name
stringlengths 3
112
| file
stringlengths 21
116
| statement
stringlengths 17
8.64k
| state
stringlengths 7
205k
| tactic
stringlengths 3
4.55k
| result
stringlengths 7
205k
| id
stringlengths 16
16
|
---|---|---|---|---|---|---|
CommApplicative.commutative_map
|
Mathlib/Control/Basic.lean
|
theorem CommApplicative.commutative_map {m : Type u → Type v} [h : Applicative m]
[CommApplicative m] {α β γ} (a : m α) (b : m β) {f : α → β → γ} :
f <$> a <*> b = flip f <$> b <*> a :=
calc
f <$> a <*> b = (fun p : α × β => f p.1 p.2) <$> (Prod.mk <$> a <*> b)
|
m : Type u → Type v
h : Applicative m
inst✝ : CommApplicative m
α β γ : Type u
a : m α
b : m β
f : α → β → γ
⊢ (fun a => (fun p => f p.fst p.snd) ∘ fun a_1 => (a_1, a)) <$> b <*> a = (fun b a => f a b) <$> b <*> a
|
rfl
|
no goals
|
7b94d6ca6a1d855a
|
Nat.factorial_lt
|
Mathlib/Data/Nat/Factorial/Basic.lean
|
theorem factorial_lt (hn : 0 < n) : n ! < m ! ↔ n < m
|
m n : ℕ
hn : 0 < n
h : n < m
⊢ ∀ {n : ℕ}, 0 < n → n ! < (n + 1)!
|
intro k hk
|
m n : ℕ
hn : 0 < n
h : n < m
k : ℕ
hk : 0 < k
⊢ k ! < (k + 1)!
|
a491a6261b8d2e38
|
Function.Injective.lieAlgebra_isNilpotent
|
Mathlib/Algebra/Lie/Nilpotent.lean
|
theorem Function.Injective.lieAlgebra_isNilpotent [h₁ : IsNilpotent L'] {f : L →ₗ⁅R⁆ L'}
(h₂ : Function.Injective f) : IsNilpotent L
|
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : ∃ k, lowerCentralSeries R L' L' k = ⊥
f : L →ₗ⁅R⁆ L'
h₂ : Injective ⇑f
⊢ ∃ k, lowerCentralSeries R L L k = ⊥
|
peel h₁ with k hk
|
case h
R : Type u
L : Type v
L' : Type w
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
h₁ : ∃ k, lowerCentralSeries R L' L' k = ⊥
f : L →ₗ⁅R⁆ L'
h₂ : Injective ⇑f
k : ℕ
hk : lowerCentralSeries R L' L' k = ⊥
⊢ lowerCentralSeries R L L k = ⊥
|
01446f64e52ea22e
|
ONote.cmp_compares
|
Mathlib/SetTheory/Ordinal/Notation.lean
|
theorem cmp_compares : ∀ (a b : ONote) [NF a] [NF b], (cmp a b).Compares a b
| 0, 0, _, _ => rfl
| oadd _ _ _, 0, _, _ => oadd_pos _ _ _
| 0, oadd _ _ _, _, _ => oadd_pos _ _ _
| o₁@(oadd e₁ n₁ a₁), o₂@(oadd e₂ n₂ a₂), h₁, h₂ => by -- TODO: golf
rw [cmp]
have IHe := @cmp_compares _ _ h₁.fst h₂.fst
simp only [Ordering.Compares, gt_iff_lt] at IHe; revert IHe
cases cmp e₁ e₂
case lt => intro IHe; exact oadd_lt_oadd_1 h₁ IHe
case gt => intro IHe; exact oadd_lt_oadd_1 h₂ IHe
case eq =>
intro IHe; dsimp at IHe; subst IHe
unfold _root_.cmp; cases nh : cmpUsing (· < ·) (n₁ : ℕ) n₂ <;>
rw [cmpUsing, ite_eq_iff, not_lt] at nh
case lt =>
rcases nh with nh | nh
· exact oadd_lt_oadd_2 h₁ nh.left
· rw [ite_eq_iff] at nh; rcases nh.right with nh | nh <;> cases nh <;> contradiction
case gt =>
rcases nh with nh | nh
· cases nh; contradiction
· obtain ⟨_, nh⟩ := nh
rw [ite_eq_iff] at nh; rcases nh with nh | nh
· exact oadd_lt_oadd_2 h₂ nh.left
· cases nh; contradiction
rcases nh with nh | nh
· cases nh; contradiction
obtain ⟨nhl, nhr⟩ := nh
rw [ite_eq_iff] at nhr
rcases nhr with nhr | nhr
· cases nhr; contradiction
obtain rfl := Subtype.eq (nhl.eq_of_not_lt nhr.1)
have IHa := @cmp_compares _ _ h₁.snd h₂.snd
revert IHa; cases cmp a₁ a₂ <;> intro IHa <;> dsimp at IHa
case lt => exact oadd_lt_oadd_3 IHa
case gt => exact oadd_lt_oadd_3 IHa
subst IHa; exact rfl
|
case inr.intro
o₁ e₁ : ONote
n₁ : ℕ+
a₁ : ONote
h✝¹ : o₁ = e₁.oadd n₁ a₁
o₂ : ONote
n₂ : ℕ+
a₂ : ONote
h₁ : (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹).NF
h✝ : o₂ = e₁.oadd n₂ a₂
h₂ : (namedPattern o₂ (e₁.oadd n₂ a₂) h✝).NF
left✝ : ↑n₂ ≤ ↑n₁
nh : (if ↑n₂ < ↑n₁ then Ordering.gt else Ordering.eq) = Ordering.gt
⊢ (Ordering.eq.then (Ordering.gt.then (a₁.cmp a₂))).Compares (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹)
(namedPattern o₂ (e₁.oadd n₂ a₂) h✝)
|
rw [ite_eq_iff] at nh
|
case inr.intro
o₁ e₁ : ONote
n₁ : ℕ+
a₁ : ONote
h✝¹ : o₁ = e₁.oadd n₁ a₁
o₂ : ONote
n₂ : ℕ+
a₂ : ONote
h₁ : (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹).NF
h✝ : o₂ = e₁.oadd n₂ a₂
h₂ : (namedPattern o₂ (e₁.oadd n₂ a₂) h✝).NF
left✝ : ↑n₂ ≤ ↑n₁
nh : ↑n₂ < ↑n₁ ∧ Ordering.gt = Ordering.gt ∨ ¬↑n₂ < ↑n₁ ∧ Ordering.eq = Ordering.gt
⊢ (Ordering.eq.then (Ordering.gt.then (a₁.cmp a₂))).Compares (namedPattern o₁ (e₁.oadd n₁ a₁) h✝¹)
(namedPattern o₂ (e₁.oadd n₂ a₂) h✝)
|
52fdbaf9e931cd5c
|
isZGroup_of_coprime
|
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
|
theorem isZGroup_of_coprime [Finite G] [IsZGroup G] [IsZGroup G'']
(h_le : f'.ker ≤ f.range) (h_cop : (Nat.card G).Coprime (Nat.card G'')) :
IsZGroup G'
|
case inr
G : Type u_1
G' : Type u_2
G'' : Type u_3
inst✝⁵ : Group G
inst✝⁴ : Group G'
inst✝³ : Group G''
f : G →* G'
f' : G' →* G''
inst✝² : Finite G
inst✝¹ : IsZGroup G
inst✝ : IsZGroup G''
h_le : f'.ker ≤ f.range
p : ℕ
hp : Nat.Prime p
P : Sylow p G'
this : Fact (Nat.Prime p)
h_cop : (Nat.card ↥f'.ker).Coprime f'.ker.index
h : Disjoint f'.ker ↑P
⊢ IsCyclic ↥↑P
|
have := (P.2.map f').isCyclic_of_isZGroup
|
case inr
G : Type u_1
G' : Type u_2
G'' : Type u_3
inst✝⁵ : Group G
inst✝⁴ : Group G'
inst✝³ : Group G''
f : G →* G'
f' : G' →* G''
inst✝² : Finite G
inst✝¹ : IsZGroup G
inst✝ : IsZGroup G''
h_le : f'.ker ≤ f.range
p : ℕ
hp : Nat.Prime p
P : Sylow p G'
this✝ : Fact (Nat.Prime p)
h_cop : (Nat.card ↥f'.ker).Coprime f'.ker.index
h : Disjoint f'.ker ↑P
this : IsCyclic ↥(Subgroup.map f' ↑P)
⊢ IsCyclic ↥↑P
|
8e6ebf384c14685f
|
CategoryTheory.IsIso.of_isIso_fac_right
|
Mathlib/CategoryTheory/Iso.lean
|
theorem of_isIso_fac_right {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} {h : X ⟶ Z} [IsIso g]
[hh : IsIso h] (w : f ≫ g = h) : IsIso f
|
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : C
f : X ⟶ Y
g : Y ⟶ Z
h : X ⟶ Z
inst✝ : IsIso g
hh : IsIso (f ≫ g)
w : f ≫ g = h
this : IsIso (f ≫ g)
⊢ IsIso f
|
exact of_isIso_comp_right f g
|
no goals
|
9dbbbbf52ab93b3e
|
coeSubmodule_differentIdeal_fractionRing
|
Mathlib/RingTheory/DedekindDomain/Different.lean
|
lemma coeSubmodule_differentIdeal_fractionRing
[NoZeroSMulDivisors A B] [Algebra.IsIntegral A B]
[Algebra.IsSeparable (FractionRing A) (FractionRing B)]
[FiniteDimensional (FractionRing A) (FractionRing B)] :
coeSubmodule (FractionRing B) (differentIdeal A B) =
1 / Submodule.traceDual A (FractionRing A) 1
|
A : Type u_1
B : Type u_3
inst✝⁹ : CommRing A
inst✝⁸ : CommRing B
inst✝⁷ : Algebra A B
inst✝⁶ : IsDomain A
inst✝⁵ : IsIntegrallyClosed A
inst✝⁴ : IsDedekindDomain B
inst✝³ : NoZeroSMulDivisors A B
inst✝² : Algebra.IsIntegral A B
inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)
inst✝ : FiniteDimensional (FractionRing A) (FractionRing B)
this : IsIntegralClosure B A (FractionRing B)
⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))
|
have := FractionalIdeal.dual_inv_le (A := A) (K := FractionRing A)
(1 : FractionalIdeal B⁰ (FractionRing B))
|
A : Type u_1
B : Type u_3
inst✝⁹ : CommRing A
inst✝⁸ : CommRing B
inst✝⁷ : Algebra A B
inst✝⁶ : IsDomain A
inst✝⁵ : IsIntegrallyClosed A
inst✝⁴ : IsDedekindDomain B
inst✝³ : NoZeroSMulDivisors A B
inst✝² : Algebra.IsIntegral A B
inst✝¹ : Algebra.IsSeparable (FractionRing A) (FractionRing B)
inst✝ : FiniteDimensional (FractionRing A) (FractionRing B)
this✝ : IsIntegralClosure B A (FractionRing B)
this : (FractionalIdeal.dual A (FractionRing A) 1)⁻¹ ≤ 1
⊢ 1 / Submodule.traceDual A (FractionRing A) 1 ≤ LinearMap.range (Algebra.linearMap B (FractionRing B))
|
1468f2eabd5818af
|
CompHausLike.LocallyConstant.presheaf_ext
|
Mathlib/Condensed/Discrete/LocallyConstant.lean
|
/--
To check equality of two elements of `X(S)`, it suffices to check equality after composing with
each `X(S) → X(Sᵢ)`.
-/
lemma presheaf_ext (X : (CompHausLike.{u} P)ᵒᵖ ⥤ Type max u w)
[PreservesFiniteProducts X] (x y : X.obj ⟨S⟩)
[HasExplicitFiniteCoproducts.{u} P]
(h : ∀ (a : Fiber f), X.map (sigmaIncl f a).op x = X.map (sigmaIncl f a).op y) : x = y
|
case a.a.h
P : TopCat → Prop
inst✝³ : ∀ (S : CompHausLike P) (p : ↑S.toTop → Prop), HasProp P (Subtype p)
S : CompHausLike P
Y : (CompHausLike P)ᵒᵖ ⥤ Type (max u w)
inst✝² : HasProp P PUnit.{u + 1}
f : LocallyConstant (↑S.toTop) (Y.obj (op (of P PUnit.{u + 1})))
X : (CompHausLike P)ᵒᵖ ⥤ Type (max u w)
inst✝¹ : PreservesFiniteProducts X
x y : X.obj (op S)
inst✝ : HasExplicitFiniteCoproducts P
a : Fiber ⇑f
h :
((X.mapIso (sigmaIso f).op).hom ≫ (sigmaComparison X fun a => ↑(fiber f a).toTop) ≫ fun g => g a) x =
((X.mapIso (sigmaIso f).op).hom ≫ (sigmaComparison X fun a => ↑(fiber f a).toTop) ≫ fun g => g a) y
⊢ sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom x) a =
sigmaComparison X (fun a => ↑(fiber f a).toTop) ((X.mapIso (sigmaIso f).op).hom y) a
|
exact h
|
no goals
|
4aad38c3a12edfe7
|
Valued.continuous_extension
|
Mathlib/Topology/Algebra/Valued/ValuedField.lean
|
theorem continuous_extension : Continuous (Valued.extension : hat K → Γ₀)
|
K : Type u_1
inst✝¹ : Field K
Γ₀ : Type u_2
inst✝ : LinearOrderedCommGroupWithZero Γ₀
hv : Valued K Γ₀
x₀ : hat K
h : x₀ ≠ 0
preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1
V : Set (hat K)
V_in : V ∈ 𝓝 1
hV : ∀ (x : K), ↑x ∈ V → v x = 1
V' : Set (hat K)
V'_in : V' ∈ 𝓝 1
zeroV' : 0 ∉ V'
hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V
l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀
⊢ Function.RightInverse (fun x => x * x₀⁻¹) fun x => x * x₀
|
intro x
|
K : Type u_1
inst✝¹ : Field K
Γ₀ : Type u_2
inst✝ : LinearOrderedCommGroupWithZero Γ₀
hv : Valued K Γ₀
x₀ : hat K
h : x₀ ≠ 0
preimage_one : ⇑v ⁻¹' {1} ∈ 𝓝 1
V : Set (hat K)
V_in : V ∈ 𝓝 1
hV : ∀ (x : K), ↑x ∈ V → v x = 1
V' : Set (hat K)
V'_in : V' ∈ 𝓝 1
zeroV' : 0 ∉ V'
hV' : ∀ x ∈ V', ∀ y ∈ V', x * y⁻¹ ∈ V
l : Function.LeftInverse (fun x => x * x₀⁻¹) fun x => x * x₀
x : hat K
⊢ (fun x => x * x₀) ((fun x => x * x₀⁻¹) x) = x
|
af62a79ad478b7b6
|
Ideal.IsHomogeneous.iff_exists
|
Mathlib/RingTheory/GradedAlgebra/Homogeneous/Ideal.lean
|
theorem Ideal.IsHomogeneous.iff_exists :
I.IsHomogeneous 𝒜 ↔ ∃ S : Set (homogeneousSubmonoid 𝒜), I = Ideal.span ((↑) '' S)
|
ι : Type u_1
σ : Type u_2
A : Type u_3
inst✝⁵ : Semiring A
inst✝⁴ : SetLike σ A
inst✝³ : AddSubmonoidClass σ A
𝒜 : ι → σ
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : GradedRing 𝒜
I : Ideal A
⊢ I = (homogeneousCore 𝒜 I).toIdeal ↔ ∃ S, I = span (Subtype.val '' S)
|
exact ((Set.image_preimage.compose (Submodule.gi _ _).gc).exists_eq_l _).symm
|
no goals
|
f8de24b792153c27
|
Set.image_inter_preimage
|
Mathlib/Data/Set/Image.lean
|
theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) :
f '' (s ∩ f ⁻¹' t) = f '' s ∩ t
|
case h₂
α : Type u_1
β : Type u_2
f : α → β
s : Set α
t : Set β
⊢ f '' s ∩ t ⊆ f '' (s ∩ f ⁻¹' t)
|
rintro _ ⟨⟨x, h', rfl⟩, h⟩
|
case h₂.intro.intro.intro
α : Type u_1
β : Type u_2
f : α → β
s : Set α
t : Set β
x : α
h' : x ∈ s
h : f x ∈ t
⊢ f x ∈ f '' (s ∩ f ⁻¹' t)
|
f5a73b4bafb61e59
|
Bool.ofNat_toNat
|
Mathlib/Data/Bool/Basic.lean
|
theorem ofNat_toNat (b : Bool) : ofNat (toNat b) = b
|
b : Bool
⊢ ofNat b.toNat = b
|
cases b <;> rfl
|
no goals
|
2b2549dbdc8fbe3c
|
Polynomial.orderOf_root_cyclotomic_dvd
|
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
|
theorem orderOf_root_cyclotomic_dvd {n : ℕ} (hpos : 0 < n) {p : ℕ} [Fact p.Prime] {a : ℕ}
(hroot : IsRoot (cyclotomic n (ZMod p)) (Nat.castRingHom (ZMod p) a)) :
orderOf (ZMod.unitOfCoprime a (coprime_of_root_cyclotomic hpos hroot)) ∣ n
