.IsFiltered.sup_objs_exists
Mathlib/CategoryTheory/Filtered/Basic.lean
theorem sup_objs_exists (O : Finset C) : ∃ S : C, ∀ {X}, X ∈ O → Nonempty (X ⟶ S)
case h.inl C : Type u inst✝¹ : Category.{v, u} C inst✝ : IsFiltered C O' : Finset C S' : C w' : ∀ {X : C}, X ∈ O' → Nonempty (X ⟶ S') Y : C nm : Y ∉ O' mY : Y ∈ insert Y O' ⊢ Nonempty (Y ⟶ max Y S')
exact ⟨leftToMax _ _⟩
no goals
6340905fdf09a34b
CategoryTheory.Limits.Types.unique_of_type_equalizer
Mathlib/CategoryTheory/Limits/Shapes/Types.lean
theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y ⊢ ∃! x, f x = y
let y' : PUnit ⟶ Y := fun _ => y
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y ⊢ ∃! x, f x = y
5853f29b8c3636cd
SimpleGraph.adjMatrix_mulVec_const_apply_of_regular
Mathlib/Combinatorics/SimpleGraph/AdjMatrix.lean
theorem adjMatrix_mulVec_const_apply_of_regular [NonAssocSemiring α] {d : ℕ} {a : α} (hd : G.IsRegularOfDegree d) {v : V} : (G.adjMatrix α *ᵥ Function.const _ a) v = d * a
V : Type u_1 α : Type u_2 G : SimpleGraph V inst✝² : DecidableRel G.Adj inst✝¹ : Fintype V inst✝ : NonAssocSemiring α d : ℕ a : α hd : G.IsRegularOfDegree d v : V ⊢ (adjMatrix α G *ᵥ Function.const V a) v = ↑d * a
simp [hd v]
no goals
b014a0784e862b2d
spectrum.zero_mem_resolventSet_of_unit
Mathlib/Algebra/Algebra/Spectrum.lean
theorem zero_mem_resolventSet_of_unit (a : Aˣ) : 0 ∈ resolventSet R (a : A)
R : Type u A : Type v inst✝² : CommSemiring R inst✝¹ : Ring A inst✝ : Algebra R A a : Aˣ ⊢ 0 ∈ resolventSet R ↑a
simpa only [mem_resolventSet_iff, ← not_mem_iff, zero_not_mem_iff] using a.isUnit
no goals
81e4510fac416c38
StrictConvexSpace.of_norm_add_ne_two
Mathlib/Analysis/Convex/StrictConvexSpace.lean
theorem StrictConvexSpace.of_norm_add_ne_two (h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2) : StrictConvexSpace ℝ E
E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2 x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 hne : x ≠ y ⊢ ‖(1 / 2) • x + (1 / 2) • y‖ ≠ 1
rw [← smul_add, norm_smul, Real.norm_of_nonneg one_half_pos.le, one_div, ← div_eq_inv_mul, Ne, div_eq_one_iff_eq (two_ne_zero' ℝ)]
E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E h : ∀ ⦃x y : E⦄, ‖x‖ = 1 → ‖y‖ = 1 → x ≠ y → ‖x + y‖ ≠ 2 x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 hne : x ≠ y ⊢ ¬‖x + y‖ = 2
5f3613c8c199beaa
Filter.mem_coprod_iff
Mathlib/Order/Filter/Prod.lean
theorem mem_coprod_iff {s : Set (α × β)} {f : Filter α} {g : Filter β} : s ∈ f.coprod g ↔ (∃ t₁ ∈ f, Prod.fst ⁻¹' t₁ ⊆ s) ∧ ∃ t₂ ∈ g, Prod.snd ⁻¹' t₂ ⊆ s
α : Type u_1 β : Type u_2 s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ f.coprod g ↔ (∃ t₁ ∈ f, Prod.fst ⁻¹' t₁ ⊆ s) ∧ ∃ t₂ ∈ g, Prod.snd ⁻¹' t₂ ⊆ s
simp [Filter.coprod]
no goals
e1e0d4e150e2fb13
equicontinuousWithinAt_univ
Mathlib/Topology/UniformSpace/Equicontinuity.lean
@[simp] lemma equicontinuousWithinAt_univ (F : ι → X → α) (x₀ : X) : EquicontinuousWithinAt F univ x₀ ↔ EquicontinuousAt F x₀
ι : Type u_1 X : Type u_3 α : Type u_6 tX : TopologicalSpace X uα : UniformSpace α F : ι → X → α x₀ : X ⊢ EquicontinuousWithinAt F univ x₀ ↔ EquicontinuousAt F x₀
rw [EquicontinuousWithinAt, EquicontinuousAt, nhdsWithin_univ]
no goals
0577120a7718dbac
smul_sphere'
Mathlib/Analysis/NormedSpace/Pointwise.lean
theorem smul_sphere' {c : 𝕜} (hc : c ≠ 0) (x : E) (r : ℝ) : c • sphere x r = sphere (c • x) (‖c‖ * r)
𝕜 : Type u_1 E : Type u_2 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E c : 𝕜 hc : c ≠ 0 x : E r : ℝ ⊢ c • sphere x r = sphere (c • x) (‖c‖ * r)
ext y
case h 𝕜 : Type u_1 E : Type u_2 inst✝² : NormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E c : 𝕜 hc : c ≠ 0 x : E r : ℝ y : E ⊢ y ∈ c • sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)
38b245f7ebbdc477
Decidable.iff_congr_right
Mathlib/.lake/packages/lean4/src/lean/Init/PropLemmas.lean
theorem Decidable.iff_congr_right {P Q R : Prop} [Decidable P] [Decidable Q] [Decidable R] : ((P ↔ Q) ↔ (P ↔ R)) ↔ (Q ↔ R) := if h : P then by simp_all [Decidable.not_iff_not] else by simp_all [Decidable.not_iff_not]
P Q R : Prop inst✝² : Decidable P inst✝¹ : Decidable Q inst✝ : Decidable R h : P ⊢ ((P ↔ Q) ↔ (P ↔ R)) ↔ (Q ↔ R)
simp_all [Decidable.not_iff_not]
no goals
5dd66a3e1d09dd56
MeasureTheory.measure_mul_laverage
Mathlib/MeasureTheory/Integral/Average.lean
theorem measure_mul_laverage [IsFiniteMeasure μ] (f : α → ℝ≥0∞) : μ univ * ⨍⁻ x, f x ∂μ = ∫⁻ x, f x ∂μ
case inr α : Type u_1 m0 : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ f : α → ℝ≥0∞ hμ : μ ≠ 0 ⊢ μ univ * ⨍⁻ (x : α), f x ∂μ = ∫⁻ (x : α), f x ∂μ
rw [laverage_eq, ENNReal.mul_div_cancel (measure_univ_ne_zero.2 hμ) (measure_ne_top _ _)]
no goals
640c4e9d5430e11d
WeierstrassCurve.Jacobian.nonsingular_neg
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma nonsingular_neg {P : Fin 3 → F} (hP : W.Nonsingular P) : W.Nonsingular <| W.neg P
case pos F : Type u inst✝ : Field F W : Jacobian F P : Fin 3 → F hP : W.Nonsingular P hPz : P z = 0 ⊢ W.Nonsingular (W.neg P)
simp only [neg_of_Z_eq_zero hP hPz, nonsingular_smul _ ((isUnit_Y_of_Z_eq_zero hP hPz).div <| isUnit_X_of_Z_eq_zero hP hPz).neg, nonsingular_zero]
no goals
554a9cfe06518499
Lean.Order.Array.monotone_foldlM_loop
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_foldlM_loop (f : γ → β → α → m β) (xs : Array α) (stop : Nat) (h : stop ≤ xs.size) (i j : Nat) (b : β) (hmono : monotone f) : monotone (fun x => Array.foldlM.loop (f x) xs stop h i j b)
case case2.hmono₁ m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m α β : Type u γ : Type w inst✝ : PartialOrder γ f : γ → β → α → m β xs : Array α stop : Nat h : stop ≤ xs.size hmono : monotone f j✝ : Nat b✝ : β h✝ : j✝ < stop i'✝ : Nat this✝ : j✝ < xs.size ih : ∀ (__do_lift : β), monotone fun x => Array.foldlM.loop (f x) xs stop h i'✝ (j✝ + 1) __do_lift ⊢ monotone fun x => f x b✝ xs[j✝]
apply monotone_apply
case case2.hmono₁.h m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m α β : Type u γ : Type w inst✝ : PartialOrder γ f : γ → β → α → m β xs : Array α stop : Nat h : stop ≤ xs.size hmono : monotone f j✝ : Nat b✝ : β h✝ : j✝ < stop i'✝ : Nat this✝ : j✝ < xs.size ih : ∀ (__do_lift : β), monotone fun x => Array.foldlM.loop (f x) xs stop h i'✝ (j✝ + 1) __do_lift ⊢ monotone fun x => f x b✝
644dcc71261616e9
four_functions_theorem
Mathlib/Combinatorics/SetFamily/FourFunctions.lean
