name
stringlengths 3
112
| file
stringlengths 21
116
| statement
stringlengths 17
8.64k
| state
stringlengths 7
205k
| tactic
stringlengths 3
4.55k
| result
stringlengths 7
205k
| id
stringlengths 16
16
|
---|---|---|---|---|---|---|
Module.End.injOn_genEigenspace
|
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
|
lemma injOn_genEigenspace [NoZeroSMulDivisors R M] (f : End R M) (k : ℕ∞) :
InjOn (f.genEigenspace · k) {μ | f.genEigenspace μ k ≠ ⊥}
|
R : Type v
M : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
f : End R M
k : ℕ∞
⊢ InjOn (fun x => (f.genEigenspace x) k) {μ | (f.genEigenspace μ) k ≠ ⊥}
|
rintro μ₁ _ μ₂ hμ₂ hμ₁₂
|
R : Type v
M : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
f : End R M
k : ℕ∞
μ₁ : R
a✝ : μ₁ ∈ {μ | (f.genEigenspace μ) k ≠ ⊥}
μ₂ : R
hμ₂ : μ₂ ∈ {μ | (f.genEigenspace μ) k ≠ ⊥}
hμ₁₂ : (fun x => (f.genEigenspace x) k) μ₁ = (fun x => (f.genEigenspace x) k) μ₂
⊢ μ₁ = μ₂
|
a0c686e86c7fd170
|
Set.unbounded_lt_iff
|
Mathlib/Order/Bounded.lean
|
theorem unbounded_lt_iff [LinearOrder α] : Unbounded (· < ·) s ↔ ∀ a, ∃ b ∈ s, a ≤ b
|
α : Type u_1
s : Set α
inst✝ : LinearOrder α
⊢ Unbounded (fun x1 x2 => x1 < x2) s ↔ ∀ (a : α), ∃ b ∈ s, a ≤ b
|
simp only [Unbounded, not_lt]
|
no goals
|
b1b0ca051c937751
|
Std.DHashMap.Raw.Const.size_le_size_insertMany_list
|
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/RawLemmas.lean
|
theorem size_le_size_insertMany_list [EquivBEq α] [LawfulHashable α] (h : m.WF)
{l : List (α × β)} :
m.size ≤ (insertMany m l).size
|
α : Type u
inst✝³ : BEq α
inst✝² : Hashable α
β : Type v
m : Raw α fun x => β
inst✝¹ : EquivBEq α
inst✝ : LawfulHashable α
h : m.WF
l : List (α × β)
⊢ m.size ≤ (insertMany m l).size
|
simp_to_raw using Raw₀.Const.size_le_size_insertMany_list ⟨m, _⟩
|
no goals
|
a2a816818387ca7a
|
Std.DHashMap.Internal.List.getValueCast?_insertList_of_mem
|
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
|
theorem getValueCast?_insertList_of_mem [BEq α] [LawfulBEq α]
{l toInsert : List ((a : α) × β a)}
{k k' : α} (k_beq : k == k') {v : β k}
(distinct_l : DistinctKeys l)
(distinct_toInsert : toInsert.Pairwise (fun a b => (a.1 == b.1) = false))
(mem : ⟨k, v⟩ ∈ toInsert) :
getValueCast? k' (insertList l toInsert) =
some (cast (by congr; exact LawfulBEq.eq_of_beq k_beq) v)
|
α : Type u
β : α → Type v
inst✝¹ : BEq α
inst✝ : LawfulBEq α
l toInsert : List ((a : α) × β a)
k k' : α
k_beq : (k == k') = true
v : β k
distinct_l : DistinctKeys l
distinct_toInsert : DistinctKeys toInsert
mem : ⟨k, v⟩ ∈ toInsert
this : getEntry? k' (insertList l toInsert) = getEntry? k' toInsert
⊢ (Std.DHashMap.Internal.List.Option.dmap (getEntry? k' (insertList l toInsert)) fun p h => cast ⋯ p.snd) =
some (cast ⋯ v)
|
rw [getEntry?_of_mem distinct_toInsert k_beq mem] at this
|
α : Type u
β : α → Type v
inst✝¹ : BEq α
inst✝ : LawfulBEq α
l toInsert : List ((a : α) × β a)
k k' : α
k_beq : (k == k') = true
v : β k
distinct_l : DistinctKeys l
distinct_toInsert : DistinctKeys toInsert
mem : ⟨k, v⟩ ∈ toInsert
this : getEntry? k' (insertList l toInsert) = some ⟨k, v⟩
⊢ (Std.DHashMap.Internal.List.Option.dmap (getEntry? k' (insertList l toInsert)) fun p h => cast ⋯ p.snd) =
some (cast ⋯ v)
|
82c18001be4198ba
|
rootsOfUnity.integer_power_of_ringEquiv
|
Mathlib/NumberTheory/Cyclotomic/CyclotomicCharacter.lean
|
theorem rootsOfUnity.integer_power_of_ringEquiv (g : L ≃+* L) :
∃ m : ℤ, ∀ t : rootsOfUnity n L, g (t : Lˣ) = (t ^ m : Lˣ)
|
case intro
L : Type u
inst✝² : CommRing L
inst✝¹ : IsDomain L
n : ℕ
inst✝ : NeZero n
g : L ≃+* L
m : ℤ
hm : ∀ (g_1 : ↥(rootsOfUnity n L)), ((↑g).restrictRootsOfUnity n).toMonoidHom g_1 = g_1 ^ m
⊢ ∃ m, ∀ (t : ↥(rootsOfUnity n L)), g ↑↑t = ↑(↑t ^ m)
|
exact ⟨m, fun t ↦ Units.ext_iff.1 <| SetCoe.ext_iff.2 <| hm t⟩
|
no goals
|
6b741b3c54da15ad
|
Std.DHashMap.Internal.List.Const.modifyKey_eq_alterKey
|
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
|
theorem modifyKey_eq_alterKey (k : α) (f : β → β) (l : List ((_ : α) × β)) :
modifyKey k f l = alterKey k (·.map f) l
|
α : Type u
β : Type v
inst✝ : BEq α
k : α
f : β → β
l : List ((_ : α) × β)
⊢ modifyKey k f l = alterKey k (fun x => Option.map f x) l
|
rw [modifyKey, alterKey, Option.map.eq_def]
|
α : Type u
β : Type v
inst✝ : BEq α
k : α
f : β → β
l : List ((_ : α) × β)
⊢ (match getValue? k l with
| none => l
| some v => replaceEntry k (f v) l) =
match
match getValue? k l with
| some x => some (f x)
| none => none with
| none => eraseKey k l
| some v => insertEntry k v l
|
4c12c679cb341031
|
MeasureTheory.Measure.prod_prod
|
Mathlib/MeasureTheory/Measure/Prod.lean
|
theorem prod_prod (s : Set α) (t : Set β) : μ.prod ν (s ×ˢ t) = μ s * ν t
|
case a
α : Type u_1
β : Type u_2
inst✝² : MeasurableSpace α
inst✝¹ : MeasurableSpace β
μ : Measure α
ν : Measure β
inst✝ : SFinite ν
s : Set α
t : Set β
S : Set α := toMeasurable μ s
T : Set β := toMeasurable ν t
hSTm : MeasurableSet (S ×ˢ T)
⊢ (μ.prod ν) (s ×ˢ t) ≤ μ s * ν t
|
calc
μ.prod ν (s ×ˢ t) ≤ μ.prod ν (S ×ˢ T) := by gcongr <;> apply subset_toMeasurable
_ = μ S * ν T := by
rw [prod_apply hSTm]
simp_rw [S, mk_preimage_prod_right_eq_if, measure_if,
lintegral_indicator (measurableSet_toMeasurable _ _), lintegral_const,
restrict_apply_univ, mul_comm]
_ = μ s * ν t := by rw [measure_toMeasurable, measure_toMeasurable]
|
no goals
|
3a4325941a637749
|
CategoryTheory.Limits.coprod.pentagon
|
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
|
theorem coprod.pentagon (W X Y Z : C) :
coprod.map (coprod.associator W X Y).hom (𝟙 Z) ≫
(coprod.associator W (X ⨿ Y) Z).hom ≫ coprod.map (𝟙 W) (coprod.associator X Y Z).hom =
(coprod.associator (W ⨿ X) Y Z).hom ≫ (coprod.associator W X (Y ⨿ Z)).hom
|
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasBinaryCoproducts C
W X Y Z : C
⊢ map (associator W X Y).hom (𝟙 Z) ≫ (associator W (X ⨿ Y) Z).hom ≫ map (𝟙 W) (associator X Y Z).hom =
(associator (W ⨿ X) Y Z).hom ≫ (associator W X (Y ⨿ Z)).hom
|
simp
|
no goals
|
025eb35b3fee2ad8
|
CategoryTheory.GrothendieckTopology.coversTop_iff_of_isTerminal
|
Mathlib/CategoryTheory/Sites/CoversTop.lean
|
lemma coversTop_iff_of_isTerminal (X : C) (hX : IsTerminal X)
{I : Type*} (Y : I → C) :
J.CoversTop Y ↔ Sieve.ofObjects Y X ∈ J X
|
case mpr
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X : C
hX : IsTerminal X
I : Type u_1
Y : I → C
h : Sieve.ofObjects Y X ∈ J X
W : C
⊢ Sieve.ofObjects Y W ∈ J W
|
apply J.superset_covering _ (J.pullback_stable (hX.from W) h)
|
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X : C
hX : IsTerminal X
I : Type u_1
Y : I → C
h : Sieve.ofObjects Y X ∈ J X
W : C
⊢ Sieve.pullback (hX.from W) (Sieve.ofObjects Y X) ≤ Sieve.ofObjects Y W
|
2ecd555335ab9063
|
Finsupp.indicator_eq_sum_attach_single
|
Mathlib/Algebra/BigOperators/Finsupp.lean
|
lemma indicator_eq_sum_attach_single [AddCommMonoid M] {s : Finset α} (f : ∀ a ∈ s, M) :
indicator s f = ∑ x ∈ s.attach, single ↑x (f x x.2)
|
α : Type u_1
M : Type u_8
inst✝ : AddCommMonoid M
s : Finset α
f : (a : α) → a ∈ s → M
x✝¹ : { x // x ∈ s }
x✝ : x✝¹ ∈ s.attach
⊢ single (↑x✝¹) ((indicator s f) ↑x✝¹) = single (↑x✝¹) (f ↑x✝¹ ⋯)
|
rw [indicator_of_mem]
|
no goals
|
4a42177640682c3f
|
tendsto_nhdsWithin_iff_subtype
|
Mathlib/Topology/ContinuousOn.lean
|
theorem tendsto_nhdsWithin_iff_subtype {s : Set α} {a : α} (h : a ∈ s) (f : α → β) (l : Filter β) :
Tendsto f (𝓝[s] a) l ↔ Tendsto (s.restrict f) (𝓝 ⟨a, h⟩) l
|
α : Type u_1
β : Type u_2
inst✝ : TopologicalSpace α
s : Set α
a : α
h : a ∈ s
f : α → β
l : Filter β
⊢ Tendsto (f ∘ Subtype.val) (𝓝 ⟨a, h⟩) l ↔ Tendsto (s.restrict f) (𝓝 ⟨a, h⟩) l
|
rfl
|
no goals
|
c34ed15966db3f6f
|
LSeries.term_convolution'
|
Mathlib/NumberTheory/LSeries/Convolution.lean
|
/-- We give an expression of the `LSeries.term` of the convolution of two functions
in terms of an a priori infinite sum over all pairs `(k, m)` with `k * m = n`
(the set we sum over is infinite when `n = 0`). This is the version needed for the
proof that `L (f ⍟ g) = L f * L g`. -/
lemma term_convolution' (f g : ℕ → ℂ) (s : ℂ) :
term (f ⍟ g) s = fun n ↦
∑' (b : (fun p : ℕ × ℕ ↦ p.1 * p.2) ⁻¹' {n}), term f s b.val.1 * term g s b.val.2
|
f g : ℕ → ℂ
s : ℂ
hS : (fun p => p.1 * p.2) ⁻¹' {0} = {0} ×ˢ univ ∪ univ ×ˢ {0}
⊢ ∀ (p : ↑((fun p => p.1 * p.2) ⁻¹' {0})), term f s (↑p).1 * term g s (↑p).2 = 0
|
rintro ⟨⟨_, _⟩, hp⟩
|
case mk.mk
f g : ℕ → ℂ
s : ℂ
hS : (fun p => p.1 * p.2) ⁻¹' {0} = {0} ×ˢ univ ∪ univ ×ˢ {0}
fst✝ snd✝ : ℕ
hp : (fst✝, snd✝) ∈ (fun p => p.1 * p.2) ⁻¹' {0}
⊢ term f s (↑⟨(fst✝, snd✝), hp⟩).1 * term g s (↑⟨(fst✝, snd✝), hp⟩).2 = 0
|
0320871b3b1f5c99
|
MeasureTheory.eLpNormEssSup_indicator_const_eq
|
Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
|
lemma eLpNormEssSup_indicator_const_eq (s : Set α) (c : G) (hμs : μ s ≠ 0) :
eLpNormEssSup (s.indicator fun _ : α => c) μ = ‖c‖ₑ
|
α : Type u_1
G : Type u_5
m0 : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup G
s : Set α
c : G
hμs : μ s ≠ 0
h : eLpNormEssSup (s.indicator fun x => c) μ < ‖c‖ₑ
h' : μ {a | ‖c‖ₑ ≤ ‖s.indicator (fun x => c) a‖ₑ} = 0
x : α
hx_mem : x ∈ s
⊢ x ∈ {a | ‖c‖ₑ ≤ ‖s.indicator (fun x => c) a‖ₑ}
|
rw [Set.mem_setOf_eq, Set.indicator_of_mem hx_mem, enorm_eq_nnnorm]
|
no goals
|
4bfba53b43399385
|
DFinsupp.card_Ioc
|
Mathlib/Data/DFinsupp/Interval.lean
|
lemma card_Ioc : #(Ioc f g) = (∏ i ∈ f.support ∪ g.support, #(Icc (f i) (g i))) - 1
|
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : DecidableEq ι
inst✝³ : (i : ι) → DecidableEq (α i)
inst✝² : (i : ι) → PartialOrder (α i)
inst✝¹ : (i : ι) → Zero (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
f g : Π₀ (i : ι), α i
⊢ #(Ioc f g) = ∏ i ∈ f.support ∪ g.support, #(Icc (f i) (g i)) - 1
|
rw [card_Ioc_eq_card_Icc_sub_one, card_Icc]
|
no goals
|
1f338799efd87f48
|
Lean.Omega.IntList.dot_of_left_zero
|
Mathlib/.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
|
theorem dot_of_left_zero (w : ∀ x, x ∈ xs → x = 0) : dot xs ys = 0
|
case cons.cons
x : Int
xs : List Int
ih : ∀ {ys : IntList}, (∀ (x : Int), x ∈ xs → x = 0) → dot xs ys = 0
w : ∀ (x_1 : Int), x_1 ∈ x :: xs → x_1 = 0
y : Int
ys : List Int
⊢ dot (x :: xs) (y :: ys) = 0
|
rw [dot_cons₂, w x (by simp), ih]
|
case cons.cons
x : Int
xs : List Int
ih : ∀ {ys : IntList}, (∀ (x : Int), x ∈ xs → x = 0) → dot xs ys = 0
w : ∀ (x_1 : Int), x_1 ∈ x :: xs → x_1 = 0
y : Int
ys : List Int
⊢ 0 * y + 0 = 0
case cons.cons
x : Int
xs : List Int
ih : ∀ {ys : IntList}, (∀ (x : Int), x ∈ xs → x = 0) → dot xs ys = 0
w : ∀ (x_1 : Int), x_1 ∈ x :: xs → x_1 = 0
y : Int
ys : List Int
⊢ ∀ (x : Int), x ∈ xs → x = 0
|
fa16c8cd41b04385
|
IsUnifLocDoublingMeasure.closedBall_mem_vitaliFamily_of_dist_le_mul
|
Mathlib/MeasureTheory/Covering/DensityTheorem.lean
|
theorem closedBall_mem_vitaliFamily_of_dist_le_mul {K : ℝ} {x y : α} {r : ℝ} (h : dist x y ≤ K * r)
(rpos : 0 < r) : closedBall y r ∈ (vitaliFamily μ K).setsAt x
|
case pos.h.inl.left
α : Type u_1
inst✝⁵ : PseudoMetricSpace α
inst✝⁴ : MeasurableSpace α
μ : Measure α
inst✝³ : IsUnifLocDoublingMeasure μ
inst✝² : SecondCountableTopology α
inst✝¹ : BorelSpace α
