name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
ProbabilityTheory.Kernel.integral_withDensity
Mathlib/Probability/Kernel/WithDensity.lean
theorem integral_withDensity {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] {f : β → E} [IsSFiniteKernel κ] {a : α} {g : α → β → ℝ≥0} (hg : Measurable (Function.uncurry g)) : ∫ b, f b ∂withDensity κ (fun a b => g a b) a = ∫ b, g a b • f b ∂κ a
case hf α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E f : β → E inst✝ : IsSFiniteKernel κ a : α g : α → β → ℝ≥0 hg : Measurable (Function.uncurry g) ⊢ Measurable (Function.uncurry fun a b => ↑(g a b))
fun_prop
no goals
a452ee35b1f07cfc
Set.star_mem_center
Mathlib/Algebra/Star/Center.lean
theorem Set.star_mem_center (ha : a ∈ Set.center R) : star a ∈ Set.center R where comm
R : Type u_1 inst✝¹ : Mul R inst✝ : StarMul R a : R ha : a ∈ center R b c : R ⊢ star (a * star c * star b) = b * star (a * star c)
rw [star_mul, star_star]
no goals
c15bad2514aa2cf1
tendsto_tsum_of_dominated_convergence
Mathlib/Analysis/Normed/Group/Tannery.lean
/-- **Tannery's theorem**: topological sums commute with termwise limits, when the norms of the summands are eventually uniformly bounded by a summable function. (This is the special case of the Lebesgue dominated convergence theorem for the counting measure on a discrete set. However, we prove it under somewhat weaker assumptions than the general measure-theoretic result, e.g. `G` is not assumed to be an `ℝ`-vector space or second countable, and the limit is along an arbitrary filter rather than `atTop ℕ`.) See also: * `MeasureTheory.tendsto_integral_of_dominated_convergence` (for general integrals, but with more assumptions on `G`) * `continuous_tsum` (continuity of infinite sums in a parameter) -/ lemma tendsto_tsum_of_dominated_convergence {α β G : Type*} {𝓕 : Filter α} [NormedAddCommGroup G] [CompleteSpace G] {f : α → β → G} {g : β → G} {bound : β → ℝ} (h_sum : Summable bound) (hab : ∀ k : β, Tendsto (f · k) 𝓕 (𝓝 (g k))) (h_bound : ∀ᶠ n in 𝓕, ∀ k, ‖f n k‖ ≤ bound k) : Tendsto (∑' k, f · k) 𝓕 (𝓝 (∑' k, g k))
α : Type u_1 β : Type u_2 G : Type u_3 𝓕 : Filter α inst✝¹ : NormedAddCommGroup G inst✝ : CompleteSpace G f : α → β → G g : β → G bound : β → ℝ h_sum : Summable bound hab : ∀ (k : β), Tendsto (fun x => f x k) 𝓕 (𝓝 (g k)) h_bound : ∀ᶠ (n : α) in 𝓕, ∀ (k : β), ‖f n k‖ ≤ bound k h✝¹ : Nonempty β h✝ : 𝓕.NeBot h_g_le : ∀ (k : β), ‖g k‖ ≤ bound k h_sumg : Summable fun x => ‖g x‖ h_suma : ∀ᶠ (n : α) in 𝓕, Summable fun x => ‖f n x‖ ε : ℝ hε : ε > 0 S : ℝ hS : HasSum bound S T : Finset β hT : dist (∑ b ∈ T, bound b) S < ε / 3 ⊢ ∑' (k : ↑(↑T)ᶜ), bound ↑k = S - ∑ b ∈ T, bound b
simpa only [sum_add_tsum_compl h_sum, eq_sub_iff_add_eq'] using hS.tsum_eq
no goals
d4198172206cf97e
WittVector.coeff_p_pow_eq_zero
Mathlib/RingTheory/WittVector/Identities.lean
theorem coeff_p_pow_eq_zero [CharP R p] {i j : ℕ} (hj : j ≠ i) : ((p : 𝕎 R) ^ i).coeff j = 0
case succ.succ p : ℕ R : Type u_1 hp : Fact (Nat.Prime p) inst✝¹ : CommRing R inst✝ : CharP R p i : ℕ hi : ∀ {j : ℕ}, j ≠ i → (↑p ^ i).coeff j = 0 n✝ : ℕ hj : n✝ + 1 ≠ i + 1 ⊢ (verschiebung (↑p ^ i)).coeff (n✝ + 1) ^ p = 0
rw [verschiebung_coeff_succ, hi (ne_of_apply_ne _ hj), zero_pow hp.out.ne_zero]
no goals
0456d8b61855531e
PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst
Mathlib/CategoryTheory/Limits/Shapes/Types.lean
@[simp] lemma equivPullbackObj_symm_apply_fst (x : Types.PullbackObj f g) : c.fst ((equivPullbackObj hc).symm x) = x.1.1
X Y S : Type v f : X ⟶ S g : Y ⟶ S c : PullbackCone f g hc : IsLimit c x : Types.PullbackObj f g ⊢ c.fst ((equivPullbackObj hc).symm x) = (↑x).1
obtain ⟨x, rfl⟩ := (equivPullbackObj hc).surjective x
case intro X Y S : Type v f : X ⟶ S g : Y ⟶ S c : PullbackCone f g hc : IsLimit c x : c.pt ⊢ c.fst ((equivPullbackObj hc).symm ((equivPullbackObj hc) x)) = (↑((equivPullbackObj hc) x)).1
54db9da2c6aaa66b
IsPrimitiveRoot.arg
Mathlib/RingTheory/RootsOfUnity/Complex.lean
theorem IsPrimitiveRoot.arg {n : ℕ} {ζ : ℂ} (h : IsPrimitiveRoot ζ n) (hn : n ≠ 0) : ∃ i : ℤ, ζ.arg = i / n * (2 * Real.pi) ∧ IsCoprime i n ∧ i.natAbs < n
case neg.convert_2.refine_2 n : ℕ hn : n ≠ 0 i : ℕ h : i < n hin : i.Coprime n h₂ : ¬i * 2 ≤ n ⊢ (↑i - ↑n) * (2 * Real.pi / ↑n) ≤ 0
exact mul_nonpos_of_nonpos_of_nonneg (sub_nonpos.mpr <| mod_cast h.le) (div_nonneg (by simp [Real.pi_pos.le]) <| by simp)
no goals
27e9c2564262c07b
prime_factors_unique
Mathlib/RingTheory/UniqueFactorizationDomain/Basic.lean
theorem prime_factors_unique [CancelCommMonoidWithZero α] : ∀ {f g : Multiset α}, (∀ x ∈ f, Prime x) → (∀ x ∈ g, Prime x) → f.prod ~ᵤ g.prod → Multiset.Rel Associated f g
α : Type u_1 inst✝ : CancelCommMonoidWithZero α ⊢ ∀ {f g : Multiset α}, (∀ x ∈ f, Prime x) → (∀ x ∈ g, Prime x) → f.prod ~ᵤ g.prod → Multiset.Rel Associated f g
intro f
α : Type u_1 inst✝ : CancelCommMonoidWithZero α f : Multiset α ⊢ ∀ {g : Multiset α}, (∀ x ∈ f, Prime x) → (∀ x ∈ g, Prime x) → f.prod ~ᵤ g.prod → Multiset.Rel Associated f g
076a07413cee2004
Ordinal.log_opow_mul_add
Mathlib/SetTheory/Ordinal/Exponential.lean
theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hw : w < b ^ u) : log b (b ^ u * v + w) = u + log b v
case right b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hw : w < b ^ u ⊢ b ^ u * v + b ^ u ≤ b ^ succ (u + log b v)
rw [← mul_succ, ← add_succ, opow_add]
case right b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hw : w < b ^ u ⊢ b ^ u * succ v ≤ b ^ u * b ^ succ (log b v)
fdca12373d77fc9a
CategoryTheory.PreGaloisCategory.has_decomp_connected_components_aux
Mathlib/CategoryTheory/Galois/Decomposition.lean
private lemma has_decomp_connected_components_aux (F : C ⥤ FintypeCat.{w}) [FiberFunctor F] (n : ℕ) : ∀ (X : C), n = Nat.card (F.obj X) → ∃ (ι : Type) (f : ι → C) (g : (i : ι) → (f i) ⟶ X) (_ : IsColimit (Cofan.mk X g)), (∀ i, IsConnected (f i)) ∧ Finite ι
C : Type u₁ inst✝² : Category.{u₂, u₁} C inst✝¹ : GaloisCategory C F : C ⥤ FintypeCat inst✝ : FiberFunctor F n : ℕ ⊢ ∀ (X : C), n = Nat.card (F.obj X).carrier → ∃ ι f g x, (∀ (i : ι), IsConnected (f i)) ∧ Finite ι
induction' n using Nat.strongRecOn with n hi
case ind C : Type u₁ inst✝² : Category.{u₂, u₁} C inst✝¹ : GaloisCategory C F : C ⥤ FintypeCat inst✝ : FiberFunctor F n : ℕ hi : ∀ m < n, ∀ (X : C), m = Nat.card (F.obj X).carrier → ∃ ι f g x, (∀ (i : ι), IsConnected (f i)) ∧ Finite ι ⊢ ∀ (X : C), n = Nat.card (F.obj X).carrier → ∃ ι f g x, (∀ (i : ι), IsConnected (f i)) ∧ Finite ι
8c6babb797aa0c98
Polynomial.mul_scaleRoots_of_noZeroDivisors
Mathlib/RingTheory/Polynomial/ScaleRoots.lean
lemma mul_scaleRoots_of_noZeroDivisors (p q : R[X]) (r : R) [NoZeroDivisors R] : (p * q).scaleRoots r = p.scaleRoots r * q.scaleRoots r
case pos R : Type u_1 inst✝¹ : CommSemiring R p q : R[X] r : R inst✝ : NoZeroDivisors R hp : p = 0 ⊢ (p * q).scaleRoots r = p.scaleRoots r * q.scaleRoots r
simp [hp]
no goals
2faef2df62866efd
CategoryTheory.Functor.isConnected_iff_of_final
Mathlib/CategoryTheory/Limits/IsConnected.lean
theorem isConnected_iff_of_final (F : C ⥤ D) [F.Final] : IsConnected C ↔ IsConnected D
C : Type u inst✝² : Category.{v, u} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D F : C ⥤ D inst✝ : F.Final ⊢ IsConnected C ↔ IsConnected D
rw [isConnected_iff_colimit_constPUnitFunctor_iso_pUnit.{max v u v₂ u₂} C, isConnected_iff_colimit_constPUnitFunctor_iso_pUnit.{max v u v₂ u₂} D]
C : Type u inst✝² : Category.{v, u} C D : Type u₂ inst✝¹ : Category.{v₂, u₂} D F : C ⥤ D inst✝ : F.Final ⊢ Nonempty (Limits.colimit (constPUnitFunctor C) ≅ PUnit.{(max v u v₂ u₂) + 1}) ↔ Nonempty (Limits.colimit (constPUnitFunctor D) ≅ PUnit.{(max v u v₂ u₂) + 1})
765f67438475d3d8
fermatLastTheoremWith'_polynomial
Mathlib/NumberTheory/FLT/Polynomial.lean
theorem fermatLastTheoremWith'_polynomial {n : ℕ} (hn : 3 ≤ n) (chn : (n : k) ≠ 0) : FermatLastTheoremWith' k[X] n
k : Type u_1 inst✝ : Field k n : ℕ hn✝ : 3 ≤ n chn : ↑n ≠ 0 a b c : k[X] ha : a ≠ 0 hb : b ≠ 0 hc : c ≠ 0 a' b' : k[X] d : k[X] := gcd a b heq : d ^ n * (a' ^ n + b' ^ n) = c ^ n eq_a : a = d * a' eq_b : b = d * b' hd : d ≠ 0 hn : 0 < n hdncn : ∀ (a : k[X]), Multiset.count a (normalizedFactors d) ≤ Multiset.count a (normalizedFactors c) ⊢ ∀ (a : k[X]), Multiset.count a (normalizedFactors d) ≤ Multiset.count a (normalizedFactors c)
exact hdncn
no goals
0b2f8f9d4d152b49
CategoryTheory.MorphismProperty.IsStableUnderProductsOfShape.mk
Mathlib/CategoryTheory/MorphismProperty/Limits.lean
lemma IsStableUnderProductsOfShape.mk (J : Type*) [W.RespectsIso] (hW : ∀ (X₁ X₂ : J → C) [HasProduct X₁] [HasProduct X₂] (f : ∀ j, X₁ j ⟶ X₂ j) (_ : ∀ (j : J), W (f j)), W (Limits.Pi.map f)) : W.IsStableUnderProductsOfShape J
C : Type u inst✝¹ : Category.{v, u} C W : MorphismProperty C J : Type u_1 inst✝ : W.RespectsIso hW : ∀ (X₁ X₂ : J → C) [inst : HasProduct X₁] [inst_1 : HasProduct X₂] (f : (j : J) → X₁ j ⟶ X₂ j), (∀ (j : J), W (f j)) → W (Limits.Pi.map f) X₁ X₂ : Discrete J ⥤ C c₁ : Cone X₁ c₂ : Cone X₂ hc₁ : IsLimit c₁ hc₂ : IsLimit c₂ f : X₁ ⟶ X₂ hf : W.functorCategory (Discrete J) f φ : (j : J) → X₁.obj { as := j } ⟶ X₂.obj { as := j } := fun j => f.app { as := j } this : HasLimit X₁ ⊢ W (hc₂.lift { pt := c₁.pt, π := c₁.π ≫ f })
have : HasLimit X₂ := ⟨c₂, hc₂⟩
C : Type u inst✝¹ : Category.{v, u} C W : MorphismProperty C J : Type u_1 inst✝ : W.RespectsIso hW : ∀ (X₁ X₂ : J → C) [inst : HasProduct X₁] [inst_1 : HasProduct X₂] (f : (j : J) → X₁ j ⟶ X₂ j), (∀ (j : J), W (f j)) → W (Limits.Pi.map f) X₁ X₂ : Discrete J ⥤ C c₁ : Cone X₁ c₂ : Cone X₂ hc₁ : IsLimit c₁ hc₂ : IsLimit c₂ f : X₁ ⟶ X₂ hf : W.functorCategory (Discrete J) f φ : (j : J) → X₁.obj { as := j } ⟶ X₂.obj { as := j } := fun j => f.app { as := j } this✝ : HasLimit X₁ this : HasLimit X₂ ⊢ W (hc₂.lift { pt := c₁.pt, π := c₁.π ≫ f })
e8bcc319c9a1955e
Stream'.WSeq.exists_of_mem_join
Mathlib/Data/Seq/WSeq.lean
theorem exists_of_mem_join {a : α} : ∀ {S : WSeq (WSeq α)}, a ∈ join S → ∃ s, s ∈ S ∧ a ∈ s
case h2.h3 α : Type u a : α ss : WSeq α h : a ∈ ss S : WSeq (WSeq α) s : WSeq α IH : ∀ (s_1 : WSeq α) (S_1 : WSeq (WSeq α)), s_1.append S_1.join = s.append S.join → a ∈ s_1.append S_1.join → a ∈ s_1 ∨ ∃ s, s ∈ S_1 ∧ a ∈ s ej : (s.append S.join).think = (s.append S.join).think m : a ∈ s.append S.join ⊢ a ∈ s ∨ ∃ s, s ∈ S ∧ a ∈ s
