name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
CategoryTheory.StrongEpi.of_arrow_iso
Mathlib/CategoryTheory/Limits/Shapes/StrongEpi.lean
theorem StrongEpi.of_arrow_iso {A B A' B' : C} {f : A ⟶ B} {g : A' ⟶ B'} (e : Arrow.mk f ≅ Arrow.mk g) [h : StrongEpi f] : StrongEpi g := { epi
C : Type u inst✝ : Category.{v, u} C A B A' B' : C f : A ⟶ B g : A' ⟶ B' e : Arrow.mk f ≅ Arrow.mk g h : StrongEpi f ⊢ Epi (e.inv.left ≫ f ≫ e.hom.right)
infer_instance
no goals
cad0b0aefe5bf042
CategoryTheory.Abelian.Ext.contravariant_sequence_exact₃'
Mathlib/Algebra/Homology/DerivedCategory/Ext/ExactSequences.lean
/-- Alternative formulation of `contravariant_sequence_exact₃` -/ lemma contravariant_sequence_exact₃' : (ShortComplex.mk (AddCommGrp.ofHom (hS.extClass.precomp Y h)) (AddCommGrp.ofHom (((mk₀ S.g).precomp Y (zero_add n₁)))) (by ext dsimp simp only [ShortComplex.ShortExact.comp_extClass_assoc])).Exact
case hf.h C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasExt C S : ShortComplex C hS : S.ShortExact Y : C n₀ n₁ : ℕ h : 1 + n₀ = n₁ x✝ : ↑(AddCommGrp.of (Ext S.X₁ Y n₀)) ⊢ (mk₀ S.g).comp (hS.extClass.comp x✝ h) ⋯ = 0
simp only [ShortComplex.ShortExact.comp_extClass_assoc]
no goals
3b5361343b948c2c
Set.ncard_insert_of_mem
Mathlib/Data/Set/Card.lean
theorem ncard_insert_of_mem {a : α} (h : a ∈ s) : ncard (insert a s) = s.ncard
α : Type u_1 s : Set α a : α h : a ∈ s ⊢ (insert a s).ncard = s.ncard
rw [insert_eq_of_mem h]
no goals
f442188566650fe7
solvableByRad.induction2
Mathlib/FieldTheory/AbelRuffini.lean
theorem induction2 {α β γ : solvableByRad F E} (hγ : γ ∈ F⟮α, β⟯) (hα : P α) (hβ : P β) : P γ
case inr F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E α β γ : ↥(solvableByRad F E) hγ : γ ∈ F⟮α, β⟯ hα : P α hβ : P β p : F[X] := minpoly F α q : F[X] := minpoly F β hpq : Splits (algebraMap F (p * q).SplittingField) (minpoly F α) ∧ Splits (algebraMap F (p * q).SplittingField) (minpoly F β) x : ↥(solvableByRad F E) hx : x = β ⊢ IsIntegral F β ∧ Splits (algebraMap F (p * q).SplittingField) (minpoly F β)
exact ⟨isIntegral β, hpq.2⟩
no goals
baad06864f8e9f42
cfcHom_comp
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Unital.lean
theorem cfcHom_comp [UniqueHom R A] (f : C(spectrum R a, R)) (f' : C(spectrum R a, spectrum R (cfcHom ha f))) (hff' : ∀ x, f x = f' x) (g : C(spectrum R (cfcHom ha f), R)) : cfcHom ha (g.comp f') = cfcHom (cfcHom_predicate ha f) g
R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p a : A ha : p a inst✝ : UniqueHom R A f : C(↑(spectrum R a), R) f' : C(↑(spectrum R a), ↑(spectrum R ((cfcHom ha) f))) hff' : ∀ (x : ↑(spectrum R a)), f x = ↑(f' x) g : C(↑(spectrum R ((cfcHom ha) f)), R) φ : C(↑(spectrum R ((cfcHom ha) f)), R) →⋆ₐ[R] A := (cfcHom ha).comp (compStarAlgHom' R R f') ⊢ cfcHom ⋯ = φ
refine cfcHom_eq_of_continuous_of_map_id (cfcHom_predicate ha f) φ ?_ ?_
case refine_1 R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p a : A ha : p a inst✝ : UniqueHom R A f : C(↑(spectrum R a), R) f' : C(↑(spectrum R a), ↑(spectrum R ((cfcHom ha) f))) hff' : ∀ (x : ↑(spectrum R a)), f x = ↑(f' x) g : C(↑(spectrum R ((cfcHom ha) f)), R) φ : C(↑(spectrum R ((cfcHom ha) f)), R) →⋆ₐ[R] A := (cfcHom ha).comp (compStarAlgHom' R R f') ⊢ Continuous ⇑φ case refine_2 R : Type u_1 A : Type u_2 p : A → Prop inst✝⁹ : CommSemiring R inst✝⁸ : StarRing R inst✝⁷ : MetricSpace R inst✝⁶ : IsTopologicalSemiring R inst✝⁵ : ContinuousStar R inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : StarRing A inst✝¹ : Algebra R A instCFC : ContinuousFunctionalCalculus R p a : A ha : p a inst✝ : UniqueHom R A f : C(↑(spectrum R a), R) f' : C(↑(spectrum R a), ↑(spectrum R ((cfcHom ha) f))) hff' : ∀ (x : ↑(spectrum R a)), f x = ↑(f' x) g : C(↑(spectrum R ((cfcHom ha) f)), R) φ : C(↑(spectrum R ((cfcHom ha) f)), R) →⋆ₐ[R] A := (cfcHom ha).comp (compStarAlgHom' R R f') ⊢ φ (restrict (spectrum R ((cfcHom ha) f)) (ContinuousMap.id R)) = (cfcHom ha) f
c37ba724f2010a82
AlgebraicGeometry.Scheme.Hom.appLE_appIso_inv
Mathlib/AlgebraicGeometry/OpenImmersion.lean
@[reassoc (attr := simp), elementwise nosimp] lemma appLE_appIso_inv {X Y : Scheme.{u}} (f : X ⟶ Y) [IsOpenImmersion f] {U : Y.Opens} {V : X.Opens} (e : V ≤ f ⁻¹ᵁ U) : f.appLE U V e ≫ (f.appIso V).inv = Y.presheaf.map (homOfLE <| (f.image_le_image_of_le e).trans (f.image_preimage_eq_opensRange_inter U ▸ inf_le_right)).op
X Y : Scheme f : X ⟶ Y inst✝ : IsOpenImmersion f U : Y.Opens V : X.Opens e : V ≤ f ⁻¹ᵁ U ⊢ Y.presheaf.map ((homOfLE ⋯).op ≫ (homOfLE ⋯).op) = Y.presheaf.map (homOfLE ⋯).op
rfl
no goals
434e9026ccbdcdd4
Nat.le_nth_of_lt_nth_succ
Mathlib/Data/Nat/Nth.lean
theorem le_nth_of_lt_nth_succ {k a : ℕ} (h : a < nth p (k + 1)) (ha : p a) : a ≤ nth p k
case inl.intro.intro.inr p : ℕ → Prop k : ℕ hf : (setOf p).Finite n : ℕ hn : n < #hf.toFinset h : nth p n < 0 ha : p (nth p n) hk : #hf.toFinset ≤ k + 1 ⊢ nth p n ≤ nth p k
exact absurd h (zero_le _).not_lt
no goals
dc79df7ae5e59569
ProbabilityTheory.Kernel.tendsto_densityProcess_fst_atTop_univ_of_monotone
Mathlib/Probability/Kernel/Disintegration/Density.lean
lemma tendsto_densityProcess_fst_atTop_univ_of_monotone (κ : Kernel α (γ × β)) (n : ℕ) (a : α) (x : γ) (seq : ℕ → Set β) (hseq : Monotone seq) (hseq_iUnion : ⋃ i, seq i = univ) : Tendsto (fun m ↦ densityProcess κ (fst κ) n a x (seq m)) atTop (𝓝 (densityProcess κ (fst κ) n a x univ))
case refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝ : CountablyGenerated γ κ : Kernel α (γ × β) n : ℕ a : α x : γ seq : ℕ → Set β hseq : Monotone seq hseq_iUnion : ⋃ i, seq i = univ ⊢ ¬((κ a) (countablePartitionSet n x ×ˢ univ) ≠ 0 ∧ (κ.fst a) (countablePartitionSet n x) = 0 ∨ (κ a) (countablePartitionSet n x ×ˢ univ) = ⊤ ∧ (κ.fst a) (countablePartitionSet n x) ≠ ⊤)
push_neg
case refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝ : CountablyGenerated γ κ : Kernel α (γ × β) n : ℕ a : α x : γ seq : ℕ → Set β hseq : Monotone seq hseq_iUnion : ⋃ i, seq i = univ ⊢ ((κ a) (countablePartitionSet n x ×ˢ univ) ≠ 0 → (κ.fst a) (countablePartitionSet n x) ≠ 0) ∧ ((κ a) (countablePartitionSet n x ×ˢ univ) = ⊤ → (κ.fst a) (countablePartitionSet n x) = ⊤)
66b65cbbe911116f
sup_eq_of_max
Mathlib/Order/Filter/Extr.lean
theorem sup_eq_of_max [Nonempty α] {b : β} (hb : b ∈ Set.range D) (hmem : D.invFun b ∈ s) (hmax : ∀ a ∈ s, D a ≤ b) : s.sup D = b
case intro α : Type u β : Type v inst✝² : SemilatticeSup β inst✝¹ : OrderBot β D : α → β s : Finset α inst✝ : Nonempty α a : α hmem : Function.invFun D (D a) ∈ s hmax : ∀ a_1 ∈ s, D a_1 ≤ D a ⊢ IsMaxOn D (↑s) (Function.invFun D (D a))
intro
case intro α : Type u β : Type v inst✝² : SemilatticeSup β inst✝¹ : OrderBot β D : α → β s : Finset α inst✝ : Nonempty α a : α hmem : Function.invFun D (D a) ∈ s hmax : ∀ a_1 ∈ s, D a_1 ≤ D a a✝ : α ⊢ a✝ ∈ ↑s → a✝ ∈ {x | (fun x => D x ≤ D (Function.invFun D (D a))) x}
acd295b8a19eaff5
List.contains_replicate
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
theorem contains_replicate [BEq α] {n : Nat} {a b : α} : (replicate n b).contains a = (a == b && !n == 0)
α : Type u_1 inst✝ : BEq α n : Nat a b : α ⊢ (replicate n b).contains a = (a == b && !n == 0)
induction n with | zero => simp | succ n ih => simp only [replicate_succ, elem_cons] split <;> simp_all
no goals
a50795c03787787f
CategoryTheory.hasInitial_of_isCoseparating
Mathlib/CategoryTheory/Generator/Basic.lean
theorem hasInitial_of_isCoseparating [LocallySmall.{w} C] [WellPowered.{w} C] [HasLimitsOfSize.{w, w} C] {𝒢 : Set C} [Small.{w} 𝒢] (h𝒢 : IsCoseparating 𝒢) : HasInitial C
case refine_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : LocallySmall.{w, v₁, u₁} C inst✝² : WellPowered.{w, v₁, u₁} C inst✝¹ : HasLimitsOfSize.{w, w, v₁, u₁} C 𝒢 : Set C inst✝ : Small.{w, u₁} ↑𝒢 h𝒢 : IsCoseparating 𝒢 this✝² : HasFiniteLimits C this✝¹ : HasProductsOfShape (↑𝒢) C this✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C this : CompleteLattice (Subobject (∏ᶜ Subtype.val)) := completeLatticeOfCompleteSemilatticeInf (Subobject (∏ᶜ Subtype.val)) A : C f : Subobject.underlying.obj ⊥ ⟶ A ⊢ ∀ (g : Subobject.underlying.obj ⊥ ⟶ A), f = g
intro g
case refine_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : LocallySmall.{w, v₁, u₁} C inst✝² : WellPowered.{w, v₁, u₁} C inst✝¹ : HasLimitsOfSize.{w, w, v₁, u₁} C 𝒢 : Set C inst✝ : Small.{w, u₁} ↑𝒢 h𝒢 : IsCoseparating 𝒢 this✝² : HasFiniteLimits C this✝¹ : HasProductsOfShape (↑𝒢) C this✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C this : CompleteLattice (Subobject (∏ᶜ Subtype.val)) := completeLatticeOfCompleteSemilatticeInf (Subobject (∏ᶜ Subtype.val)) A : C f : Subobject.underlying.obj ⊥ ⟶ A g : Subobject.underlying.obj ⊥ ⟶ A ⊢ f = g
5635e0b68399a531
ack_strict_mono_left'
Mathlib/Computability/Ackermann.lean
theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, _ => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) omega | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h)
m₁ m₂ n : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack m₁ (ack (m₁ + 1) n) < ack m₂ (ack (m₂ + 1) n)
exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h)
no goals
fb15ed9d9d43e49f
HasStrictFDerivAt.approximates_deriv_on_open_nhds
Mathlib/Analysis/Calculus/InverseFunctionTheorem/FDeriv.lean
theorem approximates_deriv_on_open_nhds (hf : HasStrictFDerivAt f (f' : E →L[𝕜] F) a) : ∃ s : Set E, a ∈ s ∧ IsOpen s ∧ ApproximatesLinearOn f (f' : E →L[𝕜] F) s (‖(f'.symm : F →L[𝕜] E)‖₊⁻¹ / 2)
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F f' : E ≃L[𝕜] F a : E hf : HasStrictFDerivAt f (↑f') a ⊢ ∃ s, (a ∈ s ∧ IsOpen s) ∧ ApproximatesLinearOn f (↑f') s (‖↑f'.symm‖₊⁻¹ / 2)
refine ((nhds_basis_opens a).exists_iff fun s t => ApproximatesLinearOn.mono_set).1 ?_
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F f' : E ≃L[𝕜] F a : E hf : HasStrictFDerivAt f (↑f') a ⊢ ∃ s ∈ 𝓝 a, ApproximatesLinearOn f (↑f') s (‖↑f'.symm‖₊⁻¹ / 2)
06b9e2837029fe8b
SimplexCategory.σ_comp_σ
Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean
theorem σ_comp_σ {n} {i j : Fin (n + 1)} (H : i ≤ j) : σ (Fin.castSucc i) ≫ σ j = σ j.succ ≫ σ i
case inr n : ℕ i j : Fin (n + 1) H : i ≤ j k : Fin (n + 1) h : i ≤ k hkj : j < k ⊢ i < k
exact H.trans_lt hkj
no goals
fc4b1a638ff94922
IsCompact.elim_nhds_subcover_nhdsSet'
Mathlib/Topology/Compactness/Compact.lean
lemma IsCompact.elim_nhds_subcover_nhdsSet' (hs : IsCompact s) (U : ∀ x ∈ s, Set X) (hU : ∀ x hx, U x hx ∈ 𝓝 x) : ∃ t : Finset s, (⋃ x ∈ t, U x.1 x.2) ∈ 𝓝ˢ s
case intro X : Type u inst✝ : TopologicalSpace X s : Set X hs : IsCompact s U : (x : X) → x ∈ s → Set X hU : ∀ (x : X) (hx : x ∈ s), U x hx ∈ 𝓝 x t : Finset ↑s hst : s ⊆ ⋃ i ∈ t, interior (U ↑i ⋯) x : X hx : x ∈ s ⊢ ⋃ x ∈ t, U ↑x ⋯ ∈ 𝓝 x
rcases mem_iUnion₂.1 (hst hx) with ⟨y, hyt, hy⟩
case intro.intro.intro X : Type u inst✝ : TopologicalSpace X s : Set X hs : IsCompact s U : (x : X) → x ∈ s → Set X hU : ∀ (x : X) (hx : x ∈ s), U x hx ∈ 𝓝 x t : Finset ↑s hst : s ⊆ ⋃ i ∈ t, interior (U ↑i ⋯) x : X hx : x ∈ s y : ↑s hyt : y ∈ t hy : x ∈ interior (U ↑y ⋯) ⊢ ⋃ x ∈ t, U ↑x ⋯ ∈ 𝓝 x
860833996d6ec9bb
List.zipWith_eq_cons_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem zipWith_eq_cons_iff {f : α → β → γ} {l₁ : List α} {l₂ : List β} : zipWith f l₁ l₂ = g :: l ↔ ∃ a l₁' b l₂', l₁ = a :: l₁' ∧ l₂ = b :: l₂' ∧ g = f a b ∧ l = zipWith f l₁' l₂'
