name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
FiniteDimensional.of_locallyCompact_manifold
Mathlib/Geometry/Manifold/IsManifold/ExtChartAt.lean
theorem FiniteDimensional.of_locallyCompact_manifold [CompleteSpace 𝕜] (I : ModelWithCorners 𝕜 E H) [Nonempty M] [LocallyCompactSpace M] : FiniteDimensional 𝕜 E
E : Type u_8 𝕜 : Type u_9 inst✝⁸ : NontriviallyNormedField 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E H : Type u_10 inst✝⁵ : TopologicalSpace H M : Type u_11 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M inst✝² : CompleteSpace 𝕜 I : ModelWithCorners 𝕜 E H inst✝¹ : Nonempty M inst✝ : LocallyCompactSpace M this : LocallyCompactSpace E ⊢ FiniteDimensional 𝕜 E
exact FiniteDimensional.of_locallyCompactSpace 𝕜
no goals
2ad87ba12d29b468
MeasureTheory.setIntegral_tilted'
Mathlib/MeasureTheory/Measure/Tilted.lean
lemma setIntegral_tilted' (f : α → ℝ) (g : α → E) {s : Set α} (hs : MeasurableSet s) : ∫ x in s, g x ∂(μ.tilted f) = ∫ x in s, (exp (f x) / ∫ x, exp (f x) ∂μ) • (g x) ∂μ
case neg α : Type u_1 mα : MeasurableSpace α μ : Measure α E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : α → ℝ g : α → E s : Set α hs : MeasurableSet s hf : ¬AEMeasurable f μ hf' : ¬Integrable (fun x => rexp (f x)) μ ⊢ 0 = ∫ (x : α) in s, (rexp (f x) / 0) • g x ∂μ
simp
no goals
026f577fdf7186b7
ContinuousLinearMap.prod_ext_iff
Mathlib/Topology/Algebra/Module/LinearMapPiProd.lean
theorem prod_ext_iff {f g : M × M₂ →L[R] M₃} : f = g ↔ f.comp (inl _ _ _) = g.comp (inl _ _ _) ∧ f.comp (inr _ _ _) = g.comp (inr _ _ _)
R : Type u_1 inst✝⁹ : Semiring R M : Type u_2 inst✝⁸ : TopologicalSpace M inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M M₂ : Type u_3 inst✝⁵ : TopologicalSpace M₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_4 inst✝² : TopologicalSpace M₃ inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f g : M × M₂ →L[R] M₃ ⊢ ↑f ∘ₗ LinearMap.inl R M M₂ = ↑g ∘ₗ LinearMap.inl R M M₂ ∧ ↑f ∘ₗ LinearMap.inr R M M₂ = ↑g ∘ₗ LinearMap.inr R M M₂ ↔ ↑(f.comp (inl R M M₂)) = ↑(g.comp (inl R M M₂)) ∧ ↑(f.comp (inr R M M₂)) = ↑(g.comp (inr R M M₂))
rfl
no goals
f0c9b8d2b77fd340
Set.Icc_add_bij
Mathlib/Algebra/Order/Interval/Set/Monoid.lean
theorem Icc_add_bij : BijOn (· + d) (Icc a b) (Icc (a + d) (b + d))
M : Type u_1 inst✝¹ : OrderedCancelAddCommMonoid M inst✝ : ExistsAddOfLE M a b d : M ⊢ BijOn (fun x => x + d) (Icc a b) (Icc (a + d) (b + d))
rw [← Ici_inter_Iic, ← Ici_inter_Iic]
M : Type u_1 inst✝¹ : OrderedCancelAddCommMonoid M inst✝ : ExistsAddOfLE M a b d : M ⊢ BijOn (fun x => x + d) (Ici a ∩ Iic b) (Ici (a + d) ∩ Iic (b + d))
69a7a3dbeaf26ca0
Relation.is_graph_iff
Mathlib/Data/Rel.lean
theorem Relation.is_graph_iff (r : Rel α β) : (∃! f, Function.graph f = r) ↔ ∀ x, ∃! y, r x y
case mp α : Type u_1 β : Type u_2 r : Rel α β ⊢ (∃! f, (fun x y => f x = y) = r) → ∀ (x : α), ∃! y, r x y
rintro ⟨f, rfl, _⟩ x
case mp.intro.intro α : Type u_1 β : Type u_2 f : α → β right✝ : ∀ (y : α → β), (fun f_1 => (fun x y => f_1 x = y) = fun x y => f x = y) y → y = f x : α ⊢ ∃! y, (fun x y => f x = y) x y
b9c04eef61e821ef
Polynomial.roots_pow
Mathlib/Algebra/Polynomial/Roots.lean
theorem roots_pow (p : R[X]) (n : ℕ) : (p ^ n).roots = n • p.roots
case zero R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R[X] ⊢ (p ^ 0).roots = 0 • p.roots
rw [pow_zero, roots_one, zero_smul, empty_eq_zero]
no goals
9515e924941f10c8
Complex.norm_exp_sub_sum_le_norm_mul_exp
Mathlib/Data/Complex/Exponential.lean
lemma norm_exp_sub_sum_le_norm_mul_exp (x : ℂ) (n : ℕ) : ‖exp x - ∑ m ∈ range n, x ^ m / m.factorial‖ ≤ ‖x‖ ^ n * Real.exp ‖x‖
x : ℂ n j : ℕ hj : j ≥ n m : ℕ hm : m < j ∧ n ≤ m ⊢ x ^ m / ↑m.factorial = x ^ n * (x ^ (m - n) / ↑m.factorial)
rw [← mul_div_assoc, ← pow_add, add_tsub_cancel_of_le hm.2]
no goals
0fd8b673128d7210
Pell.Solution₁.x_mul_pos
Mathlib/NumberTheory/Pell.lean
theorem x_mul_pos {a b : Solution₁ d} (ha : 0 < a.x) (hb : 0 < b.x) : 0 < (a * b).x
d : ℤ a b : Solution₁ d ha : 0 < a.x hb : 0 < b.x ⊢ 0 < (a * b).x
simp only [x_mul]
d : ℤ a b : Solution₁ d ha : 0 < a.x hb : 0 < b.x ⊢ 0 < a.x * b.x + d * (a.y * b.y)
5c93ee2e9cc7c71e
HurwitzZeta.hasSum_int_oddKernel
Mathlib/NumberTheory/LSeries/HurwitzZetaOdd.lean
lemma hasSum_int_oddKernel (a : ℝ) {x : ℝ} (hx : 0 < x) : HasSum (fun n : ℤ ↦ (n + a) * rexp (-π * (n + a) ^ 2 * x)) (oddKernel ↑a x)
a x : ℝ hx : 0 < x ⊢ 0 < im ?m.80841
rwa [I_mul_im, ofReal_re]
no goals
6db94613edf0e05c
ContDiffBump.ae_convolution_tendsto_right_of_locallyIntegrable
Mathlib/Analysis/Calculus/BumpFunction/Convolution.lean
theorem ae_convolution_tendsto_right_of_locallyIntegrable {ι} {φ : ι → ContDiffBump (0 : G)} {l : Filter ι} {K : ℝ} (hφ : Tendsto (fun i ↦ (φ i).rOut) l (𝓝 0)) (h'φ : ∀ᶠ i in l, (φ i).rOut ≤ K * (φ i).rIn) (hg : LocallyIntegrable g μ) : ∀ᵐ x₀ ∂μ, Tendsto (fun i ↦ ((φ i).normed μ ⋆[lsmul ℝ ℝ, μ] g) x₀) l (𝓝 (g x₀))
case h G : Type uG E' : Type uE' inst✝¹¹ : NormedAddCommGroup E' g : G → E' inst✝¹⁰ : MeasurableSpace G μ : Measure G inst✝⁹ : NormedSpace ℝ E' inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedSpace ℝ G inst✝⁶ : HasContDiffBump G inst✝⁵ : CompleteSpace E' inst✝⁴ : BorelSpace G inst✝³ : IsLocallyFiniteMeasure μ inst✝² : μ.IsOpenPosMeasure inst✝¹ : FiniteDimensional ℝ G inst✝ : μ.IsAddLeftInvariant ι : Type u_1 φ : ι → ContDiffBump 0 l : Filter ι K : ℝ hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0) h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn hg : LocallyIntegrable g μ this✝ : μ.IsAddHaarMeasure x₀ : G h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ((Besicovitch.vitaliFamily μ).filterAt x₀) (𝓝 0) hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[>] 0) this : Tendsto (((fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ∘ fun r => closedBall x₀ r) ∘ fun i => (φ i).rOut) l (𝓝 0) ⊢ Tendsto (fun i => ∫ (t : G), (φ i).normed μ (x₀ - t) • g t ∂μ) l (𝓝 (g x₀))
apply tendsto_integral_smul_of_tendsto_average_norm_sub (K ^ (Module.finrank ℝ G)) this
case h.f_int G : Type uG E' : Type uE' inst✝¹¹ : NormedAddCommGroup E' g : G → E' inst✝¹⁰ : MeasurableSpace G μ : Measure G inst✝⁹ : NormedSpace ℝ E' inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedSpace ℝ G inst✝⁶ : HasContDiffBump G inst✝⁵ : CompleteSpace E' inst✝⁴ : BorelSpace G inst✝³ : IsLocallyFiniteMeasure μ inst✝² : μ.IsOpenPosMeasure inst✝¹ : FiniteDimensional ℝ G inst✝ : μ.IsAddLeftInvariant ι : Type u_1 φ : ι → ContDiffBump 0 l : Filter ι K : ℝ hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0) h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn hg : LocallyIntegrable g μ this✝ : μ.IsAddHaarMeasure x₀ : G h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ((Besicovitch.vitaliFamily μ).filterAt x₀) (𝓝 0) hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[>] 0) this : Tendsto (((fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ∘ fun r => closedBall x₀ r) ∘ fun i => (φ i).rOut) l (𝓝 0) ⊢ ∀ᶠ (i : ι) in l, IntegrableOn g ((fun r => closedBall x₀ r) ((fun i => (φ i).rOut) i)) μ case h.hg G : Type uG E' : Type uE' inst✝¹¹ : NormedAddCommGroup E' g : G → E' inst✝¹⁰ : MeasurableSpace G μ : Measure G inst✝⁹ : NormedSpace ℝ E' inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedSpace ℝ G inst✝⁶ : HasContDiffBump G inst✝⁵ : CompleteSpace E' inst✝⁴ : BorelSpace G inst✝³ : IsLocallyFiniteMeasure μ inst✝² : μ.IsOpenPosMeasure inst✝¹ : FiniteDimensional ℝ G inst✝ : μ.IsAddLeftInvariant ι : Type u_1 φ : ι → ContDiffBump 0 l : Filter ι K : ℝ hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0) h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn hg : LocallyIntegrable g μ this✝ : μ.IsAddHaarMeasure x₀ : G h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ((Besicovitch.vitaliFamily μ).filterAt x₀) (𝓝 0) hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[>] 0) this : Tendsto (((fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ∘ fun r => closedBall x₀ r) ∘ fun i => (φ i).rOut) l (𝓝 0) ⊢ Tendsto (fun i => ∫ (y : G), (φ i).normed μ (x₀ - y) ∂μ) l (𝓝 1) case h.g_supp G : Type uG E' : Type uE' inst✝¹¹ : NormedAddCommGroup E' g : G → E' inst✝¹⁰ : MeasurableSpace G μ : Measure G inst✝⁹ : NormedSpace ℝ E' inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedSpace ℝ G inst✝⁶ : HasContDiffBump G inst✝⁵ : CompleteSpace E' inst✝⁴ : BorelSpace G inst✝³ : IsLocallyFiniteMeasure μ inst✝² : μ.IsOpenPosMeasure inst✝¹ : FiniteDimensional ℝ G inst✝ : μ.IsAddLeftInvariant ι : Type u_1 φ : ι → ContDiffBump 0 l : Filter ι K : ℝ hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0) h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn hg : LocallyIntegrable g μ this✝ : μ.IsAddHaarMeasure x₀ : G h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ((Besicovitch.vitaliFamily μ).filterAt x₀) (𝓝 0) hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[>] 0) this : Tendsto (((fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ∘ fun r => closedBall x₀ r) ∘ fun i => (φ i).rOut) l (𝓝 0) ⊢ ∀ᶠ (i : ι) in l, (support fun y => (φ i).normed μ (x₀ - y)) ⊆ (fun r => closedBall x₀ r) ((fun i => (φ i).rOut) i) case h.g_bound G : Type uG E' : Type uE' inst✝¹¹ : NormedAddCommGroup E' g : G → E' inst✝¹⁰ : MeasurableSpace G μ : Measure G inst✝⁹ : NormedSpace ℝ E' inst✝⁸ : NormedAddCommGroup G inst✝⁷ : NormedSpace ℝ G inst✝⁶ : HasContDiffBump G inst✝⁵ : CompleteSpace E' inst✝⁴ : BorelSpace G inst✝³ : IsLocallyFiniteMeasure μ inst✝² : μ.IsOpenPosMeasure inst✝¹ : FiniteDimensional ℝ G inst✝ : μ.IsAddLeftInvariant ι : Type u_1 φ : ι → ContDiffBump 0 l : Filter ι K : ℝ hφ : Tendsto (fun i => (φ i).rOut) l (𝓝 0) h'φ : ∀ᶠ (i : ι) in l, (φ i).rOut ≤ K * (φ i).rIn hg : LocallyIntegrable g μ this✝ : μ.IsAddHaarMeasure x₀ : G h₀ : Tendsto (fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ((Besicovitch.vitaliFamily μ).filterAt x₀) (𝓝 0) hφ' : Tendsto (fun i => (φ i).rOut) l (𝓝[>] 0) this : Tendsto (((fun a => ⨍ (y : G) in a, ‖g y - g x₀‖ ∂μ) ∘ fun r => closedBall x₀ r) ∘ fun i => (φ i).rOut) l (𝓝 0) ⊢ ∀ᶠ (i : ι) in l, ∀ (x : G), |(φ i).normed μ (x₀ - x)| ≤ K ^ Module.finrank ℝ G / (μ ((fun r => closedBall x₀ r) ((fun i => (φ i).rOut) i))).toReal
22b99d3576c4b89d
InverseSystem.unique_pEquivOn
Mathlib/Order/DirectedInverseSystem.lean
theorem unique_pEquivOn (hs : IsLowerSet s) {e₁ e₂ : PEquivOn f equivSucc s} : e₁ = e₂
case mk.mk.equiv.h ι : Type u_6 F : ι → Type u_7 X : ι → Type u_8 inst✝² : LinearOrder ι f : ⦃i j : ι⦄ → i ≤ j → F j → F i inst✝¹ : SuccOrder ι equivSucc : ⦃i : ι⦄ → ¬IsMax i → F i⁺ ≃ F i × X i s : Set ι inst✝ : WellFoundedLT ι hs : IsLowerSet s e₁ : (i : ↑s) → F ↑i ≃ piLT X ↑i nat₁ : IsNatEquiv f e₁ compat₁ : ∀ {i : ι} (hsi : i⁺ ∈ s) (hi : ¬IsMax i) (x : F ↑⟨i⁺, hsi⟩), (e₁ ⟨i⁺, hsi⟩) x ⟨i, ⋯⟩ = ((equivSucc hi) x).2 e₂ : (i : ↑s) → F ↑i ≃ piLT X ↑i nat₂ : IsNatEquiv f e₂ compat₂ : ∀ {i : ι} (hsi : i⁺ ∈ s) (hi : ¬IsMax i) (x : F ↑⟨i⁺, hsi⟩), (e₂ ⟨i⁺, hsi⟩) x ⟨i, ⋯⟩ = ((equivSucc hi) x).2 i : ↑s ⊢ e₁ i = e₂ i
refine SuccOrder.prelimitRecOn i.1 (C := fun i ↦ ∀ h : i ∈ s, e₁ ⟨i, h⟩ = e₂ ⟨i, h⟩) (fun i nmax ih hi ↦ ?_) (fun i lim ih hi ↦ ?_) i.2
case mk.mk.equiv.h.refine_1 ι : Type u_6 F : ι → Type u_7 X : ι → Type u_8 inst✝² : LinearOrder ι f : ⦃i j : ι⦄ → i ≤ j → F j → F i inst✝¹ : SuccOrder ι equivSucc : ⦃i : ι⦄ → ¬IsMax i → F i⁺ ≃ F i × X i s : Set ι inst✝ : WellFoundedLT ι hs : IsLowerSet s e₁ : (i : ↑s) → F ↑i ≃ piLT X ↑i nat₁ : IsNatEquiv f e₁ compat₁ : ∀ {i : ι} (hsi : i⁺ ∈ s) (hi : ¬IsMax i) (x : F ↑⟨i⁺, hsi⟩), (e₁ ⟨i⁺, hsi⟩) x ⟨i, ⋯⟩ = ((equivSucc hi) x).2 e₂ : (i : ↑s) → F ↑i ≃ piLT X ↑i nat₂ : IsNatEquiv f e₂ compat₂ : ∀ {i : ι} (hsi : i⁺ ∈ s) (hi : ¬IsMax i) (x : F ↑⟨i⁺, hsi⟩), (e₂ ⟨i⁺, hsi⟩) x ⟨i, ⋯⟩ = ((equivSucc hi) x).2 i✝ : ↑s i : ι nmax : ¬IsMax i ih : (fun i => ∀ (h : i ∈ s), e₁ ⟨i, h⟩ = e₂ ⟨i, h⟩) i hi : i⁺ ∈ s ⊢ e₁ ⟨i⁺, hi⟩ = e₂ ⟨i⁺, hi⟩ case mk.mk.equiv.h.refine_2 ι : Type u_6 F : ι → Type u_7 X : ι → Type u_8 inst✝² : LinearOrder ι f : ⦃i j : ι⦄ → i ≤ j → F j → F i inst✝¹ : SuccOrder ι equivSucc : ⦃i : ι⦄ → ¬IsMax i → F i⁺ ≃ F i × X i s : Set ι inst✝ : WellFoundedLT ι hs : IsLowerSet s e₁ : (i : ↑s) → F ↑i ≃ piLT X ↑i nat₁ : IsNatEquiv f e₁ compat₁ : ∀ {i : ι} (hsi : i⁺ ∈ s) (hi : ¬IsMax i) (x : F ↑⟨i⁺, hsi⟩), (e₁ ⟨i⁺, hsi⟩) x ⟨i, ⋯⟩ = ((equivSucc hi) x).2 e₂ : (i : ↑s) → F ↑i ≃ piLT X ↑i nat₂ : IsNatEquiv f e₂ compat₂ : ∀ {i : ι} (hsi : i⁺ ∈ s) (hi : ¬IsMax i) (x : F ↑⟨i⁺, hsi⟩), (e₂ ⟨i⁺, hsi⟩) x ⟨i, ⋯⟩ = ((equivSucc hi) x).2 i✝ : ↑s i : ι lim : IsSuccPrelimit i ih : ∀ b < i, (fun i => ∀ (h : i ∈ s), e₁ ⟨i, h⟩ = e₂ ⟨i, h⟩) b hi : i ∈ s ⊢ e₁ ⟨i, hi⟩ = e₂ ⟨i, hi⟩
dcc32ff31e12d17b
IsPrimitiveRoot.norm_pow_sub_one_of_prime_pow_ne_two
