name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Filter.liminf_sdiff
Mathlib/Order/LiminfLimsup.lean
theorem liminf_sdiff [NeBot f] (a : α) : liminf u f \ a = liminf (fun b => u b \ a) f
α : Type u_1 β : Type u_2 inst✝¹ : CompleteBooleanAlgebra α f : Filter β u : β → α inst✝ : f.NeBot a : α ⊢ liminf u f \ a = liminf (fun b => u b \ a) f
simp only [sdiff_eq, inf_comm _ aᶜ, inf_liminf]
no goals
3142b483c8bd7f08
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.blastDivSubtractShift_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Operations/Udiv.lean
theorem blastDivSubtractShift_decl_eq (aig : AIG α) (falseRef trueRef : AIG.Ref aig) (n d : AIG.RefVec aig w) (wn wr : Nat) (q r : AIG.RefVec aig w) : ∀ (idx : Nat) (h1) (h2), (blastDivSubtractShift aig falseRef trueRef n d wn wr q r).aig.decls[idx]'h2 = aig.decls[idx]'h1
case h2.h.h.h.h α : Type inst✝¹ : Hashable α inst✝ : DecidableEq α w : Nat aig : AIG α falseRef trueRef : aig.Ref n d : aig.RefVec w wn wr : Nat q r : aig.RefVec w res : BlastDivSubtractShiftOutput aig w hres : { aig := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, wn := wn - 1, wr := wr + 1, q := (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec.cast ⋯, r := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec, hle := ⋯ } = res idx✝ : Nat h1✝ : idx✝ < aig.decls.size h2✝ : idx✝ < { aig := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig, wn := wn - 1, wr := wr + 1, q := (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec.cast ⋯, r := (AIG.RefVec.ite (AIG.RefVec.ite (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref, lhs := (((blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := ((blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).aig { discr := (BVPred.mkUlt (blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).aig { lhs := (((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯, rhs := (((d.cast ⋯).cast ⋯).cast ⋯).cast ⋯ }).ref.cast ⋯, lhs := (((((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯).cast ⋯).cast ⋯).cast ⋯, rhs := ((blastSub (blastShiftConcat (blastShiftConcat (blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).aig { lhs := q.cast ⋯, bit := falseRef.cast ⋯ }).aig { lhs := (q.cast ⋯).cast ⋯, bit := (trueRef.cast ⋯).cast ⋯ }).aig { lhs := ((blastShiftConcat aig { lhs := r, bit := n.getD (wn - 1) falseRef }).vec.cast ⋯).cast ⋯, rhs := ((d.cast ⋯).cast ⋯).cast ⋯ }).vec.cast ⋯).cast ⋯ }).vec, hle := ⋯ }.aig.decls.size ⊢ idx✝ < aig.decls.size
assumption
no goals
76230fc57d8c20e2
Submodule.goursatFst_prod_goursatSnd_le
Mathlib/LinearAlgebra/Goursat.lean
lemma goursatFst_prod_goursatSnd_le : L.goursatFst.prod L.goursatSnd ≤ L
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N L : Submodule R (M × N) ⊢ L.goursatFst.prod L.goursatSnd ≤ L
simpa only [← toAddSubgroup_le, goursatFst_toAddSubgroup, goursatSnd_toAddSubgroup] using L.toAddSubgroup.goursatFst_prod_goursatSnd_le
no goals
006e5b2502a4ed1e
MeasureTheory.hasFDerivAt_convolution_right_with_param
Mathlib/Analysis/Convolution.lean
theorem hasFDerivAt_convolution_right_with_param {g : P → G → E'} {s : Set P} {k : Set G} (hs : IsOpen s) (hk : IsCompact k) (hgs : ∀ p, ∀ x, p ∈ s → x ∉ k → g p x = 0) (hf : LocallyIntegrable f μ) (hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ)) (q₀ : P × G) (hq₀ : q₀.1 ∈ s) : HasFDerivAt (fun q : P × G => (f ⋆[L, μ] g q.1) q.2) ((f ⋆[L.precompR (P × G), μ] fun x : G => fderiv 𝕜 (↿g) (q₀.1, x)) q₀.2) q₀
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ) q₀ : P × G hq₀ : q₀.1 ∈ s g' : P × G → P × G →L[𝕜] E' := fderiv 𝕜 ↿g A : ∀ p ∈ s, Continuous (g p) A' : ∀ (q : P × G), q.1 ∈ s → s ×ˢ univ ∈ 𝓝 q p : P x : G hp : p ∈ s hx : x ∉ k ⊢ g' (p, x) = 0
refine (hasFDerivAt_zero_of_eventually_const 0 ?_).fderiv
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF P : Type uP inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedAddCommGroup E' inst✝¹¹ : NormedAddCommGroup F f : G → E inst✝¹⁰ : RCLike 𝕜 inst✝⁹ : NormedSpace 𝕜 E inst✝⁸ : NormedSpace 𝕜 E' inst✝⁷ : NormedSpace ℝ F inst✝⁶ : NormedSpace 𝕜 F inst✝⁵ : MeasurableSpace G inst✝⁴ : NormedAddCommGroup G inst✝³ : BorelSpace G inst✝² : NormedSpace 𝕜 G inst✝¹ : NormedAddCommGroup P inst✝ : NormedSpace 𝕜 P μ : Measure G L : E →L[𝕜] E' →L[𝕜] F g : P → G → E' s : Set P k : Set G hs : IsOpen s hk : IsCompact k hgs : ∀ (p : P) (x : G), p ∈ s → x ∉ k → g p x = 0 hf : LocallyIntegrable f μ hg : ContDiffOn 𝕜 1 (↿g) (s ×ˢ univ) q₀ : P × G hq₀ : q₀.1 ∈ s g' : P × G → P × G →L[𝕜] E' := fderiv 𝕜 ↿g A : ∀ p ∈ s, Continuous (g p) A' : ∀ (q : P × G), q.1 ∈ s → s ×ˢ univ ∈ 𝓝 q p : P x : G hp : p ∈ s hx : x ∉ k ⊢ ↿g =ᶠ[𝓝 (p, x)] fun x => 0
681ec723c7fd0b70
MeasureTheory.Measure.integral_isMulLeftInvariant_isMulRightInvariant_combo
Mathlib/MeasureTheory/Measure/Haar/Unique.lean
/-- In a group with a left invariant measure `μ` and a right invariant measure `ν`, one can express integrals with respect to `μ` as integrals with respect to `ν` up to a constant scaling factor (given in the statement as `∫ x, g x ∂μ` where `g` is a fixed reference function) and an explicit density `y ↦ 1/∫ z, g (z⁻¹ * y) ∂ν`. -/ @[to_additive] lemma integral_isMulLeftInvariant_isMulRightInvariant_combo {μ ν : Measure G} [IsFiniteMeasureOnCompacts μ] [IsFiniteMeasureOnCompacts ν] [IsMulLeftInvariant μ] [IsMulRightInvariant ν] [IsOpenPosMeasure ν] {f g : G → ℝ} (hf : Continuous f) (h'f : HasCompactSupport f) (hg : Continuous g) (h'g : HasCompactSupport g) (g_nonneg : 0 ≤ g) {x₀ : G} (g_pos : g x₀ ≠ 0) : ∫ x, f x ∂μ = (∫ y, f y * (∫ z, g (z⁻¹ * y) ∂ν)⁻¹ ∂ν) * ∫ x, g x ∂μ
case h'f G : Type u_1 inst✝⁹ : TopologicalSpace G inst✝⁸ : Group G inst✝⁷ : IsTopologicalGroup G inst✝⁶ : MeasurableSpace G inst✝⁵ : BorelSpace G μ ν : Measure G inst✝⁴ : IsFiniteMeasureOnCompacts μ inst✝³ : IsFiniteMeasureOnCompacts ν inst✝² : μ.IsMulLeftInvariant inst✝¹ : ν.IsMulRightInvariant inst✝ : ν.IsOpenPosMeasure f g : G → ℝ hf : Continuous f h'f : HasCompactSupport f hg : Continuous g h'g : HasCompactSupport g g_nonneg : 0 ≤ g x₀ : G g_pos : g x₀ ≠ 0 Hf : LocallyCompactSpace G D : G → ℝ := fun x => ∫ (y : G), g (y⁻¹ * x) ∂ν D_cont : Continuous D D_pos : ∀ (x : G), 0 < D x K : Set G := tsupport f K_comp : IsCompact K ⊢ HasCompactSupport (uncurry fun x y => f x * (D x)⁻¹ * g (y⁻¹ * x))
let L := tsupport g
case h'f G : Type u_1 inst✝⁹ : TopologicalSpace G inst✝⁸ : Group G inst✝⁷ : IsTopologicalGroup G inst✝⁶ : MeasurableSpace G inst✝⁵ : BorelSpace G μ ν : Measure G inst✝⁴ : IsFiniteMeasureOnCompacts μ inst✝³ : IsFiniteMeasureOnCompacts ν inst✝² : μ.IsMulLeftInvariant inst✝¹ : ν.IsMulRightInvariant inst✝ : ν.IsOpenPosMeasure f g : G → ℝ hf : Continuous f h'f : HasCompactSupport f hg : Continuous g h'g : HasCompactSupport g g_nonneg : 0 ≤ g x₀ : G g_pos : g x₀ ≠ 0 Hf : LocallyCompactSpace G D : G → ℝ := fun x => ∫ (y : G), g (y⁻¹ * x) ∂ν D_cont : Continuous D D_pos : ∀ (x : G), 0 < D x K : Set G := tsupport f K_comp : IsCompact K L : Set G := tsupport g ⊢ HasCompactSupport (uncurry fun x y => f x * (D x)⁻¹ * g (y⁻¹ * x))
6b9d060f3308d3d5
mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt
Mathlib/RingTheory/Polynomial/Eisenstein/IsIntegral.lean
theorem mem_adjoin_of_smul_prime_smul_of_minpoly_isEisensteinAt {B : PowerBasis K L} (hp : Prime p) (hBint : IsIntegral R B.gen) {z : L} (hzint : IsIntegral R z) (hz : p • z ∈ adjoin R ({B.gen} : Set L)) (hei : (minpoly R B.gen).IsEisensteinAt 𝓟) : z ∈ adjoin R ({B.gen} : Set L)
case neg.hi.convert_2.intro R : Type u K : Type v L : Type z p : R inst✝¹⁰ : CommRing R inst✝⁹ : Field K inst✝⁸ : Field L inst✝⁷ : Algebra K L inst✝⁶ : Algebra R L inst✝⁵ : Algebra R K inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra.IsSeparable K L inst✝² : IsDomain R inst✝¹ : IsFractionRing R K inst✝ : IsIntegrallyClosed R B : PowerBasis K L hp : _root_.Prime p hBint : IsIntegral R B.gen z : L hzint : IsIntegral R z this✝ : Module.Finite K L P : R[X] := minpoly R B.gen hei : P.IsEisensteinAt (Submodule.span R {p}) hndiv : ¬p ^ 2 ∣ P.coeff 0 hP : P = minpoly R B.gen n : ℕ hn : B.dim = n.succ this : NoZeroSMulDivisors R L x✝ : L[X] := Polynomial.map (algebraMap R L) P Q₁ : R[X] Q : R[X] := Q₁ %ₘ P hQ₁ : Q = Q₁ %ₘ P hQzero : ¬Q = 0 j : ℕ hj : j + 1 ∈ range (Q.natDegree + 1) H : j + 1 + 1 ≤ P.natDegree Hj : Q.natDegree + 1 = j + 1 + (Q.natDegree - j) g : ℕ → R hg : ∀ k ∈ range (j + 1), Q.coeff k • B.gen ^ k = (algebraMap R L) p * g k • B.gen ^ k f : ℕ → L hf : ∀ (i : ℕ), (Polynomial.map (algebraMap R L) (minpoly R B.gen)).natDegree ≤ i → f i ∈ adjoin R {B.gen} ∧ (algebraMap R L) p * f i = B.gen ^ i hf₁ : ∀ k ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + k) • B.gen ^ (j + 1 + k) * B.gen ^ (P.natDegree - (j + 2)) = (algebraMap R L) p * Q.coeff (j + 1 + k) • f (k + P.natDegree - 1) hQ : (Algebra.norm K) ((algebraMap R L) (Q.coeff (j + 1)) * B.gen ^ (j + 1 + (P.natDegree - (j + 2)))) = (Algebra.norm K) (p • z * B.gen ^ (P.natDegree - (j + 2)) - (algebraMap R L) p * (∑ i ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + i) • f (i + P.natDegree - 1) + ∑ i ∈ range (j + 1), g i • B.gen ^ i * B.gen ^ (P.natDegree - (j + 2)))) hintsum : IsIntegral R (z * B.gen ^ (P.natDegree - (j + 2)) - (∑ x ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + x) • f (x + P.natDegree - 1) + ∑ x ∈ range (j + 1), g x • B.gen ^ x * B.gen ^ (P.natDegree - (j + 2)))) r : R hr : (algebraMap R K) r = (Algebra.norm K) (z * B.gen ^ (P.natDegree - (j + 2)) - (∑ x ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + x) • f (x + P.natDegree - 1) + ∑ x ∈ range (j + 1), g x • B.gen ^ x * B.gen ^ (P.natDegree - (j + 2)))) ⊢ p ^ n.succ ∣ Q.coeff j.succ ^ n.succ * (minpoly R B.gen).coeff 0 ^ (j.succ + (P.natDegree - (j + 2)))
rw [Algebra.smul_def, mul_assoc, ← mul_sub, _root_.map_mul, algebraMap_apply R K L, map_pow, Algebra.norm_algebraMap, _root_.map_mul, algebraMap_apply R K L, Algebra.norm_algebraMap, finrank B, ← hr, PowerBasis.norm_gen_eq_coeff_zero_minpoly, minpoly.isIntegrallyClosed_eq_field_fractions' K hBint, coeff_map, show (-1 : K) = algebraMap R K (-1) by simp, ← map_pow, ← map_pow, ← _root_.map_mul, ← map_pow, ← _root_.map_mul, ← map_pow, ← _root_.map_mul] at hQ
