name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
MeasureTheory.Supermartingale.setIntegral_le
Mathlib/Probability/Martingale/Basic.lean
theorem setIntegral_le [SigmaFiniteFiltration μ ℱ] {f : ι → Ω → ℝ} (hf : Supermartingale f ℱ μ) {i j : ι} (hij : i ≤ j) {s : Set Ω} (hs : MeasurableSet[ℱ i] s) : ∫ ω in s, f j ω ∂μ ≤ ∫ ω in s, f i ω ∂μ
Ω : Type u_1 ι : Type u_3 inst✝¹ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ f : ι → Ω → ℝ hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ μ[f j|↑ℱ i] ≤ᶠ[ae μ] f i
filter_upwards [hf.2.1 i j hij] with _ heq using heq
no goals
d9882fe29a1eccc9
lowerCentralSeries_antitone
Mathlib/GroupTheory/Nilpotent.lean
theorem lowerCentralSeries_antitone : Antitone (lowerCentralSeries G)
case intro.intro.intro G : Type u_1 inst✝ : Group G n : ℕ x : G hx : x ∈ closure {x | ∃ p ∈ lowerCentralSeries G n, ∃ q, p * q * p⁻¹ * q⁻¹ = x} y z : G hz : z ∈ lowerCentralSeries G n a : G ha : z * a * z⁻¹ * a⁻¹ = y ⊢ z * (a * z⁻¹ * a⁻¹) ∈ lowerCentralSeries G n
exact mul_mem hz (Normal.conj_mem (lowerCentralSeries_normal n) z⁻¹ (inv_mem hz) a)
no goals
db060d010fc2a818
SeminormFamily.basisSets_smul_left
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem basisSets_smul_left (x : 𝕜) (U : Set E) (hU : U ∈ p.basisSets) : ∃ V ∈ p.addGroupFilterBasis.sets, V ⊆ (fun y : E => x • y) ⁻¹' U
case pos 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E p : SeminormFamily 𝕜 E ι inst✝ : Nonempty ι x : 𝕜 U : Set E hU✝ : U ∈ p.basisSets s : Finset ι r : ℝ hr : 0 < r hU : U = (s.sup p).ball 0 r h : x ≠ 0 ⊢ ∃ V ∈ AddGroupFilterBasis.toFilterBasis.sets, V ⊆ (s.sup p).ball 0 (r / ‖x‖)
use (s.sup p).ball 0 (r / ‖x‖)
case h 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝³ : NormedField 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E p : SeminormFamily 𝕜 E ι inst✝ : Nonempty ι x : 𝕜 U : Set E hU✝ : U ∈ p.basisSets s : Finset ι r : ℝ hr : 0 < r hU : U = (s.sup p).ball 0 r h : x ≠ 0 ⊢ (s.sup p).ball 0 (r / ‖x‖) ∈ AddGroupFilterBasis.toFilterBasis.sets ∧ (s.sup p).ball 0 (r / ‖x‖) ⊆ (s.sup p).ball 0 (r / ‖x‖)
746096ac124c9ebb
CategoryTheory.Functor.IsCoverDense.Types.naturality_apply
Mathlib/CategoryTheory/Sites/DenseSubsite/Basic.lean
theorem naturality_apply [G.IsLocallyFull K] {X Y : C} (i : G.obj X ⟶ G.obj Y) (x) : ℱ'.1.map i.op (α.app _ x) = α.app _ (ℱ.map i.op x)
C : Type u_1 inst✝² : Category.{u_5, u_1} C D : Type u_2 inst✝¹ : Category.{u_6, u_2} D K : GrothendieckTopology D G : C ⥤ D ℱ : Dᵒᵖ ⥤ Type v ℱ' : Sheaf K (Type v) α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val inst✝ : G.IsLocallyFull K X Y : C i : G.obj X ⟶ G.obj Y x : (G.op ⋙ ℱ).obj (op Y) ⊢ ℱ'.val.map i.op (α.app (op Y) x) = α.app (op X) (ℱ.map i.op x)
have {X Y} (i : X ⟶ Y) (x) : ℱ'.1.map (G.map i).op (α.app _ x) = α.app _ (ℱ.map (G.map i).op x) := by exact congr_fun (α.naturality i.op).symm x
C : Type u_1 inst✝² : Category.{u_5, u_1} C D : Type u_2 inst✝¹ : Category.{u_6, u_2} D K : GrothendieckTopology D G : C ⥤ D ℱ : Dᵒᵖ ⥤ Type v ℱ' : Sheaf K (Type v) α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val inst✝ : G.IsLocallyFull K X Y : C i : G.obj X ⟶ G.obj Y x : (G.op ⋙ ℱ).obj (op Y) this : ∀ {X Y : C} (i : X ⟶ Y) (x : (G.op ⋙ ℱ).obj (op Y)), ℱ'.val.map (G.map i).op (α.app (op Y) x) = α.app (op X) (ℱ.map (G.map i).op x) ⊢ ℱ'.val.map i.op (α.app (op Y) x) = α.app (op X) (ℱ.map i.op x)
0e18cd3a80d5b906
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
theorem integral_Ioi_deriv_mul_eq_sub (hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x) (hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x) (huv : IntegrableOn (u' * v + u * v') (Ioi a)) (h_zero : Tendsto (u * v) (𝓝[>] a) (𝓝 a')) (h_infty : Tendsto (u * v) atTop (𝓝 b')) : ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x ⊢ u * v =ᶠ[atTop] f
filter_upwards [eventually_ne_atTop a] with x hx
case h A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x x : ℝ hx : x ≠ a ⊢ (u * v) x = f x
c1989a63bc42f58a
minpoly.mem_range_of_degree_eq_one
Mathlib/FieldTheory/Minpoly/Basic.lean
theorem mem_range_of_degree_eq_one (hx : (minpoly A x).degree = 1) : x ∈ (algebraMap A B).range
A : Type u_1 B : Type u_2 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B hx : (minpoly A x).degree = 1 h : IsIntegral A x key : x = (algebraMap A B) (-(minpoly A x).coeff 0) ⊢ x ∈ (algebraMap A B).range
exact ⟨-(minpoly A x).coeff 0, key.symm⟩
no goals
f3de3c81a71d387c
IsSelfAdjoint.hasEigenvector_of_isMaxOn
Mathlib/Analysis/InnerProductSpace/Rayleigh.lean
theorem hasEigenvector_of_isMaxOn (hT : IsSelfAdjoint T) {x₀ : E} (hx₀ : x₀ ≠ 0) (hextr : IsMaxOn T.reApplyInnerSelf (sphere (0 : E) ‖x₀‖) x₀) : HasEigenvector (T : E →ₗ[𝕜] E) (↑(⨆ x : { x : E // x ≠ 0 }, T.rayleighQuotient x)) x₀
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : CompleteSpace E T : E →L[𝕜] E hT : IsSelfAdjoint T x₀ : E hx₀ : x₀ ≠ 0 hextr : IsMaxOn T.reApplyInnerSelf (sphere 0 ‖x₀‖) x₀ hx₀' : 0 < ‖x₀‖ hx₀'' : x₀ ∈ sphere 0 ‖x₀‖ x : E hx : x ∈ sphere 0 ‖x₀‖ ⊢ ‖x‖ = ‖x₀‖
simpa using hx
no goals
ab8f63176b60c4a5
MixedCharZero.reduce_to_p_prime
Mathlib/Algebra/CharP/MixedCharZero.lean
theorem reduce_to_p_prime {P : Prop} : (∀ p > 0, MixedCharZero R p → P) ↔ ∀ p : ℕ, p.Prime → MixedCharZero R p → P
R : Type u_1 inst✝ : CommRing R P : Prop h : ∀ (p : ℕ), Nat.Prime p → MixedCharZero R p → P q : ℕ q_pos : q > 0 q_mixedChar : MixedCharZero R q I : Ideal R hI_ne_top : I ≠ ⊤ right✝ : CharP (R ⧸ I) q M : Ideal R hM_max : M.IsMaximal h_IM : I ≤ M r : ℕ := ringChar (R ⧸ M) q_zero : ↑q = 0 ⊢ r ≠ 0
apply ne_zero_of_dvd_ne_zero (ne_of_gt q_pos)
R : Type u_1 inst✝ : CommRing R P : Prop h : ∀ (p : ℕ), Nat.Prime p → MixedCharZero R p → P q : ℕ q_pos : q > 0 q_mixedChar : MixedCharZero R q I : Ideal R hI_ne_top : I ≠ ⊤ right✝ : CharP (R ⧸ I) q M : Ideal R hM_max : M.IsMaximal h_IM : I ≤ M r : ℕ := ringChar (R ⧸ M) q_zero : ↑q = 0 ⊢ r ∣ q
c9cd4718e7a6656f
ModelWithCorners.interior_disjointUnion
Mathlib/Geometry/Manifold/IsManifold/InteriorBoundary.lean
lemma interior_disjointUnion : ModelWithCorners.interior (I := I) (M ⊕ M') = Sum.inl '' (ModelWithCorners.interior (I := I) M) ∪ Sum.inr '' (ModelWithCorners.interior (I := I) M')
case pos 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' hp : p ∈ Sum.inl '' ModelWithCorners.interior M ∪ Sum.inr '' ModelWithCorners.interior M' h : p.isLeft = true ⊢ p ∈ ModelWithCorners.interior (M ⊕ M')
set x := Sum.getLeft p h with x_eq
case pos 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' hp : p ∈ Sum.inl '' ModelWithCorners.interior M ∪ Sum.inr '' ModelWithCorners.interior M' h : p.isLeft = true x : M := p.getLeft h x_eq : x = p.getLeft h ⊢ p ∈ ModelWithCorners.interior (M ⊕ M')
a37cb5a73686bbc7
Lean.Grind.eqNDRec_heq
Mathlib/.lake/packages/lean4/src/lean/Init/Grind/Lemmas.lean
theorem eqNDRec_heq.{u_1, u_2} {α : Sort u_2} {a : α} {motive : α → Sort u_1} (v : motive a) {b : α} (h : a = b) : HEq (@Eq.ndrec α a motive v b h) v
α : Sort u_2 a : α motive : α → Sort u_1 v : motive a ⊢ HEq (⋯ ▸ v) v
rfl
no goals
1a1ced6def61e073
Subgroup.isOpen_of_mem_nhds
Mathlib/Topology/Algebra/OpenSubgroup.lean
theorem isOpen_of_mem_nhds [ContinuousMul G] (H : Subgroup G) {g : G} (hg : (H : Set G) ∈ 𝓝 g) : IsOpen (H : Set G)
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G H : Subgroup G g : G hg : ↑H ∈ 𝓝 g x : G hx : x ∈ ↑H ⊢ ↑H ∈ 𝓝 x
have hg' : g ∈ H := SetLike.mem_coe.1 (mem_of_mem_nhds hg)
G : Type u_1 inst✝² : Group G inst✝¹ : TopologicalSpace G inst✝ : ContinuousMul G H : Subgroup G g : G hg : ↑H ∈ 𝓝 g x : G hx : x ∈ ↑H hg' : g ∈ H ⊢ ↑H ∈ 𝓝 x
b78c6ecd314e40e6
IsPrimitiveRoot.arg
Mathlib/RingTheory/RootsOfUnity/Complex.lean
theorem IsPrimitiveRoot.arg {n : ℕ} {ζ : ℂ} (h : IsPrimitiveRoot ζ n) (hn : n ≠ 0) : ∃ i : ℤ, ζ.arg = i / n * (2 * Real.pi) ∧ IsCoprime i n ∧ i.natAbs < n
case neg.convert_2 n : ℕ hn : n ≠ 0 i : ℕ h : i < n hin : i.Coprime n h₂ : ¬i * 2 ≤ n ⊢ -Real.pi < (↑i - ↑n) * (2 * Real.pi) / ↑n ∧ (↑i - ↑n) * (2 * Real.pi) / ↑n ≤ Real.pi
refine ⟨?_, le_trans ?_ Real.pi_pos.le⟩
case neg.convert_2.refine_1 n : ℕ hn : n ≠ 0 i : ℕ h : i < n hin : i.Coprime n h₂ : ¬i * 2 ≤ n ⊢ -Real.pi < (↑i - ↑n) * (2 * Real.pi) / ↑n case neg.convert_2.refine_2 n : ℕ hn : n ≠ 0 i : ℕ h : i < n hin : i.Coprime n h₂ : ¬i * 2 ≤ n ⊢ (↑i - ↑n) * (2 * Real.pi) / ↑n ≤ 0
27e9c2564262c07b
LocallyFinite.finite_nonempty_of_compact
Mathlib/Topology/Compactness/Compact.lean
theorem LocallyFinite.finite_nonempty_of_compact [CompactSpace X] {f : ι → Set X} (hf : LocallyFinite f) : { i | (f i).Nonempty }.Finite
X : Type u ι : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X f : ι → Set X hf : LocallyFinite f ⊢ {i | (f i).Nonempty}.Finite
simpa only [inter_univ] using hf.finite_nonempty_inter_compact isCompact_univ
no goals
91a62b7c98a05f57
Int.isUnit_sq
Mathlib/Data/Int/Order/Units.lean
theorem isUnit_sq {a : ℤ} (ha : IsUnit a) : a ^ 2 = 1
a : ℤ ha : IsUnit a ⊢ a ^ 2 = 1
rw [sq, isUnit_mul_self ha]
no goals
5411e649b7b09c66
List.set_getElem_succ_eraseIdx_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Nat/Erase.lean
theorem set_getElem_succ_eraseIdx_succ {l : List α} {i : Nat} (h : i + 1 < l.length) : (l.eraseIdx (i + 1)).set i l[i + 1] = l.eraseIdx i
case h.isFalse.isTrue.isTrue α : Type u_1 l : List α i : Nat h : i + 1 < l.length n : Nat h₁ : n < ((l.eraseIdx (i + 1)).set i l[i + 1]).length h₂ : n < (l.eraseIdx i).length h✝² : ¬i = n h✝¹ : n < i + 1 h✝ : n < i ⊢ l[n] = l[n]
rfl
no goals
31983ea669fb242b
Subalgebra.finrank_sup_le_of_free
Mathlib/RingTheory/Adjoin/Dimension.lean
theorem finrank_sup_le_of_free : finrank R ↥(A ⊔ B) ≤ finrank R A * finrank R B
case pos R : Type u S : Type v inst✝⁵ : CommRing R inst✝⁴ : StrongRankCondition R inst✝³ : CommRing S inst✝² : Algebra R S A B : Subalgebra R S inst✝¹ : Free R ↥A inst✝ : Free R ↥B h : Module.Finite R ↥A ∧ Module.Finite R ↥B ⊢ finrank R ↥(A ⊔ B) ≤ finrank R ↥A * finrank R ↥B
obtain ⟨_, _⟩ := h
case pos.intro R : Type u S : Type v inst✝⁵ : CommRing R inst✝⁴ : StrongRankCondition R inst✝³ : CommRing S inst✝² : Algebra R S A B : Subalgebra R S inst✝¹ : Free R ↥A inst✝ : Free R ↥B left✝ : Module.Finite R ↥A right✝ : Module.Finite R ↥B ⊢ finrank R ↥(A ⊔ B) ≤ finrank R ↥A * finrank R ↥B
9b7b5a8cbdf91750
LinearMap.isClosed_or_dense_ker
Mathlib/Topology/Algebra/Module/Simple.lean
theorem LinearMap.isClosed_or_dense_ker (l : M →ₗ[R] N) : IsClosed (LinearMap.ker l : Set M) ∨ Dense (LinearMap.ker l : Set M)
case inr R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N ⊢ IsClosed ↑⊤ ∨ Dense ↑⊤