inst✝ : IsLocallyFiniteMeasure μ
K : ℝ
x y : α
r : ℝ
h : dist x y ≤ K * r
rpos : 0 < r
R : ℝ := scalingScaleOf μ ((4 * K + 3) ⊔ 3)
H : closedBall y r ⊆ closedBall x (R / 4)
hr : r ≤ R
⊢ closedBall y r ⊆ closedBall x ((K + 1) * r)
|
apply closedBall_subset_closedBall'
|
case pos.h.inl.left.h
α : Type u_1
inst✝⁵ : PseudoMetricSpace α
inst✝⁴ : MeasurableSpace α
μ : Measure α
inst✝³ : IsUnifLocDoublingMeasure μ
inst✝² : SecondCountableTopology α
inst✝¹ : BorelSpace α
inst✝ : IsLocallyFiniteMeasure μ
K : ℝ
x y : α
r : ℝ
h : dist x y ≤ K * r
rpos : 0 < r
R : ℝ := scalingScaleOf μ ((4 * K + 3) ⊔ 3)
H : closedBall y r ⊆ closedBall x (R / 4)
hr : r ≤ R
⊢ r + dist y x ≤ (K + 1) * r
|
60c120fcf237fc0d
|
ProbabilityTheory.measure_condCDF_univ
|
Mathlib/Probability/Kernel/Disintegration/CondCDF.lean
|
theorem measure_condCDF_univ (ρ : Measure (α × ℝ)) (a : α) : (condCDF ρ a).measure univ = 1
|
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ (condCDF ρ a).measure univ = 1
|
rw [← ENNReal.ofReal_one, ← sub_zero (1 : ℝ)]
|
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ (condCDF ρ a).measure univ = ENNReal.ofReal (1 - 0)
|
1b16a5159393d6ca
|
LinearMap.range_eq_map
|
Mathlib/Algebra/Module/Submodule/Range.lean
|
theorem range_eq_map [RingHomSurjective τ₁₂] (f : F) : range f = map f ⊤
|
R : Type u_1
R₂ : Type u_2
M : Type u_5
M₂ : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring R₂
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_10
inst✝² : FunLike F M M₂
inst✝¹ : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
⊢ range f = map f ⊤
|
ext
|
case h
R : Type u_1
R₂ : Type u_2
M : Type u_5
M₂ : Type u_6
inst✝⁸ : Semiring R
inst✝⁷ : Semiring R₂
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
inst✝⁴ : Module R M
inst✝³ : Module R₂ M₂
τ₁₂ : R →+* R₂
F : Type u_10
inst✝² : FunLike F M M₂
inst✝¹ : SemilinearMapClass F τ₁₂ M M₂
inst✝ : RingHomSurjective τ₁₂
f : F
x✝ : M₂
⊢ x✝ ∈ range f ↔ x✝ ∈ map f ⊤
|
57c153fc58aa9513
|
ContinuousLinearMap.iteratedFDerivWithin_comp_left
|
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
|
theorem ContinuousLinearMap.iteratedFDerivWithin_comp_left {f : E → F} (g : F →L[𝕜] G)
(hf : ContDiffWithinAt 𝕜 n f s x) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) {i : ℕ} (hi : i ≤ n) :
iteratedFDerivWithin 𝕜 i (g ∘ f) s x =
g.compContinuousMultilinearMap (iteratedFDerivWithin 𝕜 i f s x)
|
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
F : Type uF
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace 𝕜 F
G : Type uG
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace 𝕜 G
s : Set E
x : E
n : WithTop ℕ∞
f : E → F
g : F →L[𝕜] G
hf : ContDiffWithinAt 𝕜 n f s x
hs : UniqueDiffOn 𝕜 s
hx : x ∈ s
i : ℕ
hi : ↑i ≤ n
⊢ ↑i = ∞ → n = ω
|
simp
|
no goals
|
832a54e17c3023f1
|
differentiableWithinAt_localInvariantProp
|
Mathlib/Geometry/Manifold/MFDeriv/Defs.lean
|
theorem differentiableWithinAt_localInvariantProp :
(contDiffGroupoid 1 I).LocalInvariantProp (contDiffGroupoid 1 I')
(DifferentiableWithinAtProp I I') :=
{ is_local
|
𝕜 : Type u_1
inst✝⁶ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace 𝕜 E
H : Type u_3
inst✝³ : TopologicalSpace H
I : ModelWithCorners 𝕜 E H
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : NormedSpace 𝕜 E'
H' : Type u_6
inst✝ : TopologicalSpace H'
I' : ModelWithCorners 𝕜 E' H'
s : Set H
x : H
u : Set H
f : H → H'
u_open : IsOpen u
xu : x ∈ u
this : ↑I.symm ⁻¹' (s ∩ u) ∩ range ↑I = ↑I.symm ⁻¹' s ∩ range ↑I ∩ ↑I.symm ⁻¹' u
⊢ u ∈ 𝓝 x
|
exact u_open.mem_nhds xu
|
no goals
|
3d1405d37db22f10
|
BoxIntegral.norm_integral_le_of_norm_le
|
Mathlib/Analysis/BoxIntegral/Basic.lean
|
theorem norm_integral_le_of_norm_le {g : ℝⁿ → ℝ} (hle : ∀ x ∈ Box.Icc I, ‖f x‖ ≤ g x)
(μ : Measure ℝⁿ) [IsLocallyFiniteMeasure μ] (hg : Integrable I l g μ.toBoxAdditive.toSMul) :
‖(integral I l f μ.toBoxAdditive.toSMul : E)‖ ≤ integral I l g μ.toBoxAdditive.toSMul
|
case neg
ι : Type u
E : Type v
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
I : Box ι
inst✝¹ : Fintype ι
l : IntegrationParams
f : (ι → ℝ) → E
g : (ι → ℝ) → ℝ
hle : ∀ x ∈ Box.Icc I, ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g μ.toBoxAdditive.toSMul
hfi : ¬Integrable I l f μ.toBoxAdditive.toSMul
⊢ ‖integral I l f μ.toBoxAdditive.toSMul‖ ≤ integral I l g μ.toBoxAdditive.toSMul
|
rw [integral, dif_neg hfi, norm_zero]
|
case neg
ι : Type u
E : Type v
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
I : Box ι
inst✝¹ : Fintype ι
l : IntegrationParams
f : (ι → ℝ) → E
g : (ι → ℝ) → ℝ
hle : ∀ x ∈ Box.Icc I, ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g μ.toBoxAdditive.toSMul
hfi : ¬Integrable I l f μ.toBoxAdditive.toSMul
⊢ 0 ≤ integral I l g μ.toBoxAdditive.toSMul
|
fabc40b1fa159acd
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_insertRat
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
|
theorem sat_of_insertRat {n : Nat} (f : DefaultFormula n)
(hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (c : DefaultClause n) (p : PosFin n → Bool)
(pf : p ⊨ f) :
(insertRatUnits f (negate c)).2 = true → p ⊨ c
|
case intro.inr.inl.intro.intro.intro.intro.intro.intro
n : Nat
f : DefaultFormula n
hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant
c : DefaultClause n
p : PosFin n → Bool
pf : p ⊨ f
insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true
i : PosFin n
hboth : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[i.val] = both
i_in_bounds : i.val < f.assignments.size
h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯
insertUnit_fold_satisfies_invariant :
let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate;
let_fun update_res_size := ⋯;
InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size
j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size
b : Bool
i_gt_zero : ↑⟨i.val, ⋯⟩ > 0
h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b)
h2 :
(List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[↑⟨i.val, ⋯⟩] =
addAssignment b f.assignments[↑⟨i.val, ⋯⟩]
h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true
h4 :
∀ (k : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size),
k ≠ j → (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩
ib_in_insertUnit_fold✝ : (i, b) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.toList
ib_in_insertUnit_fold : (i, b) ∈ c.negate ∨ (i, b) ∈ f.ratUnits.toList
⊢ (i, false) ∈ Clause.toList c ∧ decide (p i = false) = true ∨ (i, true) ∈ Clause.toList c ∧ p i = true
|
simp only [negate, Literal.negate, List.mem_map, Prod.mk.injEq, Prod.exists, Bool.exists_bool,
Bool.not_false, Bool.not_true, hf.1, Array.toList_toArray, List.find?, List.not_mem_nil, or_false]
at ib_in_insertUnit_fold
|
case intro.inr.inl.intro.intro.intro.intro.intro.intro
n : Nat
f : DefaultFormula n
hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant
c : DefaultClause n
p : PosFin n → Bool
pf : p ⊨ f
insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true
i : PosFin n
hboth : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[i.val] = both
i_in_bounds : i.val < f.assignments.size
h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯
insertUnit_fold_satisfies_invariant :
let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate;
let_fun update_res_size := ⋯;
InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size
j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size
b : Bool
i_gt_zero : ↑⟨i.val, ⋯⟩ > 0
h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b)
h2 :
(List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[↑⟨i.val, ⋯⟩] =
addAssignment b f.assignments[↑⟨i.val, ⋯⟩]
h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true
h4 :
∀ (k : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size),
k ≠ j → (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩
ib_in_insertUnit_fold✝ : (i, b) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.toList
ib_in_insertUnit_fold : ∃ a, (a, false) ∈ c.clause ∧ a = i ∧ true = b ∨ (a, true) ∈ c.clause ∧ a = i ∧ false = b
⊢ (i, false) ∈ Clause.toList c ∧ decide (p i = false) = true ∨ (i, true) ∈ Clause.toList c ∧ p i = true
|
c0b439908684a182
|
discrim_eq_zero_iff
|
Mathlib/Algebra/QuadraticDiscriminant.lean
|
theorem discrim_eq_zero_iff (ha : a ≠ 0) :
discrim a b c = 0 ↔ (∃! x, a * (x * x) + b * x + c = 0)
|
K : Type u_1
inst✝¹ : Field K
inst✝ : NeZero 2
a b c : K
ha : a ≠ 0
hd : discrim a b c = 0
⊢ ∃! x, a * (x * x) + b * x + c = 0
|
simp_rw [quadratic_eq_zero_iff_of_discrim_eq_zero ha hd, existsUnique_eq]
|
no goals
|
b032d9789f00b01a
|
imaginaryPart_smul
|
Mathlib/Data/Complex/Module.lean
|
theorem imaginaryPart_smul (z : ℂ) (a : A) : ℑ (z • a) = z.re • ℑ a + z.im • ℜ a
|
A : Type u_1
inst✝³ : AddCommGroup A
inst✝² : Module ℂ A
inst✝¹ : StarAddMonoid A
inst✝ : StarModule ℂ A
z : ℂ
a : A
⊢ ?m.175621
|
congrm (ℑ ($((re_add_im z).symm) • a))
|
no goals
|
72cc35a2c5277b8f
|
Matrix.sum_cramer_apply
|
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
|
theorem sum_cramer_apply {β} (s : Finset β) (f : n → β → α) (i : n) :
(∑ x ∈ s, cramer A (fun j => f j x) i) = cramer A (fun j : n => ∑ x ∈ s, f j x) i :=
calc
(∑ x ∈ s, cramer A (fun j => f j x) i) = (∑ x ∈ s, cramer A fun j => f j x) i :=
(Finset.sum_apply i s _).symm
_ = cramer A (fun j : n => ∑ x ∈ s, f j x) i
|
n : Type v
α : Type w
inst✝² : DecidableEq n
inst✝¹ : Fintype n
inst✝ : CommRing α
A : Matrix n n α
β : Type u_1
s : Finset β
f : n → β → α
i : n
⊢ (∑ x ∈ s, A.cramer fun j => f j x) i = A.cramer (fun j => ∑ x ∈ s, f j x) i
|
rw [sum_cramer, cramer_apply, cramer_apply]
|
n : Type v
α : Type w
inst✝² : DecidableEq n
inst✝¹ : Fintype n
inst✝ : CommRing α
A : Matrix n n α
β : Type u_1
s : Finset β
f : n → β → α
i : n
⊢ (A.updateCol i (∑ x ∈ s, fun j => f j x)).det = (A.updateCol i fun j => ∑ x ∈ s, f j x).det
|
a0c8c2461d8700d4
|
Rat.fract_inv_num_lt_num_of_pos
|
Mathlib/Data/Rat/Floor.lean
|
theorem fract_inv_num_lt_num_of_pos {q : ℚ} (q_pos : 0 < q) : (fract q⁻¹).num < q.num
|
q : ℚ
q_pos : 0 < q
q_num_pos : 0 < q.num
q_num_abs_eq_q_num : ↑q.num.natAbs = q.num
q_inv : ℚ := ↑q.den / ↑q.num
q_inv_def : q_inv = ↑q.den / ↑q.num
q_inv_eq : q⁻¹ = q_inv
this✝ : q⁻¹.num < (⌊q⁻¹⌋ + 1) * ↑q⁻¹.den
this : q⁻¹.num < ⌊q⁻¹⌋ * ↑q⁻¹.den + ↑q⁻¹.den
⊢ q⁻¹.num - ⌊q⁻¹⌋ * ↑q⁻¹.den < ↑q⁻¹.den
|
rwa [← sub_lt_iff_lt_add'] at this
|
no goals
|
d2870a8c7e295972
|
List.Nodup.isCycleOn_formPerm
|
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
|
theorem Nodup.isCycleOn_formPerm (h : l.Nodup) :
l.formPerm.IsCycleOn { a | a ∈ l }
|
α : Type u_2
inst✝ : DecidableEq α
l : List α
h : l.Nodup
a : α
ha : idxOf a l < l.length
b : α
hb : idxOf b l < l.length
⊢ l.formPerm.SameCycle a b
|
rw [← List.getElem_idxOf ha, ← List.getElem_idxOf hb]
|
α : Type u_2
inst✝ : DecidableEq α
l : List α
h : l.Nodup
a : α
ha : idxOf a l < l.length
b : α
hb : idxOf b l < l.length
⊢ l.formPerm.SameCycle l[idxOf a l] l[idxOf b l]
|
d4fd1a414e146e95
|
Matrix.isAddUnit_detp_smul_mul_adjp
|
Mathlib/LinearAlgebra/Matrix/SemiringInverse.lean
|
theorem isAddUnit_detp_smul_mul_adjp (hAB : A * B = 1) :