apply IH _ _ rfl m
no goals
ec68064248c6eec8
integrable_exp_neg_mul_sq
Mathlib/Analysis/SpecialFunctions/Gaussian/GaussianIntegral.lean
theorem integrable_exp_neg_mul_sq {b : ℝ} (hb : 0 < b) : Integrable fun x : ℝ => exp (-b * x ^ 2)
b : ℝ hb : 0 < b ⊢ Integrable (fun x => rexp (-b * x ^ 2)) volume
simpa using integrable_rpow_mul_exp_neg_mul_sq hb (by norm_num : (-1 : ℝ) < 0)
no goals
43cf0bce12faa9c9
ProbabilityTheory.integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul
Mathlib/Probability/Moments/IntegrableExpMul.lean
/-- If `exp ((v + t) * X)` and `exp ((v - t) * X)` are integrable then for nonnegative `p : ℝ` and any `x ∈ [0, |t|)`, `|X| ^ p * exp (v * X + x * |X|)` is integrable. -/ lemma integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul {x : ℝ} (h_int_pos : Integrable (fun ω ↦ exp ((v + t) * X ω)) μ) (h_int_neg : Integrable (fun ω ↦ exp ((v - t) * X ω)) μ) (h_nonneg : 0 ≤ x) (hx : x < |t|) {p : ℝ} (hp : 0 ≤ p) : Integrable (fun a ↦ |X a| ^ p * exp (v * X a + x * |X a|)) μ
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t v x : ℝ h_int_pos : Integrable (fun ω => rexp ((v + t) * X ω)) μ h_int_neg : Integrable (fun ω => rexp ((v - t) * X ω)) μ h_nonneg : 0 ≤ x hx : x < |t| p : ℝ hp : 0 ≤ p ⊢ t ≠ 0
suffices |t| ≠ 0 by simpa
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t v x : ℝ h_int_pos : Integrable (fun ω => rexp ((v + t) * X ω)) μ h_int_neg : Integrable (fun ω => rexp ((v - t) * X ω)) μ h_nonneg : 0 ≤ x hx : x < |t| p : ℝ hp : 0 ≤ p ⊢ |t| ≠ 0
6d408f5eb4922de2
HomologicalComplex.homotopyCofiber.inlX_desc_f
Mathlib/Algebra/Homology/HomotopyCofiber.lean
@[reassoc (attr := simp)] lemma inlX_desc_f (i j : ι) (hjk : c.Rel j i) : inlX φ i j hjk ≫ (desc φ α hα).f j = hα.hom i j
C : Type u_1 inst✝³ : Category.{u_3, u_1} C inst✝² : Preadditive C ι : Type u_2 c : ComplexShape ι F G K : HomologicalComplex C c φ : F ⟶ G inst✝¹ : HasHomotopyCofiber φ inst✝ : DecidableRel c.Rel α : G ⟶ K hα : Homotopy (φ ≫ α) 0 j : ι hjk : c.Rel j (c.next j) ⊢ inlX φ (c.next j) j hjk ≫ (desc φ α hα).f j = hα.hom (c.next j) j
dsimp [desc]
C : Type u_1 inst✝³ : Category.{u_3, u_1} C inst✝² : Preadditive C ι : Type u_2 c : ComplexShape ι F G K : HomologicalComplex C c φ : F ⟶ G inst✝¹ : HasHomotopyCofiber φ inst✝ : DecidableRel c.Rel α : G ⟶ K hα : Homotopy (φ ≫ α) 0 j : ι hjk : c.Rel j (c.next j) ⊢ (inlX φ (c.next j) j hjk ≫ if hj : c.Rel j (c.next j) then fstX φ j (c.next j) hj ≫ hα.hom (c.next j) j + sndX φ j ≫ α.f j else sndX φ j ≫ α.f j) = hα.hom (c.next j) j
056c26232b147ff6
Basis.SmithNormalForm.toAddSubgroup_index_eq_pow_mul_prod
Mathlib/LinearAlgebra/FreeModule/Int.lean
/-- Given a submodule `N` in Smith normal form of a free `R`-module, its index as an additive subgroup is an appropriate power of the cardinality of `R` multiplied by the product of the indexes of the ideals generated by each basis vector. -/ lemma toAddSubgroup_index_eq_pow_mul_prod [Module R M] {N : Submodule R M} (snf : Basis.SmithNormalForm N ι n) : N.toAddSubgroup.index = Nat.card R ^ (Fintype.card ι - n) * ∏ i : Fin n, (Ideal.span {snf.a i}).toAddSubgroup.index
case h.e'_4 ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN' : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index c : Fin n → R i : ι h : ¬∃ j, f j = i ⊢ (∑ x : Fin n, c x • if i = f x then a x else 0) = 0
convert Finset.sum_const_zero with j
case h.e'_2.a ι : Type u_1 R : Type u_2 M : Type u_3 n : ℕ inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Fintype ι inst✝ : Module R M N : Submodule R M bM : Basis ι R M bN : Basis (Fin n) R ↥N f : Fin n ↪ ι a : Fin n → R snf : ∀ (i : Fin n), ↑(bN i) = a i • bM (f i) N' : Submodule R (ι → R) := Submodule.map bM.equivFun N hN' : N' = Submodule.map bM.equivFun N bN' : Basis (Fin n) R ↥N' := bN.map (bM.equivFun.submoduleMap N) snf' : ∀ (i : Fin n), ↑(bN' i) = Pi.single (f i) (a i) hNN' : N.toAddSubgroup.index = N'.toAddSubgroup.index c : Fin n → R i : ι h : ¬∃ j, f j = i j : Fin n a✝ : j ∈ Finset.univ ⊢ (c j • if i = f j then a j else 0) = 0
3d7a9cb7455a5c0f
Nat.card_of_subsingleton
Mathlib/SetTheory/Cardinal/Finite.lean
theorem card_of_subsingleton (a : α) [Subsingleton α] : Nat.card α = 1
α : Type u_1 a : α inst✝ : Subsingleton α this : Fintype α := Fintype.ofSubsingleton a ⊢ Nat.card α = 1
rw [card_eq_fintype_card, Fintype.card_ofSubsingleton a]
no goals
a1246ff58d2ee7ee
nodup_permsOfList
Mathlib/Data/Fintype/Perm.lean
theorem nodup_permsOfList : ∀ {l : List α}, l.Nodup → (permsOfList l).Nodup | [], _ => by simp [permsOfList] | a :: l, hl => by have hl' : l.Nodup := hl.of_cons have hln' : (permsOfList l).Nodup := nodup_permsOfList hl' have hmeml : ∀ {f : Perm α}, f ∈ permsOfList l → f a = a := fun {f} hf => not_not.1 (mt (mem_of_mem_permsOfList hf _) (nodup_cons.1 hl).1) rw [permsOfList, List.nodup_append, List.nodup_flatMap, pairwise_iff_getElem] refine ⟨?_, ⟨⟨?_,?_ ⟩, ?_⟩⟩ · exact hln' · exact fun _ _ => hln'.map fun _ _ => mul_left_cancel · intros i j hi hj hij x hx₁ hx₂ let ⟨f, hf⟩ := List.mem_map.1 hx₁ let ⟨g, hg⟩ := List.mem_map.1 hx₂ have hix : x a = l[i]
α : Type u_1 inst✝ : DecidableEq α a : α l : List α hl : (a :: l).Nodup hl' : l.Nodup hln' : (permsOfList l).Nodup hmeml : ∀ {f : Equiv.Perm α}, f ∈ permsOfList l → f a = a f : Equiv.Perm α hf₁ : f ∈ permsOfList l hf₂ : f ∈ flatMap (fun b => List.map (fun f => Equiv.swap a b * f) (permsOfList l)) l x : α hx : x ∈ l hx' : f ∈ List.map (fun f => Equiv.swap a x * f) (permsOfList l) g : Equiv.Perm α hg : g ∈ permsOfList l ∧ Equiv.swap a x * g = f ⊢ (Equiv.swap a x * g) (g⁻¹ x) = a
simp
no goals
1438bc15e355e5ea
Module.reflection_mul_reflection_zpow_apply_self
Mathlib/LinearAlgebra/Reflection.lean
/-- A formula for $(r_1 r_2)^m x$, where $m$ is an integer. This is the special case of `Module.reflection_mul_reflection_zpow_apply` with $z = x$. -/ lemma reflection_mul_reflection_zpow_apply_self (m : ℤ) (t : R := f y * g x - 2) (ht : t = f y * g x - 2
R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M f g : Dual R M hf : f x = 2 hg : g y = 2 t : optParam R (f y * g x - 2) ht : autoParam (t = f y * g x - 2) _auto✝ S_eval_t_sub_two : ∀ (k : ℤ), Polynomial.eval t (S R (k - 2)) = (f y * g x - 2) * Polynomial.eval t (S R (k - 1)) - Polynomial.eval t (S R k) m : ℕ ih : ((reflection hf * reflection hg) ^ (-↑m)) x = (Polynomial.eval t (S R (-↑m)) + Polynomial.eval t (S R (-↑m - 1))) • x + (Polynomial.eval t (S R (-↑m - 1)) * -g x) • y ⊢ (Polynomial.eval t (S R (-↑m)) + Polynomial.eval t (S R (-↑m - 1))) * (-(g x * 1) - 2 * -(g x * 1)) + Polynomial.eval t (S R (-↑m - 1)) * -g x * (1 - 2 * 1 - f y * -(g x * 1)) = Polynomial.eval t (S R (-1 + -↑m - 1)) * -g x * 1
linear_combination (norm := ring_nf) g x * S_eval_t_sub_two (-m)
no goals
f7647e25720205c5
Algebra.TensorProduct.not_isField_of_transcendental
Mathlib/RingTheory/LinearDisjoint.lean
theorem _root_.Algebra.TensorProduct.not_isField_of_transcendental (A : Type v) [CommRing A] (B : Type w) [CommRing B] [Algebra R A] [Algebra R B] [Module.Flat R A] [Module.Flat R B] [Algebra.Transcendental R A] [Algebra.Transcendental R B] : ¬IsField (A ⊗[R] B) := fun H ↦ by letI := H.toField obtain ⟨a, hta⟩ := ‹Algebra.Transcendental R A› obtain ⟨b, htb⟩ := ‹Algebra.Transcendental R B› have ha : Function.Injective (algebraMap R A) := Algebra.injective_of_transcendental have hb : Function.Injective (algebraMap R B) := Algebra.injective_of_transcendental let fa : A →ₐ[R] A ⊗[R] B := Algebra.TensorProduct.includeLeft let fb : B →ₐ[R] A ⊗[R] B := Algebra.TensorProduct.includeRight have hfa : Function.Injective fa := Algebra.TensorProduct.includeLeft_injective hb have hfb : Function.Injective fb := Algebra.TensorProduct.includeRight_injective ha haveI := hfa.isDomain fa.toRingHom haveI := hfb.isDomain fb.toRingHom haveI := ha.isDomain _ haveI : Module.Flat R (toSubmodule fa.range) := .of_linearEquiv (AlgEquiv.ofInjective fa hfa).symm.toLinearEquiv have key1 : Module.rank R ↥(fa.range ⊓ fb.range) ≤ 1 := (include_range R A B).rank_inf_le_one_of_flat_left let ga : R[X] →ₐ[R] A := aeval a let gb : R[X] →ₐ[R] B := aeval b let gab := fa.comp ga replace hta : Function.Injective ga := transcendental_iff_injective.1 hta replace htb : Function.Injective gb := transcendental_iff_injective.1 htb have htab : Function.Injective gab := hfa.comp hta algebraize_only [ga.toRingHom, gb.toRingHom] let f := Algebra.TensorProduct.mapOfCompatibleSMul R[X] R A B haveI := Algebra.TensorProduct.nontrivial_of_algebraMap_injective_of_isDomain R[X] A B hta htb have hf : Function.Injective f := RingHom.injective _ have key2 : gab.range ≤ fa.range ⊓ fb.range
R : Type u inst✝⁸ : CommRing R A : Type v inst✝⁷ : CommRing A B : Type w inst✝⁶ : CommRing B inst✝⁵ : Algebra R A inst✝⁴ : Algebra R B inst✝³ : Module.Flat R A inst✝² : Module.Flat R B inst✝¹ : Algebra.Transcendental R A inst✝ : Algebra.Transcendental R B H : IsField (A ⊗[R] B) ⊢ False
letI := H.toField
R : Type u inst✝⁸ : CommRing R A : Type v inst✝⁷ : CommRing A B : Type w inst✝⁶ : CommRing B inst✝⁵ : Algebra R A inst✝⁴ : Algebra R B inst✝³ : Module.Flat R A inst✝² : Module.Flat R B inst✝¹ : Algebra.Transcendental R A inst✝ : Algebra.Transcendental R B H : IsField (A ⊗[R] B) this : Field (A ⊗[R] B) := H.toField ⊢ False
ae40762afcd6e13c
summable_indicator_mod_iff_summable
Mathlib/Analysis/SumOverResidueClass.lean
/-- A sequence `f` with values in an additive topological group `R` is summable on the residue class of `k` mod `m` if and only if `f (m*n + k)` is summable. -/ lemma summable_indicator_mod_iff_summable {R : Type*} [AddCommGroup R] [TopologicalSpace R] [IsTopologicalAddGroup R] (m : ℕ) [hm : NeZero m] (k : ℕ) (f : ℕ → R) : Summable ({n : ℕ | (n : ZMod m) = k}.indicator f) ↔ Summable fun n ↦ f (m * n + k)
R : Type u_1 inst✝² : AddCommGroup R inst✝¹ : TopologicalSpace R inst✝ : IsTopologicalAddGroup R m : ℕ hm : NeZero m k : ℕ f : ℕ → R g : ℕ → ℕ := fun n => m * n + k ⊢ Summable ({n | ↑n = ↑k ∧ k ≤ n}.indicator f) ↔ Summable fun n => f (m * n + k)
have hg : Function.Injective g := fun m n hmn ↦ by simpa [g, hm.ne] using hmn
