name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
StieltjesFunction.outer_Ioc
Mathlib/MeasureTheory/Measure/Stieltjes.lean
theorem outer_Ioc (a b : ℝ) : f.outer (Ioc a b) = ofReal (f b - f a)
f : StieltjesFunction a b : ℝ s : ℕ → Set ℝ hs : Ioc a b ⊆ ⋃ i, s i ε : ℝ≥0 εpos : 0 < ε h : ∑' (i : ℕ), f.length (s i) < ⊤ δ : ℝ≥0 := ε / 2 δpos : 0 < ↑δ ε' : ℕ → ℝ≥0 ε'0 : ∀ (i : ℕ), 0 < ε' i hε : ∑' (i : ℕ), ↑(ε' i) < ↑δ A : ContinuousWithinAt (fun r => ↑f r - ↑f a) (Ioi a) a ⊢ ∃ a', ↑f a' - ↑f a < ↑δ ∧ a < a'
have B : f a - f a < δ := by rwa [sub_self, NNReal.coe_pos, ← ENNReal.coe_pos]
f : StieltjesFunction a b : ℝ s : ℕ → Set ℝ hs : Ioc a b ⊆ ⋃ i, s i ε : ℝ≥0 εpos : 0 < ε h : ∑' (i : ℕ), f.length (s i) < ⊤ δ : ℝ≥0 := ε / 2 δpos : 0 < ↑δ ε' : ℕ → ℝ≥0 ε'0 : ∀ (i : ℕ), 0 < ε' i hε : ∑' (i : ℕ), ↑(ε' i) < ↑δ A : ContinuousWithinAt (fun r => ↑f r - ↑f a) (Ioi a) a B : ↑f a - ↑f a < ↑δ ⊢ ∃ a', ↑f a' - ↑f a < ↑δ ∧ a < a'
c3b0d539cbbc47aa
continuous_right_toIcoMod
Mathlib/Topology/Instances/AddCircle.lean
theorem continuous_right_toIcoMod : ContinuousWithinAt (toIcoMod hp a) (Ici x) x
case intro.intro.intro 𝕜 : Type u_1 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) ⊢ ∃ u, (∃ l u_1, x ∈ Ioo l u_1 ∧ ∀ x ∈ Ioo l u_1, x ∈ u) ∧ ∀ (x_1 : 𝕜), x_1 ∈ u ∧ x_1 ∈ Ici x → x_1 ∈ toIcoMod hp a ⁻¹' s
refine ⟨_, ⟨l + d, min (a + p) u + d, ?_, fun x => id⟩, fun y => ?_⟩ <;> simp_rw [← sub_mem_Ioo_iff_left, mem_Ioo, lt_min_iff]
case intro.intro.intro.refine_1 𝕜 : Type u_1 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) ⊢ l < x - d ∧ x - d < a + p ∧ x - d < u case intro.intro.intro.refine_2 𝕜 : Type u_1 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 ⊢ (l < y - d ∧ y - d < a + p ∧ y - d < u) ∧ y ∈ Ici x → y ∈ toIcoMod hp a ⁻¹' s
d6bbe1e27d3a7548
Sum.isConnected_iff
Mathlib/Topology/Connected/Clopen.lean
theorem Sum.isConnected_iff [TopologicalSpace β] {s : Set (α ⊕ β)} : IsConnected s ↔ (∃ t, IsConnected t ∧ s = Sum.inl '' t) ∨ ∃ t, IsConnected t ∧ s = Sum.inr '' t
case refine_2.inr.intro.intro α : Type u β : Type v inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β t : Set β ht : IsConnected t ⊢ IsConnected (inr '' t)
exact ht.image _ continuous_inr.continuousOn
no goals
a8bbf511dc872e45
eq_of_powMul_faithful
Mathlib/Analysis/Normed/Ring/IsPowMulFaithful.lean
theorem eq_of_powMul_faithful (f₁ : AlgebraNorm R S) (hf₁_pm : IsPowMul f₁) (f₂ : AlgebraNorm R S) (hf₂_pm : IsPowMul f₂) (h_eq : ∀ y : S, ∃ (C₁ C₂ : ℝ) (_ : 0 < C₁) (_ : 0 < C₂), ∀ x : Algebra.adjoin R {y}, f₁ x.val ≤ C₁ * f₂ x.val ∧ f₂ x.val ≤ C₂ * f₁ x.val) : f₁ = f₂
R : Type u_1 S : Type u_2 inst✝² : NormedCommRing R inst✝¹ : CommRing S inst✝ : Algebra R S f₁ : AlgebraNorm R S hf₁_pm : IsPowMul ⇑f₁ f₂ : AlgebraNorm R S hf₂_pm : IsPowMul ⇑f₂ h_eq : ∀ (y : S), ∃ C₁ C₂, ∃ (_ : 0 < C₁) (_ : 0 < C₂), ∀ (x : ↥(Algebra.adjoin R {y})), f₁ ↑x ≤ C₁ * f₂ ↑x ∧ f₂ ↑x ≤ C₂ * f₁ ↑x ⊢ f₁ = f₂
ext x
case a R : Type u_1 S : Type u_2 inst✝² : NormedCommRing R inst✝¹ : CommRing S inst✝ : Algebra R S f₁ : AlgebraNorm R S hf₁_pm : IsPowMul ⇑f₁ f₂ : AlgebraNorm R S hf₂_pm : IsPowMul ⇑f₂ h_eq : ∀ (y : S), ∃ C₁ C₂, ∃ (_ : 0 < C₁) (_ : 0 < C₂), ∀ (x : ↥(Algebra.adjoin R {y})), f₁ ↑x ≤ C₁ * f₂ ↑x ∧ f₂ ↑x ≤ C₂ * f₁ ↑x x : S ⊢ f₁ x = f₂ x
f86a56fc3f1b670d
MulAction.IsTrivialBlock.image
Mathlib/GroupTheory/GroupAction/Blocks.lean
theorem IsTrivialBlock.image {φ : M → N} {f : α →ₑ[φ] β} (hf : Function.Surjective f) {B : Set α} (hB : IsTrivialBlock B) : IsTrivialBlock (f '' B)
case inr M : Type u_3 α : Type u_4 N : Type u_5 β : Type u_6 inst✝³ : Monoid M inst✝² : MulAction M α inst✝¹ : Monoid N inst✝ : MulAction N β φ : M → N f : α →ₑ[φ] β hf : Function.Surjective ⇑f B : Set α hB : B = univ ⊢ IsTrivialBlock (⇑f '' B)
apply Or.intro_right
case inr.h M : Type u_3 α : Type u_4 N : Type u_5 β : Type u_6 inst✝³ : Monoid M inst✝² : MulAction M α inst✝¹ : Monoid N inst✝ : MulAction N β φ : M → N f : α →ₑ[φ] β hf : Function.Surjective ⇑f B : Set α hB : B = univ ⊢ ⇑f '' B = univ
83c940b50d5b79be
Real.tendsto_harmonic_sub_log
Mathlib/NumberTheory/Harmonic/EulerMascheroni.lean
lemma tendsto_harmonic_sub_log : Tendsto (fun n : ℕ ↦ harmonic n - log n) atTop (𝓝 eulerMascheroniConstant)
case h n : ℕ hn : n ≠ 0 ⊢ eulerMascheroniSeq' n = ↑(harmonic n) - log ↑n
simp_rw [eulerMascheroniSeq', hn, if_false]
no goals
7c3b53a7104901b8
Std.Sat.AIG.RefVec.get_append
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/AIG/RefVec.lean
theorem get_append (lhs : RefVec aig lw) (rhs : RefVec aig rw) (idx : Nat) (hidx : idx < lw + rw) : (lhs.append rhs).get idx hidx = if h : idx < lw then lhs.get idx h else rhs.get (idx - lw) (by omega)
case isTrue α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α aig : AIG α lw rw : Nat lhs : aig.RefVec lw rhs : aig.RefVec rw idx : Nat hidx : idx < lw + rw h✝ : idx < lw ⊢ (lhs.refs ++ rhs.refs)[idx] = lhs.refs[idx]
rw [Array.getElem_append_left]
no goals
b668eb71e597aaa0
Std.Tactic.BVDecide.BVExpr.bitblast.blastReplicate.aux1
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Replicate.lean
theorem aux1 {a b c : Nat} (h : b < a * c) : 0 < a
case neg a b c : Nat h : b < a * c h✝ : ¬a = 0 ⊢ 0 < a
omega
no goals
740fe05bb7fedf9b
CategoryTheory.Functor.homologySequence_comp
Mathlib/CategoryTheory/Triangulated/HomologicalFunctor.lean
@[reassoc] lemma homologySequence_comp : (F.shift n₀).map T.mor₁ ≫ (F.shift n₀).map T.mor₂ = 0
C : Type u_1 A : Type u_3 inst✝⁹ : Category.{u_5, u_1} C inst✝⁸ : HasShift C ℤ inst✝⁷ : Category.{u_4, u_3} A F : C ⥤ A inst✝⁶ : HasZeroObject C inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝³ : Pretriangulated C inst✝² : Abelian A inst✝¹ : F.IsHomological inst✝ : F.ShiftSequence ℤ T : Triangle C hT : T ∈ distinguishedTriangles n₀ : ℤ ⊢ (F.shift n₀).map T.mor₁ ≫ (F.shift n₀).map T.mor₂ = 0
rw [← Functor.map_comp, comp_distTriang_mor_zero₁₂ _ hT, Functor.map_zero]
no goals
369f9bf05fcdb78d
Function.support_div
Mathlib/Algebra/GroupWithZero/Indicator.lean
@[simp] lemma support_div (f g : ι → G₀) : support (fun a ↦ f a / g a) = support f ∩ support g
ι : Type u_1 G₀ : Type u_3 inst✝ : GroupWithZero G₀ f g : ι → G₀ ⊢ (support fun a => f a / g a) = support f ∩ support g
simp [div_eq_mul_inv]
no goals
07752fa867abf796
Filter.prod_map_left
Mathlib/Order/Filter/Prod.lean
theorem prod_map_left (f : α → β) (F : Filter α) (G : Filter γ) : map f F ×ˢ G = map (Prod.map f id) (F ×ˢ G)
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β F : Filter α G : Filter γ ⊢ map f F ×ˢ G = map (Prod.map f id) (F ×ˢ G)
rw [← prod_map_map_eq', map_id]
no goals
677f419e95dcad77
aux₀
Mathlib/MeasureTheory/Order/UpperLower.lean
/-- If we can fit a small ball inside a set `s` intersected with any neighborhood of `x`, then the density of `s` near `x` is not `0`. Along with `aux₁`, this proves that `x` is a Lebesgue point of `s`. This will be used to prove that the frontier of an order-connected set is null. -/ private lemma aux₀ (h : ∀ δ, 0 < δ → ∃ y, closedBall y (δ / 4) ⊆ closedBall x δ ∧ closedBall y (δ / 4) ⊆ interior s) : ¬Tendsto (fun r ↦ volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 0)
ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior s H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 0) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ ⊢ volume (closedBall (f (ε n) ⋯) (ε n / 4)) / volume (closedBall x (ε n)) ≤ volume (closure s ∩ closedBall x (ε n)) / volume (closedBall x (ε n))
gcongr
case h.h ι : Type u_1 inst✝ : Fintype ι s : Set (ι → ℝ) x : ι → ℝ f : (δ : ℝ) → 0 < δ → ι → ℝ hf₀ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ closedBall x δ hf₁ : ∀ (δ : ℝ) (a : 0 < δ), closedBall (f δ a) (δ / 4) ⊆ interior s H : Tendsto (fun r => volume (closure s ∩ closedBall x r) / volume (closedBall x r)) (𝓝[>] 0) (𝓝 0) ε : ℕ → ℝ hε' : ∀ (n : ℕ), 0 < ε n hε₀ : Tendsto ε atTop (𝓝[>] 0) n : ℕ ⊢ closedBall (f (ε n) ⋯) (ε n / 4) ⊆ closure s ∩ closedBall x (ε n)
0d32daafddddd57d
Order.PFilter.sInf_gc
Mathlib/Order/PFilter.lean
theorem sInf_gc : GaloisConnection (fun x => toDual (principal x)) fun F => sInf (ofDual F : PFilter P) := fun x F => by simp only [le_sInf_iff, SetLike.mem_coe, toDual_le, SetLike.le_def, mem_principal]
P : Type u_1 inst✝ : CompleteSemilatticeInf P x : P F : (PFilter P)ᵒᵈ ⊢ (fun x => toDual (principal x)) x ≤ F ↔ x ≤ (fun F => sInf ↑(ofDual F)) F
simp only [le_sInf_iff, SetLike.mem_coe, toDual_le, SetLike.le_def, mem_principal]
no goals
5d08432b704928b0
Primrec.vector_ofFn
Mathlib/Computability/Primrec.lean
theorem vector_ofFn {n} {f : Fin n → α → σ} (hf : ∀ i, Primrec (f i)) : Primrec fun a => List.Vector.ofFn fun i => f i a := vector_toList_iff.1 <| by simp [list_ofFn hf]
α : Type u_1 σ : Type u_3 inst✝¹ : Primcodable α inst✝ : Primcodable σ n : ℕ f : Fin n → α → σ hf : ∀ (i : Fin n), Primrec (f i) ⊢ Primrec fun a => (List.Vector.ofFn fun i => f i a).toList
simp [list_ofFn hf]
no goals
638f102a9470be59
Behrend.roth_lower_bound_explicit
Mathlib/Combinatorics/Additive/AP/Three/Behrend.lean
theorem roth_lower_bound_explicit (hN : 4096 ≤ N) : (N : ℝ) * exp (-4 * √(log N)) < rothNumberNat N
N : ℕ hN : 4096 ≤ N n : ℕ := nValue N hn : 0 < ↑n hd : 0 < dValue N hN₀ : 0 < ↑N hn₂ : 2 < n this : (2 * dValue N - 1) ^ n ≤ N ⊢ rexp (-4 * √(log ↑N)) ≤ (↑N ^ (2 / ↑n) * (rexp (↑n - 2) * ↑n))⁻¹
rw [mul_inv, mul_inv, ← exp_neg, ← rpow_neg (cast_nonneg _), neg_sub, ← div_eq_mul_inv]
N : ℕ hN : 4096 ≤ N n : ℕ := nValue N hn : 0 < ↑n hd : 0 < dValue N hN₀ : 0 < ↑N hn₂ : 2 < n this : (2 * dValue N - 1) ^ n ≤ N ⊢ rexp (-4 * √(log ↑N)) ≤ ↑N ^ (-(2 / ↑n)) * (rexp (2 - ↑n) / ↑n)
9f846f1b063b879f
exists_maximal_linearIndepOn'
Mathlib/LinearAlgebra/LinearIndependent/Lemmas.lean
theorem exists_maximal_linearIndepOn' (v : ι → M) : ∃ s : Set ι, (LinearIndepOn R v s) ∧ ∀ t : Set ι, s ⊆ t → (LinearIndepOn R v t) → s = t
ι : Type u' R : Type u_2 M : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : ι → M indep : Set ι → Prop := fun s => LinearIndepOn R v s X : Type (max 0 u') := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J f g : ι →₀ R hsum : (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g hc : IsChain r ∅ hfsupp : f ∈ Finsupp.supported R R (⋃ I ∈ ∅, ↑I) hgsupp : g ∈ Finsupp.supported R R (⋃ I ∈ ∅, ↑I) ⊢ g = 0
simpa using hgsupp
no goals
31de1692d3396ae5
List.mem_of_mem_of_mem_sym
Mathlib/Data/List/Sym.lean