/-- The **Four Functions Theorem**, aka **Ahlswede-Daykin Inequality**. -/ lemma four_functions_theorem [DecidableEq α] (h₁ : 0 ≤ f₁) (h₂ : 0 ≤ f₂) (h₃ : 0 ≤ f₃) (h₄ : 0 ≤ f₄) (h : ∀ a b, f₁ a * f₂ b ≤ f₃ (a ⊓ b) * f₄ (a ⊔ b)) (s t : Finset α) : (∑ a ∈ s, f₁ a) * ∑ a ∈ t, f₂ a ≤ (∑ a ∈ s ⊼ t, f₃ a) * ∑ a ∈ s ⊻ t, f₄ a
case intro.intro.intro.intro.refine_1.inr α : Type u_1 β✝ : Type u_2 inst✝³ : DistribLattice α inst✝² : LinearOrderedCommSemiring β✝ inst✝¹ : ExistsAddOfLE β✝ f₁ f₂ f₃ f₄ : α → β✝ inst✝ : DecidableEq α h₁ : 0 ≤ f₁ h₂ : 0 ≤ f₂ h₃ : 0 ≤ f₃ h₄ : 0 ≤ f₄ h : ∀ (a b : α), f₁ a * f₂ b ≤ f₃ (a ⊓ b) * f₄ (a ⊔ b) s✝ t✝ : Finset α L : Sublattice α := { carrier := latticeClosure (↑s✝ ∪ ↑t✝), supClosed' := ⋯, infClosed' := ⋯ } this : Finite ↥L t' : Finset ↥L ht' : map { toFun := ⇑L.subtype, inj' := ⋯ } t' = t✝ s' : Finset ↥L hs' : map { toFun := ⇑L.subtype, inj' := ⋯ } s' = s✝ β : Type u_1 w✝¹ : DecidableEq β w✝ : Fintype β g : LatticeHom (↥L) (Finset β) hg : Injective ⇑g s t : Finset β hs : ¬∃ a, g a = s ⊢ extend (⇑g) (f₁ ∘ Subtype.val) 0 s * extend (⇑g) (f₂ ∘ Subtype.val) 0 t ≤ extend (⇑g) (f₃ ∘ Subtype.val) 0 (s ∩ t) * extend (⇑g) (f₄ ∘ Subtype.val) 0 (s ∪ t)
simpa [extend_apply' _ _ _ hs] using mul_nonneg (extend_nonneg (fun a : L ↦ h₃ a) le_rfl _) (extend_nonneg (fun a : L ↦ h₄ a) le_rfl _)
no goals
bda3cc5a4c2e31b0
Nat.ordCompl_dvd_ordCompl_of_dvd
Mathlib/Data/Nat/Factorization/Basic.lean
theorem ordCompl_dvd_ordCompl_of_dvd {a b : ℕ} (hab : a ∣ b) (p : ℕ) : ordCompl[p] a ∣ ordCompl[p] b
case inr.inl a p : ℕ pp : Prime p hab : a ∣ 0 ⊢ a / p ^ a.factorization p ∣ 0 / p ^ (factorization 0) p
simp
no goals
c02459c7c27ede19
Complex.integral_exp_neg_rpow
Mathlib/MeasureTheory/Integral/Gamma.lean
theorem Complex.integral_exp_neg_rpow {p : ℝ} (hp : 1 ≤ p) : ∫ x : ℂ, rexp (- ‖x‖ ^ p) = π * Real.Gamma (2 / p + 1)
p : ℝ hp : 1 ≤ p ⊢ p ≠ 0
linarith
no goals
05de202e9a0c853c
List.sum_map_count_dedup_filter_eq_countP
Mathlib/Algebra/BigOperators/Group/List/Lemmas.lean
theorem sum_map_count_dedup_filter_eq_countP (p : α → Bool) (l : List α) : ((l.dedup.filter p).map fun x => l.count x).sum = l.countP p
case neg.intro α : Type u_2 inst✝ : DecidableEq α p : α → Bool a : α as : List α h : (map (fun x => count x as) (filter p as.dedup)).sum = countP p as hp : ¬p a = true n : ℕ hn : n ∈ map (fun i => if a = i then 1 else 0) (filter p (a :: as).dedup) a' : α ha' : a' ∈ filter p (a :: as).dedup ∧ (if a = a' then 1 else 0) = n ⊢ n = 0
split_ifs at ha' with ha
case pos α : Type u_2 inst✝ : DecidableEq α p : α → Bool a : α as : List α h : (map (fun x => count x as) (filter p as.dedup)).sum = countP p as hp : ¬p a = true n : ℕ hn : n ∈ map (fun i => if a = i then 1 else 0) (filter p (a :: as).dedup) a' : α ha : a = a' ha' : a' ∈ filter p (a :: as).dedup ∧ 1 = n ⊢ n = 0 case neg α : Type u_2 inst✝ : DecidableEq α p : α → Bool a : α as : List α h : (map (fun x => count x as) (filter p as.dedup)).sum = countP p as hp : ¬p a = true n : ℕ hn : n ∈ map (fun i => if a = i then 1 else 0) (filter p (a :: as).dedup) a' : α ha : ¬a = a' ha' : a' ∈ filter p (a :: as).dedup ∧ 0 = n ⊢ n = 0
26eedee1a0b217fa
finrank_vectorSpan_insert_le
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
theorem finrank_vectorSpan_insert_le (s : AffineSubspace k P) (p : P) : finrank k (vectorSpan k (insert p (s : Set P))) ≤ finrank k s.direction + 1
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k ↥s.direction h : FiniteDimensional k ↥(vectorSpan k (insert p ↑s)) h' : s.direction ≤ vectorSpan k (insert p ↑s) ⊢ False
exact hf (Submodule.finiteDimensional_of_le h')
no goals
de5f4f906d2ae1ab
PFun.fix_fwd
Mathlib/Data/PFun.lean
theorem fix_fwd {f : α →. β ⊕ α} {b : β} {a a' : α} (hb : b ∈ f.fix a) (ha' : Sum.inr a' ∈ f a) : b ∈ f.fix a'
α : Type u_1 β : Type u_2 f : α →. β ⊕ α b : β a a' : α hb : b ∈ f.fix a ha' : Sum.inr a' ∈ f a ⊢ b ∈ f.fix a'
rwa [← fix_fwd_eq ha']
no goals
881693509a429c45
NumberField.InfinitePlace.card_filter_mk_eq
Mathlib/NumberTheory/NumberField/Embeddings.lean
theorem card_filter_mk_eq [NumberField K] (w : InfinitePlace K) : #{φ | mk φ = w} = mult w
case neg K : Type u_2 inst✝¹ : Field K inst✝ : NumberField K w : InfinitePlace K hw : ¬w.IsReal ⊢ #({w.embedding} ∪ {ComplexEmbedding.conjugate w.embedding}) = 2
refine Finset.card_pair ?_
case neg K : Type u_2 inst✝¹ : Field K inst✝ : NumberField K w : InfinitePlace K hw : ¬w.IsReal ⊢ w.embedding ≠ ComplexEmbedding.conjugate w.embedding
87d68d4562228a68
CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq
Mathlib/CategoryTheory/Abelian/RightDerived.lean
lemma InjectiveResolution.rightDerivedToHomotopyCategory_app_eq {F G : C ⥤ D} [F.Additive] [G.Additive] (α : F ⟶ G) {X : C} (P : InjectiveResolution X) : (NatTrans.rightDerivedToHomotopyCategory α).app X = (P.isoRightDerivedToHomotopyCategoryObj F).hom ≫ (HomotopyCategory.quotient _ _).map ((NatTrans.mapHomologicalComplex α _).app P.cocomplex) ≫ (P.isoRightDerivedToHomotopyCategoryObj G).inv
case intro C : Type u inst✝⁶ : Category.{v, u} C D : Type u_1 inst✝⁵ : Category.{u_2, u_1} D inst✝⁴ : Abelian C inst✝³ : HasInjectiveResolutions C inst✝² : Abelian D F G : C ⥤ D inst✝¹ : F.Additive inst✝ : G.Additive α : F ⟶ G X : C P : InjectiveResolution X β : (injectiveResolution X).cocomplex ⟶ P.cocomplex hβ : (HomotopyCategory.quotient C (ComplexShape.up ℕ)).map β = P.iso.hom ⊢ (HomotopyCategory.quotient D (ComplexShape.up ℕ)).map ((NatTrans.mapHomologicalComplex α (ComplexShape.up ℕ)).app ((injectiveResolutions C).obj X).as) ≫ (G.mapHomotopyCategory (ComplexShape.up ℕ)).map P.iso.hom = (F.mapHomotopyCategory (ComplexShape.up ℕ)).map P.iso.hom ≫ (HomotopyCategory.quotient D (ComplexShape.up ℕ)).map ((NatTrans.mapHomologicalComplex α (ComplexShape.up ℕ)).app P.cocomplex)
rw [← hβ]
case intro C : Type u inst✝⁶ : Category.{v, u} C D : Type u_1 inst✝⁵ : Category.{u_2, u_1} D inst✝⁴ : Abelian C inst✝³ : HasInjectiveResolutions C inst✝² : Abelian D F G : C ⥤ D inst✝¹ : F.Additive inst✝ : G.Additive α : F ⟶ G X : C P : InjectiveResolution X β : (injectiveResolution X).cocomplex ⟶ P.cocomplex hβ : (HomotopyCategory.quotient C (ComplexShape.up ℕ)).map β = P.iso.hom ⊢ (HomotopyCategory.quotient D (ComplexShape.up ℕ)).map ((NatTrans.mapHomologicalComplex α (ComplexShape.up ℕ)).app ((injectiveResolutions C).obj X).as) ≫ (G.mapHomotopyCategory (ComplexShape.up ℕ)).map ((HomotopyCategory.quotient C (ComplexShape.up ℕ)).map β) = (F.mapHomotopyCategory (ComplexShape.up ℕ)).map ((HomotopyCategory.quotient C (ComplexShape.up ℕ)).map β) ≫ (HomotopyCategory.quotient D (ComplexShape.up ℕ)).map ((NatTrans.mapHomologicalComplex α (ComplexShape.up ℕ)).app P.cocomplex)