IsAddUnit (detp 1 A • (B * adjp (-1) B) + detp (-1) A • (B * adjp 1 B))
|
case intro.intro.hr
n : Type u_1
R : Type u_3
inst✝² : Fintype n
inst✝¹ : DecidableEq n
inst✝ : CommSemiring R
A B : Matrix n n R
hAB : A * B = 1
s t : ℤˣ
i j k : n
hk : k ∈ univ
σ : Perm n
hσ : sign σ = t ∧ σ j = k
τ : Perm n
hτ : sign τ = s
h : ¬σ * τ = 1
l : n
hl1 : l ≠ (σ * τ) l
hl2 : l ∈ {τ⁻¹ j}ᶜ
h0 : ∀ (k : n), k ∈ {τ⁻¹ j}ᶜ ↔ τ k ∈ {j}ᶜ
⊢ IsAddUnit ((∏ i ∈ {τ⁻¹ j}ᶜ, A i (τ i)) * ∏ k ∈ {j}ᶜ, B k (σ k))
|
rw [← prod_equiv τ h0 fun _ _ ↦ rfl, ← prod_mul_distrib, ← mul_prod_erase _ _ hl2, ← smul_eq_mul]
|
case intro.intro.hr
n : Type u_1
R : Type u_3
inst✝² : Fintype n
inst✝¹ : DecidableEq n
inst✝ : CommSemiring R
A B : Matrix n n R
hAB : A * B = 1
s t : ℤˣ
i j k : n
hk : k ∈ univ
σ : Perm n
hσ : sign σ = t ∧ σ j = k
τ : Perm n
hτ : sign τ = s
h : ¬σ * τ = 1
l : n
hl1 : l ≠ (σ * τ) l
hl2 : l ∈ {τ⁻¹ j}ᶜ
h0 : ∀ (k : n), k ∈ {τ⁻¹ j}ᶜ ↔ τ k ∈ {j}ᶜ
⊢ IsAddUnit ((A l (τ l) * B (τ l) (σ (τ l))) • ∏ x ∈ {τ⁻¹ j}ᶜ.erase l, A x (τ x) * B (τ x) (σ (τ x)))
|
cfc0571f345e1ba6
|
subsingleton_of_disjoint_isClopen
|
Mathlib/Topology/Connected/Clopen.lean
|
/-- In a preconnected space, any disjoint family of non-empty clopen subsets has at most one
element. -/
lemma subsingleton_of_disjoint_isClopen
(h_clopen : ∀ i, IsClopen (s i)) :
Subsingleton ι
|
α : Type u
ι : Type u_1
inst✝¹ : TopologicalSpace α
inst✝ : PreconnectedSpace α
s : ι → Set α
h_disj : Pairwise (Disjoint on s)
h_clopen : ∀ (i : ι), IsClopen (s i)
h_nonempty : ∀ (i : ι), s i ≠ ∅
⊢ ¬Nontrivial ι
|
by_contra contra
|
α : Type u
ι : Type u_1
inst✝¹ : TopologicalSpace α
inst✝ : PreconnectedSpace α
s : ι → Set α
h_disj : Pairwise (Disjoint on s)
h_clopen : ∀ (i : ι), IsClopen (s i)
h_nonempty : ∀ (i : ι), s i ≠ ∅
contra : Nontrivial ι
⊢ False
|
6e05e6622254f214
|
Filter.HasBasis.exists_antitone_subbasis
|
Mathlib/Order/Filter/CountablyGenerated.lean
|
theorem HasBasis.exists_antitone_subbasis {f : Filter α} [h : f.IsCountablyGenerated]
{p : ι' → Prop} {s : ι' → Set α} (hs : f.HasBasis p s) :
∃ x : ℕ → ι', (∀ i, p (x i)) ∧ f.HasAntitoneBasis fun i => s (x i)
|
case intro
α : Type u_1
ι' : Sort u_5
f : Filter α
h : f.IsCountablyGenerated
p : ι' → Prop
s : ι' → Set α
hs : f.HasBasis p s
x' : ℕ → Set α
hx' : f = ⨅ i, 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } := fun n => Nat.recOn n (hs.index (x' 0) ⋯) fun n xn => hs.index (x' (n + 1) ∩ s ↑xn) ⋯
x_anti : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ f.HasAntitoneBasis fun i => s (x i)
|
refine ⟨fun i => (x i).1, fun i => (x i).2, ?_⟩
|
case intro
α : Type u_1
ι' : Sort u_5
f : Filter α
h : f.IsCountablyGenerated
p : ι' → Prop
s : ι' → Set α
hs : f.HasBasis p s
x' : ℕ → Set α
hx' : f = ⨅ i, 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } := fun n => Nat.recOn n (hs.index (x' 0) ⋯) fun n xn => hs.index (x' (n + 1) ∩ s ↑xn) ⋯
x_anti : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
⊢ f.HasAntitoneBasis fun i => s ((fun i => ↑(x i)) i)
|
25d2caa8c01b800f
|
Finset.sup_div₀
|
Mathlib/Algebra/Order/GroupWithZero/Finset.lean
|
lemma sup_div₀ [LinearOrderedCommGroupWithZero G₀] [OrderBot G₀] {a : G₀} (ha : 0 < a)
(s : Finset ι) (f : ι → G₀) : s.sup f / a = s.sup fun i ↦ f i / a
|
case inr
ι : Type u_1
G₀ : Type u_3
inst✝¹ : LinearOrderedCommGroupWithZero G₀
inst✝ : OrderBot G₀
a : G₀
ha : 0 < a
s : Finset ι
f : ι → G₀
hs : s.Nonempty
⊢ s.sup f / a = s.sup fun i => f i / a
|
rw [← Finset.sup'_eq_sup hs, ← Finset.sup'_eq_sup hs, sup'_div₀ (ha := ha)]
|
no goals
|
f14336314318b796
|
MvQPF.liftP_iff
|
Mathlib/Data/QPF/Multivariate/Basic.lean
|
theorem liftP_iff {α : TypeVec n} (p : ∀ ⦃i⦄, α i → Prop) (x : F α) :
LiftP p x ↔ ∃ a f, x = abs ⟨a, f⟩ ∧ ∀ i j, p (f i j)
|
case mp.intro.mk
n : ℕ
F : TypeVec.{u} n → Type u_1
q : MvQPF F
α : TypeVec.{u} n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : (P F).B a ⟹ fun i => Subtype p
h : repr y = ⟨a, f⟩
⊢ ∃ a f, x = abs ⟨a, f⟩ ∧ ∀ (i : Fin2 n) (j : (P F).B a i), p (f i j)
|
use a, fun i j => (f i j).val
|
case h
n : ℕ
F : TypeVec.{u} n → Type u_1
q : MvQPF F
α : TypeVec.{u} n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : (P F).B a ⟹ fun i => Subtype p
h : repr y = ⟨a, f⟩
⊢ x = abs ⟨a, fun i j => ↑(f i j)⟩ ∧ ∀ (i : Fin2 n) (j : (P F).B a i), p ((fun i j => ↑(f i j)) i j)
|
63f9b99313f568d9
|
finrank_top
|
Mathlib/LinearAlgebra/Dimension/Finrank.lean
|
theorem finrank_top : finrank R (⊤ : Submodule R M) = finrank R M
|
R : Type u
M : Type v
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ toNat (Module.rank R ↥⊤) = toNat (Module.rank R M)
|
simp [rank_top]
|
no goals
|
26d886d5066f9570
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.restoreAssignments_performRupCheck
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
|
theorem restoreAssignments_performRupCheck {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n)
(rupHints : Array Nat) :
restoreAssignments (performRupCheck f rupHints).1.assignments (performRupCheck f rupHints).2.1
=
f.assignments
|
case intro.h₂.inl.intro
n : Nat
f : DefaultFormula n
f_assignments_size : f.assignments.size = n
rupHints : Array Nat
f' : DefaultFormula n := (f.performRupCheck rupHints).fst
f'_def : f' = (f.performRupCheck rupHints).fst
f'_assignments_size : f'.assignments.size = n
derivedLits : CNF.Clause (PosFin n)
derivedLits_satisfies_invariant :
f.DerivedLitsInvariant f_assignments_size (f.performRupCheck rupHints).fst.assignments f'_assignments_size derivedLits
derivedLits_arr : Array (Literal (PosFin n)) := { toList := derivedLits }
derivedLits_arr_def : derivedLits_arr = { toList := derivedLits }
derivedLits_arr_nodup : ∀ (i j : Fin derivedLits_arr.size), i ≠ j → derivedLits_arr[i] ≠ derivedLits_arr[j]
motive : Nat → Array Assignment → Prop := f.ClearInsertInductionMotive f_assignments_size derivedLits_arr
h_base : f.ClearInsertInductionMotive f_assignments_size derivedLits_arr 0 f'.assignments
h_inductive :
∀ (idx : Fin derivedLits_arr.size) (assignments : Array Assignment),
motive (↑idx) assignments →
f.ClearInsertInductionMotive f_assignments_size derivedLits_arr (↑idx + 1)
(clearUnit assignments derivedLits_arr[idx])
h_size : (Array.foldl clearUnit f'.assignments derivedLits_arr).size = n
i : Nat
hi1 : i < (Array.foldl clearUnit f'.assignments { toList := derivedLits }).size
hi2✝ : i < f.assignments.size
hi2 : i < n
h1 : (Array.foldl clearUnit f'.assignments derivedLits_arr)[↑⟨i, hi2⟩] = f.assignments[↑⟨i, hi2⟩]
right✝ : ∀ (j : Fin derivedLits_arr.size), ↑j ≥ derivedLits_arr.size → derivedLits_arr[j].fst.val ≠ ↑⟨i, hi2⟩
⊢ (Array.foldl clearUnit f'.assignments { toList := derivedLits })[i] = f.assignments[i]
|
simp only [← derivedLits_arr_def]
|
case intro.h₂.inl.intro
n : Nat
f : DefaultFormula n
f_assignments_size : f.assignments.size = n
rupHints : Array Nat
f' : DefaultFormula n := (f.performRupCheck rupHints).fst
f'_def : f' = (f.performRupCheck rupHints).fst
f'_assignments_size : f'.assignments.size = n
derivedLits : CNF.Clause (PosFin n)
derivedLits_satisfies_invariant :
f.DerivedLitsInvariant f_assignments_size (f.performRupCheck rupHints).fst.assignments f'_assignments_size derivedLits
derivedLits_arr : Array (Literal (PosFin n)) := { toList := derivedLits }
derivedLits_arr_def : derivedLits_arr = { toList := derivedLits }
derivedLits_arr_nodup : ∀ (i j : Fin derivedLits_arr.size), i ≠ j → derivedLits_arr[i] ≠ derivedLits_arr[j]
motive : Nat → Array Assignment → Prop := f.ClearInsertInductionMotive f_assignments_size derivedLits_arr
h_base : f.ClearInsertInductionMotive f_assignments_size derivedLits_arr 0 f'.assignments
h_inductive :
∀ (idx : Fin derivedLits_arr.size) (assignments : Array Assignment),
motive (↑idx) assignments →
f.ClearInsertInductionMotive f_assignments_size derivedLits_arr (↑idx + 1)
(clearUnit assignments derivedLits_arr[idx])
h_size : (Array.foldl clearUnit f'.assignments derivedLits_arr).size = n
i : Nat
hi1 : i < (Array.foldl clearUnit f'.assignments { toList := derivedLits }).size
hi2✝ : i < f.assignments.size
hi2 : i < n
h1 : (Array.foldl clearUnit f'.assignments derivedLits_arr)[↑⟨i, hi2⟩] = f.assignments[↑⟨i, hi2⟩]
right✝ : ∀ (j : Fin derivedLits_arr.size), ↑j ≥ derivedLits_arr.size → derivedLits_arr[j].fst.val ≠ ↑⟨i, hi2⟩
⊢ (Array.foldl clearUnit f'.assignments derivedLits_arr)[i] = f.assignments[i]
|
39cd436ee84b1d45
|
one_lt_mabs
|
Mathlib/Algebra/Order/Group/Unbundled/Abs.lean
|
@[to_additive (attr := simp) abs_pos] lemma one_lt_mabs : 1 < |a|ₘ ↔ a ≠ 1
|
case inr.inr
α : Type u_1
inst✝² : Group α
inst✝¹ : LinearOrder α
inst✝ : MulLeftMono α
a : α
ha : 1 < a
⊢ 1 < mabs a ↔ a ≠ 1
|
simp [mabs_of_one_lt ha, ha, ha.ne']
|
no goals
|
246ff238fd37060c
|
IsPredArchimedean.pred_findAtom
|
Mathlib/Order/SuccPred/Tree.lean
|
@[simp]
lemma pred_findAtom (r : α) : Order.pred (findAtom r) = ⊥
|
α : Type u_1
inst✝⁴ : PartialOrder α
inst✝³ : PredOrder α
inst✝² : IsPredArchimedean α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
r : α
⊢ Order.pred (Order.pred^[Nat.find ⋯ - 1] r) = ⊥
|
generalize h : Nat.find (bot_le (a := r)).exists_pred_iterate = n
|
α : Type u_1
inst✝⁴ : PartialOrder α
inst✝³ : PredOrder α
inst✝² : IsPredArchimedean α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
r : α
n : ℕ
h : Nat.find ⋯ = n
⊢ Order.pred (Order.pred^[n - 1] r) = ⊥
|
292f95ee3094926c
|
PythagoreanTriple.even_odd_of_coprime
|
Mathlib/NumberTheory/PythagoreanTriples.lean
|
theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
x % 2 = 0 ∧ y % 2 = 1 ∨ x % 2 = 1 ∧ y % 2 = 0
|
case inr.inr.intro.intro.intro
z x0 y0 : ℤ
hx : (x0 * 2 + 1) % 2 = 1
hy : (y0 * 2 + 1) % 2 = 1
h : PythagoreanTriple (x0 * 2 + 1) (y0 * 2 + 1) z
hc : (x0 * 2 + 1).gcd (y0 * 2 + 1) = 1
⊢ 2 % 4 % 4 = 2
|
decide
|
no goals
|
48f64ea05953c676
|
Finsupp.antidiagonal_single
|
Mathlib/Data/Finsupp/Antidiagonal.lean
|
theorem antidiagonal_single (a : α) (n : ℕ) :
antidiagonal (single a n) = (antidiagonal n).map
(Function.Embedding.prodMap ⟨_, single_injective a⟩ ⟨_, single_injective a⟩)
|
case h.mk
α : Type u
inst✝ : DecidableEq α
a : α
n : ℕ
x y : α →₀ ℕ
⊢ x + y = single a n ↔ ∃ a_1 b, a_1 + b = n ∧ single a a_1 = x ∧ single a b = y
|
constructor
|
case h.mk.mp
α : Type u
inst✝ : DecidableEq α
a : α
n : ℕ
x y : α →₀ ℕ
⊢ x + y = single a n → ∃ a_2 b, a_2 + b = n ∧ single a a_2 = x ∧ single a b = y
case h.mk.mpr
α : Type u
inst✝ : DecidableEq α
a : α
n : ℕ
x y : α →₀ ℕ
⊢ (∃ a_1 b, a_1 + b = n ∧ single a a_1 = x ∧ single a b = y) → x + y = single a n
|
7873ab140ae48427
|
RingHom.finitePresentation_isStableUnderBaseChange
|
Mathlib/RingTheory/RingHom/FinitePresentation.lean
|
theorem finitePresentation_isStableUnderBaseChange :
IsStableUnderBaseChange @FinitePresentation
|
case h₂
⊢ ∀ ⦃R S T : Type u_1⦄ [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] [inst_3 : Algebra R S]
[inst_4 : Algebra R T],
(algebraMap R T).FinitePresentation → Algebra.TensorProduct.includeLeftRingHom.FinitePresentation
|
introv h
|
case h₂
R S T : Type u_1
inst✝⁴ : CommRing R
inst✝³ : CommRing S
inst✝² : CommRing T
inst✝¹ : Algebra R S