R : Type u_1 inst✝² : AddCommGroup R inst✝¹ : TopologicalSpace R inst✝ : IsTopologicalAddGroup R m : ℕ hm : NeZero m k : ℕ f : ℕ → R g : ℕ → ℕ := fun n => m * n + k hg : Function.Injective g ⊢ Summable ({n | ↑n = ↑k ∧ k ≤ n}.indicator f) ↔ Summable fun n => f (m * n + k)
ea5dd927c9817359
PrimeSpectrum.denseRange_comap_iff_minimalPrimes
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
@[stacks 00FL] lemma denseRange_comap_iff_minimalPrimes : DenseRange (comap f) ↔ ∀ I (h : I ∈ minimalPrimes R), ⟨I, h.1.1⟩ ∈ Set.range (comap f)
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S H : RingHom.ker f ≤ nilradical R I : Ideal R hI : Minimal (fun q => q.IsPrime ∧ ⊥ ≤ q) I ⊢ Minimal (fun q => q.IsPrime ∧ RingHom.ker f ≤ q) I
convert hI using 2 with p
case h.e'_3.h.a R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S H : RingHom.ker f ≤ nilradical R I : Ideal R hI : Minimal (fun q => q.IsPrime ∧ ⊥ ≤ q) I p : Ideal R ⊢ p.IsPrime ∧ RingHom.ker f ≤ p ↔ p.IsPrime ∧ ⊥ ≤ p
ee79b196a5fb714f
Ideal.subset_union_prime'
Mathlib/RingTheory/Ideal/Operations.lean
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι} (hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} : ((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
ι : Type u_1 R : Type u inst✝ : CommRing R f : ι → Ideal R I : Ideal R n : ℕ ih : ∀ {s : Finset ι} {a b : ι}, (∀ i ∈ s, (f i).IsPrime) → s.card = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i a b i j : ι hfji : f j ≤ f i u : Finset ι hju : j ∉ u hit : i ∉ insert j u hn : (insert j u).card = n h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i (insert j u)), ↑(f i_1) hp : (f i).IsPrime ∧ (f j).IsPrime ∧ ∀ x ∈ u, (f x).IsPrime hjt : j ∈ insert j u ⊢ (f i).IsPrime ∧ ∀ x ∈ u, (f x).IsPrime
exact ⟨hp.1, hp.2.2⟩
no goals
fa41770a7d2d9fd9
ProbabilityTheory.variance_le_sub_mul_sub
Mathlib/Probability/Variance.lean
/-- **The Bhatia-Davis inequality on variance** The variance of a random variable `X` satisfying `a ≤ X ≤ b` almost everywhere is at most `(b - 𝔼 X) * (𝔼 X - a)`. -/ lemma variance_le_sub_mul_sub [IsProbabilityMeasure μ] {a b : ℝ} {X : Ω → ℝ} (h : ∀ᵐ ω ∂μ, X ω ∈ Set.Icc a b) (hX : AEMeasurable X μ) : variance X μ ≤ (b - μ[X]) * (μ[X] - a)
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ a b : ℝ X : Ω → ℝ h : ∀ᵐ (ω : Ω) ∂μ, X ω ∈ Set.Icc a b hX : AEMeasurable X μ ha : ∀ᵐ (ω : Ω) ∂μ, a ≤ X ω hb : ∀ᵐ (ω : Ω) ∂μ, X ω ≤ b hX_int₂ : Integrable (fun ω => -X ω ^ 2) μ hX_int₁ : Integrable (fun ω => (a + b) * X ω) μ h0 : 0 ≤ -∫ (x : Ω), (X ^ 2) x ∂μ + (a + b) * ∫ (x : Ω), X x ∂μ - a * b ⊢ ∫ (x : Ω), (X ^ 2) x ∂μ - (∫ (x : Ω), X x ∂μ) ^ 2 ≤ (a + b) * ∫ (x : Ω), X x ∂μ - a * b - (∫ (x : Ω), X x ∂μ) ^ 2
linarith
no goals
d31be09bb6b21fe3
CategoryTheory.NonPreadditiveAbelian.σ_comp
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
theorem σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = Limits.prod.map f f ≫ σ
case mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C f : X ⟶ Y g : (CokernelCofork.ofπ σ ⋯).pt ⟶ Y hg : Cofork.π (CokernelCofork.ofπ σ ⋯) ≫ g = prod.map f f ≫ σ ⊢ σ ≫ f = prod.map f f ≫ σ
suffices hfg : f = g by rw [← hg, Cofork.π_ofπ, hfg]
case mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C f : X ⟶ Y g : (CokernelCofork.ofπ σ ⋯).pt ⟶ Y hg : Cofork.π (CokernelCofork.ofπ σ ⋯) ≫ g = prod.map f f ≫ σ ⊢ f = g
b7d15c6a05369a0f
CoxeterSystem.getD_leftInvSeq_mul_wordProd
Mathlib/GroupTheory/Coxeter/Inversion.lean
theorem getD_leftInvSeq_mul_wordProd (ω : List B) (j : ℕ) : ((lis ω).getD j 1) * π ω = π (ω.eraseIdx j)
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B j : ℕ ⊢ cs.wordProd (take j ω) * (Option.map cs.simple ω[j]?).getD 1 * (cs.wordProd (take j ω))⁻¹ * cs.wordProd (take (j + 1) ω ++ drop (j + 1) ω) = cs.wordProd (take j ω ++ drop (j + 1) ω)
rw [take_succ]
B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W ω : List B j : ℕ ⊢ cs.wordProd (take j ω) * (Option.map cs.simple ω[j]?).getD 1 * (cs.wordProd (take j ω))⁻¹ * cs.wordProd (take j ω ++ ω[j]?.toList ++ drop (j + 1) ω) = cs.wordProd (take j ω ++ drop (j + 1) ω)
5b8cc6ccfadd733b
HomologicalComplex.mapBifunctor₂₃.d₁_eq
Mathlib/Algebra/Homology/BifunctorAssociator.lean
lemma d₁_eq {i₁ i₁' : ι₁} (h₁ : c₁.Rel i₁ i₁') (i₂ : ι₂) (i₃ : ι₃) (j : ι₄) : d₁ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j = (ComplexShape.ε₁ c₁ c₂₃ c₄ (i₁, ComplexShape.π c₂ c₃ c₂₃ (i₂, i₃))) • ((F.map (K₁.d i₁ i₁'))).app ((G₂₃.obj (K₂.X i₂)).obj (K₃.X i₃)) ≫ ιOrZero F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ _ i₂ i₃ j
C₁ : Type u_1 C₂ : Type u_2 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝²² : Category.{u_15, u_1} C₁ inst✝²¹ : Category.{u_17, u_2} C₂ inst✝²⁰ : Category.{u_16, u_5} C₃ inst✝¹⁹ : Category.{u_13, u_6} C₄ inst✝¹⁸ : Category.{u_14, u_4} C₂₃ inst✝¹⁷ : HasZeroMorphisms C₁ inst✝¹⁶ : HasZeroMorphisms C₂ inst✝¹⁵ : HasZeroMorphisms C₃ inst✝¹⁴ : Preadditive C₂₃ inst✝¹³ : Preadditive C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝¹² : G₂₃.PreservesZeroMorphisms inst✝¹¹ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁰ : F.PreservesZeroMorphisms inst✝⁹ : ∀ (X₁ : C₁), (F.obj X₁).Additive ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝⁸ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝⁷ : TotalComplexShape c₁ c₂ c₁₂ inst✝⁶ : TotalComplexShape c₁₂ c₃ c₄ inst✝⁵ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁴ : TotalComplexShape c₁ c₂₃ c₄ inst✝³ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝² : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝¹ : DecidableEq ι₂₃ inst✝ : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ j : ι₄ h₁ : c₁.Rel i₁ (c₁.next i₁) ⊢ d₁ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j = c₁.ε₁ c₂₃ c₄ (i₁, c₂.π c₃ c₂₃ (i₂, i₃)) • (F.map (K₁.d i₁ (c₁.next i₁))).app ((G₂₃.obj (K₂.X i₂)).obj (K₃.X i₃)) ≫ ιOrZero F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ (c₁.next i₁) i₂ i₃ j
rfl
no goals
717697c3dc2065d9
Subgroup.exists_pow_mem_of_index_ne_zero
Mathlib/GroupTheory/Index.lean
@[to_additive] lemma exists_pow_mem_of_index_ne_zero (h : H.index ≠ 0) (a : G) : ∃ n, 0 < n ∧ n ≤ H.index ∧ a ^ n ∈ H
G : Type u_1 inst✝ : Group G H : Subgroup G h : H.index ≠ 0 a : G hc : ∀ (x x_1 : ℕ), ¬(x ≠ x_1 ∧ x ≤ H.index ∧ x_1 ≤ H.index ∧ ↑(a ^ x_1) = ↑(a ^ x)) f : ↑(Set.Icc 0 H.index) → G ⧸ H := fun n => ↑(a ^ ↑n) hf : Function.Injective f this : Finite (G ⧸ H) ⊢ False
have hcard := Finite.card_le_of_injective f hf
G : Type u_1 inst✝ : Group G H : Subgroup G h : H.index ≠ 0 a : G hc : ∀ (x x_1 : ℕ), ¬(x ≠ x_1 ∧ x ≤ H.index ∧ x_1 ≤ H.index ∧ ↑(a ^ x_1) = ↑(a ^ x)) f : ↑(Set.Icc 0 H.index) → G ⧸ H := fun n => ↑(a ^ ↑n) hf : Function.Injective f this : Finite (G ⧸ H) hcard : Nat.card ↑(Set.Icc 0 H.index) ≤ Nat.card (G ⧸ H) ⊢ False
e678927c1f4a5913
SzemerediRegularity.sum_density_div_card_le_density_add_eps
Mathlib/Combinatorics/SimpleGraph/Regularity/Chunk.lean
theorem sum_density_div_card_le_density_add_eps [Nonempty α] (hPα : #P.parts * 16 ^ #P.parts ≤ card α) (hPε : ↑100 ≤ ↑4 ^ #P.parts * ε ^ 5) (hε₁ : ε ≤ 1) {hU : U ∈ P.parts} {hV : V ∈ P.parts} {A B : Finset (Finset α)} (hA : A ⊆ (chunk hP G ε hU).parts) (hB : B ⊆ (chunk hP G ε hV).parts) : (∑ ab ∈ A.product B, G.edgeDensity ab.1 ab.2 : ℝ) / (#A * #B) ≤ G.edgeDensity (A.biUnion id) (B.biUnion id) + ε ^ 5 / 49
α : Type u_1 inst✝³ : Fintype α inst✝² : DecidableEq α P : Finpartition univ hP : P.IsEquipartition G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ U V : Finset α inst✝ : Nonempty α hPα : #P.parts * 16 ^ #P.parts ≤ Fintype.card α hPε : 100 ≤ 4 ^ #P.parts * ε ^ 5 hε₁ : ε ≤ 1 hU : U ∈ P.parts hV : V ∈ P.parts A B : Finset (Finset α) hA : A ⊆ (chunk hP G ε hU).parts hB : B ⊆ (chunk hP G ε hV).parts ⊢ ↑(G.edgeDensity (A.biUnion id) (B.biUnion id)) ≤ 1
exact mod_cast G.edgeDensity_le_one _ _
no goals
15003bb13a21ffca
Nat.testBit_bit_succ
Mathlib/Data/Nat/Bits.lean
lemma testBit_bit_succ (m b n) : testBit (bit b n) (succ m) = testBit n m
m : ℕ b : Bool n : ℕ ⊢ (bit b n).testBit m.succ = n.testBit m
have : bodd (((bit b n) >>> 1) >>> m) = bodd (n >>> m) := by simp only [shiftRight_eq_div_pow] simp [← div2_val, div2_bit]
m : ℕ b : Bool n : ℕ this : (bit b n >>> 1 >>> m).bodd = (n >>> m).bodd ⊢ (bit b n).testBit m.succ = n.testBit m
de09e232ea3ace89
FractionalIdeal.div_spanSingleton
Mathlib/RingTheory/FractionalIdeal/Operations.lean
theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
case neg.a R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 ⊢ J / spanSingleton R₁⁰ d ≤ 1 / spanSingleton R₁⁰ d * J
intro x hx
case neg.a R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : ¬d = 0 h_spand : spanSingleton R₁⁰ d ≠ 0 x : K hx : x ∈ (fun a => ↑a) (J / spanSingleton R₁⁰ d) ⊢ x ∈ (fun a => ↑a) (1 / spanSingleton R₁⁰ d * J)
3a4f3cf63940a3cf
FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1
Mathlib/Analysis/Analytic/Inverse.lean
theorem radius_right_inv_pos_of_radius_pos_aux1 (n : ℕ) (p : ℕ → ℝ) (hp : ∀ k, 0 ≤ p k) {r a : ℝ} (hr : 0 ≤ r) (ha : 0 ≤ a) : ∑ k ∈ Ico 2 (n + 1), a ^ k * ∑ c ∈ ({c | 1 < Composition.length c}.toFinset : Finset (Composition k)), r ^ c.length * ∏ j, p (c.blocksFun j) ≤ ∑ j ∈ Ico 2 (n + 1), r ^ j * (∑ k ∈ Ico 1 n, a ^ k * p k) ^ j := calc ∑ k ∈ Ico 2 (n + 1), a ^ k * ∑ c ∈ ({c | 1 < Composition.length c}.toFinset : Finset (Composition k)), r ^ c.length * ∏ j, p (c.blocksFun j) = ∑ k ∈ Ico 2 (n + 1), ∑ c ∈ ({c | 1 < Composition.length c}.toFinset : Finset (Composition k)), ∏ j, r * (a ^ c.blocksFun j * p (c.blocksFun j))
case a n : ℕ p : ℕ → ℝ hp : ∀ (k : ℕ), 0 ≤ p k r a : ℝ hr : 0 ≤ r ha : 0 ≤ a j : ℕ a✝ : j ∈ Ico 2 (n + 1) ⊢ ∑ s ∈ Fintype.piFinset fun x => Ico 1 n, ∏ j : Fin j, r * (a ^ s j * p (s j)) = r ^ j * (∑ k ∈ Ico 1 n, a ^ k * p k) ^ j
simp only [← @MultilinearMap.mkPiAlgebra_apply ℝ (Fin j) _ ℝ]
case a n : ℕ p : ℕ → ℝ hp : ∀ (k : ℕ), 0 ≤ p k r a : ℝ hr : 0 ≤ r ha : 0 ≤ a j : ℕ a✝ : j ∈ Ico 2 (n + 1) ⊢ (∑ x ∈ Fintype.piFinset fun x => Ico 1 n, (MultilinearMap.mkPiAlgebra ℝ (Fin j) ℝ) fun j => r * (a ^ x j * p (x j))) = r ^ j * (∑ k ∈ Ico 1 n, a ^ k * p k) ^ j
5c2dd9dd9e093d01
Polynomial.exists_primitive_lcm_of_isPrimitive
Mathlib/RingTheory/Polynomial/Content.lean
theorem exists_primitive_lcm_of_isPrimitive {p q : R[X]} (hp : p.IsPrimitive) (hq : q.IsPrimitive) : ∃ r : R[X], r.IsPrimitive ∧ ∀ s : R[X], p ∣ s ∧ q ∣ s ↔ r ∣ s