Mathlib/NumberTheory/Cyclotomic/PrimitiveRoots.lean
theorem norm_pow_sub_one_of_prime_pow_ne_two {k s : ℕ} (hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1))) [hpri : Fact (p : ℕ).Prime] [IsCyclotomicExtension {p ^ (k + 1)} K L] (hirr : Irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) (hs : s ≤ k) (htwo : p ^ (k - s + 1) ≠ 2) : norm K (ζ ^ (p : ℕ) ^ s - 1) = (p : K) ^ (p : ℕ) ^ s
case refine_2.e_a p : ℕ+ K : Type u L : Type v inst✝³ : Field L ζ : L inst✝² : Field K inst✝¹ : Algebra K L k s : ℕ hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1)) hpri : Fact (Nat.Prime ↑p) inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K) hs : s ≤ k htwo : p ^ (k - s + 1) ≠ 2 hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K) η : L := ζ ^ ↑p ^ s - 1 η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯ hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1)) this✝¹ : FiniteDimensional K L this✝ : IsGalois K L H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac this : ↑p ^ ((k - s).succ - 1) * Module.finrank (↥K⟮η⟯) L = ↑p ^ (k.succ - 1) Hex : k.succ - 1 = (k - s).succ - 1 + s ⊢ Module.finrank (↥K⟮η⟯) L = ↑p ^ s
rw [Hex, pow_add] at this
case refine_2.e_a p : ℕ+ K : Type u L : Type v inst✝³ : Field L ζ : L inst✝² : Field K inst✝¹ : Algebra K L k s : ℕ hζ : IsPrimitiveRoot ζ ↑(p ^ (k + 1)) hpri : Fact (Nat.Prime ↑p) inst✝ : IsCyclotomicExtension {p ^ (k + 1)} K L hirr : Irreducible (cyclotomic (↑(p ^ (k + 1))) K) hs : s ≤ k htwo : p ^ (k - s + 1) ≠ 2 hirr₁ : Irreducible (cyclotomic (↑(p ^ (k - s + 1))) K) η : L := ζ ^ ↑p ^ s - 1 η₁ : ↥K⟮η⟯ := IntermediateField.AdjoinSimple.gen K η this✝² : IsCyclotomicExtension {p ^ (k - s + 1)} K ↥K⟮η⟯ hη : IsPrimitiveRoot (η₁ + 1) ↑(p ^ (k - s + 1)) this✝¹ : FiniteDimensional K L this✝ : IsGalois K L H : (Algebra.norm K) η₁ = ↑(↑(p ^ (k - s + 1))).minFac this : ↑p ^ ((k - s).succ - 1) * Module.finrank (↥K⟮η⟯) L = ↑p ^ ((k - s).succ - 1) * ↑p ^ s Hex : k.succ - 1 = (k - s).succ - 1 + s ⊢ Module.finrank (↥K⟮η⟯) L = ↑p ^ s
460ee0dff43c909a
LieAlgebra.engel_isBot_of_isMin
Mathlib/Algebra/Lie/CartanExists.lean
/-- Let `L` be a Lie algebra of dimension `n` over a field `K` with at least `n` elements. Given a Lie subalgebra `U` of `L`, and an element `x ∈ U` such that `U ≤ engel K x`. Suppose that `engel K x` is minimal amongst the Engel subalgebras `engel K y` for `y ∈ U`. Then `engel K x ≤ engel K y` for all `y ∈ U`. Lemma 2 in [barnes1967]. -/ lemma engel_isBot_of_isMin (hLK : finrank K L ≤ #K) (U : LieSubalgebra K L) (E : {engel K x | x ∈ U}) (hUle : U ≤ E) (hmin : IsMin E) : IsBot E
K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L hLK : ↑(finrank K L) ≤ #K U : LieSubalgebra K L x : L hxU : x ∈ U y : L hyU : y ∈ U Ex : ↑{x | ∃ x_1 ∈ U, engel K x_1 = x} := ⟨engel K x, ⋯⟩ Ey : ↑{x | ∃ y ∈ U, engel K y = x} := ⟨engel K y, ⋯⟩ hUle : U ≤ ↑Ex hmin : ∀ E ≤ Ex, Ex ≤ E E : LieSubmodule K (↥U) L := let __src := engel K x; { toSubmodule := __src.toSubmodule, lie_mem := ⋯ } hx₀ : x ≠ 0 Q : Type u_2 := L ⧸ E r : ℕ := finrank K ↥E hr : r < finrank K L x' : ↥U := ⟨x, hxU⟩ y' : ↥U := ⟨y, hyU⟩ u : ↥U := y' - x' χ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K (↥E) x' u ψ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K Q x' u hi : 0 < r α : K ⊢ eval α (χ.coeff 0) = 0
rw [← coe_evalRingHom, ← coeff_map, lieCharpoly_map_eval, ← constantCoeff_apply, LinearMap.charpoly_constantCoeff_eq_zero_iff]
K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : LieRing L inst✝¹ : LieAlgebra K L inst✝ : Module.Finite K L hLK : ↑(finrank K L) ≤ #K U : LieSubalgebra K L x : L hxU : x ∈ U y : L hyU : y ∈ U Ex : ↑{x | ∃ x_1 ∈ U, engel K x_1 = x} := ⟨engel K x, ⋯⟩ Ey : ↑{x | ∃ y ∈ U, engel K y = x} := ⟨engel K y, ⋯⟩ hUle : U ≤ ↑Ex hmin : ∀ E ≤ Ex, Ex ≤ E E : LieSubmodule K (↥U) L := let __src := engel K x; { toSubmodule := __src.toSubmodule, lie_mem := ⋯ } hx₀ : x ≠ 0 Q : Type u_2 := L ⧸ E r : ℕ := finrank K ↥E hr : r < finrank K L x' : ↥U := ⟨x, hxU⟩ y' : ↥U := ⟨y, hyU⟩ u : ↥U := y' - x' χ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K (↥E) x' u ψ : K[X][X] := LieAlgebra.engel_isBot_of_isMin.lieCharpoly K Q x' u hi : 0 < r α : K ⊢ ∃ m, m ≠ 0 ∧ ((toEnd K ↥U ↥E) (α • u + x')) m = 0
53ed38f54130aaf6
List.zipWithAux_toArray_succ'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/ToArray.lean
theorem zipWithAux_toArray_succ' (as : List α) (bs : List β) (f : α → β → γ) (i : Nat) (cs : Array γ) : zipWithAux as.toArray bs.toArray f (i + 1) cs = zipWithAux (as.drop (i+1)).toArray (bs.drop (i+1)).toArray f 0 cs
α : Type u_1 β : Type u_2 γ : Type u_3 as : List α bs : List β f : α → β → γ i : Nat cs : Array γ ⊢ as.toArray.zipWithAux bs.toArray f (i + 1) cs = (drop (i + 1) as).toArray.zipWithAux (drop (i + 1) bs).toArray f 0 cs
induction i generalizing as bs cs with | zero => simp [zipWithAux_toArray_succ] | succ i ih => rw [zipWithAux_toArray_succ, ih] simp
no goals
dbd8cc49bcc400e2
finrank_vectorSpan_insert_le
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
theorem finrank_vectorSpan_insert_le (s : AffineSubspace k P) (p : P) : finrank k (vectorSpan k (insert p (s : Set P))) ≤ finrank k s.direction + 1
case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k ↥s.direction hf' : ¬FiniteDimensional k ↥(vectorSpan k (insert p ↑s)) ⊢ 0 ≤ 1
exact zero_le_one
no goals
de5f4f906d2ae1ab
MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
Mathlib/MeasureTheory/Measure/WithDensity.lean
theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g (μ.withDensity f)) : ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ g : α → ℝ≥0∞ f' : α → ℝ≥0∞ := AEMeasurable.mk f hf hg : AEMeasurable g (μ.withDensity f') this : μ.withDensity f = μ.withDensity f' ⊢ ∫⁻ (a : α), g a ∂μ.withDensity f' = ∫⁻ (a : α), (f * g) a ∂μ
let g' := hg.mk g
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : AEMeasurable f μ g : α → ℝ≥0∞ f' : α → ℝ≥0∞ := AEMeasurable.mk f hf hg : AEMeasurable g (μ.withDensity f') this : μ.withDensity f = μ.withDensity f' g' : α → ℝ≥0∞ := AEMeasurable.mk g hg ⊢ ∫⁻ (a : α), g a ∂μ.withDensity f' = ∫⁻ (a : α), (f * g) a ∂μ
8f99ec46bb14da3b
ModelWithCorners.interior_disjointUnion
Mathlib/Geometry/Manifold/IsManifold/InteriorBoundary.lean
lemma interior_disjointUnion : ModelWithCorners.interior (I := I) (M ⊕ M') = Sum.inl '' (ModelWithCorners.interior (I := I) M) ∪ Sum.inr '' (ModelWithCorners.interior (I := I) M')
case pos 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' hp : p ∈ ModelWithCorners.interior (M ⊕ M') h : p.isLeft = true ⊢ p ∈ Sum.inl '' ModelWithCorners.interior M ∪ Sum.inr '' ModelWithCorners.interior M'
left
case pos.h 𝕜 : Type u_1 inst✝⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³ : TopologicalSpace M inst✝² : ChartedSpace H M M' : Type u_5 inst✝¹ : TopologicalSpace M' inst✝ : ChartedSpace H M' p : M ⊕ M' hp : p ∈ ModelWithCorners.interior (M ⊕ M') h : p.isLeft = true ⊢ p ∈ Sum.inl '' ModelWithCorners.interior M
a37cb5a73686bbc7
IsUltrametricDist.isUltrametricDist_of_forall_norm_natCast_le_one
Mathlib/Analysis/Normed/Field/Ultra.lean
/-- To prove that a normed division ring is nonarchimedean, it suffices to prove that the norm of the image of any natural is less than or equal to one. -/ lemma isUltrametricDist_of_forall_norm_natCast_le_one (h : ∀ n : ℕ, ‖(n : R)‖ ≤ 1) : IsUltrametricDist R
R : Type u_1 inst✝ : NormedDivisionRing R h : ∀ (n : ℕ), ‖↑n‖ ≤ 1 ⊢ IsUltrametricDist R
refine isUltrametricDist_of_forall_pow_norm_le_nsmul_pow_max_one_norm (fun x m ↦ ?_)
R : Type u_1 inst✝ : NormedDivisionRing R h : ∀ (n : ℕ), ‖↑n‖ ≤ 1 x : R m : ℕ ⊢ ‖x + 1‖ ^ m ≤ (m + 1) • (1 ⊔ ‖x‖ ^ m)
065889d95ca2531c
Nat.multichoose_two
Mathlib/Data/Nat/Choose/Basic.lean
theorem multichoose_two (k : ℕ) : multichoose 2 k = k + 1
case succ k : ℕ IH : multichoose 2 k = k + 1 ⊢ multichoose 2 (k + 1) = k + 1 + 1
rw [multichoose, IH]
case succ k : ℕ IH : multichoose 2 k = k + 1 ⊢ multichoose 1 (k + 1) + (k + 1) = k + 1 + 1
07af28893cc1c434
Order.coheight_of_noMaxOrder
Mathlib/Order/KrullDimension.lean
@[simp] lemma coheight_of_noMaxOrder [NoMaxOrder α] (a : α) : coheight a = ⊤
α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α a : α f : ℕ → ↑(Set.Ioi a) hstrictmono : StrictMono f m : ℕ ⊢ { length := m, toFun := fun i => if i = 0 then a else ↑(f ↑i), step := ?step }.head = a ∧ { length := m, toFun := fun i => if i = 0 then a else ↑(f ↑i), step := ?step }.length = m
simp [RelSeries.head]
no goals
f607a58b9d06f9d8
LipschitzWith.hasFDerivAt_of_hasLineDerivAt_of_closure
Mathlib/Analysis/Calculus/Rademacher.lean
theorem hasFDerivAt_of_hasLineDerivAt_of_closure {f : E → F} (hf : LipschitzWith C f) {s : Set E} (hs : sphere 0 1 ⊆ closure s) {L : E →L[ℝ] F} {x : E} (hL : ∀ v ∈ s, HasLineDerivAt ℝ f (L v) x v) : HasFDerivAt f L x
E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E F : Type u_2 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F C : ℝ≥0 inst✝ : FiniteDimensional ℝ E f : E → F hf : LipschitzWith C f s : Set E hs : sphere 0 1 ⊆ closure s L : E →L[ℝ] F x : E hL : ∀ v ∈ s, HasLineDerivAt ℝ f (L v) x v ε : ℝ εpos : 0 < ε δ : ℝ δpos : 0 < δ hδ : (↑C + ‖L‖ + 1) * δ = ε q : Set E hqs : q ⊆ s q_fin : q.Finite hq : sphere 0 1 ⊆ ⋃ y ∈ q, ball y δ I : ∀ᶠ (t : ℝ) in 𝓝 0, ∀ v ∈ q, ‖f (x + t • v) - f x - t • L v‖ ≤ δ * ‖t‖ r : ℝ r_pos : 0 < r hr : ∀ (t : ℝ), ‖t‖ < r → ∀ v ∈ q, ‖f (x + t • v) - f x - t • L v‖ ≤ δ * ‖t‖ v : E hv : v ∈ ball 0 r v_ne : v ≠ 0 w : E ρ : ℝ w_mem : w ∈ sphere 0 1 hvw : v = ρ • w hρ : ρ = ‖v‖ norm_rho : ‖ρ‖ = ρ rho_pos : 0 ≤ ρ y : E yq : y ∈ q hy : ‖w - y‖ < δ ⊢ ‖y - w‖ < δ
rwa [norm_sub_rev]
no goals
b201788e5c940afd
BitVec.bit_not_add_self
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem bit_not_add_self (x : BitVec w) : ((iunfoldr (fun (i : Fin w) c => (c, !(x.getLsbD i)))) ()).snd + x = -1
w : Nat x : BitVec w ⊢ ((iunfoldr (fun i c => (c, !x.getLsbD ↑i)) ()).snd.adc x false).snd = -1
apply iunfoldr_replace_snd (fun _ => false) (-1) false rfl
w : Nat x : BitVec w ⊢ ∀ (i : Fin w), adcb ((iunfoldr (fun i c => (c, !x.getLsbD ↑i)) ()).snd.getLsbD ↑i) (x.getLsbD ↑i) false = (false, (-1).getLsbD ↑i)
1929ded861ebdd30
RootPairing.Equiv.coweightHom_injective
Mathlib/LinearAlgebra/RootSystem/Hom.lean
lemma coweightHom_injective (P : RootPairing ι R M N) : Injective (Equiv.coweightHom P)
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N ⊢ Injective ⇑(coweightHom P)
refine Injective.of_comp (f := fun a => MulOpposite.op a) fun g g' hgg' => ?_
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N P : RootPairing ι R M N g g' : P.Aut hgg' : ((fun a => MulOpposite.op a) ∘ ⇑(coweightHom P)) g = ((fun a => MulOpposite.op a) ∘ ⇑(coweightHom P)) g' ⊢ g = g'
327d6663427025f5
Std.DHashMap.Internal.List.isEmpty_replaceEntry
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem isEmpty_replaceEntry [BEq α] {l : List ((a : α) × β a)} {k : α} {v : β k} : (replaceEntry k v l).isEmpty = l.isEmpty
α : Type u β : α → Type v inst✝ : BEq α l : List ((a : α) × β a) k : α v : β k ⊢ (replaceEntry k v l).isEmpty = l.isEmpty
induction l using assoc_induction
case nil α : Type u β : α → Type v inst✝ : BEq α k : α v : β k ⊢ (replaceEntry k v []).isEmpty = [].isEmpty case cons α : Type u β : α → Type v inst✝ : BEq α k : α v : β k k✝ : α v✝ : β k✝ tail✝ : List ((a : α) × β a) a✝ : (replaceEntry k v tail✝).isEmpty = tail✝.isEmpty ⊢ (replaceEntry k v (⟨k✝, v✝⟩ :: tail✝)).isEmpty = (⟨k✝, v✝⟩ :: tail✝).isEmpty
f9d09d9271745f83
List.append_cancel_right_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/BasicAux.lean
theorem append_cancel_right_eq (as bs cs : List α) : (as ++ bs = cs ++ bs) = (as = cs)
case a.mp α : Type u_1 as bs cs : List α ⊢ as ++ bs = cs ++ bs → as = cs case a.mpr α : Type u_1 as bs cs : List α ⊢ as = cs → as ++ bs = cs ++ bs
next => apply append_cancel_right
case a.mpr α : Type u_1 as bs cs : List α ⊢ as = cs → as ++ bs = cs ++ bs
6be9cff41bf607b4
Real.Angle.neg_pi_div_two_ne_zero
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
theorem neg_pi_div_two_ne_zero : ((-π / 2 : ℝ) : Angle) ≠ 0
⊢ -π / 2 ≠ 0
exact div_ne_zero (neg_ne_zero.2 Real.pi_ne_zero) two_ne_zero
no goals
76d7b0c884677ef3
IsDiscreteValuationRing.iff_pid_with_one_nonzero_prime
Mathlib/RingTheory/DiscreteValuationRing/Basic.lean
theorem iff_pid_with_one_nonzero_prime (R : Type u) [CommRing R] [IsDomain R] : IsDiscreteValuationRing R ↔ IsPrincipalIdealRing R ∧ ∃! P : Ideal R, P ≠ ⊥ ∧ IsPrime P
case mpr.intro.intro.intro.intro R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R RPID : IsPrincipalIdealRing R this : IsLocalRing R P : Ideal R right✝ : ∀ (y : Ideal R), (fun P => P ≠ ⊥ ∧ P.IsPrime) y → y = P hP1 : P ≠ ⊥ hP2 : P.IsPrime hPM : P = ⊥ h : maximalIdeal R = ⊥ ⊢ False