case mpr α : Type u_1 β : Type u_2 γ : Type u_3 g : γ l : List γ f : α → β → γ l₁✝ : List α l₂✝ : List β a' : α l₁ : List α b' : β l₂ : List β ⊢ (∃ a l₁' b l₂', (a' = a ∧ l₁ = l₁') ∧ (b' = b ∧ l₂ = l₂') ∧ g = f a b ∧ l = zipWith f l₁' l₂') → zipWith f (a' :: l₁) (b' :: l₂) = g :: l
rintro ⟨a, l₁, b, l₂, ⟨rfl, rfl⟩, ⟨rfl, rfl⟩, rfl, rfl⟩
case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β → γ l₁✝ : List α l₂✝ : List β a' : α l₁ : List α b' : β l₂ : List β ⊢ zipWith f (a' :: l₁) (b' :: l₂) = f a' b' :: zipWith f l₁ l₂
02ad9c8699cdd0ae
cfcₙ_congr
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
lemma cfcₙ_congr {f g : R → R} {a : A} (hfg : (σₙ R a).EqOn f g) : cfcₙ f a = cfcₙ g a
case neg R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A hfg : Set.EqOn f g (σₙ R a) h : ¬p a ∨ ¬ContinuousOn g (σₙ R a) ∨ ¬g 0 = 0 ⊢ cfcₙ f a = cfcₙ g a
obtain (ha | hg | h0) := h
case neg.inl R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A hfg : Set.EqOn f g (σₙ R a) ha : ¬p a ⊢ cfcₙ f a = cfcₙ g a case neg.inr.inl R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A hfg : Set.EqOn f g (σₙ R a) hg : ¬ContinuousOn g (σₙ R a) ⊢ cfcₙ f a = cfcₙ g a case neg.inr.inr R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f g : R → R a : A hfg : Set.EqOn f g (σₙ R a) h0 : ¬g 0 = 0 ⊢ cfcₙ f a = cfcₙ g a
e9bfeb6163b24036
Fermat42.not_minimal
Mathlib/NumberTheory/FLT/Four.lean
theorem not_minimal {a b c : ℤ} (h : Minimal a b c) (ha2 : a % 2 = 1) (hc : 0 < c) : False
a b c : ℤ h : Minimal a b c ha2 : a % 2 = 1 hc : 0 < c ht : PythagoreanTriple (a ^ 2) (b ^ 2) c h2 : (a ^ 2).gcd (b ^ 2) = 1 ha22 : a ^ 2 % 2 = 1 n : ℤ h3 : a.gcd n = 1 ht1 : a ^ 2 = 0 ^ 2 - n ^ 2 ht2 : b ^ 2 = 2 * 0 * n ht3 : c = 0 ^ 2 + n ^ 2 ht4 : Int.gcd 0 n = 1 ht5 : 0 % 2 = 0 ∧ n % 2 = 1 ∨ 0 % 2 = 1 ∧ n % 2 = 0 ht6 : 0 ≤ 0 htt : PythagoreanTriple a n 0 ⊢ b ^ 2 ≠ 0 → False
rw [ht2]
a b c : ℤ h : Minimal a b c ha2 : a % 2 = 1 hc : 0 < c ht : PythagoreanTriple (a ^ 2) (b ^ 2) c h2 : (a ^ 2).gcd (b ^ 2) = 1 ha22 : a ^ 2 % 2 = 1 n : ℤ h3 : a.gcd n = 1 ht1 : a ^ 2 = 0 ^ 2 - n ^ 2 ht2 : b ^ 2 = 2 * 0 * n ht3 : c = 0 ^ 2 + n ^ 2 ht4 : Int.gcd 0 n = 1 ht5 : 0 % 2 = 0 ∧ n % 2 = 1 ∨ 0 % 2 = 1 ∧ n % 2 = 0 ht6 : 0 ≤ 0 htt : PythagoreanTriple a n 0 ⊢ 2 * 0 * n ≠ 0 → False
58647b498e4824ae
NormedSpace.vonNBornology_eq
Mathlib/Analysis/LocallyConvex/Bounded.lean
theorem vonNBornology_eq : Bornology.vonNBornology 𝕜 E = PseudoMetricSpace.toBornology
𝕜 : Type u_1 E : Type u_3 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace 𝕜 E s : Set E ⊢ Bornology.IsVonNBounded 𝕜 s ↔ Bornology.IsBounded s
exact isVonNBounded_iff _
no goals
6b09106729310f8b
CategoryTheory.Functor.complete_distinguished_essImageDistTriang_morphism
Mathlib/CategoryTheory/Localization/Triangulated.lean
lemma complete_distinguished_essImageDistTriang_morphism (H : ∀ (T₁' T₂' : Triangle C) (_ : T₁' ∈ distTriang C) (_ : T₂' ∈ distTriang C) (a : L.obj (T₁'.obj₁) ⟶ L.obj (T₂'.obj₁)) (b : L.obj (T₁'.obj₂) ⟶ L.obj (T₂'.obj₂)) (_ : L.map T₁'.mor₁ ≫ b = a ≫ L.map T₂'.mor₁), ∃ (φ : L.mapTriangle.obj T₁' ⟶ L.mapTriangle.obj T₂'), φ.hom₁ = a ∧ φ.hom₂ = b) (T₁ T₂ : Triangle D) (hT₁ : T₁ ∈ Functor.essImageDistTriang L) (hT₂ : T₂ ∈ L.essImageDistTriang) (a : T₁.obj₁ ⟶ T₂.obj₁) (b : T₁.obj₂ ⟶ T₂.obj₂) (fac : T₁.mor₁ ≫ b = a ≫ T₂.mor₁) : ∃ c, T₁.mor₂ ≫ c = b ≫ T₂.mor₂ ∧ T₁.mor₃ ≫ a⟦1⟧' = c ≫ T₂.mor₃
case intro.intro.intro.intro.intro.intro.refine_1 C : Type u_1 D : Type u_2 inst✝⁸ : Category.{u_3, u_1} C inst✝⁷ : Category.{u_4, u_2} D L : C ⥤ D inst✝⁶ : HasShift C ℤ inst✝⁵ : Preadditive C inst✝⁴ : HasZeroObject C inst✝³ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝² : Pretriangulated C inst✝¹ : HasShift D ℤ inst✝ : L.CommShift ℤ H : ∀ (T₁' T₂' : Triangle C), T₁' ∈ distinguishedTriangles → T₂' ∈ distinguishedTriangles → ∀ (a : L.obj T₁'.obj₁ ⟶ L.obj T₂'.obj₁) (b : L.obj T₁'.obj₂ ⟶ L.obj T₂'.obj₂), L.map T₁'.mor₁ ≫ b = a ≫ L.map T₂'.mor₁ → ∃ φ, φ.hom₁ = a ∧ φ.hom₂ = b T₁ T₂ : Triangle D a : T₁.obj₁ ⟶ T₂.obj₁ b : T₁.obj₂ ⟶ T₂.obj₂ fac : T₁.mor₁ ≫ b = a ≫ T₂.mor₁ T₁' : Triangle C e₁ : T₁ ≅ L.mapTriangle.obj T₁' hT₁' : T₁' ∈ distinguishedTriangles T₂' : Triangle C e₂ : T₂ ≅ L.mapTriangle.obj T₂' hT₂' : T₂' ∈ distinguishedTriangles comm₁ : L.map T₁'.mor₁ ≫ e₁.inv.hom₂ = e₁.inv.hom₁ ≫ T₁.mor₁ comm₁' : T₂.mor₁ ≫ e₂.hom.hom₂ = e₂.hom.hom₁ ≫ L.map T₂'.mor₁ comm₂ : T₁.mor₂ ≫ e₁.hom.hom₃ = e₁.hom.hom₂ ≫ L.map T₁'.mor₂ comm₂' : T₂.mor₂ ≫ e₂.hom.hom₃ = e₂.hom.hom₂ ≫ L.map T₂'.mor₂ comm₃' : T₂.mor₃ ≫ (shiftFunctor D 1).map e₂.hom.hom₁ = e₂.hom.hom₃ ≫ L.map T₂'.mor₃ ≫ (L.commShiftIso 1).hom.app T₂'.obj₁ comm₃ : L.map T₁'.mor₃ ≫ (L.commShiftIso 1).hom.app T₁'.obj₁ ≫ (shiftFunctor D 1).map e₁.inv.hom₁ = e₁.inv.hom₃ ≫ T₁.mor₃ φ : L.mapTriangle.obj T₁' ⟶ L.mapTriangle.obj T₂' hφ₁ : φ.hom₁ = e₁.inv.hom₁ ≫ a ≫ e₂.hom.hom₁ hφ₂ : φ.hom₂ = e₁.inv.hom₂ ≫ b ≫ e₂.hom.hom₂ h₂ : L.map T₁'.mor₂ ≫ φ.hom₃ = φ.hom₂ ≫ L.map T₂'.mor₂ h₃ : L.map T₁'.mor₃ ≫ (L.commShiftIso 1).hom.app T₁'.obj₁ ≫ (shiftFunctor D 1).map φ.hom₁ = φ.hom₃ ≫ L.map T₂'.mor₃ ≫ (L.commShiftIso 1).hom.app T₂'.obj₁ ⊢ T₁.mor₂ ≫ e₁.hom.hom₃ ≫ φ.hom₃ ≫ e₂.inv.hom₃ = b ≫ T₂.mor₂
rw [reassoc_of% comm₂, reassoc_of% h₂, hφ₂, assoc, assoc, Iso.hom_inv_id_triangle_hom₂_assoc, ← reassoc_of% comm₂', Iso.hom_inv_id_triangle_hom₃, comp_id]
no goals
f4bc8e1c8f902228
Finset.Nonempty.of_disjSups_left
Mathlib/Data/Finset/Sups.lean
theorem Nonempty.of_disjSups_left : (s ○ t).Nonempty → s.Nonempty
α : Type u_2 inst✝³ : DecidableEq α inst✝² : SemilatticeSup α inst✝¹ : OrderBot α inst✝ : DecidableRel Disjoint s t : Finset α ⊢ (∃ x, ∃ a ∈ s, ∃ b ∈ t, Disjoint a b ∧ a ⊔ b = x) → ∃ x, x ∈ s
exact fun ⟨_, a, ha, _⟩ => ⟨a, ha⟩
no goals
63779e3956b0ff3d
integral_mul_cpow_one_add_sq
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem integral_mul_cpow_one_add_sq {t : ℂ} (ht : t ≠ -1) : (∫ x : ℝ in a..b, (x : ℂ) * ((1 : ℂ) + ↑x ^ 2) ^ t) = ((1 : ℂ) + (b : ℂ) ^ 2) ^ (t + 1) / (2 * (t + ↑1)) - ((1 : ℂ) + (a : ℂ) ^ 2) ^ (t + 1) / (2 * (t + ↑1))
a b : ℝ t : ℂ ht : t ≠ -1 ⊢ t + 1 ≠ 0
contrapose! ht
a b : ℝ t : ℂ ht : t + 1 = 0 ⊢ t = -1
5e0a067782411706
Finset.centerMass_le_sup
Mathlib/Analysis/Convex/Combination.lean
theorem centerMass_le_sup {s : Finset ι} {f : ι → α} {w : ι → R} (hw₀ : ∀ i ∈ s, 0 ≤ w i) (hw₁ : 0 < ∑ i ∈ s, w i) : s.centerMass w f ≤ s.sup' (nonempty_of_ne_empty <| by rintro rfl; simp at hw₁) f
R : Type u_1 R' : Type u_2 E : Type u_3 F : Type u_4 ι : Type u_5 ι' : Type u_6 α : Type u_7 inst✝⁸ : LinearOrderedField R inst✝⁷ : LinearOrderedField R' inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s✝ : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E s : Finset ι f : ι → α w : ι → R hw₀ : ∀ i ∈ s, 0 ≤ w i hw₁ : 0 < ∑ i ∈ s, w i ⊢ s ≠ ∅
rintro rfl
R : Type u_1 R' : Type u_2 E : Type u_3 F : Type u_4 ι : Type u_5 ι' : Type u_6 α : Type u_7 inst✝⁸ : LinearOrderedField R inst✝⁷ : LinearOrderedField R' inst✝⁶ : AddCommGroup E inst✝⁵ : AddCommGroup F inst✝⁴ : LinearOrderedAddCommGroup α inst✝³ : Module R E inst✝² : Module R F inst✝¹ : Module R α inst✝ : OrderedSMul R α s : Set E i j : ι c : R t : Finset ι w✝ : ι → R z : ι → E f : ι → α w : ι → R hw₀ : ∀ i ∈ ∅, 0 ≤ w i hw₁ : 0 < ∑ i ∈ ∅, w i ⊢ False
da5b7b31c2eefa72
Set.ncard_eq_of_bijective
Mathlib/Data/Set/Card.lean
theorem ncard_eq_of_bijective {n : ℕ} (f : ∀ i, i < n → α) (hf : ∀ a ∈ s, ∃ i, ∃ h : i < n, f i h = a) (hf' : ∀ (i) (h : i < n), f i h ∈ s) (f_inj : ∀ (i j) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j) : s.ncard = n
α : Type u_1 s : Set α n : ℕ f : (i : ℕ) → i < n → α hf : ∀ a ∈ s, ∃ i, ∃ (h : i < n), f i h = a hf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s f_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j f' : Fin n → α := fun i => f ↑i ⋯ himage : s = f' '' univ ⊢ s.ncard = n
rw [← Fintype.card_fin n, ← Nat.card_eq_fintype_card, ← Set.ncard_univ, himage]
α : Type u_1 s : Set α n : ℕ f : (i : ℕ) → i < n → α hf : ∀ a ∈ s, ∃ i, ∃ (h : i < n), f i h = a hf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s f_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j f' : Fin n → α := fun i => f ↑i ⋯ himage : s = f' '' univ ⊢ (f' '' univ).ncard = univ.ncard
e5caade2630c707b
Finset.noncommProd_erase_mul
Mathlib/Data/Finset/NoncommProd.lean
theorem noncommProd_erase_mul [DecidableEq α] (s : Finset α) {a : α} (h : a ∈ s) (f : α → β) (comm) (comm' := fun _ hx _ hy hxy ↦ comm (s.mem_of_mem_erase hx) (s.mem_of_mem_erase hy) hxy) : (s.erase a).noncommProd f comm' * f a = s.noncommProd f comm
α : Type u_3 β : Type u_4 inst✝¹ : Monoid β inst✝ : DecidableEq α s : Finset α a : α h : a ∈ s f : α → β comm : (↑s).Pairwise (Commute on f) comm' : optParam (∀ x ∈ ↑(s.erase a), ∀ x_1 ∈ ↑(s.erase a), x ≠ x_1 → (Commute on f) x x_1) ⋯ ⊢ (s.erase a).noncommProd f comm' * f a = s.noncommProd f comm
simpa only [← Multiset.map_erase_of_mem _ _ h] using Multiset.noncommProd_erase_mul (s.1.map f) (Multiset.mem_map_of_mem f h) _
no goals
005bcbf5b5e32eec
Hopf_.mul_antipode
Mathlib/CategoryTheory/Monoidal/Hopf_.lean
theorem mul_antipode (A : Hopf_ C) : A.X.X.mul ≫ A.antipode = (A.antipode ⊗ A.antipode) ≫ (β_ _ _).hom ≫ A.X.X.mul
case hba C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C ⊢ (A.X.comul.hom ⊗ A.X.comul.hom) ≫ (tensorμ (Opposite.op A.X.X.X) (Opposite.op A.X.X.X) (Opposite.op A.X.X.X) (Opposite.op A.X.X.X)).unop ≫ (α_ (A.X.X.X ⊗ A.X.X.X) A.X.X.X A.X.X.X).inv ≫ A.X.X.mul ▷ A.X.X.X ▷ A.X.X.X ≫ A.antipode ▷ A.X.X.X ▷ A.X.X.X ≫ (α_ A.X.X.X A.X.X.X A.X.X.X).hom ≫ A.X.X.X ◁ A.X.X.mul ≫ A.X.X.mul = (A.X.counit.hom ⊗ A.X.counit.hom) ≫ (λ_ (𝟙_ C)).hom ≫ A.X.X.one
simp only [tensorμ]
case hba C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C A : Hopf_ C ⊢ (A.X.comul.hom ⊗ A.X.comul.hom) ≫ ((α_ (Opposite.op A.X.X.X) (Opposite.op A.X.X.X) (Opposite.op A.X.X.X ⊗ Opposite.op A.X.X.X)).hom ≫ Opposite.op A.X.X.X ◁ (α_ (Opposite.op A.X.X.X) (Opposite.op A.X.X.X) (Opposite.op A.X.X.X)).inv ≫ Opposite.op A.X.X.X ◁ (β_ (Opposite.op A.X.X.X) (Opposite.op A.X.X.X)).hom ▷ Opposite.op A.X.X.X ≫ Opposite.op A.X.X.X ◁ (α_ (Opposite.op A.X.X.X) (Opposite.op A.X.X.X) (Opposite.op A.X.X.X)).hom ≫ (α_ (Opposite.op A.X.X.X) (Opposite.op A.X.X.X) (Opposite.op A.X.X.X ⊗ Opposite.op A.X.X.X)).inv).unop ≫ (α_ (A.X.X.X ⊗ A.X.X.X) A.X.X.X A.X.X.X).inv ≫ A.X.X.mul ▷ A.X.X.X ▷ A.X.X.X ≫ A.antipode ▷ A.X.X.X ▷ A.X.X.X ≫ (α_ A.X.X.X A.X.X.X A.X.X.X).hom ≫ A.X.X.X ◁ A.X.X.mul ≫ A.X.X.mul = (A.X.counit.hom ⊗ A.X.counit.hom) ≫ (λ_ (𝟙_ C)).hom ≫ A.X.X.one
fc94aad8d9cc8423
Preperfect.open_inter
Mathlib/Topology/Perfect.lean
theorem Preperfect.open_inter {U : Set α} (hC : Preperfect C) (hU : IsOpen U) : Preperfect (U ∩ C)
case intro α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Preperfect C hU : IsOpen U x : α xU : x ∈ U xC : x ∈ C ⊢ U ∈ 𝓝 x
exact hU.mem_nhds xU
no goals
9bea63263d482796
CategoryTheory.Limits.colimitLimitToLimitColimit_injective
Mathlib/CategoryTheory/Limits/FilteredColimitCommutesFiniteLimit.lean
theorem colimitLimitToLimitColimit_injective : Function.Injective (colimitLimitToLimitColimit F)
