name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
RingHom.finitePresentation_isStableUnderBaseChange
Mathlib/RingTheory/RingHom/FinitePresentation.lean
theorem finitePresentation_isStableUnderBaseChange : IsStableUnderBaseChange @FinitePresentation
case h.e'_5.h.h R S T : Type u_1 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Algebra.FinitePresentation R T this : Algebra.FinitePresentation S (S ⊗[R] T) e_4✝ : CommSemiring.toSemiring = Algebra.TensorProduct.instSemiring r✝ : S x✝ : S ⊗[R] T ⊢ (let_fun I := Algebra.TensorProduct.includeLeftRingHom.toAlgebra; r✝ • x✝) = r✝ • x✝
simp_rw [Algebra.smul_def]
case h.e'_5.h.h R S T : Type u_1 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Algebra.FinitePresentation R T this : Algebra.FinitePresentation S (S ⊗[R] T) e_4✝ : CommSemiring.toSemiring = Algebra.TensorProduct.instSemiring r✝ : S x✝ : S ⊗[R] T ⊢ (algebraMap S (S ⊗[R] T)) r✝ * x✝ = (algebraMap S (S ⊗[R] T)) r✝ * x✝
ecddf4004478cb5e
Complex.norm_exp_sub_one_sub_id_le
Mathlib/Data/Complex/Exponential.lean
theorem norm_exp_sub_one_sub_id_le {x : ℂ} (hx : ‖x‖ ≤ 1) : ‖exp x - 1 - x‖ ≤ ‖x‖ ^ 2 := calc ‖exp x - 1 - x‖ = ‖exp x - ∑ m ∈ range 2, x ^ m / m.factorial‖
case h x : ℂ hx : ‖x‖ ≤ 1 ⊢ ↑(Nat.succ 2) * (↑(Nat.factorial 2) * ↑2)⁻¹ ≤ 1
norm_num [Nat.factorial]
no goals
4cb40c26287901ee
List.prod_eq_zero_iff
Mathlib/Algebra/BigOperators/Ring/List.lean
/-- Product of elements of a list `l` equals zero if and only if `0 ∈ l`. See also `List.prod_eq_zero` for an implication that needs weaker typeclass assumptions. -/ @[simp] lemma prod_eq_zero_iff : ∀ {l : List M₀}, l.prod = 0 ↔ (0 : M₀) ∈ l | [] => by simp | a :: l => by rw [prod_cons, mul_eq_zero, prod_eq_zero_iff, mem_cons, eq_comm]
M₀ : Type u_4 inst✝² : MonoidWithZero M₀ inst✝¹ : Nontrivial M₀ inst✝ : NoZeroDivisors M₀ a : M₀ l : List M₀ ⊢ (a :: l).prod = 0 ↔ 0 ∈ a :: l
rw [prod_cons, mul_eq_zero, prod_eq_zero_iff, mem_cons, eq_comm]
no goals
899eba2e1ff6cc62
Polynomial.mul_scaleRoots
Mathlib/RingTheory/Polynomial/ScaleRoots.lean
/-- Multiplication and `scaleRoots` commute up to a power of `r`. The factor disappears if we assume that the product of the leading coeffs does not vanish. See `Polynomial.mul_scaleRoots'`. -/ lemma mul_scaleRoots (p q : R[X]) (r : R) : r ^ (natDegree p + natDegree q - natDegree (p * q)) • (p * q).scaleRoots r = p.scaleRoots r * q.scaleRoots r
case inr R : Type u_1 inst✝ : CommSemiring R p q : R[X] r : R n a b : ℕ e : a + b = n ha : a ≤ p.natDegree ⊢ p.coeff a * q.coeff b * r ^ (p.natDegree + q.natDegree - n) = p.coeff a * r ^ (p.natDegree - a) * (q.coeff b * r ^ (q.natDegree - b))
cases lt_or_le (natDegree q) b with | inl h => simp only [coeff_eq_zero_of_natDegree_lt h, zero_mul, mul_zero] | inr hb => simp only [← e, mul_assoc, mul_comm (r ^ (_ - a)), ← pow_add] rw [add_comm (_ - _), tsub_add_tsub_comm ha hb]
no goals
ac865a3551bb16a7
IntermediateField.sSup_toSubfield
Mathlib/FieldTheory/IntermediateField/Adjoin/Defs.lean
theorem sSup_toSubfield (S : Set (IntermediateField F E)) (hS : S.Nonempty) : (sSup S).toSubfield = sSup (toSubfield '' S)
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set (IntermediateField F E) hS : S.Nonempty ⊢ toSubfield '' S = Subfield.closure '' (SetLike.coe '' S)
rw [Set.image_image]
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set (IntermediateField F E) hS : S.Nonempty ⊢ toSubfield '' S = (fun x => Subfield.closure ↑x) '' S
28cd4459b9a2dade
Set.limsup_eq_tendsto_sum_indicator_atTop
Mathlib/Algebra/Order/Archimedean/IndicatorCard.lean
lemma limsup_eq_tendsto_sum_indicator_atTop {α R : Type*} [OrderedAddCommMonoid R] [AddLeftStrictMono R] [Archimedean R] {r : R} (h : 0 < r) (s : ℕ → Set α) : atTop.limsup s = { ω | atTop.Tendsto (fun n ↦ ∑ k ∈ Finset.range n, (s k).indicator (fun _ ↦ r) ω) atTop }
α : Type u_1 R : Type u_2 inst✝² : OrderedAddCommMonoid R inst✝¹ : AddLeftStrictMono R inst✝ : Archimedean R r : R h : 0 < r s : ℕ → Set α ⊢ limsup s atTop = {ω | Tendsto (fun n => ∑ k ∈ Finset.range n, (s k).indicator (fun x => r) ω) atTop atTop}
nth_rw 1 [← Nat.cofinite_eq_atTop, cofinite.limsup_set_eq]
α : Type u_1 R : Type u_2 inst✝² : OrderedAddCommMonoid R inst✝¹ : AddLeftStrictMono R inst✝ : Archimedean R r : R h : 0 < r s : ℕ → Set α ⊢ {x | {n | x ∈ s n}.Infinite} = {ω | Tendsto (fun n => ∑ k ∈ Finset.range n, (s k).indicator (fun x => r) ω) atTop atTop}
c2ebfc8a516e427b
AlgebraicGeometry.finite_appTop_of_universallyClosed
Mathlib/AlgebraicGeometry/Morphisms/Proper.lean
theorem finite_appTop_of_universallyClosed (f : X ⟶ Spec (.of K)) [IsIntegral X] [UniversallyClosed f] [LocallyOfFiniteType f] : f.appTop.hom.Finite
case intro.intro.intro.intro.intro X : Scheme K : Type u inst✝³ : Field K f : X ⟶ Spec (CommRingCat.of K) inst✝² : IsIntegral X inst✝¹ : UniversallyClosed f inst✝ : LocallyOfFiniteType f x : ↑↑X.toPresheafedSpace U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace hU : U ∈ X.affineOpens hxU : x ∈ ↑U this✝¹ : Field ↑Γ(Spec (CommRingCat.of K), ⊤) := ⋯.toField this✝ : Field ↑Γ(X, ⊤) := ⋯.toField this : Nonempty ↑↑(↑U).toPresheafedSpace ⊢ (CommRingCat.Hom.hom (Scheme.Hom.appTop f)).Finite
apply RingHom.finite_of_algHom_finiteType_of_isJacobsonRing (A := Γ(X, U)) (g := (X.presheaf.map (homOfLE le_top).op).hom)
case intro.intro.intro.intro.intro.hfg X : Scheme K : Type u inst✝³ : Field K f : X ⟶ Spec (CommRingCat.of K) inst✝² : IsIntegral X inst✝¹ : UniversallyClosed f inst✝ : LocallyOfFiniteType f x : ↑↑X.toPresheafedSpace U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace hU : U ∈ X.affineOpens hxU : x ∈ ↑U this✝¹ : Field ↑Γ(Spec (CommRingCat.of K), ⊤) := ⋯.toField this✝ : Field ↑Γ(X, ⊤) := ⋯.toField this : Nonempty ↑↑(↑U).toPresheafedSpace ⊢ ((CommRingCat.Hom.hom (X.presheaf.map (homOfLE ⋯).op)).comp (CommRingCat.Hom.hom (Scheme.Hom.appTop f))).FiniteType
29395717bc249029
CategoryTheory.Limits.limit.lift_pre
Mathlib/CategoryTheory/Limits/HasLimits.lean
theorem limit.lift_pre (c : Cone F) : limit.lift F c ≫ limit.pre F E = limit.lift (E ⋙ F) (c.whisker E)
J : Type u₁ inst✝⁴ : Category.{v₁, u₁} J K : Type u₂ inst✝³ : Category.{v₂, u₂} K C : Type u inst✝² : Category.{v, u} C F : J ⥤ C inst✝¹ : HasLimit F E : K ⥤ J inst✝ : HasLimit (E ⋙ F) c : Cone F ⊢ lift F c ≫ pre F E = lift (E ⋙ F) (Cone.whisker E c)
ext
case w J : Type u₁ inst✝⁴ : Category.{v₁, u₁} J K : Type u₂ inst✝³ : Category.{v₂, u₂} K C : Type u inst✝² : Category.{v, u} C F : J ⥤ C inst✝¹ : HasLimit F E : K ⥤ J inst✝ : HasLimit (E ⋙ F) c : Cone F j✝ : K ⊢ (lift F c ≫ pre F E) ≫ π (E ⋙ F) j✝ = lift (E ⋙ F) (Cone.whisker E c) ≫ π (E ⋙ F) j✝
fc8ff14e6ea27b23
CategoryTheory.Sieve.functorPushforward_extend_eq
Mathlib/CategoryTheory/Sites/Sieves.lean
theorem functorPushforward_extend_eq {R : Presieve X} : (generate R).arrows.functorPushforward F = R.functorPushforward F
case h.h.mp.intro.intro.intro.intro.intro.intro.intro.intro C : Type u₁ inst✝¹ : Category.{v₁, u₁} C D : Type u₂ inst✝ : Category.{v₂, u₂} D F : C ⥤ D X : C R : Presieve X Y : D X' : C f' : Y ⟶ F.obj X' X'' : C g' : X' ⟶ X'' f'' : X'' ⟶ X h₁ : R f'' ⊢ f' ≫ F.map (g' ≫ f'') ∈ Presieve.functorPushforward F R
exact ⟨X'', f'', f' ≫ F.map g', h₁, by simp⟩
no goals
b61d2485d4b68090
Polynomial.div_eq_zero_iff
Mathlib/Algebra/Polynomial/FieldDivision.lean
theorem div_eq_zero_iff (hq0 : q ≠ 0) : p / q = 0 ↔ degree p < degree q := ⟨fun h => by have := EuclideanDomain.div_add_mod p q rwa [h, mul_zero, zero_add, mod_eq_self_iff hq0] at this, fun h => by have hlt : degree p < degree (q * C (leadingCoeff q)⁻¹)
R : Type u inst✝ : Field R p q : R[X] hq0 : q ≠ 0 h : p.degree < q.degree ⊢ p / q = 0
have hlt : degree p < degree (q * C (leadingCoeff q)⁻¹) := by rwa [degree_mul_leadingCoeff_inv q hq0]
R : Type u inst✝ : Field R p q : R[X] hq0 : q ≠ 0 h : p.degree < q.degree hlt : p.degree < (q * C q.leadingCoeff⁻¹).degree ⊢ p / q = 0
5b5a4fcac6cf08e7
Equiv.biSup_comp
Mathlib/Order/CompleteLattice.lean
lemma Equiv.biSup_comp {ι ι' : Type*} {g : ι' → α} (e : ι ≃ ι') (s : Set ι') : ⨆ i ∈ e.symm '' s, g (e i) = ⨆ i ∈ s, g i
α : Type u_1 inst✝ : CompleteLattice α ι : Type u_8 ι' : Type u_9 g : ι' → α e : ι ≃ ι' s : Set ι' ⊢ ⨆ i ∈ ⇑e.symm '' s, g (e i) = ⨆ i ∈ s, g i
simpa only [iSup_subtype'] using (image e.symm s).symm.iSup_comp (g := g ∘ (↑))
no goals
506addd85f641603
SimpleGraph.IsSRGWith.top
Mathlib/Combinatorics/SimpleGraph/StronglyRegular.lean
theorem IsSRGWith.top : (⊤ : SimpleGraph V).IsSRGWith (Fintype.card V) (Fintype.card V - 1) (Fintype.card V - 2) μ where card := rfl regular := IsRegularOfDegree.top of_adj := fun v w h => by rw [card_commonNeighbors_top] exact h of_not_adj := fun v w h h' => False.elim (h' ((top_adj v w).2 h))
V : Type u inst✝¹ : Fintype V μ : ℕ inst✝ : DecidableEq V v w : V h : ⊤.Adj v w ⊢ Fintype.card ↑(⊤.commonNeighbors v w) = Fintype.card V - 2
rw [card_commonNeighbors_top]
V : Type u inst✝¹ : Fintype V μ : ℕ inst✝ : DecidableEq V v w : V h : ⊤.Adj v w ⊢ v ≠ w
ecd0ebdbd9afb1e4
AkraBazziRecurrence.GrowsPolynomially.eventually_atTop_nonneg_or_nonpos
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_atTop_nonneg_or_nonpos (hf : GrowsPolynomially f) : (∀ᶠ x in atTop, 0 ≤ f x) ∨ (∀ᶠ x in atTop, f x ≤ 0)
f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b x : ℝ hxlb : n₀ ⊔ 2 ≤ x hxub : x < 2 * (n₀ ⊔ 2) ⊢ f x = f (n₀ ⊔ 2)
have h₁ := calc n₀ ≤ 1 * max n₀ 2 := by simp _ ≤ 2 * max n₀ 2 := by gcongr; norm_num
f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b x : ℝ hxlb : n₀ ⊔ 2 ≤ x hxub : x < 2 * (n₀ ⊔ 2) h₁ : n₀ ≤ 2 * (n₀ ⊔ 2) ⊢ f x = f (n₀ ⊔ 2)
69674f7264744f71
IsCyclotomicExtension.neZero
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem neZero [h : IsCyclotomicExtension {n} A B] [IsDomain B] : NeZero ((n : ℕ) : B)
n : ℕ+ A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B h : IsCyclotomicExtension {n} A B inst✝ : IsDomain B ⊢ NeZero ↑↑n
obtain ⟨⟨r, hr⟩, -⟩ := (iff_singleton n A B).1 h
case intro.intro n : ℕ+ A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B h : IsCyclotomicExtension {n} A B inst✝ : IsDomain B r : B hr : IsPrimitiveRoot r ↑n ⊢ NeZero ↑↑n
a3f693af1abdecc7
Computation.eq_of_bisim
Mathlib/Data/Seq/Computation.lean
theorem eq_of_bisim (bisim : IsBisimulation R) {s₁ s₂} (r : s₁ ~ s₂) : s₁ = s₂
case right α : Type u R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure a') (pure a') h : r' = a' ⊢ R (pure a') (pure a')
assumption
no goals
9050670d391b06a4
Set.inv_smul_set_distrib₀
Mathlib/Data/Set/Pointwise/SMul.lean
@[simp] lemma inv_smul_set_distrib₀ (a : α) (s : Set α) : (a • s)⁻¹ = op a⁻¹ • s⁻¹
α : Type u_2 inst✝ : GroupWithZero α a : α s : Set α ⊢ (a • s)⁻¹ = op a⁻¹ • s⁻¹
