name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
MeasureTheory.Content.outerMeasure_preimage
Mathlib/MeasureTheory/Measure/Content.lean
theorem outerMeasure_preimage (f : G ≃ₜ G) (h : ∀ ⦃K : Compacts G⦄, μ (K.map f f.continuous) = μ K) (A : Set G) : μ.outerMeasure (f ⁻¹' A) = μ.outerMeasure A
G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G f : G ≃ₜ G h : ∀ ⦃K : Compacts G⦄, μ (Compacts.map ⇑f ⋯ K) = μ K A : Set G ⊢ μ.outerMeasure (⇑f ⁻¹' A) = μ.outerMeasure A
refine inducedOuterMeasure_preimage _ μ.innerContent_iUnion_nat μ.innerContent_mono _ (fun _ => f.isOpen_preimage) ?_
G : Type w inst✝¹ : TopologicalSpace G μ : Content G inst✝ : R1Space G f : G ≃ₜ G h : ∀ ⦃K : Compacts G⦄, μ (Compacts.map ⇑f ⋯ K) = μ K A : Set G ⊢ ∀ (s : Set G) (hs : IsOpen s), μ.innerContent { carrier := ⇑f.toEquiv ⁻¹' s, is_open' := ⋯ } = μ.innerContent { carrier := s, is_open' := hs }
5fb08ae1cd62239e
MvPolynomial.eval₂_comp_right
Mathlib/Algebra/MvPolynomial/Eval.lean
theorem eval₂_comp_right {S₂} [CommSemiring S₂] (k : S₁ →+* S₂) (f : R →+* S₁) (g : σ → S₁) (p) : k (eval₂ f g p) = eval₂ k (k ∘ g) (map f p)
case h_X R : Type u S₁ : Type v σ : Type u_1 inst✝² : CommSemiring R inst✝¹ : CommSemiring S₁ S₂ : Type u_2 inst✝ : CommSemiring S₂ k : S₁ →+* S₂ f : R →+* S₁ g : σ → S₁ p✝ p : MvPolynomial σ R s : σ hp : k (eval₂ f g p) = eval₂ k (⇑k ∘ g) ((map f) p) ⊢ k (eval₂ f g (p * X s)) = eval₂ k (⇑k ∘ g) ((map f) (p * X s))
rw [eval₂_mul, k.map_mul, (map f).map_mul, eval₂_mul, map_X, hp, eval₂_X, eval₂_X]
case h_X R : Type u S₁ : Type v σ : Type u_1 inst✝² : CommSemiring R inst✝¹ : CommSemiring S₁ S₂ : Type u_2 inst✝ : CommSemiring S₂ k : S₁ →+* S₂ f : R →+* S₁ g : σ → S₁ p✝ p : MvPolynomial σ R s : σ hp : k (eval₂ f g p) = eval₂ k (⇑k ∘ g) ((map f) p) ⊢ eval₂ k (⇑k ∘ g) ((map f) p) * k (g s) = eval₂ k (⇑k ∘ g) ((map f) p) * (⇑k ∘ g) s
8cc38ece9b3c3561
MulAction.smul_orbit_eq_orbit_smul
Mathlib/GroupTheory/GroupAction/Blocks.lean
@[to_additive] lemma smul_orbit_eq_orbit_smul (N : Subgroup G) [nN : N.Normal] (a : X) (g : G) : g • orbit N a = orbit N (g • a)
G : Type u_1 inst✝¹ : Group G X : Type u_2 inst✝ : MulAction G X N : Subgroup G nN : N.Normal a : X g : G ⊢ (range fun i => g • i • a) = range fun m => m • g • a
ext
case h G : Type u_1 inst✝¹ : Group G X : Type u_2 inst✝ : MulAction G X N : Subgroup G nN : N.Normal a : X g : G x✝ : X ⊢ (x✝ ∈ range fun i => g • i • a) ↔ x✝ ∈ range fun m => m • g • a
766ddba81456486f
CategoryTheory.PreGaloisCategory.exists_lift_of_mono_of_isConnected
Mathlib/CategoryTheory/Galois/Full.lean
/-- Let `X` be an object of a Galois category with fiber functor `F` and `Y` a sub-`Aut F`-set of `F.obj X`, on which `Aut F` acts transitively (i.e. which is connected in the Galois category of finite `Aut F`-sets). Then there exists a connected sub-object `Z` of `X` and an isomorphism `Y ≅ F.obj X` as `Aut F`-sets such that the obvious triangle commutes. For a version without the connectedness assumption, see `exists_lift_of_mono`. -/ lemma exists_lift_of_mono_of_isConnected (X : C) (Y : Action FintypeCat.{u} (Aut F)) (i : Y ⟶ (functorToAction F).obj X) [Mono i] [IsConnected Y] : ∃ (Z : C) (f : Z ⟶ X) (u : Y ≅ (functorToAction F).obj Z), IsConnected Z ∧ Mono f ∧ i = u.hom ≫ (functorToAction F).map f
case intro.intro.intro.intro.intro.intro.intro.a C : Type u inst✝⁴ : Category.{v, u} C F : C ⥤ FintypeCat inst✝³ : GaloisCategory C inst✝² : FiberFunctor F X : C Y : Action FintypeCat (Aut F) i : Y ⟶ (functorToAction F).obj X inst✝¹ : Mono i inst✝ : IsConnected Y y : ((forget₂ (Action FintypeCat (Aut F)) FintypeCat).obj Y).carrier Z : C f : Z ⟶ X z : (F.obj Z).carrier hz : F.map f z = i.hom y hc : IsConnected Z hm : Mono f this : IsConnected ((functorToAction F).obj Z) u : Y ≅ (functorToAction F).obj Z hu : (forget₂ (Action FintypeCat (Aut F)) FintypeCat).map u.hom y = z ⊢ i.hom y = F.map f z
exact hz.symm
no goals
e21793d61d28be88
CategoryTheory.SimplicialThickening.functor_id
Mathlib/AlgebraicTopology/SimplicialNerve.lean
lemma functor_id (J : Type u) [LinearOrder J] : (functor (OrderHom.id (α := J))) = EnrichedFunctor.id _ _
J : Type u inst✝ : LinearOrder J ⊢ functor OrderHom.id = EnrichedFunctor.id SSet (SimplicialThickening J)
refine EnrichedFunctor.ext _ (fun _ ↦ rfl) fun i j ↦ ?_
J : Type u inst✝ : LinearOrder J i j : SimplicialThickening J ⊢ (functor OrderHom.id).map i j ≫ eqToHom ⋯ = (EnrichedFunctor.id SSet (SimplicialThickening J)).map i j
88586f3926674e71
IsNilpotent.pow_succ
Mathlib/RingTheory/Nilpotent/Defs.lean
lemma IsNilpotent.pow_succ (n : ℕ) {S : Type*} [MonoidWithZero S] {x : S} (hx : IsNilpotent x) : IsNilpotent (x ^ n.succ)
n : ℕ S : Type u_3 inst✝ : MonoidWithZero S x : S hx : IsNilpotent x ⊢ IsNilpotent (x ^ n.succ)
obtain ⟨N, hN⟩ := hx
case intro n : ℕ S : Type u_3 inst✝ : MonoidWithZero S x : S N : ℕ hN : x ^ N = 0 ⊢ IsNilpotent (x ^ n.succ)
8d2a151272b83159
Int.le_bmod
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
theorem le_bmod {x : Int} {m : Nat} (h : 0 < m) : - (m/2) ≤ Int.bmod x m
case isFalse.inr.H x : Int m : Nat h✝ : 0 < m w : (↑m + 1) / 2 ≤ x % ↑m q : Int h : ↑m % 2 = 1 ⊢ 2 ≠ 0
decide
no goals
c8cfe301519f3ee0
CategoryTheory.Limits.IsZero.obj
Mathlib/CategoryTheory/Limits/Shapes/ZeroObjects.lean
theorem IsZero.obj [HasZeroObject D] {F : C ⥤ D} (hF : IsZero F) (X : C) : IsZero (F.obj X)
C : Type u inst✝² : Category.{v, u} C D : Type u' inst✝¹ : Category.{v', u'} D inst✝ : HasZeroObject D F : C ⥤ D hF : IsZero F X : C G : C ⥤ D := (Functor.const C).obj 0 hG : IsZero G e : F ≅ G := hF.iso hG ⊢ IsZero (F.obj X)
exact (isZero_zero _).of_iso (e.app X)
no goals
5d1397e75923b8ad
CategoryTheory.MorphismProperty.cancel_left_of_respectsIso
Mathlib/CategoryTheory/MorphismProperty/Basic.lean
theorem cancel_left_of_respectsIso (P : MorphismProperty C) [hP : RespectsIso P] {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso f] : P (f ≫ g) ↔ P g := ⟨fun h => by simpa using RespectsIso.precomp P (inv f) (f ≫ g) h, RespectsIso.precomp P f g⟩
C : Type u inst✝¹ : Category.{v, u} C P : MorphismProperty C hP : P.RespectsIso X Y Z : C f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f h : P (f ≫ g) ⊢ P g
simpa using RespectsIso.precomp P (inv f) (f ≫ g) h
no goals
7b942987bbba9db2
LinearMap.pi_zero
Mathlib/LinearAlgebra/Pi.lean
theorem pi_zero : pi (fun _ => 0 : (i : ι) → M₂ →ₗ[R] φ i) = 0
R : Type u M₂ : Type w ι : Type x inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) ⊢ (pi fun x => 0) = 0
ext
case h.h R : Type u M₂ : Type w ι : Type x inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) x✝¹ : M₂ x✝ : ι ⊢ (pi fun x => 0) x✝¹ x✝ = 0 x✝¹ x✝
98e3c81b32863162
AlgebraicGeometry.IsAffineOpen.isLocalization_basicOpen
Mathlib/AlgebraicGeometry/AffineScheme.lean
theorem isLocalization_basicOpen : IsLocalization.Away f Γ(X, X.basicOpen f)
X : Scheme U : X.Opens hU : IsAffineOpen U f : ↑Γ(X, U) ⊢ IsLocalization.Away f ↑Γ(X, X.basicOpen f)
apply (IsLocalization.isLocalization_iff_of_ringEquiv (Submonoid.powers f) (asIso <| basicOpenSectionsToAffine hU f).commRingCatIsoToRingEquiv).mpr
X : Scheme U : X.Opens hU : IsAffineOpen U f : ↑Γ(X, U) ⊢ IsLocalization (Submonoid.powers f) ↑Γ(Spec Γ(X, U), PrimeSpectrum.basicOpen f)
1260db3b92cc0a2c
Polynomial.Chebyshev.T_complex_cos
Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev.lean
theorem T_complex_cos (n : ℤ) : (T ℂ n).eval (cos θ) = cos (n * θ)
case add_two θ : ℂ n : ℕ ih1 : eval (cos θ) (T ℂ (↑n + 1)) = cos (↑(↑n + 1) * θ) ih2 : eval (cos θ) (T ℂ ↑n) = cos (↑↑n * θ) ⊢ eval (cos θ) (T ℂ (↑n + 2)) = cos (↑(↑n + 2) * θ)
simp only [T_add_two, eval_sub, eval_mul, eval_X, eval_ofNat, ih1, ih2, sub_eq_iff_eq_add, cos_add_cos]
case add_two θ : ℂ n : ℕ ih1 : eval (cos θ) (T ℂ (↑n + 1)) = cos (↑(↑n + 1) * θ) ih2 : eval (cos θ) (T ℂ ↑n) = cos (↑↑n * θ) ⊢ 2 * cos θ * cos (↑(↑n + 1) * θ) = 2 * cos ((↑(↑n + 2) * θ + ↑↑n * θ) / 2) * cos ((↑(↑n + 2) * θ - ↑↑n * θ) / 2)
67b4e5604fca0521
Std.Sat.CNF.mem_cons
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Basic.lean
theorem mem_cons {v : α} {c} {f : CNF α} : Mem v (c :: f : CNF α) ↔ (Clause.Mem v c ∨ Mem v f)
α : Type u_1 v : α c : Clause α f : CNF α ⊢ Mem v (c :: f) ↔ Clause.Mem v c ∨ Mem v f
simp [Mem]
no goals
93e9a114719833cb
ZMod.val_cast_of_lt
Mathlib/Data/ZMod/Basic.lean
theorem val_cast_of_lt {n : ℕ} {a : ℕ} (h : a < n) : (a : ZMod n).val = a
n a : ℕ h : a < n ⊢ (↑a).val = a
rw [val_natCast, Nat.mod_eq_of_lt h]
no goals
62cf33afc30a5aba
Polynomial.dickson_one_one_zmod_p
Mathlib/RingTheory/Polynomial/Dickson.lean
theorem dickson_one_one_zmod_p (p : ℕ) [Fact p.Prime] : dickson 1 (1 : ZMod p) p = X ^ p
case neg p : ℕ inst✝ : Fact (Nat.Prime p) K : Type w✝¹ : Field K w✝ : CharP K p H : Set.univ.Infinite h : {x | ∃ y, x = y + y⁻¹ ∧ y ≠ 0}.Finite x : K hx : ¬x = 0 ⊢ ∃ i, (∃ y, i = y + y⁻¹ ∧ ¬y = 0) ∧ (i = x + x⁻¹ ∨ x = 0)
simp only [hx, or_false, exists_eq_right]
case neg p : ℕ inst✝ : Fact (Nat.Prime p) K : Type w✝¹ : Field K w✝ : CharP K p H : Set.univ.Infinite h : {x | ∃ y, x = y + y⁻¹ ∧ y ≠ 0}.Finite x : K hx : ¬x = 0 ⊢ ∃ y, x + x⁻¹ = y + y⁻¹ ∧ ¬y = 0
84ee1673e653698a
Finset.sup_singleton''
Mathlib/Data/Finset/Lattice/Fold.lean
theorem sup_singleton'' (s : Finset β) (f : β → α) : (s.sup fun b => {f b}) = s.image f
α : Type u_2 β : Type u_3 inst✝ : DecidableEq α s : Finset β f : β → α ⊢ (s.sup fun b => {f b}) = image f s
ext a
case h α : Type u_2 β : Type u_3 inst✝ : DecidableEq α s : Finset β f : β → α a : α ⊢ (a ∈ s.sup fun b => {f b}) ↔ a ∈ image f s
83a374c07579c963
IsGreatest.nnnorm_cfc_nnreal
Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Isometric.lean
lemma IsGreatest.nnnorm_cfc_nnreal [Nontrivial A] (f : ℝ≥0 → ℝ≥0) (a : A) (hf : ContinuousOn f (σ ℝ≥0 a)
