name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
CommApplicative.commutative_map
Mathlib/Control/Basic.lean
theorem CommApplicative.commutative_map {m : Type u → Type v} [h : Applicative m] [CommApplicative m] {α β γ} (a : m α) (b : m β) {f : α → β → γ} : f <$> a <*> b = flip f <$> b <*> a := calc f <$> a <*> b = (fun p : α × β => f p.1 p.2) <$> (Prod.mk <$> a <*> b)
m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ (fun a => (fun p => f p.fst p.snd) ∘ fun a_1 => (a_1, a)) <$> b <*> a = (fun b a => f a b) <$> b <*> a
rfl
no goals
7b94d6ca6a1d855a
Nat.factorial_lt
Mathlib/Data/Nat/Factorial/Basic.lean
theorem factorial_lt (hn : 0 < n) : n ! < m ! ↔ n < m
m n : ℕ hn : 0 < n h : n < m ⊢ ∀ {n : ℕ}, 0 < n → n ! < (n + 1)!
intro k hk
m n : ℕ hn : 0 < n h : n < m k : ℕ hk : 0 < k ⊢ k ! < (k + 1)!
a491a6261b8d2e38
Function.Injective.lieAlgebra_isNilpotent
Mathlib/Algebra/Lie/Nilpotent.lean
theorem Function.Injective.lieAlgebra_isNilpotent [h₁ : IsNilpotent L'] {f : L →ₗ⁅R⁆ L'} (h₂ : Function.Injective f) : IsNilpotent L
R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : ∃ k, lowerCentralSeries R L' L' k = ⊥ f : L →ₗ⁅R⁆ L' h₂ : Injective ⇑f ⊢ ∃ k, lowerCentralSeries R L L k = ⊥
peel h₁ with k hk
case h R : Type u L : Type v L' : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : LieAlgebra R L inst✝¹ : LieRing L' inst✝ : LieAlgebra R L' h₁ : ∃ k, lowerCentralSeries R L' L' k = ⊥ f : L →ₗ⁅R⁆ L' h₂ : Injective ⇑f k : ℕ hk : lowerCentralSeries R L' L' k = ⊥ ⊢ lowerCentralSeries R L L k = ⊥
01446f64e52ea22e
ONote.cmp_compares
Mathlib/SetTheory/Ordinal/Notation.lean
theorem cmp_compares : ∀ (a b : ONote) [NF a] [NF b], (cmp a b).Compares a b | 0, 0, _, _ => rfl | oadd _ _ _, 0, _, _ => oadd_pos _ _ _ | 0, oadd _ _ _, _, _ => oadd_pos _ _ _ | o₁@(oadd e₁ n₁ a₁), o₂@(oadd e₂ n₂ a₂), h₁, h₂ => by -- TODO: golf rw [cmp] have IHe := @cmp_compares _ _ h₁.fst h₂.fst simp only [Ordering.Compares, gt_iff_lt] at IHe; revert IHe cases cmp e₁ e₂ case lt => intro IHe; exact oadd_lt_oadd_1 h₁ IHe case gt => intro IHe; exact oadd_lt_oadd_1 h₂ IHe case eq => intro IHe; dsimp at IHe; subst IHe unfold _root_.cmp; cases nh : cmpUsing (· < ·) (n₁ : ℕ) n₂ <;> rw [cmpUsing, ite_eq_iff, not_lt] at nh case lt => rcases nh with nh | nh · exact oadd_lt_oadd_2 h₁ nh.left · rw [ite_eq_iff] at nh; rcases nh.right with nh | nh <;> cases nh <;> contradiction case gt => rcases nh with nh | nh · cases nh; contradiction · obtain ⟨_, nh⟩ := nh rw [ite_eq_iff] at nh; rcases nh with nh | nh · exact oadd_lt_oadd_2 h₂ nh.left · cases nh; contradiction rcases nh with nh | nh · cases nh; contradiction obtain ⟨nhl, nhr⟩ := nh rw [ite_eq_iff] at nhr rcases nhr with nhr | nhr · cases nhr; contradiction obtain rfl := Subtype.eq (nhl.eq_of_not_lt nhr.1) have IHa := @cmp_compares _ _ h₁.snd h₂.snd revert IHa; cases cmp a₁ a₂ <;> intro IHa <;> dsimp at IHa case lt => exact oadd_lt_oadd_3 IHa case gt => exact oadd_lt_oadd_3 IHa subst IHa; exact rfl
case inr.intro o₁ e₁ : ONote n₁ : ℕ+ a₁ : ONote h✝¹ : o₁ = e₁.oadd n₁ a₁ o₂ : ONote n₂ : ℕ+ a₂ : ONote h₁ : (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹).NF h✝ : o₂ = e₁.oadd n₂ a₂ h₂ : (namedPattern o₂ (e₁.oadd n₂ a₂) h✝).NF left✝ : ↑n₂ ≤ ↑n₁ nh : (if ↑n₂ < ↑n₁ then Ordering.gt else Ordering.eq) = Ordering.gt ⊢ (Ordering.eq.then (Ordering.gt.then (a₁.cmp a₂))).Compares (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹) (namedPattern o₂ (e₁.oadd n₂ a₂) h✝)
rw [ite_eq_iff] at nh
case inr.intro o₁ e₁ : ONote n₁ : ℕ+ a₁ : ONote h✝¹ : o₁ = e₁.oadd n₁ a₁ o₂ : ONote n₂ : ℕ+ a₂ : ONote h₁ : (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹).NF h✝ : o₂ = e₁.oadd n₂ a₂ h₂ : (namedPattern o₂ (e₁.oadd n₂ a₂) h✝).NF left✝ : ↑n₂ ≤ ↑n₁ nh : ↑n₂ < ↑n₁ ∧ Ordering.gt = Ordering.gt ∨ ¬↑n₂ < ↑n₁ ∧ Ordering.eq = Ordering.gt ⊢ (Ordering.eq.then (Ordering.gt.then (a₁.cmp a₂))).Compares (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹) (namedPattern o₂ (e₁.oadd n₂ a₂) h✝)
52fdbaf9e931cd5c
isZGroup_of_coprime
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
theorem isZGroup_of_coprime [Finite G] [IsZGroup G] [IsZGroup G''] (h_le : f'.ker ≤ f.range) (h_cop : (Nat.card G).Coprime (Nat.card G'')) : IsZGroup G'
case inr G : Type u_1 G' : Type u_2 G'' : Type u_3 inst✝⁵ : Group G inst✝⁴ : Group G' inst✝³ : Group G'' f : G →* G' f' : G' →* G'' inst✝² : Finite G inst✝¹ : IsZGroup G inst✝ : IsZGroup G'' h_le : f'.ker ≤ f.range p : ℕ hp : Nat.Prime p P : Sylow p G' this : Fact (Nat.Prime p) h_cop : (Nat.card ↥f'.ker).Coprime f'.ker.index h : Disjoint f'.ker ↑P ⊢ IsCyclic ↥↑P
have := (P.2.map f').isCyclic_of_isZGroup
case inr G : Type u_1 G' : Type u_2 G'' : Type u_3 inst✝⁵ : Group G inst✝⁴ : Group G' inst✝³ : Group G'' f : G →* G' f' : G' →* G'' inst✝² : Finite G inst✝¹ : IsZGroup G inst✝ : IsZGroup G'' h_le : f'.ker ≤ f.range p : ℕ hp : Nat.Prime p P : Sylow p G' this✝ : Fact (Nat.Prime p) h_cop : (Nat.card ↥f'.ker).Coprime f'.ker.index h : Disjoint f'.ker ↑P this : IsCyclic ↥(Subgroup.map f' ↑P) ⊢ IsCyclic ↥↑P
8e6ebf384c14685f
CategoryTheory.IsIso.of_isIso_fac_right
Mathlib/CategoryTheory/Iso.lean
theorem of_isIso_fac_right {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} {h : X ⟶ Z} [IsIso g] [hh : IsIso h] (w : f ≫ g = h) : IsIso f
C : Type u inst✝¹ : Category.{v, u} C X Y Z : C f : X ⟶ Y g : Y ⟶ Z h : X ⟶ Z inst✝ : IsIso g hh : IsIso (f ≫ g) w : f ≫ g = h this : IsIso (f ≫ g) ⊢ IsIso f
exact of_isIso_comp_right f g
no goals
9dbbbbf52ab93b3e
coeSubmodule_differentIdeal_fractionRing
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma coeSubmodule_differentIdeal_fractionRing [NoZeroSMulDivisors A B] [Algebra.IsIntegral A B] [Algebra.IsSeparable (FractionRing A) (FractionRing B)] [FiniteDimensional (FractionRing A) (FractionRing B)] : coeSubmodule (FractionRing B) (differentIdeal A B) = 1 / Submodule.traceDual A (FractionRing A) 1
A : Type u_1 B : Type u_3 inst✝⁹ : CommRing A inst✝⁸ : CommRing B inst✝⁷ : Algebra A B inst✝⁶ : IsDomain A inst✝⁵ : IsIntegrallyClosed A inst✝⁴ : IsDedekindDomain B inst✝³ : NoZeroSMulDivisors A B inst✝² : Algebra.IsIntegral A B inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B) inst✝ : FiniteDimensional (FractionRing A) (FractionRing B) this : IsIntegralClosure B A (FractionRing B) ⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))
have := FractionalIdeal.dual_inv_le (A := A) (K := FractionRing A) (1 : FractionalIdeal B⁰ (FractionRing B))
A : Type u_1 B : Type u_3 inst✝⁹ : CommRing A inst✝⁸ : CommRing B inst✝⁷ : Algebra A B inst✝⁶ : IsDomain A inst✝⁵ : IsIntegrallyClosed A inst✝⁴ : IsDedekindDomain B inst✝³ : NoZeroSMulDivisors A B inst✝² : Algebra.IsIntegral A B inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B) inst✝ : FiniteDimensional (FractionRing A) (FractionRing B) this✝ : IsIntegralClosure B A (FractionRing B) this : (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ 1 ⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))
1468f2eabd5818af
CompHausLike.LocallyConstant.presheaf_ext
Mathlib/Condensed/Discrete/LocallyConstant.lean
/-- To check equality of two elements of `X(S)`, it suffices to check equality after composing with each `X(S) → X(Sᵢ)`. -/ lemma presheaf_ext (X : (CompHausLike.{u} P)ᵒᵖ ⥤ Type max u w) [PreservesFiniteProducts X] (x y : X.obj ⟨S⟩) [HasExplicitFiniteCoproducts.{u} P] (h : ∀ (a : Fiber f), X.map (sigmaIncl f a).op x = X.map (sigmaIncl f a).op y) : x = y
case a.a.h P : TopCat → Prop inst✝³ : ∀ (S : CompHausLike P) (p : ↑S.toTop → Prop), HasProp P (Subtype p) S : CompHausLike P Y : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝² : HasProp P PUnit.{u + 1} f : LocallyConstant (↑S.toTop) (Y.obj (op (of P PUnit.{u + 1}))) X : (CompHausLike P)ᵒᵖ ⥤ Type (max u w) inst✝¹ : PreservesFiniteProducts X x y : X.obj (op S) inst✝ : HasExplicitFiniteCoproducts P a : Fiber ⇑f h : ((X.mapIso (sigmaIso f).op).hom ≫ (sigmaComparison X fun a => ↑(fiber f a).toTop) ≫ fun g => g a) x = ((X.mapIso (sigmaIso f).op).hom ≫ (sigmaComparison X fun a => ↑(fiber f a).toTop) ≫ fun g => g a) y ⊢ sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom x) a = sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom y) a
exact h
no goals
4aad38c3a12edfe7
Valued.continuous_extension
Mathlib/Topology/Algebra/Valued/ValuedField.lean
theorem continuous_extension : Continuous (Valued.extension : hat K → Γ₀)
K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑x ∈ V → v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : 0 ∉ V' hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ ⊢ Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀
intro x
K : Type u_1 inst✝¹ : Field K Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ hv : Valued K Γ₀ x₀ : hat K h : x₀ ≠ 0 preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1 V : Set (hat K) V_in : V ∈ 𝓝 1 hV : ∀ (x : K), ↑x ∈ V → v x = 1 V' : Set (hat K) V'_in : V' ∈ 𝓝 1 zeroV' : 0 ∉ V' hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀ x : hat K ⊢ (fun x => x * x₀) ((fun x => x * x₀⁻¹) x) = x
af62a79ad478b7b6
Ideal.IsHomogeneous.iff_exists
Mathlib/RingTheory/GradedAlgebra/Homogeneous/Ideal.lean
theorem Ideal.IsHomogeneous.iff_exists : I.IsHomogeneous 𝒜 ↔ ∃ S : Set (homogeneousSubmonoid 𝒜), I = Ideal.span ((↑) '' S)
ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁵ : Semiring A inst✝⁴ : SetLike σ A inst✝³ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝² : DecidableEq ι inst✝¹ : AddMonoid ι inst✝ : GradedRing 𝒜 I : Ideal A ⊢ I = (homogeneousCore 𝒜 I).toIdeal ↔ ∃ S, I = span (Subtype.val '' S)
exact ((Set.image_preimage.compose (Submodule.gi _ _).gc).exists_eq_l _).symm
no goals
f8de24b792153c27
Set.image_inter_preimage
Mathlib/Data/Set/Image.lean
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
case h₂ α : Type u_1 β : Type u_2 f : α → β s : Set α t : Set β ⊢ f '' s ∩ t ⊆ f '' (s ∩ f ⁻¹' t)
rintro _ ⟨⟨x, h', rfl⟩, h⟩
case h₂.intro.intro.intro α : Type u_1 β : Type u_2 f : α → β s : Set α t : Set β x : α h' : x ∈ s h : f x ∈ t ⊢ f x ∈ f '' (s ∩ f ⁻¹' t)
f5a73b4bafb61e59
Bool.ofNat_toNat
Mathlib/Data/Bool/Basic.lean
theorem ofNat_toNat (b : Bool) : ofNat (toNat b) = b
b : Bool ⊢ ofNat b.toNat = b
cases b <;> rfl
no goals
2b2549dbdc8fbe3c
Polynomial.orderOf_root_cyclotomic_dvd
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
theorem orderOf_root_cyclotomic_dvd {n : ℕ} (hpos : 0 < n) {p : ℕ} [Fact p.Prime] {a : ℕ} (hroot : IsRoot (cyclotomic n (ZMod p)) (Nat.castRingHom (ZMod p) a)) : orderOf (ZMod.unitOfCoprime a (coprime_of_root_cyclotomic hpos hroot)) ∣ n
case h n : ℕ hpos : 0 < n p : ℕ inst✝ : Fact (Nat.Prime p) a : ℕ hroot : (cyclotomic n (ZMod p)).IsRoot ((Nat.castRingHom (ZMod p)) a) ⊢ eval ((Nat.castRingHom (ZMod p)) a) (X ^ n - 1) = 0