J : Type u₁ K : Type u₂ inst✝⁴ : Category.{v₁, u₁} J inst✝³ : Category.{v₂, u₂} K inst✝² : Small.{v, u₂} K F : J × K ⥤ Type v inst✝¹ : IsFiltered K inst✝ : Finite J val✝ : Fintype J kx : K x : limit ((curry.obj (swap K J ⋙ F)).obj kx) ky : K y : limit ((curry.obj (swap K J ⋙ F)).obj ky) h : ∀ (j : J), ∃ k f g, F.map (𝟙 j, f) (limit.π ((curry.obj (swap K J ⋙ F)).obj kx) j x) = F.map (𝟙 j, g) (limit.π ((curry.obj (swap K J ⋙ F)).obj ky) j y) k : J → K := fun j => ⋯.choose f : (j : J) → kx ⟶ k j := fun j => ⋯.choose g : (j : J) → ky ⟶ k j := fun j => ⋯.choose w : ∀ (j : J), F.map (𝟙 j, f j) (limit.π ((curry.obj (swap K J ⋙ F)).obj kx) j x) = F.map (𝟙 j, g j) (limit.π ((curry.obj (swap K J ⋙ F)).obj ky) j y) O : Finset K := Finset.image k Finset.univ ∪ {kx, ky} kxO : kx ∈ O kyO : ky ∈ O kjO : ∀ (j : J), k j ∈ O H : Finset ((X : K) ×' (Y : K) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y)) := Finset.image (fun j => ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩) Finset.univ ∪ Finset.image (fun j => ⟨ky, ⟨k j, ⟨kyO, ⟨⋯, g j⟩⟩⟩⟩) Finset.univ S : K T : {X : K} → X ∈ O → (X ⟶ S) W : ∀ {X Y : K} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y}, ⟨X, ⟨Y, ⟨mX, ⟨mY, f⟩⟩⟩⟩ ∈ H → f ≫ T mY = T mX j : J ⊢ ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩ = ⟨kx, ⟨k j, ⟨kxO, ⟨⋯, f j⟩⟩⟩⟩
simp only [heq_iff_eq]
no goals
dd8ec51392784757
collapse_modular
Mathlib/Combinatorics/SetFamily/FourFunctions.lean
lemma collapse_modular [ExistsAddOfLE β] (hu : a ∉ u) (h₁ : 0 ≤ f₁) (h₂ : 0 ≤ f₂) (h₃ : 0 ≤ f₃) (h₄ : 0 ≤ f₄) (h : ∀ ⦃s⦄, s ⊆ insert a u → ∀ ⦃t⦄, t ⊆ insert a u → f₁ s * f₂ t ≤ f₃ (s ∩ t) * f₄ (s ∪ t)) (𝒜 ℬ : Finset (Finset α)) : ∀ ⦃s⦄, s ⊆ u → ∀ ⦃t⦄, t ⊆ u → collapse 𝒜 a f₁ s * collapse ℬ a f₂ t ≤ collapse (𝒜 ⊼ ℬ) a f₃ (s ∩ t) * collapse (𝒜 ⊻ ℬ) a f₄ (s ∪ t)
α : Type u_1 β : Type u_2 inst✝² : DecidableEq α inst✝¹ : LinearOrderedCommSemiring β a : α f₁ f₂ f₃ f₄ : Finset α → β u : Finset α inst✝ : ExistsAddOfLE β hu : a ∉ u h₁ : 0 ≤ f₁ h₂ : 0 ≤ f₂ h₃ : 0 ≤ f₃ h₄ : 0 ≤ f₄ h : ∀ ⦃s : Finset α⦄, s ⊆ insert a u → ∀ ⦃t : Finset α⦄, t ⊆ insert a u → f₁ s * f₂ t ≤ f₃ (s ∩ t) * f₄ (s ∪ t) 𝒜 ℬ : Finset (Finset α) s : Finset α hsu : s ⊆ u t : Finset α htu : t ⊆ u this✝¹ : s ⊆ insert a u this✝ : t ⊆ insert a u this : insert a s ⊆ insert a u ⊢ collapse 𝒜 a f₁ s * collapse ℬ a f₂ t ≤ collapse (𝒜 ⊼ ℬ) a f₃ (s ∩ t) * collapse (𝒜 ⊻ ℬ) a f₄ (s ∪ t)
have := insert_subset_insert a htu
α : Type u_1 β : Type u_2 inst✝² : DecidableEq α inst✝¹ : LinearOrderedCommSemiring β a : α f₁ f₂ f₃ f₄ : Finset α → β u : Finset α inst✝ : ExistsAddOfLE β hu : a ∉ u h₁ : 0 ≤ f₁ h₂ : 0 ≤ f₂ h₃ : 0 ≤ f₃ h₄ : 0 ≤ f₄ h : ∀ ⦃s : Finset α⦄, s ⊆ insert a u → ∀ ⦃t : Finset α⦄, t ⊆ insert a u → f₁ s * f₂ t ≤ f₃ (s ∩ t) * f₄ (s ∪ t) 𝒜 ℬ : Finset (Finset α) s : Finset α hsu : s ⊆ u t : Finset α htu : t ⊆ u this✝² : s ⊆ insert a u this✝¹ : t ⊆ insert a u this✝ : insert a s ⊆ insert a u this : insert a t ⊆ insert a u ⊢ collapse 𝒜 a f₁ s * collapse ℬ a f₂ t ≤ collapse (𝒜 ⊼ ℬ) a f₃ (s ∩ t) * collapse (𝒜 ⊻ ℬ) a f₄ (s ∪ t)
4b3d90b1fc92ae23
LieModuleHom.coe_injective
Mathlib/Algebra/Lie/Basic.lean
theorem coe_injective : @Function.Injective (M →ₗ⁅R,L⁆ N) (M → N) (↑)
R : Type u L : Type v M : Type w N : Type w₁ inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : LieRingModule L M inst✝ : LieRingModule L N ⊢ Injective DFunLike.coe
rintro ⟨⟨⟨f, _⟩⟩⟩ ⟨⟨⟨g, _⟩⟩⟩ h
case mk.mk.mk.mk.mk.mk R : Type u L : Type v M : Type w N : Type w₁ inst✝⁷ : CommRing R inst✝⁶ : LieRing L inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : LieRingModule L M inst✝ : LieRingModule L N f : M → N map_add'✝¹ : ∀ (x y : M), f (x + y) = f x + f y map_smul'✝¹ : ∀ (m : R) (x : M), { toFun := f, map_add' := map_add'✝¹ }.toFun (m • x) = (RingHom.id R) m • { toFun := f, map_add' := map_add'✝¹ }.toFun x map_lie'✝¹ : ∀ {x : L} {m : M}, { toFun := f, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ }.toFun ⁅x, m⁆ = ⁅x, { toFun := f, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ }.toFun m⁆ g : M → N map_add'✝ : ∀ (x y : M), g (x + y) = g x + g y map_smul'✝ : ∀ (m : R) (x : M), { toFun := g, map_add' := map_add'✝ }.toFun (m • x) = (RingHom.id R) m • { toFun := g, map_add' := map_add'✝ }.toFun x map_lie'✝ : ∀ {x : L} {m : M}, { toFun := g, map_add' := map_add'✝, map_smul' := map_smul'✝ }.toFun ⁅x, m⁆ = ⁅x, { toFun := g, map_add' := map_add'✝, map_smul' := map_smul'✝ }.toFun m⁆ h : ⇑{ toFun := f, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹, map_lie' := map_lie'✝¹ } = ⇑{ toFun := g, map_add' := map_add'✝, map_smul' := map_smul'✝, map_lie' := map_lie'✝ } ⊢ { toFun := f, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹, map_lie' := map_lie'✝¹ } = { toFun := g, map_add' := map_add'✝, map_smul' := map_smul'✝, map_lie' := map_lie'✝ }
b0f29a1729ee1483
ContinuousLinearMap.adjoint_comp
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
theorem adjoint_comp (A : F →L[𝕜] G) (B : E →L[𝕜] F) : (A ∘L B)† = B† ∘L A†
case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : F →L[𝕜] G B : E →L[𝕜] F v : G ⊢ (adjoint (A.comp B)) v = ((adjoint B).comp (adjoint A)) v
refine ext_inner_left 𝕜 fun w => ?_
case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : F →L[𝕜] G B : E →L[𝕜] F v : G w : E ⊢ ⟪w, (adjoint (A.comp B)) v⟫_𝕜 = ⟪w, ((adjoint B).comp (adjoint A)) v⟫_𝕜
f64eda0712198575
IsPrincipalIdealRing.of_prime
Mathlib/RingTheory/PrincipalIdealDomainOfPrime.lean
theorem IsPrincipalIdealRing.of_prime (H : ∀ P : Ideal R, P.IsPrime → P.IsPrincipal) : IsPrincipalIdealRing R
R : Type u_1 inst✝ : CommRing R H : ∀ (P : Ideal R), P.IsPrime → Submodule.IsPrincipal P J : Ideal R hJ : J ∈ nonPrincipals R I : Ideal R hJI : J ≤ I hI : Maximal (fun x => x ∈ nonPrincipals R) I Imax' : ∀ {J : Ideal R}, I < J → Submodule.IsPrincipal J hI1 : ¬I = ⊤ x a b v : R hxy : x * (v * a) ∈ I hy : v * a ∉ I ha : I ⊔ span {v * a} = Submodule.span R {a} hb : Submodule.colon I (span {v * a}) = Submodule.span R {b} u : R hi : u * a ∈ I ⊢ u * a * v ∈ I
exact mul_mem_right _ _ hi
no goals
a2a0a20bfddf7c1c
LaurentSeries.Cauchy.exists_lb_eventual_support
Mathlib/RingTheory/LaurentSeries.lean
lemma Cauchy.exists_lb_eventual_support {ℱ : Filter K⸨X⸩} (hℱ : Cauchy ℱ) : ∃ N, ∀ᶠ f : K⸨X⸩ in ℱ, ∀ n < N, f.coeff n = (0 : K)
case pos K : Type u_2 inst✝ : Field K ℱ : Filter K⸨X⸩ hℱ : Cauchy ℱ entourage : Set (K⸨X⸩ × K⸨X⸩) := {P | Valued.v (P.2 - P.1) < ↑(ofAdd 0)} ζ : ℤₘ₀ˣ := Units.mk0 ↑(ofAdd 0) ⋯ S : Set K⸨X⸩ hS : S ∈ ℱ T : Set K⸨X⸩ hT : T ∈ ℱ H : S ×ˢ T ⊆ entourage f : K⸨X⸩ hf✝ : f ∈ S ∩ T hf : f = 0 x : K⸨X⸩ hg : Valued.v x ≤ ↑(ofAdd 0) ⊢ ∀ n < 0, x.coeff n = 0
exact (valuation_le_iff_coeff_lt_eq_zero K).mp hg
no goals
3e2bae03010f2af6
spectrum.subset_polynomial_aeval
Mathlib/FieldTheory/IsAlgClosed/Spectrum.lean
theorem subset_polynomial_aeval (a : A) (p : 𝕜[X]) : (eval · p) '' σ a ⊆ σ (aeval a p)
𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] ⊢ (fun x => eval x p) '' σ a ⊆ σ ((aeval a) p)
rintro _ ⟨k, hk, rfl⟩
case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a ⊢ (fun x => eval x p) k ∈ σ ((aeval a) p)
0d43137f73938891
MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt
Mathlib/Probability/Martingale/Upcrossing.lean
theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ω : Ω M : ℕ hNM : N ≤ M h : lowerCrossingTime a b f N n ω < N ⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ N n : ℕ ω : Ω M : ℕ hNM : N ≤ M h : lowerCrossingTime a b f N n ω < N h' : upperCrossingTime a b f N n ω < N ⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
defdbed08859d272
Continuous.integrableAt_nhds
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
theorem Continuous.integrableAt_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {f : α → E} (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ
α : Type u_1 E : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : NormedAddCommGroup E inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopologyEither α E inst✝¹ : OpensMeasurableSpace α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : Continuous f a : α ⊢ IntegrableAtFilter f (𝓝 a) μ
rw [← nhdsWithin_univ]
α : Type u_1 E : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : NormedAddCommGroup E inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopologyEither α E inst✝¹ : OpensMeasurableSpace α μ : Measure α inst✝ : IsLocallyFiniteMeasure μ f : α → E hf : Continuous f a : α ⊢ IntegrableAtFilter f (𝓝[univ] a) μ
61ea7baddfe6310e
ComplexShape.Embedding.boundaryLE
Mathlib/Algebra/Homology/Embedding/Boundary.lean
lemma boundaryLE {k' : ι'} {j : ι} (hj : c'.Rel (e.f j) k') (hk' : ∀ i, e.f i ≠ k') : e.BoundaryLE j
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' e : c.Embedding c' k' : ι' j : ι hj : c'.Rel (e.f j) k' hk' : ∀ (i : ι), e.f i ≠ k' ⊢ e.BoundaryLE j
constructor
case left ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' e : c.Embedding c' k' : ι' j : ι hj : c'.Rel (e.f j) k' hk' : ∀ (i : ι), e.f i ≠ k' ⊢ c'.Rel (e.f j) (c'.next (e.f j)) case right ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' e : c.Embedding c' k' : ι' j : ι hj : c'.Rel (e.f j) k' hk' : ∀ (i : ι), e.f i ≠ k' ⊢ ∀ (k : ι), ¬c'.Rel (e.f j) (e.f k)
7500d492e2c04792
Con.map_of_mul_left_rel_one
Mathlib/GroupTheory/Congruence/Defs.lean
theorem map_of_mul_left_rel_one [Monoid M] (c : Con M) (f : M → M) (hf : ∀ x, c (f x * x) 1) {x y} (h : c x y) : c (f x) (f y)
M : Type u_1 inst✝ : Monoid M c : Con M f : M → M hf : ∀ (x : M), c (f x * x) 1 x y : M h : c x y ⊢ c (f x) (f y)
simp only [← Con.eq, coe_one, coe_mul] at *
M : Type u_1 inst✝ : Monoid M c : Con M f : M → M x y : M hf : ∀ (x : M), ↑(f x) * ↑x = 1 h : ↑x = ↑y ⊢ ↑(f x) = ↑(f y)
d7e45b31b3319c7c
Complex.two_pi_I_inv_smul_circleIntegral_sub_inv_smul_of_differentiable_on_off_countable
Mathlib/Analysis/Complex/CauchyIntegral.lean
theorem two_pi_I_inv_smul_circleIntegral_sub_inv_smul_of_differentiable_on_off_countable {R : ℝ} {c w : ℂ} {f : ℂ → E} {s : Set ℂ} (hs : s.Countable) (hw : w ∈ ball c R) (hc : ContinuousOn f (closedBall c R)) (hd : ∀ x ∈ ball c R \ s, DifferentiableAt ℂ f x) : ((2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z) = f w
case intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ f : ℂ → E s : Set ℂ hs : s.Countable R : ℝ≥0 hw : w ∈ ball c ↑R hc : ContinuousOn f (closedBall c ↑R) hd : ∀ x ∈ ball c ↑R \ s, DifferentiableAt ℂ f x hR : 0 < ↑R this : w ∈ closure (ball c ↑R \ s) A : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w B : ContinuousAt f w ⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) = f w
refine tendsto_nhds_unique_of_frequently_eq A B ((mem_closure_iff_frequently.1 this).mono ?_)
case intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E c w : ℂ f : ℂ → E s : Set ℂ hs : s.Countable R : ℝ≥0 hw : w ∈ ball c ↑R hc : ContinuousOn f (closedBall c ↑R) hd : ∀ x ∈ ball c ↑R \ s, DifferentiableAt ℂ f x hR : 0 < ↑R this : w ∈ closure (ball c ↑R \ s) A : ContinuousAt (fun w => (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - w)⁻¹ • f z) w B : ContinuousAt f w ⊢ ∀ x ∈ ball c ↑R \ s, ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, ↑R), (z - x)⁻¹ • f z) = f x
6fb0641025ed7482
SimpleGraph.Walk.map_append
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem map_append {u v w : V} (p : G.Walk u v) (q : G.Walk v w) : (p.append q).map f = (p.map f).append (q.map f)