A : Type u_1 inst✝⁷ : NormedRing A inst✝⁶ : StarRing A inst✝⁵ : NormedAlgebra ℝ A inst✝⁴ : PartialOrder A inst✝³ : StarOrderedRing A inst✝² : IsometricContinuousFunctionalCalculus ℝ A IsSelfAdjoint inst✝¹ : NonnegSpectrumClass ℝ A inst✝ : Nontrivial A f : ℝ≥0 → ℝ≥0 a : A hf : autoParam (ContinuousOn f (σ ℝ≥0 a)) _auto✝ ha : autoParam (0 ≤ a) _auto✝ ⊢ IsGreatest (f '' σ ℝ≥0 a) ‖cfc f a‖₊
rw [cfc_nnreal_eq_real]
A : Type u_1 inst✝⁷ : NormedRing A inst✝⁶ : StarRing A inst✝⁵ : NormedAlgebra ℝ A inst✝⁴ : PartialOrder A inst✝³ : StarOrderedRing A inst✝² : IsometricContinuousFunctionalCalculus ℝ A IsSelfAdjoint inst✝¹ : NonnegSpectrumClass ℝ A inst✝ : Nontrivial A f : ℝ≥0 → ℝ≥0 a : A hf : autoParam (ContinuousOn f (σ ℝ≥0 a)) _auto✝ ha : autoParam (0 ≤ a) _auto✝ ⊢ IsGreatest (f '' σ ℝ≥0 a) ‖cfc (fun x => ↑(f x.toNNReal)) a‖₊
d0555952bd1af9c1
MeasureTheory.tendsto_integral_smul_of_tendsto_average_norm_sub
Mathlib/MeasureTheory/Integral/Average.lean
theorem tendsto_integral_smul_of_tendsto_average_norm_sub [CompleteSpace E] {ι : Type*} {a : ι → Set α} {l : Filter ι} {f : α → E} {c : E} {g : ι → α → ℝ} (K : ℝ) (hf : Tendsto (fun i ↦ ⨍ y in a i, ‖f y - c‖ ∂μ) l (𝓝 0)) (f_int : ∀ᶠ i in l, IntegrableOn f (a i) μ) (hg : Tendsto (fun i ↦ ∫ y, g i y ∂μ) l (𝓝 1)) (g_supp : ∀ᶠ i in l, Function.support (g i) ⊆ a i) (g_bound : ∀ᶠ i in l, ∀ x, |g i x| ≤ K / (μ (a i)).toReal) : Tendsto (fun i ↦ ∫ y, g i y • f y ∂μ) l (𝓝 c)
α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure α inst✝ : CompleteSpace E ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal g_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ i : ι hif : IntegrableOn f (a i) μ hig : Integrable (g i) μ hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal A : (support fun y => g i y • f y) ⊆ a i ⊢ IntegrableOn (fun y => g i y • f y) (a i) μ
apply Integrable.smul_of_top_right hif
α : Type u_1 E : Type u_2 m0 : MeasurableSpace α inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure α inst✝ : CompleteSpace E ι : Type u_4 a : ι → Set α l : Filter ι f : α → E c : E g : ι → α → ℝ K : ℝ hf : Tendsto (fun i => ⨍ (y : α) in a i, ‖f y - c‖ ∂μ) l (𝓝 0) f_int : ∀ᶠ (i : ι) in l, IntegrableOn f (a i) μ hg : Tendsto (fun i => ∫ (y : α), g i y ∂μ) l (𝓝 1) g_supp : ∀ᶠ (i : ι) in l, support (g i) ⊆ a i g_bound : ∀ᶠ (i : ι) in l, ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal g_int : ∀ᶠ (i : ι) in l, Integrable (g i) μ i : ι hif : IntegrableOn f (a i) μ hig : Integrable (g i) μ hisupp : support (g i) ⊆ a i hibound : ∀ (x : α), |g i x| ≤ K / (μ (a i)).toReal A : (support fun y => g i y • f y) ⊆ a i ⊢ MemLp (g i) ⊤ (μ.restrict (a i))
7e4f16c60f002777
Set.bijOn_empty_iff_right
Mathlib/Data/Set/Function.lean
theorem bijOn_empty_iff_right : BijOn f ∅ t ↔ t = ∅ := ⟨fun h ↦ by simpa using h.surjOn, by rintro rfl; exact bijOn_empty f⟩
α : Type u_1 β : Type u_2 t : Set β f : α → β ⊢ t = ∅ → BijOn f ∅ t
rintro rfl
α : Type u_1 β : Type u_2 f : α → β ⊢ BijOn f ∅ ∅
239da8e82873d9af
MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv_aux
Mathlib/Analysis/FunctionalSpaces/SobolevInequality.lean
theorem lintegral_pow_le_pow_lintegral_fderiv_aux [Fintype ι] {p : ℝ} (hp : Real.IsConjExponent #ι p) {u : (ι → ℝ) → F} (hu : ContDiff ℝ 1 u) (h2u : HasCompactSupport u) : ∫⁻ x, ‖u x‖ₑ ^ p ≤ (∫⁻ x, ‖fderiv ℝ u x‖ₑ) ^ p
ι : Type u_1 F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : Fintype ι p : ℝ hp : (↑#ι).IsConjExponent p u : (ι → ℝ) → F hu : ContDiff ℝ 1 u h2u : HasCompactSupport u this : 1 ≤ ↑#ι - 1 ⊢ ∫⁻ (x : ι → ℝ), ‖u x‖ₑ ^ p ≤ (∫⁻ (x : ι → ℝ), ‖fderiv ℝ u x‖ₑ) ^ p
calc ∫⁻ x, ‖u x‖ₑ ^ p = ∫⁻ x, (‖u x‖ₑ ^ (1 / (#ι - 1 : ℝ))) ^ (#ι : ℝ) := by congr! 2 with x rw [← ENNReal.rpow_mul, hp.conj_eq] field_simp _ = ∫⁻ x, ∏ _i : ι, ‖u x‖ₑ ^ (1 / (#ι - 1 : ℝ)) := by congr! 2 with x simp_rw [prod_const] norm_cast _ ≤ ∫⁻ x, ∏ i, (∫⁻ xᵢ, ‖fderiv ℝ u (update x i xᵢ)‖ₑ) ^ ((1 : ℝ) / (#ι - 1 : ℝ)) := ?_ _ ≤ (∫⁻ x, ‖fderiv ℝ u x‖ₑ) ^ p := by apply lintegral_prod_lintegral_pow_le _ hp have : Continuous (fderiv ℝ u) := hu.continuous_fderiv le_rfl fun_prop
ι : Type u_1 F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : Fintype ι p : ℝ hp : (↑#ι).IsConjExponent p u : (ι → ℝ) → F hu : ContDiff ℝ 1 u h2u : HasCompactSupport u this : 1 ≤ ↑#ι - 1 ⊢ ∫⁻ (x : ι → ℝ), ∏ _i : ι, ‖u x‖ₑ ^ (1 / (↑#ι - 1)) ≤ ∫⁻ (x : ι → ℝ), ∏ i : ι, (∫⁻ (xᵢ : ℝ), ‖fderiv ℝ u (update x i xᵢ)‖ₑ) ^ (1 / (↑#ι - 1))
5098921b770834eb
isNoetherian_iff_submodule_quotient
Mathlib/RingTheory/Noetherian/Basic.lean
theorem isNoetherian_iff_submodule_quotient (S : Submodule R P) : IsNoetherian R P ↔ IsNoetherian R S ∧ IsNoetherian R (P ⧸ S)
R : Type u_1 P : Type u_4 inst✝² : Ring R inst✝¹ : AddCommGroup P inst✝ : Module R P S : Submodule R P x✝ : IsNoetherian R ↥S ∧ IsNoetherian R (P ⧸ S) left✝ : IsNoetherian R ↥S right✝ : IsNoetherian R (P ⧸ S) ⊢ LinearMap.range S.subtype = LinearMap.ker S.mkQ
rw [Submodule.ker_mkQ, Submodule.range_subtype]
no goals
9bbbb93e25dc3271
Finsupp.lmapDomain_disjoint_ker
Mathlib/LinearAlgebra/Finsupp/Supported.lean
theorem lmapDomain_disjoint_ker (f : α → α') {s : Set α} (H : ∀ a ∈ s, ∀ b ∈ s, f a = f b → a = b) : Disjoint (supported M R s) (ker (lmapDomain M R f))
case intro α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M α' : Type u_7 f : α → α' s : Set α H : ∀ a ∈ s, ∀ b ∈ s, f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (l.sum fun a => single (f a)) = 0 ⊢ l = 0
ext x
case intro.h α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M α' : Type u_7 f : α → α' s : Set α H : ∀ a ∈ s, ∀ b ∈ s, f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (l.sum fun a => single (f a)) = 0 x : α ⊢ l x = 0 x
13c609db9f843127
LieModule.weightSpaceOfIsLieTower_aux
Mathlib/Algebra/Lie/LieTheorem.lean
/-- An auxiliary lemma used only in the definition `LieModule.weightSpaceOfIsLieTower` below. -/ private lemma weightSpaceOfIsLieTower_aux (z : L) (v : V) (hv : v ∈ weightSpace V χ) : ⁅z, v⁆ ∈ weightSpace V χ
R : Type u_1 L : Type u_2 A : Type u_3 V : Type u_4 inst✝¹⁹ : CommRing R inst✝¹⁸ : IsPrincipalIdealRing R inst✝¹⁷ : IsDomain R inst✝¹⁶ : CharZero R inst✝¹⁵ : LieRing L inst✝¹⁴ : LieAlgebra R L inst✝¹³ : LieRing A inst✝¹² : LieAlgebra R A inst✝¹¹ : Bracket L A inst✝¹⁰ : Bracket A L inst✝⁹ : AddCommGroup V inst✝⁸ : Module R V inst✝⁷ : Module.Free R V inst✝⁶ : Module.Finite R V inst✝⁵ : LieRingModule L V inst✝⁴ : LieModule R L V inst✝³ : LieRingModule A V inst✝² : LieModule R A V inst✝¹ : IsLieTower L A V inst✝ : IsLieTower A L V χ : A → R z : L v : V hv : ∀ (x : A), ⁅x, v⁆ = χ x • v a : A hv' : v ≠ 0 U' : ℕ →o Submodule R V := { toFun := fun n => Submodule.span R {x | ∃ i < n, ((toEnd R L V) z ^ i) v = x}, monotone' := ⋯ } map_U'_le : ∀ (n : ℕ), Submodule.map ((toEnd R L V) z) (U' n) ≤ U' (n + 1) T_apply_succ : ∀ (w : A) (n : ℕ), Submodule.map (LieModule.T χ w) (U' (n + 1)) ≤ U' n U : LieSubmodule R A V := { toSubmodule := ⨆ k, U' k, lie_mem := ⋯ } hzU : ∀ x ∈ U, ((toEnd R L V) z) x ∈ U trace_za_zero : (LinearMap.trace R ↥U) ((toEnd R A ↥U) ⁅z, a⁆) = 0 w : A key : ∀ (i : ℕ), i ≠ 0 → ∃ j < i, Submodule.map (LieModule.T χ w) (U' i) ≤ U' j x : ↥U this : ↑x ∈ (LieModule.T χ w).maxGenEigenspace 0 ⊢ ∃ n, (LieModule.T χ w ^ n) x = 0
simp only [Module.End.mem_maxGenEigenspace, zero_smul, sub_zero] at this
R : Type u_1 L : Type u_2 A : Type u_3 V : Type u_4 inst✝¹⁹ : CommRing R inst✝¹⁸ : IsPrincipalIdealRing R inst✝¹⁷ : IsDomain R inst✝¹⁶ : CharZero R inst✝¹⁵ : LieRing L inst✝¹⁴ : LieAlgebra R L inst✝¹³ : LieRing A inst✝¹² : LieAlgebra R A inst✝¹¹ : Bracket L A inst✝¹⁰ : Bracket A L inst✝⁹ : AddCommGroup V inst✝⁸ : Module R V inst✝⁷ : Module.Free R V inst✝⁶ : Module.Finite R V inst✝⁵ : LieRingModule L V inst✝⁴ : LieModule R L V inst✝³ : LieRingModule A V inst✝² : LieModule R A V inst✝¹ : IsLieTower L A V inst✝ : IsLieTower A L V χ : A → R z : L v : V hv : ∀ (x : A), ⁅x, v⁆ = χ x • v a : A hv' : v ≠ 0 U' : ℕ →o Submodule R V := { toFun := fun n => Submodule.span R {x | ∃ i < n, ((toEnd R L V) z ^ i) v = x}, monotone' := ⋯ } map_U'_le : ∀ (n : ℕ), Submodule.map ((toEnd R L V) z) (U' n) ≤ U' (n + 1) T_apply_succ : ∀ (w : A) (n : ℕ), Submodule.map (LieModule.T χ w) (U' (n + 1)) ≤ U' n U : LieSubmodule R A V := { toSubmodule := ⨆ k, U' k, lie_mem := ⋯ } hzU : ∀ x ∈ U, ((toEnd R L V) z) x ∈ U trace_za_zero : (LinearMap.trace R ↥U) ((toEnd R A ↥U) ⁅z, a⁆) = 0 w : A key : ∀ (i : ℕ), i ≠ 0 → ∃ j < i, Submodule.map (LieModule.T χ w) (U' i) ≤ U' j x : ↥U this : ∃ k, (LieModule.T χ w ^ k) ↑x = 0 ⊢ ∃ n, (LieModule.T χ w ^ n) x = 0
6a6e6c619a907741
Cardinal.isPrimePow_iff
Mathlib/SetTheory/Cardinal/Divisibility.lean
theorem isPrimePow_iff {a : Cardinal} : IsPrimePow a ↔ ℵ₀ ≤ a ∨ ∃ n : ℕ, a = n ∧ IsPrimePow n
case neg.intro a : ℕ h : ¬ℵ₀ ≤ ↑a ⊢ (∃ p k, Prime p ∧ 0 < k ∧ p ^ k = ↑a) → ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
rintro ⟨p, k, hp, hk, hpk⟩
case neg.intro.intro.intro.intro.intro a : ℕ h : ¬ℵ₀ ≤ ↑a p : Cardinal.{u_1} k : ℕ hp : Prime p hk : 0 < k hpk : p ^ k = ↑a ⊢ ∃ n, ↑a = ↑n ∧ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n
a84b61c12666a126
Valued.continuous_valuation
Mathlib/Topology/Algebra/Valued/ValuedField.lean
theorem Valued.continuous_valuation [Valued K Γ₀] : Continuous (v : K → Γ₀)
K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K ⊢ ContinuousAt (⇑v) x
rcases eq_or_ne x 0 with (rfl | h)
case inl K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ ⊢ ContinuousAt (⇑v) 0 case inr K : Type u_1 inst✝² : DivisionRing K Γ₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : Valued K Γ₀ x : K h : x ≠ 0 ⊢ ContinuousAt (⇑v) x
40ad4a371f000982
Cardinal.empty_theory_categorical
Mathlib/ModelTheory/Satisfiability.lean
theorem empty_theory_categorical (T : Language.empty.Theory) : κ.Categorical T := fun M N hM hN => by rw [empty.nonempty_equiv_iff, hM, hN]