case pos R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p q : R[X] hp : p.IsPrimitive hq : q.IsPrimitive h : ∃ n r, r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r r : R[X] rdeg : r.natDegree = Nat.find h rprim : IsUnit (r.coeff 0) pr : p ∣ r qr : q ∣ r con : ∃ n s, s.natDegree = n ∧ (p ∣ s ∧ q ∣ s) ∧ ¬r ∣ s s : R[X] sdeg : s.natDegree = Nat.find con rs : ¬r ∣ s ps : p ∣ s qs : q ∣ s s0 : s ≠ 0 hs : r.natDegree ≤ s.natDegree sC : s.natDegree ≤ 0 ⊢ False
rw [eq_C_of_natDegree_le_zero (le_trans hs sC), ← dvd_content_iff_C_dvd] at rs
case pos R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p q : R[X] hp : p.IsPrimitive hq : q.IsPrimitive h : ∃ n r, r.natDegree = n ∧ r.IsPrimitive ∧ p ∣ r ∧ q ∣ r r : R[X] rdeg : r.natDegree = Nat.find h rprim : IsUnit (r.coeff 0) pr : p ∣ r qr : q ∣ r con : ∃ n s, s.natDegree = n ∧ (p ∣ s ∧ q ∣ s) ∧ ¬r ∣ s s : R[X] sdeg : s.natDegree = Nat.find con rs : ¬r.coeff 0 ∣ s.content ps : p ∣ s qs : q ∣ s s0 : s ≠ 0 hs : r.natDegree ≤ s.natDegree sC : s.natDegree ≤ 0 ⊢ False
806b283d42e7cf3d
BoxIntegral.Integrable.tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity
Mathlib/Analysis/BoxIntegral/Basic.lean
theorem tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity (h : Integrable I l f vol) : Tendsto (fun π : TaggedPrepartition I × TaggedPrepartition I => (integralSum f vol π.1, integralSum f vol π.2)) ((l.toFilter I ×ˢ l.toFilter I) ⊓ 𝓟 {π | π.1.iUnion = π.2.iUnion}) (𝓤 F)
ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F h : Integrable I l f vol ε : ℝ ε0 : 0 < ε / 2 ⊢ ∃ ia, (∀ (c : ℝ≥0), l.RCond (ia c)) ∧ ∀ x ∈ {π | ∃ c, l.MemBaseSet I c (ia c) π} ×ˢ {π | ∃ c, l.MemBaseSet I c (ia c) π} ∩ {π | π.1.iUnion = π.2.iUnion}, (integralSum f vol x.1, integralSum f vol x.2) ∈ {p | dist p.1 p.2 ≤ ε}
use h.convergenceR (ε / 2), h.convergenceR_cond (ε / 2)
case right ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I : Box ι inst✝ : Fintype ι l : IntegrationParams f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F h : Integrable I l f vol ε : ℝ ε0 : 0 < ε / 2 ⊢ ∀ x ∈ {π | ∃ c, l.MemBaseSet I c (h.convergenceR (ε / 2) c) π} ×ˢ {π | ∃ c, l.MemBaseSet I c (h.convergenceR (ε / 2) c) π} ∩ {π | π.1.iUnion = π.2.iUnion}, (integralSum f vol x.1, integralSum f vol x.2) ∈ {p | dist p.1 p.2 ≤ ε}
08a8f06d71e014c5
Asymptotics.isBigOWith_iff_exists_eq_mul
Mathlib/Analysis/Asymptotics/Lemmas.lean
theorem isBigOWith_iff_exists_eq_mul (hc : 0 ≤ c) : IsBigOWith c l u v ↔ ∃ φ : α → 𝕜, (∀ᶠ x in l, ‖φ x‖ ≤ c) ∧ u =ᶠ[l] φ * v
case mpr α : Type u_1 𝕜 : Type u_15 inst✝ : NormedDivisionRing 𝕜 c : ℝ l : Filter α u v : α → 𝕜 hc : 0 ≤ c ⊢ (∃ φ, (∀ᶠ (x : α) in l, ‖φ x‖ ≤ c) ∧ u =ᶠ[l] φ * v) → IsBigOWith c l u v
rintro ⟨φ, hφ, h⟩
case mpr.intro.intro α : Type u_1 𝕜 : Type u_15 inst✝ : NormedDivisionRing 𝕜 c : ℝ l : Filter α u v : α → 𝕜 hc : 0 ≤ c φ : α → 𝕜 hφ : ∀ᶠ (x : α) in l, ‖φ x‖ ≤ c h : u =ᶠ[l] φ * v ⊢ IsBigOWith c l u v
c2c8aee6ef1774de
Polynomial.Gal.mul_splits_in_splittingField_of_mul
Mathlib/FieldTheory/PolynomialGaloisGroup.lean
theorem mul_splits_in_splittingField_of_mul {p₁ q₁ p₂ q₂ : F[X]} (hq₁ : q₁ ≠ 0) (hq₂ : q₂ ≠ 0) (h₁ : p₁.Splits (algebraMap F q₁.SplittingField)) (h₂ : p₂.Splits (algebraMap F q₂.SplittingField)) : (p₁ * p₂).Splits (algebraMap F (q₁ * q₂).SplittingField)
case hf F : Type u_1 inst✝ : Field F p₁ q₁ p₂ q₂ : F[X] hq₁ : q₁ ≠ 0 hq₂ : q₂ ≠ 0 h₁ : Splits (algebraMap F q₁.SplittingField) p₁ h₂ : Splits (algebraMap F q₂.SplittingField) p₂ ⊢ Splits ((↑(SplittingField.lift q₁ ⋯)).comp (algebraMap F q₁.SplittingField)) p₁
exact splits_comp_of_splits _ _ h₁
no goals
12f0bbd6ecef4d4b
LinearMap.commute_pow_left_of_commute
Mathlib/Algebra/Module/LinearMap/End.lean
theorem commute_pow_left_of_commute [Semiring R₂] [AddCommMonoid M₂] [Module R₂ M₂] {σ₁₂ : R →+* R₂} {f : M →ₛₗ[σ₁₂] M₂} {g : Module.End R M} {g₂ : Module.End R₂ M₂} (h : g₂.comp f = f.comp g) (k : ℕ) : (g₂ ^ k).comp f = f.comp (g ^ k)
case zero R : Type u_1 R₂ : Type u_2 M : Type u_4 M₂ : Type u_6 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Semiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ σ₁₂ : R →+* R₂ f : M →ₛₗ[σ₁₂] M₂ g : Module.End R M g₂ : Module.End R₂ M₂ h : comp g₂ f = f.comp g ⊢ comp (g₂ ^ 0) f = f.comp (g ^ 0)
simp only [pow_zero, one_eq_id, id_comp, comp_id]
no goals
b5769a82a32d21d9
AnalyticAt.apply_eq_zero_of_order_toNat_ne_zero
Mathlib/Analysis/Analytic/Order.lean
/-- An analytic function vanishes at a point if its order is nonzero when converted to ℕ. -/ lemma apply_eq_zero_of_order_toNat_ne_zero (hf : AnalyticAt 𝕜 f z₀) : hf.order.toNat ≠ 0 → f z₀ = 0
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → E z₀ : 𝕜 hf : AnalyticAt 𝕜 f z₀ ⊢ f z₀ = 0 → ¬hf.order = ⊤ → f z₀ = 0
tauto
no goals
9dcb2d5157a801f6
Finset.exists_ne_one_of_prod_ne_one
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean
theorem exists_ne_one_of_prod_ne_one (h : ∏ x ∈ s, f x ≠ 1) : ∃ a ∈ s, f a ≠ 1
α : Type u_3 β : Type u_4 s : Finset α f : α → β inst✝ : CommMonoid β h : ∏ x ∈ s, f x ≠ 1 ⊢ ∃ a ∈ s, f a ≠ 1
rw [← prod_filter_ne_one] at h
α : Type u_3 β : Type u_4 s : Finset α f : α → β inst✝ : CommMonoid β h : ∏ x ∈ filter (fun x => f x ≠ 1) s, f x ≠ 1 ⊢ ∃ a ∈ s, f a ≠ 1
305c9d27d8422aed
NonUnitalNonAssocRing.ext
Mathlib/Algebra/Ring/Ext.lean
theorem ext ⦃inst₁ inst₂ : NonUnitalNonAssocRing R⦄ (h_add : local_hAdd[R, inst₁] = local_hAdd[R, inst₂]) (h_mul : local_hMul[R, inst₁] = local_hMul[R, inst₂]) : inst₁ = inst₂
case mk.mk.mk.mk.e_toAddCommGroup R : Type u toAddCommGroup✝¹ : AddCommGroup R mul✝¹ : R → R → R left_distrib✝¹ : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib✝¹ : ∀ (a b c : R), (a + b) * c = a * c + b * c zero_mul✝¹ : ∀ (a : R), 0 * a = 0 mul_zero✝¹ : ∀ (a : R), a * 0 = 0 toAddCommGroup✝ : AddCommGroup R mul✝ : R → R → R left_distrib✝ : ∀ (a b c : R), a * (b + c) = a * b + a * c right_distrib✝ : ∀ (a b c : R), (a + b) * c = a * c + b * c zero_mul✝ : ∀ (a : R), 0 * a = 0 mul_zero✝ : ∀ (a : R), a * 0 = 0 h_add : HAdd.hAdd = HAdd.hAdd h_mul : HMul.hMul = HMul.hMul ⊢ toAddCommGroup✝¹ = toAddCommGroup✝
(ext : 1; assumption)
no goals
c47255c0f38a615d
Subgroup.mem_iSup_of_directed
Mathlib/Algebra/Group/Subgroup/Lattice.lean
theorem mem_iSup_of_directed {ι} [hι : Nonempty ι] {K : ι → Subgroup G} (hK : Directed (· ≤ ·) K) {x : G} : x ∈ (iSup K : Subgroup G) ↔ ∃ i, x ∈ K i
case refine_2.intro.intro.intro.intro G : Type u_1 inst✝ : Group G ι : Sort u_2 hι : Nonempty ι K : ι → Subgroup G hK : Directed (fun x1 x2 => x1 ≤ x2) K x✝ : G hx : x✝ ∈ closure (⋃ i, ↑(K i)) x y : G hx✝ : x ∈ closure (⋃ i, ↑(K i)) hy✝ : y ∈ closure (⋃ i, ↑(K i)) i : ι hi : x ∈ K i j : ι hj : y ∈ K j k : ι hki : K i ≤ K k hkj : K j ≤ K k ⊢ ∃ i, x * y ∈ K i
exact ⟨k, mul_mem (hki hi) (hkj hj)⟩
no goals
313a31a341bc01d2
CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app
Mathlib/CategoryTheory/Monad/Comonadicity.lean
theorem comparisonAdjunction_unit_app [∀ A : adj.toComonad.Coalgebra, HasEqualizer (G.map A.a) (adj.unit.app (G.obj A.A))] (B : C) : (comparisonAdjunction adj).unit.app B = limit.lift _ (unitFork adj B)
case h C : Type u₁ D : Type u₂ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₁, u₂} D F : C ⥤ D G : D ⥤ C adj : F ⊣ G inst✝ : ∀ (A : adj.toComonad.Coalgebra), HasEqualizer (G.map A.a) (adj.unit.app (G.obj A.A)) B : C ⊢ (comparisonAdjunction adj).unit.app B ≫ equalizer.ι (G.map ((comparison adj).obj B).a) (adj.unit.app (G.toPrefunctor.1 ((comparison adj).obj B).A)) = limit.lift (parallelPair (G.map (F.map (adj.unit.app B))) (adj.unit.app (G.obj (F.obj B)))) (unitFork adj B) ≫ equalizer.ι (G.map ((comparison adj).obj B).a) (adj.unit.app (G.toPrefunctor.1 ((comparison adj).obj B).A))
change equalizer.lift ((adj.homEquiv B _) (𝟙 _)) _ ≫ equalizer.ι _ _ = equalizer.lift _ _ ≫ equalizer.ι _ _
case h C : Type u₁ D : Type u₂ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₁, u₂} D F : C ⥤ D G : D ⥤ C adj : F ⊣ G inst✝ : ∀ (A : adj.toComonad.Coalgebra), HasEqualizer (G.map A.a) (adj.unit.app (G.obj A.A)) B : C ⊢ equalizer.lift ((adj.homEquiv B (F.obj B)) (𝟙 (F.obj B))) ⋯ ≫ equalizer.ι (G.map ((comparison adj).obj B).a) (adj.unit.app (G.toPrefunctor.1 ((comparison adj).obj B).A)) = equalizer.lift (adj.unit.app B) ⋯ ≫ equalizer.ι (G.map (F.map (adj.unit.app B))) (adj.unit.app (G.obj (F.obj B)))
56285f6d00a0cc25
CategoryTheory.Grothendieck.eqToHom_eq
Mathlib/CategoryTheory/Grothendieck.lean
lemma eqToHom_eq {X Y : Grothendieck F} (hF : X = Y) : eqToHom hF = { base := eqToHom (by subst hF; rfl), fiber := eqToHom (by subst hF; simp) }
C : Type u inst✝¹ : Category.{v, u} C D : Type u₁ inst✝ : Category.{v₁, u₁} D F : C ⥤ Cat X : Grothendieck F ⊢ (F.map (eqToHom ⋯)).obj X.fiber = X.fiber
simp
no goals
59bdc65a2b8ed05d
xInTermsOfW_vars_aux
Mathlib/RingTheory/WittVector/WittPolynomial.lean
theorem xInTermsOfW_vars_aux (n : ℕ) : n ∈ (xInTermsOfW p ℚ n).vars ∧ (xInTermsOfW p ℚ n).vars ⊆ range (n + 1)
p : ℕ hp : Fact (Nat.Prime p) n : ℕ ⊢ n ∈ (xInTermsOfW p ℚ n).vars ∧ (xInTermsOfW p ℚ n).vars ⊆ range (n + 1)
induction n using Nat.strongRecOn with | ind n ih => ?_
case ind p : ℕ hp : Fact (Nat.Prime p) n : ℕ ih : ∀ m < n, m ∈ (xInTermsOfW p ℚ m).vars ∧ (xInTermsOfW p ℚ m).vars ⊆ range (m + 1) ⊢ n ∈ (xInTermsOfW p ℚ n).vars ∧ (xInTermsOfW p ℚ n).vars ⊆ range (n + 1)
6a6d3bb57935e668
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.mem_of_insertRupUnits
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/Lemmas.lean
theorem mem_of_insertRupUnits {n : Nat} (f : DefaultFormula n) (units : CNF.Clause (PosFin n)) (c : DefaultClause n) : c ∈ toList (insertRupUnits f units).1 → c ∈ units.map Clause.unit ∨ c ∈ toList f