case neg.hi.convert_2.intro R : Type u K : Type v L : Type z p : R inst✝¹⁰ : CommRing R inst✝⁹ : Field K inst✝⁸ : Field L inst✝⁷ : Algebra K L inst✝⁶ : Algebra R L inst✝⁵ : Algebra R K inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra.IsSeparable K L inst✝² : IsDomain R inst✝¹ : IsFractionRing R K inst✝ : IsIntegrallyClosed R B : PowerBasis K L hp : _root_.Prime p hBint : IsIntegral R B.gen z : L hzint : IsIntegral R z this✝ : Module.Finite K L P : R[X] := minpoly R B.gen hei : P.IsEisensteinAt (Submodule.span R {p}) hndiv : ¬p ^ 2 ∣ P.coeff 0 hP : P = minpoly R B.gen n : ℕ hn : B.dim = n.succ this : NoZeroSMulDivisors R L x✝ : L[X] := Polynomial.map (algebraMap R L) P Q₁ : R[X] Q : R[X] := Q₁ %ₘ P hQ₁ : Q = Q₁ %ₘ P hQzero : ¬Q = 0 j : ℕ hj : j + 1 ∈ range (Q.natDegree + 1) H : j + 1 + 1 ≤ P.natDegree Hj : Q.natDegree + 1 = j + 1 + (Q.natDegree - j) g : ℕ → R hg : ∀ k ∈ range (j + 1), Q.coeff k • B.gen ^ k = (algebraMap R L) p * g k • B.gen ^ k f : ℕ → L hf : ∀ (i : ℕ), (Polynomial.map (algebraMap R L) (minpoly R B.gen)).natDegree ≤ i → f i ∈ adjoin R {B.gen} ∧ (algebraMap R L) p * f i = B.gen ^ i hf₁ : ∀ k ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + k) • B.gen ^ (j + 1 + k) * B.gen ^ (P.natDegree - (j + 2)) = (algebraMap R L) p * Q.coeff (j + 1 + k) • f (k + P.natDegree - 1) hintsum : IsIntegral R (z * B.gen ^ (P.natDegree - (j + 2)) - (∑ x ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + x) • f (x + P.natDegree - 1) + ∑ x ∈ range (j + 1), g x • B.gen ^ x * B.gen ^ (P.natDegree - (j + 2)))) r : R hQ : (algebraMap R K) (Q.coeff (j + 1) ^ B.dim * ((-1) ^ B.dim * (minpoly R B.gen).coeff 0) ^ (j + 1 + (P.natDegree - (j + 2)))) = (algebraMap R K) (p ^ B.dim * r) hr : (algebraMap R K) r = (Algebra.norm K) (z * B.gen ^ (P.natDegree - (j + 2)) - (∑ x ∈ (range (Q.natDegree - j)).erase 0, Q.coeff (j + 1 + x) • f (x + P.natDegree - 1) + ∑ x ∈ range (j + 1), g x • B.gen ^ x * B.gen ^ (P.natDegree - (j + 2)))) ⊢ p ^ n.succ ∣ Q.coeff j.succ ^ n.succ * (minpoly R B.gen).coeff 0 ^ (j.succ + (P.natDegree - (j + 2)))
fa4f10e8cbdbb4c7
CategoryTheory.mem_essImage_of_unit_isSplitMono
Mathlib/CategoryTheory/Adjunction/Reflective.lean
theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C} [IsSplitMono ((reflectorAdjunction i).unit.app A)] : i.essImage A
C : Type u₁ D : Type u₂ inst✝³ : Category.{v₁, u₁} C inst✝² : Category.{v₂, u₂} D i : D ⥤ C inst✝¹ : Reflective i A : C inst✝ : IsSplitMono ((reflectorAdjunction i).unit.app A) η : 𝟭 C ⟶ reflector i ⋙ i := (reflectorAdjunction i).unit this✝¹ : IsIso (η.app (i.obj ((reflector i).obj A))) this✝ : Epi (η.app A) this : IsIso (η.app A) ⊢ i.essImage A
exact (reflectorAdjunction i).mem_essImage_of_unit_isIso A
no goals
78eecab7fff04ed5
HNNExtension.NormalWord.unitsSMul_cancels_iff
Mathlib/GroupTheory/HNNExtension.lean
theorem unitsSMul_cancels_iff (u : ℤˣ) (w : NormalWord d) : Cancels (-u) (unitsSMul φ u w) ↔ ¬ Cancels u w
case pos.cons G : Type u_1 inst✝ : Group G A B : Subgroup G φ : ↥A ≃* ↥B d : TransversalPair G A B u : ℤˣ g : G u' : ℤˣ w : NormalWord d h1 : w.head ∈ d.set u' h2 : ∀ u'_1 ∈ Option.map Prod.fst w.toList.head?, w.head ∈ toSubgroup A B u' → u' = u'_1 a✝ : ∀ (h : Cancels u w), ¬Cancels (-u) (unitsSMulWithCancel φ u w ⋯) h✝ : Cancels u (cons g u' w h1 h2) hc : Cancels (-u) (unitsSMulWithCancel φ u (cons g u' w h1 h2) ⋯) h : g ∈ toSubgroup A B u ∧ u' = -u ⊢ Cancels u' w
cases h.2
case pos.cons.refl G : Type u_1 inst✝ : Group G A B : Subgroup G φ : ↥A ≃* ↥B d : TransversalPair G A B u : ℤˣ g : G w : NormalWord d a✝ : ∀ (h : Cancels u w), ¬Cancels (-u) (unitsSMulWithCancel φ u w ⋯) h1 : w.head ∈ d.set (-u) h2 : ∀ u' ∈ Option.map Prod.fst w.toList.head?, w.head ∈ toSubgroup A B (-u) → -u = u' h✝ : Cancels u (cons g (-u) w h1 h2) hc : Cancels (-u) (unitsSMulWithCancel φ u (cons g (-u) w h1 h2) ⋯) h : g ∈ toSubgroup A B u ∧ -u = -u ⊢ Cancels (-u) w
b3a9a1f389e0c3f6
AlgebraicGeometry.genericPoint_eq_of_isOpenImmersion
Mathlib/AlgebraicGeometry/FunctionField.lean
theorem genericPoint_eq_of_isOpenImmersion {X Y : Scheme} (f : X ⟶ Y) [H : IsOpenImmersion f] [hX : IrreducibleSpace X] [IrreducibleSpace Y] : f.base (genericPoint X) = genericPoint Y
case h.e'_4 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace ⊢ Set.univ = closure (⇑(ConcreteCategory.hom f.base) '' Set.univ)
symm
case h.e'_4 X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace ⊢ closure (⇑(ConcreteCategory.hom f.base) '' Set.univ) = Set.univ
1e9165b2d519e678
List.Perm.pmap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Perm.lean
theorem Perm.pmap {p : α → Prop} (f : ∀ a, p a → β) {l₁ l₂ : List α} (p : l₁ ~ l₂) {H₁ H₂} : pmap f l₁ H₁ ~ pmap f l₂ H₂
α : Type u_1 β : Type u_2 p✝ : α → Prop f : (a : α) → p✝ a → β l₁ l₂ : List α p : l₁ ~ l₂ H₁ : ∀ (a : α), a ∈ l₁ → p✝ a H₂ : ∀ (a : α), a ∈ l₂ → p✝ a ⊢ List.pmap f l₁ H₁ ~ List.pmap f l₂ H₂
induction p with | nil => simp | cons x _p IH => simp [IH, Perm.cons] | swap x y => simp [swap] | trans _p₁ p₂ IH₁ IH₂ => exact IH₁.trans (IH₂ (H₁ := fun a m => H₂ a (p₂.subset m)))
no goals
b6857377dabdd618
ContinuousLinearMap.opNorm_le_of_unit_norm
Mathlib/Analysis/NormedSpace/OperatorNorm/Basic.lean
theorem opNorm_le_of_unit_norm [NormedSpace ℝ E] [NormedSpace ℝ F] {f : E →L[ℝ] F} {C : ℝ} (hC : 0 ≤ C) (hf : ∀ x, ‖x‖ = 1 → ‖f x‖ ≤ C) : ‖f‖ ≤ C
E : Type u_4 F : Type u_5 inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖f x‖ ≤ C ⊢ ‖f‖ ≤ C
refine opNorm_le_bound' f hC fun x hx => ?_
E : Type u_4 F : Type u_5 inst✝³ : SeminormedAddCommGroup E inst✝² : SeminormedAddCommGroup F inst✝¹ : NormedSpace ℝ E inst✝ : NormedSpace ℝ F f : E →L[ℝ] F C : ℝ hC : 0 ≤ C hf : ∀ (x : E), ‖x‖ = 1 → ‖f x‖ ≤ C x : E hx : ‖x‖ ≠ 0 ⊢ ‖f x‖ ≤ C * ‖x‖
7859156de0e60578
FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
Mathlib/ModelTheory/FinitelyGenerated.lean
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
L : Language M : Type u_1 inst✝ : L.Structure M N : L.Substructure M ⊢ (∃ S, S.Countable ∧ (closure L).toFun S = N) ↔ ↑N = ∅ ∨ ∃ s, (closure L).toFun (range s) = N
constructor
case mp L : Language M : Type u_1 inst✝ : L.Structure M N : L.Substructure M ⊢ (∃ S, S.Countable ∧ (closure L).toFun S = N) → ↑N = ∅ ∨ ∃ s, (closure L).toFun (range s) = N case mpr L : Language M : Type u_1 inst✝ : L.Structure M N : L.Substructure M ⊢ (↑N = ∅ ∨ ∃ s, (closure L).toFun (range s) = N) → ∃ S, S.Countable ∧ (closure L).toFun S = N
9cbb3eaa8b379543
HurwitzZeta.hurwitzZetaEven_one_sub
Mathlib/NumberTheory/LSeries/HurwitzZetaEven.lean
/-- If `s` is not in `-ℕ`, and either `a ≠ 0` or `s ≠ 1`, then `hurwitzZetaEven a (1 - s)` is an explicit multiple of `cosZeta s`. -/ lemma hurwitzZetaEven_one_sub (a : UnitAddCircle) {s : ℂ} (hs : ∀ (n : ℕ), s ≠ -n) (hs' : a ≠ 0 ∨ s ≠ 1) : hurwitzZetaEven a (1 - s) = 2 * (2 * π) ^ (-s) * Gamma s * cos (π * s / 2) * cosZeta a s
a : UnitAddCircle s : ℂ hs : ∀ (n : ℕ), s ≠ -↑n hs' : a ≠ 0 ∨ s ≠ 1 ⊢ a ≠ 0 ∨ 1 - s ≠ 0
simpa [sub_eq_zero, eq_comm (a := s)] using hs'
no goals
ba1c42484b38c301
SSet.horn.hom_ext
Mathlib/AlgebraicTopology/SimplicialSet/Horn.lean
/-- Two morphisms from a horn are equal if they are equal on all suitable faces. -/ protected lemma hom_ext {n : ℕ} {i : Fin (n+2)} {S : SSet} (σ₁ σ₂ : Λ[n+1, i] ⟶ S) (h : ∀ (j) (h : j ≠ i), σ₁.app _ (face i j h) = σ₂.app _ (face i j h)) : σ₁ = σ₂
n : ℕ i : Fin (n + 2) S : SSet σ₁ σ₂ : Λ[n + 1, i] ⟶ S h : ∀ (j : Fin (n + 2)) (h : j ≠ i), σ₁.app (op ⦋n⦌) (face i j h) = σ₂.app (op ⦋n⦌) (face i j h) m : ℕ f : Λ[n + 1, i] _⦋m⦌ f' : unop (op ⦋m⦌) ⟶ ⦋n + 1⦌ hf : (stdSimplex.objEquiv ⦋n + 1⦌ (op ⦋m⦌)).symm f' = ↑f ⊢ ∃ j, ¬j = i ∧ ∀ (k : Fin ((unop (op ⦋m⦌)).len + 1)), (Hom.toOrderHom f') k ≠ j
obtain ⟨f, hf'⟩ := f
case mk n : ℕ i : Fin (n + 2) S : SSet σ₁ σ₂ : Λ[n + 1, i] ⟶ S h : ∀ (j : Fin (n + 2)) (h : j ≠ i), σ₁.app (op ⦋n⦌) (face i j h) = σ₂.app (op ⦋n⦌) (face i j h) m : ℕ f' : unop (op ⦋m⦌) ⟶ ⦋n + 1⦌ f : Δ[n + 1] _⦋m⦌ hf' : Set.range ⇑(asOrderHom f) ∪ {i} ≠ Set.univ hf : (stdSimplex.objEquiv ⦋n + 1⦌ (op ⦋m⦌)).symm f' = ↑⟨f, hf'⟩ ⊢ ∃ j, ¬j = i ∧ ∀ (k : Fin ((unop (op ⦋m⦌)).len + 1)), (Hom.toOrderHom f') k ≠ j
81aed7a2f2a51d1a
Sylow.mapSurjective_surjective
Mathlib/GroupTheory/Sylow.lean
theorem mapSurjective_surjective (p : ℕ) [Fact p.Prime] : Function.Surjective (Sylow.mapSurjective hf : Sylow p G → Sylow p G')
G : Type u_1 inst✝³ : Group G inst✝² : Finite G G' : Type u_2 inst✝¹ : Group G' f : G →* G' hf : Function.Surjective ⇑f p : ℕ inst✝ : Fact (Nat.Prime p) ⊢ Function.Surjective (mapSurjective hf)
have : Finite G' := Finite.of_surjective f hf
G : Type u_1 inst✝³ : Group G inst✝² : Finite G G' : Type u_2 inst✝¹ : Group G' f : G →* G' hf : Function.Surjective ⇑f p : ℕ inst✝ : Fact (Nat.Prime p) this : Finite G' ⊢ Function.Surjective (mapSurjective hf)
0fc3ef39797b02b0
VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le
Mathlib/Analysis/Fourier/FourierTransformDeriv.lean
theorem norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le [FiniteDimensional ℝ V] {μ : Measure V} [Measure.IsAddHaarMeasure μ] {K N : ℕ∞} (hf : ContDiff ℝ N f) (h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖^k * ‖iteratedFDeriv ℝ n f v‖) μ) {k n : ℕ} (hk : k ≤ K) (hn : n ≤ N) {w : W} : ‖fourierPowSMulRight (-L.flip) (iteratedFDeriv ℝ k (fourierIntegral 𝐞 μ L.toLinearMap₂ f)) w n‖ ≤ (2 * π) ^ k * (2 * k + 2) ^ n * ‖L‖ ^ k * ∑ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ∫ v, ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖ ∂μ
E : Type u_1 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℂ E V : Type u_2 W : Type u_3 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : NormedSpace ℝ V inst✝⁵ : NormedAddCommGroup W inst✝⁴ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ f : V → E inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : FiniteDimensional ℝ V μ : Measure V inst✝ : μ.IsAddHaarMeasure K N : ℕ∞ hf : ContDiff ℝ (↑N) f h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ k n : ℕ hk : ↑k ≤ K hn : ↑n ≤ N w : W I : ∀ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), Integrable (fun v => ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) μ v : V ⊢ ∀ i ≤ n, ∀ j ≤ k, ‖v‖ ^ j * ‖iteratedFDeriv ℝ i f v‖ ≤ ∑ i ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ‖v‖ ^ i.1 * ‖iteratedFDeriv ℝ i.2 f v‖
intro i hi j hj
E : Type u_1 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℂ E V : Type u_2 W : Type u_3 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : NormedSpace ℝ V inst✝⁵ : NormedAddCommGroup W inst✝⁴ : NormedSpace ℝ W L : V →L[ℝ] W →L[ℝ] ℝ f : V → E inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : FiniteDimensional ℝ V μ : Measure V inst✝ : μ.IsAddHaarMeasure K N : ℕ∞ hf : ContDiff ℝ (↑N) f h'f : ∀ (k n : ℕ), ↑k ≤ K → ↑n ≤ N → Integrable (fun v => ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ k n : ℕ hk : ↑k ≤ K hn : ↑n ≤ N w : W I : ∀ p ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), Integrable (fun v => ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖) μ v : V i : ℕ hi : i ≤ n j : ℕ hj : j ≤ k ⊢ ‖v‖ ^ j * ‖iteratedFDeriv ℝ i f v‖ ≤ ∑ i ∈ Finset.range (k + 1) ×ˢ Finset.range (n + 1), ‖v‖ ^ i.1 * ‖iteratedFDeriv ℝ i.2 f v‖
8318f0ae43be69ad
UpperHalfPlane.contMDiffAt_ofComplex
Mathlib/Analysis/Complex/UpperHalfPlane/Manifold.lean
lemma contMDiffAt_ofComplex {n : WithTop ℕ∞} {z : ℂ} (hz : 0 < z.im) : ContMDiffAt 𝓘(ℂ) 𝓘(ℂ) n ofComplex z
case left n : WithTop ℕ∞ z : ℂ hz : 0 < z.im ⊢ Tendsto (Subtype.val ∘ ↑ofComplex) (nhds z) (nhds ↑(↑ofComplex z))
refine Tendsto.congr' (eventuallyEq_coe_comp_ofComplex hz).symm ?_
case left n : WithTop ℕ∞ z : ℂ hz : 0 < z.im ⊢ Tendsto id (nhds z) (nhds ↑(↑ofComplex z))
99c8225fb9438f5f
subsingleton_floorSemiring
Mathlib/Algebra/Order/Floor.lean
theorem subsingleton_floorSemiring {α} [LinearOrderedSemiring α] : Subsingleton (FloorSemiring α)
