name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Polynomial.coeff_divModByMonicAux_mem_span_pow_mul_span
Mathlib/Algebra/Polynomial/CoeffMem.lean
lemma coeff_divModByMonicAux_mem_span_pow_mul_span : ∀ (p q : S[X]) (hq : q.Monic) (i), (p.divModByMonicAux hq).1.coeff i ∈ spanCoeffs(q) ^ deg(p) * spanCoeffs(p) ∧ (p.divModByMonicAux hq).2.coeff i ∈ spanCoeffs(q) ^ deg(p) * spanCoeffs(p) | p, q, hq, i => by rw [divModByMonicAux] have H₀ (i) : p.coeff i ∈ spanCoeffs(q) ^ deg(p) * spanCoeffs(p)
case neg R : Type u_2 S : Type u_3 inst✝² : CommRing R inst✝¹ : Ring S inst✝ : Algebra R S p q : S[X] hq : q.Monic i : ℕ H₀ : ∀ (i : ℕ), p.coeff i ∈ spanCoeffs(q) ^ deg(p) * spanCoeffs(p) hpq : ¬(q.degree ≤ p.degree ∧ p ≠ 0) ⊢ (0, p).1.coeff i ∈ spanCoeffs(q) ^ deg(p) * spanCoeffs(p) ∧ (0, p).2.coeff i ∈ spanCoeffs(q) ^ deg(p) * spanCoeffs(p)
simpa using H₀ _
no goals
f188ae6d502b95a1
List.findM?_eq_findSomeM?
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Control.lean
theorem findM?_eq_findSomeM? [Monad m] [LawfulMonad m] (p : α → m Bool) (as : List α) : as.findM? p = as.findSomeM? fun a => return if (← p a) then some a else none
case cons.e_a.h m : Type → Type u_1 α : Type inst✝¹ : Monad m inst✝ : LawfulMonad m p : α → m Bool a : α as : List α ih : findM? p as = findSomeM? (fun a => do let __do_lift ← p a pure (if __do_lift = true then some a else none)) as b : Bool ⊢ (match b with | true => pure (some a) | false => findSomeM? (fun a => (fun a_1 => if a_1 = true then some a else none) <$> p a) as) = match if b = true then some a else none with | some b => pure (some b) | none => findSomeM? (fun a => (fun a_1 => if a_1 = true then some a else none) <$> p a) as
cases b <;> simp
no goals
ce5d2af180ea00d8
circleIntegrable_sub_zpow_iff
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
theorem circleIntegrable_sub_zpow_iff {c w : ℂ} {R : ℝ} {n : ℤ} : CircleIntegrable (fun z => (z - w) ^ n) c R ↔ R = 0 ∨ 0 ≤ n ∨ w ∉ sphere c |R|
case mp.intro.intro c w : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 hw : w ∈ sphere c |R| ⊢ ¬IntervalIntegrable (fun θ => (circleMap 0 R θ * I) • (circleMap c R θ - w) ^ n) volume 0 (2 * π)
rw [← image_circleMap_Ioc] at hw
case mp.intro.intro c w : ℂ R : ℝ n : ℤ hR : R ≠ 0 hn : n < 0 hw : w ∈ circleMap c R '' Ioc 0 (2 * π) ⊢ ¬IntervalIntegrable (fun θ => (circleMap 0 R θ * I) • (circleMap c R θ - w) ^ n) volume 0 (2 * π)
8d16963f19b22485
AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk
Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
theorem respectsIso_mk {P : AffineTargetMorphismProperty} (h₁ : ∀ {X Y Z} (e : X ≅ Y) (f : Y ⟶ Z) [IsAffine Z], P f → P (e.hom ≫ f)) (h₂ : ∀ {X Y Z} (e : Y ≅ Z) (f : X ⟶ Y) [IsAffine Y], P f → @P _ _ (f ≫ e.hom) (isAffine_of_isIso e.inv)) : P.toProperty.RespectsIso
case hpostcomp.intro P : AffineTargetMorphismProperty h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f) h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [inst : IsAffine Y], P f → P (f ≫ e.hom) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y a : IsAffine Y h : P f ⊢ P.toProperty (f ≫ e.hom)
exact ⟨isAffine_of_isIso e.inv, h₂ e f h⟩
no goals
a0abeb70d6935d67
TopologicalSpace.Closeds.coe_sup
Mathlib/Topology/Sets/Closeds.lean
theorem coe_sup (s t : Closeds α) : (↑(s ⊔ t) : Set α) = ↑s ∪ ↑t
α : Type u_2 inst✝ : TopologicalSpace α s t : Closeds α ⊢ ↑(s ⊔ t) = ↑s ∪ ↑t
rfl
no goals
d62cbb5ccdecb25d
Order.Ideal.isProper_of_not_mem
Mathlib/Order/Ideal.lean
theorem isProper_of_not_mem {I : Ideal P} {p : P} (nmem : p ∉ I) : IsProper I := ⟨fun hp ↦ by have := mem_univ p rw [← hp] at this exact nmem this⟩
P : Type u_1 inst✝ : LE P I : Ideal P p : P nmem : p ∉ I hp : ↑I = univ this : p ∈ univ ⊢ False
rw [← hp] at this
P : Type u_1 inst✝ : LE P I : Ideal P p : P nmem : p ∉ I hp : ↑I = univ this : p ∈ ↑I ⊢ False
eedecb497d07f70f
integral_sin_pow_aux
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem integral_sin_pow_aux : (∫ x in a..b, sin x ^ (n + 2)) = (sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b + (↑n + 1) * ∫ x in a..b, sin x ^ n) - (↑n + 1) * ∫ x in a..b, sin x ^ (n + 2)
a b : ℝ n : ℕ C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ) hu : ∀ x ∈ [[a, b]], HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x hv : ∀ x ∈ [[a, b]], HasDerivAt (-cos) (sin x) x H : ∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x = sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x ⊢ ∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x = C + (↑n + 1) * ∫ (x : ℝ) in a..b, cos x ^ 2 * sin x ^ n
simp [H, h, sq]
a b : ℝ n : ℕ C : ℝ := sin a ^ (n + 1) * cos a - sin b ^ (n + 1) * cos b h : ∀ (α β γ : ℝ), β * α * γ * α = β * (α * α * γ) hu : ∀ x ∈ [[a, b]], HasDerivAt (fun y => sin y ^ (n + 1)) (↑(n + 1) * cos x * sin x ^ n) x hv : ∀ x ∈ [[a, b]], HasDerivAt (-cos) (sin x) x H : ∫ (x : ℝ) in a..b, sin x ^ (n + 1) * sin x = sin b ^ (n + 1) * (-cos) b - sin a ^ (n + 1) * (-cos) a - ∫ (x : ℝ) in a..b, ↑(n + 1) * cos x * sin x ^ n * (-cos) x ⊢ -(sin b ^ (n + 1) * cos b) + sin a ^ (n + 1) * cos a = C
f362bf75d26c9d57
Real.inner_le_Lp_mul_Lq_hasSum_of_nonneg
Mathlib/Analysis/MeanInequalities.lean
theorem inner_le_Lp_mul_Lq_hasSum_of_nonneg (hpq : p.IsConjExponent q) {A B : ℝ} (hA : 0 ≤ A) (hB : 0 ≤ B) (hf : ∀ i, 0 ≤ f i) (hg : ∀ i, 0 ≤ g i) (hf_sum : HasSum (fun i => f i ^ p) (A ^ p)) (hg_sum : HasSum (fun i => g i ^ q) (B ^ q)) : ∃ C : ℝ, 0 ≤ C ∧ C ≤ A * B ∧ HasSum (fun i => f i * g i) C
case intro.intro.intro.intro.intro.intro ι : Type u p q : ℝ hpq : p.IsConjExponent q f g : ι → ℝ≥0 A B : ℝ≥0 hf_sum : HasSum (fun a => f a ^ p) (A ^ p) hg_sum : HasSum (fun a => g a ^ q) (B ^ q) C : ℝ≥0 hC : C ≤ A * B H : HasSum (fun i => f i * g i) C ⊢ HasSum (fun i => ↑(f i) * ↑(g i)) ↑C
norm_cast
no goals
164a3a6315ccf271
WeierstrassCurve.exists_variableChange_of_char_three_of_j_eq_zero
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_three_of_j_eq_zero [E.IsShortNF] [E'.IsShortNF] : ∃ C : VariableChange F, E.variableChange C = E'
F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 3 inst✝¹ : E.IsShortNF inst✝ : E'.IsShortNF ha₄ : E.a₄ ≠ 0 ha₄' : E'.a₄ ≠ 0 this : NeZero 4 u : F hu : u ^ 4 = E.a₄ / E'.a₄ ⊢ 2 ≤ 3
norm_num
no goals
c130cdcad82e2167
CategoryTheory.MorphismProperty.colimitsOfShape_le_of_final
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
lemma colimitsOfShape_le_of_final {J' : Type*} [Category J'] (F : J ⥤ J') [F.Final] : W.colimitsOfShape J' ≤ W.colimitsOfShape J
C : Type u inst✝³ : Category.{v, u} C W : MorphismProperty C J : Type u_1 inst✝² : Category.{u_4, u_1} J J' : Type u_2 inst✝¹ : Category.{u_3, u_2} J' F : J ⥤ J' inst✝ : F.Final X✝ Y✝ : C f✝ : X✝ ⟶ Y✝ X₁ X₂ : J' ⥤ C c₁ : Cocone X₁ c₂ : Cocone X₂ h₁ : IsColimit c₁ h₂ : IsColimit c₂ f : X₁ ⟶ X₂ hf : W.functorCategory J' f ⊢ W.colimitsOfShape J (h₁.desc { pt := c₂.pt, ι := f ≫ c₂.ι })
have h₁' : IsColimit (c₁.whisker F) := (Functor.Final.isColimitWhiskerEquiv F c₁).symm h₁
C : Type u inst✝³ : Category.{v, u} C W : MorphismProperty C J : Type u_1 inst✝² : Category.{u_4, u_1} J J' : Type u_2 inst✝¹ : Category.{u_3, u_2} J' F : J ⥤ J' inst✝ : F.Final X✝ Y✝ : C f✝ : X✝ ⟶ Y✝ X₁ X₂ : J' ⥤ C c₁ : Cocone X₁ c₂ : Cocone X₂ h₁ : IsColimit c₁ h₂ : IsColimit c₂ f : X₁ ⟶ X₂ hf : W.functorCategory J' f h₁' : IsColimit (Cocone.whisker F c₁) ⊢ W.colimitsOfShape J (h₁.desc { pt := c₂.pt, ι := f ≫ c₂.ι })
3cb77bf936c9d4d9
Orientation.linearIsometryEquiv_comp_rightAngleRotation
Mathlib/Analysis/InnerProductSpace/TwoDim.lean
theorem linearIsometryEquiv_comp_rightAngleRotation (φ : E ≃ₗᵢ[ℝ] E) (hφ : 0 < LinearMap.det (φ.toLinearEquiv : E →ₗ[ℝ] E)) (x : E) : φ (J x) = J (φ x)
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < LinearMap.det ↑φ.toLinearEquiv x : E ⊢ φ (o.rightAngleRotation x) = o.rightAngleRotation (φ x)
convert (o.rightAngleRotation_map φ (φ x)).symm
case h.e'_2.h.e'_6.h.e'_6 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < LinearMap.det ↑φ.toLinearEquiv x : E ⊢ x = φ.symm (φ x) case h.e'_3.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < LinearMap.det ↑φ.toLinearEquiv x : E ⊢ o = (map (Fin 2) φ.toLinearEquiv) o
92cca6cb1f7f9fef
map_le_lineMap_iff_slope_le_slope
Mathlib/LinearAlgebra/AffineSpace/Ordered.lean
theorem map_le_lineMap_iff_slope_le_slope (hab : a < b) (h₀ : 0 < r) (h₁ : r < 1) : f c ≤ lineMap (f a) (f b) r ↔ slope f a c ≤ slope f c b
k : Type u_1 E : Type u_2 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r : k hab : a < b h₀ : 0 < r h₁ : r < 1 ⊢ f ((lineMap a b) r) ≤ (lineMap (f a) (f b)) r ↔ slope f a ((lineMap a b) r) ≤ slope f ((lineMap a b) r) b
rw [map_le_lineMap_iff_slope_le_slope_left (mul_pos h₀ (sub_pos.2 hab)), ← lineMap_slope_lineMap_slope_lineMap f a b r, right_le_lineMap_iff_le h₁]
no goals
22cc763cce3393ca
MeasureTheory.Measure.haar_singleton
Mathlib/MeasureTheory/Group/Measure.lean
theorem haar_singleton [IsTopologicalGroup G] [BorelSpace G] (g : G) : μ {g} = μ {(1 : G)}
case h.e'_2.h.e'_6 G : Type u_1 inst✝⁵ : MeasurableSpace G inst✝⁴ : Group G inst✝³ : TopologicalSpace G μ : Measure G inst✝² : μ.IsHaarMeasure inst✝¹ : IsTopologicalGroup G inst✝ : BorelSpace G g : G ⊢ {g} = (fun h => g⁻¹ * h) ⁻¹' {1}
simp only [mul_one, preimage_mul_left_singleton, inv_inv]
no goals
f4a174aeac7f91b9
CoxeterSystem.isLeftInversion_simple_iff_isLeftDescent
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem isLeftInversion_simple_iff_isLeftDescent (w : W) (i : B) : cs.IsLeftInversion w (s i) ↔ cs.IsLeftDescent w i
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W w : W i : B ⊢ cs.IsLeftInversion w (cs.simple i) ↔ cs.IsLeftDescent w i