left
case inr.h R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace R inst✝⁷ : TopologicalSpace M inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : ContinuousSMul R M inst✝² : Module R N inst✝¹ : ContinuousAdd M inst✝ : IsSimpleModule R N ⊢ IsClosed ↑⊤
8a89eedc2ab854fa
Associates.eq_factors_of_eq_counts
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem eq_factors_of_eq_counts {a b : Associates α} (ha : a ≠ 0) (hb : b ≠ 0) (h : ∀ p : Associates α, Irreducible p → p.count a.factors = p.count b.factors) : a.factors = b.factors
α : Type u_1 inst✝³ : CancelCommMonoidWithZero α inst✝² : UniqueFactorizationMonoid α inst✝¹ : DecidableEq (Associates α) inst✝ : (p : Associates α) → Decidable (Irreducible p) a b : Associates α ha : a ≠ 0 hb : b ≠ 0 sa : Multiset { p // Irreducible p } h_sa : a.factors = ↑sa sb : Multiset { p // Irreducible p } h : ∀ (p : Associates α), Irreducible p → p.count ↑sa = p.count ↑sb h_sb : b.factors = ↑sb ⊢ ∀ (p : Associates α) (hp : Irreducible p), Multiset.count ⟨p, hp⟩ sa = Multiset.count ⟨p, hp⟩ sb
intro p hp
α : Type u_1 inst✝³ : CancelCommMonoidWithZero α inst✝² : UniqueFactorizationMonoid α inst✝¹ : DecidableEq (Associates α) inst✝ : (p : Associates α) → Decidable (Irreducible p) a b : Associates α ha : a ≠ 0 hb : b ≠ 0 sa : Multiset { p // Irreducible p } h_sa : a.factors = ↑sa sb : Multiset { p // Irreducible p } h : ∀ (p : Associates α), Irreducible p → p.count ↑sa = p.count ↑sb h_sb : b.factors = ↑sb p : Associates α hp : Irreducible p ⊢ Multiset.count ⟨p, hp⟩ sa = Multiset.count ⟨p, hp⟩ sb
92d336a2c52c647d
Associates.eq_pow_count_factors_of_dvd_pow
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem eq_pow_count_factors_of_dvd_pow {p a : Associates α} (hp : Irreducible p) {n : ℕ} (h : a ∣ p ^ n) : a = p ^ p.count a.factors
α : Type u_1 inst✝³ : CancelCommMonoidWithZero α inst✝² : UniqueFactorizationMonoid α inst✝¹ : DecidableEq (Associates α) inst✝ : (p : Associates α) → Decidable (Irreducible p) p a : Associates α hp : Irreducible p n : ℕ h : a ∣ p ^ n a✝ : Nontrivial α hph : p ^ n ≠ 0 ha : a ≠ 0 ⊢ ∀ (p_1 : Associates α), Irreducible p_1 → p_1.count a.factors = p_1.count (p ^ p.count a.factors).factors
have eq_zero_of_ne : ∀ q : Associates α, Irreducible q → q ≠ p → _ = 0 := fun q hq h' => Nat.eq_zero_of_le_zero <| by convert count_le_count_of_le hph hq h symm rw [count_pow hp.ne_zero hq, count_eq_zero_of_ne hq hp h', mul_zero]
α : Type u_1 inst✝³ : CancelCommMonoidWithZero α inst✝² : UniqueFactorizationMonoid α inst✝¹ : DecidableEq (Associates α) inst✝ : (p : Associates α) → Decidable (Irreducible p) p a : Associates α hp : Irreducible p n : ℕ h : a ∣ p ^ n a✝ : Nontrivial α hph : p ^ n ≠ 0 ha : a ≠ 0 eq_zero_of_ne : ∀ (q : Associates α), Irreducible q → q ≠ p → q.count a.factors = 0 ⊢ ∀ (p_1 : Associates α), Irreducible p_1 → p_1.count a.factors = p_1.count (p ^ p.count a.factors).factors
db8650aa84ceeb2f
Batteries.RBNode.Balanced.append
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/WF.lean
theorem Balanced.append {l r : RBNode α} (hl : l.Balanced c₁ n) (hr : r.Balanced c₂ n) : (l.append r).RedRed (c₁ = black → c₂ ≠ black) n
α : Type u_1 c₁ : RBColor n : Nat c₂ : RBColor x✝² x✝¹ a✝ : RBNode α x✝ : α b c : RBNode α y✝ : α d✝ : RBNode α hl : (node red a✝ x✝ b).Balanced c₁ n hr : (node red c y✝ d✝).Balanced c₂ n ha : a✝.Balanced black n hb : b.Balanced black n hc : c.Balanced black n hd : d✝.Balanced black n w✝ : RBColor IH : (b.append c).Balanced w✝ n ⊢ RedRed (red = black → red ≠ black) (match b.append c with | node red b' z c' => node red (node red a✝ x✝ b') z (node red c' y✝ d✝) | bc => node red a✝ x✝ (node red bc y✝ d✝)) n
split
case h_1 α : Type u_1 c₁ : RBColor n : Nat c₂ : RBColor x✝³ x✝² a✝¹ : RBNode α x✝¹ : α b c : RBNode α y✝ : α d✝ : RBNode α hl : (node red a✝¹ x✝¹ b).Balanced c₁ n hr : (node red c y✝ d✝).Balanced c₂ n ha : a✝¹.Balanced black n hb : b.Balanced black n hc : c.Balanced black n hd : d✝.Balanced black n w✝ : RBColor IH : (b.append c).Balanced w✝ n l✝ a✝ : RBNode α x✝ : α b✝ : RBNode α heq✝ : b.append c = node red a✝ x✝ b✝ ⊢ RedRed (red = black → red ≠ black) (node red (node red a✝¹ x✝¹ a✝) x✝ (node red b✝ y✝ d✝)) n case h_2 α : Type u_1 c₁ : RBColor n : Nat c₂ : RBColor x✝³ x✝² a✝ : RBNode α x✝¹ : α b c : RBNode α y✝ : α d✝ : RBNode α hl : (node red a✝ x✝¹ b).Balanced c₁ n hr : (node red c y✝ d✝).Balanced c₂ n ha : a✝.Balanced black n hb : b.Balanced black n hc : c.Balanced black n hd : d✝.Balanced black n w✝ : RBColor IH : (b.append c).Balanced w✝ n l✝ : RBNode α x✝ : ∀ (a : RBNode α) (x : α) (b_1 : RBNode α), b.append c = node red a x b_1 → False ⊢ RedRed (red = black → red ≠ black) (node red a✝ x✝¹ (node red (b.append c) y✝ d✝)) n
b3ecc8a07b6c9ec6
LinearMap.mapsTo_biSup_of_mapsTo
Mathlib/Algebra/DirectSum/LinearMap.lean
lemma mapsTo_biSup_of_mapsTo {ι : Type*} {N : ι → Submodule R M} (s : Set ι) {f : Module.End R M} (hf : ∀ i, MapsTo f (N i) (N i)) : MapsTo f ↑(⨆ i ∈ s, N i) ↑(⨆ i ∈ s, N i)
R : Type u_2 M : Type u_3 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_4 N : ι → Submodule R M s : Set ι f : Module.End R M hf : ∀ (i : ι), Submodule.map f (N i) ≤ N i ⊢ Submodule.map f (⨆ i ∈ s, N i) ≤ ⨆ i ∈ s, N i
simpa only [Submodule.map_iSup] using iSup₂_mono <| fun i _ ↦ hf i
no goals
b3d6df199b89a4ff
CategoryTheory.Adjunction.localization_counit_app
Mathlib/CategoryTheory/Localization/Adjunction.lean
@[simp] lemma localization_counit_app (X₂ : C₂) : (adj.localization L₁ W₁ L₂ W₂ G' F').counit.app (L₂.obj X₂) = G'.map ((CatCommSq.iso F L₂ L₁ F').inv.app X₂) ≫ (CatCommSq.iso G L₁ L₂ G').inv.app (F.obj X₂) ≫ L₂.map (adj.counit.app X₂)
C₁ : Type u_1 C₂ : Type u_2 D₁ : Type u_3 D₂ : Type u_4 inst✝⁷ : Category.{u_8, u_1} C₁ inst✝⁶ : Category.{u_7, u_2} C₂ inst✝⁵ : Category.{u_6, u_3} D₁ inst✝⁴ : Category.{u_5, u_4} D₂ G : C₁ ⥤ C₂ F : C₂ ⥤ C₁ adj : G ⊣ F L₁ : C₁ ⥤ D₁ W₁ : MorphismProperty C₁ inst✝³ : L₁.IsLocalization W₁ L₂ : C₂ ⥤ D₂ W₂ : MorphismProperty C₂ inst✝² : L₂.IsLocalization W₂ G' : D₁ ⥤ D₂ F' : D₂ ⥤ D₁ inst✝¹ : CatCommSq G L₁ L₂ G' inst✝ : CatCommSq F L₂ L₁ F' X₂ : C₂ ⊢ (adj.localization L₁ W₁ L₂ W₂ G' F').counit.app (L₂.obj X₂) = G'.map ((CatCommSq.iso F L₂ L₁ F').inv.app X₂) ≫ (CatCommSq.iso G L₁ L₂ G').inv.app (F.obj X₂) ≫ L₂.map (adj.counit.app X₂)
apply Localization.η_app
no goals
c65ffa4546fd9d0a
CategoryTheory.Limits.colim.exact_mapShortComplex
Mathlib/CategoryTheory/Abelian/GrothendieckAxioms/Colim.lean
/-- Assuming `HasExactColimitsOfShape J C`, this lemma rephrases the exactness of the functor `colim : (J ⥤ C) ⥤ C` by saying that if `S : ShortComplex (J ⥤ C)` is exact, then the short complex obtained by taking the colimits is exact, where we allow the replacement of the chosen colimit cocones of the colimit API by arbitrary colimit cocones. -/ lemma colim.exact_mapShortComplex : (mapShortComplex S hc₁ c₂ c₃ f g hf hg).Exact
C : Type u inst✝⁴ : Category.{v, u} C J : Type u' inst✝³ : Category.{v', u'} J inst✝² : HasColimitsOfShape J C inst✝¹ : HasExactColimitsOfShape J C inst✝ : HasZeroMorphisms C S : ShortComplex (J ⥤ C) hS : S.Exact c₁ : Cocone S.X₁ hc₁ : IsColimit c₁ c₂ : Cocone S.X₂ hc₂ : IsColimit c₂ c₃ : Cocone S.X₃ hc₃ : IsColimit c₃ f : c₁.pt ⟶ c₂.pt g : c₂.pt ⟶ c₃.pt hf : ∀ (j : J), c₁.ι.app j ≫ f = S.f.app j ≫ c₂.ι.app j hg : ∀ (j : J), c₂.ι.app j ≫ g = S.g.app j ≫ c₃.ι.app j ⊢ (mapShortComplex S hc₁ c₂ c₃ f g hf hg).Exact
refine (ShortComplex.exact_iff_of_iso ?_).2 (hS.map colim)
C : Type u inst✝⁴ : Category.{v, u} C J : Type u' inst✝³ : Category.{v', u'} J inst✝² : HasColimitsOfShape J C inst✝¹ : HasExactColimitsOfShape J C inst✝ : HasZeroMorphisms C S : ShortComplex (J ⥤ C) hS : S.Exact c₁ : Cocone S.X₁ hc₁ : IsColimit c₁ c₂ : Cocone S.X₂ hc₂ : IsColimit c₂ c₃ : Cocone S.X₃ hc₃ : IsColimit c₃ f : c₁.pt ⟶ c₂.pt g : c₂.pt ⟶ c₃.pt hf : ∀ (j : J), c₁.ι.app j ≫ f = S.f.app j ≫ c₂.ι.app j hg : ∀ (j : J), c₂.ι.app j ≫ g = S.g.app j ≫ c₃.ι.app j ⊢ mapShortComplex S hc₁ c₂ c₃ f g hf hg ≅ S.map colim
dc1c71373d793112
gramSchmidt_mem_span
Mathlib/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
theorem gramSchmidt_mem_span (f : ι → E) : ∀ {j i}, i ≤ j → gramSchmidt 𝕜 f i ∈ span 𝕜 (f '' Set.Iic j)
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E j i : ι hij : i ≤ j ⊢ gramSchmidt 𝕜 f i ∈ span 𝕜 (f '' Set.Iic j)
rw [gramSchmidt_def 𝕜 f i]
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E j i : ι hij : i ≤ j ⊢ f i - ∑ i_1 ∈ Finset.Iio i, ↑((orthogonalProjection (span 𝕜 {gramSchmidt 𝕜 f i_1})) (f i)) ∈ span 𝕜 (f '' Set.Iic j)
2db3f8db7f4c82a7
ContinuousLinearMap.exists_preimage_norm_le
Mathlib/Analysis/Normed/Operator/Banach.lean
theorem exists_preimage_norm_le (surj : Surjective f) : ∃ C > 0, ∀ y, ∃ x, f x = y ∧ ‖x‖ ≤ C * ‖y‖
case succ 𝕜 : Type u_1 𝕜' : Type u_2 inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜' σ : 𝕜 →+* 𝕜' E : Type u_3 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace 𝕜 E F : Type u_4 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜' F f : E →SL[σ] F σ' : 𝕜' →+* 𝕜 inst✝⁴ : RingHomInvPair σ σ' inst✝³ : RingHomIsometric σ inst✝² : RingHomIsometric σ' inst✝¹ : CompleteSpace F inst✝ : CompleteSpace E surj : Surjective ⇑f C : ℝ C0 : C ≥ 0 g : F → E hg : ∀ (y : F), dist (f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖ h : F → F := fun y => y - f (g y) hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖ y : F n : ℕ IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖ ⊢ ‖h^[n + 1] y‖ ≤ (1 / 2) ^ (n + 1) * ‖y‖
rw [iterate_succ']
case succ 𝕜 : Type u_1 𝕜' : Type u_2 inst✝¹⁰ : NontriviallyNormedField 𝕜 inst✝⁹ : NontriviallyNormedField 𝕜' σ : 𝕜 →+* 𝕜' E : Type u_3 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace 𝕜 E F : Type u_4 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜' F f : E →SL[σ] F σ' : 𝕜' →+* 𝕜 inst✝⁴ : RingHomInvPair σ σ' inst✝³ : RingHomIsometric σ inst✝² : RingHomIsometric σ' inst✝¹ : CompleteSpace F inst✝ : CompleteSpace E surj : Surjective ⇑f C : ℝ C0 : C ≥ 0 g : F → E hg : ∀ (y : F), dist (f (g y)) y ≤ 1 / 2 * ‖y‖ ∧ ‖g y‖ ≤ C * ‖y‖ h : F → F := fun y => y - f (g y) hle : ∀ (y : F), ‖h y‖ ≤ 1 / 2 * ‖y‖ y : F n : ℕ IH : ‖h^[n] y‖ ≤ (1 / 2) ^ n * ‖y‖ ⊢ ‖(h ∘ h^[n]) y‖ ≤ (1 / 2) ^ (n + 1) * ‖y‖
fbb58cd4816e6d13
LinearIndependent.map_pow_expChar_pow_of_isSeparable
Mathlib/FieldTheory/PurelyInseparable/PerfectClosure.lean
theorem LinearIndependent.map_pow_expChar_pow_of_isSeparable [Algebra.IsSeparable F E] (h : LinearIndependent F v) : LinearIndependent F (v · ^ q ^ n)
