name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Module.End.independent_iInf_maxGenEigenspace_of_forall_mapsTo
Mathlib/LinearAlgebra/Eigenspace/Pi.lean
lemma independent_iInf_maxGenEigenspace_of_forall_mapsTo (h : ∀ i j φ, MapsTo (f i) ((f j).maxGenEigenspace φ) ((f j).maxGenEigenspace φ)) : iSupIndep fun χ : ι → R ↦ ⨅ i, (f i).maxGenEigenspace (χ i)
ι : Type u_1 R : Type u_2 M : Type u_4 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M f : ι → End R M inst✝ : NoZeroSMulDivisors R M h : ∀ (i j : ι) (φ : R), MapsTo ⇑(f i) ↑((f j).maxGenEigenspace φ) ↑((f j).maxGenEigenspace φ) l : ι χ : ι → R x : M hx : ∀ (i : ι), x ∈ (f i).maxGenEigenspace (χ i) ⊢ ∀ (i : ι), (f l) x ∈ (f i).maxGenEigenspace (χ i)
exact fun i ↦ h l i (χ i) (hx i)
no goals
4dd72b81f13de433
Nat.Linear.Poly.denote_eq_cancelAux
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
theorem Poly.denote_eq_cancelAux (ctx : Context) (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly) (h : denote_eq ctx (r₁.reverse ++ m₁, r₂.reverse ++ m₂)) : denote_eq ctx (cancelAux fuel m₁ m₂ r₁ r₂)
case neg ctx : Context fuel : Nat ih : ∀ (m₁ m₂ r₁ r₂ : Poly), denote_eq ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂) → denote_eq ctx (cancelAux fuel m₁ m₂ r₁ r₂) r₁ r₂ m₁✝ m₂✝ : Poly k₁ : Nat v₁ : Var m₁ m₂ : List (Nat × Var) hltv hgtv : ¬blt v₁ v₁ = true h : denote_eq ctx (List.reverse r₁ ++ (k₁, v₁) :: m₁, List.reverse r₂ ++ (k₁, v₁) :: m₂) hltk hgtk : ¬k₁.blt k₁ = true ⊢ denote_eq ctx (cancelAux fuel m₁ m₂ r₁ r₂)
apply ih
case neg.h ctx : Context fuel : Nat ih : ∀ (m₁ m₂ r₁ r₂ : Poly), denote_eq ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂) → denote_eq ctx (cancelAux fuel m₁ m₂ r₁ r₂) r₁ r₂ m₁✝ m₂✝ : Poly k₁ : Nat v₁ : Var m₁ m₂ : List (Nat × Var) hltv hgtv : ¬blt v₁ v₁ = true h : denote_eq ctx (List.reverse r₁ ++ (k₁, v₁) :: m₁, List.reverse r₂ ++ (k₁, v₁) :: m₂) hltk hgtk : ¬k₁.blt k₁ = true ⊢ denote_eq ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂)
9bfcd466b3bdd638
PrimeSpectrum.iSup_basicOpen_eq_top_iff
Mathlib/RingTheory/Spectrum/Prime/Topology.lean
lemma iSup_basicOpen_eq_top_iff {ι : Type*} {f : ι → R} : (⨆ i : ι, PrimeSpectrum.basicOpen (f i)) = ⊤ ↔ Ideal.span (Set.range f) = ⊤
R : Type u inst✝ : CommSemiring R ι : Type u_1 f : ι → R ⊢ zeroLocus (⋃ i, {f i}) = Set.univᶜ ↔ zeroLocus ↑(Ideal.span (Set.range f)) = ∅
simp only [Set.iUnion_singleton_eq_range, Set.compl_univ, PrimeSpectrum.zeroLocus_span]
no goals
f99a5f18aac9d319
BitVec.neg_eq_not_add
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem neg_eq_not_add (x : BitVec w) : -x = ~~~x + 1#w
case a.e_a w : Nat x : BitVec w hx : x.toNat < 2 ^ w ⊢ 2 ^ w - x.toNat = 2 ^ w - 1 - x.toNat + 1
rw [Nat.sub_sub, Nat.add_comm 1 x.toNat, ← Nat.sub_sub, Nat.sub_add_cancel (by omega)]
no goals
0b1fe6f9c958eaa0
LinearMap.linearProjOfIsCompl_of_proj
Mathlib/LinearAlgebra/Projection.lean
theorem linearProjOfIsCompl_of_proj (f : E →ₗ[R] p) (hf : ∀ x : p, f x = x) : p.linearProjOfIsCompl (ker f) (isCompl_of_proj hf) = f
case h.a.intro.intro R : Type u_1 inst✝² : Ring R E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module R E p : Submodule R E f : E →ₗ[R] ↥p hf : ∀ (x : ↥p), f ↑x = x x : ↥p y : ↥(ker f) this : ↑x + ↑y ∈ p ⊔ ker f ⊢ ↑((p.linearProjOfIsCompl (ker f) ⋯) (↑x + ↑y)) = ↑(f (↑x + ↑y))
simp [hf]
no goals
7c96f1fd31cda4bd
Matrix.adjugate_transpose
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
theorem adjugate_transpose (A : Matrix n n α) : (adjugate A)ᵀ = adjugate Aᵀ
case pos.e_f.h n : Type v α : Type w inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : CommRing α A : Matrix n n α j : n σ : Perm n a✝ : σ ∈ univ j' : n this : σ j' = σ j ↔ j' = j ⊢ (if j' = j then Pi.single j 1 j' else A (σ j') j') = if j' = j then Pi.single (σ j) 1 (σ j') else A (σ j') j'
rw [← dite_eq_ite, ← dite_eq_ite]
case pos.e_f.h n : Type v α : Type w inst✝² : DecidableEq n inst✝¹ : Fintype n inst✝ : CommRing α A : Matrix n n α j : n σ : Perm n a✝ : σ ∈ univ j' : n this : σ j' = σ j ↔ j' = j ⊢ (if x : j' = j then Pi.single j 1 j' else A (σ j') j') = if x : j' = j then Pi.single (σ j) 1 (σ j') else A (σ j') j'
71e22f197b6f8782
MeasureTheory.measurableSet_range_of_continuous_injective
Mathlib/MeasureTheory/Constructions/Polish/Basic.lean
theorem measurableSet_range_of_continuous_injective {β : Type*} [TopologicalSpace γ] [PolishSpace γ] [TopologicalSpace β] [T2Space β] [MeasurableSpace β] [OpensMeasurableSpace β] {f : γ → β} (f_cont : Continuous f) (f_inj : Injective f) : MeasurableSet (range f)
case intro.intro.intro.intro.intro.intro.h₂ γ : Type u_3 β : Type u_4 inst✝⁵ : TopologicalSpace γ inst✝⁴ : PolishSpace γ inst✝³ : TopologicalSpace β inst✝² : T2Space β inst✝¹ : MeasurableSpace β inst✝ : OpensMeasurableSpace β f : γ → β f_cont : Continuous f f_inj : Injective f this✝ : UpgradedPolishSpace γ := upgradePolishSpace γ b : Set (Set γ) b_count : b.Countable b_nonempty : ∅ ∉ b hb : IsTopologicalBasis b this : Encodable ↑b A : Type (max 0 u_3) := { p // Disjoint ↑p.1 ↑p.2 } q : A → Set β hq1 : ∀ (p : A), f '' ↑(↑p).1 ⊆ q p hq2 : ∀ (p : A), Disjoint (f '' ↑(↑p).2) (q p) q_meas : ∀ (p : A), MeasurableSet (q p) E : ↑b → Set β := fun s => closure (f '' ↑s) ∩ ⋂ t, ⋂ (ht : Disjoint ↑s ↑t), q ⟨(s, t), ht⟩ \ q ⟨(t, s), ⋯⟩ u : ℕ → ℝ u_anti : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) F : ℕ → Set β := fun n => ⋃ s, ⋃ (_ : Bornology.IsBounded ↑s ∧ diam ↑s ≤ u n), E s x : β hx : x ∈ ⋂ n, F n s : ℕ → ↑b hs : ∀ (n : ℕ), Bornology.IsBounded ↑(s n) ∧ diam ↑(s n) ≤ u n hxs : ∀ (n : ℕ), x ∈ E (s n) y : ℕ → γ hy : ∀ (n : ℕ), y n ∈ ↑(s n) ⊢ x ∈ range f
have I : ∀ m n, ((s m).1 ∩ (s n).1).Nonempty := by intro m n rw [← not_disjoint_iff_nonempty_inter] by_contra! h have A : x ∈ q ⟨(s m, s n), h⟩ \ q ⟨(s n, s m), h.symm⟩ := haveI := mem_iInter.1 (hxs m).2 (s n) (mem_iInter.1 this h :) have B : x ∈ q ⟨(s n, s m), h.symm⟩ \ q ⟨(s m, s n), h⟩ := haveI := mem_iInter.1 (hxs n).2 (s m) (mem_iInter.1 this h.symm :) exact A.2 B.1
case intro.intro.intro.intro.intro.intro.h₂ γ : Type u_3 β : Type u_4 inst✝⁵ : TopologicalSpace γ inst✝⁴ : PolishSpace γ inst✝³ : TopologicalSpace β inst✝² : T2Space β inst✝¹ : MeasurableSpace β inst✝ : OpensMeasurableSpace β f : γ → β f_cont : Continuous f f_inj : Injective f this✝ : UpgradedPolishSpace γ := upgradePolishSpace γ b : Set (Set γ) b_count : b.Countable b_nonempty : ∅ ∉ b hb : IsTopologicalBasis b this : Encodable ↑b A : Type (max 0 u_3) := { p // Disjoint ↑p.1 ↑p.2 } q : A → Set β hq1 : ∀ (p : A), f '' ↑(↑p).1 ⊆ q p hq2 : ∀ (p : A), Disjoint (f '' ↑(↑p).2) (q p) q_meas : ∀ (p : A), MeasurableSet (q p) E : ↑b → Set β := fun s => closure (f '' ↑s) ∩ ⋂ t, ⋂ (ht : Disjoint ↑s ↑t), q ⟨(s, t), ht⟩ \ q ⟨(t, s), ⋯⟩ u : ℕ → ℝ u_anti : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) F : ℕ → Set β := fun n => ⋃ s, ⋃ (_ : Bornology.IsBounded ↑s ∧ diam ↑s ≤ u n), E s x : β hx : x ∈ ⋂ n, F n s : ℕ → ↑b hs : ∀ (n : ℕ), Bornology.IsBounded ↑(s n) ∧ diam ↑(s n) ≤ u n hxs : ∀ (n : ℕ), x ∈ E (s n) y : ℕ → γ hy : ∀ (n : ℕ), y n ∈ ↑(s n) I : ∀ (m n : ℕ), (↑(s m) ∩ ↑(s n)).Nonempty ⊢ x ∈ range f
b9138111f37aa037
tprod_eq_tprod_primes_mul_tprod_primes_of_mulSupport_subset_prime_powers
Mathlib/NumberTheory/LSeries/PrimesInAP.lean
@[to_additive tsum_eq_tsum_primes_add_tsum_primes_of_support_subset_prime_powers] lemma tprod_eq_tprod_primes_mul_tprod_primes_of_mulSupport_subset_prime_powers {f : ℕ → α} (hfm : Multipliable f) (hf : Function.mulSupport f ⊆ {n | IsPrimePow n}) : ∏' n : ℕ, f n = (∏' p : Nat.Primes, f p) * ∏' (p : Nat.Primes) (k : ℕ), f (p ^ (k + 2))
α : Type u_1 inst✝⁴ : CommGroup α inst✝³ : UniformSpace α inst✝² : UniformGroup α inst✝¹ : CompleteSpace α inst✝ : T0Space α f : ℕ → α hfm : Multipliable f hf : Function.mulSupport f ⊆ {n | IsPrimePow n} hfs' : ∀ (p : Nat.Primes), Multipliable fun k => f (↑p ^ (k + 1)) ⊢ ∏' (p : Nat.Primes), f ↑p * ∏' (k : ℕ), f (↑p ^ (k + 2)) = (∏' (p : Nat.Primes), f ↑p) * ∏' (p : Nat.Primes) (k : ℕ), f (↑p ^ (k + 2))
exact tprod_mul (Multipliable.subtype hfm _) <| Multipliable.prod (f := fun (pk : Nat.Primes × ℕ) ↦ f (pk.1 ^ (pk.2 + 2))) <| hfm.comp_injective <| Subtype.val_injective |>.comp Nat.Primes.prodNatEquiv.injective |>.comp <| Function.Injective.prodMap (fun ⦃_ _⦄ a ↦ a) <| add_left_injective 1
no goals
d92e126e2c6283c1
MeasureTheory.hitting_eq_sInf
Mathlib/Probability/Process/HittingTime.lean
theorem hitting_eq_sInf (ω : Ω) : hitting u s ⊥ ⊤ ω = sInf {i : ι | u i ω ∈ s}
Ω : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β ω : Ω ⊢ hitting u s ⊥ ⊤ ω = sInf {i | u i ω ∈ s}
simp only [hitting, Set.mem_Icc, bot_le, le_top, and_self_iff, exists_true_left, Set.Icc_bot, Set.Iic_top, Set.univ_inter, ite_eq_left_iff, not_exists]
Ω : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β ω : Ω ⊢ (∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s)) → ⊤ = sInf {i | u i ω ∈ s}
245ff96581a98bf4
Nat.factorizationLCMRight_dvd_right
Mathlib/Data/Nat/Factorization/Basic.lean
lemma factorizationLCMRight_dvd_right : factorizationLCMRight a b ∣ b
case inr.inr.h a b : ℕ ha : a ≠ 0 hb : b ≠ 0 i✝ : ℕ a✝ : i✝ ∈ (a.lcm b).factorization.support ⊢ i✝ ^ 0 = 1
rw [pow_zero]
no goals
39bc287d3431f65d
cfc_sum
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Unital.lean
lemma cfc_sum {ι : Type*} (f : ι → R → R) (a : A) (s : Finset ι) (hf : ∀ i ∈ s, ContinuousOn (f i) (spectrum R a)
case pos R : Type u_1 A : Type u_2 p : A → Prop inst✝⁸ : CommSemiring R inst✝⁷ : StarRing R inst✝⁶ : MetricSpace R inst✝⁵ : IsTopologicalSemiring R inst✝⁴ : ContinuousStar R inst✝³ : TopologicalSpace A inst✝² : Ring A inst✝¹ : StarRing A inst✝ : Algebra R A instCFC : ContinuousFunctionalCalculus R p ι : Type u_3 f : ι → R → R a : A s : Finset ι hf : autoParam (∀ i ∈ s, ContinuousOn (f i) (spectrum R a)) _auto✝ ha : p a hsum : s.sum f = fun z => ∑ i ∈ s, f i z ⊢ cfc (∑ i ∈ s, f i) a = ∑ i ∈ s, cfc (f i) a
have hf' : ContinuousOn (∑ i : s, f i) (spectrum R a) := by rw [sum_coe_sort s, hsum] exact continuousOn_finset_sum s fun i hi => hf i hi
case pos R : Type u_1 A : Type u_2 p : A → Prop inst✝⁸ : CommSemiring R inst✝⁷ : StarRing R inst✝⁶ : MetricSpace R inst✝⁵ : IsTopologicalSemiring R inst✝⁴ : ContinuousStar R inst✝³ : TopologicalSpace A inst✝² : Ring A inst✝¹ : StarRing A inst✝ : Algebra R A instCFC : ContinuousFunctionalCalculus R p ι : Type u_3 f : ι → R → R a : A s : Finset ι hf : autoParam (∀ i ∈ s, ContinuousOn (f i) (spectrum R a)) _auto✝ ha : p a hsum : s.sum f = fun z => ∑ i ∈ s, f i z hf' : ContinuousOn (∑ i : { x // x ∈ s }, f ↑i) (spectrum R a) ⊢ cfc (∑ i ∈ s, f i) a = ∑ i ∈ s, cfc (f i) a
d7c05d75018caec3
ProbabilityTheory.Kernel.compProd_zero_right
Mathlib/Probability/Kernel/Composition/CompProd.lean
@[simp] lemma compProd_zero_right (κ : Kernel α β) (γ : Type*) {mγ : MeasurableSpace γ} : κ ⊗ₖ (0 : Kernel (α × β) γ) = 0
case neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α β γ : Type u_4 mγ : MeasurableSpace γ h : ¬IsSFiniteKernel κ ⊢ κ ⊗ₖ 0 = 0
rw [Kernel.compProd_of_not_isSFiniteKernel_left _ _ h]
no goals
8fce4b1a2edb4728
Equiv.embeddingCongr_apply_trans
Mathlib/Logic/Embedding/Basic.lean
theorem embeddingCongr_apply_trans {α₁ β₁ γ₁ α₂ β₂ γ₂ : Sort*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) (ec : γ₁ ≃ γ₂) (f : α₁ ↪ β₁) (g : β₁ ↪ γ₁) : Equiv.embeddingCongr ea ec (f.trans g) = (Equiv.embeddingCongr ea eb f).trans (Equiv.embeddingCongr eb ec g)
α₁ : Sort u_1 β₁ : Sort u_2 γ₁ : Sort u_3 α₂ : Sort u_4 β₂ : Sort u_5 γ₂ : Sort u_6 ea : α₁ ≃ α₂ eb : β₁ ≃ β₂ ec : γ₁ ≃ γ₂ f : α₁ ↪ β₁ g : β₁ ↪ γ₁ ⊢ (ea.embeddingCongr ec) (f.trans g) = ((ea.embeddingCongr eb) f).trans ((eb.embeddingCongr ec) g)
ext
case h α₁ : Sort u_1 β₁ : Sort u_2 γ₁ : Sort u_3 α₂ : Sort u_4 β₂ : Sort u_5 γ₂ : Sort u_6 ea : α₁ ≃ α₂ eb : β₁ ≃ β₂ ec : γ₁ ≃ γ₂ f : α₁ ↪ β₁ g : β₁ ↪ γ₁ x✝ : α₂ ⊢ ((ea.embeddingCongr ec) (f.trans g)) x✝ = (((ea.embeddingCongr eb) f).trans ((eb.embeddingCongr ec) g)) x✝
5d7256ac0b5549db
Besicovitch.TauPackage.color_lt
Mathlib/MeasureTheory/Covering/Besicovitch.lean
theorem color_lt {i : Ordinal.{u}} (hi : i < p.lastStep) {N : ℕ} (hN : IsEmpty (SatelliteConfig α N p.τ)) : p.color i < N
case inl α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α i : Ordinal.{u} hi : i < p.lastStep A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color ↑j} color_i : p.color i = sInf (univ \ A) g : ℕ → Ordinal.{u} n : ℕ hN : IsEmpty (SatelliteConfig α n p.τ) IH : ∀ k < i, k < p.lastStep → p.color k < n N_mem : n ∈ univ \ A Inf_eq_N : sInf (univ \ A) = n hg : ∀ k < n, g k < i ∧ (closedBall (p.c (p.index (g k))) (p.r (p.index (g k))) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty ∧ k = p.color (g k) G : ℕ → Ordinal.{u} := fun n_1 => if n_1 = n then i else g n_1 color_G : ∀ n_1 ≤ n, p.color (G n_1) = n_1 hn : n ≤ n ⊢ G n < p.lastStep
simp only [G]
case inl α : Type u_1 inst✝¹ : MetricSpace α β : Type u inst✝ : Nonempty β p : TauPackage β α i : Ordinal.{u} hi : i < p.lastStep A : Set ℕ := ⋃ j, ⋃ (_ : (closedBall (p.c (p.index ↑j)) (p.r (p.index ↑j)) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty), {p.color ↑j} color_i : p.color i = sInf (univ \ A) g : ℕ → Ordinal.{u} n : ℕ hN : IsEmpty (SatelliteConfig α n p.τ) IH : ∀ k < i, k < p.lastStep → p.color k < n N_mem : n ∈ univ \ A Inf_eq_N : sInf (univ \ A) = n hg : ∀ k < n, g k < i ∧ (closedBall (p.c (p.index (g k))) (p.r (p.index (g k))) ∩ closedBall (p.c (p.index i)) (p.r (p.index i))).Nonempty ∧ k = p.color (g k) G : ℕ → Ordinal.{u} := fun n_1 => if n_1 = n then i else g n_1 color_G : ∀ n_1 ≤ n, p.color (G n_1) = n_1 hn : n ≤ n ⊢ (if True then i else g n) < p.lastStep
70d4d5d8aa8a7de2
Nat.Primrec'.if_lt
Mathlib/Computability/Primrec.lean
theorem if_lt {n a b f g} (ha : @Primrec' n a) (hb : @Primrec' n b) (hf : @Primrec' n f) (hg : @Primrec' n g) : @Primrec' n fun v => if a v < b v then f v else g v := (prec' (sub.comp₂ _ hb ha) hg (tail <| tail hf)).of_eq fun v => by cases e : b v - a v · simp [not_lt.2 (Nat.sub_eq_zero_iff_le.mp e)] · simp [Nat.lt_of_sub_eq_succ e]
case succ n : ℕ a b f g : List.Vector ℕ n → ℕ ha : Primrec' a hb : Primrec' b hf : Primrec' f hg : Primrec' g v : List.Vector ℕ n n✝ : ℕ e : b v - a v = n✝ + 1 ⊢ Nat.rec (g v) (fun y IH => f (y ::ᵥ IH ::ᵥ v).tail.tail) (n✝ + 1) = if a v < b v then f v else g v
simp [Nat.lt_of_sub_eq_succ e]
no goals
1dc1c946f29fea11
MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
Mathlib/MeasureTheory/Integral/Lebesgue.lean
theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂μ = ⨆ n, (eapprox f n).lintegral μ := calc ∫⁻ a, f a ∂μ = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ
case h_mono α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : Measurable f ⊢ Monotone fun n => ⇑(eapprox f n)
intro i j h
case h_mono α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ≥0∞ hf : Measurable f i j : ℕ h : i ≤ j ⊢ (fun n => ⇑(eapprox f n)) i ≤ (fun n => ⇑(eapprox f n)) j
081ea2e4f2877c46
exists_idempotent_of_compact_t2_of_continuous_mul_left
Mathlib/Topology/Algebra/Semigroup.lean
theorem exists_idempotent_of_compact_t2_of_continuous_mul_left {M} [Nonempty M] [Semigroup M] [TopologicalSpace M] [CompactSpace M] [T2Space M] (continuous_mul_left : ∀ r : M, Continuous (· * r)) : ∃ m : M, m * m = m
case intro.intro.intro.intro M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N ⊢ ∃ m, m * m = m
use m
case h M : Type u_1 inst✝⁴ : Nonempty M inst✝³ : Semigroup M inst✝² : TopologicalSpace M inst✝¹ : CompactSpace M inst✝ : T2Space M continuous_mul_left : ∀ (r : M), Continuous fun x => x * r S : Set (Set M) := {N | IsClosed N ∧ N.Nonempty ∧ ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N} N : Set M hN : Minimal (fun x => x ∈ S) N N_closed : IsClosed N N_mul : ∀ m ∈ N, ∀ m' ∈ N, m * m' ∈ N m : M hm : m ∈ N ⊢ m * m = m
fc87b9dbd8289f3d
preimage_connectedComponent_connected
Mathlib/Topology/Connected/Clopen.lean
theorem preimage_connectedComponent_connected (connected_fibers : ∀ t : β, IsConnected (f ⁻¹' {t})) (hcl : ∀ T : Set β, IsClosed T ↔ IsClosed (f ⁻¹' T)) (t : β) : IsConnected (f ⁻¹' connectedComponent t)
case a.intro α : Type u β : Type v inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β connected_fibers : ∀ (t : β), IsConnected (f ⁻¹' {t}) hcl : ∀ (T : Set β), IsClosed T ↔ IsClosed (f ⁻¹' T) t : β hf : Surjective f hT : IsClosed (f ⁻¹' connectedComponent t) u v : Set α hu : IsClosed u hv : IsClosed v huv : f ⁻¹' connectedComponent t ⊆ u ∪ v uv_disj : Disjoint u v T₁ : Set β := {t' | t' ∈ connectedComponent t ∧ f ⁻¹' {t'} ⊆ u} T₂ : Set β := {t' | t' ∈ connectedComponent t ∧ f ⁻¹' {t'} ⊆ v} fiber_decomp : ∀ t' ∈ connectedComponent t, f ⁻¹' {t'} ⊆ u ∨ f ⁻¹' {t'} ⊆ v T₁_u : f ⁻¹' T₁ = f ⁻¹' connectedComponent t ∩ u a : α hat : a ∈ f ⁻¹' connectedComponent t hav : a ∈ v ⊢ a ∈ f ⁻¹' T₂
constructor
case a.intro.left α : Type u β : Type v inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β connected_fibers : ∀ (t : β), IsConnected (f ⁻¹' {t}) hcl : ∀ (T : Set β), IsClosed T ↔ IsClosed (f ⁻¹' T) t : β hf : Surjective f hT : IsClosed (f ⁻¹' connectedComponent t) u v : Set α hu : IsClosed u hv : IsClosed v huv : f ⁻¹' connectedComponent t ⊆ u ∪ v uv_disj : Disjoint u v T₁ : Set β := {t' | t' ∈ connectedComponent t ∧ f ⁻¹' {t'} ⊆ u} T₂ : Set β := {t' | t' ∈ connectedComponent t ∧ f ⁻¹' {t'} ⊆ v} fiber_decomp : ∀ t' ∈ connectedComponent t, f ⁻¹' {t'} ⊆ u ∨ f ⁻¹' {t'} ⊆ v T₁_u : f ⁻¹' T₁ = f ⁻¹' connectedComponent t ∩ u a : α hat : a ∈ f ⁻¹' connectedComponent t hav : a ∈ v ⊢ f a ∈ connectedComponent t case a.intro.right α : Type u β : Type v inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : α → β connected_fibers : ∀ (t : β), IsConnected (f ⁻¹' {t}) hcl : ∀ (T : Set β), IsClosed T ↔ IsClosed (f ⁻¹' T) t : β hf : Surjective f hT : IsClosed (f ⁻¹' connectedComponent t) u v : Set α hu : IsClosed u hv : IsClosed v huv : f ⁻¹' connectedComponent t ⊆ u ∪ v uv_disj : Disjoint u v T₁ : Set β := {t' | t' ∈ connectedComponent t ∧ f ⁻¹' {t'} ⊆ u} T₂ : Set β := {t' | t' ∈ connectedComponent t ∧ f ⁻¹' {t'} ⊆ v} fiber_decomp : ∀ t' ∈ connectedComponent t, f ⁻¹' {t'} ⊆ u ∨ f ⁻¹' {t'} ⊆ v T₁_u : f ⁻¹' T₁ = f ⁻¹' connectedComponent t ∩ u a : α hat : a ∈ f ⁻¹' connectedComponent t hav : a ∈ v ⊢ f ⁻¹' {f a} ⊆ v
4b0d93be45591aa1
Array.isEmpty_eq_false
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem isEmpty_eq_false {l : Array α} : l.isEmpty = false ↔ l ≠ #[]
α : Type u_1 l : Array α ⊢ l.isEmpty = false ↔ l ≠ #[]
cases l <;> simp
no goals
7802ac57adbcfa1a
ZFSet.omega_succ
Mathlib/SetTheory/ZFC/Basic.lean
theorem omega_succ {n} : n ∈ omega.{u} → insert n n ∈ omega.{u} := Quotient.inductionOn n fun x ⟨⟨n⟩, h⟩ => ⟨⟨n + 1⟩, ZFSet.exact <| show insert (mk x) (mk x) = insert (mk <| ofNat n) (mk <| ofNat n) by rw [ZFSet.sound h] rfl⟩
n✝ : ZFSet.{u} x : PSet.{u} x✝ : ⟦x⟧ ∈ omega n : ℕ h : x.Equiv (PSet.omega.Func { down := n }) ⊢ insert (mk (PSet.omega.Func { down := n })) (mk (PSet.omega.Func { down := n })) = insert (mk (ofNat n)) (mk (ofNat n))
rfl
no goals
2961ee9a9cf487d4
IsSimpleRing.isField_center
Mathlib/RingTheory/SimpleRing/Field.lean
lemma isField_center (A : Type*) [Ring A] [IsSimpleRing A] : IsField (Subring.center A) where exists_pair_ne := ⟨0, 1, zero_ne_one⟩ mul_comm := mul_comm mul_inv_cancel
case mk A : Type u_1 inst✝¹ : Ring A inst✝ : IsSimpleRing A x : A hx1✝ : x ∈ Subring.center A hx1 : ∀ (g : A), g * x = x * g hx2 : x ≠ 0 I : TwoSidedIdeal A := mk' (Set.range fun x_1 => x * x_1) ⋯ ⋯ ⋯ ⋯ ⋯ mem : 1 ∈ I ⊢ ∃ b, ⟨x, hx1✝⟩ * b = 1
simp only [TwoSidedIdeal.mem_mk', Set.mem_range, I] at mem
case mk A : Type u_1 inst✝¹ : Ring A inst✝ : IsSimpleRing A x : A hx1✝ : x ∈ Subring.center A hx1 : ∀ (g : A), g * x = x * g hx2 : x ≠ 0 I : TwoSidedIdeal A := mk' (Set.range fun x_1 => x * x_1) ⋯ ⋯ ⋯ ⋯ ⋯ mem : ∃ y, x * y = 1 ⊢ ∃ b, ⟨x, hx1✝⟩ * b = 1
08d555f2a5a9e7b4
NumberField.mixedEmbedding.normAtPlace_negAt
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
theorem normAtPlace_negAt (x : mixedSpace K) (w : InfinitePlace K) : normAtPlace w (negAt s x) = normAtPlace w x
case inl K : Type u_1 inst✝ : Field K s : Set { w // w.IsReal } x : mixedSpace K w : InfinitePlace K hw : w.IsReal ⊢ (normAtPlace w) ((negAt s) x) = (normAtPlace w) x
simp_rw [normAtPlace_apply_of_isReal hw, Real.norm_eq_abs, negAt_apply_abs_isReal]
no goals
0325fa9e9c073963
UniformConvergenceCLM.uniformSpace_mono
Mathlib/Topology/Algebra/Module/StrongTopology.lean
theorem uniformSpace_mono [UniformSpace F] [UniformAddGroup F] (h : 𝔖₂ ⊆ 𝔖₁) : instUniformSpace σ F 𝔖₁ ≤ instUniformSpace σ F 𝔖₂
𝕜₁ : Type u_1 𝕜₂ : Type u_2 inst✝⁸ : NormedField 𝕜₁ inst✝⁷ : NormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ E : Type u_3 F : Type u_4 inst✝⁶ : AddCommGroup E inst✝⁵ : Module 𝕜₁ E inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup F inst✝² : Module 𝕜₂ F 𝔖₁ 𝔖₂ : Set (Set E) inst✝¹ : UniformSpace F inst✝ : UniformAddGroup F h : 𝔖₂ ⊆ 𝔖₁ ⊢ UniformSpace.comap (⇑(UniformOnFun.ofFun 𝔖₁) ∘ DFunLike.coe) (UniformOnFun.uniformSpace E F 𝔖₁) ≤ UniformSpace.comap (⇑(UniformOnFun.ofFun 𝔖₂) ∘ DFunLike.coe) (UniformOnFun.uniformSpace E F 𝔖₂)
exact UniformSpace.comap_mono (UniformOnFun.mono (le_refl _) h)
no goals
d2d376aee2f9c3b0
ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat
Mathlib/Probability/Kernel/Disintegration/CDFToKernel.lean
lemma setLIntegral_stieltjesOfMeasurableRat [IsFiniteKernel κ] (hf : IsRatCondKernelCDF f κ ν) (a : α) (x : ℝ) {s : Set β} (hs : MeasurableSet s) : ∫⁻ b in s, ENNReal.ofReal (stieltjesOfMeasurableRat f hf.measurable (a, b) x) ∂(ν a) = κ a (s ×ˢ Iic x)
case neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ inst✝ : IsFiniteKernel κ hf : IsRatCondKernelCDF f κ ν a : α x : ℝ s : Set β hs : MeasurableSet s hρ_zero : ¬(ν a).restrict s = 0 h : ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = ∫⁻ (b : β) in s, ⨅ r, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑r) ∂ν a ⊢ ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = (κ a) (s ×ˢ Iic x)
have h_nonempty : Nonempty { r' : ℚ // x < ↑r' } := by obtain ⟨r, hrx⟩ := exists_rat_gt x exact ⟨⟨r, hrx⟩⟩
case neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β κ : Kernel α (β × ℝ) ν : Kernel α β f : α × β → ℚ → ℝ inst✝ : IsFiniteKernel κ hf : IsRatCondKernelCDF f κ ν a : α x : ℝ s : Set β hs : MeasurableSet s hρ_zero : ¬(ν a).restrict s = 0 h : ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = ∫⁻ (b : β) in s, ⨅ r, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) ↑↑r) ∂ν a h_nonempty : Nonempty { r' // x < ↑r' } ⊢ ∫⁻ (b : β) in s, ENNReal.ofReal (↑(stieltjesOfMeasurableRat f ⋯ (a, b)) x) ∂ν a = (κ a) (s ×ˢ Iic x)
2b5f63b20150553c
mem_posTangentConeAt_of_segment_subset
Mathlib/Analysis/Calculus/LocalExtr/Basic.lean
theorem mem_posTangentConeAt_of_segment_subset (h : [x -[ℝ] x + y] ⊆ s) : y ∈ posTangentConeAt s x
E : Type u inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E x y : E h : [x-[ℝ]x + y] ⊆ s ⊢ ∀ᶠ (x_1 : ℝ) in 𝓝[>] 0, x + x_1 • y ∈ s
rw [eventually_nhdsWithin_iff]
E : Type u inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E s : Set E x y : E h : [x-[ℝ]x + y] ⊆ s ⊢ ∀ᶠ (x_1 : ℝ) in 𝓝 0, x_1 ∈ Ioi 0 → x + x_1 • y ∈ s
9cfc7f1a8c1fc7eb
isUniformInducing_iff'
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
lemma isUniformInducing_iff' {f : α → β} : IsUniformInducing f ↔ UniformContinuous f ∧ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α
α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β ⊢ IsUniformInducing f ↔ UniformContinuous f ∧ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α
rw [isUniformInducing_iff, UniformContinuous, tendsto_iff_comap, le_antisymm_iff, and_comm]
α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β ⊢ 𝓤 α ≤ comap (fun x => (f x.1, f x.2)) (𝓤 β) ∧ comap (fun x => (f x.1, f x.2)) (𝓤 β) ≤ 𝓤 α ↔ 𝓤 α ≤ comap (fun x => (f x.1, f x.2)) (𝓤 β) ∧ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α
2cf0ebe6dcd6be5d
CategoryTheory.RelCat.rel_iso_iff
Mathlib/CategoryTheory/Category/RelCat.lean
theorem rel_iso_iff {X Y : RelCat} (r : X ⟶ Y) : IsIso (C := RelCat) r ↔ ∃ f : (Iso (C := Type u) X Y), graphFunctor.map f.hom = r
case h.left.h X Y : RelCat r : X ⟶ Y h : IsIso r h1 : ∀ (a b : X), (∃ y, r a y ∧ inv r y b) ↔ a = b h2 : ∀ (a b : Y), (∃ y, inv r a y ∧ r y b) ↔ a = b f : X → Y hf : ∀ (x : X), r x (f x) ∧ inv r (f x) x g : Y → X hg : ∀ (x : Y), inv r x (g x) ∧ r (g x) x x : X ⊢ (f ≫ g) x = 𝟙 X x
apply (h1 _ _).mp
case h.left.h X Y : RelCat r : X ⟶ Y h : IsIso r h1 : ∀ (a b : X), (∃ y, r a y ∧ inv r y b) ↔ a = b h2 : ∀ (a b : Y), (∃ y, inv r a y ∧ r y b) ↔ a = b f : X → Y hf : ∀ (x : X), r x (f x) ∧ inv r (f x) x g : Y → X hg : ∀ (x : Y), inv r x (g x) ∧ r (g x) x x : X ⊢ ∃ y, r ((f ≫ g) x) y ∧ inv r y (𝟙 X x)
a2d7764e00cdb24d
max_aleph0_card_le_rank_fun_nat
Mathlib/LinearAlgebra/Dimension/ErdosKaplansky.lean
theorem max_aleph0_card_le_rank_fun_nat : max ℵ₀ #K ≤ Module.rank K (ℕ → K)
case inr.intro.mk.intro.mk.intro K : Type u inst✝ : DivisionRing K aleph0_le : ℵ₀ ≤ Module.rank K (ℕ → K) card_K : ℵ₀ < #K this✝ : Module.rank K (ℕ → K) < #K ιK : Type u bK : Basis ιK K (ℕ → K) L : Subfield K := Subfield.closure (Set.range fun i => bK i.1 i.2) hLK : #↥L < #K this : Module (↥L)ᵐᵒᵖ K := Module.compHom K (RingHom.op L.subtype) ιL : Type u bL : Basis ιL (↥L)ᵐᵒᵖ K card_ιL : ℵ₀ ≤ #ιL e : ℕ ↪ ιL rep_e : (Finsupp.linearCombination K ⇑bK) (bK.repr (⇑bL ∘ ⇑e)) = ⇑bL ∘ ⇑e ⊢ False
rw [Finsupp.linearCombination_apply, Finsupp.sum] at rep_e
case inr.intro.mk.intro.mk.intro K : Type u inst✝ : DivisionRing K aleph0_le : ℵ₀ ≤ Module.rank K (ℕ → K) card_K : ℵ₀ < #K this✝ : Module.rank K (ℕ → K) < #K ιK : Type u bK : Basis ιK K (ℕ → K) L : Subfield K := Subfield.closure (Set.range fun i => bK i.1 i.2) hLK : #↥L < #K this : Module (↥L)ᵐᵒᵖ K := Module.compHom K (RingHom.op L.subtype) ιL : Type u bL : Basis ιL (↥L)ᵐᵒᵖ K card_ιL : ℵ₀ ≤ #ιL e : ℕ ↪ ιL rep_e : ∑ a ∈ (bK.repr (⇑bL ∘ ⇑e)).support, (bK.repr (⇑bL ∘ ⇑e)) a • bK a = ⇑bL ∘ ⇑e ⊢ False
f7e0fbcdefa57fa3
HasDerivAt.lhopital_zero_nhds_left
Mathlib/Analysis/Calculus/LHopital.lean
theorem lhopital_zero_nhds_left (hff' : ∀ᶠ x in 𝓝[<] a, HasDerivAt f (f' x) x) (hgg' : ∀ᶠ x in 𝓝[<] a, HasDerivAt g (g' x) x) (hg' : ∀ᶠ x in 𝓝[<] a, g' x ≠ 0) (hfa : Tendsto f (𝓝[<] a) (𝓝 0)) (hga : Tendsto g (𝓝[<] a) (𝓝 0)) (hdiv : Tendsto (fun x => f' x / g' x) (𝓝[<] a) l) : Tendsto (fun x => f x / g x) (𝓝[<] a) l
case intro.intro.intro.intro.intro.intro a : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[<] a) (𝓝 0) hga : Tendsto g (𝓝[<] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[<] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[<] a hff' : ∀ y ∈ s₁, HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[<] a hgg' : ∀ y ∈ s₂, HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[<] a hg' : ∀ y ∈ s₃, g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ ⊢ Tendsto (fun x => f x / g x) (𝓝[<] a) l
have hs : s ∈ 𝓝[<] a := inter_mem (inter_mem hs₁ hs₂) hs₃
case intro.intro.intro.intro.intro.intro a : ℝ l : Filter ℝ f f' g g' : ℝ → ℝ hfa : Tendsto f (𝓝[<] a) (𝓝 0) hga : Tendsto g (𝓝[<] a) (𝓝 0) hdiv : Tendsto (fun x => f' x / g' x) (𝓝[<] a) l s₁ : Set ℝ hs₁ : s₁ ∈ 𝓝[<] a hff' : ∀ y ∈ s₁, HasDerivAt f (f' y) y s₂ : Set ℝ hs₂ : s₂ ∈ 𝓝[<] a hgg' : ∀ y ∈ s₂, HasDerivAt g (g' y) y s₃ : Set ℝ hs₃ : s₃ ∈ 𝓝[<] a hg' : ∀ y ∈ s₃, g' y ≠ 0 s : Set ℝ := s₁ ∩ s₂ ∩ s₃ hs : s ∈ 𝓝[<] a ⊢ Tendsto (fun x => f x / g x) (𝓝[<] a) l
da50ce2224ecb800
exists_seq_of_forall_finset_exists
Mathlib/Data/Fintype/Basic.lean
theorem exists_seq_of_forall_finset_exists {α : Type*} (P : α → Prop) (r : α → α → Prop) (h : ∀ s : Finset α, (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y) : ∃ f : ℕ → α, (∀ n, P (f n)) ∧ ∀ m n, m < n → r (f m) (f n)
case intro α : Type u_4 P : α → Prop r : α → α → Prop h : ∀ (s : Finset α), (∀ x ∈ s, P x) → ∃ y, P y ∧ ∀ x ∈ s, r x y y : α h✝ : P y ∧ ∀ x ∈ ∅, r x y ⊢ Nonempty α
exact ⟨y⟩
no goals
84f3321d3efdbd70
MeasureTheory.Measure.MeasureDense.of_generateFrom_isSetAlgebra_finite
Mathlib/MeasureTheory/Measure/SeparableMeasure.lean
theorem Measure.MeasureDense.of_generateFrom_isSetAlgebra_finite [IsFiniteMeasure μ] (h𝒜 : IsSetAlgebra 𝒜) (hgen : m = MeasurableSpace.generateFrom 𝒜) : μ.MeasureDense 𝒜 where measurable s hs := hgen ▸ measurableSet_generateFrom hs approx s ms
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) inst✝ : IsFiniteMeasure μ h𝒜 : IsSetAlgebra 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s this : MeasurableSet s ∧ ∀ (ε : ℝ), 0 < ε → ∃ t ∈ 𝒜, (μ (s ∆ t)).toReal < ε ⊢ μ s ≠ ⊤ → ∀ (ε : ℝ), 0 < ε → ∃ t ∈ 𝒜, μ (s ∆ t) < ENNReal.ofReal ε
rintro - ε ε_pos
X : Type u_1 m : MeasurableSpace X μ : Measure X 𝒜 : Set (Set X) inst✝ : IsFiniteMeasure μ h𝒜 : IsSetAlgebra 𝒜 hgen : m = MeasurableSpace.generateFrom 𝒜 s : Set X ms : MeasurableSet s this : MeasurableSet s ∧ ∀ (ε : ℝ), 0 < ε → ∃ t ∈ 𝒜, (μ (s ∆ t)).toReal < ε ε : ℝ ε_pos : 0 < ε ⊢ ∃ t ∈ 𝒜, μ (s ∆ t) < ENNReal.ofReal ε
92d6fe7992cc346b
Orientation.oangle_add
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_add {x y z : V} (hx : x ≠ 0) (hy : y ≠ 0) (hz : z ≠ 0) : o.oangle x y + o.oangle y z = o.oangle x z
case hy V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y z : V hx : x ≠ 0 hy : y ≠ 0 hz : z ≠ 0 ⊢ (o.kahler y) z ≠ 0
exact o.kahler_ne_zero hy hz
no goals
9ab057dbb8d9890d
MeasureTheory.FiniteMeasure.ext_of_forall_integral_eq
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean
theorem ext_of_forall_integral_eq [HasOuterApproxClosed Ω] [BorelSpace Ω] {μ ν : FiniteMeasure Ω} (h : ∀ (f : Ω →ᵇ ℝ), ∫ x, f x ∂μ = ∫ x, f x ∂ν) : μ = ν
case h Ω : Type u_1 inst✝³ : MeasurableSpace Ω inst✝² : TopologicalSpace Ω inst✝¹ : HasOuterApproxClosed Ω inst✝ : BorelSpace Ω μ ν : FiniteMeasure Ω h : ∀ (f : Ω →ᵇ ℝ), ∫ (x : Ω), f x ∂↑μ = ∫ (x : Ω), f x ∂↑ν f : Ω →ᵇ ℝ≥0 ⊢ (∫⁻ (x : Ω), ↑(f x) ∂↑μ).toReal = (∫⁻ (x : Ω), ↑(f x) ∂↑ν).toReal
rw [toReal_lintegral_coe_eq_integral f μ, toReal_lintegral_coe_eq_integral f ν]
case h Ω : Type u_1 inst✝³ : MeasurableSpace Ω inst✝² : TopologicalSpace Ω inst✝¹ : HasOuterApproxClosed Ω inst✝ : BorelSpace Ω μ ν : FiniteMeasure Ω h : ∀ (f : Ω →ᵇ ℝ), ∫ (x : Ω), f x ∂↑μ = ∫ (x : Ω), f x ∂↑ν f : Ω →ᵇ ℝ≥0 ⊢ ∫ (x : Ω), ↑(f x) ∂↑μ = ∫ (x : Ω), ↑(f x) ∂↑ν
623f02af03253cef
cfcₙ_star
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/NonUnital.lean
lemma cfcₙ_star : cfcₙ (fun x ↦ star (f x)) a = star (cfcₙ f a)
case pos R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f : R → R a : A h : p a ∧ ContinuousOn f (σₙ R a) ∧ f 0 = 0 ⊢ cfcₙ (fun x => star (f x)) a = star (cfcₙ f a)
obtain ⟨ha, hf, h0⟩ := h
case pos.intro.intro R : Type u_1 A : Type u_2 p : A → Prop inst✝¹¹ : CommSemiring R inst✝¹⁰ : Nontrivial R inst✝⁹ : StarRing R inst✝⁸ : MetricSpace R inst✝⁷ : IsTopologicalSemiring R inst✝⁶ : ContinuousStar R inst✝⁵ : NonUnitalRing A inst✝⁴ : StarRing A inst✝³ : TopologicalSpace A inst✝² : Module R A inst✝¹ : IsScalarTower R A A inst✝ : SMulCommClass R A A instCFCₙ : NonUnitalContinuousFunctionalCalculus R p f : R → R a : A ha : p a hf : ContinuousOn f (σₙ R a) h0 : f 0 = 0 ⊢ cfcₙ (fun x => star (f x)) a = star (cfcₙ f a)
c2fb3c8e671683c4
MeasureTheory.Measure.QuasiMeasurePreserving.restrict
Mathlib/MeasureTheory/Measure/Restrict.lean
theorem QuasiMeasurePreserving.restrict {ν : Measure β} {f : α → β} (hf : QuasiMeasurePreserving f μ ν) {t : Set β} (hmaps : MapsTo f s t) : QuasiMeasurePreserving f (μ.restrict s) (ν.restrict t) where measurable := hf.measurable absolutelyContinuous
α : Type u_2 β : Type u_3 m0 : MeasurableSpace α inst✝ : MeasurableSpace β μ : Measure α s : Set α ν : Measure β f : α → β hf : QuasiMeasurePreserving f μ ν t : Set β hmaps : MapsTo f s t u : Set β hum : MeasurableSet u ⊢ (ν.restrict t) u = 0 → (map f (μ.restrict s)) u = 0
suffices ν (u ∩ t) = 0 → μ (f ⁻¹' u ∩ s) = 0 by simpa [hum, hf.measurable, hf.measurable hum]
α : Type u_2 β : Type u_3 m0 : MeasurableSpace α inst✝ : MeasurableSpace β μ : Measure α s : Set α ν : Measure β f : α → β hf : QuasiMeasurePreserving f μ ν t : Set β hmaps : MapsTo f s t u : Set β hum : MeasurableSet u ⊢ ν (u ∩ t) = 0 → μ (f ⁻¹' u ∩ s) = 0
c96afaf9115a24a4
MeasureTheory.locallyIntegrable_map_homeomorph
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
theorem locallyIntegrable_map_homeomorph [BorelSpace X] [BorelSpace Y] (e : X ≃ₜ Y) {f : Y → E} {μ : Measure X} : LocallyIntegrable f (Measure.map e μ) ↔ LocallyIntegrable (f ∘ e) μ