|
case h
n : ℕ
hpos : 0 < n
p : ℕ
inst✝ : Fact (Nat.Prime p)
a : ℕ
hroot : (cyclotomic n (ZMod p)).IsRoot ((Nat.castRingHom (ZMod p)) a)
⊢ eval ((Nat.castRingHom (ZMod p)) a) (X ^ n - 1) = 0
|
rw [IsRoot.def] at hroot
|
case h
n : ℕ
hpos : 0 < n
p : ℕ
inst✝ : Fact (Nat.Prime p)
a : ℕ
hroot : eval ((Nat.castRingHom (ZMod p)) a) (cyclotomic n (ZMod p)) = 0
⊢ eval ((Nat.castRingHom (ZMod p)) a) (X ^ n - 1) = 0
|
0bbad10037176716
|
MeasureTheory.le_integral_rnDeriv_of_ac
|
Mathlib/MeasureTheory/Decomposition/IntegralRNDeriv.lean
|
/-- For a convex continuous function `f` on `[0, ∞)`, if `μ` is absolutely continuous
with respect to a probability measure `ν`, then
`f (μ univ).toReal ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν`. -/
lemma le_integral_rnDeriv_of_ac [IsFiniteMeasure μ] [IsProbabilityMeasure ν]
(hf_cvx : ConvexOn ℝ (Ici 0) f) (hf_cont : ContinuousWithinAt f (Ici 0) 0)
(hf_int : Integrable (fun x ↦ f (μ.rnDeriv ν x).toReal) ν) (hμν : μ ≪ ν) :
f (μ univ).toReal ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν
|
case inr
α : Type u_1
mα : MeasurableSpace α
μ ν : Measure α
f : ℝ → ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsProbabilityMeasure ν
hf_cvx : ConvexOn ℝ (Ici 0) f
hf_cont : ContinuousWithinAt f (Ici 0) 0
hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν
hμν : μ ≪ ν
x : ℝ
hx : x ∈ Ici 0
hx_pos : 0 < x
h : x ∈ interior (Ici 0) → ContinuousWithinAt f (interior (Ici 0)) x
⊢ ContinuousWithinAt f (Ici 0) x
|
simp only [nonempty_Iio, interior_Ici', mem_Ioi] at h
|
case inr
α : Type u_1
mα : MeasurableSpace α
μ ν : Measure α
f : ℝ → ℝ
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsProbabilityMeasure ν
hf_cvx : ConvexOn ℝ (Ici 0) f
hf_cont : ContinuousWithinAt f (Ici 0) 0
hf_int : Integrable (fun x => f (μ.rnDeriv ν x).toReal) ν
hμν : μ ≪ ν
x : ℝ
hx : x ∈ Ici 0
hx_pos : 0 < x
h : 0 < x → ContinuousWithinAt f (Ioi 0) x
⊢ ContinuousWithinAt f (Ici 0) x
|
661fab8a26d078bf
|
blimsup_cthickening_mul_ae_eq
|
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
|
theorem blimsup_cthickening_mul_ae_eq (p : ℕ → Prop) (s : ℕ → Set α) {M : ℝ} (hM : 0 < M)
(r : ℕ → ℝ) (hr : Tendsto r atTop (𝓝 0)) :
(blimsup (fun i => cthickening (M * r i) (s i)) atTop p : Set α) =ᵐ[μ]
(blimsup (fun i => cthickening (r i) (s i)) atTop p : Set α)
|
case neg
α : Type u_1
inst✝⁵ : PseudoMetricSpace α
inst✝⁴ : SecondCountableTopology α
inst✝³ : MeasurableSpace α
inst✝² : BorelSpace α
μ : Measure α
inst✝¹ : IsLocallyFiniteMeasure μ
inst✝ : IsUnifLocDoublingMeasure μ
p : ℕ → Prop
s : ℕ → Set α
M : ℝ
hM : 0 < M
r : ℕ → ℝ
hr : Tendsto r atTop (𝓝 0)
this :
∀ (p : ℕ → Prop) {r : ℕ → ℝ},
Tendsto r atTop (𝓝[>] 0) →
blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᶠ[ae μ] blimsup (fun i => cthickening (r i) (s i)) atTop p
r' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)
i : ℕ
hi : ¬0 < r i
⊢ 0 < ↑i + 1
|
positivity
|
no goals
|
8749d72cf710712d
|
HomotopicalAlgebra.nonempty_attachCells_iff
|
Mathlib/AlgebraicTopology/RelativeCellComplex/AttachCells.lean
|
lemma nonempty_attachCells_iff :
Nonempty (AttachCells.{w} g f) ↔ (coproducts.{w} (ofHoms g)).pushouts f
|
case mpr.intro.intro.intro.intro.intro.intro.intro.mk
C : Type u
inst✝ : Category.{v, u} C
α : Type t
A B : α → C
g : (a : α) → A a ⟶ B a
X₁ X₂ : C
f : X₁ ⟶ X₂
ι : Type w
X Y : C
F₁ F₂ : Discrete ι ⥤ C
c₁ : Cocone F₁
c₂ : Cocone F₂
h₁ : IsColimit c₁
h₂ : IsColimit c₂
φ : F₁ ⟶ F₂
hφ : (ofHoms g).functorCategory (Discrete ι) φ
g₁ : c₁.pt ⟶ X₁
g₂ : { pt := c₂.pt, ι := φ ≫ c₂.ι }.pt ⟶ X₂
sq : IsPushout g₁ (h₁.desc { pt := c₂.pt, ι := φ ≫ c₂.ι }) f g₂
π : ι → α := fun i => ⋯.choose
e : (i : ι) → Arrow.mk (φ.app { as := i }) ≅ Arrow.mk (g (π i)) := fun i => eqToIso ⋯
e₁ : (i : ι) → F₁.obj { as := i } ≅ A (π i) := fun i => Arrow.leftFunc.mapIso (e i)
⊢ Nonempty (AttachCells g f)
|
let e₂ (i : ι) : F₂.obj ⟨i⟩ ≅ B (π i) := Arrow.rightFunc.mapIso (e i)
|
case mpr.intro.intro.intro.intro.intro.intro.intro.mk
C : Type u
inst✝ : Category.{v, u} C
α : Type t
A B : α → C
g : (a : α) → A a ⟶ B a
X₁ X₂ : C
f : X₁ ⟶ X₂
ι : Type w
X Y : C
F₁ F₂ : Discrete ι ⥤ C
c₁ : Cocone F₁
c₂ : Cocone F₂
h₁ : IsColimit c₁
h₂ : IsColimit c₂
φ : F₁ ⟶ F₂
hφ : (ofHoms g).functorCategory (Discrete ι) φ
g₁ : c₁.pt ⟶ X₁
g₂ : { pt := c₂.pt, ι := φ ≫ c₂.ι }.pt ⟶ X₂
sq : IsPushout g₁ (h₁.desc { pt := c₂.pt, ι := φ ≫ c₂.ι }) f g₂
π : ι → α := fun i => ⋯.choose
e : (i : ι) → Arrow.mk (φ.app { as := i }) ≅ Arrow.mk (g (π i)) := fun i => eqToIso ⋯
e₁ : (i : ι) → F₁.obj { as := i } ≅ A (π i) := fun i => Arrow.leftFunc.mapIso (e i)
e₂ : (i : ι) → F₂.obj { as := i } ≅ B (π i) := fun i => Arrow.rightFunc.mapIso (e i)
⊢ Nonempty (AttachCells g f)
|
a02d1f6a7c721f88
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go_get_aux
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Lemmas/Const.lean
|
theorem go_get_aux (aig : AIG α) (c : BitVec w) (curr : Nat) (hcurr : curr ≤ w)
(s : AIG.RefVec aig curr) :
-- `hfoo` makes it possible to `generalize` below. With a concrete proof term this
-- `generalize` would produce a type incorrect term as the proof term would talk about
-- a `go` application instead of the fresh variable.
∀ (idx : Nat) (hidx : idx < curr) (hfoo),
(go aig c curr s hcurr).vec.get idx (by omega) = (s.get idx hidx).cast hfoo
|
case isFalse
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
c : BitVec w
curr : Nat
hcurr : curr ≤ w
s : aig.RefVec curr
idx : Nat
hidx : idx < curr
res : RefVecEntry α w
h✝ : ¬curr < w
hgo : { aig := aig, vec := ⋯ ▸ s } = res
⊢ ∀ (hfoo : aig.decls.size ≤ { aig := aig, vec := ⋯ ▸ s }.aig.decls.size),
{ aig := aig, vec := ⋯ ▸ s }.vec.get idx ⋯ = (s.get idx hidx).cast hfoo
|
simp only [Nat.le_refl, get, Ref.gate_cast, Ref.mk.injEq, true_implies]
|
case isFalse
α : Type
inst✝¹ : Hashable α
inst✝ : DecidableEq α
w : Nat
aig : AIG α
c : BitVec w
curr : Nat
hcurr : curr ≤ w
s : aig.RefVec curr
idx : Nat
hidx : idx < curr
res : RefVecEntry α w
h✝ : ¬curr < w
hgo : { aig := aig, vec := ⋯ ▸ s } = res
⊢ ∀ (hfoo : True), (⋯ ▸ s).get idx ⋯ = (s.get idx hidx).cast ⋯
|
ba3ced8118779694
|
Real.not_continuousAt_deriv_qaryEntropy_one
|
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
|
lemma not_continuousAt_deriv_qaryEntropy_one :
¬ContinuousAt (deriv (qaryEntropy q)) 1
|
case h
q : ℕ
tendstoBot : Tendsto (fun p => log (↑q - 1) + log (1 - p) - log p) (𝓝[<] 1) atBot
a✝¹ : ℝ
a✝ : a✝¹ ∈ Ioo (1 - 2⁻¹) 1
⊢ log (↑q - 1) + log (1 - a✝¹) - log a✝¹ = deriv (qaryEntropy q) a✝¹
|
apply (deriv_qaryEntropy _ _).symm
|
q : ℕ
tendstoBot : Tendsto (fun p => log (↑q - 1) + log (1 - p) - log p) (𝓝[<] 1) atBot
a✝¹ : ℝ
a✝ : a✝¹ ∈ Ioo (1 - 2⁻¹) 1
⊢ a✝¹ ≠ 0
q : ℕ
tendstoBot : Tendsto (fun p => log (↑q - 1) + log (1 - p) - log p) (𝓝[<] 1) atBot
a✝¹ : ℝ
a✝ : a✝¹ ∈ Ioo (1 - 2⁻¹) 1
⊢ a✝¹ ≠ 1
|
75b19cc4897418b6
|
ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_atTop_one
|
Mathlib/Probability/Kernel/Disintegration/CDFToKernel.lean
|
lemma IsRatCondKernelCDFAux.tendsto_atTop_one (hf : IsRatCondKernelCDFAux f κ ν) [IsFiniteKernel ν]
(a : α) :
∀ᵐ t ∂(ν a), Tendsto (f (a, t)) atTop (𝓝 1)
|
case h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : Kernel α (β × ℝ)
ν : Kernel α β
f : α × β → ℚ → ℝ
hf : IsRatCondKernelCDFAux f κ ν
inst✝ : IsFiniteKernel ν
a : α
this : ∀ᵐ (t : β) ∂ν a, Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1)
t : β
ht : Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1)
h_mono : Monotone (f (a, t))
⊢ Tendsto (f (a, t)) atTop (𝓝 1)
|
rw [tendsto_iff_tendsto_subseq_of_monotone h_mono tendsto_natCast_atTop_atTop]
|
case h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : Kernel α (β × ℝ)
ν : Kernel α β
f : α × β → ℚ → ℝ
hf : IsRatCondKernelCDFAux f κ ν
inst✝ : IsFiniteKernel ν
a : α
this : ∀ᵐ (t : β) ∂ν a, Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1)
t : β
ht : Tendsto (fun n => f (a, t) ↑n) atTop (𝓝 1)
h_mono : Monotone (f (a, t))
⊢ Tendsto (f (a, t) ∘ Nat.cast) atTop (𝓝 1)
|
8dafd0eb3b713696
|
QuaternionGroup.orderOf_xa
|
Mathlib/GroupTheory/SpecificGroups/Quaternion.lean
|
theorem orderOf_xa [NeZero n] (i : ZMod (2 * n)) : orderOf (xa i) = 4
|
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
⊢ orderOf (xa i) = 2 ^ 2
|
haveI : Fact (Nat.Prime 2) := Fact.mk Nat.prime_two
|
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
⊢ orderOf (xa i) = 2 ^ 2
|
53aed3d24b3f681b
|
CategoryTheory.MonoidalCategory.rightUnitor_monoidal
|
Mathlib/CategoryTheory/Monoidal/Braided/Basic.lean
|
theorem rightUnitor_monoidal (X₁ X₂ : C) :
(ρ_ X₁).hom ⊗ (ρ_ X₂).hom =
tensorμ X₁ (𝟙_ C) X₂ (𝟙_ C) ≫ ((X₁ ⊗ X₂) ◁ (λ_ (𝟙_ C)).hom) ≫ (ρ_ (X₁ ⊗ X₂)).hom
|
C : Type u₁
inst✝² : Category.{v₁, u₁} C
inst✝¹ : MonoidalCategory C
inst✝ : BraidedCategory C
X₁ X₂ : C
⊢ (α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫ X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫ X₁ ◁ (ρ_ (𝟙_ C ⊗ X₂)).hom ≫ X₁ ◁ (λ_ X₂).hom =
((α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫
X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫
X₁ ◁ (β_ (𝟙_ C) X₂).hom ▷ 𝟙_ C ≫ X₁ ◁ (α_ X₂ (𝟙_ C) (𝟙_ C)).hom ≫ (α_ X₁ X₂ (𝟙_ C ⊗ 𝟙_ C)).inv) ≫
(X₁ ⊗ X₂) ◁ (λ_ (𝟙_ C)).hom ≫ (ρ_ (X₁ ⊗ X₂)).hom
|
rw [← braiding_rightUnitor]
|
C : Type u₁
inst✝² : Category.{v₁, u₁} C
inst✝¹ : MonoidalCategory C
inst✝ : BraidedCategory C
X₁ X₂ : C
⊢ (α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫
X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫ X₁ ◁ (ρ_ (𝟙_ C ⊗ X₂)).hom ≫ X₁ ◁ ((β_ (𝟙_ C) X₂).hom ≫ (ρ_ X₂).hom) =
((α_ X₁ (𝟙_ C) (X₂ ⊗ 𝟙_ C)).hom ≫
X₁ ◁ (α_ (𝟙_ C) X₂ (𝟙_ C)).inv ≫
X₁ ◁ (β_ (𝟙_ C) X₂).hom ▷ 𝟙_ C ≫ X₁ ◁ (α_ X₂ (𝟙_ C) (𝟙_ C)).hom ≫ (α_ X₁ X₂ (𝟙_ C ⊗ 𝟙_ C)).inv) ≫
(X₁ ⊗ X₂) ◁ (λ_ (𝟙_ C)).hom ≫ (ρ_ (X₁ ⊗ X₂)).hom
|
58daa7c29a4abff2
|
Real.logb_eq_iff_rpow_eq
|
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
|
theorem logb_eq_iff_rpow_eq (hy : 0 < y) : logb b y = x ↔ b ^ x = y
|
b x y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hy : 0 < y
⊢ logb b y = x ↔ b ^ x = y
|
constructor <;> rintro rfl
|
case mp
b y : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hy : 0 < y
⊢ b ^ logb b y = y
case mpr
b x : ℝ
b_pos : 0 < b
b_ne_one : b ≠ 1
hy : 0 < b ^ x
⊢ logb b (b ^ x) = x
|
91501ddfc687ca4e
|
ProbabilityTheory.IsMeasurableRatCDF.continuousWithinAt_stieltjesFunctionAux_Ici
|
Mathlib/Probability/Kernel/Disintegration/MeasurableStieltjes.lean
|
lemma IsMeasurableRatCDF.continuousWithinAt_stieltjesFunctionAux_Ici (a : α) (x : ℝ) :
ContinuousWithinAt (IsMeasurableRatCDF.stieltjesFunctionAux f a) (Ici x) x
|
case a
α : Type u_1
f : α → ℚ → ℝ
inst✝ : MeasurableSpace α
hf : IsMeasurableRatCDF f
a : α
x : ℝ
h' : ⨅ r, stieltjesFunctionAux f a ↑r = ⨅ r, stieltjesFunctionAux f a ↑↑r
⊢ ContinuousWithinAt (stieltjesFunctionAux f a) (Ioi x) x ↔
Tendsto (stieltjesFunctionAux f a) (𝓝[>] x) (𝓝 (⨅ a_1, stieltjesFunctionAux f a ↑a_1))
|
have h'' :
⨅ r : { r' : ℚ // x < r' }, stieltjesFunctionAux f a r =
⨅ r : { r' : ℚ // x < r' }, f a r := by
congr with r
exact stieltjesFunctionAux_eq hf a r
|
case a
α : Type u_1
f : α → ℚ → ℝ
inst✝ : MeasurableSpace α
hf : IsMeasurableRatCDF f
a : α
x : ℝ
h' : ⨅ r, stieltjesFunctionAux f a ↑r = ⨅ r, stieltjesFunctionAux f a ↑↑r
h'' : ⨅ r, stieltjesFunctionAux f a ↑↑r = ⨅ r, f a ↑r