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E q n : ℕ hF : ExpChar F q ι : Type u_1 v : ι → E inst✝ : Algebra.IsSeparable F E h : ∀ (s : Finset ι), LinearIndependent F (v ∘ Subtype.val) halg : Algebra.IsAlgebraic F E s : Finset ι ⊢ LinearIndependent F ((fun x => v x ^ q ^ n) ∘ Subtype.val)
let E' := adjoin F (s.image v : Set E)
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E q n : ℕ hF : ExpChar F q ι : Type u_1 v : ι → E inst✝ : Algebra.IsSeparable F E h : ∀ (s : Finset ι), LinearIndependent F (v ∘ Subtype.val) halg : Algebra.IsAlgebraic F E s : Finset ι E' : IntermediateField F E := adjoin F ↑(Finset.image v s) ⊢ LinearIndependent F ((fun x => v x ^ q ^ n) ∘ Subtype.val)
8836e43fdea16b48
Std.Tactic.BVDecide.BVExpr.bitblast.blastArithShiftRight.go_denote_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
theorem go_denote_eq (aig : AIG α) (distance : AIG.RefVec aig n) (curr : Nat) (hcurr : curr ≤ n - 1) (acc : AIG.RefVec aig w) (lhs : BitVec w) (rhs : BitVec n) (assign : α → Bool) (hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, acc.get idx hidx, assign⟧ = (BitVec.sshiftRightRec lhs rhs curr).getLsbD idx) (hright : ∀ (idx : Nat) (hidx : idx < n), ⟦aig, distance.get idx hidx, assign⟧ = rhs.getLsbD idx) : ∀ (idx : Nat) (hidx : idx < w), ⟦ (go aig distance curr acc).aig, (go aig distance curr acc).vec.get idx hidx, assign ⟧ = (BitVec.sshiftRightRec lhs rhs (n - 1)).getLsbD idx
case isTrue.hright α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α n w : Nat aig : AIG α distance : aig.RefVec n curr : Nat hcurr : curr ≤ n - 1 acc : aig.RefVec w lhs : BitVec w rhs : BitVec n assign : α → Bool hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := acc.get idx hidx }⟧ = (lhs.sshiftRightRec rhs curr).getLsbD idx hright : ∀ (idx : Nat) (hidx : idx < n), ⟦assign, { aig := aig, ref := distance.get idx hidx }⟧ = rhs.getLsbD idx idx✝ : Nat hidx✝ : idx✝ < w res : RefVecEntry α w h✝ : curr < n - 1 hgo : go (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).aig (distance.cast ⋯) (curr + 1) (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).vec = res idx : Nat hidx : idx < n ⊢ ((distance.cast ⋯).get idx hidx).gate < aig.decls.size
simp [Ref.hgate]
no goals
a62c971c970b9dfe
RCLike.nonUnitalContinuousFunctionalCalculus
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Instances.lean
theorem RCLike.nonUnitalContinuousFunctionalCalculus : NonUnitalContinuousFunctionalCalculus 𝕜 (p : A → Prop) where predicate_zero
𝕜 : Type u_1 A : Type u_2 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NonUnitalNormedRing A inst✝⁷ : StarRing A inst✝⁶ : NormedSpace 𝕜 A inst✝⁵ : IsScalarTower 𝕜 A A inst✝⁴ : SMulCommClass 𝕜 A A inst✝³ : StarModule 𝕜 A p : A → Prop p₁ : Unitization 𝕜 A → Prop hp₁ : ∀ {x : A}, p₁ ↑x ↔ p x inst✝² : ContinuousFunctionalCalculus 𝕜 p₁ inst✝¹ : CompleteSpace A inst✝ : CStarRing A a : A ha : p a ψ : C(↑(σₙ 𝕜 a), 𝕜)₀ →⋆ₙₐ[𝕜] A := (↑(inrRangeEquiv 𝕜 A).symm).comp (codRestrict (cfcₙAux ⋯ a ha) (NonUnitalStarAlgHom.range (inrNonUnitalStarAlgHom 𝕜 A)) ⋯) coe_ψ : ∀ (f : C(↑(σₙ 𝕜 a), 𝕜)₀), ↑(ψ f) = (cfcₙAux ⋯ a ha) f ⊢ IsClosedEmbedding (Unitization.inr ∘ ⇑ψ)
have : inr ∘ ψ = cfcₙAux hp₁ a ha := by ext1; rw [Function.comp_apply, coe_ψ]
𝕜 : Type u_1 A : Type u_2 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NonUnitalNormedRing A inst✝⁷ : StarRing A inst✝⁶ : NormedSpace 𝕜 A inst✝⁵ : IsScalarTower 𝕜 A A inst✝⁴ : SMulCommClass 𝕜 A A inst✝³ : StarModule 𝕜 A p : A → Prop p₁ : Unitization 𝕜 A → Prop hp₁ : ∀ {x : A}, p₁ ↑x ↔ p x inst✝² : ContinuousFunctionalCalculus 𝕜 p₁ inst✝¹ : CompleteSpace A inst✝ : CStarRing A a : A ha : p a ψ : C(↑(σₙ 𝕜 a), 𝕜)₀ →⋆ₙₐ[𝕜] A := (↑(inrRangeEquiv 𝕜 A).symm).comp (codRestrict (cfcₙAux ⋯ a ha) (NonUnitalStarAlgHom.range (inrNonUnitalStarAlgHom 𝕜 A)) ⋯) coe_ψ : ∀ (f : C(↑(σₙ 𝕜 a), 𝕜)₀), ↑(ψ f) = (cfcₙAux ⋯ a ha) f this : Unitization.inr ∘ ⇑ψ = ⇑(cfcₙAux ⋯ a ha) ⊢ IsClosedEmbedding (Unitization.inr ∘ ⇑ψ)
95b319408dc7d905
integral_bernoulliFun_eq_zero
Mathlib/NumberTheory/ZetaValues.lean
theorem integral_bernoulliFun_eq_zero {k : ℕ} (hk : k ≠ 0) : ∫ x : ℝ in (0)..1, bernoulliFun k x = 0
k : ℕ hk : k ≠ 0 ⊢ ∫ (x : ℝ) in 0 ..1, bernoulliFun k x = 0
rw [integral_eq_sub_of_hasDerivAt (fun x _ => antideriv_bernoulliFun k x) ((Polynomial.continuous _).intervalIntegrable _ _)]
k : ℕ hk : k ≠ 0 ⊢ bernoulliFun (k + 1) 1 / (↑k + 1) - bernoulliFun (k + 1) 0 / (↑k + 1) = 0
6e6ae5d2aa4d445c
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) : ∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
case arithShiftRight w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.arithShiftRight rhs)).val.aig.decls.size this✝¹ this✝ : aig.decls.size ≤ (go aig lhs).val.aig.decls.size this : (go aig lhs).val.aig.decls.size ≤ (go (go aig lhs).val.aig rhs).val.aig.decls.size ⊢ (blastArithShiftRight (go (go aig lhs).1.aig rhs).1.aig { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }).aig.decls[idx] = aig.decls[idx]
rw [AIG.LawfulVecOperator.decl_eq (f := blastArithShiftRight)]
case arithShiftRight w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.arithShiftRight rhs)).val.aig.decls.size this✝¹ this✝ : aig.decls.size ≤ (go aig lhs).val.aig.decls.size this : (go aig lhs).val.aig.decls.size ≤ (go (go aig lhs).val.aig rhs).val.aig.decls.size ⊢ (go (go aig lhs).1.aig rhs).1.aig.decls[idx] = aig.decls[idx] case arithShiftRight.h1 w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.arithShiftRight rhs)).val.aig.decls.size this✝¹ this✝ : aig.decls.size ≤ (go aig lhs).val.aig.decls.size this : (go aig lhs).val.aig.decls.size ≤ (go (go aig lhs).val.aig rhs).val.aig.decls.size ⊢ idx < (go (go aig lhs).1.aig rhs).1.aig.decls.size
f92988d5a1595b39
Set.exists_subset_encard_eq
Mathlib/Data/Set/Card.lean
theorem exists_subset_encard_eq {k : ℕ∞} (hk : k ≤ s.encard) : ∃ t, t ⊆ s ∧ t.encard = k
α : Type u_1 s : Set α k : ℕ∞ x✝ : 0 ≤ s.encard ⊢ ∅.encard = 0
simp
no goals
05b71bd015f46ce9
MeasureTheory.AEMeasurable.ae_eq_of_forall_setLIntegral_eq
Mathlib/MeasureTheory/Function/AEEqOfLIntegral.lean
theorem AEMeasurable.ae_eq_of_forall_setLIntegral_eq {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (hgi : ∫⁻ x, g x ∂μ ≠ ∞) (hfg : ∀ ⦃s⦄, MeasurableSet s → μ s < ∞ → ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ) : f =ᵐ[μ] g
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hfi : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hgi : ∫⁻ (x : α), g x ∂μ ≠ ⊤ hfg : ∀ ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → ∫⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α) in s, g x ∂μ hf' : AEFinStronglyMeasurable f μ hg' : AEFinStronglyMeasurable g μ s : Set α := hf'.sigmaFiniteSet t : Set α := hg'.sigmaFiniteSet this : f =ᶠ[ae (μ.restrict (s ∪ t))] g ⊢ ∀ᵐ (x : α) ∂μ.restrict (s ∪ t)ᶜ, f x = g x
simp only [Set.compl_union]
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hfi : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hgi : ∫⁻ (x : α), g x ∂μ ≠ ⊤ hfg : ∀ ⦃s : Set α⦄, MeasurableSet s → μ s < ⊤ → ∫⁻ (x : α) in s, f x ∂μ = ∫⁻ (x : α) in s, g x ∂μ hf' : AEFinStronglyMeasurable f μ hg' : AEFinStronglyMeasurable g μ s : Set α := hf'.sigmaFiniteSet t : Set α := hg'.sigmaFiniteSet this : f =ᶠ[ae (μ.restrict (s ∪ t))] g ⊢ ∀ᵐ (x : α) ∂μ.restrict (sᶜ ∩ tᶜ), f x = g x
928eae5949838171
HomologicalComplex₂.D₂_D₁
Mathlib/Algebra/Homology/TotalComplex.lean
@[reassoc (attr := simp)] lemma D₂_D₁ (i₁₂ i₁₂' i₁₂'' : I₁₂) : K.D₂ c₁₂ i₁₂ i₁₂' ≫ K.D₁ c₁₂ i₁₂' i₁₂'' = - K.D₁ c₁₂ i₁₂ i₁₂' ≫ K.D₂ c₁₂ i₁₂' i₁₂''
case pos C : Type u_1 inst✝⁴ : Category.{u_5, u_1} C inst✝³ : Preadditive C I₁ : Type u_2 I₂ : Type u_3 I₁₂ : Type u_4 c₁ : ComplexShape I₁ c₂ : ComplexShape I₂ K : HomologicalComplex₂ C c₁ c₂ c₁₂ : ComplexShape I₁₂ inst✝² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹ : DecidableEq I₁₂ inst✝ : K.HasTotal c₁₂ i₁₂ i₁₂' i₁₂'' : I₁₂ h₁ : c₁₂.Rel i₁₂ i₁₂' h₂ : c₁₂.Rel i₁₂' i₁₂'' i₁ : I₁ i₂ : I₂ h : c₁.π c₂ c₁₂ (i₁, i₂) = i₁₂ h₃ : c₁.Rel i₁ (c₁.next i₁) h₄ : c₂.Rel i₂ (c₂.next i₂) h₅ : c₁.π c₂ c₁₂ (i₁, c₂.next i₂) = i₁₂' ⊢ K.d₂ c₁₂ i₁ i₂ i₁₂' ≫ K.D₁ c₁₂ i₁₂' i₁₂'' = -(c₁.ε₁ c₂ c₁₂ (i₁, i₂) • (K.d i₁ (c₁.next i₁)).f i₂ ≫ K.d₂ c₁₂ (c₁.next i₁) i₂ i₁₂'')
have h₆ : ComplexShape.π c₁ c₂ c₁₂ (c₁.next i₁, c₂.next i₂) = i₁₂'' := by rw [← c₁₂.next_eq' h₂, ← ComplexShape.next_π₁ c₂ c₁₂ h₃, h₅]
case pos C : Type u_1 inst✝⁴ : Category.{u_5, u_1} C inst✝³ : Preadditive C I₁ : Type u_2 I₂ : Type u_3 I₁₂ : Type u_4 c₁ : ComplexShape I₁ c₂ : ComplexShape I₂ K : HomologicalComplex₂ C c₁ c₂ c₁₂ : ComplexShape I₁₂ inst✝² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹ : DecidableEq I₁₂ inst✝ : K.HasTotal c₁₂ i₁₂ i₁₂' i₁₂'' : I₁₂ h₁ : c₁₂.Rel i₁₂ i₁₂' h₂ : c₁₂.Rel i₁₂' i₁₂'' i₁ : I₁ i₂ : I₂ h : c₁.π c₂ c₁₂ (i₁, i₂) = i₁₂ h₃ : c₁.Rel i₁ (c₁.next i₁) h₄ : c₂.Rel i₂ (c₂.next i₂) h₅ : c₁.π c₂ c₁₂ (i₁, c₂.next i₂) = i₁₂' h₆ : c₁.π c₂ c₁₂ (c₁.next i₁, c₂.next i₂) = i₁₂'' ⊢ K.d₂ c₁₂ i₁ i₂ i₁₂' ≫ K.D₁ c₁₂ i₁₂' i₁₂'' = -(c₁.ε₁ c₂ c₁₂ (i₁, i₂) • (K.d i₁ (c₁.next i₁)).f i₂ ≫ K.d₂ c₁₂ (c₁.next i₁) i₂ i₁₂'')
2d728f63029305d6
intervalIntegral.intervalIntegrable_cpow'
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem intervalIntegrable_cpow' {r : ℂ} (h : -1 < r.re) : IntervalIntegrable (fun x : ℝ => (x : ℂ) ^ r) volume a b
case inr a b : ℝ r : ℂ h : -1 < r.re this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c c : ℝ hc : c ≤ 0 ⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
rw [IntervalIntegrable.iff_comp_neg, neg_zero]
case inr a b : ℝ r : ℂ h : -1 < r.re this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c c : ℝ hc : c ≤ 0 ⊢ IntervalIntegrable (fun x => ↑(-x) ^ r) volume 0 (-c)
e33db8d106f7d67d
NormedAddGroupHom.mkNormedAddGroupHom_norm_le'
Mathlib/Analysis/Normed/Group/Hom.lean
theorem mkNormedAddGroupHom_norm_le' (f : V₁ →+ V₂) {C : ℝ} (h : ∀ x, ‖f x‖ ≤ C * ‖x‖) : ‖f.mkNormedAddGroupHom C h‖ ≤ max C 0 := opNorm_le_bound _ (le_max_right _ _) fun x => (h x).trans <| by gcongr; apply le_max_left
case h V₁ : Type u_2 V₂ : Type u_3 inst✝¹ : SeminormedAddCommGroup V₁ inst✝ : SeminormedAddCommGroup V₂ f : V₁ →+ V₂ C : ℝ h : ∀ (x : V₁), ‖f x‖ ≤ C * ‖x‖ x : V₁ ⊢ C ≤ C ⊔ 0
apply le_max_left
no goals
9103a32bfa4bec78
PartENat.le_of_lt_add_one
Mathlib/Data/Nat/PartENat.lean
theorem le_of_lt_add_one {x y : PartENat} (h : x < y + 1) : x ≤ y
case a.intro n m : ℕ h : ↑m < ↑n + 1 ⊢ m ≤ n
apply Nat.le_of_lt_succ
case a.intro.a n m : ℕ h : ↑m < ↑n + 1 ⊢ m < n.succ