rw [IsRoot.def] at hroot
case h n : ℕ hpos : 0 < n p : ℕ inst✝ : Fact (Nat.Prime p) a : ℕ hroot : eval ((Nat.castRingHom (ZMod p)) a) (cyclotomic n (ZMod p)) = 0 ⊢ eval ((Nat.castRingHom (ZMod p)) a) (X ^ n - 1) = 0
0bbad10037176716
MeasureTheory.le_integral_rnDeriv_of_ac
Mathlib/MeasureTheory/Decomposition/IntegralRNDeriv.lean
/-- For a convex continuous function `f` on `[0, ∞)`, if `μ` is absolutely continuous with respect to a probability measure `ν`, then `f (μ univ).toReal ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν`. -/ lemma le_integral_rnDeriv_of_ac [IsFiniteMeasure μ] [IsProbabilityMeasure ν] (hf_cvx : ConvexOn ℝ (Ici 0) f) (hf_cont : ContinuousWithinAt f (Ici 0) 0) (hf_int : Integrable (fun x ↦ f (μ.rnDeriv ν x).toReal) ν) (hμν : μ ≪ ν) : f (μ univ).toReal ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν
case inr α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : ℝ → ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : IsProbabilityMeasure ν hf_cvx : ConvexOn ℝ (Ici 0) f hf_cont : ContinuousWithinAt f (Ici 0) 0 hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν hμν : μ ≪ ν x : ℝ hx : x ∈ Ici 0 hx_pos : 0 < x h : x ∈ interior (Ici 0) → ContinuousWithinAt f (interior (Ici 0)) x ⊢ ContinuousWithinAt f (Ici 0) x
simp only [nonempty_Iio, interior_Ici', mem_Ioi] at h
case inr α : Type u_1 mα : MeasurableSpace α μ ν : Measure α f : ℝ → ℝ inst✝¹ : IsFiniteMeasure μ inst✝ : IsProbabilityMeasure ν hf_cvx : ConvexOn ℝ (Ici 0) f hf_cont : ContinuousWithinAt f (Ici 0) 0 hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν hμν : μ ≪ ν x : ℝ hx : x ∈ Ici 0 hx_pos : 0 < x h : 0 < x → ContinuousWithinAt f (Ioi 0) x ⊢ ContinuousWithinAt f (Ici 0) x
661fab8a26d078bf
blimsup_cthickening_mul_ae_eq
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_cthickening_mul_ae_eq (p : ℕ → Prop) (s : ℕ → Set α) {M : ℝ} (hM : 0 < M) (r : ℕ → ℝ) (hr : Tendsto r atTop (𝓝 0)) : (blimsup (fun i => cthickening (M * r i) (s i)) atTop p : Set α) =ᵐ[μ] (blimsup (fun i => cthickening (r i) (s i)) atTop p : Set α)
case neg α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α M : ℝ hM : 0 < M r : ℕ → ℝ hr : Tendsto r atTop (𝓝 0) this : ∀ (p : ℕ → Prop) {r : ℕ → ℝ}, Tendsto r atTop (𝓝[>] 0) → blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᶠ[ae μ] blimsup (fun i => cthickening (r i) (s i)) atTop p r' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1) i : ℕ hi : ¬0 < r i ⊢ 0 < ↑i + 1
positivity
no goals
8749d72cf710712d
HomotopicalAlgebra.nonempty_attachCells_iff
Mathlib/AlgebraicTopology/RelativeCellComplex/AttachCells.lean
lemma nonempty_attachCells_iff : Nonempty (AttachCells.{w} g f) ↔ (coproducts.{w} (ofHoms g)).pushouts f
case mpr.intro.intro.intro.intro.intro.intro.intro.mk C : Type u inst✝ : Category.{v, u} C α : Type t A B : α → C g : (a : α) → A a ⟶ B a X₁ X₂ : C f : X₁ ⟶ X₂ ι : Type w X Y : C F₁ F₂ : Discrete ι ⥤ C c₁ : Cocone F₁ c₂ : Cocone F₂ h₁ : IsColimit c₁ h₂ : IsColimit c₂ φ : F₁ ⟶ F₂ hφ : (ofHoms g).functorCategory (Discrete ι) φ g₁ : c₁.pt ⟶ X₁ g₂ : { pt := c₂.pt, ι := φ ≫ c₂.ι }.pt ⟶ X₂ sq : IsPushout g₁ (h₁.desc { pt := c₂.pt, ι := φ ≫ c₂.ι }) f g₂ π : ι → α := fun i => ⋯.choose e : (i : ι) → Arrow.mk (φ.app { as := i }) ≅ Arrow.mk (g (π i)) := fun i => eqToIso ⋯ e₁ : (i : ι) → F₁.obj { as := i } ≅ A (π i) := fun i => Arrow.leftFunc.mapIso (e i) ⊢ Nonempty (AttachCells g f)
let e₂ (i : ι) : F₂.obj ⟨i⟩ ≅ B (π i) := Arrow.rightFunc.mapIso (e i)
case mpr.intro.intro.intro.intro.intro.intro.intro.mk C : Type u inst✝ : Category.{v, u} C α : Type t A B : α → C g : (a : α) → A a ⟶ B a X₁ X₂ : C f : X₁ ⟶ X₂ ι : Type w X Y : C F₁ F₂ : Discrete ι ⥤ C c₁ : Cocone F₁ c₂ : Cocone F₂ h₁ : IsColimit c₁ h₂ : IsColimit c₂ φ : F₁ ⟶ F₂ hφ : (ofHoms g).functorCategory (Discrete ι) φ g₁ : c₁.pt ⟶ X₁ g₂ : { pt := c₂.pt, ι := φ ≫ c₂.ι }.pt ⟶ X₂ sq : IsPushout g₁ (h₁.desc { pt := c₂.pt, ι := φ ≫ c₂.ι }) f g₂ π : ι → α := fun i => ⋯.choose e : (i : ι) → Arrow.mk (φ.app { as := i }) ≅ Arrow.mk (g (π i)) := fun i => eqToIso ⋯ e₁ : (i : ι) → F₁.obj { as := i } ≅ A (π i) := fun i => Arrow.leftFunc.mapIso (e i) e₂ : (i : ι) → F₂.obj { as := i } ≅ B (π i) := fun i => Arrow.rightFunc.mapIso (e i) ⊢ Nonempty (AttachCells g f)
a02d1f6a7c721f88
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go_get_aux
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Const.lean
theorem go_get_aux (aig : AIG α) (c : BitVec w) (curr : Nat) (hcurr : curr ≤ w) (s : AIG.RefVec aig curr) : -- `hfoo` makes it possible to `generalize` below. With a concrete proof term this -- `generalize` would produce a type incorrect term as the proof term would talk about -- a `go` application instead of the fresh variable. ∀ (idx : Nat) (hidx : idx < curr) (hfoo), (go aig c curr s hcurr).vec.get idx (by omega) = (s.get idx hidx).cast hfoo
case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α c : BitVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx : idx < curr res : RefVecEntry α w h✝ : ¬curr < w hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (hfoo : aig.decls.size ≤ { aig := aig, vec := ⋯ ▸ s }.aig.decls.size), { aig := aig, vec := ⋯ ▸ s }.vec.get idx ⋯ = (s.get idx hidx).cast hfoo
simp only [Nat.le_refl, get, Ref.gate_cast, Ref.mk.injEq, true_implies]
case isFalse α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α c : BitVec w curr : Nat hcurr : curr ≤ w s : aig.RefVec curr idx : Nat hidx : idx < curr res : RefVecEntry α w h✝ : ¬curr < w hgo : { aig := aig, vec := ⋯ ▸ s } = res ⊢ ∀ (hfoo : True), (⋯ ▸ s).get idx ⋯ = (s.get idx hidx).cast ⋯
ba3ced8118779694
Real.not_continuousAt_deriv_qaryEntropy_one
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
lemma not_continuousAt_deriv_qaryEntropy_one : ¬ContinuousAt (deriv (qaryEntropy q)) 1
case h q : ℕ tendstoBot : Tendsto (fun p => log (↑q - 1) + log (1 - p) - log p) (𝓝[<] 1) atBot a✝¹ : ℝ a✝ : a✝¹ ∈ Ioo (1 - 2⁻¹) 1 ⊢ log (↑q - 1) + log (1 - a✝¹) - log a✝¹ = deriv (qaryEntropy q) a✝¹
apply (deriv_qaryEntropy _ _).symm
q : ℕ tendstoBot : Tendsto (fun p => log (↑q - 1) + log (1 - p) - log p) (𝓝[<] 1) atBot a✝¹ : ℝ a✝ : a✝¹ ∈ Ioo (1 - 2⁻¹) 1 ⊢ a✝¹ ≠ 0 q : ℕ tendstoBot : Tendsto (fun p => log (↑q - 1) + log (1 - p) - log p) (𝓝[<] 1) atBot a✝¹ : ℝ a✝ : a✝¹ ∈ Ioo (1 - 2⁻¹) 1 ⊢ a✝¹ ≠ 1
75b19cc4897418b6
ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_atTop_one
Mathlib/Probability/Kernel/Disintegration/CDFToKernel.lean
lemma IsRatCondKernelCDFAux.tendsto_atTop_one (hf : IsRatCondKernelCDFAux f κ ν) [IsFiniteKernel ν] (a : α) : ∀ᵐ t ∂(ν a), Tendsto (f (a, t)) atTop (𝓝 1)
case h α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ hf : IsRatCondKernelCDFAux f κ ν inst✝ : IsFiniteKernel ν a : α this : ∀ᵐ (t : β) ∂ν a, Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1) t : β ht : Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1) h_mono : Monotone (f (a, t)) ⊢ Tendsto (f (a, t)) atTop (𝓝 1)
rw [tendsto_iff_tendsto_subseq_of_monotone h_mono tendsto_natCast_atTop_atTop]
case h α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ hf : IsRatCondKernelCDFAux f κ ν inst✝ : IsFiniteKernel ν a : α this : ∀ᵐ (t : β) ∂ν a, Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1) t : β ht : Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1) h_mono : Monotone (f (a, t)) ⊢ Tendsto (f (a, t) ∘ Nat.cast) atTop (𝓝 1)
8dafd0eb3b713696
QuaternionGroup.orderOf_xa
Mathlib/GroupTheory/SpecificGroups/Quaternion.lean
theorem orderOf_xa [NeZero n] (i : ZMod (2 * n)) : orderOf (xa i) = 4
n : ℕ inst✝ : NeZero n i : ZMod (2 * n) ⊢ orderOf (xa i) = 2 ^ 2
haveI : Fact (Nat.Prime 2) := Fact.mk Nat.prime_two
n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) ⊢ orderOf (xa i) = 2 ^ 2
53aed3d24b3f681b
CategoryTheory.MonoidalCategory.rightUnitor_monoidal
Mathlib/CategoryTheory/Monoidal/Braided/Basic.lean
theorem rightUnitor_monoidal (X₁ X₂ : C) : (ρ_ X₁).hom ⊗ (ρ_ X₂).hom = tensorμ X₁ (𝟙_ C) X₂ (𝟙_ C) ≫ ((X₁ ⊗ X₂) ◁ (λ_ (𝟙_ C)).hom) ≫ (ρ_ (X₁ ⊗ X₂)).hom
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C X₁ X₂ : C ⊢ (α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫ X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫ X₁ ◁ (ρ_ (𝟙_ C ⊗ X₂)).hom ≫ X₁ ◁ (λ_ X₂).hom = ((α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫ X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫ X₁ ◁ (β_ (𝟙_ C) X₂).hom ▷ 𝟙_ C ≫ X₁ ◁ (α_ X₂ (𝟙_ C) (𝟙_ C)).hom ≫ (α_ X₁ X₂ (𝟙_ C ⊗ 𝟙_ C)).inv) ≫ (X₁ ⊗ X₂) ◁ (λ_ (𝟙_ C)).hom ≫ (ρ_ (X₁ ⊗ X₂)).hom
rw [← braiding_rightUnitor]
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C inst✝ : BraidedCategory C X₁ X₂ : C ⊢ (α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫ X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫ X₁ ◁ (ρ_ (𝟙_ C ⊗ X₂)).hom ≫ X₁ ◁ ((β_ (𝟙_ C) X₂).hom ≫ (ρ_ X₂).hom) = ((α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫ X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫ X₁ ◁ (β_ (𝟙_ C) X₂).hom ▷ 𝟙_ C ≫ X₁ ◁ (α_ X₂ (𝟙_ C) (𝟙_ C)).hom ≫ (α_ X₁ X₂ (𝟙_ C ⊗ 𝟙_ C)).inv) ≫ (X₁ ⊗ X₂) ◁ (λ_ (𝟙_ C)).hom ≫ (ρ_ (X₁ ⊗ X₂)).hom
58daa7c29a4abff2
Real.logb_eq_iff_rpow_eq
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
theorem logb_eq_iff_rpow_eq (hy : 0 < y) : logb b y = x ↔ b ^ x = y
b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hy : 0 < y ⊢ logb b y = x ↔ b ^ x = y
constructor <;> rintro rfl
case mp b y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hy : 0 < y ⊢ b ^ logb b y = y case mpr b x : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hy : 0 < b ^ x ⊢ logb b (b ^ x) = x
91501ddfc687ca4e
ProbabilityTheory.IsMeasurableRatCDF.continuousWithinAt_stieltjesFunctionAux_Ici
Mathlib/Probability/Kernel/Disintegration/MeasurableStieltjes.lean
lemma IsMeasurableRatCDF.continuousWithinAt_stieltjesFunctionAux_Ici (a : α) (x : ℝ) : ContinuousWithinAt (IsMeasurableRatCDF.stieltjesFunctionAux f a) (Ici x) x
case a α : Type u_1 f : α → ℚ → ℝ inst✝ : MeasurableSpace α hf : IsMeasurableRatCDF f a : α x : ℝ h' : ⨅ r, stieltjesFunctionAux f a ↑r = ⨅ r, stieltjesFunctionAux f a ↑↑r ⊢ ContinuousWithinAt (stieltjesFunctionAux f a) (Ioi x) x ↔ Tendsto (stieltjesFunctionAux f a) (𝓝[>] x) (𝓝 (⨅ a_1, stieltjesFunctionAux f a ↑a_1))
have h'' : ⨅ r : { r' : ℚ // x < r' }, stieltjesFunctionAux f a r = ⨅ r : { r' : ℚ // x < r' }, f a r := by congr with r exact stieltjesFunctionAux_eq hf a r
case a α : Type u_1 f : α → ℚ → ℝ inst✝ : MeasurableSpace α hf : IsMeasurableRatCDF f a : α x : ℝ h' : ⨅ r, stieltjesFunctionAux f a ↑r = ⨅ r, stieltjesFunctionAux f a ↑↑r h'' : ⨅ r, stieltjesFunctionAux f a ↑↑r = ⨅ r, f a ↑r ⊢ ContinuousWithinAt (stieltjesFunctionAux f a) (Ioi x) x ↔ Tendsto (stieltjesFunctionAux f a) (𝓝[>] x) (𝓝 (⨅ a_1, stieltjesFunctionAux f a ↑a_1))
61ea09981116b634
IsIntegralCurveOn.hasDerivAt
