name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Real.tendsto_eulerMascheroniSeq'
Mathlib/NumberTheory/Harmonic/EulerMascheroni.lean
lemma tendsto_eulerMascheroniSeq' : Tendsto eulerMascheroniSeq' atTop (𝓝 eulerMascheroniConstant)
⊢ Tendsto (fun n => eulerMascheroniSeq' n - eulerMascheroniSeq n) atTop (𝓝 0)
suffices Tendsto (fun x : ℝ ↦ log (x + 1) - log x) atTop (𝓝 0) by apply (this.comp tendsto_natCast_atTop_atTop).congr' filter_upwards [eventually_ne_atTop 0] with n hn simp [eulerMascheroniSeq, eulerMascheroniSeq', eq_false_intro hn]
⊢ Tendsto (fun x => log (x + 1) - log x) atTop (𝓝 0)
cc6480414e009cf7
String.Iterator.ValidFor.remainingToString
Mathlib/.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
theorem remainingToString {it} (h : ValidFor l r it) : it.remainingToString = ⟨r⟩
l r : List Char it : Iterator h : ValidFor l r it ⊢ it.remainingToString = { data := r }
cases h.out
case refl l r : List Char h : ValidFor l r { s := { data := l.reverseAux r }, i := { byteIdx := utf8Len l } } ⊢ { s := { data := l.reverseAux r }, i := { byteIdx := utf8Len l } }.remainingToString = { data := r }
782b70dd556d5667
RootPairing.polarization_apply_eq_zero_iff
Mathlib/LinearAlgebra/RootSystem/Finite/CanonicalBilinear.lean
lemma polarization_apply_eq_zero_iff (m : M) : P.Polarization m = 0 ↔ P.RootForm m = 0
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : Fintype ι m : M ⊢ P.Polarization m = 0 ↔ P.RootForm m = 0
rw [← flip_comp_polarization_eq_rootForm]
ι : Type u_1 R : Type u_2 M : Type u_3 N : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N P : RootPairing ι R M N inst✝ : Fintype ι m : M ⊢ P.Polarization m = 0 ↔ (P.flip.toLin ∘ₗ P.Polarization) m = 0
8405c462392e53d5
BddAbove.continuous_convolution_right_of_integrable
Mathlib/Analysis/Convolution.lean
theorem _root_.BddAbove.continuous_convolution_right_of_integrable [FirstCountableTopology G] [SecondCountableTopologyEither G E'] (hbg : BddAbove (range fun x => ‖g x‖)) (hf : Integrable f μ) (hg : Continuous g) : Continuous (f ⋆[L, μ] g)
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup E' inst✝¹² : NormedAddCommGroup F f : G → E g : G → E' inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 E' inst✝⁸ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁷ : MeasurableSpace G μ : Measure G inst✝⁶ : NormedSpace ℝ F inst✝⁵ : AddGroup G inst✝⁴ : TopologicalSpace G inst✝³ : IsTopologicalAddGroup G inst✝² : BorelSpace G inst✝¹ : FirstCountableTopology G inst✝ : SecondCountableTopologyEither G E' hbg : BddAbove (range fun x => ‖g x‖) hf : Integrable f μ hg : Continuous g x₀ : G ⊢ ContinuousAt (f ⋆[L, μ] g) x₀
have : ∀ᶠ x in 𝓝 x₀, ∀ᵐ t : G ∂μ, ‖L (f t) (g (x - t))‖ ≤ ‖L‖ * ‖f t‖ * ⨆ i, ‖g i‖ := by filter_upwards with x; filter_upwards with t apply_rules [L.le_of_opNorm₂_le_of_le, le_rfl, le_ciSup hbg (x - t)]
𝕜 : Type u𝕜 G : Type uG E : Type uE E' : Type uE' F : Type uF inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup E' inst✝¹² : NormedAddCommGroup F f : G → E g : G → E' inst✝¹¹ : NontriviallyNormedField 𝕜 inst✝¹⁰ : NormedSpace 𝕜 E inst✝⁹ : NormedSpace 𝕜 E' inst✝⁸ : NormedSpace 𝕜 F L : E →L[𝕜] E' →L[𝕜] F inst✝⁷ : MeasurableSpace G μ : Measure G inst✝⁶ : NormedSpace ℝ F inst✝⁵ : AddGroup G inst✝⁴ : TopologicalSpace G inst✝³ : IsTopologicalAddGroup G inst✝² : BorelSpace G inst✝¹ : FirstCountableTopology G inst✝ : SecondCountableTopologyEither G E' hbg : BddAbove (range fun x => ‖g x‖) hf : Integrable f μ hg : Continuous g x₀ : G this : ∀ᶠ (x : G) in 𝓝 x₀, ∀ᵐ (t : G) ∂μ, ‖(L (f t)) (g (x - t))‖ ≤ ‖L‖ * ‖f t‖ * ⨆ i, ‖g i‖ ⊢ ContinuousAt (f ⋆[L, μ] g) x₀
7cef45832d5d6aeb
MeasureTheory.Measure.Regular.restrict_of_measure_ne_top
Mathlib/MeasureTheory/Measure/Regular.lean
theorem restrict_of_measure_ne_top [R1Space α] [BorelSpace α] [Regular μ] {A : Set α} (h'A : μ A ≠ ∞) : Regular (μ.restrict A)
case innerRegular α : Type u_1 inst✝⁴ : MeasurableSpace α μ : Measure α inst✝³ : TopologicalSpace α inst✝² : R1Space α inst✝¹ : BorelSpace α inst✝ : μ.Regular A : Set α h'A : μ A ≠ ⊤ this : (μ.restrict A).WeaklyRegular ⊢ (μ.restrict A).InnerRegularWRT IsCompact IsOpen
intro V hV r hr
case innerRegular α : Type u_1 inst✝⁴ : MeasurableSpace α μ : Measure α inst✝³ : TopologicalSpace α inst✝² : R1Space α inst✝¹ : BorelSpace α inst✝ : μ.Regular A : Set α h'A : μ A ≠ ⊤ this : (μ.restrict A).WeaklyRegular V : Set α hV : IsOpen V r : ℝ≥0∞ hr : r < (μ.restrict A) V ⊢ ∃ K ⊆ V, IsCompact K ∧ r < (μ.restrict A) K
99942bfc62b2d596
HolorIndex.drop_drop
Mathlib/Data/Holor.lean
theorem drop_drop : ∀ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃), t.assocRight.drop.drop = t.drop | ⟨is, h⟩ => Subtype.eq (by simp [add_comm, assocRight, drop, cast_type, List.drop_drop])
ds₁ ds₂ ds₃ is : List ℕ h : Forall₂ (fun x1 x2 => x1 < x2) is (ds₁ ++ ds₂ ++ ds₃) ⊢ ↑(assocRight ⟨is, h⟩).drop.drop = ↑(drop ⟨is, h⟩)
simp [add_comm, assocRight, drop, cast_type, List.drop_drop]
no goals
82d0a6c432db2ef0
smul_finprod'
Mathlib/Algebra/BigOperators/GroupWithZero/Action.lean
theorem smul_finprod' {ι : Sort*} [Finite ι] {f : ι → β} (r : α) : r • ∏ᶠ x : ι, f x = ∏ᶠ x : ι, r • (f x)
α : Type u_1 β : Type u_2 inst✝³ : Monoid α inst✝² : CommMonoid β inst✝¹ : MulDistribMulAction α β ι : Sort u_4 inst✝ : Finite ι f : ι → β r : α ⊢ r • ∏ᶠ (x : ι), f x = ∏ᶠ (x : ι), r • f x
cases nonempty_fintype (PLift ι)
case intro α : Type u_1 β : Type u_2 inst✝³ : Monoid α inst✝² : CommMonoid β inst✝¹ : MulDistribMulAction α β ι : Sort u_4 inst✝ : Finite ι f : ι → β r : α val✝ : Fintype (PLift ι) ⊢ r • ∏ᶠ (x : ι), f x = ∏ᶠ (x : ι), r • f x
c39a4be152c4f848
Cycle.support_formPerm
Mathlib/GroupTheory/Perm/Cycle/Concrete.lean
theorem support_formPerm [Fintype α] (s : Cycle α) (h : Nodup s) (hn : Nontrivial s) : support (formPerm s h) = s.toFinset
case h α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α s : List α h : Nodup (Quot.mk (⇑(IsRotated.setoid α)) s) hn : Nontrivial (Quot.mk (⇑(IsRotated.setoid α)) s) ⊢ ∀ (x : α), s ≠ [x]
rintro _ rfl
case h α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α x✝ : α h : Nodup (Quot.mk ⇑(IsRotated.setoid α) [x✝]) hn : Nontrivial (Quot.mk ⇑(IsRotated.setoid α) [x✝]) ⊢ False
c975caac8b3ab4b4
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.insertUnitInvariant_insertUnit
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RupAddResult.lean
theorem insertUnitInvariant_insertUnit {n : Nat} (assignments0 : Array Assignment) (assignments0_size : assignments0.size = n) (units : Array (Literal (PosFin n))) (assignments : Array Assignment) (assignments_size : assignments.size = n) (foundContradiction : Bool) (l : Literal (PosFin n)) : InsertUnitInvariant assignments0 assignments0_size units assignments assignments_size → let update_res := insertUnit (units, assignments, foundContradiction) l have update_res_size : update_res.snd.fst.size = n
n : Nat assignments0 : Array Assignment assignments0_size : assignments0.size = n units : Array (Literal (PosFin n)) assignments : Array Assignment assignments_size : assignments.size = n foundContradiction : Bool l : Literal (PosFin n) i : Fin n i_in_bounds : ↑i < assignments.size l_in_bounds : l.fst.val < assignments.size j : Fin units.size b : Bool i_gt_zero : ↑i > 0 h4 : ∀ (k : Fin units.size), ¬k = j → ¬units[↑k].fst.val = ↑i h5 : ¬hasAssignment l.snd assignments[l.fst.val]! = true i_eq_l : ↑i = l.fst.val units_size_lt_updatedUnits_size : units.size < (insertUnit (units, assignments, foundContradiction) l).fst.size mostRecentUnitIdx : Fin (insertUnit (units, assignments, foundContradiction) l).fst.size := ⟨units.size, units_size_lt_updatedUnits_size⟩ j_lt_updatedUnits_size : ↑j < (insertUnit (units, assignments, foundContradiction) l).fst.size h1 : units[↑j] = (⟨↑i, ⋯⟩, true) h3 : hasAssignment true assignments0[↑i] = false hb : b = true hl : l.snd = false h : assignments0[↑i] = neg h2 : assignments[l.fst.val] = both ⊢ neg = unassigned
simp [hasAssignment, hl, getElem!, l_in_bounds, h2, hasNegAssignment, decidableGetElem?] at h5
no goals
4e9908103f3f6d5f
InfiniteGalois.fixingSubgroup_fixedField
Mathlib/FieldTheory/Galois/Infinite.lean
lemma fixingSubgroup_fixedField (H : ClosedSubgroup (K ≃ₐ[k] K)) [IsGalois k K] : (IntermediateField.fixedField H).fixingSubgroup = H.1
k : Type u_1 K : Type u_2 inst✝³ : Field k inst✝² : Field K inst✝¹ : Algebra k K H : ClosedSubgroup (K ≃ₐ[k] K) inst✝ : IsGalois k K σ : K ≃ₐ[k] K hσ : σ ∈ (fixedField ↑H).fixingSubgroup ⊢ σ ∈ ↑H
by_contra h
k : Type u_1 K : Type u_2 inst✝³ : Field k inst✝² : Field K inst✝¹ : Algebra k K H : ClosedSubgroup (K ≃ₐ[k] K) inst✝ : IsGalois k K σ : K ≃ₐ[k] K hσ : σ ∈ (fixedField ↑H).fixingSubgroup h : σ ∉ ↑H ⊢ False
4195a2a4cd22a820
ProbabilityTheory.sum_variance_truncation_le
Mathlib/Probability/StrongLaw.lean
theorem sum_variance_truncation_le {X : Ω → ℝ} (hint : Integrable X) (hnonneg : 0 ≤ X) (K : ℕ) : ∑ j ∈ range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[truncation X j ^ 2] ≤ 2 * 𝔼[X]
Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X ℙ hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ x / (↑k + 1) ≤ 1
convert (div_le_one _).2 hx.2
case h.e'_3.h.e'_6 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X ℙ hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ ↑k + 1 = ↑(k + 1) Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X ℙ hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 0 < ↑(k + 1)
4c37cf41985268cf
MeasureTheory.VectorMeasure.trim_eq_self
Mathlib/MeasureTheory/VectorMeasure/Basic.lean
theorem trim_eq_self : v.trim le_rfl = v
case h α : Type u_1 M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : TopologicalSpace M n : MeasurableSpace α v : VectorMeasure α M i : Set α hi : MeasurableSet i ⊢ ↑(v.trim ⋯) i = ↑v i
exact if_pos hi
no goals
e5d0658cec430037