V : Type u V' : Type v G : SimpleGraph V G' : SimpleGraph V' f : G →g G' u v w : V p : G.Walk u v q : G.Walk v w ⊢ Walk.map f (p.append q) = (Walk.map f p).append (Walk.map f q)
induction p <;> simp [*]
no goals
aed9d2f973b758e7
AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology
Mathlib/AlgebraicGeometry/Sites/Small.lean
lemma mem_toGrothendieck_smallPretopology (X : Q.Over ⊤ S) (R : Sieve X) : R ∈ (S.smallPretopology P Q).toGrothendieck _ X ↔ ∀ x : X.left, ∃ (Y : Q.Over ⊤ S) (f : Y ⟶ X) (y : Y.left), R f ∧ P f.left ∧ f.left.base y = x
case refine_1.intro.intro.intro.intro.intro.intro P Q : MorphismProperty Scheme S : Scheme inst✝⁶ : P.IsMultiplicative inst✝⁵ : P.RespectsIso inst✝⁴ : P.IsStableUnderBaseChange inst✝³ : IsJointlySurjectivePreserving P inst✝² : Q.IsStableUnderComposition inst✝¹ : Q.IsStableUnderBaseChange inst✝ : Q.HasOfPostcompProperty Q X : Q.Over ⊤ S R : Sieve X 𝒰 : Cover P X.left h : Cover.Over S 𝒰 p : ∀ (j : 𝒰.J), Q (𝒰.obj j ↘ S) hle : 𝒰.toPresieveOverProp p ≤ R.arrows x : ↑↑X.left.toPresheafedSpace y : ↑↑(𝒰.obj (𝒰.f x)).toPresheafedSpace hy : (ConcreteCategory.hom (𝒰.map (𝒰.f x)).base) y = x ⊢ ∃ Y f y, R.arrows f ∧ P f.left ∧ (ConcreteCategory.hom f.left.base) y = x
refine ⟨(𝒰.obj (𝒰.f x)).asOverProp S (p _), (𝒰.map (𝒰.f x)).asOverProp S, y, hle _ ?_, 𝒰.map_prop _, hy⟩
case refine_1.intro.intro.intro.intro.intro.intro P Q : MorphismProperty Scheme S : Scheme inst✝⁶ : P.IsMultiplicative inst✝⁵ : P.RespectsIso inst✝⁴ : P.IsStableUnderBaseChange inst✝³ : IsJointlySurjectivePreserving P inst✝² : Q.IsStableUnderComposition inst✝¹ : Q.IsStableUnderBaseChange inst✝ : Q.HasOfPostcompProperty Q X : Q.Over ⊤ S R : Sieve X 𝒰 : Cover P X.left h : Cover.Over S 𝒰 p : ∀ (j : 𝒰.J), Q (𝒰.obj j ↘ S) hle : 𝒰.toPresieveOverProp p ≤ R.arrows x : ↑↑X.left.toPresheafedSpace y : ↑↑(𝒰.obj (𝒰.f x)).toPresheafedSpace hy : (ConcreteCategory.hom (𝒰.map (𝒰.f x)).base) y = x ⊢ Hom.asOverProp (𝒰.map (𝒰.f x)) S ∈ 𝒰.toPresieveOverProp p
f1138a154afc8db2
monadLift_seq
Mathlib/.lake/packages/batteries/Batteries/Control/Lawful/MonadLift.lean
theorem monadLift_seq [LawfulMonad m] [LawfulMonad n] (mf : m (α → β)) (ma : m α) : monadLift (mf <*> ma) = monadLift mf <*> (monadLift ma : n α)
m : Type u_1 → Type u_2 n : Type u_1 → Type u_3 inst✝⁵ : Monad m inst✝⁴ : Monad n inst✝³ : MonadLiftT m n inst✝² : LawfulMonadLiftT m n α β : Type u_1 inst✝¹ : LawfulMonad m inst✝ : LawfulMonad n mf : m (α → β) ma : m α ⊢ monadLift (mf <*> ma) = monadLift mf <*> monadLift ma
simp only [seq_eq_bind, monadLift_map, monadLift_bind]
no goals
e28632888a82ae78
Array.countP_eq_size
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Count.lean
theorem countP_eq_size {p} : countP p l = l.size ↔ ∀ a ∈ l, p a
α✝ : Type u_1 l : Array α✝ p : α✝ → Bool ⊢ countP p l = l.size ↔ ∀ (a : α✝), a ∈ l → p a = true
cases l
case mk α✝ : Type u_1 p : α✝ → Bool toList✝ : List α✝ ⊢ countP p { toList := toList✝ } = { toList := toList✝ }.size ↔ ∀ (a : α✝), a ∈ { toList := toList✝ } → p a = true
126e68e7ae0b7625
HasFPowerSeriesWithinOnBall.fderivWithin_of_mem
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem HasFPowerSeriesWithinOnBall.fderivWithin_of_mem [CompleteSpace F] (h : HasFPowerSeriesWithinOnBall f p s x r) (hu : UniqueDiffOn 𝕜 s) (hx : x ∈ s) : HasFPowerSeriesWithinOnBall (fderivWithin 𝕜 f s) p.derivSeries s x r
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ f : E → F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesWithinOnBall f p s x r hu : UniqueDiffOn 𝕜 s hx : x ∈ s ⊢ HasFPowerSeriesWithinOnBall (fderivWithin 𝕜 f s) p.derivSeries s x r
have : insert x s = s := insert_eq_of_mem hx
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ f : E → F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesWithinOnBall f p s x r hu : UniqueDiffOn 𝕜 s hx : x ∈ s this : insert x s = s ⊢ HasFPowerSeriesWithinOnBall (fderivWithin 𝕜 f s) p.derivSeries s x r
3b099c76b2a60ea3
Filter.filter_injOn_Iic_iff_injOn
Mathlib/Order/Filter/Map.lean
theorem Filter.filter_injOn_Iic_iff_injOn {s : Set α} {m : α → β} : InjOn (map m) (Iic <| 𝓟 s) ↔ InjOn m s
case refine_2 α : Type u_1 β : Type u_2 s : Set α m : α → β hm : InjOn m s F : Filter α hF : F ∈ Iic (𝓟 s) G : Filter α hG : G ∈ Iic (𝓟 s) ⊢ map m F = map m G → F = G
simp [map_eq_map_iff_of_injOn (le_principal_iff.mp hF) (le_principal_iff.mp hG) hm]
no goals
d6e29efebf50b69f
MeasureTheory.mul_le_integral_rnDeriv_of_ac
Mathlib/MeasureTheory/Decomposition/IntegralRNDeriv.lean
/-- For a convex continuous function `f` on `[0, ∞)`, if `μ` is absolutely continuous with respect to `ν`, then `(ν univ).toReal * f ((μ univ).toReal / (ν univ).toReal) ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν`. -/ lemma mul_le_integral_rnDeriv_of_ac [IsFiniteMeasure μ] [IsFiniteMeasure ν] (hf_cvx : ConvexOn ℝ (Ici 0) f) (hf_cont : ContinuousWithinAt f (Ici 0) 0) (hf_int : Integrable (fun x ↦ f (μ.rnDeriv ν x).toReal) ν) (hμν : μ ≪ ν) : (ν univ).toReal * f ((μ univ).toReal / (ν univ).toReal) ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν
case neg.refine_1 α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : ℝ → ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hf_cvx : ConvexOn ℝ (Ici 0) f hf_cont : ContinuousWithinAt f (Ici 0) 0 hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν hμν : μ ≪ ν hν : ¬ν = 0 this✝ : NeZero ν μ' : Measure α := (ν univ)⁻¹ • μ ν' : Measure α := (ν univ)⁻¹ • ν this : IsFiniteMeasure μ' hμν' : μ' ≪ ν' h_rnDeriv_eq : μ'.rnDeriv ν' =ᶠ[ae ν] μ.rnDeriv ν h_eq : ∫ (x : α), f (μ'.rnDeriv ν' x).toReal ∂ν' = (ν univ).toReal⁻¹ * ∫ (x : α), f (μ.rnDeriv ν x).toReal ∂ν ⊢ Integrable (fun x => f (μ'.rnDeriv ν' x).toReal) ν
refine (integrable_congr ?_).mpr hf_int
case neg.refine_1 α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : ℝ → ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν hf_cvx : ConvexOn ℝ (Ici 0) f hf_cont : ContinuousWithinAt f (Ici 0) 0 hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν hμν : μ ≪ ν hν : ¬ν = 0 this✝ : NeZero ν μ' : Measure α := (ν univ)⁻¹ • μ ν' : Measure α := (ν univ)⁻¹ • ν this : IsFiniteMeasure μ' hμν' : μ' ≪ ν' h_rnDeriv_eq : μ'.rnDeriv ν' =ᶠ[ae ν] μ.rnDeriv ν h_eq : ∫ (x : α), f (μ'.rnDeriv ν' x).toReal ∂ν' = (ν univ).toReal⁻¹ * ∫ (x : α), f (μ.rnDeriv ν x).toReal ∂ν ⊢ (fun x => f (μ'.rnDeriv ν' x).toReal) =ᶠ[ae ν] fun x => f (μ.rnDeriv ν x).toReal
0004fdd48300255a
DualNumber.lift_apply_inl
Mathlib/Algebra/DualNumber.lean
theorem lift_apply_inl (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) : lift fe (inl a : A[ε]) = fe.val.1 a
R : Type u_1 B : Type u_3 A : Type u_4 inst✝⁴ : CommSemiring R inst✝³ : Semiring A inst✝² : Semiring B inst✝¹ : Algebra R A inst✝ : Algebra R B fe : { fe // fe.2 * fe.2 = 0 ∧ ∀ (a : A), Commute fe.2 (fe.1 a) } a : A ⊢ (lift fe) (inl a) = (↑fe).1 a
rw [lift_apply_apply, fst_inl, snd_inl, map_zero, zero_mul, add_zero]
no goals
77744d62c26c2692
AddMonoidHom.toNatLinearMap_injective
Mathlib/Algebra/Module/LinearMap/Defs.lean
theorem AddMonoidHom.toNatLinearMap_injective [AddCommMonoid M] [AddCommMonoid M₂] : Function.Injective (@AddMonoidHom.toNatLinearMap M M₂ _ _)
case h M : Type u_8 M₂ : Type u_10 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid M₂ f g : M →+ M₂ h : f.toNatLinearMap = g.toNatLinearMap x : M ⊢ f x = g x
exact LinearMap.congr_fun h x
no goals
1670b4edf3bacc33
Set.Finite.toFinset_compl
Mathlib/Data/Set/Finite/Basic.lean
theorem toFinset_compl [DecidableEq α] [Fintype α] (hs : s.Finite) (h : sᶜ.Finite) : h.toFinset = hs.toFinsetᶜ
α : Type u s : Set α inst✝¹ : DecidableEq α inst✝ : Fintype α hs : s.Finite h : sᶜ.Finite ⊢ h.toFinset = hs.toFinsetᶜ
ext
case h α : Type u s : Set α inst✝¹ : DecidableEq α inst✝ : Fintype α hs : s.Finite h : sᶜ.Finite a✝ : α ⊢ a✝ ∈ h.toFinset ↔ a✝ ∈ hs.toFinsetᶜ
0419e5c1954818e8
Fin.snoc_update
Mathlib/Data/Fin/Tuple/Basic.lean
theorem snoc_update : snoc (update p i y) x = update (snoc p x) i.castSucc y
case h.e'_2.h.e'_6 n : ℕ α : Fin (n + 1) → Sort u_1 x : α (last n) p : (i : Fin n) → α i.castSucc i : Fin n y : α i.castSucc j : Fin (n + 1) h : ↑j < n h' : j = i.castSucc C1 : α i.castSucc = α j this : update (snoc p x) j (cast C1 y) j = cast C1 y e_5✝ : i.castSucc = j ⊢ HEq y (cast C1 y)
exact heq_of_cast_eq (congr_arg α (Eq.symm h')) rfl
no goals
4eef9dec140e05c3
Submodule.spanRank_finite_iff_fg
Mathlib/Algebra/Module/SpanRank.lean
/-- A submodule's `spanRank` is finite if and only if it is finitely generated. -/ @[simp] lemma spanRank_finite_iff_fg {p : Submodule R M} : p.spanRank < aleph0 ↔ p.FG
case mp R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M ⊢ ⨅ s, #↑↑s < ℵ₀ → ∃ S, S.Finite ∧ span R S = p
rintro h
case mp R : Type u_1 M : Type u inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M h : ⨅ s, #↑↑s < ℵ₀ ⊢ ∃ S, S.Finite ∧ span R S = p
57fd9ea29407f8a5
MvPolynomial.aeval_sumElim
Mathlib/Algebra/MvPolynomial/Eval.lean
lemma aeval_sumElim {σ τ : Type*} (p : MvPolynomial (σ ⊕ τ) R) (f : τ → S) (g : σ → T) : (aeval (Sum.elim g (algebraMap S T ∘ f))) p = (aeval g) ((aeval (Sum.elim X (C ∘ f))) p)
case h_add R : Type u inst✝⁶ : CommSemiring R S : Type u_2 T : Type u_3 inst✝⁵ : CommSemiring S inst✝⁴ : Algebra R S inst✝³ : CommSemiring T inst✝² : Algebra R T inst✝¹ : Algebra S T inst✝ : IsScalarTower R S T σ : Type u_4 τ : Type u_5 f : τ → S g : σ → T p q : MvPolynomial (σ ⊕ τ) R hp : (aeval (Sum.elim g (⇑(algebraMap S T) ∘ f))) p = (aeval g) ((aeval (Sum.elim X (⇑C ∘ f))) p) hq : (aeval (Sum.elim g (⇑(algebraMap S T) ∘ f))) q = (aeval g) ((aeval (Sum.elim X (⇑C ∘ f))) q) ⊢ (aeval (Sum.elim g (⇑(algebraMap S T) ∘ f))) (p + q) = (aeval g) ((aeval (Sum.elim X (⇑C ∘ f))) (p + q))
simp [hp, hq]
no goals
d1f6b73e513987b6
sum_Ico_pow
Mathlib/NumberTheory/Bernoulli.lean
theorem sum_Ico_pow (n p : ℕ) : (∑ k ∈ Ico 1 (n + 1), (k : ℚ) ^ p) = ∑ i ∈ range (p + 1), bernoulli' i * (p + 1).choose i * (n : ℚ) ^ (p + 1 - i) / (p + 1)
n p : ℕ f : ℕ → ℚ := fun i => bernoulli i * ↑(p.succ.succ.choose i) * ↑n ^ (p.succ.succ - i) / ↑p.succ.succ f' : ℕ → ℚ := fun i => bernoulli' i * ↑(p.succ.succ.choose i) * ↑n ^ (p.succ.succ - i) / ↑p.succ.succ hle : 1 ≤ n + 1 hne : ↑p + 1 + 1 ≠ 0 h1 : ∀ (r : ℚ), r * (↑p + 1 + 1) * ↑n ^ p.succ / (↑p + 1 + 1) = r * ↑n ^ p.succ h2 : f 1 + ↑n ^ p.succ = 1 / 2 * ↑n ^ p.succ i : ℕ x✝ : i ∈ range p ⊢ bernoulli (i + 2) * ↑((p + 2).choose (i + 2)) * ↑n ^ (p - i) / ↑(p + 2) = bernoulli' (i + 2) * ↑((p + 2).choose (i + 2)) * ↑n ^ (p - i) / ↑(p + 2)
rw [bernoulli_eq_bernoulli'_of_ne_one (succ_succ_ne_one i)]
no goals
0112bf36c164f141
Finsupp.range_mapRange
Mathlib/Data/Finsupp/Defs.lean
lemma range_mapRange (e : M → N) (he₀ : e 0 = 0) : Set.range (Finsupp.mapRange (α := α) e he₀) = {g | ∀ i, g i ∈ Set.range e}
case h.mpr α : Type u_1 M : Type u_5 N : Type u_7 inst✝¹ : Zero M inst✝ : Zero N e : M → N he₀ : e 0 = 0 g : α →₀ N h : ∀ (i : α), ∃ y, e y = g i ⊢ ∃ y, mapRange e he₀ y = g
classical choose f h using h use onFinset g.support (Set.indicator g.support f) (by aesop) ext i simp only [mapRange_apply, onFinset_apply, Set.indicator_apply] split_ifs <;> simp_all
no goals
8e042fcc877c4ad7
List.erase_toArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/ToArray.lean
theorem erase_toArray [BEq α] {as : List α} {a : α} : as.toArray.erase a = (as.erase a).toArray