case refine_2.intro.intro X : Type u_1 Y : Type u_2 E : Type u_3 inst✝⁶ : MeasurableSpace X inst✝⁵ : TopologicalSpace X inst✝⁴ : MeasurableSpace Y inst✝³ : TopologicalSpace Y inst✝² : NormedAddCommGroup E inst✝¹ : BorelSpace X inst✝ : BorelSpace Y e : X ≃ₜ Y f : Y → E μ : Measure X h : LocallyIntegrable (f ∘ ⇑e) μ x : Y U : Set X hU : U ∈ 𝓝 (e.symm x) h'U : IntegrableOn (f ∘ ⇑e) U μ ⊢ IntegrableAtFilter f (𝓝 x) (map (⇑e) μ)
refine ⟨e.symm ⁻¹' U, e.symm.continuous.continuousAt.preimage_mem_nhds hU, ?_⟩
case refine_2.intro.intro X : Type u_1 Y : Type u_2 E : Type u_3 inst✝⁶ : MeasurableSpace X inst✝⁵ : TopologicalSpace X inst✝⁴ : MeasurableSpace Y inst✝³ : TopologicalSpace Y inst✝² : NormedAddCommGroup E inst✝¹ : BorelSpace X inst✝ : BorelSpace Y e : X ≃ₜ Y f : Y → E μ : Measure X h : LocallyIntegrable (f ∘ ⇑e) μ x : Y U : Set X hU : U ∈ 𝓝 (e.symm x) h'U : IntegrableOn (f ∘ ⇑e) U μ ⊢ IntegrableOn f (⇑e.symm ⁻¹' U) (map (⇑e) μ)
cbcd4eb2baca93b2
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib/Tactic/Positivity/Core.lean
lemma pos_of_isNat {n : ℕ} [OrderedSemiring A] [Nontrivial A] (h : NormNum.IsNat e n) (w : Nat.ble 1 n = true) : 0 < (e : A)
A : Type u_1 e : A n : ℕ inst✝¹ : OrderedSemiring A inst✝ : Nontrivial A h : NormNum.IsNat e n w : Nat.ble 1 n = true ⊢ 0 < ↑n
apply Nat.cast_pos.2
A : Type u_1 e : A n : ℕ inst✝¹ : OrderedSemiring A inst✝ : Nontrivial A h : NormNum.IsNat e n w : Nat.ble 1 n = true ⊢ 0 < n
4e81ca6912b2d16f
CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id
Mathlib/Algebra/Homology/HomotopyCategory/Triangulated.lean
@[reassoc (attr := simp)] lemma hom_inv_id : hom f g ≫ inv f g = 𝟙 _
case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasBinaryBiproducts C X₁ X₂ X₃ : CochainComplex C ℤ f : X₁ ⟶ X₂ g : X₂ ⟶ X₃ n : ℤ ⊢ (hom f g ≫ inv f g).f n = (𝟙 (mappingCone g)).f n
simp [hom, inv, lift_desc_f _ _ _ _ _ _ _ n (n+1) rfl, ext_from_iff _ (n + 1) _ rfl]
no goals
93e558e1fa54af44
IsLocalization.ideal_eq_iInf_comap_map_away
Mathlib/RingTheory/Localization/Ideal.lean
theorem ideal_eq_iInf_comap_map_away {S : Finset R} (hS : Ideal.span (α := R) S = ⊤) (I : Ideal R) : I = ⨅ f ∈ S, (I.map (algebraMap R (Localization.Away f))).comap (algebraMap R (Localization.Away f))
case a.H R : Type u_1 inst✝ : CommRing R S : Finset R hS : Ideal.span ↑S = ⊤ I : Ideal R x : R hx : x ∈ ⨅ f ∈ S, Ideal.comap (algebraMap R (Localization.Away f)) (Ideal.map (algebraMap R (Localization.Away f)) I) ⊢ ∀ (r : ↑↑S), ∃ n, ↑r ^ n • x ∈ I
rintro ⟨s, hs⟩
case a.H.mk R : Type u_1 inst✝ : CommRing R S : Finset R hS : Ideal.span ↑S = ⊤ I : Ideal R x : R hx : x ∈ ⨅ f ∈ S, Ideal.comap (algebraMap R (Localization.Away f)) (Ideal.map (algebraMap R (Localization.Away f)) I) s : R hs : s ∈ ↑S ⊢ ∃ n, ↑⟨s, hs⟩ ^ n • x ∈ I
03519d2e121c9417
IntermediateField.exists_lt_finrank_of_infinite_dimensional
Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean
theorem exists_lt_finrank_of_infinite_dimensional [Algebra.IsAlgebraic F E] (hnfd : ¬ FiniteDimensional F E) (n : ℕ) : ∃ L : IntermediateField F E, FiniteDimensional F L ∧ n < finrank F L
F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E n : ℕ L : IntermediateField F E fin : FiniteDimensional F ↥L hn : n < finrank F ↥L hnfd : ∀ (x : E), x ∈ L ⊢ FiniteDimensional F E
rw [show L = ⊤ from eq_top_iff.2 fun x _ ↦ hnfd x] at fin
F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E n : ℕ L : IntermediateField F E fin : FiniteDimensional F ↥⊤ hn : n < finrank F ↥L hnfd : ∀ (x : E), x ∈ L ⊢ FiniteDimensional F E
e542ab6fcdb23a62
Ordinal.nmul_le_iff₃'
Mathlib/SetTheory/Ordinal/NaturalOps.lean
theorem nmul_le_iff₃' : a ⨳ (b ⨳ c) ≤ d ↔ ∀ a' < a, ∀ b' < b, ∀ c' < c, a' ⨳ (b ⨳ c) ♯ a ⨳ (b' ⨳ c) ♯ a ⨳ (b ⨳ c') ♯ a' ⨳ (b' ⨳ c') < d ♯ a' ⨳ (b' ⨳ c) ♯ a' ⨳ (b ⨳ c') ♯ a ⨳ (b' ⨳ c')
case mpr a b c d : Ordinal.{u} h : ∀ a' < a, ∀ b' < b, ∀ c' < c, toOrdinal (toNatOrdinal (b ⨳ c ⨳ a') + toNatOrdinal (b' ⨳ c ⨳ a) + toNatOrdinal (b ⨳ c' ⨳ a) + toNatOrdinal (b' ⨳ c' ⨳ a')) < toOrdinal (toNatOrdinal d + toNatOrdinal (b' ⨳ c ⨳ a') + toNatOrdinal (b ⨳ c' ⨳ a') + toNatOrdinal (b' ⨳ c' ⨳ a)) a' : Ordinal.{u} ha : a' < b b' : Ordinal.{u} hb : b' < c c' : Ordinal.{u} hc : c' < a ⊢ toOrdinal (toNatOrdinal (a' ⨳ c ⨳ a) + toNatOrdinal (b ⨳ b' ⨳ a) + toNatOrdinal (b ⨳ c ⨳ c') + toNatOrdinal (a' ⨳ b' ⨳ c')) < toOrdinal (toNatOrdinal d + toNatOrdinal (a' ⨳ b' ⨳ a) + toNatOrdinal (a' ⨳ c ⨳ c') + toNatOrdinal (b ⨳ b' ⨳ c'))
convert h c' hc a' ha b' hb using 1 <;> abel_nf
no goals
b189ce1ac63af5e2
padicNorm.nonarchimedean_aux
Mathlib/NumberTheory/Padics/PadicNorm.lean
theorem nonarchimedean_aux {q r : ℚ} (h : padicValRat p q ≤ padicValRat p r) : padicNorm p (q + r) ≤ max (padicNorm p q) (padicNorm p r) := have hnqp : padicNorm p q ≥ 0 := padicNorm.nonneg _ have hnrp : padicNorm p r ≥ 0 := padicNorm.nonneg _ if hq : q = 0 then by simp [hq, max_eq_right hnrp, le_max_right] else if hr : r = 0 then by simp [hr, max_eq_left hnqp, le_max_left] else if hqr : q + r = 0 then le_trans (by simpa [hqr] using hnqp) (le_max_left _ _) else by unfold padicNorm; split_ifs apply le_max_iff.2 left apply zpow_le_zpow_right₀ · exact mod_cast le_of_lt hp.1.one_lt · apply neg_le_neg have : padicValRat p q = min (padicValRat p q) (padicValRat p r) := (min_eq_left h).symm rw [this] exact min_le_padicValRat_add hqr
p : ℕ hp : Fact (Nat.Prime p) q r : ℚ h : padicValRat p q ≤ padicValRat p r hnqp : padicNorm p q ≥ 0 hnrp : padicNorm p r ≥ 0 hq : ¬q = 0 hr : ¬r = 0 hqr : ¬q + r = 0 ⊢ ↑p ^ (-padicValRat p (q + r)) ≤ ↑p ^ (-padicValRat p q) ∨ ↑p ^ (-padicValRat p (q + r)) ≤ ↑p ^ (-padicValRat p r)
left
case h p : ℕ hp : Fact (Nat.Prime p) q r : ℚ h : padicValRat p q ≤ padicValRat p r hnqp : padicNorm p q ≥ 0 hnrp : padicNorm p r ≥ 0 hq : ¬q = 0 hr : ¬r = 0 hqr : ¬q + r = 0 ⊢ ↑p ^ (-padicValRat p (q + r)) ≤ ↑p ^ (-padicValRat p q)
ef1e6b3c3a9e971d
MeasureTheory.withDensity_eq_iff
Mathlib/MeasureTheory/Function/AEEqOfLIntegral.lean
theorem withDensity_eq_iff {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) : μ.withDensity f = μ.withDensity g ↔ f =ᵐ[μ] g := ⟨fun hfg ↦ by refine AEMeasurable.ae_eq_of_forall_setLIntegral_eq hf hg hfi ?_ fun s hs _ ↦ ?_ · rwa [← setLIntegral_univ, ← withDensity_apply g MeasurableSet.univ, ← hfg, withDensity_apply f MeasurableSet.univ, setLIntegral_univ] · rw [← withDensity_apply f hs, ← withDensity_apply g hs, ← hfg], withDensity_congr_ae⟩
case refine_1 α : Type u_1 m : MeasurableSpace α μ : Measure α f g : α → ℝ≥0∞ hf : AEMeasurable f μ hg : AEMeasurable g μ hfi : ∫⁻ (x : α), f x ∂μ ≠ ⊤ hfg : μ.withDensity f = μ.withDensity g ⊢ ∫⁻ (x : α), g x ∂μ ≠ ⊤
rwa [← setLIntegral_univ, ← withDensity_apply g MeasurableSet.univ, ← hfg, withDensity_apply f MeasurableSet.univ, setLIntegral_univ]
no goals
d53e22828aab2f48
TopologicalSpace.IsTopologicalBasis.isQuotientMap
Mathlib/Topology/Bases.lean
theorem IsTopologicalBasis.isQuotientMap {V : Set (Set X)} (hV : IsTopologicalBasis V) (h' : IsQuotientMap π) (h : IsOpenMap π) : IsTopologicalBasis (Set.image π '' V)
case h_nhds.intro.intro.intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X Y : Type u_2 inst✝ : TopologicalSpace Y π : X → Y V : Set (Set X) hV : IsTopologicalBasis V h' : IsQuotientMap π h : IsOpenMap π U : Set Y U_open : IsOpen U x : X y_in_U : π x ∈ U W : Set X := π ⁻¹' U x_in_W : x ∈ W W_open : IsOpen W Z : Set X Z_in_V : Z ∈ V x_in_Z : x ∈ Z Z_in_W : Z ⊆ W ⊢ ∃ v ∈ image π '' V, π x ∈ v ∧ v ⊆ U
have πZ_in_U : π '' Z ⊆ U := (Set.image_subset _ Z_in_W).trans (image_preimage_subset π U)
case h_nhds.intro.intro.intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X Y : Type u_2 inst✝ : TopologicalSpace Y π : X → Y V : Set (Set X) hV : IsTopologicalBasis V h' : IsQuotientMap π h : IsOpenMap π U : Set Y U_open : IsOpen U x : X y_in_U : π x ∈ U W : Set X := π ⁻¹' U x_in_W : x ∈ W W_open : IsOpen W Z : Set X Z_in_V : Z ∈ V x_in_Z : x ∈ Z Z_in_W : Z ⊆ W πZ_in_U : π '' Z ⊆ U ⊢ ∃ v ∈ image π '' V, π x ∈ v ∧ v ⊆ U
0b2ca271bb3ece9e
Cardinal.mk_preimage_of_injective_lift
Mathlib/SetTheory/Cardinal/Basic.lean
theorem mk_preimage_of_injective_lift {α : Type u} {β : Type v} (f : α → β) (s : Set β) (h : Injective f) : lift.{v} #(f ⁻¹' s) ≤ lift.{u} #s
case inj'.hf α : Type u β : Type v f : α → β s : Set β h : Injective f ⊢ Injective fun x => f ↑x
exact h.comp Subtype.val_injective
no goals
4897a23374911d36
Ordinal.eq_enumOrd
Mathlib/SetTheory/Ordinal/Enum.lean
theorem eq_enumOrd (f : Ordinal → Ordinal) (hs : ¬ BddAbove s) : enumOrd s = f ↔ StrictMono f ∧ range f = s
case mp s : Set Ordinal.{u} hs : ¬BddAbove s ⊢ StrictMono (enumOrd s) ∧ range (enumOrd s) = s
exact ⟨enumOrd_strictMono hs, range_enumOrd hs⟩
no goals
7734d007ef2167c5
Pell.eq_of_xn_modEq_lem3
Mathlib/NumberTheory/PellMatiyasevic.lean
theorem eq_of_xn_modEq_lem3 {i n} (npos : 0 < n) : ∀ {j}, i < j → j ≤ 2 * n → j ≠ n → ¬(a = 2 ∧ n = 1 ∧ i = 0 ∧ j = 2) → xn a1 i % xn a1 n < xn a1 j % xn a1 n | 0, ij, _, _, _ => absurd ij (Nat.not_lt_zero _) | j + 1, ij, j2n, jnn, ntriv => have lem2 : ∀ k > n, k ≤ 2 * n → (↑(xn a1 k % xn a1 n) : ℤ) = xn a1 n - xn a1 (2 * n - k) := fun k kn k2n => by let k2nl := lt_of_add_lt_add_right <| show 2 * n - k + k < n + k by rw [tsub_add_cancel_of_le] · rw [two_mul] exact add_lt_add_left kn n exact k2n have xle : xn a1 (2 * n - k) ≤ xn a1 n := le_of_lt <| strictMono_x a1 k2nl suffices xn a1 k % xn a1 n = xn a1 n - xn a1 (2 * n - k) by rw [this, Int.ofNat_sub xle] rw [← Nat.mod_eq_of_lt (Nat.sub_lt (x_pos a1 n) (x_pos a1 (2 * n - k)))] apply ModEq.add_right_cancel' (xn a1 (2 * n - k)) rw [tsub_add_cancel_of_le xle] have t := xn_modEq_x2n_sub_lem a1 k2nl.le rw [tsub_tsub_cancel_of_le k2n] at t exact t.trans dvd_rfl.zero_modEq_nat (lt_trichotomy j n).elim (fun jn : j < n => eq_of_xn_modEq_lem1 _ ij (lt_of_le_of_ne jn jnn)) fun o => o.elim (fun jn : j = n => by cases jn apply Int.lt_of_ofNat_lt_ofNat rw [lem2 (n + 1) (Nat.lt_succ_self _) j2n, show 2 * n - (n + 1) = n - 1 by rw [two_mul, tsub_add_eq_tsub_tsub, add_tsub_cancel_right]] refine lt_sub_left_of_add_lt (Int.ofNat_lt_ofNat_of_lt ?_) rcases lt_or_eq_of_le <| Nat.le_of_succ_le_succ ij with lin | ein · rw [Nat.mod_eq_of_lt (strictMono_x _ lin)] have ll : xn a1 (n - 1) + xn a1 (n - 1) ≤ xn a1 n
a : ℕ a1 : 1 < a i n : ℕ npos : 0 < n j : ℕ ij : i < j + 1 j2n : j + 1 ≤ 2 * n jnn : j + 1 ≠ n ntriv : ¬(a = 2 ∧ n = 1 ∧ i = 0 ∧ j + 1 = 2) k : ℕ kn : k > n k2n : k ≤ 2 * n k2nl : 2 * n - k < n := lt_of_add_lt_add_right (let_fun this := Eq.mpr (id (congrArg (fun _a => _a < n + k) (tsub_add_cancel_of_le k2n))) (Eq.mpr (id (congrArg (fun _a => _a < n + k) (two_mul n))) (add_lt_add_left kn n)); this) xle : xn a1 (2 * n - k) ≤ xn a1 n ⊢ xn a1 k % xn a1 n = xn a1 n - xn a1 (2 * n - k)
rw [← Nat.mod_eq_of_lt (Nat.sub_lt (x_pos a1 n) (x_pos a1 (2 * n - k)))]