Equiv.Perm.IsCycleOn.pow_apply_eq
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
theorem IsCycleOn.pow_apply_eq {s : Finset α} (hf : f.IsCycleOn s) (ha : a ∈ s) {n : ℕ} : (f ^ n) a = a ↔ #s ∣ n
case inr α : Type u_2 f : Perm α a : α s : Finset α hf : f.IsCycleOn ↑s ha : a ∈ s n : ℕ hs : s.Nontrivial h : ∀ (x : { x // x ∈ s }), ¬f ↑x = ↑x this : orderOf (f.subtypePerm ⋯) = #(f.subtypePerm ⋯).support ⊢ (f ^ n) a = a ↔ #s ∣ n
simp only [coe_sort_coe, support_subtype_perm, ne_eq, h, not_false_eq_true, univ_eq_attach, mem_attach, imp_self, implies_true, filter_true_of_mem, card_attach] at this
case inr α : Type u_2 f : Perm α a : α s : Finset α hf : f.IsCycleOn ↑s ha : a ∈ s n : ℕ hs : s.Nontrivial h : ∀ (x : { x // x ∈ s }), ¬f ↑x = ↑x this : orderOf (f.subtypePerm ⋯) = #s ⊢ (f ^ n) a = a ↔ #s ∣ n
86354cb7edac4dca
AntitoneOn.integral_le_sum
Mathlib/Analysis/SumIntegralComparisons.lean
theorem AntitoneOn.integral_le_sum (hf : AntitoneOn f (Icc x₀ (x₀ + a))) : (∫ x in x₀..x₀ + a, f x) ≤ ∑ i ∈ Finset.range a, f (x₀ + i)
x₀ : ℝ a : ℕ f : ℝ → ℝ hf : AntitoneOn f (Icc x₀ (x₀ + ↑a)) hint : ∀ k < a, IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1)) i : ℕ hi : i ∈ Finset.range a ia : i < a ⊢ IntervalIntegrable (fun x => f (x₀ + ↑i)) volume (x₀ + ↑i) (x₀ + ↑(i + 1))
simp
no goals
709ac30a4a15e5af
Real.exists_extension_norm_eq
Mathlib/Analysis/NormedSpace/HahnBanach/Extension.lean
theorem exists_extension_norm_eq (p : Subspace ℝ E) (f : p →L[ℝ] ℝ) : ∃ g : E →L[ℝ] ℝ, (∀ x : p, g x = f x) ∧ ‖g‖ = ‖f‖
case intro.intro E : Type u_1 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E p : Subspace ℝ E f : ↥p →L[ℝ] ℝ g : E →ₗ[ℝ] ℝ g_eq : ∀ (x : ↥{ domain := p, toFun := ↑f }.domain), g ↑x = ↑{ domain := p, toFun := ↑f } x g_le : ∀ (x : E), g x ≤ ‖f‖ * ‖x‖ g' : E →L[ℝ] ℝ := g.mkContinuous ‖f‖ ⋯ ⊢ ‖f‖ ≤ ‖g.mkContinuous ‖f‖ ⋯‖
refine f.opNorm_le_bound (norm_nonneg _) fun x => ?_
case intro.intro E : Type u_1 inst✝¹ : SeminormedAddCommGroup E inst✝ : NormedSpace ℝ E p : Subspace ℝ E f : ↥p →L[ℝ] ℝ g : E →ₗ[ℝ] ℝ g_eq : ∀ (x : ↥{ domain := p, toFun := ↑f }.domain), g ↑x = ↑{ domain := p, toFun := ↑f } x g_le : ∀ (x : E), g x ≤ ‖f‖ * ‖x‖ g' : E →L[ℝ] ℝ := g.mkContinuous ‖f‖ ⋯ x : ↥p ⊢ ‖f x‖ ≤ ‖g.mkContinuous ‖f‖ ⋯‖ * ‖x‖
0f306ef1f16e3415
Array.anyM_loop_iff_exists
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem anyM_loop_iff_exists {p : α → Bool} {as : Array α} {start stop} (h : stop ≤ as.size) : anyM.loop (m := Id) p as stop h start = true ↔ ∃ (i : Nat) (_ : i < as.size), start ≤ i ∧ i < stop ∧ p as[i] = true
α : Type u_1 p : α → Bool as : Array α start stop : Nat h✝ : stop ≤ as.size h₁ : start < stop h₂ : ¬p as[start] = true i : Nat hi : i < as.size ge : start + 1 ≤ i lt : i < stop h : p as[i] = true this : start ≠ i ⊢ start ≤ i
omega
no goals
ffc0dbb5549e1171
Finset.pi_insert
Mathlib/Data/Finset/Pi.lean
theorem pi_insert [∀ a, DecidableEq (β a)] {s : Finset α} {t : ∀ a : α, Finset (β a)} {a : α} (ha : a ∉ s) : pi (insert a s) t = (t a).biUnion fun b => (pi s t).image (Pi.cons s a b)
case a α : Type u_1 β : α → Type u inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : a ∉ s ⊢ ((insert a s).pi t).val = ((t a).biUnion fun b => image (Pi.cons s a b) (s.pi t)).val
rw [← (pi (insert a s) t).2.dedup]
case a α : Type u_1 β : α → Type u inst✝¹ : DecidableEq α inst✝ : (a : α) → DecidableEq (β a) s : Finset α t : (a : α) → Finset (β a) a : α ha : a ∉ s ⊢ ((insert a s).pi t).val.dedup = ((t a).biUnion fun b => image (Pi.cons s a b) (s.pi t)).val
6b4ab4a69f59cfdf
isComplete_iUnion_separated
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem isComplete_iUnion_separated {ι : Sort*} {s : ι → Set α} (hs : ∀ i, IsComplete (s i)) {U : Set (α × α)} (hU : U ∈ 𝓤 α) (hd : ∀ (i j : ι), ∀ x ∈ s i, ∀ y ∈ s j, (x, y) ∈ U → i = j) : IsComplete (⋃ i, s i)
case intro.intro α : Type u uniformSpace : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι), ∀ x ∈ s i, ∀ y ∈ s j, (x, y) ∈ U → i = j S : Set α := ⋃ i, s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : l.NeBot hl' : ∀ s ∈ 𝓤 α, ∃ t ∈ l, t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U x : α hx : x ∈ t i : ι hi : x ∈ s i y : α hy : y ∈ t ⊢ y ∈ s i
rcases mem_iUnion.1 (htS hy) with ⟨j, hj⟩
case intro.intro.intro α : Type u uniformSpace : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι), ∀ x ∈ s i, ∀ y ∈ s j, (x, y) ∈ U → i = j S : Set α := ⋃ i, s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : l.NeBot hl' : ∀ s ∈ 𝓤 α, ∃ t ∈ l, t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U x : α hx : x ∈ t i : ι hi : x ∈ s i y : α hy : y ∈ t j : ι hj : y ∈ s j ⊢ y ∈ s i
bb147cb415fdbcec
inv_le_inv_iff
Mathlib/Algebra/Order/Group/Unbundled/Basic.lean
theorem inv_le_inv_iff : a⁻¹ ≤ b⁻¹ ↔ b ≤ a
α : Type u inst✝³ : Group α inst✝² : LE α inst✝¹ : MulLeftMono α a b : α inst✝ : MulRightMono α ⊢ a * a⁻¹ * b ≤ a * b⁻¹ * b ↔ b ≤ a
simp
no goals
85f86bc66c862d56
Order.sub_one_covBy
Mathlib/Algebra/Order/SuccPred.lean
theorem sub_one_covBy [NoMinOrder α] (x : α) : x - 1 ⋖ x
α : Type u_1 inst✝⁴ : Preorder α inst✝³ : Sub α inst✝² : One α inst✝¹ : PredSubOrder α inst✝ : NoMinOrder α x : α ⊢ x - 1 ⋖ x
rw [← pred_eq_sub_one]
α : Type u_1 inst✝⁴ : Preorder α inst✝³ : Sub α inst✝² : One α inst✝¹ : PredSubOrder α inst✝ : NoMinOrder α x : α ⊢ pred x ⋖ x
46680f86c4bcf2a0
FDerivMeasurableAux.D_subset_differentiable_set
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem D_subset_differentiable_set {K : Set (E →L[𝕜] F)} (hK : IsComplete K) : D f K ⊆ { x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K }
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F K : Set (E →L[𝕜] F) hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n c : 𝕜 hc : 1 < ‖c‖ x : E hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → E →L[𝕜] F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) M : ∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e) this : CauchySeq L0 f' : E →L[𝕜] F f'K : f' ∈ K hf' : Tendsto L0 atTop (𝓝 f') Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e ε : ℝ εpos : 0 < ε pos : 0 < 4 + 12 * ‖c‖ e : ℕ he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖) y : E hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1)) y_pos : ¬y = 0 yzero : 0 < ‖y‖ y_lt : ‖y‖ < (1 / 2) ^ (n e + 1) yone : ‖y‖ ≤ 1 k : ℕ k_gt : n e < k m : ℕ := k - 1 h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1) hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖ m_ge : n e ≤ m km : k = m + 1 J1 : ‖f (x + y) - f x - (L e (n e) m) (x + y - x)‖ ≤ (1 / 2) ^ e * (1 / 2) ^ m J2 : ‖f (x + y) - f x - (L e (n e) m) y‖ ≤ 4 * (1 / 2) ^ e * ‖y‖ ⊢ (4 + 12 * ‖c‖) * ‖y‖ * ε = ε * ‖y‖ * (4 + 12 * ‖c‖)
ring
no goals
28c357cacce7671e
AEMeasurable.sum_measure
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
theorem sum_measure [Countable ι] {μ : ι → Measure α} (h : ∀ i, AEMeasurable f (μ i)) : AEMeasurable f (sum μ)
case refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β f : α → β inst✝ : Countable ι μ : ι → Measure α h : ∀ (i : ι), AEMeasurable f (μ i) a✝ : Nontrivial β inhabited_h : Inhabited β s : ι → Set α := fun i => toMeasurable (μ i) {x | f x ≠ mk f ⋯ x} hsμ : ∀ (i : ι), (μ i) (s i) = 0 hsm : MeasurableSet (⋂ i, s i) hs : ∀ (i : ι), ∀ x ∉ s i, f x = mk f ⋯ x g : α → β := (⋂ i, s i).piecewise (const α default) f ⊢ Measurable ((⋃ i, (s i)ᶜ).restrict f)
intro t ht
case refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β f : α → β inst✝ : Countable ι μ : ι → Measure α h : ∀ (i : ι), AEMeasurable f (μ i) a✝ : Nontrivial β inhabited_h : Inhabited β s : ι → Set α := fun i => toMeasurable (μ i) {x | f x ≠ mk f ⋯ x} hsμ : ∀ (i : ι), (μ i) (s i) = 0 hsm : MeasurableSet (⋂ i, s i) hs : ∀ (i : ι), ∀ x ∉ s i, f x = mk f ⋯ x g : α → β := (⋂ i, s i).piecewise (const α default) f t : Set β ht : MeasurableSet t ⊢ MeasurableSet ((⋃ i, (s i)ᶜ).restrict f ⁻¹' t)
df9a789791001abe
EuclideanGeometry.tan_oangle_right_mul_dist_of_oangle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Oriented/RightAngle.lean
theorem tan_oangle_right_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : Real.Angle.tan (∡ p₂ p₃ p₁) * dist p₃ p₂ = dist p₁ p₂
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) p₁ p₂ p₃ : P h : ∡ p₁ p₂ p₃ = ↑(π / 2) ⊢ (∡ p₂ p₃ p₁).tan * dist p₃ p₂ = dist p₁ p₂
have hs : (∡ p₂ p₃ p₁).sign = 1 := by rw [oangle_rotate_sign, h, Real.Angle.sign_coe_pi_div_two]
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) p₁ p₂ p₃ : P h : ∡ p₁ p₂ p₃ = ↑(π / 2) hs : (∡ p₂ p₃ p₁).sign = 1 ⊢ (∡ p₂ p₃ p₁).tan * dist p₃ p₂ = dist p₁ p₂
b67c0a9de406c5b9
ContinuousMap.induction_on
Mathlib/Topology/ContinuousMap/StoneWeierstrass.lean
theorem ContinuousMap.induction_on {𝕜 : Type*} [RCLike 𝕜] {s : Set 𝕜} {p : C(s, 𝕜) → Prop} (const : ∀ r, p (.const s r)) (id : p (.restrict s <| .id 𝕜)) (star_id : p (star (.restrict s <| .id 𝕜))) (add : ∀ f g, p f → p g → p (f + g)) (mul : ∀ f g, p f → p g → p (f * g)) (closure : (∀ f ∈ (polynomialFunctions s).starClosure, p f) → ∀ f, p f) (f : C(s, 𝕜)) : p f
case mem.inr 𝕜 : Type u_1 inst✝ : RCLike 𝕜 s : Set 𝕜 p : C(↑s, 𝕜) → Prop const : ∀ (r : 𝕜), p (ContinuousMap.const (↑s) r) id : p (restrict s (ContinuousMap.id 𝕜)) star_id : p (star (restrict s (ContinuousMap.id 𝕜))) add : ∀ (f g : C(↑s, 𝕜)), p f → p g → p (f + g) mul : ∀ (f g : C(↑s, 𝕜)), p f → p g → p (f * g) closure : (∀ f ∈ (polynomialFunctions s).starClosure, p f) → ∀ (f : C(↑s, 𝕜)), p f f✝ f : C(↑s, 𝕜) ⊢ p (star ((toContinuousMapOnAlgHom s) X))
simpa only [toContinuousMapOnAlgHom_apply, toContinuousMapOn_X_eq_restrict_id]
no goals
01b202580110cbda
Polynomial.degree_pow_le
Mathlib/Algebra/Polynomial/Degree/Definitions.lean
theorem degree_pow_le (p : R[X]) : ∀ n : ℕ, degree (p ^ n) ≤ n • degree p | 0 => by rw [pow_zero, zero_nsmul]; exact degree_one_le | n + 1 => calc degree (p ^ (n + 1)) ≤ degree (p ^ n) + degree p