case isFalse.inr n : Nat f : DefaultFormula n units : CNF.Clause (PosFin n) c : DefaultClause n h : some c ∈ f.clauses.toList ∨ (∃ a, (a, false) ∈ (List.foldl insertUnit (f.rupUnits, f.assignments, false) units).fst.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, false) = c ∨ (a, true) ∈ (List.foldl insertUnit (f.rupUnits, f.assignments, false) units).fst.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, true) = c) ∨ ∃ a, (a, false) ∈ f.ratUnits.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, false) = c ∨ (a, true) ∈ f.ratUnits.toList ∧ Std.Tactic.BVDecide.LRAT.Internal.DefaultClause.unit (a, true) = c hb : ∀ (l : Literal (PosFin n)), l ∈ (f.rupUnits, f.assignments, false).fst.toList → l ∈ f.rupUnits.toList ∨ l ∈ units acc : Array (Literal (PosFin n)) × Array Assignment × Bool ih : ∀ (l : Literal (PosFin n)), l ∈ acc.fst.toList → l ∈ f.rupUnits.toList ∨ l ∈ units unit : Literal (PosFin n) unit_in_units : unit ∈ units l : Literal (PosFin n) h✝ : ¬hasAssignment unit.snd acc.2.fst[unit.fst.val]! = true l_eq_unit : l = (unit.fst, unit.snd) ⊢ (unit.fst, unit.snd) ∈ f.rupUnits.toList ∨ (unit.fst, unit.snd) ∈ units
exact Or.inr unit_in_units
no goals
d2213faecfa0fcb1
MeasureTheory.norm_integral_sub_setIntegral_le
Mathlib/MeasureTheory/Integral/SetIntegral.lean
theorem norm_integral_sub_setIntegral_le [IsFiniteMeasure μ] {C : ℝ} (hf : ∀ᵐ (x : X) ∂μ, ‖f x‖ ≤ C) {s : Set X} (hs : MeasurableSet s) (hf1 : Integrable f μ) : ‖∫ (x : X), f x ∂μ - ∫ x in s, f x ∂μ‖ ≤ (μ sᶜ).toReal * C
X : Type u_1 E : Type u_3 mX : MeasurableSpace X inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E f : X → E μ : Measure X inst✝ : IsFiniteMeasure μ C : ℝ hf : ∀ᵐ (x : X) ∂μ, ‖f x‖ ≤ C s : Set X hs : MeasurableSet s hf1 : Integrable f μ h0 : ∫ (x : X), f x ∂μ - ∫ (x : X) in s, f x ∂μ = ∫ (x : X) in sᶜ, f x ∂μ h1 : ∫ (x : X) in sᶜ, ‖f x‖ ∂μ ≤ ∫ (x : X) in sᶜ, C ∂μ h2 : ∫ (x : X) in sᶜ, C ∂μ = (μ sᶜ).toReal * C ⊢ ‖∫ (x : X) in sᶜ, f x ∂μ‖ ≤ ∫ (x : X) in sᶜ, C ∂μ
exact le_trans (norm_integral_le_integral_norm f) h1
no goals
4ebc5dd21284b746
Filter.Tendsto.const_mul_atTop'
Mathlib/Order/Filter/AtTopBot/Archimedean.lean
theorem Tendsto.const_mul_atTop' (hr : 0 < r) (hf : Tendsto f l atTop) : Tendsto (fun x => r * f x) l atTop
α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => r * f x) l atTop
refine tendsto_atTop.2 fun b => ?_
α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R ⊢ ∀ᶠ (a : α) in l, b ≤ r * f a
ea722137e0e97e5b
ZMod.neg_eq_self_mod_two
Mathlib/Data/ZMod/Basic.lean
theorem neg_eq_self_mod_two (a : ZMod 2) : -a = a
case «1».h ⊢ ↑(-1) = 1
rfl
no goals
98e52898ae8fbe55
PadicSeq.norm_mul
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem norm_mul (f g : PadicSeq p) : (f * g).norm = f.norm * g.norm
p : ℕ hp : Fact (Nat.Prime p) f g : PadicSeq p hf : ¬f ≈ 0 hg : ¬g ≈ 0 ⊢ (if hf : f * g ≈ 0 then 0 else padicNorm p (↑(f * g) (stationaryPoint hf))) = (if hf : f ≈ 0 then 0 else padicNorm p (↑f (stationaryPoint hf))) * if hf : g ≈ 0 then 0 else padicNorm p (↑g (stationaryPoint hf))
have hfg := mul_not_equiv_zero hf hg
p : ℕ hp : Fact (Nat.Prime p) f g : PadicSeq p hf : ¬f ≈ 0 hg : ¬g ≈ 0 hfg : ¬f * g ≈ 0 ⊢ (if hf : f * g ≈ 0 then 0 else padicNorm p (↑(f * g) (stationaryPoint hf))) = (if hf : f ≈ 0 then 0 else padicNorm p (↑f (stationaryPoint hf))) * if hf : g ≈ 0 then 0 else padicNorm p (↑g (stationaryPoint hf))
5d67169ade4a773a
μ_limsup_le_one
Mathlib/Analysis/Normed/Ring/SmoothingSeminorm.lean
theorem μ_limsup_le_one {s : ℕ → ℕ} (hs_le : ∀ n : ℕ, s n ≤ n) {x : R} {ψ : ℕ → ℕ} (hψ_lim : Tendsto ((fun n : ℕ => ↑(s n) / (n : ℝ)) ∘ ψ) atTop (𝓝 0)) : limsup (fun n : ℕ => μ x ^ ((s (ψ n) : ℝ) * (1 / (ψ n : ℝ)))) atTop ≤ 1
R : Type u_1 inst✝ : CommRing R μ : RingSeminorm R s : ℕ → ℕ hs_le : ∀ (n : ℕ), s n ≤ n x : R ψ : ℕ → ℕ hψ_lim : Tendsto ((fun n => ↑(s n) / ↑n) ∘ ψ) atTop (𝓝 0) c : ℝ hc_bd : ∀ (x_1 : ℝ) (x_2 : ℕ), (∀ (b : ℕ), x_2 ≤ b → μ x ^ (↑(s (ψ b)) * (1 / ↑(ψ b))) ≤ x_1) → c ≤ x_1 hμx : ¬μ x < 1 hμ_lim : ∀ (U : Set ℝ), 1 ∈ U → IsOpen U → ∃ N, ∀ (n : ℕ), N ≤ n → μ x ^ (↑(s (ψ n)) * (1 / ↑(ψ n))) ∈ U ε : ℝ hε : 0 < ε ⊢ 1 ∈ Set.Ioo 0 (1 + ε)
simp only [Set.mem_Ioo, zero_lt_one, lt_add_iff_pos_right, hε, and_self]
no goals
56e579c9d7dd8cf5
BitVec.shiftRight_sub_one_eq_shiftConcat
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem shiftRight_sub_one_eq_shiftConcat (n : BitVec w) (hwn : 0 < wn) : n >>> (wn - 1) = (n >>> wn).shiftConcat (n.getLsbD (wn - 1))
case pred.isFalse.e_i w wn : Nat n : BitVec w hwn : 0 < wn i : Nat h : i < w h✝ : ¬i = 0 ⊢ wn - 1 + i = wn + (i - 1)
omega
no goals
50919c461ed9204f
Nat.finMulAntidiag_one
Mathlib/Algebra/Order/Antidiag/Nat.lean
theorem finMulAntidiag_one {d : ℕ} : finMulAntidiag d 1 = {fun _ => 1}
case h.mpr d : ℕ ⊢ ∏ i : Fin d, (fun x => 1) i = 1 ∧ 1 ≠ 0
simp only [prod_const_one, implies_true, ne_eq, one_ne_zero, not_false_eq_true, and_self]
no goals
7d8f41c0f8c962c2
Real.borel_eq_generateFrom_Iio_rat
Mathlib/MeasureTheory/Constructions/BorelSpace/Real.lean
theorem borel_eq_generateFrom_Iio_rat : borel ℝ = .generateFrom (⋃ a : ℚ, {Iio (a : ℝ)})
⊢ ∀ t ∈ range Iio, MeasurableSet t
rintro _ ⟨a, rfl⟩
case intro a : ℝ ⊢ MeasurableSet (Iio a)
dccc6ba8ada3f3ac
ProbabilityTheory.measure_ge_le_exp_mul_mgf
Mathlib/Probability/Moments/Basic.lean
theorem measure_ge_le_exp_mul_mgf [IsFiniteMeasure μ] (ε : ℝ) (ht : 0 ≤ t) (h_int : Integrable (fun ω => exp (t * X ω)) μ) : (μ {ω | ε ≤ X ω}).toReal ≤ exp (-t * ε) * mgf X μ t
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable (fun ω => rexp (t * X ω)) μ ht_pos : 0 < t ⊢ (rexp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => rexp (t * X ω)) x ∂μ = rexp (-t * ε) * mgf X μ t
rw [neg_mul, exp_neg]
Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable (fun ω => rexp (t * X ω)) μ ht_pos : 0 < t ⊢ (rexp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => rexp (t * X ω)) x ∂μ = (rexp (t * ε))⁻¹ * mgf X μ t
d0b4656bb63daebb
contDiff_iff_ftaylorSeries
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
theorem contDiff_iff_ftaylorSeries {n : ℕ∞} : ContDiff 𝕜 n f ↔ HasFTaylorSeriesUpTo n f (ftaylorSeries 𝕜 f)
case mp 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F n : ℕ∞ ⊢ ContDiff 𝕜 (↑n) f → HasFTaylorSeriesUpTo (↑n) f (ftaylorSeries 𝕜 f)
rw [← contDiffOn_univ, ← hasFTaylorSeriesUpToOn_univ_iff, ← ftaylorSeriesWithin_univ]
case mp 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F n : ℕ∞ ⊢ ContDiffOn 𝕜 (↑n) f univ → HasFTaylorSeriesUpToOn (↑n) f (ftaylorSeriesWithin 𝕜 f univ) univ
0b68cf261d89baaf
Localization.mem_range_mapToFractionRing_iff
Mathlib/RingTheory/Localization/AsSubring.lean
theorem mem_range_mapToFractionRing_iff (B : Type*) [CommRing B] [Algebra A B] [IsLocalization S B] (hS : S ≤ A⁰) (x : K) : x ∈ (mapToFractionRing K S B hS).range ↔ ∃ (a s : A) (hs : s ∈ S), x = IsLocalization.mk' K a ⟨s, hS hs⟩ := ⟨by rintro ⟨x, rfl⟩ obtain ⟨a, s, rfl⟩ := IsLocalization.mk'_surjective S x use a, s, s.2 apply IsLocalization.lift_mk', by rintro ⟨a, s, hs, rfl⟩ use IsLocalization.mk' _ a ⟨s, hs⟩ apply IsLocalization.lift_mk'⟩
case h A : Type u_1 K : Type u_2 inst✝⁶ : CommRing A S : Submonoid A inst✝⁵ : CommRing K inst✝⁴ : Algebra A K inst✝³ : IsFractionRing A K B : Type u_3 inst✝² : CommRing B inst✝¹ : Algebra A B inst✝ : IsLocalization S B hS : S ≤ A⁰ a : A s : ↥S ⊢ (mapToFractionRing K S B hS).toRingHom (IsLocalization.mk' B a s) = IsLocalization.mk' K a ⟨↑s, ⋯⟩
apply IsLocalization.lift_mk'
no goals
68d824c2f8020338
ProbabilityTheory.IndepFun.integral_mul_of_integrable
Mathlib/Probability/Integration.lean
theorem IndepFun.integral_mul_of_integrable (hXY : IndepFun X Y μ) (hX : Integrable X μ) (hY : Integrable Y μ) : integral μ (X * Y) = integral μ X * integral μ Y
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω X Y : Ω → ℝ hXY : IndepFun X Y μ hX : Integrable X μ hY : Integrable Y μ pos : ℝ → ℝ := fun x => x ⊔ 0 neg : ℝ → ℝ := fun x => -x ⊔ 0 posm : Measurable pos negm : Measurable neg ⊢ integral μ (X * Y) = integral μ X * integral μ Y
let Xp := pos ∘ X
Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω X Y : Ω → ℝ hXY : IndepFun X Y μ hX : Integrable X μ hY : Integrable Y μ pos : ℝ → ℝ := fun x => x ⊔ 0 neg : ℝ → ℝ := fun x => -x ⊔ 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X ⊢ integral μ (X * Y) = integral μ X * integral μ Y
1836e7e522e593a2
exteriorPower.ιMulti_span
Mathlib/LinearAlgebra/ExteriorPower/Basic.lean
/-- The image of `exteriorPower.ιMulti` spans `⋀[R]^n M`. -/ lemma ιMulti_span : Submodule.span R (Set.range (ιMulti R n)) = (⊤ : Submodule R (⋀[R]^n M))
case a R : Type u inst✝² : CommRing R n : ℕ M : Type u_1 inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ Submodule.span R (Set.range fun a => (ExteriorAlgebra.ιMulti R n) a) = ⋀[R]^n M
exact ExteriorAlgebra.ιMulti_span_fixedDegree R n
no goals
ad0fa8e0b2d37c81
Array.foldr_induction
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem foldr_induction {as : Array α} (motive : Nat → β → Prop) {init : β} (h0 : motive as.size init) {f : α → β → β} (hf : ∀ i : Fin as.size, ∀ b, motive (i.1 + 1) b → motive i.1 (f as[i] b)) : motive 0 (as.foldr f init)
α : Type u_1 β : Type u_2 as : Array α motive : Nat → β → Prop init : β h0 : motive as.size init f : α → β → β hf : ∀ (i : Fin as.size) (b : β), motive (↑i + 1) b → motive (↑i) (f as[i] b) ⊢ motive 0 (if 0 < as.size then foldrM.fold f as 0 as.size ⋯ init else init).run
split
case isTrue α : Type u_1 β : Type u_2 as : Array α motive : Nat → β → Prop init : β h0 : motive as.size init f : α → β → β hf : ∀ (i : Fin as.size) (b : β), motive (↑i + 1) b → motive (↑i) (f as[i] b) h✝ : 0 < as.size ⊢ motive 0 (foldrM.fold f as 0 as.size ⋯ init).run case isFalse α : Type u_1 β : Type u_2 as : Array α motive : Nat → β → Prop init : β h0 : motive as.size init f : α → β → β hf : ∀ (i : Fin as.size) (b : β), motive (↑i + 1) b → motive (↑i) (f as[i] b) h✝ : ¬0 < as.size ⊢ motive 0 (Id.run init)
36c52e13ffc37b61
Subalgebra.inv_mem_of_root_of_coeff_zero_ne_zero
Mathlib/RingTheory/Algebraic/Basic.lean
theorem Subalgebra.inv_mem_of_root_of_coeff_zero_ne_zero {x : A} {p : K[X]} (aeval_eq : aeval x p = 0) (coeff_zero_ne : p.coeff 0 ≠ 0) : (x⁻¹ : L) ∈ A
K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L A : Subalgebra K L x : ↥A p : K[X] aeval_eq : (aeval x) p = 0 coeff_zero_ne : p.coeff 0 ≠ 0 this : (↑x)⁻¹ = (-p.coeff 0)⁻¹ • ↑((aeval x) p.divX) ⊢ (-p.coeff 0)⁻¹ • ↑((aeval x) p.divX) ∈ A
exact A.smul_mem (aeval x _).2 _
no goals
440f3b608db59a1e
Finset.strictMono_iff_forall_lt_cons
Mathlib/Data/Finset/Interval.lean
/-- A function `f` from `Finset α` is strictly monotone if and only if `f s < f (cons a s ha)` for all `s` and `a ∉ s`. -/ lemma strictMono_iff_forall_lt_cons : StrictMono f ↔ ∀ s ⦃a⦄ ha, f s < f (cons a s ha)