inst✝ : Algebra R T
h : (algebraMap R T).FinitePresentation
⊢ Algebra.TensorProduct.includeLeftRingHom.FinitePresentation
|
ecddf4004478cb5e
|
SimpleGraph.Subgraph.Connected.adj_union
|
Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean
|
lemma Connected.adj_union {H K : G.Subgraph}
(Hconn : H.Connected) (Kconn : K.Connected) {u v : V} (uH : u ∈ H.verts) (vK : v ∈ K.verts)
(huv : G.Adj u v) :
((⊤ : G.Subgraph).induce {u, v} ⊔ H ⊔ K).Connected
|
case refine_1
V : Type u
G : SimpleGraph V
H K : G.Subgraph
Hconn : H.Connected
Kconn : K.Connected
u v : V
uH : u ∈ H.verts
vK : v ∈ K.verts
huv : G.Adj u v
⊢ (⊤.induce {u, v} ⊓ H).verts.Nonempty
|
exact ⟨u, by simp [uH]⟩
|
no goals
|
92d126dba17e5301
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.sat_of_insertRat
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
|
theorem sat_of_insertRat {n : Nat} (f : DefaultFormula n)
(hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (c : DefaultClause n) (p : PosFin n → Bool)
(pf : p ⊨ f) :
(insertRatUnits f (negate c)).2 = true → p ⊨ c
|
case intro.inr.inl.intro.intro.intro.intro.intro.intro.intro.inr.intro.intro.h
n : Nat
f : DefaultFormula n
hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant
c : DefaultClause n
p : PosFin n → Bool
pf : p ⊨ f
insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true
i : PosFin n
hboth : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[i.val] = both
i_in_bounds : i.val < f.assignments.size
h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯
insertUnit_fold_satisfies_invariant :
let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate;
let_fun update_res_size := ⋯;
InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size
j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size
b : Bool
i_gt_zero : ↑⟨i.val, ⋯⟩ > 0
h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b)
h2 : both = addAssignment b f.assignments[↑⟨i.val, ⋯⟩]
h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true
h4 :
∀ (k : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size),
k ≠ j → (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩
ib_in_insertUnit_fold : (i, b) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.toList
i' : PosFin n
i_true_in_c : (i', true) ∈ c.clause
i'_eq_i : i' = i
b_eq_false : false = b
⊢ (i, true) ∈ Clause.toList c ∧ p i = true
|
rw [i'_eq_i] at i_true_in_c
|
case intro.inr.inl.intro.intro.intro.intro.intro.intro.intro.inr.intro.intro.h
n : Nat
f : DefaultFormula n
hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant
c : DefaultClause n
p : PosFin n → Bool
pf : p ⊨ f
insertUnit_fold_success : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).2.snd = true
i : PosFin n
hboth : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).snd.fst[i.val] = both
i_in_bounds : i.val < f.assignments.size
h0 : InsertUnitInvariant f.assignments ⋯ f.ratUnits f.assignments ⋯
insertUnit_fold_satisfies_invariant :
let update_res := List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate;
let_fun update_res_size := ⋯;
InsertUnitInvariant f.assignments ⋯ update_res.fst update_res.snd.fst update_res_size
j : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size
b : Bool
i_gt_zero : ↑⟨i.val, ⋯⟩ > 0
h1 : (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[j] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, b)
h2 : both = addAssignment b f.assignments[↑⟨i.val, ⋯⟩]
h3 : ¬hasAssignment b f.assignments[↑⟨i.val, ⋯⟩] = true
h4 :
∀ (k : Fin (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.size),
k ≠ j → (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst[k].fst.val ≠ ↑⟨i.val, ⋯⟩
ib_in_insertUnit_fold : (i, b) ∈ (List.foldl insertUnit (f.ratUnits, f.assignments, false) c.negate).fst.toList
i' : PosFin n
i_true_in_c : (i, true) ∈ c.clause
i'_eq_i : i' = i
b_eq_false : false = b
⊢ (i, true) ∈ Clause.toList c ∧ p i = true
|
c0b439908684a182
|
IsUltrametricDist.ball_eq_of_mem
|
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
|
lemma ball_eq_of_mem {x y : X} {r : ℝ} (h : y ∈ ball x r) : ball x r = ball y r
|
case h
X : Type u_1
inst✝¹ : PseudoMetricSpace X
inst✝ : IsUltrametricDist X
x y : X
r : ℝ
h : y ∈ ball x r
a : X
⊢ a ∈ ball x r ↔ a ∈ ball y r
|
simp_rw [mem_ball] at h ⊢
|
case h
X : Type u_1
inst✝¹ : PseudoMetricSpace X
inst✝ : IsUltrametricDist X
x y : X
r : ℝ
a : X
h : dist y x < r
⊢ dist a x < r ↔ dist a y < r
|
e1447400c896ac2c
|
AffineSubspace.setOf_sOppSide_eq_image2
|
Mathlib/Analysis/Convex/Side.lean
|
theorem setOf_sOppSide_eq_image2 {s : AffineSubspace R P} {x p : P} (hx : x ∉ s) (hp : p ∈ s) :
{ y | s.SOppSide x y } = Set.image2 (fun (t : R) q => t • (x -ᵥ p) +ᵥ q) (Set.Iio 0) s
|
case h.mp.intro.intro.intro.intro.inr.inr.intro.intro.intro.intro
R : Type u_1
V : Type u_2
P : Type u_4
inst✝³ : LinearOrderedField R
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
s : AffineSubspace R P
x p : P
hx : x ∉ s
hp : p ∈ s
y : P
hy : y ∉ s
p₂ : P
hp₂ : p₂ ∈ s
r₁ r₂ : R
hr₁ : 0 < r₁
hr₂ : 0 < r₂
h : r₁ • (x -ᵥ p) = r₂ • (p₂ -ᵥ y)
⊢ (-r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y
|
rw [div_eq_inv_mul, ← smul_smul, neg_smul, h, smul_neg, smul_smul,
inv_mul_cancel₀ hr₂.ne.symm, one_smul, neg_vsub_eq_vsub_rev, vsub_vadd]
|
no goals
|
839d674f40d68f94
|
Complex.tendsto_tsum_powerSeries_nhdsWithin_stolzSet
|
Mathlib/Analysis/Complex/AbelLimit.lean
|
theorem tendsto_tsum_powerSeries_nhdsWithin_stolzSet
(h : Tendsto (fun n ↦ ∑ i ∈ range n, f i) atTop (𝓝 l)) {M : ℝ} :
Tendsto (fun z ↦ ∑' n, f n * z ^ n) (𝓝[stolzSet M] 1) (𝓝 l)
|
f : ℕ → ℂ
l : ℂ
h : Tendsto (fun n => ∑ i ∈ range n, f i) atTop (𝓝 l)
M : ℝ
hM : 1 < M
s : ℕ → ℂ := fun n => ∑ i ∈ range n, f i
g : ℂ → ℂ := fun z => ∑' (n : ℕ), f n * z ^ n
ε : ℝ
εpos : ε > 0
B₁ : ℕ
hB₁ : ∀ n ≥ B₁, ‖∑ i ∈ range n, f i - l‖ < ε / 4 / M
F : ℝ := ∑ i ∈ range B₁, ‖l - s (i + 1)‖
z : ℂ
zn : ‖z‖ < 1
zm : ‖1 - z‖ < M * (1 - ‖z‖)
zd : ‖z - 1‖ < ε / 4 / (F + 1)
B₂ : ℕ
hB₂ : ‖l - ∑' (n : ℕ), f n * z ^ n - (1 - z) * ∑ i ∈ range (B₁ ⊔ B₂), (l - ∑ j ∈ range (i + 1), f j) * z ^ i‖ < ε / 2
this : ‖(1 - z) * ∑ i ∈ range (B₁ ⊔ B₂), (l - s (i + 1)) * z ^ i‖ < ε / 2
⊢ ‖∑' (n : ℕ), f n * z ^ n - l‖ < ε
|
calc
_ = ‖l - g z‖ := by rw [norm_sub_rev]
_ = ‖l - g z - (1 - z) * ∑ i ∈ range (max B₁ B₂), (l - s (i + 1)) * z ^ i +
(1 - z) * ∑ i ∈ range (max B₁ B₂), (l - s (i + 1)) * z ^ i‖ := by rw [sub_add_cancel _]
_ ≤ ‖l - g z - (1 - z) * ∑ i ∈ range (max B₁ B₂), (l - s (i + 1)) * z ^ i‖ +
‖(1 - z) * ∑ i ∈ range (max B₁ B₂), (l - s (i + 1)) * z ^ i‖ := norm_add_le _ _
_ < ε / 2 + ε / 2 := add_lt_add hB₂ this
_ = _ := add_halves ε
|
no goals
|
e1f8d437480849f9
|
mul_div_assoc
|
Mathlib/Algebra/Group/Defs.lean
|
theorem mul_div_assoc (a b c : G) : a * b / c = a * (b / c)
|
G : Type u_1
inst✝ : DivInvMonoid G
a b c : G
⊢ a * b / c = a * (b / c)
|
rw [div_eq_mul_inv, div_eq_mul_inv, mul_assoc _ _ _]
|
no goals
|
a1c0e0e7ec74d8be
|
IncidenceAlgebra.mu_prod_mu
|
Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
|
/-- The Möbius function on a product order. Based on lemma 2.1.13 of Incidence Algebras by Spiegel
and O'Donnell. -/
@[simp]
lemma mu_prod_mu : (mu 𝕜).prod (mu 𝕜) = (mu 𝕜 : IncidenceAlgebra 𝕜 (α × β))
|
𝕜 : Type u_2
α : Type u_5
β : Type u_6
inst✝⁸ : Ring 𝕜
inst✝⁷ : PartialOrder α
inst✝⁶ : PartialOrder β
inst✝⁵ : LocallyFiniteOrder α
inst✝⁴ : LocallyFiniteOrder β
inst✝³ : DecidableEq α
inst✝² : DecidableEq β
inst✝¹ : DecidableRel fun x1 x2 => x1 ≤ x2
inst✝ : DecidableRel fun x1 x2 => x1 ≤ x2
x✝⁵ x✝⁴ x✝³ : α
x✝² x✝¹ x✝ : β
⊢ (mu 𝕜) x✝² x✝¹ * (zeta 𝕜) x✝⁴ x✝³ = (zeta 𝕜) x✝⁴ x✝³ * (mu 𝕜) x✝² x✝¹
|
simp
|
no goals
|
75516926b8530a97
|
unitInterval.eq_one_or_eq_zero_of_le_mul
|
Mathlib/Topology/UnitInterval.lean
|
lemma eq_one_or_eq_zero_of_le_mul {i j : I} (h : i ≤ j * i) : i = 0 ∨ j = 1
|
i j : ↑I
h : 0 < ↑i ∧ ↑j < 1
⊢ ↑j * ↑i < ↑i
|
simpa using mul_lt_mul_of_pos_right h.right h.left
|
no goals
|
93bd4eed0e6ac1e2
|
DistLat.inv_hom_apply
|
Mathlib/Order/Category/DistLat.lean
|
lemma inv_hom_apply {X Y : DistLat} (e : X ≅ Y) (x : X) : e.inv (e.hom x) = x
|
X Y : DistLat
e : X ≅ Y
x : ↑X
⊢ (ConcreteCategory.hom e.inv) ((ConcreteCategory.hom e.hom) x) = x
|
simp
|
no goals
|
ccb6d78e0847694f
|
Filter.IsCobounded.frequently_ge
|
Mathlib/Order/LiminfLimsup.lean
|
/-- For nontrivial filters in linear orders, coboundedness for `≤` implies frequent boundedness
from below. -/
lemma IsCobounded.frequently_ge [LinearOrder α] [NeBot f] (cobdd : IsCobounded (· ≤ ·) f) :
∃ l, ∃ᶠ x in f, l ≤ x
|
case intro.inl
α : Type u_1
f : Filter α
inst✝¹ : LinearOrder α
inst✝ : f.NeBot
t : α
ht : ∀ (a : α), (∀ᶠ (x : α) in f, (fun x1 x2 => x1 ≤ x2) x a) → (fun x1 x2 => x1 ≤ x2) t a
tbot : IsBot t
⊢ ∃ l, ∃ᶠ (x : α) in f, l ≤ x
|
exact ⟨t, .of_forall fun r ↦ tbot r⟩
|
no goals
|
ecc5bf07ddfe8868
|
MvPolynomial.support_esymm''
|
Mathlib/RingTheory/MvPolynomial/Symmetric/Defs.lean
|
theorem support_esymm'' [DecidableEq σ] [Nontrivial R] (n : ℕ) :
(esymm σ R n).support =
(powersetCard n (univ : Finset σ)).biUnion fun t =>
(Finsupp.single (∑ i ∈ t, Finsupp.single i 1) (1 : R)).support
|
σ : Type u_5
R : Type u_6
inst✝³ : CommSemiring R
inst✝² : Fintype σ
inst✝¹ : DecidableEq σ
inst✝ : Nontrivial R
n : ℕ
s t : Finset σ
hst : s ≠ t
h : ∑ i ∈ t, Finsupp.single i 1 = ∑ i ∈ s, Finsupp.single i 1
this : (t.biUnion fun i => (Finsupp.single i 1).support) = s.biUnion fun i => (Finsupp.single i 1).support
hsingle : ∀ (s : Finset σ), ∀ x ∈ s, (Finsupp.single x 1).support = {x}
hs : (s.biUnion fun a => (Finsupp.single a 1).support) = s.biUnion singleton
⊢ False
|
have ht := biUnion_congr (of_eq_true (eq_self t)) (hsingle t)
|
σ : Type u_5
R : Type u_6
inst✝³ : CommSemiring R
inst✝² : Fintype σ
inst✝¹ : DecidableEq σ
inst✝ : Nontrivial R
n : ℕ
s t : Finset σ
hst : s ≠ t
h : ∑ i ∈ t, Finsupp.single i 1 = ∑ i ∈ s, Finsupp.single i 1
this : (t.biUnion fun i => (Finsupp.single i 1).support) = s.biUnion fun i => (Finsupp.single i 1).support
hsingle : ∀ (s : Finset σ), ∀ x ∈ s, (Finsupp.single x 1).support = {x}
hs : (s.biUnion fun a => (Finsupp.single a 1).support) = s.biUnion singleton
ht : (t.biUnion fun a => (Finsupp.single a 1).support) = t.biUnion singleton
⊢ False
|
91d19fd65d77a5f5
|
BitVec.not_neg
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
|
theorem not_neg (x : BitVec w) : ~~~(-x) = x + -1#w
|
case neg
w : Nat
x : BitVec (w + 1)
hx : ¬x.toNat = 0
⊢ (2 ^ (w + 1) - x.toNat) % 2 ^ (w + 1) = 2 ^ (w + 1) - 1 - (x.toNat + (2 ^ (w + 1) - 1 % 2 ^ (w + 1))) % 2 ^ (w + 1)
|
rw [show (_ - 1 % _) = _ by rw [Nat.mod_eq_of_lt (by omega)],
show _ + (_ - 1) = (x.toNat - 1) + 2^(w + 1) by omega,
Nat.add_mod_right,
show (x.toNat - 1) % _ = _ by rw [Nat.mod_eq_of_lt (by omega)],
show (_ - x.toNat) % _ = _ by rw [Nat.mod_eq_of_lt (by omega)]]
|
case neg
w : Nat
x : BitVec (w + 1)
hx : ¬x.toNat = 0
⊢ 2 ^ (w + 1) - x.toNat = 2 ^ (w + 1) - 1 - (x.toNat - 1)
|
d3765816d380f089
|
PerfectClosure.mk_eq_iff
|
Mathlib/FieldTheory/PerfectClosure.lean
|
theorem mk_eq_iff (x y : ℕ × K) :
mk K p x = mk K p y ↔ ∃ z, (frobenius K p)^[y.1 + z] x.2 = (frobenius K p)^[x.1 + z] y.2