α : Type u_4 inst✝ : LinearOrderedSemiring α H₁ H₂ : FloorSemiring α this✝ : FloorSemiring.ceil = FloorSemiring.ceil this : FloorSemiring.floor = FloorSemiring.floor ⊢ H₁ = H₂
cases H₁
case mk α : Type u_4 inst✝ : LinearOrderedSemiring α H₂ : FloorSemiring α floor✝ ceil✝ : α → ℕ floor_of_neg✝ : ∀ {a : α}, a < 0 → floor✝ a = 0 gc_floor✝ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝ a ↔ ↑n ≤ a) gc_ceil✝ : GaloisConnection ceil✝ Nat.cast this✝ : FloorSemiring.ceil = FloorSemiring.ceil this : FloorSemiring.floor = FloorSemiring.floor ⊢ { floor := floor✝, ceil := ceil✝, floor_of_neg := floor_of_neg✝, gc_floor := gc_floor✝, gc_ceil := gc_ceil✝ } = H₂
6d1650047452147a
EisensteinSeries.r1_aux_bound
Mathlib/NumberTheory/ModularForms/EisensteinSeries/UniformConvergence.lean
/-- For `c, d ∈ ℝ` with `1 ≤ d ^ 2`, we have `r1 z ≤ |c * z + d| ^ 2`. -/ lemma r1_aux_bound (c : ℝ) {d : ℝ} (hd : 1 ≤ d ^ 2) : r1 z ≤ (c * z.re + d) ^ 2 + (c * z.im) ^ 2
z : ℍ c d : ℝ hd : 1 ≤ d ^ 2 ⊢ r1 z ≤ (c * z.re + d) ^ 2 + (c * z.im) ^ 2
have H1 : (c * z.re + d) ^ 2 + (c * z.im) ^ 2 = c ^ 2 * (z.re ^ 2 + z.im ^ 2) + d * 2 * c * z.re + d ^ 2 := by ring
z : ℍ c d : ℝ hd : 1 ≤ d ^ 2 H1 : (c * z.re + d) ^ 2 + (c * z.im) ^ 2 = c ^ 2 * (z.re ^ 2 + z.im ^ 2) + d * 2 * c * z.re + d ^ 2 ⊢ r1 z ≤ (c * z.re + d) ^ 2 + (c * z.im) ^ 2
9235d86a26f3640b
Turing.ToPartrec.code_is_ok
Mathlib/Computability/TMConfig.lean
theorem code_is_ok (c) : Code.Ok c
case cons.e_a.h f fs : Code IHf : f.Ok IHfs : fs.Ok k : Cont v✝ v : List ℕ ⊢ eval step ?m.141342 = do let x ← fs.eval v✝ eval step (Cfg.ret k (v.headI :: x)) case cons.e_a.h f fs : Code IHf : f.Ok IHfs : fs.Ok k : Cont v✝ v : List ℕ ⊢ Reaches step (Cfg.ret (Cont.cons₁ fs v✝ k) v) ?m.141342 f fs : Code IHf : f.Ok IHfs : fs.Ok k : Cont v✝ v : List ℕ ⊢ Cfg
swap
case cons.e_a.h f fs : Code IHf : f.Ok IHfs : fs.Ok k : Cont v✝ v : List ℕ ⊢ Reaches step (Cfg.ret (Cont.cons₁ fs v✝ k) v) ?m.141342 case cons.e_a.h f fs : Code IHf : f.Ok IHfs : fs.Ok k : Cont v✝ v : List ℕ ⊢ eval step ?m.141342 = do let x ← fs.eval v✝ eval step (Cfg.ret k (v.headI :: x)) f fs : Code IHf : f.Ok IHfs : fs.Ok k : Cont v✝ v : List ℕ ⊢ Cfg
1263cc60b426aeed
IsExposed.eq_inter_halfSpace
Mathlib/Analysis/Convex/Exposed.lean
theorem eq_inter_halfSpace [Nontrivial 𝕜] {A B : Set E} (hAB : IsExposed 𝕜 A B) : ∃ l : E →L[𝕜] 𝕜, ∃ a, B = { x ∈ A | a ≤ l x }
case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ ⊢ ∅ = {x | x ∈ A ∧ 1 ≤ 0 x}
rw [eq_comm, eq_empty_iff_forall_not_mem]
case inl 𝕜 : Type u_1 E : Type u_2 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : OrderedRing 𝕜 inst✝³ : AddCommMonoid E inst✝² : TopologicalSpace E inst✝¹ : Module 𝕜 E inst✝ : Nontrivial 𝕜 A : Set E hAB : IsExposed 𝕜 A ∅ ⊢ ∀ (x : E), x ∉ {x | x ∈ A ∧ 1 ≤ 0 x}
8f4e1e362f92e274
Algebra.Extension.CotangentSpace.map_comp
Mathlib/RingTheory/Kaehler/CotangentComplex.lean
lemma map_comp (f : Hom P P') (g : Hom P' P'') : CotangentSpace.map (g.comp f) = (CotangentSpace.map g).restrictScalars S ∘ₗ CotangentSpace.map f
case h.tmul R : Type u S : Type v inst✝²² : CommRing R inst✝²¹ : CommRing S inst✝²⁰ : Algebra R S P : Extension R S R' : Type u' S' : Type v' inst✝¹⁹ : CommRing R' inst✝¹⁸ : CommRing S' inst✝¹⁷ : Algebra R' S' P' : Extension R' S' inst✝¹⁶ : Algebra R R' inst✝¹⁵ : Algebra S S' inst✝¹⁴ : Algebra R S' inst✝¹³ : IsScalarTower R R' S' R'' : Type u'' S'' : Type v'' inst✝¹² : CommRing R'' inst✝¹¹ : CommRing S'' inst✝¹⁰ : Algebra R'' S'' P'' : Extension R'' S'' inst✝⁹ : Algebra R R'' inst✝⁸ : Algebra S S'' inst✝⁷ : Algebra R S'' inst✝⁶ : IsScalarTower R R'' S'' inst✝⁵ : Algebra R' R'' inst✝⁴ : Algebra S' S'' inst✝³ : Algebra R' S'' inst✝² : IsScalarTower R' R'' S'' inst✝¹ : IsScalarTower R R' R'' inst✝ : IsScalarTower S S' S'' f : P.Hom P' g : P'.Hom P'' x : S y : Ω[P.Ring⁄R] ⊢ (CotangentSpace.map (g.comp f)) (x ⊗ₜ[P.Ring] y) = (↑S (CotangentSpace.map g) ∘ₗ CotangentSpace.map f) (x ⊗ₜ[P.Ring] y)
obtain ⟨y, rfl⟩ := KaehlerDifferential.tensorProductTo_surjective _ _ y
case h.tmul.intro R : Type u S : Type v inst✝²² : CommRing R inst✝²¹ : CommRing S inst✝²⁰ : Algebra R S P : Extension R S R' : Type u' S' : Type v' inst✝¹⁹ : CommRing R' inst✝¹⁸ : CommRing S' inst✝¹⁷ : Algebra R' S' P' : Extension R' S' inst✝¹⁶ : Algebra R R' inst✝¹⁵ : Algebra S S' inst✝¹⁴ : Algebra R S' inst✝¹³ : IsScalarTower R R' S' R'' : Type u'' S'' : Type v'' inst✝¹² : CommRing R'' inst✝¹¹ : CommRing S'' inst✝¹⁰ : Algebra R'' S'' P'' : Extension R'' S'' inst✝⁹ : Algebra R R'' inst✝⁸ : Algebra S S'' inst✝⁷ : Algebra R S'' inst✝⁶ : IsScalarTower R R'' S'' inst✝⁵ : Algebra R' R'' inst✝⁴ : Algebra S' S'' inst✝³ : Algebra R' S'' inst✝² : IsScalarTower R' R'' S'' inst✝¹ : IsScalarTower R R' R'' inst✝ : IsScalarTower S S' S'' f : P.Hom P' g : P'.Hom P'' x : S y : P.Ring ⊗[R] P.Ring ⊢ (CotangentSpace.map (g.comp f)) (x ⊗ₜ[P.Ring] (D R P.Ring).tensorProductTo y) = (↑S (CotangentSpace.map g) ∘ₗ CotangentSpace.map f) (x ⊗ₜ[P.Ring] (D R P.Ring).tensorProductTo y)
36b1f3e0f0214876
Ideal.isPrime_ideal_prod_top
Mathlib/RingTheory/Ideal/Prod.lean
theorem isPrime_ideal_prod_top {I : Ideal R} [h : I.IsPrime] : (prod I (⊤ : Ideal S)).IsPrime
case mem_or_mem'.mk.mk.intro R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal R h : I.IsPrime r₁ : R s₁ : S r₂ : R s₂ : S h₁ : (r₁, s₁) * (r₂, s₂) ∈ ↑(comap (RingHom.fst R S) I) right✝ : (r₁, s₁) * (r₂, s₂) ∈ ↑(comap (RingHom.snd R S) ⊤) ⊢ (r₁, s₁) ∈ I.prod ⊤ ∨ (r₂, s₂) ∈ I.prod ⊤
rcases h.mem_or_mem h₁ with h | h
case mem_or_mem'.mk.mk.intro.inl R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal R h✝ : I.IsPrime r₁ : R s₁ : S r₂ : R s₂ : S h₁ : (r₁, s₁) * (r₂, s₂) ∈ ↑(comap (RingHom.fst R S) I) right✝ : (r₁, s₁) * (r₂, s₂) ∈ ↑(comap (RingHom.snd R S) ⊤) h : (r₁, s₁).1 ∈ I ⊢ (r₁, s₁) ∈ I.prod ⊤ ∨ (r₂, s₂) ∈ I.prod ⊤ case mem_or_mem'.mk.mk.intro.inr R : Type u S : Type v inst✝¹ : Semiring R inst✝ : Semiring S I : Ideal R h✝ : I.IsPrime r₁ : R s₁ : S r₂ : R s₂ : S h₁ : (r₁, s₁) * (r₂, s₂) ∈ ↑(comap (RingHom.fst R S) I) right✝ : (r₁, s₁) * (r₂, s₂) ∈ ↑(comap (RingHom.snd R S) ⊤) h : (r₂, s₂).1 ∈ I ⊢ (r₁, s₁) ∈ I.prod ⊤ ∨ (r₂, s₂) ∈ I.prod ⊤
e99515d75b39b235
CategoryTheory.NonPreadditiveAbelian.σ_comp
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
theorem σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = Limits.prod.map f f ≫ σ
C : Type u inst✝¹ : Category.{v, u} C inst✝ : NonPreadditiveAbelian C X Y : C f : X ⟶ Y g : (CokernelCofork.ofπ σ ⋯).pt ⟶ Y hg : Cofork.π (CokernelCofork.ofπ σ ⋯) ≫ g = prod.map f f ≫ σ ⊢ prod.lift (𝟙 X) 0 ≫ σ ≫ g = g
rw [← Category.assoc, lift_σ, Category.id_comp]
no goals
b7d15c6a05369a0f
CategoryTheory.IsCofilteredOrEmpty.of_exists_of_isCofiltered_of_fullyFaithful
Mathlib/CategoryTheory/Filtered/Final.lean
theorem IsCofilteredOrEmpty.of_exists_of_isCofiltered_of_fullyFaithful [IsCofilteredOrEmpty D] [F.Full] [F.Faithful] (h : ∀ d, ∃ c, Nonempty (F.obj c ⟶ d)) : IsCofilteredOrEmpty C
case intro.intro C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C D : Type u₂ inst✝³ : Category.{v₂, u₂} D F : C ⥤ D inst✝² : IsCofilteredOrEmpty D inst✝¹ : F.Full inst✝ : F.Faithful h : ∀ (d : D), ∃ c, Nonempty (F.obj c ⟶ d) d : Dᵒᵖ c : C f : F.obj c ⟶ unop d ⊢ ∃ c, Nonempty (d ⟶ F.op.obj c)
exact ⟨op c, ⟨f.op⟩⟩
no goals
a95d8844f0cff275
Finset.ofColex_ne_ofColex
Mathlib/Combinatorics/Colex.lean
lemma ofColex_ne_ofColex {s t : Colex α} : ofColex s ≠ ofColex t ↔ s ≠ t
α : Type u_1 s t : Colex α ⊢ s.ofColex ≠ t.ofColex ↔ s ≠ t
simp
no goals
4a3884f9aa9180f8
Nat.mod_def
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Div/Basic.lean
theorem mod_def (m k : Nat) : m % k = m - k * (m / k)
m k : Nat ⊢ m % k = m - k * (m / k)
rw [Nat.sub_eq_of_eq_add]
m k : Nat ⊢ m = m % k + k * (m / k)
f10f5dd1b2641e77
PrimeSpectrum.existsUnique_idempotent_basicOpen_eq_of_isClopen
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
@[stacks 00EE] lemma existsUnique_idempotent_basicOpen_eq_of_isClopen {s : Set (PrimeSpectrum R)} (hs : IsClopen s) : ∃! e : R, IsIdempotentElem e ∧ s = basicOpen e
case refine_1.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommSemiring R s : Set (PrimeSpectrum R) hs : IsClopen s h✝ : Nontrivial R I : Ideal R hI : I.FG J : Ideal R hJ : J.FG hI' : zeroLocus ↑I = sᶜ hJ' : zeroLocus ↑J = s this : I * J ≤ nilradical R n : ℕ hn : I ^ n * J ^ n ≤ ⊥ hnz : n ≠ 0 x : R hx : x ∈ I ^ n y : R hy : y ∈ J ^ n e : x + y = 1 ⊢ ∃ x, IsIdempotentElem x ∧ s = ↑(basicOpen x)
refine ⟨x, ?_, subset_antisymm ?_ ?_⟩
case refine_1.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1 R : Type u inst✝ : CommSemiring R s : Set (PrimeSpectrum R) hs : IsClopen s h✝ : Nontrivial R I : Ideal R hI : I.FG J : Ideal R hJ : J.FG hI' : zeroLocus ↑I = sᶜ hJ' : zeroLocus ↑J = s this : I * J ≤ nilradical R n : ℕ hn : I ^ n * J ^ n ≤ ⊥ hnz : n ≠ 0 x : R hx : x ∈ I ^ n y : R hy : y ∈ J ^ n e : x + y = 1 ⊢ IsIdempotentElem x case refine_1.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2 R : Type u inst✝ : CommSemiring R s : Set (PrimeSpectrum R) hs : IsClopen s h✝ : Nontrivial R I : Ideal R hI : I.FG J : Ideal R hJ : J.FG hI' : zeroLocus ↑I = sᶜ hJ' : zeroLocus ↑J = s this : I * J ≤ nilradical R n : ℕ hn : I ^ n * J ^ n ≤ ⊥ hnz : n ≠ 0 x : R hx : x ∈ I ^ n y : R hy : y ∈ J ^ n e : x + y = 1 ⊢ s ⊆ ↑(basicOpen x) case refine_1.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_3 R : Type u inst✝ : CommSemiring R s : Set (PrimeSpectrum R) hs : IsClopen s h✝ : Nontrivial R I : Ideal R hI : I.FG J : Ideal R hJ : J.FG hI' : zeroLocus ↑I = sᶜ hJ' : zeroLocus ↑J = s this : I * J ≤ nilradical R n : ℕ hn : I ^ n * J ^ n ≤ ⊥ hnz : n ≠ 0 x : R hx : x ∈ I ^ n y : R hy : y ∈ J ^ n e : x + y = 1 ⊢ ↑(basicOpen x) ⊆ s
f72a236e53847d1c
BitVec.DivModState.umod_eq_of_lawful
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Bitblast.lean
theorem DivModState.umod_eq_of_lawful {qr : DivModState w} (h : DivModState.Lawful {n, d} qr) (h_final : qr.wn = 0) : n % d = qr.r
w : Nat n d : BitVec w qr : DivModState w h : Lawful { n := n, d := d } qr h_final✝ : qr.wn = 0 h_final : True hdiv : n.toNat >>> 0 = d.toNat * qr.q.toNat + qr.r.toNat ⊢ d.toNat * BitVec.toNat ?m.63092 + qr.r.toNat = n.toNat w : Nat n d : BitVec w qr : DivModState w h : Lawful { n := n, d := d } qr h_final : qr.wn = 0 ⊢ BitVec w
exact hdiv.symm
no goals
0b594396734385e1
Multiset.sub_add_eq_sub_sub
Mathlib/Data/Multiset/AddSub.lean
protected lemma sub_add_eq_sub_sub : s - (t + u) = s - t - u
case a α : Type u_1 inst✝ : DecidableEq α s t u : Multiset α a✝ : α ⊢ count a✝ (s - (t + u)) = count a✝ (s - t - u)
simp [Nat.sub_add_eq]
no goals
f6dd2d36c336bc75
MulAction.movedBy_mem_fixedBy_of_commute
Mathlib/GroupTheory/GroupAction/FixedPoints.lean
theorem movedBy_mem_fixedBy_of_commute {g h : G} (comm : Commute g h) : (fixedBy α g)ᶜ ∈ fixedBy (Set α) h
α : Type u_1 G : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α g h : G comm : Commute g h ⊢ (fixedBy α g)ᶜ ∈ fixedBy (Set α) h
rw [mem_fixedBy, Set.smul_set_compl, fixedBy_mem_fixedBy_of_commute comm]
no goals
94f70af15c35631c
Ideal.Quotient.index_eq_zero
Mathlib/Algebra/CharP/Quotient.lean