obtain rfl | ha := eq_or_ne a 0
case inl α : Type u_2 inst✝ : GroupWithZero α s : Set α ⊢ (0 • s)⁻¹ = op 0⁻¹ • s⁻¹ case inr α : Type u_2 inst✝ : GroupWithZero α a : α s : Set α ha : a ≠ 0 ⊢ (a • s)⁻¹ = op a⁻¹ • s⁻¹
1ad0de5f9629fc44
MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0) (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι) (hS_meas : ∀ i, MeasurableSet (S i)) (hSp : ∀ i ∈ sι, μ (S i) ≠ ∞) (h_disj : ∀ᵉ (i ∈ sι) (j ∈ sι), i ≠ j → Disjoint (S i) (S j)) : T (⋃ i ∈ sι, S i) = ∑ i ∈ sι, T (S i)
case refine_2.e_a α : Type u_1 m : MeasurableSpace α μ : Measure α β : Type u_7 inst✝ : AddCommMonoid β T : Set α → β T_empty : T ∅ = 0 h_add : FinMeasAdditive μ T ι : Type u_8 S : ι → Set α sι : Finset ι hS_meas : ∀ (i : ι), MeasurableSet (S i) a : ι s : Finset ι has : a ∉ s h : (∀ i ∈ s, μ (S i) ≠ ⊤) → (∀ i ∈ s, ∀ j ∈ s, i ≠ j → Disjoint (S i) (S j)) → T (⋃ i ∈ s, S i) = ∑ i ∈ s, T (S i) hps : ∀ i ∈ insert a s, μ (S i) ≠ ⊤ h_disj : ∀ i ∈ insert a s, ∀ j ∈ insert a s, i ≠ j → Disjoint (S i) (S j) ⊢ ⋃ i ∈ insert a s, S i = S a ∪ ⋃ i ∈ s, S i
convert Finset.iSup_insert a s S
no goals
6e1e5c5f22e5eba3
Orthonormal.inner_right_sum
Mathlib/Analysis/InnerProductSpace/Orthonormal.lean
theorem Orthonormal.inner_right_sum {v : ι → E} (hv : Orthonormal 𝕜 v) (l : ι → 𝕜) {s : Finset ι} {i : ι} (hi : i ∈ s) : ⟪v i, ∑ i ∈ s, l i • v i⟫ = l i
𝕜 : Type u_1 E : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : InnerProductSpace 𝕜 E ι : Type u_4 v : ι → E hv : Orthonormal 𝕜 v l : ι → 𝕜 s : Finset ι i : ι hi : i ∈ s ⊢ inner (v i) (∑ i ∈ s, l i • v i) = l i
classical simp [inner_sum, inner_smul_right, orthonormal_iff_ite.mp hv, hi]
no goals
0b90144be34025e9
Nat.prod_range_succ_factorial
Mathlib/Data/Nat/Factorial/SuperFactorial.lean
theorem prod_range_succ_factorial : ∀ n : ℕ, ∏ x ∈ range (n + 1), x ! = sf n | 0 => rfl | n + 1 => by rw [prod_range_succ, prod_range_succ_factorial n, mul_comm, superFactorial]
n : ℕ ⊢ ∏ x ∈ range (n + 1 + 1), x ! = sf n + 1
rw [prod_range_succ, prod_range_succ_factorial n, mul_comm, superFactorial]
no goals
e40f8d38db0fc4df
HasDerivAt.pow
Mathlib/Analysis/Calculus/Deriv/Pow.lean
theorem HasDerivAt.pow (hc : HasDerivAt c c' x) : HasDerivAt (fun y => c y ^ n) ((n : 𝕜) * c x ^ (n - 1) * c') x
𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 x : 𝕜 c : 𝕜 → 𝕜 c' : 𝕜 n : ℕ hc : HasDerivAt c c' x ⊢ HasDerivAt (fun y => c y ^ n) (↑n * c x ^ (n - 1) * c') x
rw [← hasDerivWithinAt_univ] at *
𝕜 : Type u inst✝ : NontriviallyNormedField 𝕜 x : 𝕜 c : 𝕜 → 𝕜 c' : 𝕜 n : ℕ hc : HasDerivWithinAt c c' Set.univ x ⊢ HasDerivWithinAt (fun y => c y ^ n) (↑n * c x ^ (n - 1) * c') Set.univ x
04e02f29d0f4b15a
EReal.preimage_coe_Ioi
Mathlib/Data/Real/EReal.lean
@[simp] lemma preimage_coe_Ioi (x : ℝ) : Real.toEReal ⁻¹' Ioi x = Ioi x
x : ℝ ⊢ WithTop.some ⁻¹' (WithBot.some ⁻¹' Ioi ↑↑x) = Ioi x
simp only [WithBot.preimage_coe_Ioi, WithTop.preimage_coe_Ioi]
no goals
7d2244a627048bcf
OrderedFinpartition.applyOrderedFinpartition_update_left
Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
theorem applyOrderedFinpartition_update_left (p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F) (m : Fin c.length) (v : Fin n → E) (q : E[×c.partSize m]→L[𝕜] F) : c.applyOrderedFinpartition (update p m q) v = update (c.applyOrderedFinpartition p v) m (q (v ∘ c.emb m))
case pos 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F n : ℕ c : OrderedFinpartition n p : (i : Fin c.length) → ContinuousMultilinearMap 𝕜 (fun i => E) F m : Fin c.length v : Fin n → E q : ContinuousMultilinearMap 𝕜 (fun i => E) F d : Fin c.length h : d = m ⊢ c.applyOrderedFinpartition (update p m q) v d = update (c.applyOrderedFinpartition p v) m (q (v ∘ c.emb m)) d
rw [h]
case pos 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F n : ℕ c : OrderedFinpartition n p : (i : Fin c.length) → ContinuousMultilinearMap 𝕜 (fun i => E) F m : Fin c.length v : Fin n → E q : ContinuousMultilinearMap 𝕜 (fun i => E) F d : Fin c.length h : d = m ⊢ c.applyOrderedFinpartition (update p m q) v m = update (c.applyOrderedFinpartition p v) m (q (v ∘ c.emb m)) m
c6f9cb743bcacd68
LieSubalgebra.normalizer_eq_self_of_engel_le
Mathlib/Algebra/Lie/EngelSubalgebra.lean
/-- A Lie-subalgebra of an Artinian Lie algebra is self-normalizing if it contains an Engel subalgebra. See `LieSubalgebra.normalizer_engel` for a proof that Engel subalgebras are self-normalizing, avoiding the Artinian condition. -/ lemma normalizer_eq_self_of_engel_le [IsArtinian R L] (H : LieSubalgebra R L) (x : L) (h : engel R x ≤ H) : normalizer H = H
R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsArtinian R L H : LieSubalgebra R L x : L h : engel R x ≤ H N : LieSubalgebra R L := H.normalizer ⊢ (engel R x).toSubmodule ⊔ H.toSubmodule = H.toSubmodule
rwa [sup_eq_right]
no goals
253d8e16fa48a5a4
contDiffWithinAt_succ_iff_hasFDerivWithinAt
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem contDiffWithinAt_succ_iff_hasFDerivWithinAt (hn : n ≠ ∞) : ContDiffWithinAt 𝕜 (n + 1) f s x ↔ ∃ u ∈ 𝓝[insert x s] x, (n = ω → AnalyticOn 𝕜 f u) ∧ ∃ f' : E → E →L[𝕜] F, (∀ x ∈ u, HasFDerivWithinAt f (f' x) u x) ∧ ContDiffWithinAt 𝕜 n f' u x
case a 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F x : E n : WithTop ℕ∞ hn : n ≠ ∞ h'n : n + 1 ≠ ∞ u : Set E hu : u ∈ 𝓝[insert x s] x hf : n = ω → AnalyticOn 𝕜 f u f' : E → E →L[𝕜] F f'_eq_deriv : ∀ x ∈ u, HasFDerivWithinAt f (f' x) u x Hf' : ContDiffWithinAt 𝕜 n f' u x v : Set E hv : v ∈ 𝓝[insert x u] x p' : E → FormalMultilinearSeries 𝕜 E (E →L[𝕜] F) Hp' : HasFTaylorSeriesUpToOn n f' p' v p'_an : n = ω → ∀ (i : ℕ), AnalyticOn 𝕜 (fun x => p' x i) v ⊢ v ∈ 𝓝[u] x
exact nhdsWithin_mono _ (subset_insert x u) hv
no goals
954f60033717bd9b
Monoid.CoprodI.lift_word_prod_nontrivial_of_not_empty
Mathlib/GroupTheory/CoprodI.lean
theorem lift_word_prod_nontrivial_of_not_empty {i j} (w : NeWord H i j) : lift f w.prod ≠ 1
case neg ι : Type u_1 G : Type u_4 inst✝³ : Group G H : ι → Type u_5 inst✝² : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝¹ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), (X i).Nonempty hXdisj : Pairwise (Disjoint on X) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → (f i) h • X j ⊆ X i inst✝ : Nontrivial ι i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hl : ¬j = k hh : i ≠ k ⊢ (lift f) w.prod ≠ 1
change j ≠ k at hl
case neg ι : Type u_1 G : Type u_4 inst✝³ : Group G H : ι → Type u_5 inst✝² : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝¹ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), (X i).Nonempty hXdisj : Pairwise (Disjoint on X) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → (f i) h • X j ⊆ X i inst✝ : Nontrivial ι i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k ⊢ (lift f) w.prod ≠ 1
3e8798a67334cdb3
List.chain'_attachWith
Mathlib/Data/List/Chain.lean
theorem chain'_attachWith {l : List α} {p : α → Prop} (h : ∀ x ∈ l, p x) {r : {a // p a} → {a // p a} → Prop} : (l.attachWith p h).Chain' r ↔ l.Chain' fun a b ↦ ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩
case cons.mp α : Type u p : α → Prop r : { a // p a } → { a // p a } → Prop a : α l : List α IH : ∀ (h : ∀ (x : α), x ∈ l → p x), Chain' r (l.attachWith p h) ↔ Chain' (fun a b => ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩) l h : ∀ (x : α), x ∈ a :: l → p x a✝ : Chain' (fun a b => ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩) l hc : ∀ (y : { a // p a }), (y ∈ l.head?.pbind fun a_1 h_1 => some ⟨a_1, ⋯⟩) → r ⟨a, ⋯⟩ y b : α hb : l.head? = some b ⊢ ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩
simp_rw [hb, Option.pbind_some] at hc
case cons.mp α : Type u p : α → Prop r : { a // p a } → { a // p a } → Prop a : α l : List α IH : ∀ (h : ∀ (x : α), x ∈ l → p x), Chain' r (l.attachWith p h) ↔ Chain' (fun a b => ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩) l h : ∀ (x : α), x ∈ a :: l → p x a✝ : Chain' (fun a b => ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩) l b : α hb : l.head? = some b hc : ∀ (y : { a // p a }), y ∈ some ⟨b, ⋯⟩ → r ⟨a, ⋯⟩ y ⊢ ∃ ha hb, r ⟨a, ha⟩ ⟨b, hb⟩
cc5a32ae10ad5ad1
ZMod.val_sub
Mathlib/Data/ZMod/Basic.lean
theorem val_sub {n : ℕ} [NeZero n] {a b : ZMod n} (h : b.val ≤ a.val) : (a - b).val = a.val - b.val
case pos n : ℕ inst✝ : NeZero n a b : ZMod n h : b.val ≤ a.val hb : b = 0 ⊢ (a - b).val = a.val - b.val
cases hb
case pos.refl n : ℕ inst✝ : NeZero n a : ZMod n h : val 0 ≤ a.val ⊢ (a - 0).val = a.val - val 0
9aaf26d2276bd4fb
Lean.Order.List.monotone_foldrM
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_foldrM (f : γ → α → β → m β) (init : β) (xs : List α) (hmono : monotone f) : monotone (fun x => xs.foldrM (f x) (init := init))
case hmono.h m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m α β : Type u γ : Type w inst✝ : PartialOrder γ f : γ → α → β → m β init : β xs : List α hmono : monotone f ⊢ ∀ (y : β), monotone fun x a => f x a y
intro s
case hmono.h m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m α β : Type u γ : Type w inst✝ : PartialOrder γ f : γ → α → β → m β init : β xs : List α hmono : monotone f s : β ⊢ monotone fun x a => f x a s
a113a300d4f9e2d9
Combinatorics.Line.exists_mono_in_high_dimension'
Mathlib/Combinatorics/HalesJewett.lean