simp [IsLeftInversion, IsLeftDescent, cs.isReflection_simple i]
no goals
99132206d5581048
exists_seq_of_forall_finset_exists
Mathlib/Data/Fintype/Basic.lean
theorem exists_seq_of_forall_finset_exists {α : Type*} (P : α → Prop) (r : α → α → Prop) (h : ∀ s : Finset α, (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y) : ∃ f : ℕ → α, (∀ n, P (f n)) ∧ ∀ m n, m < n → r (f m) (f n)
α : Type u_4 P : α → Prop r : α → α → Prop h : ∀ (s : Finset α), (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y this : Nonempty α ⊢ ∃ f, (∀ (n : ℕ), P (f n)) ∧ ∀ (m n : ℕ), m < n → r (f m) (f n)
choose! F hF using h
α : Type u_4 P : α → Prop r : α → α → Prop this : Nonempty α F : Finset α → α hF : ∀ (s : Finset α), (∀ x ∈ s, P x) → P (F s) ∧ ∀ x ∈ s, r x (F s) ⊢ ∃ f, (∀ (n : ℕ), P (f n)) ∧ ∀ (m n : ℕ), m < n → r (f m) (f n)
84f3321d3efdbd70
Polynomial.coeff_hermite_explicit
Mathlib/RingTheory/Polynomial/Hermite/Basic.lean
theorem coeff_hermite_explicit : ∀ n k : ℕ, coeff (hermite (2 * n + k)) k = (-1) ^ n * (2 * n - 1)‼ * Nat.choose (2 * n + k) k | 0, _ => by simp | n + 1, 0 => by convert coeff_hermite_succ_zero (2 * n + 1) using 1 -- Porting note: ring_nf did not solve the goal on line 165 rw [coeff_hermite_explicit n 1, (by rw [Nat.left_distrib, mul_one, Nat.add_one_sub_one] : 2 * (n + 1) - 1 = 2 * n + 1), Nat.doubleFactorial_add_one, Nat.choose_zero_right, Nat.choose_one_right, pow_succ] push_cast ring | n + 1, k + 1 => by let hermite_explicit : ℕ → ℕ → ℤ := fun n k => (-1) ^ n * (2 * n - 1)‼ * Nat.choose (2 * n + k) k have hermite_explicit_recur : ∀ n k : ℕ, hermite_explicit (n + 1) (k + 1) = hermite_explicit (n + 1) k - (k + 2) * hermite_explicit n (k + 2)
case e_a.e_a n✝ k✝ : ℕ hermite_explicit : ℕ → ℕ → ℤ := fun n k => (-1) ^ n * ↑(2 * n - 1)‼ * ↑((2 * n + k).choose k) n k : ℕ ⊢ (2 * (n + 1) - 1)‼ * (2 * (n + 1) + (k + 1)).choose (k + 1) = (2 * (n + 1) - 1)‼ * (2 * (n + 1) + k).choose k + (2 * n - 1)‼ * ((2 * n + (k + 2)).choose (k + 2) * (k + 2))
rw [(by rw [Nat.left_distrib, mul_one, Nat.add_one_sub_one] : 2 * (n + 1) - 1 = 2 * n + 1), Nat.doubleFactorial_add_one, mul_comm (2 * n + 1)]
case e_a.e_a n✝ k✝ : ℕ hermite_explicit : ℕ → ℕ → ℤ := fun n k => (-1) ^ n * ↑(2 * n - 1)‼ * ↑((2 * n + k).choose k) n k : ℕ ⊢ (2 * n - 1)‼ * (2 * n + 1) * (2 * (n + 1) + (k + 1)).choose (k + 1) = (2 * n - 1)‼ * (2 * n + 1) * (2 * (n + 1) + k).choose k + (2 * n - 1)‼ * ((2 * n + (k + 2)).choose (k + 2) * (k + 2))
76b4bea6433d05b5
MeasureTheory.llr_smul_right
Mathlib/MeasureTheory/Measure/LogLikelihoodRatio.lean
lemma llr_smul_right [IsFiniteMeasure μ] [Measure.HaveLebesgueDecomposition μ ν] (hμν : μ ≪ ν) (c : ℝ≥0∞) (hc : c ≠ 0) (hc_ne_top : c ≠ ∞) : llr μ (c • ν) =ᵐ[μ] fun x ↦ llr μ ν x - log c.toReal
case h.hx α : Type u_1 mα : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : μ.HaveLebesgueDecomposition ν hμν : μ ≪ ν c : ℝ≥0∞ hc : c ≠ 0 hc_ne_top : c ≠ ⊤ h : μ.rnDeriv (c • ν) =ᶠ[ae ν] c⁻¹ • μ.rnDeriv ν x : α hx_eq : μ.rnDeriv (c • ν) x = (c⁻¹ • μ.rnDeriv ν) x hx_pos : 0 < μ.rnDeriv ν x hx_ne_top : μ.rnDeriv ν x < ⊤ ⊢ c⁻¹ ≠ 0 ∧ c⁻¹ ≠ ⊤
simp [hc, hc_ne_top]
no goals
f2c098759e8140a2
LucasLehmer.X.ext
Mathlib/NumberTheory/LucasLehmer.lean
theorem ext {x y : X q} (h₁ : x.1 = y.1) (h₂ : x.2 = y.2) : x = y
case mk.mk q : ℕ+ fst✝¹ snd✝¹ fst✝ snd✝ : ZMod ↑q h₁ : (fst✝¹, snd✝¹).1 = (fst✝, snd✝).1 h₂ : (fst✝¹, snd✝¹).2 = (fst✝, snd✝).2 ⊢ (fst✝¹, snd✝¹) = (fst✝, snd✝)
congr
no goals
b7ee4edacbd6f2eb
BoxIntegral.Box.subbox_induction_on
Mathlib/Analysis/BoxIntegral/Partition/SubboxInduction.lean
theorem subbox_induction_on {p : Box ι → Prop} (I : Box ι) (H_ind : ∀ J ≤ I, (∀ J' ∈ splitCenter J, p J') → p J) (H_nhds : ∀ z ∈ Box.Icc I, ∃ U ∈ 𝓝[Box.Icc I] z, ∀ J ≤ I, ∀ (m : ℕ), z ∈ Box.Icc J → Box.Icc J ⊆ U → (∀ i, J.upper i - J.lower i = (I.upper i - I.lower i) / 2 ^ m) → p J) : p I
ι : Type u_1 inst✝ : Fintype ι p : Box ι → Prop I : Box ι H_ind : ∀ J ≤ I, (∀ J' ∈ splitCenter J, p J') → p J H_nhds : ∀ z ∈ Box.Icc I, ∃ U ∈ 𝓝[Box.Icc I] z, ∀ J ≤ I, ∀ (m : ℕ), z ∈ Box.Icc J → Box.Icc J ⊆ U → (∀ (i : ι), J.upper i - J.lower i = (I.upper i - I.lower i) / 2 ^ m) → p J ⊢ p I
refine subbox_induction_on' I (fun J hle hs => H_ind J hle fun J' h' => ?_) H_nhds
ι : Type u_1 inst✝ : Fintype ι p : Box ι → Prop I : Box ι H_ind : ∀ J ≤ I, (∀ J' ∈ splitCenter J, p J') → p J H_nhds : ∀ z ∈ Box.Icc I, ∃ U ∈ 𝓝[Box.Icc I] z, ∀ J ≤ I, ∀ (m : ℕ), z ∈ Box.Icc J → Box.Icc J ⊆ U → (∀ (i : ι), J.upper i - J.lower i = (I.upper i - I.lower i) / 2 ^ m) → p J J : Box ι hle : J ≤ I hs : ∀ (s : Set ι), p (J.splitCenterBox s) J' : Box ι h' : J' ∈ splitCenter J ⊢ p J'
7bb7c3e429c684e0
HahnModule.add_smul
Mathlib/RingTheory/HahnSeries/Multiplication.lean
theorem add_smul [AddCommMonoid R] [SMulWithZero R V] {x y : HahnSeries Γ R} {z : HahnModule Γ' R V} (h : ∀ (r s : R) (u : V), (r + s) • u = r • u + s • u) : (x + y) • z = x • z + y • z
case h.h Γ : Type u_1 Γ' : Type u_2 R : Type u_3 V : Type u_5 inst✝⁶ : PartialOrder Γ inst✝⁵ : PartialOrder Γ' inst✝⁴ : VAdd Γ Γ' inst✝³ : IsOrderedCancelVAdd Γ Γ' inst✝² : AddCommMonoid V inst✝¹ : AddCommMonoid R inst✝ : SMulWithZero R V x y : HahnSeries Γ R z : HahnModule Γ' R V h✝ : ∀ (r s : R) (u : V), (r + s) • u = r • u + s • u a : Γ' b : Γ h : x.coeff b = 0 ∧ y.coeff b = 0 ⊢ x.coeff b + y.coeff b = 0
rw [h.1, h.2, add_zero]
no goals
d6350673eea7c23e
Subalgebra.LinearDisjoint.of_linearDisjoint_finite_left
Mathlib/RingTheory/LinearDisjoint.lean
theorem of_linearDisjoint_finite_left [Algebra.IsIntegral R A] (H : ∀ A' : Subalgebra R S, A' ≤ A → [Module.Finite R A'] → A'.LinearDisjoint B) : A.LinearDisjoint B
case intro.intro.intro.intro R : Type u S : Type v inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S A B : Subalgebra R S inst✝ : Algebra.IsIntegral R ↥A H : ∀ A' ≤ A, ∀ [inst : Module.Finite R ↥A'], A'.LinearDisjoint B x y : ↥(toSubmodule A) ⊗[R] ↥(toSubmodule B) hxy : ((toSubmodule A).mulMap (toSubmodule B)) x = ((toSubmodule A).mulMap (toSubmodule B)) y M' : Submodule R S hM : M' ≤ toSubmodule A hf : Module.Finite R ↥M' s : Finset S hs : Submodule.span R ↑s = M' hs' : ↑s ⊆ ↑A A' : Subalgebra R S := Algebra.adjoin R ↑s hf' : Module.Finite R ↥A' hA : toSubmodule A' ≤ toSubmodule A h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA))) ⊢ x = y
obtain ⟨x', hx'⟩ := h (show x ∈ {x, y} by simp)
case intro.intro.intro.intro.intro R : Type u S : Type v inst✝³ : CommRing R inst✝² : CommRing S inst✝¹ : Algebra R S A B : Subalgebra R S inst✝ : Algebra.IsIntegral R ↥A H : ∀ A' ≤ A, ∀ [inst : Module.Finite R ↥A'], A'.LinearDisjoint B x y : ↥(toSubmodule A) ⊗[R] ↥(toSubmodule B) hxy : ((toSubmodule A).mulMap (toSubmodule B)) x = ((toSubmodule A).mulMap (toSubmodule B)) y M' : Submodule R S hM : M' ≤ toSubmodule A hf : Module.Finite R ↥M' s : Finset S hs : Submodule.span R ↑s = M' hs' : ↑s ⊆ ↑A A' : Subalgebra R S := Algebra.adjoin R ↑s hf' : Module.Finite R ↥A' hA : toSubmodule A' ≤ toSubmodule A h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA))) x' : ↥(toSubmodule A') ⊗[R] ↥(toSubmodule B) hx' : (LinearMap.rTensor (↥(toSubmodule B)) (Submodule.inclusion hA)) x' = x ⊢ x = y
1d56e99b263dd6b5
Filter.inter_eventuallyEq_left
Mathlib/Order/Filter/Basic.lean
theorem inter_eventuallyEq_left {s t : Set α} {l : Filter α} : (s ∩ t : Set α) =ᶠ[l] s ↔ ∀ᶠ x in l, x ∈ s → x ∈ t
α : Type u s t : Set α l : Filter α ⊢ s ∩ t =ᶠ[l] s ↔ ∀ᶠ (x : α) in l, x ∈ s → x ∈ t
simp only [eventuallyEq_set, mem_inter_iff, and_iff_left_iff_imp]
no goals
2d1c75287f901022
Ideal.absNorm_bot
Mathlib/RingTheory/Ideal/Norm/AbsNorm.lean
theorem absNorm_bot : absNorm (⊥ : Ideal S) = 0
S : Type u_1 inst✝³ : CommRing S inst✝² : Nontrivial S inst✝¹ : IsDedekindDomain S inst✝ : Module.Free ℤ S ⊢ absNorm ⊥ = 0
rw [← Ideal.zero_eq_bot, _root_.map_zero]
no goals
73fd61bc09b59419
GaussianFourier.integral_cexp_neg_mul_sq_add_real_mul_I
Mathlib/Analysis/SpecialFunctions/Gaussian/FourierTransform.lean
theorem integral_cexp_neg_mul_sq_add_real_mul_I (hb : 0 < b.re) (c : ℝ) : ∫ x : ℝ, cexp (-b * (x + c * I) ^ 2) = (π / b) ^ (1 / 2 : ℂ)
b : ℂ hb : 0 < b.re c : ℝ I₁ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2) HI₁ : I₁ = fun T => ∫ (x : ℝ) in -T..T, cexp (-b * (↑x + ↑c * I) ^ 2) I₂ : ℝ → ℂ := fun T => ∫ (x : ℝ) in -T..T, cexp (-b * ↑x ^ 2) I₄ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (↑T + ↑y * I) ^ 2) I₅ : ℝ → ℂ := fun T => ∫ (y : ℝ) in 0 ..c, cexp (-b * (-↑T + ↑y * I) ^ 2) T : ℝ ⊢ Differentiable ℂ fun z => z ^ 2
exact differentiable_pow 2
no goals
8f46f2d622ac75ef
Real.Angle.cos_eq_iff_coe_eq_or_eq_neg
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
theorem cos_eq_iff_coe_eq_or_eq_neg {θ ψ : ℝ} : cos θ = cos ψ ↔ (θ : Angle) = ψ ∨ (θ : Angle) = -ψ
case mp θ ψ : ℝ Hcos : (∃ n, ↑n * π = (θ + ψ) / 2) ∨ ∃ n, ↑n * π = (θ - ψ) / 2 ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
rcases Hcos with (⟨n, hn⟩ | ⟨n, hn⟩)
case mp.inl.intro θ ψ : ℝ n : ℤ hn : ↑n * π = (θ + ψ) / 2 ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ case mp.inr.intro θ ψ : ℝ n : ℤ hn : ↑n * π = (θ - ψ) / 2 ⊢ ↑θ = ↑ψ ∨ ↑θ = -↑ψ
231d1921c276f456
ENNReal.rpow_le_one_of_one_le_of_neg
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
theorem rpow_le_one_of_one_le_of_neg {x : ℝ≥0∞} {z : ℝ} (hx : 1 ≤ x) (hz : z < 0) : x ^ z ≤ 1
case coe z : ℝ hz : z < 0 x✝ : ℝ≥0 hx : 1 ≤ ↑x✝ ⊢ ↑x✝ ^ z ≤ 1
simp only [one_le_coe_iff, some_eq_coe] at hx
case coe z : ℝ hz : z < 0 x✝ : ℝ≥0 hx : 1 ≤ x✝ ⊢ ↑x✝ ^ z ≤ 1
9fb379d2f486f39d
ENNReal.exists_pos_sum_of_countable
Mathlib/Analysis/SpecificLimits/Basic.lean
theorem exists_pos_sum_of_countable {ε : ℝ≥0∞} (hε : ε ≠ 0) (ι) [Countable ι] : ∃ ε' : ι → ℝ≥0, (∀ i, 0 < ε' i) ∧ (∑' i, (ε' i : ℝ≥0∞)) < ε