941bfcc29fd6ae31
Subfield.mem_iSup_of_directed
Mathlib/Algebra/Field/Subfield/Basic.lean
theorem mem_iSup_of_directed {ι} [hι : Nonempty ι] {S : ι → Subfield K} (hS : Directed (· ≤ ·) S) {x : K} : (x ∈ ⨆ i, S i) ↔ ∃ i, x ∈ S i
K : Type u inst✝ : DivisionRing K ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x1 x2 => x1 ≤ x2) S x : K s : Subfield K := let __spread.0 := (⨆ i, (S i).toSubring).copy (⋃ i, ↑(S i).toSubring) ⋯; { toSubring := __spread.0, inv_mem' := ⋯ } this : iSup S = s ⊢ x ∈ ⨆ i, S i ↔ ∃ i, x ∈ S i
exact this ▸ Set.mem_iUnion
no goals
e62260f3c816ead1
Complex.tendsto_tsum_powerSeries_nhdsWithin_stolzSet
Mathlib/Analysis/Complex/AbelLimit.lean
theorem tendsto_tsum_powerSeries_nhdsWithin_stolzSet (h : Tendsto (fun n ↦ ∑ i ∈ range n, f i) atTop (𝓝 l)) {M : ℝ} : Tendsto (fun z ↦ ∑' n, f n * z ^ n) (𝓝[stolzSet M] 1) (𝓝 l)
f : ℕ → ℂ l : ℂ h : Tendsto (fun n => ∑ i ∈ range n, f i) atTop (𝓝 l) M : ℝ hM : 1 < M s : ℕ → ℂ := fun n => ∑ i ∈ range n, f i g : ℂ → ℂ := fun z => ∑' (n : ℕ), f n * z ^ n ε : ℝ εpos : ε > 0 B₁ : ℕ hB₁ : ∀ n ≥ B₁, ‖∑ i ∈ range n, f i - l‖ < ε / 4 / M F : ℝ := ∑ i ∈ range B₁, ‖l - s (i + 1)‖ z : ℂ zn : ‖z‖ < 1 zm : ‖1 - z‖ < M * (1 - ‖z‖) zd : ‖z - 1‖ < ε / 4 / (F + 1) B₂ : ℕ hB₂ : ‖l - ∑' (n : ℕ), f n * z ^ n - (1 - z) * ∑ i ∈ range (B₁ ⊔ B₂), (l - ∑ j ∈ range (i + 1), f j) * z ^ i‖ < ε / 2 S₁ : ‖1 - z‖ * ∑ i ∈ range B₁, ‖l - s (i + 1)‖ * ‖z‖ ^ i < ε / 4 ⊢ ‖1 - z‖ * (ε / 4 / M) * ∑' (i : ℕ), ‖z‖ ^ i = ‖1 - z‖ * (ε / 4 / M) / (1 - ‖z‖)
rw [tsum_geometric_of_lt_one (by positivity) zn, ← div_eq_mul_inv]
no goals
e1f8d437480849f9
PowerBasis.repr_pow_isIntegral
Mathlib/RingTheory/Adjoin/PowerBasis.lean
theorem repr_pow_isIntegral [IsDomain S] (hB : IsIntegral R B.gen) {x : A} (hx : ∀ i, IsIntegral R (B.basis.repr x i)) (hmin : minpoly S B.gen = (minpoly R B.gen).map (algebraMap R S)) (n : ℕ) : ∀ i, IsIntegral R (B.basis.repr (x ^ n) i)
S : Type u_2 inst✝⁷ : CommRing S R : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Algebra R S A : Type u_4 inst✝⁴ : CommRing A inst✝³ : Algebra R A inst✝² : Algebra S A inst✝¹ : IsScalarTower R S A B : PowerBasis S A inst✝ : IsDomain S hB : IsIntegral R B.gen x : A hx : ∀ (i : Fin B.dim), IsIntegral R ((B.basis.repr x) i) hmin : minpoly S B.gen = Polynomial.map (algebraMap R S) (minpoly R B.gen) n : ℕ a✝ : Nontrivial A ⊢ ∀ (i : Fin B.dim), IsIntegral R ((B.basis.repr (x ^ n)) i)
revert hx
S : Type u_2 inst✝⁷ : CommRing S R : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Algebra R S A : Type u_4 inst✝⁴ : CommRing A inst✝³ : Algebra R A inst✝² : Algebra S A inst✝¹ : IsScalarTower R S A B : PowerBasis S A inst✝ : IsDomain S hB : IsIntegral R B.gen x : A hmin : minpoly S B.gen = Polynomial.map (algebraMap R S) (minpoly R B.gen) n : ℕ a✝ : Nontrivial A ⊢ (∀ (i : Fin B.dim), IsIntegral R ((B.basis.repr x) i)) → ∀ (i : Fin B.dim), IsIntegral R ((B.basis.repr (x ^ n)) i)
d2285bbb358047c1
LinearMap.nilRank_le_natTrailingDegree_charpoly
Mathlib/Algebra/Module/LinearMap/Polynomial.lean
lemma nilRank_le_natTrailingDegree_charpoly (x : L) : nilRank φ ≤ (φ x).charpoly.natTrailingDegree
case h R : Type u_1 L : Type u_2 M : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup L inst✝⁷ : Module R L inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M φ : L →ₗ[R] End R M inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Module.Finite R L inst✝¹ : Free R L inst✝ : Nontrivial R x : L h : (φ.polyCharpoly (chooseBasis R L)).coeff (charpoly (φ x)).natTrailingDegree = 0 ⊢ False
apply_fun (MvPolynomial.eval ((chooseBasis R L).repr x)) at h
case h R : Type u_1 L : Type u_2 M : Type u_3 inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup L inst✝⁷ : Module R L inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M φ : L →ₗ[R] End R M inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Module.Finite R L inst✝¹ : Free R L inst✝ : Nontrivial R x : L h : (MvPolynomial.eval ⇑((chooseBasis R L).repr x)) ((φ.polyCharpoly (chooseBasis R L)).coeff (charpoly (φ x)).natTrailingDegree) = (MvPolynomial.eval ⇑((chooseBasis R L).repr x)) 0 ⊢ False
7d44b5dff95aaa8c
AList.insertRec_insert
Mathlib/Data/List/AList.lean
theorem insertRec_insert {C : AList β → Sort*} (H0 : C ∅) (IH : ∀ (a : α) (b : β a) (l : AList β), a ∉ l → C l → C (l.insert a b)) {c : Sigma β} {l : AList β} (h : c.1 ∉ l) : @insertRec α β _ C H0 IH (l.insert c.1 c.2) = IH c.1 c.2 l h (@insertRec α β _ C H0 IH l)
α : Type u β : α → Type v inst✝ : DecidableEq α C : AList β → Sort u_1 H0 : C ∅ IH : (a : α) → (b : β a) → (l : AList β) → a ∉ l → C l → C (insert a b l) c : Sigma β l : AList β h : c.fst ∉ l ⊢ insertRec H0 IH (insert c.fst c.snd l) = IH c.fst c.snd l h (insertRec H0 IH l)
obtain ⟨l, hl⟩ := l
case mk α : Type u β : α → Type v inst✝ : DecidableEq α C : AList β → Sort u_1 H0 : C ∅ IH : (a : α) → (b : β a) → (l : AList β) → a ∉ l → C l → C (insert a b l) c : Sigma β l : List (Sigma β) hl : l.NodupKeys h : c.fst ∉ { entries := l, nodupKeys := hl } ⊢ insertRec H0 IH (insert c.fst c.snd { entries := l, nodupKeys := hl }) = IH c.fst c.snd { entries := l, nodupKeys := hl } h (insertRec H0 IH { entries := l, nodupKeys := hl })
ac5fbba4f95f506f
Real.Angle.sign_two_nsmul_eq_sign_iff
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
theorem sign_two_nsmul_eq_sign_iff {θ : Angle} : ((2 : ℕ) • θ).sign = θ.sign ↔ θ = π ∨ |θ.toReal| < π / 2
case neg.refine_1 θ : Angle hpi : ¬θ = ↑π h : (2 • θ).sign = θ.sign hle : π / 2 ≤ θ.toReal ∨ θ.toReal ≤ -(π / 2) ⊢ False
have hpi' : θ.toReal ≠ π := by simpa using hpi
case neg.refine_1 θ : Angle hpi : ¬θ = ↑π h : (2 • θ).sign = θ.sign hle : π / 2 ≤ θ.toReal ∨ θ.toReal ≤ -(π / 2) hpi' : θ.toReal ≠ π ⊢ False
796c2e838b8abfa4
List.findIdx?_go_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem findIdx?_go_eq {p : α → Bool} {xs : List α} {i : Nat} : findIdx?.go p xs (i+1) = (findIdx?.go p xs 0).map fun k => k + (i + 1)
case cons α : Type u_1 p : α → Bool head✝ : α tail✝ : List α tail_ih✝ : ∀ {i : Nat}, findIdx?.go p tail✝ (i + 1) = Option.map (fun k => k + (i + 1)) (findIdx?.go p tail✝ 0) i : Nat ⊢ Option.map (fun i => i + 1) (if p head✝ = true then some i else Option.map (fun i => i + 1) (findIdx?.go p tail✝ i)) = Option.map (fun k => k + (i + 1)) (if p head✝ = true then some 0 else Option.map (fun i => i + 1) (findIdx?.go p tail✝ 0))
split
case cons.isTrue α : Type u_1 p : α → Bool head✝ : α tail✝ : List α tail_ih✝ : ∀ {i : Nat}, findIdx?.go p tail✝ (i + 1) = Option.map (fun k => k + (i + 1)) (findIdx?.go p tail✝ 0) i : Nat h✝ : p head✝ = true ⊢ Option.map (fun i => i + 1) (some i) = Option.map (fun k => k + (i + 1)) (some 0) case cons.isFalse α : Type u_1 p : α → Bool head✝ : α tail✝ : List α tail_ih✝ : ∀ {i : Nat}, findIdx?.go p tail✝ (i + 1) = Option.map (fun k => k + (i + 1)) (findIdx?.go p tail✝ 0) i : Nat h✝ : ¬p head✝ = true ⊢ Option.map (fun i => i + 1) (Option.map (fun i => i + 1) (findIdx?.go p tail✝ i)) = Option.map (fun k => k + (i + 1)) (Option.map (fun i => i + 1) (findIdx?.go p tail✝ 0))
00b11065e9d67637
VitaliFamily.exists_measurable_supersets_limRatio
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem exists_measurable_supersets_limRatio {p q : ℝ≥0} (hpq : p < q) : ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | v.limRatio ρ x < p} ⊆ a ∧ {x | (q : ℝ≥0∞) < v.limRatio ρ x} ⊆ b ∧ μ (a ∩ b) = 0
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ A : ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ↑p * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) < ↑q * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n))
gcongr
case hinf α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n m n : ℕ I : (ρ + μ) (u m) ≠ ⊤ J : (ρ + μ) (w n) ≠ ⊤ A : ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ⊤
f2acb3dc8c3a0a55
Ideal.matricesOver_strictMono_of_nonempty
Mathlib/LinearAlgebra/Matrix/Ideal.lean
theorem matricesOver_strictMono_of_nonempty [Nonempty n] : StrictMono (matricesOver (R := R) n) := matricesOver_monotone n |>.strictMono_of_injective <| fun I J eq => by ext x have : (∀ _ _, x ∈ I) ↔ (∀ _ _, x ∈ J) := congr((Matrix.of fun _ _ => x) ∈ $eq) simpa only [forall_const] using this
R : Type u_1 inst✝³ : Semiring R n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : Nonempty n I J : Ideal R eq : matricesOver n I = matricesOver n J ⊢ I = J
ext x
case h R : Type u_1 inst✝³ : Semiring R n : Type u_2 inst✝² : Fintype n inst✝¹ : DecidableEq n inst✝ : Nonempty n I J : Ideal R eq : matricesOver n I = matricesOver n J x : R ⊢ x ∈ I ↔ x ∈ J
0208c0bde6369ee2
List.forIn_eq_foldlM
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Monadic.lean
theorem forIn_eq_foldlM [Monad m] [LawfulMonad m] (f : α → β → m (ForInStep β)) (init : β) (l : List α) : forIn l init f = ForInStep.value <$> l.foldlM (fun b a => match b with | .yield b => f a b | .done b => pure (.done b)) (ForInStep.yield init)
m : Type u_1 → Type u_2 α : Type u_3 β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m (ForInStep β) a : α as : List α ih : ∀ (init : β), forIn as init f = ForInStep.value <$> List.foldlM (fun b a => match b with | ForInStep.yield b => f a b | ForInStep.done b => pure (ForInStep.done b)) (ForInStep.yield init) as init : β x : ForInStep β b : β ⊢ (match ForInStep.yield b with | ForInStep.done b => pure b | ForInStep.yield b => forIn as b f) = ForInStep.value <$> List.foldlM (fun b a => match b with | ForInStep.yield b => f a b | ForInStep.done b => pure (ForInStep.done b)) (ForInStep.yield b) as
simp [ih]
no goals
5803c92344e4da54
List.map_attachWith
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
theorem map_attachWith {l : List α} {P : α → Prop} {H : ∀ (a : α), a ∈ l → P a} (f : { x // P x } → β) : (l.attachWith P H).map f = l.pmap (fun a (h : a ∈ l ∧ P a) => f ⟨a, H _ h.1⟩) (fun a h => ⟨h, H a h⟩)
case cons.h α : Type u_1 β : Type u_2 P : α → Prop f : { x // P x } → β x : α xs : List α ih : ∀ {H : ∀ (a : α), a ∈ xs → P a}, map f (xs.attachWith P H) = pmap (fun a h => f ⟨a, ⋯⟩) xs ⋯ H : ∀ (a : α), a ∈ x :: xs → P a ⊢ ∀ (a : α), a ∈ xs → ∀ (h₁ : a ∈ xs ∧ P a) (h₂ : a ∈ x :: xs ∧ P a), f ⟨a, ⋯⟩ = f ⟨a, ⋯⟩
simp
no goals
5c127c9a27e15920
Ideal.sup_pow_add_le_pow_sup_pow
Mathlib/RingTheory/Ideal/Operations.lean
lemma sup_pow_add_le_pow_sup_pow {n m : ℕ} : (I ⊔ J) ^ (n + m) ≤ I ^ n ⊔ J ^ m
case neg R : Type u inst✝ : CommSemiring R I J : Ideal R n m i : ℕ hi : i ∈ Finset.range (n + m + 1) hn : ¬n ≤ i ⊢ m ≤ n + m - i
omega
no goals
690ef13be270f2c6