κ : Cardinal.{w} T : Language.empty.Theory M N : T.ModelType hM : #↑M = κ hN : #↑N = κ ⊢ Nonempty (↑M ≃[Language.empty] ↑N)
rw [empty.nonempty_equiv_iff, hM, hN]
no goals
f578a7941449a572
ZNum.abs_to_nat
Mathlib/Data/Num/Lemmas.lean
theorem abs_to_nat : ∀ n, (abs n : ℕ) = Int.natAbs n | 0 => rfl | pos p => congr_arg Int.natAbs p.to_nat_to_int | neg p => show Int.natAbs ((p : ℕ) : ℤ) = Int.natAbs (-p) by rw [p.to_nat_to_int, Int.natAbs_neg]
p : PosNum ⊢ (↑↑p).natAbs = (-↑p).natAbs
rw [p.to_nat_to_int, Int.natAbs_neg]
no goals
5cf4e60ef8bb2c4a
ConvexOn.leftDeriv_le_rightDeriv_of_mem_interior
Mathlib/Analysis/Convex/Deriv.lean
lemma leftDeriv_le_rightDeriv_of_mem_interior (hfc : ConvexOn ℝ S f) (hxs : x ∈ interior S) : derivWithin f (Iio x) x ≤ derivWithin f (Ioi x) x
case intro.intro.intro.refine_2.intro.intro.intro.refine_1 S : Set ℝ f : ℝ → ℝ x : ℝ hfc : ConvexOn ℝ S f hxs : x ∈ interior S a b : ℝ hxab : x ∈ Ioo a b habs : Ioo a b ⊆ S z : ℝ hzs : z ∈ S hzx : z < x ⊢ {y | y ∈ S ∧ x < y}.Nonempty
obtain ⟨z, hxz, hzb⟩ := exists_between hxab.2
case intro.intro.intro.refine_2.intro.intro.intro.refine_1.intro.intro S : Set ℝ f : ℝ → ℝ x : ℝ hfc : ConvexOn ℝ S f hxs : x ∈ interior S a b : ℝ hxab : x ∈ Ioo a b habs : Ioo a b ⊆ S z✝ : ℝ hzs : z✝ ∈ S hzx : z✝ < x z : ℝ hxz : x < z hzb : z < b ⊢ {y | y ∈ S ∧ x < y}.Nonempty
ee20e04546739631
AddMonoidAlgebra.mapDomain_mul
Mathlib/Algebra/MonoidAlgebra/MapDomain.lean
theorem mapDomain_mul {α : Type*} {β : Type*} {α₂ : Type*} [Semiring β] [Add α] [Add α₂] {F : Type*} [FunLike F α α₂] [AddHomClass F α α₂] (f : F) (x y : AddMonoidAlgebra β α) : mapDomain f (x * y) = mapDomain f x * mapDomain f y
case e_g α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝⁴ : Semiring β inst✝³ : Add α inst✝² : Add α₂ F : Type u_6 inst✝¹ : FunLike F α α₂ inst✝ : AddHomClass F α α₂ f : F x y : β[α] ⊢ (fun a b => sum y fun a_1 b_1 => single (f a + f a_1) (b * b_1)) = fun a m => sum (mapDomain (⇑f) y) fun a₂ b₂ => single (f a + a₂) (m * b₂)
ext a b
case e_g.h.h.H α : Type u_3 β : Type u_4 α₂ : Type u_5 inst✝⁴ : Semiring β inst✝³ : Add α inst✝² : Add α₂ F : Type u_6 inst✝¹ : FunLike F α α₂ inst✝ : AddHomClass F α α₂ f : F x y : β[α] a : α b : β x✝ : α₂ ⊢ (sum y fun a_1 b_1 => single (f a + f a_1) (b * b_1)) x✝ = (sum (mapDomain (⇑f) y) fun a₂ b₂ => single (f a + a₂) (b * b₂)) x✝
b46c385eaf47b5df
CommRing.toRing_injective
Mathlib/Algebra/Ring/Ext.lean
theorem toRing_injective : Function.Injective (@toRing R)
case mk.mk R : Type u toRing✝¹ : Ring R mul_comm✝¹ : ∀ (a b : R), a * b = b * a toRing✝ : Ring R mul_comm✝ : ∀ (a b : R), a * b = b * a a✝ : toRing = toRing ⊢ mk mul_comm✝¹ = mk mul_comm✝
congr
no goals
f5e0d8bb4c5d830f
Valuation.subgroups_basis
Mathlib/Topology/Algebra/Valued/ValuationTopology.lean
theorem subgroups_basis : RingSubgroupsBasis fun γ : Γ₀ˣ => (v.ltAddSubgroup γ : AddSubgroup R) := { inter
case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ γx : Γ₀ˣ Hx : v x = ↑γx y : R vy_lt : v y < ↑(γx⁻¹ * γ) ⊢ y ∈ (fun x_1 => x * x_1) ⁻¹' ↑(v.ltAddSubgroup γ)
change (v (x * y) : Γ₀) < γ
case h R : Type u inst✝¹ : Ring R Γ₀ : Type v inst✝ : LinearOrderedCommGroupWithZero Γ₀ v : Valuation R Γ₀ x : R γ γx : Γ₀ˣ Hx : v x = ↑γx y : R vy_lt : v y < ↑(γx⁻¹ * γ) ⊢ v (x * y) < ↑γ
ae2f24a204597808
PowerSeries.exp_mul_exp_eq_exp_add
Mathlib/RingTheory/PowerSeries/WellKnown.lean
theorem exp_mul_exp_eq_exp_add [Algebra ℚ A] (a b : A) : rescale a (exp A) * rescale b (exp A) = rescale (a + b) (exp A)
case h.e_a A : Type u_1 inst✝¹ : CommRing A inst✝ : Algebra ℚ A a b : A n x : ℕ hx : x ∈ Finset.range n.succ ⊢ x ! * (n - x)! ∣ n !
apply factorial_mul_factorial_dvd_factorial (mem_range_succ_iff.1 hx)
no goals
afb10c577ff818e3
Lean.Order.fix_eq
Mathlib/.lake/packages/lean4/src/lean/Init/Internal/Order/Basic.lean
theorem fix_eq {f : α → α} (hf : monotone f) : fix f hf = f (fix f hf)
α : Sort u inst✝ : CCPO α f : α → α hf : monotone f ⊢ fix f hf = f (fix f hf)
apply rel_antisymm
case a α : Sort u inst✝ : CCPO α f : α → α hf : monotone f ⊢ fix f hf ⊑ f (fix f hf) case a α : Sort u inst✝ : CCPO α f : α → α hf : monotone f ⊢ f (fix f hf) ⊑ fix f hf
68786671fa9501e6
HasSum.mul_of_nonarchimedean
Mathlib/Topology/Algebra/InfiniteSum/Nonarchimedean.lean
theorem HasSum.mul_of_nonarchimedean {f : α → R} {g : β → R} {a b : R} (hf : HasSum f a) (hg : HasSum g b) : HasSum (fun i : α × β ↦ f i.1 * g i.2) (a * b)
α : Type u_1 β : Type u_2 R : Type u_3 inst✝³ : Ring R inst✝² : UniformSpace R inst✝¹ : UniformAddGroup R inst✝ : NonarchimedeanRing R f : α → R g : β → R a b : R hf : HasSum (⇑UniformSpace.Completion.toCompl ∘ f) ↑a hg : HasSum (⇑UniformSpace.Completion.toCompl ∘ g) ↑b ⊢ HasSum (⇑UniformSpace.Completion.toCompl ∘ fun i => f i.1 * g i.2) ↑(a * b)
simp only [Function.comp_def, UniformSpace.Completion.toCompl_apply, UniformSpace.Completion.coe_mul]
α : Type u_1 β : Type u_2 R : Type u_3 inst✝³ : Ring R inst✝² : UniformSpace R inst✝¹ : UniformAddGroup R inst✝ : NonarchimedeanRing R f : α → R g : β → R a b : R hf : HasSum (⇑UniformSpace.Completion.toCompl ∘ f) ↑a hg : HasSum (⇑UniformSpace.Completion.toCompl ∘ g) ↑b ⊢ HasSum (fun x => ↑(f x.1) * ↑(g x.2)) (↑a * ↑b)
86707fdd4057400d
Filter.eventuallyEq_univ
Mathlib/Order/Filter/Basic.lean
theorem eventuallyEq_univ {s : Set α} {l : Filter α} : s =ᶠ[l] univ ↔ s ∈ l
α : Type u s : Set α l : Filter α ⊢ s =ᶠ[l] univ ↔ s ∈ l
simp [eventuallyEq_set]
no goals
e77d7bdcdb5b65ae
Rat.add_mul
Mathlib/Data/Rat/Defs.lean
theorem add_mul : (a + b) * c = a * c + b * c := numDenCasesOn' a fun n₁ d₁ h₁ ↦ numDenCasesOn' b fun n₂ d₂ h₂ ↦ numDenCasesOn' c fun n₃ d₃ h₃ ↦ by simp only [ne_eq, Int.natCast_eq_zero, h₁, not_false_eq_true, h₂, divInt_add_divInt, Int.mul_eq_zero, or_self, h₃, divInt_mul_divInt] rw [← divInt_mul_right (Int.natCast_ne_zero.2 h₃), Int.add_mul, Int.add_mul] ac_rfl
a b c : ℚ n₁ : ℤ d₁ : ℕ h₁ : d₁ ≠ 0 n₂ : ℤ d₂ : ℕ h₂ : d₂ ≠ 0 n₃ : ℤ d₃ : ℕ h₃ : d₃ ≠ 0 ⊢ (n₁ * ↑d₂ + n₂ * ↑d₁) * n₃ /. (↑d₁ * ↑d₂ * ↑d₃) = (n₁ * n₃ * (↑d₂ * ↑d₃) + n₂ * n₃ * (↑d₁ * ↑d₃)) /. (↑d₁ * ↑d₃ * (↑d₂ * ↑d₃))
rw [← divInt_mul_right (Int.natCast_ne_zero.2 h₃), Int.add_mul, Int.add_mul]
a b c : ℚ n₁ : ℤ d₁ : ℕ h₁ : d₁ ≠ 0 n₂ : ℤ d₂ : ℕ h₂ : d₂ ≠ 0 n₃ : ℤ d₃ : ℕ h₃ : d₃ ≠ 0 ⊢ (n₁ * ↑d₂ * n₃ * ↑d₃ + n₂ * ↑d₁ * n₃ * ↑d₃) /. (↑d₁ * ↑d₂ * ↑d₃ * ↑d₃) = (n₁ * n₃ * (↑d₂ * ↑d₃) + n₂ * n₃ * (↑d₁ * ↑d₃)) /. (↑d₁ * ↑d₃ * (↑d₂ * ↑d₃))
9b5f0510bd507357
Order.height_nat
Mathlib/Order/KrullDimension.lean
@[simp] lemma height_nat (n : ℕ) : height n = n
case ind.a n : ℕ ih : ∀ m < n, height m = ↑m ⊢ height n ≤ ↑n
apply height_le_coe_iff.mpr
case ind.a n : ℕ ih : ∀ m < n, height m = ↑m ⊢ ∀ y < n, height y < ↑n
9e49d4a85f26ebf2
Pi.isAtom_iff
Mathlib/Order/Atoms.lean
theorem isAtom_iff {f : ∀ i, π i} [∀ i, PartialOrder (π i)] [∀ i, OrderBot (π i)] : IsAtom f ↔ ∃ i, IsAtom (f i) ∧ ∀ j, j ≠ i → f j = ⊥
case c ι : Type u_4 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ b < f, b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ b < f i, b = ⊥ case d ι : Type u_4 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ b < f, b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (j : ι), j ≠ i → f j = ⊥
case c => intro b hb have := h (Function.update ⊥ i b) simp only [lt_def, le_def, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun j => by by_cases h : j = i; { subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i
case d ι : Type u_4 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ b < f, b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (j : ι), j ≠ i → f j = ⊥
116210e72cdaa30b
Finset.card_div_choose_le_card_shadow_div_choose
Mathlib/Combinatorics/SetFamily/LYM.lean
theorem card_div_choose_le_card_shadow_div_choose (hr : r ≠ 0) (h𝒜 : (𝒜 : Set (Finset α)).Sized r) : (#𝒜 : 𝕜) / (Fintype.card α).choose r ≤ #(∂ 𝒜) / (Fintype.card α).choose (r - 1)
case h.e'_4 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α inst✝ : Fintype α 𝒜 : Finset (Finset α) r : ℕ hr : r + 1 ≠ 0 hr' : r + 1 ≤ Fintype.card α h𝒜 : #𝒜 * (r + 1) ≤ #(∂ 𝒜) * (Fintype.card α - r) ⊢ #(∂ 𝒜) * (Fintype.card α).choose (r + 1) * (r + 1) = #(∂ 𝒜) * (Fintype.card α - r) * (Fintype.card α).choose r
simp only [mul_assoc, choose_succ_right_eq, mul_eq_mul_left_iff]
case h.e'_4 𝕜 : Type u_1 α : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α inst✝ : Fintype α 𝒜 : Finset (Finset α) r : ℕ hr : r + 1 ≠ 0 hr' : r + 1 ≤ Fintype.card α h𝒜 : #𝒜 * (r + 1) ≤ #(∂ 𝒜) * (Fintype.card α - r) ⊢ (Fintype.card α).choose r * (Fintype.card α - r) = (Fintype.card α - r) * (Fintype.card α).choose r ∨ #(∂ 𝒜) = 0
39fd5f73c0c4b048
MvPolynomial.constantCoeff_comp_C
Mathlib/Algebra/MvPolynomial/Basic.lean
theorem constantCoeff_comp_C : constantCoeff.comp (C : R →+* MvPolynomial σ R) = RingHom.id R
case a R : Type u σ : Type u_1 inst✝ : CommSemiring R x : R ⊢ (constantCoeff.comp C) x = (RingHom.id R) x
exact constantCoeff_C σ x
no goals
30a8200202bcedbf
Vector.pmap_pmap
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Attach.lean
theorem pmap_pmap {p : α → Prop} {q : β → Prop} (g : ∀ a, p a → β) (f : ∀ b, q b → γ) (l : Vector α n) (H₁ H₂) : pmap f (pmap g l H₁) H₂ = pmap (α := { x // x ∈ l }) (fun a h => f (g a h) (H₂ (g a h) (mem_pmap_of_mem a.2))) l.attach (fun a _ => H₁ a a.2)
α : Type u_1 β : Type u_2 γ : Type u_3 n : Nat p : α → Prop q : β → Prop g : (a : α) → p a → β f : (b : β) → q b → γ l : Vector α n H₁ : ∀ (a : α), a ∈ l → p a H₂ : ∀ (a : β), a ∈ pmap g l H₁ → q a ⊢ pmap f (pmap g l H₁) H₂ = pmap (fun a h => f (g a.val h) ⋯) l.attach ⋯
rcases l with ⟨l, rfl⟩
