name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
ProbabilityTheory.Kernel.IsProper.lintegral_mul
Mathlib/Probability/Kernel/Proper.lean
lemma IsProper.lintegral_mul (hπ : IsProper π) (h𝓑𝓧 : 𝓑 ≤ 𝓧) (hf : Measurable[𝓧] f) (hg : Measurable[𝓑] g) (x₀ : X) : ∫⁻ x, g x * f x ∂(π x₀) = g x₀ * ∫⁻ x, f x ∂(π x₀)
case refine_1 X : Type u_1 𝓑 𝓧 : MeasurableSpace X π : Kernel X X f g : X → ℝ≥0∞ hπ : π.IsProper h𝓑𝓧 : 𝓑 ≤ 𝓧 hf : Measurable f hg : Measurable g x₀ : X c : ℝ≥0∞ A : Set X hA : MeasurableSet A ⊢ ∫⁻ (x : X), c * (A.indicator 1 x * f x) ∂π x₀ = c * (A.indicator 1 x₀ * ∫⁻ (x : X), f x ∂π x₀)
rw [lintegral_const_mul, hπ.lintegral_indicator_mul h𝓑𝓧 hf hA]
case refine_1.hf X : Type u_1 𝓑 𝓧 : MeasurableSpace X π : Kernel X X f g : X → ℝ≥0∞ hπ : π.IsProper h𝓑𝓧 : 𝓑 ≤ 𝓧 hf : Measurable f hg : Measurable g x₀ : X c : ℝ≥0∞ A : Set X hA : MeasurableSet A ⊢ Measurable fun x => A.indicator 1 x * f x
c4118f574b6ba09a
LinearMap.BilinForm.nondegenerate_restrict_iff_disjoint_ker
Mathlib/LinearAlgebra/SesquilinearForm.lean
lemma nondegenerate_restrict_iff_disjoint_ker (hs : ∀ x, 0 ≤ B x x) (hB : B.IsSymm) {W : Submodule R M} : (B.domRestrict₁₂ W W).Nondegenerate ↔ Disjoint W (LinearMap.ker B)
R : Type u_1 M : Type u_5 inst✝² : LinearOrderedCommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M B : LinearMap.BilinForm R M hs : ∀ (x : M), 0 ≤ (B x) x hB : IsSymm B W : Submodule R M hW : Disjoint W (ker B) hB' : (domRestrict₁₂ B W W).IsRefl x : M hx : x ∈ W h : ∀ (y : ↥W), ((domRestrict₁₂ B W W) ⟨x, hx⟩) y = 0 ⊢ ⟨x, hx⟩ = 0
simp_rw [Subtype.forall, domRestrict₁₂_apply] at h
R : Type u_1 M : Type u_5 inst✝² : LinearOrderedCommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M B : LinearMap.BilinForm R M hs : ∀ (x : M), 0 ≤ (B x) x hB : IsSymm B W : Submodule R M hW : Disjoint W (ker B) hB' : (domRestrict₁₂ B W W).IsRefl x : M hx : x ∈ W h : ∀ a ∈ W, (B x) a = 0 ⊢ ⟨x, hx⟩ = 0
4d1327212668c98c
LiouvilleWith.frequently_lt_rpow_neg
Mathlib/NumberTheory/Transcendental/Liouville/LiouvilleWith.lean
theorem frequently_lt_rpow_neg (h : LiouvilleWith p x) (hlt : q < p) : ∃ᶠ n : ℕ in atTop, ∃ m : ℤ, x ≠ m / n ∧ |x - m / n| < n ^ (-q)
case intro.intro p q x : ℝ h : LiouvilleWith p x hlt : q < p C : ℝ _hC₀ : 0 < C hC : ∃ᶠ (n : ℕ) in atTop, 1 ≤ n ∧ ∃ m, x ≠ ↑m / ↑n ∧ |x - ↑m / ↑n| < C / ↑n ^ p this : ∀ᶠ (n : ℕ) in atTop, C < ↑n ^ (p - q) ⊢ ∀ (x_1 : ℕ), (C < ↑x_1 ^ (p - q) ∧ 1 ≤ x_1 ∧ ∃ m, x ≠ ↑m / ↑x_1 ∧ |x - ↑m / ↑x_1| < C / ↑x_1 ^ p) → ∃ m, x ≠ ↑m / ↑x_1 ∧ |x - ↑m / ↑x_1| < ↑x_1 ^ (-q)
rintro n ⟨hnC, hn, m, hne, hlt⟩
case intro.intro.intro.intro.intro.intro p q x : ℝ h : LiouvilleWith p x hlt✝ : q < p C : ℝ _hC₀ : 0 < C hC : ∃ᶠ (n : ℕ) in atTop, 1 ≤ n ∧ ∃ m, x ≠ ↑m / ↑n ∧ |x - ↑m / ↑n| < C / ↑n ^ p this : ∀ᶠ (n : ℕ) in atTop, C < ↑n ^ (p - q) n : ℕ hnC : C < ↑n ^ (p - q) hn : 1 ≤ n m : ℤ hne : x ≠ ↑m / ↑n hlt : |x - ↑m / ↑n| < C / ↑n ^ p ⊢ ∃ m, x ≠ ↑m / ↑n ∧ |x - ↑m / ↑n| < ↑n ^ (-q)
ec54ba98d777e83f
IsCoprime.of_isCoprime_of_dvd_left
Mathlib/RingTheory/Coprime/Basic.lean
theorem IsCoprime.of_isCoprime_of_dvd_left (h : IsCoprime y z) (hdvd : x ∣ y) : IsCoprime x z
R : Type u inst✝ : CommSemiring R x y z : R h : IsCoprime y z hdvd : x ∣ y ⊢ IsCoprime x z
obtain ⟨d, rfl⟩ := hdvd
case intro R : Type u inst✝ : CommSemiring R x z d : R h : IsCoprime (x * d) z ⊢ IsCoprime x z
a10984dfd5fcfbc3
Stream'.Seq.of_mem_append
Mathlib/Data/Seq/Seq.lean
theorem of_mem_append {s₁ s₂ : Seq α} {a : α} (h : a ∈ append s₁ s₂) : a ∈ s₁ ∨ a ∈ s₂
α : Type u s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ s₁.append s₂ → s₁.append s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ c : α t₁ : Seq α m : a ∈ (cons c t₁).append s₂ e : (cons c t₁).append s₂ = cons b s' this : ((cons c t₁).append s₂).destruct = (cons b s').destruct ⊢ a = c ∨ a ∈ t₁.append s₂
simpa using m
no goals
616ea8064ee30260
RootPairing.isOrthogonal_symm
Mathlib/LinearAlgebra/RootSystem/Defs.lean
lemma isOrthogonal_symm : IsOrthogonal P i j ↔ IsOrthogonal P j i
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N i j : ι ⊢ P.IsOrthogonal i j ↔ P.IsOrthogonal j i
simp only [IsOrthogonal, and_comm]
no goals
fe6d30cd3cf9a391
Int.bmod_add_cancel_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem bmod_add_cancel_right (i : Int) : bmod (x + i) n = bmod (y + i) n ↔ bmod x n = bmod y n := ⟨fun H => by have := add_bmod_eq_add_bmod_right (-i) H rwa [Int.add_neg_cancel_right, Int.add_neg_cancel_right] at this, fun H => by rw [← bmod_add_bmod_congr, H, bmod_add_bmod_congr]⟩
x : Int n : Nat y i : Int H : x.bmod n = y.bmod n ⊢ (x + i).bmod n = (y + i).bmod n
rw [← bmod_add_bmod_congr, H, bmod_add_bmod_congr]
no goals
b4242a8172e2de9d
CategoryTheory.MonoidalOfChosenFiniteProducts.hexagon_forward
Mathlib/CategoryTheory/Monoidal/OfChosenFiniteProducts/Symmetric.lean
theorem hexagon_forward (X Y Z : C) : (BinaryFan.associatorOfLimitCone ℬ X Y Z).hom ≫ (Limits.BinaryFan.braiding (ℬ X (tensorObj ℬ Y Z)).isLimit (ℬ (tensorObj ℬ Y Z) X).isLimit).hom ≫ (BinaryFan.associatorOfLimitCone ℬ Y Z X).hom = tensorHom ℬ (Limits.BinaryFan.braiding (ℬ X Y).isLimit (ℬ Y X).isLimit).hom (𝟙 Z) ≫ (BinaryFan.associatorOfLimitCone ℬ Y X Z).hom ≫ tensorHom ℬ (𝟙 Y) (Limits.BinaryFan.braiding (ℬ X Z).isLimit (ℬ Z X).isLimit).hom
C : Type u inst✝ : Category.{v, u} C ℬ : (X Y : C) → LimitCone (pair X Y) X Y Z : C ⊢ ∀ (j : Discrete WalkingPair), ((BinaryFan.associatorOfLimitCone ℬ X Y Z).hom ≫ ((ℬ X (tensorObj ℬ Y Z)).isLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ Y Z) X).isLimit.swapBinaryFan).hom ≫ (BinaryFan.associatorOfLimitCone ℬ Y Z X).hom) ≫ (ℬ Y (ℬ Z X).cone.pt).cone.π.app j = ((ℬ (ℬ Y X).cone.pt Z).isLimit.lift (BinaryFan.mk (BinaryFan.fst (ℬ (ℬ X Y).cone.pt Z).cone ≫ ((ℬ X Y).isLimit.conePointUniqueUpToIso (ℬ Y X).isLimit.swapBinaryFan).hom) (BinaryFan.snd (ℬ (ℬ X Y).cone.pt Z).cone ≫ 𝟙 Z)) ≫ (BinaryFan.associatorOfLimitCone ℬ Y X Z).hom ≫ (ℬ Y (ℬ Z X).cone.pt).isLimit.lift (BinaryFan.mk (BinaryFan.fst (ℬ Y (ℬ X Z).cone.pt).cone ≫ 𝟙 Y) (BinaryFan.snd (ℬ Y (ℬ X Z).cone.pt).cone ≫ ((ℬ X Z).isLimit.conePointUniqueUpToIso (ℬ Z X).isLimit.swapBinaryFan).hom))) ≫ (ℬ Y (ℬ Z X).cone.pt).cone.π.app j
rintro ⟨⟨⟩⟩
case mk.left C : Type u inst✝ : Category.{v, u} C ℬ : (X Y : C) → LimitCone (pair X Y) X Y Z : C ⊢ ((BinaryFan.associatorOfLimitCone ℬ X Y Z).hom ≫ ((ℬ X (tensorObj ℬ Y Z)).isLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ Y Z) X).isLimit.swapBinaryFan).hom ≫ (BinaryFan.associatorOfLimitCone ℬ Y Z X).hom) ≫ (ℬ Y (ℬ Z X).cone.pt).cone.π.app { as := WalkingPair.left } = ((ℬ (ℬ Y X).cone.pt Z).isLimit.lift (BinaryFan.mk (BinaryFan.fst (ℬ (ℬ X Y).cone.pt Z).cone ≫ ((ℬ X Y).isLimit.conePointUniqueUpToIso (ℬ Y X).isLimit.swapBinaryFan).hom) (BinaryFan.snd (ℬ (ℬ X Y).cone.pt Z).cone ≫ 𝟙 Z)) ≫ (BinaryFan.associatorOfLimitCone ℬ Y X Z).hom ≫ (ℬ Y (ℬ Z X).cone.pt).isLimit.lift (BinaryFan.mk (BinaryFan.fst (ℬ Y (ℬ X Z).cone.pt).cone ≫ 𝟙 Y) (BinaryFan.snd (ℬ Y (ℬ X Z).cone.pt).cone ≫ ((ℬ X Z).isLimit.conePointUniqueUpToIso (ℬ Z X).isLimit.swapBinaryFan).hom))) ≫ (ℬ Y (ℬ Z X).cone.pt).cone.π.app { as := WalkingPair.left } case mk.right C : Type u inst✝ : Category.{v, u} C ℬ : (X Y : C) → LimitCone (pair X Y) X Y Z : C ⊢ ((BinaryFan.associatorOfLimitCone ℬ X Y Z).hom ≫ ((ℬ X (tensorObj ℬ Y Z)).isLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ Y Z) X).isLimit.swapBinaryFan).hom ≫ (BinaryFan.associatorOfLimitCone ℬ Y Z X).hom) ≫ (ℬ Y (ℬ Z X).cone.pt).cone.π.app { as := WalkingPair.right } = ((ℬ (ℬ Y X).cone.pt Z).isLimit.lift (BinaryFan.mk (BinaryFan.fst (ℬ (ℬ X Y).cone.pt Z).cone ≫ ((ℬ X Y).isLimit.conePointUniqueUpToIso (ℬ Y X).isLimit.swapBinaryFan).hom) (BinaryFan.snd (ℬ (ℬ X Y).cone.pt Z).cone ≫ 𝟙 Z)) ≫ (BinaryFan.associatorOfLimitCone ℬ Y X Z).hom ≫ (ℬ Y (ℬ Z X).cone.pt).isLimit.lift (BinaryFan.mk (BinaryFan.fst (ℬ Y (ℬ X Z).cone.pt).cone ≫ 𝟙 Y) (BinaryFan.snd (ℬ Y (ℬ X Z).cone.pt).cone ≫ ((ℬ X Z).isLimit.conePointUniqueUpToIso (ℬ Z X).isLimit.swapBinaryFan).hom))) ≫ (ℬ Y (ℬ Z X).cone.pt).cone.π.app { as := WalkingPair.right }
f0efb67d9e1bf6f6
DirichletCharacter.Odd.eval_neg
Mathlib/NumberTheory/DirichletCharacter/Basic.lean
lemma Odd.eval_neg (x : ZMod m) (hψ : ψ.Odd) : ψ (- x) = - ψ x
S : Type u_2 inst✝ : CommRing S m : ℕ ψ : DirichletCharacter S m x : ZMod m hψ : ψ (-1) = -1 ⊢ ψ (-1) * ψ x = -ψ x
simp [hψ]
no goals
0aff6b1f1935d13b
exists_rat_btwn
Mathlib/Algebra/Order/Archimedean/Basic.lean
theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y
case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n ⊢ x < ↑(↑(z + 1) / ↑n) ∧ ↑(↑(z + 1) / ↑n) < y
have n0 := Nat.cast_pos.1 n0'
case intro.intro α : Type u_1 inst✝¹ : LinearOrderedField α inst✝ : Archimedean α x y : α h : x < y n : ℕ nh : (y - x)⁻¹ < ↑n z : ℤ zh : ∀ (z_1 : ℤ), z_1 ≤ z ↔ ↑z_1 ≤ x * ↑n n0' : 0 < ↑n n0 : 0 < n ⊢ x < ↑(↑(z + 1) / ↑n) ∧ ↑(↑(z + 1) / ↑n) < y
876a28cf777622dc
List.getElem?_reverse'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem getElem?_reverse' : ∀ {l : List α} (i j), i + j + 1 = length l → l.reverse[i]? = l[j]? | [], _, _, _ => rfl | a::l, i, 0, h => by simp [Nat.succ.injEq] at h; simp [h, getElem?_append_right, Nat.succ.injEq] | a::l, i, j+1, h => by have := Nat.succ.inj h; simp at this ⊢ rw [getElem?_append_left, getElem?_reverse' _ _ this] rw [length_reverse, ← this]; apply Nat.lt_add_of_pos_right (Nat.succ_pos _)
α : Type u_1 a : α l : List α i j : Nat h : i + (j + 1) + 1 = (a :: l).length this : i + (j + 1) = l.length ⊢ (a :: l).reverse[i]? = (a :: l)[j + 1]?