|
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
⊢ mk K p x = mk K p y → ∃ z, (⇑(frobenius K p))^[y.1 + z] x.2 = (⇑(frobenius K p))^[x.1 + z] y.2
|
intro H
|
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
H : mk K p x = mk K p y
⊢ ∃ z, (⇑(frobenius K p))^[y.1 + z] x.2 = (⇑(frobenius K p))^[x.1 + z] y.2
|
50fcb88ed45b5508
|
alternatingGroup.nontrivial_of_three_le_card
|
Mathlib/GroupTheory/SpecificGroups/Alternating.lean
|
theorem nontrivial_of_three_le_card (h3 : 3 ≤ card α) : Nontrivial (alternatingGroup α)
|
α : Type u_1
inst✝¹ : Fintype α
inst✝ : DecidableEq α
h3 : 3 ≤ card α
⊢ 1 < 2
|
decide
|
no goals
|
ab07403d8f3d56b2
|
Language.map_kstar
|
Mathlib/Computability/Language.lean
|
theorem map_kstar (f : α → β) (l : Language α) : map f l∗ = (map f l)∗
|
α : Type u_1
β : Type u_2
f : α → β
l : Language α
⊢ (map f) (⨆ i, l ^ i) = ⨆ i, (map f) l ^ i
|
simp_rw [← map_pow]
|
α : Type u_1
β : Type u_2
f : α → β
l : Language α
⊢ (map f) (⨆ i, l ^ i) = ⨆ i, (map f) (l ^ i)
|
03c14b98312e4bfa
|
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
|
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) :
∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
|
case append.h2
w idx l✝ r✝ : Nat
lhs : BVExpr l✝
rhs : BVExpr r✝
lih :
∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size),
(go aig lhs).val.aig.decls[idx] = aig.decls[idx]
rih :
∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size),
(go aig rhs).val.aig.decls[idx] = aig.decls[idx]
aig : AIG BVBit
h1 : idx < aig.decls.size
h2 : idx < (go aig (lhs.append rhs)).val.aig.decls.size
this✝¹ this✝ : aig.decls.size ≤ (go aig lhs).val.aig.decls.size
this : (go aig lhs).val.aig.decls.size ≤ (go (go aig lhs).val.aig rhs).val.aig.decls.size
⊢ aig.decls.size ≤ (go (go aig lhs).1.aig rhs).val.aig.decls.size
|
apply Nat.le_trans <;> assumption
|
no goals
|
f92988d5a1595b39
|
CochainComplex.HomComplex.Cochain.comp_assoc
|
Mathlib/Algebra/Homology/HomotopyCategory/HomComplex.lean
|
/-- The associativity of the composition of cochains. -/
lemma comp_assoc {n₁ n₂ n₃ n₁₂ n₂₃ n₁₂₃ : ℤ}
(z₁ : Cochain F G n₁) (z₂ : Cochain G K n₂) (z₃ : Cochain K L n₃)
(h₁₂ : n₁ + n₂ = n₁₂) (h₂₃ : n₂ + n₃ = n₂₃) (h₁₂₃ : n₁ + n₂ + n₃ = n₁₂₃) :
(z₁.comp z₂ h₁₂).comp z₃ (show n₁₂ + n₃ = n₁₂₃ by rw [← h₁₂, h₁₂₃]) =
z₁.comp (z₂.comp z₃ h₂₃) (by rw [← h₂₃, ← h₁₂₃, add_assoc])
|
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : Preadditive C
F G K L : CochainComplex C ℤ
n₁ n₂ n₃ : ℤ
z₁ : Cochain F G n₁
z₂ : Cochain G K n₂
z₃ : Cochain K L n₃
p q : ℤ
hpq : p + (n₁ + n₂ + n₃) = q
⊢ ((z₁.comp z₂ ⋯).comp z₃ ⋯).v p q hpq = (z₁.comp (z₂.comp z₃ ⋯) ⋯).v p q hpq
|
rw [comp_v _ _ rfl p (p + n₁ + n₂) q (add_assoc _ _ _).symm (by omega),
comp_v z₁ z₂ rfl p (p + n₁) (p + n₁ + n₂) (by omega) (by omega),
comp_v z₁ (z₂.comp z₃ rfl) (add_assoc n₁ n₂ n₃).symm p (p + n₁) q (by omega) (by omega),
comp_v z₂ z₃ rfl (p + n₁) (p + n₁ + n₂) q (by omega) (by omega), assoc]
|
no goals
|
57cd4e02b56f42c2
|
Finsupp.linearCombination_onFinset
|
Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean
|
theorem linearCombination_onFinset {s : Finset α} {f : α → R} (g : α → M)
(hf : ∀ a, f a ≠ 0 → a ∈ s) :
linearCombination R g (Finsupp.onFinset s f hf) = Finset.sum s fun x : α => f x • g x
|
α : Type u_1
M : Type u_2
R : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
x : α
a✝ : x ∈ s
h : f x • g x ≠ 0
⊢ f x ≠ 0
|
contrapose! h
|
α : Type u_1
M : Type u_2
R : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
s : Finset α
f : α → R
g : α → M
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
x : α
a✝ : x ∈ s
h : f x = 0
⊢ f x • g x = 0
|
072dad5e571c8914
|
CategoryTheory.isCoseparating_iff_mono
|
Mathlib/CategoryTheory/Generator/Basic.lean
|
theorem isCoseparating_iff_mono (𝒢 : Set C)
[∀ A : C, HasProduct fun f : ΣG : 𝒢, A ⟶ (G : C) => (f.1 : C)] :
IsCoseparating 𝒢 ↔ ∀ A : C, Mono (Pi.lift (@Sigma.snd 𝒢 fun G => A ⟶ (G : C)))
|
case refine_2
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
𝒢 : Set C
inst✝ : ∀ (A : C), HasProduct fun f => ↑f.fst
h : ∀ (A : C), Mono (Pi.lift Sigma.snd)
X Y : C
f g : X ⟶ Y
hh : ∀ G ∈ 𝒢, ∀ (h : Y ⟶ G), f ≫ h = g ≫ h
⊢ f = g
|
haveI := h Y
|
case refine_2
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
𝒢 : Set C
inst✝ : ∀ (A : C), HasProduct fun f => ↑f.fst
h : ∀ (A : C), Mono (Pi.lift Sigma.snd)
X Y : C
f g : X ⟶ Y
hh : ∀ G ∈ 𝒢, ∀ (h : Y ⟶ G), f ≫ h = g ≫ h
this : Mono (Pi.lift Sigma.snd)
⊢ f = g
|
ae856e477809f8db
|
Std.Tactic.BVDecide.BVExpr.bitblast.denote_blastUdiv
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Udiv.lean
|
theorem denote_blastUdiv (aig : AIG α) (lhs rhs : BitVec w) (assign : α → Bool)
(input : BinaryRefVec aig w)
(hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.lhs.get idx hidx, assign⟧ = lhs.getLsbD idx)
(hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, input.rhs.get idx hidx, assign⟧ = rhs.getLsbD idx) :
∀ (idx : Nat) (hidx : idx < w),
⟦(blastUdiv aig input).aig, (blastUdiv aig input).vec.get idx hidx, assign⟧
=
(lhs / rhs).getLsbD idx
|
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
lhs rhs : BitVec w
assign : α → Bool
input : aig.BinaryRefVec w
hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx
hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx
idx : Nat
hidx : idx < w
hdiscr✝ :
¬⟦assign,
{
aig :=
(blastUdiv.go
(BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig
{ lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs,
rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig
w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ }
{ gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ }
((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0
((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)
((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig,
ref :=
{
gate :=
(BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig
{ lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs,
rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate,
hgate := ⋯ } }⟧ =
true
hdiscr : ¬(rhs == 0#w) = true
⊢ 0#w < rhs
|
rw [Normalize.BitVec.zero_lt_iff_zero_neq]
|
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
lhs rhs : BitVec w
assign : α → Bool
input : aig.BinaryRefVec w
hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.lhs.get idx hidx }⟧ = lhs.getLsbD idx
hright : ∀ (idx : Nat) (hidx : idx < w), ⟦assign, { aig := aig, ref := input.rhs.get idx hidx }⟧ = rhs.getLsbD idx
idx : Nat
hidx : idx < w
hdiscr✝ :
¬⟦assign,
{
aig :=
(blastUdiv.go
(BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig
{ lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs,
rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).aig
w { gate := ((blastConst aig 0#w).aig.mkConstCached false).ref.gate, hgate := ⋯ }
{ gate := (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).ref.gate, hgate := ⋯ }
((((input.cast ⋯).cast ⋯).cast ⋯).lhs.cast ⋯) ((((input.cast ⋯).cast ⋯).cast ⋯).rhs.cast ⋯) w 0
((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)
((((blastConst aig 0#w).vec.cast ⋯).cast ⋯).cast ⋯)).aig,
ref :=
{
gate :=
(BVPred.mkEq (((blastConst aig 0#w).aig.mkConstCached false).aig.mkConstCached true).aig
{ lhs := (((input.cast ⋯).cast ⋯).cast ⋯).rhs,
rhs := ((blastConst aig 0#w).vec.cast ⋯).cast ⋯ }).ref.gate,
hgate := ⋯ } }⟧ =
true
hdiscr : ¬(rhs == 0#w) = true
⊢ rhs ≠ 0#w
|
1e06923b53c4a62f
|
WithBot.succ_mono
|
Mathlib/Order/SuccPred/WithBot.lean
|
lemma succ_mono : Monotone (succ : WithBot α → α)
| ⊥, _, _ => by simp
| (a : α), ⊥, hab => by simp at hab
| (a : α), (b : α), hab => Order.succ_le_succ (by simpa using hab)
|
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
x✝¹ : WithBot α
x✝ : ⊥ ≤ x✝¹
⊢ ⊥.succ ≤ x✝¹.succ
|
simp
|
no goals
|
ef72efd54259d7ea
|
MeasureTheory.Measure.addHaar_image_homothety
|
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
|
theorem addHaar_image_homothety (x : E) (r : ℝ) (s : Set E) :
μ (AffineMap.homothety x r '' s) = ENNReal.ofReal (abs (r ^ finrank ℝ E)) * μ s :=
calc
μ (AffineMap.homothety x r '' s) = μ ((fun y => y + x) '' (r • (fun y => y + -x) '' s))
|
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : FiniteDimensional ℝ E
μ : Measure E
inst✝ : μ.IsAddHaarMeasure
x : E
r : ℝ
s : Set E
⊢ μ (⇑(AffineMap.homothety x r) '' s) = μ ((fun x_1 => r • (x_1 - x) + x) '' s)
|
rfl
|
no goals
|
b87771ad3884117d
|
IntermediateField.Lifts.nonempty_algHom_of_exist_lifts_finset
|
Mathlib/FieldTheory/Extension.lean
|
theorem nonempty_algHom_of_exist_lifts_finset [alg : Algebra.IsAlgebraic F E]
(h : ∀ S : Finset E, ∃ σ : Lifts F E K, (S : Set E) ⊆ σ.carrier) :
Nonempty (E →ₐ[F] K)
|
case intro.intro
F : Type u_1
E : Type u_2
K : Type u_3
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Field K
inst✝¹ : Algebra F E
inst✝ : Algebra F K
alg : Algebra.IsAlgebraic F E
h : ∀ (S : Finset E), ∃ σ, ↑S ⊆ ↑σ.carrier
this✝ : ⊥.IsExtendible
ϕ : Lifts F E K
hϕ : Maximal (fun x => x ∈ {ϕ | ϕ.IsExtendible}) ϕ
this : ϕ.carrier ≠ ⊤
α : E
hα : α ∉ ϕ.carrier
⊢ False
|
let _ : Algebra ϕ.carrier K := ϕ.emb.toAlgebra
|
case intro.intro
F : Type u_1
E : Type u_2
K : Type u_3
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Field K
inst✝¹ : Algebra F E
inst✝ : Algebra F K
alg : Algebra.IsAlgebraic F E
h : ∀ (S : Finset E), ∃ σ, ↑S ⊆ ↑σ.carrier
this✝ : ⊥.IsExtendible
ϕ : Lifts F E K
hϕ : Maximal (fun x => x ∈ {ϕ | ϕ.IsExtendible}) ϕ
this : ϕ.carrier ≠ ⊤
α : E
hα : α ∉ ϕ.carrier
x✝ : Algebra (↥ϕ.carrier) K := ϕ.emb.toAlgebra
⊢ False
|
18d2833b17837530
|
ProbabilityTheory.Kernel.IndepSets.indep_aux
|
Mathlib/Probability/Independence/Kernel.lean
|
theorem IndepSets.indep_aux {m₂ m : MeasurableSpace Ω}
{κ : Kernel α Ω} {μ : Measure α} [IsZeroOrMarkovKernel κ] {p1 p2 : Set (Set Ω)} (h2 : m₂ ≤ m)
(hp2 : IsPiSystem p2) (hpm2 : m₂ = generateFrom p2) (hyp : IndepSets p1 p2 κ μ) {t1 t2 : Set Ω}
(ht1 : t1 ∈ p1) (ht1m : MeasurableSet[m] t1) (ht2m : MeasurableSet[m₂] t2) :
∀ᵐ a ∂μ, κ a (t1 ∩ t2) = κ a t1 * κ a t2
|
case inr.basic
α : Type u_1
Ω : Type u_2
_mα : MeasurableSpace α
m₂ m : MeasurableSpace Ω
κ : Kernel α Ω
μ : Measure α
inst✝ : IsZeroOrMarkovKernel κ
p1 p2 : Set (Set Ω)
h2 : m₂ ≤ m
hp2 : IsPiSystem p2
hpm2 : m₂ = generateFrom p2
hyp : IndepSets p1 p2 κ μ
t1 t2 : Set Ω
ht1 : t1 ∈ p1
ht1m : MeasurableSet t1
h : IsMarkovKernel κ
u : Set Ω
hu : u ∈ p2
⊢ ∀ᵐ (a : α) ∂μ, (κ a) (t1 ∩ u) = (κ a) t1 * (κ a) u
|
exact hyp t1 u ht1 hu
|
no goals
|
7296e6275e034385
|
SimpleGraph.Preconnected.boxProd
|
Mathlib/Combinatorics/SimpleGraph/Prod.lean
|
theorem Preconnected.boxProd (hG : G.Preconnected) (hH : H.Preconnected) :
(G □ H).Preconnected
|
case intro.intro
α : Type u_1
β : Type u_2
G : SimpleGraph α
H : SimpleGraph β
hG : G.Preconnected
hH : H.Preconnected
x y : α × β
w₁ : G.Walk x.1 y.1
w₂ : H.Walk x.2 y.2
⊢ (G □ H).Reachable x y
|
exact ⟨(w₁.boxProdLeft _ _).append (w₂.boxProdRight _ _)⟩
|
no goals
|
9563a2a9ce79f351
|
exists_msmooth_support_eq_eq_one_iff
|
Mathlib/Geometry/Manifold/PartitionOfUnity.lean
|
theorem exists_msmooth_support_eq_eq_one_iff