theorem Ideal.Quotient.index_eq_zero {R : Type*} [CommRing R] (I : Ideal R) : (↑I.toAddSubgroup.index : R ⧸ I) = 0
R : Type u_1 inst✝ : CommRing R I : Ideal R ⊢ ↑(if x : Finite (R ⧸ Submodule.toAddSubgroup I) then Fintype.card (R ⧸ Submodule.toAddSubgroup I) else 0) = 0
split_ifs with hq
case pos R : Type u_1 inst✝ : CommRing R I : Ideal R hq : Finite (R ⧸ Submodule.toAddSubgroup I) ⊢ ↑(Fintype.card (R ⧸ Submodule.toAddSubgroup I)) = 0 case neg R : Type u_1 inst✝ : CommRing R I : Ideal R hq : ¬Finite (R ⧸ Submodule.toAddSubgroup I) ⊢ ↑0 = 0
64a79a192da7e338
Dioph.ex_dioph
Mathlib/NumberTheory/Dioph.lean
theorem ex_dioph {S : Set (α ⊕ β → ℕ)} : Dioph S → Dioph {v | ∃ x, v ⊗ x ∈ S} | ⟨γ, p, pe⟩ => ⟨β ⊕ γ, p.map ((inl ⊗ inr ∘ inl) ⊗ inr ∘ inr), fun v => ⟨fun ⟨x, hx⟩ => let ⟨t, ht⟩ := (pe _).1 hx ⟨x ⊗ t, by simp; rw [show (v ⊗ x ⊗ t) ∘ ((inl ⊗ inr ∘ inl) ⊗ inr ∘ inr) = (v ⊗ x) ⊗ t from funext fun s => by rcases s with a | b <;> try { cases a <;> rfl }; rfl] exact ht⟩, fun ⟨t, ht⟩ => ⟨t ∘ inl, (pe _).2 ⟨t ∘ inr, by simp only [Poly.map_apply] at ht rwa [show (v ⊗ t) ∘ ((inl ⊗ inr ∘ inl) ⊗ inr ∘ inr) = (v ⊗ t ∘ inl) ⊗ t ∘ inr from funext fun s => by rcases s with a | b <;> try { cases a <;> rfl }; rfl] at ht⟩⟩⟩⟩
case inr α β : Type u S : Set (α ⊕ β → ℕ) γ : Type u p : Poly ((α ⊕ β) ⊕ γ) pe : ∀ (v : α ⊕ β → ℕ), S v ↔ ∃ t, p (v ⊗ t) = 0 v : α → ℕ x✝ : {v | ∃ x, v ⊗ x ∈ S} v x : β → ℕ hx : v ⊗ x ∈ S t : γ → ℕ ht : p ((v ⊗ x) ⊗ t) = 0 b : γ ⊢ ((v ⊗ x ⊗ t) ∘ ((inl ⊗ inr ∘ inl) ⊗ inr ∘ inr)) (inr b) = ((v ⊗ x) ⊗ t) (inr b)
rfl
no goals
c388e394bd185bab
t2Space_of_properSMul_of_t2Group
Mathlib/Topology/Algebra/ProperAction/Basic.lean
theorem t2Space_of_properSMul_of_t2Group [h_proper : ProperSMul G X] [T2Space G] : T2Space X
case refine_2 G : Type u_1 X : Type u_2 inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : TopologicalSpace G inst✝¹ : TopologicalSpace X h_proper : ProperSMul G X inst✝ : T2Space G f : X → G × X := fun x => (1, x) this : range f = {1} ×ˢ univ ⊢ IsClosed (range f)
rw [this]
case refine_2 G : Type u_1 X : Type u_2 inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : TopologicalSpace G inst✝¹ : TopologicalSpace X h_proper : ProperSMul G X inst✝ : T2Space G f : X → G × X := fun x => (1, x) this : range f = {1} ×ˢ univ ⊢ IsClosed ({1} ×ˢ univ)
e99ce87ed540aaac
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) : ∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
case shiftRight w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.shiftRight rhs)).val.aig.decls.size ⊢ (blastShiftRight (go (go aig lhs).1.aig rhs).1.aig { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }).aig.decls[idx] = aig.decls[idx]
have := (bitblast.go aig lhs).property
case shiftRight w idx m✝ n✝ : Nat lhs : BVExpr m✝ rhs : BVExpr n✝ lih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig lhs).val.aig.decls.size), (go aig lhs).val.aig.decls[idx] = aig.decls[idx] rih : ∀ (aig : AIG BVBit) (h1 : idx < aig.decls.size) (h2 : idx < (go aig rhs).val.aig.decls.size), (go aig rhs).val.aig.decls[idx] = aig.decls[idx] aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (lhs.shiftRight rhs)).val.aig.decls.size this : aig.decls.size ≤ (go aig lhs).val.aig.decls.size ⊢ (blastShiftRight (go (go aig lhs).1.aig rhs).1.aig { n := n✝, target := (go aig lhs).1.vec.cast ⋯, distance := (go (go aig lhs).1.aig rhs).1.vec }).aig.decls[idx] = aig.decls[idx]
f92988d5a1595b39
ProbabilityTheory.iteratedDeriv_two_cgf
Mathlib/Probability/Moments/MGFAnalytic.lean
lemma iteratedDeriv_two_cgf (h : v ∈ interior (integrableExpSet X μ)) : iteratedDeriv 2 (cgf X μ) v = μ[fun ω ↦ (X ω)^2 * exp (v * X ω)] / mgf X μ v - deriv (cgf X μ) v ^ 2
case e_a Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω v : ℝ h : v ∈ interior (integrableExpSet X μ) hμ : ¬μ = 0 h_mem : ∀ᶠ (y : ℝ) in 𝓝 v, y ∈ interior (integrableExpSet X μ) h_d_cgf : deriv (cgf X μ) =ᶠ[𝓝 v] fun u => (∫ (x : Ω), (fun ω => X ω * rexp (u * X ω)) x ∂μ) / mgf X μ u h_d_mgf : deriv (mgf X μ) =ᶠ[𝓝 v] fun u => ∫ (x : Ω), (fun ω => X ω * rexp (u * X ω)) x ∂μ ⊢ mgf X μ v ≠ 0
exact (mgf_pos' hμ (interior_subset (s := integrableExpSet X μ) h)).ne'
no goals
24002d4e2edb89d3
MeasureTheory.upcrossings_lt_top_iff
Mathlib/Probability/Martingale/Upcrossing.lean
theorem upcrossings_lt_top_iff : upcrossings a b f ω < ∞ ↔ ∃ k, ∀ N, upcrossingsBefore a b f N ω ≤ k
Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ ω : Ω this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k ⊢ (∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k) ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
constructor <;> rintro ⟨k, hk⟩
case mp.intro Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ ω : Ω this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℝ≥0 hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k ⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k case mpr.intro Ω : Type u_1 a b : ℝ f : ℕ → Ω → ℝ ω : Ω this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℕ hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k ⊢ ∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k
ad04e390c118cf1b
LiouvilleWith.add_rat
Mathlib/NumberTheory/Transcendental/Liouville/LiouvilleWith.lean
theorem add_rat (h : LiouvilleWith p x) (r : ℚ) : LiouvilleWith p (x + r)
case intro.intro.intro.intro.intro p x : ℝ h : LiouvilleWith p x r : ℚ C : ℝ _hC₀ : 0 < C hC : ∃ᶠ (n : ℕ) in atTop, 1 ≤ n ∧ ∃ m, x ≠ ↑m / ↑n ∧ |x - ↑m / ↑n| < C / ↑n ^ p n : ℕ hn : 1 ≤ n m : ℤ hne : x ≠ ↑m / ↑n hlt : |x - ↑m / ↑n| < C / ↑n ^ p ⊢ ∃ m, x + ↑r ≠ ↑m / ↑(r.den • id n) ∧ |x + ↑r - ↑m / ↑(r.den • id n)| < ↑r.den ^ p * C / ↑(r.den • id n) ^ p
have : (↑(r.den * m + r.num * n : ℤ) / ↑(r.den • id n) : ℝ) = m / n + r := by rw [Algebra.id.smul_eq_mul, id] nth_rewrite 4 [← Rat.num_div_den r] push_cast rw [add_div, mul_div_mul_left _ _ (by positivity), mul_div_mul_right _ _ (by positivity)]
case intro.intro.intro.intro.intro p x : ℝ h : LiouvilleWith p x r : ℚ C : ℝ _hC₀ : 0 < C hC : ∃ᶠ (n : ℕ) in atTop, 1 ≤ n ∧ ∃ m, x ≠ ↑m / ↑n ∧ |x - ↑m / ↑n| < C / ↑n ^ p n : ℕ hn : 1 ≤ n m : ℤ hne : x ≠ ↑m / ↑n hlt : |x - ↑m / ↑n| < C / ↑n ^ p this : ↑(↑r.den * m + r.num * ↑n) / ↑(r.den • id n) = ↑m / ↑n + ↑r ⊢ ∃ m, x + ↑r ≠ ↑m / ↑(r.den • id n) ∧ |x + ↑r - ↑m / ↑(r.den • id n)| < ↑r.den ^ p * C / ↑(r.den • id n) ^ p
7652465b354d5b90
NNRat.addSubmonoid_closure_range_pow
Mathlib/Data/Rat/Star.lean
@[simp] lemma addSubmonoid_closure_range_pow {n : ℕ} (hn₀ : n ≠ 0) : closure (range fun x : ℚ≥0 ↦ x ^ n) = ⊤
n : ℕ hn₀ : n ≠ 0 x : ℚ≥0 ⊢ x = (x.num * x.den ^ (n - 1)) • (↑x.den)⁻¹ ^ n
rw [nsmul_eq_mul]
n : ℕ hn₀ : n ≠ 0 x : ℚ≥0 ⊢ x = ↑(x.num * x.den ^ (n - 1)) * (↑x.den)⁻¹ ^ n
7fc9ce8a3377d839
Bimod.TensorBimod.left_assoc'
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem left_assoc' : (R.mul ▷ _) ≫ actLeft P Q = (α_ R.X R.X _).hom ≫ (R.X ◁ actLeft P Q) ≫ actLeft P Q
C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : MonoidalCategory C inst✝¹ : HasCoequalizers C R S T : Mon_ C P : Bimod R S Q : Bimod S T inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) ⊢ (α_ (R.X ⊗ R.X) P.X Q.X).inv ≫ ((α_ R.X R.X P.X).hom ▷ Q.X ≫ (R.X ◁ P.actLeft) ▷ Q.X ≫ P.actLeft ▷ Q.X) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft) = (α_ R.X R.X (P.X ⊗ Q.X)).hom ≫ R.X ◁ (α_ R.X P.X Q.X).inv ≫ (((α_ R.X (R.X ⊗ P.X) Q.X).inv ≫ (R.X ◁ P.actLeft) ▷ Q.X) ≫ P.actLeft ▷ Q.X) ≫ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X S.X Q.X).hom ≫ P.X ◁ Q.actLeft)
monoidal
no goals
bad1b93937126f5d
ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
Mathlib/MeasureTheory/Integral/MeanInequalities.lean
theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : ∫⁻ a, f a ^ p ∂μ = 1) (hg_norm : ∫⁻ a, g a ^ q ∂μ = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1
case hf α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α p q : ℝ hpq : p.IsConjExponent q f g : α → ℝ≥0∞ hf : AEMeasurable f μ hf_norm : ∫⁻ (a : α), f a ^ p ∂μ = 1 hg_norm : ∫⁻ (a : α), g a ^ q ∂μ = 1 ⊢ AEMeasurable (fun a => f a ^ p * (ENNReal.ofReal p)⁻¹) μ
exact (hf.pow_const _).mul_const _
no goals
bea204bbfdd8c8d8
Algebra.pow_smul_mem_of_smul_subset_of_mem_adjoin
Mathlib/RingTheory/Adjoin/Basic.lean
theorem pow_smul_mem_of_smul_subset_of_mem_adjoin [CommSemiring B] [Algebra R B] [Algebra A B] [IsScalarTower R A B] (r : A) (s : Set B) (B' : Subalgebra R B) (hs : r • s ⊆ B') {x : B} (hx : x ∈ adjoin R s) (hr : algebraMap A B r ∈ B') : ∃ n₀ : ℕ, ∀ n ≥ n₀, r ^ n • x ∈ B'
R : Type uR A : Type uA B : Type uB inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring A inst✝⁴ : Algebra R A inst✝³ : CommSemiring B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B r : A s : Set B B' : Subalgebra R B hs : r • s ⊆ ↑B' hr : (algebraMap A B) r ∈ B' l : ↑↑(Submonoid.closure s) →₀ R n₁ : ↥(Submonoid.closure s) → ℕ n₂ : ∀ (x : ↥(Submonoid.closure s)), r ^ n₁ x • ↑x ∈ Submonoid.closure (r • s) n : ℕ hn : n ≥ l.support.sup n₁ a : ↑↑(Submonoid.closure s) ha : a ∈ l.support this : n ≥ n₁ a ⊢ r ^ n₁ a • ↑a ∈ Submonoid.closure ↑B'.toSubmonoid
apply Submonoid.closure_mono hs (n₂ a)
no goals
c0ccc6b7c63e5bab
Array.flatMap_mkArray
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem flatMap_mkArray {β} (f : α → Array β) : (mkArray n a).flatMap f = (mkArray n (f a)).flatten
α : Type u_1 n : Nat a : α β : Type u_2 f : α → Array β ⊢ flatMap f (mkArray n a) = (mkArray n (f a)).flatten
rw [← toList_inj]
α : Type u_1 n : Nat a : α β : Type u_2 f : α → Array β ⊢ (flatMap f (mkArray n a)).toList = (mkArray n (f a)).flatten.toList
3ca0b1f8e526e2cc
List.Chain.rel
Mathlib/Data/List/Chain.lean
theorem Chain.rel [IsTrans α R] (hl : l.Chain R a) (hb : b ∈ l) : R a b
α : Type u R : α → α → Prop l : List α a b : α inst✝ : IsTrans α R hl : Pairwise R (a :: l) hb : b ∈ l ⊢ R a b
exact rel_of_pairwise_cons hl hb
no goals
72301b273c3b93a5
Matrix.Pivot.exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction
Mathlib/LinearAlgebra/Matrix/Transvection.lean
theorem exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction (IH : ∀ M : Matrix (Fin r) (Fin r) 𝕜, ∃ (L₀ L₀' : List (TransvectionStruct (Fin r) 𝕜)) (D₀ : Fin r → 𝕜), (L₀.map toMatrix).prod * M * (L₀'.map toMatrix).prod = diagonal D₀) (M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) : ∃ (L L' : List (TransvectionStruct (Fin r ⊕ Unit) 𝕜)) (D : Fin r ⊕ Unit → 𝕜), (L.map toMatrix).prod * M * (L'.map toMatrix).prod = diagonal D
𝕜 : Type u_3 inst✝ : Field 𝕜 r : ℕ IH : ∀ (M : Matrix (Fin r) (Fin r) 𝕜), ∃ L₀ L₀' D₀, (List.map toMatrix L₀).prod * M * (List.map toMatrix L₀').prod = diagonal D₀ M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 L₁ L₁' : List (TransvectionStruct (Fin r ⊕ Unit) 𝕜) hM : ((List.map toMatrix L₁).prod * M * (List.map toMatrix L₁').prod).IsTwoBlockDiagonal M' : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜 := (List.map toMatrix L₁).prod * M * (List.map toMatrix L₁').prod M'' : Matrix (Fin r) (Fin r) 𝕜 := M'.toBlocks₁₁ L₀ L₀' : List (TransvectionStruct (Fin r) 𝕜) D₀ : Fin r → 𝕜 h₀ : (List.map toMatrix L₀).prod * M'' * (List.map toMatrix L₀').prod = diagonal D₀ c : 𝕜 := M' (inr ()) (inr ()) this : (List.map (toMatrix ∘ sumInl Unit) L₀).prod * M' * (List.map (toMatrix ∘ sumInl Unit) L₀').prod = diagonal (Sum.elim D₀ fun x => c) ⊢ (List.map toMatrix (List.map (sumInl Unit) L₀ ++ L₁)).prod * M * (List.map toMatrix (L₁' ++ List.map (sumInl Unit) L₀')).prod = diagonal (Sum.elim D₀ fun x => M' (inr ()) (inr ()))