simp at this ⊢
α : Type u_1 a : α l : List α i j : Nat h : i + (j + 1) + 1 = (a :: l).length this : i + (j + 1) = l.length ⊢ (l.reverse ++ [a])[i]? = l[j]?
c7805acdaa00531e
lt_map_inv_iff
Mathlib/Order/Hom/Basic.lean
theorem lt_map_inv_iff (f : F) {a : α} {b : β} : a < EquivLike.inv f b ↔ f a < b
F : Type u_1 α : Type u_2 β : Type u_3 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : EquivLike F α β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ f a < f (EquivLike.inv f b) ↔ f a < b
simp only [EquivLike.apply_inv_apply]
no goals
32bb5e38adf6ab93
BitVec.getElem_zero_ofNat_zero
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getElem_zero_ofNat_zero (i : Nat) (h : i < w) : (BitVec.ofNat w 0)[i] = false
w i : Nat h : i < w ⊢ (0#w)[i] = false
simp
no goals
0e148b70db0f3910
IntermediateField.adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable
Mathlib/FieldTheory/PurelyInseparable/PerfectClosure.lean
theorem adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable (S : Set E) [Algebra.IsSeparable F (adjoin F S)] (q : ℕ) [ExpChar F q] (n : ℕ) : adjoin F S = adjoin F ((· ^ q ^ n) '' S)
F : Type u E : Type v inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E S : Set E q : ℕ inst✝¹ : ExpChar F q n : ℕ L : IntermediateField F E := adjoin F S inst✝ : Algebra.IsSeparable F ↥L M : IntermediateField F E := adjoin F ((fun x => x ^ q ^ n) '' S) hi : M ≤ L this : Algebra ↥M ↥L := (inclusion hi).toAlgebra ⊢ L = M
haveI : Algebra.IsSeparable M (extendScalars hi) := Algebra.isSeparable_tower_top_of_isSeparable F M L
F : Type u E : Type v inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E S : Set E q : ℕ inst✝¹ : ExpChar F q n : ℕ L : IntermediateField F E := adjoin F S inst✝ : Algebra.IsSeparable F ↥L M : IntermediateField F E := adjoin F ((fun x => x ^ q ^ n) '' S) hi : M ≤ L this✝ : Algebra ↥M ↥L := (inclusion hi).toAlgebra this : Algebra.IsSeparable ↥M ↥(extendScalars hi) ⊢ L = M
5d9784243c5f5669
CoalgebraCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left
Mathlib/Algebra/Category/CoalgebraCat/ComonEquivalence.lean
theorem comul_tensorObj_tensorObj_left : Coalgebra.comul (R := R) (A := ((CoalgebraCat.of R M ⊗ CoalgebraCat.of R N) ⊗ CoalgebraCat.of R P : CoalgebraCat R)) = Coalgebra.comul (A := (M ⊗[R] N) ⊗[R] P)
R : Type u inst✝⁹ : CommRing R M N P : Type u inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : AddCommGroup P inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Coalgebra R M inst✝¹ : Coalgebra R N inst✝ : Coalgebra R P ⊢ ModuleCat.Hom.hom ((comonEquivalence R).symm.inverse.obj (of R M ⊗ of R N) ⊗ (comonEquivalence R).symm.inverse.obj (of R P)).comul = CoalgebraStruct.comul
dsimp only [Equivalence.symm_inverse, comonEquivalence_functor, toComon_obj, instCoalgebraStruct_comul]
R : Type u inst✝⁹ : CommRing R M N P : Type u inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : AddCommGroup P inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Coalgebra R M inst✝¹ : Coalgebra R N inst✝ : Coalgebra R P ⊢ ModuleCat.Hom.hom ((of R M ⊗ of R N).toComonObj ⊗ (of R P).toComonObj).comul = ↑(tensorTensorTensorComm R (M ⊗[R] N) (M ⊗[R] N) P P) ∘ₗ map (↑(tensorTensorTensorComm R M M N N) ∘ₗ map CoalgebraStruct.comul CoalgebraStruct.comul) CoalgebraStruct.comul
6198806ba36fecc6
Monoid.PushoutI.NormalWord.prod_smul
Mathlib/GroupTheory/PushoutI.lean
theorem prod_smul (g : PushoutI φ) (w : NormalWord d) : (g • w).prod = g * w.prod
case base ι : Type u_1 G : ι → Type u_2 H : Type u_3 inst✝³ : (i : ι) → Group (G i) inst✝² : Group H φ : (i : ι) → H →* G i d : Transversal φ inst✝¹ : DecidableEq ι inst✝ : (i : ι) → DecidableEq (G i) h : H w : NormalWord d ⊢ ((base φ) h • w).prod = (base φ) h * w.prod
rw [base_smul_eq_smul, prod_base_smul]
no goals
241b74ad5bbc10a4
ContinuousOn.aestronglyMeasurable_of_isSeparable
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
theorem ContinuousOn.aestronglyMeasurable_of_isSeparable [TopologicalSpace α] [PseudoMetrizableSpace α] [OpensMeasurableSpace α] [TopologicalSpace β] [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α} (hf : ContinuousOn f s) (hs : MeasurableSet s) (h's : TopologicalSpace.IsSeparable s) : AEStronglyMeasurable f (μ.restrict s)
α : Type u_1 β : Type u_2 inst✝⁵ : MeasurableSpace α inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetrizableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoMetrizableSpace β f : α → β s : Set α μ : Measure α hf : ContinuousOn f s hs : MeasurableSet s h's : IsSeparable s this : PseudoMetricSpace α := pseudoMetrizableSpacePseudoMetric α this✝¹ : MeasurableSpace β := borel β this✝ : BorelSpace β ⊢ AEMeasurable f (μ.restrict s) ∧ ∃ t, IsSeparable t ∧ ∀ᵐ (x : α) ∂μ.restrict s, f x ∈ t
refine ⟨hf.aemeasurable hs, f '' s, hf.isSeparable_image h's, ?_⟩
α : Type u_1 β : Type u_2 inst✝⁵ : MeasurableSpace α inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetrizableSpace α inst✝² : OpensMeasurableSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoMetrizableSpace β f : α → β s : Set α μ : Measure α hf : ContinuousOn f s hs : MeasurableSet s h's : IsSeparable s this : PseudoMetricSpace α := pseudoMetrizableSpacePseudoMetric α this✝¹ : MeasurableSpace β := borel β this✝ : BorelSpace β ⊢ ∀ᵐ (x : α) ∂μ.restrict s, f x ∈ f '' s
1b30cac63b07288d
WeierstrassCurve.Jacobian.negAddY_of_Z_eq_zero_right
Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean
lemma negAddY_of_Z_eq_zero_right {P Q : Fin 3 → R} (hQ : W'.Equation Q) (hQz : Q z = 0) : W'.negAddY P Q = (-(Q x * P z)) ^ 3 * W'.negY P
case a.a R : Type r inst✝ : CommRing R W' : Jacobian R P Q : Fin 3 → R hQ : W'.Equation Q hQz : Q z = 0 ⊢ -P y * Q x ^ 3 * P z ^ 3 + 2 * P y * Q y ^ 2 * P z ^ 3 - 3 * P x ^ 2 * Q x * Q y * P z ^ 2 * 0 + 3 * P x * P y * Q x ^ 2 * P z * 0 ^ 2 + P x ^ 3 * Q y * 0 ^ 3 - 2 * P y ^ 2 * Q y * 0 ^ 3 + W'.a₁ * P x * Q y ^ 2 * P z ^ 4 + W'.a₁ * P y * Q x * Q y * P z ^ 3 * 0 - W'.a₁ * P x * P y * Q y * P z * 0 ^ 3 - W'.a₁ * P y ^ 2 * Q x * 0 ^ 4 - 2 * W'.a₂ * P x * Q x * Q y * P z ^ 4 * 0 + 2 * W'.a₂ * P x * P y * Q x * P z * 0 ^ 4 + W'.a₃ * Q y ^ 2 * P z ^ 6 - W'.a₃ * P y ^ 2 * 0 ^ 6 - W'.a₄ * Q x * Q y * P z ^ 6 * 0 - W'.a₄ * P x * Q y * P z ^ 4 * 0 ^ 3 + W'.a₄ * P y * Q x * P z ^ 3 * 0 ^ 4 + W'.a₄ * P x * P y * P z * 0 ^ 6 - 2 * W'.a₆ * Q y * P z ^ 6 * 0 ^ 3 + 2 * W'.a₆ * P y * P z ^ 3 * 0 ^ 6 + (P y - (-P y - W'.a₁ * P x * P z - W'.a₃ * P z ^ 3)) * P z ^ 3 * Q x ^ 3 - ((-(Q x * P z)) ^ 3 * (-P y - W'.a₁ * P x * P z - W'.a₃ * P z ^ 3) + (P y - (-P y - W'.a₁ * P x * P z - W'.a₃ * P z ^ 3)) * P z ^ 3 * Q y ^ 2) = 0
ring1
no goals
8d8319522de87cc7
Polynomial.X_mul
Mathlib/Algebra/Polynomial/Basic.lean
theorem X_mul : X * p = p * X
case ofFinsupp.H R : Type u inst✝ : Semiring R toFinsupp✝ : R[ℕ] x✝ : ℕ ⊢ (Finsupp.single 1 1 * toFinsupp✝) x✝ = (toFinsupp✝ * Finsupp.single 1 1) x✝
simp [AddMonoidAlgebra.mul_apply, AddMonoidAlgebra.sum_single_index, add_comm]
no goals
2210153ddaf42b3f
PSigma.eta
Mathlib/.lake/packages/lean4/src/lean/Init/Core.lean
theorem PSigma.eta {α : Sort u} {β : α → Sort v} {a₁ a₂ : α} {b₁ : β a₁} {b₂ : β a₂} (h₁ : a₁ = a₂) (h₂ : Eq.ndrec b₁ h₁ = b₂) : PSigma.mk a₁ b₁ = PSigma.mk a₂ b₂
α : Sort u β : α → Sort v a₁ : α b₁ : β a₁ ⊢ ⟨a₁, b₁⟩ = ⟨a₁, Eq.ndrec b₁ ⋯⟩
exact rfl
no goals
8bb501dff720abc2
Submodule.LinearDisjoint.of_basis_mul'
Mathlib/LinearAlgebra/LinearDisjoint.lean
theorem of_basis_mul' {κ ι : Type*} (m : Basis κ R M) (n : Basis ι R N) (H : Function.Injective (Finsupp.linearCombination R fun i : κ × ι ↦ (m i.1 * n i.2 : S))) : M.LinearDisjoint N
R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S κ : Type u_1 ι : Type u_2 m : Basis κ R ↥M n : Basis ι R ↥N H : Function.Injective ⇑(Finsupp.linearCombination R fun i => ↑(m i.1) * ↑(n i.2)) i0 : (κ × ι →₀ R) ≃ₗ[R] (κ →₀ R) ⊗[R] (ι →₀ R) := (finsuppTensorFinsupp' R κ ι).symm i1 : ↥M ⊗[R] ↥N ≃ₗ[R] (κ →₀ R) ⊗[R] (ι →₀ R) := TensorProduct.congr m.repr n.repr i : (κ × ι →₀ R) →ₗ[R] S := M.mulMap N ∘ₗ ↑(i0 ≪≫ₗ i1.symm) this : i = Finsupp.linearCombination R fun i => ↑(m i.1) * ↑(n i.2) ⊢ M.LinearDisjoint N
simp_rw [← this, i, LinearMap.coe_comp, LinearEquiv.coe_coe, EquivLike.injective_comp] at H
R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S κ : Type u_1 ι : Type u_2 m : Basis κ R ↥M n : Basis ι R ↥N i0 : (κ × ι →₀ R) ≃ₗ[R] (κ →₀ R) ⊗[R] (ι →₀ R) := (finsuppTensorFinsupp' R κ ι).symm i1 : ↥M ⊗[R] ↥N ≃ₗ[R] (κ →₀ R) ⊗[R] (ι →₀ R) := TensorProduct.congr m.repr n.repr i : (κ × ι →₀ R) →ₗ[R] S := M.mulMap N ∘ₗ ↑(i0 ≪≫ₗ i1.symm) this : i = Finsupp.linearCombination R fun i => ↑(m i.1) * ↑(n i.2) H : Function.Injective ⇑(M.mulMap N) ⊢ M.LinearDisjoint N
2e5b7c565dbbc520
GroupExtension.IsConj.trans
Mathlib/GroupTheory/GroupExtension/Basic.lean
theorem trans {s₁ s₂ s₃ : S.Splitting} (h₁ : S.IsConj s₁ s₂) (h₂ : S.IsConj s₂ s₃) : S.IsConj s₁ s₃
case intro.intro N : Type u_1 G : Type u_2 inst✝² : Group N inst✝¹ : Group G E : Type u_3 inst✝ : Group E S : GroupExtension N E G s₁ s₂ s₃ : S.Splitting n₁ : N hn₁ : ⇑s₁ = fun g => S.inl n₁ * s₂ g * (S.inl n₁)⁻¹ n₂ : N hn₂ : ⇑s₂ = fun g => S.inl n₂ * s₃ g * (S.inl n₂)⁻¹ ⊢ S.IsConj s₁ s₃
exact ⟨n₁ * n₂, by simp only [hn₁, hn₂, map_mul]; group⟩
no goals
75033f227f23746b
Matroid.map_closure_eq
Mathlib/Data/Matroid/Closure.lean
@[simp] lemma map_closure_eq {β : Type*} (M : Matroid α) (f : α → β) (hf) (X : Set β) : (M.map f hf).closure X = f '' M.closure (f ⁻¹' X)