⊢ ContinuousWithinAt (stieltjesFunctionAux f a) (Ioi x) x ↔
Tendsto (stieltjesFunctionAux f a) (𝓝[>] x) (𝓝 (⨅ a_1, stieltjesFunctionAux f a ↑a_1))
|
61ea09981116b634
|
IsIntegralCurveOn.hasDerivAt
|
Mathlib/Geometry/Manifold/IntegralCurve/Basic.lean
|
/-- If `γ` is an integral curve of a vector field `v`, then `γ t` is tangent to `v (γ t)` when
expressed in the local chart around the initial point `γ t₀`. -/
lemma IsIntegralCurveOn.hasDerivAt (hγ : IsIntegralCurveOn γ v s) {t : ℝ} (ht : t ∈ s)
(hsrc : γ t ∈ (extChartAt I (γ t₀)).source) :
HasDerivAt ((extChartAt I (γ t₀)) ∘ γ)
(tangentCoordChange I (γ t) (γ t₀) (γ t) (v (γ t))) t
|
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
H : Type u_2
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type u_3
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
γ : ℝ → M
v : (x : M) → TangentSpace I x
s : Set ℝ
t₀ : ℝ
inst✝ : IsManifold I 1 M
hγ : IsIntegralCurveOn γ v s
t : ℝ
ht : t ∈ s
hsrc✝ : γ t ∈ (extChartAt I (γ t₀)).source
hsrc : γ t ∈ (chartAt H (γ t₀)).source
⊢ ∀ (x : TangentSpace 𝓘(ℝ, ℝ) t),
((mfderiv I I (↑(chartAt H (γ t₀))) (γ t)).comp (ContinuousLinearMap.smulRight 1 (v (γ t)))) x =
(ContinuousLinearMap.smulRight 1 ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t)))) x
|
intro a
|
E : Type u_1
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
H : Type u_2
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type u_3
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
γ : ℝ → M
v : (x : M) → TangentSpace I x
s : Set ℝ
t₀ : ℝ
inst✝ : IsManifold I 1 M
hγ : IsIntegralCurveOn γ v s
t : ℝ
ht : t ∈ s
hsrc✝ : γ t ∈ (extChartAt I (γ t₀)).source
hsrc : γ t ∈ (chartAt H (γ t₀)).source
a : TangentSpace 𝓘(ℝ, ℝ) t
⊢ ((mfderiv I I (↑(chartAt H (γ t₀))) (γ t)).comp (ContinuousLinearMap.smulRight 1 (v (γ t)))) a =
(ContinuousLinearMap.smulRight 1 ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t)))) a
|
e2bdac18aea0b848
|
OrderEmbedding.covBy_of_apply
|
Mathlib/Order/Cover.lean
|
theorem OrderEmbedding.covBy_of_apply {α β : Type*} [Preorder α] [Preorder β]
(f : α ↪o β) {x y : α} (h : f x ⋖ f y) : x ⋖ y
|
case right
α : Type u_3
β : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ↪o β
x y : α
h : f x ⋖ f y
a : α
⊢ f x < f a → ¬f a < f y
|
apply h.2
|
no goals
|
331e966d90af3623
|
MeasureTheory.lintegral_mul_const'
|
Mathlib/MeasureTheory/Integral/Lebesgue.lean
|
theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r
|
α : Type u_1
m : MeasurableSpace α
μ : Measure α
r : ℝ≥0∞
f : α → ℝ≥0∞
hr : r ≠ ⊤
⊢ ∫⁻ (a : α), f a * r ∂μ = (∫⁻ (a : α), f a ∂μ) * r
|
simp_rw [mul_comm, lintegral_const_mul' r f hr]
|
no goals
|
e96c65f6b507ac55
|
Int.ofNat_sub
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
|
theorem ofNat_sub (h : m ≤ n) : ((n - m : Nat) : Int) = n - m
|
m n : Nat
h : 0 ≤ n
⊢ ↑(n - 0) = ↑n - ↑0
|
rfl
|
no goals
|
0b3f339ee83c08f6
|
Equiv.pointReflection_midpoint_right
|
Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean
|
theorem Equiv.pointReflection_midpoint_right (x y : P) :
(Equiv.pointReflection (midpoint R x y)) y = x
|
R : Type u_1
V : Type u_2
P : Type u_4
inst✝⁴ : Ring R
inst✝³ : Invertible 2
inst✝² : AddCommGroup V
inst✝¹ : Module R V
inst✝ : AddTorsor V P
x y : P
⊢ (pointReflection (midpoint R x y)) y = x
|
rw [midpoint_comm, Equiv.pointReflection_midpoint_left]
|
no goals
|
6ee0e9757cb4e18d
|
OnePoint.continuousAt_coe
|
Mathlib/Topology/Compactification/OnePoint.lean
|
theorem continuousAt_coe {Y : Type*} [TopologicalSpace Y] {f : OnePoint X → Y} {x : X} :
ContinuousAt f x ↔ ContinuousAt (f ∘ (↑)) x
|
X : Type u_1
inst✝¹ : TopologicalSpace X
Y : Type u_3
inst✝ : TopologicalSpace Y
f : OnePoint X → Y
x : X
⊢ ContinuousAt f ↑x ↔ ContinuousAt (f ∘ some) x
|
rw [ContinuousAt, nhds_coe_eq, tendsto_map'_iff, ContinuousAt]
|
X : Type u_1
inst✝¹ : TopologicalSpace X
Y : Type u_3
inst✝ : TopologicalSpace Y
f : OnePoint X → Y
x : X
⊢ Tendsto (f ∘ some) (𝓝 x) (𝓝 (f ↑x)) ↔ Tendsto (f ∘ some) (𝓝 x) (𝓝 ((f ∘ some) x))
|
e3a19212773164f5
|
ModuleCat.Tilde.localizationToStalk_mk
|
Mathlib/AlgebraicGeometry/Modules/Tilde.lean
|
theorem localizationToStalk_mk (x : PrimeSpectrum.Top R) (f : M) (s : x.asIdeal.primeCompl) :
(localizationToStalk M x).hom (LocalizedModule.mk f s) =
(tildeInModuleCat M).germ (PrimeSpectrum.basicOpen (s : R)) x s.2
(const M f s (PrimeSpectrum.basicOpen s) fun _ => id) :=
(Module.End_isUnit_iff _ |>.1 (isUnit_toStalk M x s)).injective <| by
erw [← LinearMap.mul_apply]
simp only [IsUnit.mul_val_inv, LinearMap.one_apply, Module.algebraMap_end_apply]
show (M.tildeInModuleCat.germ ⊤ x ⟨⟩) ((toOpen M ⊤) f) = _
rw [← map_smul]
fapply TopCat.Presheaf.germ_ext (W := PrimeSpectrum.basicOpen s.1) (hxW := s.2)
(F := M.tildeInModuleCat)
· exact homOfLE le_top
· exact 𝟙 _
refine Subtype.eq <| funext fun y => show LocalizedModule.mk f 1 = _ from ?_
#adaptation_note /-- https://github.com/leanprover/lean4/pull/6024
added this refine hack to be able to add type hint in `change` -/
refine (?_ : @Eq ?ty _ _)
change LocalizedModule.mk f 1 = (s.1 • LocalizedModule.mk f _ : ?ty)
rw [LocalizedModule.smul'_mk, LocalizedModule.mk_eq]
exact ⟨1, by simp⟩
|
case iWU
R : Type u
inst✝ : CommRing R
M : ModuleCat R
x : ↑(PrimeSpectrum.Top R)
f : ↑M
s : ↥x.asIdeal.primeCompl
⊢ PrimeSpectrum.basicOpen ↑s ⟶ ⊤
|
exact homOfLE le_top
|
no goals
|
729d47d1450c6db4
|
eHolderNorm_eq_zero
|
Mathlib/Topology/MetricSpace/HolderNorm.lean
|
lemma eHolderNorm_eq_zero {r : ℝ≥0} {f : X → Y} :
eHolderNorm r f = 0 ↔ ∀ x₁ x₂, f x₁ = f x₂
|
case neg
X : Type u_1
Y : Type u_2
inst✝¹ : MetricSpace X
inst✝ : EMetricSpace Y
r : ℝ≥0
f : X → Y
h : ∀ b > ⊥, ∃ i, ∃ (_ : HolderWith i r f), ↑i < b
x₁ x₂ : X
hx : ¬x₁ = x₂
⊢ edist (f x₁) (f x₂) ≤ 0
|
refine le_of_forall_lt' fun b hb => ?_
|
case neg
X : Type u_1
Y : Type u_2
inst✝¹ : MetricSpace X
inst✝ : EMetricSpace Y
r : ℝ≥0
f : X → Y
h : ∀ b > ⊥, ∃ i, ∃ (_ : HolderWith i r f), ↑i < b
x₁ x₂ : X
hx : ¬x₁ = x₂
b : ℝ≥0∞
hb : 0 < b
⊢ edist (f x₁) (f x₂) < b
|
61029cfd55718559
|
AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd
|
Mathlib/AlgebraicGeometry/Pullbacks.lean
|
theorem pullbackP1Iso_inv_snd (i : 𝒰.J) :
(pullbackP1Iso 𝒰 f g i).inv ≫ pullback.snd _ _ = pullback.fst _ _
|
X Y Z : Scheme
𝒰 : X.OpenCover
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (𝒰.map i ≫ f) g
i : 𝒰.J
⊢ (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.snd (p1 𝒰 f g) (𝒰.map i) = pullback.fst (𝒰.map i ≫ f) g
|
simp_rw [pullbackP1Iso, pullback.lift_snd]
|
no goals
|
012093e10894fc44
|
Complex.HadamardThreeLines.norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip
|
Mathlib/Analysis/Complex/Hadamard.lean
|
theorem norm_mul_invInterpStrip_le_one_of_mem_verticalClosedStrip (f : ℂ → E) (ε : ℝ) (hε : 0 < ε)
(z : ℂ) (hd : DiffContOnCl ℂ f (verticalStrip 0 1))
(hB : BddAbove ((norm ∘ f) '' verticalClosedStrip 0 1)) (hz : z ∈ verticalClosedStrip 0 1) :
‖F f ε z‖ ≤ 1
|
case h
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → E
ε : ℝ
hε : 0 < ε
z : ℂ
hd : DiffContOnCl ℂ f (verticalStrip 0 1)
hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1)
hz : z ∈ verticalClosedStrip 0 1
⊢ ∃ B,
(fun x => invInterpStrip f x ε • f x) =O[comap (abs ∘ im) atTop ⊓ 𝓟 (re ⁻¹' Ioo 0 1)] fun z =>
Real.exp (B * Real.exp (0 * |z.im|))
|
obtain ⟨BF, hBF⟩ := F_BddAbove f ε hε hB
|
case h.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℂ → E
ε : ℝ
hε : 0 < ε
z : ℂ
hd : DiffContOnCl ℂ f (verticalStrip 0 1)
hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1)
hz : z ∈ verticalClosedStrip 0 1
BF : ℝ
hBF : BF ∈ upperBounds (norm ∘ F f ε '' verticalClosedStrip 0 1)
⊢ ∃ B,
(fun x => invInterpStrip f x ε • f x) =O[comap (abs ∘ im) atTop ⊓ 𝓟 (re ⁻¹' Ioo 0 1)] fun z =>
Real.exp (B * Real.exp (0 * |z.im|))
|
98bef02cbf34a7ba
|
LinearMap.span_singleton_sup_orthogonal_eq_top
|
Mathlib/LinearAlgebra/SesquilinearForm.lean
|
theorem span_singleton_sup_orthogonal_eq_top {B : V →ₗ[K] V →ₗ[K] K} {x : V} (hx : ¬B.IsOrtho x x) :
(K ∙ x) ⊔ Submodule.orthogonalBilin (N := K ∙ x) (B := B) = ⊤
|
K : Type u_13
V : Type u_16
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
B : V →ₗ[K] V →ₗ[K] K
x : V
hx : ¬B.IsOrtho x x
⊢ Submodule.span K {x} ⊔ ker (B x) = ⊤
|
exact (B x).span_singleton_sup_ker_eq_top hx
|
no goals
|
b8e64ce8cd021479
|
Choose.choose_modEq_choose_mod_mul_choose_div
|
Mathlib/Data/Nat/Choose/Lucas.lean
|
theorem choose_modEq_choose_mod_mul_choose_div :
choose n k ≡ choose (n % p) (k % p) * choose (n / p) (k / p) [ZMOD p]
|
case mp
n k p : ℕ
inst✝ : Fact (Nat.Prime p)
decompose : (X + 1) ^ n = (X + 1) ^ (n % p) * (X ^ p + 1) ^ (n / p)
x₁ x₂ : ℕ
hx : (x₁, x₂) ∈ range (n % p + 1) ×ˢ range (n / p + 1)
h : k = (x₁, x₂).1 + p * (x₁, x₂).2
⊢ k % p = x₁ ∧ k / p = x₂
|
simp only [mem_product, mem_range] at hx
|
case mp
n k p : ℕ
inst✝ : Fact (Nat.Prime p)
decompose : (X + 1) ^ n = (X + 1) ^ (n % p) * (X ^ p + 1) ^ (n / p)
x₁ x₂ : ℕ
h : k = (x₁, x₂).1 + p * (x₁, x₂).2
hx : x₁ < n % p + 1 ∧ x₂ < n / p + 1
⊢ k % p = x₁ ∧ k / p = x₂
|
33a40e7a05a91053
|
irrational_nrt_of_n_not_dvd_multiplicity
|
Mathlib/Data/Real/Irrational.lean
|
theorem irrational_nrt_of_n_not_dvd_multiplicity {x : ℝ} (n : ℕ) {m : ℤ} (hm : m ≠ 0) (p : ℕ)
[hp : Fact p.Prime] (hxr : x ^ n = m)
(hv : multiplicity (p : ℤ) m % n ≠ 0) :
Irrational x
|
x : ℝ
n : ℕ
m : ℤ
hm : m ≠ 0
p : ℕ
hp : Fact (Nat.Prime p)
hxr : x ^ n = ↑m
hv : multiplicity (↑p) m % n ≠ 0
⊢ Irrational x
|
rcases Nat.eq_zero_or_pos n with (rfl | hnpos)
|
case inl
x : ℝ
m : ℤ
hm : m ≠ 0
p : ℕ
hp : Fact (Nat.Prime p)
hxr : x ^ 0 = ↑m
hv : multiplicity (↑p) m % 0 ≠ 0
⊢ Irrational x
case inr
x : ℝ
n : ℕ
m : ℤ
hm : m ≠ 0
p : ℕ
hp : Fact (Nat.Prime p)
hxr : x ^ n = ↑m
hv : multiplicity (↑p) m % n ≠ 0
hnpos : n > 0
⊢ Irrational x
|
e5116bdccdf5b584
|
MeasureTheory.hitting_mono
|
Mathlib/Probability/Process/HittingTime.lean
|
theorem hitting_mono {m₁ m₂ : ι} (hm : m₁ ≤ m₂) : hitting u s n m₁ ω ≤ hitting u s n m₂ ω
|
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j ∈ Set.Icc n m₁, u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
⊢ m₁ ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s})
|
refine le_csInf ⟨j, hj₁, hj₂⟩ ?_
|
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j ∈ Set.Icc n m₁, u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
⊢ ∀ b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}, m₁ ≤ b
|
4352e36fcea59599
|
FreeCommRing.map_subtype_val_restriction
|
Mathlib/RingTheory/FreeCommRing.lean
|
theorem map_subtype_val_restriction {x} (s : Set α) [DecidablePred (· ∈ s)]
(hxs : IsSupported x s) : map (↑) (restriction s x) = x
|
case refine_3
α : Type u
x : FreeCommRing α
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
hxs : x.IsSupported s
⊢ ∀ z ∈ of '' s,
∀ (n : FreeCommRing α),
(map Subtype.val) ((restriction s) n) = n → (map Subtype.val) ((restriction s) (z * n)) = z * n
|
rintro _ ⟨p, hps, rfl⟩ n ih
|
case refine_3.intro.intro
α : Type u
x : FreeCommRing α
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
hxs : x.IsSupported s
p : α
hps : p ∈ s
n : FreeCommRing α
ih : (map Subtype.val) ((restriction s) n) = n
⊢ (map Subtype.val) ((restriction s) (of p * n)) = of p * n
|
8af8f3ca1b5a0bde
|
TensorAlgebra.ι_eq_algebraMap_iff
|