simpa [M', c, Matrix.mul_assoc]
no goals
1db945989babbcf8
Polynomial.coeff_divByMonic_X_sub_C
Mathlib/Algebra/Polynomial/Div.lean
theorem coeff_divByMonic_X_sub_C (p : R[X]) (a : R) (n : ℕ) : (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i
case inr R : Type u inst✝ : Ring R p : R[X] a : R n : ℕ this : ∀ (n : ℕ), p.natDegree ≤ n → (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i h : ¬p.natDegree ≤ n ⊢ (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i
refine Nat.decreasingInduction' (fun n hn _ ih ↦ ?_) (le_of_not_le h) ?_
case inr.refine_1 R : Type u inst✝ : Ring R p : R[X] a : R n✝ : ℕ this : ∀ (n : ℕ), p.natDegree ≤ n → (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i h : ¬p.natDegree ≤ n✝ n : ℕ hn : n < p.natDegree x✝ : n✝ ≤ n ih : (p /ₘ (X - C a)).coeff (n + 1) = ∑ i ∈ Icc (n + 1 + 1) p.natDegree, a ^ (i - (n + 1 + 1)) * p.coeff i ⊢ (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i case inr.refine_2 R : Type u inst✝ : Ring R p : R[X] a : R n : ℕ this : ∀ (n : ℕ), p.natDegree ≤ n → (p /ₘ (X - C a)).coeff n = ∑ i ∈ Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i h : ¬p.natDegree ≤ n ⊢ (p /ₘ (X - C a)).coeff p.natDegree = ∑ i ∈ Icc (p.natDegree + 1) p.natDegree, a ^ (i - (p.natDegree + 1)) * p.coeff i
b5156308e39e2482
Ordnode.Valid'.map_aux
Mathlib/Data/Ordmap/Ordset.lean
theorem Valid'.map_aux {β} [Preorder β] {f : α → β} (f_strict_mono : StrictMono f) {t a₁ a₂} (h : Valid' a₁ t a₂) : Valid' (Option.map f a₁) (map f t) (Option.map f a₂) ∧ (map f t).size = t.size
case node.intro.intro.sz.left α : Type u_1 inst✝¹ : Preorder α β : Type u_2 inst✝ : Preorder β f : α → β f_strict_mono : StrictMono f size✝ : ℕ l✝ : Ordnode α x✝ : α r✝ : Ordnode α a₁ : WithBot α a₂ : WithTop α h : Valid' a₁ (Ordnode.node size✝ l✝ x✝ r✝) a₂ t_l_valid : Valid' (Option.map f a₁) (map f l✝) (Option.map f ↑x✝) t_l_size : (map f l✝).size = l✝.size t_r_valid : Valid' (Option.map f ↑x✝) (map f r✝) (Option.map f a₂) t_r_size : (map f r✝).size = r✝.size ⊢ size✝ = (map f l✝).size + (map f r✝).size + 1
rw [t_l_size, t_r_size]
case node.intro.intro.sz.left α : Type u_1 inst✝¹ : Preorder α β : Type u_2 inst✝ : Preorder β f : α → β f_strict_mono : StrictMono f size✝ : ℕ l✝ : Ordnode α x✝ : α r✝ : Ordnode α a₁ : WithBot α a₂ : WithTop α h : Valid' a₁ (Ordnode.node size✝ l✝ x✝ r✝) a₂ t_l_valid : Valid' (Option.map f a₁) (map f l✝) (Option.map f ↑x✝) t_l_size : (map f l✝).size = l✝.size t_r_valid : Valid' (Option.map f ↑x✝) (map f r✝) (Option.map f a₂) t_r_size : (map f r✝).size = r✝.size ⊢ size✝ = l✝.size + r✝.size + 1
ff36f5e3d5092df5
PiTensorProduct.lifts_add
Mathlib/LinearAlgebra/PiTensorProduct.lean
/-- If elements `p,q` of `FreeAddMonoid (R × Π i, s i)` lift elements `x,y` of `⨂[R] i, s i` respectively, then `p + q` lifts `x + y`. -/ lemma lifts_add {x y : ⨂[R] i, s i} {p q : FreeAddMonoid (R × Π i, s i)} (hp : p ∈ lifts x) (hq : q ∈ lifts y) : p + q ∈ lifts (x + y)
ι : Type u_1 R : Type u_4 inst✝² : CommSemiring R s : ι → Type u_7 inst✝¹ : (i : ι) → AddCommMonoid (s i) inst✝ : (i : ι) → Module R (s i) x y : ⨂[R] (i : ι), s i p q : FreeAddMonoid (R × ((i : ι) → s i)) hp : p ∈ x.lifts hq : q ∈ y.lifts ⊢ ↑p + ↑q = x + y
rw [hp, hq]
no goals
d4629aec80161898
FreeAlgebra.adjoin_range_ι
Mathlib/Algebra/FreeAlgebra.lean
theorem adjoin_range_ι : Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X)) = ⊤
case h_add R : Type u_1 inst✝ : CommSemiring R X : Type u_2 S : Subalgebra R (FreeAlgebra R X) := Algebra.adjoin R (Set.range (ι R)) x y : FreeAlgebra R X hx : x ∈ S hy : y ∈ S ⊢ x + y ∈ S
exact S.add_mem hx hy
no goals
cec84737beae3660
AffineSubspace.direction_mk'
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Defs.lean
theorem direction_mk' (p : P) (direction : Submodule k V) : (mk' p direction).direction = direction
case h.mp.intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : P direction : Submodule k V v : V p₁ : P v₁ : V hv₁ : v₁ ∈ direction hp₁ : p₁ = v₁ +ᵥ p p₂ : P hv : v = p₁ -ᵥ p₂ v₂ : V hv₂ : v₂ ∈ direction hp₂ : p₂ = v₂ +ᵥ p ⊢ v ∈ direction
rw [hv, hp₁, hp₂, vadd_vsub_vadd_cancel_right]
case h.mp.intro.intro.intro.intro.intro.intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : P direction : Submodule k V v : V p₁ : P v₁ : V hv₁ : v₁ ∈ direction hp₁ : p₁ = v₁ +ᵥ p p₂ : P hv : v = p₁ -ᵥ p₂ v₂ : V hv₂ : v₂ ∈ direction hp₂ : p₂ = v₂ +ᵥ p ⊢ v₁ - v₂ ∈ direction
4871a469895a4a3c
zpow_right_anti₀
Mathlib/Algebra/Order/GroupWithZero/Unbundled.lean
lemma zpow_right_anti₀ (ha₀ : 0 < a) (ha₁ : a ≤ 1) : Antitone fun n : ℤ ↦ a ^ n
G₀ : Type u_2 inst✝⁴ : GroupWithZero G₀ inst✝³ : PartialOrder G₀ inst✝² : ZeroLEOneClass G₀ inst✝¹ : PosMulReflectLT G₀ a : G₀ inst✝ : PosMulMono G₀ ha₀ : 0 < a ha₁ : a ≤ 1 n : ℤ ⊢ a ^ n * a ≤ a ^ n
exact mul_le_of_le_one_right (zpow_nonneg ha₀.le _) ha₁
no goals
0b4c6dc9e11e8a54
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.confirmRupHint_preserves_invariant_helper
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem confirmRupHint_preserves_invariant_helper {n : Nat} (f : DefaultFormula n) (f_assignments_size : f.assignments.size = n) (acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool) (hsize : acc.1.size = n) (l : Literal (PosFin n)) (ih : DerivedLitsInvariant f f_assignments_size acc.1 hsize acc.2.1) (h : ¬hasAssignment l.snd acc.fst[l.fst.val]! = true) : have hsize' : (Array.modify acc.1 l.1.1 (addAssignment l.snd)).size = n
case isTrue n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_eq_i : l.fst.val = ↑i h✝ : l.snd = true h : acc.fst[l.fst.val]!.hasPosAssignment = false ⊢ False case isFalse n : Nat f : DefaultFormula n f_assignments_size : f.assignments.size = n acc : Array Assignment × CNF.Clause (PosFin n) × Bool × Bool hsize : acc.fst.size = n l : Literal (PosFin n) ih : f.DerivedLitsInvariant f_assignments_size acc.fst hsize acc.snd.fst hsize'✝ : (acc.fst.modify l.fst.val (addAssignment l.snd)).size = n := Eq.mpr (id (congrArg (fun _a => _a = n) (Array.size_modify acc.fst l.fst.val (addAssignment l.snd)))) hsize i : Fin n i_in_bounds : ↑i < acc.fst.size l_in_bounds : l.fst.val < acc.fst.size j1 j2 : Fin (List.length acc.snd.fst) j1_eq_i : (List.get acc.snd.fst j1).fst.val = ↑i j2_eq_i : (List.get acc.snd.fst j2).fst.val = ↑i j1_eq_true : (List.get acc.snd.fst j1).snd = true j2_eq_false : (List.get acc.snd.fst j2).snd = false h1 : acc.fst[↑i] = both h2 : f.assignments[↑i] = unassigned h3 : ∀ (k : Fin (List.length acc.snd.fst)), k ≠ j1 → k ≠ j2 → (List.get acc.snd.fst k).fst.val ≠ ↑i j1_succ_in_bounds : ↑j1 + 1 < (l :: acc.snd.fst).length j2_succ_in_bounds : ↑j2 + 1 < (l :: acc.snd.fst).length j1_succ : Fin (l :: acc.snd.fst).length := ⟨↑j1 + 1, j1_succ_in_bounds⟩ j2_succ : Fin (l :: acc.snd.fst).length := ⟨↑j2 + 1, j2_succ_in_bounds⟩ l_eq_i : l.fst.val = ↑i h✝ : ¬l.snd = true h : acc.fst[l.fst.val]!.hasNegAssignment = false ⊢ False
all_goals simp +decide [getElem!, l_eq_i, i_in_bounds, h1, decidableGetElem?] at h
no goals
02ca1706b397b254
maximalIdeal_isPrincipal_of_isDedekindDomain
Mathlib/RingTheory/DiscreteValuationRing/TFAE.lean
theorem maximalIdeal_isPrincipal_of_isDedekindDomain [IsLocalRing R] [IsDomain R] [IsDedekindDomain R] : (maximalIdeal R).IsPrincipal
case pos R : Type u_1 inst✝³ : CommRing R inst✝² : IsLocalRing R inst✝¹ : IsDomain R inst✝ : IsDedekindDomain R ne_bot : maximalIdeal R = ⊥ ⊢ Submodule.IsPrincipal ⊥
infer_instance
no goals
e801db6f819d1797
SimpleGraph.triangle_split_helper
Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean
/-- A subset of the triangles constructed in a weird way to make them easy to count. -/ private lemma triangle_split_helper [DecidableEq α] : (s \ (badVertices G ε s t ∪ badVertices G ε s u)).biUnion (fun x ↦ (G.interedges {y ∈ t | G.Adj x y} {y ∈ u | G.Adj x y}).image (x, ·)) ⊆ (s ×ˢ t ×ˢ u).filter (fun (x, y, z) ↦ G.Adj x y ∧ G.Adj x z ∧ G.Adj y z)
case mk.mk α : Type u_1 G : SimpleGraph α inst✝¹ : DecidableRel G.Adj ε : ℝ s t u : Finset α inst✝ : DecidableEq α x : α hx : x ∈ s y z : α hy : y ∈ t xy : G.Adj x y hz : z ∈ u xz : G.Adj x z yz : G.Adj y z ⊢ x ∈ s ∧ y ∈ t ∧ z ∈ u ∧ G.Adj x y ∧ G.Adj x z ∧ G.Adj y z
exact ⟨hx, hy, hz, xy, xz, yz⟩
no goals
a4679bcedf9587ce
ProfiniteGrp.denseRange_toLimit
Mathlib/Topology/Algebra/Category/ProfiniteGrp/Limits.lean
theorem denseRange_toLimit (P : ProfiniteGrp.{u}) : DenseRange (toLimit P)
case h P : ProfiniteGrp.{u} U : Set ↑(limit (P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u})).toProfinite.toTop s : Set ((j : OpenNormalSubgroup ↑P.toProfinite.toTop) → ↑((P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}).obj j).toProfinite.toTop) hsO : IsOpen s hsv : Subtype.val ⁻¹' s = U spc : (j : OpenNormalSubgroup ↑P.toProfinite.toTop) → ↑((P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}).obj j).toProfinite.toTop hspc : spc ∈ limitConePtAux (P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}) uDefaultSpec : spc ∈ s J : Finset (OpenNormalSubgroup ↑P.toProfinite.toTop) fJ : (a : OpenNormalSubgroup ↑P.toProfinite.toTop) → Set ↑((P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}).obj a).toProfinite.toTop hJ1 : ∀ a ∈ J, IsOpen (fJ a) ∧ spc a ∈ fJ a hJ2 : (↑J).pi fJ ⊆ s M : Subgroup ↑P.toProfinite.toTop := ⨅ j, ↑(↑j).toOpenSubgroup hM : M.Normal hMOpen : IsOpen ↑M m : OpenNormalSubgroup ↑P.toProfinite.toTop := { toSubgroup := M, isOpen' := hMOpen, isNormal' := ⋯ } origin : ↑P.toProfinite.toTop horigin : (QuotientGroup.mk' M) origin = spc m ⊢ (Hom.hom P.toLimit) origin ∈ Subtype.val ⁻¹' s
apply hJ2
case h.a P : ProfiniteGrp.{u} U : Set ↑(limit (P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u})).toProfinite.toTop s : Set ((j : OpenNormalSubgroup ↑P.toProfinite.toTop) → ↑((P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}).obj j).toProfinite.toTop) hsO : IsOpen s hsv : Subtype.val ⁻¹' s = U spc : (j : OpenNormalSubgroup ↑P.toProfinite.toTop) → ↑((P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}).obj j).toProfinite.toTop hspc : spc ∈ limitConePtAux (P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}) uDefaultSpec : spc ∈ s J : Finset (OpenNormalSubgroup ↑P.toProfinite.toTop) fJ : (a : OpenNormalSubgroup ↑P.toProfinite.toTop) → Set ↑((P.toFiniteQuotientFunctor ⋙ forget₂ FiniteGrp.{u} ProfiniteGrp.{u}).obj a).toProfinite.toTop hJ1 : ∀ a ∈ J, IsOpen (fJ a) ∧ spc a ∈ fJ a hJ2 : (↑J).pi fJ ⊆ s M : Subgroup ↑P.toProfinite.toTop := ⨅ j, ↑(↑j).toOpenSubgroup hM : M.Normal hMOpen : IsOpen ↑M m : OpenNormalSubgroup ↑P.toProfinite.toTop := { toSubgroup := M, isOpen' := hMOpen, isNormal' := ⋯ } origin : ↑P.toProfinite.toTop horigin : (QuotientGroup.mk' M) origin = spc m ⊢ ↑((Hom.hom P.toLimit) origin) ∈ (↑J).pi fJ