case intro.intro ε : ℝ≥0∞ hε : ε ≠ 0 ι : Type u_4 inst✝ : Countable ι r : ℝ≥0∞ h0r : 0 < r hrε : r < ε ⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∑' (i : ι), ↑(ε' i) < ε
rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, _⟩
case intro.intro.intro.intro ε : ℝ≥0∞ hε : ε ≠ 0 ι : Type u_4 inst✝ : Countable ι x : ℝ≥0 right✝ : ↑x < ε h0r : 0 < ↑x hrε : ↑x < ε ⊢ ∃ ε', (∀ (i : ι), 0 < ε' i) ∧ ∑' (i : ι), ↑(ε' i) < ε
6474cb59d23a91c6
SameRay.trans
Mathlib/LinearAlgebra/Ray.lean
theorem trans (hxy : SameRay R x y) (hyz : SameRay R y z) (hy : y = 0 → x = 0 ∨ z = 0) : SameRay R x z
case inr R : Type u_1 inst✝² : StrictOrderedCommSemiring R M : Type u_2 inst✝¹ : AddCommMonoid M inst✝ : Module R M x y z : M hxy : SameRay R x y hyz : SameRay R y z hy : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 ⊢ SameRay R x z
rcases eq_or_ne z 0 with (rfl | hz)
case inr.inl R : Type u_1 inst✝² : StrictOrderedCommSemiring R M : Type u_2 inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : M hxy : SameRay R x y hx : x ≠ 0 hyz : SameRay R y 0 hy : y = 0 → x = 0 ∨ 0 = 0 ⊢ SameRay R x 0 case inr.inr R : Type u_1 inst✝² : StrictOrderedCommSemiring R M : Type u_2 inst✝¹ : AddCommMonoid M inst✝ : Module R M x y z : M hxy : SameRay R x y hyz : SameRay R y z hy : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 hz : z ≠ 0 ⊢ SameRay R x z
58153a221638fd7f
IsLocalization.bot_lt_comap_prime
Mathlib/RingTheory/Localization/Ideal.lean
theorem bot_lt_comap_prime [IsDomain R] (hM : M ≤ R⁰) (p : Ideal S) [hpp : p.IsPrime] (hp0 : p ≠ ⊥) : ⊥ < Ideal.comap (algebraMap R S) p
R : Type u_1 inst✝⁴ : CommRing R M : Submonoid R S : Type u_2 inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : IsLocalization M S inst✝ : IsDomain R hM : M ≤ R⁰ p : Ideal S hpp : p.IsPrime hp0 : p ≠ ⊥ this : IsDomain S ⊢ Ideal.comap (algebraMap R S) ⊥ < Ideal.comap (algebraMap R S) p
convert (orderIsoOfPrime M S).lt_iff_lt.mpr (show (⟨⊥, Ideal.bot_prime⟩ : { p : Ideal S // p.IsPrime }) < ⟨p, hpp⟩ from hp0.bot_lt)
no goals
070619afe4075fe6
Set.SMulAntidiagonal.finite_of_isPWO
Mathlib/Data/Set/SMulAntidiagonal.lean
theorem finite_of_isPWO (hs : s.IsPWO) (ht : t.IsPWO) (a) : (smulAntidiagonal s t a).Finite
case refl G : Type u_1 P : Type u_2 s : Set G t : Set P inst✝³ : PartialOrder G inst✝² : PartialOrder P inst✝¹ : SMul G P inst✝ : IsOrderedCancelSMul G P hs : s.IsPWO ht : t.IsPWO a : P h : (s.smulAntidiagonal t a).Infinite h1 : (s.smulAntidiagonal t a).PartiallyWellOrderedOn (Prod.fst ⁻¹'o fun x1 x2 => x1 ≤ x2) h2 : (s.smulAntidiagonal t a).PartiallyWellOrderedOn (Prod.snd ⁻¹'o fun x1 x2 => x1 ≤ x2) ⊢ ∀ (a : G × P), (Prod.fst ⁻¹'o fun x x_1 => x ≤ x_1) a a
simp_all only [Order.Preimage, le_refl, Prod.forall, implies_true]
no goals
7f1573a75cfc8a75
PowerSeries.X_dvd_iff
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem X_dvd_iff {φ : R⟦X⟧} : (X : R⟦X⟧) ∣ φ ↔ constantCoeff R φ = 0
R : Type u_1 inst✝ : Semiring R φ : R⟦X⟧ ⊢ X ∣ φ ↔ (constantCoeff R) φ = 0
rw [← pow_one (X : R⟦X⟧), X_pow_dvd_iff, ← coeff_zero_eq_constantCoeff_apply]
R : Type u_1 inst✝ : Semiring R φ : R⟦X⟧ ⊢ (∀ m < 1, (coeff R m) φ = 0) ↔ (coeff R 0) φ = 0
cf60b9c3c4ca0721
SetTheory.Game.small_setOf_birthday_lt
Mathlib/SetTheory/Game/Birthday.lean
theorem small_setOf_birthday_lt (o : Ordinal) : Small.{u} {x : Game.{u} // birthday x < o}
y : PGame IH : ∀ k < Order.succ (birthday ⟦y⟧), Small.{u, u + 1} { x // x.birthday < k } S : Set Game := ⋃ a ∈ Set.Iio (Order.succ (birthday ⟦y⟧)), {x | x.birthday < a} H : Small.{u, u + 1} ↑S := small_biUnion (Set.Iio (Order.succ (birthday ⟦y⟧))) fun a h => {x | x.birthday < a} f : Set ↑S × Set ↑S → Game := fun g => ⟦PGame.mk (Shrink.{u, u + 1} ↑g.1) (Shrink.{u, u + 1} ↑g.2) (fun x => Quotient.out ↑↑((equivShrink ↑g.1).symm x)) fun x => Quotient.out ↑↑((equivShrink ↑g.2).symm x)⟧ hy' : y.birthday = birthday ⟦y⟧ i : y.LeftMoves this : ∃ b ≤ y.birthday, birthday ⟦y.moveLeft i⟧ < b ⊢ ⟦y.moveLeft i⟧ ∈ S
simpa [S, hy'] using this
no goals
942b1277300d8c20
Real.lt_tan
Mathlib/Analysis/SpecialFunctions/Trigonometric/Bounds.lean
theorem lt_tan {x : ℝ} (h1 : 0 < x) (h2 : x < π / 2) : x < tan x
x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 ⊢ x < tan x
have cos_pos {y : ℝ} (hy : y ∈ U) : 0 < cos y := by exact cos_pos_of_mem_Ioo (Ico_subset_Ioo_left (neg_lt_zero.mpr half_pi_pos) hy)
x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y ⊢ x < tan x
beb6377e2b7c7c87
Profinite.exists_locallyConstant
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_locallyConstant {α : Type*} (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) α), f = g.comap (C.π.app _).hom
J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α S : DiscreteQuotient ↑C.pt.toTop := f.discreteQuotient ff : Quotient S.toSetoid → α := ⇑f.lift h✝ : IsEmpty (Quotient S.toSetoid) this✝ : ∃ j, IsEmpty ↑(F.obj j).toTop j : J hj : IsEmpty ↑(F.obj j).toTop A : Set α this : (fun a => hj.elim a) ⁻¹' A = ∅ ⊢ IsOpen ((fun a => hj.elim a) ⁻¹' A)
rw [this]
J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α S : DiscreteQuotient ↑C.pt.toTop := f.discreteQuotient ff : Quotient S.toSetoid → α := ⇑f.lift h✝ : IsEmpty (Quotient S.toSetoid) this✝ : ∃ j, IsEmpty ↑(F.obj j).toTop j : J hj : IsEmpty ↑(F.obj j).toTop A : Set α this : (fun a => hj.elim a) ⁻¹' A = ∅ ⊢ IsOpen ∅
72c7aeebc62ad404
ContDiffWithinAt.contDiffOn'
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem ContDiffWithinAt.contDiffOn' (hm : m ≤ n) (h' : m = ∞ → n = ω) (h : ContDiffWithinAt 𝕜 n f s x) : ∃ u, IsOpen u ∧ x ∈ u ∧ ContDiffOn 𝕜 m f (insert x s ∩ u)
case intro.intro.intro.intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E m✝ n : WithTop ℕ∞ h : ContDiffWithinAt 𝕜 n f s x hn : n ≠ ω m : ℕ hm : ↑m ≤ n h' : ↑m = ∞ → n = ω t : Set E ht : t ∈ 𝓝[insert x s] x p : E → FormalMultilinearSeries 𝕜 E F hp : HasFTaylorSeriesUpToOn (↑m) f p t u : Set E huo : IsOpen u hxu : x ∈ u hut : u ∩ insert x s ⊆ t ⊢ ∃ u, IsOpen u ∧ x ∈ u ∧ ContDiffOn 𝕜 (↑m) f (insert x s ∩ u)
rw [inter_comm] at hut
case intro.intro.intro.intro.intro.intro 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E m✝ n : WithTop ℕ∞ h : ContDiffWithinAt 𝕜 n f s x hn : n ≠ ω m : ℕ hm : ↑m ≤ n h' : ↑m = ∞ → n = ω t : Set E ht : t ∈ 𝓝[insert x s] x p : E → FormalMultilinearSeries 𝕜 E F hp : HasFTaylorSeriesUpToOn (↑m) f p t u : Set E huo : IsOpen u hxu : x ∈ u hut : insert x s ∩ u ⊆ t ⊢ ∃ u, IsOpen u ∧ x ∈ u ∧ ContDiffOn 𝕜 (↑m) f (insert x s ∩ u)
252a1c681d4d0950
CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃
Mathlib/Algebra/Homology/HomotopyCategory/Pretriangulated.lean
@[reassoc] lemma triangleMapOfHomotopy_comm₃ : mapOfHomotopy H ≫ (triangle φ₂).mor₃ = (triangle φ₁).mor₃ ≫ a⟦1⟧'
C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C inst✝ : HasBinaryBiproducts C K₁ L₁ K₂ L₂ : CochainComplex C ℤ φ₁ : K₁ ⟶ L₁ φ₂ : K₂ ⟶ L₂ a : K₁ ⟶ K₂ b : L₁ ⟶ L₂ H : Homotopy (φ₁ ≫ b) (a ≫ φ₂) ⊢ mapOfHomotopy H ≫ (triangle φ₂).mor₃ = (triangle φ₁).mor₃ ≫ (CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map a
ext p
case h C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C inst✝ : HasBinaryBiproducts C K₁ L₁ K₂ L₂ : CochainComplex C ℤ φ₁ : K₁ ⟶ L₁ φ₂ : K₂ ⟶ L₂ a : K₁ ⟶ K₂ b : L₁ ⟶ L₂ H : Homotopy (φ₁ ≫ b) (a ≫ φ₂) p : ℤ ⊢ (mapOfHomotopy H ≫ (triangle φ₂).mor₃).f p = ((triangle φ₁).mor₃ ≫ (CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map a).f p
5e3487226dd990fa
CategoryTheory.Limits.Sigma.eqToHom_comp_ι
Mathlib/CategoryTheory/Limits/Shapes/Products.lean
theorem Sigma.eqToHom_comp_ι {J : Type*} (f : J → C) [HasCoproduct f] {j j' : J} (w : j = j') : eqToHom (by simp [w]) ≫ Sigma.ι f j' = Sigma.ι f j
case refl C : Type u inst✝¹ : Category.{v, u} C J : Type u_1 f : J → C inst✝ : HasCoproduct f j : J ⊢ eqToHom ⋯ ≫ ι f j = ι f j
simp
no goals
50733f72a97eb131
hasDerivAt_of_tendstoUniformlyOnFilter
Mathlib/Analysis/Calculus/UniformLimitsDeriv.lean
theorem hasDerivAt_of_tendstoUniformlyOnFilter [NeBot l] (hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x)) (hf : ∀ᶠ n : ι × 𝕜 in l ×ˢ 𝓝 x, HasDerivAt (f n.1) (f' n.1 n.2) n.2) (hfg : ∀ᶠ y in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y))) : HasDerivAt g (g' x) x
ι : Type u_1 l : Filter ι 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 G : Type u_3 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G f : ι → 𝕜 → G g : 𝕜 → G f' : ι → 𝕜 → G g' : 𝕜 → G x : 𝕜 inst✝¹ : IsRCLikeNormedField 𝕜 inst✝ : l.NeBot hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x) hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.1) (f' n.1 n.2) n.2 hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y)) F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z) ⊢ HasDerivAt g (g' x) x
let G' z := (1 : 𝕜 →L[𝕜] 𝕜).smulRight (g' z)
ι : Type u_1 l : Filter ι 𝕜 : Type u_2 inst✝⁴ : NontriviallyNormedField 𝕜 G : Type u_3 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G f : ι → 𝕜 → G g : 𝕜 → G f' : ι → 𝕜 → G g' : 𝕜 → G x : 𝕜 inst✝¹ : IsRCLikeNormedField 𝕜 inst✝ : l.NeBot hf' : TendstoUniformlyOnFilter f' g' l (𝓝 x) hf : ∀ᶠ (n : ι × 𝕜) in l ×ˢ 𝓝 x, HasDerivAt (f n.1) (f' n.1 n.2) n.2 hfg : ∀ᶠ (y : 𝕜) in 𝓝 x, Tendsto (fun n => f n y) l (𝓝 (g y)) F' : ι → 𝕜 → 𝕜 →L[𝕜] G := fun n z => ContinuousLinearMap.smulRight 1 (f' n z) G' : 𝕜 → 𝕜 →L[𝕜] G := fun z => ContinuousLinearMap.smulRight 1 (g' z) ⊢ HasDerivAt g (g' x) x
3364bb7f5ca1a8f4
PrimeSpectrum.toPiLocalization_surjective_of_discreteTopology
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