α : Type u_1 β : Type u_2 inst✝ : Preorder β f : Finset α → β ⊢ StrictMono f ↔ ∀ (s : Finset α) ⦃a : α⦄ (ha : a ∉ s), f s < f (cons a s ha)
simp [strictMono_iff_forall_covBy, covBy_iff_exists_cons]
no goals
e995ec8ad786815e
Num.castNum_eq_bitwise
Mathlib/Data/Num/Lemmas.lean
theorem castNum_eq_bitwise {f : Num → Num → Num} {g : Bool → Bool → Bool} (p : PosNum → PosNum → Num) (gff : g false false = false) (f00 : f 0 0 = 0) (f0n : ∀ n, f 0 (pos n) = cond (g false true) (pos n) 0) (fn0 : ∀ n, f (pos n) 0 = cond (g true false) (pos n) 0) (fnn : ∀ m n, f (pos m) (pos n) = p m n) (p11 : p 1 1 = cond (g true true) 1 0) (p1b : ∀ b n, p 1 (PosNum.bit b n) = bit (g true b) (cond (g false true) (pos n) 0)) (pb1 : ∀ a m, p (PosNum.bit a m) 1 = bit (g a true) (cond (g true false) (pos m) 0)) (pbb : ∀ a b m n, p (PosNum.bit a m) (PosNum.bit b n) = bit (g a b) (p m n)) : ∀ m n : Num, (f m n : ℕ) = Nat.bitwise g m n
case pos.pos.bit1.bit1 f : Num → Num → Num g : Bool → Bool → Bool p : PosNum → PosNum → Num gff : g false false = false f00 : f 0 0 = 0 f0n : ∀ (n : PosNum), f 0 (pos n) = bif g false true then pos n else 0 fn0 : ∀ (n : PosNum), f (pos n) 0 = bif g true false then pos n else 0 fnn : ∀ (m n : PosNum), f (pos m) (pos n) = p m n p11 : p 1 1 = bif g true true then 1 else 0 p1b : ∀ (b : Bool) (n : PosNum), p 1 (PosNum.bit b n) = bit (g true b) (bif g false true then pos n else 0) pb1 : ∀ (a : Bool) (m : PosNum), p (PosNum.bit a m) 1 = bit (g a true) (bif g true false then pos m else 0) pbb : ∀ (a b : Bool) (m n : PosNum), p (PosNum.bit a m) (PosNum.bit b n) = bit (g a b) (p m n) this : ∀ (b : Bool) (n : PosNum), (bif b then ↑n else 0) = ↑(bif b then pos n else 0) this' : ∀ (b : Bool) (n : PosNum), ↑(pos (PosNum.bit b n)) = Nat.bit b ↑n m : PosNum IH : ∀ (n : PosNum), ↑(p m n) = Nat.bitwise g ↑(pos m) ↑(pos n) n : PosNum ⊢ ↑(p (PosNum.bit true m) (PosNum.bit true n)) = Nat.bit (g true true) (Nat.bitwise g ↑m ↑n) case pos.pos.bit1.bit0 f : Num → Num → Num g : Bool → Bool → Bool p : PosNum → PosNum → Num gff : g false false = false f00 : f 0 0 = 0 f0n : ∀ (n : PosNum), f 0 (pos n) = bif g false true then pos n else 0 fn0 : ∀ (n : PosNum), f (pos n) 0 = bif g true false then pos n else 0 fnn : ∀ (m n : PosNum), f (pos m) (pos n) = p m n p11 : p 1 1 = bif g true true then 1 else 0 p1b : ∀ (b : Bool) (n : PosNum), p 1 (PosNum.bit b n) = bit (g true b) (bif g false true then pos n else 0) pb1 : ∀ (a : Bool) (m : PosNum), p (PosNum.bit a m) 1 = bit (g a true) (bif g true false then pos m else 0) pbb : ∀ (a b : Bool) (m n : PosNum), p (PosNum.bit a m) (PosNum.bit b n) = bit (g a b) (p m n) this : ∀ (b : Bool) (n : PosNum), (bif b then ↑n else 0) = ↑(bif b then pos n else 0) this' : ∀ (b : Bool) (n : PosNum), ↑(pos (PosNum.bit b n)) = Nat.bit b ↑n m : PosNum IH : ∀ (n : PosNum), ↑(p m n) = Nat.bitwise g ↑(pos m) ↑(pos n) n : PosNum ⊢ ↑(p (PosNum.bit true m) (PosNum.bit false n)) = Nat.bit (g true false) (Nat.bitwise g ↑m ↑n) case pos.pos.bit0.bit1 f : Num → Num → Num g : Bool → Bool → Bool p : PosNum → PosNum → Num gff : g false false = false f00 : f 0 0 = 0 f0n : ∀ (n : PosNum), f 0 (pos n) = bif g false true then pos n else 0 fn0 : ∀ (n : PosNum), f (pos n) 0 = bif g true false then pos n else 0 fnn : ∀ (m n : PosNum), f (pos m) (pos n) = p m n p11 : p 1 1 = bif g true true then 1 else 0 p1b : ∀ (b : Bool) (n : PosNum), p 1 (PosNum.bit b n) = bit (g true b) (bif g false true then pos n else 0) pb1 : ∀ (a : Bool) (m : PosNum), p (PosNum.bit a m) 1 = bit (g a true) (bif g true false then pos m else 0) pbb : ∀ (a b : Bool) (m n : PosNum), p (PosNum.bit a m) (PosNum.bit b n) = bit (g a b) (p m n) this : ∀ (b : Bool) (n : PosNum), (bif b then ↑n else 0) = ↑(bif b then pos n else 0) this' : ∀ (b : Bool) (n : PosNum), ↑(pos (PosNum.bit b n)) = Nat.bit b ↑n m : PosNum IH : ∀ (n : PosNum), ↑(p m n) = Nat.bitwise g ↑(pos m) ↑(pos n) n : PosNum ⊢ ↑(p (PosNum.bit false m) (PosNum.bit true n)) = Nat.bit (g false true) (Nat.bitwise g ↑m ↑n) case pos.pos.bit0.bit0 f : Num → Num → Num g : Bool → Bool → Bool p : PosNum → PosNum → Num gff : g false false = false f00 : f 0 0 = 0 f0n : ∀ (n : PosNum), f 0 (pos n) = bif g false true then pos n else 0 fn0 : ∀ (n : PosNum), f (pos n) 0 = bif g true false then pos n else 0 fnn : ∀ (m n : PosNum), f (pos m) (pos n) = p m n p11 : p 1 1 = bif g true true then 1 else 0 p1b : ∀ (b : Bool) (n : PosNum), p 1 (PosNum.bit b n) = bit (g true b) (bif g false true then pos n else 0) pb1 : ∀ (a : Bool) (m : PosNum), p (PosNum.bit a m) 1 = bit (g a true) (bif g true false then pos m else 0) pbb : ∀ (a b : Bool) (m n : PosNum), p (PosNum.bit a m) (PosNum.bit b n) = bit (g a b) (p m n) this : ∀ (b : Bool) (n : PosNum), (bif b then ↑n else 0) = ↑(bif b then pos n else 0) this' : ∀ (b : Bool) (n : PosNum), ↑(pos (PosNum.bit b n)) = Nat.bit b ↑n m : PosNum IH : ∀ (n : PosNum), ↑(p m n) = Nat.bitwise g ↑(pos m) ↑(pos n) n : PosNum ⊢ ↑(p (PosNum.bit false m) (PosNum.bit false n)) = Nat.bit (g false false) (Nat.bitwise g ↑m ↑n)
all_goals rw [← show ∀ n : PosNum, ↑(p m n) = Nat.bitwise g ↑m ↑n from IH] rw [← bit_to_nat, pbb]
no goals
d446b0d6506ab74a
preconnectedSpace_iff_connectedComponent
Mathlib/Topology/Connected/Basic.lean
theorem preconnectedSpace_iff_connectedComponent : PreconnectedSpace α ↔ ∀ x : α, connectedComponent x = univ
case mpr α : Type u inst✝ : TopologicalSpace α h : ∀ (x : α), connectedComponent x = univ ⊢ PreconnectedSpace α
rcases isEmpty_or_nonempty α with hα | hα
case mpr.inl α : Type u inst✝ : TopologicalSpace α h : ∀ (x : α), connectedComponent x = univ hα : IsEmpty α ⊢ PreconnectedSpace α case mpr.inr α : Type u inst✝ : TopologicalSpace α h : ∀ (x : α), connectedComponent x = univ hα : Nonempty α ⊢ PreconnectedSpace α
e6948b2a1277dd55
toMul_multiset_sum
Mathlib/Algebra/BigOperators/Group/Finset/Defs.lean
theorem toMul_multiset_sum (s : Multiset (Additive α)) : s.sum.toMul = (s.map toMul).prod
α : Type u_3 inst✝ : CommMonoid α s : Multiset (Additive α) ⊢ toMul s.sum = (Multiset.map (⇑toMul) s).prod
simp [toMul, ofMul]
α : Type u_3 inst✝ : CommMonoid α s : Multiset (Additive α) ⊢ s.sum = s.prod
810c6fd03f48374d
CategoryTheory.Triangulated.TStructure.le_monotone
Mathlib/CategoryTheory/Triangulated/TStructure/Basic.lean
lemma le_monotone : Monotone t.le
C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C t : TStructure C H : ℕ → Prop := fun a => ∀ (n : ℤ), t.le n ≤ t.le (n + ↑a) H_zero : H 0 H_one : H 1 H_add : ∀ (a b c : ℕ), a + b = c → H a → H b → H c ⊢ ∀ (a : ℕ), H a
intro a
C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C t : TStructure C H : ℕ → Prop := fun a => ∀ (n : ℤ), t.le n ≤ t.le (n + ↑a) H_zero : H 0 H_one : H 1 H_add : ∀ (a b c : ℕ), a + b = c → H a → H b → H c a : ℕ ⊢ H a
37a0503483d0a558
MDifferentiableWithinAt.clm_apply
Mathlib/Geometry/Manifold/MFDeriv/NormedSpace.lean
theorem MDifferentiableWithinAt.clm_apply {g : M → F₁ →L[𝕜] F₂} {f : M → F₁} {s : Set M} {x : M} (hg : MDifferentiableWithinAt I 𝓘(𝕜, F₁ →L[𝕜] F₂) g s x) (hf : MDifferentiableWithinAt I 𝓘(𝕜, F₁) f s x) : MDifferentiableWithinAt I 𝓘(𝕜, F₂) (fun x => g x (f x)) s x := DifferentiableWithinAt.comp_mdifferentiableWithinAt (t := univ) (g := fun x : (F₁ →L[𝕜] F₂) × F₁ => x.1 x.2) (by apply (Differentiable.differentiableAt _).differentiableWithinAt exact differentiable_fst.clm_apply differentiable_snd) (hg.prod_mk_space hf) (by simp_rw [mapsTo_univ])
𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace 𝕜 E H : Type u_3 inst✝⁶ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace 𝕜 F₁ F₂ : Type u_15 inst✝¹ : NormedAddCommGroup F₂ inst✝ : NormedSpace 𝕜 F₂ g : M → F₁ →L[𝕜] F₂ f : M → F₁ s : Set M x : M hg : MDifferentiableWithinAt I 𝓘(𝕜, F₁ →L[𝕜] F₂) g s x hf : MDifferentiableWithinAt I 𝓘(𝕜, F₁) f s x ⊢ DifferentiableWithinAt 𝕜 (fun x => x.1 x.2) univ (g x, f x)
apply (Differentiable.differentiableAt _).differentiableWithinAt
𝕜 : Type u_1 inst✝⁹ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace 𝕜 E H : Type u_3 inst✝⁶ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M F₁ : Type u_14 inst✝³ : NormedAddCommGroup F₁ inst✝² : NormedSpace 𝕜 F₁ F₂ : Type u_15 inst✝¹ : NormedAddCommGroup F₂ inst✝ : NormedSpace 𝕜 F₂ g : M → F₁ →L[𝕜] F₂ f : M → F₁ s : Set M x : M hg : MDifferentiableWithinAt I 𝓘(𝕜, F₁ →L[𝕜] F₂) g s x hf : MDifferentiableWithinAt I 𝓘(𝕜, F₁) f s x ⊢ Differentiable 𝕜 fun x => x.1 x.2
a547ab9a62b5927c
CoxeterSystem.not_isReduced_alternatingWord
Mathlib/GroupTheory/Coxeter/Length.lean
theorem not_isReduced_alternatingWord (i i' : B) {m : ℕ} (hM : M i i' ≠ 0) (hm : m > M i i') : ¬cs.IsReduced (alternatingWord i i' m)
case refl B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ hM : M.M i i' ≠ 0 ⊢ ¬cs.IsReduced (alternatingWord i i' (M.M i i').succ)
suffices h : ℓ (π (alternatingWord i i' (M i i' + 1))) < M i i' + 1 by unfold IsReduced rw [Nat.succ_eq_add_one, length_alternatingWord] omega
case refl B : Type u_1 W : Type u_2 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ hM : M.M i i' ≠ 0 ⊢ cs.length (cs.wordProd (alternatingWord i i' (M.M i i' + 1))) < M.M i i' + 1
f64124f674aa1270
lipschitzGroup.conjAct_smul_ι_mem_range_ι
Mathlib/LinearAlgebra/CliffordAlgebra/SpinGroup.lean
theorem conjAct_smul_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : x ∈ lipschitzGroup Q) [Invertible (2 : R)] (m : M) : ConjAct.toConjAct x • ι Q m ∈ LinearMap.range (ι Q)
R : Type u_1 inst✝³ : CommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M Q : QuadraticForm R M x : (CliffordAlgebra Q)ˣ hx : x ∈ lipschitzGroup Q inst✝ : Invertible 2 m : M ⊢ ConjAct.toConjAct x • (ι Q) m ∈ LinearMap.range (ι Q)
unfold lipschitzGroup at hx
R : Type u_1 inst✝³ : CommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M Q : QuadraticForm R M x : (CliffordAlgebra Q)ˣ hx : x ∈ Subgroup.closure (Units.val ⁻¹' Set.range ⇑(ι Q)) inst✝ : Invertible 2 m : M ⊢ ConjAct.toConjAct x • (ι Q) m ∈ LinearMap.range (ι Q)
5df234339fc72163
Compactum.cl_cl
Mathlib/Topology/Category/Compactum.lean
theorem cl_cl {X : Compactum} (A : Set X) : cl (cl A) ⊆ cl A
case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} ⊢ X.str F ∈ Compactum.cl A