NonUnitalRing.ext
Mathlib/Algebra/Ring/Ext.lean
theorem ext ⦃inst₁ inst₂ : NonUnitalRing R⦄ (h_add : local_hAdd[R, inst₁] = local_hAdd[R, inst₂]) (h_mul : local_hMul[R, inst₁] = local_hMul[R, inst₂]) : inst₁ = inst₂
case mk.mk R : Type u toNonUnitalNonAssocRing✝¹ : NonUnitalNonAssocRing R mul_assoc✝¹ : ∀ (a b c : R), a * b * c = a * (b * c) toNonUnitalNonAssocRing✝ : NonUnitalNonAssocRing R mul_assoc✝ : ∀ (a b c : R), a * b * c = a * (b * c) h_add : HAdd.hAdd = HAdd.hAdd h_mul : HMul.hMul = HMul.hMul this : toNonUnitalNonAssocRing = toNonUnitalNonAssocRing ⊢ mk mul_assoc✝¹ = mk mul_assoc✝
congr
no goals
3a34c023b5fdf73d
Finset.image₂_left_comm
Mathlib/Data/Finset/NAry.lean
theorem image₂_left_comm {γ : Type*} {u : Finset γ} {f : α → δ → ε} {g : β → γ → δ} {f' : α → γ → δ'} {g' : β → δ' → ε} (h_left_comm : ∀ a b c, f a (g b c) = g' b (f' a c)) : image₂ f s (image₂ g t u) = image₂ g' t (image₂ f' s u) := coe_injective <| by push_cast exact image2_left_comm h_left_comm
α : Type u_1 β : Type u_3 δ : Type u_7 δ' : Type u_8 ε : Type u_9 inst✝² : DecidableEq δ' inst✝¹ : DecidableEq ε s : Finset α t : Finset β inst✝ : DecidableEq δ γ : Type u_14 u : Finset γ f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) ⊢ ↑(image₂ f s (image₂ g t u)) = ↑(image₂ g' t (image₂ f' s u))
push_cast
α : Type u_1 β : Type u_3 δ : Type u_7 δ' : Type u_8 ε : Type u_9 inst✝² : DecidableEq δ' inst✝¹ : DecidableEq ε s : Finset α t : Finset β inst✝ : DecidableEq δ γ : Type u_14 u : Finset γ f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) ⊢ image2 f (↑s) (image2 g ↑t ↑u) = image2 g' (↑t) (image2 f' ↑s ↑u)
e951e1d0d2442dd3
map_wittPolynomial
Mathlib/RingTheory/WittVector/WittPolynomial.lean
theorem map_wittPolynomial (f : R →+* S) (n : ℕ) : map f (W n) = W n
p : ℕ R : Type u_1 inst✝¹ : CommRing R S : Type u_2 inst✝ : CommRing S f : R →+* S n : ℕ ⊢ ∑ x ∈ range (n + 1), (map f) ((monomial (single x (p ^ (n - x)))) (↑p ^ x)) = ∑ i ∈ range (n + 1), (monomial (single i (p ^ (n - i)))) (↑p ^ i)
refine sum_congr rfl fun i _ => ?_
p : ℕ R : Type u_1 inst✝¹ : CommRing R S : Type u_2 inst✝ : CommRing S f : R →+* S n i : ℕ x✝ : i ∈ range (n + 1) ⊢ (map f) ((monomial (single i (p ^ (n - i)))) (↑p ^ i)) = (monomial (single i (p ^ (n - i)))) (↑p ^ i)
812afc8e6e227a9a
CategoryTheory.isCardinalPresentable_of_equivalence
Mathlib/CategoryTheory/Presentable/Basic.lean
lemma isCardinalPresentable_of_equivalence {C' : Type u₃} [Category.{v₃} C'] [IsCardinalPresentable X κ] (e : C ≌ C') : IsCardinalPresentable (e.functor.obj X) κ
case h.up C : Type u₁ inst✝³ : Category.{v₁, u₁} C X : C κ : Cardinal.{w} inst✝² : Fact κ.IsRegular C' : Type u₃ inst✝¹ : Category.{v₃, u₃} C' inst✝ : IsCardinalPresentable X κ e : C ≌ C' J : Type w x✝¹ : SmallCategory J x✝ : IsCardinalFiltered J κ Y : J ⥤ C' this : PreservesColimitsOfShape J (coyoneda.obj (op X)) X✝ Y✝ : C' f : X✝ ⟶ Y✝ g : (coyoneda.obj (op (e.functor.obj X))).obj X✝ ⊢ ((coyoneda.obj (op (e.functor.obj X)) ⋙ uliftFunctor.{v₁, v₃}).map f ≫ ((fun Z => (Equiv.ulift.trans ((e.toAdjunction.homEquiv X Z).trans Equiv.ulift.symm)).toIso) Y✝).hom) { down := g } = (((fun Z => (Equiv.ulift.trans ((e.toAdjunction.homEquiv X Z).trans Equiv.ulift.symm)).toIso) X✝).hom ≫ (e.inverse ⋙ coyoneda.obj (op X) ⋙ uliftFunctor.{v₃, v₁}).map f) { down := g }
apply Equiv.ulift.injective
case h.up.a C : Type u₁ inst✝³ : Category.{v₁, u₁} C X : C κ : Cardinal.{w} inst✝² : Fact κ.IsRegular C' : Type u₃ inst✝¹ : Category.{v₃, u₃} C' inst✝ : IsCardinalPresentable X κ e : C ≌ C' J : Type w x✝¹ : SmallCategory J x✝ : IsCardinalFiltered J κ Y : J ⥤ C' this : PreservesColimitsOfShape J (coyoneda.obj (op X)) X✝ Y✝ : C' f : X✝ ⟶ Y✝ g : (coyoneda.obj (op (e.functor.obj X))).obj X✝ ⊢ Equiv.ulift (((coyoneda.obj (op (e.functor.obj X)) ⋙ uliftFunctor.{v₁, v₃}).map f ≫ ((fun Z => (Equiv.ulift.trans ((e.toAdjunction.homEquiv X Z).trans Equiv.ulift.symm)).toIso) Y✝).hom) { down := g }) = Equiv.ulift ((((fun Z => (Equiv.ulift.trans ((e.toAdjunction.homEquiv X Z).trans Equiv.ulift.symm)).toIso) X✝).hom ≫ (e.inverse ⋙ coyoneda.obj (op X) ⋙ uliftFunctor.{v₃, v₁}).map f) { down := g })
fd601d9188daee0d
List.append_eq_appendTR
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
theorem append_eq_appendTR : @List.append = @appendTR
case h.h.h.cons α : Type u_1 bs : List α a : α as : List α ih : as.append bs = (as.reverseAux nil).reverseAux bs ⊢ (a :: as).append bs = (a :: nil).reverseAux ((as.reverseAux nil).reverseAux bs)
simp [List.append, ih, reverseAux]
no goals
aae20de0c8888126
Finset.kruskal_katona_lovasz_form
Mathlib/Combinatorics/SetFamily/KruskalKatona.lean
theorem kruskal_katona_lovasz_form (hir : i ≤ r) (hrk : r ≤ k) (hkn : k ≤ n) (h₁ : (𝒜 : Set (Finset (Fin n))).Sized r) (h₂ : k.choose r ≤ #𝒜) : k.choose (r - i) ≤ #(∂^[i] 𝒜)
n r k i : ℕ 𝒜 : Finset (Finset (Fin n)) hir : i ≤ r hrk : r ≤ k hkn : k ≤ n h₁ : Set.Sized r ↑𝒜 h₂ : k.choose r ≤ #𝒜 range'k : Finset (Fin n) := (range k).attachFin ⋯ 𝒞 : Finset (Finset (Fin n)) := powersetCard r range'k this : Set.Sized r ↑𝒞 ⊢ #(powersetCard (r - i) range'k) = #(∂ ^[i] 𝒞)
congr!
case h.e'_2 n r k i : ℕ 𝒜 : Finset (Finset (Fin n)) hir : i ≤ r hrk : r ≤ k hkn : k ≤ n h₁ : Set.Sized r ↑𝒜 h₂ : k.choose r ≤ #𝒜 range'k : Finset (Fin n) := (range k).attachFin ⋯ 𝒞 : Finset (Finset (Fin n)) := powersetCard r range'k this : Set.Sized r ↑𝒞 ⊢ powersetCard (r - i) range'k = ∂ ^[i] 𝒞
edb5f2f186d17abf
WeierstrassCurve.b₆_of_isCharTwoJNeZeroNF
Mathlib/AlgebraicGeometry/EllipticCurve/NormalForms.lean
theorem b₆_of_isCharTwoJNeZeroNF : W.b₆ = 4 * W.a₆
R : Type u_1 inst✝¹ : CommRing R W : WeierstrassCurve R inst✝ : W.IsCharTwoJNeZeroNF ⊢ W.b₆ = 4 * W.a₆
rw [b₆, a₃_of_isCharTwoJNeZeroNF]
R : Type u_1 inst✝¹ : CommRing R W : WeierstrassCurve R inst✝ : W.IsCharTwoJNeZeroNF ⊢ 0 ^ 2 + 4 * W.a₆ = 4 * W.a₆
62cfcc7187a72866
MeasureTheory.setToFun_congr_measure_of_integrable
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞) (hμ'_le : μ' ≤ c' • μ) (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ' T C') (f : α → E) (hfμ : Integrable f μ) : setToFun μ T hT f = setToFun μ' T hT' f
case h_ind α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F T : Set α → E →L[ℝ] F C C' : ℝ μ' : Measure α c' : ℝ≥0∞ hc' : c' ≠ ⊤ hμ'_le : μ' ≤ c' • μ hT : DominatedFinMeasAdditive μ T C hT' : DominatedFinMeasAdditive μ' T C' f : α → E hfμ : Integrable f μ h_int : ∀ (g : α → E), Integrable g μ → Integrable g μ' c : E s : Set α hs : MeasurableSet s hμs : μ s < ⊤ ⊢ setToFun μ T hT (s.indicator fun x => c) = setToFun μ' T hT' (s.indicator fun x => c)
have hμ's : μ' s ≠ ∞ := by refine ((hμ'_le s).trans_lt ?_).ne rw [Measure.smul_apply, smul_eq_mul] exact ENNReal.mul_lt_top hc'.lt_top hμs
case h_ind α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F T : Set α → E →L[ℝ] F C C' : ℝ μ' : Measure α c' : ℝ≥0∞ hc' : c' ≠ ⊤ hμ'_le : μ' ≤ c' • μ hT : DominatedFinMeasAdditive μ T C hT' : DominatedFinMeasAdditive μ' T C' f : α → E hfμ : Integrable f μ h_int : ∀ (g : α → E), Integrable g μ → Integrable g μ' c : E s : Set α hs : MeasurableSet s hμs : μ s < ⊤ hμ's : μ' s ≠ ⊤ ⊢ setToFun μ T hT (s.indicator fun x => c) = setToFun μ' T hT' (s.indicator fun x => c)
65e35cd00eda3e5b
Algebra.Presentation.aux_surjective
Mathlib/RingTheory/Presentation.lean
private lemma aux_surjective : Function.Surjective (Q.aux P) := fun p ↦ by induction' p using MvPolynomial.induction_on with a p q hp hq p i h · use rename Sum.inr <| P.σ a simp only [aux, aeval_rename, Sum.elim_comp_inr] have (p : MvPolynomial P.vars R) : aeval (C ∘ P.val) p = (C (aeval P.val p) : MvPolynomial Q.vars S)
case h_add.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S T : Type u_3 inst✝¹ : CommRing T inst✝ : Algebra S T Q : Presentation S T P : Presentation R S q : MvPolynomial Q.vars S hq : ∃ a, (Algebra.Presentation.aux Q P) a = q a : MvPolynomial (Q.vars ⊕ P.vars) R ⊢ ∃ a_1, (Algebra.Presentation.aux Q P) a_1 = (Algebra.Presentation.aux Q P) a + q
obtain ⟨b, rfl⟩ := hq
case h_add.intro.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S T : Type u_3 inst✝¹ : CommRing T inst✝ : Algebra S T Q : Presentation S T P : Presentation R S a b : MvPolynomial (Q.vars ⊕ P.vars) R ⊢ ∃ a_1, (Algebra.Presentation.aux Q P) a_1 = (Algebra.Presentation.aux Q P) a + (Algebra.Presentation.aux Q P) b
6a819377477f7ce9
smul_eq_self_of_preimage_zpow_eq_self
Mathlib/Data/Set/Pointwise/Iterate.lean
theorem smul_eq_self_of_preimage_zpow_eq_self {G : Type*} [CommGroup G] {n : ℤ} {s : Set G} (hs : (fun x => x ^ n) ⁻¹' s = s) {g : G} {j : ℕ} (hg : g ^ n ^ j = 1) : g • s = s
case intro.intro G : Type u_1 inst✝ : CommGroup G n : ℤ s : Set G hs : (fun x => x ^ n) ⁻¹' s = s g : G j : ℕ hg : g ^ n ^ j = 1 g' : G hg' : g' ^ n ^ j = 1 y : G hy : y ∈ (fun x => x ^ n)^[j] ⁻¹' s ⊢ (⇑(zpowGroupHom n))^[j] (g' * y) ∈ s
replace hg' : (zpowGroupHom n)^[j] g' = 1 := by simpa [zpowGroupHom]
case intro.intro G : Type u_1 inst✝ : CommGroup G n : ℤ s : Set G hs : (fun x => x ^ n) ⁻¹' s = s g : G j : ℕ hg : g ^ n ^ j = 1 g' y : G hy : y ∈ (fun x => x ^ n)^[j] ⁻¹' s hg' : (⇑(zpowGroupHom n))^[j] g' = 1 ⊢ (⇑(zpowGroupHom n))^[j] (g' * y) ∈ s
c18d60c68b83e353
isAlgebraic_of_isLocalization
Mathlib/RingTheory/Localization/Integral.lean
lemma isAlgebraic_of_isLocalization {R} [CommRing R] (M : Submonoid R) (S) [CommRing S] [Nontrivial R] [Algebra R S] [IsLocalization M S] : Algebra.IsAlgebraic R S
case isAlgebraic.intro.intro R : Type u_5 inst✝⁴ : CommRing R M : Submonoid R S : Type u_6 inst✝³ : CommRing S inst✝² : Nontrivial R inst✝¹ : Algebra R S inst✝ : IsLocalization M S x : R s : ↥M ⊢ IsAlgebraic R (mk' S x s)
by_cases hs : (s : R) = 0
case pos R : Type u_5 inst✝⁴ : CommRing R M : Submonoid R S : Type u_6 inst✝³ : CommRing S inst✝² : Nontrivial R inst✝¹ : Algebra R S inst✝ : IsLocalization M S x : R s : ↥M hs : ↑s = 0 ⊢ IsAlgebraic R (mk' S x s) case neg R : Type u_5 inst✝⁴ : CommRing R M : Submonoid R S : Type u_6 inst✝³ : CommRing S inst✝² : Nontrivial R inst✝¹ : Algebra R S inst✝ : IsLocalization M S x : R s : ↥M hs : ¬↑s = 0 ⊢ IsAlgebraic R (mk' S x s)
5abd58f488e94823
Convex.convex_remove_iff_not_mem_convexHull_remove
Mathlib/Analysis/Convex/Hull.lean
theorem Convex.convex_remove_iff_not_mem_convexHull_remove {s : Set E} (hs : Convex 𝕜 s) (x : E) : Convex 𝕜 (s \ {x}) ↔ x ∉ convexHull 𝕜 (s \ {x})
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s x : E hx : x ∉ (convexHull 𝕜) (s \ {x}) y : E hy : y ∈ (convexHull 𝕜) (s \ {x}) ⊢ y ∉ {x}