theorem mem_of_mem_of_mem_sym {n : ℕ} {xs : List α} {a : α} {z : Sym α n} (ha : a ∈ z) (hz : z ∈ xs.sym n) : a ∈ xs := match n, xs with | 0, xs => by cases Sym.eq_nil_of_card_zero z simp at ha | n + 1, [] => by simp [List.sym] at hz | n + 1, x :: xs => by rw [List.sym, mem_append, mem_map] at hz obtain ⟨z, hz, rfl⟩ | hz := hz · rw [Sym.mem_cons] at ha obtain rfl | ha := ha · simp · exact mem_of_mem_of_mem_sym ha hz · rw [mem_cons] right exact mem_of_mem_of_mem_sym ha hz
case inl.intro.intro.inr α : Type u_1 n✝ : ℕ xs✝ : List α a : α n : ℕ x : α xs : List α z : Sym α n hz : z ∈ List.sym n (x :: xs) ha : a ∈ z ⊢ a ∈ x :: xs
exact mem_of_mem_of_mem_sym ha hz
no goals
05f3e79165190c49
HahnModule.coeff_smul_right
Mathlib/RingTheory/HahnSeries/Multiplication.lean
theorem coeff_smul_right [SMulZeroClass R V] {x : HahnSeries Γ R} {y : HahnModule Γ' R V} {a : Γ'} {s : Set Γ'} (hs : s.IsPWO) (hys : ((of R).symm y).support ⊆ s) : ((of R).symm <| x • y).coeff a = ∑ ij ∈ VAddAntidiagonal x.isPWO_support hs a, x.coeff ij.fst • ((of R).symm y).coeff ij.snd
Γ : Type u_1 Γ' : Type u_2 R : Type u_3 V : Type u_5 inst✝⁶ : PartialOrder Γ inst✝⁵ : PartialOrder Γ' inst✝⁴ : VAdd Γ Γ' inst✝³ : IsOrderedCancelVAdd Γ Γ' inst✝² : AddCommMonoid V inst✝¹ : Zero R inst✝ : SMulZeroClass R V x : HahnSeries Γ R y : HahnModule Γ' R V a : Γ' s : Set Γ' hs : s.IsPWO hys : ((of R).symm y).support ⊆ s ⊢ ((of R).symm (x • y)).coeff a = ∑ ij ∈ VAddAntidiagonal ⋯ hs a, x.coeff ij.1 • ((of R).symm y).coeff ij.2
rw [coeff_smul]
Γ : Type u_1 Γ' : Type u_2 R : Type u_3 V : Type u_5 inst✝⁶ : PartialOrder Γ inst✝⁵ : PartialOrder Γ' inst✝⁴ : VAdd Γ Γ' inst✝³ : IsOrderedCancelVAdd Γ Γ' inst✝² : AddCommMonoid V inst✝¹ : Zero R inst✝ : SMulZeroClass R V x : HahnSeries Γ R y : HahnModule Γ' R V a : Γ' s : Set Γ' hs : s.IsPWO hys : ((of R).symm y).support ⊆ s ⊢ ∑ ij ∈ VAddAntidiagonal ⋯ ⋯ a, x.coeff ij.1 • ((of R).symm y).coeff ij.2 = ∑ ij ∈ VAddAntidiagonal ⋯ hs a, x.coeff ij.1 • ((of R).symm y).coeff ij.2
c0ba122707806e17
EuclideanGeometry.continuousAt_oangle
Mathlib/Geometry/Euclidean/Angle/Oriented/Affine.lean
theorem continuousAt_oangle {x : P × P × P} (hx12 : x.1 ≠ x.2.1) (hx32 : x.2.2 ≠ x.2.1) : ContinuousAt (fun y : P × P × P => ∡ y.1 y.2.1 y.2.2) x
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) x : P × P × P hx12 : x.1 ≠ x.2.1 hx32 : x.2.2 ≠ x.2.1 ⊢ ContinuousAt (fun y => ∡ y.1 y.2.1 y.2.2) x
unfold oangle
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) x : P × P × P hx12 : x.1 ≠ x.2.1 hx32 : x.2.2 ≠ x.2.1 ⊢ ContinuousAt (fun y => o.oangle (y.1 -ᵥ y.2.1) (y.2.2 -ᵥ y.2.1)) x
11c77fc630e9dc97
Rat.cast_sub_of_ne_zero
Mathlib/Data/Rat/Cast/Defs.lean
@[norm_cast] lemma cast_sub_of_ne_zero (hp : (p.den : α) ≠ 0) (hq : (q.den : α) ≠ 0) : ↑(p - q) = (p - q : α)
α : Type u_3 inst✝ : DivisionRing α p q : ℚ hp : ↑p.den ≠ 0 hq : ↑q.den ≠ 0 ⊢ ↑(p - q) = ↑p - ↑q
simp [sub_eq_add_neg, cast_add_of_ne_zero, hp, hq]
no goals
4aced8ac9767b150
List.dedup_append
Mathlib/Data/List/Dedup.lean
theorem dedup_append (l₁ l₂ : List α) : dedup (l₁ ++ l₂) = l₁ ∪ dedup l₂
α : Type u_1 inst✝ : DecidableEq α l₁ l₂ : List α ⊢ (l₁ ++ l₂).dedup = l₁ ∪ l₂.dedup
induction' l₁ with a l₁ IH
case nil α : Type u_1 inst✝ : DecidableEq α l₂ : List α ⊢ ([] ++ l₂).dedup = [] ∪ l₂.dedup case cons α : Type u_1 inst✝ : DecidableEq α l₂ : List α a : α l₁ : List α IH : (l₁ ++ l₂).dedup = l₁ ∪ l₂.dedup ⊢ (a :: l₁ ++ l₂).dedup = a :: l₁ ∪ l₂.dedup
b11f71f7a5212231
ZMod.isSquare_neg_one_of_eq_sq_add_sq_of_isCoprime
Mathlib/NumberTheory/SumTwoSquares.lean
theorem ZMod.isSquare_neg_one_of_eq_sq_add_sq_of_isCoprime {n x y : ℤ} (h : n = x ^ 2 + y ^ 2) (hc : IsCoprime x y) : IsSquare (-1 : ZMod n.natAbs)
n x y : ℤ h : n = x ^ 2 + y ^ 2 hc : IsCoprime x y u v : ℤ huv : u * x + v * n = 1 ⊢ u * y * (u * y) - -1 = n * (-v ^ 2 * n + u ^ 2 + 2 * v)
linear_combination -u ^ 2 * h + (n * v - u * x - 1) * huv
no goals
1f943d046c7310cd
MeasureTheory.Measure.InnerRegularWRT.of_sigmaFinite
Mathlib/MeasureTheory/Measure/Regular.lean
/-- Given a σ-finite measure, any measurable set can be approximated from inside by a measurable set of finite measure. -/ lemma of_sigmaFinite [SigmaFinite μ] : InnerRegularWRT μ (fun s ↦ MeasurableSet s ∧ μ s ≠ ∞) (fun s ↦ MeasurableSet s)
case intro α : Type u_1 inst✝¹ : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ s : Set α hs : MeasurableSet s r : ℝ≥0∞ B : ℕ → Set α := spanningSets μ hr : r < ⨆ n, μ (s ∩ B n) hBU : ⋃ n, s ∩ B n = s this : μ s = ⨆ n, μ (s ∩ B n) n : ℕ hn : r < μ (s ∩ B n) ⊢ ∃ K ⊆ s, (fun s => MeasurableSet s ∧ μ s ≠ ⊤) K ∧ r < μ K
refine ⟨s ∩ B n, inter_subset_left, ⟨hs.inter (measurableSet_spanningSets μ n), ?_⟩, hn⟩
case intro α : Type u_1 inst✝¹ : MeasurableSpace α μ : Measure α inst✝ : SigmaFinite μ s : Set α hs : MeasurableSet s r : ℝ≥0∞ B : ℕ → Set α := spanningSets μ hr : r < ⨆ n, μ (s ∩ B n) hBU : ⋃ n, s ∩ B n = s this : μ s = ⨆ n, μ (s ∩ B n) n : ℕ hn : r < μ (s ∩ B n) ⊢ μ (s ∩ B n) ≠ ⊤
b786574f15e6f5b1
Algebra.intNorm_eq_norm
Mathlib/RingTheory/IntegralClosure/IntegralRestrict.lean
lemma Algebra.intNorm_eq_norm [Module.Free A B] : Algebra.intNorm A B = Algebra.norm A
case h A : Type u_1 B : Type u_4 inst✝¹⁰ : CommRing A inst✝⁹ : CommRing B inst✝⁸ : Algebra A B inst✝⁷ : IsIntegrallyClosed A inst✝⁶ : IsDomain A inst✝⁵ : IsDomain B inst✝⁴ : IsIntegrallyClosed B inst✝³ : Module.Finite A B inst✝² : NoZeroSMulDivisors A B inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B) inst✝ : Module.Free A B x : B ⊢ (intNorm A B) x = (norm A) x
haveI : IsIntegralClosure B A (FractionRing B) := IsIntegralClosure.of_isIntegrallyClosed _ _ _
case h A : Type u_1 B : Type u_4 inst✝¹⁰ : CommRing A inst✝⁹ : CommRing B inst✝⁸ : Algebra A B inst✝⁷ : IsIntegrallyClosed A inst✝⁶ : IsDomain A inst✝⁵ : IsDomain B inst✝⁴ : IsIntegrallyClosed B inst✝³ : Module.Finite A B inst✝² : NoZeroSMulDivisors A B inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B) inst✝ : Module.Free A B x : B this : IsIntegralClosure B A (FractionRing B) ⊢ (intNorm A B) x = (norm A) x
c8310f9857a3230d
leftCoset_assoc
Mathlib/GroupTheory/Coset/Basic.lean
theorem leftCoset_assoc (s : Set α) (a b : α) : a • (b • s) = (a * b) • s
α : Type u_1 inst✝ : Semigroup α s : Set α a b : α ⊢ a • b • s = (a * b) • s
simp [← image_smul, (image_comp _ _ _).symm, Function.comp, mul_assoc]
no goals
14599ccdec7663b9
Set.Nontrivial.image_of_injOn
Mathlib/Data/Set/Image.lean
theorem Nontrivial.image_of_injOn (hs : s.Nontrivial) (hf : s.InjOn f) : (f '' s).Nontrivial
α : Type u_1 β : Type u_2 s : Set α f : α → β hs : s.Nontrivial hf : InjOn f s ⊢ (f '' s).Nontrivial
obtain ⟨x, hx, y, hy, hxy⟩ := hs
case intro.intro.intro.intro α : Type u_1 β : Type u_2 s : Set α f : α → β hf : InjOn f s x : α hx : x ∈ s y : α hy : y ∈ s hxy : x ≠ y ⊢ (f '' s).Nontrivial
d15cb0cda6972799
Order.height_le_krullDim
Mathlib/Order/KrullDimension.lean
lemma height_le_krullDim (a : α) : height a ≤ krullDim α
α : Type u_1 inst✝ : Preorder α a : α this : Nonempty α ⊢ height a ≤ ⨆ p, ↑p.length
exact height_le fun p _ ↦ le_iSup_of_le p le_rfl
no goals
2d71222255195130
CategoryTheory.Limits.Types.coequalizer_preimage_image_eq_of_preimage_eq
Mathlib/CategoryTheory/Limits/Shapes/Types.lean
theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), Function.Coequalizer.Rel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U ⊢ π ⁻¹' (π '' U) = U
ext
case h X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), Function.Coequalizer.Rel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ : Y ⊢ x✝ ∈ π ⁻¹' (π '' U) ↔ x✝ ∈ U
4cf815c00d783414
iteratedFDeriv_tsum
Mathlib/Analysis/Calculus/SmoothSeries.lean
theorem iteratedFDeriv_tsum (hf : ∀ i, ContDiff 𝕜 N (f i)) (hv : ∀ k : ℕ, (k : ℕ∞) ≤ N → Summable (v k)) (h'f : ∀ (k : ℕ) (i : α) (x : E), (k : ℕ∞) ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i) {k : ℕ} (hk : (k : ℕ∞) ≤ N) : (iteratedFDeriv 𝕜 k fun y => ∑' n, f n y) = fun x => ∑' n, iteratedFDeriv 𝕜 k (f n) x
α : Type u_1 𝕜 : Type u_3 E : Type u_4 F : Type u_5 inst✝⁶ : NontriviallyNormedField 𝕜 inst✝⁵ : IsRCLikeNormedField 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : CompleteSpace F inst✝ : NormedSpace 𝕜 F f : α → E → F v : ℕ → α → ℝ N : ℕ∞ hf : ∀ (i : α), ContDiff 𝕜 (↑N) (f i) hv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k) h'f : ∀ (k : ℕ) (i : α) (x : E), ↑k ≤ N → ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i k : ℕ IH : ↑k ≤ N → (iteratedFDeriv 𝕜 k fun y => ∑' (n : α), f n y) = fun x => ∑' (n : α), iteratedFDeriv 𝕜 k (f n) x hk : ↑(k + 1) ≤ N h'k : ↑k < N A : Summable fun n => iteratedFDeriv 𝕜 k (f n) 0 n : α x : E ⊢ ‖fderiv 𝕜 (fun x => iteratedFDeriv 𝕜 k (f n) x) x‖ ≤ v (k + 1) n
simpa only [iteratedFDeriv_succ_eq_comp_left, LinearIsometryEquiv.norm_map, comp_apply] using h'f k.succ n x hk
no goals
1428749b8bc916e3
ENNReal.lintegral_prod_norm_pow_le
Mathlib/MeasureTheory/Integral/MeanInequalities.lean
theorem lintegral_prod_norm_pow_le {α ι : Type*} [MeasurableSpace α] {μ : Measure α} (s : Finset ι) {f : ι → α → ℝ≥0∞} (hf : ∀ i ∈ s, AEMeasurable (f i) μ) {p : ι → ℝ} (hp : ∑ i ∈ s, p i = 1) (h2p : ∀ i ∈ s, 0 ≤ p i) : ∫⁻ a, ∏ i ∈ s, f i a ^ p i ∂μ ≤ ∏ i ∈ s, (∫⁻ a, f i a ∂μ) ^ p i
case insert.inr α : Type u_2 ι : Type u_3 inst✝ : MeasurableSpace α μ : Measure α f : ι → α → ℝ≥0∞ i₀ : ι s : Finset ι hi₀ : i₀ ∉ s ih : (∀ i ∈ s, AEMeasurable (f i) μ) → ∀ {p : ι → ℝ}, ∑ i ∈ s, p i = 1 → (∀ i ∈ s, 0 ≤ p i) → ∫⁻ (a : α), ∏ i ∈ s, f i a ^ p i ∂μ ≤ ∏ i ∈ s, (∫⁻ (a : α), f i a ∂μ) ^ p i hf : ∀ i ∈ insert i₀ s, AEMeasurable (f i) μ p : ι → ℝ hp : ∑ i ∈ insert i₀ s, p i = 1 h2p : ∀ i ∈ insert i₀ s, 0 ≤ p i h2i₀ : p i₀ ≠ 1 hpi₀ : 0 ≤ 1 - p i₀ ⊢ ∫⁻ (a : α), ∏ i ∈ insert i₀ s, f i a ^ p i ∂μ ≤ ∏ i ∈ insert i₀ s, (∫⁻ (a : α), f i a ∂μ) ^ p i
have h2pi₀ : 1 - p i₀ ≠ 0 := by rwa [sub_ne_zero, ne_comm]
case insert.inr α : Type u_2 ι : Type u_3 inst✝ : MeasurableSpace α μ : Measure α f : ι → α → ℝ≥0∞ i₀ : ι s : Finset ι hi₀ : i₀ ∉ s ih : (∀ i ∈ s, AEMeasurable (f i) μ) → ∀ {p : ι → ℝ}, ∑ i ∈ s, p i = 1 → (∀ i ∈ s, 0 ≤ p i) → ∫⁻ (a : α), ∏ i ∈ s, f i a ^ p i ∂μ ≤ ∏ i ∈ s, (∫⁻ (a : α), f i a ∂μ) ^ p i hf : ∀ i ∈ insert i₀ s, AEMeasurable (f i) μ p : ι → ℝ hp : ∑ i ∈ insert i₀ s, p i = 1 h2p : ∀ i ∈ insert i₀ s, 0 ≤ p i h2i₀ : p i₀ ≠ 1 hpi₀ : 0 ≤ 1 - p i₀ h2pi₀ : 1 - p i₀ ≠ 0 ⊢ ∫⁻ (a : α), ∏ i ∈ insert i₀ s, f i a ^ p i ∂μ ≤ ∏ i ∈ insert i₀ s, (∫⁻ (a : α), f i a ∂μ) ^ p i
c6067aa6ebb0db88
Array.map_flatten