exact hP1 hPM
no goals
f7521cb0caad85a8
Profinite.NobelingProof.projRestricts_eq_id
Mathlib/Topology/Category/Profinite/Nobeling.lean
theorem projRestricts_eq_id : ProjRestricts C (fun i (h : J i) ↦ h) = id
I : Type u C : Set (I → Bool) J : I → Prop inst✝ : (i : I) → Decidable (J i) ⊢ ProjRestricts C ⋯ = id
ext ⟨x, y, hy, rfl⟩ i
case h.mk.intro.intro.a.h I : Type u C : Set (I → Bool) J : I → Prop inst✝ : (i : I) → Decidable (J i) y : I → Bool hy : y ∈ C i : I ⊢ ↑(ProjRestricts C ⋯ ⟨Proj J y, ⋯⟩) i = ↑(id ⟨Proj J y, ⋯⟩) i
ba590648a7f71fc0
Batteries.AssocList.toList_eq_toListTR
Mathlib/.lake/packages/batteries/Batteries/Data/AssocList.lean
theorem toList_eq_toListTR : @toList = @toListTR
case h.h.h α : Type u_2 β : Type u_1 as : AssocList α β ⊢ as.toList = (List.foldl (fun d x => d.push (x.fst, x.snd)) #[] as.toList).toList
exact .symm <| (Array.foldl_toList_eq_map (toList as) _ id).trans (List.map_id _)
no goals
8b1a4ef5b4991f78
CStarAlgebra.span_nonneg_inter_ball
Mathlib/Analysis/CStarAlgebra/SpecialFunctions/PosPart.lean
/-- A C⋆-algebra is spanned by nonnegative elements of norm less than `r`. -/ lemma span_nonneg_inter_ball {r : ℝ} (hr : 0 < r) : span ℂ ({x : A | 0 ≤ x} ∩ Metric.ball 0 r) = ⊤
A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A r : ℝ hr : 0 < r ⊢ span ℂ ({x | 0 ≤ x} ∩ Metric.closedBall 0 (r / 2)) ≤ span ℂ ({x | 0 ≤ x} ∩ Metric.ball 0 r)
gcongr
case h.H A : Type u_1 inst✝² : NonUnitalCStarAlgebra A inst✝¹ : PartialOrder A inst✝ : StarOrderedRing A r : ℝ hr : 0 < r ⊢ Metric.closedBall 0 (r / 2) ⊆ Metric.ball 0 r
eed7d32d179fb6f5
Fin.inv_partialProd_mul_eq_contractNth
Mathlib/Algebra/BigOperators/Fin.lean
theorem inv_partialProd_mul_eq_contractNth {G : Type*} [Group G] (g : Fin (n + 1) → G) (j : Fin (n + 1)) (k : Fin n) : (partialProd g (j.succ.succAbove (Fin.castSucc k)))⁻¹ * partialProd g (j.succAbove k).succ = j.contractNth (· * ·) g k
case inr.inr n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ (partialProd g (j.succ.succAbove k.castSucc))⁻¹ * partialProd g (j.succAbove k).succ = j.contractNth (fun x1 x2 => x1 * x2) g k
rwa [succAbove_of_le_castSucc, succAbove_of_le_castSucc, partialProd_succ, partialProd_succ, castSucc_fin_succ, partialProd_succ, inv_mul_cancel_left, contractNth_apply_of_gt]
case inr.inr.h n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ j ≤ k.castSucc case inr.inr.h n : ℕ G : Type u_3 inst✝ : Group G g : Fin (n + 1) → G j : Fin (n + 1) k : Fin n h : ↑j < ↑k ⊢ j.succ ≤ k.castSucc.castSucc
f84a17ef32860b19
ProbabilityTheory.Kernel.compProd_fst_condKernelReal
Mathlib/Probability/Kernel/Disintegration/StandardBorel.lean
lemma compProd_fst_condKernelReal (κ : Kernel α (γ × ℝ)) [IsFiniteKernel κ] : fst κ ⊗ₖ condKernelReal κ = κ
α : Type u_1 γ : Type u_3 mα : MeasurableSpace α mγ : MeasurableSpace γ inst✝¹ : CountablyGenerated γ κ : Kernel α (γ × ℝ) inst✝ : IsFiniteKernel κ ⊢ κ.fst ⊗ₖ κ.condKernelReal = κ
rw [condKernelReal, compProd_toKernel]
no goals
22f942ab3ebf60df
GenContFract.compExactValue_correctness_of_stream_eq_some
Mathlib/Algebra/ContinuedFractions/Computation/CorrectnessTerminating.lean
theorem compExactValue_correctness_of_stream_eq_some : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ((of v).contsAux n) ((of v).contsAux <| n + 1) ifp_n.fr
case succ.intro.intro.intro.inr K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GenContFract K := of v n : ℕ ifp_succ_n : IntFractPair K succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some ifp_succ_n ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := g.contsAux (n + 2) pconts : Pair K := g.contsAux (n + 1) pconts_eq : pconts = g.contsAux (n + 1) ppconts : Pair K := g.contsAux n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = g.contsAux n ifp_succ_n_fr_ne_zero : ifp_succ_n.fr ≠ 0 ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts ifp_succ_n.fr
obtain ⟨ifp_n', nth_stream_eq', ifp_n_fract_ne_zero, ⟨refl⟩⟩ : ∃ ifp_n, IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n := IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq
case succ.intro.intro.intro.inr.intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K v : K n✝ : ℕ inst✝ : FloorRing K g : GenContFract K := of v n : ℕ ifp_n : IntFractPair K nth_stream_eq : IntFractPair.stream v n = some ifp_n nth_fract_ne_zero : ifp_n.fr ≠ 0 conts : Pair K := g.contsAux (n + 2) pconts : Pair K := g.contsAux (n + 1) pconts_eq : pconts = g.contsAux (n + 1) ppconts : Pair K := g.contsAux n IH : ∀ {ifp_n : IntFractPair K}, IntFractPair.stream v n = some ifp_n → v = compExactValue ppconts pconts ifp_n.fr ppconts_eq : ppconts = g.contsAux n ifp_n' : IntFractPair K nth_stream_eq' : IntFractPair.stream v n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 succ_nth_stream_eq : IntFractPair.stream v (n + 1) = some (IntFractPair.of ifp_n'.fr⁻¹) ifp_succ_n_fr_ne_zero : (IntFractPair.of ifp_n'.fr⁻¹).fr ≠ 0 ⊢ compExactValue ppconts pconts ifp_n.fr = compExactValue pconts conts (IntFractPair.of ifp_n'.fr⁻¹).fr
434c0d1df2cfd41d
AnalyticAt.fderiv
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem AnalyticAt.fderiv [CompleteSpace F] (h : AnalyticAt 𝕜 f x) : AnalyticAt 𝕜 (fderiv 𝕜 f) x
case intro.intro 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 E : Type u inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace 𝕜 E F : Type v inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F f : E → F x : E inst✝ : CompleteSpace F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ hp : HasFPowerSeriesOnBall f p x r ⊢ AnalyticAt 𝕜 (fderiv 𝕜 f) x
exact hp.fderiv.analyticAt
no goals
414431133816d537
HNNExtension.NormalWord.unitsSMul_one_group_smul
Mathlib/GroupTheory/HNNExtension.lean
theorem unitsSMul_one_group_smul (g : A) (w : NormalWord d) : unitsSMul φ 1 ((g : G) • w) = (φ g : G) • (unitsSMul φ 1 w)
case pos.cons G : Type u_1 inst✝ : Group G A B : Subgroup G φ : ↥A ≃* ↥B d : TransversalPair G A B g : ↥A g✝ : G u✝ : ℤˣ w✝ : NormalWord d h1✝ : w✝.head ∈ d.set u✝ h2✝ : ∀ u' ∈ Option.map Prod.fst w✝.toList.head?, w✝.head ∈ toSubgroup A B u✝ → u✝ = u' this : Cancels 1 (↑g • cons g✝ u✝ w✝ h1✝ h2✝) ↔ Cancels 1 (cons g✝ u✝ w✝ h1✝ h2✝) hcan : Cancels 1 (cons g✝ u✝ w✝ h1✝ h2✝) a✝ : cons g✝ u✝ w✝ h1✝ h2✝ = w✝ → consRecOn (motive := fun x => Cancels 1 x → NormalWord d) (↑g • cons g✝ u✝ w✝ h1✝ h2✝) (fun g_1 a => ↑g • cons g✝ u✝ w✝ h1✝ h2✝) (fun g x w x_1 x_2 x_3 can => ↑(φ ⟨g, ⋯⟩) • w) ⋯ = ↑(φ g) • consRecOn (motive := fun x => Cancels 1 x → NormalWord d) (cons g✝ u✝ w✝ h1✝ h2✝) (fun g a => cons g✝ u✝ w✝ h1✝ h2✝) (fun g x w x_1 x_2 x_3 can => ↑(φ ⟨g, ⋯⟩) • w) hcan ⊢ ↑(φ ⟨↑g * g✝, ⋯⟩) • w✝ = ↑(φ (g * ⟨g✝, ⋯⟩)) • w✝
rfl
no goals
17f5302f5114464d
ENNReal.Lp_add_le
Mathlib/Analysis/MeanInequalities.lean
theorem Lp_add_le (hp : 1 ≤ p) : (∑ i ∈ s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i ∈ s, f i ^ p) ^ (1 / p) + (∑ i ∈ s, g i ^ p) ^ (1 / p)
case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ i ∈ s, f i ≠ ⊤) ∧ ∀ i ∈ s, g i ≠ ⊤ this : ↑((∑ i ∈ s, ((fun i => (f i).toNNReal) i + (fun i => (g i).toNNReal) i) ^ p) ^ (1 / p)) ≤ ↑((∑ i ∈ s, (fun i => (f i).toNNReal) i ^ p) ^ (1 / p) + (∑ i ∈ s, (fun i => (g i).toNNReal) i ^ p) ^ (1 / p)) ⊢ (∑ i ∈ s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i ∈ s, f i ^ p) ^ (1 / p) + (∑ i ∈ s, g i ^ p) ^ (1 / p)
push_cast [ENNReal.coe_rpow_of_nonneg, le_of_lt pos, le_of_lt (one_div_pos.2 pos)] at this
case neg ι : Type u s : Finset ι f g : ι → ℝ≥0∞ p : ℝ hp : 1 ≤ p pos : 0 < p H' : (∀ i ∈ s, f i ≠ ⊤) ∧ ∀ i ∈ s, g i ≠ ⊤ this : (∑ x ∈ s, (↑(f x).toNNReal + ↑(g x).toNNReal) ^ p) ^ (1 / p) ≤ (∑ x ∈ s, ↑(f x).toNNReal ^ p) ^ (1 / p) + (∑ x ∈ s, ↑(g x).toNNReal ^ p) ^ (1 / p) ⊢ (∑ i ∈ s, (f i + g i) ^ p) ^ (1 / p) ≤ (∑ i ∈ s, f i ^ p) ^ (1 / p) + (∑ i ∈ s, g i ^ p) ^ (1 / p)
cfe53d149b9d93ea
Set.PartiallyWellOrderedOn.partiallyWellOrderedOn_sublistForall₂
Mathlib/Order/WellFoundedSet.lean
theorem partiallyWellOrderedOn_sublistForall₂ (r : α → α → Prop) [IsRefl α r] [IsTrans α r] {s : Set α} (h : s.PartiallyWellOrderedOn r) : { l : List α | ∀ x, x ∈ l → x ∈ s }.PartiallyWellOrderedOn (List.SublistForall₂ r)
case inr α : Type u_2 r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : s.PartiallyWellOrderedOn r h✝ : Nonempty α ⊢ {l | ∀ x ∈ l, x ∈ s}.PartiallyWellOrderedOn (List.SublistForall₂ r)
inhabit α
case inr α : Type u_2 r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : s.PartiallyWellOrderedOn r h✝ : Nonempty α inhabited_h : Inhabited α ⊢ {l | ∀ x ∈ l, x ∈ s}.PartiallyWellOrderedOn (List.SublistForall₂ r)
642b3f587e356afd
Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem
Mathlib/RingTheory/GradedAlgebra/Radical.lean
theorem Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem {I : Ideal A} (hI : I.IsHomogeneous 𝒜) (I_ne_top : I ≠ ⊤) (homogeneous_mem_or_mem : ∀ {x y : A}, IsHomogeneousElem 𝒜 x → IsHomogeneousElem 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I) : Ideal.IsPrime I := ⟨I_ne_top, by intro x y hxy by_contra! rid obtain ⟨rid₁, rid₂⟩ := rid classical /- The idea of the proof is the following : since `x * y ∈ I` and `I` homogeneous, then `proj i (x * y) ∈ I` for any `i : ι`. Then consider two sets `{i ∈ x.support | xᵢ ∉ I}` and `{j ∈ y.support | yⱼ ∉ J}`; let `max₁, max₂` be the maximum of the two sets, then `proj (max₁ + max₂) (x * y) ∈ I`. Then, `proj max₁ x ∉ I` and `proj max₂ j ∉ I` but `proj i x ∈ I` for all `max₁ < i` and `proj j y ∈ I` for all `max₂ < j`. ` proj (max₁ + max₂) (x * y)` `= ∑ {(i, j) ∈ supports | i + j = max₁ + max₂}, xᵢ * yⱼ` `= proj max₁ x * proj max₂ y` ` + ∑ {(i, j) ∈ supports \ {(max₁, max₂)} | i + j = max₁ + max₂}, xᵢ * yⱼ`. This is a contradiction, because both `proj (max₁ + max₂) (x * y) ∈ I` and the sum on the right hand side is in `I` however `proj max₁ x * proj max₂ y` is not in `I`. -/ set set₁ := {i ∈ (decompose 𝒜 x).support | proj 𝒜 i x ∉ I} with set₁_eq set set₂ := {i ∈ (decompose 𝒜 y).support | proj 𝒜 i y ∉ I} with set₂_eq have nonempty : ∀ x : A, x ∉ I → {i ∈ (decompose 𝒜 x).support | proj 𝒜 i x ∉ I}.Nonempty
ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁴ : CommRing A inst✝³ : LinearOrderedCancelAddCommMonoid ι inst✝² : SetLike σ A inst✝¹ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝ : GradedRing 𝒜 I : Ideal A hI : IsHomogeneous 𝒜 I I_ne_top : I ≠ ⊤ homogeneous_mem_or_mem : ∀ {x y : A}, IsHomogeneousElem 𝒜 x → IsHomogeneousElem 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I x y : A rid₁ : x ∉ I rid₂ : y ∉ I set₁ : Finset ι := filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₁_eq : set₁ = filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₂ : Finset ι := filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) set₂_eq : set₂ = filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) nonempty : ∀ x ∉ I, (filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x))).Nonempty max₁ : ι := set₁.max' ⋯ max₂ : ι := set₂.max' ⋯ mem_max₁ : max₁ ∈ set₁ mem_max₂ : max₂ ∈ set₂ hxy : (proj 𝒜 (max₁ + max₂)) (x * y) ∈ I mem_I : (proj 𝒜 max₁) x * (proj 𝒜 max₂) y ∈ I ⊢ (proj 𝒜 max₁) x ∉ I ∧ (proj 𝒜 max₂) y ∉ I
rw [mem_filter] at mem_max₁ mem_max₂
ι : Type u_1 σ : Type u_2 A : Type u_3 inst✝⁴ : CommRing A inst✝³ : LinearOrderedCancelAddCommMonoid ι inst✝² : SetLike σ A inst✝¹ : AddSubmonoidClass σ A 𝒜 : ι → σ inst✝ : GradedRing 𝒜 I : Ideal A hI : IsHomogeneous 𝒜 I I_ne_top : I ≠ ⊤ homogeneous_mem_or_mem : ∀ {x y : A}, IsHomogeneousElem 𝒜 x → IsHomogeneousElem 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I x y : A rid₁ : x ∉ I rid₂ : y ∉ I set₁ : Finset ι := filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₁_eq : set₁ = filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x)) set₂ : Finset ι := filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) set₂_eq : set₂ = filter (fun i => (proj 𝒜 i) y ∉ I) (DFinsupp.support ((decompose 𝒜) y)) nonempty : ∀ x ∉ I, (filter (fun i => (proj 𝒜 i) x ∉ I) (DFinsupp.support ((decompose 𝒜) x))).Nonempty max₁ : ι := set₁.max' ⋯ max₂ : ι := set₂.max' ⋯ mem_max₁ : max₁ ∈ DFinsupp.support ((decompose 𝒜) x) ∧ (proj 𝒜 max₁) x ∉ I mem_max₂ : max₂ ∈ DFinsupp.support ((decompose 𝒜) y) ∧ (proj 𝒜 max₂) y ∉ I hxy : (proj 𝒜 (max₁ + max₂)) (x * y) ∈ I mem_I : (proj 𝒜 max₁) x * (proj 𝒜 max₂) y ∈ I ⊢ (proj 𝒜 max₁) x ∉ I ∧ (proj 𝒜 max₂) y ∉ I
7b2fd2fea167fa2f
MulAction.mem_subgroup_orbit_iff
Mathlib/GroupTheory/GroupAction/Defs.lean
@[to_additive] lemma mem_subgroup_orbit_iff {H : Subgroup G} {x : α} {a b : orbit G x} : a ∈ MulAction.orbit H b ↔ (a : α) ∈ MulAction.orbit H (b : α)