theorem toPiLocalization_surjective_of_discreteTopology : Function.Surjective (toPiLocalization R) := fun x ↦ by have (p : PrimeSpectrum R) : ∃ f, (basicOpen f : Set _) = {p} := have ⟨_, ⟨f, rfl⟩, hpf, hfp⟩ := isTopologicalBasis_basic_opens.isOpen_iff.mp (isOpen_discrete {p}) p rfl ⟨f, hfp.antisymm <| Set.singleton_subset_iff.mpr hpf⟩ choose f hf using this let e := Equiv.ofInjective f fun p q eq ↦ Set.singleton_injective (hf p ▸ eq ▸ hf q) have loc a : IsLocalization.AtPrime (Localization.Away a.1) (e.symm a).1 := (isLocalization_away_iff_atPrime_of_basicOpen_eq_singleton <| hf _).mp <| by simp_rw [e, Equiv.apply_ofInjective_symm]; infer_instance let algE a := IsLocalization.algEquiv (e.symm a).1.primeCompl (Localization.AtPrime (e.symm a).1) (Localization.Away a.1) have span_eq : Ideal.span (Set.range f) = ⊤ := iSup_basicOpen_eq_top_iff.mp <| top_unique fun p _ ↦ TopologicalSpace.Opens.mem_iSup.mpr ⟨p, (hf p).ge rfl⟩ replace hf a : (basicOpen a.1 : Set _) = {e.symm a}
R : Type u inst✝¹ : CommSemiring R inst✝ : DiscreteTopology (PrimeSpectrum R) x : PiLocalization R f : PrimeSpectrum R → R hf : ∀ (p : PrimeSpectrum R), ↑(basicOpen (f p)) = {p} e : PrimeSpectrum R ≃ ↑(Set.range f) := Equiv.ofInjective f ⋯ a : ↑(Set.range f) ⊢ IsLocalization.Away (↑a) (Localization.Away ↑a)
infer_instance
no goals
680284c76fd78d8c
MeasureTheory.Martingale.condExp_stoppedValue_stopping_time_ae_eq_restrict_le
Mathlib/Probability/Martingale/OptionalSampling.lean
theorem condExp_stoppedValue_stopping_time_ae_eq_restrict_le (h : Martingale f ℱ μ) (hτ : IsStoppingTime ℱ τ) (hσ : IsStoppingTime ℱ σ) [SigmaFinite (μ.trim hσ.measurableSpace_le)] (hτ_le : ∀ x, τ x ≤ i) : μ[stoppedValue f τ|hσ.measurableSpace] =ᵐ[μ.restrict {x : Ω | τ x ≤ σ x}] stoppedValue f τ
case refine_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (μ.trim ⋯) hτ_le : ∀ (x : Ω), τ x ≤ i h_int : Integrable ({ω | τ ω ≤ σ ω}.indicator (stoppedValue (fun n => f n) τ)) μ t : Set Ω ht : MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ⊢ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω})
rw [hτ.measurableSet_inter_le_iff hσ, IsStoppingTime.measurableSet_min_iff hτ hσ] at ht
case refine_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (μ.trim ⋯) hτ_le : ∀ (x : Ω), τ x ≤ i h_int : Integrable ({ω | τ ω ≤ σ ω}.indicator (stoppedValue (fun n => f n) τ)) μ t : Set Ω ht : MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ∧ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ⊢ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω})
5957e7231ee5fbd1
contDiff_norm_rpow
Mathlib/Analysis/InnerProductSpace/NormPow.lean
theorem contDiff_norm_rpow {p : ℝ} (hp : 1 < p) : ContDiff ℝ 1 (fun x : E ↦ ‖x‖ ^ p)
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E p : ℝ hp : 1 < p x : E hx : x = 0 ⊢ Filter.Tendsto (fderiv ℝ fun x => ‖x‖ ^ p) (𝓝 0) (𝓝 0)
rw [tendsto_zero_iff_norm_tendsto_zero]
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E p : ℝ hp : 1 < p x : E hx : x = 0 ⊢ Filter.Tendsto (fun x => ‖fderiv ℝ (fun x => ‖x‖ ^ p) x‖) (𝓝 0) (𝓝 0)
fdf902c8d0df4633
NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_eq_iff
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/FundamentalCone.lean
theorem integerSetToAssociates_eq_iff (a b : integerSet K) : integerSetToAssociates K a = integerSetToAssociates K b ↔ ∃ ζ : torsion K, ζ • a = b
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K a b : ↑(integerSet K) x✝ : ∃ ζ, ↑ζ • ↑a = ↑b u : (𝓞 K)ˣ property✝ : u ∈ torsion K h : ↑⟨u, property✝⟩ • ↑a = ↑b ⊢ (mixedEmbedding K) ((algebraMap (𝓞 K) K) ↑↑(unitsNonZeroDivisorsEquiv.symm u)) * ↑a = ↑b
simpa using h
no goals
33418b1081f2de4d
CategoryTheory.colimitYonedaHomEquiv_π_apply
Mathlib/CategoryTheory/Limits/Indization/LocallySmall.lean
theorem colimitYonedaHomEquiv_π_apply (η : colimit (F ⋙ yoneda) ⟶ G) (i : Iᵒᵖ) : limit.π (F.op ⋙ G) i (colimitYonedaHomEquiv F G η) = η.app (op (F.obj i.unop)) ((colimit.ι (F ⋙ yoneda) i.unop).app _ (𝟙 _))
C : Type u inst✝⁴ : Category.{v, u} C I : Type u₁ inst✝³ : Category.{v₁, u₁} I inst✝² : HasColimitsOfShape I (Type v) inst✝¹ : HasLimitsOfShape Iᵒᵖ (Type v) inst✝ : HasLimitsOfShape Iᵒᵖ (Type (max u v)) F : I ⥤ C G : Cᵒᵖ ⥤ Type v η : colimit (F ⋙ yoneda) ⟶ G i : Iᵒᵖ this : ∀ (a : limit ((F.op ⋙ G) ⋙ uliftFunctor.{u, v})), limit.π (F.op ⋙ G) i ((preservesLimitIso uliftFunctor.{u, v} (F.op ⋙ G)).inv a).down = (limit.π ((F.op ⋙ G) ⋙ uliftFunctor.{u, v}) i a).down ⊢ ((limit.π (F.op ⋙ G ⋙ uliftFunctor.{u, v}) i ≫ (F.op.associator G uliftFunctor.{u, v}).symm.hom.app i) ((colimitYonedaHomIsoLimitOp F G).hom η)).down = η.app (op (F.obj (unop i))) ((colimit.ι (F ⋙ yoneda) (unop i)).app (op (F.obj (unop i))) (𝟙 (F.obj (unop i))))
simp
no goals
ab277699a6c63a6c
CompositionSeries.mem_eraseLast
Mathlib/Order/JordanHolder.lean
theorem mem_eraseLast {s : CompositionSeries X} {x : X} (h : 0 < s.length) : x ∈ s.eraseLast ↔ x ≠ s.last ∧ x ∈ s
case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ (fun i => s.toFun ⟨↑i, ⋯⟩) i ≠ last s ∧ (fun i => s.toFun ⟨↑i, ⋯⟩) i ∈ range s.toFun
have hi : (i : ℕ) < s.length := by conv_rhs => rw [← Nat.add_one_sub_one s.length, Nat.succ_sub h] exact i.2
case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) hi : ↑i < s.length ⊢ (fun i => s.toFun ⟨↑i, ⋯⟩) i ≠ last s ∧ (fun i => s.toFun ⟨↑i, ⋯⟩) i ∈ range s.toFun
2ab0afadecbebacb
ProbabilityTheory.Kernel.ae_kernel_lt_top
Mathlib/Probability/Kernel/Composition/CompProd.lean
theorem ae_kernel_lt_top (a : α) (h2s : (κ ⊗ₖ η) a s ≠ ∞) : ∀ᵐ b ∂κ a, η (a, b) (Prod.mk b ⁻¹' s) < ∞
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ s : Set (β × γ) κ : Kernel α β inst✝¹ : IsSFiniteKernel κ η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η a : α h2s : ((κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable ((κ ⊗ₖ η) a) s this : ∀ (b : β), (η (a, b)) (Prod.mk b ⁻¹' s) ≤ (η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t ⊢ ∀ᵐ (b : β) ∂κ a, (η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
have h2t : (κ ⊗ₖ η) a t ≠ ∞ := by rwa [measure_toMeasurable]
α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ s : Set (β × γ) κ : Kernel α β inst✝¹ : IsSFiniteKernel κ η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η a : α h2s : ((κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable ((κ ⊗ₖ η) a) s this : ∀ (b : β), (η (a, b)) (Prod.mk b ⁻¹' s) ≤ (η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t h2t : ((κ ⊗ₖ η) a) t ≠ ⊤ ⊢ ∀ᵐ (b : β) ∂κ a, (η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
8ecbe6a27811f30f
Matroid.map_isBasis_iff'
Mathlib/Data/Matroid/Map.lean
lemma map_isBasis_iff' {I X : Set β} {hf} : (M.map f hf).IsBasis I X ↔ ∃ I₀ X₀, M.IsBasis I₀ X₀ ∧ I = f '' I₀ ∧ X = f '' X₀
case refine_1.intro.intro.intro.intro α : Type u_1 β : Type u_2 f : α → β M : Matroid α hf : InjOn f M.E I : Set α hI : I ⊆ M.E X : Set α hX : X ⊆ M.E h : M.IsBasis I X ⊢ ∃ I₀ X₀, M.IsBasis I₀ X₀ ∧ f '' I = f '' I₀ ∧ f '' X = f '' X₀
exact ⟨I, X, h, rfl, rfl⟩
no goals
c192441893919a44
Array.find?_range'_eq_none
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Range.lean
theorem find?_range'_eq_none {s n : Nat} {p : Nat → Bool} : (range' s n).find? p = none ↔ ∀ i, s ≤ i → i < s + n → !p i
s n : Nat p : Nat → Bool ⊢ find? p (range' s n) = none ↔ ∀ (i : Nat), s ≤ i → i < s + n → (!p i) = true
rw [← List.toArray_range']
s n : Nat p : Nat → Bool ⊢ find? p (List.range' s n).toArray = none ↔ ∀ (i : Nat), s ≤ i → i < s + n → (!p i) = true
1040f6ec7d7fe1a6
List.getLast_map
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem getLast_map (f : α → β) (l : List α) (h) : getLast (map f l) h = f (getLast l (by simpa using h))
α : Type ?u.133064 β : Type ?u.133073 f : α → β l : List α h : map f l ≠ [] ⊢ l ≠ []
simpa using h
no goals
9abc0df8c509c2cd
AddCircle.gcd_mul_addOrderOf_div_eq
Mathlib/Topology/Instances/AddCircle.lean
theorem gcd_mul_addOrderOf_div_eq {n : ℕ} (m : ℕ) (hn : 0 < n) : m.gcd n * addOrderOf (↑(↑m / ↑n * p) : AddCircle p) = n
case h 𝕜 : Type u_1 inst✝ : LinearOrderedField 𝕜 p : 𝕜 hp : Fact (0 < p) n m : ℕ hn : 0 < n ⊢ IsOfFinAddOrder ↑(p / ↑n)
rwa [← addOrderOf_pos_iff, addOrderOf_period_div hn]
no goals
dbb8668096a7f28d
CategoryTheory.Pretriangulated.Opposite.complete_distinguished_triangle_morphism
Mathlib/CategoryTheory/Triangulated/Opposite/Pretriangulated.lean
lemma complete_distinguished_triangle_morphism (T₁ T₂ : Triangle Cᵒᵖ) (hT₁ : T₁ ∈ distinguishedTriangles C) (hT₂ : T₂ ∈ distinguishedTriangles C) (a : T₁.obj₁ ⟶ T₂.obj₁) (b : T₁.obj₂ ⟶ T₂.obj₂) (comm : T₁.mor₁ ≫ b = a ≫ T₂.mor₁) : ∃ (c : T₁.obj₃ ⟶ T₂.obj₃), T₁.mor₂ ≫ c = b ≫ T₂.mor₂ ∧ T₁.mor₃ ≫ a⟦1⟧' = c ≫ T₂.mor₃
case intro.intro C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : HasShift C ℤ inst✝³ : HasZeroObject C inst✝² : Preadditive C inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C T₁ T₂ : Triangle Cᵒᵖ hT₁ : Opposite.unop ((triangleOpEquivalence C).inverse.obj T₁) ∈ Pretriangulated.distinguishedTriangles hT₂ : Opposite.unop ((triangleOpEquivalence C).inverse.obj T₂) ∈ Pretriangulated.distinguishedTriangles a : T₁.obj₁ ⟶ T₂.obj₁ b : T₁.obj₂ ⟶ T₂.obj₂ comm : T₁.mor₁ ≫ b = a ≫ T₂.mor₁ c : (Opposite.unop ((triangleOpEquivalence C).inverse.obj T₂)).obj₁ ⟶ (Opposite.unop ((triangleOpEquivalence C).inverse.obj T₁)).obj₁ hc₁ : (Opposite.unop ((triangleOpEquivalence C).inverse.obj T₂)).mor₁ ≫ b.unop = c ≫ (Opposite.unop ((triangleOpEquivalence C).inverse.obj T₁)).mor₁ hc₂ : (Opposite.unop ((triangleOpEquivalence C).inverse.obj T₂)).mor₃ ≫ (shiftFunctor C 1).map c = a.unop ≫ (Opposite.unop ((triangleOpEquivalence C).inverse.obj T₁)).mor₃ ⊢ ∃ c, T₁.mor₂ ≫ c = b ≫ T₂.mor₂ ∧ T₁.mor₃ ≫ (shiftFunctor Cᵒᵖ 1).map a = c ≫ T₂.mor₃
dsimp at c hc₁ hc₂