theorem exists_mono_in_high_dimension' : ∀ (α : Type u) [Finite α] (κ : Type max v u) [Finite κ], ∃ (ι : Type) (_ : Fintype ι), ∀ C : (ι → α) → κ, ∃ l : Line α ι, l.IsMono C := -- The proof proceeds by induction on `α`. Finite.induction_empty_option (-- We have to show that the theorem is invariant under `α ≃ α'` for the induction to work. fun {α α'} e => forall_imp fun κ => forall_imp fun _ => Exists.imp fun ι => Exists.imp fun _ h C => let ⟨l, c, lc⟩ := h fun v => C (e ∘ v) ⟨l.map e, c, e.forall_congr_right.mp fun x => by rw [← lc x, Line.map_apply]⟩) (by -- This deals with the degenerate case where `α` is empty. intro κ _ by_cases h : Nonempty κ · refine ⟨Unit, inferInstance, fun C => ⟨default, Classical.arbitrary _, PEmpty.rec⟩⟩ · exact ⟨Empty, inferInstance, fun C => (h ⟨C (Empty.rec)⟩).elim⟩) (by -- Now we have to show that the theorem holds for `Option α` if it holds for `α`. intro α _ ihα κ _ cases nonempty_fintype κ -- Later we'll need `α` to be nonempty. So we first deal with the trivial case where `α` is -- empty. -- Then `Option α` has only one element, so any line is monochromatic. by_cases h : Nonempty α case neg => refine ⟨Unit, inferInstance, fun C => ⟨diagonal _ Unit, C fun _ => none, ?_⟩⟩ rintro (_ | ⟨a⟩) · rfl · exact (h ⟨a⟩).elim -- The key idea is to show that for every `r`, in high dimension we can either find -- `r` color focused lines or a monochromatic line. suffices key : ∀ r : ℕ, ∃ (ι : Type) (_ : Fintype ι), ∀ C : (ι → Option α) → κ, (∃ s : ColorFocused C, Multiset.card s.lines = r) ∨ ∃ l, IsMono C l by -- Given the key claim, we simply take `r = |κ| + 1`. We cannot have this many distinct colors -- so we must be in the second case, where there is a monochromatic line. obtain ⟨ι, _inst, hι⟩ := key (Fintype.card κ + 1) refine ⟨ι, _inst, fun C => (hι C).resolve_left ?_⟩ rintro ⟨s, sr⟩ apply Nat.not_succ_le_self (Fintype.card κ) rw [← Nat.add_one, ← sr, ← Multiset.card_map, ← Finset.card_mk] exact Finset.card_le_univ ⟨_, s.distinct_colors⟩ -- We now prove the key claim, by induction on `r`. intro r induction r with -- The base case `r = 0` is trivial as the empty collection is color-focused. | zero => exact ⟨Empty, inferInstance, fun C => Or.inl ⟨default, Multiset.card_zero⟩⟩ | succ r ihr => -- Supposing the key claim holds for `r`, we need to show it for `r+1`. First pick a high -- enough dimension `ι` for `r`. obtain ⟨ι, _inst, hι⟩ := ihr -- Then since the theorem holds for `α` with any number of colors, pick a dimension `ι'` such -- that `ι' → α` always has a monochromatic line whenever it is `(ι → Option α) → κ`-colored. specialize ihα ((ι → Option α) → κ) obtain ⟨ι', _inst, hι'⟩ := ihα -- We claim that `ι ⊕ ι'` works for `Option α` and `κ`-coloring. refine ⟨ι ⊕ ι', inferInstance, ?_⟩ intro C -- A `κ`-coloring of `ι ⊕ ι' → Option α` induces an `(ι → Option α) → κ`-coloring of `ι' → α`. specialize hι' fun v' v => C (Sum.elim v (some ∘ v')) -- By choice of `ι'` this coloring has a monochromatic line `l'` with color class `C'`, where -- `C'` is a `κ`-coloring of `ι → α`. obtain ⟨l', C', hl'⟩ := hι' -- If `C'` has a monochromatic line, then so does `C`. We use this in two places below. have mono_of_mono : (∃ l, IsMono C' l) → ∃ l, IsMono C l
case neg κ : Type (max v u) inst✝ : Finite κ h : ¬Nonempty κ ⊢ ∃ ι x, ∀ (C : (ι → PEmpty.{u + 1}) → κ), ∃ l, IsMono C l
exact ⟨Empty, inferInstance, fun C => (h ⟨C (Empty.rec)⟩).elim⟩
no goals
458a3139c96a1a38
LieIdeal.comap_bracket_incl_of_le
Mathlib/Algebra/Lie/IdealOperations.lean
theorem comap_bracket_incl_of_le {I₁ I₂ : LieIdeal R L} (h₁ : I₁ ≤ I) (h₂ : I₂ ≤ I) : ⁅comap I.incl I₁, comap I.incl I₂⁆ = comap I.incl ⁅I₁, I₂⁆
R : Type u L : Type v inst✝² : CommRing R inst✝¹ : LieRing L inst✝ : LieAlgebra R L I I₁ I₂ : LieIdeal R L h₁ : I ⊓ I₁ = I₁ h₂ : I ⊓ I₂ = I₂ ⊢ comap I.incl ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap I.incl ⁅I₁, I₂⁆
rw [h₁, h₂]
no goals
e4e33afabd2782f8
Set.inj_on_iUnion_of_directed
Mathlib/Data/Set/Lattice.lean
theorem inj_on_iUnion_of_directed {s : ι → Set α} (hs : Directed (· ⊆ ·) s) {f : α → β} (hf : ∀ i, InjOn f (s i)) : InjOn f (⋃ i, s i)
case intro α : Type u_1 β : Type u_2 ι : Sort u_5 s : ι → Set α hs : Directed (fun x1 x2 => x1 ⊆ x2) s f : α → β hf : ∀ (i : ι), InjOn f (s i) x : α hx✝ : x ∈ ⋃ i, s i y : α hy : y ∈ ⋃ i, s i hxy : f x = f y i : ι hx : x ∈ s i ⊢ x = y
rcases mem_iUnion.1 hy with ⟨j, hy⟩
case intro.intro α : Type u_1 β : Type u_2 ι : Sort u_5 s : ι → Set α hs : Directed (fun x1 x2 => x1 ⊆ x2) s f : α → β hf : ∀ (i : ι), InjOn f (s i) x : α hx✝ : x ∈ ⋃ i, s i y : α hy✝ : y ∈ ⋃ i, s i hxy : f x = f y i : ι hx : x ∈ s i j : ι hy : y ∈ s j ⊢ x = y
35c4c97714d42f6b
ENat.toNat_le_of_le_coe
Mathlib/Data/ENat/Basic.lean
lemma toNat_le_of_le_coe {m : ℕ∞} {n : ℕ} (h : m ≤ n) : toNat m ≤ n
m : ℕ∞ n : ℕ h : m ≤ ↑n ⊢ m.toNat ≤ n
lift m to ℕ using ne_top_of_le_ne_top (coe_ne_top n) h
case intro n m : ℕ h : ↑m ≤ ↑n ⊢ (↑m).toNat ≤ n
90dc0428cc06666a
Besicovitch.exist_disjoint_covering_families
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem exist_disjoint_covering_families {N : ℕ} {τ : ℝ} (hτ : 1 < τ) (hN : IsEmpty (SatelliteConfig α N τ)) (q : BallPackage β α) : ∃ s : Fin N → Set β, (∀ i : Fin N, (s i).PairwiseDisjoint fun j => closedBall (q.c j) (q.r j)) ∧ range q.c ⊆ ⋃ i : Fin N, ⋃ j ∈ s i, ball (q.c j) (q.r j)
case inr α : Type u_1 inst✝ : MetricSpace α β : Type u N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) q : BallPackage β α h✝ : Nonempty β p : TauPackage β α := { toBallPackage := q, τ := τ, one_lt_tau := hτ } ⊢ ∃ s, (∀ (i : Fin N), (s i).PairwiseDisjoint fun j => closedBall (q.c j) (q.r j)) ∧ range q.c ⊆ ⋃ i, ⋃ j ∈ s i, ball (q.c j) (q.r j)
let s := fun i : Fin N => ⋃ (k : Ordinal.{u}) (_ : k < p.lastStep) (_ : p.color k = i), ({p.index k} : Set β)
case inr α : Type u_1 inst✝ : MetricSpace α β : Type u N : ℕ τ : ℝ hτ : 1 < τ hN : IsEmpty (SatelliteConfig α N τ) q : BallPackage β α h✝ : Nonempty β p : TauPackage β α := { toBallPackage := q, τ := τ, one_lt_tau := hτ } s : Fin N → Set β := fun i => ⋃ k, ⋃ (_ : k < p.lastStep), ⋃ (_ : p.color k = ↑i), {p.index k} ⊢ ∃ s, (∀ (i : Fin N), (s i).PairwiseDisjoint fun j => closedBall (q.c j) (q.r j)) ∧ range q.c ⊆ ⋃ i, ⋃ j ∈ s i, ball (q.c j) (q.r j)
416e48a035cdf3d5
CategoryTheory.Limits.biproduct.map_matrix
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
theorem biproduct.map_matrix {f : J → C} {g : J → C} {h : K → C} (m : ∀ k, f k ⟶ g k) (n : ∀ j k, g j ⟶ h k) : biproduct.map m ≫ biproduct.matrix n = biproduct.matrix fun j k => m j ≫ n j k
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : Preadditive C J K : Type inst✝² : Finite J inst✝¹ : HasFiniteBiproducts C inst✝ : Finite K f g : J → C h : K → C m : (k : J) → f k ⟶ g k n : (j : J) → (k : K) → g j ⟶ h k ⊢ map m ≫ matrix n = matrix fun j k => m j ≫ n j k
ext
case w.w C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : Preadditive C J K : Type inst✝² : Finite J inst✝¹ : HasFiniteBiproducts C inst✝ : Finite K f g : J → C h : K → C m : (k : J) → f k ⟶ g k n : (j : J) → (k : K) → g j ⟶ h k j✝¹ : K j✝ : J ⊢ ι f j✝ ≫ (map m ≫ matrix n) ≫ π h j✝¹ = ι f j✝ ≫ (matrix fun j k => m j ≫ n j k) ≫ π h j✝¹
ebc2335d1e01283f
RingHom.finiteType_ofLocalizationSpan
Mathlib/RingTheory/RingHom/FiniteType.lean
theorem finiteType_ofLocalizationSpan : RingHom.OfLocalizationSpan @RingHom.FiniteType
R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset R hs : Ideal.span ↑s = ⊤ H : ∀ (r : { x // x ∈ s }), (Localization.awayMap f ↑r).FiniteType this✝² : Algebra R S := f.toAlgebra this✝¹ : (r : { x // x ∈ s }) → Algebra (Localization.Away ↑r) (Localization.Away (f ↑r)) := fun r => (Localization.awayMap f ↑r).toAlgebra this✝ : ∀ (r : { x // x ∈ s }), IsLocalization (Submonoid.map (algebraMap R S) (Submonoid.powers ↑r)) (Localization.Away (f ↑r)) this : ∀ (r : { x // x ∈ s }), IsScalarTower R (Localization.Away ↑r) (Localization.Away (f ↑r)) ⊢ f.FiniteType
constructor
case out R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset R hs : Ideal.span ↑s = ⊤ H : ∀ (r : { x // x ∈ s }), (Localization.awayMap f ↑r).FiniteType this✝² : Algebra R S := f.toAlgebra this✝¹ : (r : { x // x ∈ s }) → Algebra (Localization.Away ↑r) (Localization.Away (f ↑r)) := fun r => (Localization.awayMap f ↑r).toAlgebra this✝ : ∀ (r : { x // x ∈ s }), IsLocalization (Submonoid.map (algebraMap R S) (Submonoid.powers ↑r)) (Localization.Away (f ↑r)) this : ∀ (r : { x // x ∈ s }), IsScalarTower R (Localization.Away ↑r) (Localization.Away (f ↑r)) ⊢ ⊤.FG
99d09e8c0e75eabf
Algebra.TensorProduct.includeRight_map_center_le
Mathlib/Algebra/Central/TensorProduct.lean
lemma Algebra.TensorProduct.includeRight_map_center_le : (Subalgebra.center K C).map includeRight ≤ Subalgebra.center K (B ⊗[K] C) := fun x hx ↦ by simp only [Subalgebra.mem_map, Subalgebra.mem_center_iff] at hx ⊢ obtain ⟨c, hc0, rfl⟩ := hx intro bc induction bc using TensorProduct.induction_on with | zero => simp | tmul b c' => simp [hc0] | add _ _ _ _ => simp_all [add_mul, mul_add]
case intro.intro.tmul K : Type u_1 B : Type u_2 C : Type u_3 inst✝⁴ : CommSemiring K inst✝³ : Semiring B inst✝² : Semiring C inst✝¹ : Algebra K B inst✝ : Algebra K C c : C hc0 : ∀ (b : C), b * c = c * b b : B c' : C ⊢ b ⊗ₜ[K] c' * includeRight c = includeRight c * b ⊗ₜ[K] c'
simp [hc0]
no goals
48e55bd585cb4dd0
Set.SurjOn.prodMap
Mathlib/Data/Set/Function.lean
lemma SurjOn.prodMap (h₁ : SurjOn f₁ s₁ t₁) (h₂ : SurjOn f₂ s₂ t₂) : SurjOn (fun x ↦ (f₁ x.1, f₂ x.2)) (s₁ ×ˢ s₂) (t₁ ×ˢ t₂)
case intro.intro α₁ : Type u_7 α₂ : Type u_8 β₁ : Type u_9 β₂ : Type u_10 s₁ : Set α₁ s₂ : Set α₂ t₁ : Set β₁ t₂ : Set β₂ f₁ : α₁ → β₁ f₂ : α₂ → β₂ h₁ : SurjOn f₁ s₁ t₁ h₂ : SurjOn f₂ s₂ t₂ x : β₁ × β₂ hx : x ∈ t₁ ×ˢ t₂ a₁ : α₁ ha₁ : a₁ ∈ s₁ hx₁ : f₁ a₁ = x.1 ⊢ x ∈ (fun x => (f₁ x.1, f₂ x.2)) '' s₁ ×ˢ s₂
obtain ⟨a₂, ha₂, hx₂⟩ := h₂ hx.2
case intro.intro.intro.intro α₁ : Type u_7 α₂ : Type u_8 β₁ : Type u_9 β₂ : Type u_10 s₁ : Set α₁ s₂ : Set α₂ t₁ : Set β₁ t₂ : Set β₂ f₁ : α₁ → β₁ f₂ : α₂ → β₂ h₁ : SurjOn f₁ s₁ t₁ h₂ : SurjOn f₂ s₂ t₂ x : β₁ × β₂ hx : x ∈ t₁ ×ˢ t₂ a₁ : α₁ ha₁ : a₁ ∈ s₁ hx₁ : f₁ a₁ = x.1 a₂ : α₂ ha₂ : a₂ ∈ s₂ hx₂ : f₂ a₂ = x.2 ⊢ x ∈ (fun x => (f₁ x.1, f₂ x.2)) '' s₁ ×ˢ s₂
d3ef2f2b010a9b6e
Fermat42.not_minimal
Mathlib/NumberTheory/FLT/Four.lean
theorem not_minimal {a b c : ℤ} (h : Minimal a b c) (ha2 : a % 2 = 1) (hc : 0 < c) : False
case intro.intro.intro.intro.intro.intro.intro a b c : ℤ h : Minimal a b c ha2 : a % 2 = 1 hc : 0 < c ht : PythagoreanTriple (a ^ 2) (b ^ 2) c h2 : (a ^ 2).gcd (b ^ 2) = 1 ha22 : a ^ 2 % 2 = 1 m n : ℤ ht1 : a ^ 2 = m ^ 2 - n ^ 2 ht2 : b ^ 2 = 2 * m * n ht3 : c = m ^ 2 + n ^ 2 ht4 : m.gcd n = 1 ht5 : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0 ht6 : 0 ≤ m htt : PythagoreanTriple a n m h3 : a.gcd n = 1 hb20 : b ^ 2 ≠ 0 h4 : 0 < m ⊢ False
obtain ⟨r, s, _, htt2, htt3, htt4, htt5, htt6⟩ := htt.coprime_classification' h3 ha2 h4
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro a b c : ℤ h : Minimal a b c ha2 : a % 2 = 1 hc : 0 < c ht : PythagoreanTriple (a ^ 2) (b ^ 2) c h2 : (a ^ 2).gcd (b ^ 2) = 1 ha22 : a ^ 2 % 2 = 1 m n : ℤ ht1 : a ^ 2 = m ^ 2 - n ^ 2 ht2 : b ^ 2 = 2 * m * n ht3 : c = m ^ 2 + n ^ 2 ht4 : m.gcd n = 1 ht5 : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0 ht6 : 0 ≤ m htt : PythagoreanTriple a n m h3 : a.gcd n = 1 hb20 : b ^ 2 ≠ 0 h4 : 0 < m r s : ℤ left✝ : a = r ^ 2 - s ^ 2 htt2 : n = 2 * r * s htt3 : m = r ^ 2 + s ^ 2 htt4 : r.gcd s = 1 htt5 : r % 2 = 0 ∧ s % 2 = 1 ∨ r % 2 = 1 ∧ s % 2 = 0 htt6 : 0 ≤ r ⊢ False
58647b498e4824ae
Padic.exi_rat_seq_conv_cauchy