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem map_flatten (f : α → β) (L : Array (Array α)) : (flatten L).map f = (map (map f) L).flatten
α : Type u_1 β : Type u_2 f : α → β L : Array (Array α) ⊢ map f L.flatten = (map (map f) L).flatten
induction L using array₂_induction with | of xss => simp only [flatten_toArray_map, List.map_toArray, List.map_flatten, List.map_map, Function.comp_def] rw [← Function.comp_def, ← List.map_map, flatten_toArray_map]
no goals
9b8ec0763d48eb33
StrictMonoOn.exists_deriv_lt_slope
Mathlib/Analysis/Convex/Deriv.lean
theorem StrictMonoOn.exists_deriv_lt_slope {x y : ℝ} {f : ℝ → ℝ} (hf : ContinuousOn f (Icc x y)) (hxy : x < y) (hf'_mono : StrictMonoOn (deriv f) (Ioo x y)) : ∃ a ∈ Ioo x y, deriv f a < (f y - f x) / (y - x)
case neg.intro.intro.intro.intro.intro.intro.intro.intro.intro x y : ℝ f : ℝ → ℝ hf : ContinuousOn f (Icc x y) hxy : x < y hf'_mono : StrictMonoOn (deriv f) (Ioo x y) w : ℝ hw : deriv f w = 0 hxw : x < w hwy : w < y a : ℝ hxa : x < a haw : a < w b : ℝ hwb : w < b hby : b < y ha : deriv f a * (w - x) < f w - f x hb : deriv f b * (y - w) < f y - f w this : deriv f a * (y - w) < deriv f b * (y - w) ⊢ deriv f a * (y - x) < f y - f x
linarith
no goals
824891cae2affaba
setOf_liouvilleWith_subset_aux
Mathlib/NumberTheory/Transcendental/Liouville/Measure.lean
theorem setOf_liouvilleWith_subset_aux : { x : ℝ | ∃ p > 2, LiouvilleWith p x } ⊆ ⋃ m : ℤ, (· + (m : ℝ)) ⁻¹' ⋃ n > (0 : ℕ), { x : ℝ | ∃ᶠ b : ℕ in atTop, ∃ a ∈ Finset.Icc (0 : ℤ) b, |x - (a : ℤ) / b| < 1 / (b : ℝ) ^ (2 + 1 / n : ℝ) }
x p : ℝ hp : p > 2 hxp : LiouvilleWith p x n : ℕ hn : 2 + 1 / (↑n + 1) < p this : ∀ (y : ℝ), LiouvilleWith p y → y ∈ Ico 0 1 → ∃ᶠ (b : ℕ) in atTop, ∃ a ∈ Finset.Icc 0 ↑b, |y - ↑a / ↑b| < 1 / ↑b ^ (2 + 1 / ↑(n + 1)) ⊢ x ∈ ⋃ m, (fun x => x + ↑m) ⁻¹' ⋃ n, ⋃ (_ : n > 0), {x | ∃ᶠ (b : ℕ) in atTop, ∃ a ∈ Finset.Icc 0 ↑b, |x - ↑a / ↑b| < 1 / ↑b ^ (2 + 1 / ↑n)}
simp only [mem_iUnion, mem_preimage]
x p : ℝ hp : p > 2 hxp : LiouvilleWith p x n : ℕ hn : 2 + 1 / (↑n + 1) < p this : ∀ (y : ℝ), LiouvilleWith p y → y ∈ Ico 0 1 → ∃ᶠ (b : ℕ) in atTop, ∃ a ∈ Finset.Icc 0 ↑b, |y - ↑a / ↑b| < 1 / ↑b ^ (2 + 1 / ↑(n + 1)) ⊢ ∃ i i_1, ∃ (_ : i_1 > 0), x + ↑i ∈ {x | ∃ᶠ (b : ℕ) in atTop, ∃ a ∈ Finset.Icc 0 ↑b, |x - ↑a / ↑b| < 1 / ↑b ^ (2 + 1 / ↑i_1)}
0ab923a0bda46abb
MeasureTheory.FiniteMeasure.self_eq_mass_mul_normalize
Mathlib/MeasureTheory/Measure/ProbabilityMeasure.lean
theorem self_eq_mass_mul_normalize (s : Set Ω) : μ s = μ.mass * μ.normalize s
Ω : Type u_1 inst✝ : Nonempty Ω m0 : MeasurableSpace Ω μ : FiniteMeasure Ω s : Set Ω ⊢ μ s = μ.mass * μ.normalize s
obtain rfl | h := eq_or_ne μ 0
case inl Ω : Type u_1 inst✝ : Nonempty Ω m0 : MeasurableSpace Ω s : Set Ω ⊢ 0 s = mass 0 * (normalize 0) s case inr Ω : Type u_1 inst✝ : Nonempty Ω m0 : MeasurableSpace Ω μ : FiniteMeasure Ω s : Set Ω h : μ ≠ 0 ⊢ μ s = μ.mass * μ.normalize s
c8d2346619166e24
Ordinal.mem_closure_tfae
Mathlib/SetTheory/Ordinal/Topology.lean
theorem mem_closure_tfae (a : Ordinal.{u}) (s : Set Ordinal) : TFAE [a ∈ closure s, a ∈ closure (s ∩ Iic a), (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a, ∃ t, t ⊆ s ∧ t.Nonempty ∧ BddAbove t ∧ sSup t = a, ∃ (o : Ordinal.{u}), o ≠ 0 ∧ ∃ (f : ∀ x < o, Ordinal), (∀ x hx, f x hx ∈ s) ∧ bsup.{u, u} o f = a, ∃ (ι : Type u), Nonempty ι ∧ ∃ f : ι → Ordinal, (∀ i, f i ∈ s) ∧ ⨆ i, f i = a]
a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a → ∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ o.bsup f = a ⊢ [a ∈ closure s, a ∈ closure (s ∩ Iic a), (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a, ∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ o.bsup f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ ⨆ i, f i = a].TFAE
tfae_have 5 → 6 := by rintro ⟨o, h₀, f, hfs, rfl⟩ exact ⟨_, toType_nonempty_iff_ne_zero.2 h₀, familyOfBFamily o f, fun _ => hfs _ _, rfl⟩
a : Ordinal.{u} s : Set Ordinal.{u} tfae_1_to_2 : a ∈ closure s → a ∈ closure (s ∩ Iic a) tfae_2_to_3 : a ∈ closure (s ∩ Iic a) → (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a tfae_3_to_4 : (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a → ∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a tfae_4_to_5 : (∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a) → ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ o.bsup f = a tfae_5_to_6 : (∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ o.bsup f = a) → ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ ⨆ i, f i = a ⊢ [a ∈ closure s, a ∈ closure (s ∩ Iic a), (s ∩ Iic a).Nonempty ∧ sSup (s ∩ Iic a) = a, ∃ t ⊆ s, t.Nonempty ∧ BddAbove t ∧ sSup t = a, ∃ o, o ≠ 0 ∧ ∃ f, (∀ (x : Ordinal.{u}) (hx : x < o), f x hx ∈ s) ∧ o.bsup f = a, ∃ ι, Nonempty ι ∧ ∃ f, (∀ (i : ι), f i ∈ s) ∧ ⨆ i, f i = a].TFAE
f361ec1995f661dc
MeasureTheory.Measure.IsMulLeftInvariant.quotientMeasureEqMeasurePreimage_of_set
Mathlib/MeasureTheory/Measure/Haar/Quotient.lean
theorem MeasureTheory.Measure.IsMulLeftInvariant.quotientMeasureEqMeasurePreimage_of_set {s : Set G} (fund_dom_s : IsFundamentalDomain Γ.op s ν) {V : Set (G ⧸ Γ)} (meas_V : MeasurableSet V) (neZeroV : μ V ≠ 0) (hV : μ V = ν (π ⁻¹' V ∩ s)) (neTopV : μ V ≠ ⊤) : QuotientMeasureEqMeasurePreimage ν μ
case h.convert_3 G : Type u_1 inst✝¹⁴ : Group G inst✝¹³ : MeasurableSpace G inst✝¹² : TopologicalSpace G inst✝¹¹ : IsTopologicalGroup G inst✝¹⁰ : BorelSpace G inst✝⁹ : PolishSpace G Γ : Subgroup G inst✝⁸ : Γ.Normal inst✝⁷ : T2Space (G ⧸ Γ) inst✝⁶ : SecondCountableTopology (G ⧸ Γ) μ : Measure (G ⧸ Γ) ν : Measure G inst✝⁵ : ν.IsMulLeftInvariant inst✝⁴ : Countable ↥Γ inst✝³ : ν.IsMulRightInvariant inst✝² : SigmaFinite ν inst✝¹ : μ.IsMulLeftInvariant inst✝ : SigmaFinite μ s : Set G fund_dom_s : IsFundamentalDomain (↥Γ.op) s ν V : Set (G ⧸ Γ) meas_V : MeasurableSet V neZeroV : μ V ≠ 0 hV : μ V = ν (QuotientGroup.mk ⁻¹' V ∩ s) neTopV : μ V ≠ ⊤ U : Set (G ⧸ Γ) a✝ : MeasurableSet U meas_π : Measurable QuotientGroup.mk μ' : Measure (G ⧸ Γ) := map QuotientGroup.mk (ν.restrict s) has_fund : HasFundamentalDomain (↥Γ.op) G ν i : QuotientMeasureEqMeasurePreimage ν μ' this✝ : μ'.IsMulLeftInvariant this : SigmaFinite μ' ⊢ ν (QuotientGroup.mk ⁻¹' V ∩ s) ≠ ⊤
exact trans hV.symm neTopV
no goals
a1958c2e021a6ca0
Pell.eq_pell_lem
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem eq_pell_lem : ∀ (n) (b : ℤ√(d a1)), 1 ≤ b → IsPell b → b ≤ pellZd a1 n → ∃ n, b = pellZd a1 n | 0, _ => fun h1 _ hl => ⟨0, @Zsqrtd.le_antisymm _ (dnsq a1) _ _ hl h1⟩ | n + 1, b => fun h1 hp h => have a1p : (0 : ℤ√(d a1)) ≤ ⟨a, 1⟩ := trivial have am1p : (0 : ℤ√(d a1)) ≤ ⟨a, -1⟩ := show (_ : Nat) ≤ _ by simp; exact Nat.pred_le _ have a1m : (⟨a, 1⟩ * ⟨a, -1⟩ : ℤ√(d a1)) = 1 := isPell_norm.1 (isPell_one a1) if ha : (⟨↑a, 1⟩ : ℤ√(d a1)) ≤ b then let ⟨m, e⟩ := eq_pell_lem n (b * ⟨a, -1⟩) (by rw [← a1m]; exact mul_le_mul_of_nonneg_right ha am1p) (isPell_mul hp (isPell_star.1 (isPell_one a1))) (by have t := mul_le_mul_of_nonneg_right h am1p rwa [pellZd_succ, mul_assoc, a1m, mul_one] at t) ⟨m + 1, by rw [show b = b * ⟨a, -1⟩ * ⟨a, 1⟩ by rw [mul_assoc, Eq.trans (mul_comm _ _) a1m]; simp, pellZd_succ, e]⟩ else suffices ¬1 < b from ⟨0, show b = 1 from (Or.resolve_left (lt_or_eq_of_le h1) this).symm⟩ fun h1l => by obtain ⟨x, y⟩ := b exact by have bm : (_ * ⟨_, _⟩ : ℤ√d a1) = 1 := Pell.isPell_norm.1 hp have y0l : (0 : ℤ√d a1) < ⟨x - x, y - -y⟩ := sub_lt_sub h1l fun hn : (1 : ℤ√d a1) ≤ ⟨x, -y⟩ => by have t := mul_le_mul_of_nonneg_left hn (le_trans zero_le_one h1) rw [bm, mul_one] at t exact h1l t have yl2 : (⟨_, _⟩ : ℤ√_) < ⟨_, _⟩ := show (⟨x, y⟩ - ⟨x, -y⟩ : ℤ√d a1) < ⟨a, 1⟩ - ⟨a, -1⟩ from sub_lt_sub ha fun hn : (⟨x, -y⟩ : ℤ√d a1) ≤ ⟨a, -1⟩ => by have t := mul_le_mul_of_nonneg_right (mul_le_mul_of_nonneg_left hn (le_trans zero_le_one h1)) a1p rw [bm, one_mul, mul_assoc, Eq.trans (mul_comm _ _) a1m, mul_one] at t exact ha t simp only [sub_self, sub_neg_eq_add] at y0l; simp only [Zsqrtd.neg_re, add_neg_cancel, Zsqrtd.neg_im, neg_neg] at yl2 exact match y, y0l, (yl2 : (⟨_, _⟩ : ℤ√_) < ⟨_, _⟩) with | 0, y0l, _ => y0l (le_refl 0) | (y + 1 : ℕ), _, yl2 => yl2 (Zsqrtd.le_of_le_le (by simp [sub_eq_add_neg]) (let t := Int.ofNat_le_ofNat_of_le (Nat.succ_pos y) add_le_add t t)) | Int.negSucc _, y0l, _ => y0l trivial
a : ℕ a1 : 1 < a n : ℕ b : ℤ√↑(Pell.d a1) h1 : 1 ≤ b hp : IsPell b h : b ≤ pellZd a1 (n + 1) a1p : 0 ≤ { re := ↑a, im := 1 } am1p : 0 ≤ { re := ↑a, im := -1 } a1m : { re := ↑a, im := 1 } * { re := ↑a, im := -1 } = 1 ha : { re := ↑a, im := 1 } ≤ b m : ℕ e : b * { re := ↑a, im := -1 } = pellZd a1 m ⊢ b = pellZd a1 (m + 1)
rw [show b = b * ⟨a, -1⟩ * ⟨a, 1⟩ by rw [mul_assoc, Eq.trans (mul_comm _ _) a1m]; simp, pellZd_succ, e]
no goals
f5b138704daee74a
MeasureTheory.Measure.rnDeriv_lt_top
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem rnDeriv_lt_top (μ ν : Measure α) [SigmaFinite μ] : ∀ᵐ x ∂ν, μ.rnDeriv ν x < ∞
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝ : SigmaFinite μ n : ℕ ⊢ ∀ᵐ (x : α) ∂ν.restrict (spanningSets μ n), μ.rnDeriv ν x < ⊤
apply ae_lt_top (measurable_rnDeriv _ _)
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝ : SigmaFinite μ n : ℕ ⊢ ∫⁻ (x : α) in spanningSets μ n, μ.rnDeriv ν x ∂ν ≠ ⊤
1320a499e197f7dd
HasFTaylorSeriesUpToOn.hasFDerivWithinAt
Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean
theorem HasFTaylorSeriesUpToOn.hasFDerivWithinAt (h : HasFTaylorSeriesUpToOn n f p s) (hn : 1 ≤ n) (hx : x ∈ s) : HasFDerivWithinAt f (continuousMultilinearCurryFin1 𝕜 E F (p x 1)) s x
case h.e'_12.h.h.h.H 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F h : HasFTaylorSeriesUpToOn n f p s hn : 1 ≤ n hx : x ∈ s A : ∀ y ∈ s, f y = (continuousMultilinearCurryFin0 𝕜 E F) (p y 0) this : ↑↑0 < n e_8✝ : SeminormedAddCommGroup.toAddCommGroup = ContinuousMultilinearMap.instAddCommGroup he✝ : NormedSpace.toModule = ContinuousMultilinearMap.instModule e_10✝ : UniformSpace.toTopologicalSpace = ContinuousMultilinearMap.instTopologicalSpace y : E v : Fin 0 → E ⊢ (((↑{ toLinearEquiv := (continuousMultilinearCurryFin0 𝕜 E F).symm.toLinearEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }).comp ((continuousMultilinearCurryFin1 𝕜 E F) (p x 1))) y) v = ((p x (Nat.succ 0)).curryLeft y) v
change (p x 1) (snoc 0 y) = (p x 1) (cons y v)