case mk α : Type u_1 β : Type u_2 γ : Type u_3 p : α → Prop q : β → Prop g : (a : α) → p a → β f : (b : β) → q b → γ l : Array α H₁ : ∀ (a : α), a ∈ { toArray := l, size_toArray := ⋯ } → p a H₂ : ∀ (a : β), a ∈ pmap g { toArray := l, size_toArray := ⋯ } H₁ → q a ⊢ pmap f (pmap g { toArray := l, size_toArray := ⋯ } H₁) H₂ = pmap (fun a h => f (g a.val h) ⋯) { toArray := l, size_toArray := ⋯ }.attach ⋯
687567af1048eabd
BoxIntegral.Box.distortion_eq_of_sub_eq_div
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ} (h : ∀ i, I.upper i - I.lower i = (J.upper i - J.lower i) / r) : distortion I = distortion J
ι : Type u_1 inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), I.upper i - I.lower i = (J.upper i - J.lower i) / r i : ι hr : ¬0 < r ⊢ False
have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr)
ι : Type u_1 inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), I.upper i - I.lower i = (J.upper i - J.lower i) / r i : ι hr : ¬0 < r this : (J.upper i - J.lower i) / r ≤ 0 ⊢ False
9a94211851805cc5
Orientation.oangle_eq_pi_iff_angle_eq_pi
Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
theorem oangle_eq_pi_iff_angle_eq_pi {x y : V} : o.oangle x y = π ↔ InnerProductGeometry.angle x y = π
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V ⊢ o.oangle x y = ↑π ↔ InnerProductGeometry.angle x y = π
by_cases hx : x = 0
case pos V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V hx : x = 0 ⊢ o.oangle x y = ↑π ↔ InnerProductGeometry.angle x y = π case neg V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℝ V inst✝ : Fact (finrank ℝ V = 2) o : Orientation ℝ V (Fin 2) x y : V hx : ¬x = 0 ⊢ o.oangle x y = ↑π ↔ InnerProductGeometry.angle x y = π
359e33c58bfa1ce6
RingHom.IsStableUnderBaseChange.mk
Mathlib/RingTheory/RingHomProperties.lean
theorem IsStableUnderBaseChange.mk (h₁ : RespectsIso @P) (h₂ : ∀ ⦃R S T⦄ [CommRing R] [CommRing S] [CommRing T], ∀ [Algebra R S] [Algebra R T], P (algebraMap R T) → P (Algebra.TensorProduct.includeLeftRingHom : S →+* TensorProduct R S T)) : IsStableUnderBaseChange @P
case e_a.H P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop h₁ : RespectsIso P h₂ : ∀ ⦃R S T : Type u⦄ [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] [inst_3 : Algebra R S] [inst_4 : Algebra R T], P (algebraMap R T) → P Algebra.TensorProduct.includeLeftRingHom R S R' S' : Type u inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : CommRing R' inst✝⁷ : CommRing S' inst✝⁶ : Algebra R S inst✝⁵ : Algebra R R' inst✝⁴ : Algebra R S' inst✝³ : Algebra S S' inst✝² : Algebra R' S' inst✝¹ : IsScalarTower R S S' inst✝ : IsScalarTower R R' S' h : Algebra.IsPushout R S R' S' H : P (algebraMap R S) e : TensorProduct R R' S ≃ₛₗ[id R'] S' := ⋯.equiv f' : TensorProduct R R' S →ₐ[R] S' := Algebra.TensorProduct.productMap (IsScalarTower.toAlgHom R R' S') (IsScalarTower.toAlgHom R S S') x✝ : TensorProduct R R' S x : R' y : S ⊢ (↑R ↑e) (x ⊗ₜ[R] y) = f'.toLinearMap (x ⊗ₜ[R] y)
simp [e, f', IsBaseChange.equiv_tmul, Algebra.smul_def]
no goals
b9f11fd814b95109
Finset.noncommProd_induction
Mathlib/Data/Finset/NoncommProd.lean
@[to_additive] lemma noncommProd_induction (s : Finset α) (f : α → β) (comm) (p : β → Prop) (hom : ∀ a b, p a → p b → p (a * b)) (unit : p 1) (base : ∀ x ∈ s, p (f x)) : p (s.noncommProd f comm)
α : Type u_3 β : Type u_4 inst✝ : Monoid β s : Finset α f : α → β comm : (↑s).Pairwise (Commute on f) p : β → Prop hom : ∀ (a b : β), p a → p b → p (a * b) unit : p 1 base : ∀ x ∈ s, p (f x) b : β hb : b ∈ Multiset.map f s.val ⊢ ?m.19078
simpa using hb
no goals
a8fc2db953f6e503
MvPowerSeries.le_lexOrder_iff
Mathlib/RingTheory/MvPowerSeries/LexOrder.lean
theorem le_lexOrder_iff {φ : MvPowerSeries σ R} {w : WithTop (Lex (σ →₀ ℕ))} : w ≤ lexOrder φ ↔ (∀ (d : σ →₀ ℕ) (_ : toLex d < w), coeff R d φ = 0)
case mp σ : Type u_1 R : Type u_2 inst✝² : Semiring R inst✝¹ : LinearOrder σ inst✝ : WellFoundedGT σ φ : MvPowerSeries σ R w : WithTop (Lex (σ →₀ ℕ)) h : w ≤ φ.lexOrder d : σ →₀ ℕ hd : ↑(toLex d) < w ⊢ (coeff R d) φ = 0
apply coeff_eq_zero_of_lt_lexOrder
case mp.h σ : Type u_1 R : Type u_2 inst✝² : Semiring R inst✝¹ : LinearOrder σ inst✝ : WellFoundedGT σ φ : MvPowerSeries σ R w : WithTop (Lex (σ →₀ ℕ)) h : w ≤ φ.lexOrder d : σ →₀ ℕ hd : ↑(toLex d) < w ⊢ ↑(toLex d) < φ.lexOrder
d7714d2e3d7a9ca5
FirstOrder.Language.LHom.id_onBoundedFormula
Mathlib/ModelTheory/Syntax.lean
theorem id_onBoundedFormula : ((LHom.id L).onBoundedFormula : L.BoundedFormula α n → L.BoundedFormula α n) = id
case h.falsum L : Language α : Type u' n n✝ : ℕ ⊢ (LHom.id L).onBoundedFormula falsum = id falsum
rfl
no goals
b7ef961ddafe7473
FirstOrder.Language.PartialEquiv.le_iff
Mathlib/ModelTheory/PartialEquiv.lean
theorem le_iff {f g : M ≃ₚ[L] N} : f ≤ g ↔ ∃ dom_le_dom : f.dom ≤ g.dom, ∃ cod_le_cod : f.cod ≤ g.cod, ∀ x, inclusion cod_le_cod (f.toEquiv x) = g.toEquiv (inclusion dom_le_dom x)
case mpr.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N f g : M ≃ₚ[L] N dom_le_dom : f.dom ≤ g.dom le_cod : f.cod ≤ g.cod h_eq : ∀ (x : ↥f.dom), (inclusion le_cod) (f.toEquiv x) = g.toEquiv ((inclusion dom_le_dom) x) ⊢ f ≤ g
rw [le_def]
case mpr.intro.intro L : Language M : Type w N : Type w' inst✝¹ : L.Structure M inst✝ : L.Structure N f g : M ≃ₚ[L] N dom_le_dom : f.dom ≤ g.dom le_cod : f.cod ≤ g.cod h_eq : ∀ (x : ↥f.dom), (inclusion le_cod) (f.toEquiv x) = g.toEquiv ((inclusion dom_le_dom) x) ⊢ ∃ (h : f.dom ≤ g.dom), g.cod.subtype.comp (g.toEquiv.toEmbedding.comp (inclusion h)) = f.cod.subtype.comp f.toEquiv.toEmbedding
1bd2616433ae1fcd
EuclideanGeometry.Sphere.IsDiameter.right_eq_of_isDiameter
Mathlib/Geometry/Euclidean/Sphere/Basic.lean
lemma IsDiameter.right_eq_of_isDiameter (h₁₂ : s.IsDiameter p₁ p₂) (h₁₃ : s.IsDiameter p₁ p₃) : p₂ = p₃
V : Type u_1 P : Type u_2 inst✝³ : NormedAddCommGroup V inst✝² : NormedSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P s : Sphere P p₁ p₂ p₃ : P h₁₂ : s.IsDiameter p₁ p₂ h₁₃ : s.IsDiameter p₁ p₃ ⊢ p₂ = p₃
rw [← h₁₂.pointReflection_center_left, ← h₁₃.pointReflection_center_left]
no goals
e0458f14bbfc85eb
Ordinal.principal_add_iff_zero_or_omega0_opow
Mathlib/SetTheory/Ordinal/Principal.lean
theorem principal_add_iff_zero_or_omega0_opow : Principal (· + ·) o ↔ o = 0 ∨ o ∈ Set.range (ω ^ · : Ordinal → Ordinal)
o : Ordinal.{u} ⊢ Principal (fun x1 x2 => x1 + x2) o ↔ o = 0 ∨ o ∈ Set.range fun x => ω ^ x
rcases eq_or_ne o 0 with (rfl | ho)
case inl ⊢ Principal (fun x1 x2 => x1 + x2) 0 ↔ 0 = 0 ∨ 0 ∈ Set.range fun x => ω ^ x case inr o : Ordinal.{u} ho : o ≠ 0 ⊢ Principal (fun x1 x2 => x1 + x2) o ↔ o = 0 ∨ o ∈ Set.range fun x => ω ^ x
b95345052c5b9163
Ordinal.toPGame_nmul
Mathlib/SetTheory/Game/Ordinal.lean
theorem toPGame_nmul (a b : Ordinal) : (a ⨳ b).toPGame ≈ a.toPGame * b.toPGame
case refine_1 a b : Ordinal.{u_1} i : (a ⨳ b).toPGame.LeftMoves ⊢ (↑(toLeftMovesToPGame.symm i)).toPGame ⧏ a.toPGame * b.toPGame
rcases lt_nmul_iff.1 (toLeftMovesToPGame_symm_lt i) with ⟨c, hc, d, hd, h⟩
case refine_1.intro.intro.intro.intro a b : Ordinal.{u_1} i : (a ⨳ b).toPGame.LeftMoves c : Ordinal.{u_1} hc : c < a d : Ordinal.{u_1} hd : d < b h : ↑(toLeftMovesToPGame.symm i) ♯ c ⨳ d ≤ c ⨳ b ♯ a ⨳ d ⊢ (↑(toLeftMovesToPGame.symm i)).toPGame ⧏ a.toPGame * b.toPGame
18382d4f22ac2836
Array.mapIdx_eq_push_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/MapIdx.lean
theorem mapIdx_eq_push_iff {l : Array α} {b : β} : mapIdx f l = l₂.push b ↔ ∃ (a : α) (l₁ : Array α), l = l₁.push a ∧ mapIdx f l₁ = l₂ ∧ f l₁.size a = b
case mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 f : Nat → α → β l₁ : Array α a : α ⊢ ∃ a_1 l₁_1, l₁.push a = l₁_1.push a_1 ∧ mapIdx f l₁_1 = mapIdx f l₁ ∧ f l₁_1.size a_1 = f ((l₁.push a).size - 1) a
exact ⟨a, l₁, by simp⟩
no goals
5f03d0e423345ad8
dNext_eq
Mathlib/Algebra/Homology/Homotopy.lean
theorem dNext_eq (f : ∀ i j, C.X i ⟶ D.X j) {i i' : ι} (w : c.Rel i i') : dNext i f = C.d i i' ≫ f i' i
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : (i j : ι) → C.X i ⟶ D.X j i i' : ι w : c.Rel i i' ⊢ (dNext i) f = C.d i i' ≫ f i' i
obtain rfl := c.next_eq' w
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c f : (i j : ι) → C.X i ⟶ D.X j i : ι w : c.Rel i (c.next i) ⊢ (dNext i) f = C.d i (c.next i) ≫ f (c.next i) i
aa5efb47a07158b2
Module.FinitePresentation.fg_ker
Mathlib/Algebra/Module/FinitePresentation.lean
lemma Module.FinitePresentation.fg_ker [Module.Finite R M] [h : Module.FinitePresentation R N] (l : M →ₗ[R] N) (hl : Function.Surjective l) : (LinearMap.ker l).FG
case intro.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R M l : M →ₗ[R] N hl : Function.Surjective ⇑l s : Finset N hs : Submodule.span R ↑s = ⊤ hs' : (LinearMap.ker (linearCombination R Subtype.val)).FG H : Function.Surjective ⇑(linearCombination R Subtype.val) f : ({ x // x ∈ s } →₀ R) →ₗ[R] M hf : l ∘ₗ f = linearCombination R Subtype.val x : M y : { x // x ∈ s } →₀ R hy : (linearCombination R Subtype.val) y = l x ⊢ (LinearMap.range f).mkQ x ∈ Submodule.map (LinearMap.range f).mkQ (LinearMap.ker l)
rw [← hf, LinearMap.comp_apply, eq_comm, ← sub_eq_zero, ← map_sub] at hy
case intro.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R M l : M →ₗ[R] N hl : Function.Surjective ⇑l s : Finset N hs : Submodule.span R ↑s = ⊤ hs' : (LinearMap.ker (linearCombination R Subtype.val)).FG H : Function.Surjective ⇑(linearCombination R Subtype.val) f : ({ x // x ∈ s } →₀ R) →ₗ[R] M hf : l ∘ₗ f = linearCombination R Subtype.val x : M y : { x // x ∈ s } →₀ R hy : l (x - f y) = 0 ⊢ (LinearMap.range f).mkQ x ∈ Submodule.map (LinearMap.range f).mkQ (LinearMap.ker l)
1eeff1d09d79515c
Bool.forall_bool'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Bool.lean
theorem forall_bool' {p : Bool → Prop} (b : Bool) : (∀ x, p x) ↔ p b ∧ p !b := ⟨fun h ↦ ⟨h _, h _⟩, fun ⟨h₁, h₂⟩ x ↦ by cases b <;> cases x <;> assumption⟩
p : Bool → Prop b : Bool x✝ : p b ∧ p !b x : Bool h₁ : p b h₂ : p !b ⊢ p x