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem exi_rat_seq_conv_cauchy : IsCauSeq (padicNorm p) (limSeq f) := fun ε hε ↦ by have hε3 : 0 < ε / 3 := div_pos hε (by norm_num) let ⟨N, hN⟩ := exi_rat_seq_conv f hε3 let ⟨N2, hN2⟩ := f.cauchy₂ hε3 exists max N N2 intro j hj suffices padicNormE (limSeq f j - f (max N N2) + (f (max N N2) - limSeq f (max N N2)) : ℚ_[p]) < ε by ring_nf at this ⊢ rw [← padicNormE.eq_padic_norm'] exact mod_cast this apply lt_of_le_of_lt · apply padicNormE.add_le · rw [← add_thirds ε] apply _root_.add_lt_add · suffices padicNormE (limSeq f j - f j + (f j - f (max N N2)) : ℚ_[p]) < ε / 3 + ε / 3 by simpa only [sub_add_sub_cancel] apply lt_of_le_of_lt · apply padicNormE.add_le · apply _root_.add_lt_add · rw [padicNormE.map_sub] apply mod_cast hN j exact le_of_max_le_left hj · exact hN2 _ (le_of_max_le_right hj) _ (le_max_right _ _) · apply mod_cast hN (max N N2) apply le_max_left
p : ℕ inst✝ : Fact (Nat.Prime p) f : CauSeq ℚ_[p] ⇑padicNormE ε : ℚ hε : ε > 0 hε3 : 0 < ε / 3 N : ℕ hN : ∀ i ≥ N, padicNormE (↑f i - ↑(limSeq f i)) < ε / 3 N2 : ℕ hN2 : ∀ j ≥ N2, ∀ k ≥ N2, padicNormE (↑f j - ↑f k) < ε / 3 j : ℕ hj : j ≥ N ⊔ N2 this : padicNormE (↑(limSeq f j) - ↑(limSeq f (N ⊔ N2))) < ε ⊢ padicNormE ↑(limSeq f j - limSeq f (N ⊔ N2)) < ε
exact mod_cast this
no goals
5532e11826254be6
Basis.repr_linearCombination
Mathlib/LinearAlgebra/Basis/Defs.lean
theorem repr_linearCombination (v) : b.repr (Finsupp.linearCombination _ b v) = v
ι : Type u_1 R : Type u_3 M : Type u_6 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : Basis ι R M v : ι →₀ R ⊢ b.repr (↑b.repr.symm v) = v
exact b.repr.apply_symm_apply v
no goals
43fa574ab40e2a3e
MonoidHom.comp_inv
Mathlib/Algebra/Group/Hom/Basic.lean
theorem comp_inv (φ : G →* H) (ψ : M →* G) : φ.comp ψ⁻¹ = (φ.comp ψ)⁻¹
case h M : Type u_2 G : Type u_5 H : Type u_6 inst✝² : MulOneClass M inst✝¹ : CommGroup G inst✝ : CommGroup H φ : G →* H ψ : M →* G x✝ : M ⊢ (φ.comp ψ⁻¹) x✝ = (φ.comp ψ)⁻¹ x✝
simp only [Function.comp_apply, inv_apply, map_inv, coe_comp]
no goals
8f141575d36f49f7
MvPolynomial.schwartz_zippel_totalDegree
Mathlib/Algebra/MvPolynomial/SchwartzZippel.lean
/-- The **Schwartz-Zippel lemma** For a nonzero multivariable polynomial `p` over an integral domain, the probability that `p` evaluates to zero at points drawn at random from some finite subset `S` of the integral domain is bounded by the degree of `p` over `#S`. This version presents this lemma in terms of `Finset`. -/ lemma schwartz_zippel_totalDegree {n} {p : MvPolynomial (Fin n) R} (hp : p ≠ 0) (S : Finset R) : #{f ∈ piFinset fun _ ↦ S | eval f p = 0} / (#S ^ n : ℚ≥0) ≤ p.totalDegree / #S := calc _ = #{f ∈ piFinset fun _ ↦ S | eval f p = 0} / (∏ i : Fin n, #S : ℚ≥0)
case inr R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : DecidableEq R n : ℕ p : MvPolynomial (Fin n) R hp : p ≠ 0 S : Finset R hs : S.Nonempty ⊢ (p.support.sup fun s => ∑ i : Fin n, ↑(s i) / ↑(#S)) = ↑p.totalDegree / ↑(#S)
simp_rw [totalDegree, Nat.cast_finsetSup]
case inr R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : DecidableEq R n : ℕ p : MvPolynomial (Fin n) R hp : p ≠ 0 S : Finset R hs : S.Nonempty ⊢ (p.support.sup fun s => ∑ i : Fin n, ↑(s i) / ↑(#S)) = (p.support.sup fun i => ↑(i.sum fun x e => e)) / ↑(#S)
1b17c44f783f01c3
Subgroup.IsComplement.equiv_fst_eq_iff_leftCosetEquivalence
Mathlib/GroupTheory/Complement.lean
theorem equiv_fst_eq_iff_leftCosetEquivalence {g₁ g₂ : G} : (hSK.equiv g₁).fst = (hSK.equiv g₂).fst ↔ LeftCosetEquivalence K g₁ g₂
case mpr G : Type u_1 inst✝ : Group G K : Subgroup G S : Set G hSK : IsComplement S ↑K g₁ g₂ : G ⊢ g₁⁻¹ * g₂ ∈ K → (hSK.equiv g₁).1 = (hSK.equiv g₂).1
intro h
case mpr G : Type u_1 inst✝ : Group G K : Subgroup G S : Set G hSK : IsComplement S ↑K g₁ g₂ : G h : g₁⁻¹ * g₂ ∈ K ⊢ (hSK.equiv g₁).1 = (hSK.equiv g₂).1
5a99414234979aa3
Array.filterMap_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem filterMap_eq_append_iff {f : α → Option β} : filterMap f l = L₁ ++ L₂ ↔ ∃ l₁ l₂, l = l₁ ++ l₂ ∧ filterMap f l₁ = L₁ ∧ filterMap f l₂ = L₂
case mk.mk.mk.mpr.intro.mk.intro.mk.intro.intro α : Type u_1 β : Type u_2 f : α → Option β L₁ L₂ : List β l₁ l₂ : List α h₁ : filterMap f { toList := l₁ } = { toList := L₁ } h₂ : filterMap f { toList := l₂ } = { toList := L₂ } ⊢ ∃ l₁_1 l₂_1, { toList := l₁ }.toList ++ { toList := l₂ }.toList = l₁_1 ++ l₂_1 ∧ List.filterMap f l₁_1 = L₁ ∧ List.filterMap f l₂_1 = L₂
exact ⟨l₁, l₂, by simp_all⟩
no goals
83277e61f8ec9954
Real.exists_rat_eq_convergent
Mathlib/NumberTheory/DiophantineApproximation/Basic.lean
theorem exists_rat_eq_convergent {q : ℚ} (h : |ξ - q| < 1 / (2 * (q.den : ℝ) ^ 2)) : ∃ n, q = ξ.convergent n
case refine_1 ξ : ℝ q : ℚ h : |ξ - ↑q| < 1 / (2 * ↑q.den ^ 2) ⊢ IsCoprime q.num ↑q.den
exact isCoprime_iff_nat_coprime.mpr (natAbs_ofNat q.den ▸ q.reduced)
no goals
3b91ecc0a433d3e5
ONote.fundamentalSequence_has_prop
Mathlib/SetTheory/Ordinal/Notation.lean
theorem fundamentalSequence_has_prop (o) : FundamentalSequenceProp o (fundamentalSequence o)
case oadd a : ONote m : ℕ+ b : ONote iha : a.FundamentalSequenceProp a.fundamentalSequence ihb : b.FundamentalSequenceProp b.fundamentalSequence ⊢ (a.oadd m b).FundamentalSequenceProp (match b.fundamentalSequence with | Sum.inr f => Sum.inr fun i => a.oadd m (f i) | Sum.inl (some b') => Sum.inl (some (a.oadd m b')) | Sum.inl none => match a.fundamentalSequence, m.natPred with | Sum.inl none, 0 => Sum.inl (some zero) | Sum.inl none, m.succ => Sum.inl (some (zero.oadd m.succPNat zero)) | Sum.inl (some a'), 0 => Sum.inr fun i => a'.oadd i.succPNat zero | Sum.inl (some a'), m.succ => Sum.inr fun i => a.oadd m.succPNat (a'.oadd i.succPNat zero) | Sum.inr f, 0 => Sum.inr fun i => (f i).oadd 1 zero | Sum.inr f, m.succ => Sum.inr fun i => a.oadd m.succPNat ((f i).oadd 1 zero))
rcases e : b.fundamentalSequence with (⟨_ | b'⟩ | f) <;> simp only [FundamentalSequenceProp] <;> rw [e, FundamentalSequenceProp] at ihb
case oadd.inl.none a : ONote m : ℕ+ b : ONote iha : a.FundamentalSequenceProp a.fundamentalSequence ihb : b = 0 e : b.fundamentalSequence = Sum.inl none ⊢ match match a.fundamentalSequence, m.natPred with | Sum.inl none, 0 => Sum.inl (some zero) | Sum.inl none, m.succ => Sum.inl (some (zero.oadd m.succPNat zero)) | Sum.inl (some a'), 0 => Sum.inr fun i => a'.oadd i.succPNat zero | Sum.inl (some a'), m.succ => Sum.inr fun i => a.oadd m.succPNat (a'.oadd i.succPNat zero) | Sum.inr f, 0 => Sum.inr fun i => (f i).oadd 1 zero | Sum.inr f, m.succ => Sum.inr fun i => a.oadd m.succPNat ((f i).oadd 1 zero) with | Sum.inl none => a.oadd m b = 0 | Sum.inl (some a_1) => (a.oadd m b).repr = succ a_1.repr ∧ ((a.oadd m b).NF → a_1.NF) | Sum.inr f => (a.oadd m b).repr.IsLimit ∧ (∀ (i : ℕ), f i < f (i + 1) ∧ f i < a.oadd m b ∧ ((a.oadd m b).NF → (f i).NF)) ∧ ∀ a_1 < (a.oadd m b).repr, ∃ i, a_1 < (f i).repr case oadd.inl.some a : ONote m : ℕ+ b : ONote iha : a.FundamentalSequenceProp a.fundamentalSequence b' : ONote ihb : b.repr = succ b'.repr ∧ (b.NF → b'.NF) e : b.fundamentalSequence = Sum.inl (some b') ⊢ (a.oadd m b).repr = succ (a.oadd m b').repr ∧ ((a.oadd m b).NF → (a.oadd m b').NF) case oadd.inr a : ONote m : ℕ+ b : ONote iha : a.FundamentalSequenceProp a.fundamentalSequence f : ℕ → ONote ihb : b.repr.IsLimit ∧ (∀ (i : ℕ), f i < f (i + 1) ∧ f i < b ∧ (b.NF → (f i).NF)) ∧ ∀ a < b.repr, ∃ i, a < (f i).repr e : b.fundamentalSequence = Sum.inr f ⊢ (a.oadd m b).repr.IsLimit ∧ (∀ (i : ℕ), a.oadd m (f i) < a.oadd m (f (i + 1)) ∧ a.oadd m (f i) < a.oadd m b ∧ ((a.oadd m b).NF → (a.oadd m (f i)).NF)) ∧ ∀ a_1 < (a.oadd m b).repr, ∃ i, a_1 < (a.oadd m (f i)).repr
9de22d9b6d39b1e0
cpow_mul_div_cpow_eq_div_div_cpow
Mathlib/NumberTheory/LSeries/Injectivity.lean
private lemma cpow_mul_div_cpow_eq_div_div_cpow (m n : ℕ) (z : ℂ) (x : ℝ) : (n + 1) ^ (x : ℂ) * (z / m ^ (x : ℂ)) = z / (m / (n + 1)) ^ (x : ℂ)
m n : ℕ z : ℂ x : ℝ ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
have Hn : (0 : ℝ) ≤ (n + 1 : ℝ)⁻¹ := by positivity
m n : ℕ z : ℂ x : ℝ Hn : 0 ≤ (↑n + 1)⁻¹ ⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x
f0b6aba071251211
MeasureTheory.Measure.haar.le_index_mul
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
theorem le_index_mul (K₀ : PositiveCompacts G) (K : Compacts G) {V : Set G} (hV : (interior V).Nonempty) : index (K : Set G) V ≤ index (K : Set G) K₀ * index (K₀ : Set G) V
case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : (interior V).Nonempty s : Finset G h1s : ↑K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' ↑K₀ h2s : s.card = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ g ∈ t, (fun h => g * h) ⁻¹' V h2t : t.card = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s ⊢ ∀ (a : G), g₁ * a ∈ ↑K₀ → a ∈ ⋃ g ∈ t * s, (fun h => g * h) ⁻¹' V
intro g₂ hg₂
case intro.intro.intro.intro.hm.h G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : IsTopologicalGroup G K₀ : PositiveCompacts G K : Compacts G V : Set G hV : (interior V).Nonempty s : Finset G h1s : ↑K ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' ↑K₀ h2s : s.card = index ↑K ↑K₀ t : Finset G h1t : ↑K₀ ⊆ ⋃ g ∈ t, (fun h => g * h) ⁻¹' V h2t : t.card = index (↑K₀) V g₁ : G hg₁ : g₁ ∈ s g₂ : G hg₂ : g₁ * g₂ ∈ ↑K₀ ⊢ g₂ ∈ ⋃ g ∈ t * s, (fun h => g * h) ⁻¹' V
35e42d3f2b29e653
UniformConvexOn.add
Mathlib/Analysis/Convex/Strong.lean
lemma UniformConvexOn.add (hf : UniformConvexOn s φ f) (hg : UniformConvexOn s ψ g) : UniformConvexOn s (φ + ψ) (f + g)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E φ ψ : ℝ → ℝ s : Set E f g : E → ℝ hf : UniformConvexOn s φ f hg : UniformConvexOn s ψ g ⊢ UniformConvexOn s (φ + ψ) (f + g)
refine ⟨hf.1, fun x hx y hy a b ha hb hab ↦ ?_⟩
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E φ ψ : ℝ → ℝ s : Set E f g : E → ℝ hf : UniformConvexOn s φ f hg : UniformConvexOn s ψ g x : E hx : x ∈ s y : E hy : y ∈ s a b : ℝ ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ (f + g) (a • x + b • y) ≤ a • (f + g) x + b • (f + g) y - a * b * (φ + ψ) ‖x - y‖
bf2ce77815b18108
Set.star_mem_star
Mathlib/Algebra/Star/Pointwise.lean
theorem star_mem_star [InvolutiveStar α] : a⋆ ∈ s⋆ ↔ a ∈ s
α : Type u_1 s : Set α a : α inst✝ : InvolutiveStar α ⊢ a⋆ ∈ s⋆ ↔ a ∈ s
simp only [mem_star, star_star]
no goals
83f08f3026bc803a
separatedNhds_iff_disjoint
Mathlib/Topology/Separation/SeparatedNhds.lean
theorem separatedNhds_iff_disjoint {s t : Set X} : SeparatedNhds s t ↔ Disjoint (𝓝ˢ s) (𝓝ˢ t)
X : Type u_1 inst✝ : TopologicalSpace X s t : Set X ⊢ SeparatedNhds s t ↔ Disjoint (𝓝ˢ s) (𝓝ˢ t)
simp only [(hasBasis_nhdsSet s).disjoint_iff (hasBasis_nhdsSet t), SeparatedNhds, exists_prop, ← exists_and_left, and_assoc, and_comm, and_left_comm]
no goals
1c7a9758531fe014
Real.qaryEntropy_strictMonoOn
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
/-- Qary entropy is strictly increasing in the interval [0, 1 - q⁻¹]. -/ lemma qaryEntropy_strictMonoOn (qLe2 : 2 ≤ q) : StrictMonoOn (qaryEntropy q) (Icc 0 (1 - 1/q))