α : Type u_1 inst✝ : BEq α as : List α a : α ⊢ (match finIdxOf? a as with | none => as.toArray | some i => as.toArray.eraseIdx ↑i ⋯) = (match idxOf? a as with | none => as | some i => as.eraseIdx i).toArray
rw [idxOf?_eq_map_finIdxOf?_val]
α : Type u_1 inst✝ : BEq α as : List α a : α ⊢ (match finIdxOf? a as with | none => as.toArray | some i => as.toArray.eraseIdx ↑i ⋯) = (match Option.map (fun x => ↑x) (finIdxOf? a as) with | none => as | some i => as.eraseIdx i).toArray
a257ecf7833886f3
VectorField.pullbackWithin_lieBracketWithin_of_isSymmSndFDerivWithinAt_of_eventuallyEq
Mathlib/Analysis/Calculus/VectorField.lean
/-- The Lie bracket commutes with taking pullbacks. This requires the function to have symmetric second derivative. Version in a complete space. One could also give a version avoiding completeness but requiring that `f` is a local diffeo. Variant where unique differentiability and the invariance property are only required in a smaller set `u`. -/ lemma pullbackWithin_lieBracketWithin_of_isSymmSndFDerivWithinAt_of_eventuallyEq {f : E → F} {V W : F → F} {x : E} {t : Set F} {u : Set E} (hf : IsSymmSndFDerivWithinAt 𝕜 f s x) (h'f : ContDiffWithinAt 𝕜 2 f s x) (hV : DifferentiableWithinAt 𝕜 V t (f x)) (hW : DifferentiableWithinAt 𝕜 W t (f x)) (hu : UniqueDiffOn 𝕜 u) (hx : x ∈ u) (hst : MapsTo f u t) (hus : u =ᶠ[𝓝 x] s) : pullbackWithin 𝕜 f (lieBracketWithin 𝕜 V W t) s x = lieBracketWithin 𝕜 (pullbackWithin 𝕜 f V s) (pullbackWithin 𝕜 f W s) s x := calc pullbackWithin 𝕜 f (lieBracketWithin 𝕜 V W t) s x _ = pullbackWithin 𝕜 f (lieBracketWithin 𝕜 V W t) u x
case a 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F s : Set E inst✝ : CompleteSpace E f : E → F V W : F → F x : E t : Set F u : Set E hf : IsSymmSndFDerivWithinAt 𝕜 f s x h'f : ContDiffWithinAt 𝕜 2 f s x hV : DifferentiableWithinAt 𝕜 V t (f x) hW : DifferentiableWithinAt 𝕜 W t (f x) hu : UniqueDiffOn 𝕜 u hx : x ∈ u hst : MapsTo f u t hus : u =ᶠ[𝓝 x] s ⊢ {x | (fun x => pullbackWithin 𝕜 f W u x = pullbackWithin 𝕜 f W s x) x} ∈ 𝓝 x
filter_upwards [fderivWithin_eventually_congr_set (𝕜 := 𝕜) (f := f) hus] with y hy
case h 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F s : Set E inst✝ : CompleteSpace E f : E → F V W : F → F x : E t : Set F u : Set E hf : IsSymmSndFDerivWithinAt 𝕜 f s x h'f : ContDiffWithinAt 𝕜 2 f s x hV : DifferentiableWithinAt 𝕜 V t (f x) hW : DifferentiableWithinAt 𝕜 W t (f x) hu : UniqueDiffOn 𝕜 u hx : x ∈ u hst : MapsTo f u t hus : u =ᶠ[𝓝 x] s y : E hy : fderivWithin 𝕜 f u y = fderivWithin 𝕜 f s y ⊢ pullbackWithin 𝕜 f W u y = pullbackWithin 𝕜 f W s y
157b25f890fe6b72
CategoryTheory.ReflQuiver.homOfEq_id
Mathlib/Combinatorics/Quiver/ReflQuiver.lean
theorem ReflQuiver.homOfEq_id {V : Type*} [ReflQuiver V] {X X' : V} (hX : X = X') : Quiver.homOfEq (𝟙rq X) hX hX = 𝟙rq X'
V : Type u_1 inst✝ : ReflQuiver V X : V ⊢ Quiver.homOfEq (𝟙rq X) ⋯ ⋯ = 𝟙rq X
rfl
no goals
7ef3a697356fdcdf
MeasureTheory.MemLp.locallyIntegrable
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
theorem MemLp.locallyIntegrable [IsLocallyFiniteMeasure μ] {f : X → E} {p : ℝ≥0∞} (hf : MemLp f p μ) (hp : 1 ≤ p) : LocallyIntegrable f μ
case intro.intro X : Type u_1 E : Type u_3 inst✝³ : MeasurableSpace X inst✝² : TopologicalSpace X inst✝¹ : NormedAddCommGroup E μ : Measure X inst✝ : IsLocallyFiniteMeasure μ f : X → E p : ℝ≥0∞ hf : MemLp f p μ hp : 1 ≤ p x : X U : Set X hU : U ∈ 𝓝 x h'U : μ U < ⊤ this : Fact (μ U < ⊤) ⊢ MemLp f 1 (μ.restrict U)
apply (hf.restrict U).mono_exponent hp
no goals
52b8c32a3c7b14a7
Nat.Subtype.toFunAux_eq
Mathlib/Logic/Denumerable.lean
theorem toFunAux_eq {s : Set ℕ} [DecidablePred (· ∈ s)] (x : s) : toFunAux x = #{y ∈ Finset.range x | y ∈ s}
s : Set ℕ inst✝ : DecidablePred fun x => x ∈ s x : ↑s ⊢ (List.filter (fun x => decide (x ∈ s)) (List.range ↑x)).length = #(filter (fun y => y ∈ s) (range ↑x))
rfl
no goals
5627fbb4462b23ef
Finset.mem_insertNone
Mathlib/Data/Finset/Option.lean
theorem mem_insertNone {s : Finset α} : ∀ {o : Option α}, o ∈ insertNone s ↔ ∀ a ∈ o, a ∈ s | none => iff_of_true (Multiset.mem_cons_self _ _) fun a h => by cases h | some a => Multiset.mem_cons.trans <| by simp
α : Type u_1 s : Finset α a : α h : a ∈ none ⊢ a ∈ s
cases h
no goals
b90e86c3f5729ded
HolderWith.restrict_iff
Mathlib/Topology/MetricSpace/Holder.lean
theorem restrict_iff {s : Set X} : HolderWith C r (s.restrict f) ↔ HolderOnWith C r f s
X : Type u_1 Y : Type u_2 inst✝¹ : PseudoEMetricSpace X inst✝ : PseudoEMetricSpace Y C r : ℝ≥0 f : X → Y s : Set X ⊢ HolderWith C r (s.restrict f) ↔ HolderOnWith C r f s
simp [HolderWith, HolderOnWith]
no goals
493be6dff4935bba
MeasureTheory.Measure.measure_preimage_of_map_eq_self
Mathlib/MeasureTheory/Measure/Map.lean
/-- If `map f μ = μ`, then the measure of the preimage of any null measurable set `s` is equal to the measure of `s`. Note that this lemma does not assume (a.e.) measurability of `f`. -/ lemma measure_preimage_of_map_eq_self {f : α → α} (hf : map f μ = μ) {s : Set α} (hs : NullMeasurableSet s μ) : μ (f ⁻¹' s) = μ s
α : Type u_1 mα : MeasurableSpace α μ : Measure α f : α → α hf : map f μ = μ s : Set α hs : NullMeasurableSet s μ hfm : AEMeasurable f μ ⊢ NullMeasurableSet s (map f μ)
rwa [hf]
no goals
1342c2772e8df2cf
HasCompactSupport.exists_simpleFunc_approx_of_prod
Mathlib/MeasureTheory/Function/SimpleFuncDense.lean
/-- A continuous function with compact support on a product space can be uniformly approximated by simple functions. The subtlety is that we do not assume that the spaces are separable, so the product of the Borel sigma algebras might not contain all open sets, but still it contains enough of them to approximate compactly supported continuous functions. -/ lemma HasCompactSupport.exists_simpleFunc_approx_of_prod [PseudoMetricSpace α] {f : X × Y → α} (hf : Continuous f) (h'f : HasCompactSupport f) {ε : ℝ} (hε : 0 < ε) : ∃ (g : SimpleFunc (X × Y) α), ∀ x, dist (f x) (g x) < ε
case hunion X : Type u_7 Y : Type u_8 α : Type u_9 inst✝⁷ : Zero α inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace Y inst✝⁴ : MeasurableSpace X inst✝³ : MeasurableSpace Y inst✝² : OpensMeasurableSpace X inst✝¹ : OpensMeasurableSpace Y inst✝ : PseudoMetricSpace α f : X × Y → α hf : Continuous f h'f : HasCompactSupport f ε : ℝ hε : 0 < ε K : Set (X × Y) hK : IsCompact K ⊢ ∀ ⦃s t : Set (X × Y)⦄, (∃ g s_1, MeasurableSet s_1 ∧ s ⊆ s_1 ∧ ∀ x ∈ s_1, dist (f x) (g x) < ε) → (∃ g s, MeasurableSet s ∧ t ⊆ s ∧ ∀ x ∈ s, dist (f x) (g x) < ε) → ∃ g s_1, MeasurableSet s_1 ∧ s ∪ t ⊆ s_1 ∧ ∀ x ∈ s_1, dist (f x) (g x) < ε
intro t t' ⟨g, s, s_meas, ts, hg⟩ ⟨g', s', s'_meas, t's', hg'⟩
case hunion X : Type u_7 Y : Type u_8 α : Type u_9 inst✝⁷ : Zero α inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace Y inst✝⁴ : MeasurableSpace X inst✝³ : MeasurableSpace Y inst✝² : OpensMeasurableSpace X inst✝¹ : OpensMeasurableSpace Y inst✝ : PseudoMetricSpace α f : X × Y → α hf : Continuous f h'f : HasCompactSupport f ε : ℝ hε : 0 < ε K : Set (X × Y) hK : IsCompact K t t' : Set (X × Y) g : SimpleFunc (X × Y) α s : Set (X × Y) s_meas : MeasurableSet s ts : t ⊆ s hg : ∀ x ∈ s, dist (f x) (g x) < ε g' : SimpleFunc (X × Y) α s' : Set (X × Y) s'_meas : MeasurableSet s' t's' : t' ⊆ s' hg' : ∀ x ∈ s', dist (f x) (g' x) < ε ⊢ ∃ g s, MeasurableSet s ∧ t ∪ t' ⊆ s ∧ ∀ x ∈ s, dist (f x) (g x) < ε
45212510ef563462
DirichletCharacter.LFunctionTrivChar_eq_mul_riemannZeta
Mathlib/NumberTheory/LSeries/DirichletContinuation.lean
/-- The L function of the trivial Dirichlet character mod `N` is obtained from the Riemann zeta function by multiplying with `∏ p ∈ N.primeFactors, (1 - (p : ℂ) ^ (-s))`. -/ lemma LFunctionTrivChar_eq_mul_riemannZeta {s : ℂ} (hs : s ≠ 1) : LFunctionTrivChar N s = (∏ p ∈ N.primeFactors, (1 - (p : ℂ) ^ (-s))) * riemannZeta s
case h.e'_3.h.e'_6.a.h.e'_6 N : ℕ inst✝ : NeZero N s : ℂ hs : s ≠ 1 p : ℕ a✝ : p ∈ N.primeFactors ⊢ ↑p ^ (-s) = 1 ↑p * ↑p ^ (-s)
rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul]
no goals
2ddfcc7305b76a9d
Bornology.isVonNBounded_of_smul_tendsto_zero
Mathlib/Analysis/LocallyConvex/Bounded.lean
theorem isVonNBounded_of_smul_tendsto_zero {ε : ι → 𝕜} {l : Filter ι} [l.NeBot] (hε : ∀ᶠ n in l, ε n ≠ 0) {S : Set E} (H : ∀ x : ι → E, (∀ n, x n ∈ S) → Tendsto (ε • x) l (𝓝 0)) : IsVonNBounded 𝕜 S
case h.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_3 ι : Type u_5 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousSMul 𝕜 E ε : ι → 𝕜 l : Filter ι inst✝ : l.NeBot hε : ∀ᶠ (n : ι) in l, ε n ≠ 0 S : Set E H : ∀ (x : ι → E), (∀ (n : ι), x n ∈ S) → Tendsto (ε • x) l (𝓝 0) V : Set E hV : V ∈ 𝓝 0 hVb : Balanced 𝕜 V n : ι hn : ε n ≠ 0 hVS : ∀ (r : ℝ), ∃ c, r ≤ ‖c‖ ∧ ¬S ⊆ c • id V a : 𝕜 haε : ‖(ε n)⁻¹‖ ≤ ‖a‖ haS : ¬S ⊆ a • id V x : E hxS : x ∈ S hx : x ∉ a • id V hnx : ε n • ↑⟨x, hxS⟩ ∈ V ⊢ False
rw [← Set.mem_inv_smul_set_iff₀ hn] at hnx
case h.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_3 ι : Type u_5 inst✝⁵ : NontriviallyNormedField 𝕜 inst✝⁴ : AddCommGroup E inst✝³ : Module 𝕜 E inst✝² : TopologicalSpace E inst✝¹ : ContinuousSMul 𝕜 E ε : ι → 𝕜 l : Filter ι inst✝ : l.NeBot hε : ∀ᶠ (n : ι) in l, ε n ≠ 0 S : Set E H : ∀ (x : ι → E), (∀ (n : ι), x n ∈ S) → Tendsto (ε • x) l (𝓝 0) V : Set E hV : V ∈ 𝓝 0 hVb : Balanced 𝕜 V n : ι hn : ε n ≠ 0 hVS : ∀ (r : ℝ), ∃ c, r ≤ ‖c‖ ∧ ¬S ⊆ c • id V a : 𝕜 haε : ‖(ε n)⁻¹‖ ≤ ‖a‖ haS : ¬S ⊆ a • id V x : E hxS : x ∈ S hx : x ∉ a • id V hnx : ↑⟨x, hxS⟩ ∈ (ε n)⁻¹ • V ⊢ False
d3a90bc513e13615
MvPolynomial.constantCoeff_rename
Mathlib/Algebra/MvPolynomial/Rename.lean
theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) : constantCoeff (rename f φ) = constantCoeff φ
case h_X σ : Type u_1 R : Type u_4 inst✝ : CommSemiring R τ : Type u_6 f : σ → τ φ : MvPolynomial σ R ⊢ ∀ (p : MvPolynomial σ R) (n : σ), constantCoeff ((rename f) p) = constantCoeff p → constantCoeff ((rename f) (p * X n)) = constantCoeff (p * X n)
intro p n hp
case h_X σ : Type u_1 R : Type u_4 inst✝ : CommSemiring R τ : Type u_6 f : σ → τ φ p : MvPolynomial σ R n : σ hp : constantCoeff ((rename f) p) = constantCoeff p ⊢ constantCoeff ((rename f) (p * X n)) = constantCoeff (p * X n)
99e6581b3c86be32
IsUltrametricDist.isUltrametricDist_of_forall_pow_norm_le_nsmul_pow_max_one_norm
Mathlib/Analysis/Normed/Field/Ultra.lean
/-- This technical lemma is used in the proof of `isUltrametricDist_of_forall_norm_natCast_le_one`. -/ lemma isUltrametricDist_of_forall_pow_norm_le_nsmul_pow_max_one_norm (h : ∀ (x : R) (m : ℕ), ‖x + 1‖ ^ m ≤ (m + 1) • max 1 (‖x‖ ^ m)) : IsUltrametricDist R
case intro R : Type u_1 inst✝ : NormedDivisionRing R h : ∀ (x : R) (m : ℕ), ‖x + 1‖ ^ m ≤ (m + 1) • (1 ⊔ ‖x‖ ^ m) x : R a : ℝ ha : 1 ⊔ ‖x‖ < a ha' : 1 < a m : ℕ hm : (m + 1) • (1 ⊔ ‖x‖) ^ m < a ^ m hp : (1 ⊔ ‖x‖) ^ m = 1 ⊔ ‖x‖ ^ m ⊢ ‖x + 1‖ ≤ a
rw [hp] at hm
case intro R : Type u_1 inst✝ : NormedDivisionRing R h : ∀ (x : R) (m : ℕ), ‖x + 1‖ ^ m ≤ (m + 1) • (1 ⊔ ‖x‖ ^ m) x : R a : ℝ ha : 1 ⊔ ‖x‖ < a ha' : 1 < a m : ℕ hm : (m + 1) • (1 ⊔ ‖x‖ ^ m) < a ^ m hp : (1 ⊔ ‖x‖) ^ m = 1 ⊔ ‖x‖ ^ m ⊢ ‖x + 1‖ ≤ a
226284b7952ecdae
neg_one_geom_sum
Mathlib/Algebra/GeomSum.lean
theorem neg_one_geom_sum [Ring α] {n : ℕ} : ∑ i ∈ range n, (-1 : α) ^ i = if Even n then 0 else 1