case refine_2.intro G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α H : Subgroup G x : α a b : ↑(orbit G x) g : ↥H h : ↑g • b = a ⊢ a ∈ orbit (↥H) b
subst h
case refine_2.intro G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α H : Subgroup G x : α b : ↑(orbit G x) g : ↥H ⊢ ↑g • b ∈ orbit (↥H) b
455130db4c4a28b8
LinearMap.liftBaseChange_one_tmul
Mathlib/RingTheory/TensorProduct/Basic.lean
lemma liftBaseChange_one_tmul (l : M →ₗ[R] N) (y) : l.liftBaseChange A (1 ⊗ₜ y) = l y
R : Type u_1 M : Type u_2 N : Type u_3 A : Type u_4 inst✝⁸ : CommSemiring R inst✝⁷ : CommSemiring A inst✝⁶ : Algebra R A inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : Module A N inst✝ : IsScalarTower R A N l : M →ₗ[R] N y : M ⊢ (liftBaseChange A l) (1 ⊗ₜ[R] y) = l y
simp
no goals
ab42b9224ea6fc89
Ordnode.Valid'.node4L
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.node4L {l} {x : α} {m} {y : α} {r o₁ o₂} (hl : Valid' o₁ l x) (hm : Valid' x m y) (hr : Valid' (↑y) r o₂) (Hm : 0 < size m) (H : size l = 0 ∧ size m = 1 ∧ size r ≤ 1 ∨ 0 < size l ∧ ratio * size r ≤ size m ∧ delta * size l ≤ size m + size r ∧ 3 * (size m + size r) ≤ 16 * size l + 9 ∧ size m ≤ delta * size r) : Valid' o₁ (@node4L α l x m y r) o₂
α : Type u_1 inst✝ : Preorder α l : Ordnode α x y : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x hr : Valid' (↑y) r o₂ s : ℕ ml : Ordnode α z : α mr : Ordnode α hm : Valid' (↑x) (Ordnode.node s ml z mr) ↑y Hm : 0 < (Ordnode.node s ml z mr).size l0 : 0 < l.size mr₁ : ratio * r.size ≤ ml.size + mr.size + 1 lr₁ : delta * l.size ≤ ml.size + mr.size + 1 + r.size lr₂ : 3 * (ml.size + mr.size + 1 + r.size) ≤ 16 * l.size + 9 mr₂ : ml.size + mr.size + 1 ≤ delta * r.size r0 : r.size > 0 mm : ¬ml.size + mr.size ≤ 1 mm₁ : ml.size ≤ delta * mr.size mm₂ : mr.size ≤ delta * ml.size ml0 : ml.size > 0 this✝ : delta * (ratio * l.size) ≤ ratio * (ml.size + mr.size + 1) + ratio * r.size this : delta * (ratio * l.size) ≤ ratio * (ml.size + mr.size + 1) + (ml.size + mr.size + 1) ⊢ 2 * l.size ≤ ml.size + mr.size + 1
rw [← Nat.succ_mul] at this
α : Type u_1 inst✝ : Preorder α l : Ordnode α x y : α r : Ordnode α o₁ : WithBot α o₂ : WithTop α hl : Valid' o₁ l ↑x hr : Valid' (↑y) r o₂ s : ℕ ml : Ordnode α z : α mr : Ordnode α hm : Valid' (↑x) (Ordnode.node s ml z mr) ↑y Hm : 0 < (Ordnode.node s ml z mr).size l0 : 0 < l.size mr₁ : ratio * r.size ≤ ml.size + mr.size + 1 lr₁ : delta * l.size ≤ ml.size + mr.size + 1 + r.size lr₂ : 3 * (ml.size + mr.size + 1 + r.size) ≤ 16 * l.size + 9 mr₂ : ml.size + mr.size + 1 ≤ delta * r.size r0 : r.size > 0 mm : ¬ml.size + mr.size ≤ 1 mm₁ : ml.size ≤ delta * mr.size mm₂ : mr.size ≤ delta * ml.size ml0 : ml.size > 0 this✝ : delta * (ratio * l.size) ≤ ratio * (ml.size + mr.size + 1) + ratio * r.size this : delta * (ratio * l.size) ≤ ratio.succ * (ml.size + mr.size + 1) ⊢ 2 * l.size ≤ ml.size + mr.size + 1
4d0cc9fa23e9caa2
Vector.getElem_zero_flatten
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Find.lean
theorem getElem_zero_flatten {L : Vector (Vector α m) n} (h : 0 < n * m) : (flatten L)[0] = (L.findSome? fun l => l[0]?).get (getElem_zero_flatten.proof h)
α : Type u_1 m n : Nat L : Vector (Vector α m) n h : 0 < n * m t : L.flatten[0]? = findSome? (fun l => l[0]?) L ⊢ L.flatten[0] = (findSome? (fun l => l[0]?) L).get ⋯
simp [getElem?_eq_getElem, h] at t
α : Type u_1 m n : Nat L : Vector (Vector α m) n h : 0 < n * m t : some L[0][0] = findSome? (fun l => l[0]?) L ⊢ L.flatten[0] = (findSome? (fun l => l[0]?) L).get ⋯
65e6e193ff3f3283
List.foldl_argAux_eq_none
Mathlib/Data/List/MinMax.lean
theorem foldl_argAux_eq_none : l.foldl (argAux r) o = none ↔ l = [] ∧ o = none := List.reverseRecOn l (by simp) fun tl hd => by simp only [foldl_append, foldl_cons, argAux, foldl_nil, append_eq_nil_iff, and_false, false_and, iff_false] cases foldl (argAux r) o tl · simp · simp only [false_iff, not_and] split_ifs <;> simp
α : Type u_1 r : α → α → Prop inst✝ : DecidableRel r l : List α o : Option α ⊢ foldl (argAux r) o [] = none ↔ [] = [] ∧ o = none
simp
no goals
82e69bedad8e20e2
RelSeries.append_apply_right
Mathlib/Order/RelSeries.lean
lemma append_apply_right (p q : RelSeries r) (connect : r p.last q.head) (i : Fin (q.length + 1)) : p.append q connect (i.natAdd p.length + 1) = q i
case h.e'_2.h.e'_6.h.h α : Type u_1 r : Rel α α p q : RelSeries r connect : r p.last q.head i : Fin (q.length + 1) ⊢ p.length + ↑i + 1 < (p.length + q.length + 1).succ
omega
no goals
81a20ecaf5e7e778
SmoothPartitionOfUnity.exists_isSubordinate
Mathlib/Geometry/Manifold/PartitionOfUnity.lean
theorem exists_isSubordinate {s : Set M} (hs : IsClosed s) (U : ι → Set M) (ho : ∀ i, IsOpen (U i)) (hU : s ⊆ ⋃ i, U i) : ∃ f : SmoothPartitionOfUnity ι I M s, f.IsSubordinate U
case refine_1.intro ι : Type uι E : Type uE inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E H : Type uH inst✝⁶ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type uM inst✝⁵ : TopologicalSpace M inst✝⁴ : ChartedSpace H M inst✝³ : FiniteDimensional ℝ E inst✝² : IsManifold I ∞ M inst✝¹ : T2Space M inst✝ : SigmaCompactSpace M s✝ : Set M hs✝ : IsClosed s✝ U : ι → Set M ho : ∀ (i : ι), IsOpen (U i) hU : s✝ ⊆ ⋃ i, U i this✝ : LocallyCompactSpace H this : LocallyCompactSpace M s t : Set M hs : IsClosed s ht : IsClosed t hd : Disjoint s t f : C^∞⟮I, M; 𝓘(ℝ, ℝ), ℝ⟯ hf : EqOn (⇑f) 0 s ∧ EqOn (⇑f) 1 t ∧ ∀ (x : M), f x ∈ Icc 0 1 ⊢ ∃ f, ContMDiff I 𝓘(ℝ, ℝ) ∞ ⇑f ∧ EqOn (⇑f) 0 s ∧ EqOn (⇑f) 1 t ∧ ∀ (x : M), f x ∈ Icc 0 1
exact ⟨f, f.contMDiff, hf⟩
no goals
bb02907964d5e497
AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback
Mathlib/AlgebraicGeometry/Morphisms/SurjectiveOnStalks.lean
/-- If `Y ⟶ S` is surjective on stalks, then for every `X ⟶ S`, `X ×ₛ Y` is a subset of `X × Y` (cartesian product as topological spaces) with the induced topology. -/ lemma isEmbedding_pullback {X Y S : Scheme.{u}} (f : X ⟶ S) (g : Y ⟶ S) [SurjectiveOnStalks g] : IsEmbedding (fun x ↦ ((pullback.fst f g).base x, (pullback.snd f g).base x))
case h.e'_5.h.h.intro.snd X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : SurjectiveOnStalks g L : ↑↑(pullback f g).toPresheafedSpace → ↑↑X.toPresheafedSpace × ↑↑Y.toPresheafedSpace := fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x) R A B : CommRingCat iX : Spec A ⟶ X iY : Spec B ⟶ Y iS : Spec R ⟶ S a✝² : IsOpenImmersion iX a✝¹ : IsOpenImmersion iY a✝ : IsOpenImmersion iS φ : R ⟶ A e₁ : Spec.map φ ≫ iS = iX ≫ f ψ : R ⟶ B e₂ : Spec.map ψ ≫ iS = iY ≫ g H : (CommRingCat.Hom.hom ψ).SurjectiveOnStalks algInst✝¹ : Algebra ↑R ↑A := (CommRingCat.Hom.hom φ).toAlgebra algInst✝ : Algebra ↑R ↑B := (CommRingCat.Hom.hom ψ).toAlgebra e_1✝ : ↑↑(pullback (Spec.map φ) (Spec.map ψ)).toPresheafedSpace = ↑↑(pullback (Spec.map (CommRingCat.ofHom (algebraMap ↑R ↑A))) (Spec.map (CommRingCat.ofHom (algebraMap ↑R ↑B)))).toPresheafedSpace x : ↑↑(Spec (CommRingCat.of (TensorProduct ↑R ↑A ↑B))).toPresheafedSpace ⊢ (L ((ConcreteCategory.hom (pullback.map (Spec.map φ) (Spec.map ψ) f g iX iY iS e₁ e₂).base) ((ConcreteCategory.hom (pullbackSpecIso ↑R ↑A ↑B).symm.hom.base) x))).2 = (Prod.map (⇑(ConcreteCategory.hom iX.base)) (⇑(ConcreteCategory.hom iY.base)) (PrimeSpectrum.tensorProductTo (↑R) (↑A) (↑B) ((ConcreteCategory.hom (pullbackSpecIso ↑R ↑A ↑B).hom.base) ((ConcreteCategory.hom (pullbackSpecIso ↑R ↑A ↑B).symm.hom.base) x)))).2
simp only [L, ← Scheme.comp_base_apply, pullback.lift_snd, Iso.symm_hom, Iso.inv_hom_id]
case h.e'_5.h.h.intro.snd X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : SurjectiveOnStalks g L : ↑↑(pullback f g).toPresheafedSpace → ↑↑X.toPresheafedSpace × ↑↑Y.toPresheafedSpace := fun x => ((ConcreteCategory.hom (pullback.fst f g).base) x, (ConcreteCategory.hom (pullback.snd f g).base) x) R A B : CommRingCat iX : Spec A ⟶ X iY : Spec B ⟶ Y iS : Spec R ⟶ S a✝² : IsOpenImmersion iX a✝¹ : IsOpenImmersion iY a✝ : IsOpenImmersion iS φ : R ⟶ A e₁ : Spec.map φ ≫ iS = iX ≫ f ψ : R ⟶ B e₂ : Spec.map ψ ≫ iS = iY ≫ g H : (CommRingCat.Hom.hom ψ).SurjectiveOnStalks algInst✝¹ : Algebra ↑R ↑A := (CommRingCat.Hom.hom φ).toAlgebra algInst✝ : Algebra ↑R ↑B := (CommRingCat.Hom.hom ψ).toAlgebra e_1✝ : ↑↑(pullback (Spec.map φ) (Spec.map ψ)).toPresheafedSpace = ↑↑(pullback (Spec.map (CommRingCat.ofHom (algebraMap ↑R ↑A))) (Spec.map (CommRingCat.ofHom (algebraMap ↑R ↑B)))).toPresheafedSpace x : ↑↑(Spec (CommRingCat.of (TensorProduct ↑R ↑A ↑B))).toPresheafedSpace ⊢ (ConcreteCategory.hom (pullback.snd (Spec.map φ) (Spec.map ψ) ≫ iY).base) ((ConcreteCategory.hom (pullbackSpecIso ↑R ↑A ↑B).inv.base) x) = (Prod.map (⇑(ConcreteCategory.hom iX.base)) (⇑(ConcreteCategory.hom iY.base)) (PrimeSpectrum.tensorProductTo (↑R) (↑A) (↑B) ((ConcreteCategory.hom (𝟙 (Spec (CommRingCat.of (TensorProduct ↑R ↑A ↑B)))).base) x))).2
9509c1734d72b9a6
exists_dist_le_le
Mathlib/Analysis/NormedSpace/Pointwise.lean
theorem exists_dist_le_le (hδ : 0 ≤ δ) (hε : 0 ≤ ε) (h : dist x z ≤ ε + δ) : ∃ y, dist x y ≤ δ ∧ dist y z ≤ ε
E : Type u_2 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E x z : E δ : ℝ hδ : 0 ≤ δ hε : 0 ≤ 0 h : dist x z ≤ 0 + δ ⊢ dist x z ≤ δ
rwa [zero_add] at h
no goals
59238fa715097bae
TopologicalSpace.IsOpenCover.quasiSober_iff_forall
Mathlib/Topology/Sober.lean
lemma TopologicalSpace.IsOpenCover.quasiSober_iff_forall {ι : Type*} {U : ι → Opens α} (hU : TopologicalSpace.IsOpenCover U) : QuasiSober α ↔ ∀ i, QuasiSober (U i)
case h.a α : Type u_1 inst✝ : TopologicalSpace α ι : Type u_3 U : ι → Opens α hU : IsOpenCover U hU' : ∀ (i : ι), QuasiSober ↥(U i) t : Set α h : IsPreirreducible t x : α hx : x ∈ t h' : IsClosed t i : ι hi : x ∈ U i H : IsIrreducible (Subtype.val ⁻¹' t) ⊢ t ≤ closure (Subtype.val '' closure (Subtype.val ⁻¹' t))
refine (subset_closure_inter_of_isPreirreducible_of_isOpen h (U i).isOpen ⟨x, ⟨hx, hi⟩⟩).trans (closure_mono ?_)
case h.a α : Type u_1 inst✝ : TopologicalSpace α ι : Type u_3 U : ι → Opens α hU : IsOpenCover U hU' : ∀ (i : ι), QuasiSober ↥(U i) t : Set α h : IsPreirreducible t x : α hx : x ∈ t h' : IsClosed t i : ι hi : x ∈ U i H : IsIrreducible (Subtype.val ⁻¹' t) ⊢ t ∩ ↑(U i) ⊆ Subtype.val '' closure (Subtype.val ⁻¹' t)
d49af6a604b6ce82
AlgebraicTopology.AlternatingFaceMapComplex.d_squared
Mathlib/AlgebraicTopology/AlternatingFaceMapComplex.lean
theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0
case hi C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ P : Type := Fin (n + 2) × Fin (n + 3) S : Finset P := Finset.filter (fun ij => ↑ij.2 ≤ ↑ij.1) Finset.univ φ : (ij : P) → ij ∈ S → P := fun ij hij => (ij.2.castLT ⋯, ij.1.succ) ij : P hij : ij ∈ S ⊢ φ ij hij ∈ Sᶜ
simp only [S, φ, Finset.mem_univ, Finset.compl_filter, Finset.mem_filter, true_and, Fin.val_succ, Fin.coe_castLT] at hij ⊢
case hi C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ P : Type := Fin (n + 2) × Fin (n + 3) S : Finset P := Finset.filter (fun ij => ↑ij.2 ≤ ↑ij.1) Finset.univ φ : (ij : P) → ij ∈ S → P := fun ij hij => (ij.2.castLT ⋯, ij.1.succ) ij : P hij : ↑ij.2 ≤ ↑ij.1 ⊢ ¬↑ij.1 + 1 ≤ ↑ij.2
795ab48b2006c7af
ZMod.inv_coe_unit
Mathlib/Data/ZMod/Basic.lean
theorem inv_coe_unit {n : ℕ} (u : (ZMod n)ˣ) : (u : ZMod n)⁻¹ = (u⁻¹ : (ZMod n)ˣ)
n : ℕ u : (ZMod n)ˣ this : ↑((↑u).val.gcd n) = ↑1 ⊢ (↑u)⁻¹ = ↑u⁻¹
rw [← mul_inv_eq_gcd, Nat.cast_one] at this
n : ℕ u : (ZMod n)ˣ this : ↑u * (↑u)⁻¹ = 1 ⊢ (↑u)⁻¹ = ↑u⁻¹
18898df54cabae2d
List.dropInfix?_go_eq_some_iff
Mathlib/.lake/packages/batteries/Batteries/Data/List/Lemmas.lean
theorem dropInfix?_go_eq_some_iff [BEq α] {i l acc p s : List α} : dropInfix?.go i l acc = some (p, s) ↔ ∃ p', p = acc.reverse ++ p' ∧ -- `i` is an infix up to `==` (∃ i', l = p' ++ i' ++ s ∧ i' == i) ∧ -- and there is no shorter prefix for which that is the case (∀ p'' i'' s'', l = p'' ++ i'' ++ s'' → i'' == i → p''.length ≥ p'.length)
case h_2.h_1.mp.intro.intro.intro.intro.intro.inl.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) p' i' : List α h₂✝ : (i' == i) = true h : (a :: (p' ++ i' ++ s)).dropPrefix? i = none w : ∀ (p'' i'' s'' : List α), p' ++ i' ++ s = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ p'.length i'' s'' : List α h₂ : (i'' == i) = true h₁ : i'' ++ s'' = a :: (p' ++ (i' ++ s)) ⊢ p'.length + 1 ≤ [].length
rw [append_assoc, ← h₁] at h
case h_2.h_1.mp.intro.intro.intro.intro.intro.inl.intro α : Type u_1 inst✝ : BEq α i acc s x✝² x✝¹ : List α a : α x✝ : Option (List α) p' i' : List α h₂✝ : (i' == i) = true w : ∀ (p'' i'' s'' : List α), p' ++ i' ++ s = p'' ++ i'' ++ s'' → (i'' == i) = true → p''.length ≥ p'.length i'' s'' : List α h : (i'' ++ s'').dropPrefix? i = none h₂ : (i'' == i) = true h₁ : i'' ++ s'' = a :: (p' ++ (i' ++ s)) ⊢ p'.length + 1 ≤ [].length