case intro.intro C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : HasShift C ℤ inst✝³ : HasZeroObject C inst✝² : Preadditive C inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C T₁ T₂ : Triangle Cᵒᵖ hT₁ : Opposite.unop ((triangleOpEquivalence C).inverse.obj T₁) ∈ Pretriangulated.distinguishedTriangles hT₂ : Opposite.unop ((triangleOpEquivalence C).inverse.obj T₂) ∈ Pretriangulated.distinguishedTriangles a : T₁.obj₁ ⟶ T₂.obj₁ b : T₁.obj₂ ⟶ T₂.obj₂ comm : T₁.mor₁ ≫ b = a ≫ T₂.mor₁ c : Opposite.unop T₂.obj₃ ⟶ Opposite.unop T₁.obj₃ hc₁ : T₂.mor₂.unop ≫ b.unop = c ≫ T₁.mor₂.unop hc₂ : (((opShiftFunctorEquivalence C 1).unitIso.inv.app T₂.obj₁).unop ≫ (shiftFunctor C 1).map T₂.mor₃.unop) ≫ (shiftFunctor C 1).map c = a.unop ≫ ((opShiftFunctorEquivalence C 1).unitIso.inv.app T₁.obj₁).unop ≫ (shiftFunctor C 1).map T₁.mor₃.unop ⊢ ∃ c, T₁.mor₂ ≫ c = b ≫ T₂.mor₂ ∧ T₁.mor₃ ≫ (shiftFunctor Cᵒᵖ 1).map a = c ≫ T₂.mor₃
1f895fdca2611d63
catalan_eq_centralBinom_div
Mathlib/Combinatorics/Enumerative/Catalan.lean
theorem catalan_eq_centralBinom_div (n : ℕ) : catalan n = n.centralBinom / (n + 1)
case ind d : ℕ hd : ∀ m ≤ d, ↑(catalan m) = ↑m.centralBinom / (↑m + 1) ⊢ ↑(catalan d.succ) = ↑d.succ.centralBinom / (↑d.succ + 1)
simp_rw [catalan_succ, Nat.cast_sum, Nat.cast_mul]
case ind d : ℕ hd : ∀ m ≤ d, ↑(catalan m) = ↑m.centralBinom / (↑m + 1) ⊢ ∑ x : Fin d.succ, ↑(catalan ↑x) * ↑(catalan (d - ↑x)) = ↑d.succ.centralBinom / (↑d.succ + 1)
6311ac92f4458437
analyticAt_clog
Mathlib/Analysis/SpecialFunctions/Complex/Analytic.lean
theorem analyticAt_clog (m : z ∈ slitPlane) : AnalyticAt ℂ log z
z : ℂ m : z ∈ slitPlane ⊢ AnalyticAt ℂ log z
rw [analyticAt_iff_eventually_differentiableAt]
z : ℂ m : z ∈ slitPlane ⊢ ∀ᶠ (z : ℂ) in 𝓝 z, DifferentiableAt ℂ log z
057972827dcb7615
PowerSeries.rescale_neg_one_X
Mathlib/RingTheory/PowerSeries/Basic.lean
theorem rescale_neg_one_X : rescale (-1 : A) X = -X
A : Type u_2 inst✝ : CommRing A ⊢ (rescale (-1)) X = -X
rw [rescale_X, map_neg, map_one, neg_one_mul]
no goals
008008a1724770fe
Polynomial.Gal.mul_splits_in_splittingField_of_mul
Mathlib/FieldTheory/PolynomialGaloisGroup.lean
theorem mul_splits_in_splittingField_of_mul {p₁ q₁ p₂ q₂ : F[X]} (hq₁ : q₁ ≠ 0) (hq₂ : q₂ ≠ 0) (h₁ : p₁.Splits (algebraMap F q₁.SplittingField)) (h₂ : p₂.Splits (algebraMap F q₂.SplittingField)) : (p₁ * p₂).Splits (algebraMap F (q₁ * q₂).SplittingField)
case hf F : Type u_1 inst✝ : Field F p₁ q₁ p₂ q₂ : F[X] hq₁ : q₁ ≠ 0 hq₂ : q₂ ≠ 0 h₁ : Splits (algebraMap F q₁.SplittingField) p₁ h₂ : Splits (algebraMap F q₂.SplittingField) p₂ ⊢ Splits (algebraMap F (q₁ * q₂).SplittingField) p₁
rw [← (SplittingField.lift q₁ (splits_of_splits_of_dvd (algebraMap F (q₁ * q₂).SplittingField) (mul_ne_zero hq₁ hq₂) (SplittingField.splits _) (dvd_mul_right q₁ q₂))).comp_algebraMap]
case hf F : Type u_1 inst✝ : Field F p₁ q₁ p₂ q₂ : F[X] hq₁ : q₁ ≠ 0 hq₂ : q₂ ≠ 0 h₁ : Splits (algebraMap F q₁.SplittingField) p₁ h₂ : Splits (algebraMap F q₂.SplittingField) p₂ ⊢ Splits ((↑(SplittingField.lift q₁ ⋯)).comp (algebraMap F q₁.SplittingField)) p₁
12f0bbd6ecef4d4b
Nat.Prime.emultiplicity_choose'
Mathlib/Data/Nat/Multiplicity.lean
theorem emultiplicity_choose' {p n k b : ℕ} (hp : p.Prime) (hnb : log p (n + k) < b) : emultiplicity p (choose (n + k) k) = #{i ∈ Ico 1 b | p ^ i ≤ k % p ^ i + n % p ^ i}
p n k b : ℕ hp : Prime p hnb : log p (n + k) < b this : (n + k).choose k * k ! * n ! = (n + k)! ⊢ emultiplicity p ((n + k).choose k * k ! * n !) = ↑(#(filter (fun i => p ^ i ≤ k % p ^ i + n % p ^ i) (Ico 1 b))) + emultiplicity p (k ! * n !)
rw [this, hp.emultiplicity_factorial hnb, hp.emultiplicity_mul, hp.emultiplicity_factorial ((log_mono_right (le_add_left k n)).trans_lt hnb), hp.emultiplicity_factorial ((log_mono_right (le_add_left n k)).trans_lt (add_comm n k ▸ hnb)), multiplicity_choose_aux hp (le_add_left k n)]
p n k b : ℕ hp : Prime p hnb : log p (n + k) < b this : (n + k).choose k * k ! * n ! = (n + k)! ⊢ ↑(∑ i ∈ Ico 1 b, k / p ^ i + ∑ i ∈ Ico 1 b, (n + k - k) / p ^ i + #(filter (fun i => p ^ i ≤ k % p ^ i + (n + k - k) % p ^ i) (Ico 1 b))) = ↑(#(filter (fun i => p ^ i ≤ k % p ^ i + n % p ^ i) (Ico 1 b))) + (↑(∑ i ∈ Ico 1 b, k / p ^ i) + ↑(∑ i ∈ Ico 1 b, n / p ^ i))
ed202d3f67c3f305
tendsto_exp_div_rpow_atTop
Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean
theorem tendsto_exp_div_rpow_atTop (s : ℝ) : Tendsto (fun x : ℝ => exp x / x ^ s) atTop atTop
s : ℝ ⊢ Tendsto (fun x => rexp x / x ^ s) atTop atTop
obtain ⟨n, hn⟩ := archimedean_iff_nat_lt.1 Real.instArchimedean s
case intro s : ℝ n : ℕ hn : s < ↑n ⊢ Tendsto (fun x => rexp x / x ^ s) atTop atTop
2529d965a6e29a2f
CompleteOrthogonalIdempotents.of_ker_isNilpotent_of_isMulCentral
Mathlib/RingTheory/Idempotents.lean
theorem CompleteOrthogonalIdempotents.of_ker_isNilpotent_of_isMulCentral (h : ∀ x ∈ RingHom.ker f, IsNilpotent x) (he : ∀ i, IsIdempotentElem (e i)) (he' : ∀ i, IsMulCentral (e i)) (he'' : CompleteOrthogonalIdempotents (f ∘ e)) : CompleteOrthogonalIdempotents e
R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : Ring S f : R →+* S I : Type u_3 e : I → R inst✝ : Fintype I h : ∀ x ∈ RingHom.ker f, IsNilpotent x he : ∀ (i : I), IsIdempotentElem (e i) he' : ∀ (i : I), IsMulCentral (e i) he'' : CompleteOrthogonalIdempotents (⇑f ∘ e) e' : I → R h₁ : CompleteOrthogonalIdempotents e' h₂ : ⇑f ∘ e' = ⇑f ∘ e ⊢ e = e'
ext i
case h R : Type u_1 S : Type u_2 inst✝² : Ring R inst✝¹ : Ring S f : R →+* S I : Type u_3 e : I → R inst✝ : Fintype I h : ∀ x ∈ RingHom.ker f, IsNilpotent x he : ∀ (i : I), IsIdempotentElem (e i) he' : ∀ (i : I), IsMulCentral (e i) he'' : CompleteOrthogonalIdempotents (⇑f ∘ e) e' : I → R h₁ : CompleteOrthogonalIdempotents e' h₂ : ⇑f ∘ e' = ⇑f ∘ e i : I ⊢ e i = e' i
d1848a670d0365bc
hasFDerivAt_norm_rpow
Mathlib/Analysis/InnerProductSpace/NormPow.lean
theorem hasFDerivAt_norm_rpow (x : E) {p : ℝ} (hp : 1 < p) : HasFDerivAt (fun x : E ↦ ‖x‖ ^ p) ((p * ‖x‖ ^ (p - 2)) • innerSL ℝ x) x
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E x : E p : ℝ hp : 1 < p hx : x = 0 ⊢ HasFDerivAt (fun x => ‖x‖ ^ p) ((p * ‖x‖ ^ (p - 2)) • (innerSL ℝ) x) x
simp only [hx, norm_zero, map_zero, smul_zero]
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E x : E p : ℝ hp : 1 < p hx : x = 0 ⊢ HasFDerivAt (fun x => ‖x‖ ^ p) 0 0
df712761f8e3d685
PartialHomeomorph.nhds_eq_comap_inf_principal
Mathlib/Topology/PartialHomeomorph.lean
theorem nhds_eq_comap_inf_principal {x} (hx : x ∈ e.source) : 𝓝 x = comap e (𝓝 (e x)) ⊓ 𝓟 e.source
X : Type u_1 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : PartialHomeomorph X Y x : X hx : x ∈ e.source ⊢ 𝓝 x = comap (↑e) (𝓝 (↑e x)) ⊓ 𝓟 e.source
lift x to e.source using hx
case intro X : Type u_1 Y : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : PartialHomeomorph X Y x : { x // x ∈ e.source } ⊢ 𝓝 ↑x = comap (↑e) (𝓝 (↑e ↑x)) ⊓ 𝓟 e.source
ef44c68f626bbbb6
MeasureTheory.unifTight_of_subsingleton
Mathlib/MeasureTheory/Function/UnifTight.lean
theorem unifTight_of_subsingleton [Subsingleton ι] (hp_top : p ≠ ∞) {f : ι → α → β} (hf : ∀ i, MemLp (f i) p μ) : UnifTight f p μ := fun ε hε ↦ by by_cases hε_top : ε = ∞ · exact ⟨∅, by measurability, fun _ => hε_top.symm ▸ le_top⟩ by_cases hι : Nonempty ι case neg => exact ⟨∅, (by measurability), fun i => False.elim <| hι <| Nonempty.intro i⟩ obtain ⟨i⟩ := hι obtain ⟨s, _, hμs, hfε⟩ := (hf i).exists_eLpNorm_indicator_compl_lt hp_top (coe_ne_zero.2 hε.ne') refine ⟨s, ne_of_lt hμs, fun j => ?_⟩ convert hfε.le
case pos α : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace α μ : Measure α inst✝¹ : NormedAddCommGroup β p : ℝ≥0∞ inst✝ : Subsingleton ι hp_top : p ≠ ⊤ f : ι → α → β hf : ∀ (i : ι), MemLp (f i) p μ ε : ℝ≥0 hε : 0 < ε hε_top : ↑ε = ⊤ ⊢ ∃ s, μ s ≠ ⊤ ∧ ∀ (i : ι), eLpNorm (sᶜ.indicator (f i)) p μ ≤ ↑ε
exact ⟨∅, by measurability, fun _ => hε_top.symm ▸ le_top⟩
no goals
6576e3dc8dfe236e
MeasureTheory.Measure.haar.mul_left_index_le
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem mul_left_index_le {K : Set G} (hK : IsCompact K) {V : Set G} (hV : (interior V).Nonempty) (g : G) : index ((fun h => g * h) '' K) V ≤ index K V
case intro.intro.hm.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : (interior V).Nonempty g : G s : Finset G h1s : K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V h2s : s.card = index K V g₁ g₂ : G hg₂ : g₂ ∈ s hg₁ : g₂ * g₁ ∈ V ⊢ (fun h => g * h) g₁ ∈ ⋃ g_1 ∈ Finset.map (Equiv.toEmbedding (Equiv.mulRight g⁻¹)) s, (fun h => g_1 * h) ⁻¹' V
simp only [exists_prop, mem_iUnion, Finset.mem_map, Equiv.coe_mulRight, exists_exists_and_eq_and, mem_preimage, Equiv.toEmbedding_apply]
case intro.intro.hm.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K : Set G hK : IsCompact K V : Set G hV : (interior V).Nonempty g : G s : Finset G h1s : K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V h2s : s.card = index K V g₁ g₂ : G hg₂ : g₂ ∈ s hg₁ : g₂ * g₁ ∈ V ⊢ ∃ a ∈ s, a * g⁻¹ * (g * g₁) ∈ V
d7d19e4b8c244509
FreeGroup.reduce_invRev
Mathlib/GroupTheory/FreeGroup/Reduce.lean
theorem reduce_invRev {w : List (α × Bool)} : reduce (invRev w) = invRev (reduce w)
case H α : Type u_1 inst✝ : DecidableEq α w : List (α × Bool) ⊢ Red (reduce (invRev w)) (invRev (reduce w))
rw [← red_invRev_iff, invRev_invRev]
case H α : Type u_1 inst✝ : DecidableEq α w : List (α × Bool) ⊢ Red (invRev (reduce (invRev w))) (reduce w)
931dc9c3210eb8cc
IsConj.eq_of_left_mem_center
Mathlib/GroupTheory/Subgroup/Center.lean
theorem eq_of_left_mem_center {g h : M} (H : IsConj g h) (Hg : g ∈ Set.center M) : g = h
M : Type u_2 inst✝ : Monoid M g h : M H : IsConj g h Hg : g ∈ Set.center M ⊢ g = h
rcases H with ⟨u, hu⟩