Mathlib/Geometry/Manifold/IntegralCurve/Basic.lean
/-- If `γ` is an integral curve of a vector field `v`, then `γ t` is tangent to `v (γ t)` when expressed in the local chart around the initial point `γ t₀`. -/ lemma IsIntegralCurveOn.hasDerivAt (hγ : IsIntegralCurveOn γ v s) {t : ℝ} (ht : t ∈ s) (hsrc : γ t ∈ (extChartAt I (γ t₀)).source) : HasDerivAt ((extChartAt I (γ t₀)) ∘ γ) (tangentCoordChange I (γ t) (γ t₀) (γ t) (v (γ t))) t
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E H : Type u_2 inst✝³ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝² : TopologicalSpace M inst✝¹ : ChartedSpace H M γ : ℝ → M v : (x : M) → TangentSpace I x s : Set ℝ t₀ : ℝ inst✝ : IsManifold I 1 M hγ : IsIntegralCurveOn γ v s t : ℝ ht : t ∈ s hsrc✝ : γ t ∈ (extChartAt I (γ t₀)).source hsrc : γ t ∈ (chartAt H (γ t₀)).source ⊢ ∀ (x : TangentSpace 𝓘(ℝ, ℝ) t), ((mfderiv I I (↑(chartAt H (γ t₀))) (γ t)).comp (ContinuousLinearMap.smulRight 1 (v (γ t)))) x = (ContinuousLinearMap.smulRight 1 ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t)))) x
intro a
E : Type u_1 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E H : Type u_2 inst✝³ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝² : TopologicalSpace M inst✝¹ : ChartedSpace H M γ : ℝ → M v : (x : M) → TangentSpace I x s : Set ℝ t₀ : ℝ inst✝ : IsManifold I 1 M hγ : IsIntegralCurveOn γ v s t : ℝ ht : t ∈ s hsrc✝ : γ t ∈ (extChartAt I (γ t₀)).source hsrc : γ t ∈ (chartAt H (γ t₀)).source a : TangentSpace 𝓘(ℝ, ℝ) t ⊢ ((mfderiv I I (↑(chartAt H (γ t₀))) (γ t)).comp (ContinuousLinearMap.smulRight 1 (v (γ t)))) a = (ContinuousLinearMap.smulRight 1 ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t)))) a
e2bdac18aea0b848
OrderEmbedding.covBy_of_apply
Mathlib/Order/Cover.lean
theorem OrderEmbedding.covBy_of_apply {α β : Type*} [Preorder α] [Preorder β] (f : α ↪o β) {x y : α} (h : f x ⋖ f y) : x ⋖ y
case right α : Type u_3 β : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β f : α ↪o β x y : α h : f x ⋖ f y a : α ⊢ f x < f a → ¬f a < f y
apply h.2
no goals
331e966d90af3623
MeasureTheory.lintegral_mul_const'
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) : ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r
α : Type u_1 m : MeasurableSpace α μ : Measure α r : ℝ≥0∞ f : α → ℝ≥0∞ hr : r ≠ ⊤ ⊢ ∫⁻ (a : α), f a * r ∂μ = (∫⁻ (a : α), f a ∂μ) * r
simp_rw [mul_comm, lintegral_const_mul' r f hr]
no goals
e96c65f6b507ac55
Int.ofNat_sub
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
theorem ofNat_sub (h : m ≤ n) : ((n - m : Nat) : Int) = n - m
m n : Nat h : 0 ≤ n ⊢ ↑(n - 0) = ↑n - ↑0
rfl
no goals
0b3f339ee83c08f6
Equiv.pointReflection_midpoint_right
Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean
theorem Equiv.pointReflection_midpoint_right (x y : P) : (Equiv.pointReflection (midpoint R x y)) y = x
R : Type u_1 V : Type u_2 P : Type u_4 inst✝⁴ : Ring R inst✝³ : Invertible 2 inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P x y : P ⊢ (pointReflection (midpoint R x y)) y = x
rw [midpoint_comm, Equiv.pointReflection_midpoint_left]
no goals
6ee0e9757cb4e18d
OnePoint.continuousAt_coe
Mathlib/Topology/Compactification/OnePoint.lean
theorem continuousAt_coe {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} : ContinuousAt f x ↔ ContinuousAt (f ∘ (↑)) x
X : Type u_1 inst✝¹ : TopologicalSpace X Y : Type u_3 inst✝ : TopologicalSpace Y f : OnePoint X → Y x : X ⊢ ContinuousAt f ↑x ↔ ContinuousAt (f ∘ some) x
rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]
X : Type u_1 inst✝¹ : TopologicalSpace X Y : Type u_3 inst✝ : TopologicalSpace Y f : OnePoint X → Y x : X ⊢ Tendsto (f ∘ some) (𝓝 x) (𝓝 (f ↑x)) ↔ Tendsto (f ∘ some) (𝓝 x) (𝓝 ((f ∘ some) x))
e3a19212773164f5
ModuleCat.Tilde.localizationToStalk_mk
Mathlib/AlgebraicGeometry/Modules/Tilde.lean
theorem localizationToStalk_mk (x : PrimeSpectrum.Top R) (f : M) (s : x.asIdeal.primeCompl) : (localizationToStalk M x).hom (LocalizedModule.mk f s) = (tildeInModuleCat M).germ (PrimeSpectrum.basicOpen (s : R)) x s.2 (const M f s (PrimeSpectrum.basicOpen s) fun _ => id) := (Module.End_isUnit_iff _ |>.1 (isUnit_toStalk M x s)).injective <| by erw [← LinearMap.mul_apply] simp only [IsUnit.mul_val_inv, LinearMap.one_apply, Module.algebraMap_end_apply] show (M.tildeInModuleCat.germ ⊤ x ⟨⟩) ((toOpen M ⊤) f) = _ rw [← map_smul] fapply TopCat.Presheaf.germ_ext (W := PrimeSpectrum.basicOpen s.1) (hxW := s.2) (F := M.tildeInModuleCat) · exact homOfLE le_top · exact 𝟙 _ refine Subtype.eq <| funext fun y => show LocalizedModule.mk f 1 = _ from ?_ #adaptation_note /-- https://github.com/leanprover/lean4/pull/6024 added this refine hack to be able to add type hint in `change` -/ refine (?_ : @Eq ?ty _ _) change LocalizedModule.mk f 1 = (s.1 • LocalizedModule.mk f _ : ?ty) rw [LocalizedModule.smul'_mk, LocalizedModule.mk_eq] exact ⟨1, by simp⟩
case iWU R : Type u inst✝ : CommRing R M : ModuleCat R x : ↑(PrimeSpectrum.Top R) f : ↑M s : ↥x.asIdeal.primeCompl ⊢ PrimeSpectrum.basicOpen ↑s ⟶ ⊤
exact homOfLE le_top
no goals
729d47d1450c6db4
eHolderNorm_eq_zero
Mathlib/Topology/MetricSpace/HolderNorm.lean
lemma eHolderNorm_eq_zero {r : ℝ≥0} {f : X → Y} : eHolderNorm r f = 0 ↔ ∀ x₁ x₂, f x₁ = f x₂
case neg X : Type u_1 Y : Type u_2 inst✝¹ : MetricSpace X inst✝ : EMetricSpace Y r : ℝ≥0 f : X → Y h : ∀ b > ⊥, ∃ i, ∃ (_ : HolderWith i r f), ↑i < b x₁ x₂ : X hx : ¬x₁ = x₂ ⊢ edist (f x₁) (f x₂) ≤ 0
refine le_of_forall_lt' fun b hb => ?_
case neg X : Type u_1 Y : Type u_2 inst✝¹ : MetricSpace X inst✝ : EMetricSpace Y r : ℝ≥0 f : X → Y h : ∀ b > ⊥, ∃ i, ∃ (_ : HolderWith i r f), ↑i < b x₁ x₂ : X hx : ¬x₁ = x₂ b : ℝ≥0∞ hb : 0 < b ⊢ edist (f x₁) (f x₂) < b
61029cfd55718559
AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd
Mathlib/AlgebraicGeometry/Pullbacks.lean
theorem pullbackP1Iso_inv_snd (i : 𝒰.J) : (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.snd _ _ = pullback.fst _ _
X Y Z : Scheme 𝒰 : X.OpenCover f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (𝒰.map i ≫ f) g i : 𝒰.J ⊢ (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.snd (p1 𝒰 f g) (𝒰.map i) = pullback.fst (𝒰.map i ≫ f) g
simp_rw [pullbackP1Iso, pullback.lift_snd]
no goals
012093e10894fc44
Complex.HadamardThreeLines.norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip
Mathlib/Analysis/Complex/Hadamard.lean
theorem norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip (f : ℂ → E) (ε : ℝ) (hε : 0 < ε) (z : ℂ) (hd : DiffContOnCl ℂ f (verticalStrip 0 1)) (hB : BddAbove ((norm ∘ f) '' verticalClosedStrip 0 1)) (hz : z ∈ verticalClosedStrip 0 1) : ‖F f ε z‖ ≤ 1
case h E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E ε : ℝ hε : 0 < ε z : ℂ hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) hz : z ∈ verticalClosedStrip 0 1 ⊢ ∃ B, (fun x => invInterpStrip f x ε • f x) =O[comap (abs ∘ im) atTop ⊓ 𝓟 (re ⁻¹' Ioo 0 1)] fun z => Real.exp (B * Real.exp (0 * |z.im|))
obtain ⟨BF, hBF⟩ := F_BddAbove f ε hε hB
case h.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E ε : ℝ hε : 0 < ε z : ℂ hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) hz : z ∈ verticalClosedStrip 0 1 BF : ℝ hBF : BF ∈ upperBounds (norm ∘ F f ε '' verticalClosedStrip 0 1) ⊢ ∃ B, (fun x => invInterpStrip f x ε • f x) =O[comap (abs ∘ im) atTop ⊓ 𝓟 (re ⁻¹' Ioo 0 1)] fun z => Real.exp (B * Real.exp (0 * |z.im|))
98bef02cbf34a7ba
LinearMap.span_singleton_sup_orthogonal_eq_top
Mathlib/LinearAlgebra/SesquilinearForm.lean
theorem span_singleton_sup_orthogonal_eq_top {B : V →ₗ[K] V →ₗ[K] K} {x : V} (hx : ¬B.IsOrtho x x) : (K ∙ x) ⊔ Submodule.orthogonalBilin (N := K ∙ x) (B := B) = ⊤
K : Type u_13 V : Type u_16 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : V →ₗ[K] V →ₗ[K] K x : V hx : ¬B.IsOrtho x x ⊢ Submodule.span K {x} ⊔ ker (B x) = ⊤
exact (B x).span_singleton_sup_ker_eq_top hx
no goals
b8e64ce8cd021479
Choose.choose_modEq_choose_mod_mul_choose_div
Mathlib/Data/Nat/Choose/Lucas.lean
theorem choose_modEq_choose_mod_mul_choose_div : choose n k ≡ choose (n % p) (k % p) * choose (n / p) (k / p) [ZMOD p]
case mp n k p : ℕ inst✝ : Fact (Nat.Prime p) decompose : (X + 1) ^ n = (X + 1) ^ (n % p) * (X ^ p + 1) ^ (n / p) x₁ x₂ : ℕ hx : (x₁, x₂) ∈ range (n % p + 1) ×ˢ range (n / p + 1) h : k = (x₁, x₂).1 + p * (x₁, x₂).2 ⊢ k % p = x₁ ∧ k / p = x₂
simp only [mem_product, mem_range] at hx
case mp n k p : ℕ inst✝ : Fact (Nat.Prime p) decompose : (X + 1) ^ n = (X + 1) ^ (n % p) * (X ^ p + 1) ^ (n / p) x₁ x₂ : ℕ h : k = (x₁, x₂).1 + p * (x₁, x₂).2 hx : x₁ < n % p + 1 ∧ x₂ < n / p + 1 ⊢ k % p = x₁ ∧ k / p = x₂
33a40e7a05a91053
irrational_nrt_of_n_not_dvd_multiplicity
Mathlib/Data/Real/Irrational.lean
theorem irrational_nrt_of_n_not_dvd_multiplicity {x : ℝ} (n : ℕ) {m : ℤ} (hm : m ≠ 0) (p : ℕ) [hp : Fact p.Prime] (hxr : x ^ n = m) (hv : multiplicity (p : ℤ) m % n ≠ 0) : Irrational x
x : ℝ n : ℕ m : ℤ hm : m ≠ 0 p : ℕ hp : Fact (Nat.Prime p) hxr : x ^ n = ↑m hv : multiplicity (↑p) m % n ≠ 0 ⊢ Irrational x
rcases Nat.eq_zero_or_pos n with (rfl | hnpos)
case inl x : ℝ m : ℤ hm : m ≠ 0 p : ℕ hp : Fact (Nat.Prime p) hxr : x ^ 0 = ↑m hv : multiplicity (↑p) m % 0 ≠ 0 ⊢ Irrational x case inr x : ℝ n : ℕ m : ℤ hm : m ≠ 0 p : ℕ hp : Fact (Nat.Prime p) hxr : x ^ n = ↑m hv : multiplicity (↑p) m % n ≠ 0 hnpos : n > 0 ⊢ Irrational x
e5116bdccdf5b584
MeasureTheory.hitting_mono
Mathlib/Probability/Process/HittingTime.lean
theorem hitting_mono {m₁ m₂ : ι} (hm : m₁ ≤ m₂) : hitting u s n m₁ ω ≤ hitting u s n m₂ ω
case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j ∈ Set.Icc n m₁, u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s ⊢ m₁ ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s})
refine le_csInf ⟨j, hj₁, hj₂⟩ ?_
case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j ∈ Set.Icc n m₁, u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s ⊢ ∀ b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}, m₁ ≤ b
4352e36fcea59599
FreeCommRing.map_subtype_val_restriction
Mathlib/RingTheory/FreeCommRing.lean
theorem map_subtype_val_restriction {x} (s : Set α) [DecidablePred (· ∈ s)] (hxs : IsSupported x s) : map (↑) (restriction s x) = x
case refine_3 α : Type u x : FreeCommRing α s : Set α inst✝ : DecidablePred fun x => x ∈ s hxs : x.IsSupported s ⊢ ∀ z ∈ of '' s, ∀ (n : FreeCommRing α), (map Subtype.val) ((restriction s) n) = n → (map Subtype.val) ((restriction s) (z * n)) = z * n
rintro _ ⟨p, hps, rfl⟩ n ih
case refine_3.intro.intro α : Type u x : FreeCommRing α s : Set α inst✝ : DecidablePred fun x => x ∈ s hxs : x.IsSupported s p : α hps : p ∈ s n : FreeCommRing α ih : (map Subtype.val) ((restriction s) n) = n ⊢ (map Subtype.val) ((restriction s) (of p * n)) = of p * n
8af8f3ca1b5a0bde
TensorAlgebra.ι_eq_algebraMap_iff
Mathlib/LinearAlgebra/TensorAlgebra/Basic.lean