case pos α : Type u inst✝ : Ring α k : ℕ hk : ∑ i ∈ range k, (-1) ^ i = if Even k then 0 else 1 h : Even k ⊢ (-1) ^ k + 0 = 1
rw [h.neg_one_pow, add_zero]
no goals
718ff43bff65c1c1
Module.finitePresentation_of_surjective
Mathlib/Algebra/Module/FinitePresentation.lean
lemma Module.finitePresentation_of_surjective [h : Module.FinitePresentation R M] (l : M →ₗ[R] N) (hl : Function.Surjective l) (hl' : (LinearMap.ker l).FG) : Module.FinitePresentation R N
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N h : FinitePresentation R M l : M →ₗ[R] N hl : Function.Surjective ⇑l hl' : (LinearMap.ker l).FG ⊢ FinitePresentation R N
classical obtain ⟨s, hs, hs'⟩ := h obtain ⟨t, ht⟩ := hl' have H : Function.Surjective (Finsupp.linearCombination R ((↑) : s → M)) := LinearMap.range_eq_top.mp (by rw [range_linearCombination, Subtype.range_val, ← hs]; rfl) apply Module.finitePresentation_of_free_of_surjective (l ∘ₗ linearCombination R Subtype.val) (hl.comp H) choose σ hσ using (show _ from H) have : Finsupp.linearCombination R Subtype.val '' (σ '' t) = t := by simp only [Set.image_image, hσ, Set.image_id'] rw [LinearMap.ker_comp, ← ht, ← this, ← Submodule.map_span, Submodule.comap_map_eq, ← Finset.coe_image] exact Submodule.FG.sup ⟨_, rfl⟩ hs'
no goals
91cced66bee4e79e
Finset.filter_snd_eq_antidiagonal
Mathlib/Algebra/Order/Antidiag/Prod.lean
theorem filter_snd_eq_antidiagonal (n m : A) [DecidablePred (· = m)] [Decidable (m ≤ n)] : filter (fun x : A × A ↦ x.snd = m) (antidiagonal n) = if m ≤ n then {(n - m, m)} else ∅
A : Type u_1 inst✝⁷ : OrderedAddCommMonoid A inst✝⁶ : CanonicallyOrderedAdd A inst✝⁵ : Sub A inst✝⁴ : OrderedSub A inst✝³ : AddLeftReflectLE A inst✝² : HasAntidiagonal A n m : A inst✝¹ : DecidablePred fun x => x = m inst✝ : Decidable (m ≤ n) ⊢ (fun x => x.2 = m) ∘ Prod.swap = fun x => x.1 = m
ext
case h.a A : Type u_1 inst✝⁷ : OrderedAddCommMonoid A inst✝⁶ : CanonicallyOrderedAdd A inst✝⁵ : Sub A inst✝⁴ : OrderedSub A inst✝³ : AddLeftReflectLE A inst✝² : HasAntidiagonal A n m : A inst✝¹ : DecidablePred fun x => x = m inst✝ : Decidable (m ≤ n) x✝ : A × A ⊢ ((fun x => x.2 = m) ∘ Prod.swap) x✝ ↔ x✝.1 = m
d99ee23af9b14623
FiniteField.Matrix.charpoly_pow_card
Mathlib/LinearAlgebra/Matrix/Charpoly/FiniteField.lean
theorem FiniteField.Matrix.charpoly_pow_card {K : Type*} [Field K] [Fintype K] (M : Matrix n n K) : (M ^ Fintype.card K).charpoly = M.charpoly
case inl.intro n : Type u_1 inst✝³ : DecidableEq n inst✝² : Fintype n K : Type u_2 inst✝¹ : Field K inst✝ : Fintype K M : Matrix n n K h✝ : Nonempty n p : ℕ hp : CharP K p this : CharP K p := hp ⊢ (M ^ Fintype.card K).charpoly = M.charpoly
rcases FiniteField.card K p with ⟨⟨k, kpos⟩, ⟨hp, hk⟩⟩
case inl.intro.intro.mk.intro n : Type u_1 inst✝³ : DecidableEq n inst✝² : Fintype n K : Type u_2 inst✝¹ : Field K inst✝ : Fintype K M : Matrix n n K h✝ : Nonempty n p : ℕ hp✝ : CharP K p this : CharP K p := hp✝ k : ℕ kpos : 0 < k hp : Nat.Prime p hk : Fintype.card K = p ^ ↑⟨k, kpos⟩ ⊢ (M ^ Fintype.card K).charpoly = M.charpoly
3e36a605f896f181
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.blastDivSubtractShift_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Operations/Udiv.lean
theorem blastDivSubtractShift_decl_eq (aig : AIG α) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) : ∀ (idx : Nat) (h1) (h2), (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig.decls[idx]'h2 = aig.decls[idx]'h1
case h2.h.h α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w res : BlastDivSubtractShiftOutput aig w hres : { aig := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, wn := wn - 1, wr := wr + 1, q := (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec.cast ⋯, r := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec, hle := ⋯ } = res idx✝ : Nat h1✝ : idx✝ < aig.decls.size h2✝ : idx✝ < { aig := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, wn := wn - 1, wr := wr + 1, q := (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec.cast ⋯, r := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec, hle := ⋯ }.aig.decls.size ⊢ idx✝ < (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig.decls.size
apply AIG.LawfulVecOperator.lt_size_of_lt_aig_size (f := blastUdiv.blastShiftConcat)
case h2.h.h.h α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w res : BlastDivSubtractShiftOutput aig w hres : { aig := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, wn := wn - 1, wr := wr + 1, q := (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec.cast ⋯, r := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec, hle := ⋯ } = res idx✝ : Nat h1✝ : idx✝ < aig.decls.size h2✝ : idx✝ < { aig := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, wn := wn - 1, wr := wr + 1, q := (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec.cast ⋯, r := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec, hle := ⋯ }.aig.decls.size ⊢ idx✝ < aig.decls.size
76230fc57d8c20e2
Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne
Mathlib/RingTheory/DedekindDomain/PID.lean
theorem Ideal.eq_span_singleton_of_mem_of_not_mem_sq_of_not_mem_prime_ne {P : Ideal R} (hP : P.IsPrime) [IsDedekindDomain R] {x : R} (x_mem : x ∈ P) (hxP2 : x ∉ P ^ 2) (hxQ : ∀ Q : Ideal R, IsPrime Q → Q ≠ P → x ∉ Q) : P = Ideal.span {x}
R : Type u_1 inst✝¹ : CommRing R P : Ideal R hP : P.IsPrime inst✝ : IsDedekindDomain R x : R x_mem : x ∈ P hxP2 : x ∉ P ^ 2 hxQ : ∀ (Q : Ideal R), Q.IsPrime → Q ≠ P → x ∉ Q this : DecidableEq (Ideal R) := Classical.decEq (Ideal R) hx0 : x ≠ 0 ⊢ P = span {x}
by_cases hP0 : P = ⊥
case pos R : Type u_1 inst✝¹ : CommRing R P : Ideal R hP : P.IsPrime inst✝ : IsDedekindDomain R x : R x_mem : x ∈ P hxP2 : x ∉ P ^ 2 hxQ : ∀ (Q : Ideal R), Q.IsPrime → Q ≠ P → x ∉ Q this : DecidableEq (Ideal R) := Classical.decEq (Ideal R) hx0 : x ≠ 0 hP0 : P = ⊥ ⊢ P = span {x} case neg R : Type u_1 inst✝¹ : CommRing R P : Ideal R hP : P.IsPrime inst✝ : IsDedekindDomain R x : R x_mem : x ∈ P hxP2 : x ∉ P ^ 2 hxQ : ∀ (Q : Ideal R), Q.IsPrime → Q ≠ P → x ∉ Q this : DecidableEq (Ideal R) := Classical.decEq (Ideal R) hx0 : x ≠ 0 hP0 : ¬P = ⊥ ⊢ P = span {x}
2ba74b55b2935b6c
AlgebraicGeometry.Scheme.zeroLocus_biInf
Mathlib/AlgebraicGeometry/AffineScheme.lean
lemma Scheme.zeroLocus_biInf {X : Scheme.{u}} {U : X.Opens} {ι : Type*} (I : ι → Ideal Γ(X, U)) {t : Set ι} (ht : t.Finite) : X.zeroLocus (U := U) ↑(⨅ i ∈ t, I i) = (⋃ i ∈ t, X.zeroLocus (U := U) (I i)) ∪ (↑U)ᶜ
X : Scheme U : X.Opens ι : Type u_1 I : ι → Ideal ↑Γ(X, U) t✝ : Set ι ht✝ : t✝.Finite i : ι t : Set ι hit : i ∉ t ht : t.Finite IH : X.zeroLocus ↑(⨅ i ∈ t, I i) = (⋃ i ∈ t, X.zeroLocus ↑(I i)) ∪ (↑U)ᶜ ⊢ X.zeroLocus ↑(⨅ i_1 ∈ insert i t, I i_1) = (⋃ i_1 ∈ insert i t, X.zeroLocus ↑(I i_1)) ∪ (↑U)ᶜ
simp only [Set.mem_insert_iff, Set.iUnion_iUnion_eq_or_left, ← IH, ← zeroLocus_inf, Submodule.inf_coe, Set.union_assoc]
X : Scheme U : X.Opens ι : Type u_1 I : ι → Ideal ↑Γ(X, U) t✝ : Set ι ht✝ : t✝.Finite i : ι t : Set ι hit : i ∉ t ht : t.Finite IH : X.zeroLocus ↑(⨅ i ∈ t, I i) = (⋃ i ∈ t, X.zeroLocus ↑(I i)) ∪ (↑U)ᶜ ⊢ X.zeroLocus ↑(⨅ i_1, ⨅ (_ : i_1 = i ∨ i_1 ∈ t), I i_1) = X.zeroLocus (↑(I i) ∩ ↑(⨅ i ∈ t, I i))
f9c9044705bdeb37
Submodule.IsLattice.rank_of_pi
Mathlib/Algebra/Module/Lattice.lean
/-- Any `R`-lattice in `ι → K` has `#ι` as `R`-rank. -/ lemma rank_of_pi {ι : Type*} [Fintype ι] [IsFractionRing R K] (M : Submodule R (ι → K)) [IsLattice K M] : Module.rank R M = Fintype.card ι
R : Type u_1 inst✝⁷ : CommRing R K : Type u_2 inst✝⁶ : Field K inst✝⁵ : Algebra R K inst✝⁴ : IsDomain R inst✝³ : IsPrincipalIdealRing R ι : Type u_4 inst✝² : Fintype ι inst✝¹ : IsFractionRing R K M : Submodule R (ι → K) inst✝ : IsLattice K M ⊢ Module.rank K (ι → K) = ↑(Fintype.card ι)
simp
no goals
242153634d45150d
balancedCoreAux_empty
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
theorem balancedCoreAux_empty : balancedCoreAux 𝕜 (∅ : Set E) = ∅
𝕜 : Type u_1 E : Type u_2 inst✝² : NormedDivisionRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E ⊢ ∀ (a : E), ∃ i, ∃ (_ : 1 ≤ ‖i‖), a ∉ ∅
exact fun _ => ⟨1, norm_one.ge, not_mem_empty _⟩
no goals
888cdbecd2e5a5ba
MeasureTheory.SimpleFunc.induction
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem induction {α γ} [MeasurableSpace α] [AddMonoid γ] {P : SimpleFunc α γ → Prop} (h_ind : ∀ (c) {s} (hs : MeasurableSet s), P (SimpleFunc.piecewise s hs (SimpleFunc.const _ c) (SimpleFunc.const _ 0))) (h_add : ∀ ⦃f g : SimpleFunc α γ⦄, Disjoint (support f) (support g) → P f → P g → P (f + g)) (f : SimpleFunc α γ) : P f
α : Type u_5 γ : Type u_6 inst✝¹ : MeasurableSpace α inst✝ : AddMonoid γ P : (α →ₛ γ) → Prop h_ind : ∀ (c : γ) {s : Set α} (hs : MeasurableSet s), P (piecewise s hs (const α c) (const α 0)) h_add : ∀ ⦃f g : α →ₛ γ⦄, Disjoint (support ⇑f) (support ⇑g) → P f → P g → P (f + g) f : α →ₛ γ s : Finset γ h : f.range \ {0} = s ⊢ P f
rw [← Finset.coe_inj, Finset.coe_sdiff, Finset.coe_singleton, SimpleFunc.coe_range] at h
α : Type u_5 γ : Type u_6 inst✝¹ : MeasurableSpace α inst✝ : AddMonoid γ P : (α →ₛ γ) → Prop h_ind : ∀ (c : γ) {s : Set α} (hs : MeasurableSet s), P (piecewise s hs (const α c) (const α 0)) h_add : ∀ ⦃f g : α →ₛ γ⦄, Disjoint (support ⇑f) (support ⇑g) → P f → P g → P (f + g) f : α →ₛ γ s : Finset γ h : range ⇑f \ {0} = ↑s ⊢ P f
01b1b313375647ab
MeasureTheory.IntegrableOn.hasBoxIntegral
Mathlib/Analysis/BoxIntegral/Integrability.lean
theorem IntegrableOn.hasBoxIntegral [CompleteSpace E] {f : (ι → ℝ) → E} {μ : Measure (ι → ℝ)} [IsLocallyFiniteMeasure μ] {I : Box ι} (hf : IntegrableOn f I μ) (l : IntegrationParams) (hl : l.bRiemann = false) : HasIntegral.{u, v, v} I l f μ.toBoxAdditive.toSMul (∫ x in I, f x ∂μ)
case intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g (↑I) μ f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g ⋯ (Set.range g ∪ {0}) 0 ⋯ hfi✝ : ∀ (n : ℕ), IntegrableOn (⇑(f n)) (↑I) μ hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (⇑(f n)) μ.toBoxAdditive.toSMul hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖(f n) x - g x‖ ≤ ‖(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist ((f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => ⋯.convergenceR (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : l.MemBaseSet I c (r c) π hπp : π.IsPartition hfi : ∀ (n : ℕ), ∀ J ∈ π, IntegrableOn (⇑(f n)) (↑J) μ ⊢ dist (∑ J ∈ π.boxes, ∫ (x : ι → ℝ) in ↑J, (f (Nx (π.tag J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ
have hgi : ∀ J ∈ π, IntegrableOn g (↑J) μ := fun J hJ => hgi.mono_set (π.le_of_mem' J hJ)
case intro.intro.intro.intro.intro.intro.intro.intro.refine_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g (↑I) μ f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g ⋯ (Set.range g ∪ {0}) 0 ⋯ hfi✝ : ∀ (n : ℕ), IntegrableOn (⇑(f n)) (↑I) μ hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (⇑(f n)) μ.toBoxAdditive.toSMul hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖(f n) x - g x‖ ≤ ‖(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist ((f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => ⋯.convergenceR (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : l.MemBaseSet I c (r c) π hπp : π.IsPartition hfi : ∀ (n : ℕ), ∀ J ∈ π, IntegrableOn (⇑(f n)) (↑J) μ hgi : ∀ J ∈ π, IntegrableOn g (↑J) μ ⊢ dist (∑ J ∈ π.boxes, ∫ (x : ι → ℝ) in ↑J, (f (Nx (π.tag J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖(f N₀) x - g x‖ ∂μ