case h.e'_12.h.h.h.H 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F h : HasFTaylorSeriesUpToOn n f p s hn : 1 ≤ n hx : x ∈ s A : ∀ y ∈ s, f y = (continuousMultilinearCurryFin0 𝕜 E F) (p y 0) this : ↑↑0 < n e_8✝ : SeminormedAddCommGroup.toAddCommGroup = ContinuousMultilinearMap.instAddCommGroup he✝ : NormedSpace.toModule = ContinuousMultilinearMap.instModule e_10✝ : UniformSpace.toTopologicalSpace = ContinuousMultilinearMap.instTopologicalSpace y : E v : Fin 0 → E ⊢ (p x 1) (snoc 0 y) = (p x 1) (cons y v)
08ce69563124364e
AkraBazziRecurrence.T_pos
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
@[aesop safe apply] lemma T_pos (n : ℕ) : 0 < T n
case ind.inr α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r n : ℕ h_ind : ∀ m < n, 0 < T m hn : R.n₀ ≤ n ⊢ 0 < ∑ i : α, a i * T (r i n) + g ↑n
have := R.g_nonneg
case ind.inr α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r n : ℕ h_ind : ∀ m < n, 0 < T m hn : R.n₀ ≤ n this : ∀ x ≥ 0, 0 ≤ g x ⊢ 0 < ∑ i : α, a i * T (r i n) + g ↑n
5c29d3478f140bd0
PrimeSpectrum.isOpen_singleton_tfae_of_isNoetherian_of_isJacobsonRing
Mathlib/RingTheory/Spectrum/Prime/Jacobson.lean
/-- If `R` is both noetherian and jacobson, then the following are equivalent for `x : Spec R`: 1. `{x}` is open (i.e. `x` is an isolated point) 2. `{x}` is clopen 3. `{x}` is both closed and stable under generalization (i.e. `x` is both a minimal prime and a maximal ideal) -/ lemma isOpen_singleton_tfae_of_isNoetherian_of_isJacobsonRing [IsNoetherianRing R] [IsJacobsonRing R] (x : PrimeSpectrum R) : List.TFAE [IsOpen {x}, IsClopen {x}, IsClosed {x} ∧ StableUnderGeneralization {x}]
R : Type u_1 inst✝² : CommRing R inst✝¹ : IsNoetherianRing R inst✝ : IsJacobsonRing R x : PrimeSpectrum R tfae_1_to_2 : IsOpen {x} → IsClopen {x} tfae_2_to_3 : IsClopen {x} → IsClosed {x} ∧ StableUnderGeneralization {x} h₁ : IsMax x h₂ : StableUnderGeneralization {x} ⊢ IsOpen {x}
suffices {x} = (⋃ p ∈ { p : PrimeSpectrum R | IsMin p ∧ p ≠ x }, closure {p})ᶜ by rw [this, isOpen_compl_iff] refine Set.Finite.isClosed_biUnion ?_ (fun _ _ ↦ isClosed_closure) exact (finite_setOf_isMin R).subset fun x h ↦ h.1
R : Type u_1 inst✝² : CommRing R inst✝¹ : IsNoetherianRing R inst✝ : IsJacobsonRing R x : PrimeSpectrum R tfae_1_to_2 : IsOpen {x} → IsClopen {x} tfae_2_to_3 : IsClopen {x} → IsClosed {x} ∧ StableUnderGeneralization {x} h₁ : IsMax x h₂ : StableUnderGeneralization {x} ⊢ {x} = (⋃ p ∈ {p | IsMin p ∧ p ≠ x}, closure {p})ᶜ
2ced83ded0998596
IsCompact.isLindelof
Mathlib/Topology/Compactness/Lindelof.lean
theorem IsCompact.isLindelof (hs : IsCompact s) : IsLindelof s
X : Type u inst✝ : TopologicalSpace X s : Set X hs : IsCompact s ⊢ IsLindelof s
tauto
no goals
2825f02c9b3a2dbb
Sigma.nhds_eq
Mathlib/Topology/Constructions.lean
theorem Sigma.nhds_eq (x : Sigma σ) : 𝓝 x = Filter.map (Sigma.mk x.1) (𝓝 x.2)
case mk ι : Type u_5 σ : ι → Type u_7 inst✝ : (i : ι) → TopologicalSpace (σ i) fst✝ : ι snd✝ : σ fst✝ ⊢ 𝓝 ⟨fst✝, snd✝⟩ = Filter.map (mk ⟨fst✝, snd✝⟩.fst) (𝓝 ⟨fst✝, snd✝⟩.snd)
apply Sigma.nhds_mk
no goals
daa20c54c5de9dcb
Set.union_pi_inter
Mathlib/Data/Set/Prod.lean
theorem union_pi_inter (ht₁ : ∀ i ∉ s₁, t₁ i = univ) (ht₂ : ∀ i ∉ s₂, t₂ i = univ) : (s₁ ∪ s₂).pi (fun i ↦ t₁ i ∩ t₂ i) = s₁.pi t₁ ∩ s₂.pi t₂
case h ι : Type u_1 α : ι → Type u_2 s₁ s₂ : Set ι t₁ t₂ : (i : ι) → Set (α i) ht₁ : ∀ i ∉ s₁, t₁ i = univ ht₂ : ∀ i ∉ s₂, t₂ i = univ x : (i : ι) → α i ⊢ (∀ (i : ι), i ∈ s₁ ∨ i ∈ s₂ → x i ∈ t₁ i ∧ x i ∈ t₂ i) ↔ (∀ i ∈ s₁, x i ∈ t₁ i) ∧ ∀ i ∈ s₂, x i ∈ t₂ i
refine ⟨fun h ↦ ⟨fun i his₁ ↦ (h i (Or.inl his₁)).1, fun i his₂ ↦ (h i (Or.inr his₂)).2⟩, fun h i hi ↦ ?_⟩
case h ι : Type u_1 α : ι → Type u_2 s₁ s₂ : Set ι t₁ t₂ : (i : ι) → Set (α i) ht₁ : ∀ i ∉ s₁, t₁ i = univ ht₂ : ∀ i ∉ s₂, t₂ i = univ x : (i : ι) → α i h : (∀ i ∈ s₁, x i ∈ t₁ i) ∧ ∀ i ∈ s₂, x i ∈ t₂ i i : ι hi : i ∈ s₁ ∨ i ∈ s₂ ⊢ x i ∈ t₁ i ∧ x i ∈ t₂ i
c857e90e721d68e9
integral_cpow
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem integral_cpow {r : ℂ} (h : -1 < r.re ∨ r ≠ -1 ∧ (0 : ℝ) ∉ [[a, b]]) : (∫ x : ℝ in a..b, (x : ℂ) ^ r) = ((b : ℂ) ^ (r + 1) - (a : ℂ) ^ (r + 1)) / (r + 1)
a b : ℝ r : ℂ h : -1 < r.re ∨ r ≠ -1 ∧ 0 ∉ [[a, b]] ⊢ r + 1 ≠ 0
rcases h with h | h
case inl a b : ℝ r : ℂ h : -1 < r.re ⊢ r + 1 ≠ 0 case inr a b : ℝ r : ℂ h : r ≠ -1 ∧ 0 ∉ [[a, b]] ⊢ r + 1 ≠ 0
6570340d40c90ca3
SimpleGraph.Walk.append_nil
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem append_nil {u v : V} (p : G.Walk u v) : p.append nil = p
V : Type u G : SimpleGraph V u v : V p : G.Walk u v ⊢ p.append nil = p
induction p with | nil => rw [nil_append] | cons _ _ ih => rw [cons_append, ih]
no goals
ca6be4bee7478dfc
MeasureTheory.aemeasurable_fderivWithin
Mathlib/MeasureTheory/Function/Jacobian.lean
theorem aemeasurable_fderivWithin (hs : MeasurableSet s) (hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x) : AEMeasurable f' (μ.restrict s)
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : FiniteDimensional ℝ E s : Set E f : E → E f' : E → E →L[ℝ] E inst✝² : MeasurableSpace E inst✝¹ : BorelSpace E μ : Measure E inst✝ : μ.IsAddHaarMeasure hs : MeasurableSet s hf' : ∀ x ∈ s, HasFDerivWithinAt f (f' x) s x ε : ℝ εpos : ε > 0 δ : ℝ≥0 := ⟨ε, ⋯⟩ δpos : 0 < δ t : ℕ → Set E A : ℕ → E →L[ℝ] E t_disj : Pairwise (Disjoint on t) t_meas : ∀ (n : ℕ), MeasurableSet (t n) t_cover : s ⊆ ⋃ n, t n ht : ∀ (n : ℕ), ApproximatesLinearOn f (A n) (s ∩ t n) δ right✝ : s.Nonempty → ∀ (n : ℕ), ∃ y ∈ s, A n = f' y g : E → E →L[ℝ] E g_meas : Measurable g hg : ∀ (n : ℕ), ∀ x ∈ t n, g x = A n H : ∀ᵐ (x : E) ∂sum fun n => μ.restrict (s ∩ t n), dist (g x) (f' x) ≤ ε this : μ.restrict s ≤ sum fun n => μ.restrict (s ∩ t n) ⊢ ∀ᵐ (x : E) ∂μ.restrict s, dist (g x) (f' x) ≤ ε
exact ae_mono this H
no goals
ee4b6aa7dbac5ef5
Submodule.isClosed_or_dense_of_isCoatom
Mathlib/Topology/Algebra/Module/Basic.lean
theorem Submodule.isClosed_or_dense_of_isCoatom (s : Submodule R M) (hs : IsCoatom s) : IsClosed (s : Set M) ∨ Dense (s : Set M)
R : Type u M : Type v inst✝⁵ : Semiring R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : ContinuousConstSMul R M inst✝ : ContinuousAdd M s : Submodule R M hs : IsCoatom s ⊢ IsClosed ↑s ∨ Dense ↑s
refine (hs.le_iff.mp s.le_topologicalClosure).symm.imp ?_ dense_iff_topologicalClosure_eq_top.mpr
R : Type u M : Type v inst✝⁵ : Semiring R inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : ContinuousConstSMul R M inst✝ : ContinuousAdd M s : Submodule R M hs : IsCoatom s ⊢ s.topologicalClosure = s → IsClosed ↑s
4b422b561aabb861
tendsto_integral_comp_smul_smul_of_integrable
Mathlib/MeasureTheory/Integral/PeakFunction.lean
theorem tendsto_integral_comp_smul_smul_of_integrable {φ : F → ℝ} (hφ : ∀ x, 0 ≤ φ x) (h'φ : ∫ x, φ x ∂μ = 1) (h : Tendsto (fun x ↦ ‖x‖ ^ finrank ℝ F * φ x) (cobounded F) (𝓝 0)) {g : F → E} (hg : Integrable g μ) (h'g : ContinuousAt g 0) : Tendsto (fun (c : ℝ) ↦ ∫ x, (c ^ (finrank ℝ F) * φ (c • x)) • g x ∂μ) atTop (𝓝 (g 0))
E : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E F : Type u_4 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F inst✝³ : FiniteDimensional ℝ F inst✝² : MeasurableSpace F inst✝¹ : BorelSpace F μ : Measure F inst✝ : μ.IsAddHaarMeasure φ : F → ℝ hφ : ∀ (x : F), 0 ≤ φ x h'φ : ∫ (x : F), φ x ∂μ = 1 h : Tendsto (fun x => ‖x‖ ^ finrank ℝ F * φ x) (cobounded F) (𝓝 0) g : F → E hg : Integrable g μ h'g : ContinuousAt g 0 I : Integrable φ μ u : Set F u_open : IsOpen u hu : 0 ∈ u ε : ℝ εpos : ε > 0 ⊢ ∀ᶠ (n : ℝ) in atTop, ∀ x ∈ uᶜ, dist (0 x) (n ^ finrank ℝ F * φ (n • x)) < ε
obtain ⟨δ, δpos, h'u⟩ : ∃ δ > 0, ball 0 δ ⊆ u := Metric.isOpen_iff.1 u_open _ hu
case intro.intro E : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E F : Type u_4 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F inst✝³ : FiniteDimensional ℝ F inst✝² : MeasurableSpace F inst✝¹ : BorelSpace F μ : Measure F inst✝ : μ.IsAddHaarMeasure φ : F → ℝ hφ : ∀ (x : F), 0 ≤ φ x h'φ : ∫ (x : F), φ x ∂μ = 1 h : Tendsto (fun x => ‖x‖ ^ finrank ℝ F * φ x) (cobounded F) (𝓝 0) g : F → E hg : Integrable g μ h'g : ContinuousAt g 0 I : Integrable φ μ u : Set F u_open : IsOpen u hu : 0 ∈ u ε : ℝ εpos : ε > 0 δ : ℝ δpos : δ > 0 h'u : ball 0 δ ⊆ u ⊢ ∀ᶠ (n : ℝ) in atTop, ∀ x ∈ uᶜ, dist (0 x) (n ^ finrank ℝ F * φ (n • x)) < ε
06046c21dacd4c17
MeasurableEmbedding.eLpNorm_map_measure
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem _root_.MeasurableEmbedding.eLpNorm_map_measure {g : β → F} (hf : MeasurableEmbedding f) : eLpNorm g p (Measure.map f μ) = eLpNorm (g ∘ f) p μ
case pos α : Type u_1 F : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup F β : Type u_6 mβ : MeasurableSpace β f : α → β g : β → F hf : MeasurableEmbedding f hp_zero : ¬p = 0 hp : p = ⊤ ⊢ eLpNormEssSup g (Measure.map f μ) = eLpNormEssSup (g ∘ f) μ
exact hf.essSup_map_measure
no goals
cb6bd843dd6b53b1
InformationTheory.klDiv_eq_top_iff
Mathlib/InformationTheory/KullbackLeibler/Basic.lean
lemma klDiv_eq_top_iff : klDiv μ ν = ∞ ↔ μ ≪ ν → ¬ Integrable (llr μ ν) μ
case mp α : Type u_1 mα : MeasurableSpace α μ ν : Measure α h : klDiv μ ν = ⊤ ⊢ μ ≪ ν → ¬Integrable (llr μ ν) μ
contrapose! h
case mp α : Type u_1 mα : MeasurableSpace α μ ν : Measure α h : μ ≪ ν ∧ Integrable (llr μ ν) μ ⊢ klDiv μ ν ≠ ⊤
ea0b9b82484805cd
FiniteDimensional.of_isCompact_closedBall₀
Mathlib/Analysis/Normed/Module/FiniteDimension.lean
theorem FiniteDimensional.of_isCompact_closedBall₀ {r : ℝ} (rpos : 0 < r) (h : IsCompact (Metric.closedBall (0 : E) r)) : FiniteDimensional 𝕜 E
case intro.intro.intro.intro 𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 E : Type v inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : CompleteSpace 𝕜 r : ℝ rpos : 0 < r h : IsCompact (closedBall 0 r) hfin : ¬FiniteDimensional 𝕜 E R : ℝ f : ℕ → E Rgt : 1 < R fle : ∀ (n : ℕ), ‖f n‖ ≤ R lef : Pairwise fun m n => 1 ≤ ‖f m - f n‖ ⊢ False
have rRpos : 0 < r / R := div_pos rpos (zero_lt_one.trans Rgt)
case intro.intro.intro.intro 𝕜 : Type u inst✝³ : NontriviallyNormedField 𝕜 E : Type v inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : CompleteSpace 𝕜 r : ℝ rpos : 0 < r h : IsCompact (closedBall 0 r) hfin : ¬FiniteDimensional 𝕜 E R : ℝ f : ℕ → E Rgt : 1 < R fle : ∀ (n : ℕ), ‖f n‖ ≤ R lef : Pairwise fun m n => 1 ≤ ‖f m - f n‖ rRpos : 0 < r / R ⊢ False
c91708e1e8291456
AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app'
Mathlib/Geometry/RingedSpace/PresheafedSpace/Gluing.lean
theorem snd_invApp_t_app' (i j k : D.J) (U : Opens (pullback (D.f i j) (D.f i k)).carrier) : ∃ eq, (π₂⁻¹ i, j, k) U ≫ (D.t k i).c.app _ ≫ (D.V (k, i)).presheaf.map (eqToHom eq) = (D.t' k i j).c.app _ ≫ (π₁⁻¹ k, j, i) (unop _)