case intro M : Type u_2 inst✝ : Monoid M g h : M Hg : g ∈ Set.center M u : Mˣ hu : SemiconjBy (↑u) g h ⊢ g = h
7f39f38db800ef78
round_neg_two_inv
Mathlib/Algebra/Order/Round.lean
theorem round_neg_two_inv : round (-2⁻¹ : α) = 0
α : Type u_2 inst✝¹ : LinearOrderedField α inst✝ : FloorRing α ⊢ round (-2⁻¹) = 0
simp only [round_eq, ← one_div, neg_add_cancel, floor_zero]
no goals
421e31398e309b65
Nat.exists_most_significant_bit
Mathlib/Data/Nat/Bitwise.lean
theorem exists_most_significant_bit {n : ℕ} (h : n ≠ 0) : ∃ i, testBit n i = true ∧ ∀ j, i < j → testBit n j = false
case pos b : Bool n : ℕ hn : n ≠ 0 → ∃ i, n.testBit i = true ∧ ∀ (j : ℕ), i < j → n.testBit j = false h : bit b n ≠ 0 h' : n = 0 ⊢ ∃ i, (bit b n).testBit i = true ∧ ∀ (j : ℕ), i < j → (bit b n).testBit j = false
subst h'
case pos b : Bool hn : 0 ≠ 0 → ∃ i, testBit 0 i = true ∧ ∀ (j : ℕ), i < j → testBit 0 j = false h : bit b 0 ≠ 0 ⊢ ∃ i, (bit b 0).testBit i = true ∧ ∀ (j : ℕ), i < j → (bit b 0).testBit j = false
164bb1ef025f0b32
FormalMultilinearSeries.comp_coeff_one
Mathlib/Analysis/Analytic/Composition.lean
theorem comp_coeff_one (q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) (v : Fin 1 → E) : (q.comp p) 1 v = q 1 fun _i => p 1 v
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : CommRing 𝕜 inst✝¹⁴ : AddCommGroup E inst✝¹³ : AddCommGroup F inst✝¹² : AddCommGroup G inst✝¹¹ : Module 𝕜 E inst✝¹⁰ : Module 𝕜 F inst✝⁹ : Module 𝕜 G inst✝⁸ : TopologicalSpace E inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalAddGroup E inst✝⁴ : ContinuousConstSMul 𝕜 E inst✝³ : IsTopologicalAddGroup F inst✝² : ContinuousConstSMul 𝕜 F inst✝¹ : IsTopologicalAddGroup G inst✝ : ContinuousConstSMul 𝕜 G q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F v : Fin 1 → E this : {Composition.ones 1} = Finset.univ ⊢ (q (Composition.ones 1).length) (p.applyComposition (Composition.ones 1) v) = (q 1) fun _i => (p 1) v
refine q.congr (by simp) fun i hi1 hi2 => ?_
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : CommRing 𝕜 inst✝¹⁴ : AddCommGroup E inst✝¹³ : AddCommGroup F inst✝¹² : AddCommGroup G inst✝¹¹ : Module 𝕜 E inst✝¹⁰ : Module 𝕜 F inst✝⁹ : Module 𝕜 G inst✝⁸ : TopologicalSpace E inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalAddGroup E inst✝⁴ : ContinuousConstSMul 𝕜 E inst✝³ : IsTopologicalAddGroup F inst✝² : ContinuousConstSMul 𝕜 F inst✝¹ : IsTopologicalAddGroup G inst✝ : ContinuousConstSMul 𝕜 G q : FormalMultilinearSeries 𝕜 F G p : FormalMultilinearSeries 𝕜 E F v : Fin 1 → E this : {Composition.ones 1} = Finset.univ i : ℕ hi1 : i < (Composition.ones 1).length hi2 : i < 1 ⊢ p.applyComposition (Composition.ones 1) v ⟨i, hi1⟩ = (p 1) v
2ac1709b5f4213f3
FirstOrder.Language.HomClass.realize_term
Mathlib/ModelTheory/Semantics.lean
theorem HomClass.realize_term {F : Type*} [FunLike F M N] [HomClass L F M N] (g : F) {t : L.Term α} {v : α → M} : t.realize (g ∘ v) = g (t.realize v)
L : Language M : Type w N : Type u_1 inst✝³ : L.Structure M inst✝² : L.Structure N α : Type u' F : Type u_4 inst✝¹ : FunLike F M N inst✝ : L.HomClass F M N g : F t : L.Term α v : α → M ⊢ Term.realize (⇑g ∘ v) t = g (Term.realize v t)
induction t
case var L : Language M : Type w N : Type u_1 inst✝³ : L.Structure M inst✝² : L.Structure N α : Type u' F : Type u_4 inst✝¹ : FunLike F M N inst✝ : L.HomClass F M N g : F v : α → M a✝ : α ⊢ Term.realize (⇑g ∘ v) (var a✝) = g (Term.realize v (var a✝)) case func L : Language M : Type w N : Type u_1 inst✝³ : L.Structure M inst✝² : L.Structure N α : Type u' F : Type u_4 inst✝¹ : FunLike F M N inst✝ : L.HomClass F M N g : F v : α → M l✝ : ℕ _f✝ : L.Functions l✝ _ts✝ : Fin l✝ → L.Term α _ts_ih✝ : ∀ (a : Fin l✝), Term.realize (⇑g ∘ v) (_ts✝ a) = g (Term.realize v (_ts✝ a)) ⊢ Term.realize (⇑g ∘ v) (func _f✝ _ts✝) = g (Term.realize v (func _f✝ _ts✝))
df81aa8676069e92
ContinuousMap.exists_extension_forall_mem_of_isClosedEmbedding
Mathlib/Topology/TietzeExtension.lean
theorem exists_extension_forall_mem_of_isClosedEmbedding (f : C(X, ℝ)) {t : Set ℝ} {e : X → Y} [hs : OrdConnected t] (hf : ∀ x, f x ∈ t) (hne : t.Nonempty) (he : IsClosedEmbedding e) : ∃ g : C(Y, ℝ), (∀ y, g y ∈ t) ∧ g ∘ e = f
case intro.intro.refine_2.h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : NormalSpace Y f : C(X, ℝ) t : Set ℝ e : X → Y hs : t.OrdConnected hf : ∀ (x : X), f x ∈ t hne : t.Nonempty he : IsClosedEmbedding e h : ℝ ≃o ↑(Ioo (-1) 1) F : X →ᵇ ℝ := { toFun := Subtype.val ∘ ⇑h ∘ ⇑f, continuous_toFun := ⋯, map_bounded' := ⋯ } t' : Set ℝ := Subtype.val ∘ ⇑h '' t ht_sub : t' ⊆ Ioo (-1) 1 this : t'.OrdConnected hFt : ∀ (x : X), F x ∈ t' G : Y →ᵇ ℝ hG : ∀ (y : Y), G y ∈ t' hGF : ⇑G ∘ e = ⇑F g : C(Y, ℝ) := { toFun := ⇑h.symm ∘ Set.codRestrict (⇑G) (Ioo (-1) 1) ⋯, continuous_toFun := ⋯ } hgG : ∀ {y : Y} {a : ℝ}, g y = a ↔ G y = ↑(h a) x : X ⊢ (⇑g ∘ e) x = f x
exact hgG.2 (congr_fun hGF _)
no goals
b5717c30218ed2f5
BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top
Mathlib/Analysis/BoxIntegral/Partition/Filter.lean
theorem tendsto_embedBox_toFilteriUnion_top (l : IntegrationParams) (h : I ≤ J) : Tendsto (TaggedPrepartition.embedBox I J h) (l.toFilteriUnion I ⊤) (l.toFilteriUnion J (Prepartition.single J I h))
ι : Type u_1 inst✝ : Fintype ι I J : Box ι l : IntegrationParams h : I ≤ J ⊢ Tendsto (⇑(embedBox I J h)) (toFilteriUnion I ⊤) (toFilteriUnion J (Prepartition.single J I h))
simp only [toFilteriUnion, tendsto_iSup]
ι : Type u_1 inst✝ : Fintype ι I J : Box ι l : IntegrationParams h : I ≤ J ⊢ ∀ (i : ℝ≥0), Tendsto (⇑(embedBox I J h)) (l.toFilterDistortioniUnion I i ⊤) (⨆ c, l.toFilterDistortioniUnion J c (Prepartition.single J I h))
75f666dbd7c5bb0f
Asymptotics.isLittleO_principal
Mathlib/Analysis/Asymptotics/Lemmas.lean
theorem isLittleO_principal {s : Set α} : f'' =o[𝓟 s] g' ↔ ∀ x ∈ s, f'' x = 0
α : Type u_1 F' : Type u_7 E'' : Type u_9 inst✝¹ : SeminormedAddCommGroup F' inst✝ : NormedAddCommGroup E'' g' : α → F' f'' : α → E'' s : Set α h : ∀ x ∈ s, f'' x = 0 ⊢ (fun _x => 0) =ᶠ[𝓟 s] f''
exact fun x hx ↦ (h x hx).symm
no goals
9fb493bf550d3541
Multiset.count_map_eq_count'
Mathlib/Data/Multiset/Filter.lean
theorem count_map_eq_count' [DecidableEq β] (f : α → β) (s : Multiset α) (hf : Function.Injective f) (x : α) : (s.map f).count (f x) = s.count x
case neg α : Type u_1 β : Type v inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β s : Multiset α hf : Injective f x : α H : x ∉ s ⊢ count (f x) (map f s) = count x s
rw [count_eq_zero_of_not_mem H, count_eq_zero, mem_map]
case neg α : Type u_1 β : Type v inst✝¹ : DecidableEq α inst✝ : DecidableEq β f : α → β s : Multiset α hf : Injective f x : α H : x ∉ s ⊢ ¬∃ a ∈ s, f a = f x
617a7c8c055ce103
surjOn_Icc_of_monotone_surjective
Mathlib/Order/Interval/Set/SurjOn.lean
theorem surjOn_Icc_of_monotone_surjective (h_mono : Monotone f) (h_surj : Function.Surjective f) {a b : α} (hab : a ≤ b) : SurjOn f (Icc a b) (Icc (f a) (f b))
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a b : α hab : a ≤ b p : β hp : p ∈ Icc (f a) (f b) ⊢ p ∈ f '' Icc a b
rcases eq_endpoints_or_mem_Ioo_of_mem_Icc hp with (rfl | rfl | hp')
case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a b : α hab : a ≤ b hp : f a ∈ Icc (f a) (f b) ⊢ f a ∈ f '' Icc a b case inr.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a b : α hab : a ≤ b hp : f b ∈ Icc (f a) (f b) ⊢ f b ∈ f '' Icc a b case inr.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a b : α hab : a ≤ b p : β hp : p ∈ Icc (f a) (f b) hp' : p ∈ Ioo (f a) (f b) ⊢ p ∈ f '' Icc a b
c609773ecb1a1f37
Nat.bit_mod_two_eq_zero_iff
Mathlib/Data/Nat/Bitwise.lean
lemma bit_mod_two_eq_zero_iff (a x) : bit a x % 2 = 0 ↔ !a
a : Bool x : ℕ ⊢ bit a x % 2 = 0 ↔ (!a) = true
simp
no goals
c6c9ec748d9d84d0
convexOn_iff_pairwise_pos
Mathlib/Analysis/Convex/Function.lean
theorem convexOn_iff_pairwise_pos {s : Set E} {f : E → β} : ConvexOn 𝕜 s f ↔ Convex 𝕜 s ∧ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β ⊢ (Convex 𝕜 s ∧ ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y) ↔ Convex 𝕜 s ∧ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y
refine and_congr_right' ⟨fun h x hx y hy _ a b ha hb hab => h hx hy ha hb hab, fun h x hx y hy a b ha hb hab => ?_⟩
𝕜 : Type u_1 E : Type u_2 β : Type u_5 inst✝⁴ : OrderedSemiring 𝕜 inst✝³ : AddCommMonoid E inst✝² : OrderedAddCommMonoid β inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 β s : Set E f : E → β h : s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → f (a • x + b • y) ≤ a • f x + b • f y x : E hx : x ∈ s y : E hy : y ∈ s a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) ≤ a • f x + b • f y
24d415d43f469181
MeasureTheory.L1.edist_def
Mathlib/MeasureTheory/Function/L1Space/AEEqFun.lean
theorem edist_def (f g : α →₁[μ] β) : edist f g = ∫⁻ a, edist (f a) (g a) ∂μ
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f g : ↥(Lp β 1 μ) ⊢ edist f g = ∫⁻ (a : α), edist (↑↑f a) (↑↑g a) ∂μ
simp only [Lp.edist_def, eLpNorm, one_ne_zero, eLpNorm'_eq_lintegral_enorm, Pi.sub_apply, one_toReal, ENNReal.rpow_one, ne_eq, not_false_eq_true, div_self, ite_false]
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝ : NormedAddCommGroup β f g : ↥(Lp β 1 μ) ⊢ (if 1 = ⊤ then eLpNormEssSup (↑↑f - ↑↑g) μ else ∫⁻ (a : α), ‖↑↑f a - ↑↑g a‖ₑ ∂μ) = ∫⁻ (a : α), edist (↑↑f a) (↑↑g a) ∂μ
fd4f8e4e94f651b9
Polynomial.leadingCoeff_cubic
Mathlib/Algebra/Polynomial/Degree/SmallDegree.lean
theorem leadingCoeff_cubic (ha : a ≠ 0) : leadingCoeff (C a * X ^ 3 + C b * X ^ 2 + C c * X + C d) = a
R : Type u a b c d : R inst✝ : Semiring R ha : a ≠ 0 ⊢ (C a * X ^ 3 + C b * X ^ 2 + C c * X + C d).leadingCoeff = a