{s t : Set M} (hs : IsOpen s) (ht : IsClosed t) (h : t ⊆ s) :
∃ f : M → ℝ, ContMDiff I 𝓘(ℝ) ∞ f ∧ range f ⊆ Icc 0 1 ∧ support f = s
∧ (∀ x, x ∈ t ↔ f x = 1)
|
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
H : Type uH
inst✝⁶ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁵ : TopologicalSpace M
inst✝⁴ : ChartedSpace H M
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsManifold I ∞ M
inst✝¹ : SigmaCompactSpace M
inst✝ : T2Space M
s t : Set M
hs : IsOpen s
ht : IsClosed t
h : t ⊆ s
f : M → ℝ
f_supp : support f = s
f_diff : ContMDiff I 𝓘(ℝ, ℝ) ∞ f
f_pos : ∀ (x : M), 0 ≤ f x
g : M → ℝ
g_supp : support g = tᶜ
g_diff : ContMDiff I 𝓘(ℝ, ℝ) ∞ g
g_pos : ∀ (x : M), 0 ≤ g x
x : M
xs : x ∉ support f
⊢ 0 < g x
|
apply lt_of_le_of_ne (g_pos x) (Ne.symm ?_)
|
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
H : Type uH
inst✝⁶ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁵ : TopologicalSpace M
inst✝⁴ : ChartedSpace H M
inst✝³ : FiniteDimensional ℝ E
inst✝² : IsManifold I ∞ M
inst✝¹ : SigmaCompactSpace M
inst✝ : T2Space M
s t : Set M
hs : IsOpen s
ht : IsClosed t
h : t ⊆ s
f : M → ℝ
f_supp : support f = s
f_diff : ContMDiff I 𝓘(ℝ, ℝ) ∞ f
f_pos : ∀ (x : M), 0 ≤ f x
g : M → ℝ
g_supp : support g = tᶜ
g_diff : ContMDiff I 𝓘(ℝ, ℝ) ∞ g
g_pos : ∀ (x : M), 0 ≤ g x
x : M
xs : x ∉ support f
⊢ g x ≠ 0
|
2508fb22dbe6e145
|
MulAction.IsBlock.subsingleton_of_card_lt
|
Mathlib/GroupTheory/GroupAction/Blocks.lean
|
theorem subsingleton_of_card_lt [Finite X] (hB : IsBlock G B)
(hB' : Nat.card X < 2 * Set.ncard (orbit G B)) :
B.Subsingleton
|
G : Type u_1
inst✝³ : Group G
X : Type u_2
inst✝² : MulAction G X
inst✝¹ : IsPretransitive G X
B : Set X
inst✝ : Finite X
hB : IsBlock G B
hB' : Nat.card X < 2 * (orbit G B).ncard
this : B.ncard < 2
⊢ B.Subsingleton
|
rw [Nat.lt_succ_iff, Set.ncard_le_one_iff_eq] at this
|
G : Type u_1
inst✝³ : Group G
X : Type u_2
inst✝² : MulAction G X
inst✝¹ : IsPretransitive G X
B : Set X
inst✝ : Finite X
hB : IsBlock G B
hB' : Nat.card X < 2 * (orbit G B).ncard
this : B = ∅ ∨ ∃ a, B = {a}
⊢ B.Subsingleton
|
97bb74a7b2c4a12d
|
Primrec.of_equiv_symm
|
Mathlib/Computability/Primrec.lean
|
theorem of_equiv_symm {β} {e : β ≃ α} :
haveI := Primcodable.ofEquiv α e
Primrec e.symm :=
letI := Primcodable.ofEquiv α e
encode_iff.1 (show Primrec fun a => encode (e (e.symm a)) by simp [Primrec.encode])
|
α : Type u_1
inst✝ : Primcodable α
β : Type u_4
e : β ≃ α
this : Primcodable β := Primcodable.ofEquiv α e
⊢ Primrec fun a => encode (e (e.symm a))
|
simp [Primrec.encode]
|
no goals
|
596b50cd3bdff543
|
Polynomial.coprime_of_root_cyclotomic
|
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
|
theorem coprime_of_root_cyclotomic {n : ℕ} (hpos : 0 < n) {p : ℕ} [hprime : Fact p.Prime] {a : ℕ}
(hroot : IsRoot (cyclotomic n (ZMod p)) (Nat.castRingHom (ZMod p) a)) : a.Coprime p
|
case a
n : ℕ
hpos : 0 < n
p : ℕ
hprime : Fact (Nat.Prime p)
a : ℕ
hroot : (cyclotomic n (ZMod p)).IsRoot ((Nat.castRingHom (ZMod p)) a)
h : p ∣ a
⊢ False
|
replace h := (ZMod.natCast_zmod_eq_zero_iff_dvd a p).2 h
|
case a
n : ℕ
hpos : 0 < n
p : ℕ
hprime : Fact (Nat.Prime p)
a : ℕ
hroot : (cyclotomic n (ZMod p)).IsRoot ((Nat.castRingHom (ZMod p)) a)
h : ↑a = 0
⊢ False
|
0720e362f4eb9006
|
Nat.modEq_digits_sum
|
Mathlib/Data/Nat/Digits.lean
|
theorem modEq_digits_sum (b b' : ℕ) (h : b' % b = 1) (n : ℕ) : n ≡ (digits b' n).sum [MOD b]
|
case h.e'_3.h.e'_3
b b' : ℕ
h : b' % b = 1
n : ℕ
⊢ 1 = b' % b
|
exact h.symm
|
no goals
|
854602fdaff1f255
|
Lean.Data.AC.Context.evalList_sort_congr
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/AC.lean
|
theorem Context.evalList_sort_congr
(ctx : Context α)
(h : Commutative ctx.op)
(h₂ : evalList α ctx a = evalList α ctx b)
(h₃ : a ≠ [])
(h₄ : b ≠ [])
: evalList α ctx (sort.loop a c) = evalList α ctx (sort.loop b c)
|
case cons.h₂.cons.nil
α : Sort u_1
ctx : Context α
h : Commutative ctx.op
c : Nat
tail✝ : List Nat
ih :
∀ {a b : List Nat},
evalList α ctx a = evalList α ctx b →
a ≠ [] → b ≠ [] → evalList α ctx (sort.loop a tail✝) = evalList α ctx (sort.loop b tail✝)
a : Nat
as : List Nat
h₃ : a :: as ≠ []
h₄ : [] ≠ []
h₂ : evalList α ctx (a :: as) = evalList α ctx []
⊢ evalList α ctx (c :: a :: as) = evalList α ctx [c]
|
apply absurd h₄
|
case cons.h₂.cons.nil
α : Sort u_1
ctx : Context α
h : Commutative ctx.op
c : Nat
tail✝ : List Nat
ih :
∀ {a b : List Nat},
evalList α ctx a = evalList α ctx b →
a ≠ [] → b ≠ [] → evalList α ctx (sort.loop a tail✝) = evalList α ctx (sort.loop b tail✝)
a : Nat
as : List Nat
h₃ : a :: as ≠ []
h₄ : [] ≠ []
h₂ : evalList α ctx (a :: as) = evalList α ctx []
⊢ ¬[] ≠ []
|
21bdef0510a8391b
|
ContinuousAffineMap.norm_comp_le
|
Mathlib/Analysis/Normed/Affine/ContinuousAffineMap.lean
|
theorem norm_comp_le (g : W₂ →ᴬ[𝕜] V) : ‖f.comp g‖ ≤ ‖f‖ * ‖g‖ + ‖f 0‖
|
𝕜 : Type u_1
V : Type u_3
W : Type u_4
W₂ : Type u_5
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : NormedAddCommGroup W₂
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : NormedSpace 𝕜 W₂
f : V →ᴬ[𝕜] W
g : W₂ →ᴬ[𝕜] V
⊢ ‖f.comp g‖ ≤ ‖f‖ * ‖g‖ + ‖f 0‖
|
rw [norm_def, max_le_iff]
|
𝕜 : Type u_1
V : Type u_3
W : Type u_4
W₂ : Type u_5
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : NormedAddCommGroup W
inst✝⁴ : NormedAddCommGroup W₂
inst✝³ : NontriviallyNormedField 𝕜
inst✝² : NormedSpace 𝕜 V
inst✝¹ : NormedSpace 𝕜 W
inst✝ : NormedSpace 𝕜 W₂
f : V →ᴬ[𝕜] W
g : W₂ →ᴬ[𝕜] V
⊢ ‖(f.comp g) 0‖ ≤ ‖f‖ * ‖g‖ + ‖f 0‖ ∧ ‖(f.comp g).contLinear‖ ≤ ‖f‖ * ‖g‖ + ‖f 0‖
|
aa55b874b2229b96
|
Zsqrtd.le_arch
|
Mathlib/NumberTheory/Zsqrtd/Basic.lean
|
theorem le_arch (a : ℤ√d) : ∃ n : ℕ, a ≤ n
|
case intro.intro.zero
d : ℕ
a : ℤ√↑d
x : ℕ
h : a ≤ { re := ↑x, im := ↑0 }
⊢ { re := 0, im := 0 }.Nonneg
|
trivial
|
no goals
|
8d26cc96bf8abedc
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastMul.go_denote_eq
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/Mul.lean
|
theorem go_denote_eq {w : Nat} (aig : AIG BVBit) (curr : Nat) (hcurr : curr + 1 ≤ w)
(acc : AIG.RefVec aig w) (lhs rhs : AIG.RefVec aig w) (lexpr rexpr : BitVec w) (assign : Assignment)
(hleft : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, lhs.get idx hidx, assign.toAIGAssignment⟧ = lexpr.getLsbD idx)
(hright : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, rhs.get idx hidx, assign.toAIGAssignment⟧ = rexpr.getLsbD idx)
(hacc : ∀ (idx : Nat) (hidx : idx < w),
⟦aig, acc.get idx hidx, assign.toAIGAssignment⟧
=
(BitVec.mulRec lexpr rexpr curr).getLsbD idx) :
∀ (idx : Nat) (hidx : idx < w),
⟦
(go aig lhs rhs (curr + 1) acc).aig,
(go aig lhs rhs (curr + 1) acc).vec.get idx hidx,
assign.toAIGAssignment
⟧
=
(BitVec.mulRec lexpr rexpr w).getLsbD idx
|
case isTrue.isFalse.hleft
w : Nat
aig : AIG BVBit
curr : Nat
hcurr : curr + 1 ≤ w
acc lhs rhs : aig.RefVec w
lexpr rexpr : BitVec w
assign : Assignment
hleft :
∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := lhs.get idx hidx }⟧ = lexpr.getLsbD idx
hright :
∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := rhs.get idx hidx }⟧ = rexpr.getLsbD idx
hacc :
∀ (idx : Nat) (hidx : idx < w),
⟦assign.toAIGAssignment, { aig := aig, ref := acc.get idx hidx }⟧ = (lexpr.mulRec rexpr curr).getLsbD idx
idx✝ : Nat
hidx✝ : idx✝ < w
res : RefVecEntry BVBit w
h✝¹ : curr + 1 < w
h✝ : ¬aig.isConstant (rhs.get (curr + 1) h✝¹) false = true
hgo :
go
(RefVec.ite
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig
{ discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝¹,
lhs :=
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec,
rhs := (acc.cast ⋯).cast ⋯ }).aig
(((lhs.cast ⋯).cast ⋯).cast ⋯) (((rhs.cast ⋯).cast ⋯).cast ⋯) (curr + 1 + 1)
(RefVec.ite
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig
{ discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝¹,
lhs :=
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec,
rhs := (acc.cast ⋯).cast ⋯ }).vec =
res
idx : Nat
hidx : idx < w
⊢ ⟦assign.toAIGAssignment,
{
aig :=
(RefVec.ite
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig
{ discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝¹,
lhs :=
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯,
rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec,
rhs := (acc.cast ⋯).cast ⋯ }).aig,
ref := (((lhs.cast ⋯).cast ⋯).cast ⋯).get idx hidx }⟧ =
lexpr.getLsbD idx
|
simp only [RefVec.get_cast, Ref.cast_eq]
|
case isTrue.isFalse.hleft
w : Nat
aig : AIG BVBit
curr : Nat
hcurr : curr + 1 ≤ w
acc lhs rhs : aig.RefVec w
lexpr rexpr : BitVec w
assign : Assignment
hleft :
∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := lhs.get idx hidx }⟧ = lexpr.getLsbD idx
hright :
∀ (idx : Nat) (hidx : idx < w), ⟦assign.toAIGAssignment, { aig := aig, ref := rhs.get idx hidx }⟧ = rexpr.getLsbD idx
hacc :
∀ (idx : Nat) (hidx : idx < w),
⟦assign.toAIGAssignment, { aig := aig, ref := acc.get idx hidx }⟧ = (lexpr.mulRec rexpr curr).getLsbD idx
idx✝ : Nat
hidx✝ : idx✝ < w
res : RefVecEntry BVBit w
h✝¹ : curr + 1 < w
h✝ : ¬aig.isConstant (rhs.get (curr + 1) h✝¹) false = true
hgo :
go
(RefVec.ite
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig
{ discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝¹,
lhs :=
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec,
rhs := (acc.cast ⋯).cast ⋯ }).aig
(((lhs.cast ⋯).cast ⋯).cast ⋯) (((rhs.cast ⋯).cast ⋯).cast ⋯) (curr + 1 + 1)
(RefVec.ite
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig
{ discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝¹,
lhs :=
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec,
rhs := (acc.cast ⋯).cast ⋯ }).vec =
res
idx : Nat
hidx : idx < w
⊢ ⟦assign.toAIGAssignment,
{
aig :=
(RefVec.ite
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯, rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).aig
{ discr := ((rhs.cast ⋯).cast ⋯).get (curr + 1) h✝¹,
lhs :=
(blastAdd (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).aig
{ lhs := acc.cast ⋯,
rhs := (blastShiftLeftConst aig { vec := lhs, distance := curr + 1 }).vec }).vec,
rhs := (acc.cast ⋯).cast ⋯ }).aig,
ref := { gate := (lhs.get idx hidx).gate, hgate := ⋯ } }⟧ =
lexpr.getLsbD idx
|
45666f07d8b1c2e0
|
hasBasis_nhdsSet_Iic_Iio
|
Mathlib/Topology/Order/NhdsSet.lean
|
theorem hasBasis_nhdsSet_Iic_Iio (a : α) [h : Nonempty (Ioi a)] :
HasBasis (𝓝ˢ (Iic a)) (a < ·) Iio
|
α : Type u_1
inst✝² : LinearOrder α
inst✝¹ : TopologicalSpace α
inst✝ : OrderTopology α
a : α
h : Nonempty ↑(Ioi a)
⊢ (𝓝ˢ (Iic a)).HasBasis (fun x => a < x) Iio
|
refine ⟨fun s ↦ ⟨fun hs ↦ ?_, fun ⟨b, hab, hb⟩ ↦ mem_of_superset (Iio_mem_nhdsSet_Iic hab) hb⟩⟩
|
α : Type u_1
inst✝² : LinearOrder α
inst✝¹ : TopologicalSpace α
inst✝ : OrderTopology α
a : α
h : Nonempty ↑(Ioi a)
s : Set α
hs : s ∈ 𝓝ˢ (Iic a)
⊢ ∃ i, a < i ∧ Iio i ⊆ s
|
7165672eb2730c40
|
Module.DirectLimit.exists_eq_of_of_eq
|
Mathlib/Algebra/Colimit/Module.lean
|
theorem exists_eq_of_of_eq {i x y} (h : of R ι G f i x = of R ι G f i y) :
∃ j hij, f i j hij x = f i j hij y
|
R : Type u_1
inst✝⁶ : Semiring R
ι : Type u_2
inst✝⁵ : Preorder ι
G : ι → Type u_3
inst✝⁴ : DecidableEq ι