case x q : ℕ qLe2 : 2 ≤ q p1 : ℝ hp1 : p1 ∈ Icc 0 (1 - 1 / ↑q) p2 : ℝ hp2 : p2 ∈ Icc 0 (1 - 1 / ↑q) p1le2 : p1 < p2 p : ℝ this✝ : 2 ≤ ↑q zero_le_qinv : 0 < (↑q)⁻¹ this : 0 < 1 - p hp : 0 < p ∧ p < 1 - (↑q)⁻¹ ⊢ (↑q - 1) * (1 - p) ∈ Ioi 0
simp_all only [mem_Ioi, mul_pos_iff_of_pos_left, show 0 < (q : ℝ) - 1 by linarith]
no goals
9408e1386437c471
HomologicalComplex.isSeparator_coproduct_separatingFamily
Mathlib/CategoryTheory/Generator/HomologicalComplex.lean
lemma isSeparator_coproduct_separatingFamily {X : C} (hX : IsSeparator X) : IsSeparator (∐ (fun i ↦ separatingFamily c (fun (_ : Unit) ↦ X) ⟨⟨⟩, i⟩))
C : Type u inst✝⁵ : Category.{v, u} C ι : Type w inst✝⁴ : DecidableEq ι c : ComplexShape ι inst✝³ : c.HasNoLoop inst✝² : HasCoproductsOfShape ι C inst✝¹ : Preadditive C inst✝ : HasZeroObject C X : C hX : IsSeparator X φ : ι → HomologicalComplex C c := fun i => separatingFamily c (fun x => X) (PUnit.unit, i) ⊢ IsSeparator (∐ fun i => separatingFamily c (fun x => X) (PUnit.unit, i))
refine isSeparator_of_isColimit_cofan (isSeparating_separatingFamily c (X := fun (_ : Unit) ↦ X) (by simpa using hX)) (c := Cofan.mk (∐ φ) (fun ⟨_, i⟩ ↦ Sigma.ι φ i)) ?_
C : Type u inst✝⁵ : Category.{v, u} C ι : Type w inst✝⁴ : DecidableEq ι c : ComplexShape ι inst✝³ : c.HasNoLoop inst✝² : HasCoproductsOfShape ι C inst✝¹ : Preadditive C inst✝ : HasZeroObject C X : C hX : IsSeparator X φ : ι → HomologicalComplex C c := fun i => separatingFamily c (fun x => X) (PUnit.unit, i) ⊢ IsColimit (Cofan.mk (∐ φ) fun x => match x with | (fst, i) => Sigma.ι φ i)
e4d66debf27e70ae
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective.transport
Mathlib/CategoryTheory/Sites/Equivalence.lean
lemma WEqualsLocallyBijective.transport (hG : CoverPreserving K J G) : J.WEqualsLocallyBijective A where iff f
C : Type u₁ inst✝¹⁰ : Category.{v₁, u₁} C J : GrothendieckTopology C D : Type u₂ inst✝⁹ : Category.{v₂, u₂} D K : GrothendieckTopology D G : D ⥤ C A : Type u₃ inst✝⁸ : Category.{v₃, u₃} A inst✝⁷ : G.IsCoverDense J inst✝⁶ : G.Full inst✝⁵ : G.IsContinuous K J inst✝⁴ : (G.sheafPushforwardContinuous A K J).EssSurj inst✝³ : G.IsCocontinuous K J FA : A → A → Type u_1 CA : A → Type u_2 inst✝² : (X Y : A) → FunLike (FA X Y) (CA X) (CA Y) inst✝¹ : ConcreteCategory A FA inst✝ : K.WEqualsLocallyBijective A hG : CoverPreserving K J G X✝ Y✝ : Cᵒᵖ ⥤ A f : X✝ ⟶ Y✝ ⊢ J.W f ↔ Presheaf.IsLocallyInjective J f ∧ Presheaf.IsLocallySurjective J f
rw [← W_whiskerLeft_iff J K G f, ← Presheaf.isLocallyInjective_whisker_iff K J G f hG, ← Presheaf.isLocallySurjective_whisker_iff K J G f hG, W_iff_isLocallyBijective]
no goals
a54f26529a4779b4
continuousOn_extendFrom
Mathlib/Topology/ExtendFrom.lean
theorem continuousOn_extendFrom [RegularSpace Y] {f : X → Y} {A B : Set X} (hB : B ⊆ closure A) (hf : ∀ x ∈ B, ∃ y, Tendsto f (𝓝[A] x) (𝓝 y)) : ContinuousOn (extendFrom A f) B
case intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : RegularSpace Y f : X → Y A B : Set X hB : B ⊆ closure A hf : ∀ x ∈ B, ∃ y, Tendsto f (𝓝[A] x) (𝓝 y) φ : X → Y := extendFrom A f x : X x_in : x ∈ B V' : Set Y V'_in : V' ∈ 𝓝 (φ x) V'_closed : IsClosed V' V : Set X V_in : V ∈ 𝓝 x V_op : IsOpen V hV : V ∩ A ⊆ f ⁻¹' V' y : X hyV : y ∈ V hyB : y ∈ B this✝ : (𝓝[A] y).NeBot limy : Tendsto f (𝓝[A] y) (𝓝 (φ y)) hVy : V ∈ 𝓝 y this : V ∩ A ∈ 𝓝[A] y ⊢ φ y ∈ V'
exact V'_closed.mem_of_tendsto limy (mem_of_superset this hV)
no goals
a5bc0b035e892139
Module.End.independent_genEigenspace
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
theorem independent_genEigenspace [NoZeroSMulDivisors R M] (f : End R M) (k : ℕ∞) : iSupIndep (f.genEigenspace · k)
case refine_2 R : Type v M : Type w inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M f : End R M k : ℕ∞ μ₁ μ₂ : R s : Finset R a✝ : μ₂ ∉ s hμ₁₂✝ : μ₁ ∉ insert μ₂ s hμ₁₂ : μ₁ ≠ μ₂ hμ₁ : μ₁ ∉ s ih : Disjoint ((f.genEigenspace μ₁) k) (s.sup fun μ => (f.genEigenspace μ) k) y z : M hz : z ∈ s.sup fun μ => (f.genEigenspace μ) k hx : y + z ∈ (f.genEigenspace μ₁) k g : End R M := f - μ₂ • 1 hy : ∃ l, ∃ (_ : ↑l ≤ k), y ∈ LinearMap.ker ((f - μ₂ • 1) ^ l) l : ℕ hlk : ↑l ≤ k hl : ((f - μ₂ • 1) ^ l) y = 0 ⊢ (g ^ l) z ∈ s.sup fun μ => (f.genEigenspace μ) k
suffices (s.sup fun μ ↦ f.genEigenspace μ k).map (g ^ l) ≤ s.sup fun μ ↦ f.genEigenspace μ k by exact this (Submodule.mem_map_of_mem hz)
case refine_2 R : Type v M : Type w inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M f : End R M k : ℕ∞ μ₁ μ₂ : R s : Finset R a✝ : μ₂ ∉ s hμ₁₂✝ : μ₁ ∉ insert μ₂ s hμ₁₂ : μ₁ ≠ μ₂ hμ₁ : μ₁ ∉ s ih : Disjoint ((f.genEigenspace μ₁) k) (s.sup fun μ => (f.genEigenspace μ) k) y z : M hz : z ∈ s.sup fun μ => (f.genEigenspace μ) k hx : y + z ∈ (f.genEigenspace μ₁) k g : End R M := f - μ₂ • 1 hy : ∃ l, ∃ (_ : ↑l ≤ k), y ∈ LinearMap.ker ((f - μ₂ • 1) ^ l) l : ℕ hlk : ↑l ≤ k hl : ((f - μ₂ • 1) ^ l) y = 0 ⊢ Submodule.map (g ^ l) (s.sup fun μ => (f.genEigenspace μ) k) ≤ s.sup fun μ => (f.genEigenspace μ) k
bcd042a300b83f15
AkraBazziRecurrence.GrowsPolynomially.eventually_atTop_nonneg_or_nonpos
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_atTop_nonneg_or_nonpos (hf : GrowsPolynomially f) : (∀ᶠ x in atTop, 0 ≤ f x) ∨ (∀ᶠ x in atTop, f x ≤ 0)
case base f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b ⊢ ∀ x ∈ Set.Ico (n₀ ⊔ 2) (2 * (n₀ ⊔ 2)), f x = f (n₀ ⊔ 2) case step f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b ⊢ ∀ n ≥ 1, (∀ z ∈ Set.Ico (n₀ ⊔ 2) (2 ^ n * (n₀ ⊔ 2)), f z = f (n₀ ⊔ 2)) → ∀ z ∈ Set.Ico (2 ^ n * (n₀ ⊔ 2)) (2 ^ (n + 1) * (n₀ ⊔ 2)), f z = f (n₀ ⊔ 2)
case base => intro x ⟨hxlb, hxub⟩ have h₁ := calc n₀ ≤ 1 * max n₀ 2 := by simp _ ≤ 2 * max n₀ 2 := by gcongr; norm_num have h₂ := hn₀ (2 * max n₀ 2) h₁ (max n₀ 2) ⟨by simp [hxlb], by linarith⟩ rw [h₂] exact hn₀ (2 * max n₀ 2) h₁ x ⟨by simp [hxlb], le_of_lt hxub⟩
case step f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b ⊢ ∀ n ≥ 1, (∀ z ∈ Set.Ico (n₀ ⊔ 2) (2 ^ n * (n₀ ⊔ 2)), f z = f (n₀ ⊔ 2)) → ∀ z ∈ Set.Ico (2 ^ n * (n₀ ⊔ 2)) (2 ^ (n + 1) * (n₀ ⊔ 2)), f z = f (n₀ ⊔ 2)
69674f7264744f71
EquicontinuousOn.tendsto_uniformOnFun_iff_pi'
Mathlib/Topology/UniformSpace/Ascoli.lean
theorem EquicontinuousOn.tendsto_uniformOnFun_iff_pi' {𝔖 : Set (Set X)} (𝔖_compact : ∀ K ∈ 𝔖, IsCompact K) (F_eqcont : ∀ K ∈ 𝔖, EquicontinuousOn F K) (ℱ : Filter ι) (f : X → α) : Tendsto (UniformOnFun.ofFun 𝔖 ∘ F) ℱ (𝓝 <| UniformOnFun.ofFun 𝔖 f) ↔ Tendsto ((⋃₀ 𝔖).restrict ∘ F) ℱ (𝓝 <| (⋃₀ 𝔖).restrict f)
case a ι : Type u_1 X : Type u_2 α : Type u_3 inst✝¹ : TopologicalSpace X inst✝ : UniformSpace α F : ι → X → α 𝔖 : Set (Set X) 𝔖_compact : ∀ K ∈ 𝔖, IsCompact K F_eqcont : ∀ K ∈ 𝔖, EquicontinuousOn F K ℱ : Filter ι f : X → α K : Set X hK : K ∈ 𝔖 this : CompactSpace ↑K ⊢ Tendsto ((⇑UniformFun.ofFun ∘ K.restrict ∘ ⇑(UniformOnFun.toFun 𝔖)) ∘ ⇑(UniformOnFun.ofFun 𝔖) ∘ F) ℱ (𝓝 ((⇑UniformFun.ofFun ∘ K.restrict ∘ ⇑(UniformOnFun.toFun 𝔖)) ((UniformOnFun.ofFun 𝔖) f))) ↔ Tendsto (⇑UniformFun.ofFun ∘ K.restrict ∘ F) ℱ (𝓝 (UniformFun.ofFun (K.restrict f)))
rfl
no goals
df8bc1e377ab037c
Order.krullDim_nonpos_iff_forall_isMax
Mathlib/Order/KrullDimension.lean
lemma krullDim_nonpos_iff_forall_isMax : krullDim α ≤ 0 ↔ ∀ x : α, IsMax x
case mk.succ α : Type u_1 inst✝ : Preorder α H : ∀ (x b : α), ¬x < b n : ℕ l : Fin (n + 1 + 1) → α h : ∀ (i : Fin (n + 1)), l i.castSucc < l i.succ ⊢ ↑{ length := n + 1, toFun := l, step := h }.length ≤ 0
cases H (l 0) (l 1) (h 0)
no goals
31ff17d08be8193f
Nat.dvd_of_forall_prime_mul_dvd
Mathlib/Data/Nat/Prime/Basic.lean
theorem dvd_of_forall_prime_mul_dvd {a b : ℕ} (hdvd : ∀ p : ℕ, p.Prime → p ∣ a → p * a ∣ b) : a ∣ b
case inr.intro a b : ℕ hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b ha : a ≠ 1 p : ℕ hp : Prime p ∧ p ∣ a ⊢ a ∣ b
exact _root_.trans (dvd_mul_left a p) (hdvd p hp.1 hp.2)
no goals
293564ce2c599e74
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.denote_blastDivSubtractShift_r
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
theorem denote_blastDivSubtractShift_r (aig : AIG α) (assign : α → Bool) (lhs rhs : BitVec w) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) (qbv rbv : BitVec w) (hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, n.get idx hidx, assign⟧ = lhs.getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, d.get idx hidx, assign⟧ = rhs.getLsbD idx) (hr : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, r.get idx hidx, assign⟧ = rbv.getLsbD idx) (hfalse : ⟦aig, falseRef, assign⟧ = false) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig, (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).r.get idx hidx, assign ⟧ = (BitVec.divSubtractShift { n := lhs, d := rhs } { wn := wn, wr := wr, q := qbv, r := rbv }).r.getLsbD idx
case hleft α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ⟦assign, { aig := (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig, ref := { gate := ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.lhs.get idx hidx).gate, hgate := ?hleft } }⟧ = (rbv.shiftConcat (lhs.getLsbD (wn - 1))).getLsbD idx case hleft α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.lhs.get idx hidx).gate < (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig.decls.size
rw [AIG.LawfulVecOperator.denote_mem_prefix (f := blastShiftConcat)]
case hleft α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ⟦assign, { aig := (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig, ref := { gate := ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.lhs.get idx hidx).gate, hgate := ?hleft } }⟧ = (rbv.shiftConcat (lhs.getLsbD (wn - 1))).getLsbD idx case hleft α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α assign : α → Bool lhs rhs : BitVec w falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w qbv rbv : BitVec w hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := n.get idx hidx }⟧ = lhs.getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := d.get idx hidx }⟧ = rhs.getLsbD idx hr : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := r.get idx hidx }⟧ = rbv.getLsbD idx hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false idx✝ : Nat hidx✝ : idx✝ < w idx : Nat hidx : idx < w ⊢ ({ lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }.lhs.get idx hidx).gate < (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig.decls.size
249a96ab3a68ac7e
hasSum_one_div_pow_mul_fourier_mul_bernoulliFun
Mathlib/NumberTheory/ZetaValues.lean
theorem hasSum_one_div_pow_mul_fourier_mul_bernoulliFun {k : ℕ} (hk : 2 ≤ k) {x : ℝ} (hx : x ∈ Icc (0 : ℝ) 1) : HasSum (fun n : ℤ => 1 / (n : ℂ) ^ k * fourier n (x : 𝕌)) (-(2 * π * I) ^ k / k ! * bernoulliFun k x)
k : ℕ hk : 2 ≤ k x : ℝ hx : x ∈ Icc 0 1 y : ℝ hy : y ∈ Ico 0 1 ⊢ HasSum (fun n => 1 / ↑n ^ k * (fourier n) ↑y) (-(2 * ↑π * I) ^ k / ↑k ! * ↑(bernoulliFun k y))