rw [add_assoc, add_assoc, ← add_assoc (C b * X ^ 2), add_comm, leadingCoeff_add_of_degree_lt <| degree_quadratic_lt_degree_C_mul_X_cb ha, leadingCoeff_C_mul_X_pow]
no goals
e4540a9c25cdab0b
UniformCauchySeqOnFilter.tendstoUniformlyOnFilter_of_tendsto
Mathlib/Topology/UniformSpace/UniformConvergence.lean
theorem UniformCauchySeqOnFilter.tendstoUniformlyOnFilter_of_tendsto (hF : UniformCauchySeqOnFilter F p p') (hF' : ∀ᶠ x : α in p', Tendsto (fun n => F n x) p (𝓝 (f x))) : TendstoUniformlyOnFilter F f p p'
α : Type u β : Type v ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β p : Filter ι p' : Filter α hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) ⊢ TendstoUniformlyOnFilter F f p p'
rcases p.eq_or_neBot with rfl | _
case inl α : Type u β : Type v ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β p' : Filter α hF : UniformCauchySeqOnFilter F ⊥ p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) ⊥ (𝓝 (f x)) ⊢ TendstoUniformlyOnFilter F f ⊥ p' case inr α : Type u β : Type v ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β p : Filter ι p' : Filter α hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) h✝ : p.NeBot ⊢ TendstoUniformlyOnFilter F f p p'
be7f1c945998c45a
MeasureTheory.measurableSet_generateFrom_singleton_iff
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
theorem measurableSet_generateFrom_singleton_iff {s t : Set α} : MeasurableSet[MeasurableSpace.generateFrom {s}] t ↔ t = ∅ ∨ t = s ∨ t = sᶜ ∨ t = univ
α : Type u_1 s : Set α x : Set Prop hT : True ∈ x hF : False ∉ x p : Prop hp : p ∈ x hpneg : False ↔ p ⊢ False ∈ x
convert hp
no goals
39127bdfcef76ebf
Real.invariant
Mathlib/NumberTheory/DiophantineApproximation/Basic.lean
theorem invariant : ContfracLegendre.Ass (fract ξ)⁻¹ v (u - ⌊ξ⌋ * v)
case refine_2 ξ : ℝ u v : ℤ hv : 2 ≤ v h : ContfracLegendre.Ass ξ u v huv : u - ⌊ξ⌋ * v = 1 hv₀' : 0 < 2 * ↑v - 1 Hv : (↑v * (2 * ↑v - 1))⁻¹ + (↑v)⁻¹ = 2 / (2 * ↑v - 1) Huv : ↑u / ↑v = ↑⌊ξ⌋ + (↑v)⁻¹ h' : ξ - ↑u / ↑v < (↑v * (2 * ↑v - 1))⁻¹ ⊢ -(1 / 2) < (fract ξ)⁻¹ - ↑v
rw [Huv, ← sub_sub, sub_lt_iff_lt_add, self_sub_floor, Hv] at h'
case refine_2 ξ : ℝ u v : ℤ hv : 2 ≤ v h : ContfracLegendre.Ass ξ u v huv : u - ⌊ξ⌋ * v = 1 hv₀' : 0 < 2 * ↑v - 1 Hv : (↑v * (2 * ↑v - 1))⁻¹ + (↑v)⁻¹ = 2 / (2 * ↑v - 1) Huv : ↑u / ↑v = ↑⌊ξ⌋ + (↑v)⁻¹ h' : fract ξ < 2 / (2 * ↑v - 1) ⊢ -(1 / 2) < (fract ξ)⁻¹ - ↑v
8eb0aea68cc1bde9
Doset.doset_union_rightCoset
Mathlib/GroupTheory/DoubleCoset.lean
theorem doset_union_rightCoset (H K : Subgroup G) (a : G) : ⋃ k : K, op (a * k) • ↑H = doset a H K
case h.mpr.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G a x✝ x : G hx : x ∈ H y : G hy : y ∈ K hxy : x✝ = x * a * y ⊢ ∃ i, x✝ * ((↑i)⁻¹ * a⁻¹) ∈ H
refine ⟨⟨y, hy⟩, ?_⟩
case h.mpr.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G a x✝ x : G hx : x ∈ H y : G hy : y ∈ K hxy : x✝ = x * a * y ⊢ x✝ * ((↑⟨y, hy⟩)⁻¹ * a⁻¹) ∈ H
1ad4289c4ad1f9f3
GenContFract.IntFractPair.coe_stream_nth_rat_eq
Mathlib/Algebra/ContinuedFractions/Computation/TerminatesIffRat.lean
theorem coe_stream_nth_rat_eq (v_eq_q : v = (↑q : K)) (n : ℕ) : ((IntFractPair.stream q n).map (mapFr (↑)) : Option <| IntFractPair K) = IntFractPair.stream v n
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n ⊢ (↑fr)⁻¹ = ↑fr⁻¹
norm_cast
no goals
3c20096a5980fe60
SimpleGraph.connected_iff_exists_forall_reachable
Mathlib/Combinatorics/SimpleGraph/Path.lean
lemma connected_iff_exists_forall_reachable : G.Connected ↔ ∃ v, ∀ w, G.Reachable v w
V : Type u G : SimpleGraph V ⊢ G.Preconnected ∧ Nonempty V ↔ ∃ v, ∀ (w : V), G.Reachable v w
constructor
case mp V : Type u G : SimpleGraph V ⊢ G.Preconnected ∧ Nonempty V → ∃ v, ∀ (w : V), G.Reachable v w case mpr V : Type u G : SimpleGraph V ⊢ (∃ v, ∀ (w : V), G.Reachable v w) → G.Preconnected ∧ Nonempty V
1c445adc9e510c30
Real.Gamma_one_half_eq
Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean
theorem Real.Gamma_one_half_eq : Real.Gamma (1 / 2) = √π
case h.e'_2 ⊢ ∫ (x : ℝ) in Ioi 0, (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) = ∫ (a : ℝ) in Ioi 0, 2 * rexp (-1 * a ^ 2)
refine setIntegral_congr_fun measurableSet_Ioi fun x hx => ?_
case h.e'_2 x : ℝ hx : x ∈ Ioi 0 ⊢ (2 * x ^ (2 - 1)) • (rexp (-x ^ 2) * (x ^ 2) ^ (1 / 2 - 1)) = 2 * rexp (-1 * x ^ 2)
a42e522f111124af
QuasispectrumRestricts.cfc
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Restrict.lean
theorem cfc (f : C(S, R)) (halg : IsUniformEmbedding (algebraMap R S)) (h0 : p 0) (h : ∀ a, p a ↔ q a ∧ QuasispectrumRestricts a f) : NonUnitalContinuousFunctionalCalculus R p where predicate_zero := h0 compactSpace_quasispectrum a
case hom_id R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a ⊢ (nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) { toContinuousMap := ContinuousMap.restrict (σₙ R a) (ContinuousMap.id R), map_zero' := ⋯ } = a case hom_map_spectrum R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a ⊢ ∀ (f_1 : C(↑(σₙ R a), R)₀), σₙ R ((nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) f_1) = range ⇑f_1 case predicate_hom R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a ⊢ ∀ (f_1 : C(↑(σₙ R a), R)₀), p ((nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) f_1)
case hom_id => exact ((h a).mp ha).2.nonUnitalStarAlgHom_id <| cfcₙHom_id ((h a).mp ha).1
case hom_map_spectrum R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a ⊢ ∀ (f_1 : C(↑(σₙ R a), R)₀), σₙ R ((nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) f_1) = range ⇑f_1 case predicate_hom R : Type u_1 S : Type u_2 A : Type u_3 p q : A → Prop inst✝²⁴ : Semifield R inst✝²³ : StarRing R inst✝²² : MetricSpace R inst✝²¹ : IsTopologicalSemiring R inst✝²⁰ : ContinuousStar R inst✝¹⁹ : Field S inst✝¹⁸ : StarRing S inst✝¹⁷ : MetricSpace S inst✝¹⁶ : IsTopologicalRing S inst✝¹⁵ : ContinuousStar S inst✝¹⁴ : NonUnitalRing A inst✝¹³ : StarRing A inst✝¹² : Module S A inst✝¹¹ : IsScalarTower S A A inst✝¹⁰ : SMulCommClass S A A inst✝⁹ : Algebra R S inst✝⁸ : Module R A inst✝⁷ : IsScalarTower R S A inst✝⁶ : StarModule R S inst✝⁵ : ContinuousSMul R S inst✝⁴ : TopologicalSpace A inst✝³ : NonUnitalContinuousFunctionalCalculus S q inst✝² : CompleteSpace R inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A f : C(S, R) halg : IsUniformEmbedding ⇑(algebraMap R S) h0 : p 0 h : ∀ (a : A), p a ↔ q a ∧ QuasispectrumRestricts a ⇑f a : A ha : p a ⊢ ∀ (f_1 : C(↑(σₙ R a), R)₀), p ((nonUnitalStarAlgHom (cfcₙHom ⋯) ⋯) f_1)
3af5d542f22c6b37
GenContFract.coe_of_s_rat_eq
Mathlib/Algebra/ContinuedFractions/Computation/TerminatesIffRat.lean
theorem coe_of_s_rat_eq (v_eq_q : v = (↑q : K)) : ((of q).s.map (Pair.map ((↑))) : Stream'.Seq <| Pair K) = (of v).s
case h.a K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ a✝ : Pair K ⊢ a✝ ∈ (Stream'.Seq.map (Pair.map Rat.cast) (of q).s).get? n ↔ a✝ ∈ Option.map (Pair.map Rat.cast) ((of q).s.get? n)
rfl
no goals
68950bb07f32bd54
MeasureTheory.IsStoppingTime.add_const_nat
Mathlib/Probability/Process/Stopping.lean
theorem add_const_nat {f : Filtration ℕ m} {τ : Ω → ℕ} (hτ : IsStoppingTime f τ) {i : ℕ} : IsStoppingTime f fun ω => τ ω + i
case pos Ω : Type u_1 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : i ≤ j ⊢ MeasurableSet {ω | τ ω + i = j}
simp_rw [eq_comm, ← Nat.sub_eq_iff_eq_add hij, eq_comm]
case pos Ω : Type u_1 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : i ≤ j ⊢ MeasurableSet {ω | τ ω = j - i}
089b9068779bbc69
Array.forIn_map
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Monadic.lean
theorem forIn_map [Monad m] [LawfulMonad m] (l : Array α) (g : α → β) (f : β → γ → m (ForInStep γ)) : forIn (l.map g) init f = forIn l init fun a y => f (g a) y
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_4 γ : Type u_1 init : γ inst✝¹ : Monad m inst✝ : LawfulMonad m l : Array α g : α → β f : β → γ → m (ForInStep γ) ⊢ forIn (map g l) init f = forIn l init fun a y => f (g a) y
cases l
case mk m : Type u_1 → Type u_2 α : Type u_3 β : Type u_4 γ : Type u_1 init : γ inst✝¹ : Monad m inst✝ : LawfulMonad m g : α → β f : β → γ → m (ForInStep γ) toList✝ : List α ⊢ forIn (map g { toList := toList✝ }) init f = forIn { toList := toList✝ } init fun a y => f (g a) y
992467d3c065c582
Module.freeLocus_localization
Mathlib/RingTheory/Spectrum/Prime/FreeLocus.lean
lemma freeLocus_localization (S : Submonoid R) : freeLocus (Localization S) (LocalizedModule S M) = comap (algebraMap R _) ⁻¹' freeLocus R M
case h R : Type uR M : Type uM inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M S : Submonoid R p : PrimeSpectrum (Localization S) p' : Ideal R := Ideal.comap (algebraMap R (Localization S)) p.asIdeal hp' : S ≤ p'.primeCompl Rₚ : Type uR := Localization.AtPrime p' ⊢ p ∈ freeLocus (Localization S) (LocalizedModule S M) ↔ (comap (algebraMap R (Localization S))) p ∈ freeLocus R M
let Mₚ := LocalizedModule p'.primeCompl M
case h R : Type uR M : Type uM inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M S : Submonoid R p : PrimeSpectrum (Localization S) p' : Ideal R := Ideal.comap (algebraMap R (Localization S)) p.asIdeal hp' : S ≤ p'.primeCompl Rₚ : Type uR := Localization.AtPrime p' Mₚ : Type (max uR uM) := LocalizedModule p'.primeCompl M ⊢ p ∈ freeLocus (Localization S) (LocalizedModule S M) ↔ (comap (algebraMap R (Localization S))) p ∈ freeLocus R M
ac4a766398c7061e
Std.DHashMap.Internal.Raw₀.getKeyD_modify_self
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKeyD_modify_self (h : m.1.WF) [Inhabited α] {k fallback : α} {f : β k → β k} : (m.modify k f).getKeyD k fallback = if m.contains k then k else fallback
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : LawfulBEq α h : m.val.WF inst✝ : Inhabited α k fallback : α f : β k → β k ⊢ (m.modify k f).getKeyD k fallback = if m.contains k = true then k else fallback