1cd867d174f2adc3
List.eraseIdx_modify_of_gt
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Modify.lean
theorem eraseIdx_modify_of_gt (f : α → α) (i j) (l : List α) (h : j > i) : (modify f i l).eraseIdx j = (l.eraseIdx j).modify f i
case h α : Type u_1 f : α → α i j : Nat l : List α h : j > i k : Nat h₁ : k < ((modify f i l).eraseIdx j).length h₂ : k < (modify f i (l.eraseIdx j)).length ⊢ ((modify f i l).eraseIdx j)[k] = (modify f i (l.eraseIdx j))[k]
simp only [getElem_eraseIdx, getElem_modify]
case h α : Type u_1 f : α → α i j : Nat l : List α h : j > i k : Nat h₁ : k < ((modify f i l).eraseIdx j).length h₂ : k < (modify f i (l.eraseIdx j)).length ⊢ (if h : k < j then if i = k then f l[k] else l[k] else if i = k + 1 then f l[k + 1] else l[k + 1]) = if i = k then f (if h' : k < j then l[k] else l[k + 1]) else if h' : k < j then l[k] else l[k + 1]
26512ea5cfe6dba0
Basis.SmithNormalForm.toAddSubgroup_index_eq_pow_mul_prod
Mathlib/LinearAlgebra/FreeModule/Int.lean
/-- Given a submodule `N` in Smith normal form of a free `R`-module, its index as an additive subgroup is an appropriate power of the cardinality of `R` multiplied by the product of the indexes of the ideals generated by each basis vector. -/ lemma toAddSubgroup_index_eq_pow_mul_prod [Module R M] {N : Submodule R M} (snf : Basis.SmithNormalForm N ι n) : N.toAddSubgroup.index = Nat.card R ^ (Fintype.card ι - n) * ∏ i : Fin n, (Ideal.span {snf.a i}).toAddSubgroup.index
case mk ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN'✝ : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index hN' : N'.toAddSubgroup = AddSubgroup.pi Set.univ fun i => Submodule.toAddSubgroup (Ideal.span {if h : ∃ j, f j = i then a h.choose else 0}) ⊢ Nat.card R ^ (Finset.filter (fun x => ¬∃ j, f j = x) Finset.univ).card * ∏ x ∈ (Finset.filter (fun x => ∃ j, f j = x) Finset.univ).attach, (Submodule.toAddSubgroup (Ideal.span {a ⋯.choose})).index = Nat.card R ^ (Fintype.card ι - n) * ∏ i : Fin n, (Submodule.toAddSubgroup (Ideal.span {a i})).index
congr
case mk.e_a.e_a ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN'✝ : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index hN' : N'.toAddSubgroup = AddSubgroup.pi Set.univ fun i => Submodule.toAddSubgroup (Ideal.span {if h : ∃ j, f j = i then a h.choose else 0}) ⊢ (Finset.filter (fun x => ¬∃ j, f j = x) Finset.univ).card = Fintype.card ι - n case mk.e_a ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN'✝ : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index hN' : N'.toAddSubgroup = AddSubgroup.pi Set.univ fun i => Submodule.toAddSubgroup (Ideal.span {if h : ∃ j, f j = i then a h.choose else 0}) ⊢ ∏ x ∈ (Finset.filter (fun x => ∃ j, f j = x) Finset.univ).attach, (Submodule.toAddSubgroup (Ideal.span {a ⋯.choose})).index = ∏ i : Fin n, (Submodule.toAddSubgroup (Ideal.span {a i})).index
3d7a9cb7455a5c0f
Complex.partialGamma_add_one
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
theorem partialGamma_add_one {s : ℂ} (hs : 0 < s.re) {X : ℝ} (hX : 0 ≤ X) : partialGamma (s + 1) X = s * partialGamma s X - (-X).exp * X ^ s
s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => rexp (-y)) (-rexp (-x)) x ⊢ HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x
have t := @HasDerivAt.cpow_const _ _ _ s (hasDerivAt_id ↑x) ?_
case refine_2 s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => rexp (-y)) (-rexp (-x)) x t : HasDerivAt (fun x => id x ^ s) (s * id ↑x ^ (s - 1) * 1) ↑x ⊢ HasDerivAt (fun y => ↑y ^ s) (s * ↑x ^ (s - 1)) x case refine_1 s : ℂ hs : 0 < s.re X : ℝ hX : 0 ≤ X x : ℝ hx : x ∈ Ioo 0 X d1 : HasDerivAt (fun y => rexp (-y)) (-rexp (-x)) x ⊢ id ↑x ∈ slitPlane
64c3078f05c8af7b
CauSeq.lim_inv
Mathlib/Algebra/Order/CauSeq/Completion.lean
theorem lim_inv {f : CauSeq β abv} (hf : ¬LimZero f) : lim (inv f hf) = (lim f)⁻¹ := have hl : lim f ≠ 0
α : Type u_1 inst✝³ : LinearOrderedField α β : Type u_2 inst✝² : Field β abv : β → α inst✝¹ : IsAbsoluteValue abv inst✝ : IsComplete β abv f✝ : CauSeq β abv hf✝ : ¬f✝.LimZero hl : f✝.lim ≠ 0 g f : CauSeq β abv hf : ¬f.LimZero h₂ : g - f * f.inv hf * g = 1 * g - f * f.inv hf * g h₃ : f * f.inv hf * g = f * f.inv hf * g ⊢ (g - f * f.inv hf * g).LimZero
have h₄ : g - f * inv f hf * g = (1 - f * inv f hf) * g := by rw [h₂, h₃, ← sub_mul]
α : Type u_1 inst✝³ : LinearOrderedField α β : Type u_2 inst✝² : Field β abv : β → α inst✝¹ : IsAbsoluteValue abv inst✝ : IsComplete β abv f✝ : CauSeq β abv hf✝ : ¬f✝.LimZero hl : f✝.lim ≠ 0 g f : CauSeq β abv hf : ¬f.LimZero h₂ : g - f * f.inv hf * g = 1 * g - f * f.inv hf * g h₃ : f * f.inv hf * g = f * f.inv hf * g h₄ : g - f * f.inv hf * g = (1 - f * f.inv hf) * g ⊢ (g - f * f.inv hf * g).LimZero
24d312013bd260a5
List.Nodup.sym2
Mathlib/Data/List/Sym.lean
theorem Nodup.sym2 {xs : List α} (h : xs.Nodup) : xs.sym2.Nodup
case cons α : Type u_1 x : α xs : List α h : x ∉ xs ∧ xs.Nodup ih : xs.sym2.Nodup ⊢ (map (fun y => s(x, y)) (x :: xs) ++ xs.sym2).Nodup
refine Nodup.append (Nodup.cons ?notmem (h.2.map ?inj)) ih ?disj
case notmem α : Type u_1 x : α xs : List α h : x ∉ xs ∧ xs.Nodup ih : xs.sym2.Nodup ⊢ (fun y => s(x, y)) x ∉ map (fun y => s(x, y)) xs case inj α : Type u_1 x : α xs : List α h : x ∉ xs ∧ xs.Nodup ih : xs.sym2.Nodup ⊢ Function.Injective fun y => s(x, y) case disj α : Type u_1 x : α xs : List α h : x ∉ xs ∧ xs.Nodup ih : xs.sym2.Nodup ⊢ (map (fun y => s(x, y)) (x :: xs)).Disjoint xs.sym2
85e54f9f7415b3ef
Pell.eq_pell_lem
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem eq_pell_lem : ∀ (n) (b : ℤ√(d a1)), 1 ≤ b → IsPell b → b ≤ pellZd a1 n → ∃ n, b = pellZd a1 n | 0, _ => fun h1 _ hl => ⟨0, @Zsqrtd.le_antisymm _ (dnsq a1) _ _ hl h1⟩ | n + 1, b => fun h1 hp h => have a1p : (0 : ℤ√(d a1)) ≤ ⟨a, 1⟩ := trivial have am1p : (0 : ℤ√(d a1)) ≤ ⟨a, -1⟩ := show (_ : Nat) ≤ _ by simp; exact Nat.pred_le _ have a1m : (⟨a, 1⟩ * ⟨a, -1⟩ : ℤ√(d a1)) = 1 := isPell_norm.1 (isPell_one a1) if ha : (⟨↑a, 1⟩ : ℤ√(d a1)) ≤ b then let ⟨m, e⟩ := eq_pell_lem n (b * ⟨a, -1⟩) (by rw [← a1m]; exact mul_le_mul_of_nonneg_right ha am1p) (isPell_mul hp (isPell_star.1 (isPell_one a1))) (by have t := mul_le_mul_of_nonneg_right h am1p rwa [pellZd_succ, mul_assoc, a1m, mul_one] at t) ⟨m + 1, by rw [show b = b * ⟨a, -1⟩ * ⟨a, 1⟩ by rw [mul_assoc, Eq.trans (mul_comm _ _) a1m]; simp, pellZd_succ, e]⟩ else suffices ¬1 < b from ⟨0, show b = 1 from (Or.resolve_left (lt_or_eq_of_le h1) this).symm⟩ fun h1l => by obtain ⟨x, y⟩ := b exact by have bm : (_ * ⟨_, _⟩ : ℤ√d a1) = 1 := Pell.isPell_norm.1 hp have y0l : (0 : ℤ√d a1) < ⟨x - x, y - -y⟩ := sub_lt_sub h1l fun hn : (1 : ℤ√d a1) ≤ ⟨x, -y⟩ => by have t := mul_le_mul_of_nonneg_left hn (le_trans zero_le_one h1) rw [bm, mul_one] at t exact h1l t have yl2 : (⟨_, _⟩ : ℤ√_) < ⟨_, _⟩ := show (⟨x, y⟩ - ⟨x, -y⟩ : ℤ√d a1) < ⟨a, 1⟩ - ⟨a, -1⟩ from sub_lt_sub ha fun hn : (⟨x, -y⟩ : ℤ√d a1) ≤ ⟨a, -1⟩ => by have t := mul_le_mul_of_nonneg_right (mul_le_mul_of_nonneg_left hn (le_trans zero_le_one h1)) a1p rw [bm, one_mul, mul_assoc, Eq.trans (mul_comm _ _) a1m, mul_one] at t exact ha t simp only [sub_self, sub_neg_eq_add] at y0l; simp only [Zsqrtd.neg_re, add_neg_cancel, Zsqrtd.neg_im, neg_neg] at yl2 exact match y, y0l, (yl2 : (⟨_, _⟩ : ℤ√_) < ⟨_, _⟩) with | 0, y0l, _ => y0l (le_refl 0) | (y + 1 : ℕ), _, yl2 => yl2 (Zsqrtd.le_of_le_le (by simp [sub_eq_add_neg]) (let t := Int.ofNat_le_ofNat_of_le (Nat.succ_pos y) add_le_add t t)) | Int.negSucc _, y0l, _ => y0l trivial
a : ℕ a1 : 1 < a n : ℕ b : ℤ√↑(Pell.d a1) h1 : 1 ≤ b hp : IsPell b h : b ≤ pellZd a1 (n + 1) a1p : 0 ≤ { re := ↑a, im := 1 } am1p : 0 ≤ { re := ↑a, im := -1 } a1m : { re := ↑a, im := 1 } * { re := ↑a, im := -1 } = 1 ha : { re := ↑a, im := 1 } ≤ b ⊢ { re := ↑a, im := 1 } * { re := ↑a, im := -1 } ≤ b * { re := ↑a, im := -1 }
exact mul_le_mul_of_nonneg_right ha am1p
no goals
f5b138704daee74a
SetTheory.PGame.le_neg_iff
Mathlib/SetTheory/Game/PGame.lean
theorem le_neg_iff {x y : PGame} : y ≤ -x ↔ x ≤ -y
x y : PGame ⊢ y ≤ -x ↔ x ≤ -y
rw [← neg_neg x, neg_le_neg_iff, neg_neg]
no goals
6699b30833875119
isIntegral_discr_mul_of_mem_traceDual
Mathlib/RingTheory/DedekindDomain/Different.lean
/-- If `b` is an `A`-integral basis of `L` with discriminant `b`, then `d • a * x` is integral over `A` for all `a ∈ I` and `x ∈ Iᵛ`. -/ lemma isIntegral_discr_mul_of_mem_traceDual (I : Submodule B L) {ι} [DecidableEq ι] [Fintype ι] {b : Basis ι K L} (hb : ∀ i, IsIntegral A (b i)) {a x : L} (ha : a ∈ I) (hx : x ∈ Iᵛ) : IsIntegral A ((discr K b) • a * x)
case h A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁷ : CommRing A inst✝¹⁶ : Field K inst✝¹⁵ : CommRing B inst✝¹⁴ : Field L inst✝¹³ : Algebra A K inst✝¹² : Algebra B L inst✝¹¹ : Algebra A B inst✝¹⁰ : Algebra K L inst✝⁹ : Algebra A L inst✝⁸ : IsScalarTower A K L inst✝⁷ : IsScalarTower A B L inst✝⁶ : IsFractionRing A K inst✝⁵ : IsIntegrallyClosed A inst✝⁴ : FiniteDimensional K L inst✝³ : IsIntegralClosure B A L inst✝² : Algebra.IsSeparable K L I : Submodule B L ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι K L hb : ∀ (i : ι), IsIntegral A (b i) a x : L ha : a ∈ I hx : x ∈ Iᵛ hinv : IsUnit (traceMatrix K ⇑b).det H : ((traceMatrix K ⇑b).cramer fun i => (Algebra.trace K L) (x * a * b i)) = (traceMatrix K ⇑b).det • b.equivFun (x * a) this : Function.Injective (traceMatrix K ⇑b).mulVec i : ι a✝ : i ∈ Finset.univ ⊢ IsIntegral A (b.equivFun (discr K ⇑b • a * x) i • b i)
rw [smul_mul_assoc, b.equivFun.map_smul, discr_def, mul_comm, ← H, Algebra.smul_def]
case h A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝¹⁷ : CommRing A inst✝¹⁶ : Field K inst✝¹⁵ : CommRing B inst✝¹⁴ : Field L inst✝¹³ : Algebra A K inst✝¹² : Algebra B L inst✝¹¹ : Algebra A B inst✝¹⁰ : Algebra K L inst✝⁹ : Algebra A L inst✝⁸ : IsScalarTower A K L inst✝⁷ : IsScalarTower A B L inst✝⁶ : IsFractionRing A K inst✝⁵ : IsIntegrallyClosed A inst✝⁴ : FiniteDimensional K L inst✝³ : IsIntegralClosure B A L inst✝² : Algebra.IsSeparable K L I : Submodule B L ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι K L hb : ∀ (i : ι), IsIntegral A (b i) a x : L ha : a ∈ I hx : x ∈ Iᵛ hinv : IsUnit (traceMatrix K ⇑b).det H : ((traceMatrix K ⇑b).cramer fun i => (Algebra.trace K L) (x * a * b i)) = (traceMatrix K ⇑b).det • b.equivFun (x * a) this : Function.Injective (traceMatrix K ⇑b).mulVec i : ι a✝ : i ∈ Finset.univ ⊢ IsIntegral A ((algebraMap K L) ((traceMatrix K ⇑b).cramer (fun i => (Algebra.trace K L) (x * a * b i)) i) * b i)
14fab2851c4d1928
UpperHalfPlane.c_mul_im_sq_le_normSq_denom
Mathlib/Analysis/Complex/UpperHalfPlane/Basic.lean
theorem c_mul_im_sq_le_normSq_denom : (g 1 0 * z.im) ^ 2 ≤ Complex.normSq (denom g z)
g : ↥GL(2, ℝ)⁺ z : ℍ c : ℝ := ↑↑g 1 0 d : ℝ := ↑↑g 1 1 ⊢ (c * z.im) ^ 2 ≤ Complex.normSq (denom g z)
calc (c * z.im) ^ 2 ≤ (c * z.im) ^ 2 + (c * z.re + d) ^ 2 := by nlinarith _ = Complex.normSq (denom g z) := by dsimp [c, d, denom, Complex.normSq]; ring
no goals
8ae3c8cd85e97f70
FormalMultilinearSeries.compContinuousLinearMap_applyComposition
Mathlib/Analysis/Analytic/Composition.lean