fb3a9807ff9e85f1
AnalyticOnNhd.eqOn_of_preconnected_of_frequently_eq
Mathlib/Analysis/Analytic/IsolatedZeros.lean
theorem eqOn_of_preconnected_of_frequently_eq (hf : AnalyticOnNhd 𝕜 f U) (hg : AnalyticOnNhd 𝕜 g U) (hU : IsPreconnected U) (h₀ : z₀ ∈ U) (hfg : ∃ᶠ z in 𝓝[≠] z₀, f z = g z) : EqOn f g U
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f g : 𝕜 → E z₀ : 𝕜 U : Set 𝕜 hf : AnalyticOnNhd 𝕜 f U hg : AnalyticOnNhd 𝕜 g U hU : IsPreconnected U h₀ : z₀ ∈ U hfg : ∃ᶠ (z : 𝕜) in 𝓝[≠] z₀, f z = g z z : 𝕜 h : f z = g z ⊢ (f - g) z = 0
rw [Pi.sub_apply, h, sub_self]
no goals
56e6a713a07d326c
PadicSeq.norm_neg
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem norm_neg (a : PadicSeq p) : (-a).norm = a.norm := norm_eq <| by simp
p : ℕ hp : Fact (Nat.Prime p) a : PadicSeq p ⊢ ∀ (k : ℕ), padicNorm p (↑(-a) k) = padicNorm p (↑a k)
simp
no goals
e221d9e6d0e403dd
nilpotencyClass_le_of_ker_le_center
Mathlib/GroupTheory/Nilpotent.lean
theorem nilpotencyClass_le_of_ker_le_center {H : Type*} [Group H] (f : G →* H) (hf1 : f.ker ≤ center G) (hH : IsNilpotent H) : Group.nilpotencyClass (hG := isNilpotent_of_ker_le_center f hf1 hH) ≤ Group.nilpotencyClass H + 1
case h G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H f : G →* H hf1 : f.ker ≤ center G hH : IsNilpotent H this : IsNilpotent G ⊢ lowerCentralSeries G (nilpotencyClass H + 1) = ⊥
refine lowerCentralSeries_succ_eq_bot (le_trans ((Subgroup.map_eq_bot_iff _).mp ?_) hf1)
case h G : Type u_1 inst✝¹ : Group G H : Type u_2 inst✝ : Group H f : G →* H hf1 : f.ker ≤ center G hH : IsNilpotent H this : IsNilpotent G ⊢ Subgroup.map f (lowerCentralSeries G (nilpotencyClass H)) = ⊥
74aedaa0ee74fba5
Real.mulExpNegMulSq_one_le_one
Mathlib/Analysis/SpecialFunctions/MulExpNegMulSq.lean
theorem mulExpNegMulSq_one_le_one (x : ℝ) : mulExpNegMulSq 1 x ≤ 1
x : ℝ ⊢ mulExpNegMulSq 1 x ≤ 1
simp [mulExpNegMulSq]
x : ℝ ⊢ x * rexp (-(x * x)) ≤ 1
b6227aba2a3e92f1
MeasureTheory.upcrossingsBefore_eq_sum
Mathlib/Probability/Martingale/Upcrossing.lean
theorem upcrossingsBefore_eq_sum (hab : a < b) : upcrossingsBefore a b f N ω = ∑ i ∈ Finset.Ico 1 (N + 1), {n | upperCrossingTime a b f N n ω < N}.indicator 1 i
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN : ¬N = 0 h₁ : ∀ k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1), {n | upperCrossingTime a b f N n ω < N}.indicator 1 k = 1 k : ℕ hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1 ⊢ {n | upperCrossingTime a b f N n ω < N}.indicator 1 k = 0
rw [Set.indicator_of_not_mem]
case h Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN : ¬N = 0 h₁ : ∀ k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1), {n | upperCrossingTime a b f N n ω < N}.indicator 1 k = 1 k : ℕ hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1 ⊢ k ∉ {n | upperCrossingTime a b f N n ω < N}
50c14e6e447fb83a
MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite
Mathlib/MeasureTheory/Integral/Layercake.lean
theorem lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite (μ : Measure α) [SFinite μ] (f_nn : 0 ≤ f) (f_mble : Measurable f) (g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t) (g_mble : Measurable g) (g_nn : ∀ t > 0, 0 ≤ g t) : ∫⁻ ω, ENNReal.ofReal (∫ t in (0)..f ω, g t) ∂μ = ∫⁻ t in Ioi 0, μ {a : α | t ≤ f a} * ENNReal.ofReal (g t)
case h.h α : Type u_1 inst✝¹ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α inst✝ : SFinite μ f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t g_intble' : ∀ (t : ℝ), 0 ≤ t → IntervalIntegrable g volume 0 t integrand_eq : ∀ (ω : α), ENNReal.ofReal (∫ (t : ℝ) in 0 ..f ω, g t) = ∫⁻ (t : ℝ) in Ioc 0 (f ω), ENNReal.ofReal (g t) s : ℝ aux₁ : (fun x => (Ioc 0 (f x)).indicator (fun t => ENNReal.ofReal (g t)) s) = fun x => ENNReal.ofReal (g s) * (Ioi 0).indicator (fun x => 1) s * (Ici s).indicator (fun x => 1) (f x) ⊢ ENNReal.ofReal (g s) * (Ioi 0).indicator (fun x => 1) s * ∫⁻ (a : α), {a | s ≤ f a}.indicator (fun x => 1) a ∂μ = (Ioi 0).indicator (fun t => μ {a | t ≤ f a} * ENNReal.ofReal (g t)) s
rw [lintegral_indicator₀]
case h.h α : Type u_1 inst✝¹ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α inst✝ : SFinite μ f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t g_intble' : ∀ (t : ℝ), 0 ≤ t → IntervalIntegrable g volume 0 t integrand_eq : ∀ (ω : α), ENNReal.ofReal (∫ (t : ℝ) in 0 ..f ω, g t) = ∫⁻ (t : ℝ) in Ioc 0 (f ω), ENNReal.ofReal (g t) s : ℝ aux₁ : (fun x => (Ioc 0 (f x)).indicator (fun t => ENNReal.ofReal (g t)) s) = fun x => ENNReal.ofReal (g s) * (Ioi 0).indicator (fun x => 1) s * (Ici s).indicator (fun x => 1) (f x) ⊢ ENNReal.ofReal (g s) * (Ioi 0).indicator (fun x => 1) s * ∫⁻ (a : α) in {a | s ≤ f a}, 1 ∂μ = (Ioi 0).indicator (fun t => μ {a | t ≤ f a} * ENNReal.ofReal (g t)) s case h.h.hs α : Type u_1 inst✝¹ : MeasurableSpace α f : α → ℝ g : ℝ → ℝ μ : Measure α inst✝ : SFinite μ f_nn : 0 ≤ f f_mble : Measurable f g_intble : ∀ t > 0, IntervalIntegrable g volume 0 t g_mble : Measurable g g_nn : ∀ t > 0, 0 ≤ g t g_intble' : ∀ (t : ℝ), 0 ≤ t → IntervalIntegrable g volume 0 t integrand_eq : ∀ (ω : α), ENNReal.ofReal (∫ (t : ℝ) in 0 ..f ω, g t) = ∫⁻ (t : ℝ) in Ioc 0 (f ω), ENNReal.ofReal (g t) s : ℝ aux₁ : (fun x => (Ioc 0 (f x)).indicator (fun t => ENNReal.ofReal (g t)) s) = fun x => ENNReal.ofReal (g s) * (Ioi 0).indicator (fun x => 1) s * (Ici s).indicator (fun x => 1) (f x) ⊢ NullMeasurableSet {a | s ≤ f a} μ
028c71a79fc18349
Complex.uniformContinuous_ringHom_eq_id_or_conj
Mathlib/Topology/Instances/Complex.lean
theorem Complex.uniformContinuous_ringHom_eq_id_or_conj (K : Subfield ℂ) {ψ : K →+* ℂ} (hc : UniformContinuous ψ) : ψ.toFun = K.subtype ∨ ψ.toFun = conj ∘ K.subtype
case h.e'_2 K : Subfield ℂ ψ : ↥K →+* ℂ hc : UniformContinuous ⇑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : IsTopologicalRing ↥K.topologicalClosure := Subring.instIsTopologicalRing K.topologicalClosure.toSubring ι : ↥K → ↥K.topologicalClosure := ⇑(Subfield.inclusion ⋯) ui : IsUniformInducing ι di : IsDenseInducing ι := IsUniformInducing.isDenseInducing ui ?refine_1 extψ : ↥K.topologicalClosure →+* ℂ := IsDenseInducing.extendRingHom ui ⋯ hc hψ : Continuous (⋯.extend ⇑ψ) h✝ : K.topologicalClosure = ⊤ ψ₁ : ℂ →+* ℂ := extψ.comp ((RingEquiv.subfieldCongr h✝).symm.toRingHom.comp Subfield.topEquiv.symm.toRingHom) hψ₁ : Continuous ⇑ψ₁ h : ψ₁ = RingHom.id ℂ z : ↥K ⊢ (↑↑ψ).toFun z = ψ₁ ↑z