case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (D.f i j) (D.f i k)) y : ↑↑(pullback (D.f i j) (D.f i k)) ⊢ (ConcreteCategory.hom (inv (D.t' k i j) ≫ pullback.fst (D.f k i) (D.f k j)).base) y = (ConcreteCategory.hom (pullback.snd (D.f i j) (D.f i k) ≫ D.t i k).base) y
congr 3
case h.e_a.e_a.e_self C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (D.f i j) (D.f i k)) y : ↑↑(pullback (D.f i j) (D.f i k)) ⊢ inv (D.t' k i j) ≫ pullback.fst (D.f k i) (D.f k j) = pullback.snd (D.f i j) (D.f i k) ≫ D.t i k
e08cb0129b520e6d
soln_unique
Mathlib/NumberTheory/Padics/Hensel.lean
theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0) (hnlt : ‖z - a‖ < ‖F.derivative.eval a‖) : z = soln := have soln_dist : ‖z - soln‖ < ‖F.derivative.eval a‖ := calc ‖z - soln‖ = ‖z - a + (a - soln)‖
p : ℕ inst✝ : Fact (Nat.Prime p) F : Polynomial ℤ_[p] a : ℤ_[p] hnorm : ‖Polynomial.eval a F‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖ ^ 2 hnsol : Polynomial.eval a F ≠ 0 z : ℤ_[p] hev : Polynomial.eval z F = 0 hnlt : ‖z - a‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖ soln_dist : ‖z - soln‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖ h : ℤ_[p] := z - soln q : ℤ_[p] hq : Polynomial.eval (soln + h) F = Polynomial.eval soln F + Polynomial.eval soln (Polynomial.derivative F) * h + q * h ^ 2 this✝¹ : (Polynomial.eval soln (Polynomial.derivative F) + q * h) * h = 0 hne : ¬h = 0 this✝ : Polynomial.eval soln (Polynomial.derivative F) + q * h = 0 this : Polynomial.eval soln (Polynomial.derivative F) = -q * h ⊢ ‖z - soln‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖
apply soln_dist
no goals
9538cf328c481f11
Finset.sup'_const
Mathlib/Data/Finset/Lattice/Fold.lean
theorem sup'_const (a : α) : s.sup' H (fun _ => a) = a
case a α : Type u_2 β : Type u_3 inst✝ : SemilatticeSup α s : Finset β H : s.Nonempty a : α ⊢ a ≤ s.sup' H fun x => a
apply le_sup' (fun _ => a) H.choose_spec
no goals
19a233cc520bfbb7
FirstOrder.Language.Substructure.fg_iff_structure_fg
Mathlib/ModelTheory/FinitelyGenerated.lean
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
case refine_2 L : Language M : Type u_1 inst✝ : L.Structure M S : L.Substructure M h : ⊤.FG ⊢ S.FG
have h := h.map S.subtype.toHom
case refine_2 L : Language M : Type u_1 inst✝ : L.Structure M S : L.Substructure M h✝ : ⊤.FG h : (map S.subtype.toHom ⊤).FG ⊢ S.FG
5f0b8ca0a2c04578
Algebra.Generators.map_toComp_ker
Mathlib/RingTheory/Generators.lean
lemma map_toComp_ker (Q : Generators S T) (P : Generators R S) : P.ker.map (Q.toComp P).toAlgHom = RingHom.ker (Q.ofComp P).toAlgHom
case a.convert_4.a R : Type u S : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S T : Type u_2 inst✝³ : CommRing T inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T Q : Generators S T P : Generators R S this✝ : DecidableEq (Q.vars →₀ ℕ) := Classical.decEq (Q.vars →₀ ℕ) x : (Q.comp P).Ring e : ((Q.comp P).vars →₀ ℕ) ≃+ (Q.vars →₀ ℕ) × (P.vars →₀ ℕ) := Finsupp.sumFinsuppAddEquivProdFinsupp i : Q.vars →₀ ℕ this : ∀ (x : (Q.comp P).Ring), (Function.support fun a => if a.1 = i then (aeval P.val) ((monomial a.2) (coeff (e.symm a) x)) else 0) ⊆ ↑(Finset.map (↑e).toEmbedding (support x)) ⊢ ∑ x_1 ∈ Finset.filter (fun x => x.1 = i) (Finset.map (↑e).toEmbedding (support x)), (aeval P.val) ((monomial x_1.2) (coeff (e.symm x_1) x)) = coeff i ((Q.ofComp P).toAlgHom x)
rw [Finset.sum_filter, ← finsum_eq_sum_of_support_subset _ (this x)]
case a.convert_4.a R : Type u S : Type v inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S T : Type u_2 inst✝³ : CommRing T inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T Q : Generators S T P : Generators R S this✝ : DecidableEq (Q.vars →₀ ℕ) := Classical.decEq (Q.vars →₀ ℕ) x : (Q.comp P).Ring e : ((Q.comp P).vars →₀ ℕ) ≃+ (Q.vars →₀ ℕ) × (P.vars →₀ ℕ) := Finsupp.sumFinsuppAddEquivProdFinsupp i : Q.vars →₀ ℕ this : ∀ (x : (Q.comp P).Ring), (Function.support fun a => if a.1 = i then (aeval P.val) ((monomial a.2) (coeff (e.symm a) x)) else 0) ⊆ ↑(Finset.map (↑e).toEmbedding (support x)) ⊢ (∑ᶠ (i_1 : (Q.vars →₀ ℕ) × (P.vars →₀ ℕ)), if i_1.1 = i then (aeval P.val) ((monomial i_1.2) (coeff (e.symm i_1) x)) else 0) = coeff i ((Q.ofComp P).toAlgHom x)
5cc741e4fe814640
List.mapM'_eq_mapM
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Monadic.lean
theorem mapM'_eq_mapM [Monad m] [LawfulMonad m] (f : α → m β) (l : List α) : mapM' f l = mapM f l
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → m β l✝ : List α a : α l : List α acc : List β ⊢ mapM.loop f (a :: l) acc = do let __do_lift ← mapM' f (a :: l) pure (acc.reverse ++ __do_lift)
simp [go l, mapM.loop, mapM']
no goals
d8bbb1f21029aff1
MulActionHom.comp_inverse'
Mathlib/GroupTheory/GroupAction/Hom.lean
theorem comp_inverse' {f : X →ₑ[φ] Y} {g : Y → X} {k₁ : Function.LeftInverse φ' φ} {k₂ : Function.RightInverse φ' φ} {h₁ : Function.LeftInverse g f} {h₂ : Function.RightInverse g f} : (inverse' f g k₂ h₁ h₂).comp f (κ := CompTriple.comp_inv k₁) = MulActionHom.id M
M : Type u_2 N : Type u_3 φ : M → N X : Type u_5 inst✝¹ : SMul M X Y : Type u_6 inst✝ : SMul N Y φ' : N → M f : X →ₑ[φ] Y g : Y → X k₁ : Function.LeftInverse φ' φ k₂ : Function.RightInverse φ' φ h₁ : Function.LeftInverse g ⇑f h₂ : Function.RightInverse g ⇑f x : X ⊢ ((f.inverse' g k₂ h₁ h₂).comp f) x = (MulActionHom.id M) x
simp only [comp_apply, inverse_apply, id_apply]
M : Type u_2 N : Type u_3 φ : M → N X : Type u_5 inst✝¹ : SMul M X Y : Type u_6 inst✝ : SMul N Y φ' : N → M f : X →ₑ[φ] Y g : Y → X k₁ : Function.LeftInverse φ' φ k₂ : Function.RightInverse φ' φ h₁ : Function.LeftInverse g ⇑f h₂ : Function.RightInverse g ⇑f x : X ⊢ (f.inverse' g k₂ h₁ h₂) (f x) = x
2b5eb2627520d5c3
SetTheory.PGame.add_le_add_right'
Mathlib/SetTheory/Game/PGame.lean
theorem add_le_add_right' : ∀ {x y z : PGame}, x ≤ y → x + z ≤ y + z | mk xl xr xL xR, mk yl yr yL yR, mk zl zr zL zR => fun h => by refine le_def.2 ⟨fun i => ?_, fun i => ?_⟩ <;> obtain i | i := i · rw [le_def] at h obtain ⟨h_left, h_right⟩ := h rcases h_left i with (⟨i', ih⟩ | ⟨j, jh⟩) · exact Or.inl ⟨toLeftMovesAdd (Sum.inl i'), add_le_add_right' ih⟩ · refine Or.inr ⟨toRightMovesAdd (Sum.inl j), ?_⟩ convert add_le_add_right' jh apply add_moveRight_inl · exact Or.inl ⟨@toLeftMovesAdd _ ⟨_, _, _, _⟩ (Sum.inr i), add_le_add_right' h⟩ · rw [le_def] at h rcases h.right i with (⟨i, ih⟩ | ⟨j', jh⟩) · refine Or.inl ⟨toLeftMovesAdd (Sum.inl i), ?_⟩ convert add_le_add_right' ih apply add_moveLeft_inl · exact Or.inr ⟨toRightMovesAdd (Sum.inl j'), add_le_add_right' jh⟩ · exact Or.inr ⟨@toRightMovesAdd _ ⟨_, _, _, _⟩ (Sum.inr i), add_le_add_right' h⟩ termination_by x y z => (x, y, z)
case refine_2.inl xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame zl zr : Type u_1 zL : zl → PGame zR : zr → PGame h : (∀ (i : (mk xl xr xL xR).LeftMoves), (∃ i', (mk xl xr xL xR).moveLeft i ≤ (mk yl yr yL yR).moveLeft i') ∨ ∃ j, ((mk xl xr xL xR).moveLeft i).moveRight j ≤ mk yl yr yL yR) ∧ ∀ (j : (mk yl yr yL yR).RightMoves), (∃ i, mk xl xr xL xR ≤ ((mk yl yr yL yR).moveRight j).moveLeft i) ∨ ∃ j', (mk xl xr xL xR).moveRight j' ≤ (mk yl yr yL yR).moveRight j i : yr ⊢ (∃ i_1, mk xl xr xL xR + mk zl zr zL zR ≤ ((mk yl yr yL yR + mk zl zr zL zR).moveRight (Sum.inl i)).moveLeft i_1) ∨ ∃ j', (mk xl xr xL xR + mk zl zr zL zR).moveRight j' ≤ (mk yl yr yL yR + mk zl zr zL zR).moveRight (Sum.inl i)
rcases h.right i with (⟨i, ih⟩ | ⟨j', jh⟩)
case refine_2.inl.inl.intro xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame zl zr : Type u_1 zL : zl → PGame zR : zr → PGame h : (∀ (i : (mk xl xr xL xR).LeftMoves), (∃ i', (mk xl xr xL xR).moveLeft i ≤ (mk yl yr yL yR).moveLeft i') ∨ ∃ j, ((mk xl xr xL xR).moveLeft i).moveRight j ≤ mk yl yr yL yR) ∧ ∀ (j : (mk yl yr yL yR).RightMoves), (∃ i, mk xl xr xL xR ≤ ((mk yl yr yL yR).moveRight j).moveLeft i) ∨ ∃ j', (mk xl xr xL xR).moveRight j' ≤ (mk yl yr yL yR).moveRight j i✝ : yr i : ((mk yl yr yL yR).moveRight i✝).LeftMoves ih : mk xl xr xL xR ≤ ((mk yl yr yL yR).moveRight i✝).moveLeft i ⊢ (∃ i, mk xl xr xL xR + mk zl zr zL zR ≤ ((mk yl yr yL yR + mk zl zr zL zR).moveRight (Sum.inl i✝)).moveLeft i) ∨ ∃ j', (mk xl xr xL xR + mk zl zr zL zR).moveRight j' ≤ (mk yl yr yL yR + mk zl zr zL zR).moveRight (Sum.inl i✝) case refine_2.inl.inr.intro xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame zl zr : Type u_1 zL : zl → PGame zR : zr → PGame h : (∀ (i : (mk xl xr xL xR).LeftMoves), (∃ i', (mk xl xr xL xR).moveLeft i ≤ (mk yl yr yL yR).moveLeft i') ∨ ∃ j, ((mk xl xr xL xR).moveLeft i).moveRight j ≤ mk yl yr yL yR) ∧ ∀ (j : (mk yl yr yL yR).RightMoves), (∃ i, mk xl xr xL xR ≤ ((mk yl yr yL yR).moveRight j).moveLeft i) ∨ ∃ j', (mk xl xr xL xR).moveRight j' ≤ (mk yl yr yL yR).moveRight j i : yr j' : (mk xl xr xL xR).RightMoves jh : (mk xl xr xL xR).moveRight j' ≤ (mk yl yr yL yR).moveRight i ⊢ (∃ i_1, mk xl xr xL xR + mk zl zr zL zR ≤ ((mk yl yr yL yR + mk zl zr zL zR).moveRight (Sum.inl i)).moveLeft i_1) ∨ ∃ j', (mk xl xr xL xR + mk zl zr zL zR).moveRight j' ≤ (mk yl yr yL yR + mk zl zr zL zR).moveRight (Sum.inl i)
21f7612be5d148f4
FractionalIdeal.mul_inv_cancel_of_le_one
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem mul_inv_cancel_of_le_one [h : IsDedekindDomain A] {I : Ideal A} (hI0 : I ≠ ⊥) (hI : (I * (I : FractionalIdeal A⁰ K)⁻¹)⁻¹ ≤ 1) : I * (I : FractionalIdeal A⁰ K)⁻¹ = 1
case pos A : Type u_2 K : Type u_3 inst✝³ : CommRing A inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hJ : ↑⊥ = ↑I * (↑I)⁻¹ ⊢ I = ⊥
rw [eq_bot_iff, ← coeIdeal_le_coeIdeal K, hJ]
case pos A : Type u_2 K : Type u_3 inst✝³ : CommRing A inst✝² : Field K inst✝¹ : Algebra A K inst✝ : IsFractionRing A K h : IsDedekindDomain A I : Ideal A hI0 : I ≠ ⊥ hI : (↑I * (↑I)⁻¹)⁻¹ ≤ 1 hJ : ↑⊥ = ↑I * (↑I)⁻¹ ⊢ ↑I ≤ ↑I * (↑I)⁻¹
59c657b0d051c4ed
exists_countable_union_perfect_of_isClosed
Mathlib/Topology/Perfect.lean
theorem exists_countable_union_perfect_of_isClosed [SecondCountableTopology α] (hclosed : IsClosed C) : ∃ V D : Set α, V.Countable ∧ Perfect D ∧ C = V ∪ D
case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : b.Countable left✝ : ∅ ∉ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ (U ∩ C).Countable} V : Set α := ⋃ U ∈ v, U D : Set α := C \ V Vct : (V ∩ C).Countable ⊢ ∃ V D, V.Countable ∧ Perfect D ∧ C = V ∪ D
refine ⟨V ∩ C, D, Vct, ⟨?_, ?_⟩, ?_⟩