case mp α : Type u_2 β : Type u_3 M : Matroid α f : α → β hf : InjOn f M.E X : Set β I : Set α hI : M.Indep I e : β ⊢ ((∃ x ∈ M.E, f x = e) ∧ ∀ (x : Set α), M.Indep x → insert e (f '' I) = f '' x → ∃ x ∈ I, f x = e) → ∃ x, (x ∈ M.E ∧ (M.Indep (insert x I) → x ∈ I)) ∧ f x = e
rintro ⟨⟨x, hxE, rfl⟩, h2⟩
case mp.intro.intro.intro α : Type u_2 β : Type u_3 M : Matroid α f : α → β hf : InjOn f M.E X : Set β I : Set α hI : M.Indep I x : α hxE : x ∈ M.E h2 : ∀ (x_1 : Set α), M.Indep x_1 → insert (f x) (f '' I) = f '' x_1 → ∃ x_2 ∈ I, f x_2 = f x ⊢ ∃ x_1, (x_1 ∈ M.E ∧ (M.Indep (insert x_1 I) → x_1 ∈ I)) ∧ f x_1 = f x
6a1d5e64a78caa46
NNReal.IsConjExponent.inv_inv
Mathlib/Data/Real/ConjExponents.lean
protected lemma inv_inv (ha : a ≠ 0) (hb : b ≠ 0) (hab : a + b = 1) : a⁻¹.IsConjExponent b⁻¹ := ⟨(one_lt_inv₀ ha.bot_lt).2 <| by rw [← hab]; exact lt_add_of_pos_right _ hb.bot_lt, by simpa only [inv_inv] using hab⟩
a b : ℝ≥0 ha : a ≠ 0 hb : b ≠ 0 hab : a + b = 1 ⊢ a < 1
rw [← hab]
a b : ℝ≥0 ha : a ≠ 0 hb : b ≠ 0 hab : a + b = 1 ⊢ a < a + b
f44417bc28a58013
SpectrumRestricts.nnreal_iff_spectralRadius_le
Mathlib/Analysis/Normed/Algebra/Spectrum.lean
lemma nnreal_iff_spectralRadius_le [Algebra ℝ A] {a : A} {t : ℝ≥0} (ht : spectralRadius ℝ a ≤ t) : SpectrumRestricts a ContinuousMap.realToNNReal ↔ spectralRadius ℝ (algebraMap ℝ A t - a) ≤ t
A : Type u_3 inst✝¹ : Ring A inst✝ : Algebra ℝ A a : A t : ℝ≥0 ht : spectralRadius ℝ a ≤ ↑t this : spectrum ℝ a ⊆ Set.Icc (-↑t) ↑t h : ∀ x ∈ spectrum ℝ a, 0 ≤ x x : ℝ hx : x ∈ {↑t} - spectrum ℝ a ⊢ ∃ y ∈ spectrum ℝ a, ↑t - y = x
simpa using hx
no goals
23e88e5a29773e00
Submodule.one_le_one_div
Mathlib/Algebra/Algebra/Operations.lean
theorem one_le_one_div {I : Submodule R A} : 1 ≤ 1 / I ↔ I ≤ 1
case mpr R : Type u inst✝² : CommSemiring R A : Type v inst✝¹ : CommSemiring A inst✝ : Algebra R A I : Submodule R A hI : I ≤ 1 ⊢ 1 ≤ 1 / I
rwa [le_div_iff_mul_le, one_mul]
no goals
fd5f5935d310a5ca
WeierstrassCurve.ψ₂_sq
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Basic.lean
lemma ψ₂_sq : W.ψ₂ ^ 2 = C W.Ψ₂Sq + 4 * W.toAffine.polynomial
R : Type r inst✝ : CommRing R W : WeierstrassCurve R ⊢ W.ψ₂ ^ 2 = C W.Ψ₂Sq + 4 * W.toAffine.polynomial
rw [C_Ψ₂Sq, sub_add_cancel]
no goals
e554a9b2f346690c
WittVector.wittSub_zero
Mathlib/RingTheory/WittVector/Defs.lean
theorem wittSub_zero : wittSub p 0 = X (0, 0) - X (1, 0)
p : ℕ hp : Fact (Nat.Prime p) ⊢ wittSub p 0 = X (0, 0) - X (1, 0)
apply MvPolynomial.map_injective (Int.castRingHom ℚ) Int.cast_injective
case a p : ℕ hp : Fact (Nat.Prime p) ⊢ (map (Int.castRingHom ℚ)) (wittSub p 0) = (map (Int.castRingHom ℚ)) (X (0, 0) - X (1, 0))
5dea8bc048ab8d80
IntermediateField.AdjoinSimple.trace_gen_eq_zero
Mathlib/RingTheory/Trace/Basic.lean
theorem trace_gen_eq_zero {x : L} (hx : ¬IsIntegral K x) : Algebra.trace K K⟮x⟯ (AdjoinSimple.gen K x) = 0
case h.intro.intro.refine_1 K : Type u_4 L : Type u_5 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L x : L s : Finset ↥K⟮x⟯ b : Basis { x_1 // x_1 ∈ s } K ↥K⟮x⟯ ⊢ (Subalgebra.toSubmodule K⟮x⟯.toSubalgebra).FG
exact (Submodule.fg_iff_finiteDimensional _).mpr (FiniteDimensional.of_fintype_basis b)
no goals
e3d62924677daba0
Poly.induction
Mathlib/NumberTheory/Dioph.lean
theorem induction {C : Poly α → Prop} (H1 : ∀ i, C (proj i)) (H2 : ∀ n, C (const n)) (H3 : ∀ f g, C f → C g → C (f - g)) (H4 : ∀ f g, C f → C g → C (f * g)) (f : Poly α) : C f
case mk.proj α : Type u_1 C : Poly α → Prop H1 : ∀ (i : α), C (proj i) H2 : ∀ (n : ℤ), C (const n) H3 : ∀ (f g : Poly α), C f → C g → C (f - g) H4 : ∀ (f g : Poly α), C f → C g → C (f * g) f : (α → ℕ) → ℤ i✝ : α ⊢ C ⟨fun x => ↑(x i✝), ⋯⟩
apply H1
no goals
62d6795f68e83879
exists_mem_nhds_zero_mul_subset
Mathlib/Topology/Algebra/Monoid.lean
theorem exists_mem_nhds_zero_mul_subset {K U : Set M} (hK : IsCompact K) (hU : U ∈ 𝓝 0) : ∃ V ∈ 𝓝 0, K * V ⊆ U
case refine_3.intro.intro.intro.intro M : Type u_3 inst✝² : TopologicalSpace M inst✝¹ : MulZeroClass M inst✝ : ContinuousMul M K U : Set M hK : IsCompact K hU : U ∈ 𝓝 0 s t V : Set M V_in : V ∈ 𝓝 0 hV' : s * V ⊆ U W : Set M W_in : W ∈ 𝓝 0 hW' : t * W ⊆ U ⊢ ∃ V ∈ 𝓝 0, (s ∪ t) * V ⊆ U
use V ∩ W, inter_mem V_in W_in
case right M : Type u_3 inst✝² : TopologicalSpace M inst✝¹ : MulZeroClass M inst✝ : ContinuousMul M K U : Set M hK : IsCompact K hU : U ∈ 𝓝 0 s t V : Set M V_in : V ∈ 𝓝 0 hV' : s * V ⊆ U W : Set M W_in : W ∈ 𝓝 0 hW' : t * W ⊆ U ⊢ (s ∪ t) * (V ∩ W) ⊆ U
75e54ced8d3ab4b1
Set.image2_iUnion_left
Mathlib/Data/Set/Lattice.lean
theorem image2_iUnion_left (s : ι → Set α) (t : Set β) : image2 f (⋃ i, s i) t = ⋃ i, image2 f (s i) t
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_5 f : α → β → γ s : ι → Set α t : Set β ⊢ image2 f (⋃ i, s i) t = ⋃ i, image2 f (s i) t
simp only [← image_prod, iUnion_prod_const, image_iUnion]
no goals
70ab160b17c814e2
Lists.Equiv.antisymm_iff
Mathlib/SetTheory/Lists.lean
theorem Equiv.antisymm_iff {l₁ l₂ : Lists' α true} : of' l₁ ~ of' l₂ ↔ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁
α : Type u_1 l₁ l₂ : Lists' α true h : of' l₁ ~ of' l₂ ⊢ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁
obtain - | ⟨h₁, h₂⟩ := h
case refl α : Type u_1 l₁ : Lists' α true ⊢ l₁ ⊆ l₁ ∧ l₁ ⊆ l₁ case antisymm α : Type u_1 l₁ l₂ : Lists' α true h₁ : l₁.Subset l₂ h₂ : l₂.Subset l₁ ⊢ l₁ ⊆ l₂ ∧ l₂ ⊆ l₁
b18e28e6f039acda
Lean.Order.Array.monotone_allM
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_allM {m : Type → Type v} [Monad m] [∀ α, PartialOrder (m α)] [MonoBind m] {α : Type u} (f : γ → α → m Bool) (xs : Array α) (start stop : Nat) (hmono : monotone f) : monotone (fun x => xs.allM (f x) start stop)
γ : Type w inst✝³ : PartialOrder γ m : Type → Type v inst✝² : Monad m inst✝¹ : (α : Type) → PartialOrder (m α) inst✝ : MonoBind m α : Type u f : γ → α → m Bool xs : Array α start stop : Nat hmono : monotone f ⊢ monotone fun x => do let __do_lift ← Array.anyM (fun v => do let __do_lift ← f x v pure !__do_lift) xs start stop pure !__do_lift
apply monotone_bind
case hmono₁ γ : Type w inst✝³ : PartialOrder γ m : Type → Type v inst✝² : Monad m inst✝¹ : (α : Type) → PartialOrder (m α) inst✝ : MonoBind m α : Type u f : γ → α → m Bool xs : Array α start stop : Nat hmono : monotone f ⊢ monotone fun x => Array.anyM (fun v => do let __do_lift ← f x v pure !__do_lift) xs start stop case hmono₂ γ : Type w inst✝³ : PartialOrder γ m : Type → Type v inst✝² : Monad m inst✝¹ : (α : Type) → PartialOrder (m α) inst✝ : MonoBind m α : Type u f : γ → α → m Bool xs : Array α start stop : Nat hmono : monotone f ⊢ monotone fun x __do_lift => pure !__do_lift
cf015d7f59a8c09d
MeasureTheory.Measure.prod_swap
Mathlib/MeasureTheory/Measure/Prod.lean
theorem prod_swap : map Prod.swap (μ.prod ν) = ν.prod μ
case h α : Type u_1 β : Type u_2 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β μ : Measure α ν : Measure β inst✝¹ : SFinite ν inst✝ : SFinite μ s : Set (β × α) hs : MeasurableSet s ⊢ ∑' (i : ℕ × ℕ), (map Prod.swap ((sfiniteSeq μ i.1).prod (sfiniteSeq ν i.2))) s = ∑' (i : ℕ × ℕ), (map Prod.swap ((sfiniteSeq μ i.2).prod (sfiniteSeq ν i.1))) s
exact ((Equiv.prodComm ℕ ℕ).tsum_eq _).symm
no goals
604d2c93da35b541
Matrix.toBlock_diagonal_disjoint
Mathlib/Data/Matrix/Block.lean
theorem toBlock_diagonal_disjoint (d : m → α) {p q : m → Prop} (hpq : Disjoint p q) : Matrix.toBlock (diagonal d) p q = 0
case a.mk.mk m : Type u_2 α : Type u_12 inst✝¹ : DecidableEq m inst✝ : Zero α d : m → α p q : m → Prop hpq : Disjoint p q i : m hi : p i j : m hj : q j this : i ≠ j ⊢ (diagonal d).toBlock p q ⟨i, hi⟩ ⟨j, hj⟩ = 0 ⟨i, hi⟩ ⟨j, hj⟩
simp [diagonal_apply_ne d this]
no goals
33bcebef30499139
Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct
Mathlib/Algebra/Algebra/Subalgebra/Centralizer.lean
/-- Let `R` be a commutative ring and `A, B` be `R`-algebras where `B` is free as `R`-module. For any subset `S ⊆ A`, the centralizer of `S ⊗ 1 ⊆ A ⊗ B` is `C_A(S) ⊗ B` where `C_A(S)` is the centralizer of `S` in `A`. -/ lemma centralizer_coe_image_includeLeft_eq_center_tensorProduct (S : Set A) [Module.Free R B] : Subalgebra.centralizer R (Algebra.TensorProduct.includeLeft (S := R) '' S) = (Algebra.TensorProduct.map (Subalgebra.centralizer R (S : Set A)).val (AlgHom.id R B)).range
case h.mp.intro R : Type u_1 inst✝⁵ : CommSemiring R A : Type u_2 inst✝⁴ : Semiring A inst✝³ : Algebra R A B : Type u_3 inst✝² : Semiring B inst✝¹ : Algebra R B S : Set A inst✝ : Module.Free R B ℬ : Basis (Module.Free.ChooseBasisIndex R B) R B := Module.Free.chooseBasis R B b : Module.Free.ChooseBasisIndex R B →₀ A j : Module.Free.ChooseBasisIndex R B hj : j ∈ b.support x : A hx : x ∈ S hw : (x ⊗ₜ[R] 1 * b.sum fun i m => m ⊗ₜ[R] ℬ i) = (b.sum fun i m => m ⊗ₜ[R] ℬ i) * x ⊗ₜ[R] 1 ⊢ x • b = mapRange (fun x_1 => x_1 * x) ⋯ b
simp only [Finsupp.sum, Finset.mul_sum, Algebra.TensorProduct.tmul_mul_tmul, one_mul, Finset.sum_mul, mul_one] at hw
case h.mp.intro R : Type u_1 inst✝⁵ : CommSemiring R A : Type u_2 inst✝⁴ : Semiring A inst✝³ : Algebra R A B : Type u_3 inst✝² : Semiring B inst✝¹ : Algebra R B S : Set A inst✝ : Module.Free R B ℬ : Basis (Module.Free.ChooseBasisIndex R B) R B := Module.Free.chooseBasis R B b : Module.Free.ChooseBasisIndex R B →₀ A j : Module.Free.ChooseBasisIndex R B hj : j ∈ b.support x : A hx : x ∈ S hw : ∑ i ∈ b.support, (x * b i) ⊗ₜ[R] ℬ i = ∑ i ∈ b.support, (b i * x) ⊗ₜ[R] ℬ i ⊢ x • b = mapRange (fun x_1 => x_1 * x) ⋯ b