rintro (rfl : y = x)
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedSemiring 𝕜 inst✝¹ : AddCommMonoid E inst✝ : Module 𝕜 E s : Set E hs : Convex 𝕜 s y : E hx : y ∉ (convexHull 𝕜) (s \ {y}) hy : y ∈ (convexHull 𝕜) (s \ {y}) ⊢ False
2f0adfe15b540bae
AlgebraicGeometry.Scheme.IdealSheafData.ideal_le_ker_glueDataObjι
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma ideal_le_ker_glueDataObjι (U V : X.affineOpens) : I.ideal V ≤ RingHom.ker (U.1.ι.app V.1 ≫ (I.glueDataObjι U).app _).hom
X : Scheme I : X.IdealSheafData U V : ↑X.affineOpens ⊢ I.ideal V ≤ RingHom.ker (CommRingCat.Hom.hom (Hom.app (↑U).ι ↑V ≫ Hom.app (I.glueDataObjι U) ((↑U).ι ⁻¹ᵁ ↑V)))
intro x hx
X : Scheme I : X.IdealSheafData U V : ↑X.affineOpens x : ↑Γ(X, ↑V) hx : x ∈ I.ideal V ⊢ x ∈ RingHom.ker (CommRingCat.Hom.hom (Hom.app (↑U).ι ↑V ≫ Hom.app (I.glueDataObjι U) ((↑U).ι ⁻¹ᵁ ↑V)))
9da7a9bdc95919a0
le_hasProd
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
theorem le_hasProd (hf : HasProd f a) (i : ι) (hb : ∀ j, j ≠ i → 1 ≤ f j) : f i ≤ a := calc f i = ∏ i ∈ {i}, f i
ι : Type u_1 α : Type u_3 inst✝² : OrderedCommMonoid α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α f : ι → α a : α hf : HasProd f a i : ι hb : ∀ (j : ι), j ≠ i → 1 ≤ f j ⊢ f i = ∏ i ∈ {i}, f i
rw [prod_singleton]
no goals
19ef94c7e446040f
Complex.norm_one_add_mul_inv_le
Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
/-- Give a bound on `‖(1 + t * z)⁻¹‖` for `0 ≤ t ≤ 1` and `‖z‖ < 1`. -/ lemma norm_one_add_mul_inv_le {t : ℝ} (ht : t ∈ Set.Icc 0 1) {z : ℂ} (hz : ‖z‖ < 1) : ‖(1 + t * z)⁻¹‖ ≤ (1 - ‖z‖)⁻¹
t : ℝ ht : 0 ≤ t ∧ t ≤ 1 z : ℂ hz : ‖z‖ < 1 ⊢ ‖1 + ↑t * z‖⁻¹ ≤ (1 - ‖z‖)⁻¹
refine inv_anti₀ (by linarith) ?_
t : ℝ ht : 0 ≤ t ∧ t ≤ 1 z : ℂ hz : ‖z‖ < 1 ⊢ 1 - ‖z‖ ≤ ‖1 + ↑t * z‖
3995f690a9b2d2b3
Module.End.isNilpotent_restrict_of_le
Mathlib/RingTheory/Nilpotent/Lemmas.lean
lemma isNilpotent_restrict_of_le {f : End R M} {p q : Submodule R M} {hp : MapsTo f p p} {hq : MapsTo f q q} (h : p ≤ q) (hf : IsNilpotent (f.restrict hq)) : IsNilpotent (f.restrict hp)
case h.h.mk.a R : Type u_1 M : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : End R M p q : Submodule R M hp : MapsTo ⇑f ↑p ↑p hq : MapsTo ⇑f ↑q ↑q h : p ≤ q n : ℕ x : M hx : x ∈ p hn : (LinearMap.restrict f hq ^ n) ⟨x, ⋯⟩ = 0 ⟨x, ⋯⟩ ⊢ ↑((LinearMap.restrict f hp ^ n) ⟨x, hx⟩) = ↑(0 ⟨x, hx⟩)
simp_rw [LinearMap.zero_apply, ZeroMemClass.coe_zero, ZeroMemClass.coe_eq_zero] at hn ⊢
case h.h.mk.a R : Type u_1 M : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : End R M p q : Submodule R M hp : MapsTo ⇑f ↑p ↑p hq : MapsTo ⇑f ↑q ↑q h : p ≤ q n : ℕ x : M hx : x ∈ p hn : (LinearMap.restrict f hq ^ n) ⟨x, ⋯⟩ = 0 ⊢ (LinearMap.restrict f hp ^ n) ⟨x, hx⟩ = 0
0c6b0966b16b1e56
sSup_eq_bot'
Mathlib/Order/CompleteLattice.lean
lemma sSup_eq_bot' {s : Set α} : sSup s = ⊥ ↔ s = ∅ ∨ s = {⊥}
α : Type u_1 inst✝ : CompleteLattice α s : Set α ⊢ sSup s = ⊥ ↔ s = ∅ ∨ s = {⊥}
rw [sSup_eq_bot, ← subset_singleton_iff_eq, subset_singleton_iff]
no goals
1cefef35bb8747b5
FiberBundle.totalSpaceMk_isClosedEmbedding
Mathlib/Topology/FiberBundle/Basic.lean
theorem totalSpaceMk_isClosedEmbedding [T1Space B] (x : B) : IsClosedEmbedding (@TotalSpace.mk B F E x) := ⟨totalSpaceMk_isEmbedding F E x, by rw [TotalSpace.range_mk] exact isClosed_singleton.preimage <| continuous_proj F E⟩
B : Type u_2 F : Type u_3 inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace F E : B → Type u_5 inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (b : B) → TopologicalSpace (E b) inst✝¹ : FiberBundle F E inst✝ : T1Space B x : B ⊢ IsClosed (range (TotalSpace.mk x))
rw [TotalSpace.range_mk]
B : Type u_2 F : Type u_3 inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace F E : B → Type u_5 inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (b : B) → TopologicalSpace (E b) inst✝¹ : FiberBundle F E inst✝ : T1Space B x : B ⊢ IsClosed (TotalSpace.proj ⁻¹' {x})
afde15389e7a6a5b
MeasureTheory.exists_lt_lowerSemicontinuous_integral_gt_nnreal
Mathlib/MeasureTheory/Integral/VitaliCaratheodory.lean
theorem exists_lt_lowerSemicontinuous_integral_gt_nnreal [SigmaFinite μ] (f : α → ℝ≥0) (fint : Integrable (fun x => (f x : ℝ)) μ) {ε : ℝ} (εpos : 0 < ε) : ∃ g : α → ℝ≥0∞, (∀ x, (f x : ℝ≥0∞) < g x) ∧ LowerSemicontinuous g ∧ (∀ᵐ x ∂μ, g x < ⊤) ∧ Integrable (fun x => (g x).toReal) μ ∧ (∫ x, (g x).toReal ∂μ) < (∫ x, ↑(f x) ∂μ) + ε
case intro.intro.intro.intro.intro.intro.refine_2.hfm α : Type u_1 inst✝⁴ : TopologicalSpace α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : μ.WeaklyRegular inst✝ : SigmaFinite μ f : α → ℝ≥0 fint : Integrable (fun x => ↑(f x)) μ fmeas : AEMeasurable f μ ε : ℝ≥0 εpos : 0 < ↑ε δ : ℝ≥0 δpos : 0 < δ hδε : δ < ε int_f_ne_top : ∫⁻ (a : α), ↑(f a) ∂μ ≠ ⊤ g : α → ℝ≥0∞ f_lt_g : ∀ (x : α), ↑(f x) < g x gcont : LowerSemicontinuous g gint : ∫⁻ (x : α), g x ∂μ ≤ ∫⁻ (x : α), ↑(f x) ∂μ + ↑δ gint_ne : ∫⁻ (x : α), g x ∂μ ≠ ⊤ g_lt_top : ∀ᵐ (x : α) ∂μ, g x < ⊤ Ig : ∫⁻ (a : α), ENNReal.ofReal (g a).toReal ∂μ = ∫⁻ (a : α), g a ∂μ ⊢ AEStronglyMeasurable (fun x => (g x).toReal) μ
apply gcont.measurable.ennreal_toReal.aemeasurable.aestronglyMeasurable
no goals
3f39b00d374e3aed
Finset.eq_one_of_prod_eq_one
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem eq_one_of_prod_eq_one {s : Finset α} {f : α → β} {a : α} (hp : ∏ x ∈ s, f x = 1) (h1 : ∀ x ∈ s, x ≠ a → f x = 1) : ∀ x ∈ s, f x = 1
case pos α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x ∈ s, f x = 1 h1 : ∀ x ∈ s, x ≠ a → f x = 1 x : α hx : x ∈ s h : x = a ⊢ f x = 1
rw [h]
case pos α : Type u_3 β : Type u_4 inst✝ : CommMonoid β s : Finset α f : α → β a : α hp : ∏ x ∈ s, f x = 1 h1 : ∀ x ∈ s, x ≠ a → f x = 1 x : α hx : x ∈ s h : x = a ⊢ f a = 1
15f6948a1ae4c501
Real.hasSum_log_sub_log_of_abs_lt_one
Mathlib/Analysis/SpecialFunctions/Log/Deriv.lean
theorem hasSum_log_sub_log_of_abs_lt_one {x : ℝ} (h : |x| < 1) : HasSum (fun k : ℕ => (2 : ℝ) * (1 / (2 * k + 1)) * x ^ (2 * k + 1)) (log (1 + x) - log (1 - x))
x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : (term ∘ fun x => 2 * x) = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) ⊢ HasSum term (log (1 + x) - log (1 - x))
have h₁ := (hasSum_pow_div_log_of_abs_lt_one (Eq.trans_lt (abs_neg x) h)).mul_left (-1)
x : ℝ h : |x| < 1 term : ℕ → ℝ := fun n => -1 * ((-x) ^ (n + 1) / (↑n + 1)) + x ^ (n + 1) / (↑n + 1) h_term_eq_goal : (term ∘ fun x => 2 * x) = fun k => 2 * (1 / (2 * ↑k + 1)) * x ^ (2 * k + 1) h₁ : HasSum (fun i => -1 * ((-x) ^ (i + 1) / (↑i + 1))) (-1 * -log (1 - -x)) ⊢ HasSum term (log (1 + x) - log (1 - x))
ad64e8a77fc6c38e
AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_π_app_isLocalHom
Mathlib/Geometry/RingedSpace/LocallyRingedSpace/HasColimits.lean
theorem coequalizer_π_app_isLocalHom (U : TopologicalSpace.Opens (coequalizer f.toShHom g.toShHom).carrier) : IsLocalHom ((coequalizer.π f.toShHom g.toShHom :).c.app (op U)).hom
X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer (Hom.toShHom f) (Hom.toShHom g)).toPresheafedSpace this✝¹ : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom f)) (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom g)) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace (Hom.toShHom f) (Hom.toShHom g)).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π (Hom.toShHom f) (Hom.toShHom g)) this✝ : IsIso (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace (Hom.toShHom f) (Hom.toShHom g)).hom.c this : IsLocalHom (CommRingCat.Hom.hom (limit.π (PresheafedSpace.componentwiseDiagram (parallelPair (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom f)) (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom g))) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace (Hom.toShHom f) (Hom.toShHom g)).hom.base).obj (unop (op U)))) (op WalkingParallelPair.one))) ⊢ IsLocalHom (CommRingCat.Hom.hom (((PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace (Hom.toShHom f) (Hom.toShHom g)).hom.c.app (op U) ≫ (PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (parallelPair (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom f)) (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom g))) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace (Hom.toShHom f) (Hom.toShHom g)).hom.base).obj (unop (op U)))).hom ≫ limit.π (PresheafedSpace.componentwiseDiagram (parallelPair (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom f)) (SheafedSpace.forgetToPresheafedSpace.map (Hom.toShHom g))) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace (Hom.toShHom f) (Hom.toShHom g)).hom.base).obj (unop (op U)))) (op WalkingParallelPair.one)) ≫ Y.presheaf.map (eqToHom ⋯)))
infer_instance
no goals
f9571eebfdddf194
CoxeterSystem.getElem_leftInvSeq_alternatingWord
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem getElem_leftInvSeq_alternatingWord (i j : B) (p k : ℕ) (h : k < 2 * p) : (lis (alternatingWord i j (2 * p)))[k]'(by simp; omega) = π alternatingWord j i (2 * k + 1)
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W p : ℕ i j : B h : 0 < 2 * p ⊢ 0 < (alternatingWord i j (2 * p)).length
simp [h]
no goals
d39ee0dd3fb7776c
Std.Sat.CNF.any_not_isEmpty_iff_exists_mem
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Basic.lean
theorem any_not_isEmpty_iff_exists_mem {f : CNF α} : (List.any f fun c => !List.isEmpty c) = true ↔ ∃ v, Mem v f
case mpr α : Type u_1 f : CNF α ⊢ (∃ v c, c ∈ f ∧ ((v, false) ∈ c ∨ (v, true) ∈ c)) → ∃ x, x ∈ f ∧ ∃ x_1, x_1 ∈ x
intro h
case mpr α : Type u_1 f : CNF α h : ∃ v c, c ∈ f ∧ ((v, false) ∈ c ∨ (v, true) ∈ c) ⊢ ∃ x, x ∈ f ∧ ∃ x_1, x_1 ∈ x
cfda4c463f240c75
UniformConcaveOn.neg
Mathlib/Analysis/Convex/Strong.lean
lemma UniformConcaveOn.neg (hf : UniformConcaveOn s φ f) : UniformConvexOn s φ (-f)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E φ : ℝ → ℝ s : Set E f : E → ℝ hf : UniformConcaveOn s φ f x : E hx : x ∈ s y : E hy : y ∈ s a b : ℝ ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ -(a • (-f) x + b • (-f) y - a * b * φ ‖x - y‖) ≤ -(-f) (a • x + b • y)
simpa [add_comm, -neg_le_neg_iff, ← le_sub_iff_add_le', sub_eq_add_neg, neg_add] using hf.2 hx hy ha hb hab
no goals
4dfbf23a0715fa0c
Geometry.SimplicialComplex.vertex_mem_convexHull_iff
Mathlib/Analysis/Convex/SimplicialComplex/Basic.lean
theorem vertex_mem_convexHull_iff (hx : x ∈ K.vertices) (hs : s ∈ K.faces) : x ∈ convexHull 𝕜 (s : Set E) ↔ x ∈ s
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E K : SimplicialComplex 𝕜 E s : Finset E x : E hx : x ∈ K.vertices hs : s ∈ K.faces h : x ∈ (convexHull 𝕜) ↑s ⊢ x ∈ (convexHull 𝕜) ↑{x}