theorem ι_eq_algebraMap_iff (x : M) (r : R) : ι R x = algebraMap R _ r ↔ x = 0 ∧ r = 0
case refine_1 R : Type u_1 inst✝² : CommSemiring R M : Type u_2 inst✝¹ : AddCommMonoid M inst✝ : Module R M x : M r : R h : (ι R) x = (algebraMap R (TensorAlgebra R M)) r this✝ : Module Rᵐᵒᵖ M := Module.compHom M ((RingHom.id R).fromOpposite ⋯) this : IsCentralScalar R M hf0 : toTrivSqZeroExt ((ι R) x) = (0, x) ⊢ x = 0 ∧ r = 0
rw [h, AlgHom.commutes] at hf0
case refine_1 R : Type u_1 inst✝² : CommSemiring R M : Type u_2 inst✝¹ : AddCommMonoid M inst✝ : Module R M x : M r : R h : (ι R) x = (algebraMap R (TensorAlgebra R M)) r this✝ : Module Rᵐᵒᵖ M := Module.compHom M ((RingHom.id R).fromOpposite ⋯) this : IsCentralScalar R M hf0 : (algebraMap R (TrivSqZeroExt R M)) r = (0, x) ⊢ x = 0 ∧ r = 0
a75fb78d09e9680b
SimpleGraph.Walk.count_support_takeUntil_eq_one
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
theorem count_support_takeUntil_eq_one {u v w : V} (p : G.Walk v w) (h : u ∈ p.support) : (p.takeUntil u h).support.count u = 1
case cons.tail V : Type u G : SimpleGraph V inst✝ : DecidableEq V u v w u✝ v✝ w✝ : V h✝ : G.Adj u✝ v✝ p✝ : G.Walk v✝ w✝ p_ih✝ : ∀ (h : u ∈ p✝.support), List.count u (p✝.takeUntil u h).support = 1 a✝ : List.Mem u p✝.support ⊢ List.count u ((cons h✝ p✝).takeUntil u ⋯).support = 1
simp! only
case cons.tail V : Type u G : SimpleGraph V inst✝ : DecidableEq V u v w u✝ v✝ w✝ : V h✝ : G.Adj u✝ v✝ p✝ : G.Walk v✝ w✝ p_ih✝ : ∀ (h : u ∈ p✝.support), List.count u (p✝.takeUntil u h).support = 1 a✝ : List.Mem u p✝.support ⊢ List.count u (if hx : u✝ = u then hx ▸ nil else cons h✝ (p✝.takeUntil u ⋯)).support = 1
f16bba71e73c8e80
ProbabilityTheory.Kernel.densityProcess_fst_univ_ae
Mathlib/Probability/Kernel/Disintegration/Density.lean
lemma densityProcess_fst_univ_ae (κ : Kernel α (γ × β)) [IsFiniteKernel κ] (n : ℕ) (a : α) : ∀ᵐ x ∂(fst κ a), densityProcess κ (fst κ) n a x univ = 1
case hd α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × β) inst✝ : IsFiniteKernel κ n : ℕ a : α this✝ : {x | ¬κ.densityProcess κ.fst n a x univ = 1} ⊆ {x | (κ.fst a) (countablePartitionSet n x) = 0} this : {x | (κ.fst a) (countablePartitionSet n x) = 0} ⊆ ⋃ u ∈ countablePartition γ n, ⋃ (_ : (κ.fst a) u = 0), u s : Set γ hs : s ∈ countablePartition γ n t : Set γ ht : t ∈ countablePartition γ n hst : s ≠ t ⊢ (κ.fst a) t = 0 → (κ.fst a) s = 0 → Disjoint s t
exact fun _ _ ↦ disjoint_countablePartition hs ht hst
no goals
3cc629ecd9ee70bb
Mathlib.Tactic.Ring.neg_one_mul
Mathlib/Tactic/Ring/Basic.lean
theorem neg_one_mul {R} [Ring R] {a b : R} (_ : (Int.negOfNat (nat_lit 1)).rawCast * a = b) : -a = b
R : Type u_2 inst✝ : Ring R a : R ⊢ -a = (Int.negOfNat 1).rawCast * a
simp [Int.negOfNat]
no goals
8cf03d70e225cd71
LinearMap.split_surjective_of_localization_maximal
Mathlib/RingTheory/LocalProperties/Projective.lean
theorem LinearMap.split_surjective_of_localization_maximal (f : M →ₗ[R] N) [Module.FinitePresentation R N] (H : ∀ (I : Ideal R) (_ : I.IsMaximal), ∃ (g : _ →ₗ[Localization.AtPrime I] _), (LocalizedModule.map I.primeCompl f).comp g = LinearMap.id) : ∃ (g : N →ₗ[R] M), f.comp g = LinearMap.id
R : Type u_1 N : Type u_2 M : Type uM inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N f : M →ₗ[R] N inst✝ : Module.FinitePresentation R N H : ∀ (I : Ideal R) (x : I.IsMaximal), ∃ g, (LocalizedModule.map I.primeCompl) f ∘ₗ g = id ⊢ ∃ g, f ∘ₗ g = id
show LinearMap.id ∈ LinearMap.range (LinearMap.llcomp R N M N f)
R : Type u_1 N : Type u_2 M : Type uM inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N f : M →ₗ[R] N inst✝ : Module.FinitePresentation R N H : ∀ (I : Ideal R) (x : I.IsMaximal), ∃ g, (LocalizedModule.map I.primeCompl) f ∘ₗ g = id ⊢ id ∈ range ((llcomp R N M N) f)
d80210efccbecc76
CategoryTheory.NonPreadditiveAbelian.add_comm
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
theorem add_comm {X Y : C} (a b : X ⟶ Y) : a + b = b + a
C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C a b : X ⟶ Y ⊢ 0 - 0 - (0 - a - b) = b + a
conv_lhs => congr next => skip rw [← neg_def, neg_sub]
C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C a b : X ⟶ Y ⊢ 0 - 0 - (-b - a) = b + a
93ff39b7d8cf110a
Reflexive.rel_of_ne_imp
Mathlib/Logic/Relation.lean
theorem Reflexive.rel_of_ne_imp (h : Reflexive r) {x y : α} (hr : x ≠ y → r x y) : r x y
case neg α : Type u_1 r : α → α → Prop h : Reflexive r x y : α hr : x ≠ y → r x y hxy : ¬x = y ⊢ r x y
exact hr hxy
no goals
706c15bcf7e0832c
Module.finite_of_finrank_eq_succ
Mathlib/LinearAlgebra/Dimension/Free.lean
theorem finite_of_finrank_eq_succ {n : ℕ} (hn : finrank R M = n.succ) : Module.Finite R M := finite_of_finrank_pos <| by rw [hn]; exact n.succ_pos
R : Type u M : Type v inst✝⁴ : Semiring R inst✝³ : StrongRankCondition R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Free R M n : ℕ hn : finrank R M = n.succ ⊢ 0 < n.succ
exact n.succ_pos
no goals
07916223ed73054e
AlgebraicGeometry.Scheme.ker_of_isAffine
Mathlib/AlgebraicGeometry/IdealSheaf.lean
lemma ker_of_isAffine {X Y : Scheme} (f : X ⟶ Y) [IsAffine Y] : f.ker = ofIdealTop (RingHom.ker f.appTop.hom)
X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y ⊢ RingHom.ker (CommRingCat.Hom.hom (Hom.app f ↑⟨⊤, ⋯⟩)) ≤ (ofIdealTop (RingHom.ker (CommRingCat.Hom.hom (Hom.appTop f)))).ideal ⟨⊤, ⋯⟩
simp
no goals
f7b91b3482dc0e75
eq_of_powMul_faithful
Mathlib/Analysis/Normed/Ring/IsPowMulFaithful.lean
theorem eq_of_powMul_faithful (f₁ : AlgebraNorm R S) (hf₁_pm : IsPowMul f₁) (f₂ : AlgebraNorm R S) (hf₂_pm : IsPowMul f₂) (h_eq : ∀ y : S, ∃ (C₁ C₂ : ℝ) (_ : 0 < C₁) (_ : 0 < C₂), ∀ x : Algebra.adjoin R {y}, f₁ x.val ≤ C₁ * f₂ x.val ∧ f₂ x.val ≤ C₂ * f₁ x.val) : f₁ = f₂
case a.intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 inst✝² : NormedCommRing R inst✝¹ : CommRing S inst✝ : Algebra R S f₁ : AlgebraNorm R S hf₁_pm : IsPowMul ⇑f₁ f₂ : AlgebraNorm R S hf₂_pm : IsPowMul ⇑f₂ h_eq : ∀ (y : S), ∃ C₁ C₂, ∃ (_ : 0 < C₁) (_ : 0 < C₂), ∀ (x : ↥(Algebra.adjoin R {y})), f₁ ↑x ≤ C₁ * f₂ ↑x ∧ f₂ ↑x ≤ C₂ * f₁ ↑x x : S g₁ : AlgebraNorm R ↥(Algebra.adjoin R {x}) := AlgebraNorm.restriction (Algebra.adjoin R {x}) f₁ g₂ : AlgebraNorm R ↥(Algebra.adjoin R {x}) := AlgebraNorm.restriction (Algebra.adjoin R {x}) f₂ hg₁_pm : IsPowMul ⇑g₁ hg₂_pm : IsPowMul ⇑g₂ y : ↥(Algebra.adjoin R {x}) := ⟨x, ⋯⟩ hy : x = ↑y h1 : f₁ ↑y = g₁ y h2 : f₂ ↑y = g₂ y C₁ C₂ : ℝ hC₁_pos : 0 < C₁ hC₂_pos : 0 < C₂ hC : ∀ (x_1 : ↥(Algebra.adjoin R {x})), f₁ ↑x_1 ≤ C₁ * f₂ ↑x_1 ∧ f₂ ↑x_1 ≤ C₂ * f₁ ↑x_1 hC₁ : ∀ (x_1 : ↥(Algebra.adjoin R {x})), f₁ ↑x_1 ≤ C₁ * f₂ ↑x_1 hC₂ : ∀ (x_1 : ↥(Algebra.adjoin R {x})), f₂ ↑x_1 ≤ C₂ * f₁ ↑x_1 ⊢ f₁ x = f₂ x
rw [hy, h1, h2, eq_seminorms hg₁_pm hg₂_pm ⟨C₁, hC₁_pos, hC₁⟩ ⟨C₂, hC₂_pos, hC₂⟩]
no goals
f86a56fc3f1b670d
Nat.le_log2
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem le_log2 (h : n ≠ 0) : k ≤ n.log2 ↔ 2 ^ k ≤ n
n k✝ : Nat h : n ≠ 0 k : Nat h✝ : n ≥ 2 n0 : 0 < n / 2 ⊢ 0 < 2
decide
no goals
61e6f5635f3912bb
Multiset.count_finset_sup
Mathlib/Data/Finset/Lattice/Fold.lean
theorem count_finset_sup [DecidableEq β] (s : Finset α) (f : α → Multiset β) (b : β) : count b (s.sup f) = s.sup fun a => count b (f a)
case refine_2 α : Type u_2 β : Type u_3 inst✝ : DecidableEq β s✝ : Finset α f : α → Multiset β b : β this : DecidableEq α := Classical.decEq α i : α s : Finset α a✝ : i ∉ s ih : count b (s.sup f) = s.sup fun a => count b (f a) ⊢ count b ((insert i s).sup f) = (insert i s).sup fun a => count b (f a)
rw [Finset.sup_insert, sup_eq_union, count_union, Finset.sup_insert, ih]
no goals
63d14a7b80528253
QuaternionGroup.orderOf_a_one
Mathlib/GroupTheory/SpecificGroups/Quaternion.lean
theorem orderOf_a_one : orderOf (a 1 : QuaternionGroup n) = 2 * n
case inl n : ℕ hn : n = 0 ⊢ orderOf (a 1) = 2 * n
subst hn
case inl ⊢ orderOf (a 1) = 2 * 0
6a0b04ee75963fd8
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.safe_insert_of_performRupCheck_insertRup
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
theorem safe_insert_of_performRupCheck_insertRup {n : Nat} (f : DefaultFormula n) (f_readyForRupAdd : ReadyForRupAdd f) (c : DefaultClause n) (rupHints : Array Nat) : (performRupCheck (insertRupUnits f (negate c)).1 rupHints).2.2.1 = true → Limplies (PosFin n) f (f.insert c)
case inl n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n rupHints : Array Nat performRupCheck_success : (Array.foldl (confirmRupHint (f.insertRupUnits c.negate).1.clauses) ((f.insertRupUnits c.negate).1.assignments, [], false, false) rupHints).2.2.fst = true p : PosFin n → Bool pf : p ⊨ f c' : DefaultClause n c'_eq_c : c' = c ⊢ p ⊨ c'
rw [c'_eq_c]
case inl n : Nat f : DefaultFormula n f_readyForRupAdd : f.ReadyForRupAdd c : DefaultClause n rupHints : Array Nat performRupCheck_success : (Array.foldl (confirmRupHint (f.insertRupUnits c.negate).1.clauses) ((f.insertRupUnits c.negate).1.assignments, [], false, false) rupHints).2.2.fst = true p : PosFin n → Bool pf : p ⊨ f c' : DefaultClause n c'_eq_c : c' = c ⊢ p ⊨ c
56eb1fda3331659a
Finset.image₂_right_comm
Mathlib/Data/Finset/NAry.lean
theorem image₂_right_comm {γ : Type*} {u : Finset γ} {f : δ → γ → ε} {g : α → β → δ} {f' : α → γ → δ'} {g' : δ' → β → ε} (h_right_comm : ∀ a b c, f (g a b) c = g' (f' a c) b) : image₂ f (image₂ g s t) u = image₂ g' (image₂ f' s u) t := coe_injective <| by push_cast exact image2_right_comm h_right_comm
α : Type u_1 β : Type u_3 δ : Type u_7 δ' : Type u_8 ε : Type u_9 inst✝² : DecidableEq δ' inst✝¹ : DecidableEq ε s : Finset α t : Finset β inst✝ : DecidableEq δ γ : Type u_14 u : Finset γ f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b ⊢ image2 f (image2 g ↑s ↑t) ↑u = image2 g' (image2 f' ↑s ↑u) ↑t
exact image2_right_comm h_right_comm
no goals
aca330c91814883d
Order.mem_range_pred_of_not_isPredPrelimit
Mathlib/Order/SuccPred/Limit.lean
theorem mem_range_pred_of_not_isPredPrelimit (h : ¬ IsPredPrelimit a) : a ∈ range (pred : α → α)
case intro α : Type u_1 a : α inst✝¹ : PartialOrder α inst✝ : PredOrder α h : ¬IsPredPrelimit a b : α hb : ¬IsMin b ∧ pred b = a ⊢ a ∈ range pred
exact ⟨b, hb.2⟩
no goals
b031daf673792464
Multiset.isDershowitzMannaLT_singleton_insert
Mathlib/Data/Multiset/DershowitzManna.lean
private lemma isDershowitzMannaLT_singleton_insert (h : OneStep N (a ::ₘ M)) : ∃ M', N = a ::ₘ M' ∧ OneStep M' M ∨ N = M + M' ∧ ∀ x ∈ M', x < a
case intro.intro.intro.intro.intro.inr.refine_1 α : Type u_1 inst✝ : Preorder α M : Multiset α a : α X Y : Multiset α b : α h0 : a ::ₘ M = X + {b} h2 : ∀ y ∈ Y, y < b hab : a ≠ b ⊢ X + Y = a ::ₘ (Y + (M - {b}))
rw [← singleton_add, add_comm] at h0
case intro.intro.intro.intro.intro.inr.refine_1 α : Type u_1 inst✝ : Preorder α M : Multiset α a : α X Y : Multiset α b : α h0 : M + {a} = X + {b} h2 : ∀ y ∈ Y, y < b hab : a ≠ b ⊢ X + Y = a ::ₘ (Y + (M - {b}))