exact (IsDenseInducing.extend_eq di hc.continuous z).symm
no goals
f78bcdf9d891573b
PowerSeries.trunc_coe_eq_self
Mathlib/RingTheory/PowerSeries/Trunc.lean
theorem trunc_coe_eq_self {n} {f : R[X]} (hn : natDegree f < n) : trunc n (f : R⟦X⟧) = f
R : Type u_2 inst✝ : CommSemiring R n : ℕ f : R[X] hn : f.natDegree < n ⊢ trunc n ↑f = f
rw [← Polynomial.coe_inj]
R : Type u_2 inst✝ : CommSemiring R n : ℕ f : R[X] hn : f.natDegree < n ⊢ ↑(trunc n ↑f) = ↑f
5bf3fb6492face06
ProbabilityTheory.Kernel.withDensity_one_sub_rnDerivAux
Mathlib/Probability/Kernel/RadonNikodym.lean
lemma withDensity_one_sub_rnDerivAux (κ η : Kernel α γ) [IsFiniteKernel κ] [IsFiniteKernel η] : withDensity (κ + η) (fun a x ↦ Real.toNNReal (1 - rnDerivAux κ (κ + η) a x)) = η
case hfg α : Type u_1 γ : Type u_2 mα : MeasurableSpace α mγ : MeasurableSpace γ hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ κ η : Kernel α γ inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η h_le : κ ≤ κ + η this : ∀ (b : ℝ), ↑b.toNNReal = ENNReal.ofReal b ⊢ ∀ (a : α), (fun x => ENNReal.ofReal (κ.rnDerivAux (κ + η) a x)) ≤ᶠ[ae ((κ + η) a)] fun x => 1
intro a
case hfg α : Type u_1 γ : Type u_2 mα : MeasurableSpace α mγ : MeasurableSpace γ hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ κ η : Kernel α γ inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η h_le : κ ≤ κ + η this : ∀ (b : ℝ), ↑b.toNNReal = ENNReal.ofReal b a : α ⊢ (fun x => ENNReal.ofReal (κ.rnDerivAux (κ + η) a x)) ≤ᶠ[ae ((κ + η) a)] fun x => 1
33aa60e00817c2c6
Polynomial.eval₂_comp'
Mathlib/Algebra/Polynomial/Eval/Algebra.lean
theorem eval₂_comp' : eval₂ (algebraMap R S) x (p.comp q) = eval₂ (algebraMap R S) (eval₂ (algebraMap R S) x q) p
R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S x : S p q : R[X] ⊢ eval₂ (algebraMap R S) x (p.comp q) = eval₂ (algebraMap R S) (eval₂ (algebraMap R S) x q) p
induction p using Polynomial.induction_on' with | h_add r s hr hs => simp only [add_comp, eval₂_add, hr, hs] | h_monomial n a => simp only [monomial_comp, eval₂_mul', eval₂_C, eval₂_monomial, eval₂_pow']
no goals
069f9445c1f8dd0e
MvPolynomial.degreeOf_mul_X_self
Mathlib/Algebra/MvPolynomial/Degrees.lean
theorem degreeOf_mul_X_self (j : σ) (f : MvPolynomial σ R) : degreeOf j (f * X j) ≤ degreeOf j f + 1
case h.e'_4 R : Type u σ : Type u_1 inst✝ : CommSemiring R j : σ f : MvPolynomial σ R ⊢ 1 = Multiset.count j {j}
rw [Multiset.count_singleton_self]
no goals
102a8d529ad3906a
PartialHomeomorph.MDifferentiable.trans
Mathlib/Geometry/Manifold/MFDeriv/Atlas.lean
theorem trans (he' : e'.MDifferentiable I' I'') : (e.trans e').MDifferentiable I I''
case right 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' E'' : Type u_8 inst✝⁴ : NormedAddCommGroup E'' inst✝³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝¹ : TopologicalSpace M'' inst✝ : ChartedSpace H'' M'' e : PartialHomeomorph M M' he : MDifferentiable I I' e e' : PartialHomeomorph M' M'' he' : MDifferentiable I' I'' e' x : M'' hx : x ∈ (e ≫ₕ e').target ⊢ MDifferentiableWithinAt I'' I (↑(e ≫ₕ e').symm) (e ≫ₕ e').target x
simp only [mfld_simps] at hx
case right 𝕜 : Type u_1 inst✝¹⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedSpace 𝕜 E H : Type u_3 inst✝¹² : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝¹¹ : TopologicalSpace M inst✝¹⁰ : ChartedSpace H M E' : Type u_5 inst✝⁹ : NormedAddCommGroup E' inst✝⁸ : NormedSpace 𝕜 E' H' : Type u_6 inst✝⁷ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝⁶ : TopologicalSpace M' inst✝⁵ : ChartedSpace H' M' E'' : Type u_8 inst✝⁴ : NormedAddCommGroup E'' inst✝³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝¹ : TopologicalSpace M'' inst✝ : ChartedSpace H'' M'' e : PartialHomeomorph M M' he : MDifferentiable I I' e e' : PartialHomeomorph M' M'' he' : MDifferentiable I' I'' e' x : M'' hx : x ∈ e'.target ∧ ↑e'.symm x ∈ e.target ⊢ MDifferentiableWithinAt I'' I (↑(e ≫ₕ e').symm) (e ≫ₕ e').target x
822be95d99e5c4f0
Algebra.baseChange_lmul
Mathlib/RingTheory/TensorProduct/Basic.lean
lemma Algebra.baseChange_lmul {R B : Type*} [CommSemiring R] [Semiring B] [Algebra R B] {A : Type*} [CommSemiring A] [Algebra R A] (f : B) : (Algebra.lmul R B f).baseChange A = Algebra.lmul A (A ⊗[R] B) (1 ⊗ₜ f)
R : Type u_1 B : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : Semiring B inst✝² : Algebra R B A : Type u_3 inst✝¹ : CommSemiring A inst✝ : Algebra R A f : B ⊢ LinearMap.baseChange A ((lmul R B) f) = (lmul A (A ⊗[R] B)) (1 ⊗ₜ[R] f)
ext i
case a.h.h R : Type u_1 B : Type u_2 inst✝⁴ : CommSemiring R inst✝³ : Semiring B inst✝² : Algebra R B A : Type u_3 inst✝¹ : CommSemiring A inst✝ : Algebra R A f i : B ⊢ ((AlgebraTensorModule.curry (LinearMap.baseChange A ((lmul R B) f))) 1) i = ((AlgebraTensorModule.curry ((lmul A (A ⊗[R] B)) (1 ⊗ₜ[R] f))) 1) i
3e3d1363ac8d60bc
TopCat.Presheaf.map_restrict
Mathlib/Topology/Sheaves/Presheaf.lean
theorem map_restrict {F G : X.Presheaf C} (e : F ⟶ G) {U V : Opens X} (h : U ≤ V) (x : ToType (F.obj (op V))) : e.app _ (x |_ U) = e.app _ x |_ U
X : TopCat C : Type u_1 inst✝² : Category.{u_5, u_1} C FC : C → C → Type u_2 CC : C → Type u_3 inst✝¹ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝ : ConcreteCategory C FC F G : Presheaf C X e : F ⟶ G U V : Opens ↑X h : U ≤ V x : ToType (F.obj (op V)) ⊢ (ConcreteCategory.hom (e.app (op U))) ((ConcreteCategory.hom (F.map (homOfLE h).op)) x) = (ConcreteCategory.hom (G.map (homOfLE h).op)) ((ConcreteCategory.hom (e.app (op V))) x)
rw [← ConcreteCategory.comp_apply, NatTrans.naturality, ConcreteCategory.comp_apply]
no goals
dc647c24b4e1e955
Topology.IsClosedEmbedding.polishSpace
Mathlib/Topology/MetricSpace/Polish.lean
theorem _root_.Topology.IsClosedEmbedding.polishSpace [TopologicalSpace α] [TopologicalSpace β] [PolishSpace β] {f : α → β} (hf : IsClosedEmbedding f) : PolishSpace α
α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : IsClosedEmbedding f this✝¹ : UpgradedPolishSpace β := upgradePolishSpace β this✝ : MetricSpace α := IsEmbedding.comapMetricSpace f ⋯ this : SecondCountableTopology α ⊢ CompleteSpace α
rw [completeSpace_iff_isComplete_range hf.isEmbedding.to_isometry.isUniformInducing]