simp
no goals
cac78c48089373e1
Rat.fract_inv_num_lt_num_of_pos
Mathlib/Data/Rat/Floor.lean
theorem fract_inv_num_lt_num_of_pos {q : ℚ} (q_pos : 0 < q) : (fract q⁻¹).num < q.num
q : ℚ q_pos : 0 < q q_num_pos : 0 < q.num q_num_abs_eq_q_num : ↑q.num.natAbs = q.num q_inv : ℚ := ↑q.den / ↑q.num q_inv_def : q_inv = ↑q.den / ↑q.num q_inv_eq : q⁻¹ = q_inv ⊢ ↑q.den - q.num * ⌊q_inv⌋ < q.num
have q_inv_num_denom_ineq : q⁻¹.num - ⌊q⁻¹⌋ * q⁻¹.den < q⁻¹.den := by have : q⁻¹.num < (⌊q⁻¹⌋ + 1) * q⁻¹.den := Rat.num_lt_succ_floor_mul_den q⁻¹ have : q⁻¹.num < ⌊q⁻¹⌋ * q⁻¹.den + q⁻¹.den := by rwa [right_distrib, one_mul] at this rwa [← sub_lt_iff_lt_add'] at this
q : ℚ q_pos : 0 < q q_num_pos : 0 < q.num q_num_abs_eq_q_num : ↑q.num.natAbs = q.num q_inv : ℚ := ↑q.den / ↑q.num q_inv_def : q_inv = ↑q.den / ↑q.num q_inv_eq : q⁻¹ = q_inv q_inv_num_denom_ineq : q⁻¹.num - ⌊q⁻¹⌋ * ↑q⁻¹.den < ↑q⁻¹.den ⊢ ↑q.den - q.num * ⌊q_inv⌋ < q.num
d2870a8c7e295972
LinearEquiv.charpoly_conj
Mathlib/LinearAlgebra/Charpoly/ToMatrix.lean
@[simp] lemma LinearEquiv.charpoly_conj (e : M₁ ≃ₗ[R] M₂) (φ : Module.End R M₁) : (e.conj φ).charpoly = φ.charpoly
R : Type u_1 M₁ : Type u_3 M₂ : Type u_4 inst✝⁹ : CommRing R inst✝⁸ : Nontrivial R inst✝⁷ : AddCommGroup M₁ inst✝⁶ : Module R M₁ inst✝⁵ : Module.Finite R M₁ inst✝⁴ : Module.Free R M₁ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : Module.Finite R M₂ inst✝ : Module.Free R M₂ e : M₁ ≃ₗ[R] M₂ φ : Module.End R M₁ ⊢ LinearMap.charpoly (e.conj φ) = LinearMap.charpoly φ
let b := chooseBasis R M₁
R : Type u_1 M₁ : Type u_3 M₂ : Type u_4 inst✝⁹ : CommRing R inst✝⁸ : Nontrivial R inst✝⁷ : AddCommGroup M₁ inst✝⁶ : Module R M₁ inst✝⁵ : Module.Finite R M₁ inst✝⁴ : Module.Free R M₁ inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ inst✝¹ : Module.Finite R M₂ inst✝ : Module.Free R M₂ e : M₁ ≃ₗ[R] M₂ φ : Module.End R M₁ b : Basis (ChooseBasisIndex R M₁) R M₁ := chooseBasis R M₁ ⊢ LinearMap.charpoly (e.conj φ) = LinearMap.charpoly φ
b91ddefebec43a56
Finsupp.single_smul
Mathlib/Data/Finsupp/SMul.lean
theorem single_smul (a b : α) (f : α → M) (r : R) : single a r b • f a = single a (r • f b) b
α : Type u_1 M : Type u_3 R : Type u_6 inst✝² : Zero M inst✝¹ : MonoidWithZero R inst✝ : MulActionWithZero R M a b : α f : α → M r : R ⊢ (single a r) b • f a = (single a (r • f b)) b
by_cases h : a = b <;> simp [h]
no goals
01076ce47b0d8e31
CoalgebraCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap
Mathlib/Algebra/Category/CoalgebraCat/ComonEquivalence.lean
theorem rightUnitor_hom_toLinearMap : (ρ_ (CoalgebraCat.of R M)).hom.1.toLinearMap = (TensorProduct.rid R M).toLinearMap := TensorProduct.ext <| by ext; rfl
R : Type u inst✝³ : CommRing R M : Type u inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Coalgebra R M ⊢ (TensorProduct.mk R ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (of R M)))).X) ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (𝟙_ (CoalgebraCat R))))).X)).compr₂ (ρ_ (of R M)).hom.toCoalgHom'.toLinearMap = (TensorProduct.mk R ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (of R M)))).X) ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (𝟙_ (CoalgebraCat R))))).X)).compr₂ ↑(TensorProduct.rid R M)
ext
case h.h R : Type u inst✝³ : CommRing R M : Type u inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Coalgebra R M x✝ : ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (of R M)))).X) ⊢ (((TensorProduct.mk R ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (of R M)))).X) ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (𝟙_ (CoalgebraCat R))))).X)).compr₂ (ρ_ (of R M)).hom.toCoalgHom'.toLinearMap) x✝) 1 = (((TensorProduct.mk R ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (of R M)))).X) ↑(Opposite.unop (Opposite.unop ((Comon_.Comon_EquivMon_OpOp (ModuleCat R)).symm.inverse.obj ((comonEquivalence R).symm.inverse.obj (𝟙_ (CoalgebraCat R))))).X)).compr₂ ↑(TensorProduct.rid R M)) x✝) 1
2cd05fc798c201cd
exists_norm_eq_iInf_of_complete_convex
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem exists_norm_eq_iInf_of_complete_convex {K : Set F} (ne : K.Nonempty) (h₁ : IsComplete K) (h₂ : Convex ℝ K) : ∀ u : F, ∃ v ∈ K, ‖u - v‖ = ⨅ w : K, ‖u - w‖ := fun u => by let δ := ⨅ w : K, ‖u - w‖ letI : Nonempty K := ne.to_subtype have zero_le_δ : 0 ≤ δ := le_ciInf fun _ => norm_nonneg _ have δ_le : ∀ w : K, δ ≤ ‖u - w‖ := ciInf_le ⟨0, Set.forall_mem_range.2 fun _ => norm_nonneg _⟩ have δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ := fun w hw => δ_le ⟨w, hw⟩ -- Step 1: since `δ` is the infimum, can find a sequence `w : ℕ → K` in `K` -- such that `‖u - w n‖ < δ + 1 / (n + 1)` (which implies `‖u - w n‖ --> δ`); -- maybe this should be a separate lemma have exists_seq : ∃ w : ℕ → K, ∀ n, ‖u - w n‖ < δ + 1 / (n + 1)
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F K : Set F ne : K.Nonempty h₁ : IsComplete K h₂ : Convex ℝ K u : F δ : ℝ := ⨅ w, ‖u - ↑w‖ this : Nonempty ↑K := Set.Nonempty.to_subtype ne zero_le_δ : 0 ≤ δ δ_le : ∀ (w : ↑K), δ ≤ ‖u - ↑w‖ δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ w : ℕ → ↑K hw : ∀ (n : ℕ), ‖u - ↑(w n)‖ < δ + 1 / (↑n + 1) norm_tendsto : Tendsto (fun n => ‖u - ↑(w n)‖) atTop (𝓝 δ) b✝ : ℕ → ℝ := fun n => 8 * δ * (1 / (↑n + 1)) + 4 * (1 / (↑n + 1)) * (1 / (↑n + 1)) p q N : ℕ hp : N ≤ p hq : N ≤ q wp : F := ↑(w p) wq : F := ↑(w q) a : F := u - wq b : F := u - wp half : ℝ := 1 / 2 div : ℝ := 1 / (↑N + 1) ⊢ ‖u + u - (wq + wp)‖ * ‖u + u - (wq + wp)‖ + ‖wp - wq‖ * ‖wp - wq‖ = ‖a + b‖ * ‖a + b‖ + ‖a - b‖ * ‖a - b‖
have eq₁ : wp - wq = a - b := (sub_sub_sub_cancel_left _ _ _).symm
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F K : Set F ne : K.Nonempty h₁ : IsComplete K h₂ : Convex ℝ K u : F δ : ℝ := ⨅ w, ‖u - ↑w‖ this : Nonempty ↑K := Set.Nonempty.to_subtype ne zero_le_δ : 0 ≤ δ δ_le : ∀ (w : ↑K), δ ≤ ‖u - ↑w‖ δ_le' : ∀ w ∈ K, δ ≤ ‖u - w‖ w : ℕ → ↑K hw : ∀ (n : ℕ), ‖u - ↑(w n)‖ < δ + 1 / (↑n + 1) norm_tendsto : Tendsto (fun n => ‖u - ↑(w n)‖) atTop (𝓝 δ) b✝ : ℕ → ℝ := fun n => 8 * δ * (1 / (↑n + 1)) + 4 * (1 / (↑n + 1)) * (1 / (↑n + 1)) p q N : ℕ hp : N ≤ p hq : N ≤ q wp : F := ↑(w p) wq : F := ↑(w q) a : F := u - wq b : F := u - wp half : ℝ := 1 / 2 div : ℝ := 1 / (↑N + 1) eq₁ : wp - wq = a - b ⊢ ‖u + u - (wq + wp)‖ * ‖u + u - (wq + wp)‖ + ‖wp - wq‖ * ‖wp - wq‖ = ‖a + b‖ * ‖a + b‖ + ‖a - b‖ * ‖a - b‖
1aed30586c16c1ed
Array.any_toList
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem any_toList {p : α → Bool} (as : Array α) : as.toList.any p = as.any p
α : Type u_1 p : α → Bool as : Array α ⊢ (∃ x, (∃ i h, as[i] = x) ∧ p x = true) ↔ ∃ i x, p as[i] = true
exact ⟨fun ⟨_, ⟨i, w, rfl⟩, h⟩ => ⟨i, w, h⟩, fun ⟨i, w, h⟩ => ⟨_, ⟨i, w, rfl⟩, h⟩⟩
no goals
d0770c9f684b3b7f
Con.comap_conGen_equiv
Mathlib/GroupTheory/Congruence/Basic.lean
theorem comap_conGen_equiv {M N : Type*} [Mul M] [Mul N] (f : MulEquiv M N) (rel : N → N → Prop) : Con.comap f (map_mul f) (conGen rel) = conGen (fun x y ↦ rel (f x) (f y))
M : Type u_4 N : Type u_5 inst✝¹ : Mul M inst✝ : Mul N f : M ≃* N rel : N → N → Prop a✝² b✝ : M h : (conGen rel) (f a✝²) (f b✝) n1 n2 w x y z : N a✝¹ : ConGen.Rel rel w x a✝ : ConGen.Rel rel y z ih : ∀ (a b : M), f a = w → f b = x → (conGen fun x y => rel (f x) (f y)) a b ih1 : ∀ (a b : M), f a = y → f b = z → (conGen fun x y => rel (f x) (f y)) a b a b : M fa : a = f.symm w * f.symm y fb : b = f.symm x * f.symm z ⊢ f (f.symm x) = x
simp
no goals
d315948435eb07b2
Polynomial.bernoulli_three_eval_one_quarter
Mathlib/NumberTheory/ZetaValues.lean
theorem Polynomial.bernoulli_three_eval_one_quarter : (Polynomial.bernoulli 3).eval (1 / 4) = 3 / 64
⊢ 2 ≠ 1
decide
no goals
729db16dc9d12f16
isJacobsonRing_iff_prime_eq
Mathlib/RingTheory/Jacobson/Ring.lean
theorem isJacobsonRing_iff_prime_eq : IsJacobsonRing R ↔ ∀ P : Ideal R, IsPrime P → P.jacobson = P
R : Type u_1 inst✝ : CommRing R h : ∀ (P : Ideal R), P.IsPrime → P.jacobson = P I : Ideal R hI : I.IsRadical x : R hx : x ∈ I.jacobson ⊢ x ∈ I
rw [← hI.radical, radical_eq_sInf I, mem_sInf]
R : Type u_1 inst✝ : CommRing R h : ∀ (P : Ideal R), P.IsPrime → P.jacobson = P I : Ideal R hI : I.IsRadical x : R hx : x ∈ I.jacobson ⊢ ∀ ⦃I_1 : Ideal R⦄, I_1 ∈ {J | I ≤ J ∧ J.IsPrime} → x ∈ I_1
4be15f6834fa58b0
Finset.sum_Ico_by_parts
Mathlib/Algebra/BigOperators/Module.lean
theorem sum_Ico_by_parts (hmn : m < n) : ∑ i ∈ Ico m n, f i • g i = f (n - 1) • G n - f m • G m - ∑ i ∈ Ico m (n - 1), (f (i + 1) - f i) • G (i + 1)
R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M f : ℕ → R g : ℕ → M m n : ℕ hmn : m < n h₁ : ∑ i ∈ Ico (m + 1) n, f i • ∑ i ∈ range i, g i = ∑ i ∈ Ico m (n - 1), f (i + 1) • ∑ i ∈ range (i + 1), g i h₂ : ∑ i ∈ Ico (m + 1) n, f i • ∑ i ∈ range (i + 1), g i = ∑ i ∈ Ico m (n - 1), f i • ∑ i ∈ range (i + 1), g i + f (n - 1) • ∑ i ∈ range n, g i - f m • ∑ i ∈ range (m + 1), g i i : ℕ ⊢ f i • ∑ i ∈ range (i + 1), g i - f (i + 1) • ∑ i ∈ range (i + 1), g i = -(f (i + 1) • ∑ i ∈ range (i + 1), g i - f i • ∑ i ∈ range (i + 1), g i)
abel
no goals
35456e90ec4d4807
Cubic.c_eq_three_roots
Mathlib/Algebra/CubicDiscriminant.lean
theorem c_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.c = φ P.a * (x * y + x * z + y * z)
F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : (map φ P).roots = {x, y, z} ⊢ φ P.c = φ P.a * (x * y + x * z + y * z)
injection eq_sum_three_roots ha h3
no goals
bbbbb08af3a215b6
MonomialOrder.degree_lt_iff
Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean
theorem degree_lt_iff {f : MvPolynomial σ R} {d : σ →₀ ℕ} (hd : 0 ≺[m] d) : m.degree f ≺[m] d ↔ ∀ c ∈ f.support, c ≺[m] d
σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommSemiring R f : MvPolynomial σ R d : σ →₀ ℕ hd : 0 < m.toSyn d ⊢ m.toSyn (m.degree f) < m.toSyn d ↔ ∀ c ∈ f.support, m.toSyn c < m.toSyn d
unfold degree
σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommSemiring R f : MvPolynomial σ R d : σ →₀ ℕ hd : 0 < m.toSyn d ⊢ m.toSyn (m.toSyn.symm (f.support.sup ⇑m.toSyn)) < m.toSyn d ↔ ∀ c ∈ f.support, m.toSyn c < m.toSyn d
6c45fc57d2fc6548
AList.empty_lookupFinsupp
Mathlib/Data/Finsupp/AList.lean
theorem empty_lookupFinsupp : lookupFinsupp (∅ : AList fun _x : α => M) = 0
α : Type u_1 M : Type u_2 inst✝ : Zero M ⊢ ∅.lookupFinsupp = 0
classical ext simp
no goals
b378aa077b932512
FixedPoints.minpoly.eval₂
Mathlib/FieldTheory/Fixed.lean
theorem eval₂ : Polynomial.eval₂ (Subring.subtype <| (FixedPoints.subfield G F).toSubring) x (minpoly G F x) = 0