fe1657f5397146bc
Matrix.det_blockDiagonal
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
theorem det_blockDiagonal {o : Type*} [Fintype o] [DecidableEq o] (M : o → Matrix n n R) : (blockDiagonal M).det = ∏ k, (M k).det
case refine_3.refine_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (σ x).2 = x.2) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (σ x).2 = x.2 σ : n × o ≃ n × o hσ : ∀ (x : n × o), (σ x).2 = x.2 hσ' : ∀ (x : n × o), (σ⁻¹ x).2 = x.2 mk_apply_eq : ∀ (k : o) (x : n), ((σ (x, k)).1, k) = σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((σ⁻¹ (x, k)).1, k) = σ⁻¹ (x, k) k : o x✝ : k ∈ univ ⊢ LeftInverse (fun x => (σ⁻¹ (x, k)).1) fun x => (σ (x, k)).1
intro x
case refine_3.refine_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (σ x).2 = x.2) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (σ x).2 = x.2 σ : n × o ≃ n × o hσ : ∀ (x : n × o), (σ x).2 = x.2 hσ' : ∀ (x : n × o), (σ⁻¹ x).2 = x.2 mk_apply_eq : ∀ (k : o) (x : n), ((σ (x, k)).1, k) = σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((σ⁻¹ (x, k)).1, k) = σ⁻¹ (x, k) k : o x✝ : k ∈ univ x : n ⊢ (fun x => (σ⁻¹ (x, k)).1) ((fun x => (σ (x, k)).1) x) = x
85a593e300a16f88
exists_affineIndependent
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem exists_affineIndependent (s : Set P) : ∃ t ⊆ s, affineSpan k t = affineSpan k s ∧ AffineIndependent k ((↑) : t → P)
case h k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P hp : p ∈ s b : Set V hb₁ : b ⊆ ⇑(Equiv.vaddConst p).symm '' s hb₂ : Submodule.span k b = vectorSpan k s hb₃ : AffineIndependent k fun p_1 => ↑p_1 hb₀ : ∀ v ∈ b, v ≠ 0 ⊢ p ∈ spanPoints k (insert p ((fun a => a +ᵥ p) '' b)) ∧ p ∈ spanPoints k s
exact ⟨mem_spanPoints k _ _ (Set.mem_insert p _), mem_spanPoints k _ _ hp⟩
no goals
eed2f1fe5d5f5b68
List.mapIdxMGo_eq_mapIdxMAuxSpec
Mathlib/Data/List/Indexes.lean
theorem mapIdxMGo_eq_mapIdxMAuxSpec [LawfulMonad m] {β} (f : ℕ → α → m β) (arr : Array β) (as : List α) : mapIdxM.go f as arr = (arr.toList ++ ·) <$> mapIdxMAuxSpec f arr.size as
α : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m β : Type u f : ℕ → α → m β len : ℕ ih : ∀ (arr : Array β) (as : List α), as.length = len → mapIdxM.go f as arr = (fun x => arr.toList ++ x) <$> mapIdxMAuxSpec f arr.size as arr : Array β as : List α head : α tail : List α h : tail.length = len ⊢ (do let __do_lift ← f arr.size head mapIdxM.go f tail (arr.push __do_lift)) = do let x ← f arr.size head let x_1 ← mapIdxMAuxSpec f (arr.size + 1) tail pure (arr.toList ++ x :: x_1)
congr
case e_a α : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m β : Type u f : ℕ → α → m β len : ℕ ih : ∀ (arr : Array β) (as : List α), as.length = len → mapIdxM.go f as arr = (fun x => arr.toList ++ x) <$> mapIdxMAuxSpec f arr.size as arr : Array β as : List α head : α tail : List α h : tail.length = len ⊢ (fun __do_lift => mapIdxM.go f tail (arr.push __do_lift)) = fun x => do let x_1 ← mapIdxMAuxSpec f (arr.size + 1) tail pure (arr.toList ++ x :: x_1)
484508954c433f55
piecewise_ae_eq_restrict
Mathlib/MeasureTheory/Measure/Restrict.lean
theorem piecewise_ae_eq_restrict [DecidablePred (· ∈ s)] (hs : MeasurableSet s) : piecewise s f g =ᵐ[μ.restrict s] f
α : Type u_2 β : Type u_3 inst✝¹ : MeasurableSpace α μ : Measure α s : Set α f g : α → β inst✝ : DecidablePred fun x => x ∈ s hs : MeasurableSet s ⊢ s.piecewise f g =ᶠ[ae μ ⊓ 𝓟 s] f
exact (piecewise_eqOn s f g).eventuallyEq.filter_mono inf_le_right
no goals
952c1c111ae423b3
LaurentSeries.valuation_LaurentSeries_equal_extension
Mathlib/RingTheory/LaurentSeries.lean
theorem valuation_LaurentSeries_equal_extension : (LaurentSeriesPkg K).isDenseInducing.extend Valued.v = (Valued.v : K⸨X⸩ → ℤₘ₀)
case hg K : Type u_2 inst✝ : Field K ⊢ Continuous ⇑Valued.v
exact Valued.continuous_valuation (K := K⸨X⸩)
no goals
8df9f023f0e8c820
ProbabilityTheory.Kernel.iIndepSets.iIndep
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepSets.iIndep (m : ι → MeasurableSpace Ω) (h_le : ∀ i, m i ≤ _mΩ) (π : ι → Set (Set Ω)) (h_pi : ∀ n, IsPiSystem (π n)) (h_generate : ∀ i, m i = generateFrom (π i)) (h_ind : iIndepSets π κ μ) : iIndep m κ μ
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ μ hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : a ∉ S h_rec : (∀ i ∈ S, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ S, f i) = ∏ i ∈ S, (η a) (f i) hf_m : ∀ i ∈ insert a S, f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ x ∈ S, MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p ⊢ Indep m_p (m a) η μ
have hp : IsPiSystem p := isPiSystem_piiUnionInter π h_pi S
α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α m : ι → MeasurableSpace Ω h_le : ∀ (i : ι), m i ≤ _mΩ π : ι → Set (Set Ω) h_pi : ∀ (n : ι), IsPiSystem (π n) h_generate : ∀ (i : ι), m i = generateFrom (π i) h_ind : iIndepSets π κ μ hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η s : Finset ι f : ι → Set Ω a : ι S : Finset ι ha_notin_S : a ∉ S h_rec : (∀ i ∈ S, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ S, f i) = ∏ i ∈ S, (η a) (f i) hf_m : ∀ i ∈ insert a S, f i ∈ (fun x => {s | MeasurableSet s}) i hf_m_S : ∀ x ∈ S, MeasurableSet (f x) p : Set (Set Ω) := piiUnionInter π ↑S m_p : MeasurableSpace Ω := generateFrom p hS_eq_generate : m_p = generateFrom p hp : IsPiSystem p ⊢ Indep m_p (m a) η μ
839768f1641edae0
CategoryTheory.OplaxNatTrans.whiskerRight_naturality_comp
Mathlib/CategoryTheory/Bicategory/NaturalTransformation/Oplax.lean
theorem whiskerRight_naturality_comp (f : a ⟶ b) (g : b ⟶ c) (h : G.obj c ⟶ a') : η.naturality (f ≫ g) ▷ h ≫ (α_ _ _ _).hom ≫ η.app a ◁ G.mapComp f g ▷ h = F.mapComp f g ▷ η.app c ▷ h ≫ (α_ _ _ _).hom ▷ h ≫ (α_ _ _ _).hom ≫ F.map f ◁ η.naturality g ▷ h ≫ (α_ _ _ _).inv ≫ (α_ _ _ _).inv ▷ h ≫ η.naturality f ▷ G.map g ▷ h ≫ (α_ _ _ _).hom ▷ h ≫ (α_ _ _ _).hom
B : Type u₁ inst✝¹ : Bicategory B C : Type u₂ inst✝ : Bicategory C F G : OplaxFunctor B C η : OplaxNatTrans F G a b c : B a' : C f : a ⟶ b g : b ⟶ c h : G.obj c ⟶ a' ⊢ η.naturality (f ≫ g) ▷ h ≫ (α_ (η.app a) (G.map (f ≫ g)) h).hom ≫ η.app a ◁ G.mapComp f g ▷ h = F.mapComp f g ▷ η.app c ▷ h ≫ (α_ (F.map f) (F.map g) (η.app c)).hom ▷ h ≫ (α_ (F.map f) (F.map g ≫ η.app c) h).hom ≫ F.map f ◁ η.naturality g ▷ h ≫ (α_ (F.map f) (η.app b ≫ G.map g) h).inv ≫ (α_ (F.map f) (η.app b) (G.map g)).inv ▷ h ≫ η.naturality f ▷ G.map g ▷ h ≫ (α_ (η.app a) (G.map f) (G.map g)).hom ▷ h ≫ (α_ (η.app a) (G.map f ≫ G.map g) h).hom
rw [← associator_naturality_middle, ← comp_whiskerRight_assoc, naturality_comp]
B : Type u₁ inst✝¹ : Bicategory B C : Type u₂ inst✝ : Bicategory C F G : OplaxFunctor B C η : OplaxNatTrans F G a b c : B a' : C f : a ⟶ b g : b ⟶ c h : G.obj c ⟶ a' ⊢ (F.mapComp f g ▷ η.app c ≫ (α_ (F.map f) (F.map g) (η.app c)).hom ≫ F.map f ◁ η.naturality g ≫ (α_ (F.map f) (η.app b) (G.map g)).inv ≫ η.naturality f ▷ G.map g ≫ (α_ (η.app a) (G.map f) (G.map g)).hom) ▷ h ≫ (α_ (η.app a) (G.map f ≫ G.map g) h).hom = F.mapComp f g ▷ η.app c ▷ h ≫ (α_ (F.map f) (F.map g) (η.app c)).hom ▷ h ≫ (α_ (F.map f) (F.map g ≫ η.app c) h).hom ≫ F.map f ◁ η.naturality g ▷ h ≫ (α_ (F.map f) (η.app b ≫ G.map g) h).inv ≫ (α_ (F.map f) (η.app b) (G.map g)).inv ▷ h ≫ η.naturality f ▷ G.map g ▷ h ≫ (α_ (η.app a) (G.map f) (G.map g)).hom ▷ h ≫ (α_ (η.app a) (G.map f ≫ G.map g) h).hom
43d5d0dc1a09d30b
SimpleGraph.ediam_eq_one
Mathlib/Combinatorics/SimpleGraph/Diam.lean
@[simp] lemma ediam_eq_one [Nontrivial α] : G.ediam = 1 ↔ G = ⊤
case Adj.h.h.a α : Type u_1 G : SimpleGraph α inst✝ : Nontrivial α h₁ : G.ediam = 1 u v : α h₂ : 0 < G.edist u v ⊢ G.Adj u v
apply le_of_eq at h₁
case Adj.h.h.a α : Type u_1 G : SimpleGraph α inst✝ : Nontrivial α u v : α h₂ : 0 < G.edist u v h₁ : G.ediam ≤ 1 ⊢ G.Adj u v
f79273a120dd6be5
Associates.dvd_of_mem_factors
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
theorem dvd_of_mem_factors {a p : Associates α} (hm : p ∈ factors a) : p ∣ a
case inr.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a p : Associates α hm : p ∈ a.factors ha0 : a ≠ 0 a0 : α nza : a0 ≠ 0 ha' : Associates.mk a0 = a ⊢ p ∣ a
rw [← Associates.factors_prod a]
case inr.intro.intro α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a p : Associates α hm : p ∈ a.factors ha0 : a ≠ 0 a0 : α nza : a0 ≠ 0 ha' : Associates.mk a0 = a ⊢ p ∣ a.factors.prod
5299e19f6694fb2c
tendsto_setIntegral_peak_smul_of_integrableOn_of_tendsto
Mathlib/MeasureTheory/Integral/PeakFunction.lean
theorem tendsto_setIntegral_peak_smul_of_integrableOn_of_tendsto (hs : MeasurableSet s) {t : Set α} (ht : MeasurableSet t) (hts : t ⊆ s) (h'ts : t ∈ 𝓝[s] x₀) (h't : μ t ≠ ∞) (hnφ : ∀ᶠ i in l, ∀ x ∈ s, 0 ≤ φ i x) (hlφ : ∀ u : Set α, IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u)) (hiφ : Tendsto (fun i ↦ ∫ x in t, φ i x ∂μ) l (𝓝 1)) (h'iφ : ∀ᶠ i in l, AEStronglyMeasurable (φ i) (μ.restrict s)) (hmg : IntegrableOn g s μ) (hcg : Tendsto g (𝓝[s] x₀) (𝓝 a)) : Tendsto (fun i : ι ↦ ∫ x in s, φ i x • g x ∂μ) l (𝓝 a)
case hmg α : Type u_1 E : Type u_2 ι : Type u_3 hm : MeasurableSpace α μ : Measure α inst✝⁴ : TopologicalSpace α inst✝³ : BorelSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E g : α → E l : Filter ι x₀ : α s : Set α φ : ι → α → ℝ a : E inst✝ : CompleteSpace E hs : MeasurableSet s t : Set α ht : MeasurableSet t hts : t ⊆ s h'ts : t ∈ 𝓝[s] x₀ h't : μ t ≠ ⊤ hnφ : ∀ᶠ (i : ι) in l, ∀ x ∈ s, 0 ≤ φ i x hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u) hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1) h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s) hmg : IntegrableOn g s μ hcg : Tendsto g (𝓝[s] x₀) (𝓝 a) h : α → E := g - t.indicator fun x => a ⊢ Integrable (t.indicator fun x => a) (μ.restrict s)
simp only [integrable_indicator_iff ht, integrableOn_const, ht, Measure.restrict_apply]
case hmg α : Type u_1 E : Type u_2 ι : Type u_3 hm : MeasurableSpace α μ : Measure α inst✝⁴ : TopologicalSpace α inst✝³ : BorelSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E g : α → E l : Filter ι x₀ : α s : Set α φ : ι → α → ℝ a : E inst✝ : CompleteSpace E hs : MeasurableSet s t : Set α ht : MeasurableSet t hts : t ⊆ s h'ts : t ∈ 𝓝[s] x₀ h't : μ t ≠ ⊤ hnφ : ∀ᶠ (i : ι) in l, ∀ x ∈ s, 0 ≤ φ i x hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u) hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1) h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s) hmg : IntegrableOn g s μ hcg : Tendsto g (𝓝[s] x₀) (𝓝 a) h : α → E := g - t.indicator fun x => a ⊢ a = 0 ∨ μ (t ∩ s) < ⊤
fcf9a03d4108054c
ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet
Mathlib/Probability/Moments/IntegrableExpMul.lean