Mathlib/LinearAlgebra/TensorAlgebra/Basic.lean
|
theorem ι_eq_algebraMap_iff (x : M) (r : R) : ι R x = algebraMap R _ r ↔ x = 0 ∧ r = 0
|
case refine_1
R : Type u_1
inst✝² : CommSemiring R
M : Type u_2
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x : M
r : R
h : (ι R) x = (algebraMap R (TensorAlgebra R M)) r
this✝ : Module Rᵐᵒᵖ M := Module.compHom M ((RingHom.id R).fromOpposite ⋯)
this : IsCentralScalar R M
hf0 : toTrivSqZeroExt ((ι R) x) = (0, x)
⊢ x = 0 ∧ r = 0
|
rw [h, AlgHom.commutes] at hf0
|
case refine_1
R : Type u_1
inst✝² : CommSemiring R
M : Type u_2
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
x : M
r : R
h : (ι R) x = (algebraMap R (TensorAlgebra R M)) r
this✝ : Module Rᵐᵒᵖ M := Module.compHom M ((RingHom.id R).fromOpposite ⋯)
this : IsCentralScalar R M
hf0 : (algebraMap R (TrivSqZeroExt R M)) r = (0, x)
⊢ x = 0 ∧ r = 0
|
a75fb78d09e9680b
|
SimpleGraph.Walk.count_support_takeUntil_eq_one
|
Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkDecomp.lean
|
theorem count_support_takeUntil_eq_one {u v w : V} (p : G.Walk v w) (h : u ∈ p.support) :
(p.takeUntil u h).support.count u = 1
|
case cons.tail
V : Type u
G : SimpleGraph V
inst✝ : DecidableEq V
u v w u✝ v✝ w✝ : V
h✝ : G.Adj u✝ v✝
p✝ : G.Walk v✝ w✝
p_ih✝ : ∀ (h : u ∈ p✝.support), List.count u (p✝.takeUntil u h).support = 1
a✝ : List.Mem u p✝.support
⊢ List.count u ((cons h✝ p✝).takeUntil u ⋯).support = 1
|
simp! only
|
case cons.tail
V : Type u
G : SimpleGraph V
inst✝ : DecidableEq V
u v w u✝ v✝ w✝ : V
h✝ : G.Adj u✝ v✝
p✝ : G.Walk v✝ w✝
p_ih✝ : ∀ (h : u ∈ p✝.support), List.count u (p✝.takeUntil u h).support = 1
a✝ : List.Mem u p✝.support
⊢ List.count u (if hx : u✝ = u then hx ▸ nil else cons h✝ (p✝.takeUntil u ⋯)).support = 1
|
f16bba71e73c8e80
|
ProbabilityTheory.Kernel.densityProcess_fst_univ_ae
|
Mathlib/Probability/Kernel/Disintegration/Density.lean
|
lemma densityProcess_fst_univ_ae (κ : Kernel α (γ × β)) [IsFiniteKernel κ] (n : ℕ) (a : α) :
∀ᵐ x ∂(fst κ a), densityProcess κ (fst κ) n a x univ = 1
|
case hd
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝¹ : CountablyGenerated γ
κ : Kernel α (γ × β)
inst✝ : IsFiniteKernel κ
n : ℕ
a : α
this✝ : {x | ¬κ.densityProcess κ.fst n a x univ = 1} ⊆ {x | (κ.fst a) (countablePartitionSet n x) = 0}
this : {x | (κ.fst a) (countablePartitionSet n x) = 0} ⊆ ⋃ u ∈ countablePartition γ n, ⋃ (_ : (κ.fst a) u = 0), u
s : Set γ
hs : s ∈ countablePartition γ n
t : Set γ
ht : t ∈ countablePartition γ n
hst : s ≠ t
⊢ (κ.fst a) t = 0 → (κ.fst a) s = 0 → Disjoint s t
|
exact fun _ _ ↦ disjoint_countablePartition hs ht hst
|
no goals
|
3cc629ecd9ee70bb
|
Mathlib.Tactic.Ring.neg_one_mul
|
Mathlib/Tactic/Ring/Basic.lean
|
theorem neg_one_mul {R} [Ring R] {a b : R} (_ : (Int.negOfNat (nat_lit 1)).rawCast * a = b) :
-a = b
|
R : Type u_2
inst✝ : Ring R
a : R
⊢ -a = (Int.negOfNat 1).rawCast * a
|
simp [Int.negOfNat]
|
no goals
|
8cf03d70e225cd71
|
LinearMap.split_surjective_of_localization_maximal
|
Mathlib/RingTheory/LocalProperties/Projective.lean
|
theorem LinearMap.split_surjective_of_localization_maximal
(f : M →ₗ[R] N) [Module.FinitePresentation R N]
(H : ∀ (I : Ideal R) (_ : I.IsMaximal),
∃ (g : _ →ₗ[Localization.AtPrime I] _),
(LocalizedModule.map I.primeCompl f).comp g = LinearMap.id) :
∃ (g : N →ₗ[R] M), f.comp g = LinearMap.id
|
R : Type u_1
N : Type u_2
M : Type uM
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
f : M →ₗ[R] N
inst✝ : Module.FinitePresentation R N
H : ∀ (I : Ideal R) (x : I.IsMaximal), ∃ g, (LocalizedModule.map I.primeCompl) f ∘ₗ g = id
⊢ ∃ g, f ∘ₗ g = id
|
show LinearMap.id ∈ LinearMap.range (LinearMap.llcomp R N M N f)
|
R : Type u_1
N : Type u_2
M : Type uM
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
inst✝² : AddCommGroup N
inst✝¹ : Module R N
f : M →ₗ[R] N
inst✝ : Module.FinitePresentation R N
H : ∀ (I : Ideal R) (x : I.IsMaximal), ∃ g, (LocalizedModule.map I.primeCompl) f ∘ₗ g = id
⊢ id ∈ range ((llcomp R N M N) f)
|
d80210efccbecc76
|
CategoryTheory.NonPreadditiveAbelian.add_comm
|
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
|
theorem add_comm {X Y : C} (a b : X ⟶ Y) : a + b = b + a
|
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : NonPreadditiveAbelian C
X Y : C
a b : X ⟶ Y
⊢ 0 - 0 - (0 - a - b) = b + a
|
conv_lhs =>
congr
next => skip
rw [← neg_def, neg_sub]
|
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : NonPreadditiveAbelian C
X Y : C
a b : X ⟶ Y
⊢ 0 - 0 - (-b - a) = b + a
|
93ff39b7d8cf110a
|
Reflexive.rel_of_ne_imp
|
Mathlib/Logic/Relation.lean
|
theorem Reflexive.rel_of_ne_imp (h : Reflexive r) {x y : α} (hr : x ≠ y → r x y) : r x y
|
case neg
α : Type u_1
r : α → α → Prop
h : Reflexive r
x y : α
hr : x ≠ y → r x y
hxy : ¬x = y
⊢ r x y
|
exact hr hxy
|
no goals
|
706c15bcf7e0832c
|
Module.finite_of_finrank_eq_succ
|
Mathlib/LinearAlgebra/Dimension/Free.lean
|
theorem finite_of_finrank_eq_succ {n : ℕ} (hn : finrank R M = n.succ) : Module.Finite R M :=
finite_of_finrank_pos <| by rw [hn]; exact n.succ_pos
|
R : Type u
M : Type v
inst✝⁴ : Semiring R
inst✝³ : StrongRankCondition R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : Free R M
n : ℕ
hn : finrank R M = n.succ
⊢ 0 < n.succ
|
exact n.succ_pos
|
no goals
|
07916223ed73054e
|
AlgebraicGeometry.Scheme.ker_of_isAffine
|
Mathlib/AlgebraicGeometry/IdealSheaf.lean
|
lemma ker_of_isAffine {X Y : Scheme} (f : X ⟶ Y) [IsAffine Y] :
f.ker = ofIdealTop (RingHom.ker f.appTop.hom)
|
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
⊢ RingHom.ker (CommRingCat.Hom.hom (Hom.app f ↑⟨⊤, ⋯⟩)) ≤
(ofIdealTop (RingHom.ker (CommRingCat.Hom.hom (Hom.appTop f)))).ideal ⟨⊤, ⋯⟩
|
simp
|
no goals
|
f7b91b3482dc0e75
|
eq_of_powMul_faithful
|
Mathlib/Analysis/Normed/Ring/IsPowMulFaithful.lean
|
theorem eq_of_powMul_faithful (f₁ : AlgebraNorm R S) (hf₁_pm : IsPowMul f₁) (f₂ : AlgebraNorm R S)
(hf₂_pm : IsPowMul f₂)
(h_eq : ∀ y : S, ∃ (C₁ C₂ : ℝ) (_ : 0 < C₁) (_ : 0 < C₂),
∀ x : Algebra.adjoin R {y}, f₁ x.val ≤ C₁ * f₂ x.val ∧ f₂ x.val ≤ C₂ * f₁ x.val) :
f₁ = f₂
|
case a.intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
inst✝² : NormedCommRing R
inst✝¹ : CommRing S
inst✝ : Algebra R S
f₁ : AlgebraNorm R S
hf₁_pm : IsPowMul ⇑f₁
f₂ : AlgebraNorm R S
hf₂_pm : IsPowMul ⇑f₂
h_eq :
∀ (y : S),
∃ C₁ C₂, ∃ (_ : 0 < C₁) (_ : 0 < C₂), ∀ (x : ↥(Algebra.adjoin R {y})), f₁ ↑x ≤ C₁ * f₂ ↑x ∧ f₂ ↑x ≤ C₂ * f₁ ↑x
x : S
g₁ : AlgebraNorm R ↥(Algebra.adjoin R {x}) := AlgebraNorm.restriction (Algebra.adjoin R {x}) f₁
g₂ : AlgebraNorm R ↥(Algebra.adjoin R {x}) := AlgebraNorm.restriction (Algebra.adjoin R {x}) f₂
hg₁_pm : IsPowMul ⇑g₁
hg₂_pm : IsPowMul ⇑g₂
y : ↥(Algebra.adjoin R {x}) := ⟨x, ⋯⟩
hy : x = ↑y
h1 : f₁ ↑y = g₁ y
h2 : f₂ ↑y = g₂ y
C₁ C₂ : ℝ
hC₁_pos : 0 < C₁
hC₂_pos : 0 < C₂
hC : ∀ (x_1 : ↥(Algebra.adjoin R {x})), f₁ ↑x_1 ≤ C₁ * f₂ ↑x_1 ∧ f₂ ↑x_1 ≤ C₂ * f₁ ↑x_1
hC₁ : ∀ (x_1 : ↥(Algebra.adjoin R {x})), f₁ ↑x_1 ≤ C₁ * f₂ ↑x_1
hC₂ : ∀ (x_1 : ↥(Algebra.adjoin R {x})), f₂ ↑x_1 ≤ C₂ * f₁ ↑x_1
⊢ f₁ x = f₂ x
|
rw [hy, h1, h2, eq_seminorms hg₁_pm hg₂_pm ⟨C₁, hC₁_pos, hC₁⟩ ⟨C₂, hC₂_pos, hC₂⟩]
|
no goals
|
f86a56fc3f1b670d
|
Nat.le_log2
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
|
theorem le_log2 (h : n ≠ 0) : k ≤ n.log2 ↔ 2 ^ k ≤ n
|
n k✝ : Nat
h : n ≠ 0
k : Nat
h✝ : n ≥ 2
n0 : 0 < n / 2
⊢ 0 < 2
|
decide
|
no goals
|
61e6f5635f3912bb
|
Multiset.count_finset_sup
|
Mathlib/Data/Finset/Lattice/Fold.lean
|
theorem count_finset_sup [DecidableEq β] (s : Finset α) (f : α → Multiset β) (b : β) :
count b (s.sup f) = s.sup fun a => count b (f a)
|
case refine_2
α : Type u_2
β : Type u_3
inst✝ : DecidableEq β
s✝ : Finset α
f : α → Multiset β
b : β
this : DecidableEq α := Classical.decEq α
i : α
s : Finset α
a✝ : i ∉ s
ih : count b (s.sup f) = s.sup fun a => count b (f a)
⊢ count b ((insert i s).sup f) = (insert i s).sup fun a => count b (f a)
|
rw [Finset.sup_insert, sup_eq_union, count_union, Finset.sup_insert, ih]
|
no goals
|
63d14a7b80528253
|
QuaternionGroup.orderOf_a_one
|
Mathlib/GroupTheory/SpecificGroups/Quaternion.lean
|
theorem orderOf_a_one : orderOf (a 1 : QuaternionGroup n) = 2 * n
|
case inl
n : ℕ
hn : n = 0
⊢ orderOf (a 1) = 2 * n
|
subst hn
|
case inl
⊢ orderOf (a 1) = 2 * 0
|
6a0b04ee75963fd8
|
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.safe_insert_of_performRupCheck_insertRup
|
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddSound.lean
|
theorem safe_insert_of_performRupCheck_insertRup {n : Nat} (f : DefaultFormula n)
(f_readyForRupAdd : ReadyForRupAdd f) (c : DefaultClause n) (rupHints : Array Nat) :
(performRupCheck (insertRupUnits f (negate c)).1 rupHints).2.2.1 = true
→
Limplies (PosFin n) f (f.insert c)
|
case inl
n : Nat
f : DefaultFormula n
f_readyForRupAdd : f.ReadyForRupAdd
c : DefaultClause n
rupHints : Array Nat
performRupCheck_success :
(Array.foldl (confirmRupHint (f.insertRupUnits c.negate).1.clauses)
((f.insertRupUnits c.negate).1.assignments, [], false, false) rupHints).2.2.fst =
true
p : PosFin n → Bool
pf : p ⊨ f
c' : DefaultClause n
c'_eq_c : c' = c
⊢ p ⊨ c'
|
rw [c'_eq_c]
|
case inl
n : Nat
f : DefaultFormula n
f_readyForRupAdd : f.ReadyForRupAdd
c : DefaultClause n
rupHints : Array Nat
performRupCheck_success :
(Array.foldl (confirmRupHint (f.insertRupUnits c.negate).1.clauses)
((f.insertRupUnits c.negate).1.assignments, [], false, false) rupHints).2.2.fst =
true
p : PosFin n → Bool
pf : p ⊨ f
c' : DefaultClause n
c'_eq_c : c' = c
⊢ p ⊨ c
|
56eb1fda3331659a
|
Finset.image₂_right_comm
|
Mathlib/Data/Finset/NAry.lean
|
theorem image₂_right_comm {γ : Type*} {u : Finset γ} {f : δ → γ → ε} {g : α → β → δ}
{f' : α → γ → δ'} {g' : δ' → β → ε} (h_right_comm : ∀ a b c, f (g a b) c = g' (f' a c) b) :
image₂ f (image₂ g s t) u = image₂ g' (image₂ f' s u) t :=
coe_injective <| by
push_cast
exact image2_right_comm h_right_comm
|
α : Type u_1
β : Type u_3
δ : Type u_7
δ' : Type u_8
ε : Type u_9
inst✝² : DecidableEq δ'
inst✝¹ : DecidableEq ε
s : Finset α
t : Finset β
inst✝ : DecidableEq δ
γ : Type u_14
u : Finset γ
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
⊢ image2 f (image2 g ↑s ↑t) ↑u = image2 g' (image2 f' ↑s ↑u) ↑t
|
exact image2_right_comm h_right_comm
|
no goals
|
aca330c91814883d
|
Order.mem_range_pred_of_not_isPredPrelimit
|
Mathlib/Order/SuccPred/Limit.lean
|
theorem mem_range_pred_of_not_isPredPrelimit (h : ¬ IsPredPrelimit a) :
a ∈ range (pred : α → α)
|
case intro
α : Type u_1
a : α
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
h : ¬IsPredPrelimit a
b : α
hb : ¬IsMin b ∧ pred b = a
⊢ a ∈ range pred
|
exact ⟨b, hb.2⟩
|
no goals
|
b031daf673792464
|
Multiset.isDershowitzMannaLT_singleton_insert
|
Mathlib/Data/Multiset/DershowitzManna.lean
|
private lemma isDershowitzMannaLT_singleton_insert (h : OneStep N (a ::ₘ M)) :
∃ M', N = a ::ₘ M' ∧ OneStep M' M ∨ N = M + M' ∧ ∀ x ∈ M', x < a
|
case intro.intro.intro.intro.intro.inr.refine_1
α : Type u_1
inst✝ : Preorder α
M : Multiset α
a : α
X Y : Multiset α
b : α
h0 : a ::ₘ M = X + {b}
h2 : ∀ y ∈ Y, y < b
hab : a ≠ b
⊢ X + Y = a ::ₘ (Y + (M - {b}))
|
rw [← singleton_add, add_comm] at h0
|
case intro.intro.intro.intro.intro.inr.refine_1
α : Type u_1
inst✝ : Preorder α
M : Multiset α
a : α
X Y : Multiset α
b : α
h0 : M + {a} = X + {b}