2a30116d5cc9db54
Submodule.mapQ_pow
Mathlib/LinearAlgebra/Quotient/Basic.lean
theorem mapQ_pow {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ) (h' : p ≤ p.comap (f ^ k) := p.le_comap_pow_of_le_comap h k) : p.mapQ p (f ^ k) h' = p.mapQ p f h ^ k
case zero R : Type u_1 M : Type u_2 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p : Submodule R M f : M →ₗ[R] M h : p ≤ comap f p h' : optParam (p ≤ comap (f ^ 0) p) ⋯ ⊢ p.mapQ p (f ^ 0) h' = p.mapQ p f h ^ 0
simp [LinearMap.one_eq_id]
no goals
f678a150cf10dce9
CoalgebraCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right
Mathlib/Algebra/Category/CoalgebraCat/ComonEquivalence.lean
theorem comul_tensorObj_tensorObj_right : Coalgebra.comul (R := R) (A := (CoalgebraCat.of R M ⊗ (CoalgebraCat.of R N ⊗ CoalgebraCat.of R P) : CoalgebraCat R)) = Coalgebra.comul (A := M ⊗[R] N ⊗[R] P)
R : Type u inst✝⁹ : CommRing R M N P : Type u inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : AddCommGroup P inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Coalgebra R M inst✝¹ : Coalgebra R N inst✝ : Coalgebra R P ⊢ ModuleCat.Hom.hom ((comonEquivalence R).symm.inverse.obj (of R M) ⊗ (comonEquivalence R).symm.inverse.obj (of R N ⊗ of R P)).comul = CoalgebraStruct.comul
dsimp only [Equivalence.symm_inverse, comonEquivalence_functor, toComon_obj, instCoalgebraStruct_comul]
R : Type u inst✝⁹ : CommRing R M N P : Type u inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup N inst✝⁶ : AddCommGroup P inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Coalgebra R M inst✝¹ : Coalgebra R N inst✝ : Coalgebra R P ⊢ ModuleCat.Hom.hom ((of R M).toComonObj ⊗ (of R N ⊗ of R P).toComonObj).comul = ↑(tensorTensorTensorComm R M M (N ⊗[R] P) (N ⊗[R] P)) ∘ₗ map CoalgebraStruct.comul (↑(tensorTensorTensorComm R N N P P) ∘ₗ map CoalgebraStruct.comul CoalgebraStruct.comul)
f4373b2177e1dea4
MeasureTheory.exists_upperSemicontinuous_le_integral_le
Mathlib/MeasureTheory/Integral/VitaliCaratheodory.lean
theorem exists_upperSemicontinuous_le_integral_le (f : α → ℝ≥0) (fint : Integrable (fun x => (f x : ℝ)) μ) {ε : ℝ} (εpos : 0 < ε) : ∃ g : α → ℝ≥0, (∀ x, g x ≤ f x) ∧ UpperSemicontinuous g ∧ Integrable (fun x => (g x : ℝ)) μ ∧ (∫ x, (f x : ℝ) ∂μ) - ε ≤ ∫ x, ↑(g x) ∂μ
case intro.intro.intro.intro.refine_2.hfm α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : MeasurableSpace α inst✝¹ : BorelSpace α μ : Measure α inst✝ : μ.WeaklyRegular f : α → ℝ≥0 fint : Integrable (fun x => ↑(f x)) μ ε : ℝ≥0 εpos : 0 < ↑ε If : ∫⁻ (x : α), ↑(f x) ∂μ < ⊤ g : α → ℝ≥0 gf : ∀ (x : α), g x ≤ f x gcont : UpperSemicontinuous g gint : ∫⁻ (x : α), ↑(f x) ∂μ ≤ ∫⁻ (x : α), ↑(g x) ∂μ + ↑ε Ig : ∫⁻ (x : α), ↑(g x) ∂μ < ⊤ ⊢ AEStronglyMeasurable (fun x => ↑(f x)) μ
exact fint.aestronglyMeasurable
no goals
e7f3a2333862318c
ProbabilityTheory.Kernel.measure_eq_zero_or_one_or_top_of_indepSet_self
Mathlib/Probability/Independence/ZeroOne.lean
theorem Kernel.measure_eq_zero_or_one_or_top_of_indepSet_self {t : Set Ω} (h_indep : Kernel.IndepSet t t κ μα) : ∀ᵐ a ∂μα, κ a t = 0 ∨ κ a t = 1 ∨ κ a t = ∞
case neg α : Type u_1 Ω : Type u_2 _mα : MeasurableSpace α m0 : MeasurableSpace Ω κ : Kernel α Ω μα : Measure α t : Set Ω h_indep : ∀ᵐ (a : α) ∂μα, (κ a) (t ∩ t) = (κ a) t * (κ a) t a : α ha : 1 = (κ a) t h0 : ¬(κ a) t = 0 h_top : ¬(κ a) t = ⊤ ⊢ (κ a) t = 0 ∨ (κ a) t = 1 ∨ (κ a) t = ⊤
exact Or.inr (Or.inl ha.symm)
no goals
8b17ec0015226de1
QPF.Cofix.bisim_aux
Mathlib/Data/QPF/Univariate/Basic.lean
theorem Cofix.bisim_aux (r : Cofix F → Cofix F → Prop) (h' : ∀ x, r x x) (h : ∀ x y, r x y → Quot.mk r <$> Cofix.dest x = Quot.mk r <$> Cofix.dest y) : ∀ x y, r x y → x = y
F : Type u → Type u q : QPF F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> x.dest = Quot.mk r <$> y.dest x✝ : Cofix F x : (P F).M y✝ : Cofix F y : (P F).M rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : (P F).M → (P F).M → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : (P F).M r'ab : r' a b ⊢ abs ((P F).map (Quot.mk r') a.dest) = abs ((P F).map (Quot.mk r') b.dest)
have h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) := h _ _ r'ab
F : Type u → Type u q : QPF F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> x.dest = Quot.mk r <$> y.dest x✝ : Cofix F x : (P F).M y✝ : Cofix F y : (P F).M rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : (P F).M → (P F).M → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : (P F).M r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs a.dest = Quot.mk r <$> Quot.mk Mcongr <$> abs b.dest ⊢ abs ((P F).map (Quot.mk r') a.dest) = abs ((P F).map (Quot.mk r') b.dest)
ee671efbc83b977d
Finset.weightedVSubOfPoint_eq_of_weights_eq
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
theorem weightedVSubOfPoint_eq_of_weights_eq (p : ι → P) (j : ι) (w₁ w₂ : ι → k) (hw : ∀ i, i ≠ j → w₁ i = w₂ i) : s.weightedVSubOfPoint p (p j) w₁ = s.weightedVSubOfPoint p (p j) w₂
case e_f.h k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P ι : Type u_4 s : Finset ι p : ι → P j : ι w₁ w₂ : ι → k hw : ∀ (i : ι), i ≠ j → w₁ i = w₂ i i : ι ⊢ w₁ i • (p i -ᵥ p j) = w₂ i • (p i -ᵥ p j)
rcases eq_or_ne i j with h | h
case e_f.h.inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P ι : Type u_4 s : Finset ι p : ι → P j : ι w₁ w₂ : ι → k hw : ∀ (i : ι), i ≠ j → w₁ i = w₂ i i : ι h : i = j ⊢ w₁ i • (p i -ᵥ p j) = w₂ i • (p i -ᵥ p j) case e_f.h.inr k : Type u_1 V : Type u_2 P : Type u_3 inst✝² : Ring k inst✝¹ : AddCommGroup V inst✝ : Module k V S : AffineSpace V P ι : Type u_4 s : Finset ι p : ι → P j : ι w₁ w₂ : ι → k hw : ∀ (i : ι), i ≠ j → w₁ i = w₂ i i : ι h : i ≠ j ⊢ w₁ i • (p i -ᵥ p j) = w₂ i • (p i -ᵥ p j)
8a064655adca0142
Real.hasDerivAt_fourierChar
Mathlib/Analysis/Fourier/FourierTransformDeriv.lean
lemma hasDerivAt_fourierChar (x : ℝ) : HasDerivAt (𝐞 · : ℝ → ℂ) (2 * π * I * 𝐞 x) x
x y : ℝ ⊢ cexp (↑(2 * π * y) * I) = cexp (2 * ↑π * I * ↑1 * ↑y / ↑1)
push_cast
x y : ℝ ⊢ cexp (2 * ↑π * ↑y * I) = cexp (2 * ↑π * I * 1 * ↑y / 1)
09c33dc599e467bd
Turing.TM1to0.tr_supports
Mathlib/Computability/PostTuringMachine.lean
theorem tr_supports {S : Finset Λ} (ss : TM1.Supports M S) : TM0.Supports (tr M) ↑(trStmts M S)
case right.mk.some.mk.some Γ : Type u_1 Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → TM1.Stmt Γ Λ σ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : TM0.Stmt Γ v : σ q : TM1.Stmt Γ Λ σ v' : σ h₂ : some q ∈ TM1.stmts M S val✝ : TM1.Stmt Γ Λ σ h₁ : ((some val✝, v'), s) ∈ tr M (some q, v) a ⊢ some val✝ ∈ TM1.stmts M S
simp only [tr, Option.mem_def] at h₁
case right.mk.some.mk.some Γ : Type u_1 Λ : Type u_2 inst✝² : Inhabited Λ σ : Type u_3 inst✝¹ : Inhabited σ M : Λ → TM1.Stmt Γ Λ σ inst✝ : Fintype σ S : Finset Λ ss : TM1.Supports M S a : Γ s : TM0.Stmt Γ v : σ q : TM1.Stmt Γ Λ σ v' : σ h₂ : some q ∈ TM1.stmts M S val✝ : TM1.Stmt Γ Λ σ h₁ : some (trAux M a q v) = some ((some val✝, v'), s) ⊢ some val✝ ∈ TM1.stmts M S
c5e09604fd205550
Equiv.Perm.cycle_induction_on
Mathlib/GroupTheory/Perm/Cycle/Factors.lean
theorem cycle_induction_on [Finite β] (P : Perm β → Prop) (σ : Perm β) (base_one : P 1) (base_cycles : ∀ σ : Perm β, σ.IsCycle → P σ) (induction_disjoint : ∀ σ τ : Perm β, Disjoint σ τ → IsCycle σ → P σ → P τ → P (σ * τ)) : P σ
β : Type u_3 inst✝ : Finite β P : Perm β → Prop σ : Perm β base_one : P 1 base_cycles : ∀ (σ : Perm β), σ.IsCycle → P σ induction_disjoint : ∀ (σ τ : Perm β), σ.Disjoint τ → σ.IsCycle → P σ → P τ → P (σ * τ) ⊢ P σ
cases nonempty_fintype β
case intro β : Type u_3 inst✝ : Finite β P : Perm β → Prop σ : Perm β base_one : P 1 base_cycles : ∀ (σ : Perm β), σ.IsCycle → P σ induction_disjoint : ∀ (σ τ : Perm β), σ.Disjoint τ → σ.IsCycle → P σ → P τ → P (σ * τ) val✝ : Fintype β ⊢ P σ
a7d4f63bf9ff66c2
Matroid.mapEmbedding_isBasis_iff
Mathlib/Data/Matroid/Map.lean
@[simp] lemma mapEmbedding_isBasis_iff {f : α ↪ β} {I X : Set β} : (M.mapEmbedding f).IsBasis I X ↔ M.IsBasis (f ⁻¹' I) (f ⁻¹' X) ∧ I ⊆ X ∧ X ⊆ range f
case refine_2.intro α : Type u_1 β : Type u_2 M : Matroid α f : α ↪ β I : Set β X : Set α x✝ : M.IsBasis (⇑f ⁻¹' I) (⇑f ⁻¹' (⇑f '' X)) ∧ I ⊆ ⇑f '' X ∧ ⇑f '' X ⊆ range ⇑f hb : M.IsBasis (⇑f ⁻¹' I) (⇑f ⁻¹' (⇑f '' X)) hIX : I ⊆ ⇑f '' X hX : ⇑f '' X ⊆ range ⇑f ⊢ ∃ I₀ X₀, M.IsBasis I₀ X₀ ∧ I = ⇑f '' I₀ ∧ ⇑f '' X = ⇑f '' X₀
obtain ⟨I, -, rfl⟩ := subset_image_iff.1 hIX
case refine_2.intro.intro.intro α : Type u_1 β : Type u_2 M : Matroid α f : α ↪ β X : Set α hX : ⇑f '' X ⊆ range ⇑f I : Set α x✝ : M.IsBasis (⇑f ⁻¹' (⇑f '' I)) (⇑f ⁻¹' (⇑f '' X)) ∧ ⇑f '' I ⊆ ⇑f '' X ∧ ⇑f '' X ⊆ range ⇑f hb : M.IsBasis (⇑f ⁻¹' (⇑f '' I)) (⇑f ⁻¹' (⇑f '' X)) hIX : ⇑f '' I ⊆ ⇑f '' X ⊢ ∃ I₀ X₀, M.IsBasis I₀ X₀ ∧ ⇑f '' I = ⇑f '' I₀ ∧ ⇑f '' X = ⇑f '' X₀
aceb5823b23814d0
GromovHausdorff.totallyBounded
Mathlib/Topology/MetricSpace/GromovHausdorff.lean
theorem totallyBounded {t : Set GHSpace} {C : ℝ} {u : ℕ → ℝ} {K : ℕ → ℕ} (ulim : Tendsto u atTop (𝓝 0)) (hdiam : ∀ p ∈ t, diam (univ : Set (GHSpace.Rep p)) ≤ C) (hcov : ∀ p ∈ t, ∀ n : ℕ, ∃ s : Set (GHSpace.Rep p), (#s) ≤ K n ∧ univ ⊆ ⋃ x ∈ s, ball x (u n)) : TotallyBounded t
t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ p ∈ t, diam univ ≤ C hcov : ∀ p ∈ t, ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ x ∈ s, ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ n_1 ≥ n, dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set p.Rep N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ p ∈ t, univ ⊆ ⋃ x ∈ s p, ball x (u n) M : ℕ := ⌊ε⁻¹ * (C ⊔ 0)⌋₊ F : GHSpace → (k : Fin (K n).succ) × (Fin ↑k → Fin ↑k → Fin M.succ) := fun p => ⟨⟨N p, ⋯⟩, fun a b => ⟨M ⊓ ⌊ε⁻¹ * dist ((E p).symm a) ((E p).symm b)⌋₊, ⋯⟩⟩ p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) ⟨p, pt⟩ = (fun p => F ↑p) ⟨q, qt⟩ Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => (E q).symm (Fin.cast Npq ((E p) x)) Φ : ↑(s p) → q.Rep := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑((E p) x) hip : i < N p hiq : i < N q i' : i = ↑((E q) (Ψ x)) j : ℕ := ↑((E p) y) hjp : j < N p hjq : j < N q j' : j = ↑((E q) (Ψ y)) Ap : ↑((F p).snd ⟨i, hip⟩ ⟨j, hjp⟩) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ ↑((F q).snd ((E q) (Ψ x)) ((E q) (Ψ y))) = M ⊓ ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊
simp only [F, (E q).symm_apply_apply]
no goals
c10025d34debaff9
DividedPowers.coincide_on_smul
Mathlib/RingTheory/DividedPowers/Basic.lean
theorem coincide_on_smul {J : Ideal A} (hJ : DividedPowers J) {n : ℕ} (ha : a ∈ I • J) : hI.dpow n a = hJ.dpow n a
case add A : Type u_1 inst✝ : CommSemiring A I : Ideal A a : A hI : DividedPowers I J : Ideal A hJ : DividedPowers J x : A hx : x ∈ I • J y : A hy : y ∈ I • J hx' : ∀ {n : ℕ}, hI.dpow n x = hJ.dpow n x hy' : ∀ {n : ℕ}, hI.dpow n y = hJ.dpow n y n : ℕ k : ℕ × ℕ a✝ : k ∈ antidiagonal n ⊢ hI.dpow k.1 x * hI.dpow k.2 y = hJ.dpow k.1 x * hJ.dpow k.2 y
rw [hx', hy']
no goals
404c3d86efc5a9c7
Real.geom_mean_weighted_of_constant
Mathlib/Analysis/MeanInequalities.lean
theorem geom_mean_weighted_of_constant (w z : ι → ℝ) (x : ℝ) (hw : ∀ i ∈ s, 0 ≤ w i) (hw' : ∑ i ∈ s, w i = 1) (hz : ∀ i ∈ s, 0 ≤ z i) (hx : ∀ i ∈ s, w i ≠ 0 → z i = x) : ∏ i ∈ s, z i ^ w i = x := calc ∏ i ∈ s, z i ^ w i = ∏ i ∈ s, x ^ w i
case intro.intro ι : Type u s : Finset ι w z : ι → ℝ x : ℝ hw : ∀ i ∈ s, 0 ≤ w i hw' : ∑ i ∈ s, w i = 1 hz : ∀ i ∈ s, 0 ≤ z i hx : ∀ i ∈ s, w i ≠ 0 → z i = x this : ∑ i ∈ s, w i ≠ 0 i : ι his : i ∈ s hi : w i ≠ 0 ⊢ 0 ≤ z i
exact hz i his
no goals
332f81523d8d5681
AlgebraicClosure.spanCoeffs_ne_top
Mathlib/FieldTheory/IsAlgClosed/AlgebraicClosure.lean
theorem spanCoeffs_ne_top : spanCoeffs k ≠ ⊤
case intro.intro k : Type u inst✝ : Field k v : Monics k × ℕ →₀ MvPolynomial (Vars k) k left✝ : v ∈ Finsupp.supported (MvPolynomial (Vars k) k) (MvPolynomial (Vars k) k) Set.univ hv : ∑ x ∈ v.support, (toSplittingField (Finset.image Prod.fst v.support)) (v x • (subProdXSubC x.1).coeff x.2) = 1 j : Monics k × ℕ hj : j ∈ v.support ⊢ (toSplittingField (Finset.image Prod.fst v.support)) (v j • (subProdXSubC j.1).coeff j.2) = 0
rw [smul_eq_mul, map_mul, toSplittingField_coeff (Finset.mem_image_of_mem _ hj), mul_zero]
no goals
7ddf9f30cf89e546
Polynomial.monic_restriction
Mathlib/RingTheory/Polynomial/Basic.lean
theorem monic_restriction {p : R[X]} : Monic (restriction p) ↔ Monic p
R : Type u inst✝ : Ring R p : R[X] ⊢ p.restriction.coeff p.natDegree = 1 ↔ ↑(p.restriction.coeff p.natDegree) = 1
exact ⟨fun H => by rw [H, OneMemClass.coe_one], fun H => Subtype.coe_injective H⟩
no goals