let C1 := insert AA C0
case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 ⊢ X.str F ∈ Compactum.cl A
1c30fb7238f2120d
IsSemiprimaryRing.induction
Mathlib/RingTheory/HopkinsLevitzki.lean
theorem induction {P : ∀ (M : Type u) [AddCommGroup M] [Module R₀ M] [Module R M], Prop} (h0 : ∀ (M) [AddCommGroup M] [Module R₀ M] [Module R M] [IsScalarTower R₀ R M] [IsSemisimpleModule R M], Module.IsTorsionBySet R M (Ring.jacobson R) → P M) (h1 : ∀ (M) [AddCommGroup M] [Module R₀ M] [Module R M] [IsScalarTower R₀ R M], let N := Ring.jacobson R • (⊤ : Submodule R M); P N → P (M ⧸ N) → P M) : P M
case succ.zero R₀ : Type u_1 R : Type u_2 inst✝⁷ : Ring R₀ inst✝⁶ : Ring R inst✝⁵ : Module R₀ R inst✝⁴ : IsSemiprimaryRing R P : (M : Type u) → [inst : AddCommGroup M] → [inst_1 : Module R₀ M] → [inst : Module R M] → Prop ss : IsSemisimpleRing (R ⧸ Ring.jacobson R) Jac : Ideal R := Ring.jacobson R h0 : ∀ (M : Type u) [inst : AddCommGroup M] [inst_1 : Module R₀ M] [inst_2 : Module R M] [inst_3 : IsScalarTower R₀ R M] [inst_4 : IsSemisimpleModule R M], Module.IsTorsionBySet R M ↑Jac → P M h1 : ∀ (M : Type u) [inst : AddCommGroup M] [inst_1 : Module R₀ M] [inst_2 : Module R M] [inst_3 : IsScalarTower R₀ R M], let N := Jac • ⊤; P ↥N → P (M ⧸ N) → P M this : ∀ {M : Type u} [inst : AddCommGroup M] [inst_1 : Module R₀ M] [inst_2 : Module R M] [inst_3 : IsScalarTower R₀ R M], Jac ≤ Module.annihilator R M → P M M : Type u inst✝³ : AddCommGroup M inst✝² : Module R₀ M inst✝¹ : Module R M inst✝ : IsScalarTower R₀ R M ih : ∀ (M : Type u) [inst : AddCommGroup M] [inst_1 : Module R₀ M] [inst_2 : Module R M] [inst_3 : IsScalarTower R₀ R M], Jac ^ 0 ≤ Module.annihilator R M → P M hn : Jac ≤ Module.annihilator R M ⊢ P M
exact this hn
no goals
18de1097a1dd67d8
PadicSeq.norm_nonarchimedean
Mathlib/NumberTheory/Padics/PadicNumbers.lean
theorem norm_nonarchimedean (f g : PadicSeq p) : (f + g).norm ≤ max f.norm g.norm
p : ℕ hp : Fact (Nat.Prime p) f g : PadicSeq p hfg : ¬f + g ≈ 0 hf : ¬f ≈ 0 hg : g ≈ 0 hfg' : f + g ≈ f ⊢ (f + g).norm ≤ f.norm ⊔ g.norm
have hcfg : (f + g).norm = f.norm := norm_equiv hfg'
p : ℕ hp : Fact (Nat.Prime p) f g : PadicSeq p hfg : ¬f + g ≈ 0 hf : ¬f ≈ 0 hg : g ≈ 0 hfg' : f + g ≈ f hcfg : (f + g).norm = f.norm ⊢ (f + g).norm ≤ f.norm ⊔ g.norm
4a919ac1cede5d3f
Ideal.subset_union_prime'
Mathlib/RingTheory/Ideal/Operations.lean
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι} (hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} : ((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
case pos.h.inr.inl ι : Type u_1 R : Type u inst✝ : CommRing R f : ι → Ideal R I : Ideal R n : ℕ a b i : ι t : Finset ι hit : i ∉ t hn : t.card = n h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ ↑(insert i t), ↑(f i_1) hp : (f i).IsPrime ∧ ∀ x ∈ t, (f x).IsPrime Ht : ¬∃ j ∈ t, f j ≤ f i Ha : f a ≤ f i h' : ↑I ⊆ ↑(f i) ∪ ↑(f b) ∪ ⋃ j ∈ ↑t, ↑(f j) ih : I ≤ f b ⊢ I ≤ f b ∨ ∃ i_1 ∈ insert i t, I ≤ f i_1
exact Or.inl ih
no goals
fa41770a7d2d9fd9
Finset.memberSubfamily_union_nonMemberSubfamily
Mathlib/Combinatorics/SetFamily/Compression/Down.lean
theorem memberSubfamily_union_nonMemberSubfamily (a : α) (𝒜 : Finset (Finset α)) : 𝒜.memberSubfamily a ∪ 𝒜.nonMemberSubfamily a = 𝒜.image fun s => s.erase a
case pos α : Type u_1 inst✝ : DecidableEq α a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ha : a ∈ s ⊢ insert a (s.erase a) ∈ 𝒜 ∧ a ∉ s.erase a ∨ s.erase a ∈ 𝒜 ∧ a ∉ s.erase a
exact Or.inl ⟨by rwa [insert_erase ha], not_mem_erase _ _⟩
no goals
e84640d1d865ba15
finprod_apply_ne_one
Mathlib/Algebra/BigOperators/Finprod.lean
theorem finprod_apply_ne_one (f : α → M) (a : α) : ∏ᶠ _ : f a ≠ 1, f a = f a
α : Type u_1 M : Type u_5 inst✝ : CommMonoid M f : α → M a : α ⊢ ∏ᶠ (_ : f a ≠ 1), f a = f a
rw [← mem_mulSupport, finprod_eq_mulIndicator_apply, mulIndicator_mulSupport]
no goals
8158e1dabf1a7043
IsArtinianRing.isUnit_submonoid_eq_of_isIntegral
Mathlib/RingTheory/Artinian/Algebra.lean
theorem isUnit_submonoid_eq_of_isIntegral [Algebra.IsIntegral R A] : IsUnit.submonoid A = A⁰
case h R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : IsArtinianRing R inst✝² : CommRing A inst✝¹ : Algebra R A inst✝ : Algebra.IsIntegral R A x✝ : A ⊢ x✝ ∈ IsUnit.submonoid A ↔ x✝ ∈ A⁰
simpa [IsUnit.mem_submonoid_iff] using isUnit_iff_nonZeroDivisor_of_isIntegral' (R := R)
no goals
4c3b08554612886b
Multiset.inter_le_right
Mathlib/Data/Multiset/UnionInter.lean
lemma inter_le_right : s ∩ t ≤ t
case neg α : Type u_1 inst✝ : DecidableEq α a : α s : Multiset α IH : ∀ {t : Multiset α}, s ∩ t ≤ t t : Multiset α h : a ∉ t ⊢ (a ::ₘ s) ∩ t ≤ t
simp [h, IH]
no goals
e30103a6354a110c
Equiv.Perm.cycleOf_mul_of_apply_right_eq_self
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem cycleOf_mul_of_apply_right_eq_self [DecidableRel f.SameCycle] [DecidableRel (f * g).SameCycle] (h : Commute f g) (x : α) (hx : g x = x) : (f * g).cycleOf x = f.cycleOf x
case neg α : Type u_2 f g : Perm α inst✝¹ : DecidableRel f.SameCycle inst✝ : DecidableRel (f * g).SameCycle h : Commute f g x : α hx : g x = x y : α hxy : f.SameCycle x y ⊢ (f * g).SameCycle x y
obtain ⟨z, rfl⟩ := hxy
case neg.intro α : Type u_2 f g : Perm α inst✝¹ : DecidableRel f.SameCycle inst✝ : DecidableRel (f * g).SameCycle h : Commute f g x : α hx : g x = x z : ℤ ⊢ (f * g).SameCycle x ((f ^ z) x)
9f223ade6df5a61f
Polynomial.coeff_hermite_explicit
Mathlib/RingTheory/Polynomial/Hermite/Basic.lean
theorem coeff_hermite_explicit : ∀ n k : ℕ, coeff (hermite (2 * n + k)) k = (-1) ^ n * (2 * n - 1)‼ * Nat.choose (2 * n + k) k | 0, _ => by simp | n + 1, 0 => by convert coeff_hermite_succ_zero (2 * n + 1) using 1 -- Porting note: ring_nf did not solve the goal on line 165 rw [coeff_hermite_explicit n 1, (by rw [Nat.left_distrib, mul_one, Nat.add_one_sub_one] : 2 * (n + 1) - 1 = 2 * n + 1), Nat.doubleFactorial_add_one, Nat.choose_zero_right, Nat.choose_one_right, pow_succ] push_cast ring | n + 1, k + 1 => by let hermite_explicit : ℕ → ℕ → ℤ := fun n k => (-1) ^ n * (2 * n - 1)‼ * Nat.choose (2 * n + k) k have hermite_explicit_recur : ∀ n k : ℕ, hermite_explicit (n + 1) (k + 1) = hermite_explicit (n + 1) k - (k + 2) * hermite_explicit n (k + 2)
n k : ℕ hermite_explicit : ℕ → ℕ → ℤ := fun n k => (-1) ^ n * ↑(2 * n - 1)‼ * ↑((2 * n + k).choose k) hermite_explicit_recur : ∀ (n k : ℕ), hermite_explicit (n + 1) (k + 1) = hermite_explicit (n + 1) k - (↑k + 2) * hermite_explicit n (k + 2) ⊢ 2 * (n + 1) + k = 2 * n + (k + 2)
ring
no goals
76b4bea6433d05b5
Polynomial.EisensteinCriterionAux.isUnit_of_natDegree_eq_zero_of_isPrimitive
Mathlib/RingTheory/EisensteinCriterion.lean
theorem isUnit_of_natDegree_eq_zero_of_isPrimitive {p q : R[X]} -- Porting note: stated using `IsPrimitive` which is defeq to old statement. (hu : IsPrimitive (p * q)) (hpm : p.natDegree = 0) : IsUnit p
R : Type u_1 inst✝ : CommRing R p q : R[X] hu : (p * q).IsPrimitive hpm : p.natDegree = 0 ⊢ C (p.coeff 0) ∣ p * q
rw [← eq_C_of_degree_le_zero (natDegree_eq_zero_iff_degree_le_zero.1 hpm)]
R : Type u_1 inst✝ : CommRing R p q : R[X] hu : (p * q).IsPrimitive hpm : p.natDegree = 0 ⊢ p ∣ p * q
447194fa7b9cf99d
Fin.map_valEmbedding_Ici
Mathlib/Order/Interval/Finset/Fin.lean
theorem map_valEmbedding_Ici : (Ici a).map Fin.valEmbedding = Icc ↑a (n - 1)
case h.mpr.succ x n✝ : ℕ a : Fin (n✝ + 1) ⊢ ↑a ≤ x ∧ x ≤ n✝ + 1 - 1 → ∃ a_2, a ≤ a_2 ∧ valEmbedding a_2 = x
exact fun hx => ⟨⟨x, Nat.lt_succ_iff.2 hx.2⟩, hx.1, rfl⟩
no goals
659a5c83d884a7cb
Finset.iSup_insert_update
Mathlib/Order/CompleteLattice/Finset.lean
theorem iSup_insert_update {x : α} {t : Finset α} (f : α → β) {s : β} (hx : x ∉ t) : ⨆ i ∈ insert x t, Function.update f x s i = s ⊔ ⨆ i ∈ t, f i
case e_a.e_s.h.e_s.h.h α : Type u_2 β : Type u_3 inst✝¹ : CompleteLattice β inst✝ : DecidableEq α t : Finset α f : α → β s : β i : α hi : i ∈ t hx : i ∉ t ⊢ False
exact hx hi
no goals
f80925da6cd69053
IsMulFreimanIso.mono
Mathlib/Combinatorics/Additive/FreimanHom.lean
@[to_additive] lemma IsMulFreimanIso.mono {hmn : m ≤ n} (hf : IsMulFreimanIso n A B f) : IsMulFreimanIso m A B f where bijOn := hf.bijOn map_prod_eq_map_prod s t hsA htA hs ht
case inr.intro.refine_2 α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanIso n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ t + replicate (n - m) a✝ ⊢ a ∈ A
rw [Multiset.mem_add] at ha
case inr.intro.refine_2 α : Type u_2 β : Type u_3 inst✝¹ : CancelCommMonoid α inst✝ : CancelCommMonoid β A : Set α B : Set β f : α → β m n : ℕ hmn : m ≤ n hf : IsMulFreimanIso n A B f s t : Multiset α hsA : ∀ ⦃x : α⦄, x ∈ s → x ∈ A htA : ∀ ⦃x : α⦄, x ∈ t → x ∈ A hs : s.card = m ht : t.card = m a✝ : α ha✝ : a✝ ∈ A a : α ha : a ∈ t ∨ a ∈ replicate (n - m) a✝ ⊢ a ∈ A
4d38848292c1597f
Nat.div2_bit
Mathlib/Data/Nat/Bits.lean
lemma div2_bit (b n) : div2 (bit b n) = n
b : Bool n : ℕ ⊢ (bit b n).div2 = n
rw [bit_val, div2_val, Nat.add_comm, add_mul_div_left, div_eq_of_lt, Nat.zero_add] <;> cases b <;> decide
no goals
dab866d736182597
MeasureTheory.SimpleFunc.eapprox_lt_top
Mathlib/MeasureTheory/Function/SimpleFunc.lean
theorem eapprox_lt_top (f : α → ℝ≥0∞) (n : ℕ) (a : α) : eapprox f n a < ∞
case pos α : Type u_1 inst✝ : MeasurableSpace α f : α → ℝ≥0∞ n : ℕ a : α b : ℕ a✝ : b ∈ Finset.range n h✝ : MeasurableSet {a | ennrealRatEmbed b ≤ f a} ⊢ {a | ennrealRatEmbed b ≤ f a}.indicator (Function.const α (ennrealRatEmbed b)) a < ⊤
calc { a : α | ennrealRatEmbed b ≤ f a }.indicator (fun _ => ennrealRatEmbed b) a ≤ ennrealRatEmbed b := indicator_le_self _ _ a _ < ⊤ := ENNReal.coe_lt_top
no goals
a31470243a3f9f84
List.exists_pw_disjoint_with_card
Mathlib/GroupTheory/Perm/Cycle/PossibleTypes.lean
theorem List.exists_pw_disjoint_with_card {α : Type*} [Fintype α] {c : List ℕ} (hc : c.sum ≤ Fintype.card α) : ∃ o : List (List α), o.map length = c ∧ (∀ s ∈ o, s.Nodup) ∧ Pairwise List.Disjoint o
α : Type u_2 inst✝ : Fintype α c : List ℕ hc : c.sum ≤ Fintype.card α klift : (n : ℕ) → n < Fintype.card α → Fin (Fintype.card α) := fun n hn => ⟨n, hn⟩ klift' : (l : List ℕ) → (∀ a ∈ l, a < Fintype.card α) → List (Fin (Fintype.card α)) := fun l hl => pmap klift l hl l : List ℕ hl : l ∈ c.ranges n : ℕ hn : n ∈ l ⊢ n < c.sum
rw [← mem_mem_ranges_iff_lt_sum]