h2 : ∀ y ∈ Y, y < b
hab : a ≠ b
⊢ X + Y = a ::ₘ (Y + (M - {b}))
|
fe1657f5397146bc
|
Matrix.det_blockDiagonal
|
Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean
|
theorem det_blockDiagonal {o : Type*} [Fintype o] [DecidableEq o] (M : o → Matrix n n R) :
(blockDiagonal M).det = ∏ k, (M k).det
|
case refine_3.refine_1
n : Type u_2
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
R : Type v
inst✝² : CommRing R
o : Type u_3
inst✝¹ : Fintype o
inst✝ : DecidableEq o
M : o → Matrix n n R
preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (σ x).2 = x.2) univ
mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (σ x).2 = x.2
σ : n × o ≃ n × o
hσ : ∀ (x : n × o), (σ x).2 = x.2
hσ' : ∀ (x : n × o), (σ⁻¹ x).2 = x.2
mk_apply_eq : ∀ (k : o) (x : n), ((σ (x, k)).1, k) = σ (x, k)
mk_inv_apply_eq : ∀ (k : o) (x : n), ((σ⁻¹ (x, k)).1, k) = σ⁻¹ (x, k)
k : o
x✝ : k ∈ univ
⊢ LeftInverse (fun x => (σ⁻¹ (x, k)).1) fun x => (σ (x, k)).1
|
intro x
|
case refine_3.refine_1
n : Type u_2
inst✝⁴ : DecidableEq n
inst✝³ : Fintype n
R : Type v
inst✝² : CommRing R
o : Type u_3
inst✝¹ : Fintype o
inst✝ : DecidableEq o
M : o → Matrix n n R
preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (σ x).2 = x.2) univ
mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (σ x).2 = x.2
σ : n × o ≃ n × o
hσ : ∀ (x : n × o), (σ x).2 = x.2
hσ' : ∀ (x : n × o), (σ⁻¹ x).2 = x.2
mk_apply_eq : ∀ (k : o) (x : n), ((σ (x, k)).1, k) = σ (x, k)
mk_inv_apply_eq : ∀ (k : o) (x : n), ((σ⁻¹ (x, k)).1, k) = σ⁻¹ (x, k)
k : o
x✝ : k ∈ univ
x : n
⊢ (fun x => (σ⁻¹ (x, k)).1) ((fun x => (σ (x, k)).1) x) = x
|
85a593e300a16f88
|
exists_affineIndependent
|
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
|
theorem exists_affineIndependent (s : Set P) :
∃ t ⊆ s, affineSpan k t = affineSpan k s ∧ AffineIndependent k ((↑) : t → P)
|
case h
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : Set P
p : P
hp : p ∈ s
b : Set V
hb₁ : b ⊆ ⇑(Equiv.vaddConst p).symm '' s
hb₂ : Submodule.span k b = vectorSpan k s
hb₃ : AffineIndependent k fun p_1 => ↑p_1
hb₀ : ∀ v ∈ b, v ≠ 0
⊢ p ∈ spanPoints k (insert p ((fun a => a +ᵥ p) '' b)) ∧ p ∈ spanPoints k s
|
exact ⟨mem_spanPoints k _ _ (Set.mem_insert p _), mem_spanPoints k _ _ hp⟩
|
no goals
|
eed2f1fe5d5f5b68
|
List.mapIdxMGo_eq_mapIdxMAuxSpec
|
Mathlib/Data/List/Indexes.lean
|
theorem mapIdxMGo_eq_mapIdxMAuxSpec
[LawfulMonad m] {β} (f : ℕ → α → m β) (arr : Array β) (as : List α) :
mapIdxM.go f as arr = (arr.toList ++ ·) <$> mapIdxMAuxSpec f arr.size as
|
α : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
β : Type u
f : ℕ → α → m β
len : ℕ
ih :
∀ (arr : Array β) (as : List α),
as.length = len → mapIdxM.go f as arr = (fun x => arr.toList ++ x) <$> mapIdxMAuxSpec f arr.size as
arr : Array β
as : List α
head : α
tail : List α
h : tail.length = len
⊢ (do
let __do_lift ← f arr.size head
mapIdxM.go f tail (arr.push __do_lift)) =
do
let x ← f arr.size head
let x_1 ← mapIdxMAuxSpec f (arr.size + 1) tail
pure (arr.toList ++ x :: x_1)
|
congr
|
case e_a
α : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
β : Type u
f : ℕ → α → m β
len : ℕ
ih :
∀ (arr : Array β) (as : List α),
as.length = len → mapIdxM.go f as arr = (fun x => arr.toList ++ x) <$> mapIdxMAuxSpec f arr.size as
arr : Array β
as : List α
head : α
tail : List α
h : tail.length = len
⊢ (fun __do_lift => mapIdxM.go f tail (arr.push __do_lift)) = fun x => do
let x_1 ← mapIdxMAuxSpec f (arr.size + 1) tail
pure (arr.toList ++ x :: x_1)
|
484508954c433f55
|
piecewise_ae_eq_restrict
|
Mathlib/MeasureTheory/Measure/Restrict.lean
|
theorem piecewise_ae_eq_restrict [DecidablePred (· ∈ s)] (hs : MeasurableSet s) :
piecewise s f g =ᵐ[μ.restrict s] f
|
α : Type u_2
β : Type u_3
inst✝¹ : MeasurableSpace α
μ : Measure α
s : Set α
f g : α → β
inst✝ : DecidablePred fun x => x ∈ s
hs : MeasurableSet s
⊢ s.piecewise f g =ᶠ[ae μ ⊓ 𝓟 s] f
|
exact (piecewise_eqOn s f g).eventuallyEq.filter_mono inf_le_right
|
no goals
|
952c1c111ae423b3
|
LaurentSeries.valuation_LaurentSeries_equal_extension
|
Mathlib/RingTheory/LaurentSeries.lean
|
theorem valuation_LaurentSeries_equal_extension :
(LaurentSeriesPkg K).isDenseInducing.extend Valued.v = (Valued.v : K⸨X⸩ → ℤₘ₀)
|
case hg
K : Type u_2
inst✝ : Field K
⊢ Continuous ⇑Valued.v
|
exact Valued.continuous_valuation (K := K⸨X⸩)
|
no goals
|
8df9f023f0e8c820
|
ProbabilityTheory.Kernel.iIndepSets.iIndep
|
Mathlib/Probability/Independence/Kernel.lean
|
theorem iIndepSets.iIndep (m : ι → MeasurableSpace Ω)
(h_le : ∀ i, m i ≤ _mΩ) (π : ι → Set (Set Ω)) (h_pi : ∀ n, IsPiSystem (π n))
(h_generate : ∀ i, m i = generateFrom (π i)) (h_ind : iIndepSets π κ μ) :
iIndep m κ μ
|
α : Type u_1
Ω : Type u_2
ι : Type u_3
_mα : MeasurableSpace α
_mΩ : MeasurableSpace Ω
κ : Kernel α Ω
μ : Measure α
m : ι → MeasurableSpace Ω
h_le : ∀ (i : ι), m i ≤ _mΩ
π : ι → Set (Set Ω)
h_pi : ∀ (n : ι), IsPiSystem (π n)
h_generate : ∀ (i : ι), m i = generateFrom (π i)
h_ind : iIndepSets π κ μ
hμ : μ ≠ 0
η : Kernel α Ω
η_eq : ⇑κ =ᶠ[ae μ] ⇑η
hη : IsMarkovKernel η
s : Finset ι
f : ι → Set Ω
a : ι
S : Finset ι
ha_notin_S : a ∉ S
h_rec : (∀ i ∈ S, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ S, f i) = ∏ i ∈ S, (η a) (f i)
hf_m : ∀ i ∈ insert a S, f i ∈ (fun x => {s | MeasurableSet s}) i
hf_m_S : ∀ x ∈ S, MeasurableSet (f x)
p : Set (Set Ω) := piiUnionInter π ↑S
m_p : MeasurableSpace Ω := generateFrom p
hS_eq_generate : m_p = generateFrom p
⊢ Indep m_p (m a) η μ
|
have hp : IsPiSystem p := isPiSystem_piiUnionInter π h_pi S
|
α : Type u_1
Ω : Type u_2
ι : Type u_3
_mα : MeasurableSpace α
_mΩ : MeasurableSpace Ω
κ : Kernel α Ω
μ : Measure α
m : ι → MeasurableSpace Ω
h_le : ∀ (i : ι), m i ≤ _mΩ
π : ι → Set (Set Ω)
h_pi : ∀ (n : ι), IsPiSystem (π n)
h_generate : ∀ (i : ι), m i = generateFrom (π i)
h_ind : iIndepSets π κ μ
hμ : μ ≠ 0
η : Kernel α Ω
η_eq : ⇑κ =ᶠ[ae μ] ⇑η
hη : IsMarkovKernel η
s : Finset ι
f : ι → Set Ω
a : ι
S : Finset ι
ha_notin_S : a ∉ S
h_rec : (∀ i ∈ S, f i ∈ (fun x => {s | MeasurableSet s}) i) → ∀ᵐ (a : α) ∂μ, (η a) (⋂ i ∈ S, f i) = ∏ i ∈ S, (η a) (f i)
hf_m : ∀ i ∈ insert a S, f i ∈ (fun x => {s | MeasurableSet s}) i
hf_m_S : ∀ x ∈ S, MeasurableSet (f x)
p : Set (Set Ω) := piiUnionInter π ↑S
m_p : MeasurableSpace Ω := generateFrom p
hS_eq_generate : m_p = generateFrom p
hp : IsPiSystem p
⊢ Indep m_p (m a) η μ
|
839768f1641edae0
|
CategoryTheory.OplaxNatTrans.whiskerRight_naturality_comp
|
Mathlib/CategoryTheory/Bicategory/NaturalTransformation/Oplax.lean
|
theorem whiskerRight_naturality_comp (f : a ⟶ b) (g : b ⟶ c) (h : G.obj c ⟶ a') :
η.naturality (f ≫ g) ▷ h ≫ (α_ _ _ _).hom ≫ η.app a ◁ G.mapComp f g ▷ h =
F.mapComp f g ▷ η.app c ▷ h ≫
(α_ _ _ _).hom ▷ h ≫
(α_ _ _ _).hom ≫
F.map f ◁ η.naturality g ▷ h ≫
(α_ _ _ _).inv ≫
(α_ _ _ _).inv ▷ h ≫
η.naturality f ▷ G.map g ▷ h ≫ (α_ _ _ _).hom ▷ h ≫ (α_ _ _ _).hom
|
B : Type u₁
inst✝¹ : Bicategory B
C : Type u₂
inst✝ : Bicategory C
F G : OplaxFunctor B C
η : OplaxNatTrans F G
a b c : B
a' : C
f : a ⟶ b
g : b ⟶ c
h : G.obj c ⟶ a'
⊢ η.naturality (f ≫ g) ▷ h ≫ (α_ (η.app a) (G.map (f ≫ g)) h).hom ≫ η.app a ◁ G.mapComp f g ▷ h =
F.mapComp f g ▷ η.app c ▷ h ≫
(α_ (F.map f) (F.map g) (η.app c)).hom ▷ h ≫
(α_ (F.map f) (F.map g ≫ η.app c) h).hom ≫
F.map f ◁ η.naturality g ▷ h ≫
(α_ (F.map f) (η.app b ≫ G.map g) h).inv ≫
(α_ (F.map f) (η.app b) (G.map g)).inv ▷ h ≫
η.naturality f ▷ G.map g ▷ h ≫
(α_ (η.app a) (G.map f) (G.map g)).hom ▷ h ≫ (α_ (η.app a) (G.map f ≫ G.map g) h).hom
|
rw [← associator_naturality_middle, ← comp_whiskerRight_assoc, naturality_comp]
|
B : Type u₁
inst✝¹ : Bicategory B
C : Type u₂
inst✝ : Bicategory C
F G : OplaxFunctor B C
η : OplaxNatTrans F G
a b c : B
a' : C
f : a ⟶ b
g : b ⟶ c
h : G.obj c ⟶ a'
⊢ (F.mapComp f g ▷ η.app c ≫
(α_ (F.map f) (F.map g) (η.app c)).hom ≫
F.map f ◁ η.naturality g ≫
(α_ (F.map f) (η.app b) (G.map g)).inv ≫
η.naturality f ▷ G.map g ≫ (α_ (η.app a) (G.map f) (G.map g)).hom) ▷
h ≫
(α_ (η.app a) (G.map f ≫ G.map g) h).hom =
F.mapComp f g ▷ η.app c ▷ h ≫
(α_ (F.map f) (F.map g) (η.app c)).hom ▷ h ≫
(α_ (F.map f) (F.map g ≫ η.app c) h).hom ≫
F.map f ◁ η.naturality g ▷ h ≫
(α_ (F.map f) (η.app b ≫ G.map g) h).inv ≫
(α_ (F.map f) (η.app b) (G.map g)).inv ▷ h ≫
η.naturality f ▷ G.map g ▷ h ≫
(α_ (η.app a) (G.map f) (G.map g)).hom ▷ h ≫ (α_ (η.app a) (G.map f ≫ G.map g) h).hom
|
43d5d0dc1a09d30b
|
SimpleGraph.ediam_eq_one
|
Mathlib/Combinatorics/SimpleGraph/Diam.lean
|
@[simp]
lemma ediam_eq_one [Nontrivial α] : G.ediam = 1 ↔ G = ⊤
|
case Adj.h.h.a
α : Type u_1
G : SimpleGraph α
inst✝ : Nontrivial α
h₁ : G.ediam = 1
u v : α
h₂ : 0 < G.edist u v
⊢ G.Adj u v
|
apply le_of_eq at h₁
|
case Adj.h.h.a
α : Type u_1
G : SimpleGraph α
inst✝ : Nontrivial α
u v : α
h₂ : 0 < G.edist u v
h₁ : G.ediam ≤ 1
⊢ G.Adj u v
|
f79273a120dd6be5
|
Associates.dvd_of_mem_factors
|
Mathlib/RingTheory/UniqueFactorizationDomain/FactorSet.lean
|
theorem dvd_of_mem_factors {a p : Associates α} (hm : p ∈ factors a) :
p ∣ a
|
case inr.intro.intro
α : Type u_1
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : UniqueFactorizationMonoid α
a p : Associates α
hm : p ∈ a.factors
ha0 : a ≠ 0
a0 : α
nza : a0 ≠ 0
ha' : Associates.mk a0 = a
⊢ p ∣ a
|
rw [← Associates.factors_prod a]
|
case inr.intro.intro
α : Type u_1
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : UniqueFactorizationMonoid α
a p : Associates α
hm : p ∈ a.factors
ha0 : a ≠ 0
a0 : α
nza : a0 ≠ 0
ha' : Associates.mk a0 = a
⊢ p ∣ a.factors.prod
|
5299e19f6694fb2c
|
tendsto_setIntegral_peak_smul_of_integrableOn_of_tendsto
|
Mathlib/MeasureTheory/Integral/PeakFunction.lean
|
theorem tendsto_setIntegral_peak_smul_of_integrableOn_of_tendsto
(hs : MeasurableSet s) {t : Set α} (ht : MeasurableSet t) (hts : t ⊆ s) (h'ts : t ∈ 𝓝[s] x₀)
(h't : μ t ≠ ∞) (hnφ : ∀ᶠ i in l, ∀ x ∈ s, 0 ≤ φ i x)
(hlφ : ∀ u : Set α, IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u))
(hiφ : Tendsto (fun i ↦ ∫ x in t, φ i x ∂μ) l (𝓝 1))
(h'iφ : ∀ᶠ i in l, AEStronglyMeasurable (φ i) (μ.restrict s))
(hmg : IntegrableOn g s μ) (hcg : Tendsto g (𝓝[s] x₀) (𝓝 a)) :
Tendsto (fun i : ι ↦ ∫ x in s, φ i x • g x ∂μ) l (𝓝 a)
|
case hmg
α : Type u_1
E : Type u_2
ι : Type u_3
hm : MeasurableSpace α
μ : Measure α
inst✝⁴ : TopologicalSpace α
inst✝³ : BorelSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
g : α → E
l : Filter ι
x₀ : α
s : Set α
φ : ι → α → ℝ
a : E
inst✝ : CompleteSpace E
hs : MeasurableSet s
t : Set α
ht : MeasurableSet t
hts : t ⊆ s
h'ts : t ∈ 𝓝[s] x₀
h't : μ t ≠ ⊤
hnφ : ∀ᶠ (i : ι) in l, ∀ x ∈ s, 0 ≤ φ i x
hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u)
hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1)
h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s)
hmg : IntegrableOn g s μ
hcg : Tendsto g (𝓝[s] x₀) (𝓝 a)
h : α → E := g - t.indicator fun x => a
⊢ Integrable (t.indicator fun x => a) (μ.restrict s)
|
simp only [integrable_indicator_iff ht, integrableOn_const, ht, Measure.restrict_apply]
|
case hmg
α : Type u_1
E : Type u_2
ι : Type u_3
hm : MeasurableSpace α
μ : Measure α
inst✝⁴ : TopologicalSpace α
inst✝³ : BorelSpace α
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
g : α → E
l : Filter ι
x₀ : α
s : Set α
φ : ι → α → ℝ
a : E
inst✝ : CompleteSpace E
hs : MeasurableSet s