G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction G F inst✝ : Fintype G x : F ⊢ Polynomial.eval₂ (subfield G F).subtype x (minpoly G F x) = 0
rw [← prodXSubSMul.eval G F x, Polynomial.eval₂_eq_eval_map]
G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction G F inst✝ : Fintype G x : F ⊢ Polynomial.eval x (Polynomial.map (subfield G F).subtype (minpoly G F x)) = Polynomial.eval x (prodXSubSMul G F x)
a7d25a02e432b675
CategoryTheory.Functor.pi'_eval
Mathlib/CategoryTheory/Pi/Basic.lean
theorem pi'_eval (f : ∀ i, A ⥤ C i) (i : I) : pi' f ⋙ Pi.eval C i = f i
case h_map I : Type w₀ C : I → Type u₁ inst✝¹ : (i : I) → Category.{v₁, u₁} (C i) A : Type u₃ inst✝ : Category.{v₃, u₃} A f : (i : I) → A ⥤ C i i : I ⊢ autoParam (∀ (X Y : A) (f_1 : X ⟶ Y), (pi' f ⋙ Pi.eval C i).map f_1 = eqToHom ⋯ ≫ (f i).map f_1 ≫ eqToHom ⋯) _auto✝
intro _ _ _
case h_map I : Type w₀ C : I → Type u₁ inst✝¹ : (i : I) → Category.{v₁, u₁} (C i) A : Type u₃ inst✝ : Category.{v₃, u₃} A f : (i : I) → A ⥤ C i i : I X✝ Y✝ : A f✝ : X✝ ⟶ Y✝ ⊢ (pi' f ⋙ Pi.eval C i).map f✝ = eqToHom ⋯ ≫ (f i).map f✝ ≫ eqToHom ⋯
44f316420514ba3a
TendstoUniformly.comp
Mathlib/Topology/UniformSpace/UniformConvergence.lean
theorem TendstoUniformly.comp (h : TendstoUniformly F f p) (g : γ → α) : TendstoUniformly (fun n => F n ∘ g) (f ∘ g) p
α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β p : Filter ι h : TendstoUniformlyOnFilter F f p ⊤ g : γ → α ⊢ TendstoUniformlyOnFilter (fun n => F n ∘ g) (f ∘ g) p ⊤
simpa [principal_univ, comap_principal] using h.comp g
no goals
b08bd153e5f5b4a4
AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.asIdeal.prime
Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean
theorem carrier.asIdeal.prime : (carrier.asIdeal f_deg hm q).IsPrime := (carrier.asIdeal.homogeneous f_deg hm q).isPrime_of_homogeneous_mem_or_mem (carrier.asIdeal.ne_top f_deg hm q) fun {x y} ⟨nx, hnx⟩ ⟨ny, hny⟩ hxy => show (∀ _, _ ∈ _) ∨ ∀ _, _ ∈ _ by rw [← and_forall_ne nx, and_iff_left, ← and_forall_ne ny, and_iff_left] · apply q.2.mem_or_mem; convert hxy (nx + ny) using 1 dsimp simp_rw [decompose_of_mem_same 𝒜 hnx, decompose_of_mem_same 𝒜 hny, decompose_of_mem_same 𝒜 (SetLike.GradedMonoid.toGradedMul.mul_mem hnx hny), mul_pow, pow_add] simp only [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk, HomogeneousLocalization.val_mul, Localization.mk_mul] simp only [Submonoid.mk_mul_mk, mk_eq_monoidOf_mk'] all_goals intro n hn; convert q.1.zero_mem using 1 rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk, HomogeneousLocalization.val_zero]; simp_rw [proj_apply] convert mk_zero (S := Submonoid.powers f) _ rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm.ne'] · first | exact hnx | exact hny
case h.e'_5 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x y : A x✝¹ : IsHomogeneousElem 𝒜 x x✝ : IsHomogeneousElem 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx ⊢ HomogeneousLocalization.mk { deg := m * n, num := ⟨(proj 𝒜 n) x ^ m, ⋯⟩, den := ⟨f ^ n, ⋯⟩, den_mem := ⋯ } = 0
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk, HomogeneousLocalization.val_zero]
case h.e'_5 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toPresheafedSpace x y : A x✝¹ : IsHomogeneousElem 𝒜 x x✝ : IsHomogeneousElem 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx ⊢ Localization.mk ↑{ deg := m * n, num := ⟨(proj 𝒜 n) x ^ m, ⋯⟩, den := ⟨f ^ n, ⋯⟩, den_mem := ⋯ }.num ⟨↑{ deg := m * n, num := ⟨(proj 𝒜 n) x ^ m, ⋯⟩, den := ⟨f ^ n, ⋯⟩, den_mem := ⋯ }.den, ⋯⟩ = 0
5ba35f6f859f61e0
IsCompact.image_of_continuousOn
Mathlib/Topology/Compactness/Compact.lean
theorem IsCompact.image_of_continuousOn {f : X → Y} (hs : IsCompact s) (hf : ContinuousOn f s) : IsCompact (f '' s)
X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X f : X → Y hs : IsCompact s hf : ContinuousOn f s ⊢ IsCompact (f '' s)
intro l lne ls
X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X f : X → Y hs : IsCompact s hf : ContinuousOn f s l : Filter Y lne : l.NeBot ls : l ≤ 𝓟 (f '' s) ⊢ ∃ x ∈ f '' s, ClusterPt x l
2cb55c7533cef93b
fderivWithin_fderivWithin_eq_of_mem_nhdsWithin
Mathlib/Analysis/Calculus/FDeriv/Symmetric.lean
lemma fderivWithin_fderivWithin_eq_of_mem_nhdsWithin (h : t ∈ 𝓝[s] x) (hf : ContDiffWithinAt 𝕜 2 f t x) (hs : UniqueDiffOn 𝕜 s) (ht : UniqueDiffOn 𝕜 t) (hx : x ∈ s) : fderivWithin 𝕜 (fderivWithin 𝕜 f s) s x = fderivWithin 𝕜 (fderivWithin 𝕜 f t) t x
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s t : Set E f : E → F x : E h : t ∈ 𝓝[s] x hf : ContDiffWithinAt 𝕜 2 f t x hs : UniqueDiffOn 𝕜 s ht : UniqueDiffOn 𝕜 t hx : x ∈ s A : ∀ᶠ (y : E) in 𝓝[s] x, fderivWithin 𝕜 f s y = fderivWithin 𝕜 f t y ⊢ fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x
exact fderivWithin_of_mem_nhdsWithin h (hs x hx) (hf.differentiableWithinAt one_le_two)
no goals
338e0eff11ac573d
MeasureTheory.IsStoppingTime.measurableSet_inter_le
Mathlib/Probability/Process/Stopping.lean
theorem measurableSet_inter_le [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] (hτ : IsStoppingTime f τ) (hπ : IsStoppingTime f π) (s : Set Ω) (hs : MeasurableSet[hτ.measurableSpace] s) : MeasurableSet[(hτ.min hπ).measurableSpace] (s ∩ {ω | τ ω ≤ π ω})
Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ⊓ π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ⊓ π ω ≤ i} ∩ {ω | τ ω ⊓ i ≤ τ ω ⊓ π ω ⊓ i} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ⊓ π ω ≤ i})
rw [this]
Ω : Type u_1 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ⊓ π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ⊓ π ω ≤ i} ∩ {ω | τ ω ⊓ i ≤ τ ω ⊓ π ω ⊓ i} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ⊓ π ω ≤ i} ∩ {ω | τ ω ⊓ i ≤ τ ω ⊓ π ω ⊓ i})
93587e3bd5de43f7
CategoryTheory.Limits.IsColimit.OfNatIso.coconeOfHom_fac
Mathlib/CategoryTheory/Limits/IsLimit.lean
theorem coconeOfHom_fac {Y : C} (f : X ⟶ Y) : coconeOfHom h f = (colimitCocone h).extend f
case e_ι.w.h J : Type u₁ inst✝¹ : Category.{v₁, u₁} J C : Type u₃ inst✝ : Category.{v₃, u₃} C F : J ⥤ C X : C h : coyoneda.obj (op X) ⋙ uliftFunctor.{u₁, v₃} ≅ F.cocones Y : C f : X ⟶ Y j : J t : h.hom.app Y { down := 𝟙 X ≫ f } = F.cocones.map f (h.hom.app X { down := 𝟙 X }) ⊢ (h.hom.app Y { down := f }).app j = (h.hom.app X { down := 𝟙 X } ≫ (const J).map f).app j
simp only [id_comp] at t
case e_ι.w.h J : Type u₁ inst✝¹ : Category.{v₁, u₁} J C : Type u₃ inst✝ : Category.{v₃, u₃} C F : J ⥤ C X : C h : coyoneda.obj (op X) ⋙ uliftFunctor.{u₁, v₃} ≅ F.cocones Y : C f : X ⟶ Y j : J t : h.hom.app Y { down := f } = F.cocones.map f (h.hom.app X { down := 𝟙 X }) ⊢ (h.hom.app Y { down := f }).app j = (h.hom.app X { down := 𝟙 X } ≫ (const J).map f).app j
4193177dc0262cb9
le_inv_iff_mul_le_one_right
Mathlib/Algebra/Order/Group/Unbundled/Basic.lean
theorem le_inv_iff_mul_le_one_right : a ≤ b⁻¹ ↔ a * b ≤ 1 := (mul_le_mul_iff_right b).symm.trans <| by rw [inv_mul_cancel]
α : Type u inst✝² : Group α inst✝¹ : LE α inst✝ : MulRightMono α a b : α ⊢ a * b ≤ b⁻¹ * b ↔ a * b ≤ 1
rw [inv_mul_cancel]
no goals
b5a254400e7116b9
ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear
Mathlib/Analysis/Analytic/CPolynomial.lean
theorem hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear : HasFiniteFPowerSeriesOnBall (fun (p : G × (Π i, Em i)) ↦ f p.1 p.2) f.toFormalMultilinearSeriesOfMultilinear 0 (Fintype.card (Option ι) + 1) ⊤
𝕜 : Type u_1 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace 𝕜 G ι : Type u_5 Em : ι → Type u_6 inst✝² : (i : ι) → NormedAddCommGroup (Em i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (Em i) inst✝ : Fintype ι f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F y : G × ((i : ι) → Em i) a✝ : y ∈ EMetric.ball 0 ⊤ ⊢ ((f.toFormalMultilinearSeriesOfMultilinear (Fintype.card (Option ι))) fun x => y) = (f y.1) y.2
rw [toFormalMultilinearSeriesOfMultilinear, dif_pos rfl]
𝕜 : Type u_1 F : Type u_3 G : Type u_4 inst✝⁷ : NontriviallyNormedField 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup G inst✝³ : NormedSpace 𝕜 G ι : Type u_5 Em : ι → Type u_6 inst✝² : (i : ι) → NormedAddCommGroup (Em i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (Em i) inst✝ : Fintype ι f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F y : G × ((i : ι) → Em i) a✝ : y ∈ EMetric.ball 0 ⊤ ⊢ ((ContinuousMultilinearMap.domDomCongr (Fintype.equivFinOfCardEq ⋯) f.continuousMultilinearMapOption) fun x => y) = (f y.1) y.2
9e79f3aed59fcb73
HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn
Mathlib/Analysis/Analytic/Basic.lean
theorem HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn (hf : HasFPowerSeriesWithinOnBall f p s x r) : TendstoLocallyUniformlyOn (fun n y => p.partialSum n y) (fun y => f (x + y)) atTop ((x + ·)⁻¹' (insert x s) ∩ EMetric.ball (0 : E) r)
case intro.intro.refine_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F p : FormalMultilinearSeries 𝕜 E F s : Set E x : E r : ℝ≥0∞ hf : HasFPowerSeriesWithinOnBall f p s x r u : Set (F × F) hu : u ∈ uniformity F y : E hy : y ∈ (fun x_1 => x + x_1) ⁻¹' insert x s ∩ EMetric.ball 0 r r' : ℝ≥0 yr' : edist y 0 < ↑r' hr' : ↑r' < r this : EMetric.ball 0 ↑r' ∈ 𝓝 y ⊢ ∀ᶠ (n : ℕ) in atTop, ∀ y ∈ (fun x_1 => x + x_1) ⁻¹' insert x s ∩ EMetric.ball 0 ↑r', ((fun y => f (x + y)) y, (fun n y => p.partialSum n y) n y) ∈ u
simpa [Metric.emetric_ball_nnreal] using hf.tendstoUniformlyOn hr' u hu
no goals
2a880b1d843248d7
MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
theorem eLpNorm_le_of_ae_nnnorm_bound {f : α → F} {C : ℝ≥0} (hfC : ∀ᵐ x ∂μ, ‖f x‖₊ ≤ C) : eLpNorm f p μ ≤ C • μ Set.univ ^ p.toReal⁻¹
case pos α : Type u_1 F : Type u_4 m0 : MeasurableSpace α p : ℝ≥0∞ μ : Measure α inst✝ : NormedAddCommGroup F f : α → F C : ℝ≥0 hfC : ∀ᵐ (x : α) ∂μ, ‖f x‖₊ ≤ C hμ : NeZero μ hp : p = 0 ⊢ eLpNorm f p μ ≤ C • μ Set.univ ^ p.toReal⁻¹
simp [hp]
no goals
e13c88a1505d5b94
IsDiscreteValuationRing.iff_pid_with_one_nonzero_prime
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
theorem iff_pid_with_one_nonzero_prime (R : Type u) [CommRing R] [IsDomain R] : IsDiscreteValuationRing R ↔ IsPrincipalIdealRing R ∧ ∃! P : Ideal R, P ≠ ⊥ ∧ IsPrime P
case mpr.intro R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R RPID : IsPrincipalIdealRing R Punique : ∃! P, P ≠ ⊥ ∧ P.IsPrime this : IsLocalRing R ⊢ IsDiscreteValuationRing R
refine { not_a_field' := ?_ }
case mpr.intro R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R RPID : IsPrincipalIdealRing R Punique : ∃! P, P ≠ ⊥ ∧ P.IsPrime this : IsLocalRing R ⊢ maximalIdeal R ≠ ⊥
f7521cb0caad85a8