7b55e8e0a768e58b
MeasureTheory.volume_sum_rpow_lt_one
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
theorem MeasureTheory.volume_sum_rpow_lt_one (hp : 1 ≤ p) : volume {x : ι → ℝ | ∑ i, |x i| ^ p < 1} = .ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (card ι / p + 1))
ι : Type u_1 inst✝ : Fintype ι p : ℝ hp : 1 ≤ p h₁ : 0 < p h₂ : ∀ (x : ι → ℝ), 0 ≤ ∑ i : ι, |x i| ^ p eq_norm : ∀ (x : ι → ℝ), ‖x‖ = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) this : Fact (1 ≤ ENNReal.ofReal p) nm_zero : ‖0‖ = 0 eq_zero : ∀ (x : ι → ℝ), ‖x‖ = 0 ↔ x = 0 nm_neg : ∀ (x : ι → ℝ), ‖-x‖ = ‖x‖ nm_add : ∀ (x y : ι → ℝ), ‖x + y‖ ≤ ‖x‖ + ‖y‖ ⊢ volume {x | ∑ i : ι, |x i| ^ p < 1} = ENNReal.ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (↑(card ι) / p + 1))
simp_rw [eq_norm] at eq_zero nm_zero nm_neg nm_add
ι : Type u_1 inst✝ : Fintype ι p : ℝ hp : 1 ≤ p h₁ : 0 < p h₂ : ∀ (x : ι → ℝ), 0 ≤ ∑ i : ι, |x i| ^ p eq_norm : ∀ (x : ι → ℝ), ‖x‖ = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) this : Fact (1 ≤ ENNReal.ofReal p) eq_zero : ∀ (x : ι → ℝ), (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) = 0 ↔ x = 0 nm_zero : (∑ x : ι, |0 x| ^ p) ^ (1 / p) = 0 nm_neg : ∀ (x : ι → ℝ), (∑ x_1 : ι, |(-x) x_1| ^ p) ^ (1 / p) = (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) nm_add : ∀ (x y : ι → ℝ), (∑ x_1 : ι, |(x + y) x_1| ^ p) ^ (1 / p) ≤ (∑ x_1 : ι, |x x_1| ^ p) ^ (1 / p) + (∑ x : ι, |y x| ^ p) ^ (1 / p) ⊢ volume {x | ∑ i : ι, |x i| ^ p < 1} = ENNReal.ofReal ((2 * Gamma (1 / p + 1)) ^ card ι / Gamma (↑(card ι) / p + 1))
412f34b3848867a2
IsClosed.ae_eq_univ_iff_eq
Mathlib/MeasureTheory/Measure/OpenPos.lean
theorem _root_.IsClosed.ae_eq_univ_iff_eq (hF : IsClosed F) : F =ᵐ[μ] univ ↔ F = univ
X : Type u_1 inst✝¹ : TopologicalSpace X m : MeasurableSpace X μ : Measure X inst✝ : μ.IsOpenPosMeasure F : Set X hF : IsClosed F h : F =ᶠ[ae μ] univ ⊢ F = univ
rwa [ae_eq_univ, hF.isOpen_compl.measure_eq_zero_iff μ, compl_empty_iff] at h
no goals
bd0f56f21b466be3
Complex.integral_cpow_mul_exp_neg_mul_Ioi
Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean
/-- Expresses the integral over `Ioi 0` of `t ^ (a - 1) * exp (-(r * t))` in terms of the Gamma function, for complex `a`. -/ lemma integral_cpow_mul_exp_neg_mul_Ioi {a : ℂ} {r : ℝ} (ha : 0 < a.re) (hr : 0 < r) : ∫ (t : ℝ) in Ioi 0, t ^ (a - 1) * exp (-(r * t)) = (1 / r) ^ a * Gamma a
a : ℂ r : ℝ ha : 0 < a.re hr : 0 < r ⊢ (1 / ↑r) ^ a = 1 / ↑r * (1 / ↑r) ^ (a - 1)
nth_rewrite 2 [← cpow_one (1 / r : ℂ)]
a : ℂ r : ℝ ha : 0 < a.re hr : 0 < r ⊢ (1 / ↑r) ^ a = (1 / ↑r) ^ 1 * (1 / ↑r) ^ (a - 1)
5d070e1c4207a464
Lean.Order.List.monotone_forIn'_loop
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Lemmas.lean
theorem monotone_forIn'_loop {α : Type uu} (as : List α) (f : γ → (a : α) → a ∈ as → β → m (ForInStep β)) (as' : List α) (b : β) (p : Exists (fun bs => bs ++ as' = as)) (hmono : monotone f) : monotone (fun x => List.forIn'.loop as (f x) as' b p)
case nil m : Type u → Type v inst✝³ : Monad m inst✝² : (α : Type u) → PartialOrder (m α) inst✝¹ : MonoBind m β : Type u γ : Type w inst✝ : PartialOrder γ α : Type uu as : List α f : γ → (a : α) → a ∈ as → β → m (ForInStep β) hmono : monotone f b : β p : ∃ bs, bs ++ [] = as ⊢ monotone fun x => List.forIn'.loop as (f x) [] b p
apply monotone_const
no goals
54f63850339d8283
VectorField.leibniz_identity_lieBracketWithin_of_isSymmSndFDerivWithinAt
Mathlib/Analysis/Calculus/VectorField.lean
/-- The Lie bracket of vector fields in vector spaces satisfies the Leibniz identity `[U, [V, W]] = [[U, V], W] + [V, [U, W]]`. -/ lemma leibniz_identity_lieBracketWithin_of_isSymmSndFDerivWithinAt {U V W : E → E} {s : Set E} {x : E} (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (hU : ContDiffWithinAt 𝕜 2 U s x) (hV : ContDiffWithinAt 𝕜 2 V s x) (hW : ContDiffWithinAt 𝕜 2 W s x) (h'U : IsSymmSndFDerivWithinAt 𝕜 U s x) (h'V : IsSymmSndFDerivWithinAt 𝕜 V s x) (h'W : IsSymmSndFDerivWithinAt 𝕜 W s x) : lieBracketWithin 𝕜 U (lieBracketWithin 𝕜 V W s) s x = lieBracketWithin 𝕜 (lieBracketWithin 𝕜 U V s) W s x + lieBracketWithin 𝕜 V (lieBracketWithin 𝕜 U W s) s x
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E U V W : E → E s : Set E x : E hs : UniqueDiffOn 𝕜 s hx : x ∈ s hU : ContDiffWithinAt 𝕜 2 U s x hV : ContDiffWithinAt 𝕜 2 V s x hW : ContDiffWithinAt 𝕜 2 W s x h'U : IsSymmSndFDerivWithinAt 𝕜 U s x h'V : IsSymmSndFDerivWithinAt 𝕜 V s x h'W : IsSymmSndFDerivWithinAt 𝕜 W s x ⊢ lieBracketWithin 𝕜 U (lieBracketWithin 𝕜 V W s) s x = lieBracketWithin 𝕜 (lieBracketWithin 𝕜 U V s) W s x + lieBracketWithin 𝕜 V (lieBracketWithin 𝕜 U W s) s x
simp only [lieBracketWithin_eq, map_sub]
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E U V W : E → E s : Set E x : E hs : UniqueDiffOn 𝕜 s hx : x ∈ s hU : ContDiffWithinAt 𝕜 2 U s x hV : ContDiffWithinAt 𝕜 2 V s x hW : ContDiffWithinAt 𝕜 2 W s x h'U : IsSymmSndFDerivWithinAt 𝕜 U s x h'V : IsSymmSndFDerivWithinAt 𝕜 V s x h'W : IsSymmSndFDerivWithinAt 𝕜 W s x ⊢ (fderivWithin 𝕜 (fun x => (fderivWithin 𝕜 W s x) (V x) - (fderivWithin 𝕜 V s x) (W x)) s x) (U x) - ((fderivWithin 𝕜 U s x) ((fderivWithin 𝕜 W s x) (V x)) - (fderivWithin 𝕜 U s x) ((fderivWithin 𝕜 V s x) (W x))) = (fderivWithin 𝕜 W s x) ((fderivWithin 𝕜 V s x) (U x)) - (fderivWithin 𝕜 W s x) ((fderivWithin 𝕜 U s x) (V x)) - (fderivWithin 𝕜 (fun x => (fderivWithin 𝕜 V s x) (U x) - (fderivWithin 𝕜 U s x) (V x)) s x) (W x) + ((fderivWithin 𝕜 (fun x => (fderivWithin 𝕜 W s x) (U x) - (fderivWithin 𝕜 U s x) (W x)) s x) (V x) - ((fderivWithin 𝕜 V s x) ((fderivWithin 𝕜 W s x) (U x)) - (fderivWithin 𝕜 V s x) ((fderivWithin 𝕜 U s x) (W x))))
a8ebc5b229cab643
deriv_const_smul'
Mathlib/Analysis/Calculus/Deriv/Mul.lean
/-- A variant of `deriv_const_smul` without differentiability assumption when the scalar multiplication is by field elements. -/ lemma deriv_const_smul' {f : 𝕜 → F} {x : 𝕜} {R : Type*} [Field R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F] (c : R) : deriv (fun y ↦ c • f y) x = c • deriv f x
𝕜 : Type u inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F f : 𝕜 → F x : 𝕜 R : Type u_3 inst✝³ : Field R inst✝² : Module R F inst✝¹ : SMulCommClass 𝕜 R F inst✝ : ContinuousConstSMul R F c : R hc : c ≠ 0 hf : DifferentiableAt 𝕜 (fun y => c • f y) x ⊢ DifferentiableAt 𝕜 (fun y => c⁻¹ • c • f y) x
exact DifferentiableAt.const_smul hf c⁻¹
no goals
6906aeb992f7f336
LieAlgebra.IsSemisimple.finitelyAtomistic
Mathlib/Algebra/Lie/Semisimple/Basic.lean
/-- In a semisimple Lie algebra, Lie ideals that are contained in the supremum of a finite collection of atoms are themselves the supremum of a finite subcollection of those atoms. By a compactness argument, this statement can be extended to arbitrary sets of atoms. See `atomistic`. The proof is by induction on the finite set of atoms. -/ private lemma finitelyAtomistic : ∀ s : Finset (LieIdeal R L), ↑s ⊆ {I : LieIdeal R L | IsAtom I} → ∀ I : LieIdeal R L, I ≤ s.sup id → ∃ t ⊆ s, I = t.sup id
R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L s : Finset (LieIdeal R L) hs : ↑s ⊆ {I | IsAtom I} I : LieIdeal R L hI✝ : I ≤ s.sup id S : Set (LieIdeal R L) := {I | IsAtom I} hI : I < s.sup id J : LieIdeal R L hJs : J ∈ s hJI : ¬J ≤ I s' : Finset (LieIdeal R L) := s.erase J hs' : s' ⊂ s hs'S : ↑s' ⊆ S K : LieIdeal R L := s'.sup id y : L hy : y ∈ id J z : L hz : z ∈ K hx : y + z ∈ I this : ⟨y, hy⟩ ∈ center R ↥J ⊢ y + z ∈ K
have _inst := isSimple_of_isAtom J (hs hJs)
R : Type u_1 L : Type u_2 inst✝³ : CommRing R inst✝² : LieRing L inst✝¹ : LieAlgebra R L inst✝ : IsSemisimple R L s : Finset (LieIdeal R L) hs : ↑s ⊆ {I | IsAtom I} I : LieIdeal R L hI✝ : I ≤ s.sup id S : Set (LieIdeal R L) := {I | IsAtom I} hI : I < s.sup id J : LieIdeal R L hJs : J ∈ s hJI : ¬J ≤ I s' : Finset (LieIdeal R L) := s.erase J hs' : s' ⊂ s hs'S : ↑s' ⊆ S K : LieIdeal R L := s'.sup id y : L hy : y ∈ id J z : L hz : z ∈ K hx : y + z ∈ I this : ⟨y, hy⟩ ∈ center R ↥J _inst : IsSimple R ↥J ⊢ y + z ∈ K
9feaa310a91f7482
LaurentSeries.valuation_le_iff_coeff_lt_eq_zero
Mathlib/RingTheory/LaurentSeries.lean
theorem valuation_le_iff_coeff_lt_eq_zero {D : ℤ} {f : K⸨X⸩} : Valued.v f ≤ ↑(Multiplicative.ofAdd (-D : ℤ)) ↔ ∀ n : ℤ, n < D → f.coeff n = 0
case neg K : Type u_2 inst✝ : Field K D : ℤ f : K⸨X⸩ h_val_f : ∀ n < D, f.coeff n = 0 F : K⟦X⟧ := f.powerSeriesPart ord_nonpos : HahnSeries.order f ≤ 0 s : ℕ hs : HahnSeries.order f = -↑s hDs : ¬D + ↑s ≤ 0 ⊢ Valued.v ((ofPowerSeries ℤ K) f.powerSeriesPart) ≤ ↑(Multiplicative.ofAdd (-(D + ↑s)))
obtain ⟨d, hd⟩ := Int.eq_ofNat_of_zero_le (le_of_lt <| not_le.mp hDs)
case neg.intro K : Type u_2 inst✝ : Field K D : ℤ f : K⸨X⸩ h_val_f : ∀ n < D, f.coeff n = 0 F : K⟦X⟧ := f.powerSeriesPart ord_nonpos : HahnSeries.order f ≤ 0 s : ℕ hs : HahnSeries.order f = -↑s hDs : ¬D + ↑s ≤ 0 d : ℕ hd : D + ↑s = ↑d ⊢ Valued.v ((ofPowerSeries ℤ K) f.powerSeriesPart) ≤ ↑(Multiplicative.ofAdd (-(D + ↑s)))
34ebed25af8874e3
edist_lt_coe
Mathlib/Topology/MetricSpace/Pseudo/Defs.lean
theorem edist_lt_coe {x y : α} {c : ℝ≥0} : edist x y < c ↔ nndist x y < c
α : Type u inst✝ : PseudoMetricSpace α x y : α c : ℝ≥0 ⊢ edist x y < ↑c ↔ nndist x y < c
rw [edist_nndist, ENNReal.coe_lt_coe]
no goals
b3c5e1c1c01dd681
εNFA.isPath_append
Mathlib/Computability/EpsilonNFA.lean
theorem isPath_append {x y : List (Option α)} : M.IsPath s u (x ++ y) ↔ ∃ t, M.IsPath s t x ∧ M.IsPath t u y where mp
α : Type u σ : Type v M : εNFA α σ s u : σ x y : List (Option α) ⊢ M.IsPath s u (x ++ y) → ∃ t, M.IsPath s t x ∧ M.IsPath t u y
induction' x with x a ih generalizing s
case nil α : Type u σ : Type v M : εNFA α σ u : σ y : List (Option α) s : σ ⊢ M.IsPath s u ([] ++ y) → ∃ t, M.IsPath s t [] ∧ M.IsPath t u y case cons α : Type u σ : Type v M : εNFA α σ u : σ y : List (Option α) x : Option α a : List (Option α) ih : ∀ {s : σ}, M.IsPath s u (a ++ y) → ∃ t, M.IsPath s t a ∧ M.IsPath t u y s : σ ⊢ M.IsPath s u (x :: a ++ y) → ∃ t, M.IsPath s t (x :: a) ∧ M.IsPath t u y
e5aadd4797a0d54e
HomologicalComplex.mapBifunctorAssociatorX_hom_D₂
Mathlib/Algebra/Homology/BifunctorAssociator.lean
@[reassoc] lemma mapBifunctorAssociatorX_hom_D₂ (j j' : ι₄) : (mapBifunctorAssociatorX associator K₁ K₂ K₃ c₁₂ c₂₃ c₄ j).hom ≫ mapBifunctor₂₃.D₂ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ j j' = mapBifunctor₁₂.D₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ j j' ≫ (mapBifunctorAssociatorX associator K₁ K₂ K₃ c₁₂ c₂₃ c₄ j').hom
case hfg C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝³³ : Category.{u_16, u_1} C₁ inst✝³² : Category.{u_17, u_2} C₂ inst✝³¹ : Category.{u_15, u_5} C₃ inst✝³⁰ : Category.{u_13, u_6} C₄ inst✝²⁹ : Category.{u_14, u_3} C₁₂ inst✝²⁸ : Category.{u_18, u_4} C₂₃ inst✝²⁷ : HasZeroMorphisms C₁ inst✝²⁶ : HasZeroMorphisms C₂ inst✝²⁵ : HasZeroMorphisms C₃ inst✝²⁴ : Preadditive C₁₂ inst✝²³ : Preadditive C₂₃ inst✝²² : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝²¹ : F₁₂.PreservesZeroMorphisms inst✝²⁰ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝¹⁹ : G.Additive inst✝¹⁸ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms inst✝¹⁷ : G₂₃.PreservesZeroMorphisms inst✝¹⁶ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁵ : F.PreservesZeroMorphisms inst✝¹⁴ : ∀ (X₁ : C₁), (F.obj X₁).Additive associator : bifunctorComp₁₂ F₁₂ G ≅ bifunctorComp₂₃ F G₂₃ ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝¹³ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝¹² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹¹ : TotalComplexShape c₁₂ c₃ c₄ inst✝¹⁰ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁹ : TotalComplexShape c₁ c₂₃ c₄ inst✝⁸ : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝⁷ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝⁶ : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝⁵ : DecidableEq ι₁₂ inst✝⁴ : DecidableEq ι₂₃ inst✝³ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ inst✝² : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ inst✝¹ : HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄ inst✝ : HasGoodTrifunctor₂₃Obj F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ j j' : ι₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j ⊢ ((associator.hom.app (K₁.X i₁)).app (K₂.X i₂)).app (K₃.X i₃) ≫ mapBifunctor₂₃.d₂ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j' = mapBifunctor₁₂.d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j' ≫ (mapBifunctorAssociatorX associator K₁ K₂ K₃ c₁₂ c₂₃ c₄ j').hom
by_cases h₁ : c₂.Rel i₂ (c₂.next i₂)