cases b <;> cases x <;> assumption
no goals
6b5e0c30f3648560
Order.height_coe_withTop
Mathlib/Order/KrullDimension.lean
@[simp] lemma height_coe_withTop (x : α) : height (x : WithTop α) = height x
case a.h α : Type u_1 inst✝ : Preorder α x : α p : LTSeries α hlast : RelSeries.last p = x p' : LTSeries (WithTop α) := p.map (fun a => ↑a) ⋯ ⊢ ↑p.length ≤ height ↑x
apply le_iSup₂_of_le p' (by simp [p', hlast]) (by simp [p'])
no goals
8eed977c64e112ed
EuclideanGeometry.collinear_iff_of_two_zsmul_oangle_eq
Mathlib/Geometry/Euclidean/Angle/Oriented/Affine.lean
theorem collinear_iff_of_two_zsmul_oangle_eq {p₁ p₂ p₃ p₄ p₅ p₆ : P} (h : (2 : ℤ) • ∡ p₁ p₂ p₃ = (2 : ℤ) • ∡ p₄ p₅ p₆) : Collinear ℝ ({p₁, p₂, p₃} : Set P) ↔ Collinear ℝ ({p₄, p₅, p₆} : Set P)
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P hd2 : Fact (finrank ℝ V = 2) inst✝ : Oriented ℝ V (Fin 2) p₁ p₂ p₃ p₄ p₅ p₆ : P h : 2 • ∡ p₁ p₂ p₃ = 2 • ∡ p₄ p₅ p₆ ⊢ Collinear ℝ {p₁, p₂, p₃} ↔ Collinear ℝ {p₄, p₅, p₆}
simp_rw [← oangle_eq_zero_or_eq_pi_iff_collinear, ← Real.Angle.two_zsmul_eq_zero_iff, h]
no goals
28d314bc53c04be8
Sym2.lift_smul_lift
Mathlib/Data/Sym/Sym2.lean
lemma lift_smul_lift {α R N} [SMul R N] (f : { f : α → α → R // ∀ a₁ a₂, f a₁ a₂ = f a₂ a₁ }) (g : { g : α → α → N // ∀ a₁ a₂, g a₁ a₂ = g a₂ a₁ }) : lift f • lift g = lift ⟨f.val • g.val, fun _ _ => by rw [Pi.smul_apply', Pi.smul_apply', Pi.smul_apply', Pi.smul_apply', f.prop, g.prop]⟩
case h.mk.mk α : Type u_4 R : Type u_5 N : Type u_6 inst✝ : SMul R N f : { f // ∀ (a₁ a₂ : α), f a₁ a₂ = f a₂ a₁ } g : { g // ∀ (a₁ a₂ : α), g a₁ a₂ = g a₂ a₁ } x✝ : Sym2 α i j : α ⊢ (lift f • lift g) (Quot.mk (Rel α) (i, j)) = lift ⟨↑f • ↑g, ⋯⟩ (Quot.mk (Rel α) (i, j))
simp_all only [Pi.smul_apply', lift_mk]
no goals
e4b10c2d349e7a48
AkraBazziRecurrence.GrowsPolynomially.eventually_atTop_nonneg_or_nonpos
Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean
lemma eventually_atTop_nonneg_or_nonpos (hf : GrowsPolynomially f) : (∀ᶠ x in atTop, 0 ≤ f x) ∨ (∀ᶠ x in atTop, f x ≤ 0)
case h.h.ha f : ℝ → ℝ hf : GrowsPolynomially f c₁ : ℝ left✝¹ : c₁ > 0 c₂ : ℝ left✝ : c₂ > 0 heq : c₁ = c₂ n₀ : ℝ hn₀ : ∀ b ≥ n₀, ∀ u ∈ Set.Icc (1 / 2 * b) b, f u = c₂ * f b n : ℕ hn : n ≥ 1 hyp_ind : ∀ z ∈ Set.Ico (n₀ ⊔ 2) (2 ^ n * (n₀ ⊔ 2)), f z = f (n₀ ⊔ 2) z : ℝ hz : z ∈ Set.Ico (2 ^ n * (n₀ ⊔ 2)) (2 ^ (n + 1) * (n₀ ⊔ 2)) z_nonneg : 0 ≤ z le_2n : n₀ ⊔ 2 ≤ 2 ^ n * (n₀ ⊔ 2) n₀_le_z : n₀ ≤ z fz_eq_c₂fz : f z = c₂ * f z z_to_half_z' : f (1 / 2 * z) = c₂ * f z z_to_half_z : f (1 / 2 * z) = f z ⊢ 1 ≤ 2
norm_num
no goals
69674f7264744f71
AlgebraicGeometry.eq_top_of_sigmaSpec_subset_of_isCompact
Mathlib/AlgebraicGeometry/PointsPi.lean
lemma eq_top_of_sigmaSpec_subset_of_isCompact (U : (Spec (.of (Π i, R i))).Opens) (V : Set (Spec (.of (Π i, R i)))) (hV : ↑(sigmaSpec R).opensRange ⊆ V) (hV' : IsCompact (X := Spec (.of (Π i, R i))) V) (hVU : V ⊆ U) : U = ⊤
ι : Type u R : ι → CommRingCat U : (Spec (CommRingCat.of ((i : ι) → ↑(R i)))).Opens V : Set ↑↑(Spec (CommRingCat.of ((i : ι) → ↑(R i)))).toPresheafedSpace hV : ↑(Scheme.Hom.opensRange (sigmaSpec R)) ⊆ V hV' : IsCompact V hVU : V ⊆ ↑U s : Set ↑(CommRingCat.of ((i : ι) → ↑(R i))) hs : U.carrierᶜ = zeroLocus s t : Finset ↑s ht : V ⊆ ⋃ i ∈ t, (basicOpen ↑i).carrier ⊢ V ⊆ ⋃ i ∈ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t), (basicOpen i).carrier
simpa using ht
no goals
016c4327c8b84e91
Set.exists_ne_of_one_lt_ncard
Mathlib/Data/Set/Card.lean
theorem exists_ne_of_one_lt_ncard (hs : 1 < s.ncard) (a : α) : ∃ b, b ∈ s ∧ b ≠ a
α : Type u_1 s : Set α hs : 1 < s.ncard a : α hsf : s.Finite ⊢ ∃ b ∈ s, b ≠ a
rw [ncard_eq_toFinset_card _ hsf] at hs
α : Type u_1 s : Set α a : α hsf : s.Finite hs : 1 < hsf.toFinset.card ⊢ ∃ b ∈ s, b ≠ a
d76822e87c887b17
smul_inv₀
Mathlib/Algebra/SMulWithZero.lean
theorem smul_inv₀ [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) : (c • x)⁻¹ = c⁻¹ • x⁻¹
case inr α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β hc : c ≠ 0 ⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹
obtain rfl | hx := eq_or_ne x 0
case inr.inl α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α hc : c ≠ 0 ⊢ (c • 0)⁻¹ = c⁻¹ • 0⁻¹ case inr.inr α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β hc : c ≠ 0 hx : x ≠ 0 ⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹
997ac284dc50742e
Finpartition.nonUniforms_bot
Mathlib/Combinatorics/SimpleGraph/Regularity/Uniform.lean
theorem nonUniforms_bot (hε : 0 < ε) : (⊥ : Finpartition A).nonUniforms G ε = ∅
α : Type u_1 𝕜 : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α A : Finset α G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : 𝕜 hε : 0 < ε ⊢ ∀ (x : Finset α × Finset α), x ∉ ⊥.nonUniforms G ε
rintro ⟨u, v⟩
case mk α : Type u_1 𝕜 : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : DecidableEq α A : Finset α G : SimpleGraph α inst✝ : DecidableRel G.Adj ε : 𝕜 hε : 0 < ε u v : Finset α ⊢ (u, v) ∉ ⊥.nonUniforms G ε
0385a92f32889451
Polynomial.cyclotomic_dvd_geom_sum_of_dvd
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
theorem cyclotomic_dvd_geom_sum_of_dvd (R) [Ring R] {d n : ℕ} (hdn : d ∣ n) (hd : d ≠ 1) : cyclotomic d R ∣ ∑ i ∈ Finset.range n, X ^ i
case inr R : Type u_1 inst✝ : Ring R d n : ℕ hdn : d ∣ n hd : d ≠ 1 hn : n > 0 ⊢ cyclotomic d ℤ ∣ ∏ i ∈ n.divisors.erase 1, cyclotomic i ℤ
apply Finset.dvd_prod_of_mem
case inr.ha R : Type u_1 inst✝ : Ring R d n : ℕ hdn : d ∣ n hd : d ≠ 1 hn : n > 0 ⊢ d ∈ n.divisors.erase 1
059a49207424e859
Nat.Linear.Poly.denote_le_cancelAux
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
theorem Poly.denote_le_cancelAux (ctx : Context) (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly) (h : denote_le ctx (r₁.reverse ++ m₁, r₂.reverse ++ m₂)) : denote_le ctx (cancelAux fuel m₁ m₂ r₁ r₂)
case succ ctx : Context fuel : Nat ih : ∀ (m₁ m₂ r₁ r₂ : Poly), denote_le ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂) → denote_le ctx (cancelAux fuel m₁ m₂ r₁ r₂) m₁ m₂ r₁ r₂ : Poly h : denote_le ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂) ⊢ denote_le ctx (match m₁, m₂ with | m₁, [] => (List.reverse r₁ ++ m₁, List.reverse r₂) | [], m₂ => (List.reverse r₁, List.reverse r₂ ++ m₂) | (k₁, v₁) :: m₁, (k₂, v₂) :: m₂ => bif blt v₁ v₂ then cancelAux fuel m₁ ((k₂, v₂) :: m₂) ((k₁, v₁) :: r₁) r₂ else bif blt v₂ v₁ then cancelAux fuel ((k₁, v₁) :: m₁) m₂ r₁ ((k₂, v₂) :: r₂) else bif k₁.blt k₂ then cancelAux fuel m₁ m₂ r₁ ((k₂ - k₁, v₁) :: r₂) else bif k₂.blt k₁ then cancelAux fuel m₁ m₂ ((k₁ - k₂, v₁) :: r₁) r₂ else cancelAux fuel m₁ m₂ r₁ r₂)
split <;> try (simp at h; assumption)
case succ.h_3 ctx : Context fuel : Nat ih : ∀ (m₁ m₂ r₁ r₂ : Poly), denote_le ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂) → denote_le ctx (cancelAux fuel m₁ m₂ r₁ r₂) r₁ r₂ m₁✝¹ m₂✝¹ : Poly k₁✝ : Nat v₁✝ : Var m₁✝ : List (Nat × Var) k₂✝ : Nat v₂✝ : Var m₂✝ : List (Nat × Var) h : denote_le ctx (List.reverse r₁ ++ (k₁✝, v₁✝) :: m₁✝, List.reverse r₂ ++ (k₂✝, v₂✝) :: m₂✝) ⊢ denote_le ctx (bif blt v₁✝ v₂✝ then cancelAux fuel m₁✝ ((k₂✝, v₂✝) :: m₂✝) ((k₁✝, v₁✝) :: r₁) r₂ else bif blt v₂✝ v₁✝ then cancelAux fuel ((k₁✝, v₁✝) :: m₁✝) m₂✝ r₁ ((k₂✝, v₂✝) :: r₂) else bif k₁✝.blt k₂✝ then cancelAux fuel m₁✝ m₂✝ r₁ ((k₂✝ - k₁✝, v₁✝) :: r₂) else bif k₂✝.blt k₁✝ then cancelAux fuel m₁✝ m₂✝ ((k₁✝ - k₂✝, v₁✝) :: r₁) r₂ else cancelAux fuel m₁✝ m₂✝ r₁ r₂)
ad8a8aef5a5a602f
eq_separableClosure_iff
Mathlib/FieldTheory/PurelyInseparable/Basic.lean
theorem eq_separableClosure_iff [Algebra.IsAlgebraic F E] (L : IntermediateField F E) : L = separableClosure F E ↔ Algebra.IsSeparable F L ∧ IsPurelyInseparable L E := ⟨by rintro rfl; exact ⟨isSeparable F E, isPurelyInseparable F E⟩, fun ⟨_, _⟩ ↦ eq_separableClosure F E L⟩
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E L : IntermediateField F E ⊢ L = separableClosure F E → Algebra.IsSeparable F ↥L ∧ IsPurelyInseparable (↥L) E
rintro rfl
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E ⊢ Algebra.IsSeparable F ↥(separableClosure F E) ∧ IsPurelyInseparable (↥(separableClosure F E)) E
8e041315e77074e0
BitVec.getLsbD_shiftLeftZeroExtend
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem getLsbD_shiftLeftZeroExtend (x : BitVec m) (n : Nat) : getLsbD (shiftLeftZeroExtend x n) i = ((! decide (i < n)) && getLsbD x (i - n))
m i : Nat x : BitVec m n : Nat ⊢ (x.shiftLeftZeroExtend n).getLsbD i = (!decide (i < n) && x.getLsbD (i - n))
rw [shiftLeftZeroExtend_eq]
m i : Nat x : BitVec m n : Nat ⊢ (setWidth (m + n) x <<< n).getLsbD i = (!decide (i < n) && x.getLsbD (i - n))
fe225d2df00e0016
Array.any_eq_false'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Lemmas.lean
theorem any_eq_false' {p : α → Bool} {as : Array α} : as.any p = false ↔ ∀ x, x ∈ as → ¬p x
α : Type u_1 p : α → Bool as : Array α ⊢ (¬∃ x, x ∈ as ∧ p x = true) ↔ ∀ (x : α), x ∈ as → ¬p x = true
simp
no goals
7eaf041ddd6bd15a
Nat.Partrec.Code.hG
Mathlib/Computability/PartrecCode.lean
theorem hG : Primrec G
case hpr a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) a.1.1.2 let y ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) a.1.1.2 some (Nat.pair x y)
have L := (Primrec.fst.comp Primrec.fst).comp (Primrec.fst (α := (List (List (Option ℕ)) × ℕ) × ℕ) (β := Code × Code × Option ℕ × Option ℕ))
case hpr a : Primrec fun a => ofNat (ℕ × Code) a.length k✝ : Primrec fun a => (ofNat (ℕ × Code) a.1.length).1 n✝ : Primrec Prod.snd k : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).1 n : Primrec fun a => a.1.2 k' : Primrec Prod.snd c : Primrec fun a => (ofNat (ℕ × Code) a.1.1.length).2 L : Primrec fun a => a.1.1.1 ⊢ Primrec fun a => do let x ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.1) a.1.1.2 let y ← Nat.Partrec.Code.lup a.1.1.1 ((ofNat (ℕ × Code) a.1.1.1.length).1, a.2.2.1) a.1.1.2 some (Nat.pair x y)