R : Type u inst✝ : Semiring R p : R[X] n : ℕ ⊢ (p ^ (n + 1)).degree ≤ (p ^ n).degree + p.degree
rw [pow_succ]
R : Type u inst✝ : Semiring R p : R[X] n : ℕ ⊢ (p ^ n * p).degree ≤ (p ^ n).degree + p.degree
1a032331b3bf632a
sUnion_memPartition
Mathlib/Data/Set/MemPartition.lean
@[simp] lemma sUnion_memPartition (f : ℕ → Set α) (n : ℕ) : ⋃₀ memPartition f n = univ
case succ.h α : Type u_1 f : ℕ → Set α n : ℕ ih : ⋃₀ memPartition f n = univ x : α this : ∃ t ∈ memPartition f n, x ∈ t ⊢ ∃ t ∈ {s | ∃ u ∈ memPartition f n, s = u ∩ f n ∨ s = u \ f n}, x ∈ t
obtain ⟨t, ht, hxt⟩ := this
case succ.h.intro.intro α : Type u_1 f : ℕ → Set α n : ℕ ih : ⋃₀ memPartition f n = univ x : α t : Set α ht : t ∈ memPartition f n hxt : x ∈ t ⊢ ∃ t ∈ {s | ∃ u ∈ memPartition f n, s = u ∩ f n ∨ s = u \ f n}, x ∈ t
92b61a089b6c0707
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.assignmentsInvariant_insertRatUnits
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
theorem assignmentsInvariant_insertRatUnits {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (units : CNF.Clause (PosFin n)) : AssignmentsInvariant (insertRatUnits f units).1
case left n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant units : CNF.Clause (PosFin n) h : let assignments := (f.insertRatUnits units).fst.assignments; let_fun hsize := ⋯; let ratUnits := (f.insertRatUnits units).fst.ratUnits; InsertUnitInvariant f.assignments ⋯ ratUnits assignments hsize hsize : (f.insertRatUnits units).fst.assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.insertRatUnits units).fst.assignments[i.val] = true p : PosFin n → Bool hp : ∀ (x : DefaultClause n), (some x ∈ (f.insertRatUnits units).fst.clauses.toList ∨ (∃ a, (a, false) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, true) = x) ∨ ∃ a, (a, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, true) = x) → ∃ a, (a, false) ∈ Clause.toList x ∧ decide (p a = false) = true ∨ (a, true) ∈ Clause.toList x ∧ p a = true pf : p ⊨ f j1 j2 : Fin (f.insertRatUnits units).fst.ratUnits.size i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1 : (f.insertRatUnits units).fst.ratUnits[j1] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, true) h2 : (f.insertRatUnits units).fst.ratUnits[j2] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, false) left✝¹ : (f.insertRatUnits units).fst.assignments[↑⟨i.val, ⋯⟩] = both left✝ : f.assignments[↑⟨i.val, ⋯⟩] = unassigned right✝ : ∀ (k : Fin (f.insertRatUnits units).fst.ratUnits.size), k ≠ j1 → k ≠ j2 → (f.insertRatUnits units).fst.ratUnits[k].fst.val ≠ ↑⟨i.val, ⋯⟩ j1_unit : DefaultClause n := unit (f.insertRatUnits units).fst.ratUnits[j1] j1_unit_def : j1_unit = unit (f.insertRatUnits units).fst.ratUnits[j1] j1_unit_in_insertRatUnits_res : ∃ i, (i, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (i, false) = j1_unit ∨ (i, true) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (i, true) = j1_unit j2_unit : DefaultClause n := unit (f.insertRatUnits units).fst.ratUnits[j2] j2_unit_def : j2_unit = unit (f.insertRatUnits units).fst.ratUnits[j2] ⊢ (i, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList
have h2 : (insertRatUnits f units).fst.ratUnits[j2] = (i, false) := by rw [h2] simp only [Prod.mk.injEq, and_true] rfl
case left n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant units : CNF.Clause (PosFin n) h : let assignments := (f.insertRatUnits units).fst.assignments; let_fun hsize := ⋯; let ratUnits := (f.insertRatUnits units).fst.ratUnits; InsertUnitInvariant f.assignments ⋯ ratUnits assignments hsize hsize : (f.insertRatUnits units).fst.assignments.size = n i : PosFin n b : Bool hb : hasAssignment b (f.insertRatUnits units).fst.assignments[i.val] = true p : PosFin n → Bool hp : ∀ (x : DefaultClause n), (some x ∈ (f.insertRatUnits units).fst.clauses.toList ∨ (∃ a, (a, false) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.rupUnits.toList ∧ unit (a, true) = x) ∨ ∃ a, (a, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, false) = x ∨ (a, true) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (a, true) = x) → ∃ a, (a, false) ∈ Clause.toList x ∧ decide (p a = false) = true ∨ (a, true) ∈ Clause.toList x ∧ p a = true pf : p ⊨ f j1 j2 : Fin (f.insertRatUnits units).fst.ratUnits.size i_gt_zero : ↑⟨i.val, ⋯⟩ > 0 h1 : (f.insertRatUnits units).fst.ratUnits[j1] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, true) h2✝ : (f.insertRatUnits units).fst.ratUnits[j2] = (⟨↑⟨i.val, ⋯⟩, ⋯⟩, false) left✝¹ : (f.insertRatUnits units).fst.assignments[↑⟨i.val, ⋯⟩] = both left✝ : f.assignments[↑⟨i.val, ⋯⟩] = unassigned right✝ : ∀ (k : Fin (f.insertRatUnits units).fst.ratUnits.size), k ≠ j1 → k ≠ j2 → (f.insertRatUnits units).fst.ratUnits[k].fst.val ≠ ↑⟨i.val, ⋯⟩ j1_unit : DefaultClause n := unit (f.insertRatUnits units).fst.ratUnits[j1] j1_unit_def : j1_unit = unit (f.insertRatUnits units).fst.ratUnits[j1] j1_unit_in_insertRatUnits_res : ∃ i, (i, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (i, false) = j1_unit ∨ (i, true) ∈ (f.insertRatUnits units).fst.ratUnits.toList ∧ unit (i, true) = j1_unit j2_unit : DefaultClause n := unit (f.insertRatUnits units).fst.ratUnits[j2] j2_unit_def : j2_unit = unit (f.insertRatUnits units).fst.ratUnits[j2] h2 : (f.insertRatUnits units).fst.ratUnits[j2] = (i, false) ⊢ (i, false) ∈ (f.insertRatUnits units).fst.ratUnits.toList
b6d274376b14ee0b
ProbabilityTheory.Kernel.iIndepSet.indep_generateFrom_of_disjoint
Mathlib/Probability/Independence/Kernel.lean
theorem iIndepSet.indep_generateFrom_of_disjoint {s : ι → Set Ω} (hsm : ∀ n, MeasurableSet (s n)) (hs : iIndepSet s κ μ) (S T : Set ι) (hST : Disjoint S T) : Indep (generateFrom { t | ∃ n ∈ S, s n = t }) (generateFrom { t | ∃ k ∈ T, s k = t }) κ μ
case inr α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ μ S T : Set ι hST : Disjoint S T hμ : μ ≠ 0 ⊢ Indep (generateFrom {t | ∃ n ∈ S, s n = t}) (generateFrom {t | ∃ k ∈ T, s k = t}) κ μ
obtain ⟨η, η_eq, hη⟩ : ∃ (η : Kernel α Ω), κ =ᵐ[μ] η ∧ IsMarkovKernel η := exists_ae_eq_isMarkovKernel hs.ae_isProbabilityMeasure hμ
case inr.intro.intro α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s κ μ S T : Set ι hST : Disjoint S T hμ : μ ≠ 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η ⊢ Indep (generateFrom {t | ∃ n ∈ S, s n = t}) (generateFrom {t | ∃ k ∈ T, s k = t}) κ μ
a2cf118cd07d37b1
Filter.eventually_lt_of_lt_liminf
Mathlib/Order/LiminfLimsup.lean
theorem eventually_lt_of_lt_liminf {f : Filter α} [ConditionallyCompleteLinearOrder β] {u : α → β} {b : β} (h : b < liminf u f) (hu : f.IsBoundedUnder (· ≥ ·) u
α : Type u_1 β : Type u_2 f : Filter α inst✝ : ConditionallyCompleteLinearOrder β u : α → β b : β h : b < liminf u f hu : autoParam (IsBoundedUnder (fun x1 x2 => x1 ≥ x2) f u) _auto✝ ⊢ ∃ c, ∃ (_ : c ∈ {c | ∀ᶠ (n : α) in f, c ≤ u n}), b < c
simp_rw [exists_prop]
α : Type u_1 β : Type u_2 f : Filter α inst✝ : ConditionallyCompleteLinearOrder β u : α → β b : β h : b < liminf u f hu : autoParam (IsBoundedUnder (fun x1 x2 => x1 ≥ x2) f u) _auto✝ ⊢ ∃ c ∈ {c | ∀ᶠ (n : α) in f, c ≤ u n}, b < c
82ef5ffe328c509b
MonomialOrder.leadingCoeff_monomial
Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean
theorem leadingCoeff_monomial {d : σ →₀ ℕ} (c : R) : m.leadingCoeff (monomial d c) = c
σ : Type u_1 m : MonomialOrder σ R : Type u_2 inst✝ : CommSemiring R d : σ →₀ ℕ c : R ⊢ m.leadingCoeff ((monomial d) c) = c
classical simp only [leadingCoeff, degree_monomial] split_ifs with hc <;> simp [hc]
no goals
f8562f63559ed44e
StrictMono.not_bddAbove_range_of_wellFoundedLT
Mathlib/Order/WellFounded.lean
theorem StrictMono.not_bddAbove_range_of_wellFoundedLT {f : β → β} [WellFoundedLT β] [NoMaxOrder β] (hf : StrictMono f) : ¬ BddAbove (Set.range f)
case intro.intro β : Type u_2 inst✝² : LinearOrder β f : β → β inst✝¹ : WellFoundedLT β inst✝ : NoMaxOrder β hf : StrictMono f a : β ha : a ∈ upperBounds (Set.range f) b : β hb : a < b ⊢ False
exact ((hf.le_apply.trans_lt (hf hb)).trans_le <| ha (Set.mem_range_self _)).false
no goals
5c12033566e5c122
MeasureTheory.SimpleFunc.measure_preimage_lt_top_of_memLp
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
theorem measure_preimage_lt_top_of_memLp (hp_pos : p ≠ 0) (hp_ne_top : p ≠ ∞) (f : α →ₛ E) (hf : MemLp f p μ) (y : E) (hy_ne : y ≠ 0) : μ (f ⁻¹' {y}) < ∞
case pos α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E μ : Measure α p : ℝ≥0∞ hp_pos : p ≠ 0 hp_ne_top : p ≠ ⊤ f : α →ₛ E hf : MemLp (⇑f) p μ y : E hy_ne : y ≠ 0 hp_pos_real : 0 < p.toReal hf_eLpNorm : ∀ a ∈ f.range, ‖a‖ₑ ^ p.toReal * μ (⇑f ⁻¹' {a}) < ⊤ hyf : y ∈ f.range ⊢ μ (⇑f ⁻¹' {y}) < ⊤
specialize hf_eLpNorm y hyf
case pos α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E μ : Measure α p : ℝ≥0∞ hp_pos : p ≠ 0 hp_ne_top : p ≠ ⊤ f : α →ₛ E hf : MemLp (⇑f) p μ y : E hy_ne : y ≠ 0 hp_pos_real : 0 < p.toReal hyf : y ∈ f.range hf_eLpNorm : ‖y‖ₑ ^ p.toReal * μ (⇑f ⁻¹' {y}) < ⊤ ⊢ μ (⇑f ⁻¹' {y}) < ⊤
33a6699fa8a77822
Matrix.PosSemidef.conjTranspose_mul_mul_same
Mathlib/LinearAlgebra/Matrix/PosDef.lean
lemma conjTranspose_mul_mul_same {A : Matrix n n R} (hA : PosSemidef A) {m : Type*} [Fintype m] (B : Matrix n m R) : PosSemidef (Bᴴ * A * B)
case right n : Type u_2 R : Type u_3 inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarRing R A : Matrix n n R hA : A.PosSemidef m : Type u_5 inst✝ : Fintype m B : Matrix n m R ⊢ ∀ (x : m → R), 0 ≤ star x ⬝ᵥ (Bᴴ * A * B) *ᵥ x
intro x
case right n : Type u_2 R : Type u_3 inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarRing R A : Matrix n n R hA : A.PosSemidef m : Type u_5 inst✝ : Fintype m B : Matrix n m R x : m → R ⊢ 0 ≤ star x ⬝ᵥ (Bᴴ * A * B) *ᵥ x
6cfd56aa47280d8c
gramSchmidt_ne_zero_coe
Mathlib/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