/-- If `v` belongs to the interior of the interval `integrableExpSet X μ`, then `X ^ p * exp (v * X)` is integrable for all nonnegative `p : ℝ`. -/ lemma integrable_rpow_mul_exp_of_mem_interior_integrableExpSet (hv : v ∈ interior (integrableExpSet X μ)) {p : ℝ} (hp : 0 ≤ p) : Integrable (fun ω ↦ X ω ^ p * exp (v * X ω)) μ
case intro.intro.intro.refine_3 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω v p : ℝ hp : 0 ≤ p l u : ℝ hvlu : v ∈ Set.Ioo l u h_subset : Set.Ioo l u ⊆ integrableExpSet X μ h_pos : 0 < (v - l) ⊓ (u - v) ⊢ Integrable (fun ω => rexp ((v - ((v - l) ⊓ (u - v)) / 2) * X ω)) μ
exact h_subset (sub_half_inf_sub_mem_Ioo hvlu)
no goals
0e622ce8317f663e
Finset.mul_inv_eq_inv_mul_of_doubling_lt_two_aux
Mathlib/Combinatorics/Additive/VerySmallDoubling.lean
private lemma mul_inv_eq_inv_mul_of_doubling_lt_two_aux (h : #(A * A) < 2 * #A) : A⁻¹ * A ⊆ A * A⁻¹
G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G A : Finset G h : #(A * A) < 2 * #A z : G ⊢ z ∈ A⁻¹ * A → z ∈ A * A⁻¹
simp only [mem_mul, forall_exists_index, exists_and_left, and_imp, mem_inv, exists_exists_and_eq_and]
G : Type u_1 inst✝¹ : Group G inst✝ : DecidableEq G A : Finset G h : #(A * A) < 2 * #A z : G ⊢ ∀ x ∈ A, ∀ x_1 ∈ A, x⁻¹ * x_1 = z → ∃ y ∈ A, ∃ a ∈ A, y * a⁻¹ = z
b8d9a308629ad83d
Polynomial.Monic.geom_sum
Mathlib/RingTheory/Polynomial/Basic.lean
theorem Monic.geom_sum {P : R[X]} (hP : P.Monic) (hdeg : 0 < P.natDegree) {n : ℕ} (hn : n ≠ 0) : (∑ i ∈ range n, P ^ i).Monic
case intro R : Type u inst✝ : Semiring R P : R[X] hP : P.Monic hdeg : 0 < P.natDegree a✝ : Nontrivial R n : ℕ hn : n.succ ≠ 0 k : ℕ ⊢ k < n → k * P.natDegree < n * P.natDegree
exact nsmul_lt_nsmul_left hdeg
no goals
88dcf173b62f3103
MeasureTheory.SimpleFunc.tendsto_approxOn_range_L1_enorm
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem tendsto_approxOn_range_L1_enorm [OpensMeasurableSpace E] {f : β → E} {μ : Measure β} [SeparableSpace (range f ∪ {0} : Set E)] (fmeas : Measurable f) (hf : Integrable f μ) : Tendsto (fun n => ∫⁻ x, ‖approxOn f fmeas (range f ∪ {0}) 0 (by simp) n x - f x‖ₑ ∂μ) atTop (𝓝 0)
β : Type u_2 E : Type u_4 inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E inst✝¹ : OpensMeasurableSpace E f : β → E μ : Measure β inst✝ : SeparableSpace ↑(Set.range f ∪ {0}) fmeas : Measurable f hf : Integrable f μ ⊢ Tendsto (fun n => ∫⁻ (x : β), ‖(approxOn f fmeas (Set.range f ∪ {0}) 0 ⋯ n) x - f x‖ₑ ∂μ) atTop (𝓝 0)
apply tendsto_approxOn_L1_enorm fmeas
case hμ β : Type u_2 E : Type u_4 inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E inst✝¹ : OpensMeasurableSpace E f : β → E μ : Measure β inst✝ : SeparableSpace ↑(Set.range f ∪ {0}) fmeas : Measurable f hf : Integrable f μ ⊢ ∀ᵐ (x : β) ∂μ, f x ∈ closure (Set.range f ∪ {0}) case hi β : Type u_2 E : Type u_4 inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace E inst✝² : NormedAddCommGroup E inst✝¹ : OpensMeasurableSpace E f : β → E μ : Measure β inst✝ : SeparableSpace ↑(Set.range f ∪ {0}) fmeas : Measurable f hf : Integrable f μ ⊢ HasFiniteIntegral (fun x => f x - 0) μ
9089b3887e889536
Subadditive.tendsto_lim
Mathlib/Analysis/Subadditive.lean
theorem tendsto_lim (hbdd : BddBelow (range fun n => u n / n)) : Tendsto (fun n => u n / n) atTop (𝓝 h.lim)
u : ℕ → ℝ h : Subadditive u hbdd : BddBelow (range fun n => u n / ↑n) ⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 h.lim)
refine tendsto_order.2 ⟨fun l hl => ?_, fun L hL => ?_⟩
case refine_1 u : ℕ → ℝ h : Subadditive u hbdd : BddBelow (range fun n => u n / ↑n) l : ℝ hl : l < h.lim ⊢ ∀ᶠ (b : ℕ) in atTop, l < u b / ↑b case refine_2 u : ℕ → ℝ h : Subadditive u hbdd : BddBelow (range fun n => u n / ↑n) L : ℝ hL : L > h.lim ⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < L
4ac4c5b856326f16
Finset.insert_compl_self
Mathlib/Data/Finset/BooleanAlgebra.lean
theorem insert_compl_self (x : α) : insert x ({x}ᶜ : Finset α) = univ
α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α x : α ⊢ insert x {x}ᶜ = univ
rw [← compl_erase, erase_singleton, compl_empty]
no goals
bac433c196f0ec9d
MeasureTheory.Lp.simpleFunc.denseRange_coeSimpleFuncNonnegToLpNonneg
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem denseRange_coeSimpleFuncNonnegToLpNonneg [hp : Fact (1 ≤ p)] (hp_ne_top : p ≠ ∞) : DenseRange (coeSimpleFuncNonnegToLpNonneg p μ G) := fun g ↦ by borelize G rw [mem_closure_iff_seq_limit] have hg_memLp : MemLp (g : α → G) p μ := Lp.memLp (g : Lp G p μ) have zero_mem : (0 : G) ∈ (range (g : α → G) ∪ {0} : Set G) ∩ { y | 0 ≤ y }
α : Type u_1 inst✝¹ : MeasurableSpace α p : ℝ≥0∞ μ : Measure α G : Type u_7 inst✝ : NormedLatticeAddCommGroup G hp : Fact (1 ≤ p) hp_ne_top : p ≠ ⊤ g : { g // 0 ≤ g } this✝¹ : MeasurableSpace G := borel G this✝ : BorelSpace G hg_memLp : MemLp (↑↑↑g) p μ zero_mem : 0 ∈ (Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y} this : SeparableSpace ↑((Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y}) ⊢ ∃ x, (∀ (n : ℕ), x n ∈ Set.range (coeSimpleFuncNonnegToLpNonneg p μ G)) ∧ Tendsto x atTop (𝓝 g)
have g_meas : Measurable (g : α → G) := (Lp.stronglyMeasurable (g : Lp G p μ)).measurable
α : Type u_1 inst✝¹ : MeasurableSpace α p : ℝ≥0∞ μ : Measure α G : Type u_7 inst✝ : NormedLatticeAddCommGroup G hp : Fact (1 ≤ p) hp_ne_top : p ≠ ⊤ g : { g // 0 ≤ g } this✝¹ : MeasurableSpace G := borel G this✝ : BorelSpace G hg_memLp : MemLp (↑↑↑g) p μ zero_mem : 0 ∈ (Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y} this : SeparableSpace ↑((Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y}) g_meas : Measurable ↑↑↑g ⊢ ∃ x, (∀ (n : ℕ), x n ∈ Set.range (coeSimpleFuncNonnegToLpNonneg p μ G)) ∧ Tendsto x atTop (𝓝 g)
1fc70ad144f2653f
MeasureTheory.exists_seq_tendstoInMeasure_atTop_iff
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean
theorem exists_seq_tendstoInMeasure_atTop_iff [IsFiniteMeasure μ] {f : ℕ → α → E} (hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ) {g : α → E} : TendstoInMeasure μ f atTop g ↔ ∀ ns : ℕ → ℕ, StrictMono ns → ∃ ns' : ℕ → ℕ, StrictMono ns' ∧ ∀ᵐ (ω : α) ∂μ, Tendsto (fun i ↦ f (ns (ns' i)) ω) atTop (𝓝 (g ω))
case intro.intro α : Type u_1 E : Type u_4 m : MeasurableSpace α μ : Measure α inst✝¹ : MetricSpace E inst✝ : IsFiniteMeasure μ f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ g : α → E ε : ℝ hε : 0 < ε h2 : ¬Tendsto (fun i => (μ {x | ε ≤ dist (f i x) (g x)}).toNNReal) atTop (𝓝 0) s : Set ℝ≥0 hs : s ∈ 𝓝 0 h4 : ∃ᶠ (x : ℕ) in atTop, (μ {x_1 | ε ≤ dist (f x x_1) (g x_1)}).toNNReal ∉ s ⊢ ∃ δ ns, 0 < δ ∧ StrictMono ns ∧ ∀ (n : ℕ), δ ≤ (μ {x | ε ≤ dist (f (ns n) x) (g x)}).toNNReal
obtain ⟨δ, hδ, h5⟩ := NNReal.nhds_zero_basis.mem_iff.1 hs
case intro.intro.intro.intro α : Type u_1 E : Type u_4 m : MeasurableSpace α μ : Measure α inst✝¹ : MetricSpace E inst✝ : IsFiniteMeasure μ f : ℕ → α → E hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ g : α → E ε : ℝ hε : 0 < ε h2 : ¬Tendsto (fun i => (μ {x | ε ≤ dist (f i x) (g x)}).toNNReal) atTop (𝓝 0) s : Set ℝ≥0 hs : s ∈ 𝓝 0 h4 : ∃ᶠ (x : ℕ) in atTop, (μ {x_1 | ε ≤ dist (f x x_1) (g x_1)}).toNNReal ∉ s δ : ℝ≥0 hδ : 0 < δ h5 : Set.Iio δ ⊆ s ⊢ ∃ δ ns, 0 < δ ∧ StrictMono ns ∧ ∀ (n : ℕ), δ ≤ (μ {x | ε ≤ dist (f (ns n) x) (g x)}).toNNReal
f829873f3e8498ff
MeasureTheory.Measure.exists_positive_of_not_mutuallySingular
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem exists_positive_of_not_mutuallySingular (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] (h : ¬ μ ⟂ₘ ν) : ∃ ε : ℝ≥0, 0 < ε ∧ ∃ E : Set α, MeasurableSet E ∧ 0 < ν E ∧ ∀ A, MeasurableSet A → ε * ν (A ∩ E) ≤ μ (A ∩ E)
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝¹ : IsFiniteMeasure μ inst✝ : IsFiniteMeasure ν h : ¬μ ⟂ₘ ν f : ℕ → Set α hf₁ : ∀ (n : ℕ), MeasurableSet (f n) hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n) hf₃ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ (f n)ᶜ) A : Set α := ⋂ n, (f n)ᶜ hAmeas : MeasurableSet A hA₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ A) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A) μA : ℝ≥0 hA₃✝¹ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ν A νA : ℝ≥0 hA₃✝ hA₃ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ↑νA hb : 0 < νA c : ℝ≥0 hc : 0 < c n : ℕ hn : 1 / (↑n + 1) < ↑c * (↑νA)⁻¹ ⊢ 0 < ↑νA
exact hb
no goals
48437d57402f42cd
swap_mul_swap_mul_swap
Mathlib/Algebra/Group/End.lean
theorem swap_mul_swap_mul_swap {x y z : α} (hxy : x ≠ y) (hxz : x ≠ z) : swap y z * swap x y * swap y z = swap z x
α : Type u_4 inst✝ : DecidableEq α x y z : α hxy : x ≠ y hxz : x ≠ z ⊢ swap y z * swap x y * swap y z = swap z x
nth_rewrite 3 [← swap_inv]
α : Type u_4 inst✝ : DecidableEq α x y z : α hxy : x ≠ y hxz : x ≠ z ⊢ swap y z * swap x y * (swap y z)⁻¹ = swap z x
a6fbb5a9b4adfbc4
Submodule.FG.stabilizes_of_iSup_eq
Mathlib/RingTheory/Finiteness/Basic.lean
theorem FG.stabilizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : ℕ →o Submodule R M) (H : iSup N = M') : ∃ n, M' = N n
case h.a R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M M' : Submodule R M N : ℕ →o Submodule R M H : iSup ⇑N = M' S : Finset M hS : span R ↑S = M' f : { x // x ∈ S } → ℕ hf : ∀ (s : { x // x ∈ S }), ↑s ∈ N (f s) s : M hs : s ∈ ↑S ⊢ s ∈ ↑(N (S.attach.sup f))
exact N.2 (Finset.le_sup <| S.mem_attach ⟨s, hs⟩) (hf _)
no goals
8a1a767d6cea695a
BitVec.msb_abs
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem msb_abs {w : Nat} {x : BitVec w} : x.abs.msb = (decide (x = intMin w) && decide (0 < w))
case neg w : Nat x : BitVec w h₀ : 0 < w h₁ : ¬x = intMin w h₂ : ¬x.msb = true ⊢ (if x.msb = true then -x else x).msb = (false && decide (0 < w))
simp [h₂]
no goals
b96e82b9c2fda510
exists_dist_eq
Mathlib/Analysis/NormedSpace/Pointwise.lean
theorem exists_dist_eq (x z : E) {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) : ∃ y, dist x y = b * dist x z ∧ dist y z = a * dist x z
E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E x z : E a b : ℝ ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ ∃ y, dist x y = b * dist x z ∧ dist y z = a * dist x z
use a • x + b • z
case h E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E x z : E a b : ℝ ha : 0 ≤ a hb : 0 ≤ b hab : a + b = 1 ⊢ dist x (a • x + b • z) = b * dist x z ∧ dist (a • x + b • z) z = a * dist x z
b95a636671d023aa
Besicovitch.SatelliteConfig.exists_normalized_aux3
Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean
theorem exists_normalized_aux3 {N : ℕ} {τ : ℝ} (a : SatelliteConfig E N τ) (lastc : a.c (last N) = 0) (lastr : a.r (last N) = 1) (hτ : 1 ≤ τ) (δ : ℝ) (hδ1 : τ ≤ 1 + δ / 4) (i j : Fin N.succ) (inej : i ≠ j) (hi : 2 < ‖a.c i‖) (hij : ‖a.c i‖ ≤ ‖a.c j‖) : 1 - δ ≤ ‖(2 / ‖a.c i‖) • a.c i - (2 / ‖a.c j‖) • a.c j‖
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E N : ℕ τ : ℝ a : SatelliteConfig E N τ lastc : a.c (last N) = 0 lastr : a.r (last N) = 1 hτ : 1 ≤ τ δ : ℝ hδ1 : τ ≤ 1 + δ / 4 i j : Fin N.succ inej : i ≠ j hi : 2 < ‖a.c i‖ hij : ‖a.c i‖ ≤ ‖a.c j‖ ah : Pairwise fun i j => a.r i ≤ ‖a.c i - a.c j‖ ∧ a.r j ≤ τ * a.r i ∨ a.r j ≤ ‖a.c j - a.c i‖ ∧ a.r i ≤ τ * a.r j ⊢ 1 - δ ≤ ‖(2 / ‖a.c i‖) • a.c i - (2 / ‖a.c j‖) • a.c j‖