104f26fc78558199
powers_eq_top_of_prime_card
Mathlib/GroupTheory/SpecificGroups/Cyclic.lean
theorem powers_eq_top_of_prime_card {p : ℕ} [hp : Fact p.Prime] (h : Nat.card G = p) {g : G} (hg : g ≠ 1) : Submonoid.powers g = ⊤
case h G : Type u_2 inst✝ : Group G p : ℕ hp : Fact (Nat.Prime p) h : Nat.card G = p g : G hg : g ≠ 1 x : G ⊢ x ∈ Submonoid.powers g ↔ x ∈ ⊤
simp [mem_powers_of_prime_card h hg]
no goals
432db5b83eafddb1
Besicovitch.exists_closedBall_covering_tsum_measure_le
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exists_closedBall_covering_tsum_measure_le (μ : Measure α) [SFinite μ] [Measure.OuterRegular μ] {ε : ℝ≥0∞} (hε : ε ≠ 0) (f : α → Set ℝ) (s : Set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty) : ∃ (t : Set α) (r : α → ℝ), t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ (s ⊆ ⋃ x ∈ t, closedBall x (r x)) ∧ (∑' x : t, μ (closedBall x (r x))) ≤ μ s + ε
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝⁶ : MetricSpace α inst✝⁵ : SecondCountableTopology α inst✝⁴ : MeasurableSpace α inst✝³ : OpensMeasurableSpace α inst✝² : HasBesicovitchCovering α μ : Measure α inst✝¹ : SFinite μ inst✝ : μ.OuterRegular ε : ℝ≥0∞ hε : ε ≠ 0 f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty u : Set α su : u ⊇ s u_open : IsOpen u μu : μ u ≤ μ s + ε / 2 R : α → ℝ hR : ∀ x ∈ s, R x > 0 ∧ ball x (R x) ⊆ u t0 : Set α r0 : α → ℝ t0_count : t0.Countable t0s : t0 ⊆ s hr0 : ∀ x ∈ t0, r0 x ∈ f x ∩ Ioo 0 (R x) μt0 : μ (s \ ⋃ x ∈ t0, closedBall x (r0 x)) = 0 t0_disj : t0.PairwiseDisjoint fun x => closedBall x (r0 x) s' : Set α := s \ ⋃ x ∈ t0, closedBall x (r0 x) s's : s' ⊆ s N : ℕ τ : ℝ hτ : 1 < τ H : IsEmpty (SatelliteConfig α N τ) ⊢ ∃ t r, t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ s ⊆ ⋃ x ∈ t, closedBall x (r x) ∧ ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + ε
obtain ⟨v, s'v, v_open, μv⟩ : ∃ v, v ⊇ s' ∧ IsOpen v ∧ μ v ≤ μ s' + ε / 2 / N := Set.exists_isOpen_le_add _ _ (by simp only [ne_eq, ENNReal.div_eq_zero_iff, hε, ENNReal.ofNat_ne_top, or_self, ENNReal.natCast_ne_top, not_false_eq_true])
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝⁶ : MetricSpace α inst✝⁵ : SecondCountableTopology α inst✝⁴ : MeasurableSpace α inst✝³ : OpensMeasurableSpace α inst✝² : HasBesicovitchCovering α μ : Measure α inst✝¹ : SFinite μ inst✝ : μ.OuterRegular ε : ℝ≥0∞ hε : ε ≠ 0 f : α → Set ℝ s : Set α hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).Nonempty u : Set α su : u ⊇ s u_open : IsOpen u μu : μ u ≤ μ s + ε / 2 R : α → ℝ hR : ∀ x ∈ s, R x > 0 ∧ ball x (R x) ⊆ u t0 : Set α r0 : α → ℝ t0_count : t0.Countable t0s : t0 ⊆ s hr0 : ∀ x ∈ t0, r0 x ∈ f x ∩ Ioo 0 (R x) μt0 : μ (s \ ⋃ x ∈ t0, closedBall x (r0 x)) = 0 t0_disj : t0.PairwiseDisjoint fun x => closedBall x (r0 x) s' : Set α := s \ ⋃ x ∈ t0, closedBall x (r0 x) s's : s' ⊆ s N : ℕ τ : ℝ hτ : 1 < τ H : IsEmpty (SatelliteConfig α N τ) v : Set α s'v : v ⊇ s' v_open : IsOpen v μv : μ v ≤ μ s' + ε / 2 / ↑N ⊢ ∃ t r, t.Countable ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x) ∧ s ⊆ ⋃ x ∈ t, closedBall x (r x) ∧ ∑' (x : ↑t), μ (closedBall (↑x) (r ↑x)) ≤ μ s + ε
181682c2ed74f98b
EReal.tendsto_toReal
Mathlib/Topology/Instances/EReal/Lemmas.lean
theorem tendsto_toReal {a : EReal} (ha : a ≠ ⊤) (h'a : a ≠ ⊥) : Tendsto EReal.toReal (𝓝 a) (𝓝 a.toReal)
case intro a : ℝ ha : ↑a ≠ ⊤ h'a : ↑a ≠ ⊥ ⊢ Tendsto toReal (𝓝 ↑a) (𝓝 (↑a).toReal)
rw [nhds_coe, tendsto_map'_iff]
case intro a : ℝ ha : ↑a ≠ ⊤ h'a : ↑a ≠ ⊥ ⊢ Tendsto (toReal ∘ Real.toEReal) (𝓝 a) (𝓝 (↑a).toReal)
640a6db1a2fb3b69
MeasureTheory.maximal_ineq
Mathlib/Probability/Martingale/OptionalStopping.lean
theorem maximal_ineq [IsFiniteMeasure μ] (hsub : Submartingale f 𝒢 μ) (hnonneg : 0 ≤ f) {ε : ℝ≥0} (n : ℕ) : ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} ≤ ENNReal.ofReal (∫ ω in {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ)
case hst Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} ⊓ {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε} ≤ ⊥
rintro ω ⟨hω₁, hω₂⟩
case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω₁ : ω ∈ {ω | ↑ε ≤ (range (n + 1)).sup' ⋯ fun k => f k ω} hω₂ : ω ∈ {ω | ((range (n + 1)).sup' ⋯ fun k => f k ω) < ↑ε} ⊢ ω ∈ ⊥
7389c69afd10c321
Polynomial.card_roots_le_derivative
Mathlib/Analysis/Calculus/LocalExtr/Polynomial.lean
theorem card_roots_le_derivative (p : ℝ[X]) : Multiset.card p.roots ≤ Multiset.card (derivative p).roots + 1 := calc Multiset.card p.roots = ∑ x ∈ p.roots.toFinset, p.roots.count x := (Multiset.toFinset_sum_count_eq _).symm _ = ∑ x ∈ p.roots.toFinset, (p.roots.count x - 1 + 1) := (Eq.symm <| Finset.sum_congr rfl fun _ hx => tsub_add_cancel_of_le <| Nat.succ_le_iff.2 <| Multiset.count_pos.2 <| Multiset.mem_toFinset.1 hx) _ = (∑ x ∈ p.roots.toFinset, (p.rootMultiplicity x - 1)) + p.roots.toFinset.card
p : ℝ[X] ⊢ ∑ x ∈ p.roots.toFinset, rootMultiplicity x (derivative p) + (((derivative p).roots.toFinset \ p.roots.toFinset).card + 1) ≤ ∑ x ∈ p.roots.toFinset, Multiset.count x (derivative p).roots + (∑ x ∈ (derivative p).roots.toFinset \ p.roots.toFinset, Multiset.count x (derivative p).roots + 1)
simp only [← count_roots]
p : ℝ[X] ⊢ ∑ x ∈ p.roots.toFinset, Multiset.count x (derivative p).roots + (((derivative p).roots.toFinset \ p.roots.toFinset).card + 1) ≤ ∑ x ∈ p.roots.toFinset, Multiset.count x (derivative p).roots + (∑ x ∈ (derivative p).roots.toFinset \ p.roots.toFinset, Multiset.count x (derivative p).roots + 1)
08e969b6e08acf5a
AlgebraicGeometry.IsAffineOpen.fromSpec_image_basicOpen
Mathlib/AlgebraicGeometry/AffineScheme.lean
theorem fromSpec_image_basicOpen : hU.fromSpec ''ᵁ (PrimeSpectrum.basicOpen f) = X.basicOpen f
X : Scheme U : X.Opens hU : IsAffineOpen U f : ↑Γ(X, U) ⊢ hU.fromSpec ''ᵁ hU.fromSpec ⁻¹ᵁ X.basicOpen f = X.basicOpen f
ext1
case h X : Scheme U : X.Opens hU : IsAffineOpen U f : ↑Γ(X, U) ⊢ ↑(hU.fromSpec ''ᵁ hU.fromSpec ⁻¹ᵁ X.basicOpen f) = ↑(X.basicOpen f)
e9ee2eabe0c4108b
Orientation.abs_areaForm_le
Mathlib/Analysis/InnerProductSpace/TwoDim.lean
theorem abs_areaForm_le (x y : E) : |ω x y| ≤ ‖x‖ * ‖y‖
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ |(o.areaForm x) y| ≤ ‖x‖ * ‖y‖
simpa [areaForm_to_volumeForm, Fin.prod_univ_succ] using o.abs_volumeForm_apply_le ![x, y]
no goals
5a9811f410c8d903
AddCircle.ae_empty_or_univ_of_forall_vadd_ae_eq_self
Mathlib/Dynamics/Ergodic/AddCircle.lean
theorem ae_empty_or_univ_of_forall_vadd_ae_eq_self {s : Set <| AddCircle T} (hs : NullMeasurableSet s volume) {ι : Type*} {l : Filter ι} [l.NeBot] {u : ι → AddCircle T} (hu₁ : ∀ i, (u i +ᵥ s : Set _) =ᵐ[volume] s) (hu₂ : Tendsto (addOrderOf ∘ u) l atTop) : s =ᵐ[volume] (∅ : Set <| AddCircle T) ∨ s =ᵐ[volume] univ
case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : l.NeBot u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s μ hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => μ (s ∩ I j) / μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) hI₀ : μ (I j) ≠ 0 hI₁ : μ (I j) ≠ ⊤ hI₂ : μ (I j) * ↑(n j) = ENNReal.ofReal T ⊢ μ (s ∩ I j) / μ (I j) = μ s / ENNReal.ofReal T
rw [ENNReal.div_eq_div_iff hT₁ ENNReal.ofReal_ne_top hI₀ hI₁, volume_of_add_preimage_eq s _ (u j) d huj (hu₁ j) closedBall_ae_eq_ball, nsmul_eq_mul, ← mul_assoc, this, hI₂]
no goals
caa1d183a972f27c
TopCat.Presheaf.stalkPushforward.id
Mathlib/Topology/Sheaves/Stalks.lean
theorem id (ℱ : X.Presheaf C) (x : X) : ℱ.stalkPushforward C (𝟙 X) x = (stalkFunctor C x).map (Pushforward.id ℱ).hom
case ih C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : TopCat ℱ : Presheaf C X x : ↑X U✝ : Opens ↑X hxU✝ : (ConcreteCategory.hom (𝟙 X)) x ∈ U✝ ⊢ ℱ.map ((NatTrans.op (OpenNhds.inclusionMapIso (𝟙 X) x).inv).app (op { obj := U✝, property := hxU✝ })) ≫ colimit.ι ((OpenNhds.map (𝟙 X) x).op ⋙ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ℱ) (op { obj := U✝, property := hxU✝ }) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ℱ) (OpenNhds.map (𝟙 X) x).op = colimit.ι ((OpenNhds.inclusion ((ConcreteCategory.hom (𝟙 X)) x)).op ⋙ (pushforward C (𝟙 X)).obj ℱ) (op { obj := U✝, property := hxU✝ }) ≫ (stalkFunctor C x).map (Pushforward.id ℱ).hom
erw [CategoryTheory.Functor.map_id]
case ih C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : TopCat ℱ : Presheaf C X x : ↑X U✝ : Opens ↑X hxU✝ : (ConcreteCategory.hom (𝟙 X)) x ∈ U✝ ⊢ 𝟙 (ℱ.obj ((OpenNhds.inclusion ((ConcreteCategory.hom (𝟙 X)) x) ⋙ Opens.map (𝟙 X)).op.obj (op { obj := U✝, property := hxU✝ }))) ≫ colimit.ι ((OpenNhds.map (𝟙 X) x).op ⋙ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ℱ) (op { obj := U✝, property := hxU✝ }) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ℱ) (OpenNhds.map (𝟙 X) x).op = colimit.ι ((OpenNhds.inclusion ((ConcreteCategory.hom (𝟙 X)) x)).op ⋙ (pushforward C (𝟙 X)).obj ℱ) (op { obj := U✝, property := hxU✝ }) ≫ (stalkFunctor C x).map (Pushforward.id ℱ).hom
a8fdc3f0ca56f963
List.findIdx?_isSome
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx?_isSome {xs : List α} {p : α → Bool} : (xs.findIdx? p).isSome = xs.any p
case cons α : Type u_1 p : α → Bool x : α xs : List α ih : (findIdx? p xs).isSome = xs.any p ⊢ (if p x = true then some 0 else Option.map (fun i => i + 1) (findIdx? p xs)).isSome = (x :: xs).any p
split <;> simp_all
no goals
f5b414e8399ca944
MvPolynomial.IsHomogeneous.prod
Mathlib/RingTheory/MvPolynomial/Homogeneous.lean