theorem gramSchmidt_ne_zero_coe {f : ι → E} (n : ι) (h₀ : LinearIndependent 𝕜 (f ∘ ((↑) : Set.Iic n → ι))) : gramSchmidt 𝕜 f n ≠ 0
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E n : ι h₀ : LinearIndependent 𝕜 (f ∘ Subtype.val) h : gramSchmidt 𝕜 f n = 0 ⊢ ∑ i ∈ Finset.Iio n, ↑((orthogonalProjection (span 𝕜 {gramSchmidt 𝕜 f i})) (f n)) ∈ span 𝕜 (gramSchmidt 𝕜 f '' Set.Iio n)
apply Submodule.sum_mem _ _
𝕜 : Type u_1 E : Type u_2 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : WellFoundedLT ι f : ι → E n : ι h₀ : LinearIndependent 𝕜 (f ∘ Subtype.val) h : gramSchmidt 𝕜 f n = 0 ⊢ ∀ c ∈ Finset.Iio n, ↑((orthogonalProjection (span 𝕜 {gramSchmidt 𝕜 f c})) (f n)) ∈ span 𝕜 (gramSchmidt 𝕜 f '' Set.Iio n)
69b931e205d84775
Nat.log_eq_iff
Mathlib/Data/Nat/Log.lean
theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) : log b n = m ↔ b ^ m ≤ n ∧ n < b ^ (m + 1)
case inr b m n : ℕ h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0 hbn : ¬(1 < b ∧ n ≠ 0) hm : m ≠ 0 ⊢ log b n = m ↔ b ^ m ≤ n ∧ n < b ^ (m + 1)
rw [not_and_or, not_lt, Ne, not_not] at hbn
case inr b m n : ℕ h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0 hbn : b ≤ 1 ∨ n = 0 hm : m ≠ 0 ⊢ log b n = m ↔ b ^ m ≤ n ∧ n < b ^ (m + 1)
d0a2456541327695
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.safe_insert_of_performRupCheck_insertRat
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Formula/RatAddSound.lean
theorem safe_insert_of_performRupCheck_insertRat {n : Nat} (f : DefaultFormula n) (hf : f.ratUnits = #[] ∧ AssignmentsInvariant f) (c : DefaultClause n) (rupHints : Array Nat) : (performRupCheck (insertRatUnits f (negate c)).1 rupHints).2.2.1 = true → Limplies (PosFin n) f (f.insert c)
case inr n : Nat f : DefaultFormula n hf : f.ratUnits = #[] ∧ f.AssignmentsInvariant c : DefaultClause n rupHints : Array Nat performRupCheck_success : (Array.foldl (confirmRupHint (f.insertRatUnits c.negate).1.clauses) ((f.insertRatUnits c.negate).1.assignments, [], false, false) rupHints).2.2.fst = true p : PosFin n → Bool c' : DefaultClause n c'_in_f : c' ∈ f.toList pf : ∀ (x : DefaultClause n), x ∈ f.toList → p ⊨ x ⊢ p ⊨ c'
exact pf c' c'_in_f
no goals
7b923cb96f92e5d9
Associates.prod_le_prod_iff_le
Mathlib/RingTheory/UniqueFactorizationDomain/Basic.lean
theorem prod_le_prod_iff_le [Nontrivial α] {p q : Multiset (Associates α)} (hp : ∀ a ∈ p, Irreducible a) (hq : ∀ a ∈ q, Irreducible a) : p.prod ≤ q.prod ↔ p ≤ q
case intro.refine_2.e_a α : Type u_1 inst✝² : CancelCommMonoidWithZero α inst✝¹ : UniqueFactorizationMonoid α inst✝ : Nontrivial α p q : Multiset (Associates α) hp : ∀ a ∈ p, Irreducible a hq : ∀ a ∈ q, Irreducible a c : Associates α eqc : q.prod = p.prod * c hc : c = 0 ⊢ 0 ∈ q
rw [← prod_eq_zero_iff, eqc, hc, mul_zero]
no goals
9197e5d1051792cf
MeasureTheory.measure_univ_of_isMulLeftInvariant
Mathlib/MeasureTheory/Group/Measure.lean
theorem measure_univ_of_isMulLeftInvariant [WeaklyLocallyCompactSpace G] [NoncompactSpace G] (μ : Measure G) [IsOpenPosMeasure μ] [μ.IsMulLeftInvariant] : μ univ = ∞
G : Type u_1 inst✝⁸ : MeasurableSpace G inst✝⁷ : TopologicalSpace G inst✝⁶ : BorelSpace G inst✝⁵ : Group G inst✝⁴ : IsTopologicalGroup G inst✝³ : WeaklyLocallyCompactSpace G inst✝² : NoncompactSpace G μ : Measure G inst✝¹ : μ.IsOpenPosMeasure inst✝ : μ.IsMulLeftInvariant K : Set G K1 : K ∈ 𝓝 1 hK : IsCompact K Kclosed : IsClosed K K_pos : 0 < μ K g : Set G → G hg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K) L : ℕ → Set G := fun n => (fun T => T ∪ g T • K)^[n] K Lcompact : ∀ (n : ℕ), IsCompact (L n) Lclosed : ∀ (n : ℕ), IsClosed (L n) M : ∀ (n : ℕ), μ (L n) = ↑(n + 1) * μ K ⊢ Tendsto (fun x => ↑(x + 1)) atTop (𝓝 ⊤)
exact ENNReal.tendsto_nat_nhds_top.comp (tendsto_add_atTop_nat _)
no goals
d58a29d70ac786c1
Multiset.bind_bind
Mathlib/Data/Multiset/Bind.lean
theorem bind_bind (m : Multiset α) (n : Multiset β) {f : α → β → Multiset γ} : ((bind m) fun a => (bind n) fun b => f a b) = (bind n) fun b => (bind m) fun a => f a b := Multiset.induction_on m (by simp) (by simp +contextual)
α : Type u_1 β : Type v γ : Type u_2 m : Multiset α n : Multiset β f : α → β → Multiset γ ⊢ ∀ (a : α) (s : Multiset α), ((s.bind fun a => n.bind fun b => f a b) = n.bind fun b => s.bind fun a => f a b) → ((a ::ₘ s).bind fun a => n.bind fun b => f a b) = n.bind fun b => (a ::ₘ s).bind fun a => f a b
simp +contextual
no goals
abdc90d1a3f89e14
HomologicalComplex.pOpcycles_extendOpcyclesIso_inv
Mathlib/Algebra/Homology/Embedding/ExtendHomology.lean
@[reassoc (attr := simp)] lemma pOpcycles_extendOpcyclesIso_inv : K.pOpcycles j ≫ (K.extendOpcyclesIso e hj').inv = (K.extendXIso e hj').inv ≫ (K.extend e).pOpcycles j'
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁴ : Category.{u_4, u_3} C inst✝³ : HasZeroMorphisms C inst✝² : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' j : ι j' : ι' hj' : e.f j = j' inst✝¹ : K.HasHomology j inst✝ : (K.extend e).HasHomology j' ⊢ (K.sc j).pOpcycles = (K.extendXIso e hj').inv ≫ ((K.extend e).sc j').pOpcycles ≫ (extend.homologyData' K e hj' ⋯ ⋯ (K.sc j).homologyData).right.opcyclesIso.hom ≫ (K.sc j).homologyData.right.opcyclesIso.inv
rw [ShortComplex.RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc]
ι : Type u_1 ι' : Type u_2 c : ComplexShape ι c' : ComplexShape ι' C : Type u_3 inst✝⁴ : Category.{u_4, u_3} C inst✝³ : HasZeroMorphisms C inst✝² : HasZeroObject C K : HomologicalComplex C c e : c.Embedding c' j : ι j' : ι' hj' : e.f j = j' inst✝¹ : K.HasHomology j inst✝ : (K.extend e).HasHomology j' ⊢ (K.sc j).pOpcycles = (K.extendXIso e hj').inv ≫ (extend.homologyData' K e hj' ⋯ ⋯ (K.sc j).homologyData).right.p ≫ (K.sc j).homologyData.right.opcyclesIso.inv
d598f615c159cc2f
PrimeSpectrum.iSup_basicOpen_eq_top_iff'
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
lemma iSup_basicOpen_eq_top_iff' {s : Set R} : (⨆ i ∈ s, PrimeSpectrum.basicOpen i) = ⊤ ↔ Ideal.span s = ⊤
R : Type u inst✝ : CommSemiring R s : Set R ⊢ ⨆ i ∈ s, basicOpen i = ⊤ ↔ ⨆ i, basicOpen ↑i = ⊤
simp
no goals
c483e22b2c8fc038
HasFiniteFPowerSeriesOnBall.fderiv
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem HasFiniteFPowerSeriesOnBall.fderiv (h : HasFiniteFPowerSeriesOnBall f p x (n + 1) r) : HasFiniteFPowerSeriesOnBall (fderiv 𝕜 f) p.derivSeries x n r
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ n : ℕ f : E → F x : E h : HasFiniteFPowerSeriesOnBall f p x (n + 1) r ⊢ HasFiniteFPowerSeriesOnBall (fderiv 𝕜 f) p.derivSeries x n r
refine .congr (f := fun z ↦ continuousMultilinearCurryFin1 𝕜 E F (p.changeOrigin (z - x) 1)) ?_ fun z hz ↦ ?_
case refine_1 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ n : ℕ f : E → F x : E h : HasFiniteFPowerSeriesOnBall f p x (n + 1) r ⊢ HasFiniteFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 𝕜 E F) (p.changeOrigin (z - x) 1)) p.derivSeries x n r case refine_2 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F p : FormalMultilinearSeries 𝕜 E F r : ℝ≥0∞ n : ℕ f : E → F x : E h : HasFiniteFPowerSeriesOnBall f p x (n + 1) r z : E hz : z ∈ EMetric.ball x r ⊢ (fun z => (continuousMultilinearCurryFin1 𝕜 E F) (p.changeOrigin (z - x) 1)) z = fderiv 𝕜 f z
b335a221088906cf
List.take_of_length_le
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/TakeDrop.lean
theorem take_of_length_le {l : List α} (h : l.length ≤ i) : take i l = l
α : Type u_1 i : Nat l : List α h : l.length ≤ i this : take i l ++ drop i l = l ⊢ take i l = l
rw [drop_of_length_le h, append_nil] at this
α : Type u_1 i : Nat l : List α h : l.length ≤ i this : take i l = l ⊢ take i l = l
6c0eac07c538a813
ComplexShape.π_symm
Mathlib/Algebra/Homology/ComplexShapeSigns.lean
lemma π_symm (i₁ : I₁) (i₂ : I₂) : π c₂ c₁ c₁₂ ⟨i₂, i₁⟩ = π c₁ c₂ c₁₂ ⟨i₁, i₂⟩
I₁ : Type u_1 I₂ : Type u_2 I₁₂ : Type u_4 c₁ : ComplexShape I₁ c₂ : ComplexShape I₂ c₁₂ : ComplexShape I₁₂ inst✝² : TotalComplexShape c₁ c₂ c₁₂ inst✝¹ : TotalComplexShape c₂ c₁ c₁₂ inst✝ : TotalComplexShapeSymmetry c₁ c₂ c₁₂ i₁ : I₁ i₂ : I₂ ⊢ c₂.π c₁ c₁₂ (i₂, i₁) = c₁.π c₂ c₁₂ (i₁, i₂)
apply TotalComplexShapeSymmetry.symm
no goals
aefa0261e4cfe0e7
finiteMultiplicity_mul_aux
Mathlib/RingTheory/Multiplicity.lean
theorem finiteMultiplicity_mul_aux {p : α} (hp : Prime p) {a b : α} : ∀ {n m : ℕ}, ¬p ^ (n + 1) ∣ a → ¬p ^ (m + 1) ∣ b → ¬p ^ (n + m + 1) ∣ a * b | n, m => fun ha hb ⟨s, hs⟩ => have : p ∣ a * b := ⟨p ^ (n + m) * s, by simp [hs, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩ (hp.2.2 a b this).elim (fun ⟨x, hx⟩ => have hn0 : 0 < n := Nat.pos_of_ne_zero fun hn0 => by simp [hx, hn0] at ha have hpx : ¬p ^ (n - 1 + 1) ∣ x := fun ⟨y, hy⟩ => ha (hx.symm ▸ ⟨y, mul_right_cancel₀ hp.1 <| by rw [tsub_add_cancel_of_le (succ_le_of_lt hn0)] at hy simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩) have : 1 ≤ n + m := le_trans hn0 (Nat.le_add_right n m) finiteMultiplicity_mul_aux hp hpx hb ⟨s, mul_right_cancel₀ hp.1 (by rw [tsub_add_eq_add_tsub (succ_le_of_lt hn0), tsub_add_cancel_of_le this] simp_all [mul_comm, mul_assoc, mul_left_comm, pow_add])⟩) fun ⟨x, hx⟩ => have hm0 : 0 < m := Nat.pos_of_ne_zero fun hm0 => by simp [hx, hm0] at hb have hpx : ¬p ^ (m - 1 + 1) ∣ x := fun ⟨y, hy⟩ => hb (hx.symm ▸ ⟨y, mul_right_cancel₀ hp.1 <| by rw [tsub_add_cancel_of_le (succ_le_of_lt hm0)] at hy simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩) finiteMultiplicity_mul_aux hp ha hpx ⟨s, mul_right_cancel₀ hp.1 (by rw [add_assoc, tsub_add_cancel_of_le (succ_le_of_lt hm0)] simp_all [mul_comm, mul_assoc, mul_left_comm, pow_add])⟩
α : Type u_1 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p a b : α n m : ℕ ha : ¬p ^ (n + 1) ∣ a hb : ¬p ^ (m + 1) ∣ b x✝¹ : p ^ (n + m + 1) ∣ a * b s : α hs : a * b = p ^ (n + m + 1) * s this✝ : p ∣ a * b x✝ : p ∣ a x : α hx : a = p * x hn0 : 0 < n hpx : ¬p ^ (n - 1 + 1) ∣ x this : 1 ≤ n + m ⊢ x * b * p = p ^ (n + m) * s * p