a : ℕ a1 : 1 < a i n : ℕ npos : 0 < n j : ℕ ij : i < j + 1 j2n : j + 1 ≤ 2 * n jnn : j + 1 ≠ n ntriv : ¬(a = 2 ∧ n = 1 ∧ i = 0 ∧ j + 1 = 2) k : ℕ kn : k > n k2n : k ≤ 2 * n k2nl : 2 * n - k < n := lt_of_add_lt_add_right (let_fun this := Eq.mpr (id (congrArg (fun _a => _a < n + k) (tsub_add_cancel_of_le k2n))) (Eq.mpr (id (congrArg (fun _a => _a < n + k) (two_mul n))) (add_lt_add_left kn n)); this) xle : xn a1 (2 * n - k) ≤ xn a1 n ⊢ xn a1 k % xn a1 n = (xn a1 n - xn a1 (2 * n - k)) % xn a1 n
edca849e1f1b9de3
Subsemigroup.subsingleton_of_subsingleton
Mathlib/Algebra/Group/Subsemigroup/Defs.lean
theorem subsingleton_of_subsingleton [Subsingleton (Subsemigroup M)] : Subsingleton M
M : Type u_1 inst✝¹ : Mul M inst✝ : Subsingleton (Subsemigroup M) ⊢ Subsingleton M
constructor
case allEq M : Type u_1 inst✝¹ : Mul M inst✝ : Subsingleton (Subsemigroup M) ⊢ ∀ (a b : M), a = b
5e9123dac9d862c0
Nat.find_eq_iff
Mathlib/Data/Nat/Find.lean
lemma find_eq_iff (h : ∃ n : ℕ, p n) : Nat.find h = m ↔ p m ∧ ∀ n < m, ¬ p n
case mp m : ℕ p : ℕ → Prop inst✝ : DecidablePred p h : ∃ n, p n ⊢ Nat.find h = m → p m ∧ ∀ (n : ℕ), n < m → ¬p n
rintro rfl
case mp p : ℕ → Prop inst✝ : DecidablePred p h : ∃ n, p n ⊢ p (Nat.find h) ∧ ∀ (n : ℕ), n < Nat.find h → ¬p n
6e953eafe0710e9e
AkraBazziRecurrence.base_nonempty
Mathlib/Computability/AkraBazzi/AkraBazzi.lean
lemma base_nonempty {n : ℕ} (hn : 0 < n) : (Finset.Ico (⌊b (min_bi b) / 2 * n⌋₊) n).Nonempty
α : Type u_1 inst✝¹ : Fintype α T : ℕ → ℝ g : ℝ → ℝ a b : α → ℝ r : α → ℕ → ℕ inst✝ : Nonempty α R : AkraBazziRecurrence T g a b r n : ℕ hn : 0 < n b' : ℝ := b (min_bi b) hb_pos : 0 < b' ⊢ ⌊b (min_bi b) / 2 * ↑n⌋₊ < n
exact_mod_cast calc ⌊b' / 2 * n⌋₊ ≤ b' / 2 * n := by exact Nat.floor_le (by positivity) _ < 1 / 2 * n := by gcongr; exact R.b_lt_one (min_bi b) _ ≤ 1 * n := by gcongr; norm_num _ = n := by simp
no goals
7e3cff39f102cb90
Set.PairwiseDisjoint.prod_left
Mathlib/Data/Set/Pairwise/Lattice.lean
theorem PairwiseDisjoint.prod_left {f : ι × ι' → α} (hs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i')) (ht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i')) : (s ×ˢ t : Set (ι × ι')).PairwiseDisjoint f
case mk.mk.inl α : Type u_1 ι : Type u_2 ι' : Type u_3 inst✝ : CompleteLattice α s : Set ι t : Set ι' f : ι × ι' → α hs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i') ht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i') i : ι i' : ι' hi : (i, i').1 ∈ s ∧ (i, i').2 ∈ t j' : ι' hj : (i, j').1 ∈ s ∧ (i, j').2 ∈ t h : (i, i') ≠ (i, j') ⊢ (Disjoint on f) (i, i') (i, j')
refine (ht hi.2 hj.2 <| (Prod.mk.inj_left _).ne_iff.1 h).mono ?_ ?_
case mk.mk.inl.refine_1 α : Type u_1 ι : Type u_2 ι' : Type u_3 inst✝ : CompleteLattice α s : Set ι t : Set ι' f : ι × ι' → α hs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i') ht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i') i : ι i' : ι' hi : (i, i').1 ∈ s ∧ (i, i').2 ∈ t j' : ι' hj : (i, j').1 ∈ s ∧ (i, j').2 ∈ t h : (i, i') ≠ (i, j') ⊢ f (i, i') ≤ (fun i' => ⨆ i ∈ s, f (i, i')) (i, i').2 case mk.mk.inl.refine_2 α : Type u_1 ι : Type u_2 ι' : Type u_3 inst✝ : CompleteLattice α s : Set ι t : Set ι' f : ι × ι' → α hs : s.PairwiseDisjoint fun i => ⨆ i' ∈ t, f (i, i') ht : t.PairwiseDisjoint fun i' => ⨆ i ∈ s, f (i, i') i : ι i' : ι' hi : (i, i').1 ∈ s ∧ (i, i').2 ∈ t j' : ι' hj : (i, j').1 ∈ s ∧ (i, j').2 ∈ t h : (i, i') ≠ (i, j') ⊢ f (i, j') ≤ (fun i' => ⨆ i ∈ s, f (i, i')) (i, j').2
34740219f815d1c5
CategoryTheory.IsPushout.isVanKampen_iff
Mathlib/CategoryTheory/Adhesive.lean
theorem IsPushout.isVanKampen_iff (H : IsPushout f g h i) : H.IsVanKampen ↔ IsVanKampenColimit (PushoutCocone.mk h i H.w)
case mpr C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : IsVanKampenColimit (PushoutCocone.mk h i ⋯) W' X' Y' Z' : C f' : W' ⟶ X' g' : W' ⟶ Y' h' : X' ⟶ Z' i' : Y' ⟶ Z' αW : W' ⟶ W αX : X' ⟶ X αY : Y' ⟶ Y αZ : Z' ⟶ Z hf : IsPullback f' αW αX f hg : IsPullback g' αW αY g hh : CommSq h' αX αZ h hi : CommSq i' αY αZ i w : CommSq f' g' h' i' ⊢ IsPushout f' g' h' i' ↔ IsPullback h' αX αZ h ∧ IsPullback i' αY αZ i
refine Iff.trans ?_ ((H w.cocone ⟨by rintro (_ | _ | _); exacts [αW, αX, αY], ?_⟩ αZ ?_ ?_).trans ?_)
case mpr.refine_1 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : IsVanKampenColimit (PushoutCocone.mk h i ⋯) W' X' Y' Z' : C f' : W' ⟶ X' g' : W' ⟶ Y' h' : X' ⟶ Z' i' : Y' ⟶ Z' αW : W' ⟶ W αX : X' ⟶ X αY : Y' ⟶ Y αZ : Z' ⟶ Z hf : IsPullback f' αW αX f hg : IsPullback g' αW αY g hh : CommSq h' αX αZ h hi : CommSq i' αY αZ i w : CommSq f' g' h' i' ⊢ IsPushout f' g' h' i' ↔ Nonempty (IsColimit w.cocone) case mpr.refine_2 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : IsVanKampenColimit (PushoutCocone.mk h i ⋯) W' X' Y' Z' : C f' : W' ⟶ X' g' : W' ⟶ Y' h' : X' ⟶ Z' i' : Y' ⟶ Z' αW : W' ⟶ W αX : X' ⟶ X αY : Y' ⟶ Y αZ : Z' ⟶ Z hf : IsPullback f' αW αX f hg : IsPullback g' αW αY g hh : CommSq h' αX αZ h hi : CommSq i' αY αZ i w : CommSq f' g' h' i' ⊢ ∀ ⦃X_1 Y_1 : WalkingSpan⦄ (f_1 : X_1 ⟶ Y_1), ((span f' g').map f_1 ≫ Option.casesOn Y_1 αW fun val => WalkingPair.casesOn val αX αY) = (Option.casesOn X_1 αW fun val => WalkingPair.casesOn val αX αY) ≫ (span f g).map f_1 case mpr.refine_3 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : IsVanKampenColimit (PushoutCocone.mk h i ⋯) W' X' Y' Z' : C f' : W' ⟶ X' g' : W' ⟶ Y' h' : X' ⟶ Z' i' : Y' ⟶ Z' αW : W' ⟶ W αX : X' ⟶ X αY : Y' ⟶ Y αZ : Z' ⟶ Z hf : IsPullback f' αW αX f hg : IsPullback g' αW αY g hh : CommSq h' αX αZ h hi : CommSq i' αY αZ i w : CommSq f' g' h' i' ⊢ { app := fun X_1 => Option.casesOn X_1 αW fun val => WalkingPair.casesOn val αX αY, naturality := ?mpr.refine_2 } ≫ (PushoutCocone.mk h i ⋯).ι = w.cocone.ι ≫ (Functor.const WalkingSpan).map αZ case mpr.refine_4 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : IsVanKampenColimit (PushoutCocone.mk h i ⋯) W' X' Y' Z' : C f' : W' ⟶ X' g' : W' ⟶ Y' h' : X' ⟶ Z' i' : Y' ⟶ Z' αW : W' ⟶ W αX : X' ⟶ X αY : Y' ⟶ Y αZ : Z' ⟶ Z hf : IsPullback f' αW αX f hg : IsPullback g' αW αY g hh : CommSq h' αX αZ h hi : CommSq i' αY αZ i w : CommSq f' g' h' i' ⊢ NatTrans.Equifibered { app := fun X_1 => Option.casesOn X_1 αW fun val => WalkingPair.casesOn val αX αY, naturality := ?mpr.refine_2 } case mpr.refine_5 C : Type u inst✝ : Category.{v, u} C W X Y Z : C f : W ⟶ X g : W ⟶ Y h : X ⟶ Z i : Y ⟶ Z H✝ : IsPushout f g h i H : IsVanKampenColimit (PushoutCocone.mk h i ⋯) W' X' Y' Z' : C f' : W' ⟶ X' g' : W' ⟶ Y' h' : X' ⟶ Z' i' : Y' ⟶ Z' αW : W' ⟶ W αX : X' ⟶ X αY : Y' ⟶ Y αZ : Z' ⟶ Z hf : IsPullback f' αW αX f hg : IsPullback g' αW αY g hh : CommSq h' αX αZ h hi : CommSq i' αY αZ i w : CommSq f' g' h' i' ⊢ (∀ (j : WalkingSpan), IsPullback (w.cocone.ι.app j) ({ app := fun X_1 => Option.casesOn X_1 αW fun val => WalkingPair.casesOn val αX αY, naturality := ?mpr.refine_2 }.app j) αZ ((PushoutCocone.mk h i ⋯).ι.app j)) ↔ IsPullback h' αX αZ h ∧ IsPullback i' αY αZ i
03b3318bb2e454c2
CategoryTheory.Pretriangulated.isIso₂_of_isIso₁₃
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
lemma isIso₂_of_isIso₁₃ {T T' : Triangle C} (φ : T ⟶ T') (hT : T ∈ distTriang C) (hT' : T' ∈ distTriang C) (h₁ : IsIso φ.hom₁) (h₃ : IsIso φ.hom₃) : IsIso φ.hom₂
C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T T' : Triangle C φ : T ⟶ T' hT : T ∈ distinguishedTriangles hT' : T' ∈ distinguishedTriangles h₁ : IsIso φ.hom₁ h₃ : IsIso φ.hom₃ this : Mono φ.hom₂ ⊢ IsIso φ.hom₂
refine isIso_of_yoneda_map_bijective _ (fun A => ⟨?_, ?_⟩)
case refine_1 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T T' : Triangle C φ : T ⟶ T' hT : T ∈ distinguishedTriangles hT' : T' ∈ distinguishedTriangles h₁ : IsIso φ.hom₁ h₃ : IsIso φ.hom₃ this : Mono φ.hom₂ A : C ⊢ Function.Injective fun x => x ≫ φ.hom₂ case refine_2 C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : Preadditive C inst✝ : ∀ (n : ℤ), (shiftFunctor C n).Additive hC : Pretriangulated C T T' : Triangle C φ : T ⟶ T' hT : T ∈ distinguishedTriangles hT' : T' ∈ distinguishedTriangles h₁ : IsIso φ.hom₁ h₃ : IsIso φ.hom₃ this : Mono φ.hom₂ A : C ⊢ Function.Surjective fun x => x ≫ φ.hom₂
8a538ff25cabfee4
MeasureTheory.eq_of_cylinder_eq_of_subset
Mathlib/MeasureTheory/Constructions/Cylinders.lean
theorem eq_of_cylinder_eq_of_subset [h_nonempty : Nonempty (∀ i, α i)] {I J : Finset ι} {S : Set (∀ i : I, α i)} {T : Set (∀ i : J, α i)} (h_eq : cylinder I S = cylinder J T) (hJI : J ⊆ I) : S = Finset.restrict₂ hJI ⁻¹' T
ι : Type u_1 α : ι → Type u_2 h_nonempty : Nonempty ((i : ι) → α i) I J : Finset ι S : Set ((i : { x // x ∈ I }) → α ↑i) T : Set ((i : { x // x ∈ J }) → α ↑i) h_eq : cylinder I S = cylinder J T hJI : J ⊆ I ⊢ S = Finset.restrict₂ hJI ⁻¹' T
rw [Set.ext_iff] at h_eq
ι : Type u_1 α : ι → Type u_2 h_nonempty : Nonempty ((i : ι) → α i) I J : Finset ι S : Set ((i : { x // x ∈ I }) → α ↑i) T : Set ((i : { x // x ∈ J }) → α ↑i) h_eq : ∀ (x : (i : ι) → α i), x ∈ cylinder I S ↔ x ∈ cylinder J T hJI : J ⊆ I ⊢ S = Finset.restrict₂ hJI ⁻¹' T
9294e60eab06ec06
Nat.add_le_of_le_sub
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean
theorem add_le_of_le_sub {a b c : Nat} (hle : b ≤ c) (h : a ≤ c - b) : a + b ≤ c
a b c : Nat hle : b ≤ c h : a ≤ c - b d : Nat hd : a + d = c - b ⊢ a + b + d = a + d + b
simp [Nat.add_comm, Nat.add_assoc, Nat.add_left_comm]
no goals
fa9a281b60141183
mellin_hasDerivAt_of_isBigO_rpow
Mathlib/Analysis/MellinTransform.lean
theorem mellin_hasDerivAt_of_isBigO_rpow [NormedSpace ℂ E] {a b : ℝ} {f : ℝ → E} {s : ℂ} (hfc : LocallyIntegrableOn f (Ioi 0)) (hf_top : f =O[atTop] (· ^ (-a))) (hs_top : s.re < a) (hf_bot : f =O[𝓝[>] 0] (· ^ (-b))) (hs_bot : b < s.re) : MellinConvergent (fun t => log t • f t) s ∧ HasDerivAt (mellin f) (mellin (fun t => log t • f t) s) s
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) volume hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) volume ⊢ AEStronglyMeasurable (F' s) (volume.restrict (Ioi 0))
apply LocallyIntegrableOn.aestronglyMeasurable
case hf E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b : ℝ f : ℝ → E s : ℂ hfc : LocallyIntegrableOn f (Ioi 0) volume hf_top : f =O[atTop] fun x => x ^ (-a) hs_top : s.re < a hf_bot : f =O[𝓝[>] 0] fun x => x ^ (-b) hs_bot : b < s.re F : ℂ → ℝ → E := fun z t => ↑t ^ (z - 1) • f t F' : ℂ → ℝ → E := fun z t => (↑t ^ (z - 1) * ↑(log t)) • f t v : ℝ hv0 : 0 < v hv1 : v < s.re - b hv2 : v < a - s.re bound : ℝ → ℝ := fun t => (t ^ (s.re + v - 1) + t ^ (s.re - v - 1)) * |log t| * ‖f t‖ h1 : ∀ᶠ (z : ℂ) in 𝓝 s, AEStronglyMeasurable (F z) (volume.restrict (Ioi 0)) h2 : IntegrableOn (F s) (Ioi 0) volume ⊢ LocallyIntegrableOn (F' s) (Ioi 0) volume
3ad5d9a87042b6f9
Nat.image_div_divisors_eq_divisors
Mathlib/NumberTheory/Divisors.lean
theorem image_div_divisors_eq_divisors (n : ℕ) : image (fun x : ℕ => n / x) n.divisors = n.divisors
case pos n : ℕ hn : n = 0 ⊢ image (fun x => n / x) n.divisors = n.divisors
simp [hn]
no goals
fa9501818042115c
PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux
Mathlib/RingTheory/Spectrum/Prime/TensorProduct.lean