have δnonneg : 0 ≤ δ := by linarith only [hτ, hδ1]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E N : ℕ τ : ℝ a : SatelliteConfig E N τ lastc : a.c (last N) = 0 lastr : a.r (last N) = 1 hτ : 1 ≤ τ δ : ℝ hδ1 : τ ≤ 1 + δ / 4 i j : Fin N.succ inej : i ≠ j hi : 2 < ‖a.c i‖ hij : ‖a.c i‖ ≤ ‖a.c j‖ ah : Pairwise fun i j => a.r i ≤ ‖a.c i - a.c j‖ ∧ a.r j ≤ τ * a.r i ∨ a.r j ≤ ‖a.c j - a.c i‖ ∧ a.r i ≤ τ * a.r j δnonneg : 0 ≤ δ ⊢ 1 - δ ≤ ‖(2 / ‖a.c i‖) • a.c i - (2 / ‖a.c j‖) • a.c j‖
03f5b92dee305e5f
CategoryTheory.Pretriangulated.productTriangle_distinguished
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
/-- A product of distinguished triangles is distinguished -/ lemma productTriangle_distinguished {J : Type*} (T : J → Triangle C) (hT : ∀ j, T j ∈ distTriang C) [HasProduct (fun j => (T j).obj₁)] [HasProduct (fun j => (T j).obj₂)] [HasProduct (fun j => (T j).obj₃)] [HasProduct (fun j => (T j).obj₁⟦(1 : ℤ)⟧)] : productTriangle T ∈ distTriang C
C : Type u inst✝⁸ : Category.{v, u} C inst✝⁷ : HasZeroObject C inst✝⁶ : HasShift C ℤ inst✝⁵ : Preadditive C inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C J : Type u_1 T : J → Triangle C hT : ∀ (j : J), T j ∈ distinguishedTriangles inst✝³ : HasProduct fun j => (T j).obj₁ inst✝² : HasProduct fun j => (T j).obj₂ inst✝¹ : HasProduct fun j => (T j).obj₃ inst✝ : HasProduct fun j => (shiftFunctor C 1).obj (T j).obj₁ f₁ : (∏ᶜ fun j => (T j).obj₁) ⟶ ∏ᶜ fun j => (T j).obj₂ := Limits.Pi.map fun j => (T j).mor₁ Z : C f₂ : (∏ᶜ fun j => (T j).obj₂) ⟶ Z f₃ : Z ⟶ (shiftFunctor C 1).obj (∏ᶜ fun j => (T j).obj₁) T' : Triangle C := Triangle.mk f₁ f₂ f₃ hT' : T' ∈ distinguishedTriangles φ : (j : J) → T' ⟶ T j := fun j => completeDistinguishedTriangleMorphism T' (T j) hT' ⋯ (Pi.π (fun j => (T j).obj₁) j) (Pi.π (fun j => (T j).obj₂) j) ⋯ φ' : T' ⟶ productTriangle T := productTriangle.lift T φ h₁ : φ'.hom₁ = 𝟙 T'.obj₁ h₂ : φ'.hom₂ = 𝟙 T'.obj₂ this✝¹ : IsIso φ'.hom₁ this✝ : IsIso φ'.hom₂ A✝ A : C f : A ⟶ T'.obj₃ hf : f ≫ φ'.hom₃ = 0 hf' : f ≫ T'.mor₃ = 0 g : A ⟶ T'.obj₂ hg : f = g ≫ T'.mor₂ j : J this : g ≫ (productTriangle T).mor₂ ≫ Pi.π (fun j => (T j).obj₃) j = 0 ⊢ (g ≫ Pi.π (fun j => (T j).obj₂) j) ≫ (T j).mor₂ = 0
simpa using this
no goals
ce9c86c420201fe7
CStarRing.norm_coe_unitary_mul
Mathlib/Analysis/CStarAlgebra/Basic.lean
theorem norm_coe_unitary_mul (U : unitary E) (A : E) : ‖(U : E) * A‖ = ‖A‖
E : Type u_2 inst✝² : NormedRing E inst✝¹ : StarRing E inst✝ : CStarRing E U : ↥(unitary E) A : E ⊢ ‖↑U * A‖ = ‖A‖
nontriviality E
E : Type u_2 inst✝² : NormedRing E inst✝¹ : StarRing E inst✝ : CStarRing E U : ↥(unitary E) A : E a✝ : Nontrivial E ⊢ ‖↑U * A‖ = ‖A‖
f09abe48df8a1a8c
List.head?_pmap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
theorem head?_pmap {P : α → Prop} (f : (a : α) → P a → β) (xs : List α) (H : ∀ (a : α), a ∈ xs → P a) : (xs.pmap f H).head? = xs.attach.head?.map fun ⟨a, m⟩ => f a (H a m)
case nil α : Type u_1 β : Type u_2 P : α → Prop f : (a : α) → P a → β H : ∀ (a : α), a ∈ [] → P a ⊢ (pmap f [] H).head? = Option.map (fun x => match x with | ⟨a, m⟩ => f a ⋯) [].attach.head?
simp
no goals
3831ebbe35343d5a
CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/Subobject.lean
/-- If `C` is a Grothendieck abelian category, `X : C`, if `F : J ⥤ MonoOver X` is a functor from a filtered category `J`, the colimit of `F` (computed in `C`) gives a subobject of `F` which is a supremum of the subobjects corresponding to the objects in the image of the functor `F`. -/ lemma subobjectMk_of_isColimit_eq_iSup : haveI := mono_of_isColimit_monoOver F hc f hf Subobject.mk f = ⨆ j, Subobject.mk (F.obj j).obj.hom
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : Abelian C inst✝² : IsGrothendieckAbelian.{w, v, u} C X : C J : Type w inst✝¹ : SmallCategory J F : J ⥤ MonoOver X inst✝ : IsFiltered J c : Cocone (F ⋙ MonoOver.forget X ⋙ Over.forget X) hc : IsColimit c f : c.pt ⟶ X hf : ∀ (j : J), c.ι.app j ≫ f = (F.obj j).obj.hom this : Mono f ⊢ Subobject.mk f = ⨆ j, Subobject.mk (F.obj j).obj.hom
apply le_antisymm
case a C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : Abelian C inst✝² : IsGrothendieckAbelian.{w, v, u} C X : C J : Type w inst✝¹ : SmallCategory J F : J ⥤ MonoOver X inst✝ : IsFiltered J c : Cocone (F ⋙ MonoOver.forget X ⋙ Over.forget X) hc : IsColimit c f : c.pt ⟶ X hf : ∀ (j : J), c.ι.app j ≫ f = (F.obj j).obj.hom this : Mono f ⊢ Subobject.mk f ≤ ⨆ j, Subobject.mk (F.obj j).obj.hom case a C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : Abelian C inst✝² : IsGrothendieckAbelian.{w, v, u} C X : C J : Type w inst✝¹ : SmallCategory J F : J ⥤ MonoOver X inst✝ : IsFiltered J c : Cocone (F ⋙ MonoOver.forget X ⋙ Over.forget X) hc : IsColimit c f : c.pt ⟶ X hf : ∀ (j : J), c.ι.app j ≫ f = (F.obj j).obj.hom this : Mono f ⊢ ⨆ j, Subobject.mk (F.obj j).obj.hom ≤ Subobject.mk f
23cc3e98d4dca6a2
adjoin_le_integralClosure
Mathlib/RingTheory/IntegralClosure/IsIntegralClosure/Basic.lean
theorem adjoin_le_integralClosure {x : A} (hx : IsIntegral R x) : Algebra.adjoin R {x} ≤ integralClosure R A
R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A x : A hx : IsIntegral R x ⊢ Algebra.adjoin R {x} ≤ integralClosure R A
rw [Algebra.adjoin_le_iff]
R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : CommRing A inst✝ : Algebra R A x : A hx : IsIntegral R x ⊢ {x} ⊆ ↑(integralClosure R A)
d466a6f9b3a6fd44
FDerivMeasurableAux.D_subset_differentiable_set
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem D_subset_differentiable_set {K : Set (E →L[𝕜] F)} (hK : IsComplete K) : D f K ⊆ { x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K }
case neg.intro.intro 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F K : Set (E →L[𝕜] F) hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n c : 𝕜 hc : 1 < ‖c‖ x : E hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → E →L[𝕜] F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) M : ∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e) this : CauchySeq L0 f' : E →L[𝕜] F f'K : f' ∈ K hf' : Tendsto L0 atTop (𝓝 f') Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e ε : ℝ εpos : 0 < ε pos : 0 < 4 + 12 * ‖c‖ e : ℕ he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖) y : E hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1)) y_pos : ¬y = 0 yzero : 0 < ‖y‖ y_lt : ‖y‖ < (1 / 2) ^ (n e + 1) yone : ‖y‖ ≤ 1 k : ℕ hk : (1 / 2) ^ (k + 1) < ‖y‖ h'k : ‖y‖ ≤ (1 / 2) ^ k k_gt : n e < k m : ℕ := k - 1 m_ge : n e ≤ m km : k = m + 1 ⊢ ‖f (x + y) - f x - f' y‖ ≤ ε * ‖y‖
rw [km] at hk h'k
case neg.intro.intro 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F K : Set (E →L[𝕜] F) hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n c : 𝕜 hc : 1 < ‖c‖ x : E hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → E →L[𝕜] F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) M : ∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e) this : CauchySeq L0 f' : E →L[𝕜] F f'K : f' ∈ K hf' : Tendsto L0 atTop (𝓝 f') Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e ε : ℝ εpos : 0 < ε pos : 0 < 4 + 12 * ‖c‖ e : ℕ he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖) y : E hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1)) y_pos : ¬y = 0 yzero : 0 < ‖y‖ y_lt : ‖y‖ < (1 / 2) ^ (n e + 1) yone : ‖y‖ ≤ 1 k : ℕ k_gt : n e < k m : ℕ := k - 1 h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1) hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖ m_ge : n e ≤ m km : k = m + 1 ⊢ ‖f (x + y) - f x - f' y‖ ≤ ε * ‖y‖
28c357cacce7671e
Std.DHashMap.get!_insertMany_list_of_mem
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Lemmas.lean
theorem get!_insertMany_list_of_mem [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : k == k') {v : β k} [Inhabited (β k')] (distinct : l.Pairwise (fun a b => (a.1 == b.1) = false)) (mem : ⟨k, v⟩ ∈ l) : (m.insertMany l).get! k' = cast (by congr; apply LawfulBEq.eq_of_beq k_beq) v := Raw₀.get!_insertMany_list_of_mem ⟨m.1, _⟩ m.2 k_beq distinct mem
case e_a α : Type u β : α → Type v x✝¹ : BEq α x✝ : Hashable α m : DHashMap α β inst✝¹ : LawfulBEq α l : List ((a : α) × β a) k k' : α k_beq : (k == k') = true v : β k inst✝ : Inhabited (β k') distinct : List.Pairwise (fun a b => (a.fst == b.fst) = false) l mem : ⟨k, v⟩ ∈ l ⊢ k = k'
apply LawfulBEq.eq_of_beq k_beq
no goals
bed2cb906f5e044b
LinearLocallyFiniteOrder.succFn_le_of_lt
Mathlib/Order/SuccPred/LinearLocallyFinite.lean
theorem succFn_le_of_lt (i j : ι) (hij : i < j) : succFn i ≤ j
ι : Type u_1 inst✝ : LinearOrder ι i j : ι hij : i < j h : (∀ x ∈ Set.Ioi i, succFn i ≤ x) ∧ succFn i ∈ upperBounds (lowerBounds (Set.Ioi i)) ⊢ succFn i ≤ j
exact h.1 j hij
no goals
22c67ce05b62e111
Field.isAlgebraic_of_adjoin_eq_adjoin
Mathlib/FieldTheory/PrimitiveElement.lean
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
case neg.refine_1 F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n r s : F[X] h✝ : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hm : 0 < m hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r this : f.coeff (n * s.natDegree + m) ≠ 0 h : f = 0 ⊢ False
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
no goals
ce2babdd1545fb9d
Algebra.FormallySmooth.pi_iff
Mathlib/RingTheory/Smooth/Pi.lean
theorem pi_iff [Finite I] : FormallySmooth R (Π i, A i) ↔ ∀ i, FormallySmooth R (A i)
R : Type (max u v) I : Type u A : I → Type (max u v) inst✝⁵ : CommRing R inst✝⁴ : (i : I) → CommRing (A i) inst✝³ : (i : I) → Algebra R (A i) inst✝² : Finite I val✝ : Fintype I H : ∀ (i : I), FormallySmooth R (A i) B : Type (max u v) inst✝¹ : CommRing B inst✝ : Algebra R B J : Ideal B hJ : J ^ 2 = ⊥ g : ((i : I) → A i) →ₐ[R] B ⧸ J hJ' : ∀ x ∈ RingHom.ker (Ideal.Quotient.mk J), IsNilpotent x e : I → B he : CompleteOrthogonalIdempotents e he' : ∀ (i : I), (Ideal.Quotient.mk J) (e i) = g (Pi.single i 1) iso : B ≃ₐ[R] (i : I) → B ⧸ Ideal.span {1 - e i} := let __spread.0 := Pi.algHom R (fun i => B ⧸ Ideal.span {1 - e i}) fun i => Ideal.Quotient.mkₐ R (Ideal.span {1 - e i}); let __spread.1 := Equiv.ofBijective ⇑(Pi.ringHom fun i => Ideal.Quotient.mk (Ideal.span {1 - e i})) ⋯; { toFun := (↑↑__spread.0.toRingHom).toFun, invFun := __spread.1.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ } J' : (i : I) → Ideal (B ⧸ Ideal.span {1 - e i}) := fun i => Ideal.map (Ideal.Quotient.mk (Ideal.span {1 - e i})) J ι : (i : I) → B ⧸ J →ₐ[R] (B ⧸ Ideal.span {1 - e i}) ⧸ J' i := fun i => Ideal.quotientMapₐ (J' i) (IsScalarTower.toAlgHom R B (B ⧸ Ideal.span {1 - e i})) ⋯ hι : ∀ (i : I) (x : B ⧸ J), (ι i) x = 0 → (Ideal.Quotient.mk J) (e i) * x = 0 a : (i : I) → A i →ₐ[R] B ⧸ Ideal.span {1 - e i} ha : ∀ (i : I) (x : A i), (Ideal.Quotient.mk (J' i)) ((a i) x) = (ι i) (g (Pi.single i x)) x✝ : (i : I) → A i i : I x : A i y : B hy : (Ideal.Quotient.mk (Ideal.span {1 - e i})) y = (a i) x hy' : (Ideal.Quotient.mk (Ideal.span {1 - e i})) (y * e i) = (a i) x j : I hij : ¬i = j ⊢ (Ideal.Quotient.mk (Ideal.span {1 - e j})) (e i) = 0