case pos C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝³³ : Category.{u_16, u_1} C₁ inst✝³² : Category.{u_17, u_2} C₂ inst✝³¹ : Category.{u_15, u_5} C₃ inst✝³⁰ : Category.{u_13, u_6} C₄ inst✝²⁹ : Category.{u_14, u_3} C₁₂ inst✝²⁸ : Category.{u_18, u_4} C₂₃ inst✝²⁷ : HasZeroMorphisms C₁ inst✝²⁶ : HasZeroMorphisms C₂ inst✝²⁵ : HasZeroMorphisms C₃ inst✝²⁴ : Preadditive C₁₂ inst✝²³ : Preadditive C₂₃ inst✝²² : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝²¹ : F₁₂.PreservesZeroMorphisms inst✝²⁰ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝¹⁹ : G.Additive inst✝¹⁸ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms inst✝¹⁷ : G₂₃.PreservesZeroMorphisms inst✝¹⁶ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁵ : F.PreservesZeroMorphisms inst✝¹⁴ : ∀ (X₁ : C₁), (F.obj X₁).Additive associator : bifunctorComp₁₂ F₁₂ G ≅ bifunctorComp₂₃ F G₂₃ ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝¹³ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝¹² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹¹ : TotalComplexShape c₁₂ c₃ c₄ inst✝¹⁰ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁹ : TotalComplexShape c₁ c₂₃ c₄ inst✝⁸ : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝⁷ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝⁶ : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝⁵ : DecidableEq ι₁₂ inst✝⁴ : DecidableEq ι₂₃ inst✝³ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ inst✝² : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ inst✝¹ : HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄ inst✝ : HasGoodTrifunctor₂₃Obj F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ j j' : ι₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j h₁ : c₂.Rel i₂ (c₂.next i₂) ⊢ ((associator.hom.app (K₁.X i₁)).app (K₂.X i₂)).app (K₃.X i₃) ≫ mapBifunctor₂₃.d₂ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j' = mapBifunctor₁₂.d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j' ≫ (mapBifunctorAssociatorX associator K₁ K₂ K₃ c₁₂ c₂₃ c₄ j').hom case neg C₁ : Type u_1 C₂ : Type u_2 C₁₂ : Type u_3 C₂₃ : Type u_4 C₃ : Type u_5 C₄ : Type u_6 inst✝³³ : Category.{u_16, u_1} C₁ inst✝³² : Category.{u_17, u_2} C₂ inst✝³¹ : Category.{u_15, u_5} C₃ inst✝³⁰ : Category.{u_13, u_6} C₄ inst✝²⁹ : Category.{u_14, u_3} C₁₂ inst✝²⁸ : Category.{u_18, u_4} C₂₃ inst✝²⁷ : HasZeroMorphisms C₁ inst✝²⁶ : HasZeroMorphisms C₂ inst✝²⁵ : HasZeroMorphisms C₃ inst✝²⁴ : Preadditive C₁₂ inst✝²³ : Preadditive C₂₃ inst✝²² : Preadditive C₄ F₁₂ : C₁ ⥤ C₂ ⥤ C₁₂ G : C₁₂ ⥤ C₃ ⥤ C₄ F : C₁ ⥤ C₂₃ ⥤ C₄ G₂₃ : C₂ ⥤ C₃ ⥤ C₂₃ inst✝²¹ : F₁₂.PreservesZeroMorphisms inst✝²⁰ : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms inst✝¹⁹ : G.Additive inst✝¹⁸ : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms inst✝¹⁷ : G₂₃.PreservesZeroMorphisms inst✝¹⁶ : ∀ (X₂ : C₂), (G₂₃.obj X₂).PreservesZeroMorphisms inst✝¹⁵ : F.PreservesZeroMorphisms inst✝¹⁴ : ∀ (X₁ : C₁), (F.obj X₁).Additive associator : bifunctorComp₁₂ F₁₂ G ≅ bifunctorComp₂₃ F G₂₃ ι₁ : Type u_7 ι₂ : Type u_8 ι₃ : Type u_9 ι₁₂ : Type u_10 ι₂₃ : Type u_11 ι₄ : Type u_12 inst✝¹³ : DecidableEq ι₄ c₁ : ComplexShape ι₁ c₂ : ComplexShape ι₂ c₃ : ComplexShape ι₃ K₁ : HomologicalComplex C₁ c₁ K₂ : HomologicalComplex C₂ c₂ K₃ : HomologicalComplex C₃ c₃ c₁₂ : ComplexShape ι₁₂ c₂₃ : ComplexShape ι₂₃ c₄ : ComplexShape ι₄ inst✝¹² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹¹ : TotalComplexShape c₁₂ c₃ c₄ inst✝¹⁰ : TotalComplexShape c₂ c₃ c₂₃ inst✝⁹ : TotalComplexShape c₁ c₂₃ c₄ inst✝⁸ : K₁.HasMapBifunctor K₂ F₁₂ c₁₂ inst✝⁷ : K₂.HasMapBifunctor K₃ G₂₃ c₂₃ inst✝⁶ : c₁.Associative c₂ c₃ c₁₂ c₂₃ c₄ inst✝⁵ : DecidableEq ι₁₂ inst✝⁴ : DecidableEq ι₂₃ inst✝³ : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄ inst✝² : K₁.HasMapBifunctor (K₂.mapBifunctor K₃ G₂₃ c₂₃) F c₄ inst✝¹ : HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄ inst✝ : HasGoodTrifunctor₂₃Obj F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ j j' : ι₄ i₁ : ι₁ i₂ : ι₂ i₃ : ι₃ h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j h₁ : ¬c₂.Rel i₂ (c₂.next i₂) ⊢ ((associator.hom.app (K₁.X i₁)).app (K₂.X i₂)).app (K₃.X i₃) ≫ mapBifunctor₂₃.d₂ F G₂₃ K₁ K₂ K₃ c₁₂ c₂₃ c₄ i₁ i₂ i₃ j' = mapBifunctor₁₂.d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j' ≫ (mapBifunctorAssociatorX associator K₁ K₂ K₃ c₁₂ c₂₃ c₄ j').hom
9e9b646514c4ff68
Ring.DirectLimit.lift_injective
Mathlib/Algebra/Colimit/Ring.lean
lemma lift_injective [Nonempty ι] [IsDirected ι (· ≤ ·)] (injective : ∀ i, Function.Injective <| g i) : Function.Injective (lift G f P g Hg)
ι : Type u_1 inst✝⁴ : Preorder ι G : ι → Type u_2 inst✝³ : (i : ι) → CommRing (G i) f : (i j : ι) → i ≤ j → G i → G j P : Type u_3 inst✝² : CommRing P g : (i : ι) → G i →+* P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), (g j) (f i j hij x) = (g i) x inst✝¹ : Nonempty ι inst✝ : IsDirected ι fun x1 x2 => x1 ≤ x2 injective : ∀ (i : ι) (a : G i), (g i) a = 0 → a = 0 z : DirectLimit G f hz : (lift G f P g Hg) z = 0 ⊢ z = 0
induction z using DirectLimit.induction_on with | ih _ g => rw [lift_of] at hz; rw [injective _ g hz, _root_.map_zero]
no goals
ec9feee4de21e3d5
Nat.sub_le_of_le_add
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean
theorem sub_le_of_le_add {a b c : Nat} (h : a ≤ c + b) : a - b ≤ c
a b c : Nat h : a ≤ c + b d : Nat hd : a + d = c + b hge : b ≤ a ⊢ a - b ≤ c
apply @le.intro _ _ d
a b c : Nat h : a ≤ c + b d : Nat hd : a + d = c + b hge : b ≤ a ⊢ a - b + d = c
738662ec716bb284
AlgebraicGeometry.HasRingHomProperty.isStableUnderBaseChange
Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
lemma isStableUnderBaseChange (hP : RingHom.IsStableUnderBaseChange Q) : P.IsStableUnderBaseChange
case hP'.H.inr P : MorphismProperty Scheme Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop inst✝² : HasRingHomProperty P Q hP : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => Q this✝ : (sourceAffineLocally fun {R S} [CommRing R] [CommRing S] => Q).IsLocal := HasAffineProperty.isLocal_affineProperty P X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S H : P g this : ∀ ⦃Y : Scheme⦄ (g : Y ⟶ S), P g → IsAffine Y → P (pullback.fst f g) hX : ¬IsAffine Y i : (Scheme.Pullback.openCoverOfRight Y.affineCover f g).J ⊢ P (pullback.fst f (Y.affineCover.map i ≫ g))
apply this _ (comp_of_isOpenImmersion _ _ _ H) inferInstance
no goals
12b3b3ff9d099e59
Real.sSup_smul_of_nonneg
Mathlib/Data/Real/Pointwise.lean
theorem Real.sSup_smul_of_nonneg (ha : 0 ≤ a) (s : Set ℝ) : sSup (a • s) = a • sSup s
case inr.inr α : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : MulActionWithZero α ℝ inst✝ : OrderedSMul α ℝ a : α ha : 0 ≤ a s : Set ℝ hs : s.Nonempty ha' : 0 < a ⊢ sSup (a • s) = a • sSup s
by_cases h : BddAbove s
case pos α : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : MulActionWithZero α ℝ inst✝ : OrderedSMul α ℝ a : α ha : 0 ≤ a s : Set ℝ hs : s.Nonempty ha' : 0 < a h : BddAbove s ⊢ sSup (a • s) = a • sSup s case neg α : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : MulActionWithZero α ℝ inst✝ : OrderedSMul α ℝ a : α ha : 0 ≤ a s : Set ℝ hs : s.Nonempty ha' : 0 < a h : ¬BddAbove s ⊢ sSup (a • s) = a • sSup s
87e20576dbe946d5
Subgroup.fg_iff_add_fg
Mathlib/GroupTheory/Finiteness.lean
theorem Subgroup.fg_iff_add_fg (P : Subgroup G) : P.FG ↔ P.toAddSubgroup.FG
G : Type u_3 inst✝ : Group G P : Subgroup G ⊢ P.FG ↔ (toAddSubgroup P).FG
exact (Subgroup.toSubmonoid P).fg_iff_add_fg
no goals
df9b2c8f40405e93
Multiset.replicate_le_replicate
Mathlib/Data/Multiset/Replicate.lean
theorem replicate_le_replicate (a : α) {k n : ℕ} : replicate k a ≤ replicate n a ↔ k ≤ n := _root_.trans (by rw [← replicate_le_coe, coe_replicate]) (List.replicate_sublist_replicate a)
α : Type u_1 a : α k n : ℕ ⊢ replicate k a ≤ replicate n a ↔ List.replicate k a <+ List.replicate n a
rw [← replicate_le_coe, coe_replicate]
no goals
f94b5364c732b628
TopologicalSpace.ext_iff_isClosed
Mathlib/Topology/Basic.lean
theorem TopologicalSpace.ext_iff_isClosed {X} {t₁ t₂ : TopologicalSpace X} : t₁ = t₂ ↔ ∀ s, IsClosed[t₁] s ↔ IsClosed[t₂] s
X : Type u_3 t₁ t₂ : TopologicalSpace X ⊢ t₁ = t₂ ↔ ∀ (s : Set X), IsClosed s ↔ IsClosed s
rw [TopologicalSpace.ext_iff, compl_surjective.forall]
X : Type u_3 t₁ t₂ : TopologicalSpace X ⊢ (∀ (x : Set X), IsOpen xᶜ ↔ IsOpen xᶜ) ↔ ∀ (s : Set X), IsClosed s ↔ IsClosed s
9a9b5b388220d5cd
BitVec.setWidth_succ
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem setWidth_succ (x : BitVec w) : setWidth (i+1) x = cons (getLsbD x i) (setWidth i x)
case pred w i : Nat x : BitVec w j : Nat h : j < i + 1 ⊢ x.getLsbD j = if j = i then x.getLsbD i else decide (j < i) && x.getLsbD j
if j_eq : j = i then simp [j_eq] else have j_lt : j < i := Nat.lt_of_le_of_ne (Nat.le_of_succ_le_succ h) j_eq simp [j_eq, j_lt]
no goals
127c2c3d6ebd3d56
polynomial_expand_eq
Mathlib/FieldTheory/Perfect.lean
lemma polynomial_expand_eq (f : R[X]) : expand R p f = (f.map (frobeniusEquiv R p).symm) ^ p
R : Type u_1 p : ℕ inst✝² : CommSemiring R inst✝¹ : ExpChar R p inst✝ : PerfectRing R p f : R[X] ⊢ (expand R p) f = map (↑(frobeniusEquiv R p).symm) f ^ p
rw [← (f.map (S := R) (frobeniusEquiv R p).symm).expand_char p, map_expand, map_map, frobenius_comp_frobeniusEquiv_symm, map_id]
no goals
2cb846c588a95df2
Equiv.refl_trans
Mathlib/Logic/Equiv/Defs.lean
theorem refl_trans (e : α ≃ β) : (Equiv.refl α).trans e = e
case mk α : Sort u β : Sort v toFun✝ : α → β invFun✝ : β → α left_inv✝ : LeftInverse invFun✝ toFun✝ right_inv✝ : RightInverse invFun✝ toFun✝ ⊢ (Equiv.refl α).trans { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } = { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }
rfl
no goals
9d117295fb2de6db
Ideal.spanIntNorm_localization
Mathlib/RingTheory/Ideal/Norm/RelNorm.lean
theorem spanIntNorm_localization (I : Ideal S) (M : Submonoid R) (hM : M ≤ R⁰) {Rₘ : Type*} (Sₘ : Type*) [CommRing Rₘ] [Algebra R Rₘ] [CommRing Sₘ] [Algebra S Sₘ] [Algebra Rₘ Sₘ] [Algebra R Sₘ] [IsScalarTower R Rₘ Sₘ] [IsScalarTower R S Sₘ] [IsLocalization M Rₘ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ] [IsIntegrallyClosed Rₘ] [IsDomain Rₘ] [IsDomain Sₘ] [NoZeroSMulDivisors Rₘ Sₘ] [Module.Finite Rₘ Sₘ] [IsIntegrallyClosed Sₘ] [Algebra.IsSeparable (FractionRing Rₘ) (FractionRing Sₘ)] : spanNorm Rₘ (I.map (algebraMap S Sₘ)) = (spanNorm R I).map (algebraMap R Rₘ)
R : Type u_1 inst✝²⁶ : CommRing R inst✝²⁵ : IsDomain R S : Type u_3 inst✝²⁴ : CommRing S inst✝²³ : IsDomain S inst✝²² : IsIntegrallyClosed R inst✝²¹ : IsIntegrallyClosed S inst✝²⁰ : Algebra R S inst✝¹⁹ : Module.Finite R S inst✝¹⁸ : NoZeroSMulDivisors R S inst✝¹⁷ : Algebra.IsSeparable (FractionRing R) (FractionRing S) I : Ideal S M : Submonoid R hM : M ≤ R⁰ Rₘ : Type u_4 Sₘ : Type u_5 inst✝¹⁶ : CommRing Rₘ inst✝¹⁵ : Algebra R Rₘ inst✝¹⁴ : CommRing Sₘ inst✝¹³ : Algebra S Sₘ inst✝¹² : Algebra Rₘ Sₘ inst✝¹¹ : Algebra R Sₘ inst✝¹⁰ : IsScalarTower R Rₘ Sₘ inst✝⁹ : IsScalarTower R S Sₘ inst✝⁸ : IsLocalization M Rₘ inst✝⁷ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝⁶ : IsIntegrallyClosed Rₘ inst✝⁵ : IsDomain Rₘ inst✝⁴ : IsDomain Sₘ inst✝³ : NoZeroSMulDivisors Rₘ Sₘ inst✝² : Module.Finite Rₘ Sₘ inst✝¹ : IsIntegrallyClosed Sₘ inst✝ : Algebra.IsSeparable (FractionRing Rₘ) (FractionRing Sₘ) K : Type u_1 := FractionRing R f : Rₘ →+* K := IsLocalization.map K (RingHom.id R) hM L : Type u_3 := FractionRing S g : Sₘ →+* L := IsLocalization.map L (RingHom.id S) ⋯ algInst✝² : Algebra Rₘ K := f.toAlgebra algInst✝¹ : Algebra Sₘ L := g.toAlgebra algInst✝ : Algebra Rₘ L := ((algebraMap K L).comp f).toAlgebra scalarTowerInst✝ : IsScalarTower Rₘ K L := IsScalarTower.of_algebraMap_eq' (Eq.refl (algebraMap Rₘ L)) this✝ : IsScalarTower R Rₘ K x✝ : IsFractionRing Rₘ K := IsFractionRing.isFractionRing_of_isDomain_of_isLocalization M Rₘ K this : IsScalarTower S Sₘ L ⊢ spanNorm Rₘ (map (algebraMap S Sₘ) I) = map (algebraMap R Rₘ) (spanNorm R I)
have : IsScalarTower Rₘ Sₘ L := by apply IsScalarTower.of_algebraMap_eq' apply IsLocalization.ringHom_ext M rw [RingHom.algebraMap_toAlgebra, RingHom.algebraMap_toAlgebra (R := Sₘ), RingHom.comp_assoc, RingHom.comp_assoc, ← IsScalarTower.algebraMap_eq, IsScalarTower.algebraMap_eq R S Sₘ, IsLocalization.map_comp, RingHom.comp_id, ← RingHom.comp_assoc, IsLocalization.map_comp, RingHom.comp_id, ← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq]