theorem prod {ι : Type*} (s : Finset ι) (φ : ι → MvPolynomial σ R) (n : ι → ℕ) (h : ∀ i ∈ s, IsHomogeneous (φ i) (n i)) : IsHomogeneous (∏ i ∈ s, φ i) (∑ i ∈ s, n i)
σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R ι : Type u_5 s✝ : Finset ι φ : ι → MvPolynomial σ R n : ι → ℕ i : ι s : Finset ι his : i ∉ s IH : (∀ i ∈ s, (φ i).IsHomogeneous (n i)) → (∏ i ∈ s, φ i).IsHomogeneous (∑ i ∈ s, n i) h : ∀ i_1 ∈ insert i s, (φ i_1).IsHomogeneous (n i_1) ⊢ ∀ i ∈ s, (φ i).IsHomogeneous (n i)
intro j hjs
σ : Type u_1 R : Type u_3 inst✝ : CommSemiring R ι : Type u_5 s✝ : Finset ι φ : ι → MvPolynomial σ R n : ι → ℕ i : ι s : Finset ι his : i ∉ s IH : (∀ i ∈ s, (φ i).IsHomogeneous (n i)) → (∏ i ∈ s, φ i).IsHomogeneous (∑ i ∈ s, n i) h : ∀ i_1 ∈ insert i s, (φ i_1).IsHomogeneous (n i_1) j : ι hjs : j ∈ s ⊢ (φ j).IsHomogeneous (n j)
44b0ae11f9a5b764
CStarMatrix.toCLM_injective
Mathlib/Analysis/CStarAlgebra/CStarMatrix.lean
lemma toCLM_injective : Function.Injective (toCLM (A := A) (m := m) (n := n))
m : Type u_1 n : Type u_2 A : Type u_3 inst✝⁴ : Fintype n inst✝³ : NonUnitalCStarAlgebra A inst✝² : PartialOrder A inst✝¹ : StarOrderedRing A inst✝ : Fintype m ⊢ ∀ (a : CStarMatrix m n A), toCLM a = 0 → a = 0
intro M h
m : Type u_1 n : Type u_2 A : Type u_3 inst✝⁴ : Fintype n inst✝³ : NonUnitalCStarAlgebra A inst✝² : PartialOrder A inst✝¹ : StarOrderedRing A inst✝ : Fintype m M : CStarMatrix m n A h : toCLM M = 0 ⊢ M = 0
bd474ad324000856
Sigma.isConnected_iff
Mathlib/Topology/Connected/Clopen.lean
theorem Sigma.isConnected_iff [∀ i, TopologicalSpace (π i)] {s : Set (Σi, π i)} : IsConnected s ↔ ∃ i t, IsConnected t ∧ s = Sigma.mk i '' t
ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (π i) s : Set ((i : ι) × π i) ⊢ IsConnected s ↔ ∃ i t, IsConnected t ∧ s = mk i '' t
refine ⟨fun hs => ?_, ?_⟩
case refine_1 ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (π i) s : Set ((i : ι) × π i) hs : IsConnected s ⊢ ∃ i t, IsConnected t ∧ s = mk i '' t case refine_2 ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (π i) s : Set ((i : ι) × π i) ⊢ (∃ i t, IsConnected t ∧ s = mk i '' t) → IsConnected s
1455e050525a61d2
Polynomial.Splits.comp_of_map_degree_le_one
Mathlib/Algebra/Polynomial/Splits.lean
theorem Splits.comp_of_map_degree_le_one {f : K[X]} {p : K[X]} (hd : (p.map i).degree ≤ 1) (h : f.Splits i) : (f.comp p).Splits i
K : Type v L : Type w inst✝¹ : CommRing K inst✝ : Field L i : K →+* L f p : K[X] hd : (map i p).degree ≤ 1 h : Splits i f ⊢ Splits i (f.comp p)
by_cases hzero : map i (f.comp p) = 0
case pos K : Type v L : Type w inst✝¹ : CommRing K inst✝ : Field L i : K →+* L f p : K[X] hd : (map i p).degree ≤ 1 h : Splits i f hzero : map i (f.comp p) = 0 ⊢ Splits i (f.comp p) case neg K : Type v L : Type w inst✝¹ : CommRing K inst✝ : Field L i : K →+* L f p : K[X] hd : (map i p).degree ≤ 1 h : Splits i f hzero : ¬map i (f.comp p) = 0 ⊢ Splits i (f.comp p)
7862ae74e5525276
MeasureTheory.levyProkhorovEDist_le_of_forall
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- A simple general sufficient condition for bounding `levyProkhorovEDist` from above. -/ lemma levyProkhorovEDist_le_of_forall (μ ν : Measure Ω) (δ : ℝ≥0∞) (h : ∀ ε B, δ < ε → ε < ∞ → MeasurableSet B → μ B ≤ ν (thickening ε.toReal B) + ε ∧ ν B ≤ μ (thickening ε.toReal B) + ε) : levyProkhorovEDist μ ν ≤ δ
case pos Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : PseudoEMetricSpace Ω μ ν : Measure Ω δ : ℝ≥0∞ h : ∀ (ε : ℝ≥0∞) (B : Set Ω), δ < ε → ε < ⊤ → MeasurableSet B → μ B ≤ ν (thickening ε.toReal B) + ε ∧ ν B ≤ μ (thickening ε.toReal B) + ε δ_top : δ = ⊤ ⊢ levyProkhorovEDist μ ν ≤ δ
simp only [δ_top, add_top, le_top]
no goals
4df6916ed43dac71
CategoryTheory.Functor.preservesEqualizer_of_preservesKernels
Mathlib/CategoryTheory/Preadditive/LeftExact.lean
/-- A functor between preadditive categories preserves the equalizer of two morphisms if it preserves all kernels. -/ lemma preservesEqualizer_of_preservesKernels [∀ {X Y} (f : X ⟶ Y), PreservesLimit (parallelPair f 0) F] {X Y : C} (f g : X ⟶ Y) : PreservesLimit (parallelPair f g) F
case preserves.val C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : Preadditive C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : Preadditive D F : C ⥤ D inst✝² : F.PreservesZeroMorphisms inst✝¹ : HasBinaryBiproducts C inst✝ : ∀ {X Y : C} (f : X ⟶ Y), PreservesLimit (parallelPair f 0) F X Y : C f g : X ⟶ Y this✝ : PreservesBinaryBiproducts F := preservesBinaryBiproducts_of_preservesBinaryProducts F this : F.Additive c : Cone (parallelPair f g) i : IsLimit c c' : IsLimit (KernelFork.ofι (Fork.ι c) ⋯) := isLimitKernelForkOfFork (i.ofIsoLimit (Fork.isoForkOfι c)) iFc : IsLimit (KernelFork.ofι (F.map (Fork.ι c)) ⋯) := isLimitForkMapOfIsLimit' F ⋯ c' ⊢ IsLimit (F.mapCone c)
apply IsLimit.ofIsoLimit _ ((Cones.functoriality _ F).mapIso (Fork.isoForkOfι c).symm)
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : Preadditive C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : Preadditive D F : C ⥤ D inst✝² : F.PreservesZeroMorphisms inst✝¹ : HasBinaryBiproducts C inst✝ : ∀ {X Y : C} (f : X ⟶ Y), PreservesLimit (parallelPair f 0) F X Y : C f g : X ⟶ Y this✝ : PreservesBinaryBiproducts F := preservesBinaryBiproducts_of_preservesBinaryProducts F this : F.Additive c : Cone (parallelPair f g) i : IsLimit c c' : IsLimit (KernelFork.ofι (Fork.ι c) ⋯) := isLimitKernelForkOfFork (i.ofIsoLimit (Fork.isoForkOfι c)) iFc : IsLimit (KernelFork.ofι (F.map (Fork.ι c)) ⋯) := isLimitForkMapOfIsLimit' F ⋯ c' ⊢ IsLimit ((Cones.functoriality (parallelPair f g) F).obj (Fork.ofι (Fork.ι c) ⋯))
6bda66db73d4b92f
Real.le_mk_of_forall_le
Mathlib/Data/Real/Basic.lean
theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j) → x ≤ mk f
case h.h.intro.intro x✝ : ℝ f x : CauSeq ℚ abs h : ∃ i, ∀ j ≥ i, mk x ≤ ↑(↑f j) K : ℚ K0 : K > 0 hK : ∃ i, ∀ j ≥ i, K ≤ ↑(x - f) j ⊢ False
obtain ⟨i, H⟩ := exists_forall_ge_and h (exists_forall_ge_and hK (f.cauchy₃ <| half_pos K0))
case h.h.intro.intro.intro x✝ : ℝ f x : CauSeq ℚ abs h : ∃ i, ∀ j ≥ i, mk x ≤ ↑(↑f j) K : ℚ K0 : K > 0 hK : ∃ i, ∀ j ≥ i, K ≤ ↑(x - f) j i : ℕ H : ∀ j ≥ i, mk x ≤ ↑(↑f j) ∧ K ≤ ↑(x - f) j ∧ ∀ k ≥ j, |↑f k - ↑f j| < K / 2 ⊢ False
dbfd66513efa46dc
ascPochhammer_succ_right
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem ascPochhammer_succ_right (n : ℕ) : ascPochhammer S (n + 1) = ascPochhammer S n * (X + (n : S[X]))
S : Type u inst✝ : Semiring S n : ℕ h : map (algebraMap ℕ S) (ascPochhammer ℕ (n + 1)) = map (algebraMap ℕ S) (ascPochhammer ℕ n * (X + ↑n)) ⊢ ascPochhammer S (n + 1) = ascPochhammer S n * (X + ↑n)
simpa only [ascPochhammer_map, Polynomial.map_mul, Polynomial.map_add, map_X, Polynomial.map_natCast] using h
no goals
f731d56e5a9bbcf9
EuclideanGeometry.angle_eq_angle_of_angle_eq_pi
Mathlib/Geometry/Euclidean/Angle/Unoriented/Affine.lean
theorem angle_eq_angle_of_angle_eq_pi (p₁ : P) {p₂ p₃ p₄ : P} (h : ∠ p₂ p₃ p₄ = π) : ∠ p₁ p₂ p₃ = ∠ p₁ p₂ p₄
case h.e'_2.h.e'_5 V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P p₁ p₂ p₃ p₄ : P h : InnerProductGeometry.angle (p₂ -ᵥ p₃) (p₄ -ᵥ p₃) = π left✝ : p₂ -ᵥ p₃ ≠ 0 r : ℝ hr : r < 0 hpr : p₄ -ᵥ p₃ = r • (p₂ -ᵥ p₃) ⊢ p₄ -ᵥ p₂ = - -(p₄ -ᵥ p₃) + 1 • -(p₂ -ᵥ p₃)
simp
no goals
b4f1b4ad95c44d44
MeasureTheory.Measure.sum_extend_zero
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
@[simp] lemma sum_extend_zero {ι ι' : Type*} {f : ι → ι'} (hf : Injective f) (m : ι → Measure α) : sum (Function.extend f m 0) = sum m
case h α : Type u_1 m0 : MeasurableSpace α ι : Type u_8 ι' : Type u_9 f : ι → ι' hf : Injective f m : ι → Measure α s : Set α hs : MeasurableSet s ⊢ (sum (Function.extend f m 0)) s = (sum m) s
simp [*, Function.apply_extend (fun μ : Measure α ↦ μ s)]
no goals
e11ee0592cd1571b
LinearMap.toMvPolynomial_eval_eq_apply
Mathlib/Algebra/Module/LinearMap/Polynomial.lean
lemma toMvPolynomial_eval_eq_apply (f : M₁ →ₗ[R] M₂) (i : ι₂) (c : ι₁ →₀ R) : eval c (f.toMvPolynomial b₁ b₂ i) = b₂.repr (f (b₁.repr.symm c)) i
R : Type u_1 M₁ : Type u_2 M₂ : Type u_3 ι₁ : Type u_4 ι₂ : Type u_5 inst✝⁷ : CommRing R inst✝⁶ : AddCommGroup M₁ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R M₁ inst✝³ : Module R M₂ inst✝² : Fintype ι₁ inst✝¹ : Finite ι₂ inst✝ : DecidableEq ι₁ b₁ : Basis ι₁ R M₁ b₂ : Basis ι₂ R M₂ f : M₁ →ₗ[R] M₂ i : ι₂ c : ι₁ →₀ R ⊢ (eval ⇑c) (toMvPolynomial b₁ b₂ f i) = (b₂.repr (f (b₁.repr.symm c))) i
rw [toMvPolynomial, Matrix.toMvPolynomial_eval_eq_apply, ← LinearMap.toMatrix_mulVec_repr b₁ b₂, LinearEquiv.apply_symm_apply]
no goals
0d058754669a5378
LucasLehmer.X.ω_mul_ωb
Mathlib/NumberTheory/LucasLehmer.lean
theorem ω_mul_ωb (q : ℕ+) : (ω : X q) * ωb = 1
q : ℕ+ ⊢ ω * ωb = 1
dsimp [ω, ωb]
q : ℕ+ ⊢ (2, 1) * (2, -1) = 1
f75eba3969b269ac
IsClosed.pathComponent
Mathlib/Topology/Connected/LocPathConnected.lean
theorem IsClosed.pathComponent (x : X) : IsClosed (pathComponent x)
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : LocPathConnectedSpace X x y : X hxy : y ∈ (pathComponent x)ᶜ ⊢ (pathComponent x)ᶜ ∈ 𝓝 y
rcases (path_connected_basis y).ex_mem with ⟨V, hVy, hVc⟩
case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : LocPathConnectedSpace X x y : X hxy : y ∈ (pathComponent x)ᶜ V : Set X hVy : V ∈ 𝓝 y hVc : IsPathConnected V ⊢ (pathComponent x)ᶜ ∈ 𝓝 y
1ecf7ca070936f11
jacobsonSpace_iff_locallyClosed
Mathlib/Topology/JacobsonSpace.lean
lemma jacobsonSpace_iff_locallyClosed : JacobsonSpace X ↔ ∀ Z, Z.Nonempty → IsLocallyClosed Z → (Z ∩ closedPoints X).Nonempty