t : Set α
ht : MeasurableSet t
hts : t ⊆ s
h'ts : t ∈ 𝓝[s] x₀
h't : μ t ≠ ⊤
hnφ : ∀ᶠ (i : ι) in l, ∀ x ∈ s, 0 ≤ φ i x
hlφ : ∀ (u : Set α), IsOpen u → x₀ ∈ u → TendstoUniformlyOn φ 0 l (s \ u)
hiφ : Tendsto (fun i => ∫ (x : α) in t, φ i x ∂μ) l (𝓝 1)
h'iφ : ∀ᶠ (i : ι) in l, AEStronglyMeasurable (φ i) (μ.restrict s)
hmg : IntegrableOn g s μ
hcg : Tendsto g (𝓝[s] x₀) (𝓝 a)
h : α → E := g - t.indicator fun x => a
⊢ a = 0 ∨ μ (t ∩ s) < ⊤
|
fcf9a03d4108054c
|
ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet
|
Mathlib/Probability/Moments/IntegrableExpMul.lean
|
/-- If `v` belongs to the interior of the interval `integrableExpSet X μ`,
then `X ^ p * exp (v * X)` is integrable for all nonnegative `p : ℝ`. -/
lemma integrable_rpow_mul_exp_of_mem_interior_integrableExpSet
(hv : v ∈ interior (integrableExpSet X μ)) {p : ℝ} (hp : 0 ≤ p) :
Integrable (fun ω ↦ X ω ^ p * exp (v * X ω)) μ
|
case intro.intro.intro.refine_3
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
v p : ℝ
hp : 0 ≤ p
l u : ℝ
hvlu : v ∈ Set.Ioo l u
h_subset : Set.Ioo l u ⊆ integrableExpSet X μ
h_pos : 0 < (v - l) ⊓ (u - v)
⊢ Integrable (fun ω => rexp ((v - ((v - l) ⊓ (u - v)) / 2) * X ω)) μ
|
exact h_subset (sub_half_inf_sub_mem_Ioo hvlu)
|
no goals
|
0e622ce8317f663e
|
Finset.mul_inv_eq_inv_mul_of_doubling_lt_two_aux
|
Mathlib/Combinatorics/Additive/VerySmallDoubling.lean
|
private lemma mul_inv_eq_inv_mul_of_doubling_lt_two_aux (h : #(A * A) < 2 * #A) :
A⁻¹ * A ⊆ A * A⁻¹
|
G : Type u_1
inst✝¹ : Group G
inst✝ : DecidableEq G
A : Finset G
h : #(A * A) < 2 * #A
z : G
⊢ z ∈ A⁻¹ * A → z ∈ A * A⁻¹
|
simp only [mem_mul, forall_exists_index, exists_and_left, and_imp, mem_inv,
exists_exists_and_eq_and]
|
G : Type u_1
inst✝¹ : Group G
inst✝ : DecidableEq G
A : Finset G
h : #(A * A) < 2 * #A
z : G
⊢ ∀ x ∈ A, ∀ x_1 ∈ A, x⁻¹ * x_1 = z → ∃ y ∈ A, ∃ a ∈ A, y * a⁻¹ = z
|
b8d9a308629ad83d
|
Polynomial.Monic.geom_sum
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
theorem Monic.geom_sum {P : R[X]} (hP : P.Monic) (hdeg : 0 < P.natDegree) {n : ℕ} (hn : n ≠ 0) :
(∑ i ∈ range n, P ^ i).Monic
|
case intro
R : Type u
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
k : ℕ
⊢ k < n → k * P.natDegree < n * P.natDegree
|
exact nsmul_lt_nsmul_left hdeg
|
no goals
|
88dcf173b62f3103
|
MeasureTheory.SimpleFunc.tendsto_approxOn_range_L1_enorm
|
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
|
theorem tendsto_approxOn_range_L1_enorm [OpensMeasurableSpace E] {f : β → E} {μ : Measure β}
[SeparableSpace (range f ∪ {0} : Set E)] (fmeas : Measurable f) (hf : Integrable f μ) :
Tendsto (fun n => ∫⁻ x, ‖approxOn f fmeas (range f ∪ {0}) 0 (by simp) n x - f x‖ₑ ∂μ) atTop
(𝓝 0)
|
β : Type u_2
E : Type u_4
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace E
inst✝² : NormedAddCommGroup E
inst✝¹ : OpensMeasurableSpace E
f : β → E
μ : Measure β
inst✝ : SeparableSpace ↑(Set.range f ∪ {0})
fmeas : Measurable f
hf : Integrable f μ
⊢ Tendsto (fun n => ∫⁻ (x : β), ‖(approxOn f fmeas (Set.range f ∪ {0}) 0 ⋯ n) x - f x‖ₑ ∂μ) atTop (𝓝 0)
|
apply tendsto_approxOn_L1_enorm fmeas
|
case hμ
β : Type u_2
E : Type u_4
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace E
inst✝² : NormedAddCommGroup E
inst✝¹ : OpensMeasurableSpace E
f : β → E
μ : Measure β
inst✝ : SeparableSpace ↑(Set.range f ∪ {0})
fmeas : Measurable f
hf : Integrable f μ
⊢ ∀ᵐ (x : β) ∂μ, f x ∈ closure (Set.range f ∪ {0})
case hi
β : Type u_2
E : Type u_4
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace E
inst✝² : NormedAddCommGroup E
inst✝¹ : OpensMeasurableSpace E
f : β → E
μ : Measure β
inst✝ : SeparableSpace ↑(Set.range f ∪ {0})
fmeas : Measurable f
hf : Integrable f μ
⊢ HasFiniteIntegral (fun x => f x - 0) μ
|
9089b3887e889536
|
Subadditive.tendsto_lim
|
Mathlib/Analysis/Subadditive.lean
|
theorem tendsto_lim (hbdd : BddBelow (range fun n => u n / n)) :
Tendsto (fun n => u n / n) atTop (𝓝 h.lim)
|
u : ℕ → ℝ
h : Subadditive u
hbdd : BddBelow (range fun n => u n / ↑n)
⊢ Tendsto (fun n => u n / ↑n) atTop (𝓝 h.lim)
|
refine tendsto_order.2 ⟨fun l hl => ?_, fun L hL => ?_⟩
|
case refine_1
u : ℕ → ℝ
h : Subadditive u
hbdd : BddBelow (range fun n => u n / ↑n)
l : ℝ
hl : l < h.lim
⊢ ∀ᶠ (b : ℕ) in atTop, l < u b / ↑b
case refine_2
u : ℕ → ℝ
h : Subadditive u
hbdd : BddBelow (range fun n => u n / ↑n)
L : ℝ
hL : L > h.lim
⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < L
|
4ac4c5b856326f16
|
Finset.insert_compl_self
|
Mathlib/Data/Finset/BooleanAlgebra.lean
|
theorem insert_compl_self (x : α) : insert x ({x}ᶜ : Finset α) = univ
|
α : Type u_1
inst✝¹ : Fintype α
inst✝ : DecidableEq α
x : α
⊢ insert x {x}ᶜ = univ
|
rw [← compl_erase, erase_singleton, compl_empty]
|
no goals
|
bac433c196f0ec9d
|
MeasureTheory.Lp.simpleFunc.denseRange_coeSimpleFuncNonnegToLpNonneg
|
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
|
theorem denseRange_coeSimpleFuncNonnegToLpNonneg [hp : Fact (1 ≤ p)] (hp_ne_top : p ≠ ∞) :
DenseRange (coeSimpleFuncNonnegToLpNonneg p μ G) := fun g ↦ by
borelize G
rw [mem_closure_iff_seq_limit]
have hg_memLp : MemLp (g : α → G) p μ := Lp.memLp (g : Lp G p μ)
have zero_mem : (0 : G) ∈ (range (g : α → G) ∪ {0} : Set G) ∩ { y | 0 ≤ y }
|
α : Type u_1
inst✝¹ : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
G : Type u_7
inst✝ : NormedLatticeAddCommGroup G
hp : Fact (1 ≤ p)
hp_ne_top : p ≠ ⊤
g : { g // 0 ≤ g }
this✝¹ : MeasurableSpace G := borel G
this✝ : BorelSpace G
hg_memLp : MemLp (↑↑↑g) p μ
zero_mem : 0 ∈ (Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y}
this : SeparableSpace ↑((Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y})
⊢ ∃ x, (∀ (n : ℕ), x n ∈ Set.range (coeSimpleFuncNonnegToLpNonneg p μ G)) ∧ Tendsto x atTop (𝓝 g)
|
have g_meas : Measurable (g : α → G) := (Lp.stronglyMeasurable (g : Lp G p μ)).measurable
|
α : Type u_1
inst✝¹ : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
G : Type u_7
inst✝ : NormedLatticeAddCommGroup G
hp : Fact (1 ≤ p)
hp_ne_top : p ≠ ⊤
g : { g // 0 ≤ g }
this✝¹ : MeasurableSpace G := borel G
this✝ : BorelSpace G
hg_memLp : MemLp (↑↑↑g) p μ
zero_mem : 0 ∈ (Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y}
this : SeparableSpace ↑((Set.range ↑↑↑g ∪ {0}) ∩ {y | 0 ≤ y})
g_meas : Measurable ↑↑↑g
⊢ ∃ x, (∀ (n : ℕ), x n ∈ Set.range (coeSimpleFuncNonnegToLpNonneg p μ G)) ∧ Tendsto x atTop (𝓝 g)
|
1fc70ad144f2653f
|
MeasureTheory.exists_seq_tendstoInMeasure_atTop_iff
|
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean
|
theorem exists_seq_tendstoInMeasure_atTop_iff [IsFiniteMeasure μ]
{f : ℕ → α → E} (hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ) {g : α → E} :
TendstoInMeasure μ f atTop g ↔
∀ ns : ℕ → ℕ, StrictMono ns → ∃ ns' : ℕ → ℕ, StrictMono ns' ∧
∀ᵐ (ω : α) ∂μ, Tendsto (fun i ↦ f (ns (ns' i)) ω) atTop (𝓝 (g ω))
|
case intro.intro
α : Type u_1
E : Type u_4
m : MeasurableSpace α
μ : Measure α
inst✝¹ : MetricSpace E
inst✝ : IsFiniteMeasure μ
f : ℕ → α → E
hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
g : α → E
ε : ℝ
hε : 0 < ε
h2 : ¬Tendsto (fun i => (μ {x | ε ≤ dist (f i x) (g x)}).toNNReal) atTop (𝓝 0)
s : Set ℝ≥0
hs : s ∈ 𝓝 0
h4 : ∃ᶠ (x : ℕ) in atTop, (μ {x_1 | ε ≤ dist (f x x_1) (g x_1)}).toNNReal ∉ s
⊢ ∃ δ ns, 0 < δ ∧ StrictMono ns ∧ ∀ (n : ℕ), δ ≤ (μ {x | ε ≤ dist (f (ns n) x) (g x)}).toNNReal
|
obtain ⟨δ, hδ, h5⟩ := NNReal.nhds_zero_basis.mem_iff.1 hs
|
case intro.intro.intro.intro
α : Type u_1
E : Type u_4
m : MeasurableSpace α
μ : Measure α
inst✝¹ : MetricSpace E
inst✝ : IsFiniteMeasure μ
f : ℕ → α → E
hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
g : α → E
ε : ℝ
hε : 0 < ε
h2 : ¬Tendsto (fun i => (μ {x | ε ≤ dist (f i x) (g x)}).toNNReal) atTop (𝓝 0)
s : Set ℝ≥0
hs : s ∈ 𝓝 0
h4 : ∃ᶠ (x : ℕ) in atTop, (μ {x_1 | ε ≤ dist (f x x_1) (g x_1)}).toNNReal ∉ s
δ : ℝ≥0
hδ : 0 < δ
h5 : Set.Iio δ ⊆ s
⊢ ∃ δ ns, 0 < δ ∧ StrictMono ns ∧ ∀ (n : ℕ), δ ≤ (μ {x | ε ≤ dist (f (ns n) x) (g x)}).toNNReal
|
f829873f3e8498ff
|
MeasureTheory.Measure.exists_positive_of_not_mutuallySingular
|
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
|
theorem exists_positive_of_not_mutuallySingular (μ ν : Measure α) [IsFiniteMeasure μ]
[IsFiniteMeasure ν] (h : ¬ μ ⟂ₘ ν) :
∃ ε : ℝ≥0, 0 < ε ∧
∃ E : Set α, MeasurableSet E ∧ 0 < ν E
∧ ∀ A, MeasurableSet A → ε * ν (A ∩ E) ≤ μ (A ∩ E)
|
α : Type u_1
m : MeasurableSpace α
μ ν : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : IsFiniteMeasure ν
h : ¬μ ⟂ₘ ν
f : ℕ → Set α
hf₁ : ∀ (n : ℕ), MeasurableSet (f n)
hf₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → ((1 / (↑n + 1)) • ν) (t ∩ f n) ≤ μ (t ∩ f n)
hf₃ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ (f n)ᶜ) ≤ ((1 / (↑n + 1)) • ν) (t ∩ (f n)ᶜ)
A : Set α := ⋂ n, (f n)ᶜ
hAmeas : MeasurableSet A
hA₂ : ∀ (n : ℕ) (t : Set α), MeasurableSet t → μ (t ∩ A) ≤ ((1 / (↑n + 1)) • ν) (t ∩ A)
μA : ℝ≥0
hA₃✝¹ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ν A
νA : ℝ≥0
hA₃✝ hA₃ : ∀ (n : ℕ), ↑μA ≤ ↑(1 / (↑n + 1)) * ↑νA
hb : 0 < νA
c : ℝ≥0
hc : 0 < c
n : ℕ
hn : 1 / (↑n + 1) < ↑c * (↑νA)⁻¹
⊢ 0 < ↑νA
|
exact hb
|
no goals
|
48437d57402f42cd
|
swap_mul_swap_mul_swap
|
Mathlib/Algebra/Group/End.lean
|
theorem swap_mul_swap_mul_swap {x y z : α} (hxy : x ≠ y) (hxz : x ≠ z) :
swap y z * swap x y * swap y z = swap z x
|
α : Type u_4
inst✝ : DecidableEq α
x y z : α
hxy : x ≠ y
hxz : x ≠ z
⊢ swap y z * swap x y * swap y z = swap z x
|
nth_rewrite 3 [← swap_inv]
|
α : Type u_4
inst✝ : DecidableEq α
x y z : α
hxy : x ≠ y
hxz : x ≠ z
⊢ swap y z * swap x y * (swap y z)⁻¹ = swap z x
|
a6fbb5a9b4adfbc4
|
Submodule.FG.stabilizes_of_iSup_eq
|
Mathlib/RingTheory/Finiteness/Basic.lean
|
theorem FG.stabilizes_of_iSup_eq {M' : Submodule R M} (hM' : M'.FG) (N : ℕ →o Submodule R M)
(H : iSup N = M') : ∃ n, M' = N n
|
case h.a
R : Type u_1
M : Type u_2
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
M' : Submodule R M
N : ℕ →o Submodule R M
H : iSup ⇑N = M'
S : Finset M
hS : span R ↑S = M'
f : { x // x ∈ S } → ℕ
hf : ∀ (s : { x // x ∈ S }), ↑s ∈ N (f s)
s : M
hs : s ∈ ↑S
⊢ s ∈ ↑(N (S.attach.sup f))
|
exact N.2 (Finset.le_sup <| S.mem_attach ⟨s, hs⟩) (hf _)
|
no goals
|
8a1a767d6cea695a
|
BitVec.msb_abs
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
|
theorem msb_abs {w : Nat} {x : BitVec w} :
x.abs.msb = (decide (x = intMin w) && decide (0 < w))
|
case neg
w : Nat
x : BitVec w
h₀ : 0 < w
h₁ : ¬x = intMin w
h₂ : ¬x.msb = true
⊢ (if x.msb = true then -x else x).msb = (false && decide (0 < w))
|
simp [h₂]
|
no goals
|
b96e82b9c2fda510
|
exists_dist_eq
|
Mathlib/Analysis/NormedSpace/Pointwise.lean
|
theorem exists_dist_eq (x z : E) {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) :
∃ y, dist x y = b * dist x z ∧ dist y z = a * dist x z
|
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x z : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ ∃ y, dist x y = b * dist x z ∧ dist y z = a * dist x z
|
use a • x + b • z
|
case h
E : Type u_2
inst✝¹ : SeminormedAddCommGroup E
inst✝ : NormedSpace ℝ E
x z : E
a b : ℝ
ha : 0 ≤ a
hb : 0 ≤ b
hab : a + b = 1
⊢ dist x (a • x + b • z) = b * dist x z ∧ dist (a • x + b • z) z = a * dist x z
|
b95a636671d023aa
|
Besicovitch.SatelliteConfig.exists_normalized_aux3
|
Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean
|