α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : IsClosedEmbedding f this✝¹ : UpgradedPolishSpace β := upgradePolishSpace β this✝ : MetricSpace α := IsEmbedding.comapMetricSpace f ⋯ this : SecondCountableTopology α ⊢ IsComplete (range f)
4a7835d35855f550
Nat.SOM.Expr.toPoly_denote
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/SOM.lean
theorem Expr.toPoly_denote (ctx : Context) (e : Expr) : e.toPoly.denote ctx = e.denote ctx
case num ctx : Context k : Nat ⊢ Poly.denote ctx (bif k == 0 then [] else [(k, [])]) = k
by_cases h : k == 0 <;> simp! [*]
case pos ctx : Context k : Nat h : (k == 0) = true ⊢ 0 = k
7a9fb10409122baf
HomotopyCategory.mappingConeCompTriangleh_distinguished
Mathlib/Algebra/Homology/HomotopyCategory/Triangulated.lean
lemma mappingConeCompTriangleh_distinguished : (mappingConeCompTriangleh f g) ∈ distTriang (HomotopyCategory C (ComplexShape.up ℤ))
C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : HasBinaryBiproducts C X₁ X₂ X₃ : CochainComplex C ℤ f : X₁ ⟶ X₂ g : X₂ ⟶ X₃ inst✝ : HasZeroObject C ⊢ mappingConeCompTriangleh f g ∈ distinguishedTriangles
refine ⟨_, _, (mappingConeCompTriangle f g).mor₁, ⟨?_⟩⟩
C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : HasBinaryBiproducts C X₁ X₂ X₃ : CochainComplex C ℤ f : X₁ ⟶ X₂ g : X₂ ⟶ X₃ inst✝ : HasZeroObject C ⊢ mappingConeCompTriangleh f g ≅ mappingCone.triangleh (mappingConeCompTriangle f g).mor₁
32c9ce5e781b428a
algebraMap_monotone
Mathlib/Algebra/Order/Algebra.lean
theorem algebraMap_monotone : Monotone (algebraMap R A) := fun a b h => by rw [Algebra.algebraMap_eq_smul_one, Algebra.algebraMap_eq_smul_one, ← sub_nonneg, ← sub_smul] trans (b - a) • (0 : A) · simp · exact smul_le_smul_of_nonneg_left zero_le_one (sub_nonneg.mpr h)
R : Type u_1 A : Type u_2 inst✝³ : OrderedCommRing R inst✝² : OrderedRing A inst✝¹ : Algebra R A inst✝ : OrderedSMul R A a b : R h : a ≤ b ⊢ (b - a) • 0 ≤ (b - a) • 1
exact smul_le_smul_of_nonneg_left zero_le_one (sub_nonneg.mpr h)
no goals
662eaaf11dd4ba11
List.nodup_finRange
Mathlib/Data/List/FinRange.lean
theorem nodup_finRange (n : ℕ) : (finRange n).Nodup
n : ℕ ⊢ (finRange n).Nodup
rw [finRange_eq_pmap_range]
n : ℕ ⊢ (pmap Fin.mk (range n) ⋯).Nodup
82aa54221459055c
AlgebraicGeometry.Scheme.Spec_map_stalkMap_fromSpecStalk
Mathlib/AlgebraicGeometry/Stalk.lean
@[reassoc (attr := simp)] lemma Spec_map_stalkMap_fromSpecStalk {x} : Spec.map (f.stalkMap x) ≫ Y.fromSpecStalk _ = X.fromSpecStalk x ≫ f
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X Y : Scheme f : X ⟶ Y x : ↑↑X.toPresheafedSpace U : TopologicalSpace.Opens ↑↑Y.toPresheafedSpace hU : U ∈ Y.affineOpens hxU : (ConcreteCategory.hom f.base) x ∈ ↑U V : TopologicalSpace.Opens ↑↑X.toPresheafedSpace hV : V ∈ X.affineOpens hxV : x ∈ ↑V hVU : ↑V ⊆ (f ⁻¹ᵁ U).carrier ⊢ Spec.map (Hom.stalkMap f x) ≫ Y.fromSpecStalk ((ConcreteCategory.hom f.base) x) = X.fromSpecStalk x ≫ f
rw [← hU.fromSpecStalk_eq_fromSpecStalk hxU, ← hV.fromSpecStalk_eq_fromSpecStalk hxV, IsAffineOpen.fromSpecStalk, ← Spec.map_comp_assoc, Scheme.stalkMap_germ f _ x hxU, IsAffineOpen.fromSpecStalk, Spec.map_comp_assoc, ← X.presheaf.germ_res (homOfLE hVU) x hxV, Spec.map_comp_assoc, Category.assoc, ← Spec.map_comp_assoc (f.app _), Hom.app_eq_appLE, Hom.appLE_map, IsAffineOpen.Spec_map_appLE_fromSpec]
no goals
f19f7c7123ab26ca
NumberField.mixedEmbedding.iUnion_negAt_plusPart_union
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem iUnion_negAt_plusPart_union : (⋃ s, negAt s '' (plusPart A)) ∪ (A ∩ (⋃ w, {x | x.1 w = 0})) = A
case h K : Type u_1 inst✝ : Field K A : Set (mixedSpace K) hA : ∀ (x : mixedSpace K), x ∈ A ↔ (fun w => |x.1 w|, x.2) ∈ A x : mixedSpace K ⊢ ((∃ i, x ∈ ⇑(negAt i) '' plusPart A) ∨ x ∈ A ∧ ∃ i, x ∈ {x | x.1 i = 0}) ↔ x ∈ A
refine ⟨?_, fun h ↦ ?_⟩
case h.refine_1 K : Type u_1 inst✝ : Field K A : Set (mixedSpace K) hA : ∀ (x : mixedSpace K), x ∈ A ↔ (fun w => |x.1 w|, x.2) ∈ A x : mixedSpace K ⊢ ((∃ i, x ∈ ⇑(negAt i) '' plusPart A) ∨ x ∈ A ∧ ∃ i, x ∈ {x | x.1 i = 0}) → x ∈ A case h.refine_2 K : Type u_1 inst✝ : Field K A : Set (mixedSpace K) hA : ∀ (x : mixedSpace K), x ∈ A ↔ (fun w => |x.1 w|, x.2) ∈ A x : mixedSpace K h : x ∈ A ⊢ (∃ i, x ∈ ⇑(negAt i) '' plusPart A) ∨ x ∈ A ∧ ∃ i, x ∈ {x | x.1 i = 0}
618707fcf4bf60a6
MulAction.stabilizer_orbit_eq
Mathlib/GroupTheory/GroupAction/Blocks.lean
theorem stabilizer_orbit_eq {a : X} {H : Subgroup G} (hH : stabilizer G a ≤ H) : stabilizer G (orbit H a) = H
case h.mp G : Type u_1 inst✝¹ : Group G X : Type u_2 inst✝ : MulAction G X a : X H : Subgroup G hH : stabilizer G a ≤ H g : G ⊢ g ∈ stabilizer G (orbit (↥H) a) → g ∈ H
intro hg
case h.mp G : Type u_1 inst✝¹ : Group G X : Type u_2 inst✝ : MulAction G X a : X H : Subgroup G hH : stabilizer G a ≤ H g : G hg : g ∈ stabilizer G (orbit (↥H) a) ⊢ g ∈ H
71a4cf416a3754d6
Real.invariant
Mathlib/NumberTheory/DiophantineApproximation/Basic.lean
theorem invariant : ContfracLegendre.Ass (fract ξ)⁻¹ v (u - ⌊ξ⌋ * v)
ξ : ℝ u v : ℤ hv : 2 ≤ v h : ContfracLegendre.Ass ξ u v huv : u - ⌊ξ⌋ * v = 1 hv₀' : 0 < 2 * ↑v - 1 ⊢ (↑v * (2 * ↑v - 1))⁻¹ + (↑v)⁻¹ = 2 / (2 * ↑v - 1)
field_simp
ξ : ℝ u v : ℤ hv : 2 ≤ v h : ContfracLegendre.Ass ξ u v huv : u - ⌊ξ⌋ * v = 1 hv₀' : 0 < 2 * ↑v - 1 ⊢ (↑v + ↑v * (2 * ↑v - 1)) * (2 * ↑v - 1) = 2 * (↑v * (2 * ↑v - 1) * ↑v)
8eb0aea68cc1bde9
MeasureTheory.AEStronglyMeasurable.ae_integrable_condKernel_iff
Mathlib/Probability/Kernel/Disintegration/Integral.lean
theorem AEStronglyMeasurable.ae_integrable_condKernel_iff {f : α × Ω → F} (hf : AEStronglyMeasurable f ρ) : (∀ᵐ a ∂ρ.fst, Integrable (fun ω ↦ f (a, ω)) (ρ.condKernel a)) ∧ Integrable (fun a ↦ ∫ ω, ‖f (a, ω)‖ ∂ρ.condKernel a) ρ.fst ↔ Integrable f ρ
α : Type u_1 Ω : Type u_2 F : Type u_4 mα : MeasurableSpace α inst✝⁴ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f ρ ⊢ (∀ᵐ (a : α) ∂ρ.fst, Integrable (fun ω => f (a, ω)) (ρ.condKernel a)) ∧ Integrable (fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂ρ.condKernel a) ρ.fst ↔ Integrable f ρ
rw [← ρ.disintegrate ρ.condKernel] at hf
α : Type u_1 Ω : Type u_2 F : Type u_4 mα : MeasurableSpace α inst✝⁴ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (ρ.fst ⊗ₘ ρ.condKernel) ⊢ (∀ᵐ (a : α) ∂ρ.fst, Integrable (fun ω => f (a, ω)) (ρ.condKernel a)) ∧ Integrable (fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂ρ.condKernel a) ρ.fst ↔ Integrable f ρ
7bdc19fddcc9d6a0
CochainComplex.shiftFunctorZero_hom_app_f
Mathlib/Algebra/Homology/HomotopyCategory/Shift.lean