case mpr X : Type u_1 inst✝ : TopologicalSpace X H : ∀ (Z : Set X), Z.Nonempty → IsLocallyClosed Z → (Z ∩ closedPoints X).Nonempty Z : Set X hZ : IsClosed Z H' : ((closure (Z ∩ closedPoints X))ᶜ ∩ Z).Nonempty this : ¬Z ∩ closedPoints X ⊆ closure (Z ∩ closedPoints X) ⊢ False
exact this subset_closure
no goals
89e2d8a6f5ce61b2
SimpleGraph.isNClique_singleton
Mathlib/Combinatorics/SimpleGraph/Clique.lean
@[simp] lemma isNClique_singleton : G.IsNClique n {a} ↔ n = 1
α : Type u_1 G : SimpleGraph α n : ℕ a : α ⊢ G.IsNClique n {a} ↔ n = 1
simp [isNClique_iff, eq_comm]
no goals
18f8ce12586f20b9
QuasiconvexOn.sup
Mathlib/Analysis/Convex/Quasiconvex.lean
theorem QuasiconvexOn.sup [SemilatticeSup β] (hf : QuasiconvexOn 𝕜 s f) (hg : QuasiconvexOn 𝕜 s g) : QuasiconvexOn 𝕜 s (f ⊔ g)
𝕜 : Type u_1 E : Type u_2 β : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E s : Set E f g : E → β inst✝ : SemilatticeSup β hf : QuasiconvexOn 𝕜 s f hg : QuasiconvexOn 𝕜 s g ⊢ QuasiconvexOn 𝕜 s (f ⊔ g)
intro r
𝕜 : Type u_1 E : Type u_2 β : Type u_3 inst✝³ : OrderedSemiring 𝕜 inst✝² : AddCommMonoid E inst✝¹ : SMul 𝕜 E s : Set E f g : E → β inst✝ : SemilatticeSup β hf : QuasiconvexOn 𝕜 s f hg : QuasiconvexOn 𝕜 s g r : β ⊢ Convex 𝕜 {x | x ∈ s ∧ (f ⊔ g) x ≤ r}
156a9e7c30102d0b
ContinuousMap.mem_setOfIdeal
Mathlib/Topology/ContinuousMap/Ideals.lean
theorem mem_setOfIdeal {I : Ideal C(X, R)} {x : X} : x ∈ setOfIdeal I ↔ ∃ f ∈ I, (f : C(X, R)) x ≠ 0
X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : IsTopologicalSemiring R I : Ideal C(X, R) x : X ⊢ (¬∀ f ∈ I, f x = 0) ↔ ∃ f ∈ I, f x ≠ 0
push_neg
X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : IsTopologicalSemiring R I : Ideal C(X, R) x : X ⊢ (∃ f ∈ I, f x ≠ 0) ↔ ∃ f ∈ I, f x ≠ 0
b6df98633a7f7742
Pell.dvd_of_ysq_dvd
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem dvd_of_ysq_dvd {n t} (h : yn a1 n * yn a1 n ∣ yn a1 t) : yn a1 n ∣ t := have nt : n ∣ t := (y_dvd_iff a1 n t).1 <| dvd_of_mul_left_dvd h n.eq_zero_or_pos.elim (fun n0 => by rwa [n0] at nt ⊢) fun n0l : 0 < n => by let ⟨k, ke⟩ := nt have : yn a1 n ∣ k * xn a1 n ^ (k - 1) := Nat.dvd_of_mul_dvd_mul_right (strictMono_y a1 n0l) <| modEq_zero_iff_dvd.1 <| by have xm := (xy_modEq_yn a1 n k).right; rw [← ke] at xm exact (xm.of_dvd <| by simp [_root_.pow_succ]).symm.trans h.modEq_zero_nat rw [ke] exact dvd_mul_of_dvd_right (((xy_coprime _ _).pow_left _).symm.dvd_of_dvd_mul_right this) _
a : ℕ a1 : 1 < a n t : ℕ h : yn a1 n * yn a1 n ∣ yn a1 t nt : n ∣ t n0l : 0 < n k : ℕ ke : t = n * k xm : yn a1 t ≡ k * xn a1 n ^ (k - 1) * yn a1 n [MOD yn a1 n ^ 3] ⊢ yn a1 n * yn a1 n ∣ yn a1 n ^ 3
simp [_root_.pow_succ]
no goals
0409ee0aa5773315
MeasureTheory.StronglyMeasurable.norm_approxBounded_le
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
theorem norm_approxBounded_le {β} {f : α → β} [SeminormedAddCommGroup β] [NormedSpace ℝ β] {m : MeasurableSpace α} {c : ℝ} (hf : StronglyMeasurable[m] f) (hc : 0 ≤ c) (n : ℕ) (x : α) : ‖hf.approxBounded c n x‖ ≤ c
case neg.inl α : Type u_1 β : Type u_5 f : α → β inst✝¹ : SeminormedAddCommGroup β inst✝ : NormedSpace ℝ β m : MeasurableSpace α c : ℝ hf : StronglyMeasurable f hc : 0 ≤ c n : ℕ x : α h0 : ¬‖(hf.approx n) x‖ = 0 h : ‖(hf.approx n) x‖ ≤ c ⊢ ‖1 ⊓ c / ‖(hf.approx n) x‖‖ * ‖(hf.approx n) x‖ ≤ c
rw [min_eq_left _]
case neg.inl α : Type u_1 β : Type u_5 f : α → β inst✝¹ : SeminormedAddCommGroup β inst✝ : NormedSpace ℝ β m : MeasurableSpace α c : ℝ hf : StronglyMeasurable f hc : 0 ≤ c n : ℕ x : α h0 : ¬‖(hf.approx n) x‖ = 0 h : ‖(hf.approx n) x‖ ≤ c ⊢ ‖1‖ * ‖(hf.approx n) x‖ ≤ c α : Type u_1 β : Type u_5 f : α → β inst✝¹ : SeminormedAddCommGroup β inst✝ : NormedSpace ℝ β m : MeasurableSpace α c : ℝ hf : StronglyMeasurable f hc : 0 ≤ c n : ℕ x : α h0 : ¬‖(hf.approx n) x‖ = 0 h : ‖(hf.approx n) x‖ ≤ c ⊢ 1 ≤ c / ‖(hf.approx n) x‖
c6dcf159a9df0ec3
AccPt.nhds_inter
Mathlib/Topology/Perfect.lean
theorem AccPt.nhds_inter {x : α} {U : Set α} (h_acc : AccPt x (𝓟 C)) (hU : U ∈ 𝓝 x) : AccPt x (𝓟 (U ∩ C))
α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x ⊢ AccPt x (𝓟 (U ∩ C))
have : 𝓝[≠] x ≤ 𝓟 U := by rw [le_principal_iff] exact mem_nhdsWithin_of_mem_nhds hU
α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x this : 𝓝[≠] x ≤ 𝓟 U ⊢ AccPt x (𝓟 (U ∩ C))
e1c3c6891dd944be
AddCircle.norm_coe_eq_abs_iff
Mathlib/Analysis/Normed/Group/AddCircle.lean
theorem norm_coe_eq_abs_iff {x : ℝ} (hp : p ≠ 0) : ‖(x : AddCircle p)‖ = |x| ↔ |x| ≤ |p| / 2
case inr p x : ℝ hp✝ : p ≠ 0 hx : |x| ≤ -p / 2 this : ∀ (p : ℝ), 0 < p → |x| ≤ p / 2 → ‖↑x‖ = |x| hp : p < 0 ⊢ ‖↑x‖ = |x|
exact this (-p) (neg_pos.mpr hp) hx
no goals
1e4f630c7ac9b9d6
LinearMap.det_restrictScalars
Mathlib/RingTheory/Norm/Transitivity.lean
theorem LinearMap.det_restrictScalars [AddCommGroup A] [Module R A] [Module S A] [IsScalarTower R S A] [Module.Free S A] {f : A →ₗ[S] A} : (f.restrictScalars R).det = Algebra.norm R f.det
case inr R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : Module.Free R S inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : Module S A inst✝¹ : IsScalarTower R S A inst✝ : Module.Free S A f : A →ₗ[S] A a✝ : Nontrivial R h✝ : Nontrivial A this✝ : Nontrivial S ιS : Type u_2 bS : Basis ιS R S ιA : Type u_3 bA : Basis ιA S A this : Nonempty ιS ⊢ LinearMap.det (↑R f) = (Algebra.norm R) (LinearMap.det f)
have := bA.index_nonempty
case inr R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : Module.Free R S inst✝⁴ : AddCommGroup A inst✝³ : Module R A inst✝² : Module S A inst✝¹ : IsScalarTower R S A inst✝ : Module.Free S A f : A →ₗ[S] A a✝ : Nontrivial R h✝ : Nontrivial A this✝¹ : Nontrivial S ιS : Type u_2 bS : Basis ιS R S ιA : Type u_3 bA : Basis ιA S A this✝ : Nonempty ιS this : Nonempty ιA ⊢ LinearMap.det (↑R f) = (Algebra.norm R) (LinearMap.det f)
e61a35e4b25ff2ca
contraction_of_isPowMul_of_boundedWrt
Mathlib/Analysis/Normed/Ring/IsPowMulFaithful.lean
theorem contraction_of_isPowMul_of_boundedWrt {F : Type*} {α : outParam (Type*)} [Ring α] [FunLike F α ℝ] [RingSeminormClass F α ℝ] {β : Type*} [Ring β] (nα : F) {nβ : β → ℝ} (hβ : IsPowMul nβ) {f : α →+* β} (hf : f.IsBoundedWrt nα nβ) (x : α) : nβ (f x) ≤ nα x
F : Type u_1 α : outParam (Type u_2) inst✝³ : Ring α inst✝² : FunLike F α ℝ inst✝¹ : RingSeminormClass F α ℝ β : Type u_3 inst✝ : Ring β nα : F nβ : β → ℝ hβ : IsPowMul nβ f : α →+* β x : α C : ℝ hC0 : 0 < C hC : ∀ (x : α), nβ (f x) ≤ C * nα x ⊢ Tendsto (fun n => C ^ (1 / ↑n) * nα x) atTop (𝓝 (nα x))
nth_rewrite 2 [← one_mul (nα x)]
F : Type u_1 α : outParam (Type u_2) inst✝³ : Ring α inst✝² : FunLike F α ℝ inst✝¹ : RingSeminormClass F α ℝ β : Type u_3 inst✝ : Ring β nα : F nβ : β → ℝ hβ : IsPowMul nβ f : α →+* β x : α C : ℝ hC0 : 0 < C hC : ∀ (x : α), nβ (f x) ≤ C * nα x ⊢ Tendsto (fun n => C ^ (1 / ↑n) * nα x) atTop (𝓝 (1 * nα x))
585c053a4f683cf1
List.erase_orderedInsert_of_not_mem
Mathlib/Data/List/Sort.lean
theorem erase_orderedInsert_of_not_mem [DecidableEq α] {x : α} {xs : List α} (hx : x ∉ xs) : (xs.orderedInsert r x).erase x = xs
α : Type u r : α → α → Prop inst✝¹ : DecidableRel r inst✝ : DecidableEq α x : α xs : List α hx : x ∉ xs ⊢ (orderedInsert r x xs).erase x = xs
rw [orderedInsert_eq_take_drop, erase_append_right, List.erase_cons_head, takeWhile_append_dropWhile]
case h α : Type u r : α → α → Prop inst✝¹ : DecidableRel r inst✝ : DecidableEq α x : α xs : List α hx : x ∉ xs ⊢ x ∉ takeWhile (fun b => decide ¬r x b) xs
1a0d191d116d3954
SimplexCategoryGenRel.isSplitEpi_toSimplexCategory_map_of_P_σ
Mathlib/AlgebraicTopology/SimplexCategory/GeneratorsRelations/EpiMono.lean
lemma isSplitEpi_toSimplexCategory_map_of_P_σ {x y : SimplexCategoryGenRel} {e : x ⟶ y} (he : P_σ e) : IsSplitEpi <| toSimplexCategory.map e
case exists_splitEpi.val.se x y : SimplexCategoryGenRel e : x ⟶ y he : P_σ e ⊢ SplitEpi e
exact isSplitEpi_P_σ he |>.exists_splitEpi.some
no goals
80ea862bb88258c7
PerfectClosure.mk_pow
Mathlib/FieldTheory/PerfectClosure.lean
theorem mk_pow (x : ℕ × K) (n : ℕ) : mk K p x ^ n = mk K p (x.1, x.2 ^ n)
case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ × K n : ℕ ih : mk K p x ^ n = mk K p (x.1, x.2 ^ n) ⊢ mk K p x ^ (n + 1) = mk K p (x.1, x.2 ^ (n + 1))
rw [pow_succ, pow_succ, ih, mk_mul_mk, mk_eq_iff]
case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ × K n : ℕ ih : mk K p x ^ n = mk K p (x.1, x.2 ^ n) ⊢ ∃ z, (⇑(frobenius K p))^[(x.1, x.2 ^ n * x.2).1 + z] ((x.1, x.2 ^ n).1 + x.1, (⇑(frobenius K p))^[x.1] (x.1, x.2 ^ n).2 * (⇑(frobenius K p))^[(x.1, x.2 ^ n).1] x.2).2 = (⇑(frobenius K p))^[((x.1, x.2 ^ n).1 + x.1, (⇑(frobenius K p))^[x.1] (x.1, x.2 ^ n).2 * (⇑(frobenius K p))^[(x.1, x.2 ^ n).1] x.2).1 + z] (x.1, x.2 ^ n * x.2).2
7ceaa08111bba2c4
Set.exists_mem_image
Mathlib/Data/Set/Image.lean
theorem exists_mem_image {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x)
α : Type u_1 β : Type u_2 f : α → β s : Set α p : β → Prop ⊢ (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x)
simp
no goals
456acbf06282d059
Finset.exists_subset_or_subset_of_two_mul_lt_card
Mathlib/Data/Finset/Card.lean
theorem exists_subset_or_subset_of_two_mul_lt_card [DecidableEq α] {X Y : Finset α} {n : ℕ} (hXY : 2 * n < #(X ∪ Y)) : ∃ C : Finset α, n < #C ∧ (C ⊆ X ∨ C ⊆ Y)
α : Type u_1 inst✝ : DecidableEq α X Y : Finset α n : ℕ hXY : 2 * n < #(X ∪ Y) h₁ : #(X ∩ (Y \ X)) = 0 h₂ : #(X ∪ Y) = #X + #(Y \ X) ⊢ ∃ C, n < #C ∧ (C ⊆ X ∨ C ⊆ Y)
rw [h₂, Nat.two_mul] at hXY