lemma PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux (p₁ p₂ : PrimeSpectrum (S ⊗[R] T)) (h : tensorProductTo R S T p₁ = tensorProductTo R S T p₂) : p₁ ≤ p₂
case intro.intro.intro.intro R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : CommRing T inst✝ : Algebra R T hRT : (algebraMap R T).SurjectiveOnStalks p₁ p₂ : PrimeSpectrum (S ⊗[R] T) h : tensorProductTo R S T p₁ = tensorProductTo R S T p₂ g : T →+* S ⊗[R] T := Algebra.TensorProduct.includeRight.toRingHom x : S ⊗[R] T hxp₁ : x ∈ p₁.asIdeal hxp₂ : x ∉ p₂.asIdeal t : T r : R a : S ht : r • t ∉ Ideal.comap g p₂.asIdeal e : 1 ⊗ₜ[R] (r • t) * x = a ⊗ₜ[R] t ⊢ False
have h₁ : a ⊗ₜ[R] t ∈ p₁.asIdeal := e ▸ p₁.asIdeal.mul_mem_left (1 ⊗ₜ[R] (r • t)) hxp₁
case intro.intro.intro.intro R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁴ : CommRing R inst✝³ : CommRing S inst✝² : Algebra R S inst✝¹ : CommRing T inst✝ : Algebra R T hRT : (algebraMap R T).SurjectiveOnStalks p₁ p₂ : PrimeSpectrum (S ⊗[R] T) h : tensorProductTo R S T p₁ = tensorProductTo R S T p₂ g : T →+* S ⊗[R] T := Algebra.TensorProduct.includeRight.toRingHom x : S ⊗[R] T hxp₁ : x ∈ p₁.asIdeal hxp₂ : x ∉ p₂.asIdeal t : T r : R a : S ht : r • t ∉ Ideal.comap g p₂.asIdeal e : 1 ⊗ₜ[R] (r • t) * x = a ⊗ₜ[R] t h₁ : a ⊗ₜ[R] t ∈ p₁.asIdeal ⊢ False
c5c66534088770bc
Polynomial.natDegree_le_iff_coeff_eq_zero
Mathlib/Algebra/Polynomial/Degree/Lemmas.lean
theorem natDegree_le_iff_coeff_eq_zero : p.natDegree ≤ n ↔ ∀ N : ℕ, n < N → p.coeff N = 0
R : Type u n : ℕ inst✝ : Semiring R p : R[X] ⊢ p.natDegree ≤ n ↔ ∀ (N : ℕ), n < N → p.coeff N = 0
simp_rw [natDegree_le_iff_degree_le, degree_le_iff_coeff_zero, Nat.cast_lt]
no goals
887aff04220cb0c4
Submonoid.list_prod_mem
Mathlib/Algebra/Group/Submonoid/BigOperators.lean
theorem list_prod_mem {l : List M} (hl : ∀ x ∈ l, x ∈ s) : l.prod ∈ s
case intro M : Type u_1 inst✝ : Monoid M s : Submonoid M l : List ↥s ⊢ (List.map Subtype.val l).prod ∈ s
rw [← coe_list_prod]
case intro M : Type u_1 inst✝ : Monoid M s : Submonoid M l : List ↥s ⊢ ↑l.prod ∈ s
664da354914202d6
IsSigmaCompact.of_isClosed_subset
Mathlib/Topology/Compactness/SigmaCompact.lean
/-- A closed subset of a σ-compact set is σ-compact. -/ lemma IsSigmaCompact.of_isClosed_subset {s t : Set X} (ht : IsSigmaCompact t) (hs : IsClosed s) (h : s ⊆ t) : IsSigmaCompact s
case intro.intro X : Type u_1 inst✝ : TopologicalSpace X s t : Set X hs : IsClosed s h : s ⊆ t K : ℕ → Set X hcompact : ∀ (n : ℕ), IsCompact (K n) hcov : ⋃ n, K n = t ⊢ IsSigmaCompact s
refine ⟨(fun n ↦ s ∩ (K n)), fun n ↦ (hcompact n).inter_left hs, ?_⟩
case intro.intro X : Type u_1 inst✝ : TopologicalSpace X s t : Set X hs : IsClosed s h : s ⊆ t K : ℕ → Set X hcompact : ∀ (n : ℕ), IsCompact (K n) hcov : ⋃ n, K n = t ⊢ ⋃ n, (fun n => s ∩ K n) n = s
a76d73e383c2e9e0
SimpleGraph.IsAlternating.sup_edge
Mathlib/Combinatorics/SimpleGraph/Matching.lean
lemma IsAlternating.sup_edge {u x : V} (halt : G.IsAlternating G') (hnadj : ¬G'.Adj u x) (hu' : ∀ u', u' ≠ u → G.Adj x u' → G'.Adj x u') (hx' : ∀ x', x' ≠ x → G.Adj x' u → G'.Adj x' u) : (G ⊔ edge u x).IsAlternating G'
case neg.inr.inl.inr.intro V : Type u_1 G G' : SimpleGraph V u x : V halt : G.IsAlternating G' hnadj : ¬G'.Adj u x hu' : ∀ (u' : V), u' ≠ u → G.Adj x u' → G'.Adj x u' hx' : ∀ (x' : V), x' ≠ x → G.Adj x' u → G'.Adj x' u hadj : ¬G.Adj u x v w w' : V hww' : w ≠ w' hr : (v = u ∧ w = x ∨ v = x ∧ w = u) ∧ v ≠ w h1 : G.Adj v w' hrr1 : v = x hrr2 : w = u ⊢ G'.Adj v w'
aesop
no goals
a496c1ce5d983672
Polynomial.coeff_bdd_of_roots_le
Mathlib/Topology/Algebra/Polynomial.lean
theorem coeff_bdd_of_roots_le {B : ℝ} {d : ℕ} (f : F →+* K) {p : F[X]} (h1 : p.Monic) (h2 : Splits f p) (h3 : p.natDegree ≤ d) (h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B) (i : ℕ) : ‖(map f p).coeff i‖ ≤ max B 1 ^ d * d.choose (d / 2)
F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : p.Monic h2 : Splits f p h3 : p.natDegree ≤ d h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B i : ℕ ⊢ ‖(map f p).coeff i‖ ≤ (B ⊔ 1) ^ d * ↑(d.choose (d / 2))
obtain hB | hB := le_or_lt 0 B
case inl F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : p.Monic h2 : Splits f p h3 : p.natDegree ≤ d h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ ‖(map f p).coeff i‖ ≤ (B ⊔ 1) ^ d * ↑(d.choose (d / 2)) case inr F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : p.Monic h2 : Splits f p h3 : p.natDegree ≤ d h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B i : ℕ hB : B < 0 ⊢ ‖(map f p).coeff i‖ ≤ (B ⊔ 1) ^ d * ↑(d.choose (d / 2))
49af0bf207486cbc
Batteries.RBNode.reverse_balance2
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/WF.lean
theorem reverse_balance2 (l : RBNode α) (v : α) (r : RBNode α) : (balance2 l v r).reverse = balance1 r.reverse v l.reverse
α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ (l.balance2 v r).reverse = (r.reverse.balance1 v l.reverse).reverse.reverse
rw [reverse_balance1]
α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ (l.balance2 v r).reverse = (l.reverse.reverse.balance2 v r.reverse.reverse).reverse
6b5fe920356d4835
Nat.divisors_filter_squarefree
Mathlib/Data/Nat/Squarefree.lean
theorem divisors_filter_squarefree {n : ℕ} (h0 : n ≠ 0) : {d ∈ n.divisors | Squarefree d}.val = (UniqueFactorizationMonoid.normalizedFactors n).toFinset.powerset.val.map fun x => x.val.prod
case mpr.intro.intro n : ℕ h0 : n ≠ 0 s : Finset ℕ hs : s.val ≤ (normalizedFactors n).dedup hs0 : s.val.prod ≠ 0 ⊢ Squarefree s.val.prod
have h := UniqueFactorizationMonoid.factors_unique irreducible_of_normalized_factor (fun x hx => irreducible_of_normalized_factor x (Multiset.mem_of_le (le_trans hs (Multiset.dedup_le _)) hx)) (prod_normalizedFactors hs0)
case mpr.intro.intro n : ℕ h0 : n ≠ 0 s : Finset ℕ hs : s.val ≤ (normalizedFactors n).dedup hs0 : s.val.prod ≠ 0 h : Multiset.Rel Associated (normalizedFactors s.val.prod) s.val ⊢ Squarefree s.val.prod
4b75722f8636dcf2
CliffordAlgebra.toBaseChange_reverse
Mathlib/LinearAlgebra/CliffordAlgebra/BaseChange.lean
theorem toBaseChange_reverse (Q : QuadraticForm R V) (x : CliffordAlgebra (Q.baseChange A)) : toBaseChange A Q (reverse x) = TensorProduct.map LinearMap.id reverse (toBaseChange A Q x)
R : Type u_1 A : Type u_2 V : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : AddCommGroup V inst✝² : Algebra R A inst✝¹ : Module R V inst✝ : Invertible 2 Q : QuadraticForm R V x : CliffordAlgebra (QuadraticForm.baseChange A Q) ⊢ (toBaseChange A Q) (reverse x) = (TensorProduct.map LinearMap.id reverse) ((toBaseChange A Q) x)
have := DFunLike.congr_fun (toBaseChange_comp_reverseOp A Q) x
R : Type u_1 A : Type u_2 V : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : AddCommGroup V inst✝² : Algebra R A inst✝¹ : Module R V inst✝ : Invertible 2 Q : QuadraticForm R V x : CliffordAlgebra (QuadraticForm.baseChange A Q) this : ((AlgHom.op (toBaseChange A Q)).comp reverseOp) x = ((↑(Algebra.TensorProduct.opAlgEquiv R A A (CliffordAlgebra Q))).comp ((Algebra.TensorProduct.map (↑(AlgEquiv.toOpposite A A)) reverseOp).comp (toBaseChange A Q))) x ⊢ (toBaseChange A Q) (reverse x) = (TensorProduct.map LinearMap.id reverse) ((toBaseChange A Q) x)
1b433c5423f6e345
padicValInt.eq_zero_of_not_dvd
Mathlib/NumberTheory/Padics/PadicVal/Basic.lean
theorem eq_zero_of_not_dvd {z : ℤ} (h : ¬(p : ℤ) ∣ z) : padicValInt p z = 0
case h.h p : ℕ z : ℤ h : ¬↑p ∣ z ⊢ ¬p ∣ z.natAbs
rwa [← Int.ofNat_dvd_left]
no goals
0c11c070559ea23d
Vector.exists_mem_push
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem exists_mem_push {p : α → Prop} {a : α} {xs : Vector α n} : (∃ x, ∃ _ : x ∈ xs.push a, p x) ↔ p a ∨ ∃ x, ∃ _ : x ∈ xs, p x
case mp.intro.intro.inl α : Type u_1 n : Nat p : α → Prop a : α xs : Vector α n x : α h' : p x h : x ∈ xs ⊢ p a ∨ ∃ x, x ∈ xs ∧ p x
exact .inr ⟨x, h, h'⟩
no goals
110c8ee2b5790ab6
AffineIndependent.range
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
theorem AffineIndependent.range {p : ι → P} (ha : AffineIndependent k p) : AffineIndependent k (fun x => x : Set.range p → P)
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose ⋯ hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x ⊢ AffineIndependent k fun x => ↑x
let fe : Set.range p ↪ ι := ⟨f, fun x₁ x₂ he => Subtype.ext (hf x₁ ▸ hf x₂ ▸ he ▸ rfl)⟩
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p : ι → P ha : AffineIndependent k p f : ↑(Set.range p) → ι := fun x => Exists.choose ⋯ hf : ∀ (x : ↑(Set.range p)), p (f x) = ↑x fe : ↑(Set.range p) ↪ ι := { toFun := f, inj' := ⋯ } ⊢ AffineIndependent k fun x => ↑x
74e562254d94f0aa
Ideal.natAbs_det_equiv
Mathlib/RingTheory/Ideal/Norm/AbsNorm.lean
theorem natAbs_det_equiv (I : Ideal S) {E : Type*} [EquivLike E S I] [AddEquivClass E S I] (e : E) : Int.natAbs (LinearMap.det ((Submodule.subtype I).restrictScalars ℤ ∘ₗ AddMonoidHom.toIntLinearMap (e : S →+ I))) = Ideal.absNorm I
case pos S : Type u_1 inst✝⁶ : CommRing S inst✝⁵ : Nontrivial S inst✝⁴ : IsDedekindDomain S inst✝³ : Module.Free ℤ S inst✝² : Module.Finite ℤ S E : Type u_2 e : E inst✝¹ : EquivLike E S ↥⊥ inst✝ : AddEquivClass E S ↥⊥ ⊢ (LinearMap.det (↑ℤ (Submodule.subtype ⊥) ∘ₗ (↑e).toIntLinearMap)).natAbs = absNorm ⊥
have : (1 : S) ≠ 0 := one_ne_zero
case pos S : Type u_1 inst✝⁶ : CommRing S inst✝⁵ : Nontrivial S inst✝⁴ : IsDedekindDomain S inst✝³ : Module.Free ℤ S inst✝² : Module.Finite ℤ S E : Type u_2 e : E inst✝¹ : EquivLike E S ↥⊥ inst✝ : AddEquivClass E S ↥⊥ this : 1 ≠ 0 ⊢ (LinearMap.det (↑ℤ (Submodule.subtype ⊥) ∘ₗ (↑e).toIntLinearMap)).natAbs = absNorm ⊥
87e25ff10e007725
Polynomial.natDegree_expand
Mathlib/Algebra/Polynomial/Expand.lean
theorem natDegree_expand (p : ℕ) (f : R[X]) : (expand R p f).natDegree = f.natDegree * p
case neg.refine_2 R : Type u inst✝ : CommSemiring R p : ℕ f : R[X] hp : p > 0 hf : ¬f = 0 hf1 : (expand R p) f ≠ 0 ⊢ f.leadingCoeff ≠ 0
exact mt leadingCoeff_eq_zero.1 hf
no goals
eb7f41a4dec073d7
WittVector.ghostComponent_verschiebungFun
Mathlib/RingTheory/WittVector/Verschiebung.lean
theorem ghostComponent_verschiebungFun [hp : Fact p.Prime] (x : 𝕎 R) (n : ℕ) : ghostComponent (n + 1) (verschiebungFun x) = p * ghostComponent n x
p : ℕ R : Type u_1 inst✝ : CommRing R hp : Fact (Nat.Prime p) x : 𝕎 R n : ℕ ⊢ ∀ x_1 ∈ Finset.range (n + 1), ↑p ^ (x_1 + 1) * x.verschiebungFun.coeff (x_1 + 1) ^ p ^ (n + 1 - (x_1 + 1)) = ↑p * (↑p ^ x_1 * x.coeff x_1 ^ p ^ (n - x_1))
rintro i -
p : ℕ R : Type u_1 inst✝ : CommRing R hp : Fact (Nat.Prime p) x : 𝕎 R n i : ℕ ⊢ ↑p ^ (i + 1) * x.verschiebungFun.coeff (i + 1) ^ p ^ (n + 1 - (i + 1)) = ↑p * (↑p ^ i * x.coeff i ^ p ^ (n - i))
ff1de095d2b9c02e
Bimod.triangle_bimod
Mathlib/CategoryTheory/Monoidal/Bimod.lean
theorem triangle_bimod {X Y Z : Mon_ C} (M : Bimod X Y) (N : Bimod Y Z) : (associatorBimod M (regular Y) N).hom ≫ whiskerLeft M (leftUnitorBimod N).hom = whiskerRight (rightUnitorBimod M).hom N