inst✝³ : (i : ι) → AddCommMonoid (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : DirectedSystem G fun x1 x2 x3 => ⇑(f x1 x2 x3)
inst✝ : IsDirected ι fun x1 x2 => x1 ≤ x2
i : ι
x y : G i
h : (of R ι G f i) x = (of R ι G f i) y
⊢ ∃ j, ∃ (hij : i ≤ j), (f i j hij) x = (f i j hij) y
|
have := Nonempty.intro i
|
R : Type u_1
inst✝⁶ : Semiring R
ι : Type u_2
inst✝⁵ : Preorder ι
G : ι → Type u_3
inst✝⁴ : DecidableEq ι
inst✝³ : (i : ι) → AddCommMonoid (G i)
inst✝² : (i : ι) → Module R (G i)
f : (i j : ι) → i ≤ j → G i →ₗ[R] G j
inst✝¹ : DirectedSystem G fun x1 x2 x3 => ⇑(f x1 x2 x3)
inst✝ : IsDirected ι fun x1 x2 => x1 ≤ x2
i : ι
x y : G i
h : (of R ι G f i) x = (of R ι G f i) y
this : Nonempty ι
⊢ ∃ j, ∃ (hij : i ≤ j), (f i j hij) x = (f i j hij) y
|
db7d351d31db8aaa
|
Quotient.inductionOn₃
|
Mathlib/.lake/packages/lean4/src/lean/Init/Core.lean
|
theorem inductionOn₃
{s₃ : Setoid φ}
{motive : Quotient s₁ → Quotient s₂ → Quotient s₃ → Prop}
(q₁ : Quotient s₁)
(q₂ : Quotient s₂)
(q₃ : Quotient s₃)
(h : (a : α) → (b : β) → (c : φ) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b) (Quotient.mk s₃ c))
: motive q₁ q₂ q₃
|
α : Sort uA
β : Sort uB
φ : Sort uC
s₁ : Setoid α
s₂ : Setoid β
s₃ : Setoid φ
motive : Quotient s₁ → Quotient s₂ → Quotient s₃ → Prop
q₁ : Quotient s₁
q₂ : Quotient s₂
q₃ : Quotient s₃
h : ∀ (a : α) (b : β) (c : φ), motive (Quotient.mk s₁ a) (Quotient.mk s₂ b) (Quotient.mk s₃ c)
⊢ motive q₁ q₂ q₃
|
induction q₁ using Quotient.ind
|
case a
α : Sort uA
β : Sort uB
φ : Sort uC
s₁ : Setoid α
s₂ : Setoid β
s₃ : Setoid φ
motive : Quotient s₁ → Quotient s₂ → Quotient s₃ → Prop
q₂ : Quotient s₂
q₃ : Quotient s₃
h : ∀ (a : α) (b : β) (c : φ), motive (Quotient.mk s₁ a) (Quotient.mk s₂ b) (Quotient.mk s₃ c)
a✝ : α
⊢ motive (Quotient.mk s₁ a✝) q₂ q₃
|
b768315a7eea770d
|
Lean.Order.List.monotone_filterM
|
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
|
theorem monotone_filterM
{m : Type → Type v} [Monad m] [∀ α, PartialOrder (m α)] [MonoBind m] {α : Type}
(f : γ → α → m Bool) (xs : List α) (hmono : monotone f) :
monotone (fun x => xs.filterM (f x))
|
case hmono₁
γ : Type w
inst✝³ : PartialOrder γ
m : Type → Type v
inst✝² : Monad m
inst✝¹ : (α : Type) → PartialOrder (m α)
inst✝ : MonoBind m
α : Type
f : γ → α → m Bool
xs : List α
hmono : monotone f
⊢ monotone fun x => List.filterAuxM (f x) xs []
|
exact monotone_filterAuxM f xs [] hmono
|
no goals
|
03c2246583d08433
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastArithShiftRight.go_denote_eq
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Operations/ShiftRight.lean
|
theorem go_denote_eq (aig : AIG α) (distance : AIG.RefVec aig n) (curr : Nat)
(hcurr : curr ≤ n - 1) (acc : AIG.RefVec aig w)
(lhs : BitVec w) (rhs : BitVec n) (assign : α → Bool)
(hacc : ∀ (idx : Nat) (hidx : idx < w), ⟦aig, acc.get idx hidx, assign⟧ = (BitVec.sshiftRightRec lhs rhs curr).getLsbD idx)
(hright : ∀ (idx : Nat) (hidx : idx < n), ⟦aig, distance.get idx hidx, assign⟧ = rhs.getLsbD idx) :
∀ (idx : Nat) (hidx : idx < w),
⟦
(go aig distance curr acc).aig,
(go aig distance curr acc).vec.get idx hidx,
assign
⟧
=
(BitVec.sshiftRightRec lhs rhs (n - 1)).getLsbD idx
|
case isTrue.hacc
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
n w : Nat
aig : AIG α
distance : aig.RefVec n
curr : Nat
hcurr : curr ≤ n - 1
acc : aig.RefVec w
lhs : BitVec w
rhs : BitVec n
assign : α → Bool
hacc :
∀ (idx : Nat) (hidx : idx < w),
⟦assign, { aig := aig, ref := acc.get idx hidx }⟧ = (lhs.sshiftRightRec rhs curr).getLsbD idx
hright : ∀ (idx : Nat) (hidx : idx < n), ⟦assign, { aig := aig, ref := distance.get idx hidx }⟧ = rhs.getLsbD idx
idx✝ : Nat
hidx✝ : idx✝ < w
res : RefVecEntry α w
h✝ : curr < n - 1
hgo :
go (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).aig (distance.cast ⋯) (curr + 1)
(twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).vec =
res
idx : Nat
hidx : idx < w
⊢ ⟦assign,
{ aig := (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).aig,
ref := (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).vec.get idx hidx }⟧ =
((lhs.sshiftRightRec rhs curr).sshiftRight' (rhs &&& BitVec.twoPow n (curr + 1))).getLsbD idx
|
rw [twoPowShift_eq (lhs := BitVec.sshiftRightRec lhs rhs curr)]
|
case isTrue.hacc.hleft
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
n w : Nat
aig : AIG α
distance : aig.RefVec n
curr : Nat
hcurr : curr ≤ n - 1
acc : aig.RefVec w
lhs : BitVec w
rhs : BitVec n
assign : α → Bool
hacc :
∀ (idx : Nat) (hidx : idx < w),
⟦assign, { aig := aig, ref := acc.get idx hidx }⟧ = (lhs.sshiftRightRec rhs curr).getLsbD idx
hright : ∀ (idx : Nat) (hidx : idx < n), ⟦assign, { aig := aig, ref := distance.get idx hidx }⟧ = rhs.getLsbD idx
idx✝ : Nat
hidx✝ : idx✝ < w
res : RefVecEntry α w
h✝ : curr < n - 1
hgo :
go (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).aig (distance.cast ⋯) (curr + 1)
(twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).vec =
res
idx : Nat
hidx : idx < w
⊢ ∀ (idx : Nat) (hidx : idx < w),
⟦assign, { aig := aig, ref := { n := n, lhs := acc, rhs := distance, pow := curr + 1 }.lhs.get idx hidx }⟧ =
(lhs.sshiftRightRec rhs curr).getLsbD idx
case isTrue.hacc.hright
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
n w : Nat
aig : AIG α
distance : aig.RefVec n
curr : Nat
hcurr : curr ≤ n - 1
acc : aig.RefVec w
lhs : BitVec w
rhs : BitVec n
assign : α → Bool
hacc :
∀ (idx : Nat) (hidx : idx < w),
⟦assign, { aig := aig, ref := acc.get idx hidx }⟧ = (lhs.sshiftRightRec rhs curr).getLsbD idx
hright : ∀ (idx : Nat) (hidx : idx < n), ⟦assign, { aig := aig, ref := distance.get idx hidx }⟧ = rhs.getLsbD idx
idx✝ : Nat
hidx✝ : idx✝ < w
res : RefVecEntry α w
h✝ : curr < n - 1
hgo :
go (twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).aig (distance.cast ⋯) (curr + 1)
(twoPowShift aig { n := n, lhs := acc, rhs := distance, pow := curr + 1 }).vec =
res
idx : Nat
hidx : idx < w
⊢ ∀ (idx : Nat) (hidx : idx < { n := n, lhs := acc, rhs := distance, pow := curr + 1 }.n),
⟦assign, { aig := aig, ref := { n := n, lhs := acc, rhs := distance, pow := curr + 1 }.rhs.get idx hidx }⟧ =
rhs.getLsbD idx
|
a62c971c970b9dfe
|
MeasureTheory.AEEqFun.Integrable.add
|
Mathlib/MeasureTheory/Function/L1Space/AEEqFun.lean
|
theorem Integrable.add {f g : α →ₘ[μ] β} : Integrable f → Integrable g → Integrable (f + g)
|
α : Type u_1
β : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup β
f g : α →ₘ[μ] β
⊢ f.Integrable → g.Integrable → (f + g).Integrable
|
refine induction_on₂ f g fun f hf g hg hfi hgi => ?_
|
α : Type u_1
β : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup β
f✝ g✝ : α →ₘ[μ] β
f : α → β
hf : AEStronglyMeasurable f μ
g : α → β
hg : AEStronglyMeasurable g μ
hfi : (mk f hf).Integrable
hgi : (mk g hg).Integrable
⊢ (mk f hf + mk g hg).Integrable
|
48646018570a5bc9
|
exists_Ioo_extr_on_Icc
|
Mathlib/Topology/Order/Rolle.lean
|
theorem exists_Ioo_extr_on_Icc (hab : a < b) (hfc : ContinuousOn f (Icc a b)) (hfI : f a = f b) :
∃ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
|
X : Type u_1
Y : Type u_2
inst✝⁶ : ConditionallyCompleteLinearOrder X
inst✝⁵ : DenselyOrdered X
inst✝⁴ : TopologicalSpace X
inst✝³ : OrderTopology X
inst✝² : LinearOrder Y
inst✝¹ : TopologicalSpace Y
inst✝ : OrderTopology Y
f : X → Y
a b : X
hab : a < b
hfc : ContinuousOn f (Icc a b)
hfI : f a = f b
ne : (Icc a b).Nonempty
c : X
cmem : c ∈ Icc a b
cle : ∀ x ∈ Icc a b, f c ≤ f x
C : X
Cmem : C ∈ Icc a b
Cge : ∀ x ∈ Icc a b, f x ≤ f C
hc : f c = f a
hC : ¬f C = f a
h : a = C
⊢ f C = f a
|
rw [h]
|
no goals
|
d612389e0169ee4b
|
MvPolynomial.constantCoeff_rename
|
Mathlib/Algebra/MvPolynomial/Rename.lean
|
theorem constantCoeff_rename {τ : Type*} (f : σ → τ) (φ : MvPolynomial σ R) :
constantCoeff (rename f φ) = constantCoeff φ
|
case h_add
σ : Type u_1
R : Type u_4
inst✝ : CommSemiring R
τ : Type u_6
f : σ → τ
φ : MvPolynomial σ R
⊢ ∀ (p q : MvPolynomial σ R),
constantCoeff ((rename f) p) = constantCoeff p →
constantCoeff ((rename f) q) = constantCoeff q → constantCoeff ((rename f) (p + q)) = constantCoeff (p + q)
|
intro p q hp hq
|
case h_add
σ : Type u_1
R : Type u_4
inst✝ : CommSemiring R
τ : Type u_6
f : σ → τ
φ p q : MvPolynomial σ R
hp : constantCoeff ((rename f) p) = constantCoeff p
hq : constantCoeff ((rename f) q) = constantCoeff q
⊢ constantCoeff ((rename f) (p + q)) = constantCoeff (p + q)
|
99e6581b3c86be32
|
LinearMap.lTensor_sub
|
Mathlib/LinearAlgebra/TensorProduct/Basic.lean
|
theorem lTensor_sub (f g : N →ₗ[R] P) : (f - g).lTensor M = f.lTensor M - g.lTensor M
|
R : Type u_1
inst✝⁶ : CommSemiring R
M : Type u_2
N : Type u_3
P : Type u_4
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : AddCommGroup P
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : Module R P
f g : N →ₗ[R] P
⊢ (lTensorHom M) (f - g) = (lTensorHom M) f - (lTensorHom M) g
|
exact (lTensorHom (R := R) (N := N) (P := P) M).map_sub f g
|
no goals
|
731dd0d94b8c6625
|
Uniform.tendsto_nhds_right
|
Mathlib/Topology/UniformSpace/Basic.lean
|
theorem tendsto_nhds_right {f : Filter β} {u : β → α} {a : α} :
Tendsto u f (𝓝 a) ↔ Tendsto (fun x => (a, u x)) f (𝓤 α)
|
α : Type ua
β : Type ub
inst✝ : UniformSpace α
f : Filter β
u : β → α
a : α
⊢ Tendsto (Prod.mk a ∘ u) f (𝓤 α) ↔ Tendsto (fun x => (a, u x)) f (𝓤 α)
|
rfl
|
no goals
|
e444ec12a4c4ae35
|
Subalgebra.eq_bot_of_rank_le_one
|
Mathlib/LinearAlgebra/Dimension/FreeAndStrongRankCondition.lean
|
theorem eq_bot_of_rank_le_one (h : Module.rank F S ≤ 1) [Module.Free F S] : S = ⊥
|
case intro.mk
F : Type u_1
E : Type u_2
inst✝⁴ : CommRing F
inst✝³ : StrongRankCondition F
inst✝² : Ring E
inst✝¹ : Algebra F E
S : Subalgebra F E
h : Module.rank F ↥S ≤ 1
inst✝ : Free F ↥S
a✝ : Nontrivial E
κ : Type u_2
b : Basis κ F ↥S
⊢ S = ⊥
|
by_cases h1 : Module.rank F S = 1
|
case pos
F : Type u_1
E : Type u_2
inst✝⁴ : CommRing F
inst✝³ : StrongRankCondition F
inst✝² : Ring E
inst✝¹ : Algebra F E
S : Subalgebra F E
h : Module.rank F ↥S ≤ 1
inst✝ : Free F ↥S
a✝ : Nontrivial E
κ : Type u_2
b : Basis κ F ↥S
h1 : Module.rank F ↥S = 1
⊢ S = ⊥
case neg
F : Type u_1
E : Type u_2
inst✝⁴ : CommRing F
inst✝³ : StrongRankCondition F
inst✝² : Ring E
inst✝¹ : Algebra F E
S : Subalgebra F E
h : Module.rank F ↥S ≤ 1
inst✝ : Free F ↥S
a✝ : Nontrivial E
κ : Type u_2
b : Basis κ F ↥S
h1 : ¬Module.rank F ↥S = 1
⊢ S = ⊥
|
9ac2057737ac9eb2
|
BoundedContinuousFunction.lipschitz_comp
|
Mathlib/Topology/ContinuousMap/Bounded/Basic.lean
|
theorem lipschitz_comp {G : β → γ} {C : ℝ≥0} (H : LipschitzWith C G) :
LipschitzWith C (comp G H : (α →ᵇ β) → α →ᵇ γ) :=
LipschitzWith.of_dist_le_mul fun f g =>
(dist_le (mul_nonneg C.2 dist_nonneg)).2 fun x =>
calc
dist (G (f x)) (G (g x)) ≤ C * dist (f x) (g x) := H.dist_le_mul _ _
_ ≤ C * dist f g
|
case h
α : Type u
β : Type v
γ : Type w
inst✝² : TopologicalSpace α
inst✝¹ : PseudoMetricSpace β
inst✝ : PseudoMetricSpace γ
G : β → γ
C : ℝ≥0
H : LipschitzWith C G
f g : α →ᵇ β
x : α
⊢ dist (f x) (g x) ≤ dist f g
|
apply dist_coe_le_dist
|
no goals
|
8b4dbb01a1e3a73a
|
Vector.eq_iff_flatten_eq