case intro.intro.intro.refine_1 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : b.Countable left✝ : ∅ ∉ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ (U ∩ C).Countable} V : Set α := ⋃ U ∈ v, U D : Set α := C \ V Vct : (V ∩ C).Countable ⊢ IsClosed D case intro.intro.intro.refine_2 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : b.Countable left✝ : ∅ ∉ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ (U ∩ C).Countable} V : Set α := ⋃ U ∈ v, U D : Set α := C \ V Vct : (V ∩ C).Countable ⊢ Preperfect D case intro.intro.intro.refine_3 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : b.Countable left✝ : ∅ ∉ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ (U ∩ C).Countable} V : Set α := ⋃ U ∈ v, U D : Set α := C \ V Vct : (V ∩ C).Countable ⊢ C = V ∩ C ∪ D
f45aad82d45e9e73
Int.lt_floor_iff
Mathlib/Algebra/Order/Floor.lean
theorem lt_floor_iff : z < ⌊a⌋ ↔ z + 1 ≤ a
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ z < ⌊a⌋ ↔ ↑z + 1 ≤ a
rw [← add_one_le_iff, le_floor]
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α z : ℤ a : α ⊢ ↑(z + 1) ≤ a ↔ ↑z + 1 ≤ a
956616311ceb77ab
Hindman.exists_FP_of_large
Mathlib/Combinatorics/Hindman.lean
theorem exists_FP_of_large {M} [Semigroup M] (U : Ultrafilter M) (U_idem : U * U = U) (s₀ : Set M) (sU : s₀ ∈ U) : ∃ a, FP a ⊆ s₀
M : Type u_1 inst✝ : Semigroup M U : Ultrafilter M U_idem : U * U = U s₀ : Set M sU : s₀ ∈ U exists_elem : ∀ {s : Set M}, s ∈ U → (s ∩ {m | ∀ᶠ (m' : M) in ↑U, m * m' ∈ s}).Nonempty ⊢ ∃ a, FP a ⊆ s₀
let elem : { s // s ∈ U } → M := fun p => (exists_elem p.property).some
M : Type u_1 inst✝ : Semigroup M U : Ultrafilter M U_idem : U * U = U s₀ : Set M sU : s₀ ∈ U exists_elem : ∀ {s : Set M}, s ∈ U → (s ∩ {m | ∀ᶠ (m' : M) in ↑U, m * m' ∈ s}).Nonempty elem : { s // s ∈ U } → M := fun p => ⋯.some ⊢ ∃ a, FP a ⊆ s₀
8a116562f2fd2b3f
Vitali.exists_disjoint_covering_ae
Mathlib/MeasureTheory/Covering/Vitali.lean
theorem exists_disjoint_covering_ae [PseudoMetricSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [SecondCountableTopology α] (μ : Measure α) [IsLocallyFiniteMeasure μ] (s : Set α) (t : Set ι) (C : ℝ≥0) (r : ι → ℝ) (c : ι → α) (B : ι → Set α) (hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a)) (μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ C * μ (B a)) (ht : ∀ a ∈ t, (interior (B a)).Nonempty) (h't : ∀ a ∈ t, IsClosed (B a)) (hf : ∀ x ∈ s, ∀ ε > (0 : ℝ), ∃ a ∈ t, r a ≤ ε ∧ c a = x) : ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
case intro.intro.intro α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ⊢ ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
have ut : u ⊆ t := fun a hau => (ut' hau).1
case intro.intro.intro α : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : MeasurableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : SecondCountableTopology α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ s : Set α t : Set ι C : ℝ≥0 r : ι → ℝ c : ι → α B : ι → Set α hB : ∀ a ∈ t, B a ⊆ closedBall (c a) (r a) μB : ∀ a ∈ t, μ (closedBall (c a) (3 * r a)) ≤ ↑C * μ (B a) ht : ∀ a ∈ t, (interior (B a)).Nonempty h't : ∀ a ∈ t, IsClosed (B a) hf : ∀ x ∈ s, ∀ ε > 0, ∃ a ∈ t, r a ≤ ε ∧ c a = x R : α → ℝ hR0 : ∀ (x : α), 0 < R x hR1 : ∀ (x : α), R x ≤ 1 hRμ : ∀ (x : α), μ (closedBall x (20 * R x)) < ⊤ t' : Set ι := {a | a ∈ t ∧ r a ≤ R (c a)} u : Set ι ut' : u ⊆ t' u_disj : u.PairwiseDisjoint B hu : ∀ a ∈ t', ∃ b ∈ u, (B a ∩ B b).Nonempty ∧ r a ≤ 2 * r b ut : u ⊆ t ⊢ ∃ u ⊆ t, u.Countable ∧ u.PairwiseDisjoint B ∧ μ (s \ ⋃ a ∈ u, B a) = 0
4466d2fc3e80cb3f
String.foldrAux_of_valid
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem foldrAux_of_valid (f : Char → α → α) (l m r a) : foldrAux f a ⟨l ++ m ++ r⟩ ⟨utf8Len l + utf8Len m⟩ ⟨utf8Len l⟩ = m.foldr f a
case nil α : Type u_1 f : Char → α → α l m r : List Char a : α ⊢ foldrAux f a { data := l ++ [].reverse ++ r } { byteIdx := utf8Len l + utf8Len [].reverse } { byteIdx := utf8Len l } = List.foldr f a [].reverse
unfold foldrAux
case nil α : Type u_1 f : Char → α → α l m r : List Char a : α ⊢ (if h : { byteIdx := utf8Len l } < { byteIdx := utf8Len l + utf8Len [].reverse } then let_fun this := ⋯; let i := { data := l ++ [].reverse ++ r }.prev { byteIdx := utf8Len l + utf8Len [].reverse }; let a := f ({ data := l ++ [].reverse ++ r }.get i) a; foldrAux f a { data := l ++ [].reverse ++ r } i { byteIdx := utf8Len l } else a) = List.foldr f a [].reverse
5d4fc670d1273631
tendsto_setIntegral_peak_smul_of_integrableOn_of_tendsto
Mathlib/MeasureTheory/Integral/PeakFunction.lean
theorem tendsto_setIntegral_peak_smul_of_integrableOn_of_tendsto (hs : MeasurableSet s) {t : Set α} (ht : MeasurableSet t) (hts : t ⊆ s) (h'ts : t ∈ 𝓝[s] x₀) (h't : μ t ≠ ∞) (hnφ : ∀ᶠ i in l, ∀ x ∈ s, 0 ≤ φ i x) (hlφ : ∀ u : Set α, IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u)) (hiφ : Tendsto (fun i ↦ ∫ x in t, φ i x ∂μ) l (𝓝 1)) (h'iφ : ∀ᶠ i in l, AEStronglyMeasurable (φ i) (μ.restrict s)) (hmg : IntegrableOn g s μ) (hcg : Tendsto g (𝓝[s] x₀) (𝓝 a)) : Tendsto (fun i : ι ↦ ∫ x in s, φ i x • g x ∂μ) l (𝓝 a)
case h α : Type u_1 E : Type u_2 ι : Type u_3 hm : MeasurableSpace α μ : Measure α inst✝⁴ : TopologicalSpace α inst✝³ : BorelSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E g : α → E l : Filter ι x₀ : α s : Set α φ : ι → α → ℝ a : E inst✝ : CompleteSpace E hs : MeasurableSet s t : Set α ht : MeasurableSet t hts : t ⊆ s h'ts : t ∈ 𝓝[s] x₀ h't : μ t ≠ ⊤ hnφ : ∀ᶠ (i : ι) in l, ∀ x ∈ s, 0 ≤ φ i x hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u) hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1) h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s) hmg : IntegrableOn g s μ hcg : Tendsto g (𝓝[s] x₀) (𝓝 a) h : α → E := g - t.indicator fun x => a A : Tendsto (fun i => ∫ (x : α) in s, φ i x • h x ∂μ + (∫ (x : α) in t, φ i x ∂μ) • a) l (𝓝 a) i : ι hi : IntegrableOn (fun x => φ i x • g x) s μ h'i : ‖∫ (x : α) in t, φ i x ∂μ - 1‖ < 1 ⊢ ∫ (x : α) in s, φ i x • h x ∂μ + (∫ (x : α) in t, φ i x ∂μ) • a = ∫ (x : α) in s, φ i x • g x ∂μ
simp only [h, Pi.sub_apply, smul_sub, ← indicator_smul_apply]
case h α : Type u_1 E : Type u_2 ι : Type u_3 hm : MeasurableSpace α μ : Measure α inst✝⁴ : TopologicalSpace α inst✝³ : BorelSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E g : α → E l : Filter ι x₀ : α s : Set α φ : ι → α → ℝ a : E inst✝ : CompleteSpace E hs : MeasurableSet s t : Set α ht : MeasurableSet t hts : t ⊆ s h'ts : t ∈ 𝓝[s] x₀ h't : μ t ≠ ⊤ hnφ : ∀ᶠ (i : ι) in l, ∀ x ∈ s, 0 ≤ φ i x hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u) hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1) h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s) hmg : IntegrableOn g s μ hcg : Tendsto g (𝓝[s] x₀) (𝓝 a) h : α → E := g - t.indicator fun x => a A : Tendsto (fun i => ∫ (x : α) in s, φ i x • h x ∂μ + (∫ (x : α) in t, φ i x ∂μ) • a) l (𝓝 a) i : ι hi : IntegrableOn (fun x => φ i x • g x) s μ h'i : ‖∫ (x : α) in t, φ i x ∂μ - 1‖ < 1 ⊢ ∫ (x : α) in s, φ i x • g x - t.indicator (fun a_1 => φ i a_1 • a) x ∂μ + (∫ (x : α) in t, φ i x ∂μ) • a = ∫ (x : α) in s, φ i x • g x ∂μ
fcf9a03d4108054c
Module.map_jacobson_of_ker_le
Mathlib/RingTheory/Jacobson/Radical.lean
theorem map_jacobson_of_ker_le (surj : Function.Surjective f) (le : LinearMap.ker f ≤ jacobson R M) : map f (jacobson R M) = jacobson R₂ M₂ := le_antisymm (map_jacobson_le f) <| by rw [jacobson, sInf_eq_iInf'] at le conv_rhs => rw [jacobson, sInf_eq_iInf', map_iInf_of_ker_le surj le] exact le_iInf fun m ↦ sInf_le (isCoatom_map_of_ker_le surj (le_iInf_iff.mp le m) m.2)
R : Type u_1 R₂ : Type u_2 M : Type u_3 M₂ : Type u_4 inst✝⁸ : Ring R inst✝⁷ : Ring R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝² : RingHomSurjective τ₁₂ F : Type u_5 inst✝¹ : FunLike F M M₂ inst✝ : SemilinearMapClass F τ₁₂ M M₂ f : F surj : Function.Surjective ⇑f le : LinearMap.ker f ≤ ⨅ a, ↑a ⊢ jacobson R₂ M₂ ≤ ⨅ i, map f ↑i
exact le_iInf fun m ↦ sInf_le (isCoatom_map_of_ker_le surj (le_iInf_iff.mp le m) m.2)
no goals
12c07be335000e33
List.lt_of_le_of_lt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lex.lean
theorem lt_of_le_of_lt [DecidableEq α] [LT α] [DecidableLT α] [i₀ : Std.Irrefl (· < · : α → α → Prop)] [i₁ : Std.Asymm (· < · : α → α → Prop)] [i₂ : Std.Antisymm (¬ · < · : α → α → Prop)] [i₃ : Trans (¬ · < · : α → α → Prop) (¬ · < ·) (¬ · < ·)] {l₁ l₂ l₃ : List α} (h₁ : l₁ ≤ l₂) (h₂ : l₂ < l₃) : l₁ < l₃
case pos α : Type u_1 inst✝² : DecidableEq α inst✝¹ : LT α inst✝ : DecidableLT α i₀ : Std.Irrefl fun x1 x2 => x1 < x2 i₁ : Std.Asymm fun x1 x2 => x1 < x2 i₂ : Std.Antisymm fun x1 x2 => ¬x1 < x2 i₃ : Trans (fun x1 x2 => ¬x1 < x2) (fun x1 x2 => ¬x1 < x2) fun x1 x2 => ¬x1 < x2 l₂ l₃ : List α a : α as bs : List α w₃ : Lex (fun x1 x2 => x1 < x2) as bs ih : ∀ {l₁ : List α}, l₁ ≤ as → l₁ < bs l₁ : List α h₁ : a :: l₁ ≤ a :: as w₄ : ¬a < a ⊢ a :: l₁ < a :: bs
exact Lex.cons (ih (le_of_cons_le_cons h₁))
no goals
1ae657684e05c692
Bimod.LeftUnitorBimod.hom_left_act_hom'
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem hom_left_act_hom' : ((regular R).tensorBimod P).actLeft ≫ hom P = (R.X ◁ hom P) ≫ P.actLeft
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C R S : Mon_ C P : Bimod R S inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) ⊢ ((α_ R.X R.X P.X).inv ≫ R.mul ▷ P.X) ≫ P.actLeft = R.X ◁ coequalizer.π (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) ≫ R.X ◁ coequalizer.desc P.actLeft ⋯ ≫ P.actLeft
slice_lhs 2 3 => rw [left_assoc]
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C R S : Mon_ C P : Bimod R S inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) ⊢ (α_ R.X R.X P.X).inv ≫ (α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft ≫ P.actLeft = R.X ◁ coequalizer.π (R.mul ▷ P.X) ((α_ R.X R.X P.X).hom ≫ R.X ◁ P.actLeft) ≫ R.X ◁ coequalizer.desc P.actLeft ⋯ ≫ P.actLeft
1a8d528bed358917
abs_eq_iff_mul_self_eq
Mathlib/Algebra/Order/Ring/Abs.lean
lemma abs_eq_iff_mul_self_eq : |a| = |b| ↔ a * a = b * b
α : Type u_1 inst✝ : LinearOrderedRing α a b : α ⊢ |a| = |b| ↔ |a| * |a| = |b| * |b|
exact (mul_self_inj (abs_nonneg a) (abs_nonneg b)).symm
no goals
708a5883b44c61f2
Equiv.Perm.mem_cycleFactorsFinset_support_le
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem mem_cycleFactorsFinset_support_le {p f : Perm α} (h : p ∈ cycleFactorsFinset f) : p.support ≤ f.support
α : Type u_2 inst✝¹ : DecidableEq α inst✝ : Fintype α p f : Perm α h : p.IsCycle ∧ ∀ a ∈ p.support, p a = f a x : α hx : x ∈ p.support ⊢ x ∈ f.support
rwa [mem_support, ← h.right x hx, ← mem_support]