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) X Y Z : Mon_ C M : Bimod X Y N : Bimod Y Z ⊢ (α_ M.X Y.X N.X).hom ≫ M.X ◁ coequalizer.π (Y.mul ▷ N.X) ((α_ Y.X Y.X N.X).hom ≫ Y.X ◁ N.actLeft) ≫ M.X ◁ coequalizer.desc N.actLeft ⋯ ≫ colimit.ι (parallelPair (M.actRight ▷ N.X) ((α_ M.X Y.X N.X).hom ≫ M.X ◁ N.actLeft)) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ Y.X) ((α_ M.X Y.X Y.X).hom ≫ M.X ◁ Y.mul) ▷ N.X ≫ coequalizer.desc M.actRight ⋯ ▷ N.X ≫ colimit.ι (parallelPair (M.actRight ▷ N.X) ((α_ M.X Y.X N.X).hom ≫ M.X ◁ N.actLeft)) WalkingParallelPair.one
slice_lhs 2 3 => rw [← MonoidalCategory.whiskerLeft_comp, coequalizer.π_desc]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C inst✝² : HasCoequalizers C inst✝¹ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : ∀ (X : C), PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) X Y Z : Mon_ C M : Bimod X Y N : Bimod Y Z ⊢ (α_ M.X Y.X N.X).hom ≫ M.X ◁ N.actLeft ≫ colimit.ι (parallelPair (M.actRight ▷ N.X) ((α_ M.X Y.X N.X).hom ≫ M.X ◁ N.actLeft)) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ Y.X) ((α_ M.X Y.X Y.X).hom ≫ M.X ◁ Y.mul) ▷ N.X ≫ coequalizer.desc M.actRight ⋯ ▷ N.X ≫ colimit.ι (parallelPair (M.actRight ▷ N.X) ((α_ M.X Y.X N.X).hom ≫ M.X ◁ N.actLeft)) WalkingParallelPair.one
4bcafaa16ddbb859
Orientation.oangle_sub_right_eq_arctan_of_oangle_eq_pi_div_two
Mathlib/Geometry/Euclidean/Angle/Oriented/RightAngle.lean
theorem oangle_sub_right_eq_arctan_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle y (y - x) = Real.arctan (‖x‖ / ‖y‖)
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℝ V hd2 : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V h : o.oangle x y = ↑(π / 2) hs : (o.oangle y (y - x)).sign = 1 ⊢ o.oangle y (y - x) = ↑(Real.arctan (‖x‖ / ‖y‖))
rw [o.oangle_eq_angle_of_sign_eq_one hs, InnerProductGeometry.angle_sub_eq_arctan_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (o.right_ne_zero_of_oangle_eq_pi_div_two h)]
no goals
f59a4087960daa85
MeasureTheory.VectorMeasure.restrict_le_restrict_iUnion
Mathlib/MeasureTheory/VectorMeasure/Basic.lean
theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, MeasurableSet (f n)) (hf₂ : ∀ n, v ≤[f n] w) : v ≤[⋃ n, f n] w
case refine_1 α : Type u_1 m : MeasurableSpace α M : Type u_3 inst✝² : TopologicalSpace M inst✝¹ : OrderedAddCommMonoid M inst✝ : OrderClosedTopology M v w : VectorMeasure α M f : ℕ → Set α hf₁ : ∀ (n : ℕ), MeasurableSet (f n) hf₂ : ∀ (n : ℕ), v ≤[f n] w a : Set α ha₁ : MeasurableSet a ha₂ : a ⊆ ⋃ n, f n ha₃ : ⋃ n, a ∩ disjointed f n = a ha₄ : Pairwise (Disjoint on fun n => a ∩ disjointed f n) n : ℕ ⊢ MeasurableSet (a ∩ disjointed f n)
exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
no goals
2f1f18500f546fa0
CategoryTheory.LocalizerMorphism.IsLocalizedEquivalence.of_equivalence
Mathlib/CategoryTheory/Localization/LocalizerMorphism.lean
/-- When the underlying functor `Φ.functor` of `Φ : LocalizerMorphism W₁ W₂` is an equivalence of categories and that `W₁` and `W₂` essentially correspond to each other via this equivalence, then `Φ` is a localized equivalence. -/ lemma IsLocalizedEquivalence.of_equivalence [Φ.functor.IsEquivalence] (h : W₂ ≤ W₁.map Φ.functor) : IsLocalizedEquivalence Φ
C₁ : Type u₁ C₂ : Type u₂ inst✝² : Category.{v₁, u₁} C₁ inst✝¹ : Category.{v₂, u₂} C₂ W₁ : MorphismProperty C₁ W₂ : MorphismProperty C₂ Φ : LocalizerMorphism W₁ W₂ inst✝ : Φ.functor.IsEquivalence h : W₂ ≤ W₁.map Φ.functor ⊢ (Φ.functor ⋙ W₂.Q).IsLocalization W₁
refine Functor.IsLocalization.of_equivalence_source W₂.Q W₂ (Φ.functor ⋙ W₂.Q) W₁ (Functor.asEquivalence Φ.functor).symm ?_ (Φ.inverts W₂.Q) ((Functor.associator _ _ _).symm ≪≫ isoWhiskerRight ((Equivalence.unitIso _).symm) _ ≪≫ Functor.leftUnitor _)
C₁ : Type u₁ C₂ : Type u₂ inst✝² : Category.{v₁, u₁} C₁ inst✝¹ : Category.{v₂, u₂} C₂ W₁ : MorphismProperty C₁ W₂ : MorphismProperty C₂ Φ : LocalizerMorphism W₁ W₂ inst✝ : Φ.functor.IsEquivalence h : W₂ ≤ W₁.map Φ.functor ⊢ W₂ ≤ W₁.isoClosure.inverseImage Φ.functor.asEquivalence.symm.functor
40b2369000dc33ca
MeasureTheory.integral_tendsto_of_tendsto_of_monotone
Mathlib/MeasureTheory/Integral/Bochner.lean
/-- Monotone convergence theorem for real-valued functions and Bochner integrals -/ lemma integral_tendsto_of_tendsto_of_monotone {μ : Measure α} {f : ℕ → α → ℝ} {F : α → ℝ} (hf : ∀ n, Integrable (f n) μ) (hF : Integrable F μ) (h_mono : ∀ᵐ x ∂μ, Monotone fun n ↦ f n x) (h_tendsto : ∀ᵐ x ∂μ, Tendsto (fun n ↦ f n x) atTop (𝓝 (F x))) : Tendsto (fun n ↦ ∫ x, f n x ∂μ) atTop (𝓝 (∫ x, F x ∂μ))
case refine_2 α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ F : α → ℝ hf : ∀ (n : ℕ), Integrable (f n) μ hF : Integrable F μ h_mono : ∀ᵐ (x : α) ∂μ, Monotone fun n => f n x h_tendsto : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (F x)) f' : ℕ → α → ℝ := fun n x => f n x - f 0 x hf'_nonneg : ∀ (i : ℕ), ∀ᵐ (a : α) ∂μ, 0 ≤ f' i a hf'_meas : ∀ (n : ℕ), Integrable (f' n) μ hF_ge : 0 ≤ᶠ[ae μ] fun x => (F - f 0) x h_cont : ContinuousAt ENNReal.toReal (∫⁻ (a : α), ENNReal.ofReal ((F - f 0) a) ∂μ) ⊢ Tendsto (fun n => (∫⁻ (a : α), ENNReal.ofReal (f' n a) ∂μ).toReal) atTop (𝓝 (∫⁻ (a : α), ENNReal.ofReal ((F - f 0) a) ∂μ).toReal)
refine h_cont.tendsto.comp ?_
case refine_2 α : Type u_1 m : MeasurableSpace α μ : Measure α f : ℕ → α → ℝ F : α → ℝ hf : ∀ (n : ℕ), Integrable (f n) μ hF : Integrable F μ h_mono : ∀ᵐ (x : α) ∂μ, Monotone fun n => f n x h_tendsto : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => f n x) atTop (𝓝 (F x)) f' : ℕ → α → ℝ := fun n x => f n x - f 0 x hf'_nonneg : ∀ (i : ℕ), ∀ᵐ (a : α) ∂μ, 0 ≤ f' i a hf'_meas : ∀ (n : ℕ), Integrable (f' n) μ hF_ge : 0 ≤ᶠ[ae μ] fun x => (F - f 0) x h_cont : ContinuousAt ENNReal.toReal (∫⁻ (a : α), ENNReal.ofReal ((F - f 0) a) ∂μ) ⊢ Tendsto (fun n => ∫⁻ (a : α), ENNReal.ofReal (f' n a) ∂μ) atTop (𝓝 (∫⁻ (a : α), ENNReal.ofReal ((F - f 0) a) ∂μ))
34d96d2df2ee7826
EuclideanGeometry.inner_pos_or_eq_of_dist_le_radius
Mathlib/Geometry/Euclidean/Sphere/Basic.lean
theorem inner_pos_or_eq_of_dist_le_radius {s : Sphere P} {p₁ p₂ : P} (hp₁ : p₁ ∈ s) (hp₂ : dist p₂ s.center ≤ s.radius) : 0 < ⟪p₁ -ᵥ p₂, p₁ -ᵥ s.center⟫ ∨ p₁ = p₂
case neg.refine_2.inr V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Sphere P p₁ p₂ : P hp₁ : dist p₁ s.center = s.radius hp₂ : dist p₂ s.center ≤ s.radius h : ¬p₁ = p₂ hp₂' : ‖p₂ -ᵥ s.center‖ = ‖p₁ -ᵥ s.center‖ ⊢ p₁ ≠ s.center
rintro rfl
case neg.refine_2.inr V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Sphere P p₂ : P hp₂ : dist p₂ s.center ≤ s.radius hp₁ : dist s.center s.center = s.radius h : ¬s.center = p₂ hp₂' : ‖p₂ -ᵥ s.center‖ = ‖s.center -ᵥ s.center‖ ⊢ False
886356a6641013a5
Cycle.chain_iff_pairwise
Mathlib/Data/List/Cycle.lean
theorem chain_iff_pairwise [IsTrans α r] : Chain r s ↔ ∀ a ∈ s, ∀ b ∈ s, r a b := ⟨by induction' s with a l _ · exact fun _ b hb => (not_mem_nil _ hb).elim intro hs b hb c hc rw [Cycle.chain_coe_cons, List.chain_iff_pairwise] at hs simp only [pairwise_append, pairwise_cons, mem_append, mem_singleton, List.not_mem_nil, IsEmpty.forall_iff, imp_true_iff, Pairwise.nil, forall_eq, true_and] at hs simp only [mem_coe_iff, mem_cons] at hb hc rcases hb with (rfl | hb) <;> rcases hc with (rfl | hc) · exact hs.1 c (Or.inr rfl) · exact hs.1 c (Or.inl hc) · exact hs.2.2 b hb · exact _root_.trans (hs.2.2 b hb) (hs.1 c (Or.inl hc)), Cycle.chain_of_pairwise⟩
case HI α : Type u_1 r : α → α → Prop s : Cycle α inst✝ : IsTrans α r a : α l : List α a✝ : Chain r ↑l → ∀ a ∈ ↑l, ∀ b ∈ ↑l, r a b b : α hb : b ∈ ↑(a :: l) c : α hc : c ∈ ↑(a :: l) hs : (∀ (a' : α), a' ∈ l ∨ a' = a → r a a') ∧ List.Pairwise r l ∧ ∀ a_1 ∈ l, r a_1 a ⊢ r b c
simp only [mem_coe_iff, mem_cons] at hb hc
case HI α : Type u_1 r : α → α → Prop s : Cycle α inst✝ : IsTrans α r a : α l : List α a✝ : Chain r ↑l → ∀ a ∈ ↑l, ∀ b ∈ ↑l, r a b b c : α hs : (∀ (a' : α), a' ∈ l ∨ a' = a → r a a') ∧ List.Pairwise r l ∧ ∀ a_1 ∈ l, r a_1 a hb : b = a ∨ b ∈ l hc : c = a ∨ c ∈ l ⊢ r b c
402ba91df1a51b55
toAdd_multiset_sum
Mathlib/Algebra/BigOperators/Group/Finset/Defs.lean
theorem toAdd_multiset_sum (s : Multiset (Multiplicative α)) : s.prod.toAdd = (s.map toAdd).sum
α : Type u_3 inst✝ : AddCommMonoid α s : Multiset (Multiplicative α) ⊢ s.prod = s.sum
rfl
no goals
14255307a4ae3d6c
padicNorm.of_int
Mathlib/NumberTheory/Padics/PadicNorm.lean
theorem of_int (z : ℤ) : padicNorm p z ≤ 1
p : ℕ hp : Fact (Nat.Prime p) z : ℤ ⊢ padicNorm p ↑z ≤ 1
obtain rfl | hz := eq_or_ne z 0
case inl p : ℕ hp : Fact (Nat.Prime p) ⊢ padicNorm p ↑0 ≤ 1 case inr p : ℕ hp : Fact (Nat.Prime p) z : ℤ hz : z ≠ 0 ⊢ padicNorm p ↑z ≤ 1
b29060c80fbff9ac
Polynomial.natDegree_prod
Mathlib/Algebra/Polynomial/BigOperators.lean
theorem natDegree_prod (h : ∀ i ∈ s, f i ≠ 0) : (∏ i ∈ s, f i).natDegree = ∑ i ∈ s, (f i).natDegree
R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] h : ∀ i ∈ s, f i ≠ 0 a✝ : Nontrivial R ⊢ (∏ i ∈ s, f i).natDegree = ∑ i ∈ s, (f i).natDegree
apply natDegree_prod'
case h R : Type u ι : Type w s : Finset ι inst✝¹ : CommSemiring R inst✝ : NoZeroDivisors R f : ι → R[X] h : ∀ i ∈ s, f i ≠ 0 a✝ : Nontrivial R ⊢ ∏ i ∈ s, (f i).leadingCoeff ≠ 0
c05c3285ef23f7a2
LieModule.traceForm_eq_sum_finrank_nsmul_mul
Mathlib/Algebra/Lie/TraceForm.lean
lemma traceForm_eq_sum_finrank_nsmul_mul (x y : L) : traceForm K L M x y = ∑ χ : Weight K L M, finrank K (genWeightSpace M χ) • (χ x * χ y)
K : Type u_2 L : Type u_3 M : Type u_4 inst✝¹⁰ : LieRing L inst✝⁹ : AddCommGroup M inst✝⁸ : LieRingModule L M inst✝⁷ : Field K inst✝⁶ : LieAlgebra K L inst✝⁵ : Module K M inst✝⁴ : LieModule K L M inst✝³ : FiniteDimensional K M inst✝² : LieRing.IsNilpotent L inst✝¹ : LinearWeights K L M inst✝ : IsTriangularizable K L M x y : L hxy : ∀ (χ : Weight K L M), MapsTo ⇑((toEnd K L M) x ∘ₗ (toEnd K L M) y) ↑(genWeightSpace M ⇑χ) ↑(genWeightSpace M ⇑χ) ⊢ ((traceForm K L M) x) y = ∑ χ : Weight K L M, finrank K ↥(genWeightSpace M ⇑χ) • (χ x * χ y)
classical have hds := DirectSum.isInternal_submodule_of_iSupIndep_of_iSup_eq_top (LieSubmodule.iSupIndep_iff_toSubmodule.mp <| iSupIndep_genWeightSpace' K L M) (LieSubmodule.iSup_eq_top_iff_toSubmodule.mp <| iSup_genWeightSpace_eq_top' K L M) simp_rw [traceForm_apply_apply, LinearMap.trace_eq_sum_trace_restrict hds hxy, ← traceForm_genWeightSpace_eq K L M _ x y] rfl
no goals
113a5a48d1ac7bbe
reflection_sub
Mathlib/Analysis/InnerProductSpace/Projection.lean
theorem reflection_sub {v w : F} (h : ‖v‖ = ‖w‖) : reflection (ℝ ∙ (v - w))ᗮ v = w
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F v w : F h : ‖v‖ = ‖w‖ R : F ≃ₗᵢ[ℝ] F := reflection (Submodule.span ℝ {v - w})ᗮ ⊢ R v + R v = w + w
have h₁ : R (v - w) = -(v - w) := reflection_orthogonalComplement_singleton_eq_neg (v - w)
F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F v w : F h : ‖v‖ = ‖w‖ R : F ≃ₗᵢ[ℝ] F := reflection (Submodule.span ℝ {v - w})ᗮ h₁ : R (v - w) = -(v - w) ⊢ R v + R v = w + w
0665d6b9d7b08a87
Cardinal.lift_ord