let B : C(𝕌, ℂ) := ContinuousMap.mk ((↑) ∘ periodizedBernoulli k) (continuous_ofReal.comp (periodizedBernoulli.continuous (by omega)))
k : ℕ hk : 2 ≤ k x : ℝ hx : x ∈ Icc 0 1 y : ℝ hy : y ∈ Ico 0 1 B : C(𝕌, ℂ) := { toFun := ofReal ∘ periodizedBernoulli k, continuous_toFun := ⋯ } ⊢ HasSum (fun n => 1 / ↑n ^ k * (fourier n) ↑y) (-(2 * ↑π * I) ^ k / ↑k ! * ↑(bernoulliFun k y))
2ac81cd59536af31
Lagrange.natDegree_basis
Mathlib/LinearAlgebra/Lagrange.lean
theorem natDegree_basis (hvs : Set.InjOn v s) (hi : i ∈ s) : (Lagrange.basis s v i).natDegree = #s - 1
F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∀ j ∈ s.erase i, basisDivisor (v i) (v j) ≠ 0
simp_rw [Ne, mem_erase, basisDivisor_eq_zero_iff]
F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∀ (j : ι), j ≠ i ∧ j ∈ s → ¬v i = v j
228af99d92b7c491
IsAlgebraic.restrictScalars
Mathlib/RingTheory/Algebraic/Integral.lean
theorem restrictScalars [Algebra.IsAlgebraic R S] {a : A} (h : IsAlgebraic S a) : IsAlgebraic R a
case intro.intro R : Type u_1 S : Type u_2 A : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Ring A inst✝⁵ : Algebra R S inst✝⁴ : Algebra R A inst✝³ : Algebra S A inst✝² : IsScalarTower R S A inst✝¹ : NoZeroDivisors S inst✝ : Algebra.IsAlgebraic R S a : A h : IsAlgebraic S a p : S[X] hp : p ≠ 0 eval0 : (aeval a) p = 0 hRS : Function.Injective ⇑(algebraMap R S) this : NoZeroDivisors R r : R hr : r ≠ 0 int : ∀ z ∈ Finset.image p.coeff p.support, IsIntegral R (r • z) n : ℕ hn : n ∈ (r • p).support hs : (r • p).coeff n ∈ ↑(r • p).coeffs ⊢ (r • p).coeff n ∈ ↑(integralClosure R S).toSubring
exact int _ (Finset.mem_image_of_mem _ <| support_smul _ _ hn)
no goals
ea0da1ad0b2e05b0
Set.PairwiseDisjoint.exists_mem_filter_basis
Mathlib/Order/Filter/Bases.lean
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i)
case intro.intro α : Type u_1 I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd✝ : S.PairwiseDisjoint l hS : S.Finite h : ∀ (i : I), (l i).HasBasis (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : S.PairwiseDisjoint t ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i)
choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
case intro.intro α : Type u_1 I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd✝ : S.PairwiseDisjoint l hS : S.Finite h : ∀ (i : I), (l i).HasBasis (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : S.PairwiseDisjoint t ind : (i : I) → ι i hp : ∀ (i : I), p i (ind i) ht : ∀ (i : I), s i (ind i) ⊆ t i ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i)
532ac9cccdd2fcfe
GenContFract.IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some
Mathlib/Algebra/ContinuedFractions/Computation/Translations.lean
theorem IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some {gp_n : Pair K} (s_nth_eq : (of v).s.get? n = some gp_n) : ∃ ifp : IntFractPair K, IntFractPair.stream v (n + 1) = some ifp ∧ (ifp.b : K) = gp_n.b
K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ gp_n : Pair K s_nth_eq : (match (IntFractPair.of v, Stream'.Seq.tail ⟨IntFractPair.stream v, ⋯⟩) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).s.get? n = some gp_n ⊢ ∃ ifp, IntFractPair.stream v (n + 1) = some ifp ∧ { a := 1, b := ↑ifp.b } = gp_n
simpa [Stream'.Seq.get?_tail, Stream'.Seq.map_get?] using s_nth_eq
no goals
0ff50d081728fd39
contDiff_norm_rpow
Mathlib/Analysis/InnerProductSpace/NormPow.lean
theorem contDiff_norm_rpow {p : ℝ} (hp : 1 < p) : ContDiff ℝ 1 (fun x : E ↦ ‖x‖ ^ p)
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E p : ℝ hp : 1 < p x : E hx : x = 0 ⊢ Filter.Tendsto (fun x => ‖fderiv ℝ (fun x => ‖x‖ ^ p) x‖) (𝓝 0) (𝓝 0)
refine tendsto_of_tendsto_of_tendsto_of_le_of_le (tendsto_const_nhds) ?_ (fun _ ↦ norm_nonneg _) (fun _ ↦ norm_fderiv_norm_id_rpow _ hp |>.le)
case pos E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E p : ℝ hp : 1 < p x : E hx : x = 0 ⊢ Filter.Tendsto (fun x => p * ‖x‖ ^ (p - 1)) (𝓝 0) (𝓝 0)
fdf902c8d0df4633
Equidecomp.IsDecompOn.comp'
Mathlib/Algebra/Group/Action/Equidecomp.lean
theorem IsDecompOn.comp' {g f : X → X} {B A : Set X} {T S : Finset G} (hg : IsDecompOn g B T) (hf : IsDecompOn f A S) : IsDecompOn (g ∘ f) (A ∩ f ⁻¹' B) (T * S)
case right X : Type u_1 G : Type u_2 inst✝¹ : Monoid G inst✝ : MulAction G X g f : X → X B A : Set X T S : Finset G hg : IsDecompOn g B T hf : IsDecompOn f A S a✝ : X aA : a✝ ∈ A aB : a✝ ∈ f ⁻¹' B γ : G γ_mem : γ ∈ S hγ : f a✝ = γ • a✝ δ : G δ_mem : δ ∈ T hδ : g (f a✝) = δ • f a✝ ⊢ (g ∘ f) a✝ = (δ * γ) • a✝
rwa [mul_smul, ← hγ]
no goals
af10be9c9f1e3929
Nat.psp_from_prime_psp
Mathlib/NumberTheory/FermatPsp.lean
theorem psp_from_prime_psp {b : ℕ} (b_ge_two : 2 ≤ b) {p : ℕ} (p_prime : p.Prime) (p_gt_two : 2 < p) (not_dvd : ¬p ∣ b * (b ^ 2 - 1)) : FermatPsp (psp_from_prime b p) b
b : ℕ b_ge_two : 2 ≤ b p : ℕ p_prime : Prime p p_gt_two : 2 < p not_dvd : ¬p ∣ b * (b ^ 2 - 1) A : ℕ := (b ^ p - 1) / (b - 1) B : ℕ := (b ^ p + 1) / (b + 1) hi_A : 1 < A hi_B : 1 < B hi_AB : 1 < A * B hi_b : 0 < b hi_p : 1 ≤ p hi_bsquared : 0 < b ^ 2 - 1 hi_bpowtwop : 1 ≤ b ^ (2 * p) hi_bpowpsubone : 1 ≤ b ^ (p - 1) p_odd : Odd p AB_not_prime : ¬Prime (A * B) AB_id : A * B = (b ^ (2 * p) - 1) / (b ^ 2 - 1) hd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 ⊢ (b ^ 2 - 1) * (A * B - 1) = b * (b ^ (p - 1) - 1) * (b ^ p + b)
apply_fun fun x => x * (b ^ 2 - 1) at AB_id
b : ℕ b_ge_two : 2 ≤ b p : ℕ p_prime : Prime p p_gt_two : 2 < p not_dvd : ¬p ∣ b * (b ^ 2 - 1) A : ℕ := (b ^ p - 1) / (b - 1) B : ℕ := (b ^ p + 1) / (b + 1) hi_A : 1 < A hi_B : 1 < B hi_AB : 1 < A * B hi_b : 0 < b hi_p : 1 ≤ p hi_bsquared : 0 < b ^ 2 - 1 hi_bpowtwop : 1 ≤ b ^ (2 * p) hi_bpowpsubone : 1 ≤ b ^ (p - 1) p_odd : Odd p AB_not_prime : ¬Prime (A * B) hd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 AB_id : A * B * (b ^ 2 - 1) = (b ^ (2 * p) - 1) / (b ^ 2 - 1) * (b ^ 2 - 1) ⊢ (b ^ 2 - 1) * (A * B - 1) = b * (b ^ (p - 1) - 1) * (b ^ p + b)
6f5ab4acf8539f9d
Real.hasStrictFDerivAt_rpow_of_neg
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
theorem hasStrictFDerivAt_rpow_of_neg (p : ℝ × ℝ) (hp : p.1 < 0) : HasStrictFDerivAt (fun x : ℝ × ℝ => x.1 ^ x.2) ((p.2 * p.1 ^ (p.2 - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.1 ^ p.2 * log p.1 - exp (log p.1 * p.2) * sin (p.2 * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ) p
p : ℝ × ℝ hp : p.1 < 0 this : (fun x => x.1 ^ x.2) =ᶠ[𝓝 p] fun x => rexp (log x.1 * x.2) * cos (x.2 * π) ⊢ HasStrictFDerivAt (fun x => x.1 ^ x.2) ((p.2 * p.1 ^ (p.2 - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.1 ^ p.2 * log p.1 - rexp (log p.1 * p.2) * sin (p.2 * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ) p
refine HasStrictFDerivAt.congr_of_eventuallyEq ?_ this.symm
p : ℝ × ℝ hp : p.1 < 0 this : (fun x => x.1 ^ x.2) =ᶠ[𝓝 p] fun x => rexp (log x.1 * x.2) * cos (x.2 * π) ⊢ HasStrictFDerivAt (fun x => rexp (log x.1 * x.2) * cos (x.2 * π)) ((p.2 * p.1 ^ (p.2 - 1)) • ContinuousLinearMap.fst ℝ ℝ ℝ + (p.1 ^ p.2 * log p.1 - rexp (log p.1 * p.2) * sin (p.2 * π) * π) • ContinuousLinearMap.snd ℝ ℝ ℝ) p
617bbb9c0f819a1d
CochainComplex.HomComplex.Cochain.δ_shift
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
@[simp] lemma δ_shift (a m : ℤ) : δ n m (γ.shift a) = a.negOnePow • (δ n m γ).shift a
C : Type u inst✝¹ : Category.{v, u} C inst✝ : Preadditive C K L : CochainComplex C ℤ n : ℤ γ : Cochain K L n a m : ℤ hnm : n + 1 = m p q : ℤ hpq : p + m = q ⊢ p + a + m = q + a
omega
no goals
d67c3e8b16ad671d
Set.ncard_eq_of_bijective
Mathlib/Data/Set/Card.lean
theorem ncard_eq_of_bijective {n : ℕ} (f : ∀ i, i < n → α) (hf : ∀ a ∈ s, ∃ i, ∃ h : i < n, f i h = a) (hf' : ∀ (i) (h : i < n), f i h ∈ s) (f_inj : ∀ (i j) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j) : s.ncard = n
α : Type u_1 s : Set α n : ℕ f : (i : ℕ) → i < n → α hf : ∀ a ∈ s, ∃ i, ∃ (h : i < n), f i h = a hf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s f_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j f' : Fin n → α := fun i => f ↑i ⋯ himage : s = f' '' univ ⊢ (f' '' univ).ncard = univ.ncard
exact ncard_image_of_injOn <| fun i _hi j _hj h ↦ Fin.ext <| f_inj i.val j.val i.is_lt j.is_lt h
no goals
e5caade2630c707b
Complex.norm_max_aux₁
Mathlib/Analysis/Complex/AbsMax.lean
theorem norm_max_aux₁ [CompleteSpace F] {f : ℂ → F} {z w : ℂ} (hd : DiffContOnCl ℂ f (ball z (dist w z))) (hz : IsMaxOn (norm ∘ f) (closedBall z (dist w z)) z) : ‖f w‖ = ‖f z‖
F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f : ℂ → F z w : ℂ r : ℝ := dist w z hd : DiffContOnCl ℂ f (ball z r) hz : IsMaxOn (norm ∘ f) (closedBall z r) z hw : w ∈ closedBall z r hw_lt : ‖f w‖ < ‖f z‖ hr : 0 < r this : ‖∮ (ζ : ℂ) in C(z, r), (ζ - z)⁻¹ • f ζ‖ < 2 * π * r * (‖f z‖ / r) ⊢ ‖∮ (ζ : ℂ) in C(z, r), (ζ - z)⁻¹ • f ζ‖ < 2 * π * ‖f z‖
rwa [mul_assoc, mul_div_cancel₀ _ hr.ne'] at this
no goals
5ca8e31b32469418
Module.projective_lifting_property
Mathlib/Algebra/Module/Projective.lean
theorem projective_lifting_property [h : Projective R P] (f : M →ₗ[R] N) (g : P →ₗ[R] N) (hf : Function.Surjective f) : ∃ h : P →ₗ[R] M, f ∘ₗ h = g
R : Type u_1 inst✝⁶ : Semiring R P : Type u_2 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M : Type u_3 inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type u_4 inst✝¹ : AddCommMonoid N inst✝ : Module R N h : Projective R P f : M →ₗ[R] N g : P →ₗ[R] N hf : Function.Surjective ⇑f φ : (P →₀ R) →ₗ[R] M := linearCombination R fun p => Function.surjInv hf (g p) ⊢ ∃ h, f ∘ₗ h = g
obtain ⟨s, hs⟩ := h.out
case intro R : Type u_1 inst✝⁶ : Semiring R P : Type u_2 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M : Type u_3 inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type u_4 inst✝¹ : AddCommMonoid N inst✝ : Module R N h : Projective R P f : M →ₗ[R] N g : P →ₗ[R] N hf : Function.Surjective ⇑f φ : (P →₀ R) →ₗ[R] M := linearCombination R fun p => Function.surjInv hf (g p) s : P →ₗ[R] P →₀ R hs : Function.LeftInverse ⇑(linearCombination R id) ⇑s ⊢ ∃ h, f ∘ₗ h = g
9671cfe0ecf83b71
Polynomial.Gal.prime_degree_dvd_card
Mathlib/FieldTheory/PolynomialGaloisGroup.lean
theorem prime_degree_dvd_card [CharZero F] (p_irr : Irreducible p) (p_deg : p.natDegree.Prime) : p.natDegree ∣ Fintype.card p.Gal
case a F : Type u_1 inst✝¹ : Field F p : F[X] inst✝ : CharZero F p_irr : Irreducible p p_deg : Nat.Prime p.natDegree hp : p.degree ≠ 0 α : p.SplittingField := rootOfSplits (algebraMap F p.SplittingField) ⋯ hp hα : IsIntegral F α this : minpoly F α ∣ p key : p ∣ minpoly F α ⊢ p.natDegree ≤ (minpoly F α).natDegree
exact natDegree_le_of_dvd key (minpoly.ne_zero hα)
no goals
9be8caa417d64950
Asymptotics.isBigO_atTop_natCast_rpow_of_tendsto_div_rpow
Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean
theorem isBigO_atTop_natCast_rpow_of_tendsto_div_rpow {𝕜 : Type*} [RCLike 𝕜] {g : ℕ → 𝕜} {a : 𝕜} {r : ℝ} (hlim : Tendsto (fun n ↦ g n / (n ^ r : ℝ)) atTop (𝓝 a)) : g =O[atTop] fun n ↦ (n : ℝ) ^ r
case refine_1 𝕜 : Type u_2 inst✝ : RCLike 𝕜 g : ℕ → 𝕜 a : 𝕜 r : ℝ hlim : Tendsto (fun n => g n / ↑(↑n ^ r)) atTop (𝓝 a) ⊢ ∀ᶠ (x : ℕ) in atTop, ↑x ^ r = 0 → ‖g x‖ = 0
filter_upwards [eventually_ne_atTop 0] with _ h
case h 𝕜 : Type u_2 inst✝ : RCLike 𝕜 g : ℕ → 𝕜 a : 𝕜 r : ℝ hlim : Tendsto (fun n => g n / ↑(↑n ^ r)) atTop (𝓝 a) a✝ : ℕ h : a✝ ≠ 0 ⊢ ↑a✝ ^ r = 0 → ‖g a✝‖ = 0
326db2a9e8788b5a
IsUnifLocDoublingMeasure.closedBall_mem_vitaliFamily_of_dist_le_mul
Mathlib/MeasureTheory/Covering/DensityTheorem.lean
theorem closedBall_mem_vitaliFamily_of_dist_le_mul {K : ℝ} {x y : α} {r : ℝ} (h : dist x y ≤ K * r) (rpos : 0 < r) : closedBall y r ∈ (vitaliFamily μ K).setsAt x
case pos.h.inr α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : MeasurableSpace α μ : Measure α inst✝³ : IsUnifLocDoublingMeasure μ inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ K : ℝ x y : α r : ℝ h : dist x y ≤ K * r rpos : 0 < r R : ℝ := scalingScaleOf μ ((4 * K + 3) ⊔ 3) H : closedBall y r ⊆ closedBall x (R / 4) hr : R < r ⊢ μ (closedBall x (3 * (R / 4))) ≤ ↑(scalingConstantOf μ ((4 * K + 3) ⊔ 3)) * μ (closedBall y r)
have : closedBall x (3 * (R / 4)) ⊆ closedBall y r := by apply closedBall_subset_closedBall' have A : y ∈ closedBall y r := mem_closedBall_self rpos.le have B := mem_closedBall'.1 (H A) linarith
case pos.h.inr α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : MeasurableSpace α μ : Measure α inst✝³ : IsUnifLocDoublingMeasure μ inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α inst✝ : IsLocallyFiniteMeasure μ K : ℝ x y : α r : ℝ h : dist x y ≤ K * r rpos : 0 < r R : ℝ := scalingScaleOf μ ((4 * K + 3) ⊔ 3) H : closedBall y r ⊆ closedBall x (R / 4) hr : R < r this : closedBall x (3 * (R / 4)) ⊆ closedBall y r ⊢ μ (closedBall x (3 * (R / 4))) ≤ ↑(scalingConstantOf μ ((4 * K + 3) ⊔ 3)) * μ (closedBall y r)
60c120fcf237fc0d
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.clear_insert_inductive_case
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem clear_insert_inductive_case {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (units : Array (Literal (PosFin n))) (units_nodup : ∀ i : Fin units.size, ∀ j : Fin units.size, i ≠ j → units[i] ≠ units[j]) (idx : Fin units.size) (assignments : Array Assignment) (ih : ClearInsertInductionMotive f f_assignments_size units idx.1 assignments) : ClearInsertInductionMotive f f_assignments_size units (idx.1 + 1) (clearUnit assignments units[idx])
n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_eq_j1 : idx = j1 idx_ne_j2 : idx ≠ j2 ⊢ ↑j2 ≥ ↑idx + 1 ∧ units[j2] = (⟨↑i, ⋯⟩, false) ∧ (clearUnit assignments units[idx])[↑i] = addAssignment false f.assignments[↑i] ∧ ¬hasAssignment false f.assignments[↑i] = true ∧ ∀ (k : Fin units.size), ↑k ≥ ↑idx + 1 → k ≠ j2 → units[k].fst.val ≠ ↑i
constructor
case left n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_eq_j1 : idx = j1 idx_ne_j2 : idx ≠ j2 ⊢ ↑j2 ≥ ↑idx + 1 case right n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n units : Array (Literal (PosFin n)) units_nodup : ∀ (i j : Fin units.size), i ≠ j → units[i] ≠ units[j] idx : Fin units.size assignments : Array Assignment hsize : assignments.size = n hsize' : (clearUnit assignments units[idx]).size = n i : Fin n j1 : Fin units.size j1_ge_idx : ↑j1 ≥ ↑idx j2 : Fin units.size j2_ge_idx : ↑j2 ≥ ↑idx i_gt_zero : ↑i > 0 ih1 : units[↑j1] = (⟨↑i, ⋯⟩, true) ih2 : units[↑j2] = (⟨↑i, ⋯⟩, false) ih3 : assignments[↑i] = both ih4 : f.assignments[↑i] = unassigned ih5 : ∀ (k : Fin units.size), ↑k ≥ ↑idx → ¬k = j1 → ¬k = j2 → ¬units[↑k].fst.val = ↑i idx_eq_j1 : idx = j1 idx_ne_j2 : idx ≠ j2 ⊢ units[j2] = (⟨↑i, ⋯⟩, false) ∧ (clearUnit assignments units[idx])[↑i] = addAssignment false f.assignments[↑i] ∧ ¬hasAssignment false f.assignments[↑i] = true ∧ ∀ (k : Fin units.size), ↑k ≥ ↑idx + 1 → k ≠ j2 → units[k].fst.val ≠ ↑i
c90be518eb885cb1
lcm_dvd_iff
Mathlib/Algebra/GCDMonoid/Basic.lean
theorem lcm_dvd_iff [GCDMonoid α] {a b c : α} : lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c
by_cases h : a = 0 ∨ b = 0
case pos α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α h : a = 0 ∨ b = 0 ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c case neg α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : GCDMonoid α a b c : α h : ¬(a = 0 ∨ b = 0) ⊢ lcm a b ∣ c ↔ a ∣ c ∧ b ∣ c
472d003f064a3536
ih_0
Mathlib/NumberTheory/Padics/Hensel.lean
theorem ih_0 : ih 0 a := ⟨rfl, by simp [T_def, mul_div_cancel₀ _ (ne_of_gt (deriv_sq_norm_pos hnorm))]⟩
p : ℕ inst✝ : Fact (Nat.Prime p) F : Polynomial ℤ_[p] a : ℤ_[p] hnorm : ‖Polynomial.eval a F‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖ ^ 2 ⊢ ‖Polynomial.eval a F‖ ≤ ‖Polynomial.eval a (Polynomial.derivative F)‖ ^ 2 * T_gen p F a ^ 2 ^ 0
simp [T_def, mul_div_cancel₀ _ (ne_of_gt (deriv_sq_norm_pos hnorm))]
no goals
2d9ea65d66b5ac8b
Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det
Mathlib/LinearAlgebra/Matrix/Determinant/Misc.lean
theorem submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det {n : ℕ} (M : Matrix (Fin (n + 1)) (Fin n) R) (hv : ∑ j, M j = 0) (j₁ j₂ : Fin (n + 1)) : (M.submatrix (Fin.succAbove j₁) id).det = Int.negOnePow (j₁ - j₂) • (M.submatrix (Fin.succAbove j₂) id).det
R : Type u_1 inst✝ : CommRing R n : ℕ M : Matrix (Fin (n + 1)) (Fin n) R hv : ∑ j : Fin (n + 1), M j = 0 j₁ j₂ : Fin (n + 1) ⊢ (M.submatrix j₁.succAbove id).det = (↑↑j₁ - ↑↑j₂).negOnePow • (M.submatrix j₂.succAbove id).det
suffices ∀ j, (M.submatrix (Fin.succAbove j) id).det = Int.negOnePow j • (M.submatrix (Fin.succAbove 0) id).det by rw [this j₁, this j₂, smul_smul, ← Int.negOnePow_add, sub_add_cancel]
R : Type u_1 inst✝ : CommRing R n : ℕ M : Matrix (Fin (n + 1)) (Fin n) R hv : ∑ j : Fin (n + 1), M j = 0 j₁ j₂ : Fin (n + 1) ⊢ ∀ (j : Fin (n + 1)), (M.submatrix j.succAbove id).det = (↑↑j).negOnePow • (M.submatrix (Fin.succAbove 0) id).det
f724e374e85a14e0
ApproximatesLinearOn.exists_homeomorph_extension
Mathlib/Analysis/Calculus/InverseFunctionTheorem/FiniteDimensional.lean
theorem exists_homeomorph_extension {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] [FiniteDimensional ℝ F] {s : Set E} {f : E → F} {f' : E ≃L[ℝ] F} {c : ℝ≥0} (hf : ApproximatesLinearOn f (f' : E →L[ℝ] F) s c) (hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖(f'.symm : F →L[ℝ] E)‖₊⁻¹) : ∃ g : E ≃ₜ F, EqOn f g s
case intro.intro E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : FiniteDimensional ℝ F s : Set E f : E → F f' : E ≃L[ℝ] F c : ℝ≥0 hf : ApproximatesLinearOn f (↑f') s c hc : Subsingleton E ∨ lipschitzExtensionConstant F * c < ‖↑f'.symm‖₊⁻¹ u : E → F hu : LipschitzWith (lipschitzExtensionConstant F * c) u uf : EqOn (f - ⇑f') u s g : E → F := fun x => f' x + u x fg : EqOn f g s hg : ApproximatesLinearOn g (↑f') univ (lipschitzExtensionConstant F * c) this : FiniteDimensional ℝ E ⊢ ∃ g, EqOn f (⇑g) s
exact ⟨hg.toHomeomorph g hc, fg⟩
no goals
ddf03427b5c8213e
Module.Flat.of_linearEquiv
Mathlib/RingTheory/Flat/Basic.lean
/-- A `R`-module linearly equivalent to a flat `R`-module is flat. -/ lemma of_linearEquiv [Flat R M] (e : N ≃ₗ[R] M) : Flat R N := of_retract e.toLinearMap e.symm (by simp)
R : Type u M : Type v N : Type u_1 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N inst✝ : Flat R M e : N ≃ₗ[R] M ⊢ ↑e.symm ∘ₗ ↑e = LinearMap.id
simp
no goals
a01b56410a95cb3c
Std.Tactic.BVDecide.BVExpr.bitblast.blastMul.go_le_size
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Operations/Mul.lean
theorem go_le_size {w : Nat} (aig : AIG BVBit) (curr : Nat) (acc : AIG.RefVec aig w) (lhs rhs : AIG.RefVec aig w) : aig.decls.size ≤ (go aig lhs rhs curr acc).aig.decls.size
w : Nat aig : AIG BVBit curr : Nat acc lhs rhs : aig.RefVec w ⊢ aig.decls.size ≤ (go aig lhs rhs curr acc).aig.decls.size
unfold go
w : Nat aig : AIG BVBit curr : Nat acc lhs rhs : aig.RefVec w ⊢ aig.decls.size ≤ (if h : curr < w then if aig.isConstant (rhs.get curr h) false = true then go aig lhs rhs (curr + 1) acc else let res := blastShiftLeftConst aig { vec := lhs, distance := curr }; let aig_1 := res.aig; let shifted := res.vec; let_fun this := ⋯; let lhs_1 := lhs.cast this; let rhs_1 := rhs.cast this; let acc_1 := acc.cast this; let res := blastAdd aig_1 { lhs := acc_1, rhs := shifted }; let aig_2 := res.aig; let added := res.vec; let_fun this_1 := ⋯; let lhs_2 := lhs_1.cast this_1; let rhs_2 := rhs_1.cast this_1; let acc_2 := acc_1.cast this_1; let res := AIG.RefVec.ite aig_2 { discr := rhs_2.get curr h, lhs := added, rhs := acc_2 }; let aig_3 := res.aig; let acc_3 := res.vec; let_fun this := ⋯; let lhs := lhs_2.cast this; let rhs := rhs_2.cast this; go aig_3 lhs rhs (curr + 1) acc_3 else { aig := aig, vec := acc }).aig.decls.size
599196acca342e56
Real.cos_sq_le_one
Mathlib/Data/Complex/Trigonometric.lean
theorem cos_sq_le_one : cos x ^ 2 ≤ 1
x : ℝ ⊢ cos x ^ 2 ≤ sin x ^ 2 + cos x ^ 2
exact le_add_of_nonneg_left (sq_nonneg _)
no goals
c469e1701b709dfa
LinearMap.polyCharpoly_coeff_nilRankAux_ne_zero
Mathlib/Algebra/Module/LinearMap/Polynomial.lean
lemma polyCharpoly_coeff_nilRankAux_ne_zero [Nontrivial R] : (polyCharpoly φ b).coeff (nilRankAux φ b) ≠ 0
R : Type u_1 L : Type u_2 M : Type u_3 ι : Type u_5 inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup L inst✝⁷ : Module R L inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M φ : L →ₗ[R] End R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Free R M inst✝¹ : Module.Finite R M b : Basis ι R L inst✝ : Nontrivial R ⊢ φ.polyCharpoly b ≠ 0
apply polyCharpoly_ne_zero
no goals
4e51294121129066
essSup_map_measure_of_measurable
Mathlib/MeasureTheory/Function/EssSup.lean
theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable f μ) : essSup g (Measure.map f μ) = essSup (g ∘ f) μ
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f μ c : β h_le : ∀ᵐ (a : α) ∂μ, (g ∘ f) a ≤ c ⊢ ∀ᵐ (x : α) ∂μ, g (f x) ≤ c
exact h_le
no goals
f24de263ac49b4ec
Turing.PartrecToTM2.succ_ok
Mathlib/Computability/TMToPartrec.lean
theorem succ_ok {q s n} {c d : List Γ'} : Reaches₁ (TM2.step tr) ⟨some (Λ'.succ q), s, K'.elim (trList [n]) [] c d⟩ ⟨some q, none, K'.elim (trList [n.succ]) [] c d⟩
case pos q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum ⊢ Reaches₁ (TM2.step tr) { l := some q.succ, var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trPosNum a.succ ++ [Γ'.cons]) [] c d }