simp_to_model [modify] using List.getKeyD_modifyKey_self
no goals
37c14462b0d2c3a7
CategoryTheory.Presheaf.isSheaf_iff_multiequalizer
Mathlib/CategoryTheory/Sites/Sheaf.lean
theorem isSheaf_iff_multiequalizer [∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P)] : IsSheaf J P ↔ ∀ (X : C) (S : J.Cover X), IsIso (S.toMultiequalizer P)
case refine_2 C : Type u₁ inst✝² : Category.{v₁, u₁} C A : Type u₂ inst✝¹ : Category.{v₂, u₂} A J : GrothendieckTopology C P : Cᵒᵖ ⥤ A inst✝ : ∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) X : C S : J.Cover X ⊢ IsIso (S.toMultiequalizer P) → Nonempty (IsLimit (S.multifork P))
intro h
case refine_2 C : Type u₁ inst✝² : Category.{v₁, u₁} C A : Type u₂ inst✝¹ : Category.{v₂, u₂} A J : GrothendieckTopology C P : Cᵒᵖ ⥤ A inst✝ : ∀ (X : C) (S : J.Cover X), HasMultiequalizer (S.index P) X : C S : J.Cover X h : IsIso (S.toMultiequalizer P) ⊢ Nonempty (IsLimit (S.multifork P))
32f315e61f5eaf0d
isZero_Ext_succ_of_projective
Mathlib/CategoryTheory/Abelian/Ext.lean
/-- If `X : C` is projective and `n : ℕ`, then `Ext^(n + 1) X Y ≅ 0` for any `Y`. -/ lemma isZero_Ext_succ_of_projective (X Y : C) [Projective X] (n : ℕ) : IsZero (((Ext R C (n + 1)).obj (Opposite.op X)).obj Y)
R : Type u_1 inst✝⁵ : Ring R C : Type u_2 inst✝⁴ : Category.{u_3, u_2} C inst✝³ : Abelian C inst✝² : Linear R C inst✝¹ : EnoughProjectives C X Y : C inst✝ : Projective X n : ℕ ⊢ 𝟙 (((linearYoneda R C).obj Y).obj (Opposite.op (((ChainComplex.single₀ C).obj X).X (n + 1)))) = 0
ext (x : _ ⟶ _)
case hf.h R : Type u_1 inst✝⁵ : Ring R C : Type u_2 inst✝⁴ : Category.{u_3, u_2} C inst✝³ : Abelian C inst✝² : Linear R C inst✝¹ : EnoughProjectives C X Y : C inst✝ : Projective X n : ℕ x : Opposite.unop (Opposite.op (((ChainComplex.single₀ C).obj X).X (n + 1))) ⟶ Y ⊢ (ModuleCat.Hom.hom (𝟙 (((linearYoneda R C).obj Y).obj (Opposite.op (((ChainComplex.single₀ C).obj X).X (n + 1)))))) x = (ModuleCat.Hom.hom 0) x
40abdca1318b58b3
ProbabilityTheory.Kernel.IsCondKernel.isProbabilityMeasure_ae
Mathlib/Probability/Kernel/Disintegration/Basic.lean
/-- A conditional kernel is almost everywhere a probability measure. -/ lemma IsCondKernel.isProbabilityMeasure_ae [IsFiniteKernel κ.fst] [κ.IsCondKernel κCond] (a : α) : ∀ᵐ b ∂(κ.fst a), IsProbabilityMeasure (κCond (a, b))
case neg α : Type u_1 β : Type u_2 Ω : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mΩ : MeasurableSpace Ω κ : Kernel α (β × Ω) κCond : Kernel (α × β) Ω inst✝¹ : IsFiniteKernel κ.fst inst✝ : κ.IsCondKernel κCond a : α h : 0 = κ h_sfin : ¬IsSFiniteKernel κCond ⊢ ∀ᵐ (b : β) ∂κ.fst a, IsProbabilityMeasure (κCond (a, b))
simp [h.symm]
no goals
d615b2a173689899
Ordinal.card_opow_le_of_omega0_le_left
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem card_opow_le_of_omega0_le_left {a : Ordinal} (ha : ω ≤ a) (b : Ordinal) : (a ^ b).card ≤ max a.card b.card
case h a : Ordinal.{u_1} ha : ω ≤ a b✝ b : Ordinal.{u_1} hb : b.IsLimit IH : ∀ o' < b, (a ^ o').card ≤ a.card ⊔ o'.card ⊢ ∀ (i : ↑(Iio b)), (a ^ ↑i).card ≤ a.card ⊔ b.card
intro c
case h a : Ordinal.{u_1} ha : ω ≤ a b✝ b : Ordinal.{u_1} hb : b.IsLimit IH : ∀ o' < b, (a ^ o').card ≤ a.card ⊔ o'.card c : ↑(Iio b) ⊢ (a ^ ↑c).card ≤ a.card ⊔ b.card
ca96380056897695
MeasurableSet.exists_isOpen_symmDiff_lt
Mathlib/MeasureTheory/Measure/Regular.lean
theorem _root_.MeasurableSet.exists_isOpen_symmDiff_lt [InnerRegularCompactLTTop μ] [IsLocallyFiniteMeasure μ] [R1Space α] [BorelSpace α] {s : Set α} (hs : MeasurableSet s) (hμs : μ s ≠ ∞) {ε : ℝ≥0∞} (hε : ε ≠ 0) : ∃ U, IsOpen U ∧ μ U < ∞ ∧ μ (U ∆ s) < ε
α : Type u_1 inst✝⁵ : MeasurableSpace α μ : Measure α inst✝⁴ : TopologicalSpace α inst✝³ : μ.InnerRegularCompactLTTop inst✝² : IsLocallyFiniteMeasure μ inst✝¹ : R1Space α inst✝ : BorelSpace α s : Set α hs : MeasurableSet s hμs : μ s ≠ ⊤ ε : ℝ≥0∞ hε : ε ≠ 0 this : ε / 2 ≠ 0 K : Set α hKs : K ⊆ s hKco : IsCompact K hKcl : IsClosed K hμK : μ (s \ K) < ε / 2 U : Set α hKU : K ⊆ U hUo : IsOpen U hμU : μ U < μ K + ε / 2 ⊢ μ K ≠ ⊤
exact ne_top_of_le_ne_top hμs (by gcongr)
no goals
498e42d44efdd46a
Real.tendsto_logb_atTop_of_base_lt_one
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
b : ℝ b_pos : 0 < b b_lt_one : b < 1 e : ℝ ⊢ ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ e
use 1 ⊔ b ^ e
case h b : ℝ b_pos : 0 < b b_lt_one : b < 1 e : ℝ ⊢ ∀ (a : ℝ), 1 ⊔ b ^ e ≤ a → logb b a ≤ e
294c4d8092b3c5ec
EReal.right_distrib_of_nonneg
Mathlib/Data/Real/EReal.lean
lemma right_distrib_of_nonneg {a b c : EReal} (ha : 0 ≤ a) (hb : 0 ≤ b) : (a + b) * c = a * c + b * c
case inr.inr.inr.inr.h_real.h_bot b : EReal hb : 0 ≤ b b_pos : 0 < b a✝ : ℝ c_pos : 0 < ↑a✝ ha : 0 ≤ ⊥ a_pos : 0 < ⊥ ⊢ False
exact not_lt_bot a_pos
no goals
4e8a6473d4cbc325
isSimpleRing_iff_isField
Mathlib/RingTheory/SimpleRing/Field.lean
lemma isSimpleRing_iff_isField (A : Type*) [CommRing A] : IsSimpleRing A ↔ IsField A := ⟨fun _ ↦ Subring.topEquiv.symm.toMulEquiv.isField _ <| by rw [← Subring.center_eq_top A]; exact IsSimpleRing.isField_center A, fun h ↦ letI := h.toField; inferInstance⟩
A : Type u_1 inst✝ : CommRing A x✝ : IsSimpleRing A ⊢ IsField ↥(Subring.center A)
exact IsSimpleRing.isField_center A
no goals
5feac9988e67d3e2
MeasureTheory.lintegral_sub_le'
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) : ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ
case pos α : Type u_1 m : MeasurableSpace α μ : Measure α f g : α → ℝ≥0∞ hf : AEMeasurable f μ hfi : ∫⁻ (x : α), f x ∂μ = ⊤ ⊢ ∫⁻ (x : α), g x ∂μ ≤ ⊤
exact le_top
no goals
3c78cc5e3caf47ca
Profinite.exists_locallyConstant_finite_aux
Mathlib/Topology/Category/Profinite/CofilteredLimit.lean
theorem exists_locallyConstant_finite_aux {α : Type*} [Finite α] (hC : IsLimit C) (f : LocallyConstant C.pt α) : ∃ (j : J) (g : LocallyConstant (F.obj j) (α → Fin 2)), (f.map fun a b => if a = b then (0 : Fin 2) else 1) = g.comap (C.π.app _).hom
case intro.intro.e_f.h J : Type v inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toTop) (Fin 2) := (LocallyConstant.map ι f).flip j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (TopCat.Hom.hom (C.π.app (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => ⋯.some gg : α → LocallyConstant (↑(F.obj j0).toTop) (Fin 2) := fun a => LocallyConstant.comap (TopCat.Hom.hom (F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α ⊢ (LocallyConstant.map ι f).flip a = (LocallyConstant.comap (TopCat.Hom.hom (C.π.app j0)) ggg).flip a
change ff a = _
case intro.intro.e_f.h J : Type v inst✝² : SmallCategory J inst✝¹ : IsCofiltered J F : J ⥤ Profinite C : Cone F α : Type u_1 inst✝ : Finite α hC : IsLimit C f : LocallyConstant (↑C.pt.toTop) α val✝ : Fintype α ι : α → α → Fin 2 := fun x y => if x = y then 0 else 1 ff : α → LocallyConstant (↑C.pt.toTop) (Fin 2) := (LocallyConstant.map ι f).flip j : α → J g : (a : α) → LocallyConstant (↑(F.obj (j a)).toTop) (Fin 2) h : ∀ (a : α), ff a = LocallyConstant.comap (TopCat.Hom.hom (C.π.app (j a))) (g a) G : Finset J := Finset.image j Finset.univ j0 : J hj0 : ∀ {X : J}, X ∈ G → Nonempty (j0 ⟶ X) hj : ∀ (a : α), j a ∈ Finset.image j Finset.univ fs : (a : α) → j0 ⟶ j a := fun a => ⋯.some gg : α → LocallyConstant (↑(F.obj j0).toTop) (Fin 2) := fun a => LocallyConstant.comap (TopCat.Hom.hom (F.map (fs a))) (g a) ggg : LocallyConstant (↑(F.obj j0).toTop) (α → Fin 2) := LocallyConstant.unflip gg a : α ⊢ ff a = (LocallyConstant.comap (TopCat.Hom.hom (C.π.app j0)) ggg).flip a
ad55d9835f0fad2e
CompHausLike.sigmaComparison_eq_comp_isos
Mathlib/Topology/Category/CompHausLike/SigmaComparison.lean
theorem sigmaComparison_eq_comp_isos : sigmaComparison X σ = (X.mapIso (opCoproductIsoProduct' (finiteCoproduct.isColimit.{u, u} (fun a ↦ of P (σ a))) (productIsProduct fun x ↦ Opposite.op (of P (σ x))))).hom ≫ (PreservesProduct.iso X fun a ↦ ⟨of P (σ a)⟩).hom ≫ (Types.productIso.{u, max u w} fun a ↦ X.obj ⟨of P (σ a)⟩).hom
case h.h P : TopCat → Prop inst✝⁶ : HasExplicitFiniteCoproducts P X : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝⁵ : PreservesFiniteProducts X α : Type u inst✝⁴ : Finite α σ : α → Type u inst✝³ : (a : α) → TopologicalSpace (σ a) inst✝² : ∀ (a : α), CompactSpace (σ a) inst✝¹ : ∀ (a : α), T2Space (σ a) inst✝ : ∀ (a : α), HasProp P (σ a) x : X.obj (Opposite.op (of P ((a : α) × σ a))) a : α ⊢ sigmaComparison X σ x a = Pi.π (fun a => X.obj (Opposite.op (of P (σ a)))) a (piComparison X (fun a => Opposite.op (of P (σ a))) (X.map (opCoproductIsoProduct' (finiteCoproduct.isColimit fun a => of P (σ a)) (productIsProduct fun x => Opposite.op (of P (σ x)))).hom x))
have := congrFun (piComparison_comp_π X (fun a ↦ ⟨of P (σ a)⟩) a)
case h.h P : TopCat → Prop inst✝⁶ : HasExplicitFiniteCoproducts P X : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝⁵ : PreservesFiniteProducts X α : Type u inst✝⁴ : Finite α σ : α → Type u inst✝³ : (a : α) → TopologicalSpace (σ a) inst✝² : ∀ (a : α), CompactSpace (σ a) inst✝¹ : ∀ (a : α), T2Space (σ a) inst✝ : ∀ (a : α), HasProp P (σ a) x : X.obj (Opposite.op (of P ((a : α) × σ a))) a : α this : ∀ (a_1 : X.obj (∏ᶜ fun a => Opposite.op (of P (σ a)))), ((piComparison X fun a => Opposite.op (of P (σ a))) ≫ Pi.π (fun b => X.obj (Opposite.op (of P (σ b)))) a) a_1 = X.map (Pi.π (fun a => Opposite.op (of P (σ a))) a) a_1 ⊢ sigmaComparison X σ x a = Pi.π (fun a => X.obj (Opposite.op (of P (σ a)))) a (piComparison X (fun a => Opposite.op (of P (σ a))) (X.map (opCoproductIsoProduct' (finiteCoproduct.isColimit fun a => of P (σ a)) (productIsProduct fun x => Opposite.op (of P (σ x)))).hom x))
6a810ee204114508