4867ddf124efd4e0
EReal.nhdsWithin_bot
Mathlib/Topology/Instances/EReal/Lemmas.lean
lemma nhdsWithin_bot : 𝓝[≠] (⊥ : EReal) = (atBot).map Real.toEReal
case neg.intro x : ℝ hx : ⊥ < ↑x hx_top : ¬↑x = ⊤ ⊢ ∃ i', Ioc ⊥ ↑i' ⊆ Iic ↑x ∩ {⊥}ᶜ
refine ⟨x, fun x ⟨h1, h2⟩ ↦ ?_⟩
case neg.intro x✝¹ : ℝ hx : ⊥ < ↑x✝¹ hx_top : ¬↑x✝¹ = ⊤ x : EReal x✝ : x ∈ Ioc ⊥ ↑x✝¹ h1 : ⊥ < x h2 : x ≤ ↑x✝¹ ⊢ x ∈ Iic ↑x✝¹ ∩ {⊥}ᶜ
5f615563863ca2ef
emultiplicity_add_of_gt
Mathlib/RingTheory/Multiplicity.lean
theorem emultiplicity_add_of_gt {p a b : α} (h : emultiplicity p b < emultiplicity p a) : emultiplicity p (a + b) = emultiplicity p b
α : Type u_1 inst✝ : Ring α p a b : α h : emultiplicity p b < emultiplicity p a this : FiniteMultiplicity p b ⊢ emultiplicity p (a + b) = emultiplicity p b
rw [this.emultiplicity_eq_multiplicity] at *
α : Type u_1 inst✝ : Ring α p a b : α h : ↑(multiplicity p b) < emultiplicity p a this : FiniteMultiplicity p b ⊢ emultiplicity p (a + b) = ↑(multiplicity p b)
0b0aa737ae8e63f5
EuclideanGeometry.eq_of_dist_eq_of_dist_eq_of_mem_of_finrank_eq_two
Mathlib/Geometry/Euclidean/Basic.lean
theorem eq_of_dist_eq_of_dist_eq_of_mem_of_finrank_eq_two {s : AffineSubspace ℝ P} [FiniteDimensional ℝ s.direction] (hd : finrank ℝ s.direction = 2) {c₁ c₂ p₁ p₂ p : P} (hc₁s : c₁ ∈ s) (hc₂s : c₂ ∈ s) (hp₁s : p₁ ∈ s) (hp₂s : p₂ ∈ s) (hps : p ∈ s) {r₁ r₂ : ℝ} (hc : c₁ ≠ c₂) (hp : p₁ ≠ p₂) (hp₁c₁ : dist p₁ c₁ = r₁) (hp₂c₁ : dist p₂ c₁ = r₁) (hpc₁ : dist p c₁ = r₁) (hp₁c₂ : dist p₁ c₂ = r₂) (hp₂c₂ : dist p₂ c₂ = r₂) (hpc₂ : dist p c₂ = r₂) : p = p₁ ∨ p = p₂
V : Type u_1 P : Type u_2 inst✝⁴ : NormedAddCommGroup V inst✝³ : InnerProductSpace ℝ V inst✝² : MetricSpace P inst✝¹ : NormedAddTorsor V P s : AffineSubspace ℝ P inst✝ : FiniteDimensional ℝ ↥s.direction hd : finrank ℝ ↥s.direction = 2 c₁ c₂ p₁ p₂ p : P hc₁s : c₁ ∈ s hc₂s : c₂ ∈ s hp₁s : p₁ ∈ s hp₂s : p₂ ∈ s hps : p ∈ s r₁ r₂ : ℝ hc : c₁ ≠ c₂ hp : p₁ ≠ p₂ hp₁c₁ : dist p₁ c₁ = r₁ hp₂c₁ : dist p₂ c₁ = r₁ hpc₁ : dist p c₁ = r₁ hp₁c₂ : dist p₁ c₂ = r₂ hp₂c₂ : dist p₂ c₂ = r₂ hpc₂ : dist p c₂ = r₂ ho : inner (c₂ -ᵥ c₁) (p₂ -ᵥ p₁) = 0 hop : inner (c₂ -ᵥ c₁) (p -ᵥ p₁) = 0 b : Fin 2 → V := ![c₂ -ᵥ c₁, p₂ -ᵥ p₁] hb : LinearIndependent ℝ b hbs : Submodule.span ℝ (Set.range b) = s.direction v : V hv : v ∈ s.direction hu : Finset.univ = {0, 1} ⊢ Set.range b = {c₂ -ᵥ c₁, p₂ -ᵥ p₁}
classical rw [← Fintype.coe_image_univ, hu] simp [b]
no goals
d020d573407e1b1f
Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule
Mathlib/Algebra/Module/FinitePresentation.lean
/-- Let `M` `N` be a finitely presented `R`-modules. Any `Mₛ ≃ₗ[R] Nₛ` between the localizations at `S : Submonoid R` can be lifted to an isomorphism between `Mᵣ ≃ₗ[R] Nᵣ` for some `r ∈ S`. -/ lemma Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule [Module.FinitePresentation R M] [Module.FinitePresentation R N] (l : M' ≃ₗ[R] N') : ∃ (r : R) (hr : r ∈ S) (l' : LocalizedModule (.powers r) M ≃ₗ[Localization (.powers r)] LocalizedModule (.powers r) N), (LocalizedModule.lift (.powers r) g fun s ↦ map_units g ⟨s.1, SetLike.le_def.mp (Submonoid.powers_le.mpr hr) s.2⟩) ∘ₗ l'.toLinearMap = l ∘ₗ (LocalizedModule.lift (.powers r) f fun s ↦ map_units f ⟨s.1, SetLike.le_def.mp (Submonoid.powers_le.mpr hr) s.2⟩)
case intro.intro.intro.intro R : Type u_3 M : Type u_4 N : Type u_5 inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N S : Submonoid R M' : Type u_1 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' f : M →ₗ[R] M' inst✝⁵ : IsLocalizedModule S f N' : Type u_2 inst✝⁴ : AddCommGroup N' inst✝³ : Module R N' g : N →ₗ[R] N' inst✝² : IsLocalizedModule S g inst✝¹ : FinitePresentation R M inst✝ : FinitePresentation R N l : M' ≃ₗ[R] N' l' : M →ₗ[R] N s : ↥S H : g ∘ₗ l' = s • ↑l ∘ₗ f this : Function.Bijective ⇑((map S f g) l') r : R hr : r ∈ S hr' : ∀ (t : R), r ∣ t → Function.Bijective ⇑((LocalizedModule.map (Submonoid.powers t)) l') rs : Submonoid R := Submonoid.powers (r * ↑s) Rᵣₛ : Type u_3 := Localization rs ⊢ ∃ r, ∃ (hr : r ∈ S), ∃ l', LocalizedModule.lift (Submonoid.powers r) g ⋯ ∘ₗ ↑R ↑l' = ↑l ∘ₗ LocalizedModule.lift (Submonoid.powers r) f ⋯
have hsu : IsUnit (algebraMap R Rᵣₛ s) := isUnit_of_dvd_unit (hu := IsLocalization.map_units (M := rs) Rᵣₛ ⟨_, Submonoid.mem_powers _⟩) (map_dvd (algebraMap R Rᵣₛ) ⟨r, mul_comm _ _⟩)
case intro.intro.intro.intro R : Type u_3 M : Type u_4 N : Type u_5 inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N S : Submonoid R M' : Type u_1 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' f : M →ₗ[R] M' inst✝⁵ : IsLocalizedModule S f N' : Type u_2 inst✝⁴ : AddCommGroup N' inst✝³ : Module R N' g : N →ₗ[R] N' inst✝² : IsLocalizedModule S g inst✝¹ : FinitePresentation R M inst✝ : FinitePresentation R N l : M' ≃ₗ[R] N' l' : M →ₗ[R] N s : ↥S H : g ∘ₗ l' = s • ↑l ∘ₗ f this : Function.Bijective ⇑((map S f g) l') r : R hr : r ∈ S hr' : ∀ (t : R), r ∣ t → Function.Bijective ⇑((LocalizedModule.map (Submonoid.powers t)) l') rs : Submonoid R := Submonoid.powers (r * ↑s) Rᵣₛ : Type u_3 := Localization rs hsu : IsUnit ((algebraMap R Rᵣₛ) ↑s) ⊢ ∃ r, ∃ (hr : r ∈ S), ∃ l', LocalizedModule.lift (Submonoid.powers r) g ⋯ ∘ₗ ↑R ↑l' = ↑l ∘ₗ LocalizedModule.lift (Submonoid.powers r) f ⋯
a097c231d57d7178
MulAction.disjoint_image_image_iff
Mathlib/GroupTheory/GroupAction/Defs.lean
theorem disjoint_image_image_iff {U V : Set α} : letI := orbitRel G α Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) ↔ ∀ x ∈ U, ∀ g : G, g • x ∉ V
case refine_2 G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' ⊢ (∀ x ∈ U, ∀ (g : G), g • x ∉ V) → Disjoint (f '' U) (f '' V)
intro h
case refine_2 G : Type u_1 α : Type u_2 inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' h : ∀ x ∈ U, ∀ (g : G), g • x ∉ V ⊢ Disjoint (f '' U) (f '' V)
cd5f2363ba3b2a11
multiplicity_sub_of_gt
Mathlib/RingTheory/Multiplicity.lean
theorem multiplicity_sub_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) (hfin : FiniteMultiplicity p b) : multiplicity p (a - b) = multiplicity p b
α : Type u_1 inst✝ : Ring α p a b : α h : multiplicity p b < multiplicity p a hfin : FiniteMultiplicity p b ⊢ multiplicity p (a - b) = multiplicity p b
rw [sub_eq_add_neg, hfin.neg.multiplicity_add_of_gt] <;> rw [multiplicity_neg]
α : Type u_1 inst✝ : Ring α p a b : α h : multiplicity p b < multiplicity p a hfin : FiniteMultiplicity p b ⊢ multiplicity p b < multiplicity p a
933befd822298c63
CategoryTheory.Triangulated.TStructure.exists_triangle
Mathlib/CategoryTheory/Triangulated/TStructure/Basic.lean
lemma exists_triangle (A : C) (n₀ n₁ : ℤ) (h : n₀ + 1 = n₁) : ∃ (X Y : C) (_ : t.le n₀ X) (_ : t.ge n₁ Y) (f : X ⟶ A) (g : A ⟶ Y) (h : Y ⟶ X⟦(1 : ℤ)⟧), Triangle.mk f g h ∈ distTriang C
case refine_3 C : Type u_1 inst✝⁵ : Category.{u_2, u_1} C inst✝⁴ : Preadditive C inst✝³ : HasZeroObject C inst✝² : HasShift C ℤ inst✝¹ : ∀ (n : ℤ), (shiftFunctor C n).Additive inst✝ : Pretriangulated C t : TStructure C A : C n₀ n₁ : ℤ h✝ : n₀ + 1 = n₁ X Y : C hX : t.le 0 X hY : t.ge 1 Y f : X ⟶ (shiftFunctor C n₀).obj A g : (shiftFunctor C n₀).obj A ⟶ Y h : Y ⟶ (shiftFunctor C 1).obj X mem : Triangle.mk f g h ∈ distinguishedTriangles T : Triangle C := (Triangle.shiftFunctor C (-n₀)).obj (Triangle.mk f g h) e : ((shiftEquiv C n₀).functor ⋙ (shiftEquiv C n₀).inverse).obj A ≅ (𝟭 C).obj A := (shiftEquiv C n₀).unitIso.symm.app A ⊢ T.mor₃ ≫ (shiftFunctor C 1).map (𝟙 T.obj₁) = 𝟙 T.obj₃ ≫ ((-n₀).negOnePow • (shiftFunctor C (-n₀)).map h ≫ (shiftFunctorComm C 1 (-n₀)).hom.app X)
simp [T]
no goals
1024dfa167963c4d
NonAssocSemiring.ext
Mathlib/Algebra/Ring/Ext.lean
theorem ext ⦃inst₁ inst₂ : NonAssocSemiring R⦄ (h_add : local_hAdd[R, inst₁] = local_hAdd[R, inst₂]) (h_mul : local_hMul[R, inst₁] = local_hMul[R, inst₂]) : inst₁ = inst₂
case mk R : Type u inst₂ : NonAssocSemiring R toNonUnitalNonAssocSemiring✝ : NonUnitalNonAssocSemiring R toOne✝ : One R one_mul✝ : ∀ (a : R), 1 * a = a mul_one✝ : ∀ (a : R), a * 1 = a toNatCast✝ : NatCast R natCast_zero✝ : NatCast.natCast 0 = 0 natCast_succ✝ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 h_add : HAdd.hAdd = HAdd.hAdd h_mul : HMul.hMul = HMul.hMul h : toNonUnitalNonAssocSemiring = toNonUnitalNonAssocSemiring h_zero : Zero.zero = Zero.zero h_one' : MulOneClass.toOne = MulOneClass.toOne h_one : One.one = One.one this✝ : toAddCommMonoidWithOne = toAddCommMonoidWithOne this : toNatCast = toNatCast ⊢ mk one_mul✝ mul_one✝ natCast_zero✝ natCast_succ✝ = inst₂
cases inst₂
case mk.mk R : Type u toNonUnitalNonAssocSemiring✝¹ : NonUnitalNonAssocSemiring R toOne✝¹ : One R one_mul✝¹ : ∀ (a : R), 1 * a = a mul_one✝¹ : ∀ (a : R), a * 1 = a toNatCast✝¹ : NatCast R natCast_zero✝¹ : NatCast.natCast 0 = 0 natCast_succ✝¹ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 toNonUnitalNonAssocSemiring✝ : NonUnitalNonAssocSemiring R toOne✝ : One R one_mul✝ : ∀ (a : R), 1 * a = a mul_one✝ : ∀ (a : R), a * 1 = a toNatCast✝ : NatCast R natCast_zero✝ : NatCast.natCast 0 = 0 natCast_succ✝ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1 h_add : HAdd.hAdd = HAdd.hAdd h_mul : HMul.hMul = HMul.hMul h : toNonUnitalNonAssocSemiring = toNonUnitalNonAssocSemiring h_zero : Zero.zero = Zero.zero h_one' : MulOneClass.toOne = MulOneClass.toOne h_one : One.one = One.one this✝ : toAddCommMonoidWithOne = toAddCommMonoidWithOne this : toNatCast = toNatCast ⊢ mk one_mul✝¹ mul_one✝¹ natCast_zero✝¹ natCast_succ✝¹ = mk one_mul✝ mul_one✝ natCast_zero✝ natCast_succ✝
92f30e4f0a6c2ba5
FirstOrder.Language.LHom.comp_onBoundedFormula
Mathlib/ModelTheory/Syntax.lean
theorem comp_onBoundedFormula {L'' : Language} (φ : L' →ᴸ L'') (ψ : L →ᴸ L') : ((φ.comp ψ).onBoundedFormula : L.BoundedFormula α n → L''.BoundedFormula α n) = φ.onBoundedFormula ∘ ψ.onBoundedFormula