8969731dd4e83c84
ProbabilityTheory.Kernel.compProd_eq_sum_compProd_right
Mathlib/Probability/Kernel/Composition/CompProd.lean
theorem compProd_eq_sum_compProd_right (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel η] : κ ⊗ₖ η = Kernel.sum fun n => κ ⊗ₖ seq η n
case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η hκ : IsSFiniteKernel κ ⊢ κ ⊗ₖ η = Kernel.sum fun n => κ ⊗ₖ η.seq n case neg α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η hκ : ¬IsSFiniteKernel κ ⊢ κ ⊗ₖ η = Kernel.sum fun n => κ ⊗ₖ η.seq n
swap
case neg α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η hκ : ¬IsSFiniteKernel κ ⊢ κ ⊗ₖ η = Kernel.sum fun n => κ ⊗ₖ η.seq n case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : Kernel α β η : Kernel (α × β) γ inst✝ : IsSFiniteKernel η hκ : IsSFiniteKernel κ ⊢ κ ⊗ₖ η = Kernel.sum fun n => κ ⊗ₖ η.seq n
95e47d4c49db6f31
Array.mapIdx_set
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/MapIdx.lean
theorem mapIdx_set {l : Array α} {i : Nat} {h : i < l.size} {a : α} : (l.set i a).mapIdx f = (l.mapIdx f).set i (f i a) (by simpa)
case mk α : Type u_1 α✝ : Type u_2 f : Nat → α → α✝ i : Nat a : α l : List α h : i < { toList := l }.size ⊢ mapIdx f ({ toList := l }.set i a h) = (mapIdx f { toList := l }).set i (f i a) ⋯
simp [List.mapIdx_set]
no goals
6b94a1f6965c8a48
hasFPowerSeriesAt_iff
Mathlib/Analysis/Analytic/Basic.lean
theorem hasFPowerSeriesAt_iff : HasFPowerSeriesAt f p z₀ ↔ ∀ᶠ z in 𝓝 0, HasSum (fun n => z ^ n • p.coeff n) (f (z₀ + z))
case intro.intro.refine_1.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E f : 𝕜 → E z₀ : 𝕜 r : ℝ r_pos : r > 0 h : ∀ ⦃y : 𝕜⦄, dist y 0 < r → HasSum (fun n => y ^ n • p.coeff n) (f (z₀ + y)) z : 𝕜 z_pos : 0 < ‖z‖ le_z : ‖z‖ < r this : ↑‖z‖₊ ≤ p.radius ⊢ 0 < ↑‖z‖₊
simp only [ENNReal.coe_pos]
case intro.intro.refine_1.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E p : FormalMultilinearSeries 𝕜 𝕜 E f : 𝕜 → E z₀ : 𝕜 r : ℝ r_pos : r > 0 h : ∀ ⦃y : 𝕜⦄, dist y 0 < r → HasSum (fun n => y ^ n • p.coeff n) (f (z₀ + y)) z : 𝕜 z_pos : 0 < ‖z‖ le_z : ‖z‖ < r this : ↑‖z‖₊ ≤ p.radius ⊢ 0 < ‖z‖₊
72d24d0576ad9ebc
Finset.subset_set_biUnion_of_mem
Mathlib/Order/CompleteLattice/Finset.lean
theorem subset_set_biUnion_of_mem {s : Finset α} {f : α → Set β} {x : α} (h : x ∈ s) : f x ⊆ ⋃ y ∈ s, f y := show f x ≤ ⨆ y ∈ s, f y from le_iSup_of_le x <| by simp only [h, iSup_pos, le_refl]
α : Type u_2 β : Type u_3 s : Finset α f : α → Set β x : α h : x ∈ s ⊢ f x ≤ ⨆ (_ : x ∈ s), f x
simp only [h, iSup_pos, le_refl]
no goals
1b7e0d4a1b062cd4
IsCoprime.add_mul_left_right
Mathlib/RingTheory/Coprime/Basic.lean
theorem add_mul_left_right {x y : R} (h : IsCoprime x y) (z : R) : IsCoprime x (y + x * z)
R : Type u inst✝ : CommRing R x y : R h : IsCoprime x y z : R ⊢ IsCoprime x (y + x * z)
rw [isCoprime_comm]
R : Type u inst✝ : CommRing R x y : R h : IsCoprime x y z : R ⊢ IsCoprime (y + x * z) x
8e203d872b104c31
CochainComplex.HomComplex.Cochain.rightUnshift_smul
Mathlib/Algebra/Homology/HomotopyCategory/HomComplexShift.lean
@[simp] lemma rightUnshift_smul {n' a : ℤ} (γ : Cochain K (L⟦a⟧) n') (n : ℤ) (hn : n' + a = n) (x : R) : (x • γ).rightUnshift n hn = x • γ.rightUnshift n hn
C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C R : Type u_1 inst✝¹ : Ring R inst✝ : Linear R C K L : CochainComplex C ℤ n' a : ℤ γ : Cochain K ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj L) n' n : ℤ hn : n' + a = n x : R ⊢ (x • γ).rightUnshift n hn = x • γ.rightUnshift n hn
change (rightShiftLinearEquiv R K L n a n' hn).symm (x • γ) = _
C : Type u inst✝³ : Category.{v, u} C inst✝² : Preadditive C R : Type u_1 inst✝¹ : Ring R inst✝ : Linear R C K L : CochainComplex C ℤ n' a : ℤ γ : Cochain K ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) a).obj L) n' n : ℤ hn : n' + a = n x : R ⊢ (rightShiftLinearEquiv R K L n a n' hn).symm (x • γ) = x • γ.rightUnshift n hn
d2ca77d274bb6190
Real.tendsto_toNNReal_atTop_iff
Mathlib/Topology/Instances/NNReal/Lemmas.lean
theorem _root_.Real.tendsto_toNNReal_atTop_iff {l : Filter α} {f : α → ℝ} : Tendsto (fun x ↦ (f x).toNNReal) l atTop ↔ Tendsto f l atTop
α : Type u_1 l : Filter α f : α → ℝ ⊢ Tendsto (fun x => (f x).toNNReal) l atTop ↔ Tendsto f l atTop
rw [← Real.comap_toNNReal_atTop, tendsto_comap_iff, Function.comp_def]
no goals
b7641e2f4d27383b
Ideal.natAbs_det_basis_change
Mathlib/RingTheory/Ideal/Norm/AbsNorm.lean
theorem natAbs_det_basis_change {ι : Type*} [Fintype ι] [DecidableEq ι] (b : Basis ι ℤ S) (I : Ideal S) (bI : Basis ι ℤ I) : (b.det ((↑) ∘ bI)).natAbs = Ideal.absNorm I
S : Type u_1 inst✝⁶ : CommRing S inst✝⁵ : Nontrivial S inst✝⁴ : IsDedekindDomain S inst✝³ : Module.Free ℤ S inst✝² : Module.Finite ℤ S ι : Type u_2 inst✝¹ : Fintype ι inst✝ : DecidableEq ι b : Basis ι ℤ S I : Ideal S bI : Basis ι ℤ ↥I ⊢ (b.det (Subtype.val ∘ ⇑bI)).natAbs = absNorm I
let e := b.equiv bI (Equiv.refl _)
S : Type u_1 inst✝⁶ : CommRing S inst✝⁵ : Nontrivial S inst✝⁴ : IsDedekindDomain S inst✝³ : Module.Free ℤ S inst✝² : Module.Finite ℤ S ι : Type u_2 inst✝¹ : Fintype ι inst✝ : DecidableEq ι b : Basis ι ℤ S I : Ideal S bI : Basis ι ℤ ↥I e : S ≃ₗ[ℤ] ↥I := b.equiv bI (Equiv.refl ι) ⊢ (b.det (Subtype.val ∘ ⇑bI)).natAbs = absNorm I
0271342b99129e4f
IsCoprime.prod_left_iff
Mathlib/RingTheory/Coprime/Lemmas.lean
theorem IsCoprime.prod_left_iff : IsCoprime (∏ i ∈ t, s i) x ↔ ∀ i ∈ t, IsCoprime (s i) x
R : Type u I : Type v inst✝ : CommSemiring R x : R s : I → R t : Finset I ⊢ IsCoprime (∏ i ∈ t, s i) x ↔ ∀ i ∈ t, IsCoprime (s i) x
refine Finset.induction_on t (iff_of_true isCoprime_one_left fun _ ↦ by simp) fun b t hbt ih ↦ ?_
R : Type u I : Type v inst✝ : CommSemiring R x : R s : I → R t✝ : Finset I b : I t : Finset I hbt : b ∉ t ih : IsCoprime (∏ i ∈ t, s i) x ↔ ∀ i ∈ t, IsCoprime (s i) x ⊢ IsCoprime (∏ i ∈ insert b t, s i) x ↔ ∀ i ∈ insert b t, IsCoprime (s i) x
9d3d4bcf53392746
Vector.map_eq_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem map_eq_iff {f : α → β} {l : Vector α n} {l' : Vector β n} : map f l = l' ↔ ∀ i (h : i < n), l'[i] = f l[i]
case mk.mk.mp α : Type u_1 β : Type u_2 f : α → β l : Array α l' : Array β h' : l'.size = l.size ⊢ (∀ (i : Nat), l'[i]? = Option.map f l[i]?) → ∀ (i : Nat) (h : i < l.size), l'[i] = f l[i]
intro w i h
case mk.mk.mp α : Type u_1 β : Type u_2 f : α → β l : Array α l' : Array β h' : l'.size = l.size w : ∀ (i : Nat), l'[i]? = Option.map f l[i]? i : Nat h : i < l.size ⊢ l'[i] = f l[i]
9e0ae22d1d915b68
Batteries.RBNode.Ordered.unique
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem Ordered.unique [@TransCmp α cmp] (ht : Ordered cmp t) (hx : x ∈ t) (hy : y ∈ t) (e : cmp x y = .eq) : x = y
case node.inr.inr.inr.inl α : Type u_1 cmp : α → α → Ordering x y : α inst✝ : TransCmp cmp e : cmp x y = Ordering.eq c✝ : RBColor l : RBNode α v✝ : α r : RBNode α ihl : Ordered cmp l → x ∈ l → y ∈ l → x = y ihr : Ordered cmp r → x ∈ r → y ∈ r → x = y ht : Ordered cmp (node c✝ l v✝ r) lx : All (fun x => cmpLT cmp x v✝) l xr : All (fun x => cmpLT cmp v✝ x) r hl : Ordered cmp l hr : Ordered cmp r hx : Any (fun x_1 => x = x_1) r hy : Any (fun x => y = x) l ⊢ x = y
cases e.symm.trans <| OrientedCmp.cmp_eq_gt.2 ((All_def.1 lx _ hy).trans (All_def.1 xr _ hx)).1
no goals
77450b4176612ab8
contractLeft_assoc_coevaluation'
Mathlib/LinearAlgebra/Coevaluation.lean
theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ ∘ₗ (TensorProduct.assoc K _ _ _).toLinearMap ∘ₗ (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap ∘ₗ (TensorProduct.lid K _).toLinearMap
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ (LinearMap.lTensor V (contractLeft K V)) ((TensorProduct.assoc K V (Dual K V) V) ((LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] (Basis.ofVectorSpace K V) j))) = (TensorProduct.rid K V).symm ((TensorProduct.lid K V) (1 ⊗ₜ[K] (Basis.ofVectorSpace K V) j))
rw [lid_tmul, one_smul, rid_symm_apply]
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ (LinearMap.lTensor V (contractLeft K V)) ((TensorProduct.assoc K V (Dual K V) V) ((LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] (Basis.ofVectorSpace K V) j))) = (Basis.ofVectorSpace K V) j ⊗ₜ[K] 1
fa558da7fb2ef0c7
FermatLastTheoremForThreeGen.Solution.lambda_sq_div_u₅_mul
Mathlib/NumberTheory/FLT/Three.lean
private lemma lambda_sq_div_u₅_mul : λ ^ 2 ∣ S.u₅ * (λ ^ (S.multiplicity - 1) * S.X) ^ 3
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K ⊢ 3 * (S.multiplicity - 1) = 2 + (3 * S.multiplicity - 5)
have := S.two_le_multiplicity
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 S : Solution hζ inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K this : 2 ≤ S.multiplicity ⊢ 3 * (S.multiplicity - 1) = 2 + (3 * S.multiplicity - 5)
49199d47aec8e219
LinearMap.IsSymmetric.iSup_eigenspace_inf_eigenspace_of_commute
Mathlib/Analysis/InnerProductSpace/JointEigenspace.lean
theorem iSup_eigenspace_inf_eigenspace_of_commute (hB : B.IsSymmetric) (hAB : Commute A B) : (⨆ γ, eigenspace A α ⊓ eigenspace B γ) = eigenspace A α
case e_p 𝕜 : Type u_1 E : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E α : 𝕜 A B : E →ₗ[𝕜] E inst✝ : FiniteDimensional 𝕜 E hB : B.IsSymmetric hAB : Commute A B ⊢ ⨆ i, (genEigenspace (B.restrict ⋯) i) 1 = ⊤
simpa only [genEigenspace_eq_eigenspace, Submodule.orthogonal_eq_bot_iff] using orthogonalComplement_iSup_eigenspaces_eq_bot <| hB.restrict_invariant <| mapsTo_genEigenspace_of_comm hAB α 1
no goals
602f1bc013c8706e
norm_mk_lt'
Mathlib/Analysis/Normed/Group/Quotient.lean
theorem norm_mk_lt' (S : AddSubgroup M) (m : M) {ε : ℝ} (hε : 0 < ε) : ∃ s ∈ S, ‖m + s‖ < ‖mk' S m‖ + ε
case intro.intro M : Type u_1 inst✝ : SeminormedAddCommGroup M S : AddSubgroup M m : M ε : ℝ hε : 0 < ε n : M hn : -m + n ∈ S hn' : ‖n‖ < ‖(mk' S) m‖ + ε ⊢ ∃ s ∈ S, ‖m + s‖ < ‖(mk' S) m‖ + ε
use -m + n, hn
case right M : Type u_1 inst✝ : SeminormedAddCommGroup M S : AddSubgroup M m : M ε : ℝ hε : 0 < ε n : M hn : -m + n ∈ S hn' : ‖n‖ < ‖(mk' S) m‖ + ε ⊢ ‖m + (-m + n)‖ < ‖(mk' S) m‖ + ε
7e118629953e7ad0
PresentedMonoid.ext
Mathlib/Algebra/PresentedMonoid/Basic.lean
theorem ext {M : Type*} [Monoid M] (rels : FreeMonoid α → FreeMonoid α → Prop) {φ ψ : PresentedMonoid rels →* M} (hx : ∀ (x : α), φ (.of rels x) = ψ (.of rels x)) : φ = ψ
α : Type u_2 M : Type u_3 inst✝ : Monoid M rels : FreeMonoid α → FreeMonoid α → Prop φ ψ : PresentedMonoid rels →* M hx : ∀ (x : α), φ (of rels x) = ψ (of rels x) ⊢ EqOn (⇑φ) (⇑ψ) (range (of rels))
apply eqOn_range.mpr
α : Type u_2 M : Type u_3 inst✝ : Monoid M rels : FreeMonoid α → FreeMonoid α → Prop φ ψ : PresentedMonoid rels →* M hx : ∀ (x : α), φ (of rels x) = ψ (of rels x) ⊢ ⇑φ ∘ of rels = ⇑ψ ∘ of rels
4e13ad6c6062fd98
EuclideanGeometry.angle_const_sub
Mathlib/Geometry/Euclidean/Angle/Unoriented/Affine.lean
theorem angle_const_sub (v : V) (v₁ v₂ v₃ : V) : ∠ (v - v₁) (v - v₂) (v - v₃) = ∠ v₁ v₂ v₃
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V v v₁ v₂ v₃ : V ⊢ ∠ (v - v₁) (v - v₂) (v - v₃) = ∠ v₁ v₂ v₃
simpa only [vsub_eq_sub] using angle_const_vsub v v₁ v₂ v₃