lemma shiftFunctorZero_hom_app_f (K : CochainComplex C ℤ) (n : ℤ) : ((CategoryTheory.shiftFunctorZero (CochainComplex C ℤ) ℤ).hom.app K).f n = (K.XIsoOfEq (by dsimp; rw [add_zero])).hom
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C K : CochainComplex C ℤ n : ℤ ⊢ IsIso (((shiftFunctorZero (CochainComplex C ℤ) ℤ).inv.app K).f n)
rw [shiftFunctorZero_inv_app_f]
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C K : CochainComplex C ℤ n : ℤ ⊢ IsIso (XIsoOfEq K ⋯).hom
3d3f0579f35bf4a8
CategoryTheory.OverPresheafAux.MakesOverArrow.of_yoneda_arrow
Mathlib/CategoryTheory/Comma/Presheaf/Basic.lean
lemma of_yoneda_arrow {Y : C} {η : yoneda.obj Y ⟶ A} {X : C} {s : yoneda.obj X ⟶ A} {f : X ⟶ Y} (hf : yoneda.map f ≫ η = s) : MakesOverArrow η s f
C : Type u inst✝ : Category.{v, u} C A : Cᵒᵖ ⥤ Type v Y : C η : yoneda.obj Y ⟶ A X : C s : yoneda.obj X ⟶ A f : X ⟶ Y hf : yoneda.map f ≫ η = s ⊢ MakesOverArrow η s f
simpa only [yonedaEquiv_yoneda_map f] using of_arrow hf
no goals
4a9c2a75a34c347c
IsDiscreteValuationRing.addVal_eq_top_iff
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
theorem addVal_eq_top_iff {a : R} : addVal R a = ⊤ ↔ a = 0
case mp.intro.intro R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsDiscreteValuationRing R hi : Irreducible (Classical.choose ⋯) n : ℕ u : Rˣ h : ¬Classical.choose ⋯ ^ n * ↑u = 0 ha : Associated (Classical.choose ⋯ ^ n * ↑u) (Classical.choose ⋯ ^ n) ⊢ ¬(addVal R) (Classical.choose ⋯ ^ n * ↑u) = ⊤
rw [mul_comm, addVal_def' u hi n]
case mp.intro.intro R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : IsDiscreteValuationRing R hi : Irreducible (Classical.choose ⋯) n : ℕ u : Rˣ h : ¬Classical.choose ⋯ ^ n * ↑u = 0 ha : Associated (Classical.choose ⋯ ^ n * ↑u) (Classical.choose ⋯ ^ n) ⊢ ¬↑n = ⊤
0f5c0cf481b15329
controlled_prod_of_mem_closure
Mathlib/Analysis/Normed/Group/Continuity.lean
theorem controlled_prod_of_mem_closure {s : Subgroup E} (hg : a ∈ closure (s : Set E)) {b : ℕ → ℝ} (b_pos : ∀ n, 0 < b n) : ∃ v : ℕ → E, Tendsto (fun n => ∏ i ∈ range (n + 1), v i) atTop (𝓝 a) ∧ (∀ n, v n ∈ s) ∧ ‖v 0 / a‖ < b 0 ∧ ∀ n, 0 < n → ‖v n‖ < b n
E : Type u_5 inst✝ : SeminormedCommGroup E a : E s : Subgroup E hg : a ∈ closure ↑s b : ℕ → ℝ b_pos : ∀ (n : ℕ), 0 < b n u : ℕ → E u_in : ∀ (n : ℕ), u n ∈ s lim_u : Tendsto u atTop (𝓝 a) n₀ : ℕ hn₀ : ∀ n ≥ n₀, ‖u n / a‖ < b 0 z : ℕ → E := fun n => u (n + n₀) lim_z : Tendsto z atTop (𝓝 a) n : ℕ ⊢ {p | ‖p.1 / p.2‖ < b (n + 1)} ∈ 𝓤 E
simpa [← dist_eq_norm_div] using Metric.dist_mem_uniformity (b_pos <| n + 1)
no goals
647a783958e68b9a
Bimod.whiskerRight_comp_bimod
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem whiskerRight_comp_bimod {W X Y Z : Mon_ C} {M M' : Bimod W X} (f : M ⟶ M') (N : Bimod X Y) (P : Bimod Y Z) : whiskerRight f (N.tensorBimod P) = (associatorBimod M N P).inv ≫ whiskerRight (whiskerRight f N) P ≫ (associatorBimod M' N P).hom
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) W X Y Z : Mon_ C M M' : Bimod W X f : M ⟶ M' N : Bimod X Y P : Bimod Y Z ⊢ (tensorLeft M.X).map (coequalizer.π (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft)) ≫ f.hom ▷ coequalizer (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ colimit.ι (parallelPair (M'.actRight ▷ coequalizer (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft)) ((α_ M'.X X.X (coequalizer (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft))).hom ≫ M'.X ◁ TensorBimod.actLeft N P)) WalkingParallelPair.one = (tensorLeft M.X).map (coequalizer.π (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft)) ≫ (((PreservesCoequalizer.iso (tensorLeft M.X) (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).inv ≫ coequalizer.π (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ≫ coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) Y.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)) ⋯) ≫ colimMap (parallelPairHom (TensorBimod.actRight M N ▷ P.X) ((α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft)) Y.X P.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ P.actLeft) (TensorBimod.actRight M' N ▷ P.X) ((α_ (coequalizer (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft)) Y.X P.X).hom ≫ coequalizer (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft) ◁ P.actLeft) (colimMap (parallelPairHom (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft) (f.hom ▷ X.X ▷ N.X) (f.hom ▷ N.X) ⋯ ⋯) ▷ Y.X ▷ P.X) (colimMap (parallelPairHom (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft) (f.hom ▷ X.X ▷ N.X) (f.hom ▷ N.X) ⋯ ⋯) ▷ P.X) ⋯ ⋯)) ≫ coequalizer.desc (AssociatorBimod.homAux M' N P) ⋯
rw [tensorLeft_map]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) W X Y Z : Mon_ C M M' : Bimod W X f : M ⟶ M' N : Bimod X Y P : Bimod Y Z ⊢ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ f.hom ▷ coequalizer (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ colimit.ι (parallelPair (M'.actRight ▷ coequalizer (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft)) ((α_ M'.X X.X (coequalizer (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft))).hom ≫ M'.X ◁ TensorBimod.actLeft N P)) WalkingParallelPair.one = M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ (((PreservesCoequalizer.iso (tensorLeft M.X) (N.actRight ▷ P.X) ((α_ N.X Y.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).inv ≫ coequalizer.π (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ≫ coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) Y.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)) ⋯) ≫ colimMap (parallelPairHom (TensorBimod.actRight M N ▷ P.X) ((α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft)) Y.X P.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ P.actLeft) (TensorBimod.actRight M' N ▷ P.X) ((α_ (coequalizer (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft)) Y.X P.X).hom ≫ coequalizer (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft) ◁ P.actLeft) (colimMap (parallelPairHom (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft) (f.hom ▷ X.X ▷ N.X) (f.hom ▷ N.X) ⋯ ⋯) ▷ Y.X ▷ P.X) (colimMap (parallelPairHom (M.actRight ▷ N.X) ((α_ M.X X.X N.X).hom ≫ M.X ◁ N.actLeft) (M'.actRight ▷ N.X) ((α_ M'.X X.X N.X).hom ≫ M'.X ◁ N.actLeft) (f.hom ▷ X.X ▷ N.X) (f.hom ▷ N.X) ⋯ ⋯) ▷ P.X) ⋯ ⋯)) ≫ coequalizer.desc (AssociatorBimod.homAux M' N P) ⋯
2725ee4aa075b079
rothNumberNat_le_ruzsaSzemerediNumberNat
Mathlib/Combinatorics/Extremal/RuzsaSzemeredi.lean