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
|
theorem eq_iff_flatten_eq {L L' : Vector (Vector α n) m} :
L = L' ↔ L.flatten = L'.flatten
|
case of.of.mp
α : Type u_1
n m : Nat
L : Array (Array α)
h₁ : L.size = m
h₂ : ∀ (xs : Array α), xs ∈ L → xs.size = n
L' : Array (Array α)
h₁' : L'.size = m
h₂' : ∀ (xs : Array α), xs ∈ L' → xs.size = n
⊢ Array.map (fun x => { toArray := x.val, size_toArray := ⋯ }) L.attach =
Array.map (fun x => { toArray := x.val, size_toArray := ⋯ }) L'.attach →
L.flatten = L'.flatten
|
intro h
|
case of.of.mp
α : Type u_1
n m : Nat
L : Array (Array α)
h₁ : L.size = m
h₂ : ∀ (xs : Array α), xs ∈ L → xs.size = n
L' : Array (Array α)
h₁' : L'.size = m
h₂' : ∀ (xs : Array α), xs ∈ L' → xs.size = n
h :
Array.map (fun x => { toArray := x.val, size_toArray := ⋯ }) L.attach =
Array.map (fun x => { toArray := x.val, size_toArray := ⋯ }) L'.attach
⊢ L.flatten = L'.flatten
|
72d2568041cb6666
|
real_inner_div_norm_mul_norm_eq_neg_one_iff
|
Mathlib/Analysis/InnerProductSpace/Basic.lean
|
theorem real_inner_div_norm_mul_norm_eq_neg_one_iff (x y : F) :
⟪x, y⟫_ℝ / (‖x‖ * ‖y‖) = -1 ↔ x ≠ 0 ∧ ∃ r : ℝ, r < 0 ∧ y = r • x
|
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
x y : F
⊢ (x ≠ 0 ∧ ∃ x_1, 0 < -x_1 ∧ -y = -x_1 • x) ↔ x ≠ 0 ∧ ∃ r < 0, y = r • x
|
refine Iff.rfl.and (exists_congr fun r => ?_)
|
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
x y : F
r : ℝ
⊢ 0 < -r ∧ -y = -r • x ↔ r < 0 ∧ y = r • x
|
f7464562b660032b
|
LinearMap.BilinForm.span_singleton_sup_orthogonal_eq_top
|
Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean
|
theorem span_singleton_sup_orthogonal_eq_top {B : BilinForm K V} {x : V} (hx : ¬B.IsOrtho x x) :
(K ∙ x) ⊔ B.orthogonal (K ∙ x) = ⊤
|
V : Type u_5
K : Type u_6
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : BilinForm K V
x : V
hx : ¬B.IsOrtho x x
⊢ Submodule.span K {x} ⊔ ker (B.toLinHomAux₁ x) = ⊤
|
exact LinearMap.span_singleton_sup_ker_eq_top _ hx
|
no goals
|
fa0f717d19df8262
|
ProbabilityTheory.Kernel.deterministic_apply'
|
Mathlib/Probability/Kernel/Basic.lean
|
theorem deterministic_apply' {f : α → β} (hf : Measurable f) (a : α) {s : Set β}
(hs : MeasurableSet s) : deterministic f hf a s = s.indicator (fun _ => 1) (f a)
|
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
mβ : MeasurableSpace β
f : α → β
hf : Measurable f
a : α
s : Set β
hs : MeasurableSet s
⊢ ({ toFun := fun a => Measure.dirac (f a), measurable' := ⋯ } a) s = s.indicator (fun x => 1) (f a)
|
change Measure.dirac (f a) s = s.indicator 1 (f a)
|
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
mβ : MeasurableSpace β
f : α → β
hf : Measurable f
a : α
s : Set β
hs : MeasurableSet s
⊢ (Measure.dirac (f a)) s = s.indicator 1 (f a)
|
0e51885f87331fa2
|
LocallyFinite.countable_univ
|
Mathlib/Topology/Compactness/SigmaCompact.lean
|
theorem LocallyFinite.countable_univ {f : ι → Set X} (hf : LocallyFinite f)
(hne : ∀ i, (f i).Nonempty) : (univ : Set ι).Countable
|
case intro
X : Type u_1
ι : Type u_3
inst✝¹ : TopologicalSpace X
inst✝ : SigmaCompactSpace X
f : ι → Set X
hf : LocallyFinite f
hne : ∀ (i : ι), (f i).Nonempty
this : ∀ (n : ℕ), {i | (f i ∩ compactCovering X n).Nonempty}.Finite
i : ι
x✝ : i ∈ univ
x : X
hx : x ∈ f i
⊢ i ∈ ⋃ i, {i_1 | (f i_1 ∩ compactCovering X i).Nonempty}
|
rcases iUnion_eq_univ_iff.1 (iUnion_compactCovering X) x with ⟨n, hn⟩
|
case intro.intro
X : Type u_1
ι : Type u_3
inst✝¹ : TopologicalSpace X
inst✝ : SigmaCompactSpace X
f : ι → Set X
hf : LocallyFinite f
hne : ∀ (i : ι), (f i).Nonempty
this : ∀ (n : ℕ), {i | (f i ∩ compactCovering X n).Nonempty}.Finite
i : ι
x✝ : i ∈ univ
x : X
hx : x ∈ f i
n : ℕ
hn : x ∈ compactCovering X n
⊢ i ∈ ⋃ i, {i_1 | (f i_1 ∩ compactCovering X i).Nonempty}
|
7464f3928fba8b2f
|
MeasureTheory.tendsto_condExp_unique
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Basic.lean
|
theorem tendsto_condExp_unique (fs gs : ℕ → α → E) (f g : α → E)
(hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ)
(hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)))
(hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ)
(h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ)
(h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x)
(hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) :
μ[f|m] =ᵐ[μ] μ[g|m]
|
case neg
α : Type u_1
E : Type u_3
m m₀ : MeasurableSpace α
μ : Measure α
inst✝² : NormedLatticeAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℝ E
fs gs : ℕ → α → E
f g : α → E
hfs_int : ∀ (n : ℕ), Integrable (fs n) μ
hgs_int : ∀ (n : ℕ), Integrable (gs n) μ
hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))
hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))
bound_fs : α → ℝ
h_int_bound_fs : Integrable bound_fs μ
bound_gs : α → ℝ
h_int_bound_gs : Integrable bound_gs μ
hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x
hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x
hfg : ∀ (n : ℕ), μ[fs n|m] =ᶠ[ae μ] μ[gs n|m]
hm : m ≤ m₀
hμm : ¬SigmaFinite (μ.trim hm)
⊢ 0 =ᶠ[ae μ] 0
|
rfl
|
no goals
|
a9df86dd1e158e77
|
LinearMap.polyCharpolyAux_baseChange
|
Mathlib/Algebra/Module/LinearMap/Polynomial.lean
|
lemma polyCharpolyAux_baseChange (A : Type*) [CommRing A] [Algebra R A] :
polyCharpolyAux (tensorProduct _ _ _ _ ∘ₗ φ.baseChange A) (basis A b) (basis A bₘ) =
(polyCharpolyAux φ b bₘ).map (MvPolynomial.map (algebraMap R A))
|
case h₀
R : Type u_1
L : Type u_2
M : Type u_3
ι : Type u_5
ιM : Type u_7
inst✝¹⁰ : CommRing R
inst✝⁹ : AddCommGroup L
inst✝⁸ : Module R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
φ : L →ₗ[R] Module.End R M
inst✝⁵ : Fintype ι
inst✝⁴ : Fintype ιM
inst✝³ : DecidableEq ι
inst✝² : DecidableEq ιM
b : Basis ι R L
bₘ : Basis ιM R M
A : Type u_8
inst✝¹ : CommRing A
inst✝ : Algebra R A
ij : ιM × ιM
this :
∀ (kl : ιM × ιM),
(toMatrix (basis A bₘ.end) (basis A bₘ).end) (tensorProduct R A M M) ij kl = if kl = ij then 1 else 0
kl : ιM × ιM
H : kl ≠ ij
⊢ (monomial (Finsupp.single kl 1)) ((toMatrix (basis A bₘ.end) (basis A bₘ).end) (tensorProduct R A M M) ij kl) = 0
|
rw [this, if_neg H, map_zero]
|
no goals
|
43f09ebe5fe966ae
|
BitVec.getMsbD_or
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
|
theorem getMsbD_or {x y : BitVec w} : (x ||| y).getMsbD i = (x.getMsbD i || y.getMsbD i)
|
w i : Nat
x y : BitVec w
⊢ (x ||| y).getMsbD i = (x.getMsbD i || y.getMsbD i)
|
simp only [getMsbD]
|
w i : Nat
x y : BitVec w
⊢ (decide (i < w) && (x ||| y).getLsbD (w - 1 - i)) =
(decide (i < w) && x.getLsbD (w - 1 - i) || decide (i < w) && y.getLsbD (w - 1 - i))
|
b7b212b8c727554b
|
String.extract.go₂_append_left
|
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
|
theorem extract.go₂_append_left : ∀ (s t : List Char) (i e : Nat),
e = utf8Len s + i → go₂ (s ++ t) ⟨i⟩ ⟨e⟩ = s
| [], t, i, _, rfl => by cases t <;> simp [go₂]
| c :: cs, t, i, _, rfl => by
simp only [List.cons_append, utf8Len_cons, go₂, Pos.ext_iff, ne_add_utf8Size_add_self, ↓reduceIte,
Pos.addChar_eq, List.cons.injEq, true_and]
apply go₂_append_left; rw [Nat.add_right_comm, Nat.add_assoc]
|
c : Char
cs t : List Char
i : Nat
⊢ go₂ (cs ++ t) { byteIdx := i + c.utf8Size } { byteIdx := utf8Len cs + c.utf8Size + i } = cs
|
apply go₂_append_left
|
case a
c : Char
cs t : List Char
i : Nat
⊢ utf8Len cs + c.utf8Size + i = utf8Len cs + (i + c.utf8Size)
|
f179773ad64697cb
|
Metric.Sigma.dist_same
|
Mathlib/Topology/MetricSpace/Gluing.lean
|
theorem dist_same (i : ι) (x y : E i) : dist (Sigma.mk i x) ⟨i, y⟩ = dist x y
|
ι : Type u_1
E : ι → Type u_2
inst✝ : (i : ι) → MetricSpace (E i)
i : ι
x y : E i
⊢ dist ⟨i, x⟩ ⟨i, y⟩ = dist x y
|
simp [Dist.dist, Sigma.dist]
|
no goals
|
27687575e71f2783
|
mul_eq_of_eq_mul_inv₀
|
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
|
/-- A variant of `eq_mul_inv_iff_mul_eq₀` that moves the nonzero hypothesis to another variable. -/
lemma mul_eq_of_eq_mul_inv₀ (ha : a ≠ 0) (h : a = c * b⁻¹) : a * b = c
|
G₀ : Type u_3
inst✝ : GroupWithZero G₀
a c : G₀
ha : a ≠ 0
h : a = c * 0⁻¹
⊢ False
|
simp [ha] at h
|
no goals
|
a1b58083849146a3
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.limplies_of_assignmentsInvariant
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
|
theorem limplies_of_assignmentsInvariant {n : Nat} (f : DefaultFormula n)
(f_AssignmentsInvariant : AssignmentsInvariant f) :
Limplies (PosFin n) f f.assignments
|
case neg
n : Nat
f : DefaultFormula n
p : PosFin n → Bool
pf : p ⊨ f
hsize : f.assignments.size = n
i : PosFin n
f_AssignmentsInvariant :
hasAssignment (decide (p i = false)) f.assignments[i.val] = true → Limplies (PosFin n) f (i, decide (p i = false))
h✝ : ¬hasAssignment (decide (p i = false)) f.assignments[i.val] = true
⊢ hasAssignment (decide (p i = false)) f.assignments[i.val]! = false
|
next h => simp_all [getElem!, i.2.2, decidableGetElem?]
|
no goals
|
324db374b482bd66
|
LieModule.disjoint_genWeightSpaceOf
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
lemma disjoint_genWeightSpaceOf [NoZeroSMulDivisors R M] {x : L} {φ₁ φ₂ : R} (h : φ₁ ≠ φ₂) :
Disjoint (genWeightSpaceOf M φ₁ x) (genWeightSpaceOf M φ₂ x)
|
R : Type u_2
L : Type u_3
M : Type u_4
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : LieRing.IsNilpotent L
inst✝ : NoZeroSMulDivisors R M
x : L
φ₁ φ₂ : R
h : φ₁ ≠ φ₂
⊢ Disjoint ↑(genWeightSpaceOf M φ₁ x) ↑(genWeightSpaceOf M φ₂ x)
|
dsimp [genWeightSpaceOf]
|
R : Type u_2
L : Type u_3
M : Type u_4
inst✝⁸ : CommRing R
inst✝⁷ : LieRing L
inst✝⁶ : LieAlgebra R L
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
inst✝³ : LieRingModule L M
inst✝² : LieModule R L M
inst✝¹ : LieRing.IsNilpotent L
inst✝ : NoZeroSMulDivisors R M
x : L
φ₁ φ₂ : R
h : φ₁ ≠ φ₂
⊢ Disjoint (((toEnd R L M) x).maxGenEigenspace φ₁) (((toEnd R L M) x).maxGenEigenspace φ₂)
|
f2856c44a97b7b31
|
CategoryTheory.NatTrans.epi_iff_epi_app'
|
Mathlib/CategoryTheory/Adjunction/Evaluation.lean
|
theorem NatTrans.epi_iff_epi_app' {F G : C ⥤ D} (η : F ⟶ G) : Epi η ↔ ∀ c, Epi (η.app c)
|
C : Type u₁
inst✝² : Category.{v₁, u₁} C
D : Type u₂
inst✝¹ : Category.{v₂, u₂} D
inst✝ : ∀ (a b : C), HasProductsOfShape (a ⟶ b) D
F G : C ⥤ D
η : F ⟶ G
⊢ Epi η ↔ ∀ (c : C), Epi (η.app c)
|
constructor
|
case mp
C : Type u₁
inst✝² : Category.{v₁, u₁} C
D : Type u₂
inst✝¹ : Category.{v₂, u₂} D
inst✝ : ∀ (a b : C), HasProductsOfShape (a ⟶ b) D
F G : C ⥤ D
η : F ⟶ G
⊢ Epi η → ∀ (c : C), Epi (η.app c)
case mpr
C : Type u₁
inst✝² : Category.{v₁, u₁} C
D : Type u₂
inst✝¹ : Category.{v₂, u₂} D
inst✝ : ∀ (a b : C), HasProductsOfShape (a ⟶ b) D
F G : C ⥤ D
η : F ⟶ G
⊢ (∀ (c : C), Epi (η.app c)) → Epi η
|
7c954a3aed68ec0c
|
exists_pow_lt_of_lt_one
|
Mathlib/Algebra/Order/Archimedean/Basic.lean
|
theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x
|
case neg.intro
α : Type u_1
inst✝² : LinearOrderedSemifield α
inst✝¹ : Archimedean α
x y : α
inst✝ : ExistsAddOfLE α
hx : 0 < x
hy : y < 1
y_pos : 0 < y
q : ℕ
hq : x⁻¹ < y⁻¹ ^ q
⊢ ∃ n, y ^ n < x
|
exact ⟨q, by rwa [inv_pow, inv_lt_inv₀ hx (pow_pos y_pos _)] at hq⟩
|
no goals
|
21e7fde79a3a92b2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.