theorem exists_normalized_aux3 {N : ℕ} {τ : ℝ} (a : SatelliteConfig E N τ)
(lastc : a.c (last N) = 0) (lastr : a.r (last N) = 1) (hτ : 1 ≤ τ) (δ : ℝ) (hδ1 : τ ≤ 1 + δ / 4)
(i j : Fin N.succ) (inej : i ≠ j) (hi : 2 < ‖a.c i‖) (hij : ‖a.c i‖ ≤ ‖a.c j‖) :
1 - δ ≤ ‖(2 / ‖a.c i‖) • a.c i - (2 / ‖a.c j‖) • a.c j‖
|
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
N : ℕ
τ : ℝ
a : SatelliteConfig E N τ
lastc : a.c (last N) = 0
lastr : a.r (last N) = 1
hτ : 1 ≤ τ
δ : ℝ
hδ1 : τ ≤ 1 + δ / 4
i j : Fin N.succ
inej : i ≠ j
hi : 2 < ‖a.c i‖
hij : ‖a.c i‖ ≤ ‖a.c j‖
ah : Pairwise fun i j => a.r i ≤ ‖a.c i - a.c j‖ ∧ a.r j ≤ τ * a.r i ∨ a.r j ≤ ‖a.c j - a.c i‖ ∧ a.r i ≤ τ * a.r j
⊢ 1 - δ ≤ ‖(2 / ‖a.c i‖) • a.c i - (2 / ‖a.c j‖) • a.c j‖
|
have δnonneg : 0 ≤ δ := by linarith only [hτ, hδ1]
|
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
N : ℕ
τ : ℝ
a : SatelliteConfig E N τ
lastc : a.c (last N) = 0
lastr : a.r (last N) = 1
hτ : 1 ≤ τ
δ : ℝ
hδ1 : τ ≤ 1 + δ / 4
i j : Fin N.succ
inej : i ≠ j
hi : 2 < ‖a.c i‖
hij : ‖a.c i‖ ≤ ‖a.c j‖
ah : Pairwise fun i j => a.r i ≤ ‖a.c i - a.c j‖ ∧ a.r j ≤ τ * a.r i ∨ a.r j ≤ ‖a.c j - a.c i‖ ∧ a.r i ≤ τ * a.r j
δnonneg : 0 ≤ δ
⊢ 1 - δ ≤ ‖(2 / ‖a.c i‖) • a.c i - (2 / ‖a.c j‖) • a.c j‖
|
03f5b92dee305e5f
|
CategoryTheory.Pretriangulated.productTriangle_distinguished
|
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
|
/-- A product of distinguished triangles is distinguished -/
lemma productTriangle_distinguished {J : Type*} (T : J → Triangle C)
(hT : ∀ j, T j ∈ distTriang C)
[HasProduct (fun j => (T j).obj₁)] [HasProduct (fun j => (T j).obj₂)]
[HasProduct (fun j => (T j).obj₃)] [HasProduct (fun j => (T j).obj₁⟦(1 : ℤ)⟧)] :
productTriangle T ∈ distTriang C
|
C : Type u
inst✝⁸ : Category.{v, u} C
inst✝⁷ : HasZeroObject C
inst✝⁶ : HasShift C ℤ
inst✝⁵ : Preadditive C
inst✝⁴ : ∀ (n : ℤ), (shiftFunctor C n).Additive
hC : Pretriangulated C
J : Type u_1
T : J → Triangle C
hT : ∀ (j : J), T j ∈ distinguishedTriangles
inst✝³ : HasProduct fun j => (T j).obj₁
inst✝² : HasProduct fun j => (T j).obj₂
inst✝¹ : HasProduct fun j => (T j).obj₃
inst✝ : HasProduct fun j => (shiftFunctor C 1).obj (T j).obj₁
f₁ : (∏ᶜ fun j => (T j).obj₁) ⟶ ∏ᶜ fun j => (T j).obj₂ := Limits.Pi.map fun j => (T j).mor₁
Z : C
f₂ : (∏ᶜ fun j => (T j).obj₂) ⟶ Z
f₃ : Z ⟶ (shiftFunctor C 1).obj (∏ᶜ fun j => (T j).obj₁)
T' : Triangle C := Triangle.mk f₁ f₂ f₃
hT' : T' ∈ distinguishedTriangles
φ : (j : J) → T' ⟶ T j :=
fun j =>
completeDistinguishedTriangleMorphism T' (T j) hT' ⋯ (Pi.π (fun j => (T j).obj₁) j) (Pi.π (fun j => (T j).obj₂) j) ⋯
φ' : T' ⟶ productTriangle T := productTriangle.lift T φ
h₁ : φ'.hom₁ = 𝟙 T'.obj₁
h₂ : φ'.hom₂ = 𝟙 T'.obj₂
this✝¹ : IsIso φ'.hom₁
this✝ : IsIso φ'.hom₂
A✝ A : C
f : A ⟶ T'.obj₃
hf : f ≫ φ'.hom₃ = 0
hf' : f ≫ T'.mor₃ = 0
g : A ⟶ T'.obj₂
hg : f = g ≫ T'.mor₂
j : J
this : g ≫ (productTriangle T).mor₂ ≫ Pi.π (fun j => (T j).obj₃) j = 0
⊢ (g ≫ Pi.π (fun j => (T j).obj₂) j) ≫ (T j).mor₂ = 0
|
simpa using this
|
no goals
|
ce9c86c420201fe7
|
CStarRing.norm_coe_unitary_mul
|
Mathlib/Analysis/CStarAlgebra/Basic.lean
|
theorem norm_coe_unitary_mul (U : unitary E) (A : E) : ‖(U : E) * A‖ = ‖A‖
|
E : Type u_2
inst✝² : NormedRing E
inst✝¹ : StarRing E
inst✝ : CStarRing E
U : ↥(unitary E)
A : E
⊢ ‖↑U * A‖ = ‖A‖
|
nontriviality E
|
E : Type u_2
inst✝² : NormedRing E
inst✝¹ : StarRing E
inst✝ : CStarRing E
U : ↥(unitary E)
A : E
a✝ : Nontrivial E
⊢ ‖↑U * A‖ = ‖A‖
|
f09abe48df8a1a8c
|
List.head?_pmap
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Attach.lean
|
theorem head?_pmap {P : α → Prop} (f : (a : α) → P a → β) (xs : List α)
(H : ∀ (a : α), a ∈ xs → P a) :
(xs.pmap f H).head? = xs.attach.head?.map fun ⟨a, m⟩ => f a (H a m)
|
case nil
α : Type u_1
β : Type u_2
P : α → Prop
f : (a : α) → P a → β
H : ∀ (a : α), a ∈ [] → P a
⊢ (pmap f [] H).head? =
Option.map
(fun x =>
match x with
| ⟨a, m⟩ => f a ⋯)
[].attach.head?
|
simp
|
no goals
|
3831ebbe35343d5a
|
CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup
|
Mathlib/CategoryTheory/Abelian/GrothendieckCategory/Subobject.lean
|
/-- If `C` is a Grothendieck abelian category, `X : C`, if `F : J ⥤ MonoOver X` is a
functor from a filtered category `J`, the colimit of `F` (computed in `C`) gives
a subobject of `F` which is a supremum of the subobjects corresponding to
the objects in the image of the functor `F`. -/
lemma subobjectMk_of_isColimit_eq_iSup :
haveI := mono_of_isColimit_monoOver F hc f hf
Subobject.mk f = ⨆ j, Subobject.mk (F.obj j).obj.hom
|
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : Abelian C
inst✝² : IsGrothendieckAbelian.{w, v, u} C
X : C
J : Type w
inst✝¹ : SmallCategory J
F : J ⥤ MonoOver X
inst✝ : IsFiltered J
c : Cocone (F ⋙ MonoOver.forget X ⋙ Over.forget X)
hc : IsColimit c
f : c.pt ⟶ X
hf : ∀ (j : J), c.ι.app j ≫ f = (F.obj j).obj.hom
this : Mono f
⊢ Subobject.mk f = ⨆ j, Subobject.mk (F.obj j).obj.hom
|
apply le_antisymm
|
case a
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : Abelian C
inst✝² : IsGrothendieckAbelian.{w, v, u} C
X : C
J : Type w
inst✝¹ : SmallCategory J
F : J ⥤ MonoOver X
inst✝ : IsFiltered J
c : Cocone (F ⋙ MonoOver.forget X ⋙ Over.forget X)
hc : IsColimit c
f : c.pt ⟶ X
hf : ∀ (j : J), c.ι.app j ≫ f = (F.obj j).obj.hom
this : Mono f
⊢ Subobject.mk f ≤ ⨆ j, Subobject.mk (F.obj j).obj.hom
case a
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : Abelian C
inst✝² : IsGrothendieckAbelian.{w, v, u} C
X : C
J : Type w
inst✝¹ : SmallCategory J
F : J ⥤ MonoOver X
inst✝ : IsFiltered J
c : Cocone (F ⋙ MonoOver.forget X ⋙ Over.forget X)
hc : IsColimit c
f : c.pt ⟶ X
hf : ∀ (j : J), c.ι.app j ≫ f = (F.obj j).obj.hom
this : Mono f
⊢ ⨆ j, Subobject.mk (F.obj j).obj.hom ≤ Subobject.mk f
|
23cc3e98d4dca6a2
|
adjoin_le_integralClosure
|
Mathlib/RingTheory/IntegralClosure/IsIntegralClosure/Basic.lean
|
theorem adjoin_le_integralClosure {x : A} (hx : IsIntegral R x) :
Algebra.adjoin R {x} ≤ integralClosure R A
|
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
x : A
hx : IsIntegral R x
⊢ Algebra.adjoin R {x} ≤ integralClosure R A
|
rw [Algebra.adjoin_le_iff]
|
R : Type u_1
A : Type u_2
inst✝² : CommRing R
inst✝¹ : CommRing A
inst✝ : Algebra R A
x : A
hx : IsIntegral R x
⊢ {x} ⊆ ↑(integralClosure R A)
|
d466a6f9b3a6fd44
|
FDerivMeasurableAux.D_subset_differentiable_set
|
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
|
theorem D_subset_differentiable_set {K : Set (E →L[𝕜] F)} (hK : IsComplete K) :
D f K ⊆ { x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K }
|
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
hk : (1 / 2) ^ (k + 1) < ‖y‖
h'k : ‖y‖ ≤ (1 / 2) ^ k
k_gt : n e < k
m : ℕ := k - 1
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f (x + y) - f x - f' y‖ ≤ ε * ‖y‖
|
rw [km] at hk h'k
|
case neg.intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
hK : IsComplete K
P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n
c : 𝕜
hc : 1 < ‖c‖
x : E
hx : x ∈ D f K
n : ℕ → ℕ
L : ℕ → ℕ → ℕ → E →L[𝕜] F
hn :
∀ (e p q : ℕ),
n e ≤ p →
n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e)
M :
∀ (e p q e' p' q' : ℕ),
n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e)
this : CauchySeq L0
f' : E →L[𝕜] F
f'K : f' ∈ K
hf' : Tendsto L0 atTop (𝓝 f')
Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e
ε : ℝ
εpos : 0 < ε
pos : 0 < 4 + 12 * ‖c‖
e : ℕ
he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖)
y : E
hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1))
y_pos : ¬y = 0
yzero : 0 < ‖y‖
y_lt : ‖y‖ < (1 / 2) ^ (n e + 1)
yone : ‖y‖ ≤ 1
k : ℕ
k_gt : n e < k
m : ℕ := k - 1
h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1)
hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖
m_ge : n e ≤ m
km : k = m + 1
⊢ ‖f (x + y) - f x - f' y‖ ≤ ε * ‖y‖
|
28c357cacce7671e
|
Std.DHashMap.get!_insertMany_list_of_mem
|
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Lemmas.lean
|
theorem get!_insertMany_list_of_mem [LawfulBEq α]
{l : List ((a : α) × β a)} {k k' : α} (k_beq : k == k') {v : β k} [Inhabited (β k')]
(distinct : l.Pairwise (fun a b => (a.1 == b.1) = false))
(mem : ⟨k, v⟩ ∈ l) :
(m.insertMany l).get! k' = cast (by congr; apply LawfulBEq.eq_of_beq k_beq) v :=
Raw₀.get!_insertMany_list_of_mem ⟨m.1, _⟩ m.2 k_beq distinct mem
|
case e_a
α : Type u
β : α → Type v
x✝¹ : BEq α
x✝ : Hashable α
m : DHashMap α β
inst✝¹ : LawfulBEq α
l : List ((a : α) × β a)
k k' : α
k_beq : (k == k') = true
v : β k
inst✝ : Inhabited (β k')
distinct : List.Pairwise (fun a b => (a.fst == b.fst) = false) l
mem : ⟨k, v⟩ ∈ l
⊢ k = k'
|
apply LawfulBEq.eq_of_beq k_beq
|
no goals
|
bed2cb906f5e044b
|
LinearLocallyFiniteOrder.succFn_le_of_lt
|
Mathlib/Order/SuccPred/LinearLocallyFinite.lean
|
theorem succFn_le_of_lt (i j : ι) (hij : i < j) : succFn i ≤ j
|
ι : Type u_1
inst✝ : LinearOrder ι
i j : ι
hij : i < j
h : (∀ x ∈ Set.Ioi i, succFn i ≤ x) ∧ succFn i ∈ upperBounds (lowerBounds (Set.Ioi i))
⊢ succFn i ≤ j
|
exact h.1 j hij
|
no goals
|
22c67ce05b62e111
|
Field.isAlgebraic_of_adjoin_eq_adjoin
|
Mathlib/FieldTheory/PrimitiveElement.lean
|
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
|
case neg.refine_1
F✝ : Type u_1
E✝ : Type u_2
inst✝⁵ : Field F✝
inst✝⁴ : Field E✝
inst✝³ : Algebra F✝ E✝
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
α : E
m n : ℕ
hneq : m ≠ n
heq : F⟮α ^ m⟯ = F⟮α ^ n⟯
hmn : m < n
r s : F[X]
h✝ : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0
hm : 0 < m
hzero : s ≠ 0
f : F[X] := X ^ m * (expand F n) s - (expand F n) r
this : f.coeff (n * s.natDegree + m) ≠ 0
h : f = 0
⊢ False
|
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
|
no goals
|
ce2babdd1545fb9d
|
Algebra.FormallySmooth.pi_iff
|
Mathlib/RingTheory/Smooth/Pi.lean
|
theorem pi_iff [Finite I] :
FormallySmooth R (Π i, A i) ↔ ∀ i, FormallySmooth R (A i)
|
R : Type (max u v)
I : Type u
A : I → Type (max u v)
inst✝⁵ : CommRing R
inst✝⁴ : (i : I) → CommRing (A i)
inst✝³ : (i : I) → Algebra R (A i)
inst✝² : Finite I
val✝ : Fintype I
H : ∀ (i : I), FormallySmooth R (A i)
B : Type (max u v)
inst✝¹ : CommRing B
inst✝ : Algebra R B
J : Ideal B
hJ : J ^ 2 = ⊥
g : ((i : I) → A i) →ₐ[R] B ⧸ J
hJ' : ∀ x ∈ RingHom.ker (Ideal.Quotient.mk J), IsNilpotent x
e : I → B
he : CompleteOrthogonalIdempotents e
he' : ∀ (i : I), (Ideal.Quotient.mk J) (e i) = g (Pi.single i 1)
iso : B ≃ₐ[R] (i : I) → B ⧸ Ideal.span {1 - e i} :=
let __spread.0 :=
Pi.algHom R (fun i => B ⧸ Ideal.span {1 - e i}) fun i => Ideal.Quotient.mkₐ R (Ideal.span {1 - e i});
let __spread.1 := Equiv.ofBijective ⇑(Pi.ringHom fun i => Ideal.Quotient.mk (Ideal.span {1 - e i})) ⋯;
{ toFun := (↑↑__spread.0.toRingHom).toFun, invFun := __spread.1.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯,
map_add' := ⋯, commutes' := ⋯ }
J' : (i : I) → Ideal (B ⧸ Ideal.span {1 - e i}) := fun i => Ideal.map (Ideal.Quotient.mk (Ideal.span {1 - e i})) J
ι : (i : I) → B ⧸ J →ₐ[R] (B ⧸ Ideal.span {1 - e i}) ⧸ J' i :=
fun i => Ideal.quotientMapₐ (J' i) (IsScalarTower.toAlgHom R B (B ⧸ Ideal.span {1 - e i})) ⋯
hι : ∀ (i : I) (x : B ⧸ J), (ι i) x = 0 → (Ideal.Quotient.mk J) (e i) * x = 0
a : (i : I) → A i →ₐ[R] B ⧸ Ideal.span {1 - e i}
ha : ∀ (i : I) (x : A i), (Ideal.Quotient.mk (J' i)) ((a i) x) = (ι i) (g (Pi.single i x))