lemma rothNumberNat_le_ruzsaSzemerediNumberNat (n : ℕ) : (2 * n + 1) * rothNumberNat n ≤ ruzsaSzemerediNumberNat (6 * n + 3)
n : ℕ α : Type := Fin (2 * n + 1) this✝ : Coprime 2 (2 * n + 1) this : Fact (IsUnit 2) ⊢ (2 * n + 1) * rothNumberNat n ≤ ruzsaSzemerediNumberNat (6 * n + 3)
calc (2 * n + 1) * rothNumberNat n _ = Fintype.card α * addRothNumber (Iio (n : α)) := by rw [Fin.addRothNumber_eq_rothNumberNat le_rfl, Fintype.card_fin] _ ≤ Fintype.card α * addRothNumber (univ : Finset α) := by gcongr; exact subset_univ _ _ ≤ ruzsaSzemerediNumber (Sum α (Sum α α)) := addRothNumber_le_ruzsaSzemerediNumber _ _ = ruzsaSzemerediNumberNat (6 * n + 3) := by simp_rw [← ruzsaSzemerediNumberNat_card, Fintype.card_sum, α, Fintype.card_fin] ring_nf
no goals
f10db59dd468e568
μ_limsup_le_one
Mathlib/Analysis/Normed/Ring/SmoothingSeminorm.lean
theorem μ_limsup_le_one {s : ℕ → ℕ} (hs_le : ∀ n : ℕ, s n ≤ n) {x : R} {ψ : ℕ → ℕ} (hψ_lim : Tendsto ((fun n : ℕ => ↑(s n) / (n : ℝ)) ∘ ψ) atTop (𝓝 0)) : limsup (fun n : ℕ => μ x ^ ((s (ψ n) : ℝ) * (1 / (ψ n : ℝ)))) atTop ≤ 1
case neg.h R : Type u_1 inst✝ : CommRing R μ : RingSeminorm R s : ℕ → ℕ hs_le : ∀ (n : ℕ), s n ≤ n x : R ψ : ℕ → ℕ hψ_lim : Tendsto ((fun n => ↑(s n) / ↑n) ∘ ψ) atTop (𝓝 0) c : ℝ hc_bd : ∀ (x_1 : ℝ) (x_2 : ℕ), (∀ (b : ℕ), x_2 ≤ b → μ x ^ (↑(s (ψ b)) * (1 / ↑(ψ b))) ≤ x_1) → c ≤ x_1 hμx : ¬μ x < 1 hμ_lim : ∀ (U : Set ℝ), 1 ∈ U → IsOpen U → ∃ N, ∀ (n : ℕ), N ≤ n → μ x ^ (↑(s (ψ n)) * (1 / ↑(ψ n))) ∈ U ⊢ ∀ (ε : ℝ), 0 < ε → c ≤ 1 + ε
intro ε hε
case neg.h R : Type u_1 inst✝ : CommRing R μ : RingSeminorm R s : ℕ → ℕ hs_le : ∀ (n : ℕ), s n ≤ n x : R ψ : ℕ → ℕ hψ_lim : Tendsto ((fun n => ↑(s n) / ↑n) ∘ ψ) atTop (𝓝 0) c : ℝ hc_bd : ∀ (x_1 : ℝ) (x_2 : ℕ), (∀ (b : ℕ), x_2 ≤ b → μ x ^ (↑(s (ψ b)) * (1 / ↑(ψ b))) ≤ x_1) → c ≤ x_1 hμx : ¬μ x < 1 hμ_lim : ∀ (U : Set ℝ), 1 ∈ U → IsOpen U → ∃ N, ∀ (n : ℕ), N ≤ n → μ x ^ (↑(s (ψ n)) * (1 / ↑(ψ n))) ∈ U ε : ℝ hε : 0 < ε ⊢ c ≤ 1 + ε
56e579c9d7dd8cf5
Quiver.homOfEq_injective
Mathlib/Combinatorics/Quiver/Basic.lean
lemma homOfEq_injective {X X' Y Y' : V} (hX : X = X') (hY : Y = Y') {f g : X ⟶ Y} (h : Quiver.homOfEq f hX hY = Quiver.homOfEq g hX hY) : f = g
V : Type u_1 inst✝ : Quiver V X X' Y Y' : V hX : X = X' hY : Y = Y' f g : X ⟶ Y h : homOfEq f hX hY = homOfEq g hX hY ⊢ f = g
subst hX hY
V : Type u_1 inst✝ : Quiver V X Y : V f g : X ⟶ Y h : homOfEq f ⋯ ⋯ = homOfEq g ⋯ ⋯ ⊢ f = g
20bc36261cec5cd4
DedekindDomain.ProdAdicCompletions.IsFiniteAdele.add
Mathlib/RingTheory/DedekindDomain/FiniteAdeleRing.lean
theorem add {x y : K_hat R K} (hx : x.IsFiniteAdele) (hy : y.IsFiniteAdele) : (x + y).IsFiniteAdele
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x y : K_hat R K hx : {x_1 | x x_1 ∉ adicCompletionIntegers K x_1}.Finite hy : {x | y x ∉ adicCompletionIntegers K x}.Finite v : HeightOneSpectrum R hv : Valued.v (x v) ⊔ Valued.v (y v) ≤ 1 ⊢ (x + y) v ∈ adicCompletionIntegers K v
rw [mem_adicCompletionIntegers, Pi.add_apply]
R : Type u_1 K : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsDedekindDomain R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x y : K_hat R K hx : {x_1 | x x_1 ∉ adicCompletionIntegers K x_1}.Finite hy : {x | y x ∉ adicCompletionIntegers K x}.Finite v : HeightOneSpectrum R hv : Valued.v (x v) ⊔ Valued.v (y v) ≤ 1 ⊢ Valued.v (x v + y v) ≤ 1
82c2f2870b8e321c
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.denote_blastDivSubtractShift_q
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_blastDivSubtractShift_q (aig : AIG α) (assign : α → Bool) (lhs rhs : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) (qbv rbv : BitVec w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hq : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, q.get idx hidx, assign⟧ = qbv.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) (htrue : ⟦aig, trueRef, assign⟧ = true) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).q.get idx hidx, assign ⟧ = (BitVec.divSubtractShift { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).q.getLsbD idx
case hleft.hx α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hq : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := q.get idx hidx }⟧ = qbv.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false htrue : ⟦assign, { aig := aig, ref := trueRef }⟧ = true idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := { lhs := r, bit := n.getD (wn - 1) falseRef }.lhs.get idx hidx }⟧ = rbv.getLsbD idx
simp [hr]
no goals
11112d18501f0fd9
MeasurableSpace.generateMeasurableRec_omega1
Mathlib/MeasureTheory/MeasurableSpace/Card.lean
theorem generateMeasurableRec_omega1 (s : Set (Set α)) : generateMeasurableRec s (ω₁ : Ordinal.{v}) = ⋃ i < (ω₁ : Ordinal.{v}), generateMeasurableRec s i
α : Type u s : Set (Set α) t : Set α ht : t ∈ generateMeasurableRec s (ω_ 1) ⊢ t ∈ ⋃ i, ⋃ (_ : i < ω_ 1), generateMeasurableRec s i
rw [mem_iUnion₂]
α : Type u s : Set (Set α) t : Set α ht : t ∈ generateMeasurableRec s (ω_ 1) ⊢ ∃ i, ∃ (_ : i < ω_ 1), t ∈ generateMeasurableRec s i
648bd35d385d7978
Polynomial.rootMultiplicity_C
Mathlib/Algebra/Polynomial/Div.lean
theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0
case inr R : Type u inst✝ : Ring R r a : R h✝ : Nontrivial R ⊢ rootMultiplicity a (C r) = 0
rw [rootMultiplicity_eq_multiplicity]
case inr R : Type u inst✝ : Ring R r a : R h✝ : Nontrivial R ⊢ (if C r = 0 then 0 else multiplicity (X - C a) (C r)) = 0
409ebcc1f57e5060
inner_self_re_eq_norm
Mathlib/Analysis/InnerProductSpace/Basic.lean
theorem inner_self_re_eq_norm (x : E) : re ⟪x, x⟫ = ‖⟪x, x⟫‖
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E x : E ⊢ re ⟪x, x⟫_𝕜 = ‖⟪x, x⟫_𝕜‖
conv_rhs => rw [← inner_self_ofReal_re]
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E x : E ⊢ re ⟪x, x⟫_𝕜 = ‖↑(re ⟪x, x⟫_𝕜)‖
a43961020d75372d
MvPowerSeries.WithPiTopology.tendsto_pow_of_constantCoeff_nilpotent_iff
Mathlib/RingTheory/MvPowerSeries/PiTopology.lean
theorem tendsto_pow_of_constantCoeff_nilpotent_iff [CommRing R] [DiscreteTopology R] (f) : Tendsto (fun n : ℕ => f ^ n) atTop (nhds 0) ↔ IsNilpotent (constantCoeff σ R f)
case intro σ : Type u_1 R : Type u_2 inst✝² : TopologicalSpace R inst✝¹ : CommRing R inst✝ : DiscreteTopology R f : MvPowerSeries σ R h : Tendsto (fun n => f ^ n) atTop (nhds 0) m : ℕ hm : ∀ (b : ℕ), m ≤ b → (constantCoeff σ R) f ^ b = 0 ⊢ IsNilpotent ((constantCoeff σ R) f)
use m