α : Type u_2 inst✝ : Fintype α c : List ℕ hc : c.sum ≤ Fintype.card α klift : (n : ℕ) → n < Fintype.card α → Fin (Fintype.card α) := fun n hn => ⟨n, hn⟩ klift' : (l : List ℕ) → (∀ a ∈ l, a < Fintype.card α) → List (Fin (Fintype.card α)) := fun l hl => pmap klift l hl l : List ℕ hl : l ∈ c.ranges n : ℕ hn : n ∈ l ⊢ ∃ s ∈ c.ranges, n ∈ s
463233383e1ded3a
List.unzip_zip_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Zip.lean
theorem unzip_zip_right : ∀ {l₁ : List α} {l₂ : List β}, length l₂ ≤ length l₁ → (unzip (zip l₁ l₂)).2 = l₂ | [], l₂, _ => by simp_all | l₁, [], _ => by simp | a :: l₁, b :: l₂, h => by simp only [zip_cons_cons, unzip_cons, unzip_zip_right (le_of_succ_le_succ h)]
α : Type u_1 β : Type u_2 l₂ : List β x✝ : l₂.length ≤ [].length ⊢ ([].zip l₂).unzip.snd = l₂
simp_all
no goals
f6544f1eafdebf70
CategoryTheory.Idempotents.isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent
Mathlib/CategoryTheory/Idempotents/Basic.lean
theorem isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent : IsIdempotentComplete C ↔ ∀ (X : C) (p : X ⟶ X), p ≫ p = p → HasEqualizer (𝟙 X) p
case create C : Type u_1 inst✝ : Category.{u_2, u_1} C a✝ : IsIdempotentComplete C X : C p : X ⟶ X hp : p ≫ p = p Y : C i : Y ⟶ X e : X ⟶ Y h₁ : i ≫ e = 𝟙 Y h₂ : e ≫ i = p s : Fork (𝟙 X) p ⊢ (s.ι ≫ e) ≫ (Fork.ofι i ⋯).ι = s.ι ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι i ⋯).pt).obj WalkingParallelPair.zero}, m ≫ (Fork.ofι i ⋯).ι = s.ι → m = s.ι ≫ e
constructor
case create.left C : Type u_1 inst✝ : Category.{u_2, u_1} C a✝ : IsIdempotentComplete C X : C p : X ⟶ X hp : p ≫ p = p Y : C i : Y ⟶ X e : X ⟶ Y h₁ : i ≫ e = 𝟙 Y h₂ : e ≫ i = p s : Fork (𝟙 X) p ⊢ (s.ι ≫ e) ≫ (Fork.ofι i ⋯).ι = s.ι case create.right C : Type u_1 inst✝ : Category.{u_2, u_1} C a✝ : IsIdempotentComplete C X : C p : X ⟶ X hp : p ≫ p = p Y : C i : Y ⟶ X e : X ⟶ Y h₁ : i ≫ e = 𝟙 Y h₂ : e ≫ i = p s : Fork (𝟙 X) p ⊢ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι i ⋯).pt).obj WalkingParallelPair.zero}, m ≫ (Fork.ofι i ⋯).ι = s.ι → m = s.ι ≫ e
b9521a8a1dfa70fd
MeasureTheory.hasFiniteIntegral_toReal_iff
Mathlib/MeasureTheory/Function/L1Space/HasFiniteIntegral.lean
lemma hasFiniteIntegral_toReal_iff {f : α → ℝ≥0∞} (hf : ∀ᵐ x ∂μ, f x ≠ ∞) : HasFiniteIntegral (fun x ↦ (f x).toReal) μ ↔ ∫⁻ x, f x ∂μ ≠ ∞
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : ∀ᵐ (x : α) ∂μ, f x ≠ ⊤ ⊢ HasFiniteIntegral (fun x => (f x).toReal) μ ↔ ∫⁻ (x : α), f x ∂μ ≠ ⊤
have : ∀ᵐ x ∂μ, .ofReal (f x).toReal = f x := by filter_upwards [hf] with x hx; simp [hx]
α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : ∀ᵐ (x : α) ∂μ, f x ≠ ⊤ this : ∀ᵐ (x : α) ∂μ, ENNReal.ofReal (f x).toReal = f x ⊢ HasFiniteIntegral (fun x => (f x).toReal) μ ↔ ∫⁻ (x : α), f x ∂μ ≠ ⊤
fac8a1e91be27dc4
AlgebraicGeometry.Scheme.homOfLE_app
Mathlib/AlgebraicGeometry/Restrict.lean
theorem Scheme.homOfLE_app {U V : X.Opens} (e : U ≤ V) (W : Opens V) : (X.homOfLE e).app W = X.presheaf.map (homOfLE <| X.ι_image_homOfLE_le_ι_image e W).op
X : Scheme U V : X.Opens e : U ≤ V W : (↑V).Opens e₁ : Hom.app (X.homOfLE e ≫ V.ι) (V.ι ''ᵁ W) = Hom.app U.ι (V.ι ''ᵁ W) ≫ (↑U).presheaf.map (eqToHom ⋯).op this : V.ι ⁻¹ᵁ V.ι ''ᵁ W = W e₂ : (↑V).presheaf.map (eqToIso this).hom.op ≫ Hom.app (X.homOfLE e) (V.ι ⁻¹ᵁ V.ι ''ᵁ W) = Hom.app (X.homOfLE e) W ≫ (↑U).presheaf.map ((Opens.map (X.homOfLE e).base).map (eqToIso this).hom.op.unop).op e₃ : Hom.app (X.homOfLE e) W = X.presheaf.map ((homOfLE ⋯).op ≫ ((Hom.opensFunctor U.ι).map (eqToHom ⋯)).op) ≫ X.presheaf.map (inv ((Hom.opensFunctor U.ι).map ((Opens.map (X.homOfLE e).base).map (eqToHom this))).op) ⊢ Hom.app (X.homOfLE e) W = X.presheaf.map (homOfLE ⋯).op
rw [e₃, ← Functor.map_comp]
X : Scheme U V : X.Opens e : U ≤ V W : (↑V).Opens e₁ : Hom.app (X.homOfLE e ≫ V.ι) (V.ι ''ᵁ W) = Hom.app U.ι (V.ι ''ᵁ W) ≫ (↑U).presheaf.map (eqToHom ⋯).op this : V.ι ⁻¹ᵁ V.ι ''ᵁ W = W e₂ : (↑V).presheaf.map (eqToIso this).hom.op ≫ Hom.app (X.homOfLE e) (V.ι ⁻¹ᵁ V.ι ''ᵁ W) = Hom.app (X.homOfLE e) W ≫ (↑U).presheaf.map ((Opens.map (X.homOfLE e).base).map (eqToIso this).hom.op.unop).op e₃ : Hom.app (X.homOfLE e) W = X.presheaf.map ((homOfLE ⋯).op ≫ ((Hom.opensFunctor U.ι).map (eqToHom ⋯)).op) ≫ X.presheaf.map (inv ((Hom.opensFunctor U.ι).map ((Opens.map (X.homOfLE e).base).map (eqToHom this))).op) ⊢ X.presheaf.map (((homOfLE ⋯).op ≫ ((Hom.opensFunctor U.ι).map (eqToHom ⋯)).op) ≫ inv ((Hom.opensFunctor U.ι).map ((Opens.map (X.homOfLE e).base).map (eqToHom this))).op) = X.presheaf.map (homOfLE ⋯).op
389fba341e18e4b3
ball_one_eq
Mathlib/Analysis/Normed/Group/Basic.lean
theorem ball_one_eq (r : ℝ) : ball (1 : E) r = { x | ‖x‖ < r } := Set.ext fun a => by simp
E : Type u_5 inst✝ : SeminormedGroup E r : ℝ a : E ⊢ a ∈ ball 1 r ↔ a ∈ {x | ‖x‖ < r}
simp
no goals
c36e270c57eaabcd
CochainComplex.HomComplex.Cochain.leftUnshift_units_smul
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
@[simp] lemma leftUnshift_units_smul {n' a : ℤ} (γ : Cochain (K⟦a⟧) L n') (n : ℤ) (hn : n + a = n') (x : Rˣ) : (x • γ).leftUnshift n hn = x • γ.leftUnshift n hn
C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C R : Type u_1 inst✝¹ : Ring R inst✝ : Linear R C K L : CochainComplex C ℤ n' a : ℤ γ : Cochain ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj K) L n' n : ℤ hn : n + a = n' x : Rˣ ⊢ (x • γ).leftUnshift n hn = x • γ.leftUnshift n hn
apply leftUnshift_smul
no goals
735cce28459b5483
Submodule.coe_dualCoannihilator_span
Mathlib/LinearAlgebra/Dual.lean
@[simp] lemma coe_dualCoannihilator_span (s : Set (Module.Dual R M)) : ((span R s).dualCoannihilator : Set M) = {x | ∀ f ∈ s, f x = 0}
case h R : Type u M : Type v inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Set (Dual R M) x : M this : ∀ (φ : Dual R M), x ∈ LinearMap.ker φ ↔ φ ∈ LinearMap.ker ((Dual.eval R M) x) ⊢ (∀ φ ∈ span R s, φ ∈ LinearMap.ker ((Dual.eval R M) x)) ↔ ∀ f ∈ s, f ∈ LinearMap.ker ((Dual.eval R M) x)
exact span_le
no goals
f2343ad38b9ecd7b
List.Sublist.sym
Mathlib/Data/List/Sym.lean
theorem Sublist.sym (n : ℕ) {xs ys : List α} (h : xs <+ ys) : xs.sym n <+ ys.sym n := match n, h with | 0, _ => by simp [List.sym] | n + 1, .slnil => by simp only [refl] | n + 1, .cons a h => by rw [List.sym, ← nil_append (List.sym (n + 1) xs)] apply Sublist.append (nil_sublist _) exact h.sym (n + 1) | n + 1, .cons₂ a h => by rw [List.sym, List.sym] apply Sublist.append · exact ((cons₂ a h).sym n).map _ · exact h.sym (n + 1)
α : Type u_1 n✝ : ℕ xs ys : List α h✝ : xs <+ ys n : ℕ l₁✝ l₂✝ : List α a : α h : l₁✝ <+ l₂✝ ⊢ map (fun p => a ::ₛ p) (List.sym n (a :: l₁✝)) ++ List.sym (n + 1) l₁✝ <+ map (fun p => a ::ₛ p) (List.sym n (a :: l₂✝)) ++ List.sym (n + 1) l₂✝
apply Sublist.append
case hl α : Type u_1 n✝ : ℕ xs ys : List α h✝ : xs <+ ys n : ℕ l₁✝ l₂✝ : List α a : α h : l₁✝ <+ l₂✝ ⊢ map (fun p => a ::ₛ p) (List.sym n (a :: l₁✝)) <+ map (fun p => a ::ₛ p) (List.sym n (a :: l₂✝)) case hr α : Type u_1 n✝ : ℕ xs ys : List α h✝ : xs <+ ys n : ℕ l₁✝ l₂✝ : List α a : α h : l₁✝ <+ l₂✝ ⊢ List.sym (n + 1) l₁✝ <+ List.sym (n + 1) l₂✝
d3891099e3ec45ad
List.prev_reverse_eq_next
Mathlib/Data/List/Cycle.lean
theorem prev_reverse_eq_next (l : List α) (h : Nodup l) (x : α) (hx : x ∈ l) : prev l.reverse x (mem_reverse.mpr hx) = next l x hx
case intro.intro α : Type u_1 inst✝ : DecidableEq α l : List α h : l.Nodup k : ℕ hk : k < l.length hx : l[k] ∈ l lpos : 0 < l.length key : l.length - 1 - k < l.length ⊢ l.reverse.prev l[k] ⋯ = (pmap l.next l ⋯)[k]
simp_rw [getElem_eq_getElem_reverse (l := l), pmap_next_eq_rotate_one _ h]
case intro.intro α : Type u_1 inst✝ : DecidableEq α l : List α h : l.Nodup k : ℕ hk : k < l.length hx : l[k] ∈ l lpos : 0 < l.length key : l.length - 1 - k < l.length ⊢ l.reverse.prev l.reverse[l.length - 1 - k] ⋯ = (l.rotate 1)[k]
223a9f0719f3b161
Affine.Simplex.circumsphere_reindex
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem circumsphere_reindex {m n : ℕ} (s : Simplex ℝ P m) (e : Fin (m + 1) ≃ Fin (n + 1)) : (s.reindex e).circumsphere = s.circumsphere
case refine_1 V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P m n : ℕ s : Simplex ℝ P m e : Fin (m + 1) ≃ Fin (n + 1) ⊢ (s.reindex e).circumsphere.center ∈ affineSpan ℝ (Set.range (s.reindex e).points)
exact (s.reindex e).circumsphere_unique_dist_eq.1.1
no goals
4450e8b52c9c2999
Orientation.oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Oriented/RightAngle.lean
theorem oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle x (x + y) = Real.arctan (‖y‖ / ‖x‖)
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V hd2 : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V h : o.oangle x y = ↑(π / 2) ⊢ o.oangle x (x + y) = ↑(Real.arctan (‖y‖ / ‖x‖))
have hs : (o.oangle x (x + y)).sign = 1 := by rw [oangle_sign_add_right, h, Real.Angle.sign_coe_pi_div_two]
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V hd2 : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V h : o.oangle x y = ↑(π / 2) hs : (o.oangle x (x + y)).sign = 1 ⊢ o.oangle x (x + y) = ↑(Real.arctan (‖y‖ / ‖x‖))
45dcf7e3fc3510ff
Pi.isAtom_iff_eq_single
Mathlib/Order/Atoms.lean
theorem isAtom_iff_eq_single [DecidableEq ι] [∀ i, PartialOrder (π i)] [∀ i, OrderBot (π i)] {f : ∀ i, π i} : IsAtom f ↔ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
case mp ι : Type u_4 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a case mpr ι : Type u_4 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f
case mp => intro h have ⟨i, h, hbot⟩ := isAtom_iff.1 h refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩ rw [Function.update_of_ne hij, hbot _ hij, bot_apply]
case mpr ι : Type u_4 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f
d8e4c77da6e7ba4c
leOnePart_mul_oneLePart
Mathlib/Algebra/Order/Group/PosPart.lean
@[to_additive] lemma leOnePart_mul_oneLePart (a : α) : a⁻ᵐ * a⁺ᵐ = |a|ₘ
α : Type u_1 inst✝³ : Lattice α inst✝² : Group α inst✝¹ : MulLeftMono α inst✝ : MulRightMono α a : α ⊢ a⁻ᵐ * a⁺ᵐ = mabs a
rw [oneLePart_def, mul_sup, mul_one, leOnePart_def, sup_mul, one_mul, inv_mul_cancel, sup_assoc, ← @sup_assoc _ _ a, sup_eq_right.2 le_sup_right]
α : Type u_1 inst✝³ : Lattice α inst✝² : Group α inst✝¹ : MulLeftMono α inst✝ : MulRightMono α a : α ⊢ a ⊔ a⁻¹ ⊔ 1 = mabs a
17b9e31b8452bb9c