case h L : Language L' : Language α : Type u' n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' f : L.BoundedFormula α n ⊢ (φ.comp ψ).onBoundedFormula f = (φ.onBoundedFormula ∘ ψ.onBoundedFormula) f
induction f with | falsum => rfl | equal => simp [Term.bdEqual] | rel => simp only [onBoundedFormula, comp_onRelation, comp_onTerm, Function.comp_apply]; rfl | imp _ _ ih1 ih2 => simp only [onBoundedFormula, Function.comp_apply, ih1, ih2, eq_self_iff_true, and_self_iff] | all _ ih3 => simp only [ih3, onBoundedFormula, Function.comp_apply]
no goals
b02807e179750b12
MeasureTheory.AEEqFun.coeFn_compQuasiMeasurePreserving
Mathlib/MeasureTheory/Function/AEEqFun.lean
theorem coeFn_compQuasiMeasurePreserving (g : β →ₘ[ν] γ) (hf : QuasiMeasurePreserving f μ ν) : g.compQuasiMeasurePreserving f hf =ᵐ[μ] g ∘ f
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : TopologicalSpace γ inst✝ : MeasurableSpace β ν : Measure β f : α → β g : β →ₘ[ν] γ hf : QuasiMeasurePreserving f μ ν ⊢ ↑(mk (↑g ∘ f) ⋯) =ᶠ[ae μ] ↑g ∘ f
apply coeFn_mk
no goals
c59f5e0d5f1d86dc
MeasureTheory.MemLp.exists_boundedContinuous_eLpNorm_sub_le
Mathlib/MeasureTheory/Function/ContinuousMapDense.lean
theorem MemLp.exists_boundedContinuous_eLpNorm_sub_le [μ.WeaklyRegular] (hp : p ≠ ∞) {f : α → E} (hf : MemLp f p μ) {ε : ℝ≥0∞} (hε : ε ≠ 0) : ∃ g : α →ᵇ E, eLpNorm (f - (g : α → E)) p μ ≤ ε ∧ MemLp g p μ
case intro.intro.intro.intro α : Type u_1 inst✝⁶ : TopologicalSpace α inst✝⁵ : NormalSpace α inst✝⁴ : MeasurableSpace α inst✝³ : BorelSpace α E : Type u_2 inst✝² : NormedAddCommGroup E μ : Measure α p : ℝ≥0∞ inst✝¹ : NormedSpace ℝ E inst✝ : μ.WeaklyRegular hp : p ≠ ⊤ f : α → E hf : MemLp f p μ ε✝ : ℝ≥0∞ hε✝ : ε✝ ≠ 0 c : E t : Set α ht : MeasurableSet t htμ : μ t < ⊤ ε : ℝ≥0∞ hε : ε ≠ 0 δ : ℝ≥0∞ δpos : 0 < δ hδ : ∀ (f g : α → E), AEStronglyMeasurable f μ → AEStronglyMeasurable g μ → eLpNorm f p μ ≤ δ → eLpNorm g p μ ≤ δ → eLpNorm (f + g) p μ < ε η : ℝ≥0 ηpos : 0 < η hη : ∀ (s : Set α), μ s ≤ ↑η → eLpNorm (s.indicator fun _x => c) p μ ≤ δ hη_pos' : 0 < ↑η ⊢ ∃ g, eLpNorm (g - t.indicator fun x => c) p μ ≤ ε ∧ Continuous g ∧ MemLp g p μ ∧ IsBounded (range g)
obtain ⟨s, st, s_closed, μs⟩ : ∃ s, s ⊆ t ∧ IsClosed s ∧ μ (t \ s) < η := ht.exists_isClosed_diff_lt htμ.ne hη_pos'.ne'
case intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝⁶ : TopologicalSpace α inst✝⁵ : NormalSpace α inst✝⁴ : MeasurableSpace α inst✝³ : BorelSpace α E : Type u_2 inst✝² : NormedAddCommGroup E μ : Measure α p : ℝ≥0∞ inst✝¹ : NormedSpace ℝ E inst✝ : μ.WeaklyRegular hp : p ≠ ⊤ f : α → E hf : MemLp f p μ ε✝ : ℝ≥0∞ hε✝ : ε✝ ≠ 0 c : E t : Set α ht : MeasurableSet t htμ : μ t < ⊤ ε : ℝ≥0∞ hε : ε ≠ 0 δ : ℝ≥0∞ δpos : 0 < δ hδ : ∀ (f g : α → E), AEStronglyMeasurable f μ → AEStronglyMeasurable g μ → eLpNorm f p μ ≤ δ → eLpNorm g p μ ≤ δ → eLpNorm (f + g) p μ < ε η : ℝ≥0 ηpos : 0 < η hη : ∀ (s : Set α), μ s ≤ ↑η → eLpNorm (s.indicator fun _x => c) p μ ≤ δ hη_pos' : 0 < ↑η s : Set α st : s ⊆ t s_closed : IsClosed s μs : μ (t \ s) < ↑η ⊢ ∃ g, eLpNorm (g - t.indicator fun x => c) p μ ≤ ε ∧ Continuous g ∧ MemLp g p μ ∧ IsBounded (range g)
7e6196982c59c5fe
Polynomial.Chebyshev.S_eval_neg_two
Mathlib/RingTheory/Polynomial/Chebyshev.lean
theorem S_eval_neg_two (n : ℤ) : (S R n).eval (-2) = n.negOnePow * (n + 1)
case one R : Type u_1 inst✝ : CommRing R ⊢ eval (-2) (S R 1) = ↑↑(Int.negOnePow 1) * (↑1 + 1)
simp
case one R : Type u_1 inst✝ : CommRing R ⊢ -2 = -1 + -1
ed0948eda57a7e26
liminf_mul_le
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
lemma liminf_mul_le (h₁ : 0 ≤ᶠ[f] u) (h₂ : IsBoundedUnder (fun x1 x2 ↦ x1 ≤ x2) f u) (h₃ : 0 ≤ᶠ[f] v) (h₄ : IsCoboundedUnder (fun x1 x2 ↦ x1 ≥ x2) f v) : liminf (u * v) f ≤ (limsup u f) * liminf v f
ι : Type u_1 f : Filter ι inst✝ : f.NeBot u v : ι → ℝ h₁ : 0 ≤ᶠ[f] u h₂ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u h₃ : 0 ≤ᶠ[f] v h₄ : IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f v h : IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f (u * v) h' : IsBoundedUnder (fun x1 x2 => x1 ≥ x2) f fun x => u x * v x a : ℝ a_u : a > limsup u f b : ℝ b_v : b > liminf v f c : ℝ c_ab : c > a * b ⊢ ∃ᶠ (a : ι) in f, (u * v) a < c
refine ((frequently_lt_of_liminf_lt h₄ b_v).and_eventually ((eventually_lt_of_limsup_lt a_u).and (h₁.and h₃))).mono fun x ⟨x_v, x_u, u_0, v_0⟩ ↦ ?_
ι : Type u_1 f : Filter ι inst✝ : f.NeBot u v : ι → ℝ h₁ : 0 ≤ᶠ[f] u h₂ : IsBoundedUnder (fun x1 x2 => x1 ≤ x2) f u h₃ : 0 ≤ᶠ[f] v h₄ : IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f v h : IsCoboundedUnder (fun x1 x2 => x1 ≥ x2) f (u * v) h' : IsBoundedUnder (fun x1 x2 => x1 ≥ x2) f fun x => u x * v x a : ℝ a_u : a > limsup u f b : ℝ b_v : b > liminf v f c : ℝ c_ab : c > a * b x : ι x✝ : v x < b ∧ u x < a ∧ 0 x ≤ u x ∧ 0 x ≤ v x x_v : v x < b x_u : u x < a u_0 : 0 x ≤ u x v_0 : 0 x ≤ v x ⊢ (u * v) x < c
caf48efa54f2ac3f
Associates.finite_factors
Mathlib/RingTheory/DedekindDomain/Factorization.lean
theorem Associates.finite_factors {I : Ideal R} (hI : I ≠ 0) : ∀ᶠ v : HeightOneSpectrum R in Filter.cofinite, ((Associates.mk v.asIdeal).count (Associates.mk I).factors : ℤ) = 0
case h R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ 0 v : HeightOneSpectrum R ⊢ v ∈ {v | ¬↑((Associates.mk v.asIdeal).count (Associates.mk I).factors) = 0} ↔ v ∈ {v | v.asIdeal ∣ I}
simp_rw [Int.natCast_eq_zero]
case h R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDedekindDomain R I : Ideal R hI : I ≠ 0 v : HeightOneSpectrum R ⊢ v ∈ {v | ¬(Associates.mk v.asIdeal).count (Associates.mk I).factors = 0} ↔ v ∈ {v | v.asIdeal ∣ I}
3ce74cb6fd43575e
CategoryTheory.comp_rightAdjointMate
Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean
theorem comp_rightAdjointMate {X Y Z : C} [HasRightDual X] [HasRightDual Y] [HasRightDual Z] {f : X ⟶ Y} {g : Y ⟶ Z} : (f ≫ g)ᘁ = gᘁ ≫ fᘁ
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C X Y Z : C inst✝² : HasRightDual X inst✝¹ : HasRightDual Y inst✝ : HasRightDual Z f : X ⟶ Y g : Y ⟶ Z ⊢ η_ Y Yᘁ ≫ Y ◁ ((ρ_ Yᘁ).inv ≫ Yᘁ ◁ η_ X Xᘁ ≫ Yᘁ ◁ f ▷ Xᘁ ≫ (α_ Yᘁ Y Xᘁ).inv ≫ ε_ Y Yᘁ ▷ Xᘁ ≫ (λ_ Xᘁ).hom) ≫ g ▷ Xᘁ = 𝟙 (𝟙_ C) ⊗≫ (η_ Y Yᘁ ▷ 𝟙_ C ≫ (Y ⊗ Yᘁ) ◁ η_ X Xᘁ) ⊗≫ Y ◁ Yᘁ ◁ f ▷ Xᘁ ⊗≫ Y ◁ ε_ Y Yᘁ ▷ Xᘁ ⊗≫ g ▷ Xᘁ ⊗≫ 𝟙 (Z ⊗ Xᘁ)
monoidal
no goals
9d45d24ba2271614
AbsoluteValue.exists_partition_int
Mathlib/NumberTheory/ClassNumber/AdmissibleAbs.lean
theorem exists_partition_int (n : ℕ) {ε : ℝ} (hε : 0 < ε) {b : ℤ} (hb : b ≠ 0) (A : Fin n → ℤ) : ∃ t : Fin n → Fin ⌈1 / ε⌉₊, ∀ i₀ i₁, t i₀ = t i₁ → ↑(abs (A i₁ % b - A i₀ % b)) < abs b • ε
case refine_2 n : ℕ ε : ℝ hε : 0 < ε b : ℤ hb : b ≠ 0 A : Fin n → ℤ hb' : 0 < ↑|b| hbε : 0 < |b| • ε hfloor : ∀ (i : Fin n), 0 ≤ ⌊↑(A i % b) / |b| • ε⌋ i₀ i₁ : Fin n hi✝¹ : (fun i => ⟨⌊↑(A i % b) / |b| • ε⌋.natAbs, ⋯⟩) i₀ = (fun i => ⟨⌊↑(A i % b) / |b| • ε⌋.natAbs, ⋯⟩) i₁ hi✝ : ⌊↑(A i₀ % b) / |b| • ε⌋ = ⌊↑(A i₁ % b) / |b| • ε⌋ hi : |↑(A i₀ % b) / |b| • ε - ↑(A i₁ % b) / |b| • ε| < 1 ⊢ ↑|A i₁ % b - A i₀ % b| < |b| • ε
rw [abs_sub_comm, ← sub_div, abs_div, abs_of_nonneg hbε.le, div_lt_iff₀ hbε, one_mul] at hi
case refine_2 n : ℕ ε : ℝ hε : 0 < ε b : ℤ hb : b ≠ 0 A : Fin n → ℤ hb' : 0 < ↑|b| hbε : 0 < |b| • ε hfloor : ∀ (i : Fin n), 0 ≤ ⌊↑(A i % b) / |b| • ε⌋ i₀ i₁ : Fin n hi✝¹ : (fun i => ⟨⌊↑(A i % b) / |b| • ε⌋.natAbs, ⋯⟩) i₀ = (fun i => ⟨⌊↑(A i % b) / |b| • ε⌋.natAbs, ⋯⟩) i₁ hi✝ : ⌊↑(A i₀ % b) / |b| • ε⌋ = ⌊↑(A i₁ % b) / |b| • ε⌋ hi : |↑(A i₁ % b) - ↑(A i₀ % b)| < |b| • ε ⊢ ↑|A i₁ % b - A i₀ % b| < |b| • ε
b91f00c7ed7d0496
Ideal.exists_minimalPrimes_le
Mathlib/RingTheory/Ideal/MinimalPrime/Basic.lean
theorem Ideal.exists_minimalPrimes_le [J.IsPrime] (e : I ≤ J) : ∃ p ∈ I.minimalPrimes, p ≤ J
case ih.refine_2 R : Type u_1 inst✝¹ : CommSemiring R I J : Ideal R inst✝ : J.IsPrime e : I ≤ J S : Set (Ideal R)ᵒᵈ := {p | IsPrime p ∧ I ≤ OrderDual.ofDual p} c : Set (Ideal R) hc : c ⊆ S hc' : IsChain (fun x1 x2 => x1 ≤ x2) c J' : (Ideal R)ᵒᵈ hJ' : J' ∈ c ⊢ ∀ z ∈ c, z ≤ OrderDual.toDual (sInf c)
rintro z hz
case ih.refine_2 R : Type u_1 inst✝¹ : CommSemiring R I J : Ideal R inst✝ : J.IsPrime e : I ≤ J S : Set (Ideal R)ᵒᵈ := {p | IsPrime p ∧ I ≤ OrderDual.ofDual p} c : Set (Ideal R) hc : c ⊆ S hc' : IsChain (fun x1 x2 => x1 ≤ x2) c J' : (Ideal R)ᵒᵈ hJ' : J' ∈ c z : (Ideal R)ᵒᵈ hz : z ∈ c ⊢ z ≤ OrderDual.toDual (sInf c)
c1ef3455a9a6ac1a
star_div₀
Mathlib/Algebra/Star/Basic.lean
theorem star_div₀ [CommGroupWithZero R] [StarMul R] (x y : R) : star (x / y) = star x / star y
case a R : Type u inst✝¹ : CommGroupWithZero R inst✝ : StarMul R x y : R ⊢ op (star (x / y)) = op (star x / star y)
rw [division_def, op_div, mul_comm, star_mul, star_inv₀, op_mul, op_inv]
no goals
c770a63732011bf2
pow_sub_one_dvd_differentIdeal_aux
Mathlib/RingTheory/DedekindDomain/Different.lean
lemma pow_sub_one_dvd_differentIdeal_aux [IsFractionRing B L] [IsDedekindDomain A] [NoZeroSMulDivisors A B] [Module.Finite A B] {p : Ideal A} [p.IsMaximal] (P : Ideal B) {e : ℕ} (he : e ≠ 0) (hp : p ≠ ⊥) (hP : P ^ e ∣ p.map (algebraMap A B)) : P ^ (e - 1) ∣ differentIdeal A B
A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝²² : CommRing A inst✝²¹ : Field K inst✝²⁰ : CommRing B inst✝¹⁹ : Field L inst✝¹⁸ : Algebra A K inst✝¹⁷ : Algebra B L inst✝¹⁶ : Algebra A B inst✝¹⁵ : Algebra K L inst✝¹⁴ : Algebra A L inst✝¹³ : IsScalarTower A K L inst✝¹² : IsScalarTower A B L inst✝¹¹ : IsDomain A inst✝¹⁰ : IsFractionRing A K inst✝⁹ : FiniteDimensional K L inst✝⁸ : Algebra.IsSeparable K L inst✝⁷ : IsIntegralClosure B A L inst✝⁶ : IsIntegrallyClosed A inst✝⁵ : IsDedekindDomain B inst✝⁴ : IsFractionRing B L inst✝³ : IsDedekindDomain A inst✝² : NoZeroSMulDivisors A B inst✝¹ : Module.Finite A B p : Ideal A inst✝ : p.IsMaximal P : Ideal B e : ℕ he : e ≠ 0 hp : p ≠ ⊥ hP : P ^ e ∣ Ideal.map (algebraMap A B) p a : Ideal B ha : Ideal.map (algebraMap A B) p = P ^ (e - 1) * a hp' : ¬Ideal.map (algebraMap A B) p = ⊥ habot : a ≠ ⊥ hPbot : P ≠ ⊥ ⊢ Ideal.map (algebraMap A B) p ∣ a ^ e