simp_all [mul_comm, mul_assoc, mul_left_comm, pow_add]
no goals
e3775fe83a9cfc31
MeasureTheory.integrableOn_univ
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
theorem integrableOn_univ : IntegrableOn f univ μ ↔ Integrable f μ
α : Type u_1 E : Type u_4 inst✝¹ : MeasurableSpace α inst✝ : NormedAddCommGroup E f : α → E μ : Measure α ⊢ IntegrableOn f univ μ ↔ Integrable f μ
rw [IntegrableOn, Measure.restrict_univ]
no goals
dc45be82ebcf739a
Equiv.Perm.ofSign_disjoint
Mathlib/GroupTheory/Perm/Sign.lean
lemma ofSign_disjoint : _root_.Disjoint (ofSign 1 : Finset (Perm α)) (ofSign (-1))
α : Type u inst✝¹ : DecidableEq α inst✝ : Fintype α σ : Perm α hσ : σ ∈ ofSign 1 hτ : σ ∈ ofSign (-1) ⊢ False
rw [mem_ofSign] at hσ hτ
α : Type u inst✝¹ : DecidableEq α inst✝ : Fintype α σ : Perm α hσ : sign σ = 1 hτ : sign σ = -1 ⊢ False
e53c5c58b6af3a43
ProbabilityTheory.integrable_exp_mul_of_abs_le
Mathlib/Probability/Moments/IntegrableExpMul.lean
/-- If `ω ↦ exp (u * X ω)` is integrable at `u` and `-u`, then it is integrable on `[-u, u]`. -/ lemma integrable_exp_mul_of_abs_le (hu_int_pos : Integrable (fun ω ↦ exp (u * X ω)) μ) (hu_int_neg : Integrable (fun ω ↦ exp (- u * X ω)) μ) (htu : |t| ≤ |u|) : Integrable (fun ω ↦ exp (t * X ω)) μ
case refine_2 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t u : ℝ hu_int_pos : Integrable (fun ω => rexp (u * X ω)) μ hu_int_neg : Integrable (fun ω => rexp (-u * X ω)) μ htu : |t| ≤ |u| ⊢ Integrable (fun ω => rexp (|u| * X ω)) μ
rcases le_total 0 u with hu | hu
case refine_2.inl Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t u : ℝ hu_int_pos : Integrable (fun ω => rexp (u * X ω)) μ hu_int_neg : Integrable (fun ω => rexp (-u * X ω)) μ htu : |t| ≤ |u| hu : 0 ≤ u ⊢ Integrable (fun ω => rexp (|u| * X ω)) μ case refine_2.inr Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω t u : ℝ hu_int_pos : Integrable (fun ω => rexp (u * X ω)) μ hu_int_neg : Integrable (fun ω => rexp (-u * X ω)) μ htu : |t| ≤ |u| hu : u ≤ 0 ⊢ Integrable (fun ω => rexp (|u| * X ω)) μ
c59caf165b150fde
BitVec.zero_sshiftRight
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem zero_sshiftRight {n : Nat} : (0#w).sshiftRight n = 0#w
w n : Nat ⊢ (0#w).sshiftRight n = 0#w
ext i h
case pred w n i : Nat h : i < w ⊢ ((0#w).sshiftRight n).getLsbD i = (0#w).getLsbD i
d91b7635f218cbff
Trivialization.apply_eq_prod_continuousLinearEquivAt
Mathlib/Topology/VectorBundle/Basic.lean
theorem apply_eq_prod_continuousLinearEquivAt (e : Trivialization F (π F E)) [e.IsLinear R] (b : B) (hb : b ∈ e.baseSet) (z : E b) : e ⟨b, z⟩ = (b, e.continuousLinearEquivAt R b hb z)
case fst R : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 inst✝⁹ : NontriviallyNormedField R inst✝⁸ : (x : B) → AddCommMonoid (E x) inst✝⁷ : (x : B) → Module R (E x) inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace R F inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E e : Trivialization F TotalSpace.proj inst✝ : Trivialization.IsLinear R e b : B hb : b ∈ e.baseSet z : E b ⊢ { proj := b, snd := z } ∈ TotalSpace.proj ⁻¹' e.baseSet
exact hb
no goals
5868769150d7cbc0
PythagoreanTriple.even_odd_of_coprime
Mathlib/NumberTheory/PythagoreanTriples.lean
theorem even_odd_of_coprime (hc : Int.gcd x y = 1) : x % 2 = 0 ∧ y % 2 = 1 ∨ x % 2 = 1 ∧ y % 2 = 0
case inr.inr x y z : ℤ h : PythagoreanTriple x y z hc : x.gcd y = 1 hx : x % 2 = 1 hy : y % 2 = 1 ⊢ False
obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 := by obtain ⟨x0, hx2⟩ := exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) obtain ⟨y0, hy2⟩ := exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) rw [sub_eq_iff_eq_add] at hx2 hy2 exact ⟨x0, y0, hx2, hy2⟩
case inr.inr.intro.intro.intro z x0 y0 : ℤ hx : (x0 * 2 + 1) % 2 = 1 hy : (y0 * 2 + 1) % 2 = 1 h : PythagoreanTriple (x0 * 2 + 1) (y0 * 2 + 1) z hc : (x0 * 2 + 1).gcd (y0 * 2 + 1) = 1 ⊢ False
48f64ea05953c676
Batteries.RBNode.foldr_reverse
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem foldr_reverse {α β : Type _} {t : RBNode α} {f : α → β → β} {init : β} : t.reverse.foldr f init = t.foldl (flip f) init := foldl_reverse.symm.trans (by simp; rfl)
α : Type u_1 β : Type u_2 t : RBNode α f : α → β → β init : β ⊢ foldl (fun a b => f b a) init t.reverse.reverse = foldl (flip f) init t
simp
α : Type u_1 β : Type u_2 t : RBNode α f : α → β → β init : β ⊢ foldl (fun a b => f b a) init t = foldl (flip f) init t
50b680d84eae0c3b
PartENat.lt_find
Mathlib/Data/Nat/PartENat.lean
theorem lt_find (n : ℕ) (h : ∀ m ≤ n, ¬P m) : (n : PartENat) < find P
P : ℕ → Prop inst✝ : DecidablePred P n : ℕ h : ∀ m ≤ n, ¬P m ⊢ ∀ (h : (find P).Dom), n < (find P).get h
intro h₁
P : ℕ → Prop inst✝ : DecidablePred P n : ℕ h : ∀ m ≤ n, ¬P m h₁ : (find P).Dom ⊢ n < (find P).get h₁
33f16598e16dc969
one_div_pow_le_one_div_pow_of_le
Mathlib/Algebra/Order/Field/Basic.lean
theorem one_div_pow_le_one_div_pow_of_le (a1 : 1 ≤ a) {m n : ℕ} (mn : m ≤ n) : 1 / a ^ n ≤ 1 / a ^ m
α : Type u_2 inst✝ : LinearOrderedSemifield α a : α a1 : 1 ≤ a m n : ℕ mn : m ≤ n ⊢ 1 / a ^ n ≤ 1 / a ^ m
refine (one_div_le_one_div ?_ ?_).mpr (pow_right_mono₀ a1 mn) <;> exact pow_pos (zero_lt_one.trans_le a1) _
no goals
30efe5e517cf3a6d
Subgroup.fg_iff_submonoid_fg
Mathlib/GroupTheory/Finiteness.lean
theorem Subgroup.fg_iff_submonoid_fg (P : Subgroup G) : P.FG ↔ P.toSubmonoid.FG
case mpr.intro.refine_1 G : Type u_3 inst✝ : Group G P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ closure ↑S ≤ P
rw [Subgroup.closure_le, ← Subgroup.coe_toSubmonoid, ← hS]
case mpr.intro.refine_1 G : Type u_3 inst✝ : Group G P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ ↑S ⊆ ↑(Submonoid.closure ↑S)
11ccabe6f8ec3164
MvPolynomial.vars_sub_subset
Mathlib/Algebra/MvPolynomial/CommRing.lean
theorem vars_sub_subset [DecidableEq σ] : (p - q).vars ⊆ p.vars ∪ q.vars
R : Type u σ : Type u_1 inst✝¹ : CommRing R p q : MvPolynomial σ R inst✝ : DecidableEq σ ⊢ (p - q).vars ⊆ p.vars ∪ q.vars
convert vars_add_subset p (-q) using 2 <;> simp [sub_eq_add_neg]
no goals
2d80017a45e04164
IsCompact.exists_forall_le'
Mathlib/Topology/Order/Compact.lean
theorem IsCompact.exists_forall_le' [ClosedIicTopology α] [NoMaxOrder α] {f : β → α} {s : Set β} (hs : IsCompact s) (hf : ContinuousOn f s) {a : α} (hf' : ∀ b ∈ s, a < f b) : ∃ a', a < a' ∧ ∀ b ∈ s, a' ≤ f b
case inr.intro.intro α : Type u_2 β : Type u_3 inst✝⁴ : LinearOrder α inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : ClosedIicTopology α inst✝ : NoMaxOrder α f : β → α s : Set β hs : IsCompact s hf : ContinuousOn f s a : α hf' : ∀ b ∈ s, a < f b hs' : s.Nonempty x : β hx : x ∈ s hx' : IsMinOn f s x ⊢ ∃ a', a < a' ∧ ∀ b ∈ s, a' ≤ f b
exact ⟨f x, hf' x hx, hx'⟩
no goals
0928e6d3df8c75af
HahnSeries.addOppositeEquiv_orderTop
Mathlib/RingTheory/HahnSeries/Addition.lean
@[simp] lemma addOppositeEquiv_orderTop (x : HahnSeries Γ (Rᵃᵒᵖ)) : (addOppositeEquiv x).unop.orderTop = x.orderTop
Γ : Type u_1 R : Type u_3 inst✝¹ : PartialOrder Γ inst✝ : AddMonoid R x : HahnSeries Γ Rᵃᵒᵖ ⊢ (AddOpposite.unop (addOppositeEquiv x)).orderTop = x.orderTop
classical simp only [orderTop, AddOpposite.unop_op, mk_eq_zero, EmbeddingLike.map_eq_zero_iff, addOppositeEquiv_support, ne_eq] simp only [addOppositeEquiv_apply, AddOpposite.unop_op, mk_eq_zero, coeff_zero] simp_rw [HahnSeries.ext_iff, funext_iff] simp only [Pi.zero_apply, AddOpposite.unop_eq_zero_iff, coeff_zero]
no goals
66cf7b891a048377
ContDiffWithinAt.fderivWithin''
Mathlib/Analysis/Calculus/ContDiff/Basic.lean
theorem ContDiffWithinAt.fderivWithin'' {f : E → F → G} {g : E → F} {t : Set F} (hf : ContDiffWithinAt 𝕜 n (Function.uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)) (hg : ContDiffWithinAt 𝕜 m g s x₀) (ht : ∀ᶠ x in 𝓝[insert x₀ s] x₀, UniqueDiffWithinAt 𝕜 t (g x)) (hmn : m + 1 ≤ n) (hgt : t ∈ 𝓝[g '' s] g x₀) : ContDiffWithinAt 𝕜 m (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀
𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E x₀ : E m : WithTop ℕ∞ f : E → F → G g : E → F t : Set F ht : ∀ᶠ (x : E) in 𝓝[insert x₀ s] x₀, UniqueDiffWithinAt 𝕜 t (g x) hgt : t ∈ 𝓝[g '' s] g x₀ hg : ContDiffWithinAt 𝕜 ω g s x₀ this : ∀ (k : ℕ), ↑k ≤ ω → ContDiffWithinAt 𝕜 (↑k) (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀ hf : ContDiffWithinAt 𝕜 ω (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀) hmn : ω + 1 ≤ ω ⊢ ContDiffWithinAt 𝕜 ω (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀
obtain ⟨v, hv, -, f', hvf', hf'⟩ := hf.hasFDerivWithinAt_nhds (by simp) hg hgt
case intro.intro.intro.intro.intro 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E F : Type uF inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F G : Type uG inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace 𝕜 G s : Set E x₀ : E m : WithTop ℕ∞ f : E → F → G g : E → F t : Set F ht : ∀ᶠ (x : E) in 𝓝[insert x₀ s] x₀, UniqueDiffWithinAt 𝕜 t (g x) hgt : t ∈ 𝓝[g '' s] g x₀ hg : ContDiffWithinAt 𝕜 ω g s x₀ this : ∀ (k : ℕ), ↑k ≤ ω → ContDiffWithinAt 𝕜 (↑k) (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀ hf : ContDiffWithinAt 𝕜 ω (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀) hmn : ω + 1 ≤ ω v : Set E hv : v ∈ 𝓝[insert x₀ s] x₀ f' : E → F →L[𝕜] G hvf' : ∀ x ∈ v, HasFDerivWithinAt (f x) (f' x) t (g x) hf' : ContDiffWithinAt 𝕜 ω (fun x => f' x) s x₀ ⊢ ContDiffWithinAt 𝕜 ω (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀
ce8ad388b9bbe46b
Set.MulAntidiagonal.fst_eq_fst_iff_snd_eq_snd
Mathlib/Data/Set/MulAntidiagonal.lean
theorem fst_eq_fst_iff_snd_eq_snd : (x : α × α).1 = (y : α × α).1 ↔ (x : α × α).2 = (y : α × α).2 := ⟨fun h => mul_left_cancel (y.2.2.2.trans <| by rw [← h] exact x.2.2.2.symm).symm, fun h => mul_right_cancel (y.2.2.2.trans <| by rw [← h] exact x.2.2.2.symm).symm⟩