Mathlib/SetTheory/Ordinal/Basic.lean
theorem lift_ord (c) : Ordinal.lift.{u,v} (ord c) = ord (lift.{u,v} c)
case refine_2 c : Cardinal.{v} ⊢ (lift.{u, v} c).ord ≤ Ordinal.lift.{u, v} c.ord
rw [ord_le, ← lift_card, card_ord]
no goals
18b777ea3b4921fc
Int.ediv_emod_unique'
Mathlib/Data/Int/Lemmas.lean
theorem ediv_emod_unique' {a b r q : Int} (h : b ≠ 0) : a / b = q ∧ a % b = r ↔ r + b * q = a ∧ 0 ≤ r ∧ r < |b|
case mp a b r q : ℤ h : b ≠ 0 ⊢ a / b = q ∧ a % b = r → r + b * q = a ∧ 0 ≤ r ∧ r < |b|
intro ⟨rfl, rfl⟩
case mp a b r q : ℤ h : b ≠ 0 ⊢ a % b + b * (a / b) = a ∧ 0 ≤ a % b ∧ a % b < |b|
9b8e287beb8387b4
FirstOrder.Field.realize_eqZero
Mathlib/ModelTheory/Algebra/Field/CharP.lean
theorem realize_eqZero [CommRing K] [CompatibleRing K] (n : ℕ) (v : Empty → K) : (Formula.Realize (eqZero n) v) ↔ ((n : K) = 0)
K : Type u_1 inst✝¹ : CommRing K inst✝ : CompatibleRing K n : ℕ v : Empty → K ⊢ Formula.Realize (eqZero n) v ↔ ↑n = 0
simp [eqZero, Term.realize]
no goals
ee78a6355f4127f0
IsOpen.analyticOn_iff_analyticOnNhd
Mathlib/Analysis/Analytic/Within.lean
/-- On open sets, `AnalyticOnNhd` and `AnalyticOn` coincide -/ lemma IsOpen.analyticOn_iff_analyticOnNhd {f : E → F} {s : Set E} (hs : IsOpen s) : AnalyticOn 𝕜 f s ↔ AnalyticOnNhd 𝕜 f s
𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 F : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F s : Set E hs : IsOpen s hf : AnalyticOn 𝕜 f s x : E m : x ∈ s r : ℝ r0 : r > 0 rs : Metric.ball x r ⊆ s p : FormalMultilinearSeries 𝕜 E F t : ℝ≥0∞ fp : HasFPowerSeriesWithinOnBall f p s x t ⊢ 0 < ENNReal.ofReal r
positivity
no goals
1b818455a3407b83
AdjoinRoot.aeval_algHom_eq_zero
Mathlib/RingTheory/AdjoinRoot.lean
theorem aeval_algHom_eq_zero (ϕ : AdjoinRoot f →ₐ[R] S) : aeval (ϕ (root f)) f = 0
R : Type u S : Type v inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S inst✝ : Algebra R S ϕ : AdjoinRoot f →ₐ[R] S h : ϕ.comp (of f) = algebraMap R S ⊢ (aeval (ϕ (root f))) f = 0
rw [aeval_def, ← h, ← RingHom.map_zero ϕ.toRingHom, ← eval₂_root f, hom_eval₂]
R : Type u S : Type v inst✝² : CommRing R f : R[X] inst✝¹ : CommRing S inst✝ : Algebra R S ϕ : AdjoinRoot f →ₐ[R] S h : ϕ.comp (of f) = algebraMap R S ⊢ eval₂ (ϕ.comp (of f)) (ϕ (root f)) f = eval₂ (ϕ.comp (of f)) (ϕ.toRingHom (root f)) f
e222792cd0d376db
WittVector.RecursionMain.succNthDefiningPoly_degree
Mathlib/RingTheory/WittVector/FrobeniusFractionField.lean
theorem succNthDefiningPoly_degree [IsDomain k] (n : ℕ) (a₁ a₂ : 𝕎 k) (bs : Fin (n + 1) → k) (ha₁ : a₁.coeff 0 ≠ 0) (ha₂ : a₂.coeff 0 ≠ 0) : (succNthDefiningPoly p n a₁ a₂ bs).degree = p
p : ℕ hp : Fact (Nat.Prime p) k : Type u_1 inst✝² : CommRing k inst✝¹ : CharP k p inst✝ : IsDomain k n : ℕ a₁ a₂ : 𝕎 k bs : Fin (n + 1) → k ha₁ : a₁.coeff 0 ≠ 0 ha₂ : a₂.coeff 0 ≠ 0 this : (X ^ p * C (a₁.coeff 0 ^ p ^ (n + 1))).degree = ↑p ⊢ 1 < ↑p
exact mod_cast hp.out.one_lt
no goals
913a0229c49bd7a8
Real.doublingGamma_add_one
Mathlib/Analysis/SpecialFunctions/Gamma/BohrMollerup.lean
theorem doublingGamma_add_one (s : ℝ) (hs : s ≠ 0) : doublingGamma (s + 1) = s * doublingGamma s
s : ℝ hs : s ≠ 0 ⊢ Gamma (s / 2 + 1 / 2) * (s / 2 * Gamma (s / 2)) * (2 ^ (s - 1) * 2) / √π = s * (Gamma (s / 2) * Gamma (s / 2 + 1 / 2) * 2 ^ (s - 1) / √π)
ring
no goals
c364431ec88e9229
Algebra.rank_adjoin_le
Mathlib/LinearAlgebra/FreeAlgebra.lean
theorem Algebra.rank_adjoin_le {R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] (s : Set S) : Module.rank R (adjoin R s) ≤ max #s ℵ₀
R : Type u S : Type v inst✝² : CommRing R inst✝¹ : Ring S inst✝ : Algebra R S s : Set S ⊢ Module.rank R ↥(adjoin R s) ≤ #↑s ⊔ ℵ₀
rw [adjoin_eq_range_freeAlgebra_lift]
R : Type u S : Type v inst✝² : CommRing R inst✝¹ : Ring S inst✝ : Algebra R S s : Set S ⊢ Module.rank R ↥((FreeAlgebra.lift R) Subtype.val).range ≤ #↑s ⊔ ℵ₀
066ae3e2b283e6be
Fermat42.neg_of_minimal
Mathlib/NumberTheory/FLT/Four.lean
theorem neg_of_minimal {a b c : ℤ} : Minimal a b c → Minimal a b (-c)
a b c : ℤ h2 : ∀ (a1 b1 c1 : ℤ), Fermat42 a1 b1 c1 → c.natAbs ≤ c1.natAbs ha : a ≠ 0 hb : b ≠ 0 heq : a ^ 4 + b ^ 4 = c ^ 2 ⊢ a ^ 4 + b ^ 4 = (-c) ^ 2
rw [heq]
a b c : ℤ h2 : ∀ (a1 b1 c1 : ℤ), Fermat42 a1 b1 c1 → c.natAbs ≤ c1.natAbs ha : a ≠ 0 hb : b ≠ 0 heq : a ^ 4 + b ^ 4 = c ^ 2 ⊢ c ^ 2 = (-c) ^ 2
011e62322015e505
LaurentSeries.Cauchy.exists_lb_support
Mathlib/RingTheory/LaurentSeries.lean
theorem Cauchy.exists_lb_support {ℱ : Filter K⸨X⸩} (hℱ : Cauchy ℱ) : ∃ N, ∀ n, n < N → coeff hℱ n = 0
case intro K : Type u_2 inst✝ : Field K ℱ : Filter K⸨X⸩ hℱ : Cauchy ℱ x✝ : UniformSpace K := ⊥ N : ℤ hN : ∀ᶠ (f : K⸨X⸩) in ℱ, ∀ n < N, f.coeff n = 0 n : ℤ hn : n < N ⊢ Filter.map (fun f => f.coeff n) ℱ ≤ pure 0
simp only [pure_zero, nonpos_iff]
case intro K : Type u_2 inst✝ : Field K ℱ : Filter K⸨X⸩ hℱ : Cauchy ℱ x✝ : UniformSpace K := ⊥ N : ℤ hN : ∀ᶠ (f : K⸨X⸩) in ℱ, ∀ n < N, f.coeff n = 0 n : ℤ hn : n < N ⊢ 0 ∈ Filter.map (fun f => f.coeff n) ℱ
b58c34af0a5e0534
Real.qaryEntropy_strictAntiOn
Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean
/-- Qary entropy is strictly decreasing in the interval [1 - q⁻¹, 1]. -/ lemma qaryEntropy_strictAntiOn (qLe2 : 2 ≤ q) : StrictAntiOn (qaryEntropy q) (Icc (1 - 1/q) 1)
case a q : ℕ qLe2 : 2 ≤ q p1 : ℝ hp1 : p1 ∈ Icc (1 - 1 / ↑q) 1 p2 : ℝ hp2 : p2 ∈ Icc (1 - 1 / ↑q) 1 p1le2 : p1 < p2 p : ℝ this : 2 ≤ ↑q qinv_lt_1 : (↑q)⁻¹ < 1 zero_lt_1_sub_p : 0 < 1 - p hp : 1 - (↑q)⁻¹ < p ∧ p < 1 qpos : 0 < ↑q ⊢ ↑q - ↑q * p < 1
have : (q : ℝ) - 1 < p * q := by have tmp := mul_lt_mul_of_pos_right hp.1 qpos simp at tmp have : (q : ℝ) ≠ 0 := (ne_of_lt qpos).symm have asdfasfd : (1 - (q : ℝ)⁻¹) * ↑q = q - 1 := by calc (1 - (q : ℝ)⁻¹) * ↑q _ = q - (q : ℝ)⁻¹ * (q : ℝ) := by ring _ = q - 1 := by simp_all only [ne_eq, isUnit_iff_ne_zero, Rat.cast_eq_zero, not_false_eq_true, IsUnit.inv_mul_cancel] rwa [asdfasfd] at tmp
case a q : ℕ qLe2 : 2 ≤ q p1 : ℝ hp1 : p1 ∈ Icc (1 - 1 / ↑q) 1 p2 : ℝ hp2 : p2 ∈ Icc (1 - 1 / ↑q) 1 p1le2 : p1 < p2 p : ℝ this✝ : 2 ≤ ↑q qinv_lt_1 : (↑q)⁻¹ < 1 zero_lt_1_sub_p : 0 < 1 - p hp : 1 - (↑q)⁻¹ < p ∧ p < 1 qpos : 0 < ↑q this : ↑q - 1 < p * ↑q ⊢ ↑q - ↑q * p < 1
37758adf34f3dcdd
FDerivMeasurableAux.D_subset_differentiable_set
Mathlib/Analysis/Calculus/FDeriv/Measurable.lean
theorem D_subset_differentiable_set {K : Set (E →L[𝕜] F)} (hK : IsComplete K) : D f K ⊆ { x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K }
case hy 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : E → F K : Set (E →L[𝕜] F) hK : IsComplete K P : ∀ {n : ℕ}, 0 < (1 / 2) ^ n c : 𝕜 hc : 1 < ‖c‖ x : E hx : x ∈ D f K n : ℕ → ℕ L : ℕ → ℕ → ℕ → E →L[𝕜] F hn : ∀ (e p q : ℕ), n e ≤ p → n e ≤ q → L e p q ∈ K ∧ x ∈ A f (L e p q) ((1 / 2) ^ p) ((1 / 2) ^ e) ∩ A f (L e p q) ((1 / 2) ^ q) ((1 / 2) ^ e) M : ∀ (e p q e' p' q' : ℕ), n e ≤ p → n e ≤ q → n e' ≤ p' → n e' ≤ q' → e ≤ e' → ‖L e p q - L e' p' q'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e L0 : ℕ → E →L[𝕜] F := fun e => L e (n e) (n e) this : CauchySeq L0 f' : E →L[𝕜] F f'K : f' ∈ K hf' : Tendsto L0 atTop (𝓝 f') Lf' : ∀ (e p : ℕ), n e ≤ p → ‖L e (n e) p - f'‖ ≤ 12 * ‖c‖ * (1 / 2) ^ e ε : ℝ εpos : 0 < ε pos : 0 < 4 + 12 * ‖c‖ e : ℕ he : (1 / 2) ^ e < ε / (4 + 12 * ‖c‖) y : E hy : y ∈ ball 0 ((1 / 2) ^ (n e + 1)) y_pos : ¬y = 0 yzero : 0 < ‖y‖ y_lt : ‖y‖ < (1 / 2) ^ (n e + 1) yone : ‖y‖ ≤ 1 k : ℕ k_gt : n e < k m : ℕ := k - 1 h'k : ‖y‖ ≤ (1 / 2) ^ (m + 1) hk : (1 / 2) ^ (m + 1 + 1) < ‖y‖ m_ge : n e ≤ m km : k = m + 1 ⊢ 0 ≤ (1 / 2) ^ m / 2
positivity
no goals
28c357cacce7671e
intervalIntegral.intervalIntegrable_cpow'
Mathlib/Analysis/SpecialFunctions/Integrals.lean
theorem intervalIntegrable_cpow' {r : ℂ} (h : -1 < r.re) : IntervalIntegrable (fun x : ℝ => (x : ℂ) ^ r) volume a b
a b : ℝ r : ℂ h : -1 < r.re this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c c : ℝ ⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
rcases le_total 0 c with (hc | hc)
case inl a b : ℝ r : ℂ h : -1 < r.re this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c c : ℝ hc : 0 ≤ c ⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c case inr a b : ℝ r : ℂ h : -1 < r.re this : ∀ (c : ℝ), 0 ≤ c → IntervalIntegrable (fun x => ↑x ^ r) volume 0 c c : ℝ hc : c ≤ 0 ⊢ IntervalIntegrable (fun x => ↑x ^ r) volume 0 c
e33db8d106f7d67d
Complex.arctan_tan
Mathlib/Analysis/SpecialFunctions/Complex/Arctan.lean
theorem arctan_tan {z : ℂ} (h₀ : z ≠ π / 2) (h₁ : -(π / 2) < z.re) (h₂ : z.re ≤ π / 2) : arctan (tan z) = z
case hx₂ z : ℂ h₀ : z ≠ ↑π / 2 h₁ : -(π / 2) < z.re h₂ : z.re ≤ π / 2 h : cos z ≠ 0 ⊢ (2 * (I * z)).im ≤ π
norm_num
case hx₂ z : ℂ h₀ : z ≠ ↑π / 2 h₁ : -(π / 2) < z.re h₂ : z.re ≤ π / 2 h : cos z ≠ 0 ⊢ 2 * z.re ≤ π
d18e3a0fad89d01b
range_derivWithin_subset_closure_span_image
Mathlib/Analysis/Calculus/Deriv/Slope.lean
theorem range_derivWithin_subset_closure_span_image (f : 𝕜 → F) {s t : Set 𝕜} (h : s ⊆ closure (s ∩ t)) : range (derivWithin f s) ⊆ closure (Submodule.span 𝕜 (f '' t))
case pos 𝕜 : Type u inst✝² : NontriviallyNormedField 𝕜 F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : 𝕜 → F s t : Set 𝕜 h : s ⊆ closure (s ∩ t) x : 𝕜 H : (𝓝[s \ {x}] x).NeBot H' : DifferentiableWithinAt 𝕜 f s x I : (𝓝[(s ∩ t) \ {x}] x).NeBot this : Tendsto (slope f x) (𝓝[(s ∩ t) \ {x}] x) (𝓝 (derivWithin f s x)) ⊢ ∀ᶠ (x_1 : 𝕜) in 𝓝[(s ∩ t) \ {x}] x, slope f x x_1 ∈ ↑(Submodule.span 𝕜 (f '' t)).topologicalClosure
filter_upwards [self_mem_nhdsWithin] with y hy
case h 𝕜 : Type u inst✝² : NontriviallyNormedField 𝕜 F : Type v inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F f : 𝕜 → F s t : Set 𝕜 h : s ⊆ closure (s ∩ t) x : 𝕜 H : (𝓝[s \ {x}] x).NeBot H' : DifferentiableWithinAt 𝕜 f s x I : (𝓝[(s ∩ t) \ {x}] x).NeBot this : Tendsto (slope f x) (𝓝[(s ∩ t) \ {x}] x) (𝓝 (derivWithin f s x)) y : 𝕜 hy : y ∈ (s ∩ t) \ {x} ⊢ slope f x y ∈ ↑(Submodule.span 𝕜 (f '' t)).topologicalClosure
81bfa572fe08868f
mapClusterPt_self_zpow_atTop_pow
Mathlib/Topology/Algebra/Group/SubmonoidClosure.lean
theorem mapClusterPt_self_zpow_atTop_pow (x : G) (m : ℤ) : MapClusterPt (x ^ m) atTop (x ^ · : ℕ → G)
case intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : CompactSpace G inst✝ : IsTopologicalGroup G x : G m : ℤ y : G hy : MapClusterPt y atTop fun x_1 => x ^ x_1 ⊢ MapClusterPt (x ^ m) atTop fun x_1 => x ^ x_1
have H : MapClusterPt (x ^ m) (atTop.curry atTop) ↿(fun a b ↦ x ^ (m + b - a)) := by have : ContinuousAt (fun yz ↦ x ^ m * yz.2 / yz.1) (y, y) := by fun_prop simpa only [comp_def, ← zpow_sub, ← zpow_add, div_eq_mul_inv, Prod.map, mul_inv_cancel_right] using (hy.curry_prodMap hy).continuousAt_comp this
case intro G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : CompactSpace G inst✝ : IsTopologicalGroup G x : G m : ℤ y : G hy : MapClusterPt y atTop fun x_1 => x ^ x_1 H : MapClusterPt (x ^ m) (atTop.curry atTop) ↿fun a b => x ^ (m + b - a) ⊢ MapClusterPt (x ^ m) atTop fun x_1 => x ^ x_1
c67dd0c71ee8dd79