x✝ : (i : I) → A i
i : I
x : A i
y : B
hy : (Ideal.Quotient.mk (Ideal.span {1 - e i})) y = (a i) x
hy' : (Ideal.Quotient.mk (Ideal.span {1 - e i})) (y * e i) = (a i) x
j : I
hij : ¬i = j
⊢ (Ideal.Quotient.mk (Ideal.span {1 - e j})) (e i) = 0
|
rw [Ideal.Quotient.eq_zero_iff_mem, Ideal.mem_span_singleton]
|
R : Type (max u v)
I : Type u
A : I → Type (max u v)
inst✝⁵ : CommRing R
inst✝⁴ : (i : I) → CommRing (A i)
inst✝³ : (i : I) → Algebra R (A i)
inst✝² : Finite I
val✝ : Fintype I
H : ∀ (i : I), FormallySmooth R (A i)
B : Type (max u v)
inst✝¹ : CommRing B
inst✝ : Algebra R B
J : Ideal B
hJ : J ^ 2 = ⊥
g : ((i : I) → A i) →ₐ[R] B ⧸ J
hJ' : ∀ x ∈ RingHom.ker (Ideal.Quotient.mk J), IsNilpotent x
e : I → B
he : CompleteOrthogonalIdempotents e
he' : ∀ (i : I), (Ideal.Quotient.mk J) (e i) = g (Pi.single i 1)
iso : B ≃ₐ[R] (i : I) → B ⧸ Ideal.span {1 - e i} :=
let __spread.0 :=
Pi.algHom R (fun i => B ⧸ Ideal.span {1 - e i}) fun i => Ideal.Quotient.mkₐ R (Ideal.span {1 - e i});
let __spread.1 := Equiv.ofBijective ⇑(Pi.ringHom fun i => Ideal.Quotient.mk (Ideal.span {1 - e i})) ⋯;
{ toFun := (↑↑__spread.0.toRingHom).toFun, invFun := __spread.1.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯,
map_add' := ⋯, commutes' := ⋯ }
J' : (i : I) → Ideal (B ⧸ Ideal.span {1 - e i}) := fun i => Ideal.map (Ideal.Quotient.mk (Ideal.span {1 - e i})) J
ι : (i : I) → B ⧸ J →ₐ[R] (B ⧸ Ideal.span {1 - e i}) ⧸ J' i :=
fun i => Ideal.quotientMapₐ (J' i) (IsScalarTower.toAlgHom R B (B ⧸ Ideal.span {1 - e i})) ⋯
hι : ∀ (i : I) (x : B ⧸ J), (ι i) x = 0 → (Ideal.Quotient.mk J) (e i) * x = 0
a : (i : I) → A i →ₐ[R] B ⧸ Ideal.span {1 - e i}
ha : ∀ (i : I) (x : A i), (Ideal.Quotient.mk (J' i)) ((a i) x) = (ι i) (g (Pi.single i x))
x✝ : (i : I) → A i
i : I
x : A i
y : B
hy : (Ideal.Quotient.mk (Ideal.span {1 - e i})) y = (a i) x
hy' : (Ideal.Quotient.mk (Ideal.span {1 - e i})) (y * e i) = (a i) x
j : I
hij : ¬i = j
⊢ 1 - e j ∣ e i
|
0128f0207720570c
|
UV.compress_injOn
|
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
|
theorem compress_injOn : Set.InjOn (compress u v) ↑{a ∈ s | compress u v a ∉ s}
|
case pos
α : Type u_1
inst✝³ : GeneralizedBooleanAlgebra α
inst✝² : DecidableRel Disjoint
inst✝¹ : DecidableRel fun x1 x2 => x1 ≤ x2
s : Finset α
u v : α
inst✝ : DecidableEq α
a b : α
has : Disjoint u a ∧ v ≤ a
ha : a ∈ s ∧ (a ⊔ u) \ v ∉ s
hbs : Disjoint u b ∧ v ≤ b
hb : b ∈ s ∧ (b ⊔ u) \ v ∉ s
hab : (a ⊔ u) \ v = (b ⊔ u) \ v
⊢ a = b
|
exact sup_sdiff_injOn u v has hbs hab
|
no goals
|
4c8b28ba0d63c5ee
|
Array.getElem_insertIdx_loop_gt
|
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Lemmas.lean
|
theorem getElem_insertIdx_loop_gt {as : Array α} {i : Nat} {j : Nat} {hj : j < as.size}
{k : Nat} {h} (w : i < k) :
(insertIdx.loop i as ⟨j, hj⟩)[k] =
if k ≤ j then as[k-1]'(by simp at h; omega) else as[k]'(by simpa using h)
|
α : Type u_1
as : Array α
i j : Nat
hj : j < as.size
k : Nat
h : k < (insertIdx.loop i as ⟨j, hj⟩).size
w : i < k
⊢ (insertIdx.loop i as ⟨j, hj⟩)[k] = if k ≤ j then as[k - 1] else as[k]
|
unfold insertIdx.loop
|
α : Type u_1
as : Array α
i j : Nat
hj : j < as.size
k : Nat
h : k < (insertIdx.loop i as ⟨j, hj⟩).size
w : i < k
⊢ (if i < ↑⟨j, hj⟩ then
let j' := ⟨↑⟨j, hj⟩ - 1, ⋯⟩;
let as_1 := as.swap ↑j' ↑⟨j, hj⟩ ⋯ ⋯;
insertIdx.loop i as_1 ⟨↑j', ⋯⟩
else as)[k] =
if k ≤ j then as[k - 1] else as[k]
|
ab494e4c94494354
|
isIntegral_localization
|
Mathlib/RingTheory/Localization/Integral.lean
|
theorem isIntegral_localization [Algebra.IsIntegral R S] :
(map Sₘ (algebraMap R S)
(show _ ≤ (Algebra.algebraMapSubmonoid S M).comap _ from M.le_comap_map) :
Rₘ →+* _).IsIntegral
|
R : Type u_1
inst✝⁹ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁸ : CommRing S
inst✝⁷ : Algebra R S
Rₘ : Type u_3
Sₘ : Type u_4
inst✝⁶ : CommRing Rₘ
inst✝⁵ : CommRing Sₘ
inst✝⁴ : Algebra R Rₘ
inst✝³ : IsLocalization M Rₘ
inst✝² : Algebra S Sₘ
inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝ : Algebra.IsIntegral R S
⊢ (IsLocalization.map Sₘ (algebraMap R S) ⋯).IsIntegral
|
intro x
|
R : Type u_1
inst✝⁹ : CommRing R
M : Submonoid R
S : Type u_2
inst✝⁸ : CommRing S
inst✝⁷ : Algebra R S
Rₘ : Type u_3
Sₘ : Type u_4
inst✝⁶ : CommRing Rₘ
inst✝⁵ : CommRing Sₘ
inst✝⁴ : Algebra R Rₘ
inst✝³ : IsLocalization M Rₘ
inst✝² : Algebra S Sₘ
inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ
inst✝ : Algebra.IsIntegral R S
x : Sₘ
⊢ (IsLocalization.map Sₘ (algebraMap R S) ⋯).IsIntegralElem x
|
8b8cef4c34437a28
|
Stream'.drop_drop
|
Mathlib/Data/Stream/Init.lean
|
theorem drop_drop (n m : ℕ) (s : Stream' α) : drop n (drop m s) = drop (m + n) s
|
case a
α : Type u
n m : ℕ
s : Stream' α
n✝ : ℕ
⊢ (drop n (drop m s)).get n✝ = (drop (m + n) s).get n✝
|
simp [Nat.add_assoc]
|
no goals
|
6fb978b75adf3eda
|
PFunctor.M.bisim
|
Mathlib/Data/PFunctor/Univariate/M.lean
|
theorem bisim (R : M P → M P → Prop)
(h : ∀ x y, R x y → ∃ a f f', M.dest x = ⟨a, f⟩ ∧ M.dest y = ⟨a, f'⟩ ∧ ∀ i, R (f i) (f' i)) :
∀ x y, R x y → x = y
|
case head.intro.intro.intro.intro.intro
P : PFunctor.{u}
R : P.M → P.M → Prop
this : Inhabited P.A
a a' : P.A
f : P.B a → P.M
f' : P.B a' → P.M
ih : R (M.mk ⟨a, f⟩) (M.mk ⟨a', f'⟩)
a'' : P.A
g g' : P.B a'' → P.M
h₂ : ∀ (i : P.B a''), R (g i) (g' i)
h₀ : (M.mk ⟨a, f⟩).dest.fst = ⟨a'', g⟩.fst
h₁ : (M.mk ⟨a', f'⟩).dest.fst = ⟨a'', g'⟩.fst
⊢ a = a'
|
simp only [dest_mk] at h₀ h₁
|
case head.intro.intro.intro.intro.intro
P : PFunctor.{u}
R : P.M → P.M → Prop
this : Inhabited P.A
a a' : P.A
f : P.B a → P.M
f' : P.B a' → P.M
ih : R (M.mk ⟨a, f⟩) (M.mk ⟨a', f'⟩)
a'' : P.A
g g' : P.B a'' → P.M
h₂ : ∀ (i : P.B a''), R (g i) (g' i)
h₀ : a = a''
h₁ : a' = a''
⊢ a = a'
|
ec0e4121dc7f2f06
|
MvPolynomial.rank_R
|
Mathlib/FieldTheory/Finite/Polynomial.lean
|
theorem rank_R [Fintype σ] : Module.rank K (R σ K) = Fintype.card (σ → K) :=
calc
Module.rank K (R σ K) =
Module.rank K (↥{ s : σ →₀ ℕ | ∀ n : σ, s n ≤ Fintype.card K - 1 } →₀ K) :=
LinearEquiv.rank_eq
(Finsupp.supportedEquivFinsupp { s : σ →₀ ℕ | ∀ n : σ, s n ≤ Fintype.card K - 1 })
_ = #{ s : σ →₀ ℕ | ∀ n : σ, s n ≤ Fintype.card K - 1 }
|
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Fintype σ
f : σ →₀ ℕ
⊢ f ∈ {s | ∀ (n : σ), s n ≤ Fintype.card K - 1} ↔ Finsupp.equivFunOnFinite f ∈ {s | ∀ (n : σ), s n < Fintype.card K}
|
refine forall_congr' fun n => le_tsub_iff_right ?_
|
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Fintype σ
f : σ →₀ ℕ
n : σ
⊢ 1 ≤ Fintype.card K
|
9d3af127cf4d8525
|
AkraBazziRecurrence.one_mem_range_sumCoeffsExp
|
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
|
lemma one_mem_range_sumCoeffsExp : 1 ∈ Set.range (fun (p : ℝ) => ∑ i, a i * (b i) ^ p)
|
case le_one
α : Type u_1
inst✝¹ : Fintype α
T : ℕ → ℝ
g : ℝ → ℝ
a b : α → ℝ
r : α → ℕ → ℕ
inst✝ : Nonempty α
R : AkraBazziRecurrence T g a b r
⊢ ∃ a_1, ∑ i : α, a i * b i ^ a_1 ≤ 1
case ge_one
α : Type u_1
inst✝¹ : Fintype α
T : ℕ → ℝ
g : ℝ → ℝ
a b : α → ℝ
r : α → ℕ → ℕ
inst✝ : Nonempty α
R : AkraBazziRecurrence T g a b r
⊢ ∃ b_1, 1 ≤ ∑ i : α, a i * b i ^ b_1
|
case le_one =>
exact R.tendsto_zero_sumCoeffsExp.eventually_le_const zero_lt_one |>.exists
|
case ge_one
α : Type u_1
inst✝¹ : Fintype α
T : ℕ → ℝ
g : ℝ → ℝ
a b : α → ℝ
r : α → ℕ → ℕ
inst✝ : Nonempty α
R : AkraBazziRecurrence T g a b r
⊢ ∃ b_1, 1 ≤ ∑ i : α, a i * b i ^ b_1
|
682141ea82f75568
|
Lean.Data.AC.Context.evalList_insert
|
Mathlib/.lake/packages/lean4/src/lean/Init/Data/AC.lean
|
theorem Context.evalList_insert
(ctx : Context α)
(h : Commutative ctx.op)
(x : Nat)
(xs : List Nat)
: evalList α ctx (insert x xs) = evalList α ctx (x::xs)
|
case isFalse
α : Sort u_1
ctx : Context α
h : Commutative ctx.op
x y z : Nat
zs : List Nat
ih : evalList α ctx (if x < z then x :: z :: zs else z :: insert x zs) = evalList α ctx (x :: z :: zs)
h✝¹ : ¬x < y
h✝ : ¬x < z
⊢ evalList α ctx (y :: z :: insert x zs) = evalList α ctx (x :: y :: z :: zs)
|
next => simp_all [evalList, EvalInformation.evalOp]; rw [h.1, ctx.assoc.1, h.1 (evalList _ _ _)]
|
no goals
|
37aa11cde795cd0c
|
AlgebraicGeometry.LocallyRingedSpace.toΓSpecCApp_iff
|
Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
|
theorem toΓSpecCApp_iff
(f :
(structureSheaf <| Γ.obj <| op X).val.obj (op <| basicOpen r) ⟶
X.presheaf.obj (op <| X.toΓSpecMapBasicOpen r)) :
toOpen _ (basicOpen r) ≫ f = X.toToΓSpecMapBasicOpen r ↔ f = X.toΓSpecCApp r
|
case mp.hf
X : LocallyRingedSpace
r : ↑(Γ.obj (op X))
f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (X.toΓSpecMapBasicOpen r))
loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))
h :
ConcreteCategory.hom (toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f) =
(IsLocalization.Away.lift r ⋯).comp
(algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))))
⊢ CommRingCat.Hom.hom f = CommRingCat.Hom.hom (X.toΓSpecCApp r)
|
exact IsLocalization.ringHom_ext (Submonoid.powers r) h
|
no goals
|
e699f685bb0ed6c2
|
isLocalHom_of_le_jacobson_bot
|
Mathlib/RingTheory/Henselian.lean
|
theorem isLocalHom_of_le_jacobson_bot {R : Type*} [CommRing R] (I : Ideal R)
(h : I ≤ Ideal.jacobson ⊥) : IsLocalHom (Ideal.Quotient.mk I)
|
R : Type u_1
inst✝ : CommRing R
I : Ideal R
h✝ : I ≤ ⊥.jacobson
a : R
h : ∃ b, (Ideal.Quotient.mk I) a * b = 1
⊢ ∃ b, (Ideal.Quotient.mk ⊥.jacobson) a * b = 1
|
obtain ⟨b, hb⟩ := h
|
case intro
R : Type u_1
inst✝ : CommRing R
I : Ideal R
h : I ≤ ⊥.jacobson
a : R
b : R ⧸ I
hb : (Ideal.Quotient.mk I) a * b = 1
⊢ ∃ b, (Ideal.Quotient.mk ⊥.jacobson) a * b = 1
|
a961c7da2da42bc3
|
Besicovitch.SatelliteConfig.exists_normalized
|
Mathlib/MeasureTheory/Covering/BesicovitchVectorSpace.lean
|
theorem exists_normalized {N : ℕ} {τ : ℝ} (a : SatelliteConfig E N τ) (lastc : a.c (last N) = 0)
(lastr : a.r (last N) = 1) (hτ : 1 ≤ τ) (δ : ℝ) (hδ1 : τ ≤ 1 + δ / 4) (hδ2 : δ ≤ 1) :
∃ c' : Fin N.succ → E, (∀ n, ‖c' n‖ ≤ 2) ∧ Pairwise fun i j => 1 - δ ≤ ‖c' i - c' j‖
|
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
N : ℕ
τ : ℝ
a : SatelliteConfig E N τ
lastc : a.c (last N) = 0
lastr : a.r (last N) = 1
hτ : 1 ≤ τ
δ : ℝ
hδ1 : τ ≤ 1 + δ / 4
hδ2 : δ ≤ 1
c' : Fin N.succ → E := fun i => if ‖a.c i‖ ≤ 2 then a.c i else (2 / ‖a.c i‖) • a.c i
norm_c'_le : ∀ (i : Fin N.succ), ‖c' i‖ ≤ 2
i j : Fin N.succ
inej : i ≠ j
hij : ‖a.c i‖ ≤ ‖a.c j‖
⊢ 1 - δ ≤ ‖c' i - c' j‖
|
rcases le_or_lt ‖a.c j‖ 2 with (Hj | Hj)
|
case inl
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
N : ℕ
τ : ℝ
a : SatelliteConfig E N τ
lastc : a.c (last N) = 0
lastr : a.r (last N) = 1
hτ : 1 ≤ τ
δ : ℝ
hδ1 : τ ≤ 1 + δ / 4
hδ2 : δ ≤ 1
c' : Fin N.succ → E := fun i => if ‖a.c i‖ ≤ 2 then a.c i else (2 / ‖a.c i‖) • a.c i
norm_c'_le : ∀ (i : Fin N.succ), ‖c' i‖ ≤ 2
i j : Fin N.succ
inej : i ≠ j
hij : ‖a.c i‖ ≤ ‖a.c j‖
Hj : ‖a.c j‖ ≤ 2
⊢ 1 - δ ≤ ‖c' i - c' j‖
case inr
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
N : ℕ
τ : ℝ
a : SatelliteConfig E N τ
lastc : a.c (last N) = 0
lastr : a.r (last N) = 1
hτ : 1 ≤ τ
δ : ℝ
hδ1 : τ ≤ 1 + δ / 4
hδ2 : δ ≤ 1
c' : Fin N.succ → E := fun i => if ‖a.c i‖ ≤ 2 then a.c i else (2 / ‖a.c i‖) • a.c i
norm_c'_le : ∀ (i : Fin N.succ), ‖c' i‖ ≤ 2
i j : Fin N.succ
inej : i ≠ j
hij : ‖a.c i‖ ≤ ‖a.c j‖
Hj : 2 < ‖a.c j‖
⊢ 1 - δ ≤ ‖c' i - c' j‖
|
ef3e2825a59b79a7
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.