theorem compContinuousLinearMap_applyComposition {n : ℕ} (p : FormalMultilinearSeries 𝕜 F G) (f : E →L[𝕜] F) (c : Composition n) (v : Fin n → E) : (p.compContinuousLinearMap f).applyComposition c v = p.applyComposition c (f ∘ v)
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : CommRing 𝕜 inst✝¹⁴ : AddCommGroup E inst✝¹³ : AddCommGroup F inst✝¹² : AddCommGroup G inst✝¹¹ : Module 𝕜 E inst✝¹⁰ : Module 𝕜 F inst✝⁹ : Module 𝕜 G inst✝⁸ : TopologicalSpace E inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalAddGroup E inst✝⁴ : ContinuousConstSMul 𝕜 E inst✝³ : IsTopologicalAddGroup F inst✝² : ContinuousConstSMul 𝕜 F inst✝¹ : IsTopologicalAddGroup G inst✝ : ContinuousConstSMul 𝕜 G n : ℕ p : FormalMultilinearSeries 𝕜 F G f : E →L[𝕜] F c : Composition n v : Fin n → E ⊢ (p.compContinuousLinearMap f).applyComposition c v = p.applyComposition c (⇑f ∘ v)
simp (config := {unfoldPartialApp := true}) [applyComposition]
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : CommRing 𝕜 inst✝¹⁴ : AddCommGroup E inst✝¹³ : AddCommGroup F inst✝¹² : AddCommGroup G inst✝¹¹ : Module 𝕜 E inst✝¹⁰ : Module 𝕜 F inst✝⁹ : Module 𝕜 G inst✝⁸ : TopologicalSpace E inst✝⁷ : TopologicalSpace F inst✝⁶ : TopologicalSpace G inst✝⁵ : IsTopologicalAddGroup E inst✝⁴ : ContinuousConstSMul 𝕜 E inst✝³ : IsTopologicalAddGroup F inst✝² : ContinuousConstSMul 𝕜 F inst✝¹ : IsTopologicalAddGroup G inst✝ : ContinuousConstSMul 𝕜 G n : ℕ p : FormalMultilinearSeries 𝕜 F G f : E →L[𝕜] F c : Composition n v : Fin n → E ⊢ (fun i => (p (c.blocksFun i)) (⇑f ∘ v ∘ ⇑(c.embedding i))) = fun i => (p (c.blocksFun i)) ((⇑f ∘ v) ∘ ⇑(c.embedding i))
dc21c96095630cbb
Submodule.fg_iff_compact
Mathlib/RingTheory/Finiteness/Basic.lean
theorem fg_iff_compact (s : Submodule R M) : s.FG ↔ CompleteLattice.IsCompactElement s
R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Submodule R M ⊢ s.FG ↔ CompleteLattice.IsCompactElement s
let sp : M → Submodule R M := fun a => span R {a}
R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Submodule R M sp : M → Submodule R M := fun a => span R {a} ⊢ s.FG ↔ CompleteLattice.IsCompactElement s
caae8d7d512db78b
List.modify_modify_ne
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Modify.lean
theorem modify_modify_ne (f g : α → α) {m n} (l : List α) (h : m ≠ n) : (modify f m l).modify g n = (l.modify g n).modify f m
case h α : Type u_1 f g : α → α m n : Nat l : List α h : m ≠ n ⊢ ∀ (i : Nat) (h₁ : i < (modify g n (modify f m l)).length) (h₂ : i < (modify f m (modify g n l)).length), (modify g n (modify f m l))[i] = (modify f m (modify g n l))[i]
intro m' h₁ h₂
case h α : Type u_1 f g : α → α m n : Nat l : List α h : m ≠ n m' : Nat h₁ : m' < (modify g n (modify f m l)).length h₂ : m' < (modify f m (modify g n l)).length ⊢ (modify g n (modify f m l))[m'] = (modify f m (modify g n l))[m']
0e2d5adc4b70baf2
TopologicalSpace.exists_isInducing_l_infty
Mathlib/Topology/Metrizable/Urysohn.lean
theorem exists_isInducing_l_infty : ∃ f : X → ℕ →ᵇ ℝ, IsInducing f
case intro.intro.refine_1.inl X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : SecondCountableTopology X B : Set (Set X) hBc : B.Countable hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.1 ⊆ UV.2} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).1) (↑UV).2ᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (⇑(f UV)) 0 (↑UV).1 hfε : ∀ (UV : ↑s), EqOn (⇑(f UV)) (fun x => ε UV) (↑UV).2ᶜ hf0ε : ∀ (UV : ↑s) (x : X), (f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), (f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toFun := fun UV => (f UV) x, continuous_toFun := ⋯, map_bounded' := ⋯ } hF : ∀ (x : X) (UV : ↑s), (F x) UV = (f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : {UV | δ ≤ ε UV}.Finite this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist ((F y) UV) ((F x) UV) ≤ δ y : X hy : ∀ (UV : ↑s), δ ≤ ε UV → dist ((F y) UV) ((F x) UV) ≤ δ UV : ↑s hle : δ ≤ ε UV ⊢ dist ((F y) UV) ((F x) UV) ≤ δ case intro.intro.refine_1.inr X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : RegularSpace X inst✝ : SecondCountableTopology X B : Set (Set X) hBc : B.Countable hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.1 ⊆ UV.2} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).1) (↑UV).2ᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (⇑(f UV)) 0 (↑UV).1 hfε : ∀ (UV : ↑s), EqOn (⇑(f UV)) (fun x => ε UV) (↑UV).2ᶜ hf0ε : ∀ (UV : ↑s) (x : X), (f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), (f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toFun := fun UV => (f UV) x, continuous_toFun := ⋯, map_bounded' := ⋯ } hF : ∀ (x : X) (UV : ↑s), (F x) UV = (f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : {UV | δ ≤ ε UV}.Finite this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist ((F y) UV) ((F x) UV) ≤ δ y : X hy : ∀ (UV : ↑s), δ ≤ ε UV → dist ((F y) UV) ((F x) UV) ≤ δ UV : ↑s hle : ε UV ≤ δ ⊢ dist ((F y) UV) ((F x) UV) ≤ δ
exacts [hy _ hle, (Real.dist_le_of_mem_Icc (hf0ε _ _) (hf0ε _ _)).trans (by rwa [sub_zero])]
no goals
7bd5745f003136ce
CoxeterSystem.length_mul_simple_ne
Mathlib/GroupTheory/Coxeter/Length.lean
theorem length_mul_simple_ne (w : W) (i : B) : ℓ (w * s i) ≠ ℓ w
case inr B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W w : W i : B eq : cs.length (w * cs.simple i) = cs.length w length_mod_two : cs.length w % 2 = (cs.length w + 1) % 2 odd : cs.length w % 2 = 1 ⊢ False
rw [odd, Nat.succ_mod_two_eq_zero_iff.mpr odd] at length_mod_two
case inr B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W w : W i : B eq : cs.length (w * cs.simple i) = cs.length w length_mod_two : 1 = 0 odd : cs.length w % 2 = 1 ⊢ False
97a180c6ccbec595
ContDiff.sum
Mathlib/Analysis/Calculus/ContDiff/Operations.lean
theorem ContDiff.sum {ι : Type*} {f : ι → E → F} {s : Finset ι} (h : ∀ i ∈ s, ContDiff 𝕜 n fun x => f i x) : ContDiff 𝕜 n fun x => ∑ i ∈ s, f i x
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F n : WithTop ℕ∞ ι : Type u_3 f : ι → E → F s : Finset ι h : ∀ i ∈ s, ContDiff 𝕜 n fun x => f i x ⊢ ContDiff 𝕜 n fun x => ∑ i ∈ s, f i x
simp only [← contDiffOn_univ] at *
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F n : WithTop ℕ∞ ι : Type u_3 f : ι → E → F s : Finset ι h : ∀ i ∈ s, ContDiffOn 𝕜 n (fun x => f i x) univ ⊢ ContDiffOn 𝕜 n (fun x => ∑ i ∈ s, f i x) univ
b7f57f2f31cd5611
MeasureTheory.VectorMeasure.map_apply
Mathlib/MeasureTheory/VectorMeasure/Basic.lean
theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) : v.map f s = v (f ⁻¹' s)
α : Type u_1 β : Type u_2 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β M : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : TopologicalSpace M v : VectorMeasure α M f : α → β hf : Measurable f s : Set β hs : MeasurableSet s ⊢ ↑{ measureOf' := fun s => if MeasurableSet s then ↑v (f ⁻¹' s) else 0, empty' := ⋯, not_measurable' := ⋯, m_iUnion' := ⋯ } s = ↑v (f ⁻¹' s)
exact if_pos hs
no goals
6a65e07b1b9e8503
Nat.all_congr
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Fold.lean
theorem all_congr {n m : Nat} (w : n = m) (f : (i : Nat) → i < n → Bool) : all n f = all m (fun i h => f i (by omega))
n : Nat f : (i : Nat) → i < n → Bool ⊢ n.all f = n.all fun i h => f i ⋯
rfl
no goals
2fa39c1067621dda
SimpleGraph.edgeSet_fromEdgeSet
Mathlib/Combinatorics/SimpleGraph/Basic.lean
theorem edgeSet_fromEdgeSet : (fromEdgeSet s).edgeSet = s \ { e | e.IsDiag }
V : Type u s : Set (Sym2 V) ⊢ (fromEdgeSet s).edgeSet = s \ {e | e.IsDiag}
ext e
case h V : Type u s : Set (Sym2 V) e : Sym2 V ⊢ e ∈ (fromEdgeSet s).edgeSet ↔ e ∈ s \ {e | e.IsDiag}
718852e4f7197f8b
Pi.image_update_segment
Mathlib/Analysis/Convex/Segment.lean
theorem image_update_segment (i : ι) (x₁ x₂ : π i) (y : ∀ i, π i) : update y i '' [x₁ -[𝕜] x₂] = [update y i x₁ -[𝕜] update y i x₂]
𝕜 : Type u_1 ι : Type u_5 π : ι → Type u_6 inst✝³ : OrderedSemiring 𝕜 inst✝² : (i : ι) → AddCommMonoid (π i) inst✝¹ : (i : ι) → Module 𝕜 (π i) inst✝ : DecidableEq ι i : ι x₁ x₂ : π i y : (i : ι) → π i a : 𝕜 × 𝕜 ha : a ∈ {p | 0 ≤ p.1 ∧ 0 ≤ p.2 ∧ p.1 + p.2 = 1} ⊢ update y i (a.1 • x₁ + a.2 • x₂) = a.1 • update y i x₁ + a.2 • update y i x₂
simp only [← update_smul, ← update_add, Convex.combo_self ha.2.2]
no goals
79696759074d7b20
CStarModule.inner_smul_right_real
Mathlib/Analysis/CStarAlgebra/Module/Defs.lean
@[simp] lemma inner_smul_right_real {z : ℝ} {x y : E} : ⟪x, z • y⟫ = z • ⟪x, y⟫
A : Type u_1 E : Type u_2 inst✝¹⁰ : NonUnitalRing A inst✝⁹ : StarRing A inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℂ A inst✝⁶ : Module ℂ E inst✝⁵ : PartialOrder A inst✝⁴ : SMul Aᵐᵒᵖ E inst✝³ : Norm A inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarModule ℂ A z : ℝ x y : E ⊢ inner x (z •> y) = z •> inner x y
have h₁ : z • y = (z : ℂ) • y := by simp
A : Type u_1 E : Type u_2 inst✝¹⁰ : NonUnitalRing A inst✝⁹ : StarRing A inst✝⁸ : AddCommGroup E inst✝⁷ : Module ℂ A inst✝⁶ : Module ℂ E inst✝⁵ : PartialOrder A inst✝⁴ : SMul Aᵐᵒᵖ E inst✝³ : Norm A inst✝² : Norm E inst✝¹ : CStarModule A E inst✝ : StarModule ℂ A z : ℝ x y : E h₁ : z •> y = ↑z •> y ⊢ inner x (z •> y) = z •> inner x y
292cfc3b7c127b19
Real.cos_bound
Mathlib/Data/Complex/Trigonometric.lean
theorem cos_bound {x : ℝ} (hx : |x| ≤ 1) : |cos x - (1 - x ^ 2 / 2)| ≤ |x| ^ 4 * (5 / 96) := calc |cos x - (1 - x ^ 2 / 2)| = ‖Complex.cos x - (1 - (x : ℂ) ^ 2 / 2)‖
x : ℝ hx : |x| ≤ 1 ⊢ cexp (↑x * I) + cexp (-↑x * I) - (2 - ↑x ^ 2) = cexp (↑x * I) - ∑ m ∈ range 4, (↑x * I) ^ m / ↑m.factorial + (cexp (-↑x * I) - ∑ m ∈ range 4, (-↑x * I) ^ m / ↑m.factorial)
simp only [neg_mul, pow_succ, pow_zero, sum_range_succ, range_zero, sum_empty, Nat.factorial, Nat.cast_succ, zero_add, mul_one, Nat.mul_one, mul_neg, neg_neg]
x : ℝ hx : |x| ≤ 1 ⊢ cexp (↑x * I) + cexp (-(↑x * I)) - (2 - 1 * ↑x * ↑x) = cexp (↑x * I) - (1 / (↑0 + 1) + 1 * (↑x * I) / (↑0 + 1) + 1 * (↑x * I) * (↑x * I) / (↑0 + 1 + 1) + 1 * (↑x * I) * (↑x * I) * (↑x * I) / (↑0 + 1 + 1 + 1 + 1 + 1 + 1)) + (cexp (-(↑x * I)) - (1 / (↑0 + 1) + -(1 * (↑x * I)) / (↑0 + 1) + 1 * (↑x * I) * (↑x * I) / (↑0 + 1 + 1) + -(1 * (↑x * I) * (↑x * I) * (↑x * I)) / (↑0 + 1 + 1 + 1 + 1 + 1 + 1)))
fc89f3e7e59ce086
ProbabilityTheory.Kernel.integral_fn_integral_add_comp
Mathlib/Probability/Kernel/Composition/IntegralCompProd.lean
theorem integral_fn_integral_add_comp ⦃f g : γ → E⦄ (F : E → E') (hf : Integrable f ((η ∘ₖ κ) a)) (hg : Integrable g ((η ∘ₖ κ) a)) : ∫ x, F (∫ y, f y + g y ∂η x) ∂κ a = ∫ x, F (∫ y, f y ∂η x + ∫ y, g y ∂η x) ∂κ a
α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝³ : NormedAddCommGroup E a : α κ : Kernel α β η : Kernel β γ inst✝² : NormedSpace ℝ E E' : Type u_5 inst✝¹ : NormedAddCommGroup E' inst✝ : NormedSpace ℝ E' f g : γ → E F : E → E' hf : Integrable f ((η ∘ₖ κ) a) hg : Integrable g ((η ∘ₖ κ) a) ⊢ ∫ (x : β), F (∫ (y : γ), f y + g y ∂η x) ∂κ a = ∫ (x : β), F (∫ (y : γ), f y ∂η x + ∫ (y : γ), g y ∂η x) ∂κ a
refine integral_congr_ae ?_
α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝³ : NormedAddCommGroup E a : α κ : Kernel α β η : Kernel β γ inst✝² : NormedSpace ℝ E E' : Type u_5 inst✝¹ : NormedAddCommGroup E' inst✝ : NormedSpace ℝ E' f g : γ → E F : E → E' hf : Integrable f ((η ∘ₖ κ) a) hg : Integrable g ((η ∘ₖ κ) a) ⊢ (fun x => F (∫ (y : γ), f y + g y ∂η x)) =ᶠ[ae (κ a)] fun x => F (∫ (y : γ), f y ∂η x + ∫ (y : γ), g y ∂η x)
c2605788d01690c3