no goals
fb1bdb894af22abd
Nat.mul_pow
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
theorem mul_pow (a b n : Nat) : (a * b) ^ n = a ^ n * b ^ n
a b n : Nat ⊢ (a * b) ^ n = a ^ n * b ^ n
induction n with | zero => rw [Nat.pow_zero, Nat.pow_zero, Nat.pow_zero, Nat.mul_one] | succ _ ih => rw [Nat.pow_succ, Nat.pow_succ, Nat.pow_succ, Nat.mul_mul_mul_comm, ih]
no goals
a47bdc1fc08287a8
MulAction.zpow_smul_mod_minimalPeriod
Mathlib/Dynamics/PeriodicPts/Defs.lean
theorem zpow_smul_mod_minimalPeriod (n : ℤ) : a ^ (n % (minimalPeriod (a • ·) b : ℤ)) • b = a ^ n • b
α : Type v G : Type u inst✝¹ : Group G inst✝ : MulAction G α a : G b : α n : ℤ ⊢ a ^ (n % ↑(minimalPeriod (fun x => a • x) b)) • b = a ^ n • b
rw [← period_eq_minimalPeriod, zpow_mod_period_smul]
no goals
4712540e5a9d4a97
comap_map_eq_map_of_isLocalization_algebraMapSubmonoid
Mathlib/RingTheory/Trace/Quotient.lean
lemma comap_map_eq_map_of_isLocalization_algebraMapSubmonoid : (Ideal.map (algebraMap R Sₚ) p).comap (algebraMap S Sₚ) = pS
case intro R : Type u_1 S : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S p : Ideal R inst✝⁵ : p.IsMaximal Sₚ : Type u_4 inst✝⁴ : CommRing Sₚ inst✝³ : Algebra S Sₚ inst✝² : Algebra R Sₚ inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ inst✝ : IsScalarTower R S Sₚ x : S hx : x ∈ Ideal.comap (algebraMap S Sₚ) (Ideal.map (algebraMap S Sₚ) pS) α : R hα : α ∉ p hαx : α • x ∈ pS β : R hβ : (Ideal.Quotient.mk p) β = ((Ideal.Quotient.mk p) α)⁻¹ ⊢ ∃ β, ∃ γ ∈ p, β * α = 1 + γ
refine ⟨β, β * α - 1, ?_, ?_⟩
case intro.refine_1 R : Type u_1 S : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S p : Ideal R inst✝⁵ : p.IsMaximal Sₚ : Type u_4 inst✝⁴ : CommRing Sₚ inst✝³ : Algebra S Sₚ inst✝² : Algebra R Sₚ inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ inst✝ : IsScalarTower R S Sₚ x : S hx : x ∈ Ideal.comap (algebraMap S Sₚ) (Ideal.map (algebraMap S Sₚ) pS) α : R hα : α ∉ p hαx : α • x ∈ pS β : R hβ : (Ideal.Quotient.mk p) β = ((Ideal.Quotient.mk p) α)⁻¹ ⊢ β * α - 1 ∈ p case intro.refine_2 R : Type u_1 S : Type u_2 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S p : Ideal R inst✝⁵ : p.IsMaximal Sₚ : Type u_4 inst✝⁴ : CommRing Sₚ inst✝³ : Algebra S Sₚ inst✝² : Algebra R Sₚ inst✝¹ : IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ inst✝ : IsScalarTower R S Sₚ x : S hx : x ∈ Ideal.comap (algebraMap S Sₚ) (Ideal.map (algebraMap S Sₚ) pS) α : R hα : α ∉ p hαx : α • x ∈ pS β : R hβ : (Ideal.Quotient.mk p) β = ((Ideal.Quotient.mk p) α)⁻¹ ⊢ β * α = 1 + (β * α - 1)
d6f88c93445b65e1
Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd
Mathlib/Algebra/Prime/Lemmas.lean
theorem Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [CancelCommMonoidWithZero M] {p a b : M} {n : ℕ} (hp : Prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n) (hb : ¬p ^ 2 ∣ b) : p ∣ a
M : Type u_1 inst✝ : CancelCommMonoidWithZero M p a : M n : ℕ hp : Prime p x : M hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n y : M hy : a ^ n.succ * (p * x) ^ n = p ^ n.succ * y ⊢ p ^ n * (a ^ n.succ * x ^ n) = p ^ n * (p * y)
rw [← mul_assoc _ p, ← pow_succ, ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n), mul_assoc]
no goals
a203319e403717ea
Tree.treesOfNumNodesEq_succ
Mathlib/Combinatorics/Enumerative/Catalan.lean
theorem treesOfNumNodesEq_succ (n : ℕ) : treesOfNumNodesEq (n + 1) = (antidiagonal n).biUnion fun ij => pairwiseNode (treesOfNumNodesEq ij.1) (treesOfNumNodesEq ij.2)
n : ℕ ⊢ ((antidiagonal n).attach.biUnion fun ijh => pairwiseNode (treesOfNumNodesEq (↑ijh).1) (treesOfNumNodesEq (↑ijh).2)) = (antidiagonal n).biUnion fun ij => pairwiseNode (treesOfNumNodesEq ij.1) (treesOfNumNodesEq ij.2)
ext
case h n : ℕ a✝ : Tree Unit ⊢ (a✝ ∈ (antidiagonal n).attach.biUnion fun ijh => pairwiseNode (treesOfNumNodesEq (↑ijh).1) (treesOfNumNodesEq (↑ijh).2)) ↔ a✝ ∈ (antidiagonal n).biUnion fun ij => pairwiseNode (treesOfNumNodesEq ij.1) (treesOfNumNodesEq ij.2)
8ad380b3ed743c12
CategoryTheory.IsVanKampenColimit.whiskerEquivalence
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem IsVanKampenColimit.whiskerEquivalence {K : Type*} [Category K] (e : J ≌ K) {F : K ⥤ C} {c : Cocone F} (hc : IsVanKampenColimit c) : IsVanKampenColimit (c.whisker e.functor)
case h.e'_2.a.mpr J : Type v' inst✝² : Category.{u', v'} J C : Type u inst✝¹ : Category.{v, u} C K : Type u_3 inst✝ : Category.{u_4, u_3} K e : J ≌ K F : K ⥤ C c : Cocone F hc : IsVanKampenColimit c F' : J ⥤ C c' : Cocone F' α : F' ⟶ e.functor ⋙ F f : c'.pt ⟶ (Cocone.whisker e.functor c).pt e' : α ≫ (Cocone.whisker e.functor c).ι = c'.ι ≫ (Functor.const J).map f hα : NatTrans.Equifibered α H : ∀ (j : K), IsPullback (c'.ι.app (e.inverse.obj j)) (α.app (e.inverse.obj j) ≫ F.map (e.counit.app j)) f (c.ι.app j) j : J this : α.app j = F'.map (e.unit.app j) ≫ α.app ((e.functor ⋙ e.inverse).obj j) ≫ F.map (e.counit.app (e.functor.obj j)) ⊢ IsPullback (c'.ι.app j) (F'.map (e.unit.app j)) (𝟙 c'.pt) (c'.ι.app (e.inverse.obj (e.functor.obj j)))
exact IsPullback.of_vert_isIso ⟨by simp⟩
no goals
04b6c653df528b06
AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self
Mathlib/AlgebraicTopology/DoldKan/FunctorGamma.lean
theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} : ((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.id (op ⦋n⦌)) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n = ((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.id (op ⦋n⦌))
case succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ ((Γ₀.splitting K).cofan (op ⦋n + 1⦌)).inj (Splitting.IndexSet.id (op ⦋n + 1⦌)) ≫ (P (n + 1)).f (n + 1) = ((Γ₀.splitting K).cofan (op ⦋n + 1⦌)).inj (Splitting.IndexSet.id (op ⦋n + 1⦌))
exact (HigherFacesVanish.on_Γ₀_summand_id K n).comp_P_eq_self
no goals
fdf1ba0fb1743d80
Order.exists_series_of_le_height
Mathlib/Order/KrullDimension.lean
/-- There exist a series ending in a element for any length up to the element’s height. -/ lemma exists_series_of_le_height (a : α) {n : ℕ} (h : n ≤ height a) : ∃ p : LTSeries α, p.last = a ∧ p.length = n
α : Type u_1 inst✝ : Preorder α n m : ℕ p : LTSeries α hne : Nonempty { p_1 // RelSeries.last p_1 = RelSeries.last p } ha : ∀ (p_1 : LTSeries α), RelSeries.last p_1 = RelSeries.last p → p_1.length ≠ n hp : p.length = m hnm : n < m ⊢ (RelSeries.drop p ⟨m - n, ⋯⟩).last = RelSeries.last p
simp
no goals
0e15cb2199a1ee03
hasFTaylorSeriesUpToOn_succ_iff_left
Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean
theorem hasFTaylorSeriesUpToOn_succ_iff_left {n : ℕ} : HasFTaylorSeriesUpToOn (n + 1) f p s ↔ HasFTaylorSeriesUpToOn n f p s ∧ (∀ x ∈ s, HasFDerivWithinAt (fun y => p y n) (p x n.succ).curryLeft s x) ∧ ContinuousOn (fun x => p x (n + 1)) s
case neg 𝕜 : Type u inst✝⁴ : NontriviallyNormedField 𝕜 E : Type uE inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type uF inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F s : Set E f : E → F p : E → FormalMultilinearSeries 𝕜 E F n : ℕ h : HasFTaylorSeriesUpToOn (↑n) f p s ∧ (∀ x ∈ s, HasFDerivWithinAt (fun y => p y n) (p x n.succ).curryLeft s x) ∧ ContinuousOn (fun x => p x (n + 1)) s m : ℕ hm : ↑m ≤ ↑n + 1 h' : ¬m ≤ n this : m = n + 1 ⊢ ContinuousOn (fun x => p x (n + 1)) s
exact h.2.2
no goals
5ea2ef581950d21b
ascPochhammer_eval_neg_eq_descPochhammer
Mathlib/RingTheory/Polynomial/Pochhammer.lean
theorem ascPochhammer_eval_neg_eq_descPochhammer (r : R) : ∀ (k : ℕ), (ascPochhammer R k).eval (-r) = (-1)^k * (descPochhammer R k).eval r | 0 => by rw [ascPochhammer_zero, descPochhammer_zero] simp only [eval_one, pow_zero, mul_one] | (k+1) => by rw [ascPochhammer_succ_right, mul_add, eval_add, eval_mul_X, ← Nat.cast_comm, eval_natCast_mul, Nat.cast_comm, ← mul_add, ascPochhammer_eval_neg_eq_descPochhammer r k, mul_assoc, descPochhammer_succ_right, mul_sub, eval_sub, eval_mul_X, ← Nat.cast_comm, eval_natCast_mul, pow_add, pow_one, mul_assoc ((-1)^k) (-1), mul_sub, neg_one_mul, neg_mul_eq_mul_neg, Nat.cast_comm, sub_eq_add_neg, neg_one_mul, neg_neg, ← mul_add]
R : Type u inst✝ : Ring R r : R ⊢ eval (-r) (ascPochhammer R 0) = (-1) ^ 0 * eval r (descPochhammer R 0)
rw [ascPochhammer_zero, descPochhammer_zero]
R : Type u inst✝ : Ring R r : R ⊢ eval (-r) 1 = (-1) ^ 0 * eval r 1
91e878a9eb30688b
MonovaryOn.sum_smul_comp_perm_le_sum_smul
Mathlib/Algebra/Order/Rearrangement.lean
theorem MonovaryOn.sum_smul_comp_perm_le_sum_smul (hfg : MonovaryOn f g s) (hσ : {x | σ x ≠ x} ⊆ s) : ∑ i ∈ s, f i • g (σ i) ≤ ∑ i ∈ s, f i • g i
case pos.inr ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrderedSemiring α inst✝³ : ExistsAddOfLE α inst✝² : LinearOrderedCancelAddCommMonoid β inst✝¹ : Module α β inst✝ : PosSMulMono α β s✝ : Finset ι f : ι → α g : ι → β a : ι s : Finset ι has : a ∉ s hamax : ∀ x ∈ s, toLex (g x, f x) ≤ toLex (g a, f a) hind : ∀ {σ : Perm ι}, MonovaryOn f g ↑s → {x | σ x ≠ x} ⊆ ↑s → ∑ i ∈ s, f i • g (σ i) ≤ ∑ i ∈ s, f i • g i σ : Perm ι hfg : MonovaryOn f g ↑(insert a s) hσ : {x | σ x ≠ x} ⊆ ↑(insert a s) τ : Perm ι := Equiv.trans σ (Equiv.swap a (σ a)) hτ : τ = Equiv.trans σ (Equiv.swap a (σ a)) x : ι h₁ : σ x = a hx : ¬σ a = x hax : x ≠ a ⊢ x ∈ ↑s
exact mem_of_mem_insert_of_ne (hσ fun h ↦ hax <| h.symm.trans h₁) hax
no goals
4fd7a15670de10aa
MeasureTheory.lintegral_smul_measure
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻ a, f a ∂c • μ = c * ∫⁻ a, f a ∂μ
α : Type u_1 m : MeasurableSpace α μ : Measure α c : ℝ≥0∞ f : α → ℝ≥0∞ ⊢ ∫⁻ (a : α), f a ∂c • μ = c * ∫⁻ (a : α), f a ∂μ
simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
no goals
c16ad3405766c04f
Order.le_succ_iff_eq_or_le
Mathlib/Order/SuccPred/Basic.lean
theorem le_succ_iff_eq_or_le : a ≤ succ b ↔ a = succ b ∨ a ≤ b
case pos α : Type u_1 inst✝¹ : LinearOrder α inst✝ : SuccOrder α a b : α hb : IsMax b ⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b
rw [hb.succ_eq, or_iff_right_of_imp le_of_eq]
no goals
ca762971dc330b2f
HasFPowerSeriesWithinOnBall.fderivWithin_of_mem_of_analyticOn
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem HasFPowerSeriesWithinOnBall.fderivWithin_of_mem_of_analyticOn (hr : HasFPowerSeriesWithinOnBall f p s x r) (h : AnalyticOn 𝕜 f s) (hs : UniqueDiffOn 𝕜 s) (hx : x ∈ s) : HasFPowerSeriesWithinOnBall (fderivWithin 𝕜 f s) p.derivSeries s x r
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ f : E → F x : E s : Set E hr : HasFPowerSeriesWithinOnBall f p s x r h : AnalyticOn 𝕜 f s hs : UniqueDiffOn 𝕜 s hx : x ∈ s y : E hy : x + y ∈ insert x s h'y : y ∈ EMetric.ball 0 r ⊢ ↑‖y‖₊ < r
simpa [edist_zero_eq_enorm] using h'y
no goals
d39a108ffb050c55
List.zipIdxLE_trans
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sort/Lemmas.lean
theorem zipIdxLE_trans (trans : ∀ a b c, le a b → le b c → le a c) (a b c : α × Nat) : zipIdxLE le a b → zipIdxLE le b c → zipIdxLE le a c
case isTrue.isTrue.isTrue α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true a b c : α × Nat ab₂ : le a.fst b.fst = true ba₂ : le b.fst a.fst = true bc₂ : le b.fst c.fst = true ab₁ : a.snd ≤ b.snd h : le c.fst b.fst = false ∨ b.snd ≤ c.snd ⊢ le c.fst a.fst = false ∨ a.snd ≤ c.snd