case h σ : Type u_1 R : Type u_2 inst✝² : TopologicalSpace R inst✝¹ : CommRing R inst✝ : DiscreteTopology R f : MvPowerSeries σ R h : Tendsto (fun n => f ^ n) atTop (nhds 0) m : ℕ hm : ∀ (b : ℕ), m ≤ b → (constantCoeff σ R) f ^ b = 0 ⊢ (constantCoeff σ R) f ^ m = 0
75b216f0c0004b82
LSeriesHasSum_congr
Mathlib/NumberTheory/LSeries/Basic.lean
lemma LSeriesHasSum_congr {f g : ℕ → ℂ} (s a : ℂ) (h : ∀ {n}, n ≠ 0 → f n = g n) : LSeriesHasSum f s a ↔ LSeriesHasSum g s a
f g : ℕ → ℂ s a : ℂ h : ∀ {n : ℕ}, n ≠ 0 → f n = g n ⊢ LSeriesHasSum f s a ↔ LSeriesHasSum g s a
simp [LSeriesHasSum_iff, LSeriesSummable_congr s h, LSeries_congr s h]
no goals
45512968302499ea
cauchySeq_tendsto_of_isComplete
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem cauchySeq_tendsto_of_isComplete [Preorder β] {K : Set α} (h₁ : IsComplete K) {u : β → α} (h₂ : ∀ n, u n ∈ K) (h₃ : CauchySeq u) : ∃ v ∈ K, Tendsto u atTop (𝓝 v) := h₁ _ h₃ <| le_principal_iff.2 <| mem_map_iff_exists_image.2 ⟨univ, univ_mem, by rwa [image_univ, range_subset_iff]⟩
α : Type u β : Type v uniformSpace : UniformSpace α inst✝ : Preorder β K : Set α h₁ : IsComplete K u : β → α h₂ : ∀ (n : β), u n ∈ K h₃ : CauchySeq u ⊢ u '' univ ⊆ K
rwa [image_univ, range_subset_iff]
no goals
7093a9f0c8d7815c
MeasureTheory.ae_eq_of_forall_setIntegral_eq_of_sigmaFinite'
Mathlib/MeasureTheory/Function/ConditionalExpectation/Unique.lean
theorem ae_eq_of_forall_setIntegral_eq_of_sigmaFinite' (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn f s μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hfg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) (hfm : AEStronglyMeasurable[m] f μ) (hgm : AEStronglyMeasurable[m] g μ) : f =ᵐ[μ] g
α : Type u_1 F' : Type u_3 m m0 : MeasurableSpace α μ : Measure α inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' hm : m ≤ m0 inst✝ : SigmaFinite (μ.trim hm) f g : α → F' hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hg_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn g s μ hfg_eq : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∫ (x : α) in s, f x ∂μ = ∫ (x : α) in s, g x ∂μ hfm : AEStronglyMeasurable f μ hgm : AEStronglyMeasurable g μ s : Set α hs : MeasurableSet s hμs : (μ.trim hm) s < ⊤ ⊢ IntegrableOn (AEStronglyMeasurable.mk f hfm) s (μ.trim hm)
rw [trim_measurableSet_eq hm hs] at hμs
α : Type u_1 F' : Type u_3 m m0 : MeasurableSpace α μ : Measure α inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' hm : m ≤ m0 inst✝ : SigmaFinite (μ.trim hm) f g : α → F' hf_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn f s μ hg_int_finite : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → IntegrableOn g s μ hfg_eq : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∫ (x : α) in s, f x ∂μ = ∫ (x : α) in s, g x ∂μ hfm : AEStronglyMeasurable f μ hgm : AEStronglyMeasurable g μ s : Set α hs : MeasurableSet s hμs : μ s < ⊤ ⊢ IntegrableOn (AEStronglyMeasurable.mk f hfm) s (μ.trim hm)
f2ee55d026c11cd8
SimpleGraph.Subgraph.image_coe_edgeSet_coe
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
lemma image_coe_edgeSet_coe (G' : G.Subgraph) : Sym2.map (↑) '' G'.coe.edgeSet = G'.edgeSet
V : Type u G : SimpleGraph V G' : G.Subgraph ⊢ Sym2.map Subtype.val '' G'.coe.edgeSet = G'.edgeSet
rw [edgeSet_coe, Set.image_preimage_eq_iff]
V : Type u G : SimpleGraph V G' : G.Subgraph ⊢ G'.edgeSet ⊆ Set.range (Sym2.map Subtype.val)
3392d1b2483292bb
List.append_eq_appendTR
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
theorem append_eq_appendTR : @List.append = @appendTR
case h.h.h α : Type u_1 as : List α ⊢ ∀ (x : List α), as.append x = as.appendTR x
intro bs
case h.h.h α : Type u_1 as bs : List α ⊢ as.append bs = as.appendTR bs
aae20de0c8888126
norm_eq_iInf_iff_real_inner_le_zero
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem norm_eq_iInf_iff_real_inner_le_zero {K : Set F} (h : Convex ℝ K) {u : F} {v : F} (hv : v ∈ K) : (‖u - v‖ = ⨅ w : K, ‖u - w‖) ↔ ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F K : Set F h : Convex ℝ K u v : F hv : v ∈ K this✝ : Nonempty ↑K := Nonempty.intro ⟨v, hv⟩ eq : ‖u - v‖ = ⨅ w, ‖u - ↑w‖ w : F hw : w ∈ K δ : ℝ := ⨅ w, ‖u - ↑w‖ p : ℝ := ⟪u - v, w - v⟫_ℝ q : ℝ := ‖w - v‖ ^ 2 δ_le : ∀ (w : ↑K), δ ≤ ‖u - ↑w‖ δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ this : ∀ (θ : ℝ), 0 < θ → θ ≤ 1 → 2 * p ≤ θ * 0 hq : q = 0 ⊢ p ≤ 0
have := this (1 : ℝ) (by norm_num) (by norm_num)
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F K : Set F h : Convex ℝ K u v : F hv : v ∈ K this✝¹ : Nonempty ↑K := Nonempty.intro ⟨v, hv⟩ eq : ‖u - v‖ = ⨅ w, ‖u - ↑w‖ w : F hw : w ∈ K δ : ℝ := ⨅ w, ‖u - ↑w‖ p : ℝ := ⟪u - v, w - v⟫_ℝ q : ℝ := ‖w - v‖ ^ 2 δ_le : ∀ (w : ↑K), δ ≤ ‖u - ↑w‖ δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ this✝ : ∀ (θ : ℝ), 0 < θ → θ ≤ 1 → 2 * p ≤ θ * 0 hq : q = 0 this : 2 * p ≤ 1 * 0 ⊢ p ≤ 0
2a92713ac13db1c9
TopCat.pullback_snd_range
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
theorem pullback_snd_range {X Y S : TopCat} (f : X ⟶ S) (g : Y ⟶ S) : Set.range (pullback.snd f g) = { y : Y | ∃ x : X, f x = g y }
case h.mpr.intro X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : ↑Y x : ↑X eq : (ConcreteCategory.hom f) x = (ConcreteCategory.hom g) y ⊢ y ∈ Set.range ⇑(ConcreteCategory.hom (pullback.snd f g))
use (TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨x, y⟩, eq⟩
case h X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : ↑Y x : ↑X eq : (ConcreteCategory.hom f) x = (ConcreteCategory.hom g) y ⊢ (ConcreteCategory.hom (pullback.snd f g)) ((ConcreteCategory.hom (pullbackIsoProdSubtype f g).inv) ⟨(x, y), eq⟩) = y
fbd3a97b78944df8
TopologicalSpace.NoetherianSpace.exists_open_ne_empty_le_irreducibleComponent
Mathlib/Topology/NoetherianSpace.lean
theorem NoetherianSpace.exists_open_ne_empty_le_irreducibleComponent [NoetherianSpace α] (Z : Set α) (H : Z ∈ irreducibleComponents α) : ∃ o : Set α, IsOpen o ∧ o ≠ ∅ ∧ o ≤ Z
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : NoetherianSpace α Z : Set α H : Z ∈ irreducibleComponents α ι : Set (Set α) := irreducibleComponents α \ {Z} hι : ι.Finite hι' : Finite ↑ι U : Set α := Z \ ⋃ x, ↑x r : U = ∅ ⊢ Z ⊆ ⋃₀ ↑hι.toFinset
rw [Set.Finite.coe_toFinset, Set.sUnion_eq_iUnion]
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : NoetherianSpace α Z : Set α H : Z ∈ irreducibleComponents α ι : Set (Set α) := irreducibleComponents α \ {Z} hι : ι.Finite hι' : Finite ↑ι U : Set α := Z \ ⋃ x, ↑x r : U = ∅ ⊢ Z ⊆ ⋃ i, ↑i
2cef9854bab7d94c