α : Type u_1 inst✝ : CancelCommMonoid α s t : Set α a : α x y : ↑(s.mulAntidiagonal t a) h : (↑x).1 = (↑y).1 ⊢ a = (↑y).1 * (↑x).2
rw [← h]
α : Type u_1 inst✝ : CancelCommMonoid α s t : Set α a : α x y : ↑(s.mulAntidiagonal t a) h : (↑x).1 = (↑y).1 ⊢ a = (↑x).1 * (↑x).2
c2b68b98fd393ff0
contMDiff_of_contMDiff_inl
Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean
lemma contMDiff_of_contMDiff_inl {f : M → N} (h : ContMDiff I J n ((@Sum.inl N N') ∘ f)) : ContMDiff I J n f
𝕜 : Type u_1 inst✝¹² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedSpace 𝕜 E H : Type u_3 inst✝⁹ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁸ : TopologicalSpace M inst✝⁷ : ChartedSpace H M n : WithTop ℕ∞ E' : Type u_17 inst✝⁶ : NormedAddCommGroup E' inst✝⁵ : NormedSpace 𝕜 E' H' : Type u_18 inst✝⁴ : TopologicalSpace H' J : ModelWithCorners 𝕜 E' H' N : Type u_20 N' : Type u_21 inst✝³ : TopologicalSpace N inst✝² : TopologicalSpace N' inst✝¹ : ChartedSpace H' N inst✝ : ChartedSpace H' N' f : M → N h : ContMDiffOn I J n (Sum.inl ∘ f) univ a✝ : Nontrivial N inhabited_h : Inhabited N aux : N ⊕ N' → N := Sum.elim id fun x => default this : aux ∘ Sum.inl ∘ f = f ⊢ ContMDiffOn I J n (aux ∘ Sum.inl ∘ f) univ
apply (contMDiff_id.sumElim contMDiff_const).contMDiffOn (s := @Sum.inl N N' '' univ).comp h
𝕜 : Type u_1 inst✝¹² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : NormedSpace 𝕜 E H : Type u_3 inst✝⁹ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝⁸ : TopologicalSpace M inst✝⁷ : ChartedSpace H M n : WithTop ℕ∞ E' : Type u_17 inst✝⁶ : NormedAddCommGroup E' inst✝⁵ : NormedSpace 𝕜 E' H' : Type u_18 inst✝⁴ : TopologicalSpace H' J : ModelWithCorners 𝕜 E' H' N : Type u_20 N' : Type u_21 inst✝³ : TopologicalSpace N inst✝² : TopologicalSpace N' inst✝¹ : ChartedSpace H' N inst✝ : ChartedSpace H' N' f : M → N h : ContMDiffOn I J n (Sum.inl ∘ f) univ a✝ : Nontrivial N inhabited_h : Inhabited N aux : N ⊕ N' → N := Sum.elim id fun x => default this : aux ∘ Sum.inl ∘ f = f ⊢ univ ⊆ Sum.inl ∘ f ⁻¹' (Sum.inl '' univ)
9dafec4728754145
IsPGroup.iff_card
Mathlib/GroupTheory/PGroup.lean
theorem iff_card [Fact p.Prime] [Finite G] : IsPGroup p G ↔ ∃ n : ℕ, Nat.card G = p ^ n
case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite G hG : Nat.card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ (Nat.card G).primeFactorsList hq1 : Nat.Prime q hq2 : q ∣ Nat.card G this : Fact (Nat.Prime q) g : G hg : orderOf g = q ⊢ q = p
obtain ⟨k, hk⟩ := (iff_orderOf.mp h) g
case intro.intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite G hG : Nat.card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ (Nat.card G).primeFactorsList hq1 : Nat.Prime q hq2 : q ∣ Nat.card G this : Fact (Nat.Prime q) g : G hg : orderOf g = q k : ℕ hk : orderOf g = p ^ k ⊢ q = p
cdf7a3b03afadbaa
Cardinal.lt_wf
Mathlib/SetTheory/Cardinal/Basic.lean
theorem lt_wf : @WellFounded Cardinal.{u} (· < ·) := ⟨fun a => by_contradiction fun h => by let ι := { c : Cardinal // ¬Acc (· < ·) c } let f : ι → Cardinal := Subtype.val haveI hι : Nonempty ι := ⟨⟨_, h⟩⟩ obtain ⟨⟨c : Cardinal, hc : ¬Acc (· < ·) c⟩, ⟨h_1 : ∀ j, (f ⟨c, hc⟩).out ↪ (f j).out⟩⟩ := Embedding.min_injective fun i => (f i).out refine hc (Acc.intro _ fun j h' => by_contradiction fun hj => h'.2 ?_) have : #_ ≤ #_ := ⟨h_1 ⟨j, hj⟩⟩ simpa only [mk_out] using this⟩
a : Cardinal.{u} h : ¬Acc (fun x1 x2 => x1 < x2) a ι : Type (max 0 (?u.56390 + 1)) := { c // ¬Acc (fun x1 x2 => x1 < x2) c } ⊢ False
let f : ι → Cardinal := Subtype.val
a : Cardinal.{u} h : ¬Acc (fun x1 x2 => x1 < x2) a ι : Type (max 0 (?u.56390 + 1)) := { c // ¬Acc (fun x1 x2 => x1 < x2) c } f : ι → Cardinal.{?u.56390} := Subtype.val ⊢ False
2083f4a91b2b3d48
Complex.HadamardThreeLines.interpStrip_eq_of_pos
Mathlib/Analysis/Complex/Hadamard.lean
/-- Rewrite for `InterpStrip` when `0 < sSupNormIm f 0` and `0 < sSupNormIm f 1`. -/ lemma interpStrip_eq_of_pos (z : ℂ) (h0 : 0 < sSupNormIm f 0) (h1 : 0 < sSupNormIm f 1) : interpStrip f z = sSupNormIm f 0 ^ (1 - z) * sSupNormIm f 1 ^ z
E : Type u_1 inst✝ : NormedAddCommGroup E f : ℂ → E z : ℂ h0 : 0 < sSupNormIm f 0 h1 : 0 < sSupNormIm f 1 ⊢ interpStrip f z = ↑(sSupNormIm f 0) ^ (1 - z) * ↑(sSupNormIm f 1) ^ z
simp only [ne_of_gt h0, ne_of_gt h1, interpStrip, if_false, or_false]
no goals
8db93de84433c1a8
VitaliFamily.exists_measurable_supersets_limRatio
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem exists_measurable_supersets_limRatio {p q : ℝ≥0} (hpq : p < q) : ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | v.limRatio ρ x < p} ⊆ a ∧ {x | (q : ℝ≥0∞) < v.limRatio ρ x} ⊆ b ∧ μ (a ∩ b) = 0
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n H : ∀ (m n : ℕ), μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ⊢ μ ((toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n))) = 0
refine le_antisymm ((measure_mono A).trans ?_) bot_le
α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | v.limRatio ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < v.limRatio ρ x} ∩ o n H : ∀ (m n : ℕ), μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ⊢ μ (toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ 0
f2acb3dc8c3a0a55
SimpleGraph.card_commonNeighbors_top
Mathlib/Combinatorics/SimpleGraph/Finite.lean
theorem card_commonNeighbors_top [DecidableEq V] {v w : V} (h : v ≠ w) : Fintype.card ((⊤ : SimpleGraph V).commonNeighbors v w) = Fintype.card V - 2
V : Type u_1 inst✝¹ : Fintype V inst✝ : DecidableEq V v w : V h : v ≠ w ⊢ #(Set.univ.toFinset \ {v, w}.toFinset) = Fintype.card V - 2
rw [Finset.card_sdiff]
V : Type u_1 inst✝¹ : Fintype V inst✝ : DecidableEq V v w : V h : v ≠ w ⊢ #Set.univ.toFinset - #{v, w}.toFinset = Fintype.card V - 2 V : Type u_1 inst✝¹ : Fintype V inst✝ : DecidableEq V v w : V h : v ≠ w ⊢ {v, w}.toFinset ⊆ Set.univ.toFinset
3c759119a4b352a3
Array.getElem_swap'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem getElem_swap' (a : Array α) (i j : Nat) {hi hj} (k : Nat) (hk : k < a.size) : (a.swap i j hi hj)[k]'(by simp_all) = if k = i then a[j] else if k = j then a[i] else a[k]
case isTrue α : Type u_1 a : Array α i j : Nat hi : i < a.size hj : j < a.size k : Nat hk : k < a.size h✝ : k = i ⊢ (a.swap i j hi hj)[k] = a[j]
simp_all only [getElem_swap_left]
no goals
57b3b7cba232ccbc
Ideal.subset_union_prime'
Mathlib/RingTheory/Ideal/Operations.lean
theorem subset_union_prime' {R : Type u} [CommRing R] {s : Finset ι} {f : ι → Ideal R} {a b : ι} (hp : ∀ i ∈ s, IsPrime (f i)) {I : Ideal R} : ((I : Set R) ⊆ f a ∪ f b ∪ ⋃ i ∈ (↑s : Set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i
ι : Type u_1 R : Type u inst✝ : CommRing R f : ι → Ideal R I : Ideal R n : ℕ ih : ∀ {s : Finset ι} {a b : ι}, (∀ i ∈ s, (f i).IsPrime) → s.card = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i a b i j : ι hfji : f j ≤ f i u : Finset ι hju : j ∉ u hit : i ∉ insert j u hn : (insert j u).card = n h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i_1 ∈ insert i (insert j ↑u), ↑(f i_1) hp : (f i).IsPrime ∧ ∀ x ∈ insert j u, (f x).IsPrime hjt : j ∈ insert j u hp' : ∀ k ∈ insert i u, (f k).IsPrime hiu : i ∉ u hn' : (insert i u).card = n ⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ k ∈ insert i ↑u, ↑(f k)
simp only [Set.biUnion_insert] at h ⊢
ι : Type u_1 R : Type u inst✝ : CommRing R f : ι → Ideal R I : Ideal R n : ℕ ih : ∀ {s : Finset ι} {a b : ι}, (∀ i ∈ s, (f i).IsPrime) → s.card = n → ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ ⋃ i ∈ ↑s, ↑(f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i a b i j : ι hfji : f j ≤ f i u : Finset ι hju : j ∉ u hit : i ∉ insert j u hn : (insert j u).card = n hp : (f i).IsPrime ∧ ∀ x ∈ insert j u, (f x).IsPrime hjt : j ∈ insert j u hp' : ∀ k ∈ insert i u, (f k).IsPrime hiu : i ∉ u hn' : (insert i u).card = n h : ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ (↑(f j) ∪ ⋃ x ∈ ↑u, ↑(f x))) ⊢ ↑I ⊆ ↑(f a) ∪ ↑(f b) ∪ (↑(f i) ∪ ⋃ x ∈ ↑u, ↑(f x))
fa41770a7d2d9fd9
AlgebraicGeometry.Scheme.GlueData.isOpen_iff
Mathlib/AlgebraicGeometry/Gluing.lean
theorem isOpen_iff (U : Set D.glued.carrier) : IsOpen U ↔ ∀ i, IsOpen ((D.ι i).base ⁻¹' U)
D : GlueData U : Set ↑↑D.glued.toPresheafedSpace ⊢ (∀ (i : D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData.J), IsOpen (⇑(ConcreteCategory.hom (D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData.ι i)) ⁻¹' (⇑(TopCat.homeoOfIso D.isoCarrier.symm) ⁻¹' U))) ↔ ∀ (i : D.J), IsOpen (⇑(ConcreteCategory.hom (D.ι i).base) ⁻¹' U)
apply forall_congr'
case h D : GlueData U : Set ↑↑D.glued.toPresheafedSpace ⊢ ∀ (a : D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData.J), IsOpen (⇑(ConcreteCategory.hom (D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData.ι a)) ⁻¹' (⇑(TopCat.homeoOfIso D.isoCarrier.symm) ⁻¹' U)) ↔ IsOpen (⇑(ConcreteCategory.hom (D.ι a).base) ⁻¹' U)
a33f798209b44a35
RingHom.isStandardSmoothOfRelativeDimension_isStableUnderBaseChange
Mathlib/RingTheory/RingHom/StandardSmooth.lean
lemma isStandardSmoothOfRelativeDimension_isStableUnderBaseChange : IsStableUnderBaseChange (@IsStandardSmoothOfRelativeDimension.{t, w} n)
case h.e'_6 n : ℕ R S T : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Algebra.IsStandardSmoothOfRelativeDimension n R T this : Algebra.IsStandardSmoothOfRelativeDimension n S (S ⊗[R] T) ⊢ Algebra.TensorProduct.includeLeftRingHom.toAlgebra = Algebra.TensorProduct.leftAlgebra
ext
case h.e'_6.h n : ℕ R S T : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : CommRing T inst✝¹ : Algebra R S inst✝ : Algebra R T h : Algebra.IsStandardSmoothOfRelativeDimension n R T this : Algebra.IsStandardSmoothOfRelativeDimension n S (S ⊗[R] T) r✝ : S x✝ : S ⊗[R] T ⊢ (let_fun I := Algebra.TensorProduct.includeLeftRingHom.toAlgebra; r✝ • x✝) = r✝ • x✝
14172c066b23aad2
Batteries.RBNode.Ordered.memP_iff_upperBound?