rcases h with (cd₂ | bc₁)
case isTrue.isTrue.isTrue.inl α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true a b c : α × Nat ab₂ : le a.fst b.fst = true ba₂ : le b.fst a.fst = true bc₂ : le b.fst c.fst = true ab₁ : a.snd ≤ b.snd cd₂ : le c.fst b.fst = false ⊢ le c.fst a.fst = false ∨ a.snd ≤ c.snd case isTrue.isTrue.isTrue.inr α : Type u_1 le : α → α → Bool trans : ∀ (a b c : α), le a b = true → le b c = true → le a c = true a b c : α × Nat ab₂ : le a.fst b.fst = true ba₂ : le b.fst a.fst = true bc₂ : le b.fst c.fst = true ab₁ : a.snd ≤ b.snd bc₁ : b.snd ≤ c.snd ⊢ le c.fst a.fst = false ∨ a.snd ≤ c.snd
4b08ab1e530cfafb
GroupWithZero.isOpen_singleton_zero
Mathlib/Topology/Algebra/Monoid.lean
lemma GroupWithZero.isOpen_singleton_zero [GroupWithZero M] [TopologicalSpace M] [ContinuousMul M] [CompactSpace M] [T1Space M] : IsOpen {(0 : M)}
case intro.intro.intro M : Type u_3 inst✝⁴ : GroupWithZero M inst✝³ : TopologicalSpace M inst✝² : ContinuousMul M inst✝¹ : CompactSpace M inst✝ : T1Space M U : Set M hU : IsOpen U h0U : 0 ∈ U h1U : 1 ∉ U ⊢ IsOpen {0}
obtain ⟨W, hW, hW'⟩ := exists_mem_nhds_zero_mul_subset isCompact_univ (hU.mem_nhds h0U)
case intro.intro.intro.intro.intro M : Type u_3 inst✝⁴ : GroupWithZero M inst✝³ : TopologicalSpace M inst✝² : ContinuousMul M inst✝¹ : CompactSpace M inst✝ : T1Space M U : Set M hU : IsOpen U h0U : 0 ∈ U h1U : 1 ∉ U W : Set M hW : W ∈ 𝓝 0 hW' : univ * W ⊆ U ⊢ IsOpen {0}
dc8e2a6913e2be45
Polynomial.sub_one_pow_totient_lt_cyclotomic_eval
Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean
theorem sub_one_pow_totient_lt_cyclotomic_eval {n : ℕ} {q : ℝ} (hn' : 2 ≤ n) (hq' : 1 < q) : (q - 1) ^ totient n < (cyclotomic n ℝ).eval q
case convert_6 n : ℕ q : ℝ hn' : 2 ≤ n hq' : 1 < q hn : 0 < n hq : 0 < q hfor : ∀ ζ' ∈ primitiveRoots n ℂ, q - 1 ≤ ‖↑q - ζ'‖ ζ : ℂ := Complex.exp (2 * ↑Real.pi * Complex.I / ↑n) hζ : IsPrimitiveRoot ζ n hex : ∃ ζ' ∈ primitiveRoots n ℂ, q - 1 < ‖↑q - ζ'‖ this : ¬eval (↑q) (cyclotomic n ℂ) = 0 ⊢ ∃ i ∈ (primitiveRoots n ℂ).attach, Units.mk0 (q - 1).toNNReal ⋯ < Units.mk0 ‖↑q - ↑i‖₊ ⋯
simp only [Subtype.coe_mk, Finset.mem_attach, exists_true_left, Subtype.exists, ← NNReal.coe_lt_coe, ← Units.val_lt_val, Units.val_mk0 _, coe_nnnorm]
case convert_6 n : ℕ q : ℝ hn' : 2 ≤ n hq' : 1 < q hn : 0 < n hq : 0 < q hfor : ∀ ζ' ∈ primitiveRoots n ℂ, q - 1 ≤ ‖↑q - ζ'‖ ζ : ℂ := Complex.exp (2 * ↑Real.pi * Complex.I / ↑n) hζ : IsPrimitiveRoot ζ n hex : ∃ ζ' ∈ primitiveRoots n ℂ, q - 1 < ‖↑q - ζ'‖ this : ¬eval (↑q) (cyclotomic n ℂ) = 0 ⊢ ∃ a, ∃ (_ : a ∈ primitiveRoots n ℂ), True ∧ ↑(q - 1).toNNReal < ‖↑q - a‖
0ef7adcad44e6a5e
Finset.small_pos_neg_neg_mul
Mathlib/Combinatorics/Additive/SmallTripling.lean
@[to_additive] private lemma small_pos_neg_neg_mul (hA : #(A ^ 3) ≤ K * #A) : #(A * A⁻¹ * A⁻¹) ≤ K ^ 2 * #A
G : Type u_1 inst✝¹ : DecidableEq G inst✝ : Group G A : Finset G K : ℝ hA : ↑(#(A ^ 3)) ≤ K * ↑(#A) ⊢ ↑(#(A * A⁻¹ * A⁻¹)) ≤ K ^ 2 * ↑(#A)
simpa using small_neg_pos_pos_mul (A := A⁻¹) (by simpa)
no goals
5a530b69a1256eb1
PrincipalSeg.top_rel_top
Mathlib/Order/InitialSeg.lean
theorem top_rel_top {r : α → α → Prop} {s : β → β → Prop} {t : γ → γ → Prop} [IsWellOrder γ t] (f : r ≺i s) (g : s ≺i t) (h : r ≺i t) : t h.top g.top
α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder γ t f : r ≺i s g : s ≺i t h : r ≺i t ⊢ t h.top g.top
rw [Subsingleton.elim h (f.trans g)]
α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder γ t f : r ≺i s g : s ≺i t h : r ≺i t ⊢ t (f.trans g).top g.top
e7eeb80e8731e3bf
hasSum_mellin_pi_mul_sq'
Mathlib/NumberTheory/LSeries/MellinEqDirichlet.lean
/-- Tailored version for odd Jacobi theta functions. -/ lemma hasSum_mellin_pi_mul_sq' {a : ι → ℂ} {r : ι → ℝ} {F : ℝ → ℂ} {s : ℂ} (hs : 0 < s.re) (hF : ∀ t ∈ Ioi 0, HasSum (fun i ↦ a i * r i * rexp (-π * r i ^ 2 * t)) (F t)) (h_sum : Summable fun i ↦ ‖a i‖ / |r i| ^ s.re) : HasSum (fun i ↦ Gammaℝ (s + 1) * a i * SignType.sign (r i) / |r i| ^ s) (mellin F ((s + 1) / 2))
case h.e'_5.h ι : Type u_1 inst✝ : Countable ι a : ι → ℂ r : ι → ℝ F : ℝ → ℂ s : ℂ hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => if r i = 0 then 0 else a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t))) (F t) h_sum : Summable fun i => ‖a i‖ / |r i| ^ s.re hs₁ : s ≠ 0 hs₂ : 0 < (s + 1).re hs₃ : s + 1 ≠ 0 this : ∀ (i : ι) (t : ℝ), a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t)) = if r i = 0 then 0 else a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t)) i : ι ⊢ (s + 1).Gammaℝ * a i * ↑(SignType.sign (r i)) / ↑|r i| ^ s = (s + 1).Gammaℝ * (a i * ↑(r i)) / ↑|r i| ^ (s + 1)
rcases eq_or_ne (r i) 0 with h | h
case h.e'_5.h.inl ι : Type u_1 inst✝ : Countable ι a : ι → ℂ r : ι → ℝ F : ℝ → ℂ s : ℂ hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => if r i = 0 then 0 else a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t))) (F t) h_sum : Summable fun i => ‖a i‖ / |r i| ^ s.re hs₁ : s ≠ 0 hs₂ : 0 < (s + 1).re hs₃ : s + 1 ≠ 0 this : ∀ (i : ι) (t : ℝ), a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t)) = if r i = 0 then 0 else a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t)) i : ι h : r i = 0 ⊢ (s + 1).Gammaℝ * a i * ↑(SignType.sign (r i)) / ↑|r i| ^ s = (s + 1).Gammaℝ * (a i * ↑(r i)) / ↑|r i| ^ (s + 1) case h.e'_5.h.inr ι : Type u_1 inst✝ : Countable ι a : ι → ℂ r : ι → ℝ F : ℝ → ℂ s : ℂ hs : 0 < s.re hF : ∀ t ∈ Ioi 0, HasSum (fun i => if r i = 0 then 0 else a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t))) (F t) h_sum : Summable fun i => ‖a i‖ / |r i| ^ s.re hs₁ : s ≠ 0 hs₂ : 0 < (s + 1).re hs₃ : s + 1 ≠ 0 this : ∀ (i : ι) (t : ℝ), a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t)) = if r i = 0 then 0 else a i * ↑(r i) * ↑(rexp (-π * r i ^ 2 * t)) i : ι h : r i ≠ 0 ⊢ (s + 1).Gammaℝ * a i * ↑(SignType.sign (r i)) / ↑|r i| ^ s = (s + 1).Gammaℝ * (a i * ↑(r i)) / ↑|r i| ^ (s + 1)
22936c8a231e7fbd
Subgroup.IsComplement.equiv_fst_eq_self_iff_mem
Mathlib/GroupTheory/Complement.lean
theorem equiv_fst_eq_self_iff_mem {g : G} (h1 : 1 ∈ T) : ((hST.equiv g).fst : G) = g ↔ g ∈ S
case mpr G : Type u_1 inst✝ : Group G S T : Set G hST : IsComplement S T g : G h1 : 1 ∈ T h : g ∈ S ⊢ ↑(hST.equiv g).1 = g
rw [hST.equiv_fst_eq_self_of_mem_of_one_mem h1 h]
no goals
becd34388e09e225
IsCyclotomicExtension.Rat.Three.lambda_dvd_or_dvd_sub_one_or_dvd_add_one
Mathlib/NumberTheory/Cyclotomic/Three.lean
/-- Let `(x : 𝓞 K)`. Then we have that `λ` divides one amongst `x`, `x - 1` and `x + 1`. -/ lemma lambda_dvd_or_dvd_sub_one_or_dvd_add_one [NumberField K] [IsCyclotomicExtension {3} ℚ K] : λ ∣ x ∨ λ ∣ x - 1 ∨ λ ∣ x + 1
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 x : 𝓞 K inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K this : Finite (𝓞 K ⧸ Ideal.span {λ}) ⊢ λ ∣ x ∨ λ ∣ x - 1 ∨ λ ∣ x + 1
let _ := Fintype.ofFinite (𝓞 K ⧸ Ideal.span {λ})
K : Type u_1 inst✝² : Field K ζ : K hζ : IsPrimitiveRoot ζ ↑3 x : 𝓞 K inst✝¹ : NumberField K inst✝ : IsCyclotomicExtension {3} ℚ K this : Finite (𝓞 K ⧸ Ideal.span {λ}) x✝ : Fintype (𝓞 K ⧸ Ideal.span {λ}) := Fintype.ofFinite (𝓞 K ⧸ Ideal.span {λ}) ⊢ λ ∣ x ∨ λ ∣ x - 1 ∨ λ ∣ x + 1
40b2b58fa758600e
SimpleGraph.Walk.IsPath.snd_of_toSubgraph_adj
Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean
lemma snd_of_toSubgraph_adj {u v v'} {p : G.Walk u v} (hp : p.IsPath) (hadj : p.toSubgraph.Adj u v') : p.snd = v'
V : Type u G : SimpleGraph V u v : V p : G.Walk u v hp : p.IsPath i : ℕ hl1 : p.getVert i = u hadj : p.toSubgraph.Adj u (p.getVert (i + 1)) hi : (p.getVert i = u ∧ p.getVert (i + 1) = p.getVert (i + 1) ∨ p.getVert i = p.getVert (i + 1) ∧ p.getVert (i + 1) = u) ∧ i < p.length ⊢ 0 ∈ {i | i ≤ p.length}
rw [Set.mem_setOf]
V : Type u G : SimpleGraph V u v : V p : G.Walk u v hp : p.IsPath i : ℕ hl1 : p.getVert i = u hadj : p.toSubgraph.Adj u (p.getVert (i + 1)) hi : (p.getVert i = u ∧ p.getVert (i + 1) = p.getVert (i + 1) ∨ p.getVert i = p.getVert (i + 1) ∧ p.getVert (i + 1) = u) ∧ i < p.length ⊢ 0 ≤ p.length
6a4c9bd87e294aeb
Set.univ_div_univ
Mathlib/Algebra/Group/Pointwise/Set/Basic.lean
@[to_additive (attr := simp)] lemma univ_div_univ : (univ / univ : Set α) = univ
α : Type u_2 inst✝ : DivisionMonoid α ⊢ univ / univ = univ
simp [div_eq_mul_inv]
no goals
ea0f1a3b1c0a164a
Affine.Simplex.sum_pointsWithCircumcenter
Mathlib/Geometry/Euclidean/Circumcenter.lean
theorem sum_pointsWithCircumcenter {α : Type*} [AddCommMonoid α] {n : ℕ} (f : PointsWithCircumcenterIndex n → α) : ∑ i, f i = (∑ i : Fin (n + 1), f (pointIndex i)) + f circumcenterIndex
α : Type u_3 inst✝ : AddCommMonoid α n : ℕ f : PointsWithCircumcenterIndex n → α h : univ = insert circumcenterIndex (Finset.map (pointIndexEmbedding n) univ) ⊢ circumcenterIndex ∉ Finset.map (pointIndexEmbedding n) univ
simp_rw [Finset.mem_map, not_exists]
α : Type u_3 inst✝ : AddCommMonoid α n : ℕ f : PointsWithCircumcenterIndex n → α h : univ = insert circumcenterIndex (Finset.map (pointIndexEmbedding n) univ) ⊢ ∀ (x : Fin (n + 1)), ¬(x ∈ univ ∧ (pointIndexEmbedding n) x = circumcenterIndex)
248891fce28689d6
ZMod.castHom_bijective
Mathlib/Data/ZMod/Basic.lean
theorem castHom_bijective [Fintype R] (h : Fintype.card R = n) : Function.Bijective (ZMod.castHom (dvd_refl n) R)
n : ℕ R : Type u_1 inst✝² : Ring R inst✝¹ : CharP R n inst✝ : Fintype R h : Fintype.card R = n hn : n = 0 ⊢ False
rw [hn] at h
n : ℕ R : Type u_1 inst✝² : Ring R inst✝¹ : CharP R n inst✝ : Fintype R h : Fintype.card R = 0 hn : n = 0 ⊢ False
f5948c31783484d7
IsIntegralCurve.periodic_xor_injective
Mathlib/Geometry/Manifold/IntegralCurve/ExistUnique.lean
/-- A global integral curve is injective xor periodic with positive period. -/ lemma IsIntegralCurve.periodic_xor_injective [BoundarylessManifold I M] (hγ : IsIntegralCurve γ v) (hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M))) : Xor' (∃ T > 0, Periodic γ T) (Injective γ)
case neg E : Type u_1 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℝ E H : Type u_2 inst✝⁵ : TopologicalSpace H I : ModelWithCorners ℝ E H M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : ChartedSpace H M inst✝² : IsManifold I 1 M γ : ℝ → M v : (x : M) → TangentSpace I x inst✝¹ : T2Space M inst✝ : BoundarylessManifold I M hγ : IsIntegralCurve γ v hv : ContMDiff I I.tangent 1 fun x => { proj := x, snd := v x } a b : ℝ heq : γ a = γ b hne : a ≠ b hab : 0 ≤ a - b ⊢ Periodic γ (a - b)
exact hγ.periodic_of_eq hv heq
no goals
51957a500664b235
four_mul_le_sq_add
Mathlib/Algebra/Order/Ring/Unbundled/Basic.lean
/-- Binary, squared, and division-free **arithmetic mean-geometric mean inequality** (aka AM-GM inequality) for linearly ordered commutative semirings. -/ lemma four_mul_le_sq_add [ExistsAddOfLE α] [MulPosStrictMono α] [AddLeftReflectLE α] [AddLeftMono α] (a b : α) : 4 * a * b ≤ (a + b) ^ 2
α : Type u inst✝⁵ : CommSemiring α inst✝⁴ : LinearOrder α inst✝³ : ExistsAddOfLE α inst✝² : MulPosStrictMono α inst✝¹ : AddLeftReflectLE α inst✝ : AddLeftMono α a b : α ⊢ a ^ 2 + b ^ 2 + 2 * a * b = a ^ 2 + 2 * a * b + b ^ 2
rw [add_right_comm]
no goals
38ca5601c78dc32a