suffices ∀ l₁, ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a.succ) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) ⟨some q.succ, s, K'.elim (trPosNum a ++ [Γ'.cons]) l₁ c d⟩ ⟨some (unrev q), s', K'.elim (l₂' ++ [Γ'.cons]) l₁' c d⟩ by obtain ⟨l₁', l₂', s', e, h⟩ := this [] simp? [List.reverseAux] at e says simp only [List.reverseAux, List.reverseAux_eq] at e refine h.trans ?_ convert unrev_ok using 2 simp [e, List.reverseAux_eq]
case pos q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', l₁.reverseAux (trPosNum a.succ) = l₁'.reverseAux l₂' ∧ Reaches₁ (TM2.step tr) { l := some q.succ, var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
d0cdec3eaf1b4e03
OrderIso.preimage_Ioi
Mathlib/Order/Interval/Set/OrderIso.lean
theorem preimage_Ioi (e : α ≃o β) (b : β) : e ⁻¹' Ioi b = Ioi (e.symm b)
α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β b : β ⊢ ⇑e ⁻¹' Ioi b = Ioi (e.symm b)
ext x
case h α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β b : β x : α ⊢ x ∈ ⇑e ⁻¹' Ioi b ↔ x ∈ Ioi (e.symm b)
ace664e977e8de93
ConvexOn.smul''
Mathlib/Analysis/Convex/Mul.lean
lemma ConvexOn.smul'' [OrderedSMul 𝕜 E] (hf : ConvexOn 𝕜 s f) (hg : ConvexOn 𝕜 s g) (hf₀ : ∀ ⦃x⦄, x ∈ s → f x ≤ 0) (hg₀ : ∀ ⦃x⦄, x ∈ s → g x ≤ 0) (hfg : AntivaryOn f g s) : ConcaveOn 𝕜 s (f • g)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : LinearOrderedCommRing 𝕜 inst✝⁹ : LinearOrderedCommRing E inst✝⁸ : LinearOrderedAddCommGroup F inst✝⁷ : Module 𝕜 E inst✝⁶ : Module 𝕜 F inst✝⁵ : Module E F inst✝⁴ : IsScalarTower 𝕜 E F inst✝³ : SMulCommClass 𝕜 E F inst✝² : OrderedSMul 𝕜 F inst✝¹ : OrderedSMul E F s : Set 𝕜 f : 𝕜 → E g : 𝕜 → F inst✝ : OrderedSMul 𝕜 E hf : ConvexOn 𝕜 s f hg : ConvexOn 𝕜 s g hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0 hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0 hfg : AntivaryOn f g s ⊢ ConcaveOn 𝕜 s (-f • -g)
exact hf.neg.smul' hg.neg (fun x hx ↦ neg_nonneg.2 <| hf₀ hx) (fun x hx ↦ neg_nonneg.2 <| hg₀ hx) hfg.neg
no goals
2e4e949e2864e0e5
SimpleGraph.triangle_counting
Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean
/-- The **Triangle Counting Lemma**. If `G` is a graph and `s`, `t`, `u` are disjoint sets of vertices such that each pair is `ε`-uniform and `2 * ε`-dense, then `G` contains at least `(1 - 2 * ε) * ε ^ 3 * |s| * |t| * |u|` triangles. -/ lemma triangle_counting (dst : 2 * ε ≤ G.edgeDensity s t) (ust : G.IsUniform ε s t) (hst : Disjoint s t) (dsu : 2 * ε ≤ G.edgeDensity s u) (usu : G.IsUniform ε s u) (hsu : Disjoint s u) (dtu : 2 * ε ≤ G.edgeDensity t u) (utu : G.IsUniform ε t u) (htu : Disjoint t u) : (1 - 2 * ε) * ε ^ 3 * #s * #t * #u ≤ #(G.cliqueFinset 3)
case refine_1.mk.mk α : Type u_1 G : SimpleGraph α inst✝² : DecidableRel G.Adj ε : ℝ s t u : Finset α inst✝¹ : DecidableEq α inst✝ : Fintype α dst : 2 * ε ≤ ↑(G.edgeDensity s t) ust : G.IsUniform ε s t hst : Disjoint s t dsu : 2 * ε ≤ ↑(G.edgeDensity s u) usu : G.IsUniform ε s u hsu : Disjoint s u dtu : 2 * ε ≤ ↑(G.edgeDensity t u) utu : G.IsUniform ε t u htu : Disjoint t u x y z : α ⊢ x ∈ s → y ∈ t → z ∈ u → G.Adj x y → G.Adj x z → G.Adj y z → G.Adj x y ∧ G.Adj x z ∧ G.Adj y z
exact fun _ _ _ hxy hxz hyz ↦ ⟨hxy, hxz, hyz⟩
no goals
cb6c419615fd1361
CategoryTheory.Abelian.Pseudoelement.pseudo_pullback
Mathlib/CategoryTheory/Abelian/Pseudoelements.lean
theorem pseudo_pullback {P Q R : C} {f : P ⟶ R} {g : Q ⟶ R} {p : P} {q : Q} : f p = g q → ∃ s, pullback.fst f g s = p ∧ pullback.snd f g s = q := Quotient.inductionOn₂ p q fun x y h => by obtain ⟨Z, a, b, ea, eb, comm⟩ := Quotient.exact h obtain ⟨l, hl₁, hl₂⟩ := @pullback.lift' _ _ _ _ _ _ f g _ (a ≫ x.hom) (b ≫ y.hom) (by simp only [Category.assoc] exact comm) exact ⟨l, ⟨Quotient.sound ⟨Z, 𝟙 Z, a, inferInstance, ea, by rwa [Category.id_comp]⟩, Quotient.sound ⟨Z, 𝟙 Z, b, inferInstance, eb, by rwa [Category.id_comp]⟩⟩⟩
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasPullbacks C P Q R : C f : P ⟶ R g : Q ⟶ R p : Pseudoelement P q : Pseudoelement Q x : Over P y : Over Q h : pseudoApply f ⟦x⟧ = pseudoApply g ⟦y⟧ Z : C a : Z ⟶ ((fun g => app f g) x).left b : Z ⟶ ((fun g_1 => app g g_1) y).left ea : Epi a eb : Epi b comm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom ⊢ a ≫ x.hom ≫ f = b ≫ y.hom ≫ g
exact comm
no goals
92b3b5dba8e659f2
Set.ncard_diff_singleton_le
Mathlib/Data/Set/Card.lean
theorem ncard_diff_singleton_le (s : Set α) (a : α) : (s \ {a}).ncard ≤ s.ncard
α : Type u_1 s : Set α a : α hs : s.Infinite ⊢ {a}.Finite
simp
no goals
0875fa66bd9bb07f
Basis.map_addHaar
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
theorem Basis.map_addHaar {ι E F : Type*} [Fintype ι] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ E] [NormedSpace ℝ F] [MeasurableSpace E] [MeasurableSpace F] [BorelSpace E] [BorelSpace F] [SecondCountableTopology F] [SigmaCompactSpace F] (b : Basis ι ℝ E) (f : E ≃L[ℝ] F) : map f b.addHaar = (b.map f.toLinearEquiv).addHaar
ι : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : Fintype ι inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace ℝ E inst✝⁶ : NormedSpace ℝ F inst✝⁵ : MeasurableSpace E inst✝⁴ : MeasurableSpace F inst✝³ : BorelSpace E inst✝² : BorelSpace F inst✝¹ : SecondCountableTopology F inst✝ : SigmaCompactSpace F b : Basis ι ℝ E f : E ≃L[ℝ] F this : (Measure.map (⇑f) b.addHaar).IsAddHaarMeasure ⊢ Measure.map (⇑f) b.addHaar = (b.map f.toLinearEquiv).addHaar
rw [eq_comm, Basis.addHaar_eq_iff, Measure.map_apply f.continuous.measurable (PositiveCompacts.isCompact _).measurableSet, Basis.coe_parallelepiped, Basis.coe_map]
ι : Type u_1 E : Type u_2 F : Type u_3 inst✝¹⁰ : Fintype ι inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace ℝ E inst✝⁶ : NormedSpace ℝ F inst✝⁵ : MeasurableSpace E inst✝⁴ : MeasurableSpace F inst✝³ : BorelSpace E inst✝² : BorelSpace F inst✝¹ : SecondCountableTopology F inst✝ : SigmaCompactSpace F b : Basis ι ℝ E f : E ≃L[ℝ] F this : (Measure.map (⇑f) b.addHaar).IsAddHaarMeasure ⊢ b.addHaar (⇑f ⁻¹' _root_.parallelepiped (⇑f.toLinearEquiv ∘ ⇑b)) = 1
abb088abaf1d66a7
ProbabilityTheory.Kernel.compProdFun_iUnion
Mathlib/Probability/Kernel/Composition/CompProd.lean
theorem compProdFun_iUnion (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (f : ℕ → Set (β × γ)) (hf_meas : ∀ i, MeasurableSet (f i)) (hf_disj : Pairwise (Disjoint on f)) : compProdFun κ η a (⋃ i, f i) = ∑' i, compProdFun κ η a (f i)
case h.hn α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => (η (a, b)) {c | (b, c) ∈ ⋃ i, f i}) = fun b => (η (a, b)) (⋃ i, {c | (b, c) ∈ f i}) b : β ⊢ Pairwise (Disjoint on fun i => {c | (b, c) ∈ f i})
intro i j hij s hsi hsj c hcs
case h.hn α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => (η (a, b)) {c | (b, c) ∈ ⋃ i, f i}) = fun b => (η (a, b)) (⋃ i, {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s ⊢ c ∈ ⊥
a1a5d4db1e3c8048
equalizerCondition_yonedaPresheaf
Mathlib/Condensed/TopComparison.lean
theorem equalizerCondition_yonedaPresheaf [∀ (Z B : C) (π : Z ⟶ B) [EffectiveEpi π], PreservesLimit (cospan π π) G] (hq : ∀ (Z B : C) (π : Z ⟶ B) [EffectiveEpi π], IsQuotientMap (G.map π)) : EqualizerCondition (yonedaPresheaf G X)
C : Type u inst✝² : Category.{v, u} C G : C ⥤ TopCat X : Type w' inst✝¹ : TopologicalSpace X inst✝ : ∀ (Z B : C) (π : Z ⟶ B) [inst : EffectiveEpi π], PreservesLimit (cospan π π) G hq : ∀ (Z B : C) (π : Z ⟶ B) [inst : EffectiveEpi π], IsQuotientMap ⇑(ConcreteCategory.hom (G.map π)) ⊢ EqualizerCondition (yonedaPresheaf G X)
apply EqualizerCondition.mk
case hP C : Type u inst✝² : Category.{v, u} C G : C ⥤ TopCat X : Type w' inst✝¹ : TopologicalSpace X inst✝ : ∀ (Z B : C) (π : Z ⟶ B) [inst : EffectiveEpi π], PreservesLimit (cospan π π) G hq : ∀ (Z B : C) (π : Z ⟶ B) [inst : EffectiveEpi π], IsQuotientMap ⇑(ConcreteCategory.hom (G.map π)) ⊢ ∀ (X_1 B : C) (π : X_1 ⟶ B) [inst : EffectiveEpi π] [inst : HasPullback π π], Function.Bijective (MapToEqualizer (yonedaPresheaf G X) π (pullback.fst π π) (pullback.snd π π) ⋯)
1d0a8262c2d7e5b6
Set.image2_insert_right
Mathlib/Data/Set/NAry.lean
theorem image2_insert_right : image2 f s (insert b t) = (fun a => f a b) '' s ∪ image2 f s t
α : Type u_1 β : Type u_3 γ : Type u_5 f : α → β → γ s : Set α t : Set β b : β ⊢ image2 f s (insert b t) = (fun a => f a b) '' s ∪ image2 f s t
rw [insert_eq, image2_union_right, image2_singleton_right]
no goals
f9ac43bb0f122233
CategoryTheory.StrongMono.iff_of_arrow_iso
Mathlib/CategoryTheory/Limits/Shapes/StrongEpi.lean
theorem StrongMono.iff_of_arrow_iso {A B A' B' : C} {f : A ⟶ B} {g : A' ⟶ B'} (e : Arrow.mk f ≅ Arrow.mk g) : StrongMono f ↔ StrongMono g
C : Type u inst✝ : Category.{v, u} C A B A' B' : C f : A ⟶ B g : A' ⟶ B' e : Arrow.mk f ≅ Arrow.mk g ⊢ StrongMono f ↔ StrongMono g
constructor <;> intro
case mp C : Type u inst✝ : Category.{v, u} C A B A' B' : C f : A ⟶ B g : A' ⟶ B' e : Arrow.mk f ≅ Arrow.mk g a✝ : StrongMono f ⊢ StrongMono g case mpr C : Type u inst✝ : Category.{v, u} C A B A' B' : C f : A ⟶ B g : A' ⟶ B' e : Arrow.mk f ≅ Arrow.mk g a✝ : StrongMono g ⊢ StrongMono f
988baae87a725eb2
tendsto_comp_of_locally_uniform_limit
Mathlib/Topology/UniformSpace/UniformConvergence.lean
theorem tendsto_comp_of_locally_uniform_limit (h : ContinuousAt f x) (hg : Tendsto g p (𝓝 x)) (hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ n in p, ∀ y ∈ t, (f y, F n y) ∈ u) : Tendsto (fun n => F n (g n)) p (𝓝 (f x))
α : Type u β : Type v ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β x : α p : Filter ι g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f univ x hg : Tendsto g p (𝓝 x) hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝 x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x))
rw [← nhdsWithin_univ] at hunif hg
α : Type u β : Type v ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β x : α p : Filter ι g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f univ x hg : Tendsto g p (𝓝[univ] x) hunif : ∀ u ∈ 𝓤 β, ∃ t ∈ 𝓝[univ] x, ∀ᶠ (n : ι) in p, ∀ y ∈ t, (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x))
c49b6ba895f95c85
Orientation.exists_linearIsometryEquiv_eq_of_det_pos
Mathlib/Geometry/Euclidean/Angle/Oriented/Rotation.lean
theorem exists_linearIsometryEquiv_eq_of_det_pos {f : V ≃ₗᵢ[ℝ] V} (hd : 0 < LinearMap.det (f.toLinearEquiv : V →ₗ[ℝ] V)) : ∃ θ : Real.Angle, f = o.rotation θ
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) f : V ≃ₗᵢ[ℝ] V hd : 0 < LinearMap.det ↑f.toLinearEquiv this : Nontrivial V ⊢ ∃ θ, f = o.rotation θ
obtain ⟨x, hx⟩ : ∃ x, x ≠ (0 : V) := exists_ne (0 : V)
case intro V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) f : V ≃ₗᵢ[ℝ] V hd : 0 < LinearMap.det ↑f.toLinearEquiv this : Nontrivial V x : V hx : x ≠ 0 ⊢ ∃ θ, f = o.rotation θ
6545af5aebabad28