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Lemmas.lean
theorem Ordered.memP_iff_upperBound? [@TransCmp α cmp] [IsCut cmp cut] (ht : Ordered cmp t) : t.MemP cut ↔ ∃ x, t.upperBound? cut = some x ∧ cut x = .eq
α : Type u_1 cmp : α → α → Ordering cut : α → Ordering t : RBNode α inst✝¹ : TransCmp cmp inst✝ : IsCut cmp cut ht : Ordered cmp t x✝ : ∃ x, x ∈ t ∧ cut x = Ordering.eq y : α hy : y ∈ t ey : cut y = Ordering.eq x : α hx : upperBound? cut t = some x ⊢ cut x = Ordering.eq
cases ex : cut x
case lt α : Type u_1 cmp : α → α → Ordering cut : α → Ordering t : RBNode α inst✝¹ : TransCmp cmp inst✝ : IsCut cmp cut ht : Ordered cmp t x✝ : ∃ x, x ∈ t ∧ cut x = Ordering.eq y : α hy : y ∈ t ey : cut y = Ordering.eq x : α hx : upperBound? cut t = some x ex : cut x = Ordering.lt ⊢ Ordering.lt = Ordering.eq case eq α : Type u_1 cmp : α → α → Ordering cut : α → Ordering t : RBNode α inst✝¹ : TransCmp cmp inst✝ : IsCut cmp cut ht : Ordered cmp t x✝ : ∃ x, x ∈ t ∧ cut x = Ordering.eq y : α hy : y ∈ t ey : cut y = Ordering.eq x : α hx : upperBound? cut t = some x ex : cut x = Ordering.eq ⊢ Ordering.eq = Ordering.eq case gt α : Type u_1 cmp : α → α → Ordering cut : α → Ordering t : RBNode α inst✝¹ : TransCmp cmp inst✝ : IsCut cmp cut ht : Ordered cmp t x✝ : ∃ x, x ∈ t ∧ cut x = Ordering.eq y : α hy : y ∈ t ey : cut y = Ordering.eq x : α hx : upperBound? cut t = some x ex : cut x = Ordering.gt ⊢ Ordering.gt = Ordering.eq
34c79185e82ce46b
Std.Tactic.BVDecide.LRAT.Internal.CNF.convertLRAT_readyForRatAdd
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/LRAT/Internal/Convert.lean
theorem CNF.convertLRAT_readyForRatAdd (cnf : CNF Nat) : DefaultFormula.ReadyForRatAdd (CNF.convertLRAT cnf)
cnf : CNF Nat ⊢ (convertLRAT cnf).ReadyForRatAdd
unfold CNF.convertLRAT
cnf : CNF Nat ⊢ (let lifted := lift cnf; let lratCnf := convertLRAT' lifted; DefaultFormula.ofArray (none :: lratCnf).toArray).ReadyForRatAdd
6721871e1b681c10
Continuous.continuousOn
Mathlib/Topology/ContinuousOn.lean
theorem Continuous.continuousOn (h : Continuous f) : ContinuousOn f s
α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β s : Set α h : Continuous f ⊢ ContinuousOn f s
rw [continuous_iff_continuousOn_univ] at h
α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β s : Set α h : ContinuousOn f univ ⊢ ContinuousOn f s
f5a067e05d3992af
CategoryTheory.Subgroupoid.mul_mem_cancel_left
Mathlib/CategoryTheory/Groupoid/Subgroupoid.lean
theorem mul_mem_cancel_left {c d e : C} {f : c ⟶ d} {g : d ⟶ e} (hf : f ∈ S.arrows c d) : f ≫ g ∈ S.arrows c e ↔ g ∈ S.arrows d e
C : Type u inst✝ : Groupoid C S : Subgroupoid C c d e : C f : c ⟶ d g : d ⟶ e hf : f ∈ S.arrows c d ⊢ f ≫ g ∈ S.arrows c e ↔ g ∈ S.arrows d e
constructor
case mp C : Type u inst✝ : Groupoid C S : Subgroupoid C c d e : C f : c ⟶ d g : d ⟶ e hf : f ∈ S.arrows c d ⊢ f ≫ g ∈ S.arrows c e → g ∈ S.arrows d e case mpr C : Type u inst✝ : Groupoid C S : Subgroupoid C c d e : C f : c ⟶ d g : d ⟶ e hf : f ∈ S.arrows c d ⊢ g ∈ S.arrows d e → f ≫ g ∈ S.arrows c e
1dcdf4857cfeffc1
Complex.isConnected_of_lowerHalfPlane
Mathlib/Analysis/Complex/Convex.lean
lemma Complex.isConnected_of_lowerHalfPlane {r} {s : Set ℂ} (hs₁ : {z | z.im < r} ⊆ s) (hs₂ : s ⊆ {z | z.im ≤ r}) : IsConnected s
r : ℝ s : Set ℂ hs₁ : {z | z.im < r} ⊆ s hs₂ : s ⊆ {z | z.im ≤ r} ⊢ IsConnected {z | z.im < r}
exact (convex_halfSpace_im_lt r).isConnected ⟨(r - 1) * I, by simp⟩
no goals
f2eeaafd90e9656f
Group.ext
Mathlib/Algebra/Group/Ext.lean
theorem Group.ext {G : Type*} ⦃g₁ g₂ : Group G⦄ (h_mul : g₁.mul = g₂.mul) : g₁ = g₂
G : Type u_1 g₁ g₂ : Group G h_mul : Mul.mul = Mul.mul h₁ : One.one = One.one ⊢ g₁ = g₂
let f : @MonoidHom G G g₁.toMulOneClass g₂.toMulOneClass := @MonoidHom.mk _ _ (_) _ (@OneHom.mk _ _ (_) _ id h₁) (fun x y => congr_fun (congr_fun h_mul x) y)
G : Type u_1 g₁ g₂ : Group G h_mul : Mul.mul = Mul.mul h₁ : One.one = One.one f : G →* G := { toFun := id, map_one' := h₁, map_mul' := ⋯ } ⊢ g₁ = g₂
40365b7f868018d4
Filter.HasBasis.equicontinuousAt_iff_right
Mathlib/Topology/UniformSpace/Equicontinuity.lean
theorem Filter.HasBasis.equicontinuousAt_iff_right {p : κ → Prop} {s : κ → Set (α × α)} {F : ι → X → α} {x₀ : X} (hα : (𝓤 α).HasBasis p s) : EquicontinuousAt F x₀ ↔ ∀ k, p k → ∀ᶠ x in 𝓝 x₀, ∀ i, (F i x₀, F i x) ∈ s k
ι : Type u_1 κ : Type u_2 X : Type u_3 α : Type u_6 tX : TopologicalSpace X uα : UniformSpace α p : κ → Prop s : κ → Set (α × α) F : ι → X → α x₀ : X hα : (𝓤 α).HasBasis p s ⊢ EquicontinuousAt F x₀ ↔ ∀ (k : κ), p k → ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ι), (F i x₀, F i x) ∈ s k
rw [equicontinuousAt_iff_continuousAt, ContinuousAt, (UniformFun.hasBasis_nhds_of_basis ι α _ hα).tendsto_right_iff]
ι : Type u_1 κ : Type u_2 X : Type u_3 α : Type u_6 tX : TopologicalSpace X uα : UniformSpace α p : κ → Prop s : κ → Set (α × α) F : ι → X → α x₀ : X hα : (𝓤 α).HasBasis p s ⊢ (∀ (i : κ), p i → ∀ᶠ (x : X) in 𝓝 x₀, (⇑ofFun ∘ swap F) x ∈ {g | ((⇑ofFun ∘ swap F) x₀, g) ∈ UniformFun.gen ι α (s i)}) ↔ ∀ (k : κ), p k → ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ι), (F i x₀, F i x) ∈ s k
bb2ea194c9e25e81
Real.Angle.arg_toCircle
Mathlib/Analysis/SpecialFunctions/Complex/Circle.lean
@[simp] lemma arg_toCircle (θ : Real.Angle) : (arg θ.toCircle : Angle) = θ
θ : Angle ⊢ ↑(↑θ.toCircle).arg = θ
induction θ using Real.Angle.induction_on
case h x✝ : ℝ ⊢ ↑(↑(↑x✝).toCircle).arg = ↑x✝
f3f2bde3cb20d916
sign_finRotate
Mathlib/GroupTheory/Perm/Fin.lean
theorem sign_finRotate (n : ℕ) : Perm.sign (finRotate (n + 1)) = (-1) ^ n
case succ n : ℕ ih : sign (finRotate (n + 1)) = (-1) ^ n ⊢ sign (finRotate (n + 1 + 1)) = (-1) ^ (n + 1)
rw [finRotate_succ_eq_decomposeFin]
case succ n : ℕ ih : sign (finRotate (n + 1)) = (-1) ^ n ⊢ sign (decomposeFin.symm (1, finRotate (n + 1))) = (-1) ^ (n + 1)
f9f2177ec4cba59d
zeta_nat_eq_tsum_of_gt_one
Mathlib/NumberTheory/LSeries/RiemannZeta.lean
theorem zeta_nat_eq_tsum_of_gt_one {k : ℕ} (hk : 1 < k) : riemannZeta k = ∑' n : ℕ, 1 / (n : ℂ) ^ k
k : ℕ hk : 1 < k ⊢ 1 < (↑k).re
rwa [← ofReal_natCast, ofReal_re, ← Nat.cast_one, Nat.cast_lt]
no goals
a3b6be3587306bf5
List.not_lex_antisymm
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/BasicAux.lean
theorem not_lex_antisymm [DecidableEq α] {r : α → α → Prop} [DecidableRel r] (antisymm : ∀ x y : α, ¬ r x y → ¬ r y x → x = y) {as bs : List α} (h₁ : ¬ Lex r bs as) (h₂ : ¬ Lex r as bs) : as = bs := match as, bs with | [], [] => rfl | [], _::_ => False.elim <| h₂ (List.Lex.nil ..) | _::_, [] => False.elim <| h₁ (List.Lex.nil ..) | a::as, b::bs => by by_cases hab : r a b · exact False.elim <| h₂ (List.Lex.rel hab) · by_cases eq : a = b · subst eq have h₁ : ¬ Lex r bs as := fun h => h₁ (List.Lex.cons h) have h₂ : ¬ Lex r as bs := fun h => h₂ (List.Lex.cons h) simp [not_lex_antisymm antisymm h₁ h₂] · exfalso by_cases hba : r b a · exact h₁ (Lex.rel hba) · exact eq (antisymm _ _ hab hba)
case pos α : Type u_1 inst✝¹ : DecidableEq α r : α → α → Prop inst✝ : DecidableRel r antisymm : ∀ (x y : α), ¬r x y → ¬r y x → x = y as✝ bs✝ : List α a : α as : List α b : α bs : List α h₁ : ¬Lex r (b :: bs) (a :: as) h₂ : ¬Lex r (a :: as) (b :: bs) hab : ¬r a b eq : ¬a = b hba : r b a ⊢ False
exact h₁ (Lex.rel hba)
no goals
bc20d604ba52bc59
Set.Iic_mul_Iio_subset'
Mathlib/Algebra/Order/Group/Pointwise/Interval.lean
theorem Iic_mul_Iio_subset' (a b : α) : Iic a * Iio b ⊆ Iio (a * b)
case intro.intro.intro.intro α : Type u_1 inst✝³ : Mul α inst✝² : PartialOrder α inst✝¹ : MulLeftStrictMono α inst✝ : MulRightStrictMono α a b : α this : MulRightMono α y : α hya : y ∈ Iic a z : α hzb : z ∈ Iio b ⊢ (fun x1 x2 => x1 * x2) y z ∈ Iio (a * b)
exact mul_lt_mul_of_le_of_lt hya hzb
no goals
d29ae3cc2f5221d0
SimpleGraph.IsAcyclic.path_unique
Mathlib/Combinatorics/SimpleGraph/Acyclic.lean
theorem IsAcyclic.path_unique {G : SimpleGraph V} (h : G.IsAcyclic) {v w : V} (p q : G.Path v w) : p = q
case mk.mk.cons.inl.cons.inl.inl.refl V : Type u G : SimpleGraph V v w u✝ v✝ w✝ : V ph : G.Adj u✝ v✝ p : G.Walk v✝ w✝ ih : p.IsPath → ∀ (q : G.Walk v✝ w✝), q.IsPath → p = q hp : p.IsPath ∧ u✝ ∉ p.support h✝ : G.Adj u✝ v✝ q : G.Walk v✝ w✝ hq : q.IsPath ∧ u✝ ∉ q.support ⊢ cons ph p = cons h✝ q
cases ih hp.1 q hq.1
case mk.mk.cons.inl.cons.inl.inl.refl.refl V : Type u G : SimpleGraph V v w u✝ v✝ w✝ : V ph : G.Adj u✝ v✝ p : G.Walk v✝ w✝ ih : p.IsPath → ∀ (q : G.Walk v✝ w✝), q.IsPath → p = q hp : p.IsPath ∧ u✝ ∉ p.support h✝ : G.Adj u✝ v✝ hq : p.IsPath ∧ u✝ ∉ p.support ⊢ cons ph p = cons h✝ p
c6bceaf8dd6ef474
Ordinal.card_iSup_Iio_le_card_mul_iSup
Mathlib/SetTheory/Cardinal/Arithmetic.lean
theorem card_iSup_Iio_le_card_mul_iSup {o : Ordinal.{u}} (f : Iio o → Ordinal.{max u v}) : (⨆ a : Iio o, f a).card ≤ Cardinal.lift.{v} o.card * ⨆ a : Iio o, (f a).card
case h.e'_4.h.e'_5.h.e'_1 o : Ordinal.{u} f : ↑(Iio o) → Ordinal.{max u v} ⊢ #o.toType = o.card
exact mk_toType o
no goals
c3d702eab5714f39
RingHom.finiteType_ofLocalizationSpanTarget
Mathlib/RingTheory/RingHom/FiniteType.lean
theorem finiteType_ofLocalizationSpanTarget : OfLocalizationSpanTarget @FiniteType
case h R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this : Algebra R S := f.toAlgebra t : (r : { x // x ∈ s }) → Finset (Localization.Away ↑r) ht : ∀ (r : { x // x ∈ s }), Algebra.adjoin R ↑(t r) = ⊤ l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 sf : { x // x ∈ s } → Finset S := fun x => IsLocalization.finsetIntegerMultiple (Submonoid.powers ↑x) (t x) x : S ⊢ x ∈ Algebra.adjoin R ↑(s.attach.biUnion sf ∪ s ∪ Finset.image (⇑l) l.support)
apply Subalgebra.mem_of_span_eq_top_of_smul_pow_mem _ (s : Set S) l hl _ _ x _