R : Type u_1 inst✝²⁶ : CommRing R inst✝²⁵ : IsDomain R S : Type u_3 inst✝²⁴ : CommRing S inst✝²³ : IsDomain S inst✝²² : IsIntegrallyClosed R inst✝²¹ : IsIntegrallyClosed S inst✝²⁰ : Algebra R S inst✝¹⁹ : Module.Finite R S inst✝¹⁸ : NoZeroSMulDivisors R S inst✝¹⁷ : Algebra.IsSeparable (FractionRing R) (FractionRing S) I : Ideal S M : Submonoid R hM : M ≤ R⁰ Rₘ : Type u_4 Sₘ : Type u_5 inst✝¹⁶ : CommRing Rₘ inst✝¹⁵ : Algebra R Rₘ inst✝¹⁴ : CommRing Sₘ inst✝¹³ : Algebra S Sₘ inst✝¹² : Algebra Rₘ Sₘ inst✝¹¹ : Algebra R Sₘ inst✝¹⁰ : IsScalarTower R Rₘ Sₘ inst✝⁹ : IsScalarTower R S Sₘ inst✝⁸ : IsLocalization M Rₘ inst✝⁷ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ inst✝⁶ : IsIntegrallyClosed Rₘ inst✝⁵ : IsDomain Rₘ inst✝⁴ : IsDomain Sₘ inst✝³ : NoZeroSMulDivisors Rₘ Sₘ inst✝² : Module.Finite Rₘ Sₘ inst✝¹ : IsIntegrallyClosed Sₘ inst✝ : Algebra.IsSeparable (FractionRing Rₘ) (FractionRing Sₘ) K : Type u_1 := FractionRing R f : Rₘ →+* K := IsLocalization.map K (RingHom.id R) hM L : Type u_3 := FractionRing S g : Sₘ →+* L := IsLocalization.map L (RingHom.id S) ⋯ algInst✝² : Algebra Rₘ K := f.toAlgebra algInst✝¹ : Algebra Sₘ L := g.toAlgebra algInst✝ : Algebra Rₘ L := ((algebraMap K L).comp f).toAlgebra scalarTowerInst✝ : IsScalarTower Rₘ K L := IsScalarTower.of_algebraMap_eq' (Eq.refl (algebraMap Rₘ L)) this✝¹ : IsScalarTower R Rₘ K x✝ : IsFractionRing Rₘ K := IsFractionRing.isFractionRing_of_isDomain_of_isLocalization M Rₘ K this✝ : IsScalarTower S Sₘ L this : IsScalarTower Rₘ Sₘ L ⊢ spanNorm Rₘ (map (algebraMap S Sₘ) I) = map (algebraMap R Rₘ) (spanNorm R I)
c51e5741dd2367a5
List.mem_mapFinIdx
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/MapIdx.lean
theorem mem_mapFinIdx {b : β} {l : List α} {f : (i : Nat) → α → (h : i < l.length) → β} : b ∈ l.mapFinIdx f ↔ ∃ (i : Nat) (h : i < l.length), f i l[i] h = b
case mpr β : Type u_1 α : Type u_2 b : β l : List α f : (i : Nat) → α → i < l.length → β ⊢ (∃ i h, f i l[i] h = b) → b ∈ l.mapFinIdx f
rintro ⟨i, h, rfl⟩
case mpr.intro.intro β : Type u_1 α : Type u_2 l : List α f : (i : Nat) → α → i < l.length → β i : Nat h : i < l.length ⊢ f i l[i] h ∈ l.mapFinIdx f
00d1fdd38a729f1a
Polynomial.sum_fin
Mathlib/Algebra/Polynomial/Degree/Support.lean
theorem sum_fin [AddCommMonoid S] (f : ℕ → R → S) (hf : ∀ i, f i 0 = 0) {n : ℕ} {p : R[X]} (hn : p.degree < n) : (∑ i : Fin n, f i (p.coeff i)) = p.sum f
case pos R : Type u S : Type v inst✝¹ : Semiring R inst✝ : AddCommMonoid S f : ℕ → R → S hf : ∀ (i : ℕ), f i 0 = 0 n : ℕ p : R[X] hn : p.degree < ↑n hp : p = 0 ⊢ ∀ x ∈ univ, f (↑x) (coeff 0 ↑x) = 0
intro i _
case pos R : Type u S : Type v inst✝¹ : Semiring R inst✝ : AddCommMonoid S f : ℕ → R → S hf : ∀ (i : ℕ), f i 0 = 0 n : ℕ p : R[X] hn : p.degree < ↑n hp : p = 0 i : Fin n a✝ : i ∈ univ ⊢ f (↑i) (coeff 0 ↑i) = 0
15253ffb89262ddf
Polynomial.isIntegral_isLocalization_polynomial_quotient
Mathlib/RingTheory/Jacobson/Ring.lean
theorem isIntegral_isLocalization_polynomial_quotient (P : Ideal R[X]) (pX : R[X]) (hpX : pX ∈ P) [Algebra (R ⧸ P.comap (C : R →+* R[X])) Rₘ] [IsLocalization.Away (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff Rₘ] [Algebra (R[X] ⧸ P) Sₘ] [IsLocalization ((Submonoid.powers (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff).map (quotientMap P C le_rfl) : Submonoid (R[X] ⧸ P)) Sₘ] : (IsLocalization.map Sₘ (quotientMap P C le_rfl) (Submonoid.powers (pX.map (Ideal.Quotient.mk (P.comap (C : R →+* R[X])))).leadingCoeff).le_comap_map : Rₘ →+* Sₘ).IsIntegral
case h.left R : Type u_1 inst✝⁶ : CommRing R Rₘ : Type u_3 Sₘ : Type u_4 inst✝⁵ : CommRing Rₘ inst✝⁴ : CommRing Sₘ P : Ideal R[X] pX : R[X] hpX : pX ∈ P inst✝³ : Algebra (R ⧸ comap C P) Rₘ inst✝² : IsLocalization.Away (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff Rₘ inst✝¹ : Algebra (R[X] ⧸ P) Sₘ inst✝ : IsLocalization (Submonoid.map (quotientMap P C ⋯) (Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff)) Sₘ P' : Ideal R := comap C P M : Submonoid (R ⧸ P') := Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff M' : Submonoid (R[X] ⧸ P) := Submonoid.map (quotientMap P C ⋯) (Submonoid.powers (map (Ideal.Quotient.mk (comap C P)) pX).leadingCoeff) φ : R ⧸ P' →+* R[X] ⧸ P := quotientMap P C ⋯ φ' : Rₘ →+* Sₘ := IsLocalization.map Sₘ φ ⋯ hφ' : φ.comp (Ideal.Quotient.mk P') = (Ideal.Quotient.mk P).comp C p✝ : Sₘ p' q : R[X] ⧸ P hq : q ∈ M' hp : p✝ * (algebraMap (R[X] ⧸ P) Sₘ) q = (algebraMap (R[X] ⧸ P) Sₘ) p' p : R[X] hy : p = C (p.coeff 0) ⊢ (X - C ((algebraMap (R ⧸ P') Rₘ) ((Ideal.Quotient.mk P') (p.coeff 0)))).Monic
apply monic_X_sub_C
no goals
4f255f198e9b3f92
eq_pos_convex_span_of_mem_convexHull
Mathlib/Analysis/Convex/Caratheodory.lean
theorem eq_pos_convex_span_of_mem_convexHull {x : E} (hx : x ∈ convexHull 𝕜 s) : ∃ (ι : Sort (u + 1)) (_ : Fintype ι), ∃ (z : ι → E) (w : ι → 𝕜), Set.range z ⊆ s ∧ AffineIndependent 𝕜 z ∧ (∀ i, 0 < w i) ∧ ∑ i, w i = 1 ∧ ∑ i, w i • z i = x
case intro.intro.intro.intro.intro.intro.refine_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ y ∈ t, 0 ≤ w y hw₂ : ∑ y ∈ t, w y = 1 hw₃ : t.centerMass w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ i ∈ t'.attach, (fun e => w e • e) ↑i = x
rw [Finset.sum_attach (f := fun e => w e • e), Finset.sum_filter_of_ne]
case intro.intro.intro.intro.intro.intro.refine_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ y ∈ t, 0 ≤ w y hw₂ : ∑ y ∈ t, w y = 1 hw₃ : t.centerMass w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∑ x ∈ t, w x • x = x case intro.intro.intro.intro.intro.intro.refine_5 𝕜 : Type u_1 E : Type u inst✝² : LinearOrderedField 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E s : Set E x : E t : Finset E ht₁ : ↑t ⊆ s ht₂ : AffineIndependent 𝕜 Subtype.val w : E → 𝕜 hw₁ : ∀ y ∈ t, 0 ≤ w y hw₂ : ∑ y ∈ t, w y = 1 hw₃ : t.centerMass w id = x t' : Finset E := filter (fun i => w i ≠ 0) t ⊢ ∀ x ∈ t, w x • x ≠ 0 → w x ≠ 0
c36d0bcdbb3360db
IsCauSeq.bounded
Mathlib/Algebra/Order/CauSeq/Basic.lean
lemma bounded (hf : IsCauSeq abv f) : ∃ r, ∀ i, abv (f i) < r
case intro α : Type u_1 β : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Ring β abv : β → α inst✝ : IsAbsoluteValue abv f : ℕ → β hf : IsCauSeq abv f i : ℕ h : ∀ j ≥ i, abv (f j - f i) < 1 ⊢ ∃ r, ∀ (i : ℕ), abv (f i) < r
set R : ℕ → α := @Nat.rec (fun _ => α) (abv (f 0)) fun i c => max c (abv (f i.succ)) with hR
case intro α : Type u_1 β : Type u_2 inst✝² : LinearOrderedField α inst✝¹ : Ring β abv : β → α inst✝ : IsAbsoluteValue abv f : ℕ → β hf : IsCauSeq abv f i : ℕ h : ∀ j ≥ i, abv (f j - f i) < 1 R : ℕ → α := Nat.rec (abv (f 0)) fun i c => c ⊔ abv (f i.succ) hR : R = Nat.rec (abv (f 0)) fun i c => c ⊔ abv (f i.succ) ⊢ ∃ r, ∀ (i : ℕ), abv (f i) < r
9032991fc685129f
EulerSine.tendsto_integral_cos_pow_mul_div
Mathlib/Analysis/SpecialFunctions/Trigonometric/EulerSineProd.lean
theorem tendsto_integral_cos_pow_mul_div {f : ℝ → ℂ} (hf : ContinuousOn f (Icc 0 (π / 2))) : Tendsto (fun n : ℕ => (∫ x in (0 : ℝ)..π / 2, (cos x : ℂ) ^ n * f x) / (∫ x in (0 : ℝ)..π / 2, cos x ^ n : ℝ)) atTop (𝓝 <| f 0)
f : ℝ → ℂ hf : ContinuousOn f (Icc 0 (π / 2)) c_lt : ∀ y ∈ Icc 0 (π / 2), y ≠ 0 → cos y < cos 0 c_nonneg : ∀ x ∈ Icc 0 (π / 2), 0 ≤ cos x ⊢ 0 < 1
exact zero_lt_one
no goals
6e4d26a12747c680
Array.findIdx_subtype
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Find.lean
theorem findIdx_subtype {p : α → Prop} {l : Array { x // p x }} {f : { x // p x } → Bool} {g : α → Bool} (hf : ∀ x h, f ⟨x, h⟩ = g x) : l.findIdx f = l.unattach.findIdx g
case mk α : Type u_1 p : α → Prop f : { x // p x } → Bool g : α → Bool hf : ∀ (x : α) (h : p x), f ⟨x, h⟩ = g x toList✝ : List { x // p x } ⊢ findIdx f { toList := toList✝ } = findIdx g { toList := toList✝ }.unattach
simp [hf]
no goals
ea378e9c0e6d7dec
SimpleGraph.FarFromTriangleFree.le_card_cliqueFinset
Mathlib/Combinatorics/SimpleGraph/Triangle/Removal.lean
/-- **Triangle Removal Lemma**. If not all triangles can be removed by removing few edges (on the order of `(card α)^2`), then there were many triangles to start with (on the order of `(card α)^3`). -/ lemma FarFromTriangleFree.le_card_cliqueFinset (hG : G.FarFromTriangleFree ε) : triangleRemovalBound ε * card α ^ 3 ≤ #(G.cliqueFinset 3)
case inr.inr.inr.intro.intro.intro.intro α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : ℝ hG : G.FarFromTriangleFree ε h✝ : Nonempty α hε : 0 < ε l : ℕ := ⌈4 / ε⌉₊ hl : 4 / ε ≤ ↑l hl' : l ≤ Fintype.card α P : Finpartition univ hP₁ : P.IsEquipartition hP₂ : l ≤ #P.parts hP₃ : #P.parts ≤ bound (ε / 8) l hP₄ : P.IsUniform G (ε / 8) this : 4 / ε ≤ ↑(#P.parts) k : ↑(#G.edgeFinset) - ↑(#(regularityReduced P G (ε / 8) (ε / 4)).edgeFinset) < ε * ↑(Fintype.card α ^ 2) ⊢ triangleRemovalBound ε * ↑(Fintype.card α) ^ 3 ≤ ↑(#(G.cliqueFinset 3))
obtain ⟨t, ht⟩ := hG.cliqueFinset_nonempty' regularityReduced_le k
case inr.inr.inr.intro.intro.intro.intro.intro α : Type u_1 inst✝² : DecidableEq α inst✝¹ : Fintype α G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : ℝ hG : G.FarFromTriangleFree ε h✝ : Nonempty α hε : 0 < ε l : ℕ := ⌈4 / ε⌉₊ hl : 4 / ε ≤ ↑l hl' : l ≤ Fintype.card α P : Finpartition univ hP₁ : P.IsEquipartition hP₂ : l ≤ #P.parts hP₃ : #P.parts ≤ bound (ε / 8) l hP₄ : P.IsUniform G (ε / 8) this : 4 / ε ≤ ↑(#P.parts) k : ↑(#G.edgeFinset) - ↑(#(regularityReduced P G (ε / 8) (ε / 4)).edgeFinset) < ε * ↑(Fintype.card α ^ 2) t : Finset α ht : t ∈ (regularityReduced P G (ε / 8) (ε / 4)).cliqueFinset 3 ⊢ triangleRemovalBound ε * ↑(Fintype.card α) ^ 3 ≤ ↑(#(G.cliqueFinset 3))
68b85a2891fa9866
preNormEDS_odd
Mathlib/NumberTheory/EllipticDivisibilitySequence.lean
lemma preNormEDS_odd (m : ℤ) : preNormEDS b c d (2 * m + 1) = preNormEDS b c d (m + 2) * preNormEDS b c d m ^ 3 * (if Even m then b else 1) - preNormEDS b c d (m - 1) * preNormEDS b c d (m + 1) ^ 3 * (if Even m then 1 else b)
case nat.succ.zero R : Type u inst✝ : CommRing R b c d : R ⊢ preNormEDS b c d (2 * ↑(0 + 1) + 1) = (preNormEDS b c d (↑(0 + 1) + 2) * preNormEDS b c d ↑(0 + 1) ^ 3 * if Even ↑(0 + 1) then b else 1) - preNormEDS b c d (↑(0 + 1) - 1) * preNormEDS b c d (↑(0 + 1) + 1) ^ 3 * if Even ↑(0 + 1) then 1 else b
simp
no goals
a81418ac2a260128
Complex.HadamardThreeLines.norm_le_interp_of_mem_verticalClosedStrip₀₁'
Mathlib/Analysis/Complex/Hadamard.lean
/-- **Hadamard three-line theorem** on `re ⁻¹' [0, 1]` (Variant in simpler terms): Let `f` be a bounded function, continuous on the closed strip `re ⁻¹' [0, 1]` and differentiable on open strip `re ⁻¹' (0, 1)`. If, for all `z.re = 0`, `‖f z‖ ≤ a` for some `a ∈ ℝ` and, similarly, for all `z.re = 1`, `‖f z‖ ≤ b` for some `b ∈ ℝ` then for all `z` in the closed strip `re ⁻¹' [0, 1]` the inequality `‖f(z)‖ ≤ a ^ (1 - z.re) * b ^ z.re` holds. -/ lemma norm_le_interp_of_mem_verticalClosedStrip₀₁' (f : ℂ → E) {z : ℂ} {a b : ℝ} (hz : z ∈ verticalClosedStrip 0 1) (hd : DiffContOnCl ℂ f (verticalStrip 0 1)) (hB : BddAbove ((norm ∘ f) '' verticalClosedStrip 0 1)) (ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a) (hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b) : ‖f z‖ ≤ a ^ (1 - z.re) * b ^ z.re
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E z : ℂ a b : ℝ hz : z ∈ verticalClosedStrip 0 1 hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b this : ‖interpStrip f z‖ ≤ sSupNormIm f 0 ^ (1 - z.re) * sSupNormIm f 1 ^ z.re ⊢ (norm ∘ f '' (re ⁻¹' {1})).Nonempty
use ‖(f 1)‖, 1
case h E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E z : ℂ a b : ℝ hz : z ∈ verticalClosedStrip 0 1 hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b this : ‖interpStrip f z‖ ≤ sSupNormIm f 0 ^ (1 - z.re) * sSupNormIm f 1 ^ z.re ⊢ 1 ∈ re ⁻¹' {1} ∧ (norm ∘ f) 1 = ‖f 1‖
0fab8ad239caab3f
Affine.Simplex.inner_mongePoint_vsub_face_centroid_vsub
Mathlib/Geometry/Euclidean/MongePoint.lean
theorem inner_mongePoint_vsub_face_centroid_vsub {n : ℕ} (s : Simplex ℝ P (n + 2)) {i₁ i₂ : Fin (n + 3)} : ⟪s.mongePoint -ᵥ ({i₁, i₂}ᶜ : Finset (Fin (n + 3))).centroid ℝ s.points, s.points i₁ -ᵥ s.points i₂⟫ = 0
case right V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P n : ℕ s : Simplex ℝ P (n + 2) i₁ i₂ : Fin (n + 3) h : ¬i₁ = i₂ hs : ∑ i : PointsWithCircumcenterIndex (n + 2), (pointWeightsWithCircumcenter i₁ - pointWeightsWithCircumcenter i₂) i = 0 fs : Finset (Fin (n + 3)) := {i₁, i₂} i : Fin (n + 3) hi : i ∉ fs hj : i = i₂ ⊢ False
simp [fs, ← hj] at hi
no goals
4dd62aff1c506de0
Complex.HadamardThreeLines.scale_diffContOnCl
Mathlib/Analysis/Complex/Hadamard.lean
/-- The function `scale f l u` is `diffContOnCl`. -/ lemma scale_diffContOnCl {f : ℂ → E} {l u : ℝ} (hul : l < u) (hd : DiffContOnCl ℂ f (verticalStrip l u)) : DiffContOnCl ℂ (scale f l u) (verticalStrip 0 1)
case hg.hf.hc E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E l u : ℝ hul : l < u hd : DiffContOnCl ℂ f (verticalStrip l u) ⊢ DiffContOnCl ℂ (fun x => x) (verticalStrip 0 1)
exact Differentiable.diffContOnCl differentiable_id'
no goals
3fd41ceba2ac6041