α : Type u_1 inst✝ : DecidableEq α X Y : Finset α n : ℕ hXY : n + n < #X + #(Y \ X) h₁ : #(X ∩ (Y \ X)) = 0 h₂ : #(X ∪ Y) = #X + #(Y \ X) ⊢ ∃ C, n < #C ∧ (C ⊆ X ∨ C ⊆ Y)
d2784859d1018aca
ZMod.wilsons_lemma
Mathlib/NumberTheory/Wilson.lean
theorem wilsons_lemma : ((p - 1)! : ZMod p) = -1
p : ℕ inst✝ : Fact (Nat.Prime p) ⊢ ∏ x : (ZMod p)ˣ, ↑x = -1
simp_rw [← Units.coeHom_apply]
p : ℕ inst✝ : Fact (Nat.Prime p) ⊢ ∏ x : (ZMod p)ˣ, (Units.coeHom (ZMod p)) x = -1
39f6b98ba0c68bfd
Dynamics.netMaxcard_zero
Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean
lemma netMaxcard_zero (T : X → X) {F : Set X} (h : F.Nonempty) (U : Set (X × X)) : netMaxcard T F U 0 = 1
X : Type u_1 T : X → X F : Set X h : F.Nonempty U : Set (X × X) s : Finset X left✝ : ↑s ⊆ F s_net : (↑s).PairwiseDisjoint fun x => ball x (dynEntourage T U 0) ⊢ ↑s.card ≤ 1
simp only [ball, dynEntourage_zero, preimage_univ] at s_net
X : Type u_1 T : X → X F : Set X h : F.Nonempty U : Set (X × X) s : Finset X left✝ : ↑s ⊆ F s_net : (↑s).PairwiseDisjoint fun x => univ ⊢ ↑s.card ≤ 1
9c03c09b4d97a006
ContinuousOn.continuousAt_mulIndicator
Mathlib/Topology/Algebra/Indicator.lean
theorem ContinuousOn.continuousAt_mulIndicator (hf : ContinuousOn f (interior s)) {x : α} (hx : x ∉ frontier s) : ContinuousAt (s.mulIndicator f) x
case inr α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β f : α → β s : Set α inst✝ : One β hf : ContinuousOn f (interior s) x : α h : x ∈ interior sᶜ ⊢ ContinuousAt (s.mulIndicator f) x
exact ContinuousAt.congr continuousAt_const <| Filter.eventuallyEq_iff_exists_mem.mpr ⟨sᶜ, mem_interior_iff_mem_nhds.mp h, Set.eqOn_mulIndicator'.symm⟩
no goals
6280ff3089489911
CategoryTheory.Functor.mem_homologicalKernel_W_iff
Mathlib/CategoryTheory/Triangulated/HomologicalFunctor.lean
lemma mem_homologicalKernel_W_iff {X Y : C} (f : X ⟶ Y) : F.homologicalKernel.W f ↔ ∀ (n : ℤ), IsIso ((F.shift n).map f)
case intro.intro.intro C : Type u_1 A : Type u_3 inst✝⁹ : Category.{u_4, u_1} C inst✝⁸ : HasShift C ℤ inst✝⁷ : Category.{u_5, u_3} A F : C ⥤ A inst✝⁶ : HasZeroObject C inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝³ : Pretriangulated C inst✝² : Abelian A inst✝¹ : F.IsHomological inst✝ : F.ShiftSequence ℤ X Y : C f : X ⟶ Y Z : C g : Y ⟶ Z h : Z ⟶ (shiftFunctor C 1).obj X hT : Triangle.mk f g h ∈ distinguishedTriangles h₁ : ∀ (n : ℤ), IsZero (ShortComplex.mk ((F.shift n).map (Triangle.mk f g h).mor₂) (F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯) ⋯).X₂ ↔ (ShortComplex.mk ((F.shift n).map (Triangle.mk f g h).mor₂) (F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯) ⋯).f = 0 ∧ (ShortComplex.mk ((F.shift n).map (Triangle.mk f g h).mor₂) (F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯) ⋯).g = 0 ⊢ F.homologicalKernel.P (Triangle.mk f g h).obj₃ ↔ ∀ (n : ℤ), IsIso ((F.shift n).map f)
have h₂ := fun n => F.homologySequence_mono_shift_map_mor₁_iff _ hT n _ rfl
case intro.intro.intro C : Type u_1 A : Type u_3 inst✝⁹ : Category.{u_4, u_1} C inst✝⁸ : HasShift C ℤ inst✝⁷ : Category.{u_5, u_3} A F : C ⥤ A inst✝⁶ : HasZeroObject C inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝³ : Pretriangulated C inst✝² : Abelian A inst✝¹ : F.IsHomological inst✝ : F.ShiftSequence ℤ X Y : C f : X ⟶ Y Z : C g : Y ⟶ Z h : Z ⟶ (shiftFunctor C 1).obj X hT : Triangle.mk f g h ∈ distinguishedTriangles h₁ : ∀ (n : ℤ), IsZero (ShortComplex.mk ((F.shift n).map (Triangle.mk f g h).mor₂) (F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯) ⋯).X₂ ↔ (ShortComplex.mk ((F.shift n).map (Triangle.mk f g h).mor₂) (F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯) ⋯).f = 0 ∧ (ShortComplex.mk ((F.shift n).map (Triangle.mk f g h).mor₂) (F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯) ⋯).g = 0 h₂ : ∀ (n : ℤ), Mono ((F.shift (n + 1)).map (Triangle.mk f g h).mor₁) ↔ F.homologySequenceδ (Triangle.mk f g h) n (n + 1) ⋯ = 0 ⊢ F.homologicalKernel.P (Triangle.mk f g h).obj₃ ↔ ∀ (n : ℤ), IsIso ((F.shift n).map f)
c0e449c7603716db
Subgroup.le_normalizer_map
Mathlib/Algebra/Group/Subgroup/Basic.lean
theorem le_normalizer_map (f : G →* N) : H.normalizer.map f ≤ (H.map f).normalizer := fun _ => by simp only [and_imp, exists_prop, mem_map, exists_imp, mem_normalizer_iff] rintro x hx rfl n constructor · rintro ⟨y, hy, rfl⟩ use x * y * x⁻¹, (hx y).1 hy simp · rintro ⟨y, hyH, hy⟩ use x⁻¹ * y * x rw [hx] simp [hy, hyH, mul_assoc]
case h G : Type u_1 inst✝¹ : Group G H : Subgroup G N : Type u_5 inst✝ : Group N f : G →* N x : G hx : ∀ (h : G), h ∈ H ↔ x * h * x⁻¹ ∈ H n : N y : G hyH : y ∈ H hy : f y = f x * n * (f x)⁻¹ ⊢ x⁻¹ * y * x ∈ H ∧ f (x⁻¹ * y * x) = n
rw [hx]
case h G : Type u_1 inst✝¹ : Group G H : Subgroup G N : Type u_5 inst✝ : Group N f : G →* N x : G hx : ∀ (h : G), h ∈ H ↔ x * h * x⁻¹ ∈ H n : N y : G hyH : y ∈ H hy : f y = f x * n * (f x)⁻¹ ⊢ x * (x⁻¹ * y * x) * x⁻¹ ∈ H ∧ f (x⁻¹ * y * x) = n
d1641f5f705fc8d6
Polynomial.Monic.isPrimitive
Mathlib/RingTheory/Polynomial/Content.lean
theorem Monic.isPrimitive {p : R[X]} (hp : p.Monic) : p.IsPrimitive
R : Type u_1 inst✝ : CommSemiring R p : R[X] hp : p.Monic r : R q : R[X] h : p = C r * q ⊢ r * q.coeff p.natDegree = 1
rwa [← coeff_C_mul, ← h]
no goals
2e90a779e6a2d05d
Complex.IsExpCmpFilter.isLittleO_log_norm_re
Mathlib/Analysis/SpecialFunctions/CompareExp.lean
theorem isLittleO_log_norm_re (hl : IsExpCmpFilter l) : (fun z => Real.log ‖z‖) =o[l] re := calc (fun z => Real.log ‖z‖) =O[l] fun z => Real.log (√2) + Real.log (max z.re |z.im|) := .of_norm_eventuallyLE <| (hl.tendsto_re.eventually_ge_atTop 1).mono fun z hz => by have h2 : 0 < √2
l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < √2 hz' : 1 ≤ ‖z‖ ⊢ (fun x => ‖Real.log ‖x‖‖) z ≤ (fun z => Real.log √2 + Real.log (z.re ⊔ |z.im|)) z
have hm₀ : 0 < max z.re |z.im| := lt_max_iff.2 (Or.inl <| one_pos.trans_le hz)
l : Filter ℂ hl : IsExpCmpFilter l z : ℂ hz : 1 ≤ z.re h2 : 0 < √2 hz' : 1 ≤ ‖z‖ hm₀ : 0 < z.re ⊔ |z.im| ⊢ (fun x => ‖Real.log ‖x‖‖) z ≤ (fun z => Real.log √2 + Real.log (z.re ⊔ |z.im|)) z
a15b3dd9177e83a7
AkraBazziRecurrence.rpow_p_mul_one_add_smoothingFn_ge
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma rpow_p_mul_one_add_smoothingFn_ge : ∀ᶠ (n : ℕ) in atTop, ∀ i, (b i) ^ (p a b) * n ^ (p a b) * (1 + ε n) ≤ (r i n) ^ (p a b) * (1 + ε (r i n))
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r i : α q : ℝ → ℝ := fun x => x ^ p a b * (1 + ε x) h_diff_q : DifferentiableOn ℝ q (Set.Ioi 1) h_deriv_q : deriv q =O[atTop] fun x => x ^ (p a b - 1) ⊢ (fun n => ‖q ↑(r i n) - q (b i * ↑n)‖) ≤ᶠ[atTop] fun n => ‖b i ^ p a b * ↑n ^ p a b * (ε (b i * ↑n) - ε ↑n)‖
refine IsLittleO.eventuallyLE ?_
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r i : α q : ℝ → ℝ := fun x => x ^ p a b * (1 + ε x) h_diff_q : DifferentiableOn ℝ q (Set.Ioi 1) h_deriv_q : deriv q =O[atTop] fun x => x ^ (p a b - 1) ⊢ (fun x => q ↑(r i x) - q (b i * ↑x)) =o[atTop] fun x => b i ^ p a b * ↑x ^ p a b * (ε (b i * ↑x) - ε ↑x)
6b09e1ce84116b26
strictConvexOn_rpow
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConvexOn_rpow {p : ℝ} (hp : 1 < p) : StrictConvexOn ℝ (Ici 0) fun x : ℝ ↦ x ^ p
p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
have hy' : 0 < y ^ p := rpow_pos_of_pos hy _
p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p ⊢ (y ^ p - x ^ p) / (y - x) < (z ^ p - y ^ p) / (z - y)
003004303f55f1b7
CategoryTheory.Limits.Types.colimit_eq
Mathlib/CategoryTheory/Limits/Types.lean
theorem colimit_eq {j j' : J} {x : F.obj j} {x' : F.obj j'} (w : colimit.ι F j x = colimit.ι F j' x') : Relation.EqvGen (Quot.Rel F) ⟨j, x⟩ ⟨j', x'⟩
J : Type v inst✝¹ : Category.{w, v} J F : J ⥤ Type u inst✝ : HasColimit F j j' : J x : F.obj j x' : F.obj j' w : colimit.ι F j x = colimit.ι F j' x' ⊢ Quot.mk (Quot.Rel F) ⟨j, x⟩ = Quot.mk (Quot.Rel F) ⟨j', x'⟩
simpa using congr_arg (colimitEquivQuot F) w
no goals
590ecf05694f85c0
Finset.centerMass_insert
Mathlib/Analysis/Convex/Combination.lean
theorem Finset.centerMass_insert (ha : i ∉ t) (hw : ∑ j ∈ t, w j ≠ 0) : (insert i t).centerMass w z = (w i / (w i + ∑ j ∈ t, w j)) • z i + ((∑ j ∈ t, w j) / (w i + ∑ j ∈ t, w j)) • t.centerMass w z
R : Type u_1 E : Type u_3 ι : Type u_5 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E i : ι t : Finset ι w : ι → R z : ι → E ha : i ∉ t hw : ∑ j ∈ t, w j ≠ 0 ⊢ (w i / (w i + ∑ i ∈ t, w i)) • z i + (w i + ∑ i ∈ t, w i)⁻¹ • ∑ i ∈ t, w i • z i = (w i / (w i + ∑ i ∈ t, w i)) • z i + ((∑ i ∈ t, w i) / (w i + ∑ i ∈ t, w i) * (∑ i ∈ t, w i)⁻¹) • ∑ i ∈ t, w i • z i
congr 2
case e_a.e_a R : Type u_1 E : Type u_3 ι : Type u_5 inst✝² : LinearOrderedField R inst✝¹ : AddCommGroup E inst✝ : Module R E i : ι t : Finset ι w : ι → R z : ι → E ha : i ∉ t hw : ∑ j ∈ t, w j ≠ 0 ⊢ (w i + ∑ i ∈ t, w i)⁻¹ = (∑ i ∈ t, w i) / (w i + ∑ i ∈ t, w i) * (∑ i ∈ t, w i)⁻¹
ede647c11966ce4d
MeasureTheory.LevyProkhorov.continuous_equiv_probabilityMeasure
Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
/-- The identity map `LevyProkhorov (ProbabilityMeasure Ω) → ProbabilityMeasure Ω` is continuous. -/ lemma LevyProkhorov.continuous_equiv_probabilityMeasure : Continuous (LevyProkhorov.equiv (α := ProbabilityMeasure Ω))
Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : PseudoMetricSpace Ω inst✝ : OpensMeasurableSpace Ω μs : ℕ → LevyProkhorov (ProbabilityMeasure Ω) ν : LevyProkhorov (ProbabilityMeasure Ω) hμs : Tendsto μs atTop (𝓝 ν) P : ProbabilityMeasure Ω := (equiv (ProbabilityMeasure Ω)) ν Ps : ℕ → ProbabilityMeasure Ω := fun n => (equiv (ProbabilityMeasure Ω)) (μs n) f✝ f : Ω →ᵇ ℝ f_nn : 0 ≤ f f_zero : ¬‖f‖ = 0 norm_f_pos : 0 < ‖f‖ δ : ℝ δ_pos : 0 < δ εs : ℕ → ℝ left✝ : StrictAnti εs εs_pos : ∀ (n : ℕ), 0 < εs n εs_lim : Tendsto εs atTop (𝓝 0) ε_of_room : Tendsto (fun x => dist (μs x) ν + εs x) atTop (𝓝 (0 + 0)) n : ℕ ⊢ 0 < dist (μs n) ν + εs n
linarith [εs_pos n, dist_nonneg (x := μs n) (y := ν)]
no goals
e3f8df53302ac07c
ContinuousMonoidHom.locallyCompactSpace_of_equicontinuousAt
Mathlib/Topology/Algebra/Group/CompactOpen.lean
theorem locallyCompactSpace_of_equicontinuousAt (U : Set X) (V : Set Y) (hU : IsCompact U) (hV : V ∈ nhds (1 : Y)) (h : EquicontinuousAt (fun f : {f : X →* Y | Set.MapsTo f U V} ↦ (f : X → Y)) 1) : LocallyCompactSpace (ContinuousMonoidHom X Y)
X : Type u_7 Y : Type u_8 inst✝⁷ : TopologicalSpace X inst✝⁶ : Group X inst✝⁵ : IsTopologicalGroup X inst✝⁴ : UniformSpace Y inst✝³ : CommGroup Y inst✝² : UniformGroup Y inst✝¹ : T0Space Y inst✝ : CompactSpace Y U : Set X V : Set Y hU : IsCompact U hV : V ∈ 𝓝 1 W : Set Y hWo : W ∈ 𝓝 1 hWV : W ⊆ V hWc : IsCompact W S1 : Set (X →* Y) := {f | Set.MapsTo (⇑f) U W} S2 : Set (ContinuousMonoidHom X Y) := {f | Set.MapsTo (⇑f) U W} S3 : Set C(X, Y) := _root_.toContinuousMap '' S2 S4 : Set (X → Y) := DFunLike.coe '' S3 h : Equicontinuous fun x => ⇑↑x ⊢ S4 = DFunLike.coe '' S1
ext
case h X : Type u_7 Y : Type u_8 inst✝⁷ : TopologicalSpace X inst✝⁶ : Group X inst✝⁵ : IsTopologicalGroup X inst✝⁴ : UniformSpace Y inst✝³ : CommGroup Y inst✝² : UniformGroup Y inst✝¹ : T0Space Y inst✝ : CompactSpace Y U : Set X V : Set Y hU : IsCompact U hV : V ∈ 𝓝 1 W : Set Y hWo : W ∈ 𝓝 1 hWV : W ⊆ V hWc : IsCompact W S1 : Set (X →* Y) := {f | Set.MapsTo (⇑f) U W} S2 : Set (ContinuousMonoidHom X Y) := {f | Set.MapsTo (⇑f) U W} S3 : Set C(X, Y) := _root_.toContinuousMap '' S2 S4 : Set (X → Y) := DFunLike.coe '' S3 h : Equicontinuous fun x => ⇑↑x x✝ : X → Y ⊢ x✝ ∈ S4 ↔ x✝ ∈ DFunLike.coe '' S1
20e48f97652adb36
CFC.one_rpow
Mathlib/Analysis/SpecialFunctions/ContinuousFunctionalCalculus/Rpow/Basic.lean
@[simp] lemma one_rpow {x : ℝ} : (1 : A) ^ x = (1 : A)
A : Type u_1 inst✝⁵ : PartialOrder A inst✝⁴ : Ring A inst✝³ : StarRing A inst✝² : TopologicalSpace A inst✝¹ : Algebra ℝ A inst✝ : ContinuousFunctionalCalculus ℝ≥0 fun a => 0 ≤ a x : ℝ ⊢ 1 ^ x = 1
simp [rpow_def]
no goals
06b9de69f2dcad22
Finset.Nontrivial.sdiff_singleton_nonempty
Mathlib/Data/Finset/SDiff.lean
theorem Nontrivial.sdiff_singleton_nonempty {c : α} {s : Finset α} (hS : s.Nontrivial) : (s \ {c}).Nonempty
α : Type u_1 inst✝ : DecidableEq α c : α s : Finset α hS : s.Nontrivial ⊢ s ≠ ∅
rintro rfl
α : Type u_1 inst✝ : DecidableEq α c : α hS : ∅.Nontrivial ⊢ False
a339ab238357f678
Profinite.NobelingProof.GoodProducts.union
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem GoodProducts.union : range C = ⋃ (e : {o' // o' < o}), (smaller C e.val)
case h.refine_2.intro.intro.intro.intro.intro.intro I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} ho : o.IsLimit hsC : contained C o o' : Ordinal.{u} h : o' < o l : Products I hl : Products.isGood (π C fun x => ord I x < o') l ⊢ Products.isGood C l
rw [contained_eq_proj C o hsC]
case h.refine_2.intro.intro.intro.intro.intro.intro I : Type u C : Set (I → Bool) inst✝¹ : LinearOrder I inst✝ : WellFoundedLT I o : Ordinal.{u} ho : o.IsLimit hsC : contained C o o' : Ordinal.{u} h : o' < o l : Products I hl : Products.isGood (π C fun x => ord I x < o') l ⊢ Products.isGood (π C fun x => ord I x < o) l
30093b771f1e8664
Equiv.Perm.sign_sumCongr
Mathlib/GroupTheory/Perm/Sign.lean
theorem sign_sumCongr (σa : Perm α) (σb : Perm β) : sign (sumCongr σa σb) = sign σa * sign σb
α : Type u inst✝³ : DecidableEq α β : Type v inst✝² : Fintype α inst✝¹ : DecidableEq β inst✝ : Fintype β σa : Perm α σb : Perm β ⊢ sign (σa.sumCongr σb) = sign σa * sign σb
suffices sign (sumCongr σa (1 : Perm β)) = sign σa ∧ sign (sumCongr (1 : Perm α) σb) = sign σb by rw [← this.1, ← this.2, ← sign_mul, sumCongr_mul, one_mul, mul_one]
α : Type u inst✝³ : DecidableEq α β : Type v inst✝² : Fintype α inst✝¹ : DecidableEq β inst✝ : Fintype β σa : Perm α σb : Perm β ⊢ sign (σa.sumCongr 1) = sign σa ∧ sign (sumCongr 1 σb) = sign σb
c74fcfacb0104818
ProbabilityTheory.tsum_prob_mem_Ioi_lt_top
Mathlib/Probability/StrongLaw.lean
theorem tsum_prob_mem_Ioi_lt_top {X : Ω → ℝ} (hint : Integrable X) (hnonneg : 0 ≤ X) : (∑' j : ℕ, ℙ {ω | X ω ∈ Set.Ioi (j : ℝ)}) < ∞
Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X ℙ hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ⊢ ⋃ N, {ω | X ω ∈ Set.Ioc ↑i ↑N} ⊆ {ω | X ω ∈ Set.Ioi ↑i}
simp (config := {contextual := true}) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff, Set.setOf_subset_setOf, imp_true_iff]
no goals
104c70daf554c26d
PartialEquiv.transEquiv_transEquiv
Mathlib/Logic/Equiv/PartialEquiv.lean
theorem transEquiv_transEquiv (e : PartialEquiv α β) (f' : β ≃ γ) (f'' : γ ≃ δ) : (e.transEquiv f').transEquiv f'' = e.transEquiv (f'.trans f'')
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 e : PartialEquiv α β f' : β ≃ γ f'' : γ ≃ δ ⊢ (e.transEquiv f').transEquiv f'' = e.transEquiv (f'.trans f'')
simp only [transEquiv_eq_trans, trans_assoc, Equiv.trans_toPartialEquiv]
no goals
c7cee9f0e75c6334
differentiableAt_apply
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
theorem differentiableAt_apply (i : ι) (f : ∀ i, F' i) : DifferentiableAt (𝕜 := 𝕜) (fun f : ∀ i, F' i => f i) f
case a 𝕜 : Type u_1 inst✝³ : NontriviallyNormedField 𝕜 ι : Type u_6 inst✝² : Fintype ι F' : ι → Type u_7 inst✝¹ : (i : ι) → NormedAddCommGroup (F' i) inst✝ : (i : ι) → NormedSpace 𝕜 (F' i) i : ι f : (i : ι) → F' i h : DifferentiableAt 𝕜 (fun f i' => f i') f → ∀ (i : ι), DifferentiableAt 𝕜 (fun x => x i) f ⊢ DifferentiableAt 𝕜 (fun f i' => f i') f
apply differentiableAt_id
no goals
7f372669966d314d
Std.DHashMap.Internal.Raw₀.Const.get?_of_isEmpty
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem get?_of_isEmpty [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {a : α} : m.1.isEmpty = true → get? m a = none
α : Type u inst✝³ : BEq α inst✝² : Hashable α β : Type v m : Raw₀ α fun x => β inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF a : α ⊢ (toListModel m.val.buckets).isEmpty = true → getValue? a (toListModel m.val.buckets) = none
empty
no goals
935d58f9e8fd1d8f
Polynomial.IsUnitTrinomial.irreducible_aux1
Mathlib/Algebra/Polynomial/UnitTrinomial.lean
theorem irreducible_aux1 {k m n : ℕ} (hkm : k < m) (hmn : m < n) (u v w : Units ℤ) (hp : p = trinomial k m n (u : ℤ) v w) : C (v : ℤ) * (C (u : ℤ) * X ^ (m + n) + C (w : ℤ) * X ^ (n - m + k + n)) = ⟨Finsupp.filter (· ∈ Set.Ioo (k + n) (n + n)) (p * p.mirror).toFinsupp⟩
case h p : ℤ[X] k m n : ℕ hkm : k < m hmn : m < n u v w : ℤˣ hp : p = trinomial k m n ↑u ↑v ↑w key : n - m + k < n ⊢ k + n ∉ Set.Ioo (k + n) (n + n)
exact fun h => h.1.ne rfl
no goals
fb6ff88b1ff3f5f1
Metric.totallyBounded_of_finite_discretization
Mathlib/Topology/MetricSpace/Pseudo/Basic.lean
theorem totallyBounded_of_finite_discretization {s : Set α} (H : ∀ ε > (0 : ℝ), ∃ (β : Type u) (_ : Fintype β) (F : s → β), ∀ x y, F x = F y → dist (x : α) y < ε) : TotallyBounded s
case inl α : Type u inst✝ : PseudoMetricSpace α s : Set α H : ∀ ε > 0, ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε hs : s = ∅ ⊢ TotallyBounded s
rw [hs]
case inl α : Type u inst✝ : PseudoMetricSpace α s : Set α H : ∀ ε > 0, ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε hs : s = ∅ ⊢ TotallyBounded ∅
1adb2e5de1e48f63
WeierstrassCurve.b₈_of_isCharTwoJEqZeroNF
Mathlib/AlgebraicGeometry/EllipticCurve/NormalForms.lean
theorem b₈_of_isCharTwoJEqZeroNF : W.b₈ = -W.a₄ ^ 2
R : Type u_1 inst✝¹ : CommRing R W : WeierstrassCurve R inst✝ : W.IsCharTwoJEqZeroNF ⊢ W.b₈ = -W.a₄ ^ 2
rw [b₈, a₁_of_isCharTwoJEqZeroNF, a₂_of_isCharTwoJEqZeroNF]
R : Type u_1 inst✝¹ : CommRing R W : WeierstrassCurve R inst✝ : W.IsCharTwoJEqZeroNF ⊢ 0 ^ 2 * W.a₆ + 4 * 0 * W.a₆ - 0 * W.a₃ * W.a₄ + 0 * W.a₃ ^ 2 - W.a₄ ^ 2 = -W.a₄ ^ 2
70a8d50e66eca8ab
AffineSubspace.SSameSide.oangle_sign_eq
Mathlib/Geometry/Euclidean/Angle/Oriented/Affine.lean
theorem _root_.AffineSubspace.SSameSide.oangle_sign_eq {s : AffineSubspace ℝ P} {p₁ p₂ p₃ p₄ : P} (hp₁ : p₁ ∈ s) (hp₂ : p₂ ∈ s) (hp₃p₄ : s.SSameSide p₃ p₄) : (∡ p₁ p₄ p₂).sign = (∡ p₁ p₃ p₂).sign
case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) s : AffineSubspace ℝ P p₁ p₂ p₃ p₄ : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃p₄ : s.SSameSide p₃ p₄ h : ¬p₁ = p₂ sp : Set (P × P × P) := (fun p => (p₁, p, p₂)) '' {p | s.SSameSide p₃ p} hc : IsConnected sp hf : ContinuousOn (fun p => ∡ p.1 p.2.1 p.2.2) sp hsp : ∀ p ∈ sp, ∡ p.1 p.2.1 p.2.2 ≠ 0 ∧ ∡ p.1 p.2.1 p.2.2 ≠ ↑π ⊢ (∡ p₁ p₄ p₂).sign = (∡ p₁ p₃ p₂).sign
have hp₃ : (p₁, p₃, p₂) ∈ sp := Set.mem_image_of_mem _ (sSameSide_self_iff.2 ⟨hp₃p₄.nonempty, hp₃p₄.2.1⟩)
case neg V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) s : AffineSubspace ℝ P p₁ p₂ p₃ p₄ : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃p₄ : s.SSameSide p₃ p₄ h : ¬p₁ = p₂ sp : Set (P × P × P) := (fun p => (p₁, p, p₂)) '' {p | s.SSameSide p₃ p} hc : IsConnected sp hf : ContinuousOn (fun p => ∡ p.1 p.2.1 p.2.2) sp hsp : ∀ p ∈ sp, ∡ p.1 p.2.1 p.2.2 ≠ 0 ∧ ∡ p.1 p.2.1 p.2.2 ≠ ↑π hp₃ : (p₁, p₃, p₂) ∈ sp ⊢ (∡ p₁ p₄ p₂).sign = (∡ p₁ p₃ p₂).sign
33ab13a8df4e19ea