R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this : Algebra R S := f.toAlgebra t : (r : { x // x ∈ s }) → Finset (Localization.Away ↑r) ht : ∀ (r : { x // x ∈ s }), Algebra.adjoin R ↑(t r) = ⊤ l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 sf : { x // x ∈ s } → Finset S := fun x => IsLocalization.finsetIntegerMultiple (Submonoid.powers ↑x) (t x) x : S ⊢ ↑s ⊆ ↑(Algebra.adjoin R ↑(s.attach.biUnion sf ∪ s ∪ Finset.image (⇑l) l.support)) R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this : Algebra R S := f.toAlgebra t : (r : { x // x ∈ s }) → Finset (Localization.Away ↑r) ht : ∀ (r : { x // x ∈ s }), Algebra.adjoin R ↑(t r) = ⊤ l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 sf : { x // x ∈ s } → Finset S := fun x => IsLocalization.finsetIntegerMultiple (Submonoid.powers ↑x) (t x) x : S ⊢ ∀ (i : ↑↑s), l i ∈ Algebra.adjoin R ↑(s.attach.biUnion sf ∪ s ∪ Finset.image (⇑l) l.support) R S : Type u_1 inst✝¹ : CommRing R inst✝ : CommRing S f : R →+* S s : Finset S hs : Ideal.span ↑s = ⊤ this : Algebra R S := f.toAlgebra t : (r : { x // x ∈ s }) → Finset (Localization.Away ↑r) ht : ∀ (r : { x // x ∈ s }), Algebra.adjoin R ↑(t r) = ⊤ l : ↑↑s →₀ S hl : (Finsupp.linearCombination S Subtype.val) l = 1 sf : { x // x ∈ s } → Finset S := fun x => IsLocalization.finsetIntegerMultiple (Submonoid.powers ↑x) (t x) x : S ⊢ ∀ (r : ↑↑s), ∃ n, ↑r ^ n • x ∈ Algebra.adjoin R ↑(s.attach.biUnion sf ∪ s ∪ Finset.image (⇑l) l.support)
2dc9a560bb7745cb
Normal.of_isSplittingField
Mathlib/FieldTheory/Normal/Basic.lean
theorem Normal.of_isSplittingField (p : F[X]) [hFEp : IsSplittingField F E p] : Normal F E
case inr.refine_1 F : Type u_1 inst✝² : Field F E : Type u_3 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E this : FiniteDimensional F E hx : IsIntegral F x L : Type u_1 := (p * minpoly F x).SplittingField ⊢ p ≠ 0 ∧ minpoly F x ≠ 0
exact ⟨hp, minpoly.ne_zero hx⟩
no goals
0aed749abc5ecaab
Commute.geom_sum₂
Mathlib/Algebra/GeomSum.lean
theorem Commute.geom_sum₂ [DivisionRing α] {x y : α} (h' : Commute x y) (h : x ≠ y) (n : ℕ) : ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y)
α : Type u inst✝ : DivisionRing α x y : α h' : Commute x y h : x ≠ y n : ℕ ⊢ ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y)
have : x - y ≠ 0 := by simp_all [sub_eq_iff_eq_add]
α : Type u inst✝ : DivisionRing α x y : α h' : Commute x y h : x ≠ y n : ℕ this : x - y ≠ 0 ⊢ ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y)
3c2f97cccd2e98b3
Polynomial.contract_mul_expand
Mathlib/Algebra/Polynomial/Expand.lean
theorem contract_mul_expand {p : ℕ} (hp : p ≠ 0) (f g : R[X]) : contract p (f * expand R p g) = contract p f * g
case a.hf R : Type u inst✝ : CommSemiring R p : ℕ hp : p ≠ 0 f g : R[X] n : ℕ ⊢ ∀ (x : ℕ × ℕ), x.1 + x.2 = n * p → (¬∃ a, a.1 + a.2 = n ∧ (a.1 * p, a.2 * p) = x) → f.coeff x.1 * ((expand R p) g).coeff x.2 = 0
intro ⟨x, y⟩ eq nex
case a.hf R : Type u inst✝ : CommSemiring R p : ℕ hp : p ≠ 0 f g : R[X] n x y : ℕ eq : (x, y).1 + (x, y).2 = n * p nex : ¬∃ a, a.1 + a.2 = n ∧ (a.1 * p, a.2 * p) = (x, y) ⊢ f.coeff (x, y).1 * ((expand R p) g).coeff (x, y).2 = 0
c12f546c03101c96
MulAction.mk'
Mathlib/GroupTheory/GroupAction/Primitive.lean
theorem mk' (Hnt : fixedPoints G X ≠ ⊤) (H : ∀ {B : Set X} (_ : IsBlock G B), IsTrivialBlock B) : IsPreprimitive G X
G : Type u_1 X : Type u_2 inst✝¹ : Group G inst✝ : MulAction G X Hnt : fixedPoints G X ≠ ⊤ H : ∀ {B : Set X}, IsBlock G B → IsTrivialBlock B ⊢ IsPreprimitive G X
simp only [Set.top_eq_univ, Set.ne_univ_iff_exists_not_mem] at Hnt
G : Type u_1 X : Type u_2 inst✝¹ : Group G inst✝ : MulAction G X H : ∀ {B : Set X}, IsBlock G B → IsTrivialBlock B Hnt : ∃ a, a ∉ fixedPoints G X ⊢ IsPreprimitive G X
93a1b4b478f7903a
Polynomial.sum_bernoulli
Mathlib/NumberTheory/BernoulliPolynomials.lean
theorem sum_bernoulli (n : ℕ) : (∑ k ∈ range (n + 1), ((n + 1).choose k : ℚ) • bernoulli k) = monomial n (n + 1 : ℚ)
n : ℕ ⊢ ∑ x ∈ range (n + 1), ∑ x_1 ∈ range (n + 1 - x), (↑((n + 1 - x).choose x_1) * _root_.bernoulli x_1) • (monomial x) ↑((n + 1).choose x) = (monomial n) ↑n + (monomial n) 1
simp_rw [← sum_smul]
n : ℕ ⊢ ∑ x ∈ range (n + 1), (∑ i ∈ range (n + 1 - x), ↑((n + 1 - x).choose i) * _root_.bernoulli i) • (monomial x) ↑((n + 1).choose x) = (monomial n) ↑n + (monomial n) 1
b01e377955c96550
SimpleGraph.Subgraph.map_mono
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
@[gcongr] lemma map_mono {H₁ H₂ : G.Subgraph} (hH : H₁ ≤ H₂) : H₁.map f ≤ H₂.map f
V : Type u W : Type v G : SimpleGraph V G' : SimpleGraph W f : G →g G' H₁ H₂ : G.Subgraph hH : H₁ ≤ H₂ ⊢ Subgraph.map f H₁ ≤ Subgraph.map f H₂
constructor
case left V : Type u W : Type v G : SimpleGraph V G' : SimpleGraph W f : G →g G' H₁ H₂ : G.Subgraph hH : H₁ ≤ H₂ ⊢ (Subgraph.map f H₁).verts ⊆ (Subgraph.map f H₂).verts case right V : Type u W : Type v G : SimpleGraph V G' : SimpleGraph W f : G →g G' H₁ H₂ : G.Subgraph hH : H₁ ≤ H₂ ⊢ ∀ ⦃v w : W⦄, (Subgraph.map f H₁).Adj v w → (Subgraph.map f H₂).Adj v w
45e01797f0297c07
LSeriesSummable.congr'
Mathlib/NumberTheory/LSeries/Basic.lean
/-- If `f` and `g` agree on large `n : ℕ` and the `LSeries` of `f` converges at `s`, then so does that of `g`. -/ lemma LSeriesSummable.congr' {f g : ℕ → ℂ} (s : ℂ) (h : f =ᶠ[atTop] g) (hf : LSeriesSummable f s) : LSeriesSummable g s
case intro.intro f g : ℕ → ℂ s : ℂ hf : LSeriesSummable f s S : Set ℕ hS : S ∈ cofinite hS' : Set.EqOn f g S n : ℕ hn : n ∈ S ∧ ¬n = 0 ⊢ term f s n = term g s n
simp [hn.2, hS' hn.1]
no goals
549909a247ffe2bd
ProbabilityTheory.Kernel.measurable_kernel_prod_mk_left_of_finite
Mathlib/Probability/Kernel/MeasurableLIntegral.lean
theorem measurable_kernel_prod_mk_left_of_finite {t : Set (α × β)} (ht : MeasurableSet t) (hκs : ∀ a, IsFiniteMeasure (κ a)) : Measurable fun a => κ a (Prod.mk a ⁻¹' t)
case compl α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β t✝ : Set (α × β) hκs : ∀ (a : α), IsFiniteMeasure (κ a) t : Set (α × β) htm : MeasurableSet t iht : Measurable fun a => (κ a) (Prod.mk a ⁻¹' t) h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' tᶜ = univ \ Prod.mk a ⁻¹' t this : (fun a => (κ a) (univ \ Prod.mk a ⁻¹' t)) = fun a => (κ a) univ - (κ a) (Prod.mk a ⁻¹' t) ⊢ Measurable fun a => (κ a) (univ \ Prod.mk a ⁻¹' t)
rw [this]
case compl α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β t✝ : Set (α × β) hκs : ∀ (a : α), IsFiniteMeasure (κ a) t : Set (α × β) htm : MeasurableSet t iht : Measurable fun a => (κ a) (Prod.mk a ⁻¹' t) h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' tᶜ = univ \ Prod.mk a ⁻¹' t this : (fun a => (κ a) (univ \ Prod.mk a ⁻¹' t)) = fun a => (κ a) univ - (κ a) (Prod.mk a ⁻¹' t) ⊢ Measurable fun a => (κ a) univ - (κ a) (Prod.mk a ⁻¹' t)
4c14e8ca6e5d1721
MeasureTheory.setToFun_congr_measure_of_integrable
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞) (hμ'_le : μ' ≤ c' • μ) (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ' T C') (f : α → E) (hfμ : Integrable f μ) : setToFun μ T hT f = setToFun μ' T hT' f
case h_closed α : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F m : MeasurableSpace α μ : Measure α inst✝ : CompleteSpace F T : Set α → E →L[ℝ] F C C' : ℝ μ' : Measure α c' : ℝ≥0∞ hc' : c' ≠ ⊤ hμ'_le : μ' ≤ c' • μ hT : DominatedFinMeasAdditive μ T C hT' : DominatedFinMeasAdditive μ' T C' f : α → E hfμ : Integrable f μ h_int : ∀ (g : α → E), Integrable g μ → Integrable g μ' this : (fun f => setToFun μ' T hT' ↑↑f) = fun f => setToFun μ' T hT' ↑↑(Integrable.toL1 ↑↑f ⋯) ⊢ Continuous fun f => setToFun μ' T hT' ↑↑(Integrable.toL1 ↑↑f ⋯)
exact (continuous_setToFun hT').comp (continuous_L1_toL1 c' hc' hμ'_le)
no goals
65e35cd00eda3e5b
PartENat.withTopEquiv_symm_coe
Mathlib/Data/Nat/PartENat.lean
theorem withTopEquiv_symm_coe (n : Nat) : withTopEquiv.symm n = n
n : ℕ ⊢ withTopEquiv.symm ↑n = ↑n
simp
no goals
645a799cca9575eb
MeromorphicAt.order_smul
Mathlib/Analysis/Meromorphic/Order.lean
theorem order_smul {f : 𝕜 → 𝕜} {g : 𝕜 → E} {x : 𝕜} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) : (hf.smul hg).order = hf.order + hg.order
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f : 𝕜 → 𝕜 g : 𝕜 → E x : 𝕜 hf : MeromorphicAt f x hg : MeromorphicAt g x m : ℤ h₂f : hf.order = ↑m h₂g : ∀ᶠ (z : 𝕜) in 𝓝[≠] x, g z = 0 z : 𝕜 hz : g z = 0 ⊢ (f • g) z = 0
simp [hz]
no goals
888980cd950630aa
CategoryTheory.Iso.refl_conj
Mathlib/CategoryTheory/Conj.lean
theorem refl_conj (f : End X) : (Iso.refl X).conj f = f
C : Type u inst✝ : Category.{v, u} C X : C f : End X ⊢ (refl X).conj f = f
rw [conj_apply, Iso.refl_inv, Iso.refl_hom, Category.id_comp, Category.comp_id]
no goals
9620a46c53a58c1f
Module.finite_dual_iff
Mathlib/LinearAlgebra/Dual.lean
theorem finite_dual_iff [Free K V] : Module.Finite K (Dual K V) ↔ Module.Finite K V
case mk.intro.refine_1 K : Type uK V : Type uV inst✝³ : CommRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Free K V ι : Type uV b : Basis ι K V a✝ : Nontrivial K s : Finset (Dual K V) span_s : span K ↑s = ⊤ ⊢ Set.range (⇑b.toDual ∘ ⇑b) ≤ ↑(span K ↑s)
rw [span_s]
case mk.intro.refine_1 K : Type uK V : Type uV inst✝³ : CommRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Free K V ι : Type uV b : Basis ι K V a✝ : Nontrivial K s : Finset (Dual K V) span_s : span K ↑s = ⊤ ⊢ Set.range (⇑b.toDual ∘ ⇑b) ≤ ↑⊤
1a833564690fbd59
LiouvilleWith.add_rat
Mathlib/NumberTheory/Transcendental/Liouville/LiouvilleWith.lean
theorem add_rat (h : LiouvilleWith p x) (r : ℚ) : LiouvilleWith p (x + r)
p x : ℝ h : LiouvilleWith p x r : ℚ ⊢ LiouvilleWith p (x + ↑r)
rcases h.exists_pos with ⟨C, _hC₀, hC⟩
case intro.intro p x : ℝ h : LiouvilleWith p x r : ℚ C : ℝ _hC₀ : 0 < C hC : ∃ᶠ (n : ℕ) in atTop, 1 ≤ n ∧ ∃ m, x ≠ ↑m / ↑n ∧ |x - ↑m / ↑n| < C / ↑n ^ p ⊢ LiouvilleWith p (x + ↑r)
7652465b354d5b90
List.sym2_eq_sym_two
Mathlib/Data/List/Sym.lean
theorem sym2_eq_sym_two : xs.sym2.map (Sym2.equivSym α) = xs.sym 2
case nil α : Type u_1 xs : List α ⊢ map ⇑(Sym2.equivSym α) [].sym2 = List.sym 2 []
simp only [List.sym, map_eq_nil_iff, sym2_eq_nil_iff]
no goals
02f4fa6d82cb0101