rw [Ideal.Quotient.eq_zero_iff_mem, Ideal.mem_span_singleton]
R : Type (max u v) I : Type u A : I → Type (max u v) inst✝⁵ : CommRing R inst✝⁴ : (i : I) → CommRing (A i) inst✝³ : (i : I) → Algebra R (A i) inst✝² : Finite I val✝ : Fintype I H : ∀ (i : I), FormallySmooth R (A i) B : Type (max u v) inst✝¹ : CommRing B inst✝ : Algebra R B J : Ideal B hJ : J ^ 2 = ⊥ g : ((i : I) → A i) →ₐ[R] B ⧸ J hJ' : ∀ x ∈ RingHom.ker (Ideal.Quotient.mk J), IsNilpotent x e : I → B he : CompleteOrthogonalIdempotents e he' : ∀ (i : I), (Ideal.Quotient.mk J) (e i) = g (Pi.single i 1) iso : B ≃ₐ[R] (i : I) → B ⧸ Ideal.span {1 - e i} := let __spread.0 := Pi.algHom R (fun i => B ⧸ Ideal.span {1 - e i}) fun i => Ideal.Quotient.mkₐ R (Ideal.span {1 - e i}); let __spread.1 := Equiv.ofBijective ⇑(Pi.ringHom fun i => Ideal.Quotient.mk (Ideal.span {1 - e i})) ⋯; { toFun := (↑↑__spread.0.toRingHom).toFun, invFun := __spread.1.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ } J' : (i : I) → Ideal (B ⧸ Ideal.span {1 - e i}) := fun i => Ideal.map (Ideal.Quotient.mk (Ideal.span {1 - e i})) J ι : (i : I) → B ⧸ J →ₐ[R] (B ⧸ Ideal.span {1 - e i}) ⧸ J' i := fun i => Ideal.quotientMapₐ (J' i) (IsScalarTower.toAlgHom R B (B ⧸ Ideal.span {1 - e i})) ⋯ hι : ∀ (i : I) (x : B ⧸ J), (ι i) x = 0 → (Ideal.Quotient.mk J) (e i) * x = 0 a : (i : I) → A i →ₐ[R] B ⧸ Ideal.span {1 - e i} ha : ∀ (i : I) (x : A i), (Ideal.Quotient.mk (J' i)) ((a i) x) = (ι i) (g (Pi.single i x)) x✝ : (i : I) → A i i : I x : A i y : B hy : (Ideal.Quotient.mk (Ideal.span {1 - e i})) y = (a i) x hy' : (Ideal.Quotient.mk (Ideal.span {1 - e i})) (y * e i) = (a i) x j : I hij : ¬i = j ⊢ 1 - e j ∣ e i
0128f0207720570c
UV.compress_injOn
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
theorem compress_injOn : Set.InjOn (compress u v) ↑{a ∈ s | compress u v a ∉ s}
case pos α : Type u_1 inst✝³ : GeneralizedBooleanAlgebra α inst✝² : DecidableRel Disjoint inst✝¹ : DecidableRel fun x1 x2 => x1 ≤ x2 s : Finset α u v : α inst✝ : DecidableEq α a b : α has : Disjoint u a ∧ v ≤ a ha : a ∈ s ∧ (a ⊔ u) \ v ∉ s hbs : Disjoint u b ∧ v ≤ b hb : b ∈ s ∧ (b ⊔ u) \ v ∉ s hab : (a ⊔ u) \ v = (b ⊔ u) \ v ⊢ a = b
exact sup_sdiff_injOn u v has hbs hab
no goals
4c8b28ba0d63c5ee
Array.getElem_insertIdx_loop_gt
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Lemmas.lean
theorem getElem_insertIdx_loop_gt {as : Array α} {i : Nat} {j : Nat} {hj : j < as.size} {k : Nat} {h} (w : i < k) : (insertIdx.loop i as ⟨j, hj⟩)[k] = if k ≤ j then as[k-1]'(by simp at h; omega) else as[k]'(by simpa using h)
α : Type u_1 as : Array α i j : Nat hj : j < as.size k : Nat h : k < (insertIdx.loop i as ⟨j, hj⟩).size w : i < k ⊢ (insertIdx.loop i as ⟨j, hj⟩)[k] = if k ≤ j then as[k - 1] else as[k]
unfold insertIdx.loop
α : Type u_1 as : Array α i j : Nat hj : j < as.size k : Nat h : k < (insertIdx.loop i as ⟨j, hj⟩).size w : i < k ⊢ (if i < ↑⟨j, hj⟩ then let j' := ⟨↑⟨j, hj⟩ - 1, ⋯⟩; let as_1 := as.swap ↑j' ↑⟨j, hj⟩ ⋯ ⋯; insertIdx.loop i as_1 ⟨↑j', ⋯⟩ else as)[k] = if k ≤ j then as[k - 1] else as[k]
ab494e4c94494354
isIntegral_localization
Mathlib/RingTheory/Localization/Integral.lean
theorem isIntegral_localization [Algebra.IsIntegral R S] : (map Sₘ (algebraMap R S) (show _ ≤ (Algebra.algebraMapSubmonoid S M).comap _ from M.le_comap_map) : Rₘ →+* _).IsIntegral
R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S Rₘ : Type u_3 Sₘ : Type u_4 inst✝⁶ : CommRing Rₘ inst✝⁵ : CommRing Sₘ inst✝⁴ : Algebra R Rₘ inst✝³ : IsLocalization M Rₘ inst✝² : Algebra S Sₘ inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝ : Algebra.IsIntegral R S ⊢ (IsLocalization.map Sₘ (algebraMap R S) ⋯).IsIntegral
intro x
R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S Rₘ : Type u_3 Sₘ : Type u_4 inst✝⁶ : CommRing Rₘ inst✝⁵ : CommRing Sₘ inst✝⁴ : Algebra R Rₘ inst✝³ : IsLocalization M Rₘ inst✝² : Algebra S Sₘ inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝ : Algebra.IsIntegral R S x : Sₘ ⊢ (IsLocalization.map Sₘ (algebraMap R S) ⋯).IsIntegralElem x
8b8cef4c34437a28
Stream'.drop_drop
Mathlib/Data/Stream/Init.lean
theorem drop_drop (n m : ℕ) (s : Stream' α) : drop n (drop m s) = drop (m + n) s
case a α : Type u n m : ℕ s : Stream' α n✝ : ℕ ⊢ (drop n (drop m s)).get n✝ = (drop (m + n) s).get n✝
simp [Nat.add_assoc]
no goals
6fb978b75adf3eda
PFunctor.M.bisim
Mathlib/Data/PFunctor/Univariate/M.lean
theorem bisim (R : M P → M P → Prop) (h : ∀ x y, R x y → ∃ a f f', M.dest x = ⟨a, f⟩ ∧ M.dest y = ⟨a, f'⟩ ∧ ∀ i, R (f i) (f' i)) : ∀ x y, R x y → x = y
case head.intro.intro.intro.intro.intro P : PFunctor.{u} R : P.M → P.M → Prop this : Inhabited P.A a a' : P.A f : P.B a → P.M f' : P.B a' → P.M ih : R (M.mk ⟨a, f⟩) (M.mk ⟨a', f'⟩) a'' : P.A g g' : P.B a'' → P.M h₂ : ∀ (i : P.B a''), R (g i) (g' i) h₀ : (M.mk ⟨a, f⟩).dest.fst = ⟨a'', g⟩.fst h₁ : (M.mk ⟨a', f'⟩).dest.fst = ⟨a'', g'⟩.fst ⊢ a = a'
simp only [dest_mk] at h₀ h₁
case head.intro.intro.intro.intro.intro P : PFunctor.{u} R : P.M → P.M → Prop this : Inhabited P.A a a' : P.A f : P.B a → P.M f' : P.B a' → P.M ih : R (M.mk ⟨a, f⟩) (M.mk ⟨a', f'⟩) a'' : P.A g g' : P.B a'' → P.M h₂ : ∀ (i : P.B a''), R (g i) (g' i) h₀ : a = a'' h₁ : a' = a'' ⊢ a = a'
ec0e4121dc7f2f06
MvPolynomial.rank_R
Mathlib/FieldTheory/Finite/Polynomial.lean
theorem rank_R [Fintype σ] : Module.rank K (R σ K) = Fintype.card (σ → K) := calc Module.rank K (R σ K) = Module.rank K (↥{ s : σ →₀ ℕ | ∀ n : σ, s n ≤ Fintype.card K - 1 } →₀ K) := LinearEquiv.rank_eq (Finsupp.supportedEquivFinsupp { s : σ →₀ ℕ | ∀ n : σ, s n ≤ Fintype.card K - 1 }) _ = #{ s : σ →₀ ℕ | ∀ n : σ, s n ≤ Fintype.card K - 1 }
σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Fintype σ f : σ →₀ ℕ ⊢ f ∈ {s | ∀ (n : σ), s n ≤ Fintype.card K - 1} ↔ Finsupp.equivFunOnFinite f ∈ {s | ∀ (n : σ), s n < Fintype.card K}
refine forall_congr' fun n => le_tsub_iff_right ?_
σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Fintype σ f : σ →₀ ℕ n : σ ⊢ 1 ≤ Fintype.card K
9d3af127cf4d8525
AkraBazziRecurrence.one_mem_range_sumCoeffsExp
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma one_mem_range_sumCoeffsExp : 1 ∈ Set.range (fun (p : ℝ) => ∑ i, a i * (b i) ^ p)
case le_one α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r ⊢ ∃ a_1, ∑ i : α, a i * b i ^ a_1 ≤ 1 case ge_one α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r ⊢ ∃ b_1, 1 ≤ ∑ i : α, a i * b i ^ b_1
case le_one => exact R.tendsto_zero_sumCoeffsExp.eventually_le_const zero_lt_one |>.exists
case ge_one α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r ⊢ ∃ b_1, 1 ≤ ∑ i : α, a i * b i ^ b_1
682141ea82f75568
Lean.Data.AC.Context.evalList_insert
Mathlib/.lake/packages/lean4/src/lean/Init/Data/AC.lean
theorem Context.evalList_insert (ctx : Context α) (h : Commutative ctx.op) (x : Nat) (xs : List Nat) : evalList α ctx (insert x xs) = evalList α ctx (x::xs)
case isFalse α : Sort u_1 ctx : Context α h : Commutative ctx.op x y z : Nat zs : List Nat ih : evalList α ctx (if x < z then x :: z :: zs else z :: insert x zs) = evalList α ctx (x :: z :: zs) h✝¹ : ¬x < y h✝ : ¬x < z ⊢ evalList α ctx (y :: z :: insert x zs) = evalList α ctx (x :: y :: z :: zs)
next => simp_all [evalList, EvalInformation.evalOp]; rw [h.1, ctx.assoc.1, h.1 (evalList _ _ _)]
no goals
37aa11cde795cd0c
AlgebraicGeometry.LocallyRingedSpace.toΓSpecCApp_iff
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
theorem toΓSpecCApp_iff (f : (structureSheaf <| Γ.obj <| op X).val.obj (op <| basicOpen r) ⟶ X.presheaf.obj (op <| X.toΓSpecMapBasicOpen r)) : toOpen _ (basicOpen r) ≫ f = X.toToΓSpecMapBasicOpen r ↔ f = X.toΓSpecCApp r
case mp.hf X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (X.toΓSpecMapBasicOpen r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) h : ConcreteCategory.hom (toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f) = (IsLocalization.Away.lift r ⋯).comp (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) ⊢ CommRingCat.Hom.hom f = CommRingCat.Hom.hom (X.toΓSpecCApp r)
exact IsLocalization.ringHom_ext (Submonoid.powers r) h
no goals
e699f685bb0ed6c2
isLocalHom_of_le_jacobson_bot
Mathlib/RingTheory/Henselian.lean
theorem isLocalHom_of_le_jacobson_bot {R : Type*} [CommRing R] (I : Ideal R) (h : I ≤ Ideal.jacobson ⊥) : IsLocalHom (Ideal.Quotient.mk I)
R : Type u_1 inst✝ : CommRing R I : Ideal R h✝ : I ≤ ⊥.jacobson a : R h : ∃ b, (Ideal.Quotient.mk I) a * b = 1 ⊢ ∃ b, (Ideal.Quotient.mk ⊥.jacobson) a * b = 1
obtain ⟨b, hb⟩ := h
case intro R : Type u_1 inst✝ : CommRing R I : Ideal R h : I ≤ ⊥.jacobson a : R b : R ⧸ I hb : (Ideal.Quotient.mk I) a * b = 1 ⊢ ∃ b, (Ideal.Quotient.mk ⊥.jacobson) a * b = 1
a961c7da2da42bc3
Besicovitch.SatelliteConfig.exists_normalized
Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean
theorem exists_normalized {N : ℕ} {τ : ℝ} (a : SatelliteConfig E N τ) (lastc : a.c (last N) = 0) (lastr : a.r (last N) = 1) (hτ : 1 ≤ τ) (δ : ℝ) (hδ1 : τ ≤ 1 + δ / 4) (hδ2 : δ ≤ 1) : ∃ c' : Fin N.succ → E, (∀ n, ‖c' n‖ ≤ 2) ∧ Pairwise fun i j => 1 - δ ≤ ‖c' i - c' j‖
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E N : ℕ τ : ℝ a : SatelliteConfig E N τ lastc : a.c (last N) = 0 lastr : a.r (last N) = 1 hτ : 1 ≤ τ δ : ℝ hδ1 : τ ≤ 1 + δ / 4 hδ2 : δ ≤ 1 c' : Fin N.succ → E := fun i => if ‖a.c i‖ ≤ 2 then a.c i else (2 / ‖a.c i‖) • a.c i norm_c'_le : ∀ (i : Fin N.succ), ‖c' i‖ ≤ 2 i j : Fin N.succ inej : i ≠ j hij : ‖a.c i‖ ≤ ‖a.c j‖ ⊢ 1 - δ ≤ ‖c' i - c' j‖
rcases le_or_lt ‖a.c j‖ 2 with (Hj | Hj)
case inl E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E N : ℕ τ : ℝ a : SatelliteConfig E N τ lastc : a.c (last N) = 0 lastr : a.r (last N) = 1 hτ : 1 ≤ τ δ : ℝ hδ1 : τ ≤ 1 + δ / 4 hδ2 : δ ≤ 1 c' : Fin N.succ → E := fun i => if ‖a.c i‖ ≤ 2 then a.c i else (2 / ‖a.c i‖) • a.c i norm_c'_le : ∀ (i : Fin N.succ), ‖c' i‖ ≤ 2 i j : Fin N.succ inej : i ≠ j hij : ‖a.c i‖ ≤ ‖a.c j‖ Hj : ‖a.c j‖ ≤ 2 ⊢ 1 - δ ≤ ‖c' i - c' j‖ case inr E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E N : ℕ τ : ℝ a : SatelliteConfig E N τ lastc : a.c (last N) = 0 lastr : a.r (last N) = 1 hτ : 1 ≤ τ δ : ℝ hδ1 : τ ≤ 1 + δ / 4 hδ2 : δ ≤ 1 c' : Fin N.succ → E := fun i => if ‖a.c i‖ ≤ 2 then a.c i else (2 / ‖a.c i‖) • a.c i norm_c'_le : ∀ (i : Fin N.succ), ‖c' i‖ ≤ 2 i j : Fin N.succ inej : i ≠ j hij : ‖a.c i‖ ≤ ‖a.c j‖ Hj : 2 < ‖a.c j‖ ⊢ 1 - δ ≤ ‖c' i - c' j‖
ef3e2825a59b79a7