no goals
203063167af9775b
List.isInfix_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Sublist.lean
theorem isInfix_iff : l₁ <:+: l₂ ↔ ∃ k, l₁.length + k ≤ l₂.length ∧ ∀ i (h : i < l₁.length), l₂[i + k]? = some l₁[i]
case mpr α✝ : Type u_1 l₁ l₂ : List α✝ ⊢ (∃ k, l₁.length + k ≤ l₂.length ∧ ∀ (i : Nat) (h : i < l₁.length), l₂[i + k]? = some l₁[i]) → l₁ <:+: l₂
rintro ⟨k, le, w⟩
case mpr.intro.intro α✝ : Type u_1 l₁ l₂ : List α✝ k : Nat le : l₁.length + k ≤ l₂.length w : ∀ (i : Nat) (h : i < l₁.length), l₂[i + k]? = some l₁[i] ⊢ l₁ <:+: l₂
8c836fc6d0b14b98
CochainComplex.mappingCone.inr_descCochain
Mathlib/Algebra/Homology/HomotopyCategory/MappingCone.lean
@[simp] lemma inr_descCochain : (Cochain.ofHom (inr φ)).comp (descCochain φ α β h) (zero_add n) = β
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C F G : CochainComplex C ℤ φ : F ⟶ G inst✝ : HasHomotopyCofiber φ K : CochainComplex C ℤ n m : ℤ α : Cochain F K m β : Cochain G K n h : m + 1 = n ⊢ (Cochain.ofHom (inr φ)).comp (descCochain φ α β h) ⋯ = β
simp [descCochain]
no goals
c8fce629a3043f89
FiniteDimensional.mem_span_of_iInf_ker_le_ker
Mathlib/LinearAlgebra/Dual.lean
theorem _root_.FiniteDimensional.mem_span_of_iInf_ker_le_ker [FiniteDimensional 𝕜 E] {L : ι → E →ₗ[𝕜] 𝕜} {K : E →ₗ[𝕜] 𝕜} (h : ⨅ i, LinearMap.ker (L i) ≤ ker K) : K ∈ span 𝕜 (range L)
ι : Type u_3 𝕜 : Type u_4 E : Type u_5 inst✝³ : Field 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : FiniteDimensional 𝕜 E L : ι → E →ₗ[𝕜] 𝕜 K : E →ₗ[𝕜] 𝕜 h : ⨅ i, ker (L i) ≤ ker K hK : K ∉ span 𝕜 (Set.range L) φ : Dual 𝕜 (E →ₗ[𝕜] 𝕜) φne : φ K ≠ 0 hφ : map φ (span 𝕜 (Set.range L)) = ⊥ φs : E := (evalEquiv 𝕜 E).symm φ i : ι ⊢ ∃ y ∈ span 𝕜 (Set.range L), φ y = (L i) φs
exact ⟨L i, Submodule.subset_span ⟨i, rfl⟩, (apply_evalEquiv_symm_apply 𝕜 E _ φ).symm⟩
no goals
25255e000b48b4e5
Set.Finite.isCompact_biUnion
Mathlib/Topology/Compactness/Compact.lean
theorem Set.Finite.isCompact_biUnion {s : Set ι} {f : ι → Set X} (hs : s.Finite) (hf : ∀ i ∈ s, IsCompact (f i)) : IsCompact (⋃ i ∈ s, f i) := isCompact_iff_ultrafilter_le_nhds'.2 fun l hl => by rw [Ultrafilter.finite_biUnion_mem_iff hs] at hl rcases hl with ⟨i, his, hi⟩ rcases (hf i his).ultrafilter_le_nhds _ (le_principal_iff.2 hi) with ⟨x, hxi, hlx⟩ exact ⟨x, mem_iUnion₂.2 ⟨i, his, hxi⟩, hlx⟩
case intro.intro X : Type u ι : Type u_1 inst✝ : TopologicalSpace X s : Set ι f : ι → Set X hs : s.Finite hf : ∀ i ∈ s, IsCompact (f i) l : Ultrafilter X i : ι his : i ∈ s hi : f i ∈ l ⊢ ∃ x ∈ ⋃ i ∈ s, f i, ↑l ≤ 𝓝 x
rcases (hf i his).ultrafilter_le_nhds _ (le_principal_iff.2 hi) with ⟨x, hxi, hlx⟩
case intro.intro.intro.intro X : Type u ι : Type u_1 inst✝ : TopologicalSpace X s : Set ι f : ι → Set X hs : s.Finite hf : ∀ i ∈ s, IsCompact (f i) l : Ultrafilter X i : ι his : i ∈ s hi : f i ∈ l x : X hxi : x ∈ f i hlx : ↑l ≤ 𝓝 x ⊢ ∃ x ∈ ⋃ i ∈ s, f i, ↑l ≤ 𝓝 x
314e5eedf1f80172
RatFunc.intDegree_add_le
Mathlib/FieldTheory/RatFunc/Degree.lean
theorem intDegree_add_le {x y : RatFunc K} (hy : y ≠ 0) (hxy : x + y ≠ 0) : intDegree (x + y) ≤ max (intDegree x) (intDegree y)
case pos K : Type u inst✝ : Field K x y : RatFunc K hy : y ≠ 0 hx : x = 0 hxy : ¬y = 0 ⊢ (x + y).intDegree ≤ x.intDegree ⊔ y.intDegree
simp [hx, hxy]
no goals
df522905dbc696e6
AnalyticAt.order_eq_zero_iff
Mathlib/Analysis/Analytic/Order.lean
/-- The order of an analytic function `f` at `z₀` is zero iff `f` does not vanish at `z₀`. -/ lemma order_eq_zero_iff (hf : AnalyticAt 𝕜 f z₀) : hf.order = 0 ↔ f z₀ ≠ 0
case mp 𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E z₀ : 𝕜 hf : AnalyticAt 𝕜 f z₀ g : 𝕜 → E left✝¹ : AnalyticAt 𝕜 g z₀ left✝ : g z₀ ≠ 0 hg : ∀ᶠ (z : 𝕜) in 𝓝 z₀, f z = (z - z₀) ^ 0 • g z ⊢ f z₀ ≠ 0
simpa [hg.self_of_nhds]
no goals
f89c330d4911bc56
Algebra.Extension.Hom.comp_id
Mathlib/RingTheory/Extension.lean
@[simp] lemma Hom.comp_id (f : Hom P P') : f.comp (Hom.id P) = f
R : Type u S : Type v inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : Algebra R S P : Extension R S R' : Type u_1 S' : Type u_2 inst✝⁴ : CommRing R' inst✝³ : CommRing S' inst✝² : Algebra R' S' P' : Extension R' S' inst✝¹ : Algebra R R' inst✝ : Algebra S S' f : P.Hom P' ⊢ f.comp (Hom.id P) = f
ext
case toRingHom.a R : Type u S : Type v inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : Algebra R S P : Extension R S R' : Type u_1 S' : Type u_2 inst✝⁴ : CommRing R' inst✝³ : CommRing S' inst✝² : Algebra R' S' P' : Extension R' S' inst✝¹ : Algebra R R' inst✝ : Algebra S S' f : P.Hom P' x✝ : P.Ring ⊢ (f.comp (Hom.id P)).toRingHom x✝ = f.toRingHom x✝
576140ccab98f1be
CategoryTheory.Limits.isIso_of_source_target_iso_zero
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
theorem isIso_of_source_target_iso_zero {X Y : C} (f : X ⟶ Y) (i : X ≅ 0) (j : Y ≅ 0) : IsIso f
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C X Y : C f : X ⟶ Y i : X ≅ 0 j : Y ≅ 0 ⊢ IsIso f
rw [zero_of_source_iso_zero f i]
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C X Y : C f : X ⟶ Y i : X ≅ 0 j : Y ≅ 0 ⊢ IsIso 0
a5aa73cbe5291376
Filter.le_comap_top
Mathlib/Order/Filter/Map.lean
theorem le_comap_top (f : α → β) (l : Filter α) : l ≤ comap f ⊤
α : Type u_1 β : Type u_2 f : α → β l : Filter α ⊢ l ≤ ⊤
exact le_top
no goals
f174d317256c6beb
ContDiffAt.eventually
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem ContDiffAt.eventually (h : ContDiffAt 𝕜 n f x) (h' : n ≠ ∞) : ∀ᶠ y in 𝓝 x, ContDiffAt 𝕜 n f y
𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F x : E n : WithTop ℕ∞ h : ContDiffAt 𝕜 n f x h' : n ≠ ∞ ⊢ ∀ᶠ (y : E) in 𝓝 x, ContDiffAt 𝕜 n f y
simpa [nhdsWithin_univ] using ContDiffWithinAt.eventually h h'
no goals
b27b5906a80f601a
IsNilpotent.exp_of_nilpotent_is_unit
Mathlib/RingTheory/Nilpotent/Exp.lean
theorem exp_of_nilpotent_is_unit {a : A} (h : IsNilpotent a) : IsUnit (exp a)
A : Type u_1 inst✝¹ : Ring A inst✝ : Algebra ℚ A a : A h : IsNilpotent a h₁ : Commute a (-a) h₂ : IsNilpotent (-a) h₃ : 1 = exp a * exp (-a) ⊢ exp (-a) * exp a = 1
rw [← exp_add_of_commute h₁.symm h₂ h, neg_add_cancel a, exp_zero_eq_one]
no goals
ecb00174aeba1950
linearEquiv_det_rotation
Mathlib/Analysis/Complex/Isometry.lean
theorem linearEquiv_det_rotation (a : Circle) : LinearEquiv.det (rotation a).toLinearEquiv = 1
a : Circle ⊢ LinearEquiv.det (rotation a).toLinearEquiv = 1
rw [← Units.eq_iff, LinearEquiv.coe_det, det_rotation, Units.val_one]
no goals
28ee5d0195ffd788
CategoryTheory.ShortComplex.HasRightHomology.hasKernel
Mathlib/Algebra/Homology/ShortComplex/RightHomology.lean
lemma hasKernel [S.HasRightHomology] [HasCokernel S.f] : HasKernel (cokernel.desc S.f S.g S.zero)
C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S : ShortComplex C inst✝¹ : S.HasRightHomology inst✝ : HasCokernel S.f h : S.RightHomologyData := S.rightHomologyData ⊢ HasKernel (cokernel.desc S.f S.g ⋯)
haveI : HasLimit (parallelPair h.g' 0) := ⟨⟨⟨_, h.hι'⟩⟩⟩
C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : HasZeroMorphisms C S : ShortComplex C inst✝¹ : S.HasRightHomology inst✝ : HasCokernel S.f h : S.RightHomologyData := S.rightHomologyData this : HasLimit (parallelPair h.g' 0) ⊢ HasKernel (cokernel.desc S.f S.g ⋯)
0960e28a5330c4e9
Int.bmod_zero
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem bmod_zero : Int.bmod 0 m = 0
m : Nat ⊢ (if 0 < (↑m + 1) / 2 then 0 else 0 - ↑m) = 0
simp only [Int.zero_sub, ite_eq_left_iff, Int.neg_eq_zero]
m : Nat ⊢ ¬0 < (↑m + 1) / 2 → ↑m = 0
aafdd0ab2162fca6
Nat.div_div_div_eq_div
Mathlib/Data/Nat/Init.lean
@[simp] lemma div_div_div_eq_div (dvd : b ∣ a) (dvd2 : a ∣ c) : c / (a / b) / b = c / a := match a, b, c with | 0, _, _ => by simp | a + 1, 0, _ => by simp at dvd | a + 1, c + 1, _ => by have a_split : a + 1 ≠ 0 := succ_ne_zero a have c_split : c + 1 ≠ 0 := succ_ne_zero c rcases dvd2 with ⟨k, rfl⟩ rcases dvd with ⟨k2, pr⟩ have k2_nonzero : k2 ≠ 0 := fun k2_zero => by simp [k2_zero] at pr rw [Nat.mul_div_cancel_left k (Nat.pos_of_ne_zero a_split), pr, Nat.mul_div_cancel_left k2 (Nat.pos_of_ne_zero c_split), Nat.mul_comm ((c + 1) * k2) k, ← Nat.mul_assoc k (c + 1) k2, Nat.mul_div_cancel _ (Nat.pos_of_ne_zero k2_nonzero), Nat.mul_div_cancel _ (Nat.pos_of_ne_zero c_split)]
a✝ b c a x✝ : ℕ dvd : 0 ∣ a + 1 dvd2 : a + 1 ∣ x✝ ⊢ x✝ / ((a + 1) / 0) / 0 = x✝ / (a + 1)
simp at dvd
no goals
eab95b5d7fe19e6b
Function.Surjective.lieModule_lcs_map_eq
Mathlib/Algebra/Lie/Nilpotent.lean
theorem Function.Surjective.lieModule_lcs_map_eq (k : ℕ) : (lowerCentralSeries R L M k : Submodule R M).map g = lowerCentralSeries R L₂ M₂ k
case succ.intro.intro.intro.intro R : Type u L : Type v M : Type w inst✝¹² : CommRing R inst✝¹¹ : LieRing L inst✝¹⁰ : LieAlgebra R L inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : LieRingModule L M inst✝⁶ : LieModule R L M L₂ : Type u_1 M₂ : Type u_2 inst✝⁵ : LieRing L₂ inst✝⁴ : LieAlgebra R L₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : LieRingModule L₂ M₂ f : L →ₗ⁅R⁆ L₂ g : M →ₗ[R] M₂ hfg : ∀ (x : L) (m : M), ⁅f x, g m⁆ = g ⁅x, m⁆ inst✝ : LieModule R L₂ M₂ hf_surj : Surjective ⇑f hg_surj : Surjective ⇑g k : ℕ ih : ↑(lowerCentralSeries R L₂ M₂ k) ≤ Submodule.map g ↑(lowerCentralSeries R L M k) n : M hn : n ∈ lowerCentralSeries R L M k y : L ⊢ ⁅f y, g n⁆ ∈ ⇑g '' {m | ∃ x, ∃ n ∈ lowerCentralSeries R L M k, ⁅x, n⁆ = m}
exact ⟨⁅y, n⁆, ⟨y, n, hn, rfl⟩, (hfg y n).symm⟩
no goals
027902f382a3a0a8
Metric.closure_eq_iInter_cthickening
Mathlib/Topology/MetricSpace/Thickening.lean
theorem closure_eq_iInter_cthickening (E : Set α) : closure E = ⋂ (δ : ℝ) (_ : 0 < δ), cthickening δ E
α : Type u inst✝ : PseudoEMetricSpace α E : Set α ⊢ closure E = ⋂ δ, ⋂ (_ : 0 < δ), cthickening δ E
rw [← cthickening_zero]
α : Type u inst✝ : PseudoEMetricSpace α E : Set α ⊢ cthickening 0 E = ⋂ δ, ⋂ (_ : 0 < δ), cthickening δ E
c1e605eb0b1be19a
gauge_eq_zero
Mathlib/Analysis/Convex/Gauge.lean
theorem gauge_eq_zero (hs : Absorbent ℝ s) (hb : Bornology.IsVonNBounded ℝ s) : gauge s x = 0 ↔ x = 0
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E x : E inst✝¹ : TopologicalSpace E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s h₀ : gauge s x = 0 hne : x ≠ 0 ⊢ False
have : {x}ᶜ ∈ comap (gauge s) (𝓝 0) := comap_gauge_nhds_zero_le hs hb (isOpen_compl_singleton.mem_nhds hne.symm)
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E x : E inst✝¹ : TopologicalSpace E inst✝ : T1Space E hs : Absorbent ℝ s hb : Bornology.IsVonNBounded ℝ s h₀ : gauge s x = 0 hne : x ≠ 0 this : {x}ᶜ ∈ comap (gauge s) (𝓝 0) ⊢ False