obtain ⟨b, hb⟩ := hP
case intro A : Type u_1 K : Type u_2 L : Type u B : Type u_3 inst✝²² : CommRing A inst✝²¹ : Field K inst✝²⁰ : CommRing B inst✝¹⁹ : Field L inst✝¹⁸ : Algebra A K inst✝¹⁷ : Algebra B L inst✝¹⁶ : Algebra A B inst✝¹⁵ : Algebra K L inst✝¹⁴ : Algebra A L inst✝¹³ : IsScalarTower A K L inst✝¹² : IsScalarTower A B L inst✝¹¹ : IsDomain A inst✝¹⁰ : IsFractionRing A K inst✝⁹ : FiniteDimensional K L inst✝⁸ : Algebra.IsSeparable K L inst✝⁷ : IsIntegralClosure B A L inst✝⁶ : IsIntegrallyClosed A inst✝⁵ : IsDedekindDomain B inst✝⁴ : IsFractionRing B L inst✝³ : IsDedekindDomain A inst✝² : NoZeroSMulDivisors A B inst✝¹ : Module.Finite A B p : Ideal A inst✝ : p.IsMaximal P : Ideal B e : ℕ he : e ≠ 0 hp : p ≠ ⊥ a : Ideal B ha : Ideal.map (algebraMap A B) p = P ^ (e - 1) * a hp' : ¬Ideal.map (algebraMap A B) p = ⊥ habot : a ≠ ⊥ hPbot : P ≠ ⊥ b : Ideal B hb : Ideal.map (algebraMap A B) p = P ^ e * b ⊢ Ideal.map (algebraMap A B) p ∣ a ^ e
18a0d9e4648de8c5
CategoryTheory.ShortComplex.exact_iff_epi
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma exact_iff_epi [HasZeroObject C] (hg : S.g = 0) : S.Exact ↔ Epi S.f
case mp C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C S : ShortComplex C inst✝ : HasZeroObject C hg : S.g = 0 h : S.Exact this : S.HasHomology ⊢ Epi S.f
simp only [exact_iff_isZero_homology] at h
case mp C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C S : ShortComplex C inst✝ : HasZeroObject C hg : S.g = 0 this : S.HasHomology h : IsZero S.homology ⊢ Epi S.f
7032e0401db77092
LaurentSeries.exists_ratFunc_val_lt
Mathlib/RingTheory/LaurentSeries.lean
theorem exists_ratFunc_val_lt (f : K⸨X⸩) (γ : ℤₘ₀ˣ) : ∃ Q : RatFunc K, Valued.v (f - Q) < γ
K : Type u_2 inst✝ : Field K f : K⸨X⸩ γ : ℤₘ₀ˣ F : K⟦X⟧ := f.powerSeriesPart hF : F = f.powerSeriesPart ⊢ ∃ Q, Valued.v (f - ↑Q) < ↑γ
by_cases ord_nonpos : f.order < 0
case pos K : Type u_2 inst✝ : Field K f : K⸨X⸩ γ : ℤₘ₀ˣ F : K⟦X⟧ := f.powerSeriesPart hF : F = f.powerSeriesPart ord_nonpos : HahnSeries.order f < 0 ⊢ ∃ Q, Valued.v (f - ↑Q) < ↑γ case neg K : Type u_2 inst✝ : Field K f : K⸨X⸩ γ : ℤₘ₀ˣ F : K⟦X⟧ := f.powerSeriesPart hF : F = f.powerSeriesPart ord_nonpos : ¬HahnSeries.order f < 0 ⊢ ∃ Q, Valued.v (f - ↑Q) < ↑γ
cd30660ae57d9ba0
CategoryTheory.Sieve.overEquiv_pullback
Mathlib/CategoryTheory/Sites/Over.lean
lemma overEquiv_pullback {X : C} {Y₁ Y₂ : Over X} (f : Y₁ ⟶ Y₂) (S : Sieve Y₂) : overEquiv _ (S.pullback f) = (overEquiv _ S).pullback f.left
case h.mpr.intro.intro.intro.intro C : Type u inst✝ : Category.{v, u} C X : C Y₁ Y₂ : Over X f : Y₁ ⟶ Y₂ S : Sieve Y₂ Z : C g : Z ⟶ Y₁.left W : Over X a : W ⟶ Y₂ b : Z ⟶ W.left h : S.arrows a w : g ≫ f.left = b ≫ a.left T : Over ((Functor.fromPUnit X).obj W.right) := Over.mk (b ≫ W.hom) c : T ⟶ Y₁ := Over.homMk g ⋯ d : T ⟶ W := Over.homMk b ⋯ ⊢ S.arrows (c ≫ f)
rw [show c ≫ f = d ≫ a by ext; exact w]
case h.mpr.intro.intro.intro.intro C : Type u inst✝ : Category.{v, u} C X : C Y₁ Y₂ : Over X f : Y₁ ⟶ Y₂ S : Sieve Y₂ Z : C g : Z ⟶ Y₁.left W : Over X a : W ⟶ Y₂ b : Z ⟶ W.left h : S.arrows a w : g ≫ f.left = b ≫ a.left T : Over ((Functor.fromPUnit X).obj W.right) := Over.mk (b ≫ W.hom) c : T ⟶ Y₁ := Over.homMk g ⋯ d : T ⟶ W := Over.homMk b ⋯ ⊢ S.arrows (d ≫ a)
7920ceaa92266301
Monoid.minOrder_eq_top
Mathlib/GroupTheory/Order/Min.lean
@[to_additive (attr := simp)] lemma minOrder_eq_top : minOrder α = ⊤ ↔ IsTorsionFree α
α : Type u_1 inst✝ : Monoid α ⊢ minOrder α = ⊤ ↔ IsTorsionFree α
simp [minOrder, IsTorsionFree]
no goals
6ca97de145f5f933
blimsup_thickening_mul_ae_eq
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
theorem blimsup_thickening_mul_ae_eq (p : ℕ → Prop) (s : ℕ → Set α) {M : ℝ} (hM : 0 < M) (r : ℕ → ℝ) (hr : Tendsto r atTop (𝓝 0)) : (blimsup (fun i => thickening (M * r i) (s i)) atTop p : Set α) =ᵐ[μ] (blimsup (fun i => thickening (r i) (s i)) atTop p : Set α)
α : Type u_1 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : SecondCountableTopology α inst✝³ : MeasurableSpace α inst✝² : BorelSpace α μ : Measure α inst✝¹ : IsLocallyFiniteMeasure μ inst✝ : IsUnifLocDoublingMeasure μ p : ℕ → Prop s : ℕ → Set α M : ℝ hM : 0 < M r : ℕ → ℝ hr : Tendsto r atTop (𝓝 0) q : ℕ → Prop := fun i => p i ∧ 0 < r i h₁ : blimsup (fun i => thickening (r i) (s i)) atTop p = blimsup (fun i => thickening (r i) (s i)) atTop q h₂ : blimsup (fun i => thickening (M * r i) (s i)) atTop p = blimsup (fun i => thickening (M * r i) (s i)) atTop q ⊢ blimsup (fun i => thickening (M * r i) (s i)) atTop q =ᶠ[ae μ] blimsup (fun i => thickening (r i) (s i)) atTop q
exact blimsup_thickening_mul_ae_eq_aux μ q s hM r hr (Eventually.of_forall fun i hi => hi.2)
no goals
4c761ba1d6033096
TopologicalSpace.IsTopologicalBasis.open_eq_iUnion
Mathlib/Topology/Bases.lean
theorem IsTopologicalBasis.open_eq_iUnion {B : Set (Set α)} (hB : IsTopologicalBasis B) {u : Set α} (ou : IsOpen u) : ∃ (β : Type u) (f : β → Set α), (u = ⋃ i, f i) ∧ ∀ i, f i ∈ B := ⟨↥({ s ∈ B | s ⊆ u }), (↑), by rw [← sUnion_eq_iUnion] apply hB.open_eq_sUnion' ou, fun s => And.left s.2⟩
α : Type u t : TopologicalSpace α B : Set (Set α) hB : IsTopologicalBasis B u : Set α ou : IsOpen u ⊢ u = ⋃ i, ↑i
rw [← sUnion_eq_iUnion]
α : Type u t : TopologicalSpace α B : Set (Set α) hB : IsTopologicalBasis B u : Set α ou : IsOpen u ⊢ u = ⋃₀ {s | s ∈ B ∧ s ⊆ u}
c8cbda2582b5d56e
MeasureTheory.StronglyMeasurable.ae_eq_trim_of_stronglyMeasurable
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
lemma ae_eq_trim_of_stronglyMeasurable (hm : m ≤ m₀) (hf : StronglyMeasurable[m] f) (hg : StronglyMeasurable[m] g) (hfg : f =ᵐ[μ] g) : f =ᵐ[μ.trim hm] g
α : Type u_1 E : Type u_5 m m₀ : MeasurableSpace α μ : Measure α f g : α → E inst✝¹ : TopologicalSpace E inst✝ : MetrizableSpace E hm : m ≤ m₀ hf : StronglyMeasurable f hg : StronglyMeasurable g hfg : f =ᶠ[ae μ] g ⊢ MeasurableSet {a | ¬f a = g a}
exact (hf.measurableSet_eq_fun hg).compl
no goals
9c7c552ff0f787dd
Metric.hausdorffDist_triangle
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
theorem hausdorffDist_triangle (fin : hausdorffEdist s t ≠ ⊤) : hausdorffDist s u ≤ hausdorffDist s t + hausdorffDist t u
α : Type u inst✝ : PseudoMetricSpace α s t u : Set α fin : hausdorffEdist s t ≠ ⊤ h : ¬hausdorffEdist s u = ⊤ ⊢ ¬hausdorffEdist t u = ⊤
rw [hausdorffEdist_comm] at fin
α : Type u inst✝ : PseudoMetricSpace α s t u : Set α fin : hausdorffEdist t s ≠ ⊤ h : ¬hausdorffEdist s u = ⊤ ⊢ ¬hausdorffEdist t u = ⊤
ed7585c050956a75
AdicCompletion.ofTensorProduct_iso
Mathlib/RingTheory/AdicCompletion/AsTensorProduct.lean
private lemma ofTensorProduct_iso [Fintype ι] [IsNoetherianRing R] : IsIso (ModuleCat.ofHom (ofTensorProduct I M))
case refine_3 R : Type u inst✝⁴ : CommRing R I : Ideal R M : Type u inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type f : (ι → R) →ₗ[R] M hf : Function.Surjective ⇑f inst✝¹ : Fintype ι inst✝ : IsNoetherianRing R ⊢ IsIso (ModuleCat.ofHom 0)
apply Limits.isIso_of_isTerminal <;> exact Limits.IsZero.isTerminal (ModuleCat.isZero_of_subsingleton _)
no goals
76224af4d5a35f57
PiNat.res_eq_res
Mathlib/Topology/MetricSpace/PiNat.lean
theorem res_eq_res {x y : ℕ → α} {n : ℕ} : res x n = res y n ↔ ∀ ⦃m⦄, m < n → x m = y m
case mpr.zero α : Type u_2 x y : ℕ → α h : ∀ ⦃m : ℕ⦄, m < 0 → x m = y m ⊢ res x 0 = res y 0
simp
no goals
4a51f6885772b8d7
CategoryTheory.SmallObject.SuccStruct.ofCocone.map_comp
Mathlib/CategoryTheory/SmallObject/Iteration/FunctorOfCocone.lean
lemma map_comp (i₁ i₂ i₃ : J) (hi : i₁ ≤ i₂) (hi' : i₂ ≤ i₃) (hi₃ : i₃ ≤ j) : map c i₁ i₃ (hi.trans hi') hi₃ = map c i₁ i₂ hi (hi'.trans hi₃) ≫ map c i₂ i₃ hi' hi₃
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C J : Type u inst✝ : LinearOrder J j : J F : ↑(Set.Iio j) ⥤ C c : Cocone F i₁ i₂ i₃ : J hi : i₁ ≤ i₂ hi' : i₂ ≤ i₃ hi₃ : i₃ ≤ j ⊢ map c i₁ i₃ ⋯ hi₃ = map c i₁ i₂ hi ⋯ ≫ map c i₂ i₃ hi' hi₃
obtain hi₁₂ | rfl := hi.lt_or_eq
case inl C : Type u_1 inst✝¹ : Category.{u_2, u_1} C J : Type u inst✝ : LinearOrder J j : J F : ↑(Set.Iio j) ⥤ C c : Cocone F i₁ i₂ i₃ : J hi : i₁ ≤ i₂ hi' : i₂ ≤ i₃ hi₃ : i₃ ≤ j hi₁₂ : i₁ < i₂ ⊢ map c i₁ i₃ ⋯ hi₃ = map c i₁ i₂ hi ⋯ ≫ map c i₂ i₃ hi' hi₃ case inr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C J : Type u inst✝ : LinearOrder J j : J F : ↑(Set.Iio j) ⥤ C c : Cocone F i₁ i₃ : J hi₃ : i₃ ≤ j hi : i₁ ≤ i₁ hi' : i₁ ≤ i₃ ⊢ map c i₁ i₃ ⋯ hi₃ = map c i₁ i₁ hi ⋯ ≫ map c i₁ i₃ hi' hi₃
b2218895d6a3ba87
Std.DHashMap.Internal.AssocList.toList_filter
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/AssocList/Lemmas.lean
theorem toList_filter {f : (a : α) → β a → Bool} {l : AssocList α β} : Perm (l.filter f).toList (l.toList.filter fun p => f p.1 p.2)
α : Type u β : α → Type v f : (a : α) → β a → Bool l✝ : AssocList α β k : α v : β k t : AssocList α β ih : ∀ (l : AssocList α β), (filter.go f l t).toList.Perm (l.toList ++ List.filter (fun p => f p.fst p.snd) t.toList) l : AssocList α β ⊢ (filter.go f l (cons k v t)).toList.Perm (l.toList ++ List.filter (fun p => f p.fst p.snd) (cons k v t).toList)
simp only [filter.go, toList_cons, List.filter_cons, cond_eq_if]
α : Type u β : α → Type v f : (a : α) → β a → Bool l✝ : AssocList α β k : α v : β k t : AssocList α β ih : ∀ (l : AssocList α β), (filter.go f l t).toList.Perm (l.toList ++ List.filter (fun p => f p.fst p.snd) t.toList) l : AssocList α β ⊢ (if f k v = true then filter.go f (cons k v l) t else filter.go f l t).toList.Perm (l.toList ++ if f k v = true then ⟨k, v⟩ :: List.filter (fun p => f p.fst p.snd) t.toList else List.filter (fun p => f p.fst p.snd) t.toList)
092a53226e6b9f87