51b46a70cefabb44
MeasureTheory.stoppedProcess_eq_of_mem_finset
Mathlib/Probability/Process/Stopping.lean
theorem stoppedProcess_eq_of_mem_finset [LinearOrder ι] [AddCommMonoid E] {s : Finset ι} (n : ι) (hbdd : ∀ ω, τ ω < n → τ ω ∈ s) : stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i ∈ s.filter (· < n), Set.indicator {ω | τ ω = i} (u i)
case h.inl Ω : Type u_1 ι : Type u_3 τ : Ω → ι E : Type u_4 u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω m : ι hm : m ∈ Finset.filter (fun x => x < n) s ⊢ ω ∉ {ω | τ ω = m}
rw [Finset.mem_filter] at hm
case h.inl Ω : Type u_1 ι : Type u_3 τ : Ω → ι E : Type u_4 u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω m : ι hm : m ∈ s ∧ m < n ⊢ ω ∉ {ω | τ ω = m}
c67823aca57b6859
JacobsonNoether.exist_pow_eq_zero_of_le
Mathlib/FieldTheory/JacobsonNoether.lean
/-- If `D` is a purely inseparable extension of `k` of characteristic `p`, then for every element `a` of `D \ k`, there exists a natural number `m` greater than 0 such that `(a * x - x * a) ^ n = 0` (as linear maps) for every `n` greater than `(p ^ m)`. -/ lemma exist_pow_eq_zero_of_le (p : ℕ) [hchar : ExpChar D p] {a : D} (ha : a ∉ k) (hinsep : ∀ x : D, IsSeparable k x → x ∈ k): ∃ m, 1 ≤ m ∧ ∀ n, p ^ m ≤ n → (ad k D a)^[n] = 0
case h D : Type u_1 inst✝¹ : DivisionRing D inst✝ : Algebra.IsAlgebraic (↥k) D p : ℕ hchar : ExpChar D p a : D ha : a ∉ k hinsep : ∀ (x : D), IsSeparable (↥k) x → x ∈ k m : ℕ hm : 1 ≤ m ∧ a ^ p ^ m ∈ k n : ℕ hn : p ^ m ≤ n x : D ⊢ (⇑((ad (↥k) D) a))^[p ^ m] x = 0 x
rw [ad_eq_lmul_left_sub_lmul_right, ← pow_apply, Pi.sub_apply, sub_pow_expChar_pow_of_commute p m (commute_mulLeft_right a a), sub_apply, pow_mulLeft, mulLeft_apply, pow_mulRight, mulRight_apply, Pi.zero_apply, Subring.mem_center_iff.1 hm.2 x]
case h D : Type u_1 inst✝¹ : DivisionRing D inst✝ : Algebra.IsAlgebraic (↥k) D p : ℕ hchar : ExpChar D p a : D ha : a ∉ k hinsep : ∀ (x : D), IsSeparable (↥k) x → x ∈ k m : ℕ hm : 1 ≤ m ∧ a ^ p ^ m ∈ k n : ℕ hn : p ^ m ≤ n x : D ⊢ a ^ p ^ m * x - a ^ p ^ m * x = 0
6921e21d57128a1f
compl_mul_closure_one_eq
Mathlib/Topology/Algebra/Group/Basic.lean
@[to_additive] lemma compl_mul_closure_one_eq {t : Set G} (ht : t * (closure {1} : Set G) = t) : tᶜ * (closure {1} : Set G) = tᶜ
G : Type w inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : IsTopologicalGroup G t : Set G ht : t * closure {1} = t ⊢ tᶜ * closure {1} = tᶜ
refine Subset.antisymm ?_ (subset_mul_closure_one tᶜ)
G : Type w inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : IsTopologicalGroup G t : Set G ht : t * closure {1} = t ⊢ tᶜ * closure {1} ⊆ tᶜ
8ee113e952415294
AffineSubspace.isPreconnected_setOf_sSameSide
Mathlib/Analysis/Convex/Side.lean
theorem isPreconnected_setOf_sSameSide (s : AffineSubspace ℝ P) (x : P) : IsPreconnected { y | s.SSameSide x y }
case inl V : Type u_2 P : Type u_4 inst✝³ : SeminormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : PseudoMetricSpace P inst✝ : NormedAddTorsor V P s : AffineSubspace ℝ P x : P h : s = ⊥ ⊢ IsPreconnected {y | False}
exact isPreconnected_empty
no goals
b6c6fe063db720d1
tendsto_mul_cocompact_nhds_zero
Mathlib/Topology/Algebra/Monoid.lean
theorem tendsto_mul_cocompact_nhds_zero [TopologicalSpace α] [TopologicalSpace β] {f : α → M} {g : β → M} (f_cont : Continuous f) (g_cont : Continuous g) (hf : Tendsto f (cocompact α) (𝓝 0)) (hg : Tendsto g (cocompact β) (𝓝 0)) : Tendsto (fun i : α × β ↦ f i.1 * g i.2) (cocompact (α × β)) (𝓝 0)
M : Type u_3 α : Type u_6 β : Type u_7 inst✝⁴ : TopologicalSpace M inst✝³ : MulZeroClass M inst✝² : ContinuousMul M inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → M g : β → M f_cont : Continuous f g_cont : Continuous g hf : Tendsto f (cocompact α) (𝓝 0) hg : Tendsto g (cocompact β) (𝓝 0) l : Filter (M × M) := map (Prod.map f g) (cocompact (α × β)) l_def : l = map (Prod.map f g) (cocompact (α × β)) ⊢ Tendsto (fun i => f i.1 * g i.2) (cocompact (α × β)) (𝓝 0)
set K : Set (M × M) := (insert 0 (range f)) ×ˢ (insert 0 (range g))
M : Type u_3 α : Type u_6 β : Type u_7 inst✝⁴ : TopologicalSpace M inst✝³ : MulZeroClass M inst✝² : ContinuousMul M inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → M g : β → M f_cont : Continuous f g_cont : Continuous g hf : Tendsto f (cocompact α) (𝓝 0) hg : Tendsto g (cocompact β) (𝓝 0) l : Filter (M × M) := map (Prod.map f g) (cocompact (α × β)) l_def : l = map (Prod.map f g) (cocompact (α × β)) K : Set (M × M) := insert 0 (range f) ×ˢ insert 0 (range g) ⊢ Tendsto (fun i => f i.1 * g i.2) (cocompact (α × β)) (𝓝 0)
a631c0c35ab89c7f
IsLocalMaxOn.closure
Mathlib/Topology/Order/ExtrClosure.lean
theorem IsLocalMaxOn.closure (h : IsLocalMaxOn f s a) (hc : ContinuousOn f (closure s)) : IsLocalMaxOn f (closure s) a
case intro.intro.intro X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} ⊢ U ∩ closure s ⊆ {x | (fun x => f x ≤ f a) x}
rintro x ⟨hxU, hxs⟩
case intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Preorder Y inst✝ : OrderClosedTopology Y f : X → Y s : Set X a : X h : IsLocalMaxOn f s a hc : ContinuousOn f (closure s) U : Set X Uo : IsOpen U aU : a ∈ U hU : U ∩ s ⊆ {x | (fun x => f x ≤ f a) x} x : X hxU : x ∈ U hxs : x ∈ closure s ⊢ x ∈ {x | (fun x => f x ≤ f a) x}
4734a3091cd8637d
Matrix.detp_mul
Mathlib/LinearAlgebra/Matrix/SemiringInverse.lean
theorem detp_mul : detp 1 (A * B) + (detp 1 A * detp (-1) B + detp (-1) A * detp 1 B) = detp (-1) (A * B) + (detp 1 A * detp 1 B + detp (-1) A * detp (-1) B)
case h n : Type u_1 R : Type u_3 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : CommSemiring R A B : Matrix n n R s t : ℤˣ σ : Perm n hσ : σ ∈ ofSign s τ : Perm n ⊢ τ ∈ ofSign (t * s) ↔ τ ∈ Finset.map (mulRightEmbedding σ) (ofSign t)
simp_rw [mem_map, mulRightEmbedding_apply, ← eq_mul_inv_iff_mul_eq, exists_eq_right, mem_ofSign, _root_.map_mul, _root_.map_inv, mul_inv_eq_iff_eq_mul, mem_ofSign.mp hσ]
no goals
1c7cf392f1553616
sbtw_of_sbtw_of_sbtw_of_mem_affineSpan_pair
Mathlib/Analysis/Convex/Between.lean
theorem sbtw_of_sbtw_of_sbtw_of_mem_affineSpan_pair [NoZeroSMulDivisors R V] {t : Affine.Triangle R P} {i₁ i₂ i₃ : Fin 3} (h₁₂ : i₁ ≠ i₂) {p₁ p₂ p : P} (h₁ : Sbtw R (t.points i₂) p₁ (t.points i₃)) (h₂ : Sbtw R (t.points i₁) p₂ (t.points i₃)) (h₁' : p ∈ line[R, t.points i₁, p₁]) (h₂' : p ∈ line[R, t.points i₂, p₂]) : Sbtw R (t.points i₁) p p₁
R : Type u_1 V : Type u_2 P : Type u_4 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (t.points i₂) p₁ (t.points i₃) h₂ : Sbtw R (t.points i₁) p₂ (t.points i₃) h₁' : p ∈ affineSpan R {t.points i₁, p₁} h₂' : p ∈ affineSpan R {t.points i₂, p₂} this : DecidableRel fun x1 x2 => x1 < x2 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) h₁i : p₁ ∈ ⇑(lineMap (t.points i₂) (t.points i₃)) '' Set.Ioo 0 1 ⊢ Sbtw R (t.points i₁) p p₁
have h₂i := h₂.mem_image_Ioo
R : Type u_1 V : Type u_2 P : Type u_4 inst✝⁴ : LinearOrderedRing R inst✝³ : AddCommGroup V inst✝² : Module R V inst✝¹ : AddTorsor V P inst✝ : NoZeroSMulDivisors R V t : Affine.Triangle R P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ p₁ p₂ p : P h₁ : Sbtw R (t.points i₂) p₁ (t.points i₃) h₂ : Sbtw R (t.points i₁) p₂ (t.points i₃) h₁' : p ∈ affineSpan R {t.points i₁, p₁} h₂' : p ∈ affineSpan R {t.points i₂, p₂} this : DecidableRel fun x1 x2 => x1 < x2 := LinearOrderedRing.decidableLT h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ h3 : ∀ (i : Fin 3), i = i₁ ∨ i = i₂ ∨ i = i₃ hu : Finset.univ = {i₁, i₂, i₃} hp : p ∈ affineSpan R (Set.range t.points) h₁i : p₁ ∈ ⇑(lineMap (t.points i₂) (t.points i₃)) '' Set.Ioo 0 1 h₂i : p₂ ∈ ⇑(lineMap (t.points i₁) (t.points i₃)) '' Set.Ioo 0 1 ⊢ Sbtw R (t.points i₁) p p₁
96830884953f795d
List.zip_map'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem zip_map' (f : α → β) (g : α → γ) : ∀ l : List α, zip (l.map f) (l.map g) = l.map fun a => (f a, g a) | [] => rfl | a :: l => by simp only [map, zip_cons_cons, zip_map']
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β g : α → γ a : α l : List α ⊢ (map f (a :: l)).zip (map g (a :: l)) = map (fun a => (f a, g a)) (a :: l)
simp only [map, zip_cons_cons, zip_map']
no goals
2e482eb52d78edf3
MultilinearMap.map_sum_finset_aux
Mathlib/LinearAlgebra/Multilinear/Basic.lean
theorem map_sum_finset_aux [DecidableEq ι] [Fintype ι] {n : ℕ} (h : (∑ i, #(A i)) = n) : (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i)
case neg.h R : Type uR ι : Type uι M₁ : ι → Type v₁ M₂ : Type v₂ inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i inst✝¹ : DecidableEq ι inst✝ : Fintype ι this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ m < n, ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, #(A i) = m → (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, #(A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < #(A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j ∈ A i, g i j) = update (fun i => ∑ j ∈ A i, g i j) i₀ (∑ j ∈ B i₀, g i₀ j + ∑ j ∈ C i₀, g i₀ j) Beq : update (fun i => ∑ j ∈ A i, g i j) i₀ (∑ j ∈ B i₀, g i₀ j) = fun i => ∑ j ∈ B i, g i j Ceq : update (fun i => ∑ j ∈ A i, g i j) i₀ (∑ j ∈ C i₀, g i₀ j) = fun i => ∑ j ∈ C i, g i j Brec : (f fun i => ∑ j ∈ B i, g i j) = ∑ r ∈ piFinset B, f fun i => g i (r i) Crec : (f fun i => ∑ j ∈ C i, g i j) = ∑ r ∈ piFinset C, f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ ⊢ r ∈ piFinset B
refine mem_piFinset.2 fun i => ?_
case neg.h R : Type uR ι : Type uι M₁ : ι → Type v₁ M₂ : Type v₂ inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i inst✝¹ : DecidableEq ι inst✝ : Fintype ι this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ m < n, ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, #(A i) = m → (f fun i => ∑ j ∈ A i, g i j) = ∑ r ∈ piFinset A, f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, #(A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < #(A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j ∈ A i, g i j) = update (fun i => ∑ j ∈ A i, g i j) i₀ (∑ j ∈ B i₀, g i₀ j + ∑ j ∈ C i₀, g i₀ j) Beq : update (fun i => ∑ j ∈ A i, g i j) i₀ (∑ j ∈ B i₀, g i₀ j) = fun i => ∑ j ∈ B i, g i j Ceq : update (fun i => ∑ j ∈ A i, g i j) i₀ (∑ j ∈ C i₀, g i₀ j) = fun i => ∑ j ∈ C i, g i j Brec : (f fun i => ∑ j ∈ B i, g i j) = ∑ r ∈ piFinset B, f fun i => g i (r i) Crec : (f fun i => ∑ j ∈ C i, g i j) = ∑ r ∈ piFinset C, f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ i : ι ⊢ r i ∈ B i
981a316f387f732a